Axis 7100 Installation guide


Add to my manuals
424 Pages

advertisement

Axis 7100 Installation guide | Manualzz

Your Resource for Advanced Dicing Solutions

ADT 7100

Dicing Series

Vectus/Fortis Model Types

Operations Manual

Software Version 5.6.3

P/N 97100-9002-000-14

June 2005

Customer Support

Advanced Dicing Technologies Ltd.

Advanced Technologies Center

Haifa, Israel, 31905

Telephone: (+972)-4-8545222

Fax: (+972)-4-8550007

Confidential

This information is the property of Advanced Dicing Technologies Ltd.

Any reproduction, publication or distribution to a third party is strictly forbidden unless written permission is given by an authorized agent of Advanced Dicing Technologies Ltd.

Advanced Dicing Technologies Ltd.

Item

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Record of Changes

New Part

Number

RECORD OF CHANGES

New Page

Number

Revision Date Comments

P/N 97100-9002-000-14 Ver 06/05 iii

Safety First

SAFETY FIRST

Advanced Dicing Technologies Ltd. believes that the safety of personnel working with and around our Systems is the most important consideration.

Please read all Safety information below before attempting to operate the

System, and in the Maintenance Manual before attempting to perform any maintenance function.

Warnings

1 Obey and follow all warnings and cautions given in the manuals.

2 Comply with all approved and established precautions for operating electrical and mechanical equipment.

3 All maintenance tasks should be performed only by trained, authorized personnel.

4 Verify that all the power, air and water facilities are turned off before beginning any maintenance procedure, replacement, or repair of parts

(including insertion or removal of connectors or boards).

Danger – Electrical Shock Hazard: High voltage is present at points throughout the System. Contact with high voltage can result in injury or death.

Before opening the System Panels or attempting any maintenance task, ensure that there is no voltage present:

• Power down the System.

• Disconnect the AC power cord plug from the wall outlet and wait ten minutes for any remaining current to dissipate.

• Turn off the Uninterruptible Power Supply (UPS) on Systems where a

UPS is present.

Danger – Moving Parts Hazard: There are two kinds of hazards presented by moving parts:

• Some components (e.g. Spindles and Blades) rotate at high speeds and can cause injury even after power has been turned off. Do not touch either the Spindle or the Blade while they are still in motion.

Wait until the rotation stops completely before working on or near moving parts. Do not operate the System with any of the covers open.

• Beware of loose clothing, jewelry and other loose or dangling items which might get caught in moving or rotating parts.

Danger – Burn Hazard: Be careful not to touch the solenoid valves inside the

System. Some solenoid valves may reach high temperatures; direct contact may cause burns.

Advanced Dicing Technologies Ltd.

iv

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Safety First

Danger – Bodily Injury Hazard: Be careful not to drop any of the Covers while opening or closing them. Let go only once they are completely opened or closed. Failure to do so could cause bodily injury or damage to the Covers.

Danger – High Pressure Water and Air Hazards: Observe standard operating procedures to avoid contact with High Pressure Air and Water, which can present hazards, especially to eyes.

Danger – Ultraviolet Light (UVL) Tape Curing System: The UVL Tape Curing

System makes use of potentially harmful levels of ultraviolet light. Although all reasonable safety precautions have been taken to overcome the potential dangers, those operating and servicing the UVL Tape Curing System should be aware of the existence of this inherently harmful light source. The UVL

System can reach extremely high temperatures. Do not touch the UVL System while in operation and allow thirty minutes cooling time after operation.Personnel must wear UV-protective glasses which meet ANSI Z80.3 requirements when inspecting and replacing UV Lamps.

Safety Features

Our Systems are equipped with the following safety features. Look at them and get to know them.

EMERGENCY STOP BUTTON: Pressing the red EMERGENCY

STOP BUTTON stops ALL activities in the System and cuts off power to the System.

CIRCUIT BREAKER SWITCH: Operate the CIRCUIT BREAKER

SWITCH immediately if it becomes necessary to cut off power to the

System.

GROUNDING CABLES: Grounding Cables are attached to the inside of each System Panel and must be disconnected each time a System

Panel is removed, and reconnected each time a System Panel is replaced. An Electrostatic Discharge Device (ESD) should be worn when handling the Grounding Cables.

INTERLOCK COVERS: Lock the Covers so they cannot be opened during dicing.

• Spindle Interlock

The Spindle Interlock prevents injury to the User by:

Preventing the Spindle Cover from opening while the Spindle is rotating

Preventing the Axes from being moved while the Spindle

Cover is open

Stopping an Axis if the Spindle Cover is opened while the Axis is moving

Any attempt to move an Axis while the Spindle Cover is open results in an error message. An error message is also

P/N 97100-9002-000-14 Ver 06/05 v

Safety First displayed if the Spindle Cover is opened while an Axis is moving or when a bypass key is used. The Axes stop immediately and the spindle keep moving mechanically.

The Spindle Interlock is automatically engaged while the

Dicer is initializing, and disengaged when initialization is completed. In addition, the Spindle Interlock is disengaged whenever the System is powered down. The Model 7100 cannot be powered down while the spindle is rotating.

During the Blade Change procedure, the Spindle Interlock automatically disengages when the Spindle is turned off by the System. At the end of the procedure, the Software reminds the User to close the cover before clicking Finish. The Spindle

Interlock then re-engages automatically to protect the User while the Dicer initializes. For more information about

changing the Blade, see Chapter 7.

Note: Once the Blade Change button is pressed, the Spindle Interlock is unlocked and cover can be opened. The user has 20 seconds to open the cover. If the cover has not been opened within 20 seconds, the interlock locks back and can be bypassed by means of a key.

The Spindle Interlock can be locked and unlocked from the

Dicer screen in the Setup & Diagnostics workbook. Access rights to this function can be restricted. For more information

about the Setup & Diagnostics workbook, see Chapter 2. For

more information about access rights and Access Levels, see

Chapter 4.

• Load/Unload Interlock (7100EUR only)

The Load/Unload Interlock prevents the Load/Unload Cover from being opened while the Model 7100 is operating. The Interlock is only disengaged when Workpieces are loaded or unloaded from the Cutting

Chuck.

Unlike the Spindle Interlock, the Load/Unload Interlock is automatically engaged after initialization. It disengages only after the

User initiates the Load procedure. X, Y and Theta Axes are initialized when the procedure is completed.

During the Load procedure, another message appears after the

Workpiece has been accepted by the Cutting Chuck, reminding the

User to close the Load/Unload Cover before continuing. (This enables the User to leave the cover open in cases where the Workpiece needs to be manually held in place by the User before it can be accepted by the

Chuck.) An error message appears if the Load/Unload Cover is not closed within a reasonable time by the User.

Advanced Dicing Technologies Ltd.

vi

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Safety First

The Load/Unload Interlock can be locked and unlocked from the Dicer screen in the Setup & Diagnostics workbook. Access rights to this function can be restricted. For more information about the Setup &

Diagnostics workbook, see Chapter 2. For more information about

access rights and Access Levels, see Chapter 4.

Note: Once the Unload button is pressed, the Load/Unload Interlock is unlocked and cover can be opened. The user has 20 seconds to open the cover. If the cover has not been opened within 20 seconds, the interlock locks back and can be bypassed by means of a key.

P/N 97100-9002-000-14 Ver 06/05 vii

Before You Begin

BEFORE YOU BEGIN

This Manual

Before you begin to work with the 7100 Dicing Series machine, please read this Manual. It explains how to work with the System, where and when to perform operations, and why to do them.

Please be sure to read the section on Conventions. This section makes it easier for you to perform procedures and understand concepts by explaining the standards used in this Manual.

The Model 7100 Glossary, explains the technical terms used in describing

the System and System functions. Please use it as a reference tool while working with the Manual.

Reading Chapter 3, System Operation, and Chapters 4 through 10 will give

you tools to perform the operation procedures.

