Emerson OCX 8800 Instruction manual

Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Oxygen/Combustibles Transmitter
http://www.raihome.com
HIGHLIGHTS OF CHANGES
Effective September 2009, Rev 2.0
Page/Section
Summary
Throughout IM
Included coverage of all General Purpose OCX 8800 configurations/options into this single
Instruction Manual.
Added FOUNDATION Fieldbus communications option.
Added coverage of optional COe Purge/Zero function equipment illustrations with related
installation and operating procedures.
Added coverage of three optional in-situ filters.
Added coverage of optional wall-mount or rack-mount blowback panel.
Adde coverage of PlantWeb Alert data for OCX 8800 units with FOUNDATION Fieldbus
communications.
Added Appendix B coverage of optional Moore Industries Site Pprogrammable Alarm for
OCX 8800 units with HART communications.
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Table of Contents
Essential Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
SECTION i
Introduction
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
........................................................
SECTION 1
Description and
Specifications
Component Checklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
SECTION 2
Installation
Mechanical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Electrical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Pneumatic Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Initial Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
SECTION 3
Configuration and
Startup
Verify Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Initial Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Set Test Gas Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Calibration Solenoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Blowback Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Calibration Verify Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Calibration Tolerance Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
COe Purge / Zero Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
OCX 8800 Reset Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
SECTION 4
Using the LOI
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Display Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
LOI Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
LOI Key Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
LOI Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
LOI Menu Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
SECTION 5
Calibration
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Fully Automatic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Operator - Initiated Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Manual Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
D/A Trim Procedures - LOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
D/A Trim Procedures - HART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
http://www..raihome.com
iii
iii
iv
iv
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
SECTION 6
Field Communicator
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Field Communicator Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Off-Line and On-Line Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Hart Menu Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Fieldbus Menu Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
SECTION 7
Foundation Fieldbus
Foundation Fieldbus Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Instrument-Specific Function Blocks . . . . . . . . . . . . . . . . . . . . . . . 7-4
Network Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
OCX Function Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Resource Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
PlantWeb Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Mapping of PWA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
PWA Simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Fieldbus/PWA Simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Configure Simulation with the Model 375 Field Communicator . . 7-11
Support Resource Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Transducer Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Transducer Block Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Transducer Block Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . 7-17
Transducer Block Channel Assignments for AI Blocks . . . . . . . . 7-22
Transducer Block Channel Status . . . . . . . . . . . . . . . . . . . . . . . . 7-22
Transducer Block Simulate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
Support Transducer Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
Analog Input (AI) Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
Signal Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28
Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
Alarm Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
Status Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-30
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-30
Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-35
Proportional/Integral/Derivative (PID) Function Block . . . . . . . . . . . . 7-36
Setpoint Selection and Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . 7-40
Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41
Feedforward Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41
Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41
Output Selection and Limiting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41
Bumpless Transfer and Setpoint Tracking . . . . . . . . . . . . . . . . . . 7-41
PID Equation Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-42
Reverse and Direct Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-42
Reset Limiting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-42
Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-42
Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43
Alarm Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44
TOC-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Status Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-45
Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-46
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-51
Arithmetic (ARTHM) Function Block . . . . . . . . . . . . . . . . . . . . . . . . . 7-52
Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-54
Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-55
Alarm Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-55
Block Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-55
Status Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-56
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-56
Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-59
Input Selector (ISEL) Function Block. . . . . . . . . . . . . . . . . . . . . . . . . 7-59
Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-61
Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-61
Alarm Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-62
Block Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-62
Status Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-62
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-63
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-64
Operation with Emerson Process Management DeltaV . . . . . . . . . . 7-65
About AMS and DeltaV Software . . . . . . . . . . . . . . . . . . . . . . . . . 7-65
SECTION 8
Troubleshooting
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Electrical Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Electrostatic Discharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Total Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Diagnostic Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Alarm Relay Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
SECTION 9
Maintenance and Service
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
OCX 8800 Removal and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
OCX with Integral Electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
OCX with Remote Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
Repair Sensor Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
Sensor Housing Disassembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
Sensor Housing Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Repair Electronics Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29
Electronics Housing Disassembly . . . . . . . . . . . . . . . . . . . . . . . . 9-29
Electronics Housing Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31
Replace Tube Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-35
Remove Tube Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-35
Install Tube Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-36
SECTION 10
Replacement Parts
Sensor Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Electronics Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6
O2 Cell and Heater Strut Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . 10-9
TOC-3
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
APPENDIX A
Safety Data
Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Safety Data Sheet for Ceramic Fiber Products . . . . . . . . . . . . . . . . . A-24
High Pressure Gas Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30
APPENDIX B
SPA with HART Alarm
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
APPENDIX C
Return of Materials
Returning Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-1
TOC-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Oxygen/Combustibles Transmitter
ESSENTIAL
INSTRUCTIONS
READ THIS PAGE BEFORE PROCEEDING!
Emerson Process Management designs, manufactures and tests its products
to meet many national and international standards. Because these
instruments are sophisticated technical products, you MUST properly install,
use, and maintain them to ensure they continue to operate within their
normal specifications. The following instructions MUST be adhered to and
integrated into your safety program when installing, using, and maintaining
Emerson’s Rosemount Analytical products. Failure to follow the proper
instructions may cause any one of the following situations to occur: Loss of
life; personal injury; property damage; damage to this instrument; and
warranty invalidation.
• Read all instructions prior to installing, operating, and servicing the
product.
• If you do not understand any of the instructions, contact your
Emerson Process Management representative for clarification.
• Follow all warnings, cautions, and instructions marked on and
supplied with the product.
• Inform and educate your personnel in the proper installation,
operation, and maintenance of the product.
• Install your equipment as specified in the Installation Instructions
of the appropriate Instruction Manual and per applicable local and
national codes. Connect all products to the proper electrical and
pressure sources.
• To ensure proper performance, use qualified personnel to install,
operate, update, program, and maintain the product.
• When replacement parts are required, ensure that qualified people use
replacement parts specified by Emerson Process Management.
Unauthorized parts and procedures can affect the product's
performance, place the safe operation of your process at risk, and
VOID YOUR WARRANTY. Look-alike substitutions may result in fire,
electrical hazards, or improper operation.
• Ensure that all equipment doors are closed and protective covers
are in place, except when maintenance is being performed by
qualified persons, to prevent electrical shock and personal injury.
The information contained in this document is subject to change without
notice.
If a Model 375 Field Communicator is used with this unit, the software within the Model 375
may require modification. If a software modification is required, please contact your local
Emerson Process Management Service Group or National Response Center at
1-800-654-7768.
http://www..raihome.com
Instruction Manual
OCX 8800
ii
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
Section i
OCX 8800
Introduction
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page iii
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page iii
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page iv
PREFACE
The purpose of this manual is to provide a comprehensive understanding of
the OCX 8800 components, functions, installation, and maintenance.
We recommend that you thoroughly familiarize yourself with the Introduction
and Installation sections before installing your transmitter.
The introduction presents the basic principles of the transmitter along with its
performance characteristics and components. The remaining sections contain
detailed procedures and information necessary to install and service the
transmitter.
Before contacting Emerson Process Management concerning any questions,
first consult this manual. It describes most situations encountered in your
equipment's operation and details necessary action.
DEFINITIONS
The following definitions apply to WARNINGS, CAUTIONS, and NOTES
found throughout this publication.
Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not
strictly observed, could result in injury, death, or long-term health hazards of personnel.
Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not
strictly observed, could result in damage to or destruction of equipment, or loss of
effectiveness.
NOTE
Highlights an essential operating procedure, condition, or statement.
http://www..raihome.com
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
SYMBOLS
NOTE TO USERS
The number in the lower right corner of each illustration in this publication is a
manual illustration number. It is not a part number, and is not related to the
illustration in any technical manner.
NOTE
Read this manual before working with the product. For personal and system
safety, and for optimum product performance, make sure you thoroughly
understand the contents before installing, using, or maintaining this product.
iv
Instruction Manual
IM-106-880, Rev 2.0
September 2009
Section 1
OCX 8800
Description and Specifications
Component Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1-1
System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1-3
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1-12
Product Matrix - OCX 8800 . . . . . . . . . . . . . . . . . . . . . . . . . page 1-14
COMPONENT
CHECKLIST
A typical OCX 8800 Oxygen/Combustibles Transmitter package should
contain the items shown in Figure 1-1.
Use the product matrix in Table 1-1 at the end of this section to verify your
order number. The first part of the matrix defines the model. The last part
defines the various options and features of the OCX 8800. Check the model
number against the transmitter features and options, making sure options
specified by this number are on or included with the unit. Use this complete
model number for any correspondence with Emerson Process Management.
A list of accessories for use with the OCX 8800 is provided in Table 1-2.
http://www..raihome.com
Instruction Manual
OCX 8800
Figure 1-1. Typical System Package
1. Instruction Manual
2. Field Communicator Package (optional)
3. Adapter Plate with Mounting Hardware and Gasket
4. Reference Air and Calibration Set (optional)
5. Blowback Hardware (optional)
6. OCX 8800 with Remote Electronics
7. OCX 8800 with Integral Electronics
1-2
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
SYSTEM OVERVIEW
OCX 8800
Scope
This Instruction Manual supplies details needed to install, startup, operate,
and maintain the OCX 8800. Signal conditioning electronics outputs a digital
signal representing oxygen (O2) and combustibles (COe) values. This
information, plus additional details, can be accessed with the 375 Field
communicator or Emerson Process Management AMS software. The optional
local operator interface (LOI) also provides a communications interface with
the electronics.
System Description
The OCX 8800 is designed to measure oxygen and combustible
concentrations in flue gas temperatures up to 2600°F (1427°C). Electrical
connections, power and communications are made through two 3/4 NPT ports
in the flameproof electronics enclosure using fittings and cables provided by
the customer. Cable installation must meet NEC, IEC and/or other applicable
national or local codes for Class I, Zone 1, Group IIB +H2 T3/T6 permanently
mounted equipment. The transmitter is close coupled to the process and
requires minimal sample conditioning requirements.
The equipment measures oxygen percentage by reading the voltage
developed across a heated electrochemical cell, which consists of a small
yttria-stabilized, zirconia disc. Both sides of the disc are coated with porous
metal electrodes. When operated at the proper temperature, the millivolt
output of the cell is given by the following Nernst equation:
EMF = KT log10 (P1/P2) + C
Where:
1. P2 is the partial pressure of the oxygen in the measured gas on one side
of the cell.
2. P1 is the partial pressure of the oxygen in the reference air on the
opposite side of the cell.
3. T is the absolute temperature.
4. C is the cell constant.
5. K is an arithmetic constant.
NOTE
For best results, use clean, dry instrument air (20.95% oxygen) as the
reference air.
When the cell is at operating temperature and there are unequal oxygen
concentrations across the cell, oxygen ions will travel from the high oxygen
partial pressure side to the low oxygen partial pressure side of the cell. The
resulting logarithmic output voltage is approximately 50 mV per decade. The
output is proportional to the inverse logarithm of the oxygen concentration.
Therefore, the output signal increases as the oxygen concentration of the
sample gas decreases. This characteristic enables the OCX 8800 to provide
exceptional sensitivity at low oxygen concentrations.
1-3
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
The OCX 8800 measures net oxygen concentration in the presence of all the
products of combustion, including water vapor. Therefore, it may be
considered an analysis on a "wet" basis. In comparison with older methods,
such as the portable apparatus, which provides an analysis on a "dry" gas
basis, the "wet" analysis will, in general, indicate a lower percentage of
oxygen. The difference will be proportional to the water content of the
sampled gas stream.
The OCX 8800 combustibles sensor is a catalytic sensor consisting of two
Resistance Devices (RTD). One RTD is the reference element covered with
an inert coating. The other RTD element is active, coated with a catalyst. As
the sample gases flow by the sensor, the combustible gases oxidize on the
surface of the active element. The oxidation that occurs produces heat and a
temperature rise in the active element. The temperature difference produces
a resistance relationship between the two elements that is directly
proportional to the concentration of combustibles in the sample gases.
The catalyst is specifically designed to detect carbon monoxide (CO), but the
sensor responds to other combustible gases. The sensor is calibrated using
CO, thus the output should be expressed in terms of CO. However, since the
sensor detects other combustible gases, the output cannot just be labeled
CO. The response of the sensor to other combustible gases gives an output
that is equivalent to the sensor detecting CO.
The term COe is used in this manual to describe the sensor output. This term
indicates that the sensor is calibrated in terms of CO, and that the sensor
output is equivalent to CO but not specific to CO.
Dilution air is provided to the COe sensor to ensure there is adequate oxygen
to fully oxidize any combustible gases regardless of the concentration of
oxygen in the process.
System Configuration
Transmitters are available in four lengths, giving the user the flexibility to use
a penetration appropriate to the size of the stack or duct. The length options
are 18 in. (457 mm), 3 ft (0.91 m), 6 ft (1.83 m), or 9 ft (2.7 m). Probes are
available in three material options, 316L stainless steel, Inconel 600, and
ceramic to accommodate higher temperatures.
The electronics are contained in a separate housing from the sensors. When
the transmitter is configured with the integral electronics option the electronics
and sensor housings are mounted as a unit at the stack mounting flange.
When the transmitter is configured with the remote electronics option the
electronics are contained in a separate housing from the sensors. The
electronics housing may be mounted up to 150 feet from the sensor housing.
The electronics control both sensor temperatures and provide output signals
in one of two ways:
1. Individual 4-20 ma isolated outputs that are proportional to the
measured oxygen and combustibles concentrations. The oxygen output
also contains HART communication.
2. Single FOUNDATION fieldbus output.
1-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
The power supply can accept voltages of 100 to 240 VAC and 50 to 60 Hz.
The electronics accepts millivolt signals generated by the sensors and
produces the outputs to be used by remotely connected devices. Refer to
Section 3, Configuration and Startup for specific instructions upon initial
power up.
System Features
1. The O2 cell output voltage and sensitivity increase as the oxygen
concentration decreases.
2. HART or FOUNDATION fieldbus communication is standard. To use this
capability, you must have either:
a. Model 375 Field Communicator.
b. AMS software for the PC.
3. Oxygen cell and heater/thermocouple assembly are field replaceable.
4. Electronics are automatically configured for line voltages from 100 to
240 VAC.
5. An operator can calibrate and diagnostically troubleshoot the OCX 8800
in one of two ways:
a. LOI. The LOI is mounted to the end of the electronics module and
allows local communications with the electronics. Refer to Section 4,
Using the LOI, for more information.
b. HART or FOUNDATION fieldbus interface. The OCX 8800's output
line transmits a digital signal with the detected oxygen or
combustible levels encoded in a digital format. This information can
be accessed through the following:
•
Model 375 Field Communicator - The handheld field
communicator requires Device Description (DD) software specific
to the OCX 8800. The DD software will be supplied with many
Model 375 units, but can also be programmed into existing units
at most Emerson Process Management service offices. Refer to
Section 6, Field Communicator, for additional information.
•
Personal Computer (PC) - The use of a personal computer
requires AMS software available from Emerson Process
Management.
•
Selected Distributed Control Systems - The use of distributed
control systems requires input/output (I/O) hardware and AMS
software which permit HART or FOUNDATION fieldbus
communications.
6. When the transmitter is configured without the LOI an operator must
calibrate and diagnostically troubleshoot the OCX 8800 using the HART
or FOUNDATION fieldbus Interface.
7. Optional Blowback System. The blowback system periodically blows
instrument air back through the sample line filter and out the sample
tube. This clears out particulate and keeps the sample line filter from
clogging.
1-5
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
System Operation
Figure 1-2 shows the relationship between the components of the OCX 8800.
The sensors and the electronics are contained in separate housings. The
sensor housing and probe mounts to a duct or process wall so that the probe
protrudes into the flue gas stream. An air powered eductor continuously pulls
samples of the process flue gas through the probe to a chamber in front of the
sensor housing where the sample passes the O2 sensor and continues on to
the COe sensor. Dilution air is provided to the COe sensor and reference air
to the O2 sensor. After the gas sample flows past the O2 sensor and through
the COe sensor, it is drawn through the eductor where it mixes with the
eductor air and exits through exhaust back into the system. The electronics
housing contains the CPU and communication boards which convert the
sensor inputs into digital output signals. The CPU can also initiate and
perform calibrations. Three test gasses and instrument air can be turned on
and off by solenoids. Test gas flow to the sensors is regulated by a flow meter
between the electronics and sensor housings. Instrument air is separated into
eductor air, reference air, and dilution air. The instrument air solenoid does not
allow air flow until the heaters are up to temperature. This minimizes the
amount of sampled process flue gas being pulled into cold sensors causing
condensation.
Figure 1-2. System Operation Diagram
SENSOR
HOUSING
ELECTRONICS
HOUSING
CPU
Probe
Sample
Gas
COMM
Board
O2
Sensor
Eductor
Power
Supply
High O2
Test Gas
Optional
Test Gas
Solenoids
CO
Test Gas
Instrument Air
Solenoid
Instrument
Air
Flow Meter
7 scfh
Exhaust
Flow Meter
50 cc/min.
(0.1 scfh)
Eductor Air
Reference Air
Dilution Air
1-6
Low O2
Test Gas
39690001
COe
Combustibles
Sensor
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Handling the OCX 8800
It is important that printed circuit boards and integrated circuits are handled only when
adequate antistatic precautions have been taken to prevent possible equipment damage.
The OCX 8800 is designed for industrial application. Treat each component of the system
with care to avoid physical damage. The probe may contain components made from
ceramics, which are susceptible to shock when mishandled.
System Considerations
Prior to installing your OCX 8800, make sure you have all the components
necessary to make the system installation. Ensure all the components are
properly integrated to make the system functional.
After verifying that you have all the components, select mounting locations
and determine how each component will be placed in terms of available line
voltage, ambient temperatures, environmental considerations, convenience,
and serviceability. Figure 1-3 shows a typical system wiring for a system with
integral electronics. Figure 1-4 shows a typical system wiring for a system
with remote electronics. Simplified installations for the OCX 8800 are shown
in Figure 1-5 and Figure 1-6. Figure 1-7 shows the dimensions for the
optional sample tube support. Figure 1-8 shows the dimensions for the
optional in-situ filters. Figure 1-9 shows the optional panel mounted blowback.
A source of instrument air is required at the OCX 8800 for reference air,
dilution air, and eductor air. Since the OCX 8800 is equipped with an in-place
calibration feature, provision should be made for connecting test gas tanks to
the OCX 8800 when it is to be calibrated.
NOTE
The electronics module is designed to meet Type 4X and IP66 and the
electronic components are rated to temperatures up to 185°F (85°C).
Retain packaging in which the unit arrived from the factory in case any
components are to be shipped to another site. This packaging has been
designed to protect the product.
1-7
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 1-3. Communication Connections and AMS Application - OCX 8800 with Integral Electronics
Model 375
Field
Communicator
OCX 8800 with
Integral Electronics
Signal Output
(Twisted Pairs)
Customer’s Laptop
with AMS
38850003
Termination in
Control Room
3 calibration
gas lines by
Instrument customer
[300 ft (91 m) max.)
Air
AMS
Figure 1-4. Communication Connections and AMS Application - OCX 8800 with Remote Electronics
OCX 8800
Sensor Housing
Model 375
Field
Communicator
Signal Output
(Twisted Pairs)
OCX 8800
Electronics Housing
Customer’s Laptop
with AMS
Termination in
Control Room
3 calibration
gas lines by
customer
[300 ft (91 m) max.)
AMS
1-8
38850004
Instrument
Air
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 1-5. Typical System Installation - Integral Electronics
Gases
Adapter
Plate
OCX 8800 with
INTEGRAL
ELECTRONICS
Duct
Stack
Signal Outputs
(Twisted Pairs)
Test Gas
Flow Meter
Line Voltage
High O2 Test Gas
Low O2 Test Gas
CO Test Gas
37390063
Dilution
Air
Flow
Meter
Instrument Air
Pressure
Supply
Regulator (Reference Gas)
Figure 1-6. Typical System Installation - Remote Electronics
Gases
Duct
OCX 8800 with
REMOTE
ELECTRONICS
Stack
Heater
Power Cable
[up to 150 ft (46 m)]
Signal Cable
[up to 150 ft (46 m)]
Test Gas
Flow Meter
Signal Outputs
(Twisted Pairs)
Line Voltage
Instrument Air
Pressure
Supply
Regulator (Reference Gas)
High O2 Test Gas
Low O2 Test Gas
CO Test Gas
37390064
Dilution
Air
Flow
Meter
1-9
Instruction Manual
OCX 8800
Figure 1-7. Optional Sample Tube Support
1-10
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 1-8. Optional InSitu Filters
1/4-18 NPT
1.3
(33)
7.3
(186)
InSitu Stainless Steel or Hastolloy Filter
1/4-18 NPT
1.8
(46)
39930006
2.0
(50)
4.0
(102)
InSitu High Surface Area Stainless Steel Filter
Figure 1-9. Optional Panel Mounted Blowback and Calibration/Reference Air Set (19” Rack or Wall Mount)
5.00
(127)
19.00 (482.6)
DILUTION GAS
6.97
(177)
CAL GAS
CALIBRATION/BLOWBACK
PANEL
OCX 8800
SET TO 55 PSIG
BLOWBACK AIR
PRESSURE
OCX88A: 35 PSIG
OCX88C: 45 PSIG
REFERENCE AIR
PRESSURE
PROCESS ANALYTICAL DIVISION
1-440-914-1261
www.raihome.com
16.5 (419.1)
Wall Mount
6.0 (152.4)
Wall Mount
Wall Mount Hole Pattern
39930007
2.2
(55.9)
1-11
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SPECIFICATIONS
Specifications
Net O2 Range
Combustibles
Accuracy
Oxygen
Combustibles
System Response to
Test Gas
Oxygen
Combustibles
Temperature Limits
Process
Sensors Housing
Electronics Housing
Local Operator
Interface
Nominal and Approximate
Shipping Weights
18 in. (457 mm)
probe package
3 ft (0.91 m) probe
package
6 ft (1.83 m) probe
package
9 ft (2.74 m) probe
package
Housings Mounting Integral Electronics
Mounting and Mounting
Positions - Remote
Electronics
Sensors Housing
Electronics Housing
Materials
Probes
Enclosures
Calibration
Calibration Gas Mixtures
Recommended
(Ref. test gas bottles
kit #1A99119G04)
Calibration Gas Flow
Reference Air
Eductor Air
Dilution Air
1-12
0-1% to 0-40% O2, fully field selectable
0-1000 ppm to 0-5%, fully field selectable
± 0.75% of reading or 0.05% O2 (whichever is greater)
± 2% range
10 sec T90
25 sec T90
32° to 2600°F (0° to 1427°C)
-40° to 212°F (-40° to 100°C), ambient
-40° to 149°F (-40° to 65°C), ambient
-40° to 185°F (-40° to 85°C), internal - operating temperature of
electronics inside instrument housing, as read by HART or
FOUNDATION fieldbus
-40° to 158°F (-40° to 70°C), ambient
[At temperatures above 158°F (70°C) inside instrument housing,
the infrared keypad will cease to function, but the OCX 8800 will
continue to operate properly.]
54 lbs (20 kg)
55 lbs (20.5 kg)
57 lbs (21 kg)
59 lbs (22 kg)
Flange
Flange
Wall/Pipe
316L stainless steel - 1300°F (704°C)
Inconel 600 - 1832°F (1000°C)
Ceramic - 2600°F (1427°C)
Low-copper aluminum
Semi-automatic or automatic
0.4% O2, Balance N2
8% O2, Balance N2
1000 ppm CO, Balance Air
7 scfh (3.3 l/m), regulated to 20 to 30 psi (138 to 207 kPa)
2 scfh (1 l/m), clean, dry instrument-quality air (20.95% O2),
regulated to 35 psi (241 kPa)
5 scfh (2.5 l/m), clean, dry, instrument-quality air 20.95% O2),
regulated to 35 psi (241 kPa)
0.1 scfh (0.05 l/m), clean, dry, instrument-quality air (20.95% O2)
regulated to 35 psi (241 kPa)
Table continued on next page
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Specifications
Blowback Air (optional)
Sensors Housing
Electronics Housing
Clean, dry, instrument-quality air (20.95% O2), regulated to 55 psi
(379 kPa)
Type 4X, IP66 with fitting and pipe on reference exhaust port to
clean, dry atmosphere, two 3/4-14 NPT conduit ports
Type 4X, IP66 with fitting and pipe on reference exhaust port to
clean, dry atmosphere, two 3/4-14 NPT conduit ports
Certifications
C
Electrical Noise
Line Voltage
Pollution Degree
Over Voltage Category
Relative Humidity
Isolated Output
Oxygen
Combustibles
Alarm
Power Consumption
US
APPROVED
EN 61326-1, Class A
Universal 100 to 240 VAC ±10%, 50 to 60 Hz, no switches or
jumpers required, 3/4-14 NPT conduit port
2
II
5 to 95% (non-condensing)
4-20 mAdc, 950 ohm maximum, with HART or FOUNDATION
fieldbus capability only
4-20 mAdc, 950 ohm maximum (Not present with FOUNDATION
fieldbus)
Alarm output relay - dry contact, form C, 30mA, 30VDC capacity
750 W maximum
NOTE
All static performance characteristics are with operating variables constant. Specifications subject to change
without notice.
1-13
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Table 1-1. Product Matrix - OCX 8800
OCX88A
O2/Combustibles Transmitter
Code
00
11
12
13
14
21
22
23
24
31
32
Probe Length and Material
No Probe or Exhaust Tube
18 in. (457 mm) 316 SST
3 ft (0.91 m) 316 SST
6 ft (1.83 m) 316 SST
9 ft (2.7 m) 316 SST
18 in. (457 mm) Inconel 600
3 ft (0.91 m) Inconel 600
6 ft (1.83 m) Inconel 600
9 ft (2.7 m) Inconel 600
18 in. (457 mm) Ceramic
3 ft (0.91 m) Ceramic
Code
10
11
20
21
up to 1300°F (704°C)
up to 1300°F (704°C)
up to 1300°F (704°C)
up to 1300°F (704°C)
up to 1832°F (1000°C)
up to 1832°F (1000°C)
up to 1832°F (1000°C)
up to 1832°F (1000°C)
up to 2600°F (1427°C)
up to 2600°F (1427°C)
Probe Mounting Assembly
(ANSI 2 in. 150 lb) 6" dia. flange, 4.75" BC with 4 x 0.75" dia. holes - Standard O2 Cell
(ANSI 2 in. 150 lb) 6" dia. flange, 4.75" BC with 4 x 0.75" dia. holes - High Sulfur O2 Cell
(DIN) 185 mm dia. flange, 145 mm BC with 4 x 18 mm dia. holes - Standard O2 Cell
(DIN) 185 mm dia. flange, 145 mm BC with 4 x 18 mm dia. holes - High Sulfur O2 Cell
Code
0
1
2
3
4
5
Mounting Hardware - Stack Side
No Adapter Plate (“0” must be chosen under “Mounting Adapter - Probe Side” below)
New Installation - Square weld plate with studs
Model 218/240 Mounting Plate (with Model 218/240 Shield Removed)
Existing Model 218/240 Support Shield
Competitor’s Mount (1)
Model 132 Adapter Plate
Code
0
1
4
Mounting Hardware - Probe Side
No Adapter Plate
Probe Only (ANSI)
Probe Only (DIN)
Code
H1
H2
H3
H4
F1
F2
F3
F4
Electronics Housing - NEMA 4X, IP66 HART Communications
HART Communications - Basic Unit
HART Communications - Local Operator Interface
HART Communications - Calibration Solenoids
HART Communications - Local Operator Interface and Calibration Solenoids
Fieldbus Communications - Basic Unit
Fieldbus Communications - Local Operator Interface
Fieldbus Communications - Calibration Solenoids
Fieldbus Communications - Local Operator Interface and Calibration Solenoids
Code
01
02
03
04
05
06
07
08
OCX88A
1-14
11
10
1
1
H3
06
Electronics Mounting
Integral to Sensor Housing Electronics
Split Architecture with no cable
Split Architecture with 6M (20 Ft.) cable
Split Architecture with 12M (40 Ft.) cable
Split Architecture with 18M (60 Ft.) cable
Split Architecture with 24M (80 Ft.) cable
Split Architecture with 30M (100 Ft.) cable
Split Architecture with 45M (150 Ft.) cable
Example
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Cont’d
Code
0
1
2
3
.
In-Situ Filter
None
Stainless Steel
High Surface Area Stainless Steel
Hastelloy
Code
0
2
3
OCX88A
11
10
1
1
H3
06
0
4
Accessories
None
Cal. Gas/Flow Rotometers & Ref. Gas Set
Cal. Gas/Flow Rotometers & Ref. Gas Set w/ Blowback
Cal. Gas/Flow Rotometers & Ref. Gas Set w/ Blowback - Panel
Mounted
0
Example
NOTES:
(1)
Provide details of the existing mounting plate as follows:
Plate with studs
Plate without studs
Bolt circle diameter, number, and arrangement of studs, stud thread, stud height above mounting plate.
Bolt circle diameter, number, and arrangement of holes, thread, depth of stud mounting plate with accessories.
1-15
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Table 1-2. Accessories
PART NUMBER
1A99119H01
1-16
DESCRIPTION
Oxygen test gas bottle; 0.4% O2, balance N2
1A99119H02
Oxygen test gas bottle; 8.0% O2, balance N2
1A 99119H07
CO test gas bottle; 1000 ppm CO, balance air
1A99120H02
Regulator for Oxygen (may need 2)
1A99120H03
Regulator for CO test gas
1A99119G06
Wall mount bracket for test gas bottles
1A99119G05
Test gas regulators kit
1A99119G04
Test gas bottles kit
1A99292H01
Moore Industries SPA for Low O2 Alarm, High COe Alarm,
Calibration Status, and Unit Fail
4851B40G02
Wall or Pipe Mounting Kit
1A99784H02
375 Field Communicator with 12 Megabyte buffer,
model no. 375HR1EKLU
6A00171G01
Power line filter kit
6A00288G01
Sample Tube Support, 18 in. (457 mm)
6A00288G02
Sample Tube Support, 3 Ft. (0.91 m)
6A00288G02
Sample Tube Support, 6 Ft. (1.83 m)
6A00288G04
Sample Tube Support, 9 Ft. (2.7 m)
6P00162H01
Flange Insulator
Instruction Manual
IM-106-880, Rev 2.0
September 2009
Section 2
OCX 8800
Installation
Mechanical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-1
Electrical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-8
Pneumatic Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-13
Initial Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-24
Before installing this equipment, read the "Safety instructions for the wiring and installation
of this apparatus" in Appendix A: Safety Data. Failure to follow the safety instructions could
result in serious injury or death.
The OCX88A can be installed in general purpose areas only. Do not install the OCX88A in
hazardous areas.
MECHANICAL
INSTALLATION
Selecting Location
1. The location of the OCX 8800 in the stack or flue is most important for
maximum accuracy in the oxygen analyzing process. The probe must
be positioned so the gas it measures is representative of the process.
Best results are normally obtained if the transmitter is positioned near
the center of the duct (40-60% insertion). Longer ducts may require
several transmitters since the oxygen and combustibles can vary due to
stratification. A point too near the wall of the duct or the inside radius of
a bend, may not provide a representative sample because of the very
low flow conditions. The sensing point should be selected so the
process gas temperature falls within the range of probe material used.
Figure 2-1 through Figure 2-5 provide mechanical installation
references. The ambient temperature inside the electronics housing
must not exceed 185°F (85°C).
2. Check the flue or stack for holes and air leakage. The presence of this
condition will substantially affect the accuracy of the oxygen and
combustibles readings. Therefore, either make the necessary repairs or
install the transmitter up stream of any leakage.
3. Ensure the area is clear of internal and external obstructions that will
interfere with installation and maintenance access to the unit. Allow
adequate clearance for the removal of the OCX 8800.
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Do not allow the temperature of the electronics housing to exceed 185°F (85°C) or damage
to the electronics may result.
Whenever a positive stack pressure exists at the installation site, be sure to connect all
pneumatic lines prior to installing the OCX 8800 in the stack or ductwork. Failure to connect
the pneumatic lines can allow the flow of contaminants into the OCX 8800 ports.
Installation
1. Ensure all components are available to install the OCX 8800.
2. The OCX 8800 may be installed intact as it is received.
3. Weld or bolt adapter plate (Figure 2-3) onto the duct.
4. Use the pipe or wall mounting hardware as shown in Figure 2-4 to
mount a remote electronics housing. Choose a location not to exceed
the length of the electronics cable ordered.
5. Ensure the conduits drop vertically from the OCX 8800 and the conduit
is routed below the level of the conduit ports on the housing to form a
drip loop. Drip loops minimize the possibility that moisture will damage
the electronics (Figure 2-5).
6. Where a positive stack pressure exists at the installation site, connect all
pneumatic lines prior to installing the OCX 8800 in the stack or
ductwork.
NOTE
If process temperatures will exceed 392°F (200°C), use anti-seize compound
on stud threads to ease future removal of the OCX 8800.
7. Insert sample and exhaust tubes through the opening in the mounting
flange and bolt the unit to the flange.
Uninsulated stacks or ducts may cause ambient temperatures in the electronics housing to
exceed 185°F (85°C) and damage the electronics.
8. If insulation is removed to access the duct for OCX 8800 mounting,
make sure to replace insulation afterward.
2-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Enclosures
The OCX 8800 enclosures are designed to meet ingress conditions of Type
4X and IP66. Each enclosure cover is threaded to its base and sealed with an
o-ring that isolates the threads from external contaminants.
Each cover is secured by a clip attached to the base that engages the cover
between the ribs of the cover sidewall. The clip is held in place by an Allen
head cap screw and lockwasher mounted in a recess. Cover removal and
installation requires an Allen wrench to loosen and tighten the screw.
Figure 2-1. Installation, OCX 8800 with Integral Electronics
NOTE
All dimensions are in inches with millimeters in parentheses.
Insulate if exposed to adverse weather or extreme temperature changes,
install a protective housing and/or insulation around the unit.
Dim “B”
Removal Envelope
Allow 9 in.
(229 mm) for
Cover Removal
Dim “A”
Insertion Depth
Table 2. Installation/Removal
Probe
B.C. Dia.
18 in.
3 ft
Hole Dia.
6 ft
9 ft
Table 1. Mounting Flange
DIN
ANSI
7.28
6.00
Flange
Dia.
(185)
(152)
0.75
0.71
Hole
(19)
(18)
Dia.
(4) Holes
4.75
5.71
equally
(121)
(145)
spaced on
B.C. dia
Dim “A”
Dim “B”
18
(457)
36
(914)
72
(1829)
108
(2743)
34
(864)
52
(1321)
88
(2235)
124
(3150)
Optional
In Situ Filter
*
BOTTOM VIEW
*4.0 (101.6) with high surface
Stainless Steel Filter
*7.3 (186.4) with Stainless Steel
or Hastelloy Filter
37390008
Flange Dia.
0.06 In. Thick Gasket
ANSI 3535B18H02
3535B45H01
DIN
2-3
Instruction Manual
OCX 8800
Figure 2-2. Installation, OCX 8800 with Remote Electronics
2-4
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-3. Adapter Plate Installation
2-5
Instruction Manual
OCX 8800
Figure 2-4. Wall or Pipe Mounting of Electronics Housing
2-6
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-5. Installation with Drip Loops
Conduit Drip Loop
Duct Wall
Conduit Drip Loop
Duct Wall
37020004
Conduit Drip Loops
2-7
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
ELECTRICAL
INSTALLATION
All wiring must conform to local and national codes. For reference, factory
wired solenoid power connections are shown in Figure 2-6.
Disconnect and lock out power before connecting the unit to the power supply. Failure to
lock out power could result in serious injury or death.
Install all protective equipment covers and safety ground leads after installation. Failure to
install covers and ground leads could result in serious injury or death.
To meet the Safety Requirements of IEC 1010 (EC requirement), and ensure safe operation
of this equipment, connection to the main electrical power supply must be made through a
circuit breaker (min 10 A) in close proximity and marked for this equipment which will
disconnect all current-carrying conductors during a fault situation. This circuit breaker
should also include a mechanically operated isolating switch. If not, then another external
means of disconnecting the supply from the equipment should be located close by. Circuit
breakers or switches must comply with a recognized standard such as IEC 947.
The OCX88A can be installed in general purpose areas only. Do not install the OCX88A in
hazardous areas.
NOTE
To maintain proper earth grounding, ensure a positive connection exists
between the sensor housing, the electronics housing, and earth. The
connecting ground wire must be 14 AWG minimum. Refer to Figure 2-6.
NOTE
Line voltage, signal, and relay wiring must be rated for at least 105ºC (221ºF).
Electrical Connections
Electrical connections, power and communications are made to the electronic
enclosure. The connections are made through two 3/4 NPT ports in the
enclosure using fittings and cables provided by the customer. Cable
installation must meet NEC, IEC and/or other applicable national or local
codes for Class I, Zone 1, IIB +H2 T3/T6 permanently mounted equipment.
2-8
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Connect Line Voltage
The OCX 8800 operates on 100 to 240 VAC line voltage at 50 to 60 Hz. The
power supply requires no setup. Connect the line (L wire) to the L terminal,
and the neutral (N wire) to the N terminal on the AC power input terminal
block in the electronics housing. Connect the ground (G wire) to the ground
stud in the electronics housing as shown in Figure 2-6.
Connect Output Signals
The OCX 8800 may be provided with either two 4-20 mA signals with HART
on the O2 signal or a single FOUNDATION fieldbus signal. Connect the
output terminals in the electronics housing as shown in Figure 2-6. Use
individual shielded twisted wire pairs. Terminate the shield at the electronics
housing.
O2 4-20 mA Signal
One 4-20 mA signal represents the O2 value. Superimposed on the O2
signal is the HART information accessible through a Model 375 Handheld
Communicator or AMS software. The O2 signal is at the AOUT 1 terminals.
COe 4-20 mA Signal
Another 4-20 mA signal at the AOUT 2 terminals represents the COe
value.
FOUNDATION fieldbus Signal
The FOUNDATION fieldbus signal provides all output information and is
accessible through a Model 375 handheld communicator.
Alarm Output Relay
Connect any customer-supplied relay input to the alarm output relay terminal.
Use shielded wire and terminate the shield at the electronics housing. The
alarm output relay terminal is a set of dry, no. 2, form C, contacts with 30 mA,
30 VDC capacity.
Remote Electronics Connections to Sensor Housing
Make the following connections between the remote electronics and sensor
housings with the electronics cable ordered with the package (Figure 2-7).
Braided cable is available in lengths up to 150 ft. (46 m).
NOTE
Interconnect wiring shown is for Rosemount Analytical supplied cables. For
customer furnished interconnect wiring or cables, refer to Figure 2-8.
Signal Connections
Connect the electronics housing terminals to the corresponding terminals
in the sensor housing. The twisted wire pairs are numbered on the inner
plastic wrapper. Keep twisted pairs together and match the numbers and
wire colors shown in Figure 2-7.
Heater Power Connections
Use the blue, white, orange black, red, and yellow stranded wires in the
heater power cable to connect power to the three heaters in the sensor
housing. Match the wire colors to the corresponding heater power terminal
blocks in the sensor and electronics housings as shown in Figure 2-7.
2-9
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-6. Line Voltage, Earth, and 4-20 mA Connections
#1
NC
COM
NO
Alarm Output Relay
Terminal Block
{
{
OR
HART
COe Signal AOUT2+
AOUT2 O2 Signal/ AOUT1 HART AOUT1+
Signal Output
Terminal Block
{
{
#1
Signal Port
3/4 NPT
G
TOP VIEW
(1/2 SIZE)
Ground Stud
Customer
Wiring
Earth Ground
Typical for Electronics and
Sensor Housing
2-10
Power Port
3/4 NPT
Terminal
Block
EMI Filter
N
L1
G
G
Ground
Stud
External Tooth
Lockwasher
37390013
FOUNDATION
Fieldbus
Not used +
FOUNDATION Fieldbus
+
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
#1
2HTR CO
1HTR CO
2HTR O2
1HTR O2
2HTR SB
1HTR SB
YEL
RED
BLK
ORG
WHT
BLU
SHIELD
GRN
Figure 2-7. Electrical Connections Between Remote Electronics and Sensor Housing
To
ground
screw
Heater Power
Connector (J3)
#1
#1
RED
BLK
T/C CO+
T/C CO-
WHT
BLK
GRN
BLK
Heater Power Cable
#1
T/C SB+
T/C SBT/C O2+
T/C O2-
BLU
BLK
YEL
BRN
BLK
O2 CELL+
O2 CELL-
EXC+
CO ACT+
CO ACT-
COe Sensor
and
CO REF+ Cold Junction
CO REF- Connector (J4)
CJC+
CJCEXC-
RED
WHT
ORG
BLK
BLK
#1
O2 Sensor and
Thermocouple
Connector (J5)
To ground
screw
SHLD
ELECTRONICS HOUSING
#1
YEL
EXC +
BLK
BRN
HTR
1 SB
2
2
CO
ACT +
RED
+
-
CO
REF
2
HTR
1 O2
HTR
1 CO
WHT
ORG
+
CJC
EXC-
T/C SB
BLK
BLK
WHT
+
BLK
-
BLK
RED
+
T/C CO
+
-
GRN
BLK
-
T/C O2
+
O2
-
37390014
GRN
BLU
WHT
RED
YEL
ORG
BLK
BLK
To ground screw
BLU
Signal Cable
SENSOR HOUSING
2-11
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-8. Customer-Furnished Interconnect Wiring or Cables
SIGNAL WIRING OR CABLE
NOTE: For RFI/CE compliance, the connector
must provide 360 degrees of electrical
contact to the cable shield.
ELECTRONICS END
7.25
±0.10
Strip Wire
Ends 3/16”
Typical
Heat Shrink
Tubing
2” Long
1/2” Size
PROBE END
12.5 ±0.10
3/4 NPT Hub Size,
Liquid-tight
Strain Relief
Connector
10.375 ±0.10
Heat Shrink
Tubing
2” Long
1/2” Size
0.5
Typ.
6.875 ±0.10
A
See Note
2.0 ±0.25
Typical
7.0” Long Teflon Tubing,
0.042” ID (Cut off drain
wire at probe end of
shield).
Stud Size
#10
8.625 ±0.10
7.25 ±0.10
9.25 ±0.10
Overall Cable Length
By Customer
150’ Maximum
See Note
8 twisted pairs 24 AWG,
stranded, insulated,
tinned copper
conductors, 200oC, 300
volts, with overall braid
of 34 AWG tinned
copper, 90% coverage
and 24 AWG tinned
copper, uninsulated
drain wire.
3.875
±0.10
Ferrule,
Uninsulated
4.625
±0.10
5.375
±0.10
6.125
±0.10
#1
#2
Heat Shrink Tubing
1” Long, 3/16” Size
DETAIL A
(typical on both ends of wiring)
HEATER WIRING OR CABLE
ELECTRONICS END
3/4 NPT Hub Size,
Liquid-tight
Strain Relief
Connectors
4.0 ±0.10
Heat Shrink Tubing
2” Long, 1/2” Size
Strip Wire
Ends 3/16”
Typical
PROBE END
5.5 ±0.10
Ferrule, Uninsulated
Heat Shrink Tubing
2” Long, 1/2” Size
0.5
Typ.
Green,
16 AWG
2.0 ±0.25 Typical
Green, 16 AWG
2-12
4.5 ±0.10
4.25” Long Teflon Tubing,
0.042” ID. (Cut off drain wire
at probe end of shield).
Stud Size #6
37390061
Stud Size
#10
8 Conductors, 16 AWG, Stranded,
200OC, 600 volts.
Braided shield - tinned copper, 90%
coverage with 18 AWG 24 tinned copper,
uninsulated, drain wire.
Instruction Manual
IM-106-880, Rev 2.0
September 2009
PNEUMATIC
INSTALLATION
OCX 8800
Pneumatic system connections depend on whether reference air set,
calibration solenoids, and/or blowback equipment options are equipped on
your transmitter. Refer to the following paragraphs and select the option that
applies to your transmitter configuration.
Reference Air Set Option (only)
When no options or only the reference air set option is equipped, use the
following procedure to install the pneumatic system components.
1. Refer to Figure 2-9. Connect the reference air set (regulator/filter and
pressure gage) to the instrument air inlet on the electronics housing and
to the inlet side of the dilution air flow meter.
2. Connect the dilution air flow meter output to the dilution air inlet fitting on
the sensor housing.
3. Install an air line between the instrument air outlet fitting on the
electronics housing and the tee fitting on the sensor housing.
.
Do not use 100% nitrogen as an O2 low gas. It is suggested that O2 low gas be between
0.4% and 2.0% O2. Do not use gases with hydrocarbon concentrations of more than 40
parts per million. Failure to use proper gases will result in erroneous readings.
4. One CO gas and two O2 gases are used to calibrate the OCX 8800:
CO - 1000 ppm or up to 4%, Balance air
O2 low gas - 0.4% , Balance N2
O2 high gas - 8%, Balance N2
Connect the output of the test gas sources to the inlet port of the CAL
GAS flow meter. Install an air line between the flow meter outlet port and
the CAL GAS inlet fitting on the sensor housing.
2-13
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-9. Pneumatic
Installation, OCX with Reference
Air Set without Autocalibration
Sensor
Housing
CAL Gas In
Reference Air In
(
CAL Gas
Flow Meter
7 scfh, 20-30 psig
Recommended
(
Eductor
Air In
3
Dilution Air In
4
Dilution Air
Flow Meter
0.1 scfh
LO O2
HI O2
CO
2-Stage
Regulators
Instrument
Air Out
1
2
Instrument
Air Supply
Pressure Reguator/Filter
35 psig - General Purpose
2-14
Replacement Parts
1
2
3
4
2” Pressure Gage
Combination Filter-Reg.
Flowmeter
Flowmeter
0-60 psig
0-60 psig
1-10 scfh
0.05-0.5 scfh
275431-03
1A99422H01
771B635H01
771B635H08
37390011
Electronics
Housing
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-10. Pneumatic Installation, OCX with Reference Air Set, Solenoids and Autocalibration,
without COe Zero Function
Sensor
Housing
3
CAL Gas In
(
(
CAL Gas
Flow Meter
7 scfh, 20-30 psig
Recommended
Reference
Air In
Eductor
Air In
4
Dilution
Air In
Electronics
Housing
1
2
Instrument
Air Supply
Pressure Regulator/Filter
35 psig - General Purpose
2-Stage
Regulators
1
2
3
4
2” Pressure Gage
Combination Filter-Reg.
Flowmeter
Flowmeter
0-60 psig
0-60 psig
1-10 scfh
0.05-0.5 scfh
275431-03
1A99422H01
771B635H01
771B635H08
37390012
CO
HI O2
Replacement Parts
LO O2
CAL Gas Out
Instrument Air Out
Dilution Air
Flow Meter
0.1 scfh
Reference Air Set and Solenoids Option without COe Zero Function
When the reference air set and test gas solenoids are included with your
OCX 8800, use the following procedure to install the pneumatic system
components.
1. Install the reference air set according to the instructions in Reference Air
Set Option, steps 1 through 3.
2. Refer to Figure 2-10. Connect the O2 low gas source to the CAL GAS
LO O2 inlet fitting on the electronics housing. Install a shutoff valve and
pressure regulator with gage in the O2 low supply line, as shown.
3. Connect the O2 high gas source to the CAL GAS HI O2 inlet fitting.
Install a shutoff valve and pressure regulator with gage in the O2 high
supply line.
2-15
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
4. Connect the CO high gas to the CAL GAS HI COe inlet fitting. Install a
shutoff valve and pressure regulator with gage in the CO high supply
line.
5. Connect the CAL GAS outlet fitting of the electronics housing to the inlet
port of the CAL GAS flow meter. Install an air line between the flow
meter outlet port and the CAL GAS inlet fitting on the sensor housing.
Reference Air Set and Solenoids Option with COe Zero Function
Figure 2-11 shows the piping arrangement for the OCX 8800 with
autocalibration when the COe Zero Function is used. The arrangement is
similar to Figure 2-10 except instrument air is used as the Hi O2 test gas.
Refer to Section 3 for details of this function.
Figure 2-11. Pneumatic Installation, OCX with Reference Air Set, Solenoids and Autocalibration, with
COe Zero Function
2-16
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Reference Air Set, Solenoids, and Blowback Option with
COe Zero Function
Figure 2-13 shows the piping arrangement for the OCX 8800 with the
blowback and autocalibration options when the COe Zero Function is used.
The arrangement is similar to Figure 2-12 except instrument air is used as the
Hi O2 test gas. Refer to Sectio 3 for details of the function.
Reference Air Set, Solenoids, and Blowback Option without
COe Zero Function
Installing an OCX 8800 with the blowback option requires the addition of air
operated blowback valve, regulator and gage, and check valve.
Figure 2-12 shows the piping arrangement for the OCX 8800 with the
blowback and autocalibration options. Figure 2-14 shows the piping
arrangement for the OCX 8800 with the blowback option, but without
autocalibration (without test gas solenoids).
When the reference air set, calibration gas solenoids, and blowback options
are included with your transmitter, use the following procedure to install the
pneumatic system components.
1. Connect the calibration gas sources according to the instructions in the
previous paragraph “Reference Air Set and Solenoids Option”, steps 2
through 5.
2. Connect a clean, dry, instrument-quality supply of air (20.95% O2) to the
35 psig and 55 psig pressure regulators. The inlet to the 35 psig
regulator accepts a 1/8" NPT fitting. The inlet to the 55 psig regulator
accepts a 1/4" NPT fitting.
3. See the upper leg of the instrument air supply. Connect the output of the
35 psi regulator/filter to one port of the normally-closed air-operated
solenoid valve, and to the inlet side of the dilution air flow meter.
4. Connect the dilution air flow meter output to the DILUTION AIR inlet
fitting on the sensor housing.
5. Install an instrument air line between the open port of the normally-open
air-operated solenoid valve and the tee fitting on the sensor housing.
6. Connect the output of the 55 psi regulator/filter to one port of the
normally-open air-operated solenoid valve, and to the instrument air
inlet on the back of the electronics housing.
7. Install an air line between the open port of the normally-closed
air-operated solenoid valve and the check valve inlet fitting on the
sensor housing.
8. Install an air line between the instrument air outlet fitting on the
electronics housing and the control air inlet fitting on the air-operated
solenoid valve.
2-17
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
Figure 2-12. Pneumatic Installation, OCX with Reference Air Set, Solenoids, Blowback and Autocalibration,
without COe Zero Function
2-18
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-13. Pneumatic Installation, OCX with Reference Air Set, Solenoids, Blowback and Autocalibration,
with COe Zero Function
Reference Air Set, Solenoids, and Blowback Option
with COe Zero Function
Figure 2-13 shows the piping arrangement for the OCX 8800 with the
blowback and autocalibration options when COe Zero Function is used. The
arrangement is similar to Figure 2-12 except instrument air is used as the Hi
O2 test gas. Refer to Section 3 for details of this function.
2-19
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-14. Pneumatic Installation, OCX with Reference Air Set and Blowback without Autocalibration
CAUTION
7
Check Valve
Sensor
Housing
Pressure regulator with 1/8” inlet port is factory
set for 35 psig. Regulator with 1/4” inlet port is
factory set for 55 psig. If regulators are not
installed in correct locations, the OCX 8800 will
not work.
Gas Flow Meter
(CAL
7 scfh, 20-30 psig
(
Recommended
Eductor Air In
CAL Gas In
2-Stage
Regulators
3
Reference Air In
Dilution Air In
CO
LO O2
Dilution
Air Flow Meter
0.1 scfh
5
HI O2
4
Instrument Air
Electronics
Housing
*Normally
Closed
Solenoid
Valve
*Normally
Open
Solenoid
Valve
Pressure Regulator/Filter
35 psig - General Purpose
1
Blowback Valve,
Air Operated
2
*NOTE: During blowback operation, states of
both solenoid valves change.
Instrument
Air Supply
NOTE: Wall mount the air-operated blowback
valve on a suitable mounting plate.
NOTE: Actuating air pressure at blowback valve
inlet port must be at least 51 psig to fully
actuate the valve.
1
Replacement Parts
1
2
3
4
5
6
7
2-20
2” Pressure Gage
Combination Filter-Reg.
Flowmeter
Flowmeter
Pneumatic Actuator
Combination Filter/Reg.
Check Valve
0-60 psig
0-60 psig
1-10 scfh
0.05-0.5 scfh
0-60 psig
5 psig
275431-03
1A99422H01
771B635H01
771B635H08
1A99339H03
4505C21G11
7309A62H01
6
Pressure
Regulator/Filter
55 psig
38850005
Actuating Air
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Reference Air Set and Blowback Panels
An optional blowback panel is shown in Figure 1-9. Piping arrangement for
blowback panel without autocalibration without COe Zero Function is shown
in Figure 2-15. Piping arangement for blowback panel with autocalibration
without COe Zero Function is shown in Figure 2-16. Piping arrangement for
blowback panel with autocalibration with COe Zero Function is shown in
Figure 2-17.
Figure 2-15. Pneumatic Installation, Blowback Panel without Autocalibration without COe Zero Function
Check Valve
Sensor
Housing
Eductor Air In
CAL Gas In
Instrument Air
Reference Air In
Dilution Air In
CAL Gas
Out
Blowback
Air Out
Dilution
Air Out
Blowback
Control Air
Instrument
Air Out
CAL Gas
In
Instrument
Air Supply
Instrument Air to Electronics
Actuating Air
Electronics
Housing
39930003
CO
HI O2
LO O2
2-Stage
Regulators
2-21
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-16. Pneumatic Installation, Blowback Panel with Autocalibration without COe Zero Function
Check Valve
Sensor
Housing
Eductor Air In
CAL Gas In
Instrument Air
Reference Air In
Dilution Air In
CAL Gas
Out
Dilution
Air Out
Blowback
Air Out
Blowback
Control Air
CAL Gas
In
Instrument
Air to
Electronics
Instrument
Air Out
Electronics
Housing
Instrument
Air Supply
CAL Gas
Out
Actuating Air
2-22
39930004
CO
HI O2
LO O2
2-Stage
Regulators
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 2-17. Pneumatic Installation, Blowback Panel with Autocalibration with COe Zero Function
2-23
Instruction Manual
OCX 8800
INITIAL STARTUP
IM-106-880, Rev 2.0
September 2009
Observe the following Caution and Note. Refer to Section 3: Configuration
and Startup, for OCX 8800 startup information.