Please read every procedure through to the end before starting the procedure, whether it effects the System hardware or software. Thorough understanding of what you are about to do will prevent unnecessary loss of time due to confusion while you are performing the procedure.

Note: After Power On, and before normal operation, it is recommended to warm up the system by running a simulated dicing session for thirty minutes.

The User should place a Workpiece on the Cutting Chuck, define and assign a

Recipe, and run simulated dicing for thirty minutes. The User must ensure that the Cut Depth is set so that the Blade does not enter the Workpiece and no

Kerf Check or Cut Verification algorithm is selected. The spindle should rotate at typical speed (the speed used for dicing) with cutting water on.

This simulated dicing, in the system steady state, warms up the Model 7100 to prepare it for normal operation. Advanced Dicing Technologies Ltd. suggest creating a warm-up recipe.

Advanced Dicing Technologies Ltd.

viii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Contents at a Glance

Contents at a Glance

Chapter 1: Introduction

Chapter 2: System Description

Chapter 3: System Operation

Chapter 4: Administration

Chapter 5: Building Recipes

Chapter 6: Dicer Procedures

Chapter 7: Saw Procedures

Chapter 8: Special Features

Chapter 9: Configuration Options

Chapter 10: Troubleshooting

Appendices

Index

P/N 97100-9002-000-14 Ver 06/05 ix

Reference Documents

Reference Documents

ADT Model 7100 Semi-Automatic Dicing System Maintenance

Manual. It provides information and procedures to aid in the performance of preventative maintenance, as well as troubleshooting and repair procedures.

ADT Model 7100 Semi-Automatic Dicing System Large Area

Option

Advanced Dicing Technologies Ltd.

x

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Conventions

CONVENTIONS

This section explains basic symbols and conventions used in this Manual.

Symbols

The following symbols have been inserted on the left hand side of the text in order to make it easier to perform procedures:

Symbol Description

Note: Information given in a note describes how the

Model 7100 functions or provides a tip on how best to use it.

Caution: Information given in a message labeled caution refers to the safe operation of the Model 7100 and provides warnings where the possibility for loss of data or damage to the equipment exists.

Danger: Information given in a message labeled danger warns of possible hazard to personnel and extreme hazard to the Model 7100.

A wrench indicates that a procedure deals with hardware and requires physical User intervention.

Screen Navigation

The convention below is an example of how to follow the shortened instruction form for navigating to menu options.

Convention

From the Manual menu, select Manual > Dicer >

Vision > Manual

Alignment

Description

Click the Manual menu and select the Dicer submenu, followed by the Vision option within the Dicer submenu, followed by the Manual

Alignment sub-option within the Vision option.

The convention below is an example of how to follow the shortened instruction form for navigating the Setup & Diagnostics tree and the

Calibration tree in the Workbook workspace.

Convention

From the Setup &

Diagnostics tree, select

Saw > Dicer > Axes >

Front Y

Description

From the Setup & Diagnostics tree, select the

Saw branch and within the Saw branch, select the Dicer branch and within the Dicer branch, select the Axes branch and within the Axes branch, select Front Y.

P/N 97100-9002-000-14 Ver 06/05 xi

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

A

BBD gf

GUI

Hz in.

in. Hg kgf*cm mil mm

MPU ms

NCHD psi scfm

UPS

V

VAC

VDC

Abbreviations and Acronyms

Amps

Broken Blade Detector

Grams of force

Graphical User Interface

Hertz (frequency)

Inch

Inch of Mercury (vacuum pressure unit)

Kilograms of force times lever length, in centimeters (torque unit)

0.001 inch

Millimeter

Main Power Unit

Millisecond

Non-Contact Height Device

Pounds per Square Inch

Standard Cubic Feet per Minute (gas flow unit)

Uninterruptible Power Supply

Volts

AC Voltage

DC Voltage

Advanced Dicing Technologies Ltd.

xii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Table of Contents

TABLE OF CONTENTS

Safety First ______________________________________ iv

Before You Begin ________________________________ viii

Conventions _____________________________________ xi

Table of Contents ________________________________ xiii

List of Figures ___________________________________ xix

List of Tables __________________________________ xxv

1 INTRODUCTION ____________________________________ 1-1

1.1

1.2

1.3

1.4

1.5

1.6

Overview ____________________________________________ 1-1

Standard Features ____________________________________ 1-2

Modes of Operation ___________________________________ 1-2

Available Models _____________________________________ 1-3

Options _____________________________________________ 1-3

Available Models ____________________________________ 1.6-1

2 SYSTEM DESCRIPTION ______________________________ 2-1

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.3

2.4

Main Subsystems ___________________________________ 2.1-1

Front Panel _____________________________________________________2.1-1

Dicer __________________________________________________________2.1-4

Light Tower _____________________________________________________2.1-6

Un-Interruptible Power Supply ______________________________________2.1-8

Graphical User Interface ______________________________ 2.2-1

Menu Bar ______________________________________________________2.2-2

Toolbar ________________________________________________________2.2-5

Gauges ________________________________________________________2.2-8

Dicer Status Indicator _____________________________________________2.2-9

Active User Field _______________________________________________2.2-10

Activity Log ____________________________________________________2.2-10

Blade Indicator _________________________________________________2.2-10

Run Button_____________________________________________________2.2-11

Stop Button ____________________________________________________2.2-11

Workspaces ___________________________________________________2.2-12

System Configuration ________________________________ 2.3-1

Menu Navigation Chart _______________________________ 2.4-1

3 SYSTEM OPERATION _______________________________ 3-1

3.1

Powering Up/Down Procedures ________________________ 3.1-1

P/N 97100-9002-000-14 Ver 06/05 xiii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Table of Contents

3.1.1

3.1.2

3.2

3.3

3.4

3.5

3.7

3.7.1

3.7.2

3.7.3

3.7.4

3.6

3.6.1

3.6.2

3.6.3

3.6.4

3.8

3.8.1

3.8.2

3.8.3

3.8.4

Powering Up the System __________________________________________3.1-1

Powering Down the System ________________________________________3.1-3

Logging In _________________________________________ 3.2-1

System Initialization _________________________________ 3.3-1

Defining the Job ____________________________________ 3.4-1

Placing/Removing a Workpiece ________________________ 3.5-1

Model 7100 Workflows _______________________________ 3.6-1

Auto Mode Workflow - Existing Recipe _______________________________3.6-1

Auto Mode Workflow - New Recipe __________________________________3.6-3

Manual Mode Workflow ___________________________________________3.6-5

Procedures Included in the Workflows ________________________________3.6-5

Stopping System Operation ___________________________ 3.7-1

Emergency Stop _________________________________________________3.7-1

STOP/OFF Button and Soft Stop Button ______________________________3.7-1

Pausing a Process _______________________________________________3.7-2

Manual Stop ____________________________________________________3.7-2

Log File ____________________________________________ 3.8-1

Applying Log Filters ______________________________________________3.8-2

Log File Find Feature _____________________________________________3.8-2

Exporting Log Files _______________________________________________3.8-3

Periodical backup ________________________________________________3.8-3

4 ADMINISTRATION __________________________________ 4-1

4.1

4.2

4.2.1

4.2.2

4.2.3

4.3

4.3.1

4.3.2

Access Levels ______________________________________ 4.1-1

Modifying Access Levels _____________________________ 4.2-1

Process Program Parameters ______________________________________4.2-1

User Interface Elements ___________________________________________4.2-2

Protected Mode _________________________________________________4.2-5

Adding and Removing Users __________________________ 4.3-1

Adding Users ___________________________________________________4.3-1

Removing Users _________________________________________________4.3-1

5 BUILDING RECIPES _________________________________ 5-1

5.1

5.2

5.3

5.3.1

5.3.2

5.4

5.4.1

Building Recipes Workflow ___________________________ 5.1-1

Creating a New Recipe _______________________________ 5.2-1

Defining Recipe Properties ____________________________ 5.3-1

Defining Blade Properties __________________________________________5.3-4

Displaying Blade Properties ________________________________________5.3-4

Specifying Recipe Parameters _________________________ 5.4-1

Accessing Parameters ____________________________________________5.4-1

Advanced Dicing Technologies Ltd.

xiv

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Table of Contents

5.4.2

5.4.3

5.5

5.6

5.6.1

5.6.2

5.6.3

5.6.4

5.6.5

5.6.6

Monitoring the Cutting Process _____________________________________5.4-4

General and Angle Parameters _____________________________________5.4-5

Importing and Exporting Recipes ______________________ 5.5-1

Recipe Templates ___________________________________ 5.6-1

APC Standard Template ___________________________________________5.6-1

APC Loop Cut Template ___________________________________________5.6-2

GPC Standard Template __________________________________________5.6-3

GPC Multi Die Size Template _______________________________________5.6-4

Standard Dressing Template _______________________________________5.6-5

GPC Dressing Template ___________________________________________5.6-6

6 DICER PROCEDURES _______________________________ 6-1

6.4

6.4.1

6.4.2

6.4.3

6.4.4

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

6.5

6.5.1

6.5.2

6.5.3

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.1.6

6.1.7

6.1.8

6.1.9

6.2

6.2.1

6.2.2

Workpiece Alignment ________________________________ 6.1-1

Manual Alignment ________________________________________________6.1-2

Auto Alignment __________________________________________________6.1-4

Teach Alignment _________________________________________________6.1-9

Choice of Cutting Angle by Panel ___________________________________6.1-19

Model Types ___________________________________________________6.1-22

Model Processing Filters _________________________________________6.1-23

Rotational Shrinkage ____________________________________________6.1-25

Average Index _________________________________________________6.1-26

Updating the Workpiece Alignment __________________________________6.1-28

Cut Verification _____________________________________ 6.2-1

Cut Verification: Special Search _____________________________________6.2-2

Auto Cut Verification ______________________________________________6.2-3

Kerf Checking ______________________________________ 6.3-1

Kerf Check Glossary ______________________________________________6.3-1

Standard Kerf Check Algorithm _____________________________________6.3-1

Kerf Check Workflow _____________________________________________6.3-2

Automatic Kerf Checking __________________________________________6.3-4

Manual Kerf Check _______________________________________________6.3-7

Teach Kerf Check ________________________________________________6.3-9

Kerf Check Options _____________________________________________6.3-13

Manual Y Offset _____________________________________ 6.4-1

Required Recipe Parameters for Manual Y Offset _______________________6.4-1

Performing Manual Y Offset ________________________________________6.4-2

Y-Offset Reference Positions _______________________________________6.4-3

Y-Offset on Dress Block ___________________________________________6.4-3

Special Cut Procedures ______________________________ 6.5-1

Partial Wafer Cut ________________________________________________6.5-1

Sub-Index ______________________________________________________6.5-1

Loop Cut _______________________________________________________6.5-2

P/N 97100-9002-000-14 Ver 06/05 xv

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Table of Contents

6.5.4

6.5.5

6.5.6

6.5.7

Chopping ______________________________________________________6.5-4

Multi-Panel Alignment _____________________________________________6.5-4

Cut Depth Compensation _________________________________________6.5-11

Negative Index _________________________________________________6.5-11

7 SAW PROCEDURES _________________________________ 7-1

7.4

7.4.1

7.4.2

7.4.3

7.5

7.5.1

7.5.2

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.1

7.1.1

7.1.2

7.1.3

7.1.4

7.2

Z-Axis Safety _______________________________________ 7.1-1

Z-Axis Safety Position ____________________________________________7.1-1

Z-Axis Return Height _____________________________________________7.1-1

Calibration Start Position __________________________________________7.1-1

Pre Non Contact Height ___________________________________________7.1-2

Blade Expansion ____________________________________ 7.2-1

Height Procedures ___________________________________ 7.3-1

Height Reference Device __________________________________________7.3-3

Chuck Height ___________________________________________________7.3-5

Chuck to Height Device Delta Measurement ___________________________7.3-5

Sample Blade Calibration __________________________________________7.3-6

Auto Height Compensation _________________________________________7.3-7

Blade Handling _____________________________________ 7.4-1

Blade Information ________________________________________________7.4-1

Blade Replacement (Change) ______________________________________7.4-7

Blade Dressing _________________________________________________7.4-15

Chuck Change ______________________________________ 7.5-1

Replacing the Chuck _____________________________________________7.5-1

Reteaching the Focus on the Chuck _________________________________7.5-3

8 SPECIAL FEATURES ________________________________ 8-1

8.4

8.4.1

8.4.2

8.5

8.5.1

8.5.2

8.6

8.7

8.1

8.1.1

8.1.2

8.2

8.3

Load Monitoring ____________________________________ 8.1-1

Load Monitoring with DC or AC Spindle _______________________________8.1-1

Online Monitoring ________________________________________________8.1-1

Language Selection __________________________________ 8.2-1

Wafer Vacuum Check ________________________________ 8.3-1

Open Loop Theta Accuracy Procedures _________________ 8.4-1

Stress Release __________________________________________________8.4-1

Theta Motion Replay _____________________________________________8.4-2

Spindle Velocity _____________________________________ 8.5-1

Reduced Height Velocity __________________________________________8.5-1

Reduced Vision Spindle Velocity ____________________________________8.5-2

Focus Change (Initial Focus Position) __________________ 8.6-1

Manual Inspection Illumination ________________________ 8.7-1

Advanced Dicing Technologies Ltd.

xvi

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Table of Contents

8.8

8.9

8.10

8.11

8.11.1

8.11.2

Database Backup ____________________________________ 8.8-1

Theta Safety Limits on X-Axis _________________________ 8.9-1

Change of Length Unit Type __________________________ 8.10-1

Multi-Panel Bar Code _______________________________ 8.11-1

Activating the Bar Code Feature ___________________________________8.11-1

Using the Bar Code Reader _______________________________________8.11-2

9 CONFIGURATION OPTIONS __________________________ 9-1

9.1

9.1.1

9.1.2

9.1.3

9.2

9.2.1

9.2.2

9.2.3

9.2.4

9.3

9.3.1

9.3.2

9.3.3

9.3.4

9.4

9.4.1

9.4.2

9.4.3

Autoloader _________________________________________ 9.1-1

Autoloader Description ____________________________________________9.1-1

Autoloader User Interface __________________________________________9.1-3

Autoloader Operation ____________________________________________9.1-12

Tilted Spindle _______________________________________ 9.2-1

Changing the Spindle Angle in a Recipe ______________________________9.2-2

Height Procedure Changes ________________________________________9.2-2

Changing the Spindle Angle ________________________________________9.2-3

Mechanical Adjustments ___________________________________________9.2-7

Dress Station _______________________________________ 9.3-1

Configuring the Dress Station _______________________________________9.3-1

Teaching the Dress Station ________________________________________9.3-2

Dress Station Setup ______________________________________________9.3-5

Dressing Modes _________________________________________________9.3-6

Wash Pipe _________________________________________ 9.4-1

Manual Operation ________________________________________________9.4-3

Model 7100 Vectus and ProVectus __________________________________9.4-4

Model 7100 Fortis and ProFortis ____________________________________9.4-5

10 TROUBLESHOOTING _______________________________ 10-1

10.1

10.2

10.3

10.3.1

10.4

10.5

10.6

10.7

10.7.1

10.8

Error Message Information ___________________________ 10.1-1

Recipe Problems ___________________________________ 10.2-1

Initializing the System _______________________________ 10.3-1

Initializing Dicer Components ______________________________________10.3-1

Height Problem ____________________________________ 10.4-1

Database Restoration and PC Recovery ________________ 10.5-1

Camera Installation After Emergency Stop ______________ 10.6-1

If Nothing Helps ____________________________________ 10.7-1

KMI and Database ______________________________________________10.7-1

UPS Bypass _______________________________________ 10.8-1

P/N 97100-9002-000-14 Ver 06/05 xvii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Table of Contents