Upon completing installation, make sure that the OCX 8800 is turned on and operating prior
to firing up the combustion process. Damage can result from having a cold OCX 8800
exposed to the process gases.
If ducts will be washed down during outages, make sure to power down the OCX 8800 units
and remove them from the wash area.
NOTE
During outages, and whenever possible, leave OCX 8800 units running to
prevent condensation and premature aging from thermal cycling.
2-24
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 3
OCX 8800
Configuration and Startup
Verify Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-1
Initial Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-4
Set Test Gas Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-4
Calibration Solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-5
Blowback Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-6
Calibration Verify Feature . . . . . . . . . . . . . . . . . . . . . . . . . page 3-7
Calibration Tolerance Feature . . . . . . . . . . . . . . . . . . . . . . page 3-9
COe PURGE / ZERO FEATURE . . . . . . . . . . . . . . . . . . . . . page 3-10
OCX 8800 Reset Procedure . . . . . . . . . . . . . . . . . . . . . . . . page 3-12
Install all protective equipment covers and safety ground leads after installation. Failure to
install covers and ground leads could result in serious injury or death.
VERIFY INSTALLATION
Ensure the OCX 8800 is installed correctly. Verify mechanical installation and
all electrical and pneumatic connections. Refer to Section 2, Installation.
Make sure that the OCX 8800 is turned on and operating prior to firing up the combustion
process. Damage can result from having a cold OCX 8800 exposed to the process gases.
NOTE
During outages, and whenever possible, leave all OCX 8800 units running to
prevent condensation and premature aging from thermal cycling.
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Verify Configuration - HART Electronics
There are three switches on the microprocessor board which are user
configurable for the OCX 8800 with HART electronics (Figure 3-1). SW1
determines if the O2 4-20 mA signal is internally or externally powered. SW2
determines if the COe 4-20 mA signal is internally or externally powered. SW3
sets the rail limits for the O2 and COe 4-20 mA signals and configures the
sample line heater control circuit. All switches are accessible through holes in
the electronics box.
Remove power from the OCX 8800 before changing defaults. If defaults are changed under
power, damage to the electronics may occur.
Figure 3-1. OCX 8800 Defaults - HART Electronics
3-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Verify that the following switch settings are correct for your OCX 8800
installation:
SW1 The two settings are internally or externally powering the O2 4-20
mA signal. The factory setting is for the O2 4-20 mA signal to be internally
powered.
SW2 The two settings are internally or externally powering the COe 4-20
mA signal. The factory setting is for the COe 4-20 mA signal to be
internally powered.
SW3 The factory sets this switch as follows:
• Position 1 determines the O2 4-20 mA signal rail limit. The settings are
high, 21.1 mA, or low, 3.5 mA. The factory setting is low, 3.5 mA.
• Position 2 determines the COe 4-20 mA signal rail limit. The settings
are high, 21.1 mA, or low, 3.5 mA. The factory setting is high, 21.1 mA.
• Positions 3 and 4 must be set as shown for proper software control of
the device heaters.
Verify Configuration - Fieldbus Electronics
There is one switch on the microprocessor board which must be set for the
OCX 8800 with fieldbus electronics (Figure 3-2). SW3 configures the sample
line heater control circuit. This switch is accessible through holes in the
electronics box.
Remove power from the OCX 8800 before changing defaults. If defaults are changed under
power, damage to the electronics may occur.
Verify that the following switch settings are correct for your OCX 8800
installation:
SW3 The factory sets this switch as follows:
• Position 1 not used.
• Position 2 not used.
• Positions 3 and 4 must be set as shown for proper software control of
the device heaters.
3-3
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
Figure 3-2. OCX 8800 Defaults Fieldbus Electronics
INITIAL POWER UP
Allow adequate time (approximately 60 minutes) for the heaters to begin
operation and for the OCX 8800 to reach normal operating temperature on
power up. Normal operating temperature for the O2 cell is 736°C. Normal
operating temperature for the combustibles cell is 300°C. The normal sample
line temperature is 170°C. During this time the eductor air solenoid will remain
closed so no sample is pulled through the analyzer. When the OCX reaches
operating temperature the solenoid will energize, eductor air will begin to flow,
and the unit will begin normal operation.
SET TEST GAS VALUES
Use Field Communicator or the optional LOI to set test gas values for
calibration. Refer to Section 4, Using the LOI or Section 6, Field
Communicator for more information.
Setting Test Gas Values with the Field Communicator
1. Use the 375 Field Communicator software to access the HART menu.
2. From the DETAILED SETUP menu, select CAL SETUP.
3. From the CAL SETUP menu, select O2 CAL PARAMS or COe CAL
PARAMS.
4. From O2 CAL PARAMS, select O2 HIGH GAS. Enter the percent O2
used for the high O2 test gas.
5. From O2 CAL PARAMS, select O2 LOW GAS. Enter the percent O2
used for the low O2 test gas.
6. From COe CAL PARAMS, select COe Test Gas. Enter the CO
concentration (ppm) used for COe test gas.
3-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Setting Test Gas Values with Fieldbus Communicator
1. Use the 375 Field Communicator software to access the Fieldbus menu.
2. From the TRANSDUCER menu, select O2 CAL.
3. From O2 CAL menu select O2 CAL SETUP.
4. From O2 CAL SETUP, select O2 HIGH GAS. Enter the percent O2 used
for the high test gas.
5. From O2 CAL SETUP, select O2 LOW GAS. Enter the percent O2 used
for the low test gas
6. From the TRANSDUCER menu select COe CAL SETUP.
7. From COe CAL SETUP, select COe Test Gas. Enter the CO
concentration (ppm) used for the COe Test Gas.
Setting Test Gas Values with the LOI
1. Use the "Z" pattern to enter the LOI menu tree.
2. From the SYSTEM menu, select Calib Setup.
3. From Calib Setup, select O2 High Gas %. Enter the percent O2 used
for the high O2 test gas.
4. Select the down arrow and the next selection will be O2 Low Gas %.
Enter the percent O2 used for the low O2 test gas.
5. Select the down arrow several times to display COe Test Gas. Enter the
CO concentration (ppm) used for COe test gas.
CALIBRATION
SOLENOIDS
The OCX 8800 can be provided with optional calibration solenoids for the
purpose of performing autocalibration. The solenoids are controlled by the
OCX 8800 software and automatically switch in the proper calibration gas
during the calibration cycle.
An OCX 8800 shipped from the factory with calibration solenoids must be
configured before autocalibration can be implemented. This same process
must be performed any time a replacement card stack is installed.
Configuring the Calibration Solenoids
with the Field Communicator - HART
1. Use the 375 Field Communicator to access the HART menu.
2. From the DETAILED SETUP menu, select CAL SETUP.
3. From the CAL SETUP menu, select O2 CAL PARAMS/COe CAL
PARAMS.
4. From the O2 CAL PARAMS/COe CAL PARAMS, select Solenoids.
Select Yes to enable the solenoids.
Configuring the Calibration Solenoids with the Field Communicator Fieldbus
1. Use the 375 Field Communicator to access the Fieldbus menu.
2. From the TRANSDUCER block menu, select O2 CAL/COE CAL.
3. From the O2 CAL/COE CAL menu, select O2 CAL SETUP/COE CAL
SETUP.
4. From the O2 CAL SETUP/COE CAL SETUP, select Solenoids. Select
Present to enable the solenoids.
3-5
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Configuring the Calibration Solenoids with the LOI
1. Use the "Z" pattern to enter the LOI menu tree.
2. From the SYSTEM menu, select Calib Setup.
3. From the Calib Setup menu, select Use Solenoids. Select Yes to
enable the solenoids.
BLOWBACK FEATURE
The blowback feature blows instrument air back through the center of the
internal filter and out the sample tube of the probe. This removes built up dirt
and particulate from the internal filter, sample line and any optional in-situ filter
on the end of the sample tube. The blowback feature is normally used in
systems that have heavy particulate in the process stream.
The blowback feature requires the optional blowback hardware to be properly
installed external to the OCX 8800. See Section 2, Pneumatic Installation, for
details.
An OCX 8800 shipped from the factory must be configured before blowback
can be implemented. This same process must be performed any time a
replacement card stack is installed.
Configuring Blowback with the Field Communicator - HART
1. Use the 375 Field Communicator or AMS software to access the HART
menu.
2. From the DETAILED SETUP menu, select INPUT/OUTPUT.
3. From the INPUT/OUTPUT menu, select BLOWBACK.
4. From the BLOWBACK, select BlBk Enabled. Select Yes to enable
blowback. Also set the following parameters:
BlBk Intrvl - Length of time between blowback events (60 minutes
recommended).
BlBk Period - Length of time blowback is activated (5 seconds
recommended).
BlBk Purge Time - Length of time after blowback is complete before
oxygem/combustibles readings are considered valid (Set as required by
the application).
5. Manually initiate blowback from DIAG/SERVICE, then BLOW BACK,
When select BLOWBACK.Configuring Blowback with the Field
Communicator - Fieldbus
1. Use the 375 Field Communicator or AMS software to access the
Fieldbus menu.
2. From the TRANSDUCER block menu, select Alarm Relay/Blowback.
3. From the Alarm Relay/Blowback menu, select Blowback.
4. From the Blowback menu, select Blowback Enabled. Also set the
following parameters:
Blowback Interval - Length of time between blowback events (60
minutes recommended).
Blowback Period - Length of time blowback is activated (5 seconds
recommended).
3-6
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Blowback Purge Time - Length of time after blowback is complete
before oxygem/combustibles readings are considered valid (Set as
required by the application).
Initiate Blowback - Initiates a blow back event manually.
Configuring Blowback with the LOI
1. Use the "Z" pattern to enter the LOI menu tree.
2. From the SYSTEM menu, select Blow Back.
3. From the Blow Back menu, select Blow Bk Enable. Select Yes to
enable blowback. Also set the following parameters:
Blow Bk Intrvl - Length of time between blowback events. Range is 0
to 32,000 minutes. Default is 60 minutes. 60 minutes is recommended.
Blow Bk Period - Length of time blowback in activated. Range is 1 to 5
seconds. Default is 2 seconds. 5 seconds is recommended.
Blow Bk Purge - Length of time after blowback is complete before
oxygem/combustibles readings are considered valid. Range is 0 to 500
seconds. Default is 88 seconds. Set as required by the application.
Force Blow Bk - Initiates a blow back event manually.
CALIBRATION VERIFY
FEATURE
The calibration verify feature flows one or more calibration gases to verify the
analyzer is reading correctly. The calibration verify feature flows each
calibration gas on demand to verify calibration, but does not change the slope
or constant of the current calibration. This function uses the same gas flow
and purge times from the basic calibration setup.
The calibration verify feature is only valid if the OCX 8800 is supplied with
calibration solenoids and the solenoids have been activated.
During the Calibration Verify function the analog output signals will track the oxygen and
combustibles readings. To avoid a potentially dangerous operating condition, the OCX
8800 must be removed from the automatic combustion control loop before performing the
Calibration Verify procedure.
Performing a Calibration Verify with the Field Communicator - HART
1. Use the 375 Field Communicator or AMS software to access the HART
menu.
2. From the DEVICE SETUP menu, select DIAG/SERVICE.
3. From the DIAG/SERVICE menu, select CALIBRATION.
4. From the CALIBRATION, select CAL VERIFY. Select Verify
Calibration. From this menu, select the functions as follows:
Flow High O2 Gas - Flows the high O2 test gas for the time specified in
the calibration setup.
Flow Low O2 Gas - Flows the low O2 test gas for the time specified in
the calibration setup.
Flow High COe Gas - Flows the COe test gas for the time specified in
the calibration setup.
3-7
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Purge Gas - Initiates a delay for the specified purge time before
oxygen/combustibles readings are considered valid.
NOTE:
A Purge will automatically follow a gas flow.
Performing a Calibration Verify with the Field Communicator - Fieldbus
1. Use the 375 Field Communicator or AMS software to access the
Fieldbus menu.
2. From the TRANSDUCER block menu, select METHODS.
3. Set the Mode to OOS (Out of Service) before starting the Calibration
Verify process.
4. From the METHODS menu, select OCX Cal Verify. From this menu,
select the functions as follows:
Flow High O2 Gas - Flows the high O2 test gas for the time specified in
the calibration setup.
Flow Low O2 Gas - Flows the low O2 test gas for the time specified in
the calibration setup.
Flow High COe Gas - Flows the COe test gas for the time specified in
the calibration setup.
Purge Gas - Initiates a delay for the specified purge time before
oxygen/combustibles readings are considered valid.
NOTE:
A Purge will automatically follow a gas flow.
Performing a Calibration Verify with the LOI
1. Use the "Z" pattern to enter the LOI menu tree.
2. From the CALIBRATION menu, select Cal Verify.
3. From the Cal Verify menu, select the functions as follows:
Flow High Gas - Flows the high O2 test gas for the time specified in the
calibration setup.
Flow Low Gas - Flows the low O2 test gas for the time specified in the
calibration setup.
Flow COe Gas - Flows the COe test gas for the time specified in the
calibration setup.
Purge - Initiates a delay for the specified purge time before
oxygen/combustibles readings are considered valid.
NOTE:
A Purge will automatically follow a gas flow.
3-8
Instruction Manual
IM-106-880, Rev 2.0
September 2009
CALIBRATION
TOLERANCE FEATURE
OCX 8800
The calibration tolerance feature provides a mechanism to fail a calibration if
the calibration measurement does not fall within a specific tolerance of the
test gas value. The tolerance is preset within the OCX 8800 software and is
not user adjustable. The tolerance is different between the oxygen and
combustibles test gases. For oxygen, the calibration will fail if the measured
value differs by more than ±10% of the configured value. For combustibles,
the calibration will fail if the measured value differs by more than ±30% of the
configured value.
An OCX 8800 shipped from the factory must be configured before the
calibration tolerance feature can be implemented. This same process must
be performed any time a replacement card stack is installed.
Configuring the Calibration Tolerance Feature with the Field
Communicator - HART
1. Use the 375 Field Communicator or AMS software to access the HART
menu.
2. From the DETAILED SETUP menu, select CAL SETUP.
3. From the CAL SETUP menu, select O2 CAL PARAMS.
4. To enable the calibration tolerance feature for the oxygen calibration,
from the O2 CAL PARAMS, select O2 Tol Check. Select On to enable
the calibration tolerance feature.
5. Back out to the CAL SETUP menu, select COe CAL PARAMS.
6. To enable the calibration tolerance feature for the combustibles
calibration, from the COe CAL PARAMS, select COe Tol Check.
Select On to enable the calibration tolerance feature.
Configuring the Calibration Tolerance Feature with the Field
Communicator - Fieldbus
1. Use the 375 Field Communicator or AMS software to access the
Fieldbus menu.
2. From the TRANSDUCER block menu, select O2 CAL/COe CAL.
3. From the O2 CAL/COe CAL menu, select O2 CAL SETUP/COe CAL
SETUP.
4. From the O2 CAL SETUP/COe CAL SETUP menu, select O2
Tolerance Check/COe Tolerance Check. Select Yes to enable the
calibration tolerance feature.
Configuring the Calibration Tolerance Feature with the LOI
1. Use the "Z" pattern to enter the LOI menu tree.
2. From the SYSTEM menu, select Calib Setup.
3. From the Calib Setup menu, select the following:
O2 Tol Check - Select Yes to enable the calibration tolerance feature
for the oxygen calibration.
Comb Tol Check - Select Yes to enable the calibration tolerance
feature for the combustibles calibration.
3-9
Instruction Manual
OCX 8800
COe PURGE / ZERO
FEATURE
IM-106-880, Rev 2.0
September 2009
This feature provides a way to periodically flood the COe sensor with air to
perform two functions; a) provide additional oxygen to help burn off any
combustible residue from the COe sensor, and b) allow for optional
adjustment of the COe calibration constant. If the OCX8800 is configured to
update the COe calibration constant, only the constant is updated. The COe
calibration slope is not affected. To update both the constant and slope a full
calibration must take place.
The feature uses the calibration solenoid that is also used for high O2 test gas
and COe zero gas. For the feature to work properly, instrument air is used as
the high O2 test gas. This also requires the high O2 test gas value to be set
at 20.95%.
As an option, a two way valve may be installed to switch the high O2 test gas
between the normal calibration gas and instrument air. This allows the OCX
8800 to use a specified calibration gas for calibration, then instrument air for
the COe zero feature. Switching between the two gases must be manually
coordinated between scheduled calibrations and COe zero events.
When the COe zero feature is used, special pneumatic connections are
required. See Section 2, Pneumatic Installation, for details.
The COe zero feature is only valid if the OCX 8800 is supplied with calibration
solenoids and the solenoids have been activated.
An OCX 8800 shipped from the factory must be configured before the COe
zero feature can be implemented. This same process must be performed any
time a replacement card stack is installed.
During the COe Zero Function the analog output signals may track the oxygen and
combustibles readings if configured to do so. To avoid a potentially dangerous operating
condition, the OCX 8800 must be removed from the automatic combustion control loop
before performing the COe Zero Function procedure.
At the completion of the COe Zero Function, the COe analog output signal will change if the
Zero Update parameter is set to "Yes".
Configuring the COe Zero Feature with the Field Communicator - HART
1. Use the 375 Field Communicator or AMS software to access the HART
menu.
2. From the DETAILED SETUP menu, select INPUT/OUTPUT.
3. From the INPUT/OUTPUT menu, select COE ZERO.
4. From the COE ZERO menu, select the functions as follows:
Zero Enabled - Select "Yes" or "No" to enable or disable this feature.
Zero Intrvl - Length of time between COe zero events. Range is 60 to
480 minutes. Default is 60 minutes.
3-10
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Zero Flow - Length of time COe zero gas flows. Range is 120 to 600
seconds. Default is 120 seconds.
Zero Purge - Length of time after COe zero is complete before
oxygen/combustibles readings are considered valid. Range is 60 to
180 seconds. Default is 60 seconds. Total duration of this function is
flow time plus purge time.
Zero Tracks - Determines if the analog output signals track or hold
during the function. Valid choices are None, Both, COe, and O2.
Zero Update - Determines if the COe calibration constant is updated at
the end of the function. Valid choices are Yes and No. A Yes choice will
cause the COe calibration constant to update.
Configuring the Calibration Tolerance Feature with the Field
Communicator - Fieldbus
1. Use the 375 Field Communicator or AMS software to access the
Fieldbus menu.
2. From the TRANSDUCER block menu, select COe ZERO.
3. From the COe ZERO menu, select the functions as follows:
COe Zero Enable - Select "Yes" or "No" to enable or disable this
feature.
COe Zero Interval - Length of time between COe zero events. Range
is 60 to 480 minutes. Default is 60 minutes.
COe Zero Duration - Length of time COe zero gas flows. Range is 120
to 600 seconds. Default is 120 seconds.
COe Zero Purge Time - Length of time after COe zero is complete
before oxygen/combustibles readings are considered valid. Range is
60 to 180 seconds. Default is 60 seconds. Total duration of this
function is flow time plus purge time.
COe Zero Output Track - Determines if the analog output signals track
or hold during the function. Valid choices are None, Both, COe, and O2.
COe Zero Update - Determines if the COe calibration constant is
updated at the end of the function. Valid choices are Yes and No. A
Yes choice will cause the COe calibration constant to update.
Configuring the COe Zero Feature with the LOI
1. Use the "Z" pattern to enter the LOI menu tree.
2. From the SYSTEM menu, select Input/Output.
3. From the Input/Output menu, select COe Zero. Select the functions as
follows:
COe Zero Enable - Select "Yes" or "No" to enable or disable this
feature.
COe Zero Intrvl - Length of time between COe zero events. Range is
60 to 480 minutes. Default is 60 minutes.
COe Zero Flow - Length of time COe zero gas flows. Range is 120 to
600 seconds. Default is 120 seconds.
3-11
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
COe Zero Purge - Length of time after COe zero is complete before
oxygen/combustibles readings are considered valid. Range is 60 to 180
seconds. Default is 60 seconds. Total duration of this function is flow
time plus purge time.
COe Zero Tracks - Determines if the analog output signals track or hold
during the function. Valid choices are None, Both, COe, and O2.
COe Zero Update - Determines if the COe calibration constant is
updated at the end of the function. Valid choices are Yes and No. A Yes
choice will cause the COe calibration constant to update.
OCX 8800 RESET
PROCEDURE
Whenever you correct an equipment alarm or fault condition, the OCX 8800
will either revert to normal operation or continue to indicate an alarm status
condition. If the equipment does not revert to normal operation when a fault
condition is cleared, or if instructed to do so in Section 8, Troubleshooting,
use the following procedure to reset the OCX 8800.
OCX Reset with the LOI
1. Use the "Z" pattern to enter the LOI menu tree. (Refer to Section 4,
Using the LOI).
2. Select the SYSTEM submenu.
3. From the SYSTEM submenu, select the Status submenu.
4. From the Status submenu, select Reset Device. The OCX 8800 will
reset and the LOI will revert to the normal operation display.
OCX Reset with the Field Communicator
Remove the OCX 8800 from the process loop and recycle power.
3-12
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 4
OCX 8800
Using the LOI
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-1
Display Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-1
LOI Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-2
LOI Menu Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-4
OVERVIEW
This section describes the installation and operation of the LOI module in the
OCX 8800.
DISPLAY ORIENTATION
The LOI module mounts to a connector on the LOI board. The board is
installed on the end of the electronics stack in the electronics housing,
Figure 4-1. There are four mating connectors on the back of the LOI module
that allow the LOI to be oriented as desired by the user.
Figure 4-1. LOI Components
Mounting
Electronics Housing
(Cover Removed)
Electronics Stack
al
tic
aly
An
LOI Board
LOI Module
http://www..raihome.com
37390027
LOI Connector
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
LOI CONTROLS
Overview
The LOI, shown in Figure 4-2, utilizes a bright blue gas-fluorescent display.
Intensity is adjustable. There is an Infrared LED source and a detector for
each key. The detectors can detect a finger placed above the button through
the glass window. There is no need to open the instrument in bad weather or
in hazardous areas in order to access the electronics.
It should be noted that the OCX 8800 also uses HART or FOUNDATION
Fieldbus communications, permitting access to all instrument functionality
anywhere the digital O2 signal terminates via a model 375 Field
communicator.
Figure 4-2. LOI Assembly
Selection
Arrow
(Enter key)
Touch
Confirmation
LED
Selection
Arrow
Lockout
Notation
E
LK
AL
Status
Code
Analytical
Selection
Arrows
LOI Key Functions
37390042
Display
Window
The gray (top left) key will move one level higher in the menu structure. When
entering parameter values (numbers), this key moves the cursor to the left.
The left-pointing key also doubles as an Enter key, used after the digits of a
parameter value are entered, and the cursor is moved to its left-most position.
When the Enter key is touched, the new parameter value, if accepted, will
appear in the top line of the display.
The blue (bottom left) key acts as a selector when choosing from among
several menu items. This right-pointing key also will move the cursor to the
right when entering the digits of a new parameter value.
The up and down-pointing keys are used to increment up and down when
selecting from a vertical list of menu items. These keys are also used for
incrementing values up and down for new data input.
4-2
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Lockout
The LOI has a lockout feature that prevents nuisance actuation by someone
brushing against the glass window, raindrops, dirt, insects, etc. This lockout
mode is automatically established when no buttons are pushed for 30
seconds (default). This countdown to lockout is configurable.
In order to unlock the display, input a "Z" pattern (Figure 4-3). First, touch the
top left (gray) Enter key. Next, touch the top right key, followed by the bottom
left key and the bottom right key. The LK notation in the upper right corner of
the display will disappear. Touch the Enter key once more to enter into the
menu structure. Whenever a key is touched additional time to lockout is
provided, so that the lockout feature does not become a nuisance. This
additional revert time is one hour (default) and is also user configurable.
NOTE
Always clean dust and soil away from the LOI screen each time the LOI is
used. Excessive dust can prevent the LOI from entering lockout. This
condition can cause uncommanded operations to occur.
Figure 4-3. ‘Z’ Pattern Entry
2
1
E
3
LOI Status Codes
4
37390057
Analytical
The LOI display shows a status code in the lower right hand corner of the
display. There are nine status codes to indicate the existing status of the
device during operation. The status code descriptions are shown in Table 4-1.
Table 4-1. LOI Status Codes
CODE
DESCRIPTION
AL
Alarm - The device is in a recoverable alarm state.
BL
Blowback - A blowback cycle is active.
CA
Calibration - A calibration cycle is active.
CV
Calibration Verify - A calibration verify task is in progress.
NM
Normal - The device is in a normal operating mode.
PO
Power On - A system level initialization sequence is active. This will continue for
several seconds.
SF
System Fault - The device is in a non-recoverable alarm condition. The unit
must be reset or power must be cycled off and on to resume operation.
ST
Stabilize - The device heater control is stabilizing (after warm up). Sensors are
warming up to operating temperature.
WU
Warm Up - The device heaters are ramping up to operating temperature.
CZ
COe Zero - The COe Zero cycle is active.
4-3
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
LOI MENU TREE
This section consists of a menu tree for the LOI on the OCX 8800, Figure 4-4.
This menu is specific to the OCX 8800.
First Column Submenus
From the operating display (O2% and COe ppm), the left-pointing Enter key is
the only option to move into the first column submenus of the LOI menu tree.
The first column contains three submenus: SENSOR DATA, Figure 4-4 sheet
1 of 4, CALIBRATION, sheet 2 of 4, and SYSTEM, sheets 3 and 4 of 4. From
the operating display, SENSOR DATA is displayed when the right-pointing
key is selected. Use the up or down-pointing key to move to the other first
column submenus.
Second Column Submenus
From the first column submenus, selecting the right-pointing key moves the
display into the second column submenus. The up and down-pointing keys
allow the display to move to the second column submenus of the first column
submenu selected. The left-pointing key moves the display back to the first
column submenu.
Third and Fourth Column Submenus
From the second column submenus, selecting the right-pointing key moves
the display into the third column submenus. The third column submenu may
be another menu or a list of parameters. The up- and down-pointing keys
allow the display to move to the different parameters or menus. The third or
fourth column submenu may be a parameter list. When a parameter list is
displayed, the cursor will blink. The up- and down-pointing keys select the
value for the parameter displayed.
Figure 4-4. LOI Menu Tree
(Sheet 1 of 4)
O2% X.XX%
Comb% XXX ppm
SENSOR DATA
Raw Values
(CONTINUED ON
SHEET 2)
4-4
Analog Outputs
O2 Sensor _____ mV
O2 Sensor R ____ ohm
O2 T/C _____ mV
COe Delta V _____ mV
COe Delta R ____ ohm
COe Reference V _____ mV
COe Reference R ____ ohm
COe T/C _____ mV
RTD Current _____ mA
SB T/C _____ mV
Board Temp IC _____ mV
CJC Temp Signal _____ mV
O2 Output %
O2 Current
COe Output %
COe Current
_____%
____mA
_____%
____mA
37390007
Temperatures
O2 Temp _____dgC
O2 Temp-MAX _____dgC
COe Temp _____dgC
COe Temp-MAX _____dgC
SB Temp _____dgC
SB Temp-MAX _____dgC
Board Temp _____dgC
Board Temp-MAX _____dgC
CJC Temp _____dgC
CJC Temp-MAX _____dgC
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 4-4. LOI Menu Tree
(Sheet 2 of 4)
(CONTINUED FROM
SHEET 1)
CALIBRATION
Abort Cal
Cal
Control
Start Cal
O2
Start Cal
COe
Apply Lo O2 Gas
Hit E when ready
Flow O2 Lo _____s
______% _____mV
Read O2 Lo _____s
______% _____mV
Apply Hi O2 Gas
Hit E when ready
Flow O2 Hi
_____s
______% _____mV
Read O2 Hi _____s
______% _____mV
Hit E when ready
Purge
_____s
Apply Lo COe Gas
Hit E when ready
Flow COe Lo _____s
______% _____mV
Read COe Lo _____s
______% _____mV
Apply Hi COe Gas
Hit E when ready
Flow COe Hi _____s
______% _____mV
Read COe Hi _____s
______% _____mV
Hit E when ready
Purge
_____s
Start Cal
Both
Apply Lo O2 Gas
Hit E when ready
Flow O2 Lo _____s
______% _____mV
Read O2 Lo _____s
______% _____mV
Apply Hi O2 Gas
Hit E when ready
Flow O2 Hi
_____s
______% _____mV
Read O2 Hi _____s
______% _____mV
Cal
Constants
Current
Calib
Prev
Calib
Falied
Calib
Cal
Status
Cal
Verify
Calib Result
Calib Step
Calib Time
Next O2 Cal
Next COe Cal
Flow High Gas
Flow Low Gas
Flow COe Gas
Purge
Status
O2 Slope
O2 Constant
O2 Sensor R
COe Slope
COe Constant
_____mV/D
_____mV
_____ohm
_____ppm/mV
_____mV
Pre O2 Slope
Pre O2 Const
Pre O2 Sensor R
Pre COe Slope
Pre COe Const
_____mV/D
_____mV
_____ohm
_____ppm/mV
_____mV
Bad O2 Slope
Bad O2 Const
Bad COe Slope
Bad COe Const
_____mV/D
_____mV
_____ppm/mV
_____mV
NOTE: “Hit E when ready” is displayed during
semi-automatic calibration only (when
Calib Setup value Use Solenoids = n).
37390015
(CONTINUED ON
SHEET 3)
Hit E when ready
Purge
_____s
Flow COe Hi _____s
______% _____mV
Read COe Hi _____s
______% _____mV
Hit E when ready
Purge
_____s
4-5
Instruction Manual
OCX 8800
Figure 4-4. LOI Menu Tree
(Sheet 3 of 4)
4-6
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 4-4. LOI Menu Tree
(Sheet 4 of 4)
SYSTEM
Parameters
Software
Status
O2 Slope
O2 Constant
O2 T90 Time
COe Slope
COe Constant
COe T90 Time
Lockout Time
Revert Time
Luminance
PCDC Enable
PCNC Enable
___ mV/D
___ mV
___ seconds
___ ppm/ohm
___ ohm
___ seconds
___ seconds
___ minutes
___ %
___ Y/N
___ Y/N
Version
Checksum
Build Number
Build Date
Restart Count
SW Err File
SW Err Line
SW Err Number
Alarms
CPLD Registers
Line Frequency
Line Voltage
PCD Counter
PCN Counter
Reset Device
Sensor Housing
Serial Number
37390056
(CONTINUED FROM
SHEET 3)
4-7
Instruction Manual
OCX 8800
4-8
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 5
OCX 8800
Calibration
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5-1
Fully Automatic Calibration . . . . . . . . . . . . . . . . . . . . . . . . page 5-1
Operator - Initiated Autocalibration . . . . . . . . . . . . . . . . . page 5-3
Manual Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5-4
D/A Trim Procedures - LOI . . . . . . . . . . . . . . . . . . . . . . . . . page 5-12
D/A Trim Procedures - HART . . . . . . . . . . . . . . . . . . . . . . . page 5-14
OVERVIEW
During a calibration, two calibration gases with known O2 concentrations and
one calibration gas with a known COe concentration are applied to the OCX
8800. Slope and constant values are calculated to determine if the OCX 8800
is correctly measuring net concentrations of O2 and combustibles in the
industrial process.
Before calibrating the OCX 8800, verify that the calibration gas parameters
are correct by setting the test gas values used when calibrating the unit. Refer
to Section 3, Configuration and Startup.
There are three calibration methods available to the OCX 8800; automatic,
operator-initiated automatic, and manual. Calibration commands and menus
can be accessed by 375 Field Communicator or by the optional LOI.
FULLY AUTOMATIC
CALIBRATION
If the OCX 8800 is equipped with calibration solenoids, the unit can be
programmed to automatically calibrate without any operator action. Refer to
the following paragraphs for using the LOI or 375 Field Communicator to set
up the OCX 8800 for fully automatic calibration.
Autocalibration Setup using the optional LOI
Use the following procedure to set up the OCX 8800 for automatic calibration.
If necessary, use the LOI menu tree in Figure 4-4 for reference. The unit must
be equipped with calibration solenoids to use automatic calibration.
NOTE
Automatic calibration is only available on units equipped with calibration
solenoids.
1. From the operating display use the right-pointing key to select SYSTEM
first column submenu.
2. From the SYSTEM first column submenu, use the right-pointing key to
select the Calib Setup second column submenu.
3. From the Calib Setup second column submenu, use the right-pointing
key to select the third column parameter list.
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
4. Scroll down to the last item Use Solenoids. If the unit is equipped with
calibration solenoids and timed automatic calibration is desired, select
Yes.
5. Use the up-pointing key to select the item O2 Out Tracks. Select Yes or
No to determine if updates to the O2 lock value will take place.
6. Use the down-pointing key to select the item COe Out Tracks. Select
Yes or No to define if updates to the COe lock value will take place.
7. Use the down-pointing key to select the item O2 Cal Interval. Enter the
amount of time in days and hours that is desired between automatic
calibrations.
8. Use the down-pointing key to select the next item O2 Next Cal. Enter
the amount of time in hours until the next automatic calibration. Select
the left-pointing key three times to move back to the LOI operating
display.
Autocalibration Setup using the Field Communicator - HART
NOTE
Automatic calibration is only available on units equipped with calibration
solenoids.
Use the following procedure to specify a time interval (in hours) at which the
OCX 8800 will automatically calibrate.
1. From the DEVICE SETUP screen, select DETAILED SETUP.
2. From the DETAILED SETUP screen, select CAL SETUP, then select
O2 CAL PARAMS or COE CAL PARAMS.
3. If the unit is equipped with calibration solenoids and timed automatic
calibrations are desired, select Solenoids, then select Yes. Select No to
disable the calibration solenoids.
4. Select O2 Cal Intrvl (O2 calibration interval) and enter the desired time
in hours between automatic O2 calibrations. Select COE Cal Intrvl and
enter the desired time between automatic COe calibrations. To disable
automatic calibration for O2 and COe, enter 0 for both Cal Intrvl
parameters.
5. If desired, the O2 Next Cal Time and the COe Next Cal Time (next
calibration time) parameters can be changed to synchronize a
calibration at a specific day or time.
When setting automatic calibration times, CalIntrvl and NxtCalTm should be set so that O2
and COe are NOT calibrated simultaneously.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
5-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Autocalibration Setup using the Field Communicator - Fieldbus
NOTE
Automatic calibration is only available on units equipped with calibration
solenoids.
Use the following procedure to specify a time interval (in hours) at which the
OCX 8800 will automatically calibrate.
1. From the Transducer screen select O2 Cal or COe Cal.
2. From the O2 Cal or COe Cal screen, select O2 Cal Setup or COe
Setup.
3. If the unit is equipped with calibration solenoids and timed automatic
calibration are desired, select Solenoids, then select Yes. Select No to
disable the calibration solenoids.
4. Select O2 Cal Interval and/or COe Cal Interval and enter the desired
time in hours between automatic calibrations. To disable automatic
calibration for O2 and COe, enter 0 for both Cal Interval parameters.
5. If desired, the O2 Next Cal and CO2 Next Cal (next calibration time)
parameters can be changed to synchronize a calibration at a specific
day or time.
OPERATOR - INITIATED
AUTOCALIBRATION
An operator can initiate an automatic calibration at any time provided that the
unit is equipped with calibration solenoids.
Autocalibration using the optional LOI
To initiate a calibration using the LOI, perform the following steps on the LOI
menu tree. Refer to Section 4, Using the LOI, for the LOI menu tree.
1. From the CALIBRATION menu, use the right-pointing arrow to select
the Cal Control menu.
2. Select Start Cal-O2, Start Cal COe, or Start Cal Both to start the
calibration. Select Cal Verify to access the calibration window.
3. At the prompt, use the right-pointing arrow to initiate automatic
calibration.
Autocalibration using the Field Communicator - HART
To initiate an automatic calibration using 375 Field Communicator, perform
the following steps. Refer to Section 6, Field Communicator, for the HART
menu tree.
1. Select DIAG/SERVICE from DEVICE SETUP menu.
2. Select CALIBRATION from the DIAG/SERVICE menu.
3. Select CAL CONTROL from the CALIBRATION menu.
4. Select CAL METHODS from the CAL CONTROL menu.
5. From the CAL METHODS menu, select the type of calibration desired:
O2 Calibration,
COe Calibration, or
O2 and COe Calibration.
5-3
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Autocalibration using the Field Communicator - Fieldbus
To initiate an automatic calibration using 375 Field Communicator, perform
the following steps. Refer to Section 6, Field Communicator, for the
FOUNDATION Fieldbus menu tree.
1. From Transducer screen select Methods.
2. Select OCX Calibration from the Methods menu.
3. From the OCX Calibration menu, select the type of calibration desired:
Calibrate O2 Sensor,
Calibrate Combustibles Sensor, or
Calibrate Both Sensors.
MANUAL CALIBRATION
If a unit is not equipped with calibration solenoids, a calibration must be
performed by an operator following prompts from the unit. Refer to the
following paragraphs for manual calibration.
Manual Calibration using the optional LOI
Use the following procedure to perform a manual calibration with the LOI. If
necessary, refer to the menu tree in Section 4, Using the LOI. Once the
manual calibration procedure is initiated at the LOI, a series of prompts will
appear giving instructions to the operator.
1. Use the right-pointing key to select the CALIBRATION first column
submenu.
2. From the CALIBRATION submenu use the right-pointing key to select
the Cal Control second column submenu.
3. From the Cal Control submenu use the right-pointing key to select the
third column Start Cal O2 option.
4. Remain at the Start Cal O2 option or use the down-pointing key to
select the Start Cal COe option or Start Cal Both option. (The following
sequence applies when Start Cal Both is selected.)
5. Use the right-pointing key to start the calibration. Turn on the low O2 test
gas, when prompted by the Flow Low Gas message.
6. Press the right-pointing key when the low O2 test gas is applied. The
calibration data changes as the calibration proceeds.
7. Press the right-pointing key when the low O2 reading is stable. Turn off
the low O2 test gas and turn on the high O2 test gas as prompted by the
Flow High Gas message.
8. Press the right-pointing key when the high O2 test gas is applied. The
calibration data changes as the calibration proceeds.
9. Press the right-pointing key when the high O2 reading is stable. Turn off
the high O2 test gas. Press the right-pointing key to start the high O2 gas
purge.
10. When the purge period expires, the LOI display reverts to the normal
operation display. If the calibration failed, the display will indicate an
alarm condition.
11. Press the right-pointing key to start combustibles calibration. Turn on
the CO test gas when prompted.
12. Press the right-pointing key when the CO test gas is applied. The
calibration data changes as the calibration proceeds.
5-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
13. Press the right-pointing key when the CO reading is stable.
14. Turn off the CO test gas and press the right-pointing key to start the CO
gas purge.
15. When the purge period expires, the LOI display reverts to the normal
operation display. If the calibration failed, the display will indicate an
alarm condition.
Manual O2 Calibration using the Field Communicator - HART
To perform a manual O2 calibration using the 375 Field Communicator, use
the following procedure. If necessary, refer to Section 6, Field Communicator,
for the HART menu tree.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
1. Select DIAG/SERVICE from DEVICE SETUP menu.
2. Select CALIBRATION from the DIAG/SERVICE menu.
3. Select CAL CONTROL from the CALIBRATION menu.
4. Select CAL METHODS from the CAL CONTROL menu.
5. From the CAL METHODS menu, select the type of calibration desired:
O2 Calibration
6. In the first Calibration screen, a Loop should be removed from
automatic control warning appears. Remove the OCX 8800 from any
automatic control loops to avoid a potentially dangerous operating
condition and press OK.
7. The Calibration screen should look like the following. Press OK to
continue.
OCX: TAG NAME
STEP: Idle
TIME REMAIN: 0s
O2: 0.4 %
O2 Snsr: 85.95mV
OK/NEXT to Select
ABORT/CANCEL to Exit
8. From the SELECT ACTION screen, select START CAL/STEP CAL to
continue calibration, select ABORT CAL to abort calibration or EXIT
CAL to exit calibration. Select one item from the list and press ENTER.
OCX: TAG NAME
SELECT ACTION
1. START CAL/STEP CAL
2. ABORT CAL
3. EXIT CAL
9. When the Calibration Status is at the AppO2Low step, switch on O2
Low Gas. Verify the O2 concentration measured matches the O2 LOW
GAS parameter in the Setup. Press OK when ready.
5-5
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
10. Select START CAL/STEP CAL to start applying the O2 Low Gas. The
time to apply the test gas is specified by the Gas Time.
11. The Calibration Status should be automatically changed to FlowO2Low
and then ReadO2Low for a period of time. During this period, if an
attempt is made to go to the next calibration step by pressing OK and
selecting START CAL/STEP CAL, you will be prompted with Operator
step command is not accepted at this time.
12. When ready, Calibration Status will stop at the AppO2Hi. Switch off the
O2 Low Gas and switch on the O2 High Gas. Verify the O2 concentration
measured matches the O2 HIGH GAS parameter in the Setup. Press
OK when ready.
13. Select START CAL/STEP CAL to start applying the O2 High Gas. The
time to apply the test gas is specified by the Gas Time.
14. The Calibration Status should be automatically changed to FlowO2Hi
and then ReadO2Hi for a period of time. During this period, if an attempt
is made to go the next calibration step by pressing OK and selecting
START CAL/STEP CAL, you will be prompted with Operator step
command is not accepted at this time.
15. When ready, Calibration Status will stop at STOP GAS. Switch off the
O2 High Gas. Press OK when ready. Select START CAL/STEP CAL to
start purging gas. The time to purge gas is specified by the Purge Time.
16. When the Purge step is complete, the Calibration Status will be at IDLE.
A Calibration Failed alarm will be set if the calibration has failed.
17. When calibration is complete. Select Exit Cal to exit the calibration
method.
5-6
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Manual COe Calibration using the Field Communicator - HART
To perform a manual COe calibration using the 375 Field Communicator, use
the following procedure. If necessary, refer to Section 6, Field Communicator,
for the HART menu tree.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
1. Select DIAG/SERVICE from DEVICE SETUP menu.
2. Select CALIBRATION from the DIAG/SERVICE menu.
3. Select CAL CONTROL from the CALIBRATION menu.
4. Select CAL METHODS from the CAL CONTROL menu.
5. From the CAL METHODS menu, select the type of calibration desired:
COe Calibration, or
6. In the first Calibration screen, a loop should be removed from
automatic control warning appears. Remove the OCX 8800 from any
automatic control loops to avoid a potantially dangerous operating
condition and press OK.
7. The main Calibration screen should look like the following. Press OK to
continue.
OCX: TAG NAME
STEP: Idle
TIME REMAIN: 0s
COe: 0.20 ppm
COe DELTA R: 0.00 ohm
OK/NEXT to Select
ABORT/CANCEL to Exit
8. From the SELECT ACTION screen, select START CAL/STEP CAL to
continue calibration, select ABORT CAL to abort calibration or EXIT
CAL to exit calibration. Select one item from the list and press ENTER.
OCX: TAG NAME
SELECT ACTION
1. START CAL/STEP CAL
2. ABORT CAL
3. EXIT CAL
9. The unit samples O2 High Gas as the COe Low Gas. The Calinration
Status should automatically change to ReadCOLow for a period of time.
During this period, if an attempt is made to go to the next calibration
step by pressing OK and selecting START CAL/STEP CAL, you will be
prompted with Operator step command is not accepted at this time.
10. When ready, Calibration Status will stop at the AppCOeHi. Switch on
the COe High Gas. Verify the COe concentration measured matches the
COe HIGH GAS parameter in the Setup. Press OK when ready.
5-7
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
11. Select START CAL/STEP CAL to start applying the COe High Gas. The
time to apply the test gas is specified by the Gas Time.
12. The calibration status should automatically change to FlowCOeHI and
then ReadCOeHigh for a period of time. During this period, if an attempt
is made to go to the next calibration step by pressing OK and selecting
START CAL/STEP CAL, you will be prompted with Operator step
command is not accepted at this time.
13. When ready, Calibration Status will stop at STOP GAS, switch off the
COe High Gas. Press OK when ready. Select START CAL/STEP CAL
to start purging gas. The time to purge gas is specified by the Purge
time.
14. When the Purge step is complete, the Calibration Status will be at IDLE.
A Calibration Failed alarm will be set if the calibration has failed.
15. When calibration is complete. Select Exit Cal to exit the calibration
method.
Manual O2 and COe Calibration using the Field Communicator - HART
To perform a manual O2 and COe calibration using the Field Communicator or
AMS, use the following procedure. If necessary, refer to Section 6, Field
Communicator, for the HART menu tree.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
1. Select DIAG/SERVICE from DEVICE SETUP menu.
2. Select CALIBRATION from the DIAG/SERVICE menu.
3. Select CAL CONTROL from the CALIBRATION menu.
4. Select CAL METHODS from the CAL CONTROL menu.
5. From the CAL METHODS menu, select the type of calibration desired:
O2 and COe Calibration.
6. In the first Calibration screen, a Loop should be removed from
automatic control warning appears. Remove the OCX 8800 from any
automatic control loops to avoid a potentially dangerous operating
condition and press OK.
7. The main Calibration screen should look like the following. Press OK to
continue.
OCX: TAG NAME
STEP: Idle
TIME REMAIN: 0s
O2: 0.4 %, 85.95mV
COe: 0.20 ppm
OK/NEXT to Select
ABORT/CANCEL to Exit
5-8
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
8. From the SELECT ACTION screen, select START CAL/STEP CAL to
continue calibration, select ABORT CAL to abort calibration or EXIT
CAL to exit calibration method. Select one from the list and press
ENTER.
OCX: TAG NAME
SELECT ACTION
1. START CAL/STEP CAL
2. ABORT CAL
3. EXIT CAL
9. When the Calibration Status is at the AppO2Low step, switch on O2
Low Gas. Verify the O2 concentration measured matches the O2 LOW
GAS parameter in Setup CAL. Press OK when ready.
10. Select START CAL/STEP to start applying the O2 Low Gas. The time to
apply the test gas is specified by the Gas Time.
11. The Calibration Status should automatically change to FIowO2Low and
then ReadO2Low for a period of time. During this period, if an attempt
is made to go to the next calibration step by pressing OK and selecting
START CAL/STEP CAL, you will be prompted with Operator step
command is not accepted at this time.
12. When ready, Calibration Status will stop at AppO2Hi. Switch off the O2
Low Gas and switch on the O2 High Gas. Verify the O2 concentration
measured matches the O2 HIGH GAS parameter in Setup. Press OK
when ready.
13. Select START CAL/STEP CAL to apply the O2 High Gas. The time to
apply the test gas is specified by the Gas Time.
14. The Calibration Status should automatically change to FlowO2Hi, then
ReadO2Hi, and then ReadCOeLo for a period of time. During this
period, if an attempt is made to go the next calibration step by pressing
OK and selecting START CAL/STEP CAL, you will be prompted with
Operator step command is not accepted at this time.
15. When ready, Calibration Status will stop at AppCOeHi. Switch off the O2
High Gas and switch on the COe Gas. Verify the COe concentration
measured matches the COe TEST GAS parameter in the Setup. Press
OK when ready.
16. Select START CAL/STEP CAL to start applying the COe Gas. The time
to apply the test gas is specified by the Gas Time.
17. The Calibration Status should automatically change to FlowCOeHi and
then ReadCOeHi for a period of time. During this period, if an attempt is
made to go the next calibration step by pressing OK and selecting
START CAL/STEP CAL, you will be prompted with Operator step
command is not accepted at this time. The Next Cal Step command
is not accepted at this time.
When ready, Calibration Status will stop at STOP GAS. Switch off the COe
gas. Press OK when ready. Select START CAL/STEP CAL to start purging
gas. The time to purge gas is specified by Purge Time.
5-9
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Manual O2/COe Calibration using the Field Communicator - Fieldbus
To perform a manual O2/COe calibration using the 375 Field Communicator,
use the following procedure. If necessary, refer to Section 6, Field
Communicator, for the Fieldbus menu tree.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
1. To calibrate from Fieldbus, the first step is to set the Transducer Block to
Out of Service Mode (OOS).
2. To set the OOS mode, select Transducer then select Process, followed
by select Out of Service in the Target Mode.
3. From Transducer screen select Methods.
4. Select OCX Calibration from the Methods menu.
5. From the OCX Calibration screen, select Calibrate O2 Sensor for O2
calibration, select Calibrate Combustibles Sensor for COe calibration,
or select Calibrate Both Sensors if calibrate both sensors is desired.
6. In the calibration screen, a Loop should be removed from automatic
control warning appears. Remove the device from any automatic
control loops to avoid a potentially dangerous operating condition and
press OK.
7. The Select Action screen should look like the following. From the
Select Action screen, select Update Display to refresh the calibration
status, select Next Calibration Step to continue calibration, select
Abort Calibration to abort calibration or Exit to exit calibration. Select
one item from the list and press OK. The Select Action screen is static
and data will not be automatically refreshed.
Calibration Step = Idle
Step Time Remaining = 0 seconds
O2 Value = 0.40 %
Combustibles Value = 1000 ppm
1. Update Display
2. Next Calibration Step
3. Abort Calibration
4. Exit
8. The Calibration Screen should look like the following, press OK to
continue. The Calibration Screen should be automatically refreshed,
however it may take a while for the data to refresh.
Calibration Step = Apply O2 Low Gas
Step Time Remaining = 0 seconds
O2 Value = 0.40 %
Combustibles Value = 1000 ppm
Press Next for Selection
5-10
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
9. When the calibration status is at the Apply O2 Low Gas/ Apply Comb
Low Gas step, switch on O2 Low Gas/COe Low Gas. Verify the O2
concentration measured matches the O2 Low Gas parameter in the
setup. The unit samples reference air as the COe Low Gas. Press OK
when ready.
10. Select Next Calibration Step and press OK to start applying the test
gas. The time to apply the test gas is specified by the Gas Time.
11. The calibration step will change to Flow O2 Low Gas/ Flow Comb Low
Gas and then Read O2 Low Gas/ Read Comb Low Gas for a period of
time.
12. When ready, Calibration Step will stop at the Apply O2 High Gas/
Apply Comb High Gas. Switch off the O2 Low Gas/Sample Reference
Air and switch on the O2 High Gas/Comb Test Gas. Verify the O2/COe
concentration measured matches the O2 High Gas/COe Test Gas
parameter in the setup. Press OK when ready.
13. Select Next Calibration Step to start applying the test gas. The time to
apply the test gas is specified by the Gas Time.
14. The calibration step will change to Flow O2 High Gas/ Flow Comb
High Gas and then Read O2 High Gas/ Read Comb High Gas for a
period of time.
15. Skip over to Step 19, Stop Gas, if executing Calibrate O2 Sensor or
Calibrate Combustibles Sensor.
16. The calibration step will change to Read Comb Low Gas for a period of
time. When ready, Calibration Step will stop at Apply Comb High Gas.
Switch off the O2 High Gas and switch on the COe Test Gas. Verify the
COe concentration measured matches the COe Test Gas parameter in
the setup.
17. Select Next Calibration Step to start applying the test gas. The time to
apply the test gas is specified by the Gas Time.
18. The calibration step will change to Flow Comb High Gas and then
Read Comb High Gas for a period of time.
19. When ready, Calibration step will stop at Stop Gas. Switch off the O2
High Gas/COe Test Gas, Press OK when ready. Select Next Calibration
Step to start purging gas. The time to purge gas is specified by the
Purge Time.
20. When the Purge step is complete, the Calibration Step will be at Idle.
The Calibration Failed alarm will be set if the calibration has failed.
21. When calibration is complete. Select Exit to exit the calibration method.
5-11
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
D/A TRIM
PROCEDURES - LOI
O2 D/A trim procedure using the LOI
Use the following procedure to perform the O2 D/A trim procedure at the LOI.
Refer to the LOI menu tree in Figure 4-4.
To avoid a potentially dangerous operating condition, the OCX 8800 must be removed from
the automatic combustion control loop before you start the D/A trim procedure.
1. From the operating display use the left-pointing key to select the first
column submenu. Use the down-pointing key to select SYSTEM.
2. From the SYSTEM menu, use the down-pointing key to select
Input/Output. Use the right-pointing key to select the Analog
parameters list.
3. Scroll down to the item Trim O2 Out. Touch the right-pointing key to
start the O2 trim procedure.
NOTE
If you wish to exit D/A Trim with no changes, step through the procedure using
yes responses, and enter no meter readings.
4. Remove the electronics housing cover.
5. Refer to Figure 2-6. Connect a digital multimeter to read the milliamp
output from the O2 D/A converter circuit. Connect the positive lead to
the AOUT1+ terminal and connect the negative lead to the AOUT1terminal. Then, touch the Enter key at the LOI.
6. The LOI displays 4 mA........Meter. The trim program inputs the
design-equivalent signal for a 4.00 mA output. Read the O2 millamp
output at the digital multimeter. Use the right-pointing key to select each
digit and use the up- and down-pointing keys to change the value. When
the correct value is displayed, use the Enter key to input the value.
7. The LOI displays 20 mA........Meter. The trim program inputs the
design-equivalent signal for a 20.00 mA output. Read the O2 millamp
output at the digital multimeter. Use the right-pointing key to select each
digit and use the up- and down-pointing keys to change the value. When
the correct value is displayed, use the Enter key to input the value.
8. The LOI displays a Meter at 4 mA prompt. Use the right-pointing key to
select the letter yes or no. Use the up- or down-pointing key to change
the letter. Then use the Enter key to input the response. If no, the
process repeats from step 7.
9. The LOI displays a Meter at 20 mA prompt. Use the right-pointing key
to select the letter yes or no. Use the up- or down-pointing key to
change the letter. Then use the Enter key to input the response. If no,
the process repeats from step 8.
10. When the ropiness in steps 9 and 10 are yes, the trim procedure is
complete. Exit the LOI menu and return the control loop to automatic
control.
5-12
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
COe D/A trim procedure using the LOI
Use the following procedure to perform the COe D/A trim procedure at the
LOI. Refer to the LOI menu tree in Figure 4-4.
To avoid a potentially dangerous operating condition, the OCX 8800 must be removed from
the automatic combustion control loop before you start the D/A trim procedure.
1. From the operating display use the left-pointing key to select the first
column submenu. Use the down-pointing key to select SYSTEM.
2. From the SYSTEM menu, use the down-pointing key to select
Input/Output. Use the right-pointing key to select the Analog
parameters list.
3. Scroll down to the item Trim COe Out. Touch the right-pointing key to
start the COe trim procedure.
NOTE
If you wish to exit D/A Trim with no changes, step through the procedure using
yes responses, and enter no meter readings.
4. Remove the electronics housing cover.
5. Refer to Figure 2-6. Connect a digital multimeter to read the milliamp
output from the COe D/A converter circuit. Connect the positive lead to
the AOUT2+ terminal and connect the negative lead to the AOUT2terminal. Then, touch the Enter key at the LOI.
6. The LOI displays 4 mA........Meter. The trim program inputs the
design-equivalent signal for a 4.00 mA output. Read the COe millamp
output at the digital multimeter. Use the right-pointing key to select each
digit and use the up- and down-pointing keys to change the value. When
the correct value is displayed, use the Enter key to input the value.
7. The LOI displays 20 mA........Meter. The trim program inputs the
design-equivalent signal for a 20.00 mA output. Read the COe millamp
output at the digital multimeter. Use the right-pointing key to select each
digit and use the up- and down-pointing keys to change the value. When
the correct value is displayed, use the Enter key to input the value.
8. The LOI displays a Meter at 4 mA prompt (question). Use the
right-pointing key to select the letter yes or no. Use the up- or
down-pointing key to change the letter. Then use the Enter key to input
the response. If no, the process repeats from step 7.
9. The LOI displays a Meter at 20 mA prompt (question). Use the
right-pointing key to select the letter yes or no. Use the up- or
down-pointing key to change the letter. Then use the Enter key to input
the response. If no, the process repeats from step 8.
10. When the ropiness in steps 9 and 10 are yes, the trim procedure is
complete. Exit the LOI menu and return the control loop to automatic
control.
5-13
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
D/A TRIM
PROCEDURES - HART
O2 D/A trim procedure using HART
Use the following procedure to perform the O2 D/A trim procedure using the
Field Communicator. If necessary, refer to Section 6, Field Communicator, for
the HART menu tree.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
1. From the DIAG/SERVICE menu, select D/A TRIM. Select O2 D/A Trim.
2. Press the right arrow key to start the procedure. (If you wish to exit D/A
Trim with no changes, select ABORT.)
3. The Field Communicator displays WARNING: Loop should be
removed from automatic control. Remove the OCX 8800 from any
automatic control loops to avoid a potentially dangerous operating
condition and press OK.
4. The Field Communicator displays Connect reference meter to O2
output.
5. Remove the electronics housing cover.
6. Refer to Figure 2-6. Connect a digital multimeter to read the milliamp
output from the O2 D/A converter circuit. Connect the positive lead to
the AOUT1+ terminal and connect the negative lead to the AOUT1terminal. Then, press OK at the Field Communicator.
7. The Field Communicator displays Setting Fld dev output to 4 mA.
Press OK. Read the O2 millamp output at the digital multimeter. Enter
the reading at the Field Communicator and press ENTER. (Select
ABORT to exit without changes).
8. The Field Communicator displays Setting Fld dev output to 20 mA.
Press OK. Read the O2 millamp output at the digital multimeter. Enter
the reading at the Field Communicator and press ENTER. (Select
ABORT to exit without changes).
9. The Field Communicator displays Setting Fld dev output to 4 mA.
Press OK.
10. The Field Communicator displays Fld dev output 4.00 mA equal to
reference meter? Using the up or down arrow, select 1 Yes or 2 No
and Press ENTER. If No, the process repeats from step 6.
11. The Field Communicator displays Setting Fld dev output to 20 mA.
Press OK.
12. The Field Communicator displays Fld dev output 20.00 mA equal to
reference meter? Using the up or down arrow, select 1 Yes or 2 No
and Press ENTER. If No, the process repeats from step 7.
13. The Field Communicator displays NOTE: Loop may be returned to
automatic control.
5-14
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
COe D/A trim procedure using HART
Use the following procedure to perform the COe D/A trim procedure using the
Field Communicator. If necessary, refer to Section 6, Field Communicator,
Field Communicator, for the HART menu tree.
NOTE
To select a menu item, either use the up and down arrow keys to scroll to the
menu item and press the right arrow key or use the number keypad to select
the menu item number.
To return to a preceding menu, press the left arrow key.
1. From the DIAG/SERVICE menu, select D/A TRIM. Press the up or
down arrow to select COe D/A Trim.
2. Press the right arrow key to start the procedure. (If you wish to exit D/A
Trim with no changes, select ABORT.)
3. The Field Communicator displays WARNING: Loop should be
removed from automatic control. Remove the OCX 8800 from any
automatic control loops to avoid a potentially dangerous operating
condition and press OK.
4. The Field Communicator displays Connect reference meter to
Combustibles output.
5. Remove the electronics housing cover.
6. Refer to Figure 2-6. Connect a digital multimeter to read the milliamp
output from the COe D/A converter circuit. Connect the positive lead to
the AOUT2+ terminal and connect the negative lead to the AOUT2terminal. Then, press OK at the HART communicator.
7. The Field Communicator displays Setting Fld dev output to 4 mA.
Press OK. Read the COe millamp output at the digital multimeter. Enter
the reading at the Field Communicator and press ENTER. (Select
ABORT to exit without changes).
8. The Field Communicator displays Setting Fld dev output to 20 mA.
Press OK. Read the COe millamp output at the digital multimeter. Enter
the reading at the Field Communicator and press ENTER. (Select
ABORT to exit without changes).
9. The Field Communicator displays Setting Fld dev output to 4 mA.
Press OK.
10. The Field Communicator displays Fld dev output 4.00 mA equal to
reference meter? Using the up or down arrow, select 1 Yes or 2 No
and Press ENTER. If No, the process repeats from step 6.
11. The Field Communicator displays Setting Fld dev output to 20 mA.
Press OK.
12. The Field Communicator displays Fld dev output 20.00 mA equal to
reference meter? Using the up or down arrow, select 1 Yes or 2 No
and Press ENTER. If No, the process repeats from step 7.
13. The Field Communicator displays NOTE: Loop may be returned to
automatic control.
5-15
Instruction Manual
OCX 8800
5-16
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 6
OCX 8800
Field Communicator
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 6-1
Field Communicator Connections . . . . . . . . . . . . . . . . . . page 6-1
Hart Menu Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 6-5
Fieldbus Menu Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 6-9
OVERVIEW
The 375 Field Communicator is a communication interface device. It supports
HART and Fieldbus devices letting you configure and troubleshoot in the field.
The 375 Field Communicator includes an LCD with touch-screen display and
keypad. Use touch-screen or keypad to enter data into 375 Field Communicator.
Three terminals for the lead set are on the top of the 375 Field Communicator.
The lead set and the terminals let you connect the 375 Field Communicator to
a device. An access door ensures only one pair of the terminals can be used
at any time. Several markings indicate which pair of terminals is for which protocol. The "F" indicates the Fieldbus protocol while "H" indicates the HART
protocol.
The infrared port (IrDA) lets the 375 Field Communicator interface with the
PC. IrDA is a PC interface supported for transfer of device descriptions (DD),
software update, configurations and application licenses. IrDA communication
can either be built into the PC or provided through a USB to IrDA adaptor. The
PC application can either be AMS Suite or 375 Easy Upgrade Programming
Utility. The 375 must be in the "Listen for PC" mode when communicating
through IrDA.
Refer to the 375 Field Communicator User Manual for details.
FIELD COMMUNICATOR
CONNECTIONS
Connecting to a HART loop
Connect 375 Field Communicator with the supplied lead set in parallel with
the device or load resistor, Figure 6-1. The HART connections are not polarity
sensitive. A minimum 250 ohms resistance must be present in the HART loop
for the 375 Field Communicator to function properly.
Explosions can result in death or serious injury. Do not make connections to the Field
Communicator's serial port, digital signal line, or NiCad recharger jack in an explosive
atmosphere.
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-1. 375 Communicator Connections - HART
4-20 mA Terminal Block in
Electronics Housing
1
RL ³ 250W
O2 4-20 mA Signal Line
A OUT 1 +
A OUT 1 -
Analog Output Device
Field
Communicator
Model 375
Field Communicator
Rear Panel
Lead Set
38850006
Loop
Connectors
Connecting to a Fieldbus Segment
Connect 375 Field Communicator with the supplied lead set in parallel with
the device to a Fieldbus segment, Figure 6-2. The 375 Field Communicator
Fieldbus connections are polarity sensitive, an error message displays if the
device is connected incorrectly.
Explosions can result in death or serious injury. Do not make connections to the Field
Communicator's serial port, digital signal line, or NiCad recharger jack in an explosive
atmosphere.
6-2
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-2. 375 Communicator Conections - Fieldbus
Fieldbus Signal
{
OCX 8800 Electronics
OUT1 OUT1+
#1
NOTE: Devices shown are not to scale.
Fieldbus Digital Signal
Fieldbus Digital Signal
Terminal
Connectors
Fieldbus Computer
Terminal (PC)
Terminal
Block
Terminals
Field Communicator
Rear Panel
Field
Communicator
Model 375
Lead Set
39710006
FF
6-3
Instruction Manual
OCX 8800
OFF-LINE AND ON-LINE
OPERATIONS
IM-106-880, Rev 2.0
October 2009
The Field Communicator can be operated both off-line and on-line.
Off-line operations are those in which the communicator is not connected to
the OCX 8800. Off-line operations can include interfacing the Field Communicator with a PC (refer to applicable Field Communicator documentation
regarding Model 375/PC applications). In the on-line mode the communicator
is connected to a fieldbus terminal block.
NOTE
If the Field Communicator is turned on while connected to the fieldbus
terminal block, an undefined status indication appears while the
communicator warms up. Wait until the warm-up period ends to continue.
The opening menu displayed on the LCD is different for on-line and off-line
operations. When powering up a disconnected (off-line) communicator the
LCD will display the Main Menu. When powering up a connected (on-line)
communicator the LCD will display the On-line Menu. Refer to the Field
Communicator manual for detailed menu information.
6-4
Instruction Manual
IM-106-880, Rev 2.0
October 2009
HART MENU TREE
OCX 8800
This section provides a menu tree for the Field Communicator. This menu is
specific to the OCX 8800 applications.
Figure 6-3. HART Menu Tree (Sheet 1 of 4)
Sensor Values
Sensor Raw Inputs
O2 Raw Inputs
COE Raw Inputs
Output Variables
DEVICE SETUP
O2
O2 AO
COe
COe AO
Sensor Limits
COe Delta V
COe Ref V
COe Delta R
Coe Ref R
COe T/C
RTD Current
DEV Raw Inputs
SB T/C
Board Temp IC
CJC Temp Signal
PV-AOUT
PV is
O2
O2 AO
O2 AO %
SV
SV is
COe
COe AO
COe AO %
TV
TV is
O2 Temp
4V
4V is
COe Temp
O2
O2
O2
O2 USL
O2 LSL
O2 Temp
O2 Temp
O2 TC USL
O2 TC LSL
COe
COe
COe USL
COe LSL
COe Temp
COe Temp
COe TC USL
COe TC LSL
COe
(CONTINUED ON
SHEET 2)
O2 Snsor
O2 T/C
O2 Snsor Imp
39930012
Process Variables
O2
COe
O2 Temp
COe Temp
SB Temp
Brd Temp
CJC Temp
6-5
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-4. HART Menu Tree (Sheet 2 of 4)
(CONTINUED FROM
SHEET 1 )
Diag/Service
Status
Operate Mode
Status Group 1
Status Group 2
Status Group 3
Status Group 4
Status Group 5
Status Group 6
AO Saturated
AO Fixed
Calibration
Cal Control
Cal Methods
O2 Calibration
COe Calibration
O2 & COe Calibration
State
TimeRemain
O2
COe
Cal Constants
Cal Verify
Blowback
BlBk State
Blowback
Loop Test
O2 Loop Test
COe Loop Test
D/A Trim
O2 D/A Trim
COe D/A Trim
Hardware
Model Number
Sensor Housing
CPLD Regs
Current Cal
O2 Slope
O2 Constant
Sensor Imp Cal
COe Slope
COe Constant
Previous Cal
Prev O2 Slope
Prev O2 Constant
Prev Sensor Imp
Prev COe Slope
Prev COe Constant
Failed Cal
Failed O2 Slope
Failed O2 Constant
Failed COe Slope
Failed COe Constant
Reset Cal Constant
Reset O2 CalConsts
Reset COe CalConsts
Verify Calibration
State
TimeRemain
O2
COe
BCSR0
BCSR1
BCSR2
BCSR3
BCSR4
BCSR5
Line Frequency
Line Voltage
PCN Counter
PCD Counter
(CONTINUED ON
SHEET 3)
6-6
(CONTINUED ON
SHEET 3)
O2 Temp Max
COe Temp Max
SB Temp Max
Board Temp Max
CJC Temp Max
39930013
Max Temp
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-5. HART Menu Tree (Sheet 3 of 4)
Diag/Service
(continued)
Basic Setup
Detailed Setup
(CONTINUED FROM
SHEET 2 )
Heater PID
O2 Prop
O2 Int
O2 Duty Cycle
O2 Set Point
O2 Temp
COe PID
COe Prop
COe Int
COe Duty Cycle
COe Set Point
COe Temp
SB PID
SB Prop
SB Int
SB Duty Cycle
SB Set Point
SB Temp
Device
Information
Date
Descriptor
Message
Final Asmbly Num
O2 Sensor S/N
COe Sensor S/N
HART Information
Tag
Poll Addr
Dev ID
Num Req Preams
Fld Dev Rev
S/W Version Info
Version
Checksum
Build Number
Build Date
Restart Cntr
Cal Setup
O2 Cal Params
Solenoids
Gas Time
Purge Time
O2 Out Tracks
O2 High Gas
O2 Low Gas
O2 Cal Intrv
O2 Next Cal Time
O2 Tol Check
Cal Rec Enable
COe Cal Params
Solenoids
Gas Time
Purge Time
COe Out Tracks
COe Test Gas
COe Cal Intrv
COe Next Cal Time
COe Slope Warn
COe Tol Check
Cal Rec Enable
Analog Output
O2 Analog Output
O2 AO Range
O2 URV
O2 LRV
O2 Alarm Level
COe Analog Output
COe AO Range
COe URV
COe LRV
COe Alarm Level
Input/Output
(CONTINUED ON
SHEET 4)
O2 PID
Alarm Relay
Alarm Relay State
Trig 1 Event
Trig 2 Event
Trig 3 Event
Blowback
BlBk State
BlBk Enabled
BlBk Intrvl
BlBk Period
BlBk Purge Time
COe Zero
Zero State
Zero Enabled
Zero Intrvl
Zero Flow
Zero Purge
Zero Tracks
Zero Update
39930014
(CONTINUED FROM
SHEET 2 )
6-7
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-6. HART Menu Tree (Sheet 4 of 4)
Detailed Setup
(continued)
Review
6-8
Device Params
O2 Slope
O2 Const
O2 T90
COe Slope
COe Const
COe T90
PCNC Enable
PCDC Enable
LOI Params
User Intface
Luminance
Lockout Time
Revert Time
Device
Information
Manufacturer
Model
Date
Descriptor
Message
Final Asmbly Num
O2 Sensor S/N
COE Sensor S/N
Hardware Rev
Software Rev
HART Information
Tag
Poll Addr
Dev ID
Num Req Preams
Fld Dev Rev
Universal Rev
Cal Setup
O2 Cal Setup
Solenoids
Gas Time
Purge Time
O2 Out Tracks
O2 Low Gas
O2 High Gas
O2 Cal Intrvl
O2 Next Cal Time
O2 Tol Check
Cal Rec Enable
COe Cal Setup
Solenoids
Gas Time
Purge Time
COe Out Tracks
COe Test Gas
COe Cal Intrvl
COe Next Cal Time
COe Slope Warn
COe Tol Check
Cal Rec Enable
Input/Output
O2 URV
O2 LRV
COe URV
COe LRV
O2 AO Range
COe AO Range
O2 Alarm Level
COe Alarm Level
Trig 1 Event
Trig 2 Event
Trig 3 Event
BlBk Enabled
BlBk Intrvl
BlBk Period
BlBk Purge Time
Zero Enabled
Zero Intrvl
Zero Flow
Zero Purge
Zero Tracks
Zero Update
Device Params
O2 Slope
O2 Const
O2 T90
COe Slope
COe Const
COe T90
PCNC Enable
PCDC Enable
LOI Params
Luminance
Lockout Time
Revert Time
39930015
(CONTINUED FROM
SHEET 3 )
Instruction Manual
IM-106-880, Rev 2.0
October 2009
FIELDBUS MENU TREE
OCX 8800
This section consists of a menu for the Field Communicator. This menu is
specific for the OCX 8800 Applications. Refer to the Fieldbus Parameter
Descriptions for the applicable range, units, and description for the fieldbus
menu parameters.
Figure 6-7. Fieldbus Menu Tree (Sheet 1 of 3)
Manufacturer ID
Device Type
Device Revision
DD Revision
Characteristics
Tag Description
Hardware Revision
Software Revision
Private Label Distributor
Final Assembly Number
Output Board
Serial Number
ITK Version
Process*
Block Mode: Actual
Block Mode: Target
Block Mode: Permitted
Strategy
Alert Key
Sched Remote Casacade
Sched Remote Out
Grant Deny: Grant
Grant Deny: Deny
Alarms
Write Priority
Confirm Time
Limit Notify
Max Notify
Fault State
Set Fault State
Clear Fault State
Alarm Summary
Acknowledge Option
RESOURCE
Hardware
Options
Memory Size
Free Time
Minimum Cycle Time
Hard Types
Nonvolatile Cycle Time
Free Space
Cycle Selection
Cycle Type
Feature Selection
Features
Download Mode
Write Lock
Write Lock Definition
*Note: Contains information regarding
specific implementation for the
fieldbus. Refer to the fieldbus
documentation for further
information.
Continued from
Options
PlantWeb Alerts
Simulate PWA
Simulate Status
PWA SubStatus
Failure Active
Failure Mask
Maintenance Active
Maintenance Mask
Advisory Active
Advisory Mask
Methods
Detail
Network
Management
Schedule
PWA Simulate
Detailed Status
PWA Status
Status
See Sheet 2
PWA Simulate
Failure Active
Maintenance Active
Advisory Active
Recommended Action
Health Index
Failure Alarm
Maintenance Alarm
Advisory Alarm
Continued with
Plant Web Alerts
TRANSDUCER
AI 1
AI 2
AI 3
AI 4
PID 1
ISEL
ARTHM
ADVANCED
Failure Priority
Maintenance Priority
Advisory Priority
Failure Active
Maintenance Active
Advisory Active
Failure Enable
Maintenance Enable
Advisory Enable
Failure Mask
Maintenance Mask
Advisory Mask
Block Mode: Actual
Block Mode: Target
Resource State
Fault State
Block Error
Detailed Status
Summary Status
Alarm Summary
Value
Subcode
Time Start
Alarm State
Unacknowledge
Value
Subcode
Time Start
Alarm State
Unacknowledge
Value
Subcode
Time Start
Alarm State
Unacknowledge
Master Reset
Self Test
DD Version Info
Transmitter Options
Physical Device Tag
Address
Device ID
Device Revision
39930009
Identification
6-9
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-8. Fieldbus Menu Tree (Sheet 2 of 3)
O2
Block Mode: Actual
Block Mode: Target
Block Mode: Permitted
Strategy
Alert Key
Characteristics
Tag Description
O2 Primary Value
O2 Secondary Value
O2 Sensor Imp
O2 Primary Value Range:
EU at 100%
O2 Primary Value Range:
EU at 0%
O2 Secondary Value Range:
EU at 100%
O2 Secondary Value Range:
EU at 0%
O2 Sensor Type
O2 T90
O2 Cal Const
See Sheet 1
COe
RESOURCE
TRANSDUCER
AI 1
AI 2
AI 3
AI 4
PID
ISEL
ARTHM
ADVANCED
Temperatures
Raw Inputs
Continued
with O2 Cal
Sheet 3
6-10
COe Primary Value
COe Secondary Value
COe Primary Value Range:
EU at 100%
COe Primary Value Range:
EU at 0%
COe Secondary Value Range:
EU at 100%
COe Secondary Value Range:
EU at 0%
COe Sensor Type
COe T90
COe Cal Cons
O2 Secondary Value
COe Secondary Value
SB Temp
Board Temp
CJC Temp
O2 Temp Max
COe Max
SB Temp Max
Board Temp Max
CJC Temp Max
Heater Control
O2 Sensor
O2 Sensor Imp
COe Delta Resistance
COe Reference Ohms
COe RTD Current
O2 T/C
COe T/c
SB T/C
Board Temp IC
CJC Temp Signal
O2 Slope
O2 Constant
O2 Impedance Cal
Prev O2 Slope
Prev O2 Constant
Prev O2 Impedence
Failed O2 Slope
Failed O2 Constant
COe Slope
COe Constant
Prev COe Slope
Prev COe Constant
Failed COe Slope
Failed COE Constant
O2 Set Point
O2 Duty Cycle
COe Set Point
COe Duty Cycle
SB Set Point
SB Duty Cycle
39930010
Process
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 6-9. Fieldbus Menu Tree (Sheet 3 of 3
continued from
Raw Inputs
Sheet 2
Cal Status
O2 Primary Value
COe Primary Value
Cal State
Cal Time Remain
Calibration Results
Verify Status
O2 Primary Value
CO2 Primary Value
Verify State
Verify Time Remain
O2 Cal Setup
Solenoids
Gas Time
Purge Time
Cal Recommended
O2 High Gas
O2 Low Gas
O2 Cal Interval
O2 Next Cal
O2 Tolerance Check
Continued from
Alarm Relay
Blow Back
COe Zero
COe Zero State
COe Zero Enable
COe Zero Interval
COe Duration
COe Zero Purge Time
COE Zero Output Track
COe Zero Update
Other
Operating Mode
Sensor Housing Type
Line Voltage
Line Frequency
Version
Build Number
Checksum
Build Date
Simulate Status
Tb Detailed Status 1
Tb Detailed Status 2
Status
Block Mode: Actual
Transducer Error
Static Revision
Block Error
Tb Detailed Status 1
Tb Detailed Status 2
Stats Attempts
Stats Failure
Methods
OCX Calibration
OCX Verify
Reset Max Temperature
(For Service Only)
O2 Sensor Cal Date
O2 Sensor Cal Loc
O2 Sensor Cal Who
COe Cal
Cal Status
O2 Primary Value
COe Primary Value
Cal State
Cal Time Remain
Calibration Results
Verify Status
O2 Primary Value
CO2 Primary Value
Verify State
Verify Time Remain
COe Cal Setup
Solenoids
Gas Time
Purge Time
COe Test Gas
Cal Recommended
COe Cal Interval
COe Next Cal
COe Slope Warning
COe Tolerance Check
COe Sensor Cal Date
COe Sensor Cal Loc
COe Sensor Cal Who
Alarm Relay
Blow Back
Continued
with COe Zero
Blow Back
Blowback State
Blowback Enabled
Blowback Interval
Blowback Duration
Blowback Purge Time
Initate Blowback
Alarm Relay
Alarm Relay State
Alarm Relay Event1
Alarm Relay Event2
Alarm Relay Event3
39930011
O2 Cal
6-11
Instruction Manual
OCX 8800
6-12
IM-106-880, Rev 2.0
October 2009
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 7
OCX 8800
Foundation Fieldbus
Foundation Fieldbus Technology . . . . . . . . . . . . . . . . . . . page 7-1
Resource Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 7-6
Transducer Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 7-13
Analog Input (AI) Function Block . . . . . . . . . . . . . . . . . . . page 7-23
Proportional/ Integral/Derivative (PID) Function Block . . page 7-35
Arithmetic (ARTHM) Function Block . . . . . . . . . . . . . . . . . page 7-51
Input Selector (ISEL) Function Block . . . . . . . . . . . . . . . . page 7-57
Operation with Emerson Process Management DeltaV . page 7-62
FOUNDATION FIELDBUS
TECHNOLOGY
Overview
FOUNDATION Fieldbus is an all digital, serial, two-way communication system
that interconnects field equipment such as sensors, actuators, and
controllers. Fieldbus is a Local Area Network (LAN) for instruments used in
both process and manufacturing automation with built-in capacity to distribute
the control application across the network. It has the ability to distribute
control among intelligent field devices on the plant floor and digitally
communicate that information at high speed that makes FOUNDATIONTM
Fieldbus an enabling technology.
EMERSON offers a full range of products from field devices to the DeltaV
scalable control system to allow an easy transition to Fieldbus technology.
The Fieldbus retains the features of the 4-20 mA analog system, including
standardized physical interface to the wire, bus powered devices on a single
wire, and intrinsic safety options, and enables additional capabilities such as:
• Increased capabilities due to full digital communications.
• Reduced wiring and wire terminations due to multiple devices on one
set of wires.
• Increased selection of suppliers due to interoperability.
• Reduced loading on control room equipment with the distribution of
some control and input/output functions to field devices.
• Speed options for process control and manufacturing applications.
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
NOTE:
The following descriptions and definitions are not intended as a training guide
for FOUNDATION Fieldbus technology but are presented as an overview for
those not familiar with Fieldbus and to define device specific attributes for the
Fieldbus system engineer. Anyone attempting to implement Fieldbus
communications and control with this analyzer must be well versed in
Fieldbus technology and protocol and must be competent in programming
using available tools such as DeltaV. See “References” below for additional
sources for Fieldbus technology and methodology.
Introduction
A Fieldbus system is a distributed system composed of field devices and
control and monitoring equipment integrated into the physical environment of
a plant or factory. Fieldbus devices work together to provide I/O and control
for automated processes and operations. The Fieldbus Foundation provides a
framework for describing these systems as a collection of physical devices
interconnected by a Fieldbus network. One of the ways that the physical
devices are used is to perform their portion of the total system operation by
implementing one or more function blocks.
Function Blocks
Function blocks within the Fieldbus device perform the various functions
required for process control. Because each system is different, the mix and
configuration of functions are different. Therefore, the Fieldbus FOUNDATION
has designed a range of function blocks, each addressing a different need.
Function blocks perform process control functions, such as analog input (AI)
and analog output (AO) functions as well as proportional-integral-derivative
(PID) functions. The standard function blocks provide a common structure for
defining function block inputs, outputs, control parameters, events, alarms,
and modes, and combining them into a process that can be implemented
within a single device or over the Fieldbus network. This simplifies the
identification of characteristics that are common to function blocks.
The Fieldbus FOUNDATION has established the function blocks by defining a
small set of parameters used in all function blocks called universal
parameters. The FOUNDATION has also defined a standard set of function
block classes, such as input, output, control, and calculation blocks. Each of
these classes also has a small set of parameters established for it. They have
also published definitions for transducer blocks commonly used with standard
function blocks. Examples include temperature, pressure, level, and flow
transducer blocks.
The FOUNDATION specifications and definitions allow vendors to add their own
parameters by importing and subclassing specified classes. This approach
permits extending function block definitions as new requirements are
discovered and as technology advances.
Figure 7-1 illustrates the internal structure of a function block. When
execution begins, input parameter values from other blocks are snapped-in by
the block. The input snap process ensures that these values do not change
during the block execution. New values received for these parameters do not
affect the snapped values and will not be used by the function block during
the current execution.
7-2
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Once the inputs are snapped, the algorithm operates on them, generating
outputs as itprogresses. Algorithm executions are controlled through the
setting of containedparameters. Contained parameters are internal to function
blocks and do not appear asnormal input and output parameters. However,
they may be accessed and modified remtely, as specified by the fundtion
block.
Input events may affect the operation of the algorithm. An execution control
function regulates the receipt of input events and the generation of output
events during execution of the algorithm. Upon completion of the algorithm,
the data internal to the block is saved for use in the next execution, and the
output data is snapped, releasing it for use by other function blocks.
Figure 7-1. Function Block Internal Structure
A block is a tagged logical processing unit. The tag is the name of the block.
System management services locate a block by its tag. Thus the service
personnel need only know the tag of the block to access or change the
appropriate block parameters.
Function blocks are also capable of performing short-term data collection and
storage for reviewing their behavior.
Device Descriptions
Device Descriptions are specified tool definitions that are associated with the
function blocks. Device descriptions provide for the definition and description
of the function blocks and their parameters.
To promote consistency of definition and understanding, descriptive
information, such as data type and length, is maintained in the device
description. Device Descriptions are written using an open language called
the Device Description Language (DDL). Parameter transfers between
function blocks can be easily verified because all parameters are described
using the same language. Once written, the device description can be stored
on an external medium, such as a CD-ROM or diskette. Users can then read
the device description from the external medium. The use of an open
language in the device description permits interoperability of function blocks
within devices from various vendors. Additionally, human interface devices,
7-3
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
such as operator consoles and computers, do not have to be programmed
specifically for each type of device on the bus. Instead their displays and
interactions with devices are driven from the device descriptions.
Device descriptions may also include a set of processing routines called
methods. Methods provide a procedure for accessing and manipulating
parameters within a device.
Instrument-Specific
Function Blocks
In addition to function blocks, Fieldbus devices contain two other block types
to support the function blocks. These are the resource block and the
transducer block. The resource block contains the hardware specific
characteristics associated with a device. Transducer blocks couple the
function blocks to local input/output functions.
Resource Blocks
Resource blocks contain the hardware specific characteristics associated with
a device; they have no input or output parameters. The algorithm within a
resource block monitors and controls the general operation of the physical
device hardware. The execution of this algorithm is dependent on the
characteristics of the physical device, as defined by the manufacturer. As a
result of this activity, the algorithm may cause the generation of events. There
is only one resource block defined for a device. For example, when the mode
of a resource block is “out of service,” it impacts all of the other blocks.
Transducer Blocks
Transducer blocks connect function blocks to local input/output functions.
They read sensor hardware and write to effector (actuator) hardware. This
permits the transducer block to execute as frequently as necessary to obtain
good data from sensors and ensure proper writes to the actuator without
burdening the function blocks that use the data. The transducer block also
isolates the function block from the vendor specific characteristics of the
physical I/O.
Alerts
When an alert occurs, execution control sends an event notification and waits
a specified period of time for an acknowledgment to be received. This occurs
even if the condition that caused the alert no longer exists. If acknowledgment
is not received within the prespecified time-out period, the event notification is
retransmitted. This assures that alert messages are not lost.
Two types of alerts are defined for the block, events and alarms. Events are
used to report a status change when a block leaves a particular state, such as
when a parameter crosses a threshold. Alarms not only report a status
change when a block leaves a particular state, but also report when it returns
back to that state.
Network Communication
7-4
Figure 7-2 illustrates a simple Fieldbus network consisting of a single
segment (link).
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-2. Single Link Fieldbus Network
Link Master
Basic Devices and/or LinkMaster Devices
39930017
Fieldbus Link
LAS
(Link Active Scheduler)
Link Active Scheduler (LAS)
All links have one and only one Link Active Scheduler (LAS). The LAS
operates as the us arbiter for the link. The LAS does the following:
• recognizes and adds new devices to the link.
• removes non-responsive devices from the link.
• distributes Data Link (DL) and Link Scheduling (LS) time on the link.
Data Link Time is a network-wide time periodically distributed by the
LAS to synchronize all device clocks on the bus. Link Scheduling time is
a link-specific time represented as an offset from Data Link Time. It is
used to indicate when the LAS on each link begins and repeats its
schedule. It is used by system management to synchronize function
block execution with the data transfers scheduled by the LAS.
• polls devices for process loop data at scheduled transmission times.
• distributes a priority-driven token to devices between scheduled
transmissions.
Any device on the link may become the LAS, as long as it is capable. The
devices that are capable of becoming the LAS are called link master devices.
All other devices are referred to as basic devices. When a segment first starts
up, or upon failure of the existing LAS, the link master devices on the segment
bid to become the LAS. The link master that wins the bid begins operating as
the LAS immediately upon completion of the bidding process. Link masters
that do not become the LAS act as basic devices. However, the link masters
can act as LAS backups by monitoring the link for failure of the LAS and then
bidding to become the LAS when a LAS failure is detected.
Only one device can communicate at a time. Permission to communicate on
the bus is controlled by a centralized token passed between devices by the
LAS. Only the device with the token can communicate. The LAS maintains a
list of all devices that need access to the bus. This list is called the “Live List.”
Two types of tokens are used by the LAS. A time-critical token, compel data
(CD), is sent by the LAS according to a schedule. A non-time critical token,
pass token (PT), is sent by the LAS to each device in ascending numerical
order according to address.
Device Addressing
Fieldbus uses addresses between 0 and 255. Addresses 0 through 15 are
reserved for group addressing and for use by the data link layer. For all
EMERSON Fieldbus devices addresses 20 through 35 are available to the
device. If there are two or more devices with the same address, the first
device to start will use its programmed address. Each of the other devices will
be given one of four temporary addresses between 248 and 251. If a
temporary address is not available, the device will be unavailable until a
temporary address becomes available.
7-5
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
OCX FUNCTION
BLOCKS
Table 7-1. OCX Implemented
Function Blocks
Implemented Function Blocks
Shows the OCX Implemented Function Blocks.
Function Block
Resource Block
Transducer Block
Analog Input Block 1 (AI1)
Analog Input Block 2 (AI2)
Analog Input Block 3 (AI3)
Analog Input Block 4 (AI4)
PID Block (PID)
Arithmetic Block (ARTHM)
Input Selector Block (ISEL)
Description
See TB Channel Assignment Table 7-16
See TB Channel Assignment Table 7-16
See TB Channel Assigbment Table 7-16
See TB Channel Assignment Table 7-16
Proportional/Integral/Derivative of any AI-BLOCK
Arihmetic Function Block
Input Selector Function Block
RESOURCE BLOCK
PlantWeb Alerts
The PlantWeb Alerts (PWA) software supports three groups of alarms for
three severity levels: 1) Failed, 2) Maintenance, and 3) Advisory. Each PWA
can be configured for one or more of the three alarm groups. The PWA alarms
and their severity level default settings are listed in Table 7-2.
Table 7-2. OCX 8800 PWA
PlantWeb Alert
Reserved: none
Sensor Malfunction
Sensor Degraded
Thermocouple Malfunction
Sensor Heater Malfunction
Sensor Heater Over Temperature
Sensor Heater Temperature Variance
Calibration Error
Calibration Recommended
NV Memory Failure
NV Writes Deferred
High Electronics Temperature
ADC Failure
Line Input Out of Range
Inter Board Comm Failure
Simulate Active
Severity Level Default
Failed
Failed
Failed
Failed
Failed
Maintenance
Maintenance
Advisory
Failed
Advisory
Maintenance
Failed
Advisory
Failed
Advisory
Each alarm condition can be “Enabled”, “Disabled”, or have alarm reporting
“Suppressed”. The PWA alarms must be “Enabled” to allow the corresponding
alarm condition to be detected. The PWA alarms can be “Suppressed” to
mask out failures from annunciation.
7-6
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Mapping of PWA
Description of the PlantWeb Alerts that are supported by the OCX 8800
Fieldbus Output Board are listed in Table 7-3.
Figure 7-3. Description of PlantWeb Alerts
.
Alerts
Alarms
AMS
Tab
Sensor
Malfunction
Transducer
Block:
Sensor
Alerts
This alert is
active when
the sensor is
indicating a
very high or
unexpected
output.
Sensor
Alerts
This alert is
Replace the oxygen
active when the cell.
oxygen sensor
impedance
indicates that the
cell is beyond its
useful life.
1) O2 Cell Open
2) Comb Cell
Error
Sensor Degraded Transducer
Block:
O2 Cell
Impedance High
Thermocouple
Malfunction
Transducer
Block:
1) O2 T/C Open
2) O2 T/C
Shorted
3) O2 T/C
Reversed
4) Comb T/C
Open
5) Comb T/C
Shorted
6) Comb T/C
Reversed
7) SB T/C Open
8) SB T/C
Shorted
9) SB T/C
Reversed
What does the
alert indicate?
T/C Heater This alert
Alerts
indicates a
miswired or faulty
thermocouple.
Recommended
Action
Check sensor wires
for loose or broken
connection or
replace the cell.
Check the
thermocouple wires
for loose or broken
connections, short
circuit condition,
reverse wire
condition.
Description
1) The oxygen cell interface is designed to
indicate a very high output if the cell becomes
disconnected from the electronics. It is
possible that a wire connection to the cell,
either in the probe tip or at the electronics, is
loose or broken. The cell may also be
damaged from mechanical stress. In extreme
cases, a very low oxygen concentration in the
process may cause this alarm. Diagnosis must
be done at the analyzer. Refer to Section 8:
Troubleshooting for details.
2) This problem could be caused by a mechanical
failure in the sensor housing or at the
electronics. An open circuit in the combustible
sensor could also cause this alarm. Refer to
Section 8: Troubleshooting for details.
Oxygen cells will degrade over time due to aging
and corrosion. An increasing cell resistance is a
good indicator of reduced cell performance. As
the cell impedance increases, the cell output falls
off and response time increases. Calibrating the
instrument will compensate for the increased cell
resistance up to several hundred ohms, beyond
which the cell is no longer functional. Diagnosis
must be done at the analyzer. Refer to Section 8:
Troubleshooting for details.
When the heater thermocouple alarms are
initiated, they diagnose one of three states:
1) Open
2) Shorted
3) Reversed
The problem could be caused by a mechanical
failure in the probe tip or at the electronics. Power
to the device must be cycled to resume operation.
Diagnosis must be done at the analyzer. Refer to
Section 8: Troubleshooting for details.
7-7
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
AMS
Tab
What does the
alert indicate?
Recommended
Action
Alerts
Alarms
Sensor Heater
Malfunction
Transducer Block
1) O2 Heater
Failure
2) Comb Heater
Failure
3) SB Heater
Failure
4) O2 Heater
Ramp Rate
Exceeded
5) Comb Heater
Ramp Rate
Exceeded
6) SB Heater
Ramp Rate
Exceeded
7) Heater Relay
Failed
Transducer
Block:
1) O2 Cell Temp.
Very High
2) Comb Temp.
Very High
3) SB Temp Very
High
Transducer
Block:
1) O2 Cell Temp.
Low
2) O2 Cell Temp.
High
3) Comb Temp.
Low
4) Comb Temp.
High
5) SB Temp.
Low
6) SB Temp.
High
Transducer
Block:
1) O2 Calibration
Failed
2) Comb
Calibration
Failed
3) Calibration
Warning
T/C Heater This alert
Alerts
indicates that no
measurable heat
energy is being
detected at the
oxygen sensor or
that the heater
temperature is
rising too fast.
Check heater circuit
for lose or broken
connections, check
thermocouple wiring,
test or replace the
heater.
TC Heater This alert
Alerts
indicates a very
high heater
temperature;
temperature is
rising too fast.
Check heater wiring,
check thermocouple
wiring or replace the
electronics stack.
A heater over-temperature/out of control problem
would generally be caused by the inability of the
device to limit power to the heater. This could be
caused by a shorted triac on the power supply in
the electronics stack.
T/C Heater This alert
Alerts
indicates a
sensor heater
temperature that
is too high or too
low.
Allow instrument
several minutes to
reach proper
temperature or
check power supply.
Cell temperature control may become erratic for
the following reasons:
1) Temperature is settling during startup.
2) Large variations in process temperature or
flow.
3) Fluctuations or noise in the power supplied to
the instrument.
Calibration
Alerts
This alert
indicates that the
slope and
constant values
determined from
the calibration did
not fall within an
acceptable
range.
Check the
calibration gas
supplies and
connections.
Make sure the oxygen concentrations of the
calibration gases match the concentration values
in the device. If the calibration has been
performed correctly this alarm may indicate that
the sensor requires replacement. Refer to
Section 8: Troubleshooting for details.
Transducer
Block:
Calibration
Alerts
This alert
Check instrument
indicates that the accuracy and/or
sensor resistance calibrate.
has changed by a
predetermined
amount since the
last calibration.
Sensor Heater
Over Temperature
Sensor Heater
Temperature Variance
Calibration Error
Calibration
Recommended
Calibration
Recommended
7-8
Description
Mechanical or thermal stress may eventually
cause the sensor heater to fail. The resistance of
a properly functioning cell heater will measure
less than 100 ohms. A failed heater will generally
measure as an open circuit. Diagnosis must be
done at the analyzer. Refer to Section 8:
Troubleshooting for details.
The Heater Ramp Rate Exceeded problem is
usually caused by the inability of the device to
limit power to the heater. This could be caused by
a shorted triac component on the power supply in
the electronics stack. Diagnosis must be done at
the analyzer. Refer to Section 8: Troubleshooting
for details.
Oxygen cells will degrade over time due to aging
and corrosion. An increasing cell resistance is a
good indicator of reduced cell performance. As
the cell impedance increases, the cell output falls
off and response time increases. Calibrating the
instrument will compensate for the increased cell
resistance. If using the device with an IMPS or
SPS calibration sequencer, increased cell
impedance can automatically trigger a calibration.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Alerts
Alarms
NV Memory
Failure
Transducer
Block:
EEPROM
Corrupt
NV Writes
Deferred
High Electronics
Temperature
OCX 8800
AMS
Tab
What does the
alert indicate?
Recommended
Action
FF/
Device
Alerts
The non-volatile
parameter
storage on the
CPU board has
become
unreliable.
At startup, wait 2
minutes with power
applied and then
cycle power again or
reset device.
Resource Block:
1) Manufacturing
2) Block Integrity
Error
3) NV Integrity
Error
4) ROM Integrity
Error
Resource Block: FF/
1) NV Writes
Device
Deferred
Alerts
Transducer
Block:
Device
Alerts
High Electronic
Temperature
ADC Failure
Transducer
Block:
1) ADC Timeout
Error
2) ADC
Reference
Error
Device
Alerts
This alert
indicates that the
electronics
temperature has
exceeded 80°C.
The device will
cease to operate
reliably beyond
85°C.
This alert
indicates faulty
operation of the
device
electronics.
Evaluate mounting
location and
environment.
Cycle power or
replace the
electronics stack.
Description
This alarm will generally occur during a startup
condition. Rarely, the device could be powered
down while a parameter is being stored to the
non-volatile memory. The parameter will then be
tagged as bad on the next power on and the
memory contents will be written with default
parameters. Calibration data may be lost and the
unit should be recalibrated. If the unit does not
recover automatically, the memory may be faulty
and the electronics stack should be replaced.
Refer to Section 8: Troubleshooting for details.
A high number of writes has been detected to
non-volatile memory. To prevent premature failure
of the memory, the write operations have been
deferred. The data will be saved on a 6 hour
cycle. This condition usually exists because a
program has been written that writes to Function
block parameters not normally expected to be
written to on a cyclic basis.
The device may require special mounting
considerations if installed in a very hot location.
The Analog to Digital Converter (ADC) is
continuously monitored by the device for correct
operation. Refer to Section 8: Troubleshooting for
details.
7-9
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Alerts
Alarms
AMS
Tab
What does the
alert indicate?
Line Input Out of
Range
Transducer
Block:
Device
Alerts
This alert
indicates that the
line input power
to the device is
outside the
proper operating
limits.
FF/
Device
Alerts
This alert
indicates a
communication
failure between
the FF board and
the device.
Inter Board
Communication
Failure
1) Line
Frequency
Error
2) Line Voltage
Low
3) Line Voltage
High
Transducer
Block:
Inter Board
Communication
Failure
Simulate Active
FF/
Device
Alerts
Recommended
Action
Check line input
power for proper
voltage and
frequency.
Description
The device power supply continuously monitors
the line input. Measured variations in the line
input power are used to compensate the sensor
heater control and check for faulty line conditions.
Refer to Section 8: Troubleshooting for details.
Verify device is
There is no communication possible between the
powered. Check the Fieldbus Output Board and the device’s computer
installation of the
board.
Fieldbus Output
Board on its carrier
board. If the above
are OK, replace the
carrier board and/or
Fieldbus Output
Board.
This alert occurs
The PWA active parameters can now be written.
when the PWA
The resource block detailed status parameters
simulate mode is
and the internal alerts in the Transducer Block
active.
where the PWA active alarms originate can also
be written.
PWA Simulate
Setting PWA_SIMULATE to ON allow simulating the PWA parameters,
FAILED_ACTIVE, MAINT_ACTIVE and ADVISE_ACTIVE. “Allowing
Simulating” means that these parameters get write permission and the host’s
written value is the only one which is used for parameter’s read back value.
The data which comes from the OCX 8800 is not used in this case.
Fieldbus/PWA Simulate
Fieldbus simulation and PWA simulation can be enabled and disabled using
the DD method. Use the "Transmitter Options" method to enable/disable the
Fieldbus or PlantWeb Alerts simulation.
Selecting “Fieldbus simulation” enables both the Fieldbus function block
simulation and PWA simulation. Selecting “PWA simulation” enables
PlantWeb Alert simulation only.
Do not use the PWA Simulate feature for normal operations. When used improperly the
Simulate feature can alter, disable, or activate device alarms.
The simulation feature should not be used for normal operations. This feature
is to be used by authorized personnel for testing or demonstration purposes
only.
Configure Simulation from AMS
Use the following procedure to configure PWA simulation using AMS.
7-10
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
1. Run "Transmitter Options" method.
2. In the "Transmitter Options" menu, select either "Simulate Switch" or
"PWA Simulate".
3. Select "Enable" to enable the simulation feature or "Disable" to disable
the simulation feature.
4. Once the method is complete, select the "Simulate PWA" tab in the
Resource Block, Figure 7-4. If the simulation is enabled, the "PlantWeb
Alarm Simulate" parameter is configurable otherwise it is read-only.
5. Now select Simulation on/off from the "Simulate PWA" screen. When
Fieldbus Simulation is on, the "Simulation Switch" LED is illuminated.
When PWA simulation is on, the "PWA Simulate" LED is illuminated.
Figure 7-4. Simulate PWA Screen
6. If PWA Simulation is on, all PWA active parameters and Resource and
Transducer Block status parameters are configurable. Otherwise they
are read-only.
7. To simulate PlantWeb alerts, use the "Simulate PWA" screens in the
Resource Block. To simulate block alarms, use "Simulate TB
Temperature Sensor - Temperature Status", "Simulate TB Temperature
Status", or "Simulate TB Calibration Device - FF Status" in the
Transducer Block.
8. Select "Device Diagnostics" to view the active PWA alarms.
9. When "Device Diagnostics" is selected, press the "Status" button to see
the Resource or Transducer Block detailed status displays.
7-11
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Configure Simulation
with the Model 375 Field
Communicator
Use the following procedure to configure PWA simulation using the Model 375
Field Communicator.
1. Run "Transmitter Options" method in the Resource Block (Resource |
Methods).
2. In the "Transmitter Options" menu, select either "Simulate Switch" or
"PWA Simulate".
3. Select "Enable" to enable PWA simulation or "Disable" to disable the
simulation feature.
4. Once the method is complete, select "Resource | Simulate PWA" in the
Resource Block. If the simulation is enabled, the "PWA Simulate"
parameter is configurable. Otherwise it is read-only.
5. Now select Simulation on/off from the "PWA Simulate" parameter. When
PWA Simulation is on, all of the PWA active parameters and the
Resource and Transducer Block status parameters are configurable.
Otherwise they are read-only.
6. To simulate PlantWeb Alerts, select the alerts listed under “Failed
Active”, “Maintenance Active” and “Advisory Active” (Resource |
Simulate PWA).
7. To simulate block alarms, select the alarms listed under “Detailed
Status” in the Resource Block (Resource | Simulate Status) or under
“Detailed Status” in the Transducer Block (Transducer | Simulate
Status).
8. Select Resource|PWA SubStatus to see the active PWA alarms and
masks. Select Fail Active, Maintenance Active or Advisory Active for
active PWA alarms.
9. Select Resource | Status | Detailed Status or Transducer | Status |
Detailed Status to see the Resource or Transducer Block detailed
status.
Support Resource
Block Errors
Resource Block
Out of Service
Set Whenever the resource block actual mode is OOS.
Power Up
Set whenever the FF card powers up.
Block Configuration Error
Configuration Error is used to indicate that you had selected an item in
FEATURES_SEL or CYCLE_SEL that was not set in FEATURES or
CYCLE_TYPE, respectively.
Simulation Active
Set whenever the Fieldbus Simulate Switch is set to ON at the Fieldbus
card or software simulate option enabled.
Transducer Block
Out of Service
Set whenever the transducer block actual mode is OOS.
7-12
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Input Failure
Set whenever there is a communication error between the Fieldbus card
and the OCX.
Simulation Active
Set whenever the Fieldbus Simulate Switch is set to ON at the Fieldbus
card or software simulate option enabled.
Other Error
Set whenever XD_ERROR is non-zero.
TRANSDUCER BLOCK
The Transducer Block was designed to provide the information necessary to
interface OCX 8800 to the Fieldbus.
Transducer Block
Parameters
Table 7-3 gives a description of all parameters, or gives the location of the
Fieldbus specifications the description can be found.
Table 7-3. Transducer Block Parameter Description
Parameter Mnemonic
ALARM_RELAY_EVENT1
Valid Range
See Table 7-7
Units
Enumerated
Description
The first of three conditions that cause the alarm output to turn on..
ALARM_RELAY_EVENT2
See Table 7-7
Enumerated
The second of three conditions that cause the alarm output to turn on.
ALARM_RELAY_EVENT3
See Table 7-7
Enumerated
The third of three conditions that cause the alarm output to turn on.
ALARM_RELAY_STATE
0: Off – 1: On
Enumerated
The state of the alarm output.
ALERT_KEY
See FF-891 section 5.3.
ANALYZER_SW_BUILD_
DATE
The date the analyzer software was built.
ANALYZER_SW_BUILD_
NUMBER
The build number of the analyzer software.
ANALYZER_SW_
CHECKSUM
The checksum of the analyzer software.
ANALYZER_SW_VERSION
The version of the analyzer software.
BLOCK_ALM
See FF-891 section 5.3.
BLOCK_ERR
See FF-891 section 5.3.
BLOWBACK_DURATION
1-5
Seconds
The amount of time the blowback solenoid will be on.
BLOWBACK_ENABLED
0: No – 1: Yes
Enumerated
Enables or disables the automatic blowback cycle.
BLOWBACK_INTERVAL
0-32767
Minutes
The time between blowback cycles.
BLOWBACK_PURGE_TIME
0-500
Seconds
The amount of time before returning the output to process after performing
a blowback.
BLOWBACK_STATE
0, 1, 2
Enumerated
The current state of the blowback cycle. (0=Idle, 1=Blow, 2=Purge)
CAL_GAS_TIME
60-1200
Seconds
The amount of time calibration gas should flow before a reading is taken.
CAL_PURGE_TIME
60-1200
Seconds
The amount of time before returning the output to process after calibrating.
CAL_REC_ENABLE
0: No – 1: Yes
CAL_RESULTS
See Table 7-10
Bit Enum
Enable/disable calibration recommended alarm.
Calibration result.
CAL_STATE
See Table 7-4
Enumerated
The current state of the calibration cycle.
Seconds
The time left in the current calibration step.
CAL_STATE_STEP
CAL_STATE_TIME
Initiates a calibration or goes to the next calibration step.
COLLECTION_DIRECTORY
See Transducer Block Specification, part 1. FF-902, page 11.
COMB _SENSOR_CAL_LOC
COMB_SENSOR_CAL_
METHOD
See FF-903 section 3.3.
See FF-903 sections 3.3 and 4.5.
7-13
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Parameter Mnemonic
Valid Range
Units
COMB
_SENSOR_CAL_WHO
Description
See FF-903 section 3.3.
COMB_AUTOCAL_
INTERVAL
0-9999
Hours
The time between automatic calibrations of the combustibles sensor.
COMB_CAL_POINT
0-55000
PPM
The value of the combustibles test gas.
COMB_CONSTANT
-99.0-99.0
PPM
The combustibles calibration constant.
COMB_DELTA_
RESISTANCE
Ohms
The raw value of the combustibles level input. This is the difference
between the active and reference RTDs.
COMB_FAILED_CONSTANT
PPM
This is the constant value calculated from the last failed Combustibles
calibration.
COMB_FAILED_SLOPE
PPM/Ohm
This is the slope value calculated from the last failed Combustibles
calibration.
COMB_HTR_DUTYCYCLE
Combustibles heater duty cycle.
COMB_PERCENT_OF_
RANGE
%
The percent of range of the current combustibles reading.
COMB_PREVIOUS_
CONSTANT
PPM
The combustibles calibration constant from the previous good calibration.
COMB_PREVIOUS_SLOPE
PPM/Ohm
The combustibles calibration slope from the previous good calibration.
COMB_PRIMARY_VALUE
The value and status of the combustibles concentration reading.
COMB_PRIMARY_VALUE_
RANGE
The High and Low range limit values, the engineering units code, and the
number of digits to the right of the decimal point for the combustibles
reading.