Appendices ____________________________________________ A-1

The Model 7100 Glossary _____________________________________ A-1

Algorithms _________________________________________________ A-8

Cut Algorithms _______________________________________________________ A-8

Align Algorithms ______________________________________________________ A-9

Kerf Check Algorithm _________________________________________________ A-10

Bright Kerf Algorithm _________________________________________________ A-10

Full Teach Alignment Algorithm _________________________________________ A-10

Kerf Check Teach Algorithm ___________________________________________ A-11

Recipe Parameters __________________________________________ A-12

Air Parameters ______________________________________________________ A-12

Align Parameters ____________________________________________________ A-13

Align Kerf Model Parameters ___________________________________________ A-18

Auto Height Compensation ____________________________________________ A-19

Average Index Parameters ____________________________________________ A-20

Bar Code Parameters ________________________________________________ A-21

Blade Parameters ___________________________________________________ A-22

Cut Depth Comp ____________________________________________________ A-23

Cut Parameters _____________________________________________________ A-24

Cut Verify Parameters ________________________________________________ A-28

Cut Verify Limit Parameters ____________________________________________ A-30

Diagnostisc Parameters _______________________________________________ A-31

Dressing Parameters _________________________________________________ A-31

Dress Block Parameters ______________________________________________ A-32

Height Parameters ___________________________________________________ A-34

Kerf Check Parameters _______________________________________________ A-35

Kerf Check Limit Parameters ___________________________________________ A-37

Load Monitor Cutting Parameters _______________________________________ A-39

Load Monitor Baseline ________________________________________________ A-39

Loop Cut Parameters _________________________________________________ A-40

Manual Inspection Parameters _________________________________________ A-40

Model Precessing Parameters __________________________________________ A-42

MHS Parameters ____________________________________________________ A-43

Multi-Panel Parameters _______________________________________________ A-43

Override Parameters _________________________________________________ A-43

Shrinkage Parameters ________________________________________________ A-44

Teach Center Parameters _____________________________________________ A-46

Tilted Spindle Parameters _____________________________________________ A-47

Wash Pipe Parameters _______________________________________________ A-47

Y Offset Parameters __________________________________________________ A-48

Index ______________________________________ Index-i

Advanced Dicing Technologies Ltd.

xviii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Figures

LIST OF FIGURES

Figure 1-1: Model 7100 ProVectus __________________________________ 1-1

Figure 2-1: Model 7100 External Parts at a Glance_____________________ 2-1

Figure 2-2: Model 7100 Series Front Panel __________________________ 2.1-1

Figure 2-3: Stop Button Parameters _______________________________ 2.1-3

Figure 2-4: Dicer _______________________________________________ 2.1-4

Figure 2-5: Vision System________________________________________ 2.1-5

Figure 2-6: Illumination Accessories Attached to the Microscope_______ 2.1-6

Figure 2-7: Buzzer in Light Tower _________________________________ 2.1-7

Figure 2-8: Enabling the Digital I/O PCB ____________________________ 2.1-8

Figure 2-9: UPS ________________________________________________ 2.1-8

Figure 2-10: Model 7100 Series Opening Screen ______________________ 2.2-1

Figure 2-11: Help/About Screen ____________________________________ 2.2-5

Figure 2-12: Dicer Status Indicator _________________________________ 2.2-9

Figure 2-13: Activity Log_________________________________________ 2.2-10

Figure 2-14: Stop Button Parameters ______________________________ 2.2-12

Figure 2-15: Workspace Buttons __________________________________ 2.2-13

Figure 2-16: Main Workspace _____________________________________ 2.2-14

Figure 2-17: Top View Area_______________________________________ 2.2-15

Figure 2-18: Top View Popup Menu ________________________________ 2.2-15

Figure 2-19: Load Monitor Graph __________________________________ 2.2-16

Figure 2-20: Side View Area ______________________________________ 2.2-17

Figure 2-21: Dicing from the Side View _____________________________ 2.2-17

Figure 2-22: Video Workspace ____________________________________ 2.2-18

Figure 2-23: FOV Display Guides __________________________________ 2.2-19

Figure 2-24: Zeroed Axis Buttons _________________________________ 2.2-21

Figure 2-25: Zoom Option Configured______________________________ 2.2-23

Figure 2-26: Zoom Controls ______________________________________ 2.2-24

Figure 3: Enabling Digital Magnification _________________________ 2.2-24

Figure 4: Using Digital Magnification ____________________________ 2.2-25

Figure 2-1: Wizard Tab _________________________________________ 2.2-26

Figure 2-2: Model Tab __________________________________________ 2.2-27

Figure 2-3: Main Workspace Window in Video Workspace ____________ 2.2-28

Figure 2-4: Programming Workspace _____________________________ 2.2-29

Figure 2-5: Recipe Parameters ___________________________________ 2.2-30

Figure 2-6: Setup & Diagnostics Workbook ________________________ 2.2-31

Figure 2-7: Overflow Sensor Indication____________________________ 2.2-32

P/N 97100-9002-000-14 Ver 06/05 xix

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Figures

Figure 2-8: Water Overflow Message______________________________ 2.2-32

Figure 2-9: Calibration Workbook ________________________________ 2.2-33

Figure 2-10: Calibration Workbook: Sensor Calibration _______________ 2.2-34

Figure 2-11: Load Monitor Workspace _____________________________ 2.2-35

Figure 2-12: Dressing Workspace _________________________________ 2.2-36

Figure 2-13: Override Workspace _________________________________ 2.2-36

Figure 2-14: Blade Info Screen ____________________________________ 2.2-37

Figure 2-15: Configuration Dialog Box ______________________________ 2.3-1

Figure 3-1: Database Restore dialog window ________________________ 3.1-2

Figure 3-2: Login Dialog Box _____________________________________ 3.2-1

Figure 3-3: Dicer Status Indicator _________________________________ 3.3-1

Figure 3-4: Job Dialog Box _______________________________________ 3.4-1

Figure 3-5: Assigning Recipe from Saw Screen ______________________ 3.4-2

Figure 3-6: Emergency Stop Button _______________________________ 3.7-1

Figure 3-7: Log File Viewer _______________________________________ 3.8-1

Figure 3-8: Log File Filter Configuration ____________________________ 3.8-2

Figure 4-9: Access Rights Columns _______________________________ 4.2-1

Figure 4-10: Access Rights Bar ____________________________________ 4.2-2

Figure 4-11: Extending Access Rights ______________________________ 4.2-2

Figure 4-12: Access Rights Bar ____________________________________ 4.2-4

Figure 4-13: Access Rights to Parameter Buttons _____________________ 4.2-4

Figure 4-14: Protection Access Rights Bar___________________________ 4.2-5

Figure 4-15: Access Rights to Unprotected Mode _____________________ 4.2-6

Figure 4-16: User Manager Dialog Box ______________________________ 4.3-1

Figure 5-1: Groups and Recipes in Tree Display)______________________ 5-1

Figure 5-2: Building Recipes Workflow _____________________________ 5.1-1

Figure 5-3: Duplicate Recipe Dialog Box____________________________ 5.2-1

Figure 5-4: Recipe Properties_____________________________________ 5.3-3

Figure 5-5: Missing Parameters Report_____________________________ 5.3-3

Figure 5-6: Blade Properties (2" Hub Blade)_________________________ 5.3-4

Figure 5-7: Blade Selection List ___________________________________ 5.3-6

Figure 5-8: Blade Properties______________________________________ 5.3-6

Figure 5-9: Duplicate Blade Dialog Box_____________________________ 5.3-7

Figure 5-10: Delete Blade Message _________________________________ 5.3-8

Figure 5-11: Parameter Categories in the Programming Tree____________ 5.4-1

Figure 5-12: Recipe Parameters ____________________________________ 5.4-4

Figure 5-13: Workpiece with Two Defined Angles _____________________ 5.4-5

Advanced Dicing Technologies Ltd.