COMB_PRIMARY_VALUE_
TYPE
See FF903
section 4.1
COMB_REFERENCE_
OHMS
See FF-903 section 3.3.
Ohms
The raw value of the combustibles reference input.
COMB_SECONDARY_
VALUE
The combustibles cell temperature. This is the determined from the value
of the combustibles reference RTD.
COMB_SECONDARY_
VALUE_RANGE
The High and Low range limit values, the engineering units code, and the
number of digits to the right of the decimal point for the combustibles cell
temperature reading.
COMB_SENSOR_CAL_
DATE
See FF-903 section 3.3.
COMB_SENSOR_
EXCITATION
mA
Combustible Reference current.
°C
Combustibles heater temperature set point.
COMB_SENSOR_TYPE
See FF-903 section 3.3 and 4.3.
COMB_SETPOINT
COMB_SLOPE
200-4500
PPM/Ohm
The combustibles calibration slope.
COMB_SLOPE_WARNING
25.0-99.0
% of FS
The combustible slope warning threshold.
COMB_T90
0-300
Seconds
The amount of time that the combustibles process variable will take to
reach 90% of the actual process variable.
COMB_TEMP_MAX
°C
The highest Combustibles temperature read since power on.
COMB_THERMOCOUPLE_
INPUT
mV
Combustible Block T/C voltage (Valid only with Type 3 sensor).
Hours
The time until the next automatic calibration of the combustibles sensor.
Seconds
The duration of the Combustibles sensor zero cycle.
COMB_TIME_TO_NEXT_
CAL
0-9999
COMB_TOL_CHECK
0: No – 1: Yes
COZERO_DURATION
120-600
Combustible calibration gas tolerance check.
COZERO_ENABLED
0: Off – 1: On
Enumerated
Indicates whether Combustibles sensor zero is enabled.
COZERO_INTERVAL
60-480
Minutes
The time between Combustibles sensor zero cycles.
COZERO_OUTTRAK
0, 1, 2, 3
Enumerated
Indicates whether the Combustibles analog output should track the input
during Combustibles sensor zero or lock at the last process reading.
(0=None, 1=O2, 2=CO2, 3= Both)
7-14
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Parameter Mnemonic
OCX 8800
Valid Range
Units
COZERO_PURGE_TIME
60-180
COZERO_STATE
0, 1, 2
COZERO_UPDATE
0: Off – 1: On
Enumerated
Indicates whether the Combustibles calibration constants should be
updated after Combustibles sensor zero.
DETAILED_STATUS_1
0-16777215
Bit Enum
A bit-enumerated value used to communicate the status of the OCX. (This
is similar in nature to the command 48 status bits in HART).
DETAILED_STATUS_2
0-16777215
Bit Enum
A bit-enumerated value used to communicate the status of the OCX. (This
is similar in nature to the command 48 status bits in HART).
ELECTRONICS_TEMP
°C
The current temperature reading of the electronics temperature sensor.
ELECTRONICS_TEMP_
INPUT
mV
The current voltage reading of the electronics temperature sensor.
INITIATE_BLOWBACK
Seconds
Description
The duration of the Combustibles sensor zero purge.
The current step of the Combustibles sensor zero cycle. (0=Idle,
1=Flowing, 2=Purging)
1=Do a manual
blowback
This initiates a blowback cycle. 1=Do a manual blow back
LINE_FREQUENCY
Hz
The Calculated line frequency.
LINE_VOLTAGE
Volts
The calculated line voltage.
°C
This is the maximum electronics temperature seen by the analyzer.
MAX_ELECTRONICS_TEMP
MAX_TEMP_RESET
1=Reset max
temperatures
This resets the maximum temperatures.
MODE_BLK
See FF-891 section 5.3.
O2_AUTOCAL_INTERVAL
0-9999
Hours
The time between automatic calibrations of the O2 sensor.
O2_CAL_POINT_HI
0-40
%
The value of the O2 high test gas. This gas is also used as the low gas for
calibrating the combustibles sensor.
O2_CAL_POINT_LO
0-40
%
The value of the O2 low test gas.
Ohms
The instaneous impedance value for the O2 cell.
O2_CELL_IMPEDANCE
O2_CONSTANT
-20.0-20.0
mV
The O2 calibration constant.
O2_FAILED_CONSTANT
mV
This is the constant value calculated from the last failed O2 calibration.
O2_FAILED_SLOPE
mV/Decade
This is the slope value calculated from the last failed O2 calibration.
O2 heater duty cycle.
O2_HTR_DUTYCYCLE
O2_IMPEDANCE CAL
Ohms
The impedance value that was calculated as a result of the current
successful O2 calibration.
O2_PERCENT_OF_RANGE
%
The percent of range of the current O2 reading.
O2_PREVIOUS_CONSTANT
mV
The O2 calibration constant from the previous good calibration.
O2_PREVIOUS_
IMPEDANCE
Ohms
The impedance value from the previous good calibration.
O2_PREVIOUS_SLOPE
mV/Decade
The O2 calibration slope from the previous good calibration.
O2_PRIMARY_VALUE
The value and status of the O2 concentration reading.
O2_PRIMARY_VALUE_
RANGE
The High and Low range limit values, the engineering units code, and the
number of digits to the right of the decimal point for the O2 reading.
O2_PRIMARY_VLUE_TYPE
See F-903
section 4.1
See FF-903 section 3.3.
O2_SECONDARY_VALUE
The temperature of the O2 cell.
O2_SECONDARY_VALUE_
RANGE
The High and Low range limit values, the engineering units code, and the
number of digits to the right of the decimal point for the O2 cell
temperature.
O2_SENSOR_CAL_DATE
See FF-903 section 3.3.
O2_SENSOR_CAL_LOC
See FF-903 section 3.3.
O2_SENSOR_CAL_
METHOD
See FF-903 sections 3.3 and 4.5.
O2_SENSOR_CAL_WHO
O2_SENSOR_INPUT
O2_SENSOR_TYPE
See FF-903 section 3.3.
mV
The raw value of the O2 sensor input.
See FF-903 section 3.3 and 4.3.
7-15
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Parameter Mnemonic
Valid Range
O2_SETPOINT
Units
Description
°C
O2 heater temperature set point.
O2_SLOPE
34.5-57.5
mV/Decade
The O2 calibration slope.
O2_T90
0-300
Seconds
The amount of time that the O2 process variable will take to reach 90% of
the actual process variable.
O2_TEMP_MAX
°C
The highest O2 temperature read since power on.
O2_THERMOCOUPLE_
INPUT
mV
The raw value of the O2 temperature input.
Hours
The time until the next automatic calibration of the O2 sensor.
Enumerated
Device Operating Mode. See Table 7-8.
O2_TIME_TO_NEXT_CAL
0-9999
O2_TOL_CHECK
0: No – 1: Yes
OPERATING_MODE
O2 calibration gas tolerance check.
PCD_COUNTER
PCDC_ENABLE
Power cycle drop counter.
0: No – 1: Yes
Enable/disable power cycle drop detect.
PCN_COUNTER
Power cycle noise counter.
SB_HTR_DUTYCYCLE
Sample Block heater duty cycle.
SB_SETPOINT
°C
Sample Block heater temperature set point.
The temperature of the sample line.
SB_TEMP
°C
SB_TEMP_MAX
°C
The highest Sample Block temperature read since power on.
SB_THERMOCOUPLE_
INPUT
mV
The raw value of the sample line temperature input.
SENSOR_HOUSING_TEMP
°C
Sensor Housing temperature (Valid only with Type 3 sensor).
SENSOR_HOUSING_
TEMP_INPUT
mV
Sensor Housing CJC voltage (Valid only with Type 3 sensor).
SENSOR_HOUSING_
TEMP_MAX
°C
The highest Sensor Housing temperature read since power on.
SENSOR_HOUSING_TYPE
0, 1, 2, 3
Enumerated
This is the Sensor Housing type setting through the DIP switch.
(0=Type 1, 1=Type 2, 2=Type3, 3=Invalid)
SOLENOIDS_PRESENT
0: No – 1: Yes
Enumerated
This determines whether a calibration cycle will automatically step
through, turning solenoids on and off to switch test gas, or wait for an
operator to manually switch gases and acknowledge.
ST_REV
See FF-891 section 5.3.
STATS_ATTEMPTS
Total number of messages sent to the transducer a/d board.
STATS_FAILURES
Total number of failed a/d board message attempts.
STATS_TIMEOUTS
Total number of timed out a/d board message attempts.
STRATEGY
See FF-891 section 5.3.
TAG_DESC
See FF-891 section 5.3.
TRANSDUCER_
DIRECTORY
See FF-903 section 3.3.
TRANSDUCER_TYPE
See FF-903 sections 3.3.
UPDATE_EVT
See FF-891 section 5.3.
VERIFY_STATE
0 through 5
Enumerated
The current state of the Calibration Check. (0=Idle 1, 1=Flow High O2,
2=Flow Lo O2, 3=Flow High COe, 4=Purge Gas, 5=Done)
VERIFY_STATE_STEP
0, 1, 2,.3, 6
Enumerated
Initiates a calibration verify of O2 or Combustibles gas. (0=Start Flow High
O2, 1=Start Flow Lo O2, 3=Start Flow High COe, 3=Purge Gas, 6=No
Effect)
VERIFY_STATE_TIME
XD_ERROR
7-16
Seconds
Time remain for the current Calibration Check state.
See FF-903 section 3.3.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Transducer Block
Enumerations
Table 7-4. Calibration StateValues
OCX 8800
Calibration States
During a running calibration procedure, the states below reflect the current
step that the calibration is running in. Refer to Table 7-4.
Index
CAL_STATE Description
Operator Ack Required to Continue
Idle
1
Apply O2 Low Gas
Yes, cal can also be initiated from internally
generated events.
Yes, If Parameter "Solenoids Present" is 0
2
Flow O2 Low Gas
No
3
Read O2 Low Gas
No
4
Apply O2 High Gas
Yes, If Parameter "Solenoids Present" is 0
0
5
Flow O2 High Gas
No
6
Read O2 High Gas
No
7
Apply Comb Low Gas
Yes, If Parameter "Solenoids Present" is 0
8
Flow Comb Low Gas
No
9
Read Comb Low Gas
No
10
Apply Comb High Gas
Yes, If Parameter "Solenoids Present" is 0
11
Flow Comb High Gas
No
12
Read Comb High Gas
No
13
Stop Gas
Yes, If Parameter "Solenoids Present" is 0
14
Purge
No
15
Abort
Yes, If Parameter "Solenoids Present" is 0
Calibration Step Command
During a calibration, the CAL_STATE_STEP command/parameter controls
the calibration procedure. The procedure will progress forward on the value of
CALIB_STATE.
Table 7-5. Calibration Control
Enumerations
CAL_STATE_STEP Description
No Event
Start O2 Calibration
Start Combustibles Calibration
Start O2 and Combustibles Calibration
Step Calibration
Abort Calibration
To start a calibration procedure of a sensor is only allowed if there is no
procedure already running on the same sensor. If we do not want to wait for
finishing the already running procedure we have first to cancel it before
starting the new procedure.
7-17
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Blowback States
Table 7-6. Blowback State
Enumerations
BLOWBACK_STATE Description
Idle
Blow
Purge
Alarm Events
Table 7-7. Alarm Event
Enumerations
ALARM_RELAY_EVENT Description
Off
In Calibration
O2 Cell Temp Error
O2 Heater Open
O2 Cell Bad
Cal Failed
Cal Warn
High Electronics Temp
Unit Failure
SL Temp Error
Comb Cell Temp Error
Power Input Error
In COe Zero
All
Operating Mode
Table 7-8. Operating Mode
Enumerations
Operating Mode Description
POWER UP
WARMUP
STABILIZE
NORMAL
CALIBRATING
CALVERIFY
BLOWBACK
COZERO
ALARM
SYS FAULT
CAL RECOMMENDED
7-18
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Sensor Housing Type
Table 7-9. Sensor Housing
Enumerations
SENSOR_HOUSING_TYPE Description
TYPE 1
TYPE 2
TYPE 3
Cal Results
Table 7-10. Cal Results Bit
Enumerations
CAL_RESULTS Description
O2 Slope Error
O2 Constant Error
O2 Tolerance Check Failed
CO Slope Error
O2 Constant Error
CO Tolerance Check Failed
CO Slope Warning
Calibration Verify Status
During a running calibration verify procedure, the states below reflect the
current step that the calibration verify is running in.
Table 7-11. Calibration Verify
State Values
VERIFY_STATE Description
Idle
Flow High O2 Gas
Flow Low O2 Gas
Flow High COe Gas
Purge Gas
Done
Calibration Verify Step Control
During a calibration, the VERIFY_STATE_ STEP command /parameters
control the calibration verify procedure.
Table 7-12. Calibration Verify
Step Values
VERIFY_STATE_STEP Description
Start Flow High O2 Gas
Start Flow Low O2 Gas
Start Flow High COe Gas
Purge Gas
No Effect
7-19
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
COe Zero States
Table 7-13. COe Zero State
Enumerations
COZERO_STATE Description
Idle
Flowing
Purging
COe Out Tracks
Table 7-14. COe Out Tracks
Enumerations
COZERO_OUTTRAK Description
None
O2
CO2
Both
Detailed Status
Table 7-15. Detailed Status
Alarm
Number
0
7-20
Description
Value of XD_ERROR
(see FF-903)
No alarm active
1
O2 Cell Open
Mechanical Failure
2
O2 Cell Impedance High
Mechanical Failure
3
O2 Thermocouple Open
Mechanical Failure
4
O2 Thermocouple Shorted
Mechanical Failure
Mechanical Failure
5
O2 Thermocouple Reversed
6
O2 Cell Temperature Low
Mechanical Failure
7
O2 Cell Temperature High
Mechanical Failure
8
O2 Cell Temperature Very High
Mechanical Failure
9
O2 Heater Failure
Mechanical Failure
10
O2 Heater Ramp Rate
Electronics Failure
11
Combustibles Cell Error
Mechanical Failure
12
Combustibles Thermocouple Open
Mechanical Failure
13
Combustibles Thermocouple Shorted
Mechanical Failure
14
Combustibles Thermocouple Reversed
Mechanical Failure
15
Combustibles Temperature Low
Mechanical Failure
16
Combustibles Temperature High
Mechanical Failure
17
Combustibles Temperature Very High
Mechanical Failure
18
Combustibles Heater Failure
Mechanical Failure
19
Combustibles Heater Ramp Rate
Electronics Failure
20
Sample Block Thermocouple Open
Mechanical Failure
21
Sample Block Thermocouple Shorted
Mechanical Failure
22
Sample Block Thermocouple Reversed
Mechanical Failure
23
Sample Block Temperature Low
Mechanical Failure
24
Sample Block Temperature High
Mechanical Failure
25
Sample Block Temperature Very High
Mechanical Failure
26
Sample Block Heater Failure
Mechanical Failure
27
Sample Block Heater Ramp Rate
Electronics Failure
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Alarm
Number
Transducer Block
Channel Assignments
for AI Blocks
Value of XD_ERROR
(see FF-903)
Description
28
O2 Calibration Failed
Calibration Error
29
Combustible Calibration Failed
Calibration Error
Calibration Error
30
Combustible Calibration Warning
31
O2 Calibration Recommended
Calibration Error
32
EEPROM Corrupt
Data Integrity Error
33
High Electronics Temperature
Electronics Failure
34
ADC Timeout Error
Electronics Failure
35
ADC Reference Error
Electronics Failure
36
Heater Relay Failed
Electronics Failure
37
Line Frequency Error
Electronics Failure
Electronics Failure
38
Line Voltage Low
39
Line Voltage High
Electronics Failure
40
Inter-board Communication Failure
Electronics Failure
--
Reserved for FB
The following table lists the OCX transducer block I/O channels for the AI
block.
Table 7-16. I/O Channel
Assignments
Transducer Block
Channel Value
Process Variable
1
O2 Concentration
2
Combustibles Concentration
3
O2 Cell Temperature
°C
4
Combustibles Cell Temperature
°C
XD_SCALE UNITS
%
PPM
The following table lists the recommended Settings for the OCX transducer
block I/O channels for the AI Blocks
Table 7-17. Recommended Settings for the I/O Channel Assignments for the AI Blocks
Transducer Block I/O
Channel Value
LTYPE
XD_SCALE 0%
XD-Scale 100%
Units
OUT_SCALE 0%
OUT_SCALE 100%
1
Direct
0
100
%
0
100
%
2
Direct
0
1000
PPM
0
1000
PPM
3
Direct
0
1000
°C
0
1000
°C
4
Direct
0
1000
°C
0
1000
°C
Units
7-21
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Transducer Block
Channel Status
The status of channel 1 to 4 are affected by the state of unit alarm. In all
cases, the channel will read what it believes the correct sensor values.
Self-Clearing alarms are reset when the alarm condition goes away. All others
require the device be restarted.
Table 7-18 indicates channel status under indicated device conditions
(Occurence). Unless otherwise indicated in the table, the status values are:
• Occurence: Normal
• Quality Value: GOOD
• Quality Substatus Value: NON_SPECIFIC
• Limit Value: NOT_LIMITED
Table 7-18. I/O Channel Status
Channel
Occurence
Quality Value
Quality Substatus Value
Limit Value
1,2
Powerup, Warmup, Stablize
BAD
NON_SPECIFIC
NOT_LIMITED
1,2
Normal
GOOD
NON_SPECIFIC
NOT_LIMITED
1,2
Calibrating, Cal Verify, Blow Back,
COe Zero,
UNCERTAIN
SENSOR_CONVERSION_INACCURATE
NOT_LIMITED
1,2
Alarm
(Temperature Low & High, Cell
Bad/Error)
UNCERTAIN
SENSOR_CONVERSION_INACCURATE
NOT_LIMITED
1,2
System Fault
BAD
DEVICE_FAILURE
NOT_LIMITED
3,4
Powerup, Warmup, Stablize
GOOD
NON_SPECIFIC
NOT_LIMITED
3,4
Normal
GOOD
NON_SPECIFIC
NOT_LIMITED
3,4
Calibrating, Cal Verify, Blow Back
GOOD
NON_SPECIFIC
NOT_LIMITED
3,4
Alarm, System Fault
(Temperature Related Alarms: T/C
Open, T/C Shorted, T/C Reversed,
ADC Error)
BAD
DEVICE_FAILURE
CONSTANT
3,4
Temp Low & High
Good
ACTIVE_BLOCK_ALARM
NOT_LIMITED
Transducer Block
Simulate
Setting PWA_SIMULATE to ON also allows simulating TB status and to check
the correct mapping onto the PWA’s FAILED_ACTIVE, MAINT_ACTIVE, and
ADVISE_ACTIVE parameters.
Support Transducer
Block Errors
Out of Service
Set whenever the transducer block actual mode is OOS.
Input Failure
Set whenever there is a communication error between the Fieldbus A2D card
and the OCX.
Simulation Active
Set whenever the Fieldbus Simulate Switch is set to ON at the Fieldbus A2D
card or software simulate option is enabled.
Other Error
Set whenever XD_ERROR is non-zero.
7-22
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
ANALOG INPUT (AI)
FUNCTION BLOCK
Introduction
The OCX 8800 has four transducer block Input/Output channels (Table 7-20)
for the AI function blocks. The status of channel values are defined in
Table 7-22.
The Analog Input (AI) function block (Figure 7-5) processes field device
measurements and makes them available to other function blocks. The output
value from the AI block is in engineering units and contains a status indicating
the quality of the measurement. The measuring device may have several
measurements or derived values available in different channels. Use the
channel number to define the variable that the AI block processes.
Figure 7-5. AI Function Block
OUT_D
OUT
OUT_D
OUT
= The block output value and status
= Discrete output that signals a selected
alarm condition
38740079
AI
The Analog Input (AI) function block processes field device measurements
and makes them available to other function blocks. The output value from the
AI block is in engineering units and contains a status indicating the quality of
the measurement. The measuring device may have several measurements or
derived values available in different channels. Use the channel number to
define the variable that the AI block processes.
The AI block supports alarming, signal scaling, signal filtering, signal status
calculation, mode control, and simulation. In Automatic mode, the block’s
output parameter (OUT) reflects the process variable (PV) value and status.
In Manual mode, OUT may be set manually. The Manual mode is reflected on
the output status. A discrete output (OUT_D) is provided to indicate whether a
selected alarm condition is active. Alarm detection is based on the OUT value
and user specified alarm limits. Table 7-19 lists the AI block parameters and
their units of measure, descriptions, and index numbers.
7-23
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Table 7-19. Definitions of Analog Input Function Block System Parameters
Parameter
Index
Number
Units
Description
ACK_OPTION
23
None
ALARM_HYS
24
Percent
ALARM_SEL
38
None
Used to select the process alarm conditions that will cause the OUT_D
parameter to be set.
ALARM_SUM
22
None
The summary alarm is used for all process alarms in the block. The cause of
the alert is entered in the subcode field. The first alert to become active will
set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported
without clearing the Active status, if the subcode has changed.
ALERT_KEY
04
None
The identification number of the plant unit. This information may be used in
the host for sorting alarms, etc.
BLOCK_ALM
21
None
The block alarm is used for all configuration, hardware, connection failure or
system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert
reporting task, another block alert may be reported without clearing the
Active status, if the subcode has changed.
BLOCK_ERR
06
None
This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.
CHANNEL
15
None
The CHANNEL value is used to select the measurement value. Refer to the
appropriate device manual for information about the specific channels available in each device.
You must configure the CHANNEL parameter before you can configure the
XD_SCALE parameter.
FIELD_VAL
19
Percent
The value and status from the transducer block or from the simulated input
when simulation is enabled.
GRANT_DENY
12
None
Options for controlling access of host computers and local control panels to
operating, tuning, and alarm parameters of the block. Not used by device.
HI_ALM
34
None
The HI alarm data, which includes a value of the alarm, a timestamp of occurrence and the state of the alarm.
HI_HI_ALM
33
None
The HI HI alarm data, which includes a value of the alarm, a timestamp of occurrence and the state of the alarm.
HI_HI_LIM
26
EU of PV_SCALE
HI_HI_PRI
25
None
HI_LIM
28
EU of PV_SCALE
HI_PRI
27
None
The priority of the HI alarm.
IO_OPTS
13
None
Allows the selection of input/output options used to alter the PV. Low cutoff
enabled is the only selectable option.
L_TYPE
16
None
Linearization type. Determines whether the field value is used directly (Direct), is converted linearly (Indirect), or is converted with the square root (Indirect Square Root).
LO_ALM
35
None
The LO alarm data, which includes a value of the alarm, a timestamp of occurrence and the state of the alarm.
LO_LIM
30
EU of PV_SCALE
LO_LO_ALM
36
None
LO_LO_LIM
32
EU of PV_SCALE
LO_LO_PRI
31
None
LO_PRI
29
None
LOW_CUT
17
%
7-24
Used to set auto acknowledgment of alarms.
The amount the alarm value must return within the alarm limit before the associated active alarm condition clears.
The setting for the alarm limit used to detect the HI HI alarm condition.
The priority of the HI HI alarm.
The setting for the alarm limit used to detect the HI alarm condition.
The setting for the alarm limit used to detect the LO alarm condition.
The LO LO alarm data, which includes a value of the alarm, a timestamp of
occurrence and the state of the alarm.
The setting for the alarm limit used to detect the LO LO alarm condition.
The priority of the LO LO alarm.
The priority of the LO alarm.
If percentage value of transducer input fails below this, PV = 0.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Parameter
Index
Number
Units
Description
MODE_BLK
05
None
The actual, target, permitted, and normal modes of the block.
Target: The mode to “go to”
Actual: The mode the “block is currently in”
Permitted: Allowed modes that target may take on
Normal: Most common mode for target
OUT
08
EU of OUT_SCALE
OUT_D
37
None
Discrete output to indicate a selected alarm condition.
OUT_SCALE
11
None
The high and low scale values, engineering units code, and number of digits
to the right of the decimal point associated with OUT.
The block output value and status.
PV
07
EU of XD_SCALE
PV_FTIME
18
Seconds
SIMULATE
09
None
A group of data that contains the current transducer value and status, the
simulated transducer value and status, and the enable/disable bit.
STRATEGY
03
None
The strategy field can be used to identify grouping of blocks. This data is not
checked or processed by the block.
ST_REV
01
None
The revision level of the static data associated with the function block. The
revision value will be incremented each time a static parameter value in the
block is changed.
TAG_DESC
02
None
The user description of the intended application of the block.
UPDATE_EVT
20
None
VAR_INDEX
39
% of OUT Range
VAR_SCAN
40
Seconds
XD_SCALE
10
None
Simulation
The process variable used in block execution.
The time constant of the first-order PV filter. It is the time required for a 63%
change in the IN value.
This alert is generated by any change to the static data.
The average absolute error between the PV and its previous mean value
over that evaluation time defined by VAR_SCAN.
The time over which the VAR_INDEX is evaluated.
The high and low scale values, engineering units code, and number of digits
to the right of the decimal point associated with the channel input value.
The XD_SCALE units code must match the units code of the measurement
channel in the transducer block. If the units do not match, the block will not
transition to MAN or AUTO.
To support testing, you can either change the mode of the block to manual
and adjust the output value, or you can enable simulation through the
configuration tool and manually enter a value for the measurement value and
its status.
With simulation enabled, the actual measurement value has no impact on the
OUT value or the status.
7-25
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-6. Analog Input
Function Block Schematic
Analog
Measurement
ALARM_TYPE
Access
Analog
Meas.
HI_HI_LIM
HI_LIM
LO_LO_LIM
LO_LIM
CHANNEL
Alarm
Detection
OUT_D
ALARM_HYS
LOW_CUT
Cutoff
Convert
SIMULATE
L_TYPE
FIELD_VAL
PV
Filter
PV_FTIME
IO_OPTS
Status
Calc.
OUT
MODE
STATUS_OPTS
38740080
OUT_SCALE
XD_SCALE
NOTES:
OUT = block output value and status.
OUT_D = discrete output that signals a selected alarm condition.
Figure 7-7. Analog Input
Function Block Timing Diagram
OUT (mode in man)
OUT (mode in auto)
PV
63% of Change
Time (seconds)
PV_FTIME
38740081
FIELD_VAL
Filtering
The filtering feature changes the response time of the device to smooth
variations in output readings caused by rapid changes in input. You can adjust
the filter time constant (in seconds) using the PV_FTIME parameter. Set the
filter time constant to zero to disable the filter feature.
Signal Conversion
You can set the signal conversion type with the Linearization Type (L_TYPE)
parameter. You can view the converted signal (in percent of XD_SCALE)
through the FIELD_VAL parameter.
7-26
Instruction Manual
IM-106-880, Rev 2.0
October 2009
FIELD_VAL=
100 x (Channel Value – EU*@0%)
(EU*@100% – EU*@0%)
* XD_SCALE values
38740082
OCX 8800
You can choose from direct, indirect, or indirect square root signal conversion
with the L_TYPE parameter.
Direct
Direct signal conversion allows the signal to pass through the accessed
channel input value (or the simulated value when simulation is enabled).
PV = Channel Value
Indirect
PV =
FIELD_VAL
x (EU**@100% – EU**@0%)+ EU**@0%
100
** OUT_SCALE values
38740083
Indirect signal conversion converts the signal linearly to the accessed channel
input value (or the simulated value when simulation is enabled) from its
specified range (XD_SCALE) to the range and units of the PV and OUT
parameters (OUT_SCALE).
Indirect Square Root
PV =
FIELD_VAL
x (EU**@100% – EU**@0%)+ EU**@0%
100
** OUT_SCALE values
38740084
Indirect Square Root signal conversion takes the square root of the value
computed with the indirect signal conversion and scales it to the range and
units of the PV and OUT parameters.
When the converted input value is below the limit specified by the LOW_CUT
parameter, and the Low Cutoff I/O option (IO_OPTS) is enabled (True), a
value of zero is used for the converted value (PV). This option is useful to
eliminate false readings when the differential pressure measurement is close
to zero, and it may also be useful with zero-based measurement devices such
as flowmeters.
NOTE
Low Cutoff is the only I/O option supported by the AI block. You can set the
I/O option in Manual or Out of Service mode only.
Block Errors
Table 7-20 lists conditions reported in the BLOCK_ERR parameter.
Conditions in italics are inactive for the AI block and are given here only for
your reference.
7-27
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Table 7-20. BLOCK_ERR
Conditions
Condition
Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Modes
Condition Name and Description
Other
Block Configuration Error: the selected channel carries a measurement
that is incompatible with the engineering units selected in XD_SCALE, the
L_TYPE parameter is not configured, or CHANNEL = zero.
Link Configuration Error
Simulate Active: Simulation is enabled and the block is using a simulated
value in its execution.
Local Override
Device Fault State Set
Device Needs Maintenance Soon
Input Failure/Process Variable has Bad Status: The hardware is bad, or a
bad status is being simulated.
Output Failure: The output is bad based primarily upon a bad input.
Memory Failure
Lost Static Data
Lost NV Data
Readback Check Failed
Device Needs Maintenance Soon
Power Up
Out of Service: The actual mode is out of service.
The AI Function Block supports three modes of operation as defined by the
MODE_BLK parameter:
• Manual (Man) The block output (OUT) may be set manually.
• Automatic (Auto) OUT reflects the analog input measurement or the
simulated value when simulation is enabled.
• Out of Service (O/S) The block is not processed. FIELD_VAL and PV
are not updated and the OUT status is set to Bad: Out of Service. The
BLOCK_ERR parameter shows Out of Service. In this mode, you can
make changes to all configurable parameters. The target mode of a
block may be restricted to one or more of the supported modes.
Alarm Detection
A block alarm will be generated whenever the BLOCK_ERR has an error bit
set. The types of block error for the AI block are defined above.
Process Alarm detection is based on the OUT value. You can configure the
alarm limits of the following standard alarms:
• High (HI_LIM)
• High high (HI_HI_LIM)
• Low (LO_LIM)
• Low low (LO_LO_LIM)
In order to avoid alarm chattering when the variable is oscillating around the
alarm limit, an alarm hysteresis in percent of the PV span can be set using the
ALARM_HYS parameter. The priority of each alarm is set in the following
parameters:
• HI_PRI
• HI_HI_PRI
• LO_PRI
• LO_LO_PRI
7-28
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Alarms are grouped into five levels of priority:
Priority Number
Status Handling
Priority Description
0
The priority of an alarm condition changes to 0 after the condition that
caused the alarm is corrected.
1
An alarm condition with a priority of 1 is recognized by the system, but is
not reported to the operator.
2
An alarm condition with a priority of 2 is reported to the operator, but does
not require operator attention (such as diagnostics and system alerts).
3-7
Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.
10-15
Alarm conditions of priority 8 to 15 are critical alarms of increasing priority.
Normally, the status of the PV reflects the status of the measurement value,
the operating condition of the I/O card, and any active alarm condition. In Auto
mode, OUT reflects the value and status quality of the PV. In Man mode, the
OUT status constant limit is set to indicate that the value is a constant and the
OUT status is Good.
The Uncertain - EU range violation status is always set, and the PV status is
set high- or low-limited if the sensor limits for conversion are exceeded.
In the STATUS_OPTS parameter, you can select from the following options to
control the status handling:
BAD if Limited – sets the OUT status quality to Bad when the value is higher
or lower than the sensor limits.
Uncertain if Limited – sets the OUT status quality to Uncertain when the
value is higher or lower than the sensor limits.
Uncertain if in Manual mode – The status of the Output is set to Uncertain
when the mode is set to Manual.
NOTE
The instrument must be in Manual or Out of Service mode to set the status
option.
NOTE
The AI block only supports the BAD if Limited option. Unsupported options
are not grayed out; they appear on the screen in the same manner as
supported options.
7-29
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Advanced Features
The AI function block provided with Fisher-Rosemount fieldbus devices
provides added capability through the addition of the following parameters:
ALARM_TYPE – Allows one or more of the process alarm conditions
detected by the AI function block to be used in setting its OUT_D parameter.
OUT_D – Discrete output of the AI function block based on the detection of
process alarm condition(s). This parameter may be linked to other function
blocks that require a discrete input based on the detected alarm condition.
VAR_SCAN – Time period in seconds over which the variability index
(VAR_INDEX) is computed.
VAR_INDEX – Process variability index measured as the integral of average
absolute error between PV and its mean value over the previous evaluation
period. This index is calculated as a percent of OUT span and is updated at
the end of the time period defined by VAR_SCAN.
Application Information
The configuration of the AI function block and its associated output channels
depends on the specific application. A typical configuration for the AI block
involves the following parameters:
Channel
If the device supports more than one measurement, verify that the selected
channel contains the appropriate measurement or derived value.
L_TYPE
Select Direct when the measurement is already in the engineering units that
you want for the block output.
Select Indirect when you want to convert the measured variable into another,
for example, pressure into level or flow into energy.
Select Indirect Square Root when the block I/O parameter value represents
a flow measurement made using differential pressure, and when square root
extraction is not performed by the transducer.
Scaling
XD_SCALE provides the range and units of the measurement and
OUT_SCALE provides the range and engineering units of the output.
Application Examples
Temperature Transmitter
Situation
A temperature transmitter with a range of –200 to 450°C.
Solution
Table 7-21 lists the appropriate configuration settings, and Figure 7-8
illustrates the correct function block configuration.
Table 7-21. Analog Input
Function Block Configuration for
a Typical Temperature
Transmitter
7-30
Parameter
Configured Values
L_TYPE
Direct
XD_SCALE
Not Used
OUT_SCALE
Not Used
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-8. Analog Input
Function Block Configuration for
a Typical Temperature
Transmitter
Temperature
Measurement
OUT_D
OUT
To Another
Function Block
38740085
AI Function Block
Pressure Transmitter used to Measure Level in an Open Tank
Situation #1
The level of an open tank is to be measured using a pressure tap at the
bottom of the tank. The level measurement will be used to control the level
of liquid in the tank. The maximum level at the tank is 16 ft. The liquid in
the tank has a density that makes the level correspond to a pressure of 7.0
psi at the pressure tap (Figure 7-9).
Figure 7-9. Situation #1 Diagram
Full Tank
7.0 psi measured at
the transmitter
38740086
16 ft
Solution to Situation #1
Table 7-22 lists the appropriate configuration settings, and Figure 7-9
illustrates the correct function block configuration.
Table 7-22. Analog Input
Function Diagram for a Pressure
Transmitter used in Level
Measurement (Situation #1)
Parameter
Configured Values
L_TYPE
Indirect
XD_SCALE
0 to 7 psi
OUT_SCALE
0 to 16 ft
7-31
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Analog
Measurement
AI
Function
Block
OUT_D
OUT
BKCAL_OUT
BKCAL_IN
PID
Function
Block
OUT
CAS_IN
AO
Function
Block
CAS_IN
Situation #2
The transmitter in situation #1 is installed below the tank in a position
where the liquid column in the impulse line, when the tank is empty, is
equivalent to 2.0 psi (Figure 7-11).
Figure 7-11. Situation #2
Diagram
16 ft
Empty Tank
2.0 psi measured at
the transmitter
Solution
Table 7-23 lists the appropriate configuration settings.
Table 7-23. Analog Input
Function Diagram for a Pressure
Transmitter used in Level
Measurement (Situation #2)
7-32
Parameter
Configured Values
L_TYPE
Indirect
XD_SCALE
2 to 9 psi
OUT_SCALE
0 to 16 ft
38740088
0 ft
38740087
Figure 7-10. Function Block
Diagram for a Pressure
Transmitter used in Level
Measurement
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Differential Pressure Transmitter to Measure Flow
Situation
The liquid flow in a line is to be measured using the differential pressure
across an orifice plate in the line, and the flow measurement will be used
in a flow control loop. Based on the orifice specification sheet, the
differential pressure transmitter was calibrated for 0 to 20 in H20 for a flow
of 0 to 800 gal/min, and the transducer was not configured to take the
square root of the differential pressure.
Solution
Table 7-24 lists the appropriate configuration settings, and Figure 7-12
illustrates the correct function block configuration.
Table 7-24. Analog Input
Function Block Configuration for
a Differential Pressure
Measurement
Parameter
Configured Values
L_TYPE
Indirect Square Root
XD_SCALE
0 to 20 in.
OUT_SCALE
0 to 800 gal/min
Figure 7-12. Function Block Diagram for a Differential Pressure Transmitter Used in a Flow Measurement
Analog
Measurement
OUT_D
OUT
PID
Function
Block
IN
AO
Function
Block
38740089
AI
Function
Block
BKCAL_INBKCAL_OUT
7-33
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Troubleshooting
Refer to Table 7-25 to troubleshoot any problems that you encounter.
Table 7-25. Troubleshooting
Symptom
Possible Cause
Corrective Action
Mode will not
leave OOS
1. Target mode not set
1. Set target mode to something other than OOS.
2. Configuration error
2. BLOCK_ERR will show the configuration error
bit set. The following are parameters that must be
set before the block is allowed out of OOS:
a. CHANNEL must be set to a valid value and
cannot be left at initial value of 0.
b. XD_SCALE.UNITS_INDX must match the
units in the transducer block channel value.
c. L_TYPE must be set to Direct, Indirect, or Indirect Square Root and cannot be left at initial value of 0.
3. Resource block
3. The actual mode of the Resource block is
OOS. See Resource Block Diagnostics for corrective action.
4. Schedule
4. Block is not scheduled and therefore cannot
execute to go to Target Mode. Schedule the block
to execute.
1. Features
1. FEATURES_SEL does not have Alerts enabled. Enable the Alerts bit.
2. Notification
2. LIM_NOTIFY is not high enough. Set equal to
MAX_NOTIFY.
3. Status Options
3. STATUS_OPTS has Propagate Fault Forward
bit set. This should be cleared to cause an alarm
to occur.
1. Linearization Type
1. Does not make L_TYPE must be set to Direct,
Indirect, or Indirect Square Root and cannot be
left at initial value 0.
2. Scaling
2. Scaling parameters are set incorrectly:
a. XD_SCALE.EU0 and EU100 should match
that of the transducer block channel value.
b. OUT_SCALE.EU0 and EU100 are not set
properly.
1. Scaling
1. Limit values are outside the OUT_SCALE.EU0
and OUT_SCALE.EU100 values. Change
OUT_SCALE or set values within range.
Process and/or
block alarms will
not work
Value of output
does not make
sense
Cannot Set
HI_LIMIT,
HI_HI_LIMIT
LO_LIMIT, or
LO_LO_LIMIT
Values
7-34
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
PROPORTIONAL/
INTEGRAL/DERIVATIVE
(PID) FUNCTION BLOCK
BKCAL_IN
BKCAL_OUT
CAS_IN
FF_VAL
PID
IN
OUT
TRK_IN_D
TRK_VAL
FF_VAL
IN
TRK_IN_D
TRK_VAL
= Initiates the external tracking function.
= The value after scaling applied to OUTin
Local Override mode.
BKCAL_OUT = The value and status required by the
BKCAL_IN input of another function block
to prevent reset windup and to provide
bumpless transfer to closed loop control.
OUT
= The block output and status.
38740090
CAS_IN
= The analog input value and status from another
block’s BKCAL_OUT output that is used for
backward output tracking for bumpless transfer
and to pass limit status.
= The remote setpoint value from another function
block.
= The feedforward control input value and status.
= The connection for the process variable from
another function block.
The PID function block combines all of the necessary logic to perform
proportional/integral/derivative (PID) control. The block supports mode
control, signal scaling and limiting, feedforward control, override tracking,
alarm limit detection, and signal status propagation.
The block supports two forms of the PID equation: Standard and Series. You
can choose the appropriate equation using the FORM parameter. The
Standard ISA PID equation is the default selection.
Standard Out = GAIN x e x
Series Out = GAIN x e x
1+
1+
1
tr s
1
tr s +1
+
+
tds
td s +1
td s+1
a x td s+1
+F
+F
Where
GAIN:
r:
s:
d:
:
F:
e:
t
a
proportional gain value
Integral action time constant (RESET parameter) in seconds
laplac e operator
derivative action time constant (RATE parameter)
fixed smoothing factor of 0.1 applied to RATE
feedforward control contribution from the feedforward input (FF_VALparameter)
error between setpoint and process variable
38740091
BKCAL_IN
To further customize the block for use in your application, you can configure
filtering, feedforward inputs, tracking inputs, setpoint and output limiting, PID
equation structures, and block output action. Table 7-26 lists the PID block
parameters and their descriptions, units of measure, and index numbers, and
Figure 7-13 illustrates the internal components of the PID function block.
7-35
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Table 7-26. PID Function Block System Parameters
Parameter
Index
Number
Units
Description
Used to set auto acknowledgment of alarms.
ACK_OPTION
46
None
ALARM_HYS
47
Percent
ALARM_SUM
45
None
The summary alarm is used for all process alarms in the block. The cause of
the alert is entered in the subcode field. The first alert to become active will
set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported
without clearing the Active status, if the subcode has changed.
ALERT_KEY
04
None
The identification number of the plant unit. This information may be used in
the host for sorting alarms, etc.
ALG_TYPE
74
None
Selects filtering algorithm as Backward or Bilinear.
BAL_TIME
25
Seconds
BIAS
66
EU of OUT_SCALE
BKCAL_HYS
30
Percent
The amount the output value must change away from the its output limit before limit status is turned off.
BKCAL_IN
27
EU of OUT_SCALE
The analog input value and status from another block’s BKCAL_OUT output
that is used for backward output tracking for bumpless transfer and to pass
limit status.
BKCAL_OUT
31
EU of PV_SCALE
The value and status required by the BKCAL_IN input of another block to
prevent reset windup and to provide bumpless transfer of closed loop control.
BLOCK_ALM
44
None
The block alarm is used for all configuration, hardware, connection failure, or
system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the active status in the status parameter. As soon as the Unreported status is cleared by the alert
reporting task, and other block alert may be reported without clearing the Active status, if the subcode has changed.
BLOCK_ERR
06
None
This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string so that multiple errors may be shown.
BYPASS
17
None
Used to override the calculation of the block. When enabled, the SP is sent
directly to the output.
The amount the alarm value must return to within the alarm limit before the
associated active alarm condition clears.
The specified time for the internal working value of bias to return to the operator set bias. Also used to specify the time constant at which the integral term
will move to obtain balance when the output is limited and the mode is AUTO, CAS, or RCAS.
The bias value used to calculate output for a PD type controller.
CAS_IN
18
EU of PV_SCALE
CONTROL_OPTS
13
None
Allows you to specify control strategy options. The supported control options
for the PID block are Track enable, Track in Manual, SP-PV Track in Man,
SP-PV Track in LO or IMAN, Use PV for BKCAL OUT, and Direct Acting.
CONTROL_OPTS
13
None
Allows you to specify control strategy options. The supported control options
for the PID block are Track enable, Track in Manual, SP-PV Track in Man,
SP-PV Track in LO or IMAN, Use PV for BKCAL OUT, and Direct Acting.
DV_HI_ALM
64
None
The DV HI alarm data, which includes a value of the alarm, a timestamp of
occurrence, and the state of the alarm.
DV_HI_LIM
57
EU of PV_SCALE
The setting for the alarm limit used to detect the deviation high alarm condition.
DV_HI_PRI
56
None
The priority of the deviation high alarm.
DV_LO_ALM
65
None
The DV LO alarm data, which includes a value of the alarm, a timestamp of
occurrence, and the state of the alarm.
DV_LO_LIM
59
EU of PV_SCALE
DV_LO_PRI
58
None
ERROR
67
EU of PV_SCALE
FF_ENABLE
70
None
7-36
The remote setpoint value from another block.
The setting for the alarm limit use to detect the deviation low alarm condition.
The priority of the deviation low alarm.
The error (SP-PV) used to determine the control action.
Enables the use of feedforward calculations.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Index
Number
Units
Description
FF_GAIN
42
None
The feedforward gain value. FF_VAL is multiplied by FF_GAIN before it is
added to the calculated control output.
FF_SCALE
41
None
The high and low scale values, engineering units code, and number of digits
to the right of the decimal point associated with the feedforward value
(FF_VAL).
FF_VAL
40
EU of FF_SCALE
GAIN
23
None
The proportional gain value. This value cannot = 0.
GRANT_DENY
12
None
Options for controlling access of host computers and local control panels to
operating, tuning, and alarm parameters of the block. Not used by the device.
HI_ALM
61
None
The HI alarm data, which includes a value of the alarm, a timestamp of occurrence, and the state of the alarm.
HI_HI_ALM
60
None
The HI HI alarm data, which includes a value of the alarm, a timestamp of occurrence, and the state of the alarm.
Parameter
HI_HI-LIM
49
EU of PV_SCALE
HI_HI_PRI
48
None
HI_LIM
51
EU of PV_SCALE
HI_PRI
50
None
IN
15
EU of PV_SCALE
LO_ALM
62
None
LO_LIM
53
EU of PV_SCALE
LO_LO_ALM
63
None
The feedforward control input value and status.
The setting for the alarm limit used to detect the HI HI alarm condition.
The priority of the HI HI Alarm.
The setting for the alarm limit used to detect the HI alarm condition.
The priority of the HI alarm.
The connection for the PV input from another block.
The LO alarm data, which includes a value of the alarm, a timestamp of occurrence, and the state of the alarm.
The setting for the alarm limit used to detect the LO alarm condition.
The LO LO alarm data, which includes a value of the alarm, a timestamp of
occurrence, and the state of the alarm.
LO_LO_LIM
55
EU of PV_SCALE
LO_LO_PRI
54
None
The priority of the LO LO alarm.
The setting for the alarm limit used to detect the LO LO alarm condition.
LO_PRI
52
None
The priority of the LO alarm.
MATH_FORM
73
None
Selects equation form (series or standard).
MODE_BLK
05
None
The actual, target, permitted, and normal modes of the block.
Target: The mode to “go to”
Actual: The mode the “block is currently in”
Permitted: Allowed modes that target may take on
Normal: Most common mode for target
OUT
09
EU of OUT SCALE
OUT_HI_LIM
28
EU of OUT_SCALE
The maximum output value allowed.
OUT-LO_LIM
29
EU of OUT_SCALE
The minimum output value allowed.
OUT_SCALE
11
None
PV
07
EU of PV_SCALE
PV_FTIME
16
Seconds
PV_SCALE
10
None
The block input value and status.
The high and low scale values, engineering units code, and number of digits
to the right of the decimal point associated with OUT.
The process variable used in block execution.
The time constant of the first-order PV filter. It is the time required for a 63
percent change in the IN value.
The high and low scale values, engineering units code, and number of digits
to the right of the decimal point associated with PV.
RATE
26
Seconds
RCAS_IN
32
EU of PV_SCALE
Target setpoint and status that is provided by a supervisory host. Used when
mode is RCAS.
The derivative action time constant.
RCAS_OUT
35
EU of PV_SCALE
Block setpoint and status after ramping, filtering, and limiting that is provided
to a supervisory host for back calculation to allow action to be taken under
limiting conditions or mode change. Used when mode is RCAS.
RESET
24
Seconds per repeat
The integral action time constant.
ROUT_IN
33
EU of OUT_SCALE
Target output and status that is provided by a supervisory host. Used when
mode is ROUT.
7-37
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Index
Number
Units
ROUT_OUT
36
EU of OUT_SCALE
SHED_OPT
34
None
SP
08
EU of PV_SCALE
SP_FTIME
69
Seconds
SP_HI_LIM
21
EU of PV_SCALE
The highest SP value allowed.
SP_LO_LIM
22
EU of PV_SCALE
The lowest SP value allowed.
SP_RATE_DN
19
EU of PV_SCALE per
second
Ramp rate for downward SP changes. When the ramp rate is set to zero, the
SP is used immediately.
SP-RATE_UP
20
EU of PV_SCALE per
second
Ramp rate for upward SP changes. When the ramp rate is set to zero, the SP
is used immediately.
SP_WORK
68
EU of PV_SCALE
STATUS_OPTS
14
None
Allows you to select options for status handling and processing. The supported status option for the PID block is Target to Manual if Bad IN.
STRATEGY
03
None
The strategy field can be used to identify grouping of blocks. This data is not
checked or processed by the block.
ST_REV
01
None
The revision level of the static data associated with the function block. The
revision value will be incremented each time a static parameter value in the
block is changed.
STRUCTURE
CONFIG
75
None
Defines PID equation structure to apply controller action.
TAG_DESC
02
None
The user description of the intended application of the block.
TRK_IN_D
38
None
Discrete input that initiates external tracking.
TRK_SCALE
37
None
The high and low scale values, engineering units code, and number of digits
to the right of the decimal point associated with the external tracking value
(TRK_VAL).
TRK_VAL
39
EU of TRK SCALE
The value (after scaling from TRK_SCALE to OUT_SCALE) applied to OUT
in LO mode.
UBETA
72
Percent
Used to set disturbance rejection vs. tracking response action for a 2.0 degree of freedom PID.
UGAMMA
71
Percent
Used to set disturbance rejection vs. tracking response action for a 2.0 degree of freedom PID.
UPDATE_EVT
43
None
Parameter
7-38
Description
Block output that is provided to a supervisory host for a back calculation to allow action to be taken under limiting conditions or mode change. Used when
mode is RCAS.
Defines action to be taken on remote control device time-out.
The target block setpoint value. It is the result of setpoint limiting and setpoint
rate of change limiting.
The time constant of the first-order SP filter. It is the time required for a 63
percent change in the IN value.
The working setpoint of the block after limiting and filtering is applied.
This alert is generated by any changes to the static data.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-13. PID Function Block Schematic
FF_GAIN
FF_SCALE
Feedforward
Calculation
FF_VAL
BKCAL_IN
MODE
TRK_IN_D
BKCAL_OUT
RCAS_OUT
ROUT_OUT
ROUT_IN
RCAS_IN
Setpoint
Limiting
and
Filtering
Operator
Setpoint
SP_HI_LIM
SP_LO_LIM
SP_RATE_DN
SP_RATE_UP
SP_FTIME
Scaling
and
Filtering
IN
PV_SCALE
PV_FTIME
TRK_VAL
PID
Equation
GAIN
RATE
RESET
Alarm
Detection
Output
Limiting
OUT_HI_LIM
OUT_LO_LIM
OUT_SCALE
Operator
Output
HI_HI_LIM
HI_LIM
DV_HI_LIM
DV_LO_LIM
LO_LIM
LO_LO_LIM
Convert
TRK_SCALE
OUT_SCALE
Setpoint Selection and
Limiting
OUT
38740092
CAS_IN
The setpoint of the PID block is determined by the mode. You can configure
the SP_HI_LIM and SP_LO_LIM parameters to limit the setpoint. In Cascade
or RemoteCascade mode, the setpoint is adjusted by another function block
or by a host computer, and the output is computed based on the setpoint.
In Automatic mode, the setpoint is entered manually by the operator, and the
output is computed based on the setpoint. In Auto mode, you can also adjust
the setpoint limit and the setpoint rate of change using the SP_RATE_UP and
SP_RATE_DN parameters.
In Manual mode the output is entered manually by the operator, and is
independent of the setpoint. In RemoteOutput mode, the output is entered by
a host computer, and is independent of the setpoint.
Figure 7-14 illustrates the method for setpoint selection.
7-39
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Operator
Setpoint
Auto
Man
Cas
SP_HI_LIM
SP_LO_LIM
SP_RATE_UP
SP_RATE_DN
Setpoint
Limiting
Rate
Limiting
Auto
Man
Cas
38740093
Figure 7-14. PID Function Block
Setpoint Selection
Filtering
The filtering feature changes the response time of the device to smooth
variations in output readings caused by rapid changes in input. You can
configure the filtering feature with the FILTER_TYPE parameter, and you can
adjust the filter time constant (in seconds) using the PV_FTIME or SP_FTIME
parameters. Set the filter time constant to zero to disable the filter feature.
Feedforward Calculation
The feedforward value (FF_VAL) is scaled (FF_SCALE) to a common range
for compatibility with the output scale (OUT_SCALE). A gain value (FF_GAIN)
is applied to achieve the total feedforward contribution.
Tracking
You enable the use of output tracking through the control options. You can set
control options in Manual or Out of Service mode only.
The Track Enable control option must be set to True for the track function to
operate. When the Track in Manual control option is set to True, tracking can
be activated and maintained only when the block is in Manual mode. When
Track in Manual is False, the operator can override the tracking function
when the block is in Manual mode. Activating the track function causes the
block’s actual mode to revert to Local Override.
The TRK_VAL parameter specifies the value to be converted and tracked into
the output when the track function is operating. The TRK_SCALE parameter
specifies the range of TRK_VAL.
When the TRK_IN_D parameter is True and the Track Enable control option
is True, the TRK_VAL input is converted to the appropriate value and output in
units of OUT_SCALE.
Output Selection and
Limiting
Output selection is determined by the mode and the setpoint. In Automatic,
Cascade, or RemoteCascade mode, the output is computed by the PID
control equation. In Manual and RemoteOutput mode, the output may be
entered manually. You can limit the output by configuring the OUT_HI_LIM
and OUT_LO_LIM parameters.
Bumpless Transfer and
Setpoint Tracking
You can configure the method for tracking the setpoint by configuring the
following control options (CONTROL_OPTS):
SP-PV Track in Man — Permits the SP to track the PV when the target mode
of the block is Man.
SP-PV Track in LO or IMan — Permits the SP to track the PV when the
actual mode of the block is Local Override (LO) or Initialization Manual
(IMan).
When one of these options is set, the SP value is set to the PV value while in
the specified mode.
7-40
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
You can select the value that a master controller uses for tracking by
configuring the Use PV for BKCAL_OUT control option. The BKCAL_OUT
value tracks the PV value. BKCAL_IN on a master controller connected to
BKCAL_OUT on the PID block in an open cascade strategy forces its OUT to
match BKCAL_IN, thus tracking the PV from the slave PID block into its
cascade input connection (CAS_IN). If the Use PV for BKCAL_OUT option is
not selected, the working setpoint (SP_WRK) is used for BKCAL_OUT.
You can set control options in Manual or Out of Service mode only. When
the mode is set to Auto, the SP will remain at the last value (it will no longer
follow the PV.
PID Equation Structures
Configure the STRUCTURE parameter to select the PID equation structure.
You can select one of the following choices:
• PI Action on Error, D Action on PV
• PID Action on Error
• I Action on Error, PD Action on PV
Set RESET to zero to configure the PID block to perform integral only control
regardless of the STRUCTURE parameter selection. When RESET equals
zero, the equation reduces to an integrator equation with a gain value applied
to the error:
GAIN x e(s)
s
GAIN: proportional gain value
e: error
s: laplac e operator
Reverse and Direct
Action
38740094
Where
To configure the block output action, enable the Direct Acting control option.
This option defines the relationship between a change in PV and the
corresponding change in output. With Direct Acting enabled (True), an
increase in PV results in an increase in the output.
You can set control options in Manual or Out of Service mode only.
NOTE
Track Enable, Track in Manual, SP-PV Track in Man, SP-PV Track in LO
or IMan, Use PV for BKCAL_OUT, and Direct Acting are the only control
options supported by the PID function block. Unsupported options are not
grayed out; they appear on the screen in the same manner as supported
options.
Reset Limiting
The PID function block provides a modified version of feedback reset limiting
that prevents windup when output or input limits are encountered, and
provides the proper behavior in selector applications.
Block Errors
Table 7-27 lists conditions reported in the BLOCK_ERR parameter.
Conditions in italics are inactive for the PID block and are given here only for
your reference.
7-41
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Table 7-27. BLOCK _ERR
Conditions
Condition
Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Modes
Condition Name and Description
Other
Block Configuration Error: The BY_PASS parameter is not configured and
is set to 0, the SP_HI_LIM is less than the SP_LO_LIM, or the
OUT_HI_LIM is less than the OUT_LO_LIM.
Link Configuration Error
Simulate Active
Local Override: The actual mode is LO.
Device Fault State Set
Device Needs Maintenance Soon
Input Failure/Process Variable has Bad Status: The parameter linked to IN
is indicating a Bad status.
Output Failure
Memory Failure
Lost Static Data
Lost NV Data
Readback Check Failed
Device Needs Maintenance Now
Power Up
Out of Service: The actual mode is out of service.
The PID function block supports the following modes:
Manual (Man)—The block output (OUT) may be set manually.
Automatic (Auto)—The SP may be set manually and the block algorithm
calculates OUT.
Cascade (Cas)—The SP is calculated in another block and is provided to the
PID block through the CAS_IN connection.
RemoteCascade (RCas)—The SP is provided by a host computer that writes
to the RCAS_IN parameter.
RemoteOutput (Rout)—The OUT is provided by a host computer that writes
to the ROUT_IN parameter.
Local Override (LO)—The track function is active. OUT is set by TRK_VAL.
The BLOCK_ERR parameter shows Local override.
Initialization Manual (IMan)—The output path is not complete (for example,
the cascade-to-slave path might not be open). In IMan mode, OUT tracks
BKCAL_IN.
Out of Service (O/S)—The block is not processed. The OUT status is set to
Bad: Out of Service. The BLOCK_ERR parameter shows Out of service.
You can configure the Man, Auto, Cas, and O/S modes as permitted modes
for operator entry.
7-42
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Alarm Detection
OCX 8800
A block alarm will be generated whenever the BLOCK_ERR has an error bit
set. The types of block error for the AI block are defined above.
Process alarm detection is based on the PV value. You can configure the
alarm limits of the following standard alarms:
• High (HI_LIM)
• High high (HI_HI_LIM)
• Low (LO_LIM)
• Low low (LO_LO_LIM)
Additional process alarm detection is based on the difference between SP
and PV values and can be configured via the following parameters:
• Deviation high (DV_HI_LIM)
• Deviation low (DV_LO_LIM)
In order to avoid alarm chattering when the variable is oscillating around the
alarm limit, an alarm hysteresis in percent of the PV span can be set using the
ALARM_HYS parameter. The priority of each alarm is set in the following
parameters:
• HI_PRI
• HI_HI_PRI
• LO_PRI
• LO_LO_PRI
• DV_HI_PRI
• DV_LO_PRI
Alarms are grouped into five levels of priority:
Priority Number
Status Handling
Priority Description
0
The priority of an alarm condition changes to after the condition that
caused the alarm is corrected.
1
An alarm condition with a priority of 1 is recognized by the system, but is
not reported to the operator.
2
An alarm condition with a priority of 2 is reported to the operator, but does
not require operator attention (such as diagnostics and system alerts).
3-7
Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.
10-15
Alarm conditions of priority 8 to 15 are critical alarms of increasing priority.
If the input status on the PID block is Bad, the mode of the block reverts to
Manual. In addition, you can select the Target to Manual if Bad IN status
option to direct the target mode to revert to manual. You can set the status
option in Manual or Out of Service mode only.
NOTE
Target to Manual if Bad IN is the only status option supported by the PID
function block. Unsupported options are not grayed out; they appear on the
screen in the same manner as supported options.
7-43
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Application Information
The PID function block is a powerful, flexible control algorithm that is
designed to work in a variety of control strategies. The PID block is configured
differently for different applications. The following examples describe the use
of the PID block for closed-loop control (basic PID loop), feedforward control,
cascade control with master and slave, and complex cascade control with
override.
Closed Loop Control
To implement basic closed loop control, compute the error difference between
the process variable (PV) and setpoint (SP) values and calculate a control
output signal using a PID (Proportional Integral Derivative) function block.
The proportional control function responds immediately and directly to a
change in the PV or SP. The proportional term GAIN applies a change in the
loop output based on the current magnitude of the error multiplied by a gain
value.
The integral control function reduces the process error by moving the output
in the appropriate direction. The integral term RESET applies a correction
based on the magnitude and duration of the error. Set the RESET parameter
to zero for integral only control. To reduce reset action, configure the RESET
parameter to be a large value.
The derivative term RATE applies a correction based on the anticipated
change in error. Derivative control is typically used in temperature control
where large measurement lags exist.
The MODE parameter is a switch that indicates the target and actual mode of
operation. Mode selection has a large impact on the operation of the PID
block:
• Manual mode allows the operator to set the value of the loop output
signal directly.
• Automatic mode allows the operator to select a setpoint for automatic
correction of error using the GAIN, RESET, and RATE tuning values.
• Cascade and Remote Cascade modes use a setpoint from another
block in a cascaded configuration.
• Remote Out mode is similar to Manual mode except that the block
output is supplied by an external program rather than by the operator.
• Initialization Manual is a non-target mode used with cascade
configurations while transitioning from manual operation to automatic
operation.
7-44
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
• Local Override is a non-target mode that instructs the block to revert to
Local Override when the tracking or fail-safe control options are
activated.
• Out of Service mode disables the block for maintenance.
Abrupt changes in the quality of the input signal can result in unexpected loop
behavior. To prevent the output from changing abruptly and upsetting the
process, select the SP-PV Track in Man I/O option. This option automatically
sets the loop to Manual if a Bad input status is detected. While in manual
mode, the operator can manage control manually until a Good input status is
reestablished.
Application Examples
Basic PID Block for Steam Heater Control
Situation
A PID block is used with an AI block and an AO block to control the flow
steam used to heat a process fluid in a heat exchanger. Figure 7-15
illustrates the process instrumentation diagram.
Figure 7-15. PID Function Block
Steam Heater Control
TCV
101
TC
101
Steam Supply
TT
101
TT
100
Condensate
38740095
Steam Heater
Solution
The PID loop uses TT101 as an input and provides a signal to the analog
output TCV101. The BKCAL_OUT of the AO block and the BKCAL_IN of
the PID block communicate the status and quality of information being
passed between the blocks. The status indication shows that
communications is functioning and the I/O is working properly. Figure 7-16
illustrates the correct function block configuration.
7-45
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-16. PID Function Block Diagram for Steam Heater Control Example
BKCAL_OUT
BKCAL_IN
AI
Function
Block
PID
Function
Block
OUT
OUT
CAS_IN
AO
Function
Block
IN
TCV101
TC101
TT101
OUT
38740096
Outlet
Temperature
Input
Feedforward Control
Situation
In the previous example, control problems can arise because of a time
delay caused by thermal inertia between the two flow streams (TT100 and
TT101). Variations in the inlet temperature (TT100) take an excessive
amount of time to be sensed in the outlet (TT101). This delay causes the
product to be out of the desired temperature range.
Solution
Feedforward control is added to improve the response time of the basic
PID control. The temperature of the inlet process fluid (TT100) is input to
an AI function block and is connected to the FF_VAL connector on the PID
block. Feedforward control is then enabled (FF_ENABLE), the
feedforward value is scaled (FF_SCALE), and a gain (FF_GAIN) is
determined. Figure 7-17 illustrates the process instrumentation diagram,
and Figure 7-18 illustrates the correct function block configuration.
Figure 7-17. PID Function Block
Feedforward Control Example
TCV
101
FF
TC
101
Steam Supply
Steam Heater
Condensate
7-46
38740097
TT
101
TT
100
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-18. PID Function Block Diagram for Feedfoward Control
Outlet
Temperature
Input
AI
Function
Block
BKCAL_IN
BKCAL_OUT
PID
Function
Block
OUTOUT IN
FF_VAL
CAS_IN
AO
Function
Block
TC101
TT101
OUT
TCV101
AI
Function
Block
38740098
Inlet
Temperature
Input
OUT
TT100
Cascade Control with Master and Slave Loops
Situation
A slave loop is added to a basic PID control configuration to measure and
control steam flow to the steam heater. Variations in the steam pressure
cause the temperature in the heat exchanger to change. The temperature
variation will later be sensed by TT101. The temperature controller will
modify the valve position to compensate for the steam pressure change.
The process is slow and causes variations in the product temperature.
Figure 7-19 illustrates the process instrumentation diagram.
Figure 7-19. PID Function Block
Cascade Control Example
FC
101
FT
101
TC
101
TCV
101
Steam
Supply
TT
100
TT
101
Condensate
38740099
Steam Heater
7-47
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Solution
If the flow is controlled, steam pressure variations will be compensated
before they significantly affect the heat exchanger temperature. The output
from the master temperature loop is used as the setpoint for the slave
steam flow loop. The BKCAL_IN and BKCAL_OUT connections on the
PID blocks are used to prevent controller windup on the master loop when
the slave loop is in Manual or Automatic mode, or it has reached an output
constraint. Figure 7-20 illustrates the correct function block configuration.
Figure 7-20. PID Function Block Diagram for Cascade Control Example
Outlet
Temperature
Input
BKCAL_OUT
BKCAL_IN
AI
Function
Block
OUT
IN
TT 101
PID
Function
Block
OUT
TC 101
BKCAL_OUT
BKCAL_IN
Steam
Flow
Input
FT 101
CAS_IN
OUT
PID
Function
Block
OUT
IN
FC 101
IN
AO
Module
Block
TCV 101
38740100
AI
Function
Block
Cascade Control with Override
You can use the PID function block with other function blocks for complex
control strategies. Figure 7-21 illustrates the function block diagram for
cascade control with override.
When configured for cascade control with override, if one of the PID function
blocks connected to the selector inputs is deselected, that PID block filters the
integral value to the selected value (the value at its BKCAL_IN). The selected
PID block behaves normally and the deselected controller never winds up. At
steady state, the deselected PID block offsets its OUT value from the selected
value by the proportional term. When the selected block becomes
output-limited, it prevents the integral term from winding further into the limited
region.
When the cascade between the slave PID block and the Control Selector
block is open, the open cascade status is passed to the Control Selector block
and through to the PID blocks supplying input to it. The Control Selector block
and the upstream (master) PID blocks have an actual mode of IMan.
7-48
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
If the instrument connected to the AI block fails, you can place the AI block in
Manual mode and set the output to some nominal value for use in the
Integrator function block. In this case, IN at the slave PID block is constant
and prevents the integral term from increasing or decreasing.
Figure 7-21. Function Block Diagram for Cascade Control with Override
BKCAL_OUT
BKCAL_IN
Slave Controller
CAS_IN
Master Controller
PID
Function
Block
PID
Function
Block
OUT
IN
OUT
CAS_IN
AO
Function
Block
BKCAL_SEL_1
Configured for High Selection
SEL_1
SEL_2
Control
Selector
Function
Block
IN_1
OUT
PID
Function
Block
BKCAL_SEL_2
Master Controller
OUT
AI
Function
Block
OUT
38740101
PID
Function
Block
7-49
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Troubleshooting
Refer to Table 7-28 to troubleshoot any problems that you encounter.
Table 7-28. Troubleshooting
Symptom
Possible Causes
Corrective Action
Mode will not
leave OOS
1. Target mode not set
1. Set target mode to something other than OOS.
2. Configuration error
2. BLOCK_ERR will show the configuration error
bit set. The following are parameters that must be
set before the block is allowed out of OOS:
a. BYPASS must be off or on and cannot be left
at initial value of 0.
b. OUT_HI_LIM must be less than or equal to
OUT_LO_LIM.
c. SP_HI_LIM must be less than or equal to
SP_LO_LIM.
3. Resource block
3. The actual mode of the Resource block is
OOS. See Resource Block Diagnostics for corrective action.
4. Schedule
4. Block is not scheduled and therefore cannot
execute to go to Target Mode. Schedule the block
to execute.
Mode will not
leave IMAN
1. Back Calculation
1. BKCAL_IN
a. The link is not configured (the status would
show “Not Connected”).Configure the
BKCAL_IN link to the downstream block.
b. The downstream block is sending back a
Quality of “Bad” or a Status of “Not Invited”.
See the appropriate downstream block diagnostics for corrective action.
Mode will not
change to
AUTO
1. Target mode not set
1. Set target mode to something other than OOS.
2. Input
2. IN
a. The link is not configured (the status would
show “Not Connected”). Configure the IN link
to the block.
b. The upstream block is sending back a Quality of “Bad” or a Status of “Not Invited”. See
the appropriate upstream block diagnostics
for corrective action.
1. Target mode not set
1. Set target mode to something other than OOS.
2. Cascade Input
2. CAS_IN
a. The link is not configured (the status would
show “Not Connected”). Configure the
CAS_IN link to the block.
b. The upstream block is sending back a Quality of “Bad” or a Status of “Not Invited”. See
the appropriate up stream block diagnostics
for corrective action.
Mode will not
change to CAS
7-50
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Symptom
Possible Causes
Mode sheds
from RCAS to
AUTO
1. Remote Cascade Value 1. Host system is not writing RCAS_IN with a
quality and status of “good cascade” within shed
time (see 2 below).
Mode sheds
from ROUT to
MAN
Process and/or
block alarms
will not work
Corrective Action
2. Shed Timer
2. The mode shed timer, SHED_RCAS in the resource block is set too low. Increase the value.
1. Remote output value
1. Host system is not writing ROUT_IN with a
quality and status of “good cascade” within shed
time (see 2 below).
2. Shed timer
2. The mode shed timer, SHED_RCAS, in the resource block is set too low. Increase the value.
1. Features
1. FEATURES_SEL does not have Alerts enabled. Enable the Alerts bit.
2. Notification
2. LIM_NOTIFY is not high enough. Set equal to
MAX_NOTIFY.
3. Status Options
3. STATUS_OPTS has Propagate Fault Forward
bit set. This should be cleared to cause an alarm
to occur.
ARITHMETIC (ARTHM)
FUNCTION BLOCK
Figure 7-22. Arithmetic
(ARTHM) Function Block
IN
OUT
IN_LO
IN_2
IN_3
ARTHM
39930018
IN_1
The Arithmetic function block provides the ability to configure a range
extension function for a primary input and applies the nine (9) different
arithmetic types as compensation to or augmentation of the range extended
input. All operations are selected by parameter and input connection.
The nine (9) arithmetic functions are Flow Compensation Linear, Flow
Compensation Square Root, Flow Compensation Approximate, BTU Flow,
Traditional Multiply and Divide, Average, Summer, Fourth Order Polynomial,
and Simple HTG Compensate Level.
This Arithmetic function block supports mode control (Auto, Manual, Out of
Service). There is no standard alarm detection in this block.
7-51
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Table 7-29. Arithmetic (ARTHM) Block
Index
Number
7-52
Parameter
Units
4
ALERT_KEY
None
29
ARITH_TYPE
None
30
BAL_TIME
31
21
23
25
36
BIAS
BIAS_IN_1
BIAS_IN_2
BIAS_IN_3
BLOCK_ALM
None
None
None
None
None
6
BLOCK_ERR
None
27
28
32
22
24
26
12
COMP_HI_LIM
COMP_LO_LI
M
GAIN
GAIN_IN_1
GAIN_IN_2
GAIN_IN_3
GRANT_DENY
14
IN
16
IN_1
17
IN_2
18
IN_3
15
13
IN_LO
INPUT_OPTS
5
MODE_BLK
8
OUT
33
OUT_HI_LIM
34
OUT_LO_LIM
11
9
7
OUT_RANGE
PRE_OUT
PV
Seconds
EU of PV
EU of PV .
None
None
None
None
None
Determined by source or
EU of PV _SCALE
Determined by supplying
block or source.
Determined by supplying
block or source.
Determined by supplying
block or source.
None
None
None
EU of OUT_SCALE or
Percent or EU of IN
EU of OUT_SCALE
Supplied by IN
EU of OUT_RANGE or
Supplied by IN
None
EU of OUT
EU of OUT or EU of
PV_SCALE
Description
The identification number of the plant unit. This information may be used in thehost
fro sorting alarms, etc.
The set of 9 arithmetic functions applied as compensation to or augmentation of the
range extended input.
Specifies the time for a block value to match an input, output, or calculated value or
the time for dissipation of the internal balancing bias.
The bias value.
The bias value for IN_1.
The bias value for IN_2.
The bias value for IN_3.
This block alarm is used for all configuration, hardware, connection failure, or
system problems in the block. The cause of the alert is entered in the subcode
field.The first alert to become active will set the active status in the status parameter.
As soon as the Unreported status is cleared by the alert reporting task, and other
block alert may be reported without clearing the Active status, if the subcode has
changed.
The summary of active error conditions associated with the block. The possible
block errors are Block configuration error, Simulate active, Local override, Input
failure/process variable has Bad status, Output failure, Readback failed, Out of
service, and Other. Each function block reports none or a subset of these error
conditions.
Determines the high limit of the compensation input.
Determines the low limit of the compensation input.
The proportional gain (multiplier) value.
The proportional gain (multiplier) value for IN_1.
The proportional gain (multiplier) value for IN_2.
The proportional gain (multiplier) value for IN_3.
Options for controlling access of host computers and local control panels to
operating, tuning, and alarm parameters of the block. Not used by the device.
The analog input value and status. The number of inputs is an extensible parameter
in some function blocks.
The first analog input value and status.
The second analog input value and status.
The third analog input value and status.
The value used for the input whenever IN is below range.
Sets the options for using IN, IN_LO, IN_1, IN_2 and IN_3 when any are either Bad
or Uncertain.
The mode record of the block. MODE contains the actual, target, permitted, and
normal modes. In some function blocks, this parameter is used to request and show
the source of the setpoint, the source of the output, and/or the block operating state.
The analog output value and status. The number of outputs is an extensible
parameter in some blocks.
The maximum output value allowed.
The minimum output value allowed.
Range of the output.
The pre-trip limit from SP or zero.
The process variable used in block execution and alarm limit detection.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Index
Number
Parameter
Units
10
PV_SCALE
None
19
20
3
RANGE_HI
RANGE_LO
STRATEGY
None
None
None
1
ST_REV
None
2
35
TAG_DESC
UPDATE_EVT
None
None
Description
The high and low scale values, engineering units code, and number of digits to the
right of the decimal point associated with OUT.
The high limit for IN.
The low limit for IN. If IN is less than RANGE_LO, then IN_LO is used.
The strategy field can be used to identify grouping of blocks. This data is not
checked or processed by the block.
The revision level of the static data associated with the function block. The revision
value will be incremented each time a static parameter value in the block is
changed.
The user description of the intended application of the block.
This alert is generated by any changes to the static data.
Figure 7-23. Arithmetric
Function Block Diagram
RANGE LO
RANGE HI
ARITH_TYPE
BAL_TIME
PV_UNIT
IN
PV
_LO
ALGORITHM
LOGIC
OUT_HI_LIM
GAIN + BIAS
OUT
OUT_LO_LIM
OUT_LO_LIM
OUT_LO_LIM
Block Errors
Table 7-30. BLOCK_ERR
Parameters
(IN_1 + BIAS_IN-1) * GAIN_IN_1
N_2
(IN_2 + BIAS_IN-1) * GAIN_IN_2 tempIN_2
N_3
(IN_3 + BIAS_IN-1) * GAIN_IN_3
tempIN_3
39930019
tempIN_1
N_1
Table 7-30 lists the conditions reported in the BLOCK_ERR parameter.
Condition
Number
0
Condition Name and Description
Other: The output has a quality of uncertain.
1
Block Configuration Error: Select type is not configured
2
Link Configuration Error
3
Simulate Active
4
Local Override
5
Device Fault State Set
6
Device Needs Maintenance Soon
7
Input Failure/Process Variable has Bad Status: One of the inputs is Bad or not
connected.
8
Output Failure
7-53
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Condition
Number
Modes
Condition Name and Description
9
Memory Failure
10
Lost Static Data
11
Lost NV Data
12
Readback Check Failed
13
Device Needs Maintenance Now
14
Power Up: The device was just powered-up.
15
Out of Service: The actual mode is out of service.
The ARTHM block supports the following modes:
• Manual (Man) – The block output (OUT) may be set manually.
• Automatic (Auto) – OUT reflects the analog input measurement or the
simulated value when simulation is enabled.
• Out of Service (O/S) – The block is not processed. FIELD_VAL and PV
are not updated and the OUT status is set to Bad: Out of Service. The
BLOCK_ERR parameter shows Out of Service. In this mode, you can
make changes to all configurable parameters.
The target mode of a block may be restricted to one or more of the supported
modes.
Alarm Detection
Table 7-31. Alarm Level
Priorities
A block alarm will be generated whenever the BLOCK_ERR has an error bit
set. The types of block error for the ARTHM block are defined above. Alarms
are grouped into five levels of priority (Table 7-31).
Priority
Number
0
1
2
3-7
8-15
Block Execution
Priority Description
The priority of an alarm condition changes to 0 after the condition that caused
the alarm is corrected.
An alarm condition with a priority of 1 is recognized by the system, but is not
reported to the operator
An alarm condition with a priority of 2 is reported to the operator, but does not
require operator attention (such as diagnostics and system alerts).
Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.
Alarm conditions of priority 8 to 15 are critical alarms of increasing priority.
The Arithmetic function block provides range extension and compensation
through nine (9) arithmetic types.
There are two inputs (IN and IN_LO) used in calculating PV. PV is then
combined with up to three inputs (IN_1, IN_2, and IN_3) through the user
selected compensation function (ARITH_TYPE) to calculate the value of func.
A gain is applied to func and then a bias is added to get the value PRE_OUT.
In AUTO, PRE_OUT is used for OUT.
Range Extension and Calculation of PV
When both IN and IN_LO are usable, the following formula is applied to
calculate range extension for PV:
PV = G * IN + (1 - G) * IN_LO
(G has a range from 0 to 1, for IN from RANGE_LO to RANGE_HI.)
7-54
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Compensation Input Calculations
For each of the inputs IN_1, IN_3, IN_4 there is a gain and bias. The
compensation terms (t) are calculated as follows:
• When IN_(k) is usable: t(k) = GAIN_IN(k) * (BIAS_IN(k) + IN_(k))
• When IN_(k) is not usable, then t(k) gets the value of the last t(k)
computed with a usable input.
Status Handling
IN_x Use Bad
IN_x Use Uncertain
IN_LO Use Uncertain
IN Use Uncertain
For complete descriptions of supported input options, refer to the Option
Bitistring Parameter.
Application Information
The Arithmetic function block can be used to calculate tank level changes
based on greatly changing temperature conditions in devices that depend on
the physical properties of the fluid.
For example, a differential pressure cell’s analog input can be scaled initially
to provide a 4-20 mA signal for 0-100% of level indication. As the temperature
of the system rises, the density of the fluid decreases. For a system that
requires accurate level indication at widely ranging temperature, changing
density proves inconvenient.
The Arithmetic function block allows for the automatic compensation of this
change by incorporating gain and bias adjustments to the temperature signal.
It then applies both the compensated temperature signal and the level signal
to a characteristic system equation. The result is a level that is a true
indication of fluid in the vessel.
Different fluids over the same temperature range have different effects on
level due to their thermal expansion coefficients. Vessel geometry also plays
a major role. As the height of the vessel increases, the effect of thermal
expansion becomes more apparent. The following figure shows the relative
temperature effects on a level signal.
Figure 7-24. Relative
Temperature Effects on Level
Elevated Temperature Level
100%
Indicated Level
Calibrated at Ambient
Temperature
Level
Percent
4mA
xMa 20mA
Milliamp Signal
39930020
0%
The calculation is done by applying the level signal to the IN connector, the
liquid temperature to the IN_1 connector, and the ambient air temperature to
the IN_2 connector. Select the Arithmetic type (ARITH_TYPE) of Flow
Compensation - Linear.
7-55
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
This allows a ratio to be set up that increases the level indication at block
output for an increase in the tank temperature relative to ambient
temperature.
Figure 7-25. Arithmetric
Function Block Diagram
Example
IN
TANK_LEVEL
ARTHM
Block
OUT
IN_1
LIQUID_TEMP
IN_2
ARITH_TYPE = FLOW
COMP-LINEAR
39930021
AIR_TEMP
This application can be applied to very large storage tanks whose contents
are subject to thermal expansion and contraction during seasonal changes in
temperature.
Advanced Topics
Arithmetric Types
The parameter ARITH_TYPE determines how PV and the compensation
terms (t) are combined. User may select from nine (9) commonly used math
functions, depicted below. COMP_HI and COMP_LO are compensation
limits.
Flow Compensation Linear
Flow Compensation Square Root
func = PV · f
COMP_HI
f = t(1) t(3)
t(2)
√
COMP_LO
COMP_HI
f = t(1)
t(2)
COMP_LO
39930022
func = PV · f
If there is a divide by zero and the numerator is positive, f is set to COMP_HI;
if the numerator is negative, then f is set to COMP_LO.
The square root of a negative value will equal the negative of the square root
of the absolute value. Imaginary roots are not supported.
BTU Flow
func = PV · f
func = PV · f
COMP_HI
COMP_HI
2
f = t(1) t(2) t(3)
f = t(1) - t(2)
COMP_LO
COMP_LO
Traditional Multiply
and Divide
func = PV · f
COMP_HI
t(1)
+ t(3)
t(2)
f=
COMP_LO
39930029
Flow Compensation
Approximate
If there is a divide by zero and numerator is positive, f will be limited to
COMP_HI; if the numerator is negative, f will be limited to COMP_LO.
Compensation inputs which are not usable are not included in the calculation.
PV is always included.
7-56
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Troubleshooting
Refer to Table 7-32 to troubleshoot any problems that you encounter.
Table 7-32. Troubleshooting
Symptom
Possible Causes
Model will not leave OOS
Target model not set
Corrective Action
Set target mode to something other than OOS.
Configuration error
Status of outputs is BAD
Inputs
BLOCK_ERR will show the configuration error set. ARITH_TYPE must be set
to a valid value and cannot be left at 0.
The actual mode of the Resource block is OOS. See Resource block
diagnostics for corrective action.
Block is not scheduled and therefore cannot execute to go to the target mode.
Typically, BLOCK_ERR will show “Power-Up” for all blocks that are not
scheduled. Schedule the block to execute.
Input has BAD status.
Block alarms will not work
Features
FEATURES_SEL does not have Alerts enabled. Enable the Alert bit.
Resource Block
Schedule
Notification
LIM_NOTIFY is not high enough. Set equal to MAX_NOTIFY.
Status Options
STATUS_OPTS has the Propagate Fault Forward bit set. This must be cleared
to cause the alarm to occur.
INPUT SELECTOR (ISEL)
FUNCTION BLOCK
Figure 7-26. Input Selector
(ISEL) Function Block
IN_1
IN_2
OUT
IN_3
IN_4
DISABLE_1
DISABLE_2
DISABLE_3
ISEL
SELECTOR
DISABLE_4
OP_SELECT
39930024
IN (1-4)
= Input used in the selection algorithm.
DISABLE (1-4) = Discrete input used to enable the associated
input channel.
OP_SELECT = Input used to override algorithm.
TRK_VAL
= The value after scaling applied to OUT in
local channel override.
SELECTED
= The selected channel number.
OUT
= The block output and status.
The Input Selector (ISEL) function block can be used to select the first good,
Hot Backup, maximum, minimum, or average of as many as four input values
and place it at the output. The block supports signal status propagation. There
is no process alarm detection in the Input Selector function block.
Figure 7-28 illustrates the internal components of the ISEL block. Table 7-33
lists the ISEL block parameters and their descriptions, units of measure, and
index numbers.
7-57
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Table 7-33. Input Selector Function Block System Parameters
Parameter
Index
Number
Units
Description
ALERT_KEY
4
None
BLOCK_ALM
24
None
BLOCK_ERR
6
None
DISABLE_1
DISABLE_2
DISABLE_3
DISABLE_4
GRANT_DENY
15
16
17
18
9
None
None
None
None
None
IN_1
11
IN_2
12
IN_3
13
IN_4
14
MIN_GOOD
20
Determined by
source
Determined by
source
Determined by
source
Determined by
source
None
The identification number of the plant unit. This information may be used in the host for
sorting alarms, etc.
The block alarm is used for all configuration, hardw are, connection failure, or system
problems in the block. The cause of the alert is entered in the subcode field. The first
alert to become active will set the Active status in the Status parameter. As soon as the
Unreported status is cleared by the alert reporting task, another block alert may be
reported without clearing the Active status, if the subcode has changed.
This parameter reflects the error status associated w ith the hardw are or software
components associated with a block. It is a bit string, so that multiple errors may be
shown.
A Connection from another block that disables the associated input fromthe selection.
A Connection from another block that disables the associated input fromthe selection.
A Connection from another block that disables the associated input fromthe selection.
A Connection from another block that disables the associated input fromthe selection.
Options for controlling access of host computers and local control panels to operating,
tuning, and alarm parameters of the block. Not used by device.
The connection input from another block. One of the inputs to be selected from.
OP_SELECT
OUT
OUT_UNITS
22
7
8
None
EU of IN
None
SELECTED
SELECT_TYPE
STATUS_OPTS
21
19
10
None
None
None
STRATEGY
3
None
ST_REV
1
None
TAG_DESC
UPDATE_EVT
2
23
None
None
7-58
The connection input from another block. One of the inputs to be selected from.
The connection input from another block. One of the inputs to be selected from.
The connection input from another block. One of the inputs to be selected from.
The minimum number of good inputs The actual, target, permitted, and normal modes
of the block. Target: The mode to “go to” Actual: The mode the “block is currently in”
Permitted: Allow ed modes that target may take on Normal: Most common mode for
target.
Overrides the algorithm to select 1 of the 4 inputs regardless of the selection type.
The block output value and status.
The engineering units of the output. Typically, all inputs have the same units and the
value is also the same.
The selected input number (1–4).
Specifies selection method (see Block Execution).
Allows selection of options for status handling and processing. The supported status
option for the PID block is Target to Manual if Bad IN.
The strategy field can be used to identify grouping of blocks. This data is not checked or
processed by the block.
The revision level of the static data associated w ith the function block. The revision
value w ill be incremented each time a static parameter value in the block is changed.
The user description of the intended application of the block.
This alert is generated by any change to the static data.
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 7-27. Input Selector Function Block Schematic
IN_1
Selection
Algorithm
IN_2
OUT
IN_3
IN_4
DISABLE_1
DISABLE_2
SELECTOR
DISABLE_4
SEL_TYPE
OP_SELECT
MIN_GOOD
Block Errors
Table 7-34. Block Error
Conditions
Table 7-34 lists the conditions reported in the BLOCK_ERR parameter.
Conditions in italics are inactive for the ISEL block and are listed for reference
only.
Condition
Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Modes
39930025
DISABLE_3
Condition Name and Description
Other: The output has a quality of uncertain.
Block Configuration Error
Link Configuration Error
Simulate Active
Local Override: The actual mode is LO.
Device Fault State Set
Device Needs Maintenance Soon
Input Failure/Process Variable has Bad Status: One of the inputs is Bad or not
connected.
Output Failure: The output has the quality of Bad.
Memory Failure: A memory failure has occurred in FLASH, RAM, or EEROM
memory.
Lost Static Data
Lost NV Data
Readback Check Failed
Device Needs Maintenance Now
Power Up: The device w as just pow ered-up.
Out of Service: The actual mode is out of service.
The ISEL function block supports three modes of operation as defined by the
MODE_BLK parameter:
• Manual (Man) The block output (OUT) may be set manually.
• Automatic (Auto) OUT reflects the selected value.
• Out of Service (O/S) The block is not processed. The BLOCK_ERR
parameter shows Out of Service. In this mode, changes caNn be made
to all configurable parameters. The target mode of a block may be
restricted to one or more of the supported modes.
Alarm Detection
A block alarm will be generated whenever the BLOCK_ERR has an error bit
set. The types of block error for the ISEL block are defined above.
7-59
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Alarms are grouped into five levels of priority, Table 7-35.
Table 7-35. Alarm Priorities
Priority
Block Execution
Priority Description Number
0
The priority of an alarm condition changes to 0 after the condition that caused the
alarm is corrected.
1
An alarm condition with a priority of 1 is recognized by the system, but is not
reported to the operator.
2
An alarm condition with a priority of 2 is reported to the operator, but does not
require operator attention (such as diagnostics and system alerts).
3 to 7
Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.
8 to 15
Alarm conditions of priority 8 to 15 are critical alarms of increasing priority.
The ISEL function block reads the values and statuses of as many as four
inputs. To specify which of the six available methods (algorithms) is used to
select the output, configure the selector type parameter (SEL_TYPE) as
follows:
• max selects the maximum value of the inputs.
• min selects the minimum value of the inputs.
• avg calculates the average value of the inputs.
• mid calculates the middle of three inputs or the average of the middle
two inputs if four inputs are defined.
• 1st Good selects the first available good input.
• Hot Backup latches on the selected input and continues to use it until it
is bad.
If DISABLE_N is active, the associated input is not used in the selection
algorithm.
If OP_SELECT is set to a value between 1 and 4, the selection type logic is
overridden and the output value and status is set to the value and status of
the input selected by OP_SELECT.
SELECTED will have the number of the selected input unless the SEL_TYPE
is average, in which case it will have the number of inputs used to calculate its
value.
Status Handling
In Auto mode, OUT reflects the value and status quality of the selected input.
If the number of inputs with Good status is less than MIN_GOOD, the output
status will be Bad.
In Man mode, the OUT status high and low limits are set to indicate that the
value is a constant and the OUT status is always Good.
In the STATUS_OPTS parameter, the following options can be selected from
to control the status handling:
• Use Uncertain as Good: sets the OUT status quality to Good when the
selected input status is Uncertain.
• Uncertain if in Manual mode: The status of the Output is set to
Uncertain when the mode is set to manual.
7-60
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
The instrument must be in Manual or Out of Service mode to set the status option.
Application Information
The ISEL function block can be used to select the maximum temperature
input from four inputs and send it to a PID function block to control a process
water chiller (Table 7-28) or it can use the block to calculate the average
temperature of the four inputs (Table 7-29).
Figure 7-28. Input Selector
Function Block Application
Example (SEL_TYPE = max).
IN1 = 126°F
Input Selector
(ISEL) Function
Block
IN2 = 104°F
To Another
Function Block
OUT = 118°F
To Another
Function Block
39930026
IN3 = 112°F
OUT = 130°F
Figure 7-29. Input Selector
Function Block Application
Example (SEL_TYPE = avg.).
IN1 = 126°F
Input Selector
(ISEL) Function
Block
IN2 = 104°F
IN3 = 112°F
SEL_TYP = avg
IN4 = 130°F
Figure 7-30. Input Selector
Function Block Application
Example (SEL_TYPE = Hot
Backup)
39930027
IN4 = 130°F
IN1 = 126°F
IN2 = 104°F
Input Selector
(ISEL) Function
Block
39930028
IN3 = 112°F
IN4 = 130°F
SEL_TYP = Hot Backup
Table 7-36. Input Selector
Function Blocks
IN1
IN2
Out
Selected
Time
Value
Status
Value
Status
Value
Status
Value
Status
T0
Good
20
Good
21
Good
20
Good
1
T1
Bad
20
Good
21
Good
21
Good
2
T2
Good
20
Good
21
Good
21
Good
2
7-61
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Troubleshooting
Table 7-37. Troubleshooting ISEL Block
Symptom
Mode w= ill not leave
OOS
Possible Causes
1. Target mode not set
2. Configuration error
3. Resource block
4. Schedule
Status of output is bad
1. Inputs
2. OP selected
3. Min good
Block Alarms will not work 1. Features
2. Notification
1. Status Options
Corrective Action
1. Set target mode to something other than OOS.
2. BLOCK_ERR will show the configuration error bit set. SELECT_TYPE must be
set to a valid value and cannot be left at 0.
3. The actual mode of the Resource block is OOS. See Resource Block
Diagnostics for corrective action.
4. Block is not scheduled and therefore cannot execute to go to Target Mode.
Schedule the block to execute.
1. All inputs have Bad status.
2. OP_SELECT is not set to 0 (or it is linked to an input that is not 0), and it points
to an input that is Bad.
3. The number of Good inputs is less than MIN_GOOD.
1. FEATURES_SEL does not have Alerts enabled. Enable Alerts bit.
2. LIM_NOTIFY is not high enough. Set equal to MAX_NOTIFY.
1. STATUS_OPTS has Propagate Fault Forward bit set. This should be cleared to
cause an alarm to occur.
OPERATION WITH
EMERSON PROCESS
MANAGEMENT DELTAV
About AMS and DeltaV
Software
AMS and DeltaV software allows users to manage their instrumentation, and
to perform on-line configurations of their instruments.
The ability to communicate with instruments and configure instruments on-line
facilitates instrument commissioning and loop validation.
With AMS, users can also access status and diagnostic data from smart
devices and monitor their performance.
AMS leverages the I/O capabilities of the control system to gather asset
management data without interfering with the control system’s operations.
Install the Analyzer onto DeltaVTM
NOTE
The following procedures assume that the DeltaV and the analyzer are
installed and powered.
The following steps have to be performed to install a new device onto a
DeltaVTM system:
• From the start menu select DeltaV > Engineering > DeltaV Explorer.
• Select/Expand “Library” (right below DeltaV_System).
• Select “Fieldbus Devices”, using right mouse button. Click on “Fieldbus
Devices”. This will bring up a list of options.
7-62
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
• From the list, select “Add Device Definition”... This should give you a
“Browse for folder” selection box. Browse to the directory that contains
the 7 files needed to “register” a new device with DeltaV. These file will
consist of 3 *.dll files, *.sym, *.ffo, *.fhx and *.reg file. The files probably
will be on a floppy disk or a CD-ROM that accompanies your device. On
CD-ROMs delivered together with Emerson Process Management
analyzers the files are located in the directory \Fieldbus. Dependent on
the existent system use the files of the appropriate subdirectory.
• After answering “yes“ to the first prompt, DeltaV will start the
installation.
Figure 7-31 shows the “Exploring DeltaV“ screen for reference.
Figure 7-31. DeltaV Explorer
7-63
Instruction Manual
OCX 8800
7-64
IM-106-880, Rev 2.0
October 2009
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 8
OCX 8800
Troubleshooting
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8-1
Diagnostic Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8-2
Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8-3
Alarm Relay Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 8-11
Install all protective equipment covers and safety ground leads after troubleshooting.
Failure to install covers and ground leads could result in serious injury or death.
OVERVIEW
The troubleshooting section describes how to identify and isolate faults that
may develop in the OCX 8800. When troubleshooting the OCX 8800,
reference the following information.
Grounding
It is essential that adequate grounding precautions are taken when installing
the system. Thoroughly check both the probe and electronics to ensure the
grounding quality has not degraded during fault finding. The system provides
facilities for 100% effective grounding and total elimination of ground loops.
Electrical Noise
The OCX 8800 has been designed to operate in the type of environment
normally found in a boiler room or control room. Noise suppression circuits
are employed on all field terminations and main inputs. When fault finding,
evaluate the electrical noise being generated in the immediate circuitry of a
faulty system. Ensure all cable shields are connected to earth.
Electrostatic Discharge
Electrostatic discharge can damage ICs in the electronics. Before removing or
handling the processor board or the ICs, ensure you are at ground potential.
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Total Power Loss
In the event that the OCX 8800 will not power up at all, check the incoming
power supply to make sure power is being delivered to the OCX 8800. If the
incoming power supply is good, then check fuses F1 and F6 in the electronics
housing. Refer to Figure 8-1 for fuse locations.
Figure 8-1. Fuse Locations
F6
Neutral (N)
10 Amp, 250 VAC
F1
Line (L1)
10 Amp, 250 VAC
F3
O2 and COe Heater
4 Amp, 250 VAC
37390050
F4
Sample Block Heater
8 Amp, 250 VAC
DIAGNOSTIC ALARMS
Always install a blocking diode on the customers relay coil. Failure to install a blocking diode
may create noise spikes and cause faults in the OCX electronics.
The OCX 8800 is equipped with a set of alarm relay contacts on the
microprocessor board in the electronics housing. This set of dry contacts can
be connected to any customer supplied relay device, 30 VDC, 30 mA
maximum. A blocking diode is required on the customers relay coil.
Any fault condition in the OCX 8800 will trip the alarm relay. The optional SPA
with HART programmable alarm indicates LOW O2, HIGH COe, Calibration
Status, and Unit Failure. For more information, refer to Appendix B - SPA with
HART Alarm.
8-2
Instruction Manual
IM-106-880, Rev 2.0
October 2009
FAULT ISOLATION
OCX 8800
Faults in the OCX 8800 Transmitter are indicated by messages displayed on
the 375 Field Communicator or LOI. Fault indications that can appear are
listed in Table 8-1, Troubleshooting.
If a fault is indicated on the Field Communicator or LOI, locate the fault
indication in Table 8-1. For each fault listed, there are related Probable
Causes and Recommended Corrective Actions. The Probable Causes are
listed in the order of most probable to least probable. Starting with the most
probable cause, inspect and test the unit to isolate the actual cause, then use
the Recommended Corrective Action listed to correct the problem.
Table 8-1. Troubleshooting
O2 Sensor R High (Oxygen sensor resistance high, > 5000 Ohms)
O2 Sensor Open (Oxygen sensor disconnected)
Probable Cause
Recommended Corrective Action
Loose or open O2 cell circuit connection
Check O2 cell circuit wires for breaks or loose connections. Repair lead wire break or
loose connections.
Check O2 cell impedance by reading the O2 Snsr R value via the LOI (see Figure 4-4,
sheet 2), or the O2 Snsr value via Field communicator (see Figure 6-3, sheet 1). If cell
impedance is zero, replace O2 cell with cell replacement kit. If cell impedance is less
than 5000 ohms, check for cell housing ground fault. Repair ground fault. If cell
impedance is greater than 5000 ohms and no ground fault is indicated, replace O2 cell
with cell replacement kit.
O2 cell degraded or failed
Ref Current Err (RTD excitation current error) (reference current should be 5.02 mA)
Probable Cause
Recommended Corrective Action
Loose or open lead or circuit wire connection for
COe sensor or CJC sensor current loop
COe sensor grounded
Check all COe and CJC sensor current loop wiring per Figure 8-3 and Figure 9-9.
Correct wiring faults.
Check resistance of COe sensor leads to ground per Figure 9-9. Replace COe sensor if
resistance is less than 10M Ohms.
Check resistance of both COe sensor elements per Figure 9-9. Replace COe sensor if
resistance of sensor element is not between 100 and 250 Ohms.
Check resistance of CJC sensor to ground per Figure 9-9. Replace CJC sensor if
resistance is less than 10M Ohms.
Check resistance of CJC sensor per Figure 9-9. Replace CJC sensor if resistance of
sensor is not between 100 and 150 Ohms.
COe sensor failed
CJC sensor grounded
CJC sensor failed
O2 Temp Hi (Oxygen sensor heater temperature high, > 750ºC)
Probable Cause
Recommended Corrective Action
High noise in OCX power supply
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
COe Temp Hi (Combustion sensor heater temperature high, 310ºC)
Probable Cause
Recommended Corrective Action
High noise in OCX power supply
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
Table continued on next page
8-3
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
SB Temp Hi (Sample block heater temperature high, > 190ºC)
Probable Cause
Recommended Corrective Action
High noise in OCX power supply
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
O2 Temp Very Hi (Oxygen sensor heater over maximum temperature, > 820ºC)
O2 Htr Rmp Rate (Oxygen sensor heater over maximum temperature ramp rate)
Probable Cause
Recommended Corrective Action
Incorrect O2 heater wiring
Check O2 heater wiring per Figure 8-3 and Figure 9-9. Check the wiring at the heater
and inside the electronics housing. Correct wiring fault. Perform Reset procedure in
Section 3, Configuration and Startup to continue operation.
Check O2 thermocouple wiring per Figure 8-3 and Figure 9-8. Check the wiring at the
thermocouple and inside the electronics housing. Correct wiring fault. Perform Reset
procedure in Section 3, Configuration and Startup to continue operation.
Replace electronics package.
Incorrect O2 thermocouple wiring
Electronics package failure
COe Temp Very Hi (Combustion sensor heater over maximum temperature, > 400ºC)
COe Htr Rmp Rate (Combustibles sensor heater over maximum temperature ramp rate)
Probable Cause
Recommended Corrective Action
Incorrect COe heater wiring
Check COe heater wiring per Figure 8-3 and Figure 9-9. Check the wiring at the heater
and inside the electronics housing. Correct wiring fault. Perform Reset procedure in
Section 3, Configuration and Startup to continue operation.
Check COe thermocouple wiring per Figure 8-3 and Figure 9-9. Check the wiring at the
thermocouple and inside the electronics housing. Correct wiring fault. Perform Reset
procedure in Section 3, Configuration and Startup to continue operation.
Replace electronics package.
Incorrect COe thermocouple wiring
Electronics package failure
SB Temp Very Hi (Sample block heater over maximum temperature, > 260ºC)
SB Htr Rmp Rate (Sample block heater over maximum temperature ramp rate)
Probable Cause
Recommended Corrective Action
Incorrect sample block heater wiring
Check sample block heater wiring per Figure 8-3 and Figure 9-8. Check the wiring at
the heater and inside the electronics housing. Correct wiring fault. Perform Reset
procedure in Section 3, Configuration and Startup to continue operation.
Check sample block thermocouple wiring per Figure 8-3 and Figure 9-8. Check the
wiring at the thermocouple and inside the electronics housing. Correct wiring fault.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
Replace electronics package.
Incorrect sample block thermocouple wiring
Electronics package failure
O2 TC Open (Oxygen sensor heater thermocouple open)
Probable Cause
Recommended Corrective Action
O2 thermocouple or thermocouple circuit open
Check O2 thermocouple and circuit wires for breaks or loose connections per Figure 8-3
and Figure 9-8. Repair breaks or loose connections or replace failed thermocouple.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
COe TC Open (Combustibles sensor heater thermocouple open)
Probable Cause
Recommended Corrective Action
Combustibles sensor thermocouple open
Check thermocouple resistance (lead to ground) of reference and active thermocouples
per Figure 8-3 and Figure 9-9. If either thermocouple is open or shorted to ground,
replace combustibles sensor.
Table continued on next page
8-4
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
SB TC Open (Sample block heater thermocouple open)
Probable Cause
Recommended Corrective Action
Sample block thermocouple or thermocouple
circuit open
Check sample block thermocouple and circuit wires for breaks or loose connections per
Figure 8-3 and Figure 9-8. Repair breaks or loose connections or replace failed
thermocouple. Perform Reset procedure in Section 3, Configuration and Startup to
continue operation.
O2 TC Shorted (Oxygen sensor heater thermocouple shorted)
Probable Cause
Recommended Corrective Action
O2 thermocouple or thermocouple circuit shorted
Check O2 thermocouple and circuit wires for short circuit condition per Figure 8-3 and
Figure 9-8. Repair shorted wiring or replace failed thermocouple. Perform Reset
procedure in Section 3, Configuration and Startup to continue operation.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
If alarm persists, refer to the O2 Htr Failure alarm procedure.
Slow heatup during cold start
COe TC Shorted (Combustibles sensor heater thermocouple shorted)
Probable Cause
Recommended Corrective Action
Combustibles sensor thermocouple shorted
Check thermocouple resistance (lead to ground) of reference and active thermocouples
per Figure 8-3 and Figure 9-9. If either thermocouple is open or shorted to ground,
replace combustibles sensor.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
If alarm persists, refer to the COe Htr Failure alarm procedure.
Slow heatup during cold start
SB TC Shorted (Sample block heater thermocouple shorted)
Probable Cause
Recommended Corrective Action
Sample block thermocouple or thermocouple
circuit shorted
Check sample block thermocouple and circuit wires for short circuit condition per
Figure 8-3 and Figure 9-8. Repair shorted wiring or replace failed thermocouple.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
If alarm persists, refer to the SB Htr Failure alarm procedure.
Slow heatup during cold start
O2 TC Reversed (Oxygen sensor heater thermocouple reversed)
Probable Cause
Recommended Corrective Action
O2 thermocouple wires reversed
Check O2 thermocouple wiring per Figure 8-3 and Figure 9-8. Check the wiring at the
sensor and inside the electronics housing. Correct reversed-wires fault. Perform Reset
procedure in Section 3, Configuration and Startup to continue operation.
COe TC Reversed (Combustibles sensor block heater thermocouple reversed)
Probable Cause
Recommended Corrective Action
Combustibles thermocouple wires reversed
Check combustibles thermocouple wiring per Figure 8-3 and Figure 9-9. Check the
wiring at the sensor and inside the electronics housing. Correct reversed-wires fault.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
SB TC Reversed (Sample block heater thermocouple reversed)
Probable Cause
Recommended Corrective Action
Sample block thermocouple wires reversed
Check sample block thermocouple wiring per Figure 8-3 and Figure 9-8. Check the
wiring at the sensor and inside the electronics housing. Correct reversed-wires fault.
Perform Reset procedure in Section 3, Configuration and Startup to continue operation.
Table continued on next page
8-5
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
ADC Failure (Voltage to digital conversion could not complete)
ADC Ref Error (Voltage to digital conversion not accurate)
Probable Cause
Recommended Corrective Action
Incorrect wiring between electronics and sensor
housings
Electronics package failure
Check all wiring between the electronics and sensor housings per Figure 8-3. Correct
wiring faults.
Replace electronics package.
O2 Htr Failure (Oxygen sensor heater could not reach final temperature)
Probable Cause
Recommended Corrective Action
O2 heater circuit wiring open
Check O2 cell heater circuit for broken wire or loose connection per Figure 8-3 and
Figure 9-8. Repair broken wire or loose connection.
Check resistance of O2 heater per Figure 9-8. Normal O2 heater resistance is 62.5
Ohms. Replace O2 heater if heater is open or has a large resistance.
Check heater fuse F3 in electronics housing per Figure 8-1. If open, locate and correct
cause of overload. If F3 is not open, or if cause of overload cannot be found, replace
electronics package.
O2 heater open
Heater electronics failure
COe Htr Failure (Combustibles sensor heater could not reach final temperature)
Probable Cause
Recommended Corrective Action
COe heater circuit wiring open
Check COe heater circuit for broken wire or loose connection per Figure 8-3 and
Figure 9-9. Repair broken wire or loose connection.
Check resistance of COe heater per Figure 9-9. Normal COe heater resistance is 97.7
Ohms. Replace COe heater if heater is open or has a large resistance.
Check heater fuse F3 in electronics housing per Figure 8-1. If open, locate and correct
cause of overload. If F3 is not open, or if cause of overload cannot be found, replace
electronics package.
COe heater open
Heater electronics failure
SB Htr Failure (Sample block heater could not reach final temperature)
Probable Cause
Recommended Corrective Action
Sample block heater circuit wiring open
Check sample block heater circuit for broken wire or loose connection per Figure 8-3
and Figure 9-8. Repair broken wire or loose connection.
Check resistance of sample block heater per Figure 9-8. Normal sample block heater
resistance is 36.4 Ohms each (18.2 Ohms with both heaters in parallel). Replace
sample block heater if heater is open or has a large resistance.
Check heater fuse F4 in electronics housing per Figure 8-1. If open, locate and correct
cause of overload. If F4 is not open, or if cause of overload cannot be found, replace
electronics package.
If above probable causes are not causing the SB heater failure, install flange insulator
(PN 6P00162H01).
Sample block heater open
Heater electronics failure
Sensor housing exposed to high wind and/or
extreme cold temperatures
Cal Warning (Calibration warning)
Cal Failed (Calibration failed)
Probable Cause
Recommended Corrective Action
Calibration gas supply low or gas connection
leaking
Check calibration gas supplies and connections. Adjust gas pressure and flow.
Replenish low calibration gas supplies and tighten or repair loose or leaking
connections. When calibration gas supplies are adequate, recalibrate.
Check O2 cell impedance by reading the O2 Cell Imped value via the LOI (see
Figure 4-4, sheet 2), or the O2 Snsr R value via FOUNDATION fieldbus menu tree (see
Figure 6-7, sheet 2). If cell impedance is zero, replace O2 cell. If cell impedance is less
than 5000 ohms, check for cell housing ground fault. Repair ground fault. If cell
impedance is greater than 5000 ohms and no ground fault is indicated, replace O2 cell.