xx

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Figures

Figure 5-14: Angle Tab Popup Menu ________________________________ 5.4-6

Figure 5-15: PP Insert Dialog Box __________________________________ 5.4-6

Figure 5-16: Angle Tab Added _____________________________________ 5.4-6

Figure 5-17: PP Move Dialog Box___________________________________ 5.4-7

Figure 5-18: Moving an Angle Tab __________________________________ 5.4-7

Figure 5-19: PP Change Dialog Box_________________________________ 5.4-8

Figure 5-20: Parameter Category List _______________________________ 5.4-9

Figure 5-21: Parameter List _______________________________________ 5.4-9

Figure 5-22: Recipe Export Dialog Box ______________________________ 5.5-1

Figure 5-23: Recipe Import Dialog Box ______________________________ 5.5-2

Figure 5-24: APC Standard Cut Map ________________________________ 5.6-2

Figure 5-25: APC Loop Cut Map____________________________________ 5.6-3

Figure 5-26: GPC Standard Cut Map ________________________________ 5.6-4

Figure 5-27: GPC Multi-Die Size Cut Map ____________________________ 5.6-5

Figure 6-1: Workpiece Before and After Alignment ___________________ 6.1-1

Figure 6-2: Aligning the Reticle ___________________________________ 6.1-3

Figure 6-3: Sample Cut Position __________________________________ 6.1-4

Figure 6-4: Index _______________________________________________ 6.1-5

Figure 6-5: Teach Parameter Button Enabled________________________ 6.1-6

Figure 6-6: Teach Alignment Process Message Box __________________ 6.1-6

Figure 6-7: Teach Index Process Dialog Box ________________________ 6.1-7

Figure 6-8: Update Parameters Dialog Box__________________________ 6.1-8

Figure 6-9: Copy From Angle - Enhancement Parameters ____________ 6.1-11

Figure 6-10: Selecting an Align Type_______________________________ 6.1-12

Figure 6-11: Teach Alignment Opening Wizard ______________________ 6.1-13

Figure 6-12: Spiral Search _______________________________________ 6.1-15

Figure 6-13: Directional Search ___________________________________ 6.1-15

Figure 6-14: Main Model Search___________________________________ 6.1-16

Figure 6-15: Alignment Algorithm _________________________________ 6.1-17

Figure 6-16: Conceptual Cutting by Angle diagram ___________________ 6.1-20

Figure 6-17: Multi-Panel Teach Screen _____________________________ 6.1-21

Figure 6-18: Multi angles View ____________________________________ 6.1-21

Figure 6-19: Model Options ______________________________________ 6.1-23

Figure 6-20: Model Processing Filter Parameters ____________________ 6.1-25

Figure 6-21: Rotational Shrinkage Parameters_______________________ 6.1-26

Figure 6-22: Average Index Parameters ____________________________ 6.1-27

Figure 6-23: Kerf Check Glossary __________________________________ 6.3-1

P/N 97100-9002-000-14 Ver 06/05 xxi

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Figures

Figure 6-24: Kerf Check Workflow __________________________________ 6.3-4

Figure 6-25: Kerf Check Measurements _____________________________ 6.3-5

Figure 6-26: Main Workspace Window Showing Kerf Check Results _____ 6.3-6

Figure 6-27: Model Tab Kerf Check Results __________________________ 6.3-6

Figure 6-28: Manual Kerf Check Screen _____________________________ 6.3-8

Figure 6-29: Cut Depth Compensation value list ______________________ 6.3-9

Figure 6-30: Reference Position Options ___________________________ 6.3-10

Figure 6-31: Pattern: “Kerf Up” with Reference Position: “Lower Edge” _ 6.3-11

Figure 6-32: Teach Kerf Check ____________________________________ 6.3-12

Figure 6-33: Two-step Kerf Check Parameter Table___________________ 6.3-14

Figure 6-34: Kerf Check Algorithm Options _________________________ 6.3-15

Figure 6-35: Y Offset Between Microscope and Blade__________________ 6.4-1

Figure 6-36: Manual Y Offset: Positioning the Microscope ______________ 6.4-2

Figure 6-37: Y-Offset Reference Position ____________________________ 6.4-3

Figure 6-38: Loop Cut Screen______________________________________ 6.5-2

Figure 6-39: Loop Cut Map ________________________________________ 6.5-4

Figure 6-40: The Align Lines_______________________________________ 6.5-6

Figure 6-41: Wizard - Model Not Found ______________________________ 6.5-8

Figure 6-42: Multi-Panel Angle Tabs ________________________________ 6.5-8

Figure 6-43: Removing Links ______________________________________ 6.5-9

Figure 7-1: Height Procedure _____________________________________ 7.3-1

Figure 7-2: Button Height Procedure Tools in GUI____________________ 7.3-2

Figure 7-3: Non-Contact Height Procedure Tools in GUI_______________ 7.3-3

Figure 7-4: Height Devices _______________________________________ 7.3-3

Figure 7-5: Auto Height Compensation _____________________________ 7.3-7

Figure 7-6: Blade Information Screen ______________________________ 7.4-1

Figure 7-7: Blade Exposure Chart _________________________________ 7.4-2

Figure 7-8: Wear Rate Chart ______________________________________ 7.4-4

Figure 7-9: Blade Change Tab (2" and 4" Systems without BBD) _______ 7.4-5

Figure 7-10: Blade Change Tab (2" Systems with BBD) ________________ 7.4-5

Figure 7-11: Blade Type Tab (Hub Blade) ____________________________ 7.4-6

Figure 7-12: Blade Type Tab (Hubless Blade)_________________________ 7.4-6

Figure 7-13: Blade Status Tab _____________________________________ 7.4-6

Figure 7-14: 4" Blade Removing Tool _______________________________ 7.4-9

Figure 7-15: Full Blade Handling Toolkit for 2" Spindle _______________ 7.4-10

Figure 7-16: Define Blade Screen__________________________________ 7.4-11

Figure 7-17: 2" Spindle with Cooling Block _________________________ 7.4-11

Advanced Dicing Technologies Ltd.