O2 cell degraded or failed:
O2 Slope Error (Slope <34.5 mV/Dec or >57.5
mV/Dec)
O2 Constant Error (Constant not between -20
mV to +20 mV)
8-6
Flow calibration gas to the O2 cell. Read the cell millivolt output. Plot the cell millivolt
output and the calibration gas O2 concentration on the chart shown in Figure 8-2. If the
plotted values do not fall on the slope line shown in Figure 8-2, replace the O2 cell.
Table continued on next page
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Cal Warning (Calibration warning)
Cal Failed (Calibration failed)
Probable Cause
Recommended Corrective Action
COe sensor degraded
Replace COe sensor or increase warning level (SYSTEM, CALIB SETUP, COe Slope
Warn via HART.)
COe Slope Error (Slope not between 200
ppm/Ohm to 4,500 ppm/Ohm)
COe Constant Error (Constant not between
-100 Ohms to +100 Ohms)
Low sample gas flow in sensor housing due to
flow path plugging
Check the following portions of the flow path for plugging:
• blowback filter
• in-situ filter
• eductor outlet path
Calibration Gas concentration incorrect or gas
bottle empty
O2 TOL Error (not within 10% of configured O2 test gas).
COe TOL Error (not within 30% of configured CO test gas).
Table continued on next page
Figure 8-2. Oxygen and Cell
Output
20
(23)
10
9
8
7
4
3
2
(73)
1
0.9
0.7
0.8
0.6
0.5
0.4
0.3
0.2
0.1
-20
0
20
40
60
80
100
ANALYZER OUTPUT (MILLIVOLT)
120
37390051
OXYGEN CONCENTRATION (%)
6
5
8-7
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Board Temp Hi (Electronics temperature maximum exceeded, > 85ºC)
Probable Cause
Recommended Corrective Action
Electronics housing exposed to high ambient
temperature
Insulate housing from source of high temperature and/or install cooling fan to remove
heat from housing. Perform Reset procedure in Section 3, Configuration and Startup to
continue operation.
EEPRM Chksm Fail (Non-volatile parameter storage corrupted)
Probable Cause
Recommended Corrective Action
Unit powered down during calibration parameter
storage
Flash PROM failure
Perform Reset procedure in Section 3, Configuration and Startup. Recalibrate the OCX
and check/trim analog outputs.
Replace electronics package.
O2 Temp Low (Oxygen sensor heater temperature low, < 710ºC)
Probable Cause
Recommended Corrective Action
Sensor housing exposed to high wind and/or
extreme cold temperatures
High noise or voltage fluctuations in power
supply
Install sensor housing flange insulator (PN 6P00162H01).
Check power supply for line noise or voltage fluctuations. Install filter power line kit
(PN 6A00171G01) or high quality line filter for input power.
COe Temp Low (Combustion sensor heater temperature low, < 290ºC)
Probable Cause
Recommended Corrective Action
Sensor housing exposed to high wind and/or
extreme cold temperatures
High noise or voltage fluctuations in power
supply
Install sensor housing flange insulator (PN 6P00162H01).
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
SB Temp Low (Sample block heater temperature low, < 150ºC)
Probable Cause
Recommended Corrective Action
Sensor housing exposed to high wind and/or
extreme cold temperatures
High noise or voltage fluctuations in power
supply
Install sensor housing flange insulator (PN 6P00162H01).
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
Line Freq Error (AC power line frequency out of usable range, < 45 Hz or > 66 Hz)
Probable Cause
Recommended Corrective Action
High noise or voltage fluctuations in power
supply
AC power line frequency is outside the usable
range of the OCX universal power supply
Electronics package failure
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
Correct power supply frequency. AC power line frequency must be between 50 and
60 Hz.
Check power supply frequency with a calibrated oscilloscope or frequency meter and
compare with line frequency. Replace electronics package if they do not agree within
1 Hz.
Line Voltage Low (AC power line voltage below minimum, < 85 VAC)
Probable Cause
Recommended Corrective Action
High noise or voltage fluctuations in power
supply
Electronics package failure
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
Check power supply voltage and compare with line voltage. Replace electronics
package if they do not agree within 5%.
Table continued on next page
8-8
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Line Voltage High (AC power line voltage above maximum, > 278 VAC)
Probable Cause
Recommended Corrective Action
High noise or voltage fluctuations in power
supply
Electronics package failure
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
Check power supply voltage and compare with line voltage. Replace electronics
package if they do not agree within 5%.
Htr Relay Failed (Heater relay failure)
Probable Cause
Recommended Corrective Action
High noise or voltage fluctuations in power
supply
Electronics package failure
Check power supply for line noise or voltage fluctuations. Install power line filter kit
(PN 6A00171G01) or high quality line filter for input power.
Replace electronics package.
Out Brd Failure (Output board failure)
Probable Cause
Recommended Corrective Action
Electronics package failure
Replace electronics package.
8-9
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
#1
2HTR CO
1HTR CO
2HTR O2
1HTR O2
2HTR SB
1HTR SB
YEL
RED
BLK
ORG
WHT
BLU
SHIELD
GRN
Figure 8-3. Electrical Connections Between Electronics and Sensor Housing
To
ground
screw
Heater Power
Connector (J3)
#1
#1
RED
BLK
T/C CO+
T/C CO-
WHT
BLK
GRN
BLK
Heater Power Cable
#1
T/C SB+
T/C SBT/C O2+
T/C O2-
BLU
BLK
YEL
BRN
BLK
O2 CELL+
O2 CELL-
EXC+
CO ACT+
CO ACT-
COe Sensor
and
CO REF+ Cold Junction
CO REF- Connector (J4)
CJC+
CJCEXC-
RED
WHT
ORG
BLK
BLK
#1
O2 Sensor and
Thermocouple
Connector (J5)
To ground
screw
SHLD
ELECTRONICS HOUSING
#1
EXC +
YEL
BRN
HTR
1 SB
CO
ACT +
2
BLK
HTR
1 CO
2
2
HTR
1 O2
CO
REF
+
-
RED
WHT
ORG
+
CJC
EXC-
-
BLK
BLK
WHT
+
BLK
-
T/C SB
BLK
RED
+
T/C CO
+
T/C O2
+
O2
-
-
GRN
BLK
-
Signal Cable
SENSOR HOUSING
8-10
37390014
GRN
BLU
WHT
RED
YEL
ORG
BLK
BLK
BLU
To ground screw
Instruction Manual
IM-106-880, Rev 2.0
October 2009
ALARM RELAY EVENTS
OCX 8800
The OCX 8800 contains an alarm relay that can be configured to activate on
one of twelve different groups of events. These event groups, and the
conditions that trigger them, are listed in Table 8-2, Alarm Relay Event
Groups.
Table 8-2. Alarm Relay
Event Groups
Alarm Relay Event
In Calibration
O2 Temperature Error
Heater Failure
O2 Sensor Error
Calibration Failure
Calibration Warning
Board Temperature High
Unit Failure
Alarms/Conditions
Calibration in progress
Oxygen sensor heater temperature low (O2 Temp Low)
Oxygen sensor heater temperature high (O2 Temp Hi,
O2 Temp Very Hi)
RTD excitation current error (Ref Curr Err)
Oxygen sensor heater could not reach final temperature
(O2 HTR Failure)
Combustibles sensor heater could not reach final temperature
(COe Htr Failure)
Sample Block sensor heater could not reach final temperature
(SB Htr Failure)
Oxygen sensor resistance high (O2 Sensor R High)
Oxygen sensor disconnected (O2 Sensor Open)
Calibration failed (Cal Failed)
Calibration warning (Cal Warning)
Electronics temperature maximum exceeded (Board Temp Hi)
Any non-recoverable or heater relay off alarm (O2 Temp Hi,
O2 Temp Very Hi, COe Temp Hi, COE Temp Very Hi,
SB Temp Hi, SB Temp Very Hi, O2 Htr Ramp Rate,
COe Htr Rmp Rate, SB Htr Ramp Rate, O2 TC Shorted,
O2 TC Reversed, COe TC Shorted, COe TC Reversed,
SB TC Shorted, SB TC Reversed, ADC Failure,
ADC Ref Error, Board Temp Hi, EEPRM Chksm Fail,
Line Freq Error, Line Voltage Low, Line Voltage Hi,
Htr Relay Failed, Out Brd Fail)
Sample Block
Temperature Error
Sample block heater temperature low (SB Temp Low)
Sample block heater temperature high (SB Temp Hi,
SB Temp Very Hi)
RTD excitation current error (Ref Curr Err)
COe Sensor
Temperature Error
Combustibles sensor heater temperature low (COe Temp Low)
Combustibles sensor heater temperature high (COe Temp Hi,
COe Temp Very Hi)
RTD excitation current error (Ref Curr Err)
Power Input Error
AC power line frequency out of usable range (Line Freq Err)
AC power line voltage below minimum (Line Voltage Low)
AC power line voltage above maximum (Line Voltage Hi)
All Alarms
Any alarm
8-11
Instruction Manual
OCX 8800
8-12
IM-106-880, Rev 2.0
October 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
Section 9
OCX 8800
Maintenance and Service
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 9-1
OCX 8800 Removal and Installation . . . . . . . . . . . . . . . . . page 9-1
Repair Sensor Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . page 9-10
Repair Electronics Housing . . . . . . . . . . . . . . . . . . . . . . . . page 9-29
Replace Tube Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 9-35
OVERVIEW
This section contains the procedures to maintain and service the OCX 8800.
Install all protective equipment covers and safety ground leads after equipment repair or
service. Failure to install covers and ground leads could result in serious injury or death.
It is recommended that the OCX 8800 be removed from the stack for all service activities.
The unit should be allowed to cool and be taken to a clean work area. Failure to comply may
cause severe burns.
Disconnect and lock out power before working on any electrical components. There may be
voltage up to 264 VAC.
OCX 8800 REMOVAL
AND INSTALLATION
http://www..raihome.com
Use the following procedures to remove or install the OCX 8800.
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
OCX with
Integral Electronics
Remove OCX 8800
1. Turn off power to the system.
2. Shut off the test gases at the cylinders and shut off the instrument air.
3. Disconnect the test gas and instrument air lines from the electronics
housing, Figure 9-1.
Figure 9-1. OCX with
Integral Electronics
Adapter
Plate Duct
Stack
Signal Outputs
(Twisted Pairs)
AC Power Input
Electronics
Housing
Instrument Air
(Reference Gas)
High O2 Test Gas
Low O2 Test Gas
CO Test Gas
37390043
Sensor
Housing
4. Remove the cover from the electronics housing to expose the
electronics housing terminal blocks, Figure 9-2.
5. Disconnect and remove the power leads from the AC power input
terminal block and remove the ground lead from the ground stud.
6. Disconnect and remove the O2 and COe signal leads from the 4-20 mA
signal output terminal block.
7. If used, disconnect and remove the external relay leads from the alarm
output relay terminal block.
8. Disconnect and remove customer power and signal wire conduits and
wiring from the electronics housing.
9. Remove insulation to access the sensor housing mounting bolts. Unbolt
the OCX 8800 from the stack and take it to a clean work area.
10. Allow the unit to cool to a comfortable working temperature.
9-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-2. Electronics Housing Terminal Blocks
#1
NC
COM
NO
Alarm Output Relay
Terminal Block
{
{
OR
HART
COe Signal AOUT2+
AOUT2 O2 Signal/ AOUT1 HART AOUT1+
Signal Output
Terminal Block
{
{
#1
Signal Port
3/4 NPT
G
TOP VIEW
(1/2 SIZE)
Ground Stud
Customer
Wiring
Earth Ground
Typical for Electronics and
Sensor Housing
Power Port
3/4 NPT
Terminal
Block
EMI Filter
N
L1
G
G
Ground
Stud
External Tooth
Lockwasher
37390013
FOUNDATION
Fieldbus
Not used +
FOUNDATION Fieldbus
+
9-3
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install OCX 8800
Observe the following cautions when installing the OCX 8800 in a hot process
stack. If the process is shut down and cooled, the transmitter can be installed
in the stack prior to connecting the pneumatics and wiring.
Whenever a positive stack pressure exists at the installation site, be sure to connect all
pneumatic lines prior to installing the OCX 8800 in the stack or ductwork. Failure to connect
the pneumatic lines can allow the flow of contaminants into the OCX 8800 ports.
1. Bolt the OCX 8800 to the stack and install insulation. Refer to Figure 9-1
and make sure all test gas lines and electrical connections are
complete.
2. Connect the test gas lines and the instrument air lines to the electronics
housing.
3. Remove the electronics housing cover.
4. Install customer power and signal conduits and wiring at the electronics
housing.
5. If used, connect external relay leads to the alarm output relay terminal
block, Figure 9-2.
6. Connect the O2 and COe signal leads to the 4-20 mA signal output
terminal block.
7. Connect the line (L1 wire) to the L1 terminal, and the neutral (N wire) to
the N terminal on the AC power input terminal block.
8. Connect the ground lead to the ground stud. Secure the connection with
two nuts. Attach a separate ground lead (G wire) from the ground stud
to the G terminal on the power input terminal block.
9. Install the cover on the electronics housing.
10. Restore power to the system. Allow OCX to reach normal operating
temperature.
11. Turn on the test gasses at the cylinders and open the instrument air
supply valve.
9-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX with
Remote Electronics
OCX 8800
Remove Sensor Housing
1. Turn off power to the system.
2. Shut off the test gasses at the cylinders and close the instrument air
valve.
3. Disconnect the calibration gas, reference air, eductor air, and dilution air
lines from the sensor housing, Figure 9-3.
Figure 9-3. OCX with
Remote Electronics
Duct
Stack
Sensor
Housing
Heater
Power Cable
Te
Signal Cable
E
R
ef
Ga
s
Air
n
ere
ce
Air
Signal
Outputs
r
Ai
on
i
t
lu
Di
AC Power
Input
ir
Instrument Air
(Reference Gas)
tA
n
me
tru
Ins
Electronics
Housing
High O2 Test Gas
Low O2 Test Gas
CO Test Gas
37390044
tor
c
du
st
9-5
Instruction Manual
OCX 8800
IM-106-880, Rev 2.0
September 2009
4. Remove the cover from the sensor housing to expose the sensor
housing terminal blocks, Figure 9-4.
5. Disconnect the signal cable from the O2 and T/C terminal blocks, and
from the CO and CJC terminal blocks.
6. Disconnect the heater power cable from the HTR terminal blocks.
7. If moving the sensor housing to another work site, disconnect and
remove the power and signal cables from the sensor housing.
8. Remove insulation to access the mounting bolts. Unbolt the sensor
housing from the stack and take it to a clean work area.
9. Allow the sensor housing to cool to a comfortable working temperature.
Figure 9-4. Sensor Housing Terminals
9-6
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install Sensor Housing
1. Insert and bolt the sensor housing in the stack and install insulation.
2. Connect the test gas, reference air, eductor air, and dilution air lines to
the sensor housing.
3. Remove the sensor housing cover.
4. If removed, install the power and signal cables and the customer power
and signal conduits and wiring at the sensor housing.
5. Connect the signal cable to O2 and T/C terminal blocks and to the CO
and CJC terminal blocks, Figure 9-4. Connect the heater power cable to
the HTR terminal blocks.
6. Refer to Figure 9-3 and make sure all test gas lines and electrical
connectors are complete.
7. Install the sensor housing cover.
8. Restore power to the system. Allow OCX to reach normal operating
temperature.
9. Turn on the test gases at the cylinders and open the instrument air
supply valve.
Remove Remote Electronics Housing
1. Turn off power to the system.
2. Shut off the test gases at the cylinders and close the instrument air
supply valve, Figure 9-3.
3. Disconnect the test gas and instrument air lines from the remote
electronics housing.
4. Remove the cover from the electronics housing to expose the
electronics housing terminal blocks, Figure 9-5.
5. Disconnect and remove the power leads from the AC power input
terminal block. Remove the ground lead from the ground stud.
6. Disconnect and remove the O2 and COe signal leads from the 4-20 mA
signal output terminal block.
7. If used, disconnect and remove the external relay leads from the alarm
output relay terminal block.
8. Disconnect the signal cable leads from O2 cell and thermocouple
connector (J4), and from COe and CJC connector (J5), Figure 9-6.
9. Disconnect the heater cable leads from the heater power connector
(J3).
10. If moving the electronics housing to another work site, disconnect and
remove the power and signal cables and customer wiring conduits from
the housing.
11. Remove the remote electronics housing from its mounting and move it
to a suitable work area.
9-7
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-5. Electronics Housing Terminal Blocks
#1
NC
COM
NO
Alarm Output Relay
Terminal Block
{
{
OR
HART
COe Signal AOUT2+
AOUT2 O2 Signal/ AOUT1 HART AOUT1+
Signal Output
Terminal Block
{
{
#1
Signal Port
3/4 NPT
G
TOP VIEW
(1/2 SIZE)
Ground Stud
Customer
Wiring
Earth Ground
Typical for Electronics and
Sensor Housing
9-8
Power Port
3/4 NPT
Terminal
Block
EMI Filter
N
L1
G
G
Ground
Stud
External Tooth
Lockwasher
37390013
FOUNDATION
Fieldbus
Not used +
FOUNDATION Fieldbus
+
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-6. Remote Electronics Housing Cable Connections
9-9
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install Remote Electronics Housing
1. Mount remote electronics housing on wall or pipe within distance of
signal and heater cables in use.
2. Remove the electronics housing cover.
3. If removed, install the power and signal cables and the customer power
and signal conduits and wiring at the electronics housing.
4. Connect the signal cable leads to the O2 cell and thermocouple
connector (J4), and to the COe and CJC connector (J5), Figure 9-6.
5. Connect the heater cable leads to the heater power connector (J3).
6. Connect the line (L1 wire) to the L1 terminal, and the neutral (N wire) to
the N terminal on the AC power input terminal block, Figure 9-6.
7. Connect the ground lead to the ground stud. Secure the connection with
two nuts. Attach a separate ground lead (G wire) from the ground stud
to the G terminal on the power input terminal block.
8. If used, connect external relay leads to the alarm output relay terminal.
9. Connect the test gas and instrument air lines to the remote electronics
housing. Connect the calibration gas line and instrument air line to the
remote electronics housing.
10. Refer to Figure 9-3 and Figure 9-6. Make sure all test gas lines and
electrical connections are complete.
11. Install the cover on the electronics housing.
12. Turn on the test gasses at the cylinders and open the instrument air
valve.
13. Restore power to the system.
REPAIR SENSOR
HOUSING
Use the following procedures to remove damaged components from the OCX
8800 sensor housing and to install new replacement parts. Disassemble the
unit only as needed to replace damaged components. Use the assembly
procedures that apply to install replacement parts and reassemble the unit.
Sensor Housing
Disassembly
Remove Cover and Terminals Insulator
1. Loosen screw (1, Figure 9-7) and slide locking clip (2) away from cover.
Retighten screw (1).
2. With two hands or strap wrench, turn cover (3) counterclockwise to
loosen. Unthread and remove cover.
3. Inspect cover o-ring (4) for wear or damage. Replace cover o-ring if
damaged.
4. Unsnap terminal marking plates (5) and remove terminal insulator (6).
9-10
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-7. Removal of O2 Cell and Heater Strut Assembly
Screw
Locking Clip
Cover
O-ring
Marking Plate
Terminal Insulator
Reference Air Tube
Sensor Housing
Heater Strut Assembly
Gasket
Screw
Heater Clamp
Heater Rod
3
7
4
9
5
6
11
10
12
8
13
2
1
37390067
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Remove O2 Cell and Heater Strut Assembly
1. Remove reference air tube (7, Figure 9-7) from sensor housing (8).
2. See Figure 9-8. Disconnect and tag O2 heater wires, O2 cell and return
wires, and thermocouple wires at the sensor housing terminals.
3. Remove the O2 cell and heater strut assembly (9, Figure 9-7) from
sensor housing (8). Remove and discard gasket (10).
9-11
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Remove Sample Block Heater Rods
1. Disconnect sample block heater rod wires from terminal block. Refer to
Figure 9-8.
2. Loosen screws (11, Figure 9-7) and rotate heater clamps (12) to release
heater rods (13). One heater clamp secures each heater rod.
3. Slide sample block heater rods (13) out of housing (8).
NOTE
For easier access, you may remove two screws from base of terminal block
mounting (13) and move terminal block assembly out of the way.
Figure 9-8. O2 Cell,
Thermocouple, and
Heater Connections
O2 Cell Wires
Thermocouple Wires
+
Return Wire
O2 Heater Wires
+
+
+
O2
ORG
RED
GRN
YEL
T/C O2
+
+
+
-
-
2
HTR 02
1
2
HTR
HTRCO
02
1
2
HTR SB
1
9-12
O2 Cell and Heater Strut
Assembly
T/C SB
+
Sample
Block
- EXC Thermocouple
-
Sample Block
Heater Rods
CJC
+
CO REF
+
CO ACT
+
+ EXC
37390068
Sensor Housing Terminals
T/C CO
+
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Remove COe Sensor Assembly
1. Disconnect COe heater, thermocouple, and sensor wires from terminal
blocks. Refer to Figure 9-9.
2. Remove insulator (1, Figure 9-10).
NOTE
For easier access, you may remove two screws from base of terminal block
mounting (13) and move terminal block assembly out of the way.
3. Remove tubes (2, 3, and 4) from COe sensor assembly (5), eductor
fittings (12 and 15), and sensor housing (7).
4. Unfasten bayonet connector of COe thermocouple (8) and remove
thermocouple.
5. Loosen clamp screw of COe band heater (9) until heater rotates freely
on sensor holder (11).
+
-
-
T/C O2
+
RED
-
YEL
T/C CO
+
-
CJC Sensor
T/C SB
+
BLU
CJC
+
2
HTR SB
1
BLU
WHT
WHT
COe Sensor
Assembly
CO REF
+
-
RED
2
HTR
HTRCO
02
1
RED
2
HTR 02
1
NOTE: All wires
at these terminals
are in the CJC
current loop.
- EXC
RED
Sensor Housing Terminals
O2
CO ACT
+
+ EXC
COe Heater Wires
COe Sensor Wires
COe Thermocouple Wires
37390018
Figure 9-9. COe Sensor,
Thermocouple, and Heater
Connections
9-13
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-10. Removal of COe Sensor Assembly
4
3
5
8
1
11
9
2
15
10
6
12
13
16
14
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Insulator
Dilution Air Tube
COe Extractive Tube
Eductor Air Tube
COe Sensor Assembly
Eductor
Sensor Housing
COe Thermocouple
Heater Insulator
COe Band Heater
Sensor Holder
Eductor Elbow
Terminal Block Mounting
Eductor Holder
Tube Fitting
CJC Sensor
37390047
7
9-14
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
6. See Figure 9-11. Using straightedge on the sensor holder flat, as
shown, matchmark upper flange of sensor housing to show correct
alignment of sensor holder.
7. With one wrench holding eductor elbow (12, Figure 9-10), and one
wrench on flats of sensor holder (11), unthread and remove COe sensor
assembly (5). Do not allow eductor elbow to turn.
8. Slide band heater (10) and heater insulator (9) from sensor holder (11).
Figure 9-11. Alignment of
COe Sensor Assembly
Matchmark
Straightedge
Sensor
Holder
Flat
37390035
Matchmark
9-15
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-12. Eductor Alignment
Matchmarks
Eductor Flat
Straightedge
37390036
Matchmark
Remove Eductor
The O2 cell and heater strut assembly (9, Figure 9-7) and the COe sensor
assembly (5, Figure 9-10) must be removed before you start this procedure.
1. Use straightedge to matchmark alignment of eductor flat and elbow, as
shown in Figure 9-12.
2. Unscrew terminal block mounting (13, Figure 9-10). Move terminal block
mounting away from eductor (6).
3. Unscrew eductor holder (14) with eductor (6) and fittings (12 and 15)
from sensor housing (7).
4. Clamp flats of eductor (6) in jaws of bench vise.
Use heat resistant gloves when removing mating parts from the eductor. The mating parts
are bonded with a thread sealing compound. The compound softens at 450°F (232°C). The
heated parts can cause severe burns.
5. Use a propane torch to heat the eductor (6) to 450°F (232°C), minimum.
Apply the heat near the screw threads.
6. While heating the eductor (6), use wrench to apply removal torque to
elbow (12), eductor holder (14), or tube fitting (15) until the thread
sealant softens. Remove mating parts (12, 14, and 15).
7. Use MEK or methylene chloride solvent to clean thread sealant residue
from the pipe threads of the mating parts. Refer to applicable MSDS
sheet for solvent handling precautions.
9-16
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-13. Removal of Sample
and Exhaust Tubes
Remove Sample and Exhaust Tubes
Use heat resistant gloves when removing the probe tube or exhaust tube. The tubes are
bonded with a thread sealing compound. The compound softens at 450°F (232°C). The
heated parts can cause severe burns.
1. Secure the sensor housing (1, Figure 9-13) in soft (plastic, wood, or
brass) vice jaws.
2. Use a propane torch to heat the sample tube (2) or exhaust tube (3) to
450°F (232°C), minimum. Apply the heat near the threaded end of the
tube.
3. While heating the tube, use a pipe wrench to apply removal torque to
part being removed. Apply torque until the pipe thread sealant softens.
Remove and discard the used sample tube (2), exhaust tube (3), or
in-situ filter (4).
4. Use MEK or methylene chloride solvent to clean thread sealant residue
from the internal pipe threads in the housing. Refer to applicable MSDS
sheet for solvent handling precautions.
1
3
2
1.
2.
3.
4.
Sensor Housing
Sample Tube
Exhaust Tube
In Situ Filter
37390048
4
9-17
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-14. O2 Cell, Heater,
and Thermocouple, Exploded
View
Do not remove the O2 cell unless you are certain it needs to be replaced. Removal may
damage the cell and platinum pad. Remove the O2 cell for cell replacement only.
Disassemble O2 Cell and Heater Strut Assembly
Do not attempt to replace the O2 cell until all other possibilities for poor
performance have been considered. If cell replacement is needed, order the
O2 cell replacement kit (Refer to Section 10, Replacement Parts).
4
6
The O2 cell replacement kit contains an O2 cell and flange assembly, gaskets,
socket head cap screws, and anti-seize compound. The items are carefully
packaged to preserve precise surface finishes.
7
8
9
Do not remove items from the package until they are ready to be used.
12
1. Remove the four allen cap screws (1, Figure 9-14) from the O2 cell (2).
Remove the O2 cell. The cell flange has a notch that may be used to
gently pry the flange away from heater tube (3).
11
10
NOTE
The pad on the end of contact/thermocouple assembly (4) will sometimes
fuse to the O2 cell (2).
1.
2.
3.
4.
Screw
O2 Cell
Heater Tube
Contact/
Thermocouple
Assembly
5. Gasket
6. Screw
7. Lockwasher
8. Return Wire
9. Heater Strut
Assembly
10. Spring Clip
11. Spring
12. Strut Bracket
2. If the O2 cell is fused to the contact pad, push the O2 cell back into the
heater tube (against spring pressure) and quickly twist the O2 cell. The
cell and contact pad should separate. If the contact pad stays fused to
the cell, a new contact/thermocouple assembly (4) must be installed.
3. Remove and discard gasket (5). Clean the mating surface of heater
tube (3). Remove burrs and raised surfaces with a block of wood and
crocus cloth.
Use care when handling contact and thermocouple assembly. The ceramic rod in this
assembly is fragile.
3
5
4. Remove screws (6), lockwashers (7), return wire (8), and heater strut
assembly (9).
Test Gas
Passage
Holes
1
37390032
2
5. If replacing contact and thermocouple assembly (4), use a pencil to
mark location of spring clip (10) before removing. Squeeze tabs on
spring clip to remove. Retain spring clip and spring (11); replace if
damaged.
6. While carefully handling new contact and thermocouple assembly (4)
lay old assembly next to new one. Transfer match marks to new
assembly.
7. Carefully guide new contact and thermocouple assembly (4) through
strut bracket (12), spring (11), and spring clip (10) until spring clip
reaches pencil mark.
9-18
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Disassemble COe Sensor Assembly
1. Carefully remove screws (1, Figure 9-15), lockwashers (2), and COe
sensor (3) from sensor holder (4). Remove and discard gasket (5).
2. If damaged, use the following procedure to remove thermocouple
adaptor (6) from sensor holder (4):
a. Use a propane torch to heat the thermocouple adaptor to 450°F
(232°C), minimum.
b. While heating, use a flat-head screwdriver to apply removal torque.
Apply torque until the pipe thread sealant softens. Remove and
discard the thermocouple adaptor.
c. Use MEK or methylene chloride solvent to clean thread sealant
residue from the internal pipe threads in the sensor holder. Refer to
applicable MSDS sheet for solvent handling precautions.
Figure 9-15. COe Sensor,
Exploded View
3
1
2
7
9
6
8
5
1.
2.
3.
4.
5.
6.
7.
8.
9.
Screw
Lockwasher
COe Sensor
Sensor Holder
Gasket
Thermocouple Adapter
Pre-Heater
Plug
Stainless Steel Balls
37390030
4
9-19
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Always remove the stainless steel balls (approximately 200) from sensor holder before
removing or installing pre-heater. Turning pre-heater in the sensor holder with the stainless
steel balls in place will cause permanent damage to the pre-heater.
3. If pre-heater (7) is to be removed, clamp flats of sensor holder (4) in vise
jaws with plug (8) pointing up. Remove plug. Unclamp sensor holder
and pour stainless steel balls (9) into a container.
NOTE
Pre-heater should only be removed when pre-heater or sensor holder is
damaged. If removal is not required, leave the pre-heater installed in the
sensor holder.
4. Unthread and remove pre-heater (7).
5. Use a cleaning solvent to thoroughly clean stainless steel balls (9) and
pre-heater chamber in sensor housing (4). Refer to applicable MSDS
sheet for solvent handling precautions.
Sensor Housing
Assembly
Assemble COe Sensor Assembly
Always remove the stainless steel balls (approximately 200) from sensor holder before
removing or installing pre-heater. Turning pre-heater in the sensor holder with the stainless
steel balls in place will cause permanent damage to the pre-heater.
1. If pre-heater (7, Figure 9-15) was removed, apply pipe thread sealant
(Loctite #567) to the external pipe threads of pre-heater (7) and plug (8).
Do not apply sealant to the first turn of the pipe threads.
2. Clamp flats of sensor holder (4) in vise jaws with pre-heater port
pointing up.
3. Install and tighten pre-heater (7). Align pre-heater to flat of sensor
holder (4) as shown in Figure 9-16.
4. Invert sensor holder (4, Figure 9-15) in vise and pour stainless steel
balls (9) into plug port. Press down on stainless steel balls and tap
sensor holder with plastic hammer to compact balls in pre-heater
chamber.
5. Install and tighten plug (8).
Use care when installing the combustibles (COe) sensor. The RTD elements are fragile and
correct alignment in sensor holder is required for proper OCX operation.
6. Lubricate and install COe sensor gasket (5). Apply anti-seize compound
to threads of screws (1).
9-20
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-16. COe Sensor and
Pre-Heater Alignment
COe
SENSOR ASSEMBLY
TOP VIEW
THERMOCOUPLE
Sensor
Holder
Sensor
Holder
Flat
Pre-Heater
Flat
Sensor
Holder
Flat
37390034
2 to 2-1/4 in.
(51 to 57 mm)
COe Sensor
Flat
7. Install COe sensor (3), lockwashers (2), and screws (1). Rotate flat of
COe sensor (3) to center of sensor holder (4).
8. Align COe sensor flat parallel to sensor holder flat, as shown in
Figure 9-16. Tighten screws (1, Figure 9-15).
9. If replacing thermocouple adaptor (6), apply anti-seize to the pipe
threads. Install and tighten thermocouple adaptor.
Assemble O2 Sensor and Heater Strut Assembly
1. See Figure 9-14. Assemble O2 cell (2), gasket (5), and heater tube (3).
Make sure the test gas passage holes line up with each other in all
components.
2. Apply a small amount of anti-seize compound to the screw threads and
use screws (1) to secure assembly. Torque to 35 in-lbs (4 N·m).
3. Carefully slide O2 heater strut assembly (9) into heater tube (3).
4. Press down on the back plate of strut bracket (12) to ensure spring (11)
tension is present to hold contact pad against O2 cell (2).
5. Secure strut bracket (12) and return wire (8) with four screws (6) and
lockwashers (7). Make sure return wire (8) is tightly fastened. This is the
ground side connection for the O2 cell.
Install Sample and Exhaust Tubes
1. See Figure 9-13. Apply pipe thread sealant (Loctite #567) to the
replacement sample tube (2) or exhaust tube (3) pipe threads. Do not
apply sealant to the first turn of the pipe threads.
2. Thread the sample tube (2) or exhaust tube (3) into the housing (1). Use
a pipe wrench to tighten the tube.
3. If used, install and tighten insitu filter (4).
9-21
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install Eductor
If installed, the O2 cell and heater strut assembly (9, Figure 9-7) must be
removed from sensor housing (8), before you install the eductor.
1. Apply pipe thread sealant (Loctite #567) to the external pipe threads of
eductor (6, Figure 9-17). Do not apply sealant to the first turn of the pipe
threads.
Figure 9-17. Installation of Eductor and COe Sensor
4
3
5
8
1
11
9
2
15
10
6
12
13
16
14
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Insulator
Dilution Air Tube
COe Extractive Tube
Eductor Air Tube
COe Sensor Assembly
Eductor
Sensor Housing
COe Thermocouple
Heater Insulator
COe Band Heater
Sensor Holder
Eductor Elbow
Terminal Block Mounting
Eductor Holder
Tube Fitting
CJC Sensor
37390047
7
9-22
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
2. Install and tighten eductor (6) in eductor holder (14).
3. Install and tighten elbow (12) on eductor (6). Male port of elbow must
point up and be in line with long axis of eductor.
4. Apply anti-seize compound to the external pipe threads of eductor
holder (14).
5. Install and tighten eductor holder (14) in sensor housing (7). Align
eductor with matchmarks, as shown in Figure 9-18.
Figure 9-18. Eductor Alignment
Matchmarks
Eductor Flat
Straightedge
37390036
Matchmark
9-23
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install COe Sensor Assembly
Figure 9-19. Band Heater Height
COe Sensor
1. Apply pipe thread sealant (Loctite #567) to the exposed pipe threads
of eductor elbow (12, Figure 9-17). Do not apply sealant to the first turn
of the pipe threads.
2. Screw sensor holder (11) onto eductor elbow (12).
0.37 in.
(9,4 mm)
3. With wrenches on eductor elbow (12) and on flats of sensor holder (11),
tighten sensor holder. Do not allow eductor elbow to turn.
4. Tighten sensor holder (11) to align outside flat with matchmark on
sensor housing flange, as shown in Figure 9-20.
Band Heater
Insulator
37390058
The heater insulator prevents current leakage between the band heater and the sensor
holder. Failure to properly install the insulator may cause the device to trip a ground fault
interrupt circuit.
5. Wrap heater insulator (9) around sensor holder (11). Make sure the
insulator joint lines up with the band gap of the COe band heater (10).
6. Slide COe band heater (10, Figure 9-17) up onto sensor holder (11). Do
not tighten the band heater at this time. Heater must rotate freely around
sensor holder.
7. Check for proper height of COe heater thermocouple (Figure 9-16).
Thread bayonet connector up or down to adjust height.
Figure 9-20. COe Sensor
Holder Alignment
Matchmark
Straightedge
Sensor
Holder
Flat
37390035
Matchmark
9-24
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
8. Install and fasten thermocouple (8, Figure 9-17).
9. Position band heater as shown in Figure 9-19 and Figure 9-20 and
tighten band heater clamp screw. The heater insulator (9) end joint must
line up with the band gap of the COe band heater (10).
10. Reconnect the COe sensor, thermocouple, and heater wires at the
sensor housing terminal blocks. Refer to Figure 9-21.
11. Install and fasten the COe insulator (1, Figure 9-17) around COe sensor
assembly (5). All wiring must remain outside of the insulator.
12. If terminal block mounting (13, Figure 9-17) was moved, reinstall with
two base mounting screws.
Figure 9-21. COe Sensor,
Thermocouple, and Heater
Connections
+
-
-
T/C O2
+
RED
-
YEL
T/C CO
+
-
CJC Sensor
T/C SB
+
BLU
CJC
+
BLU
WHT
WHT
CO REF
+
CO ACT
+
+ EXC
COe Heater Wires
COe Sensor Wires
COe Thermocouple Wires
37390018
2
HTR SB
1
COe Sensor
Assembly
RED
2
HTR
HTRCO
02
1
RED
2
HTR 02
1
NOTE: All wires
at these terminals
are in the CJC
current loop.
- EXC
RED
Sensor Housing Terminals
O2
9-25
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-22. Installation of O2 Cell and Heater Strut Assembly
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Screw
Locking Clip
Cover
O-ring
Marking Plate
Terminal Insulator
Reference Air Tube
Sensor Housing
Heater Strut Assembly
Gasket
Screw
Heater Clamp
Heater Rod
3
7
4
9
5
6
11
10
12
8
13
1
9-26
37390067
2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install Sample Block Heater Rods
1. Before installing sample block heater rods (13, Figure 9-22), evenly coat
the heater rods with Watlube heater release agent.
2. Install the heater rods (13), heater clamps (12), and screws (11).
3. Reconnect the heater rod leads at the sensor housing terminal blocks,
(Figure 9-23).
Figure 9-23. O2 Cell,
Thermocouple, and
Heater Connections
O2 Cell Wires
Thermocouple Wires
+
Return Wire
O2 Heater Wires
+
+
+
O2
ORG
RED
GRN
YEL
T/C O2
+
+
+
-
-
2
HTR 02
1
2
HTR
HTRCO
02
1
2
HTR SB
1
O2 Cell and Heater Strut
Assembly
T/C SB
+
Sample
Block
- EXC Thermocouple
-
Sample Block
Heater Rods
CJC
+
CO REF
+
CO ACT
+
+ EXC
37390068
Sensor Housing Terminals
T/C CO
+
9-27
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install O2 Cell and Heater Strut Assembly
1. Rub a small amount of anti-seize compound on both sides of new
gasket (10, Figure 9-22).
2. Apply anti-seize compound to threads of O2 cell and heater strut
assembly (9) and sensor housing (8).
Stripped threads on the O2 cell and heater strut assembly can allow gas leakage. Gas
leakage can affect the O2 measurements and calibration. Avoid over-tightening the O2 cell
and heater strut assembly.
3. Install O2 cell and heater strut assembly (9) in sensor housing (8). Snug
up, but do not over-tighten the assembly.
4. Reconnect the lead wires from O2 cell, heater, and thermocouple to the
sensor housing terminal blocks. Refer to Figure 9-23.
5. Install reference air tube (7, Figure 9-22) in sensor housing (8). Make
sure that the open end of reference air tube extends into heater tube of
O2 cell and heater strut assembly (9).
Install Terminals Insulator and Cover
1. Install insulator (6, Figure 9-22) over uppermost terminal blocks.
Position one side of insulator against terminal blocks and snap terminal
marking plate (5) to mating stand-off.
2. Position opposite side of insulator (6) and secure with related marking
plate (5).
3. If removed, install cover gasket (4). Screw cover (3) onto sensor
housing (8). Tighten cover firmly.
4. Align locking clip (2) with gap between cover ribs.
5. Loosen screw (1) and slide locking clip (2) fully into gap between cover
ribs. Retighten screw (1).
Sensor Housing Leak Test
1. Install 1/4 NPT cap on dilution air inlet fitting. Install a 1/4 NPT cap on
sample tube (2, Figure 9-13) or plug 1/4 NPT sample inlet port. Capped
or plugged ports must be air tight.
2. If not in place, install exhaust tube (3, Figure 9-13) in exhaust port
according to the instructions provided.
3. Connect a calibrated manometer to the CAL GAS inlet port.
4. Connect and apply clean instrument air at 35 psig (241 kPa gage) to the
instrument air inlet fitting.
5. Observe the manometer reading. The reading should be from 10 to 13
inches, Water Column. Locate and correct leaks if the reading is less
than 10 inches WC.
9-28
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
REPAIR ELECTRONICS
HOUSING
Use the following procedures to remove damaged components from the OCX
8800 electronics housing and to install new replacement parts. Disassemble
the unit only as needed to replace damaged components. Use the assembly
procedures that apply to install replacement parts and reassemble the unit.
Electronics Housing
Disassembly
Remove Cover
1. See Figure 9-24. Loosen screw (1) and slide locking clip (2) away from
cover (3). Retighten screw (1).
2. With two hands or strap wrench, turn cover (3) counterclockwise to
loosen. Unthread and remove cover.
3. Inspect cover gasket (4) for wear or damage. Replace cover gasket if
damaged.
Remove Flash PROM
Electrostatic discharge (ESD) protection is required to avoid damage to the electronic
circuits.
1. Locate Flash PROM access port in electronics stack (5, Figure 9-24).
2. Use suitable IC removal tool to remove Flash PROM (6).
Remove LOI Module and Board
1. Remove three screws (7, Figure 9-24).
2. Carefully lift LOI module (8) from LOI board (9). Note the location of LOI
connector (10).
3. Remove two screws (11) and lockwashers (12). Remove LOI board (9).
9-29
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-24. Removal/Installation of Electronics Housing Components
Ana
lyti
cal
8
11
7
12
10
3
9
13
6
14
5
15
4
16
Screw
Locking Clip
Cover
O-ring
Electronics Stack
Flash PROM
Screw
LOI Module
LOI Board
LOI Connector
Screw
Lockwasher
Screw
Lockwasher
Solenoid Valve (3 way)
Solenoid Valve
2
1
37390037
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Remove Electronics Stack
1. Unplug power cable, signal cable, and solenoid lead connectors from
terminals of electronics stack (5, Figure 9-24).
2. Remove two screws (13) and lockwashers (14).
3. Remove electronics stack (5).
9-30
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Remove Solenoid Valves
1. Disconnect solenoid leads from mating terminal connector.
2. Remove top nut of solenoid valve (15 or 16, Figure 9-24).
3. Remove the solenoid coil assembly and washer.
4. Unthread and remove solenoid valve base.
Remove EMI Filter and Terminal Block
1. Disconnect EMI filter wiring (Figure 9-25) at terminal block (3).
2. Disconnect EMI filter wiring at AC power input terminal block on
electronic stack.
3. Unbolt and remove EMI filter (1) from electronic stack.
4. Remove ground wire (2) from terminal block (3).
5. Unbolt and remove terminal block (3) from electronic stack.
Figure 9-25. Removal/
Installation of EMI Filter
Electronics Housing
Assembly
Install EMI Filter and Terminal Block
1. Install replacement EMI filter (1, Figure 9-25) and/or terminal block (3)
on electronic stack.
2. Refer to wiring details in Figure 9-25. Connect EMI filter wiring and
ground wire (2) at terminal block (3).
3. Connect EMI filter wiring at AC power input terminal block on electronic
stack.
9-31
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Install Solenoid Valves
1. Disassemble replacement solenoid valve (15 or 16, Figure 9-24).
2. Install new solenoid valve base. Be careful not to overtighten.
3. Install new washer and solenoid coil assembly and secure with nut.
4. Connect the solenoid leads to the proper terminations on the solenoid
power terminal block (Figure 9-27).
Install Electronics Stack
1. Install electronics stack (5, Figure 9-24) and secure with lockwashers
(14) and screws (13).
2. See Figure 9-26 and Figure 9-27. Reconnect power cable, signal cable,
and solenoid lead connectors to electronics stack terminals.
Install LOI Module and Board
1. Install LOI board (9, Figure 9-24) and secure with two screws (11) and
lockwashers (12).
2. Note the location of the LOI connector (10). Plug LOI module (8) and
connector into one of the four mating receptacles provided.
3. Install three screws (7) to secure the LOI module.
9-32
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-26. Electronics Housing Cable Connections
9-33
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-27. Solenoid
Power Terminals
SOL 2
SOL 3
SOL 4
SOL 1
TOP VIEW
SOL 4
CO Test Gas
SOL 3
SOL 2
High O2 Test Gas
Low O2 Test Gas
SOL 1
Instrument Air
#1
37390033
#1
Install Cover
1. If removed, install cover gasket (4, Figure 9-24). Screw cover (3) onto
electronics housing. Tighten cover firmly. Align locking clip (2) with gap
between cover ribs.
2. Loosen screw (1) and slide locking clip (2) fully into gap between cover
ribs. Retighten screw (1).
9-34
Instruction Manual
IM-106-880, Rev 2.0
September 2009
REPLACE TUBE
FITTINGS
OCX 8800
The OCX transmitter housings have special tube fittings that, if clogged or
damaged, must be replaced with the same type of fitting. The special tube
fittings have alpha or numeric codes etched on the fitting. Unetched tube
fittings are standard 1/4 inch, stainless steel fittings.
‘E’ Type Fitting
The ‘E’ type fitting is an eductor drive air fitting for the OCX 8800 general
purpose sensor housing. It is a 1/8 inch tube fitting with a built-in 0.011
inch restrictor orifice. It seats in a threaded base port inside the housing.
‘R’ Type Fitting
The ‘R’ type fitting is a reference air line fitting for the general purpose and
hazardous area sensor housings. This is a 1/4 inch tube fitting with a
built-in 0.007 inch restrictor orifice.
Remove Tube Fittings
The OCX construction includes pipe thread sealant to seal fittings in all ports
that pass through to an outer wall of the instrument housing base. Use the
following instructions to loosen and remove tube fittings that are secured with
pipe thread sealant.
Use heat resistant gloves when removing a damaged tube fitting. The pipe threads are
bonded with a pipe thread sealant. The thread sealant softens at 450°F (232°C). The
heated parts can cause severe burns.
1. Secure sensor housing (1, Figure 9-28) or electronics housing (2) in soft
(plastic, wood, or brass) vice jaws.
2. To soften the pipe thread sealant, use a propane torch to heat the tube
fitting (3, 4, or 5) to 450°F (232°C), minimum.
3. While heating the tube fitting, use a wrench to apply removal torque until
the pipe thread sealant softens. Remove and discard the used fitting.
4. Use MEK or methylene chloride solvent to clean thread sealant residue
from the internal pipe threads in the housing. Refer to applicable MSDS
sheet for solvent handling precautions.
9-35
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure 9-28. Removal
of Tube Fittings
5
3
4
1.
2.
3.
4.
5.
Sensor Housing
Electronics Housing
Tube Fitting
Tube Fitting (Type R)
Tube Fitting (Type E)
1
3
3
Install Tube Fittings
37390070
3
2
1. Verify that the replacement tube fitting is identical to the item removed.
Special fittings are etched with code markings.
2. Apply pipe thread sealant (Loctite #567) to the mating threads of the
tube fitting. Do not apply sealant to the first turn of the external pipe
threads.
3. Install and tighten the tube fitting in the mating port of sensor or
electronics housing.
9-36
Instruction Manual
IM-106-880, Rev 2.0
October 2009
Section 10
OCX 8800
Replacement Parts
Sensor Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 10-2
Electronics Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 10-6
O2 Cell and Heater Strut Assembly . . . . . . . . . . . . . . . . . page 10-9
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
SENSOR HOUSING
Figure 10-1. Sensor Housing Components (Sheet 1 of 2)
3
2
4
1
5
11
6
7
8
9
10
37390072
12
(Requires
item 13 for
assembly)
10-2
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Index No.
Part Number
1
5R10190G02
5R10190G03
6P00177H01
4851B46G03
1A99786H01
6P00163H01
1A99746H02
1A99749H01
1A99747H01
5R10200H01
6A00123G01
6P00155H02
1A98765H02
1A99520H01
2
3
4
5
6
7
8
9
10
11
12
13
Description
O2 Cell and Heater Assembly, Standard Cell
O2 Cell and Heater Assembly, High Sulfur Cell
Heater Insulator, Mica
Combustibles Sensor Replacement Kit
Heater Leads Insulator, 14.5 inches long
COe Insulator
Band Heater
Thermocouple
Elbow
Eductor
CJC Sensor (RTD assembly, ring type)
Insulator
Heater Rod (2 required)
Watlube Heater Release Agent
10-3
Instruction Manual
OCX 8800
Figure 10-2. Sensor Housing Components (Sheet 2 of 2)
10-4
IM-106-880, Rev 2.0
October 2009
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Index No.
Part Number
Description
1
2
3
1A99089H02
5R10246H06
1A98448H02
Cover Gasket (O-ring)
Blowback Filter, 5 Micron, Stainless Steel
O-ring
4
5R10247H01
Fitting
5
5R10183H02
Tube, Sample, 18 in. (457 mm) 316 Stainless steel
5R10183H06
Tube, Sample, 18 in. (457 mm) Inconel 600
5R10227G01
Tube, Sample, 18 in. (457 mm) Ceramic
5R10183H03
Tube, Sample, 3 ft. (0.91 m) 316 Stainless steel
5R10183H07
Tube, Sample, 3 ft. (0.91 m) Inconel 600
5R10227G02
Tube, Sample, 3 ft. (0.91 m) Ceramic
5R10183H04
Tube, Sample, 6 ft. (1.83 m) 316 Stainless steel
5R10183H08
Tube, Sample, 6 ft. (1.83 m) Inconel 600
5R10183H05
Tube, Sample, 9 ft. (2.7 m) 316 Stainless steel
5R10183H09
Tube, Sample, 9 ft. (2.7 m) Inconel 600
6
5R10183H01
Tube, Exhaust
7
5R10185H07
COe Extractive Tube
8
5R10185H08
Dilution Air Tube
9
5R10185H03
Eductor Drive Air Tube
10
5R10185H04
Reference Air Tube
11
6A00146G01
Heater Cable Assembly, Remote Electronics, 20 ft (6 m)
6A00146G02
Heater Cable Assembly, Remote Electronics, 40 ft (12 m)
11A
12
6A00146G03
Heater Cable Assembly, Remote Electronics, 60 ft (18 m)
6A00146G04
Heater Cable Assembly, Remote Electronics, 80 ft (24 m)
6A00146G05
Heater Cable Assembly, Remote Electronics, 100 ft (30 m)
6A00146G06
Heater Cable Assembly, Remote Electronics, 150 ft (45 m)
6A00147G01
Signal Cable Assembly, Remote Electronics, 20 ft (6 m)
6A00147G02
Signal Cable Assembly, Remote Electronics, 40 ft (12 m)
6A00147G03
Signal Cable Assembly, Remote Electronics, 60 ft (18 m)
6A00147G04
Signal Cable Assembly, Remote Electronics, 80 ft (24 m)
6A00147G05
Signal Cable Assembly, Remote Electronics, 100 ft (30 m)
6A00147G06
Signal Cable Assembly, Remote Electronics, 150 ft (45 m)
1A99762H02
In Situ Filter, 10 Micron (Stainless Steel Sample Tube only)
6P00349H01
Hasteloy In Situ Filter, 10 Micron, High Temperature (Stainless Steel and Inconel Sample
Tubes only)
In Situ Filter, 20 Micron, High Surface Area
13
6P00162H01
Flange Insulator (optional)
14
3535B18H02
Flange Gasket, ANSI
3535B45H01
Flange Gasket, DIN
1A99762H03
15
5R10279G01
Tube Fitting, Type "R"
16
771B870H04
Tube Fitting, Standard
17
5R10279G02
Tube Fitting, Type "E"
10-5
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
ELECTRONICS
HOUSING
Figure 10-3. Electronics Housing Components
8
9
10
1
5
4
2
3
7
37390054
6
10-6
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Index No.
Part Number
1
2
3
4
1A97902H01
1A97905H02
1A97905H01
6A00132G01
6A00387G01
1A97913H06
1A99766H01
1A99766H02
1A99089H02
5R10219G01
5R10199G01
6A00115G02
1A99112H05
5R10235G01
5
6
7
7A
8
9
10
Description
Hose
Solenoid Valve, 3-Way
Solenoid Valve, Test Gas
Electronics Stack, HART
Electronics Stack, Fieldbus
Fuse (F1 and F6), 10 Amp, 250 VAC
Fuse (F3), 4 Amp, 250 VAC
Fuse (F4), 8 Amp, 250 VAC
Cover Gasket (O-ring)
Cover, Blind
Cover, Window
LOI Module
LOI Connector
LOI Board
10-7
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
Figure 10-4. EMI Filter and Terminal Block
Blue
Brown
Blue
Green
Brown
Green
Green
1
37390083
2
3
10-8
Index No.
Part Number
1
2
3
1A98467H01
5R10238G01
1A99714H01
Description
Filter, EMI
Ground Wire
Terminal Block
Instruction Manual
IM-106-880, Rev 2.0
October 2009
OCX 8800
O2 CELL AND HEATER
STRUT ASSEMBLY
Figure 10-5. O2 Cell and Heater Strut Assembly
1
2
3
4
37390055
7
5
6
Index No.
1
2
3
4
5
6
7
Part Number
4851B44G01
5R10211G02
Ref
Ref
Ref
Ref
4851B45G01
4851B45G03
Description
Contact and Thermocouple Assembly
Heater Strut Assembly
Heater Tube
Gasket (part of O2 Cell Replacement Kit, item 7)
O2 Cell (part of O2 Cell Replacement Kit, item 7)
Screw (part of O2 Cell Replacement Kit, item 7)
O2 Cell Replacement Kit, Standard Sensing Cell
O2 Cell Replacement Kit, High Sulfur Cell
10-9
Instruction Manual
OCX 8800
10-10
IM-106-880, Rev 2.0
October 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
Appendix A
OCX 8800
Safety Data
Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page A-2
Safety Data Sheet for Ceramic Fiber Products . . . . . . . . page A-24
High Pressure Gas Cylinders . . . . . . . . . . . . . . . . . . . . . . page A-30
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SAFETY INSTRUCTIONS
IMPORTANT
SAFETY INSTRUCTIONS FOR THE WIRING
AND INSTALLATION OF THIS APPARATUS
The following safety instructions apply specifically to all EU member
states. They should be strictly adhered to in order to assure compliance
with the Low Voltage Directive. Non-EU states should also comply with
the following unless superseded by local or National Standards.
1. Adequate earth connections should be made to all earthing points,
internal and external, where provided.
2. After installation or troubleshooting, all safety covers and safety grounds
must be replaced. The integrity of all earth terminals must be maintained
at all times.
3. Mains supply cords should comply with the requirements of IEC227 or
IEC245.
4. All wiring shall be suitable for use in an ambient temperature of greater
than 75°C.
5. All cable glands used should be of such internal dimensions as to
provide adequate cable anchorage.
6. To ensure safe operation of this equipment, connection to the mains
supply should only be made through a circuit breaker which will
disconnect all circuits carrying conductors during a fault situation. The
circuit breaker may also include a mechanically operated isolating
switch. If not, then another means of disconnecting the equipment from
the supply must be provided and clearly marked as such. Circuit
breakers or switches must comply with a recognized standard such as
IEC947. All wiring must conform with any local standards.
7. Where equipment or covers are marked with the symbol
to the right, hazardous voltages are likely to be present
beneath. These covers should only be removed when
power is removed from the equipment - and then only
by trained service personnel.
8. Where equipment or covers are marked with the symbol
to the right, there is a danger from hot surfaces beneath.
These covers should only be removed by trained
service personnel when power is removed from the
equipment. Certain surfaces may remain hot to the
touch.
9. Where equipment or covers are marked with the symbol
to the right, refer to the Operator Manual for instructions.
10. All graphical symbols used in this product are from one
or more of the following standards: EN61010-1, IEC417,
and ISO3864.
11. Where equipment or labels are marked "Do Not Open While Energized"
or similar, there is a danger of ignition in areas where an explosive
atmosphere is present. This equipment should only be opened when
power is removed and adequate time as specified on the label or in the
instruction manual has been allowed for the equipment to cool down and then only by trained service personnel.
A-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
DŮLEŽITÉ
Bezpečnostní pokyny pro zapojení a instalaci zařízení
Následující bezpečnostní pokyny se speciálně vztahují na všechny
členské státy EU. Pokyny by měly být přísně dodržovány, aby se
zajistilo splnění Směrnice o nízkém napětí. Pokud nejsou pokyny
nahrazeny místními či národními normami, měly by je dodržovat i
nečlenské státy EU.
1. U všech zemnicích bodů, interních a externích, by mělo být vytvořeno
odpovídající uzemnění.
2. Po instalaci nebo odstranění problémů musí být vyměněny všechny
bezpečnostní kryty a uzemnění. Vždy musí být zajištěna integrita všech
zemnicích svorek.
3. Sí˙ové kabely by měly odpovídat požadavkům normy IEC227 nebo
IEC245.
4. Všechna zapojení by měla být vhodná pro použití při vnějších teplotách
nad 75 °C.
5. Všechna použitá kabelová hrdla by měla mít takové vnitřní rozměry, aby
zajistila odpovídající zakotvení kabelu.
6. Správnou činnost zařízení zajistíte, vytvoříte-li připojení k napájecímu
zdroji pouze přes jistič, který v případě poruchy odpojí všechny obvody
s konduktory. Jistič může také obsahovat mechanický odpojovač.
Pokud ho neobsahuje, musí být zajištěn a jasně označen jiný způsob
odpojení zařízení od zdroje. Jističe nebo přepínače musí odpovídat
uznávaným normám, např. IEC947. Všechna zapojení musí odpovídat
místním normám.
7. Je-li zařízení nebo kryt označen symbolem na pravé
straně, pravděpodobně se uvnitř nachází nebezpečné
napětí. Tyto kryty by měly být sejmuty pouze po
odpojení zařízení od zdroje - a to pouze kvalifikovaným
zaměstnancem.
8. Je-li zařízení nebo kryt označen symbolem na pravé
straně, povrch zařízení může být velmi horký. Tyto kryty
by měly být sejmuty pouze kvalifikovaným
zaměstnancem po odpojení zařízení od zdroje. Některé
povrchy mohou být stále horké.
9. Je-li zařízení nebo kryt označen symbolem na pravé
straně, přečtěte si nejprve instrukce v návodu k obsluze.
10. Všechny grafické symboly používané u výrobku
pocházejí z následujících norem: EN61010-1, IEC417 a
ISO3864.
11. Pokud je zařízení nebo štítky označeno varováním „Je-li zařízení pod
napětím, neotvírejte jej“ či podobným, může dojít ve výbušném prostředí
ke vznícení. Zařízení lze otevřít pouze po jeho odpojení od zdroje a
ponechání dostatečného času na vychladnutí, jak je uvedeno na štítku
nebo v návodu k obsluze - a to pouze kvalifikovaným zaměstnancem.
A-3
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
VIGTIGT
Sikkerhedsinstruktion for tilslutning og installering af dette udstyr.
Følgende sikkerhedsinstruktioner gælder specifikt i alle
EU-medlemslande. Instruktionerne skal nøje følges for overholdelse af
Lavsspændingsdirektivet og bør også følges i ikke EU-lande medmindre
andet er specificeret af lokale eller nationale standarder.
1. Passende jordforbindelser skal tilsluttes alle jordklemmer, interne og
eksterne, hvor disse forefindes.
2. Efter installation eller fejlfinding skal alle sikkerhedsdæksler og
jordforbindelser reetableres.
3. Forsyningskabler skal opfylde krav specificeret i IEC227 eller IEC245.
4. Alle ledningstilslutninger skal være konstrueret til omgivelsestemperatur
højere end 75°C.
5. Alle benyttede kabelforskruninger skal have en intern dimension, så
passende kabelaflastning kan etableres.
6. For opnåelse af sikker drift og betjening skal der skabes beskyttelse
mod indirekte berøring gennem afbryder (min. 10A), som vil afbryde alle
kredsløb med elektriske ledere i fejlsitua-tion. Afbryderen skal indholde
en mekanisk betjent kontakt. Hvis ikke skal anden form for afbryder
mellem forsyning og udstyr benyttes og mærkes som sådan. Afbrydere
eller kontakter skal overholde en kendt standard som IEC947.
7. Hvor udstyr eller dæksler er mærket med dette symbol,
er farlige spændinger normalt forekom-mende bagved.
Disse dæksler bør kun afmonteres, når
forsyningsspændingen er frakoblet - og da kun af
instrueret servicepersonale.
8. Hvor udstyr eller dæksler er mærket med dette symbol,
forefindes meget varme overflader bagved. Disse
dæksler bør kun afmonteres af instrueret
servicepersonale, når forsyningsspænding er frakoblet.
Visse overflader vil stadig være for varme at berøre i op
til 45 minutter efter frakobling.
9. Hvor udstyr eller dæksler er mærket med dette symbol,
se da i betjeningsmanual for instruktion.
10. Alle benyttede grafiske symboler i dette udstyr findes i
én eller flere af følgende standarder:- EN61010-1,
IEC417 & ISO3864.
11. Når udstyr eller etiketter er mærket "Må ikke åbnes, mens udstyret
tilføres strøm” eller lignende, er der fare for antændelse i områder, hvor
der er en eksplosiv atmosfære. Dette udstyr må kun åbnes, når
strømkilden er fjernet, og der er gået tilstrækkelig tid til, at udstyret er
kølet ned. Den nødvendige tid hertil er angivet på etiketten eller i
brugervejledningen. Udstyret må kun åbnes af en faglært person.
A-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
BELANGRIJK
Veiligheidsvoorschriften voor de aansluiting en installatie van dit toestel.
De hierna volgende veiligheidsvoorschriften zijn vooral bedoeld voor de
EU lidstaten. Hier moet aan gehouden worden om de onderworpenheid
aan de Laag Spannings Richtlijn (Low Voltage Directive) te verzekeren.
Niet EU staten zouden deze richtlijnen moeten volgen tenzij zij reeds
achterhaald zouden zijn door plaatselijke of nationale voorschriften.
1. Degelijke aardingsaansluitingen moeten gemaakt worden naar alle
voorziene aardpunten, intern en extern.
2. Na installatie of controle moeten alle veiligheidsdeksels en -aardingen
terug geplaatst worden. Ten alle tijde moet de betrouwbaarheid van de
aarding behouden blijven.
3. Voedingskabels moeten onderworpen zijn aan de IEC227 of de IEC245
voorschriften.
4. Alle bekabeling moet geschikt zijn voor het gebruik in
omgevingstemperaturen, hoger dan 75°C.
5. Alle wartels moeten zo gedimensioneerd zijn dat een degelijke kabel
bevestiging verzekerd is.
6. Om de veilige werking van dit toestel te verzekeren, moet de voeding
door een stroomonderbreker gevoerd worden (min 10A) welke alle
draden van de voeding moet onderbreken. De stroomonderbreker mag
een mechanische schakelaar bevatten. Zoniet moet een andere
mogelijkheid bestaan om de voedingsspanning van het toestel te halen
en ook duidelijk zo zijn aangegeven. Stroomonderbrekers of
schakelaars moeten onderworpen zijn aan een erkende standaard
zoals IEC947.
7. Waar toestellen of deksels aangegeven staan met het
symbool is er meestal hoogspanning aanwezig. Deze
deksels mogen enkel verwijderd worden nadat de
voedingsspanning werd afgelegd en enkel door getraind
onderhoudspersoneel.
8. Waar toestellen of deksels aangegeven staan met het
symbool is er gevaar voor hete oppervlakken. Deze
deksels mogen enkel verwijderd worden door getraind
onderhoudspersoneel nadat de voedingsspanning
verwijderd werd. Sommige oppper-vlakken kunnen 45
minuten later nog steeds heet aanvoelen.
9. Waar toestellen of deksels aangegeven staan met het
symbool gelieve het handboek te raadplegen.
10. Alle grafische symbolen gebruikt in dit produkt, zijn
afkomstig uit een of meer van devolgende standaards:
EN61010-1, IEC417 en ISO3864.
11. Op plaatsen waar uitrusting of etiketten zijn voorzien van een melding
als "Niet openen bij aanwezigheid van spanning" bestaat er
brandgevaar in omgevingen waar een explosieve atmosfeer aanwezig
is. Deze uitrusting mag uitsluitend worden geopend wanneer het niet
meer onder spanning staat en de uitrusting gedurende de
voorgeschreven tijd op het etiket of in de handleiding is afgekoeld - en
dan uitsluitend door voldoende opgeleid onderhoudspersoneel.
A-5
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
BELANGRIJK
Veiligheidsinstructies voor de bedrading en installatie van dit apparaat.
Voor alle EU lidstaten zijn de volgende veiligheidsinstructies van
toepassing. Om aan de geldende richtlijnen voor laagspanning te
voldoen dient men zich hieraan strikt te houden. Ook niet EU lidstaten
dienen zich aan het volgende te houden, tenzij de lokale wetgeving
anders voorschrijft.
1. Alle voorziene interne- en externe aardaansluitingen dienen op
adequate wijze aangesloten te worden.
2. Na installatie, onderhouds- of reparatie werkzaamheden dienen alle
beschermdeksels /kappen en aardingen om reden van veiligheid weer
aangebracht te worden.
3. Voedingskabels dienen te voldoen aan de vereisten van de normen
IEC 227 of IEC 245.
4. Alle bedrading dient geschikt te zijn voor gebruik bij een omgevings
temperatuur boven 75°C.
5. Alle gebruikte kabelwartels dienen dusdanige inwendige afmetingen te
hebben dat een adequate verankering van de kabel wordt verkregen.
6. Om een veilige werking van de apparatuur te waarborgen dient de
voeding uitsluitend plaats te vinden via een meerpolige automatische
zekering (min.10A) die alle spanningvoerende geleiders verbreekt
indien een foutconditie optreedt. Deze automatische zekering mag ook
voorzien zijn van een mechanisch bediende schakelaar. Bij het
ontbreken van deze voorziening dient een andere als zodanig duidelijk
aangegeven mogelijkheid aanwezig te zijn om de spanning van de
apparatuur af te schakelen. Zekeringen en schakelaars dienen te
voldoen aan een erkende standaard zoals IEC 947.
7. Waar de apparatuur of de beschermdeksels/kappen
gemarkeerd zijn met het volgende symbool, kunnen
zich hieronder spanning voerende delen bevinden die
gevaar op kunnen leveren. Deze beschermdeksels/
kappen mogen uitsluitend verwijderd worden door
getraind personeel als de spanning is afgeschakeld.
8. Waar de apparatuur of de beschermdeksels/kappen
gemarkeerd zijn met het volgende symbool, kunnen
zich hieronder hete oppervlakken of onderdelen
bevinden. Bepaalde delen kunnen mogelijk na 45 min.
nog te heet zijn om aan te raken.
9. Waar de apparatuur of de beschermdeksels/kappen
gemarkeerd zijn met het volgende symbool, dient men
de bedieningshandleiding te raadplegen.
10. Alle grafische symbolen gebruikt bij dit produkt zijn
volgens een of meer van de volgende standaarden:
EN 61010-1, IEC 417 & ISO 3864.
11. Op plaatsen waar uitrusting of etiketten zijn voorzien van een melding als
"Niet openen bij aanwezigheid van spanning" bestaat er brandgevaar in
omgevingen waar een explosieve atmosfeer aanwezig is. Deze uitrusting
mag uitsluitend worden geopend wanneer het niet meer onder spanning
staat en de uitrusting gedurende de voorgeschreven tijd op het etiket of in
de handleiding is afgekoeld - en dan uitsluitend door voldoende opgeleid
onderhoudspersoneel.
A-6
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
WICHTIG
Sicherheitshinweise für den Anschluß und die Installation dieser Geräte.
Die folgenden Sicherheitshinweise sind in allen Mitgliederstaaten der
europäischen Gemeinschaft gültig. Sie müssen strickt eingehalten
werden, um der Niederspannungsrichtlinie zu genügen.
Nichtmitgliedsstaaten der europäischen Gemeinschaft sollten die
national gültigen Normen und Richtlinien einhalten.
1. Alle intern und extern vorgesehenen Erdungen der Geräte müssen
ausgeführt werden.
2. Nach Installation, Reparatur oder sonstigen Eingriffen in das Gerät müssen
alle Sicherheitsabdeckungen und Erdungen wieder installiert werden. Die
Funktion aller Erdverbindungen darf zu keinem Zeitpunkt gestört sein.
3. Die Netzspannungsversorgung muß den Anforderungen der IEC227
oder IEC245 genügen.
4. Alle Verdrahtungen sollten mindestens bis 75°C ihre Funktion dauerhaft
erfüllen.
5. Alle Kabeldurchführungen und Kabelverschraubungen sollten in Ihrer
Dimensionierung so gewählt werden, daß diese eine sichere
Verkabelung des Gerätes ermöglichen.
6. Um eine sichere Funktion des Gerätes zu gewährleisten, muß die
Spannungsversorgung über mindestens 10 A abgesichert sein. Im
Fehlerfall muß dadurch gewährleistet sein, daß die
Spannungsversorgung zum Gerät bzw. zu den Geräten unterbrochen
wird. Ein mechanischer Schutzschalter kann in dieses System integriert
werden. Falls eine derartige Vorrichtung nicht vorhanden ist, muß eine
andere Möglichkeit zur Unterbrechung der Spannungszufuhr
gewährleistet werden mit Hinweisen deutlich gekennzeichnet werden.
Ein solcher Mechanismus zur Spannungsunterbrechung muß mit den
Normen und Richtlinien für die allgemeine Installation von
Elektrogeräten, wie zum Beispiel der IEC947, übereinstimmen.
7. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, die eine
gefährliche (Netzspannung) Spannung führen. Die Abdeckungen dürfen
nur entfernt werden, wenn die Versorgungsspannung unterbrochen wurde.
Nur geschultes Personal darf an diesen Geräten Arbeiten ausführen.
8. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, in
bzw. unter denen heiße Teile vorhanden sind. Die Abdeckungen dürfen
nur entfernt werden, wenn die Versorgungsspannung unterbrochen
wurde. Nur geschultes Personal darf an diesen Geräten Arbeiten
ausführen. Bis 45 Minuten nach dem Unterbrechen der Netzzufuhr
können derartig Teile noch über eine erhöhte Temperatur verfügen.
9. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, bei
denen vor dem Eingriff die entsprechenden Kapitel im Handbuch
sorgfältig durchgelesen werden müssen.
10. Alle in diesem Gerät verwendeten graphischen Symbole entspringen
einem oder mehreren der nachfolgend aufgeführten Standards:
EN61010-1, IEC417 & ISO3864.
11. Wenn Geräte oder Etiketten mit dem Hinweis "Nicht unter Spannung
öffnen" oder ähnlichen Hinweisen versehen sind, besteht in
explosionsgefährdeten Umgebungen Entzündungsgefahr. Das Gerät
darf nur geöffnet werden, wenn es nicht ans Stromnetz angeschlossen
und entsprechend der Zeitangaben auf dem Etikett bzw. in der
Betriebsanleitung ausreichend abgekühlt ist. Das Gerät darf nur von
geschultem Service-Personal geöffnet werden.
A-7
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
ΣΗΜΑΝΤΙΚΟ
Οδηγιεσ ασφαλειασ για την καλωδιωση και εγκατασταση τησ συσκευησ
Οι ακόλουθες οδηγίες ασφαλείας εφαρµόζονται ειδικά για όλες τις χώρες
µέλη της Ευρωπαϊκής Κοινότητας. Θα πρέπει να ακολουθούνται αυστηρά
ώστε να εξασφαλιστεί η συµβατότητα µε τις οδηγίες για τη Χαµηλή Τάση.
Χώρες που δεν είναι µέλη της Ευρωπαϊκής Κοινότητας θα πρέπει επίσης
να ακολουθούν τις οδηγίες, εκτός εάν αυτές αντικαθίστανται από τα
Τοπικά ή Εθνικά πρότυπα.
1. Επαρκείς συνδέσεις γείωσης θα πρέπει να γίνονται σε όλα τα σηµεία
γείωσης, εσωτερικά και εξωτερικά, όπου υπάρχουν.
2. Μετά την εγκατάσταση ή την αντιµετώπιση σφαλµάτων, όλα τα καλύµµατα
ασφαλείας και οι γειώσεις ασφαλείας πρέπει να επανεγκαθίστανται. Η καλή
κατάσταση όλων των ακροδεκτών γείωσης πρέπει να συντηρείται διαρκώς.
3. Τα καλώδια τροφοδοσίας πρέπει να πληρούν τις απαιτήσεις των IEC227
ή IEC245.
4. Όλες οι καλωδιώσεις θα πρέπει να είναι κατάλληλες για χρήση σε
θερµοκρασία χώρου υψηλότερη από 75°C.
5. Όλοι οι στυπιοθλίπτες θα πρέπει να είναι τέτοιων εσωτερικών
διαστάσεων, ώστε να παρέχουν επαρκή στερέωση των καλωδίων.
6. Για τη διασφάλιση ασφαλούς λειτουργίας αυτής της συσκευής, η σύνδεση
τροφοδοσίας θα πρέπει να γίνεται µόνο µέσω ασφαλειοδιακόπτη, ο
οποίος θα αποσυνδέει όλους τους ηλεκτροφόρους αγωγούς των
κυκλωµάτων, στη διάρκεια κατάστασης σφάλµατος. Ο ασφαλειοδιακόπτης
µπορεί επίσης να περιλαµβάνει µηχανικό διακόπτη αποµόνωσης. Εάν δεν
περιλαµβάνει, τότε άλλα µέσα αποσύνδεσης της συσκευής από την
τροφοδοσία πρέπει να παροχηθούν και να σηµανθούν σαφώς ως τέτοια.
Οι ασφαλειοδιακόπτες ή διακόπτες πρέπει να συµµορφώνονται µε
αναγνωρισµένα πρότυπα όπως το IEC947. Όλες οι καλωδιώσεις πρέπει
να συµµορφώνονται µε τα τοπικά πρότυπα.
7. Όπου συσκευές ή καλύµµατα είναι σηµασµένα µε το
σύµβολο που εικονίζεται δεξιά, επικίνδυνες τάσεις
ενυπάρχουν κάτω από αυτά. Αυτά τα καλύµµατα θα
πρέπει να αφαιρούνται µόνο όταν έχει αφαιρεθεί η
τροφοδοσία από τη συσκευή - και στην περίπτωση αυτή,
µόνο από ειδικευµένο τεχνικό προσωπικό.
8. Όπου συσκευές ή καλύµµατα είναι σηµασµένα µε το
σύµβολο που εικονίζεται δεξιά, υπάρχει κίνδυνος από
καυτές επιφάνειες κάτω από αυτά. Τέτοια καλύµµατα θα
πρέπει να αφαιρούνται µόνο από ειδικευµένο τεχνικό
προσωπικό, όταν έχει αφαιρεθεί η τροφοδοσία από τη
συσκευή. Κάποιες επιφάνειες µπορούν να παραµένουν ζεστές στην αφή.
9. Όπου συσκευές ή καλύµµατα είναι σηµασµένα µε το
σύµβολο που εικονίζεται δεξιά, ανατρέξτε στις οδηγίες
χρήσης της συσκευής.
10. Όλα τα γραφικά σύµβολα που χρησιµοποιούνται σε αυτό
το προϊόν είναι από ένα ή περισσότερα από τα εξής
πρότυπα: EN61010-1, IEC417 και ISO3864.
11. Όπου συσκευή ή ετικέτα είναι σηµασµένη µε την ένδειξη "Μην ανοίγετε ενώ
βρίσκεται σε λειτουργία" ή άλλη παρόµοια, υπάρχει κίνδυνος ανάφλεξης σε
περιοχές µε εκρηκτική ατµόσφαιρα. Ο παρών εξοπλισµός πρέπει να
ανοίγεται µόνο όταν είναι εκτός ρεύµατος και αφού παρέλθει ο κατάλληλος
χρόνος που αναγράφεται στην ετικέτα ή στο εγχειρίδιο οδηγιών ώστε να
ψυχθεί και µόνο από εκπαιδευµένο προσωπικό συντήρησης.
A-8
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
OLULINE TEAVE
Juhtmestiku ja seadme paigaldamisega seotud ohutusjuhised
Alljärgnevad ohutusjuhised rakenduvad eriti kõigi Euroopa Liidu
liikmesriikide suhtes. Antud juhiseid tuleb täpselt järgida, et kindlustada
vastavus madalpinge direktiiviga. Euroopa Liitu mittekuuluvad riigid
peavad samuti alljärgnevaid juhiseid järgima, va juhul, kui on olemas
vastavad kohalikud riiklikud standardid.
1. Ettenähtud maanduspunktide, nii sisemiste kui väliste jaoks tuleb
tagada nõuetekohased maaühendused.
2. Pärast paigaldamist või rikketuvastust tuleb kõik turvaümbrised ja
turvamaandused uuesti oma kohale seada. Kõigis olukordades tuleb
säilitada kõigi maandusklemmide terviklikkus.
3. Toitejuhtmed peavad vastama IEC227 või IEC245 nõuetele.
4. Kogu juhtmestik peab sobima kasutamiseks üle 75°C õhutemperatuuri
juures.
5. Kõik juhtmetihendid peavad sisemõõtmete poolest tagama
nõuetekohased kaabliühendused.
6. Seadme ohutu töötamise tagamiseks peab ühendus toiteallikaga
toimuma vaid läbi automaatkorgi, mis veaolukorras lülitab välja kõik
voolukandjad. Automaatkorgil võib olla ka mehhaaniliselt reguleeritav
lahklüliti. Vastasel juhul peab seadme toiteallikast lahtiühendamiseks
olema teine ja selgelt osutatud moodus. Automaatkorgid või -lülitid
peavad vastama tunnustatud standarditele nagu nt IEC947. Kogu
juhtmestik peab vastama kohalikele standarditele.
7. Seadmel või ümbristel asuv paremale osutav sümbol
tähistab selle all leiduvat ohtlikku pinget. Selliste
sümbolitega ümbriseid võib eemaldada vaid juhul, kui
seade on toiteallikast lahti ühendatud ning ka siis ainult
vastavate oskustega spetsialisti poolt.
8. Seadmele või ümbristele märgitud paremale osutava
sümboli all valitseb kuumadest pindadest tulenev oht.
Nimetatud sümbolitega ümbriseid võib eemaldada vaid
vastavate oskustega spetsialist, kui seade on
toiteallikast lahti ühendatud. Teatud pinnad võivad
puudutamise jaoks liiga kuumad olla.
9. Seadmel või ümbristel leiduva paremale osutava
sümboli korral vt juhiste jaoks Toimimisjuhendit.
10. Kõik selle toote juures kasutatavad graafilised sümbolid
lähtuvad ühest või enamast järgmistest standarditest:
EN61010-1, IEC417 ja ISO3864.
11. Kui seadmele või siltidele on kirjutatud "Ärge avage voolutarbimine
korral" vms, valitseb plahvatusohtlikus keskkonnas süttimise oht.
Seadet võib avada ainult siis, kui toide on lahti ühendatud ning seadmel
on võimaldatud sildil või kasutusjuhendis osutatud aja jooksul maha
jahtuda -- ning ka sellisel juhul ainult vastavate oskustega spetsialisti
poolt.
A-9
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
TÄRKEÄÄ
Turvallisuusohje, jota on noudatettava tämän laitteen asentamisessa ja
kaapeloinnissa.
Seuraavat ohjeet pätevät erityisesti EU:n jäsenvaltioissa. Niitä täytyy
ehdottomasti noudattaa jotta täytettäisiin EU:n matalajännitedirektiivin
(Low Voltage Directive) yhteensopivuus. Myös EU:hun kuulumattomien
valtioiden tulee nou-dattaa tätä ohjetta, elleivät kansalliset standardit
estä sitä.
1. Riittävät maadoituskytkennät on tehtävä kaikkiin maadoituspisteisiin,
sisäisiin ja ulkoisiin.
2. Asennuksen ja vianetsinnän jälkeen on kaikki suojat ja suojamaat
asennettava takaisin pai-koilleen. Maadoitusliittimen kunnollinen
toiminta täytyy aina ylläpitää.
3. Jännitesyöttöjohtimien täytyy täyttää IEC227 ja IEC245 vaatimukset.
4. Kaikkien johdotuksien tulee toimia >75°C lämpötiloissa.
5. Kaikkien läpivientiholkkien sisähalkaisijan täytyy olla sellainen että
kaapeli lukkiutuu kun-nolla kiinni.
6. Turvallisen toiminnan varmistamiseksi täytyy jännitesyöttö varustaa
turvakytkimellä (min 10A), joka kytkee irti kaikki jännitesyöttöjohtimet
vikatilanteessa. Suojaan täytyy myös sisältyä mekaaninen erotuskytkin.
Jos ei, niin jännitesyöttö on pystyttävä katkaisemaan muilla keinoilla ja
merkittävä siten että se tunnistetaan sellaiseksi. Turvakytkimien tai
kat-kaisimien täytyy täyttää IEC947 standardin vaatimukset
näkyvyydestä.
7. Mikäli laite tai kosketussuoja on merkitty tällä merkillä
on merkinnän takana tai alla hengenvaarallisen
suuruinen jännite. Suojaa ei saa poistaa jänniteen
ollessa kytkettynä laitteeseen ja poistamisen saa
suorittaa vain alan asian-tuntija.
8. Mikäli laite tai kosketussuoja on merkitty tällä merkillä
on merkinnän takana tai alla kuuma pinta. Suojan saa
poistaa vain alan asiantuntija kun jännite-syöttö on
katkaistu. Tällainen pinta voi säilyä kosketuskuumana
jopa 45 mi-nuuttia.
9. Mikäli laite tai kosketussuoja on merkitty tällä merkillä
katso lisäohjeita käyt-töohjekirjasta.
10. Kaikki tässä tuotteessa käytetyt graafiset symbolit ovat
yhdestä tai useammasta seuraavis-ta standardeista:
EN61010-1, IEC417 & ISO3864.
11. Jos laitteessa tai tarrassa on merkintä "Älä avaa, kun virta on kytketty"
tai vastaava, räjähdysvaarallisissa tiloissa on syttymisen vaara. Nämä
laitteet voidaan avata vain silloin, kun virta ei ole kytkettynä ja laitteen
on annettu jäähtyä tarrassa tai oppaassa määritetyn ajan. Tällöinkin
laitteet saa avata vain koulutettu huoltohenkilökunta.
A-10
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
IMPORTANT
Consignes de sécurité concernant le raccordement et l'installation de
cet appareil.
Les consignes de sécurité ci-dessous s'adressent particulièrement à
tous les états membres de la communauté européenne. Elles doivent
être strictement appliquées afin de satisfaire aux directives concernant
la basse tension. Les états non membres de la communauté européenne
doivent également appliquer ces consignes sauf si elles sont en
contradiction avec les standards locaux ou nationaux.
1. Un raccordement adéquat à la terre doit être effectuée à chaque borne
de mise à la terre, interne et externe.
2. Après installation ou dépannage, tous les capots de protection et toutes
les prises de terre doivent être remis en place, toutes les prises de terre
doivent être respectées en permanence.
3. Les câbles d'alimentation électrique doivent être conformes aux normes
IEC227 ou IEC245.
4. Tous les raccordements doivent pouvoir supporter une température
ambiante supérieure à 75°C.
5. Tous les presse-étoupes utilisés doivent avoir un diamètre interne en
rapport avec les câbles afin d'assurer un serrage correct sur ces derniers.
6. Afin de garantir la sécurité du fonctionnement de cet appareil, le
raccordement à l'alimentation électrique doit être réalisé exclusivement
au travers d'un disjoncteur (minimum 10A.) isolant tous les conducteurs
en cas d'anomalie. Ce disjoncteur doit également pouvoir être actionné
manuellement, de façon mécanique. Dans le cas contraire, un autre
système doit être mis en place afin de pouvoir isoler l'appareil et doit
être signalisé comme tel. Disjoncteurs et interrupteurs doivent être
conformes à une norme reconnue telle IEC947.
7. Lorsque les équipements ou les capots affichent le
symbole suivant, cela signifie que des tensions
dangereuses sont présentes. Ces capots ne doivent
être démontés que lorsque l'alimentation est coupée, et
uniquement par un personnel compétent.
8. Lorsque les équipements ou les capots affichent le
symbole suivant, cela signifie que des surfaces
dangereusement chaudes sont présentes. Ces capots ne
doivent être démontés que lorsque l'alimentation est
coupée, et uniquement par un personnel compétent.
Certaines surfaces peuvent rester chaudes jusqu'à
45 mn.
9. Lorsque les équipements ou les capots affichent le
symbole suivant, se reporter au manuel d'instructions.
10. Tous les symboles graphiques utilisés dans ce produit
sont conformes à un ou plusieurs des standards
suivants: EN61010-1, IEC417 & ISO3864.
11. Les équipements comportant une étiquette avec la mention " Ne pas
ouvrir sous tension " ou toute autre mention similaire peuvent créer un
risque d'incendie dans les environnements explosifs. Ces équipements
ne doivent être ouverts que lorsqu'ils sont hors tension et que la durée de
refroidissement requise indiquée sur l'étiquette ou dans le manuel
d'instructions s'est écoulée. En outre ils ne doivent être ouverts que par
un personnel qualifié.
A-11
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
FONTOS
Biztonsági előírások a készülék vezetékeléséhez és üzembeállításához
A következő biztonsági előírások kifejezetten vonatkoznak az összes
EU-tagállamra. Ezeket szigorúan be kell tartani a Kisfeszültségű
irányelvnek való megfelelés biztosításához. A nem EU-tagállamok
szintén tartsák be a következőket, kivéve ha a helyi és nemzeti
szabványok azt másként nem írják elő.
1. A megfelelő földelést biztosítani kell az összes rendelkezésre álló
földelési ponton, legyen az belső vagy külső.
2. Az üzembeállítás vagy hibaelhárítás után az összes biztonsági
burkolatot és biztonsági földvezetéket ki kell cserélni. A földelőkapcsok
sértetlenségét mindig biztosítani kell.
3. A tápvezetékeknek eleget kell tenniük az IEC227 vagy IEC245
szabványokban megfogalmazott követelményeknek.
4. Az összes vezetéknek alkalmasnak kell lennie a 75 °C-nál magasabb
környezeti hőmérséklet melletti használatra.
5. Az összes használt kábelvezető tömszelencének olyan belső
méretűnek kell lennie, hogy biztosítsák a kábelek megfelelő lekötését.
6. A berendezés biztonságos működésének biztosításához az elektromos
hálózathoz való csatlakozást csak megszakítón keresztül szabad
megvalósítani, amely az összes áramot szállító vezetéket bontja
hibahelyzet esetén. A megszakító magában foglalhat egy mechanikusan
működtethető áramtalanító kapcsolót is. Ellenkező esetben biztosítani kell
a berendezés elektromos hálózatról történő lekapcsolásának más módját,
és ezt világosan jelezni kell. A megszakítóknak vagy kapcsolóknak meg
kell felelniük egy elismert szabványnak, például az IEC947 szabványnak.
Az összes vezetéknek meg kell felelnie az összes helyi szabványnak.
7. Ha a berendezés vagy a burkolata a jobb oldalon
látható szimbólummal jelzett, alatta valószínűleg
veszélyes feszültség van jelen. Az ilyen burkolat csak a
berendezés áramtalanítása után távolítható el - és csak
képzett szervizszakember végezheti el.
8. Ha a berendezés vagy a burkolata a jobb oldalon
látható szimbólummal jelzett, fenn áll a veszélye, hogy
alatta forró felületek találhatóak. Az ilyen burkolatot
csak képzett szervizszakember távolíthatja el a
berendezés áramtalanítása után. Bizonyos felületek
érintésre forróak maradhatnak.
9. Ha a berendezés vagy a burkolata a jobb oldalon
látható szimbólummal jelzett, tekintse meg az
Üzemeltetési útmutató arra vonatkozó utasításait.
10. A terméken használt grafikus szimbólumok a következő
szabványok legalább egyikéből származnak:
EN61010-1, IEC417 és ISO3864.
11. Ha a berendezésen vagy a címkéken a „Ne nyissa ki bekapcsolt
állapotban” vagy hasonló felhívás szerepel, robbanásveszélyes
környezetben fennáll a gyulladás veszélye. Ez a berendezés csak
áramtalanítás után nyitható ki, a címkén vagy a kezelési útmutatóban
szereplő, a berendezés lehűlését biztosító megfelelő idői ráhagyás után és csak képzett szervizszakember végezheti el.
A-12
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
IMPORTANTE
Norme di sicurezza per il cablaggio e l'installazione dello strumento.
Le seguenti norme di sicurezza si applicano specificatamente agli stati
membri dell'Unione Europea, la cui stretta osservanza è richiesta per
garantire conformità alla Direttiva del Basso Voltaggio. Esse si
applicano anche agli stati non appartenenti all'Unione Europea, salvo
quanto disposto dalle vigenti normative locali o nazionali.
1. Collegamenti di terra idonei devono essere eseguiti per tutti i punti di
messa a terra interni ed esterni, dove previsti.
2. Dopo l'installazione o la localizzazione dei guasti, assicurarsi che tutti i
coperchi di protezione siano stati collocati e le messa a terra siano
collegate. L'integrità di ciscun morsetto di terra deve essere
costantemente garantita.
3. I cavi di alimentazione della rete devono essere secondo disposizioni
IEC227 o IEC245.
4. L'intero impianto elettrico deve essere adatto per uso in ambiente con
temperature superiore a 75°C.
5. Le dimensioni di tutti i connettori dei cavi utilizzati devono essere tali da
consentire un adeguato ancoraggio al cavo.
6. Per garantire un sicuro funzionamento dello strumento il collegamento alla
rete di alimentazione principale dovrà essere eseguita tramite interruttore
automatico (min.10A), in grado di disattivare tutti i conduttori di circuito in
caso di guasto. Tale interruttore dovrà inoltre prevedere un sezionatore
manuale o altro dispositivo di interruzione dell'alimentazione, chiaramente
identificabile. Gli interruttori dovranno essere conformi agli standard
riconosciuti, quali IEC947.
7. Il simbolo riportato sullo strumento o sui coperchi di
protezione indica probabile presenza di elevati voltaggi.
Tali coperchi di protezione devono essere rimossi
esclusivamente da personale qualificato, dopo aver
tolto alimentazione allo strumento.
8. Il simbolo riportato sullo strumento o sui coperchi di
protezione indica rischio di contatto con superfici ad alta
temperatura. Tali coperchi di protezione devono essere
rimossi esclusivamente da personale qualificato, dopo
aver tolto alimentazione allo strumento. Alcune superfici
possono mantenere temperature elevate per oltre 45 minuti.
9. Se lo strumento o il coperchio di protezione riportano il
simbolo, fare riferimento alle istruzioni del manuale
Operatore.
10. Tutti i simboli grafici utilizzati in questo prodotto sono
previsti da uno o più dei seguenti standard: EN61010-1,
IEC417 e ISO3864.
11. L'indicazione "Non aprire sotto tensione" o simili sull'apparecchiatura o
sulle etichette segnala il pericolo di accensione nelle aree in cui è
presente un'atmosfera esplosiva. L'apparecchiatura può essere aperta
solo quando l'alimentazione è scollegata ed è trascorso il tempo
indicato sull'etichetta o nel manuale delle istruzioni per consentirne il
raffreddamento. L'operazione può essere effettuata esclusivamente da
personale dell'assistenza qualificato.
A-13
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SVARBU
šio prietaiso laidų prijungimo ir instaliacijos saugos instrukcijos
Toliau išvardinti saugumo reikalavimai taikomi konkrečiai visoms ES
šalims narėms. Jų turi būti griežtai paisoma, kad būtų užtikrintai
laikomasi Žemos įtampos direktyvos. Ne ES narės taip pat turi laikytis
toliau pateikiamų reikalavimų nebent juos pakeičia vietiniai ar
Nacionaliniai standartai.
1. Turi būti atliktas tinkamas įžeminimas visuose įžeminimo taškuose,
vidiniuose ir išoriniuose, kur numatyta.
2. Visos apsauginės dangos ir įžemikliai po instaliacijos ar remonto turi
būti pakeisti. Visų įžeminimo terminalų vientisumo priežiūra turi būti
atliekama nuolat.
3. Matinimo tinklo laidai turi atitikti IEC227 ar IEC245 reikalavimus.
4. Visi laidai turi būti tinkami naudojimui aplinkos temperatūtoje,
aukštesnėje nei 75°C.
5. Visi naudojamų kabelių riebokšliai turi būti tokių vidinių matmenų, kad
būtų galimas tinkamas kabelio pritvirtinimas.
6. Saugaus šio prietaiso veikimo užtikrinimui, prijungimas prie maitinimo
tinklo turi būti atliekamas tik per automatinį pertraukiklį, kuris atjungs
visas grandines nešančius konduktorius linijos gedimo metu.
Automatinis pertraukiklis taip pat gali turėti mechaniškai veikiantį
įzoliavimo jungiklį. Jeigu ne, tuomet turi būti nurodytos kitos įrenginio
atjungimo priemonės, ir aiškai pažymėtos, kad jos tokios yra.
Automatiniai perjungikliai ar jungikliai turi atitikti pripažintus standartus,
tokius kaip IEC947. Visi laidai turi atitikti visus vietinius standartus.
7. Kur įrenginys ar dangos yra pažymėti simboliu dešinėje,
žemiau turi būti pavojinga įtampa. Šios dangos turi būti
nuimamos tik tada, kai srovė yra pašalinta iš įrenginio ir tik tuomet tai turi atlikti apmokytas personalas.
8. Ten kur įrenginys ar dangos yra pažymėti simboliu
dešinėje, ten yra pavojus nuo karštų paviršių apačioje.
Šios dangos gali būti nuimamos tik apmokyto
personalo, kai srovė yra pašalinta iš įrenginio. Tam tikri
paviršiai gali išlikti karšti liečiant.
9. Ten kur įrenginys ar dangos yra pažymėti simboliu
dėšinėje, žr. nurodymus Valdymo instrukcijose.
10. Visi grafiniai simboliai naudojami šiam produktui yra iš
vieno ar daugiau toliau išvardintų standartų:
EN61010-1, IEC417, ir ISO3864.
11. Ten, kur įrenginys ar etiketės yra pažymėti "Neatidaryti esant srovės
tiekimui" ar panašiai, yra užsidegimo pavojus tose vietose, kur yra
sprogstamoji atmosfera. Šis įrenginys gali būti atidarytas tuomet, kai yra
pašalinta srovė, ir praėjęs atitinkamas laikas, nurodytas etiketėje ar
valdymo instrukcijoje, pakankamas įrenginio ataušimui - ir tai tik
apmokyto personalo.
A-14
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SVARĪGI
Droš ības norādījumi š īs iekārtas pievienoš anai un uzstādīš anai
Turpmākie drošības norādījumi attiecas uz visām ES dalībvalstīm. Tie ir
stingri jāievēro, lai nodrošinātu atbilstību Zemsprieguma direktīvai.
Turpmāk norādītais jāievēro arī valstīs, kas nav ES dalībvalstis, ja vien
šos norādījumus neaizstāj vietējie vai valsts standarti.
1. Visi pieejamie iekšējie un ārējie zemējuma punkti ir atbilstoši jāiezemē.
2. Pēc uzstādīšanas vai problēmu risināšanas visi drošības pārsegi un
drošības zemējuma savienojumi ir jāpievieno atpakaļ. Visiem zemējuma
savienojumiem vienmēr jābūt iezemētiem.
3. Elektropadeves vadiem jāatbilst IEC227 vai IEC245 prasībām.
4. Visai elektroinstalācijai jābūt piemērotai lietošanai apkārtējā
temperatūrā, kas pārsniedz 75°C.
5. Visu izmantoto kabeļu blīvju iekšējiem izmēriem jābūt tādiem, lai
atbilstoši nostiprinātu kabeli.
6. Lai nodrošinātu šīs iekārtas drošu darbību, savienojums ar
elektropadeves tīklu jāizveido, izmantojot slēdzi, kas kļūmes gadījumā
atvienos visas ķēdes, kurās ir vadītāji. Slēdzī var būt iestrādāts arī
mehānisks pārtraucējslēdzis. Ja tāda nav, tad ir jāuzstāda cita veida
ierīce iekārtas atvienošanai no strāvas padeves un tā atbilstoši un skaidri
jāmarķē. Slēdžiem jāatbilst kādam vispāratzītam standartam, piemēram,
IEC947. Visai elektroinstalācijai jāatbilst vietējiem standartiem.
7. Vietās, kur iekārta vai tās pārsegi ir marķēti ar labajā
pusē norādīto simbolu, visticamāk, zem tiem ir bīstams
spriegums. Šos pārsegus drīkst noņemt tikai tad, ja
iekārta ir atvienota no strāvas padeves, – un šos darbus
drīkst veikt tikai atbilstoši apmācīti remontdarbu
darbinieki.
8. Vietās, kur iekārta vai tās pārsegi ir marķēti ar labajā
pusē norādīto simbolu, apdraudējumu izraisa zem tiem
esošās karstās virsmas. Šos pārsegus drīkst noņemt tikai
atbilstoši apmācīti remontdarbu darbinieki, kad iekārta ir
atvienota no strāvas padeves. Iespējams, dažas virsmas
arī pēc iekārtas atvienošanas paliks karstas.
9. Ja iekārta vai pārsegi ir marķēti ar labajā pusē esošo
simbolu, skatiet operatora rokasgrāmatā ietvertos
norādījumus.
10. Visi šajā izstrādājumā izmantotie grafiskie simboli atbilst
vienam vai vairākiem no šiem standartiem: EN61010-1,
IEC417 un ISO3864.
11. Ja iekārtai vai uzlīmēm ir marķējums "Neatvērt, kamēr pieslēgta strāvai"
vai tamlīdzīga norāde, tas nozīmē, ka sprādzienbīstamā vidē ir
uzliesmošanas bīstamība. Šo iekārtu drīkst atvērt tikai tad, ja ir atvienota
strāva un ir nogaidīts iekārtas atdzišanai nepieciešamais laiks, kas
norādīts uzlīmē vai ekspluatācijas rokasgrāmatā, – un šos darbus drīkst
veikt tikai atbilstoši apmācīti remontdarbu darbinieki.
A-15
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
IMPORTANTI
STRUZZJONIJIET TAS-SIGURTÀ GĦALL-WIRING U
L-INSTALLAZZJONI TAT-TAGĦMIR
L-istruzzjonijiet tas-sigurtà japplikaw speċifikament għall-Istati Membri ta'
l-UE. Dawn għandhom jiġu osservati b'mod strett biex tkun żgurata lkonformità mad-Direttiva dwar il-Vultaġġ Baxx. Stati li mhumiex membri ta'
l-UE għandhom ukoll ikunu konformi ma' dan li ġej ħlief jekk dawn ikunu
sostituti mill-Istandards lokali jew Nazzjonali.
A-16
1.
Konnessjonijiet adegwati ta' l-ert għandhom isiru għall-punti kollha ta'
l-ert, interni u esterni, fejn ikun ipprovdut.
2.
Wara l-installazzjoni jew meta tipprova ssolvi xi problema, l-għatjien
kollha tas-sigurtà u l-erts tas-sigurtà għandhom jitpoġġew lura f'posthom.
L-integrità tat-terminali kollha ta' l-ert għandha tinżamm f'kull ħin.
3.
Il-wajers tal-provvista tad-dawl għandhom ikunu konformi ml-ħtiġijiet ta'
IEC227 jew IEC245.
4.
Il-wiring kollu għandu jkun adattat għall-użu f'temperatura ta' l-ambjent ta'
iktar minn 75°C.
5.
Il-glands tal-kejbils kollha li jintużw iridu jkunu ta' daqs intern tali li
jipprovdu ankoraġġ adegwat lill-kejbil.
6.
Biex tiżgura t-tħaddim sigur ta' dan it-tagħmir, il-konnessjoni mal-provvista
tad-dawl għandha ssir biss permezz ta' circuit breaker li jiskonnetta
l-kondutturi kollha li jkunu jġorru ċ-ċirkuwiti f'sitwazzjoni meta jkun hemm
il-ħsara. Is-circuit breaker jista wkoll jinkludi swiċċ li jiżola li jaħdem b'mod
mekkaniku. Jekk dan ma jkunx il-każ, mezz ieħor ta' kif it-tagħmir jiġi
skonnettjat minn mal-provvista tad-dawl għandu jkun ipprovdut, u jkun
immrkat b'mod ċar li hu hekk. Is-circuit breakers jew swiċċijiet iridu jkunu
konformi ma' standard rikonoxxut bħal IEC947. Il-wiring kollu jrid ikun
konformi ma' l-istandards lokali, jekk ikun hemm.
7.
Meta t-tagħmir jew l-għatjien ikunu mmarkati bis-simbolu fuq il-lemin,
x'aktarx li jkun hemm vultaġġi perikolużi taħthom. Dawn l-għatjien
għandhom jitneħħew biss meta titneħħa l-provvista tad-dawl
mit-tagħmir - u minn ħaddiema tal-manutenzjoni mħarrġa biss.
8.
Meta t-tagħmir jew l-għatjien ikunu mmarkati bis-simbolu fuq il-lemin,
ikun hemm periklu mill-uċuħ jaħarqu li jkun hemm taħthom. Dawn
l-għatjien għandhom jitneħħew biss minn ħaddiema tal-manutenzjoni
mħarrġa meta titneħħa l-provvista tad-dawl mit-tagħmir. Ċerti wċuħ
jistgħu jibqgħu jaħarqu meta tmisshom.
9.
Meta t-tagħmir jew l-għatjien ikunu mmarkati bis-simbolu fuq il-lemin,
irreferi għall-Manwal ta' l-Operatur għall-istruzzjonijiet.
10.
Is-simboli grafiċi kollha użati f'dan il-prodott huma minn wieħed jew
iktar mill-istandards li ġejjin: EN61010-1, IEC417, u ISO3864.
11.
Fejn it-tagħmir u t-tikketti huma mmarkati bil-kliem “Tiftaħx Meta
Jkun Enerġizzat” jew kliem simili, hemm periklu ta' nar f'żoni fejn
atmosfera esplossiva hi preżenti. It-tagħmir għandu jinfetaħ biss meta
l-provvista tad-dawl tkun mitfija u jkun għadda ħin biżżejjed, kif speċifikat
fuq it-tikketta jew fil-manwal ta' l-istruzzjonijiet, biex it-tagħmir ikun kesaħ
– u t-tagħmir għandu jinfetaħ biss minn staff li jkun imħarreġ.
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
VIKTIG
Sikkerhetsinstruks for tilkobling og installasjon av dette utstyret.
Følgende sikkerhetsinstruksjoner gjelder spesifikt alle EU medlemsland
og land med i EØS-avtalen. Instruksjonene skal følges nøye slik at
installasjonen blir i henhold til lavspenningsdirektivet. Den bør også
følges i andre land, med mindre annet er spesifisert av lokale- eller
nasjonale standarder.
1. Passende jordforbindelser må tilkobles alle jordingspunkter, interne og
eksterne hvor disse forefinnes.
2. Etter installasjon eller feilsøking skal alle sikkerhetsdeksler og
jordforbindelser reetableres. Jordingsforbindelsene må alltid holdes i
god stand.
3. Kabler fra spenningsforsyning skal oppfylle kravene spesifisert i IEC227
eller IEC245.
4. Alle ledningsforbindelser skal være konstruert for en
omgivelsestemperatur høyere en 75°C.
5. Alle kabelforskruvninger som benyttes skal ha en indre dimensjon slik at
tilstrekkelig avlastning oppnåes.
6. For å oppnå sikker drift og betjening skal forbindelsen til
spenningsforsyningen bare skje gjennom en strømbryter (minimum 10A)
som vil bryte spenningsforsyningen til alle elektriske kretser ved en
feilsituasjon. Strømbryteren kan også inneholde en mekanisk operert
bryter for å isolere instrumentet fra spenningsforsyningen. Dersom det
ikke er en mekanisk operert bryter installert, må det være en annen måte
å isolere utstyret fra spenningsforsyningen, og denne måten må være
tydelig merket. Kretsbrytere eller kontakter skal oppfylle kravene i en
annerkjent standard av typen IEC947 eller tilsvarende.
7. Der hvor utstyr eller deksler er merket med symbol for
farlig spenning, er det sannsynlig at disse er tilstede bak
dekslet. Disse dekslene må bare fjærnes når
spenningsforsyning er frakoblet utstyret, og da bare av
trenet servicepersonell.
8. Der hvor utstyr eller deksler er merket med symbol for
meget varm overflate, er det sannsynlig at disse er
tilstede bak dekslet. Disse dekslene må bare fjærnes
når spenningsforsyning er frakoblet utstyret, og da bare
av trenet servicepersonell. Noen overflater kan være for
varme til å berøres i opp til 45 minutter etter
spenningsforsyning frakoblet.
9. Der hvor utstyret eller deksler er merket med symbol,
vennligst referer til instruksjonsmanualen for instrukser.
10. Alle grafiske symboler brukt i dette produktet er fra en
eller flere av følgende standarder: EN61010-1, IEC417
& ISO3864.
11. Når utstyr eller merkelapper bærer advarselen "Må ikke åpnes under
spenning" eller lignende, innbærer det fare for eksplosjon i områder
med en eksplosiv atmosfære. Utstyret skal bare åpnes når det ikke er
noen strømtilførsel, og etter at det har hatt tilstrekkelig tid til å kjøle ned,
som spesifisert på merkelappen eller i håndboken. Selv da skal utstyret
bare åpnes av erfarne serviceteknikere.
A-17
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
WAŻNE!
Zalecenia dotyczące bezpieczeństwa w zakresie podłączania i instalacji
tego urządzenia
Następujące zalecenia dotyczą zwłaszcza stosowania urządzenia we
wszystkich krajach Unii Europejskiej. Należy się ściśle do nich
stosować w celu zapewnienia zgodności z dyrektywą niskonapięciową.
W przypadku instalacji urządzenia w krajach nienależących do Unii
Europejskiej należy również przestrzegać poniższych zaleceń, chyba że
są one zastąpione lokalnymi lub ogólnokrajowymi standardami.
1. Urządzenie należy podłączyć kablem uziemiającym do wszystkich
punktów uziemienia (wewnętrznych i zewnętrznych).
2. Po instalacji lub czynnościach serwisowych należy zamknąć wszystkie
pokrywy zabezpieczające i ponownie podłączyć uziemienie. Należy
pilnować, by nie doszło do przerwania uziemienia.
3. Przewody zasilające powinny być zgodne z wymaganiami normy
IEC227 lub IEC245.
4. Wszystkie przewody powinny być odpowiednie do użytku w środowisku
o temperaturze wyższej niż 75°C.
5. Wszystkie dławnice powinny mieć wymiary wewnętrzne zapewniające
pewne umocowanie przewodów.
6. W celu zapewnienia bezpiecznej pracy urządzenie należy podłączyć do
sieci tylko za pośrednictwem wyłącznika automatycznego, który w razie
awarii odłączy wszystkie obwody, w których przepływa prąd. Wyłącznik
automatyczny może być również wyposażony w mechaniczny odłącznik
napięcia. W przeciwnym razie należy zapewnić i jasno oznaczyć inną
możliwość odłączenia urządzenia od zasilania. Wyłączniki automatyczne
oraz odłączniki powinny być zgodne z uznawanymi standardami, takimi
jak norma IEC947. Wszystkie przewody muszą być zgodne z lokalnymi
przepisami.
7. Pod pokrywami lub elementami urządzenia oznaczonymi
symbolem pokazanym na rysunku po prawej stronie
może występować niebezpieczne napięcie elektryczne.
Te pokrywy mogą być zdejmowane tylko po odłączeniu
zasilania, wyłącznie przez odpowiednio przeszkolonych
pracowników serwisu.