xxii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Figures

Figure 7-18: 4" Spindle with Cooling Block _________________________ 7.4-12

Figure 7-19: 2" Blade Holder _____________________________________ 7.4-13

Figure 7-20: Tuning the BBD _____________________________________ 7.4-14

Figure 7-21: Override Steps Screen________________________________ 7.4-19

Figure 7-22: Dressing Screen _____________________________________ 7.4-22

Figure 8-1: Load Monitor Workspace During Cutting _________________ 8.1-2

Figure 8-2: Display and Hide Lines Popup Menu (Top Graph) __________ 8.1-3

Figure 8-3: Display and Hide Lines Popup Menu (Bottom) _____________ 8.1-3

Figure 8-4: Control Screen _______________________________________ 8.1-5

Figure 8-5: Language Local Selection Screen _______________________ 8.2-1

Figure 8-6: Simplified Chinese GUI ________________________________ 8.2-2

Figure 8-7: Theta Align Stress Disabled ____________________________ 8.4-2

Figure 8-8: Theta Align Stress Enabled_____________________________ 8.4-2

Figure 8-9: Automatic Backup Enabled_____________________________ 8.8-1

Figure 8-10: Backup Drop-Down List________________________________ 8.8-2

Figure 8-11: Dicer Tree ___________________________________________ 8.9-1

Figure 8-12: Right X Limit _________________________________________ 8.9-2

Figure 8-13: Left X Limit __________________________________________ 8.9-2

Figure 8-14: Activating the Bar Code Reader ________________________ 8.11-1

Figure 8-15: Bar Code Dialog Box _________________________________ 8.11-2

Figure 8-16: Bar Code Validation Failed ____________________________ 8.11-2

Figure 9-1: Model 7100 with Autoloader ____________________________ 9.1-1

Figure 9-2: Autoloader Features in the Model 7100 User Interface ______ 9.1-3

Figure 9-3: CassComp Workbook _________________________________ 9.1-5

Figure 9-4: Elevator Screen ______________________________________ 9.1-6

Figure 9-5: Finger Screen ________________________________________ 9.1-8

Figure 9-6: CassComp > Cassette1 Workbook_______________________ 9.1-9

Figure 9-7: MHS General Screen _________________________________ 9.1-10

Figure 9-8: MHS Axes Screen____________________________________ 9.1-11

Figure 9-9: Main Load Screen____________________________________ 9.1-13

Figure 9-10: Main Unload Screen __________________________________ 9.1-13

Figure 9-11: Manual Load Screen _________________________________ 9.1-14

Figure 9-12: Manual Unload Screen________________________________ 9.1-14

Figure 9-13: Configuration Screen_________________________________ 9.1-16

Figure 9-14: Tilted Spindle ________________________________________ 9.2-1

Figure 9-15: Programming Screen __________________________________ 9.2-2

Figure 9-16: Setup Screen ________________________________________ 9.2-4

P/N 97100-9002-000-14 Ver 06/05 xxiii

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Figures

Figure 9-17: Spindle Holding Screws _______________________________ 9.2-5

Figure 9-18: Camera Holding Screws _______________________________ 9.2-5

Figure 9-19: Error Message _______________________________________ 9.2-6

Figure 9-20: Dress Station ________________________________________ 9.3-1

Figure 9-21: Dress Station Screen __________________________________ 9.3-3

Figure 9-22: Replacing the Dressing Block___________________________ 9.3-4

Figure 9-23: Dressing Cut Map Animation ___________________________ 9.3-8

Figure 9-24: Dress Block Change Wizard ____________________________ 9.3-8

Figure 9-25: Wash Pipe ___________________________________________ 9.4-1

Figure 9-26: Wash Pipe Feature Schematic Diagram___________________ 9.4-1

Figure 9-27: Wash Pipe Setup and Diagnostic Parameters______________ 9.4-2

Figure 9-28: Stop and Pause Wash Pipe Operation ____________________ 9.4-3

Figure 9-29: Wash Pipe Activation Icon _____________________________ 9.4-4

Figure 9-30: Spray/Wash Indicator__________________________________ 9.4-4

Figure 9-31: No Water Flow Indicator _______________________________ 9.4-5

Figure 9-32: Wash Pipe Water Flow Indicator_________________________ 9.4-5

Figure 10-1: Sample Error Messages________________________________ 10-2

Figure 10-2: Subsystem Initialization Screen _________________________ 10-2

Figure 10-3: Stopping the 7100 Software ____________________________ 10-1

Figure 10-4: Stopping the PowerMon II ______________________________ 10-2

Figure 10-5: Changing the Startup Type _____________________________ 10-3

Figure A-1: Velocity of X-Axis _____________________________________ A-28

Advanced Dicing Technologies Ltd.

xxiv

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

List of Tables

LIST OF TABLES

Table 6-1: Available Models of the 7100 Dicing Series ______________ 1.6-1

Table 2-1: Light Tower States __________________________________ 2.1-6

Table 4-1: Access Rights Color Codes __________________________ 4.2-1

Table 4-2: User Interface Elements Access Color Codes ____________ 4.2-4

Table 5-1: Recipe Properties ___________________________________ 5.3-1

Table 5-2: Blade Properties ____________________________________ 5.3-5

Table 5-3: Parameter Categories _______________________________ 5.4-2

Table 6-1: APC Loop Cut Parameters ____________________________ 6.5-3

Table 6-2: Multi-Panel Cutting Sequences _______________________ 6.5-10

Table 7-1: Dressing vs. Override ______________________________ 7.4-16

Table 7-2: Override Parameters _______________________________ 7.4-18

Table 7-3: Dressing Parameters _______________________________ 7.4-20

Table 8-1: Parameters for Cutting _______________________________ 8.1-4

Table 8-2: Baseline Parameters ________________________________ 8.1-4

Table 9-1: Dressing Block Parameters ___________________________ 9.3-6

Table A-1: Air Parameters _____________________________________ A-12

Table A-2: Align Parameters ___________________________________ A-13

Table A-3: Align Keft Model Parameters __________________________ A-18

Table A-4: Auto Height Compensation Parameters _________________ A-19

Table A-5: Average Index Parameters ___________________________ A-20

Table A-6: Bar Code Reader Parameters _________________________ A-21

Table A-7: Blade Parameters ___________________________________ A-22

Table A-8: Cut Depth Comp Parameters __________________________ A-23

Table A-9: Cut Parameters _____________________________________ A-24

Table A-10: Cut Verify Parameters _______________________________ A-28

Table A-11: Cut Verify Limit Parameters __________________________ A-30

Table A-12: Dressing Parameters ________________________________ A-31

Table A-13: Dressing Parameters ________________________________ A-31

Table A-14: Dress Block Parameters _____________________________ A-32

Table A-15: Height Parameters __________________________________ A-34

Table A-16: Kerf Check Parameters ______________________________ A-35

Table A-17: Kerf Check Limit Parameters _________________________ A-37

Table A-18: Load Monitor Cutting Parameters ______________________ A-39

Table A-19: Load Monitor Baseline Parameters ____________________ A-39

Table A-20: Loop Cut Parameters ________________________________ A-40

Table A-21: Manual Inspection Parameters ________________________ A-40

P/N 97100-9002-000-14 Ver 06/05 xxv

K&S Model 7100 Semi-Automatic Dicing System Operations Manual

List of Tables

Table A-22: Model Processing Parameters ________________________ A-42

Table A-23: MHS Parameters ____________________________________ A-43

Table A-24: Material Handling System Parameters __________________ A-43

Table A-25: Override Parameters ________________________________ A-43

Table A-26: Shrinkage Parameters _______________________________ A-44

Table A-27: Teach Center _______________________________________ A-46

Table A-28: Tilted Spindle Parameters ____________________________ A-47

Table A-29: Wash Pipe Parameters _______________________________ A-47

Table A-30: Y Offset Parameters _________________________________ A-48

Advanced Dicing Technologies Ltd.

xxvi

1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

INTRODUCTION

The Model 7100 Series is a semi-automatic dicing system, manufactured by

Advanced Dicing Technologies Ltd. Semiconductor, glass, and plastic workpieces of all types can be automatically cut after the workpiece has been loaded by a user. Any part of the cutting process can also be performed manually by a user, if required. Each workpiece must be manually removed and cleaned after cutting. An optional autoloader enables fully automated loading and unloading of Workpieces with no user intervention other than changing cassettes as required.

1.1

Figure 1-1: Model 7100 ProVectus

Overview

The 7100 Series can be used to cut different types of Workpieces, each of which may need to be processed in a different way. The process applied to each Workpiece is determined by the Recipe assigned to it. Recipes can be assigned to an individual Workpiece or to a series of Workpieces.

Workpieces are placed individually by the User on the Cutting Chuck. The

Model 7100 moves each Workpiece through the alignment and cutting procedures, according to the parameters and algorithms defined in the recipe assigned to that individual Workpiece. If required, any part of the operation (for example, Alignment) can be performed manually. After the process is complete, the Workpieces are manually removed by the User from the Cutting Chuck.