8. Pod pokrywami lub elementami urządzenia
oznaczonymi symbolem pokazanym na rysunku po
prawej stronie znajdują się gorące powierzchnie. Te
pokrywy mogą być zdejmowane tylko po odłączeniu
zasilania, wyłącznie przez odpowiednio przeszkolonych
pracowników serwisu. Niektóre powierzchnie mogą
pozostać nagrzane przez pewien czas po odłączeniu zasilania.
9. W przypadku sprzętu oraz pokryw oznaczonych
symbolem pokazanym na rysunku po prawej stronie
należy zapoznać się ze wskazówkami w Instrukcji
operatora i stosować się do nich.
10. Wszystkie symbole graficzne zastosowane do
oznaczenia produktu pochodzą z następujących norm: EN61010-1,
IEC417 lub ISO3864.
11. Oznaczenie „Nie otwierać, gdy urządzenie jest pod napięciem” lub
podobne oznaczenia informują o ryzyku zapłonu w miejscach, gdzie
występuje zagrożenie wybuchem. Urządzenie należy otwierać tylko po
odłączeniu zasilania i po upływie czasu na ostygnięcie urządzenia
oznaczonego na etykiecie lub w instrukcji obsługi. Urządzenie mogą
otwierać wyłącznie odpowiednio przeszkoleni pracownicy serwisu.
A-18
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
IMPORTANTE
Instruções de segurança para ligação e instalação deste aparelho.
As seguintes instruções de segurança aplicam-se especificamente a
todos os estados membros da UE. Devem ser observadas rigidamente
por forma a garantir o cumprimento da Directiva sobre Baixa Tensão.
Relativamente aos estados que não pertençam à UE, deverão cumprir
igualmente a referida directiva, exceptuando os casos em que a
legislação local a tiver substituído.
1. Devem ser feitas ligações de terra apropriadas a todos os pontos de
terra, internos ou externos.
2. Após a instalação ou eventual reparação, devem ser recolocadas todas
as tampas de segurança e terras de protecção. Deve manter-se sempre
a integridade de todos os terminais de terra.
3. Os cabos de alimentação eléctrica devem obedecer às exigências das
normas IEC227 ou IEC245.
4. Os cabos e fios utilizados nas ligações eléctricas devem ser adequados
para utilização a uma temperatura ambiente até 75ºC.
5. As dimensões internas dos bucins dos cabos devem ser adequadas a
uma boa fixação dos cabos.
6. Para assegurar um funcionamento seguro deste equipamento, a
ligação ao cabo de alimentação eléctrica deve ser feita através de um
disjuntor (min. 10A) que desligará todos os condutores de circuitos
durante uma avaria. O disjuntor poderá também conter um interruptor
de isolamento accionado manualmente. Caso contrário, deverá ser
instalado qualquer outro meio para desligar o equipamento da energia
eléctrica, devendo ser assinalado convenientemente. Os disjuntores ou
interruptores devem obedecer a uma norma reconhecida, tipo IEC947.
7. Sempre que o equipamento ou as tampas contiverem o
símbolo, é provável a existência de tensões perigosas.
Estas tampas só devem ser retiradas quando a energia
eléctrica tiver sido desligada e por Pessoal da
Assistência devidamente treinado.
8. Sempre que o equipamento ou as tampas contiverem o
símbolo, há perigo de existência de superfícies quentes.
Estas tampas só devem ser retiradas por Pessoal da
Assistência devidamente treinado e depois de a energia
eléctrica ter sido desligada. Algumas superfícies
permanecem quentes até 45 minutos depois.
9. Sempre que o equipamento ou as tampas contiverem o
símbolo, o Manual de Funcionamento deve ser
consultado para obtenção das necessárias instruções.
10. Todos os símbolos gráficos utilizados neste produto
baseiam-se em uma ou mais das seguintes normas:
EN61010-1, IEC417 e ISO3864.
11. Sempre que o equipamento ou as etiquetas apresentarem o aviso "Não
abrir quando ligado à corrente" ou semelhante, existe um risco de ignição
em atmosferas explosivas. Este equipamento só deve ser aberto depois
de desligado da corrente eléctrica e o tempo de arrefecimento adequado
especificado na etiqueta ou no manual de instruções ter decorrido.
O equipamento só pode ser aberto por técnicos qualificados.
A-19
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
DÔLEŽITÉ
Bezpečnostné pokyny pre zapojenie káblov a inš taláciu tohto prístroja
Nasledovné bezpečnostné pokyny sa vzt’ahujú konkrétne na všetky
členské štáty EÚ. Musia byt’ striktne dodržané, aby sa zaistila zhoda so
Smernicou o nízkom napätí. Štáty, ktoré nie sú členskými štátmi EÚ by
mali nasledovné pokyny taktiež dodržiavat’, pokiaľ nie sú nahradené
miestnymi alebo národnými normami.
1. Adekvátne uzemnenia musia byt’ vykonané na všetkých bodoch
uzemnenia, interných aj externých, tam, kde sú poskytnuté.
2. Po inštalácii alebo riešení problémov musia byt’ všetky bezpečnostné
kryty a bezpečnostné uzemnenia vymenené. Integrita všetkých
uzemňovacích terminálov musí byt’ vždy zachovaná.
3. Káble siet’ového napájania musia byt’ v zhode s požiadavkami IEC227
alebo IEC245.
4. Všetky káblové pripojenia by mali byt’ vhodné pre používanie v teplote
okolia vyššej, ako 75°C.
5. Všetky použité káblové priechodky musia mat’ také vnútorné rozmery,
aby poskytovali adekvátne uchopenie kábla.
6. Pre zaistenie bezpečnej prevádzky tohto zariadenia musí byt’ pripojenie
k siet’ovému napájaniu zapojené len cez prerušovač obvodu, ktorý
počas poruchovej situácie odpojí všetky obvody elektrických vodičov.
Prerušovač obvodu by mal obsahovat’ aj mechanicky ovládaný úsekový
vypínač. Ak nie, musí byt’ poskytnutý iný spôsob odpojenia zariadenia
od siet’ového napájania a tento spôsob musí byt’ zreteľne označený.
Prerušovače obvodu alebo spínače musia byt’ v zhode s uznanou
normou, ako napr. IEC947. Všetky káblové pripojenia musia vyhovovat’
akýmkoľvek miestnym normám.
7. Tam, kde je zariadenie alebo kryty označené symbolom
na pravej strane, sa pravdepodobne nachádza
nebezpečné napätie. Tieto kryty by sa mali odoberat’
len vtedy, keď je zariadenie odpojené od elektrickej
energie a len vyškoleným servisným personálom.
8. Tam, kde je zariadenie alebo kryty označené symbolom
na pravej strane, existuje nebezpečenstvo horúcich
povrchov. Tieto kryty by mali byt’ odstraňované len
vyškoleným servisným personálom, pričom je
zariadenie odpojené od elektrickej energie. Určité
povrchy môžu ostat’ horúce na dotyk.
9. V miestach, kde je zariadenie alebo kryty označené
symbolom na pravej strane, si kvôli pokynom pozrite
Operátorskú príručku.
10. Všetky obrázkové symboly použité pri tomto produkte
zodpovedajú jednej alebo viacerým nasledujúcim
normám: EN61010-1, IEC417 a ISO3864.
11. V miestach, kde je zariadenie alebo značky označené nápisom
"Neotvárat’ pod elektrickým prúdom" alebo podobné, existuje
nebezpečenstvo vznietenia v oblastiach s prítomnost’ou výbušného
ovzdušia. Toto zariadenie sa smie otvárat’ len v prípade odpojenia od
elektrického napájania a ponechania zariadenia vychladnút’ po dobu
uplynutia dostatočného času tak, ako je to uvedené na štítku alebo
v návode na použitie - a len vyškoleným servisným personálom.
A-20
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
POMEMBNO
Varnostna navodila za povezavo in vgradnjo naprave
Naslednja varnostna navodila veljajo za vse države članice EU. Zaradi
zagotovitve skladnosti z nizkonapetostno direktivo morate navodila
strogo upoštevati. V državah, ki niso članice EU, je treba upoštevati tudi
naslednje smernice, razen če jih ne zamenjujejo lokalni ali nacionalnimi
standardi.
1. Do vseh ozemljitvenih točk, notranjih in zunanjih, ki so na voljo, morajo
biti speljane ustrezne ozemljitvene povezave.
2. Po vgradnji ali odpravljanju težav je treba namestiti vse varnostne
pokrove in zaščitne ozemljitve. Brezhibnost vseh ozemljitvenih
priključkov je treba nenehno preverjati.
3. Omrežni napajalni kabli morajo biti skladni z zahtevami standarda
IEC227 ali IEC245.
4. Vsa napeljava mora biti primerna za uporabi pri temperaturi okolja, višji
od 75 °C.
5. Notranje dimenzije kabelskih tesnilk morajo zagotavljati ustrezno
pritrditev kablov.
6. Za zagotovitev varnega delovanja opreme mora biti povezava z omrežnim
napajanjem vzpostavljena prek odklopnega stikala, ki v primeru napake
izklopi vse tokokroge s prevodniki. Odklopno stikalo lahko vključuje tudi
mehansko izolacijsko stikalo. V nasprotnem primeru morajo biti
zagotovljeni in jasno označeni drugi načini za izklop opreme iz napajanja.
Odklopna in druga stikala morajo biti skladna z uveljavljenimi standardi,
kot je IEC947. Vsa napeljava mora biti skladna z lokalnimi standardi.
7. V opremi ali pod pokrovi, ki so označeni s simbolom na
desni, je prisotna nevarna napetost. Te pokrove je
dovoljeno odstraniti samo, če je napajanje opreme
izklopljeno. To lahko izvaja samo usposobljeno servisno
osebje.
8. Pri opremi ali pod pokrovi, ki so označeni s simbolom na
desni, so prisotne nevarne vroče površine. Te pokrove
lahko odstranjuje samo usposobljeno servisno osebje.
Napajanje opreme mora biti izklopljeno. Določene
površine so lahko vroče.
9. Pri opremi ali pokrovih, ki so označeni s simbolom na
desni, si za navodila oglejte priročnik za upravljanje.
10. Vsi uporabljeni grafični simboli so iz enega ali več
naslednjih standardov: EN61010-1, IEC417 in ISO3864.
11. Če je na opremi ali oznakah navedeno "Ne odpirajte, če je pod
napetostjo" ali podobno opozorilo, je na območjih z eksplozivnim
ozračjem prisotna nevarnost vžiga. To opremo je dovoljeno odpirati
samo, če je napajanje izklopljeno in je poteklo dovolj časa, da se
oprema ohladi, kot je navedeno na oznaki ali v priročniku z navodili.
Opremo lahko odpira samo usposobljeno servisno osebje.
A-21
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
IMPORTANTE
Instrucciones de seguridad para el montaje y cableado de este aparato.
Las siguientes instrucciones de seguridad, son de aplicacion especifica
a todos los miembros de la UE y se adjuntaran para cumplir la normativa
europea de baja tension.
1. Se deben preveer conexiones a tierra del equipo, tanto externa como
internamente, en aquellos terminales previstos al efecto.
2. Una vez finalizada las operaciones de mantenimiento del equipo, se
deben volver a colocar las cubiertas de seguridad aasi como los
terminales de tierra. Se debe comprobar la integridad de cada terminal.
3. Los cables de alimentacion electrica cumpliran con las normas IEC 227
o IEC 245.
4. Todo el cableado sera adecuado para una temperatura ambiental de
75ºC.
5. Todos los prensaestopas seran adecuados para una fijacion adecuada
de los cables.
6. Para un manejo seguro del equipo, la alimentacion electrica se realizara
a traves de un interruptor magnetotermico ( min 10 A ), el cual
desconectara la alimentacion electrica al equipo en todas sus fases
durante un fallo. Los interruptores estaran de acuerdo a la norma IEC
947 u otra de reconocido prestigio.
7. Cuando las tapas o el equipo lleve impreso el simbolo
de tension electrica peligrosa, dicho alojamiento
solamente se abrira una vez que se haya interrumpido
la alimentacion electrica al equipo asimismo la
intervencion sera llevada a cabo por personal
entrenado para estas labores.
8. Cuando las tapas o el equipo lleve impreso el simbolo,
hay superficies con alta temperatura, por tanto se abrira
una vez que se haya interrumpido la alimentacion
electrica al equipo por personal entrenado para estas
labores, y al menos se esperara unos 45 minutos para
enfriar las superficies calientes.
9. Cuando el equipo o la tapa lleve impreso el simbolo, se
consultara el manual de instrucciones.
10. Todos los simbolos graficos usados en esta hoja, estan
de acuerdo a las siguientes normas EN61010-1,
IEC417 & ISO 3864.
11. Cuando el equipo o las etiquetas tienen la indicación " No abrir mientras
reciba energía" u otra similar, existe el peligro de ignición en zonas
donde haya un ambiente explosivo. Este equipo sólo debe ser abierto
por personal de servicio cualificado después de apagarlo y dejar pasar
el intervalo de tiempo correspondiente indicado en la etiqueta o el
manual de instrucciones para que el equipo se enfríe.
A-22
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
VIKTIGT
Säkerhetsföreskrifter för kablage och installation av denna apparat.
Följande säkerhetsföreskrifter är tillämpliga för samtliga
EU-medlemsländer. De skall följas i varje avseende för att
överensstämma med Lågspännings direktivet. Icke EU medlemsländer
skall också följa nedanstående punkter, såvida de inte övergrips av
lokala eller nationella föreskrifter.
1. Tillämplig jordkontakt skall utföras till alla jordade punkter, såväl internt
som externt där så erfordras.
2. Efter installation eller felsökning skall samtliga säkerhetshöljen och
säkerhetsjord återplaceras. Samtliga jordterminaler måste hållas
obrutna hela tiden.
3. Matningsspänningens kabel måste överensstämma med föreskrifterna i
IEC227 eller IEC245.
4. Allt kablage skall vara lämpligt för användning i en
omgivningstemperatur högre än 75ºC.
5. Alla kabelförskruvningar som används skall ha inre dimensioner som
motsvarar adekvat kabelförankring.
6. För att säkerställa säker drift av denna utrustning skall anslutning till
huvudströmmen endast göras genom en säkring (min 10A) som skall
frånkoppla alla strömförande kretsar när något fel uppstår. Säkringen
kan även ha en mekanisk frånskiljare. Om så inte är fallet, måste ett
annat förfarande för att frånskilja utrustningen från strömförsörjning
tillhandahållas och klart framgå genom markering. Säkring eller
omkopplare måste överensstämma med en gällande standard såsom t
ex IEC947.
7. Där utrustning eller hölje är markerad med vidstående
symbol föreliggerisk för livsfarlig spänning i närheten.
Dessa höljen får endast avlägsnas när strömmen ej är
ansluten till utrustningen - och då endast av utbildad
servicepersonal.
8. När utrustning eller hölje är markerad med vidstående
symbol föreligger risk för brännskada vid kontakt med
uppvärmd yta. Dessa höljen får endast avlägsnas av
utbildad servicepersonal, när strömmen kopplats från
utrustningen. Vissa ytor kan vara mycket varma att
vidröra även upp till 45 minuter efter avstängning av
strömmen.
9. När utrustning eller hölje markerats med vidstående
symbol bör instruktionsmanualen studeras för
information.
10. Samtliga grafiska symboler som förekommer i denna
produkt finns angivna i en eller flera av följande
föreskrifter:- EN61010-1, IEC417 & ISO3864.
11. För utrustning som markerats med föreskrifter som "Öppna inte när
strömmen är på", eller liknande, råder explosionsrisk när det
förekommer explosiva ångor. Utrustningen får endast öppnas efter att
strömmen stängts av och efter att utrustningen fått svalna under så lång
tid som anges i instruktionsboken. Öppnandet får endast utföras av
utbildad servicepersonal.
A-23
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SAFETY DATA SHEET
FOR CERAMIC FIBER
PRODUCTS
JULY 1, 1996
SECTION I. IDENTIFICATION
PRODUCT NAME
Ceramic Fiber Heaters, Molded Insulation Modules and Ceramic Fiber
Radiant Heater Panels.
CHEMICAL FAMILY
Vitreous Aluminosilicate Fibers with Silicon Dioxide.
CHEMICAL NAME
N.A.
CHEMICAL FORMULA
N.A.
MANUFACTURER'S NAME AND ADDRESS
Watlow Columbia
2101 Pennsylvania Drive
Columbia, MO 65202
573-814-1300, ext. 5170
573-474-9402
HEALTH HAZARD SUMMARY WARNING
•
Possible cancer hazard based on tests with laboratory animals.
•
May be irritating to skin, eyes and respiratory tract.
•
May be harmful if inhaled.
•
Cristobalite (crystalline silica) formed at high temperatures (above
1800ºF) can cause severe respiratory disease.
SECTION II. PHYSICAL DATA
APPEARANCE AND ODOR
Cream to white colored fiber shapes. With or without optional white to
gray granular surface coating and/or optional black surface coating.
SPECIFIC WEIGHT: 12-25 LB./CUBIC FOOT
BOILING POINT: N.A.
VOLATILES (% BY WT.): N.A.
WATER SOLUBILITY: N.A.
SECTION III. HAZARDOUS INGREDIENTS
MATERIAL, QUANTITY, AND THRESHOLD/EXPOSURE LIMIT VALUES
Aluminosilicate (vitreous) 99+ %
1 fiber/cc TWA
CAS. No. 142844-00-06
10 fibers/cc CL
Zirconium Silicate
0-10% 5 mg/cubic meter (TLV)
Black Surface Coating**
0 - 1% 5 mg/cubic meter (TLV)
Armorphous Silica/Silicon Dioxide
0-10% 20 mppcf (6 mg/cubic meter)
PEL (OSHA 1978) 3 gm cubic meter
(Respirable dust): 10 mg/cubic meter,
Intended TLV (ACGIH 1984-85)
**Composition is a trade secret.
A-24
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SECTION IV. FIRE AND EXPLOSION DATA
FLASH POINT: None
FLAMMABILITY LIMITS: N.A.
EXTINGUISHING MEDIA
Use extinguishing agent suitable for type of surrounding fire.
UNUSUAL FIRE AND EXPLOSION HAZARDS / SPECIAL FIRE
FIGHTING PROCEDURES
N.A.
SECTION V. HEALTH HAZARD DATA
THRESHOLD LIMIT VALUE
(See Section III)
EFFECTS OF OVER EXPOSURE
•
EYE - Avoid contact with eyes. Slightly to moderately irritating.
Abrasive action may cause damage to outer surface of eye.
•
INHALATION - May cause respiratory tract irritation. Repeated or
prolonged breathing of particles of respirable size may cause
inflammation of the lung leading to chest pain, difficult breathing,
coughing and possible fibrotic change in the lung (Pneumoconiosis).
Pre-existing medical conditions may be aggravated by exposure:
specifically, bronchial hyper-reactivity and chronic bronchial or lung
disease.
•
INGESTION - May cause gastrointestinal disturbances. Symptoms
may include irritation and nausea, vomiting and diarrhea.
•
SKIN - Slightly to moderate irritating. May cause irritation and
inflammation due to mechanical reaction to sharp, broken ends of
fibers.
EXPOSURE TO USED CERAMIC FIBER PRODUCT
Product which has been in service at elevated temperatures (greater
than 1800ºF/982ºC) may undergo partial conversion to cristobalite, a
form of crystalline silica which can cause severe respiratory disease
(Pneumoconiosis). The amount of cristobalite present will depend on
the temperature and length of time in service. (See Section IX for
permissible exposure levels).
SPECIAL TOXIC EFFECTS
The existing toxicology and epidemiology data bases for RCF's are still
preliminary. Information will be updated as studies are completed and
reviewed. The following is a review of the results to date:
EPIDEMIOLOGY
At this time there are no known published reports demonstrating
negative health outcomes of workers exposed to refractory ceramic
fiber (RCF). Epidemiologic investigations of RCF production workers
are ongoing.
1. There is no evidence of any fibrotic lung disease (interstitial fibrosis)
whatsoever on x-ray.
2. There is no evidence of any lung disease among those employees
exposed to RCF that had never smoked.
A-25
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
3. A statistical "trend" was observed in the exposed population between
the duration of exposure to RCF and a decrease in some measures
of pulmonary function. These observations are clinically insignificant.
In other words, if these observations were made on an individual
employee, the results would be interpreted as being within the
normal range.
4. Pleural plaques (thickening along the chest wall) have been
observed in a small number of employees who had a long duration of
employment. There are several occupational and non-occupational
causes for pleural plaque. It should be noted that plaques are not
"pre-cancer" nor are they associated with any measurable effect on
lung function.
TOXICOLOGY
A number of studies on the health effects of inhalation exposure of rats
and hamsters are available. Rats were exposed to RCF in a series of
life-time nose-only inhalation studies. The animals were exposed to 30,
16, 9, and 3 mg/m3, which corresponds with approximately 200, 150,
75, and 25 fibers/cc.
Animals exposed to 30 and 16 mg/m3 were observed to have
developed a pleural and parenchymal fibroses; animals exposed to 9
mg/m3 had developed a mild parenchymal fibrosis; animals exposed to
the lowest dose were found to have the response typically observed any
time a material is inhaled into the deep lung. While a statistically
significant increase in lung tumors was observed following exposure to
the highest dose, there was no excess lung cancers at the other doses.
Two rats exposed to 30 mg/m3 and one rat exposed to 9 mg/m3
developed masotheliomas.
The International Agency for Research on Cancer (IARC) reviewed the
carcinogenicity data on man-made vitreous fibers (including ceramic
fiber, glasswool, rockwool, and slagwool) in 1987. IARC classified
ceramic fiber, fibrous glasswool and mineral wool (rockwool and
slagwool) as possible human carcinogens (Group 2B).
EMERGENCY FIRST AID PROCEDURES
A-26
•
EYE CONTACT - Flush eyes immediately with large amounts of
water for approximately 15 minutes. Eye lids should be held away
from the eyeball to insure thorough rinsing. Do not rub eyes. Get
medical attention if irritation persists.
•
INHALATION - Remove person from source of exposure and move
to fresh air. Some people may be sensitive to fiber induced irritation
of the respiratory tract. If symptoms such as shortness of breath,
coughing, wheezing or chest pain develop, seek medical attention. If
person experiences continued breathing difficulties, administer
oxygen until medical assistance can be rendered.
•
INGESTION - Do not induce vomiting. Get medical attention if
irritation persists.
•
SKIN CONTACT - Do not rub or scratch exposed skin. Wash area of
contact thoroughly with soap and water. Using a skin cream or lotion
after washing may be helpful. Get medical attention if irritation
persists.
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SECTION VI. REACTIVITY DATA
STABILITY/CONDITIONS TO AVOID
Stable under normal conditions of use.
HAZARDOUS POLYMERIZATION/CONDITIONS TO AVOID
N.A.
INCOMPATIBILITY/MATERIALS TO AVOID
Incompatible with hydrofluoric acid and concentrated alkali.
HAZARDOUS DECOMPOSITION PRODUCTS
N.A.
SECTION VII. SPILL OR LEAK PROCEDURES
STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED
Where possible, use vacuum suction with HEPA filters to clean up
spilled material. Use dust suppressant where sweeping if necessary.
Avoid clean up procedure which may result in water pollution. (Observe
Special Protection Information Section VIII.)
WASTE DISPOSAL METHODS
The transportation, treatment, and disposal of this waste material must
be conducted in compliance with all applicable Federal, State, and Local
regulations.
SECTION VIII. SPECIAL PROTECTION INFORMATION
RESPIRATORY PROTECTION
Use NIOSH or MSHA approved equipment when airborne exposure
limits may be exceeded. NIOSH/MSHA approved breathing equipment
may be required for non-routine and emergency use. (See Section IX
for suitable equipment).
Pending the results of long term health effects studies, engineering
control of airborne fibers to the lowest levels attainable is advised.
VENTILATION
Ventilation should be used whenever possible to control or reduce
airborne concentrations of fiber and dust. Carbon monoxide, carbon
dioxide, oxides of nitrogen, reactive hydrocarbons and a small amount
of formaldehyde may accompany binder burn off during first heat. Use
adequate ventilation or other precautions to eliminate vapors resulting
from binder burn off. Exposure to burn off fumes may cause respiratory
tract irritation, bronchial hyper-reactivity and asthmatic response.
SKIN PROTECTION
Wear gloves, hats and full body clothing to prevent skin contact. Use
separate lockers for work clothes to prevent fiber transfer to street
clothes. Wash work clothes separately from other clothing and rinse
washing machine thoroughly after use.
EYE PROTECTION
Wear safety glasses or chemical worker's goggles to prevent eye
contact. Do not wear contact lenses when working with this substance.
Have eye baths readily available where eye contact can occur.
A-27
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
SECTION IX. SPECIAL PRECAUTIONS
PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING
General cleanliness should be followed.
The Toxicology data indicate that ceramic fiber should be handled with
caution. The handling practices described in this MSDS must be strictly
followed. In particular, when handling refractory ceramic fiber in any
application, special caution should be taken to avoid unnecessary
cutting and tearing of the material to minimize generation of airborne
dust.
It is recommended that full body clothing be worn to reduce the potential
for skin irritation. Washable or disposable clothing may be used. Do not
take unwashed work clothing home. Work clothes should be washed
separately from other clothing. Rinse washing machine thoroughly after
use. If clothing is to be laundered by someone else, inform launderer of
proper procedure. Work clothes and street clothes should be kept
separate to prevent contamination.
Product which has been in service at elevated temperatures (greater
than 1800°F/982°C) may undergo partial conversion to cristobalite, a
form of crystalline silica. This reaction occurs at the furnace lining hot
face. As a consequence, this material becomes more friable; special
caution must be taken to minimize generation of air-borne dust. The
amount of cristobalite present will depend on the temperature and
length in service.
IARC has recently reviewed the animal, human, and other relevant
experimental data on silica in order to critically evaluate and classify the
cancer causing potential. Based on its review, IARC classified
crystalline silica as a group 2A carcinogen (probable human
carcinogen).
The OSHA permissible exposure limit (PEL for cristobalite is 0.05
mg/m3 (respirable dust). The ACGIH threshold limit value (TLV) for
cristobalite is 0.05 mg/m3 (respirable dust) (ACGIH 1991-92). Use
NIOSH or MSHA approved equipment when airborne exposure limits
may be exceeded. The minimum respiratory protection recommended
for given airborne fiber or cristobalite concentrations are:
CONCENTRATION
Concentration
0-1 fiber/cc or 0-0.05 mg/m3
cristobalite (the OSHA PEL)
Up to 5 fibers/cc or up to 10 times the
OSHA PEL for cristobalite
Up to 25 fibers/cc or 50 times the
OSHA PEL for cristobalite (2.5
mg/m3)
Greater than 25 fibers/cc or 50 times
the OSHA PEL for cristobalite (2.5
mg/m3)
A-28
Personal Protective Equipment
Optional disposable dust respirator (e.g.
3M 9970 or equivalent).
Half face, air purifying respirator
equipped with high efficiency particulate
air (HEPA) filter cartridges (e.g. 3M 6000
series with 2040 filter or equivalent).
Full face, air purifying respirator with
high efficiency particulate air (HEPA)
filter cartridges (e.g. 3M 7800S with
7255 filters or equivalent) or powered air
purifying respirator (PARR) equipped
with HEPA filter cartridges (e.g. 3M
W3265S with W3267 filters or
equivalent).
Full face, positive pressure supplied air
respirator (e.g. 3M 7800S with W9435
hose & W3196 low pressure regulator kit
connected to clean air supply or
equivalent).
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
If airborne fiber or cristobalite concentrations are not known, as
minimum protection, use NIOSH/MSHA approved half face, air purifying
respirator with HEPA filter cartridges.
Insulation surface should be lightly sprayed with water before removal to
suppress airborne dust. As water evaporates during removal, additional
water should be sprayed on surfaces as needed. Only enough water
should be sprayed to suppress dust so that water does not run onto the
floor of the work area. To aid the wetting process, a surfactant can be
used.
After RCF removal is completed, dust suppressing cleaning methods,
such as wet sweeping or vacuuming, should be used to clean the work
area. If dry vacuuming is used, the vacuum must be equipped with
HEPA filter. Air blowing or dry sweeping should not be used. Dust
suppressing components can be used to clean up light dust.
Product packaging may contain product residue. Do not reuse except to
reship or return Ceramic Fiber products to the factory.
A-29
Instruction Manual
OCX 8800
HIGH PRESSURE GAS
CYLINDERS
IM-106-880, Rev 2.0
September 2009
GENERAL PRECAUTIONS FOR HANDLING AND STORING HIGH
PRESSURE GAS CYLINDERS
• Edited from selected paragraphs of the Compressed
Gas Association's "Handbook of Compressed Gases"
published in 1981
Compressed Gas Association
1235 Jefferson Davis Highway
Arlington, Virginia 22202
Used by Permission
1. Never drop cylinders or permit them to strike each other violently.
2. Cylinders may be stored in the open, but in such cases, should be
protected against extremes of weather and, to prevent rusting, from
the dampness of the ground. Cylinders should be stored in the
shade when located in areas where extreme temperatures are
prevalent.
3. The valve protection cap should be left on each cylinder until it has
been secured against a wall or bench, or placed in a cylinder stand,
and is ready to be used.
4. Avoid dragging, rolling, or sliding cylinders, even for short distance;
they should be moved by using a suitable handtruck.
5. Never tamper with safety devices in valves or cylinders.
6. Do not store full and empty cylinders together. Serious suckback can
occur when an empty cylinder is attached to a pressurized system.
7. No part of cylinder should be subjected to a temperature higher than
52°C (125°F). A flame should never be permitted to come in contact
with any part of a compressed gas cylinder.
8. Do not place cylinders where they may become part of an electric
circuit. When electric arc welding, precautions must be taken to
prevent striking an arc against the cylinder.
A-30
Instruction Manual
IM-106-880, Rev 2.0
September 2009
Appendix B
OCX 8800
SPA with HART Alarm
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page B-1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page B-1
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page B-2
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page B-2
OVERVIEW
This section describes the SPA with HART Alarm option for the OCX 8800.
DESCRIPTION
The Moore Industries SPA with HART Alarm, Figure B-1, is a 4-wire (line or
mains powered), site-programmable, digital process alarm. It connects to a
standard HART field device, and provides up to four, fully configurable,
contact-closure outputs based on readings of the HART digital data. The four
OCX 8800 alarm outputs recognized by the SPA are Low O2, High COe,
Calibration Status, and OCX Unit Failure.
37020018
Figure B-1. SPA with
HART Alarm
http://www..raihome.com
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure B-2. OCX 8800 and
SPA Interface Connections
INSTALLATION
Refer to Figure B-2 for the typical interface connections for the OCX 8800 and
the SPA with HART alarm. Refer to the Moore Industries SPA user's manual
for additional information concerning SPA installation, setup, and operation.
SETUP
Setup of the SPA for communication with the OCX 8800 includes setting
internal jumpers and dip switches and configuring the SPA operating
parameters via a menu-driven selection and calibration procedure.
Jumper and Switch Settings
SPA jumper and switch settings are shown in Figure B-3. If the SPA with
HART was factory-configured by Emerson Process Management for
operation with your OCX 8800, jumper and switch setting adjustments are not
required. However, you may use the following procedure to verify that the
jumper and switch settings are correct. Adjust or verify jumper and switch
settings as follows:
Electrostatic discharge (ESD) protection is required to avoid damage to the SPA electronic
circuits.
1. Refer to Figure B-3. Turn the SPA over and slide the access cover out.
Before changing any jumper or switch position, take adequate
precautions to avoid an electrostatic discharge.
B-2
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure B-3. SPA Jumper
and Dip Switch Settings
NOTICE
REMOVE THIS PANEL
FOR SERVICE ACCESS.
STATIC SENSITIVE.
USE CAUTION WHEN
CHANGING JUMPERS
Access Cover
SPA - Bottom View
Source Current Dip Switches
(shown in correct position)
Figure B-4. SPA Setup for
Calibration
Password
OFF
Failsafe Dip Switches
(shown in correct position)
2. Verify that the Password Jumper is set to the OFF position. If the jumper
is in the ON position, reposition the jumper.
3. Check the position of the Failsafe Dip Switches. Position the dip
switches as shown in Figure B-3.
Fluke Model 87
Multimeter
or equivalent
OCX
8800
Password
ON
37020022
Password
Jumper Pins
4. Check the position of the Source Current Dip Switches. Position the dip
switches as shown in Figure B-3.
mA
Optional
5. Reinstall the SPA access cover.
Configuration/Calibration
> 250Ω
< 950Ω
IN
Prior to operation, the SPA operating parameters must be configured via a
menu-driven setup procedure. At the end of the configuration procedure, the
SPA analog output signal is calibrated to insure valid communications.
IN
1. See Figure B-4. Connect a calibrated ammeter (Fluke Model 87 or
equivalent, accurate to ±0.025%) to the SPA analog output terminals.
Observe polarity.
AC
AC or DC
Power Input ACC
GND
37390024
2. Connect a 90 to 260 VAC or 22 to 300 VDC power source to the SPA
power terminals. When connecting an AC power source, use the AC
and ACC (AC Common) terminals. For a DC source, use the AC and
Ground terminals.
3. If desired, you can connect the 4 to 20 mA O2 signal wires from the
OCX 8800 analog output terminal block to the SPA Input terminals. (The
OCX must be operational to transmit the O2 signal. Observe polarity.)
B-3
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
NOTE
The O2 signal connection is not required for SPA configuration or calibration.
The OCX interface will allow you to observe the O2 signal level when the SPA
configuration procedure is completed.
4. Observe the front panel of the SPA, Figure B-5:
a. A process value display in the SPA display window indicates that the
SPA is operational. Four pushbuttons are located below the display
window.
b. Pressing a left-hand pushbutton scrolls up ( ) or down ( ) through
the SPA command menu, a submenu, or parameter values list.
c. Pressing the VIEW pushbutton displays rail limits and alarm relay
configurations. There are five sequential displays in the VIEW mode.
While in the VIEW mode, the up ( ), down ( ), and SELECT
pushbuttons are disabled.
NOTE
In the VIEW mode, you can scroll through and display the output zero and full
scale settings and the alarm relay trip points and configurations.
d. Pressing the SELECT pushbutton selects the displayed menu or
submenu command or selects a displayed parameter variable.
Figure B-5. SPA Front Panel
SPA
Display
Window
Right-Hand
Pushbuttons
37020017
Left-Hand
Pushbuttons
B-4
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
5. Figure B-6 shows the SPA menu, submenus, and parameter values that
must be selected to configure the SPA for use with the OCX 8800. Use
the following instructions and selections shown to properly configure the
SPA.
a. Press the SELECT pushbutton. Observe the display window on the
SPA front panel. The display window should read SET HART.
b. See the SET HART command in Figure B-6. To the right of the
command window is the SET HART submenu and related parameter
values that must be selected via the front panel pushbuttons on the
SPA.
c. In the submenu views shown:
means press the down pushbutton.
means press the up pushbutton.
means press the SELECT pushbutton one time.
means press the
or
pushbutton until the desired parameter
value is shown in the SPA window.
d. Proceed through the SPA menu, selecting the menu commands and
parameter values indicated. After completing the sequence in the
first column, go to the top of the second column and continue.
e. To exit the menu, repeatedly press SELECT to display any main
or
until CONF EXIT is displayed.
menu command. Then, press
Select CONF EXIT.
f. Detailed instructions concerning the configuration menu and the
submenu structure for each main command are provided in the SPA
user's manual.
B-5
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Figure B-6. SPA Configuration Menu for OCX 8800 Communication
SET
HART
Ü SET MSTR Ü ô PRIM
Ü SET FUCT Ü ô NRML
Ü NUM VARS Ü ô 02
Ü NUM TRYS Ü ô 03
Ü EXIT HART Ü SGNL SRCE
SCLE INPT
SCLE
DSPL
Ü AOUT SRCE Ü ô SV
SGNL Ü AL2 SRCE Ü ô PV
SRCE Ü AL3 SRCE Ü ô PV
Ü AL4 SRCE Ü ô PV
Ü EXIT SRCE Ü FLT SRCE
FLT
SRCE
Ü PV DSPL
Ü SET ZERO Ü ô 0000 PCT
Ü SET FULL Ü ô 25 PCT
Ü SV DSPL
Ü SET ZERO Ü ô 0000 PPM
Ü SET FULL Ü ô 1000 PPM
Ü EXIT DSPL Ü SCLE OUT
SCLE
OUT
Ü SET ZERO Ü ô 4.000 MA
Ü SET FULL Ü ô 20.00 MA
Ü EXIT Z/FS
Ü TRIM OUT
TRIM
OUT
Ü TRIM ZERO Ü ô 4.000 MA
Ü TRIM FULL Ü ô 20.00 MA
Ü EXIT TRIM Ü CONF ALRM
ê CONF OPTS
Ü SET LINR Ü ô LINR OFF
CONF Ü PV SCLE Ü ô AUTO
OPTS Ü DSPL EGU Ü ô CSTM Ü ô PPM
SET
EGU
SCLE
INPT
Ü PV EGU Ü ô PCT
Ü SV EGU Ü ô CSTM Ü ô PPM
(select P, select P, select M)
Ü EXIT EGU Ü SCLE INPT
Ü PV SCLE Ü PV ZERO ô 0000 PCT
Ü PV FULL ô 25 PCT
Ü SCLE SV Ü SET ZERO ô 0000 PPM
Ü SET FULL ô 1000 PPM
Ü EXIT SCLE Ü SCLE DSPL
SCLE DSPL
B-6
Refer to
CONF SPA manual
ALRM for settings or
ê PASS WORD
PASS
WORD
CONF
EXIT
ê CONF EXIT
Ü SPA setup complete;
observe process value display.
37390003
(select P, select P, select M)
Ü DSPL SRCE Ü ô SV
Ü AL2 SEL Ü AL2 FLT
ê SET FAIL Ü FAIL LOW
ê EXIT OPTS Ü SET EGU
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Appendix C
Return of Materials
RETURNING MATERIAL
If factory repair of defective equipment is required, proceed as follows:
1. Secure a return authorization number from an Emerson Process
Management sales office or representative before returning the
equipment. Equipment must be returned with complete identification in
accordance with Emerson Process Management instructions or it will
not be accepted.
In no event will Emerson Process Management be responsible for
equipment returned without proper authorization and identification.
2. Carefully pack defective unit in a sturdy box with sufficient shock
absorbing material to ensure that no additional damage will occur during
shipping.
3. In a cover letter, describe completely:
a. The symptoms from which it was determined that the equipment is
faulty.
b. The environment in which the equipment has been operating
(housing, weather, vibration, dust, etc.).
c. Site from which equipment was removed.
d. Whether warranty or nonwarranty service is requested.
e. Complete shipping instructions for return of equipment.
f. Reference the return authorization number.
4. Enclose a cover letter and purchase order and ship the defective
equipment according to instructions provided in Emerson Process
Management Return Authorization, prepaid, to:
Emerson Process Management
RMR Department
Daniel Headquarters
11100 Britmore Park Drive
Houston, TX 77041
If warranty service is requested, the defective unit will be carefully inspected
and tested at the factory. If failure was due to conditions listed in the standard
Rosemount Analytical warranty, the defective unit will be repaired or replaced
at Emerson Process Management's option, and an operating unit will be
returned to the customer in accordance with shipping instructions furnished in
the cover letter.
For equipment no longer under warranty, the equipment will be repaired at the
factory and returned as directed by the purchase order and shipping
instructions.
http://www..raihome.com
Instruction Manual
OCX 8800
C-2
IM-106-880, Rev 2.0
September 2009
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Index
A
Accessories . . . . . . . . . . . . . . 1-16
AI Function Block . . . . . . . . . . 7-23
Alarm Detection . . . . . . . . 7-28
Application Information . . 7-30
Troubleshooting . . . . . . . . 7-34
Alarm Event Enumerations . . . 7-18
Alarm Events . . . . . . . . . . . . . . 7-18
Alarm Relay Events . . . . . . . . 8-11
Alerts . . . . . . . . . . . . . . . . . . . . . 7-4
Analog Input (AI)
Function Block . . . . . . . . . . . 7-23
Analog Input Function Block
Schematic . . . . . . . . . . . . . . 7-26
Analog Input Function Block
Timing Diagram . . . . . . . . . . 7-26
Assemble O2 Sensor
and Heater Strut . . . . . . . . . . 9-21
Autocalibration Setup,
Fieldbus . . . . . . . . . . . . . . . . . 5-2
Autocalibration Setup, LOI . . . . 5-1
Autocalibration, HART . . . . . . . 5-3
Autocalibration, LOI . . . . . . . . . 5-3
B
Band Heater Height . . . . . . . . 9-24
Block Errors . . . . . . . . . . . . . . 7-27
BLOCK_ERR Conditions . . . . 7-28
Blowback Feature . . . . . . . . . . . 3-7
Blowback State Enumerations 7-18
Blowback System . . . . . . . . . . . 1-5
Blowback without
Autocalibration . . . . . . . . . . . 2-20
C
Cable Connections . . . . . . . . . . 9-9
Cal Results Bit Enumerations . 7-19
Calibration Control
Enumerations . . . . . . . . . . . . 7-17
Calibration Solenoids . . . . . . . . 3-6
Calibration State Values . . . . . 7-17
Calibration Step Command . . . 7-17
Calibration Tolerance Feature . 3-11
Calibration Verify Feature . . . . . 3-9
Calibration Verify Step Values . 7-19
Cell Output . . . . . . . . . . . . . . . . 8-7
http://www.raihome.com
COe Out Tracks
Enumerations . . . . . . . . . . . . 7-20
COe Purge / Zero Feature . . . 3-12
COe Sensor . . . . .9-13, 9-16, 9-20
COe Sensor Holder
Alignment . . . . . . . . . . . . . . . 9-24
COe Sensor Parts . . . . . . . . . . 9-23
COe Sensor, Thermocouple,
Heater Connections . . 9-13, 9-25
COe Zero State
Enumerations . . . . . . . . . . . . 7-20
Combustibles Sensor . . . . . . . . 1-4
Communicator Conections
- Fieldbus . . . . . . . . . . . . . . . . 6-3
Component Checklist . . . . . . . . 1-1
Configuration . . . . . . . . . . . 3-2, 3-4
Configure Simulation
from AMS . . . . . . . . . . . . . . . 7-10
D
D/A Trim Procedures - HART . 5-14
D/A Trim Procedures - LOI . . . 5-12
Defaults, HART Electronics . . . . 3-3
Descriptions of PlantWeb
Alert Parameters . . . . . . . . . . 7-7
Detailed Status Descriptions . . 7-20
Device Addressing . . . . . . . . . . 7-5
Diagnostic Alarms . . . . . . . . . . . 8-2
Display Orientation . . . . . . . . . . 4-1
E
Eductor . . . . . . . . . . . . . . . . . . 9-22
Eductor Alignment
Matchmarks . . . . . . . . . . . . . 9-16
Eductor Holder . . . . . . . . . . . . 9-16
Electrical Noise . . . . . . . . . . . . . 8-1
Electronics Housing
Components . . . . . . . . . . . . . 10-6
Electronics Housing
Disassembly . . . . . . . . . . . . . 9-29
Electronics Housing
Terminal Blocks . . . . . . . 9-3, 9-8
Electrostatic Discharge . . . . . . . 8-1
EMI Filter and Terminal Block . 10-8
Essential Instructions . . . . . . . . . . i
F
Factory Repair . . . . . . . . . . . . . C-1
Fault Isolation . . . . . . . . . . . . . .8-3
Field Communicator . . . . . . . . .6-1
Field Communicator
Connections . . . . . . . . . . . . . .6-1
Fieldbus Menu Tree . . . . . . . . . .6-9
Fieldbus/PWA Simulate . . . . . .7-10
Filtering . . . . . . . . . . . . . . . . . .7-26
Fitting, ‘E’ Type . . . . . . . . . . . .9-35
Fitting, ‘R’ Type . . . . . . . . . . . .9-35
Foundation . . . . . . . . . . . . . . . . .7-1
Foundation Fieldbus
Technology . . . . . . . . . . . . . . .7-1
Fuse Locations . . . . . . . . . . . . .8-2
G
Grounding . . . . . . . . . . . . . . . . .8-1
H
Handling the OCX . . . . . . . . . . .1-7
I
I/O Channel Assignments . . . .7-21
I/O Channel Status . . . . . . . . .7-22
Install COe Sensor Assembly .9-24
Install Eductor . . . . . . . . . . . . .9-22
Install Electronics Stack . . . . . .9-32
Install LOI Module . . . . . . . . . .9-32
Install OCX with Integral
Electronics . . . . . . . . . . . . . . .9-4
Install Remote Electronics
Housing . . . . . . . . . . . . . . . . .9-10
Install Sensor Housing . . . . . . . .9-7
Install Solenoid Valves . . . . . . .9-32
Install Tube Fittings . . . . . . . . .9-36
Instrument Air . . . . . . . . . . . . . .1-7
Instrument-Specific
Function Blocks . . . . . . . . . . .7-4
L
Link Active Scheduler (LAS) . . .7-5
LK Notation . . . . . . . . . . . . . . . .4-3
LOI Assembly . . . . . . . . . . . . . .4-2
LOI board . . . . . . . . . . . . . . . . . .4-1
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
L
P
LOI Components . . . . . . . . . . . . 4-1
LOI Keypad . . . . . . . . . . . . . . . . 4-2
LOI Status Codes . . . . . . . . . . . 4-3
Personal Computer (PC) . . . . . . 1-5
PID Function Block
Alarm Detection . . . . . . . . 7-43
Application Information . . 7-44
Modes . . . . . . . . . . . . . . . 7-42
Parameters . . . . . . . . . . . 7-36
Troubleshooting . . . . . . . . 7-50
PlantWeb Alerts . . . . . . . . . . . . . 7-6
Power Up . . . . . . . . . . . . . . . . . 3-5
Pre-Heater . . . . . . . . . . . . . . . . 9-20
Pre-Heater Alignment . . . . . . . 9-21
Product Matrix . . . . . . . . . . . . . 1-14
PWA Simulate . . . . . . . . . . . . . 7-10
M
Manual Calibration,
Fieldbus . . . . . . . . . . . . 5-8, 5-10
Manual Calibration, HART . . . . 5-5
Manual Calibration, LOI . . . . . . 5-4
Mapping of PWA . . . . . . . . . . . . 7-7
Material Safety Data Sheet . . . A-24
Menu Tree
Fieldbus . . . . . . . . . . . . . . . 6-9
HART . . . . . . . . . . . . . . . . . 6-5
LOI . . . . . . . . . . . . . . . . . . . 4-4
N
Nernst Equation . . . . . . . . . . . . 1-3
Network Communication,
Fieldbus . . . . . . . . . . . . . . . . . 7-4
O
O2 Cell and Heater
Strut . . . . . . . . . . . . . . 9-26, 9-28
O2 Cell and Heater
Strut Assembly . . 9-11, 9-18, 10-9
O2 Cell Output Voltage . . . . . . . 1-5
O2 Cell Replacement Kit . . . . . 9-18
O2 Cell, Heater, and
Thermocouple . . . . . . . . . . . 9-18
O2 Cell, Thermocouple,
& Heater Connections 9-12, 9-27
OCX Implemented Function
Blocks . . . . . . . . . . . . . . . . . . 7-6
OCX Removal and Installation . 9-1
OCX Specifications . . . . . . . . . 1-12
OCX with Integral Electronics . . 9-2
Off-Line and On-Line
Operations . . . . . . . . . . . . . . . 6-4
Operating Mode
Enumerations . . . . . . . . . . . . 7-18
Operation Diagram . . . . . . . . . . 1-6
Oxygen and Cell Output . . . . . . 8-7
R
Reference Air Tube . . . . . . . . . 9-11
Remove Eductor . . . . . . . . . . . 9-16
Remove EEprom . . . . . . . . . . . 9-29
Remove Electronics Stack . . . 9-30
Remove Flash PROM . . . . . . . 9-29
Remove LOI Module and
Board . . . . . . . . . . . . . . . . . . 9-29
Remove OCX 8800 with
Integral Electronics . . . . . . . . . 9-2
Remove OCX with
Remote Electronics . . . . . . . . 9-5
Remove Remote Electronics . . . 9-7
Remove Solenoid Valves . . . . 9-31
Remove Tube Fittings . . . . . . . 9-35
Repair Sensor Housing . . . . . . 9-10
Replace Tube Fittings . . . . . . . 9-35
Reset Procedure . . . . . . . . . . . 3-14
Resistance Devices (RTD) . . . . 1-4
Resource Block . . . . . . . . . . . . . 7-6
Resource Blocks . . . . . . . . . . . . 7-4
Returning Material . . . . . . . . . . .C-1
RTD . . . . . . . . . . . . . . . . . . . . . . 1-4
S
Samole Tube Support . . . . . . . 1-10
Sample and Exhaust
Tubes . . . . . . . . . . . . . 9-17, 9-21
Sample Block Heater
Rods . . . . . . . . . . . . . . 9-12, 9-27
Selected Distributed
Control Systems . . . . . . . . . . .1-5
Sensor Housing
Components . . . . . . . . . . . . .10-2
Sensor Housing
Disassembly . . . . . . . . . . . . .9-10
Sensor Housing
Enumerations . . . . . . . . . . . .7-19
Sensor Housing Leak Test . . . .9-28
Sensor Housing Terminals . . . . .9-6
Sensor Housing Type . . . . . . .7-19
Signal Conversion . . . . . . . . . .7-26
Simulation . . . . . . . . . . . . . . . .7-25
Single Link Fieldbus Network . .7-5
Solenoid Power Terminals . . . .9-34
SPA Configuration Menu . . . . . B-6
SPA Front Panel . . . . . . . . . . . B-4
SPA Interface Connections . . . B-2
SPA Setup for Calibration . . . . B-3
SPA with HART Alarm . . . . . . . B-1
Specifications . . . . . . . . . . . . . .1-12
Status Handling . . . . . . . . . . . .7-29
Support Resource
Block Errors . . . . . . . . . . . . .7-12
System Configuration . . . . . . . .1-4
System Description . . . . . . . . . .1-3
System Features . . . . . . . . . . . .1-5
System Operation . . . . . . . . . . .1-6
System Package . . . . . . . . . . . .1-2
T
Terminals Insulator . . . . . . . . .9-28
Test Gas Values . . . . . . . . . . . . .3-5
Total Power Loss . . . . . . . . . . . .8-2
Transducer Block
Channel Status . . . . . . . . . . .7-22
Transducer Block
Enumerations . . . . . . . . . . . .7-17
Transducer Block Errors . . . . .7-22
Transducer Block
Parameters . . . . . . . . . . . . . .7-13
Transducer Block Simulate . . .7-22
Transducer Blocks . . . . . . . . . . .7-4
Typical System Installation . . . .1-9
Typical System Package . . . . . .1-2
W
Warranty Service . . . . . . . . . . . C-1
Index-2
WARRANTY
Rosemount Analytical warrants that the equipment manufactured and
sold by it will, upon shipment, be free of defects in workmanship or
material. Should any failure to conform to this warranty become apparent
during a period of one year after the date of shipment, Rosemount
Analytical shall, upon prompt written notice from the purchaser, correct
such nonconformity by repair or replacement, F.O.B. factory of the
defective part or parts. Correction in the manner provided above shall
constitute a fulfillment of all liabilities of Rosemount Analytical with
respect to the quality of the equipment.
THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL
OTHER WARRANTIES OF QUALITY WHETHER WRITTEN, ORAL, OR
IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OF
FITNESS FOR PURPOSE).
The remedy(ies) provided above shall be purchaser's sole remedy(ies) for
any failure of Rosemount Analytical to comply with the warranty
provisions, whether claims by the purchaser are based in contract or in
tort (including negligence).
Rosemount Analytical does not warrant equipment against normal
deterioration due to environment. Factors such as corrosive gases and
solid particulates can be detrimental and can create the need for repair or
replacement as part of normal wear and tear during the warranty period.
Equipment supplied by Rosemount Analytical Inc. but not manufactured
by it will be subject to the same warranty as is extended to Rosemount
Analytical by the original manufacturer.
At the time of installation it is important that the required services are
supplied to the system and that the electronic controller is set up at least
to the point where it is controlling the sensor heater. This will ensure, that
should there be a delay between installation and full commissioning that
the sensor being supplied with ac power and reference air will not be
subjected to component deterioration.
3993
9/09
Instruction Manual
IM-106-880, Rev 2.0
September 2009
OCX 8800
Rosemount Analytical and the Rosemount Analytical logotype are registered trademarks of Rosemount Analytical Inc.
HART is a registered trademark of the HART Communications Foundation.
All other marks are the property of their respective owners.
WORLD HEADQUARTERS
Emerson Process Management
Rosemount Analytical Inc.
6565P Davis Industrial Parkway
Solon, OH 44139
T 440 914 1261
T 800 433 6076
F 440 914 1262
E gas.csc@emerson.com
EUROPE, MIDDLE EAST, AFRICA
Emerson Process Management
Shared Services Limited
Heath Place
Bognor Regis
West Sussex PO22 9SH
England
T 44 1243 863121
F 44 1243 845354
ROSEMOUNT ANALYTICAL EUROPE
Emerson Process Management
Gmbh & co. OHG
Industriestrasse 1
63594 Hasselroth
Germany
T 49 6055 884 0
F 49 6055 884 209
GAS CHROMATOGRAPHY
CENTER AND LATIN AMERICA
Emerson Process Management
Rosemount Analytical Inc.
11100 Brittmoore Park Drive
Houston, TX 77041
T 713 467 6000
F 713 827 3329
http://www.raihome.com
© 2009 Emerson Process Management. All rights reserved.
ASIA-PACIFIC
Emerson Process Management
Asia Pacific Private Limited
1 Pandan Crescent
Singapore 128461
Republic of Singapore
T 65 6 777 8211
F 65 6 777 0947
E analytical@ap.emerson.com