P/N 97100-9002-000-14 Ver 06/05

1-1

Introduction

1.2

1.3

Standard Features

The Model 7100 Series includes the following features:

Single Head dicing machine

Single Magnification Vision System

Kerf Check Monitoring

Brushless Spindle:

DC, 60,000 RPM, speed controlled Front Mount Air Bearing

2" Spindle (7100 Vectus and 7100 ProVectus)

AC, 30,000 RPM, speed controlled Air Bearing 4" Spindle

(7100 Fortis)

• DC, 30,000 RPM, speed controlled Air Bearing 4" Spindle

(7100 ProFortis)

Quick-Change Chucks that hold Workpieces in place using vacuum suction

Load Monitoring: enables the User to measure the load on the

Spindle (measured in Amps) caused by resistance encountered by the blade during operation.

Daily Database Backup

Water Cleaning Jets: enables additional cleaning of the Workpiece.

Un-Interruptible Power Supply (UPS) for the PC - used in case of an emergency stop to prevent abnormal computer shut down.

Modes of Operation

The Model 7100 Series is operable as follows:

Auto Mode: Requires no User intervention once Run is clicked.

Workpieces commonly used in the Customer’s System are processed in

Auto mode. The entire process, including Alignment, dicing, Kerf

Checking and getting to the Unload station after the process is finished, is completely automatic.

Manual Mode: This mode is used for dicing Workpieces that are difficult to process automatically, for example:

Damaged or partial Workpieces

Workpieces that are difficult to align automatically

Partially cut Workpieces

After the process is finished, the user needs to click the Unload button to remove the workpiece from the dicer.

Advanced Dicing Technologies Ltd.

1-2

1.4

1.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Exhibition Mode: This mode is intended for exhibition use and allows to operate the System without connecting to a water supply. For more information, refer to Appendix 5, "Exhibition Mode" of the

Maintenance Manual.

Available Models

The 7100 Series includes four models:

4" Fortis - 4" AC Spindle with Cable Type Turntable

4" Pro Fortis - 4" DC Spindle with Closed Loot Theta

Vectus - 2" DC Spindle with Open Loop Theta

Pro Vectus - 2" DC Spindle with Closed Loop Theta

Note: For detailed hardware configurations refer to section 1.6

Options

The Model 7100 can include one or more of the following options:

Autoloader: enables automatic loading and unloading of workpieces from cassettes.

Multi-Language Interface: enables the GUI to switch between

English and the local language. For more information about currently supported languages, refer to the latest Release Note.

Tilted Spindle: This option enables the System to cut wafers at any angle that falls between 0 and 15 degrees by changing the orientation of the Spindle and the Microscope. Systems that include the Tilted

Spindle option, are delivered pre-configured with all the settings necessary for cutting at both standard and tilted orientation.

DC brushless, 30,000 RPM speed-controlled 4" Air Bearing Spindle

Magnification: x30 (Pro Vectus and Pro Fortis only), x60, x120

(standard), x240.

High Accuracy Theta Axis

Dress Station - intended to periodically reshape and/or clean the cutting blade in order to enhance the Kerf quality, without interrupting the cutting process.

Broken Blade Detector (BBD) - Optional for 7100 Vectus and 7100

ProVectus (2")

Wash Pipe - used in addition to the spray bars for washing during the dicing process.

P/N 97100-9002-000-14 Ver 06/05

1-3

Introduction

Advanced Dicing Technologies Ltd.

1-4

06/05 1.

06/05 1.

2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

System Description

SYSTEM DESCRIPTION

This chapter describes the Model 7100 Series elements. The first section describes the main subsystems (Front Panel, Dicer and Vision System).

The second section describes the Graphic User Interface of the Model 7100

Series software.

12

11

1

10

9

2

8

3

7

6

4

5

1 Monitor

2 Light Tower

3 Cut Cover

Interlock Key

4 Main Circuit

Breaker

5 Front Panel

6 Cut Cover

7 Mouse

8 Front Door

9 Keyboard

10Air and Water

Gun

11Load/Unload

Cover

12Load/Unload

Interlock Key

(7100EUR)

Figure 2-1: Model 7100 External Parts at a Glance

P/N 97100-9002-000-14 Ver 06/05

2-1

System Description

Advanced Dicing Technologies Ltd.

2-2

2.1

2.1.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Main Subsystems

Main Subsystems

Front Panel

The Front Panel is located on the front of the Model 7100 Series and includes the following controls and indicators:

1 Emergency Stop

2 Power Indicators

3 ON Button

4 STOP/OFF

Button

1

2

4

3

2.1.1.1

2.1.1.2

Figure 2-2: Model 7100 Series Front Panel

Emergency Stop

The Emergency Stop button is used when a hazardous condition exists in the System or if the User needs to stop the System immediately.

Once the Emergency Stop button is pressed, the Main Circuit Breaker (see

Figure 2-1) disconnects the power from the saw. The System immediately

stops all Axes and disengages the Motor Drivers.

The PC UPS allows the software to shut down properly, preventing any harm to the computer hard drive.

To recover after an emergency stop, pull out the Emergency Stop button, rotate the Main Circuit Breaker to ON position and press the ON button.

ON/STOP > OFF Buttons

The ON and STOP > OFF buttons provide the following functionality:

P/N 97100-9002-000-14 Ver 06/05

2.1-1

Main Subsystems

The ON button powers on the Components and the PC, which then starts loading the software. When the ON button is pressed, it lights.

The STOP > OFF button stops the system operation (if pressed once) and shuts down the System (if pressed twice). To start the

System up again, press ON and wait for the GUI screen asking for the User Password.

This button enables the operator to immediately stop any activity in order to prevent self-injury or damaging the material.

Note: The STOP/OFF button is spring-loaded to always be ready in its "out" position.

This feature is supported by the Model 7100 Series as follows:

When pressed once, the system stops and a pop-up message appears on the screen:

• When pressed a second time (equivalent to clicking Yes in the pop-up message), the system shuts down.

Note: Wait at least one second between the first button press and the confirmation.

When the Stop button is pressed for the first time, the system stops at its current location in all axes, excluding the Z-axis, which moves up (if stop is pressed during the first init, the Z-axis also freezes). The user can also define in the Setup and Diagnostics parameters that the Spindle and the

Cooling Block water should stop when the Stop button is pressed.

In order to resume operation, the system should be activated. Upon activation, the regular system logic takes effect. For example, if the Stop button was pressed during:

Any Teach sequence: The process stops. It can be resumed by reteaching the whole sequence.

A cutting process: The process stops. It can be resumed by pressing

Auto Run or Full Wafer Cut.

Advanced Dicing Technologies Ltd.

2.1-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Main Subsystems

In systems with Autoloader, the Stop button behaves the same way as in a standard system. Upon Stop confirmation (the second press), the system becomes idle, while the Autoloader performs initiation. All buttons are disabled until the Autoloader initiation is completed.

Note: The user is prompted to manually remove all the workpieces that are not properly positioned in the cassette but are situated elsewhere between the

Cassette Compartment and the Cutting Chuck. The workpieces are to be

removed before Stop confirmation.

If the Stop button is pressed, while the system is in Auto Run mode, the system finishes the current process and brings the workpiece to the manual unload station. The user is prompted to manually unload the workpiece. In order to return to the Auto Run mode, press Auto Run.

The Stop button parameters can be defined under Cutting Block station

(see Figure 2-3).

2.1.1.3

Figure 2-3: Stop Button Parameters

Note: Power Up the system only after the monitor LED indicator has gone off.

The system can be also stopped by clicking the stop icon

(see section 2.2.9).

on the screen

Power Lights

The two power lights indicate the power status in the Main Power Unit

(MPU), as follows:

P/N 97100-9002-000-14 Ver 06/05

2.1-3

Main Subsystems

2.1.2

The AC Input light is lit to indicate presence of AC power in the

System.

The 24 VDC light is lit when power is available in all outlets of the power supply.

Dicer

The Dicer is where Workpieces are aligned and then cut.

3

1 Cutting Chuck

2 Vision System

3 Cooling Block

4 Spindle Unit

5 Height Device

2

4

1

5

Figure 2-4: Dicer

The Dicer includes the following main components and sub-components:

1 Cutting Axes a. X-Axis b. Y-Axis c. Z-Axis d. Theta Axis e. Rotational Axis (Spindle)

2 Spindle Unit (2" or 4")

3 Cooling Block (2"/3" or 5")

4 Height Device (Non-Contact Height Device or Mechanical Button)

5

Vision System

6 Quick-Change Cutting Chuck

Advanced Dicing Technologies Ltd.

2.1-4

2.1.2.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Main Subsystems

Vision System

The Model 7100 Series incorporates a high-performance Vision System that executes precise positioning of Workpieces for Alignment and Kerf

Checking.

1 Camera

2 Microscope

3 Illumination Unit

1

2

3

Figure 2-5: Vision System

The Vision System includes the following Components:

Camera

Microscope

LED Illumination Unit (Oblique and Vertical)

2.1.2.1.1

Microscope and Camera

The Vision System of the Model 7100 Series includes a Camera with x30

(ProFortis and ProVectus only), x60, x120 (standard), or x240 magnification Microscope. Once the Model 7100 has been initialized, the

Vision System provides real-time images from the Camera, displayed in the Field of View (FOV) of the Video Workspace. The images are supplied by a monochrome video acquisition board contained in the Model 7100

Series PC.

2.1.2.1.2

Illumination

The Microscope features two standard types of LED illumination:

P/N 97100-9002-000-14 Ver 06/05

2.1-5

Main Subsystems

Coaxial: Vertical illumination passing through the Microscope, generally used on silicon Workpieces, which have reflective surfaces.

Oblique: Surrounding illumination on the sides of the Microscope, generally used on Ball Grid Array (BGA) or metal Workpieces, which have diffusive surfaces.

Illumination of the Workpiece intensifies the display of each pixel viewed using a range of 0-255, where 0 produces a very dark (black) display, and

255 produces a very light (white) display.

2

1 Oblique

2 Coaxial

1

2.1.3

Figure 2-6: Illumination Accessories Attached to the Microscope

The 7100 Series machines can also be equipped with optional Halogen illumination accessories for Coaxial or Oblique illumination (see also

Table 6-1).

Light Tower

The Light Tower indicates the status of the Model 7100. In general, a green light indicates normal system operation, yellow light indicates that there is a need of a user interference, while a red light indicates that an error has occurred. The Light Tower indications

are given in Table 2-1.

Red Yellow

Table 2-1: Light Tower States

Green System State

Off

Off

Off

Med Flash Off

Off

Off

Off

On

Med Flash Off

Off On

Off On

Off

Off

Off

Error.

The system is not initiated.

The system is idle

Process paused, operator call.

The system is running in Auto mode

Manual Operation

Advanced Dicing Technologies Ltd.

2.1-6

2.1.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Main Subsystems

Red

Off

Off

Off

Yellow

Off

Rapid Flash Off

Med Flash

Table 2-1: Light Tower States

Green System State

On

Off

The last workpiece is being processed

(relevant for systems with Autoloader)

User interference required (operator call)

Wizard is displayed, operator action is required.

Note: The Light Tower indicators may vary since they can be configured to meet individual customer requirements.

Stand-alone Buzzer on Light Tower

The standard light tower has a buzzer installed above the red light (see

Figure 2-7). This buzzer is wired to the red light and is activated whenever

the red light illuminates. Software Version 5.6 or later support a standalone buzzer configuration. This means that the buzzer is wired separately and operates independently of the lights.

Figure 2-7: Buzzer in Light Tower

When this feature is enabled, the buzzer goes off only when the following events take place:

Dress Block Change

Alignment Failure

Blade Change

Cutting Cycle Completed

To Enable the Stand Alone Buzzer:

1 Configure the I/O PCB:

P/N 97100-9002-000-14 Ver 06/05

2.1-7

Main Subsystems a. Open the main workspace Configuration screen.

b. In the value column, next to the parameter Digit I/O, select: Yes.

c.

Click Save (see Figure 2-8).

2.1.4

Figure 2-8: Enabling the Digital I/O PCB

2 Modify the buzzer wiring to accommodate the new feature.

Un-Interruptible Power Supply

The PC Un-Interruptible Power Supply assures that in case of an abnormal

System stopping (such as pressing the Emergency Stop button or in case of a power failure) the computer still has an independent power input to shut down properly. The UPS is located inside the system bench.

Figure 2-9: UPS

Caution: As long as the UPS is connected to a power source, there is voltage on its outlet, even if the switch is in OFF position.

Note: If the system is shut down for a long period, it is recommended to manually turn off the UPS.

Advanced Dicing Technologies Ltd.

2.1-8

2.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Graphical User Interface

When the software is launched, the following screen is displayed:

Run

Button

Stop

Button

Menu Bar Toolbar Gauges

Indicator Log

Active User

Field

Figure 2-10: Model 7100 Series Opening Screen

Dicer Status

Indicator

Each element of the main window is described in the following sections:

Menu Bar, section 2.2.1

Toolbar, section 2.2.2

Gauges, section 2.2.3

Dicer Status Indicator, section 2.2.4

Active User Field, section 2.2.5

Activity Log, section 2.2.6

Blade Indicator, section 2.2.7

Run Button, section 2.2.8

Stop Button, section 2.2.9

Workspaces, section 2.2.10

P/N 97100-9002-000-14 Ver 06/05

2.2-1

Graphical User Interface

2.2.1

2.2.1.1

2.2.1.2

Menu Bar

The menu bar in the main window contains seven menus, described on the following pages.

User Menu

The User menu contains the following options:

System Init

Logout & Login

Registration

Configuration

Calculator

Language

Communication

Status

Exit to Windows

Initializes the System.

Allows to log out the current user and log in a different one.

Defines new Users, their access level and password.

Defines different system configuration options

Provides access to an online calculator.

Enables the User to change the interface language. For more

information, see section 8.2.

Displays the status of communication between the PC and DSPs within the

System.

Exits the Model 7100 Series software and returns to Windows.

Auto Menu

The Auto menu contains the following options:

Run

Define Job

Auto Stop

Starts the System running in Auto mode.

Enables Recipes to be assigned to a

Workpiece or group of Workpieces.

Stops the operation of the System in

Auto mode.

Advanced Dicing Technologies Ltd.

2.2-2

2.2.1.3

2.2.1.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Load Monitor Menu

The Load Monitor menu contains the following options:

Control

Load

Enables the user to specify upper and lower load limits.

Displays graphs that represent the measured load on the Spindle during dicing.

For more information about Load Monitor menu options, see Chapter 8.

Manual Menu

The Manual menu contains the following options for carrying out manual operations:

Vision

Cut

Manual Alignment

Auto Alignment

(execute)

Auto Kerf Check

Partial Wafer Cut

Services

Process Height

Blade Change

Includes options for operating the Vision

System.

Enables the Workpiece to be manually aligned. For more information, see

Chapter 6.

Automatically aligns the Workpiece. For

more information, see section 6.1.2.

Automatically checks the kerf. For more

information, see section 6.3.4.

Includes an option for initiating the

Partial Wafer Cut procedure.

Enables the cutting of a partially cut

Workpiece to resume, see section 6.5.1

Includes options for Blade changing and placing Workpieces, and for performing

Process Height.

Executes the Blade Height procedure.

For more information, see section 7.3.

Initiates the Blade Change procedure.

For more information, see section 7.4.

Execute

Place Workpiece

Remove Workpiece

Enables a Workpiece to be placed on the

Cutting Chuck. For more information,

see section 3.5.

Enables a Workpiece to be removed from the Cutting Chuck. For more

information, see section 3.5.

P/N 97100-9002-000-14 Ver 06/05

2.2-3

Graphical User Interface

2.2.1.5

Blade Treatment

Dress on Dress Block

Change Dress Block

Override

Dressing

Blade Info

Enables the selection of Override or

Dressing as the mode for Dressing a

Blade. For more information, see

Chapter 7.

Enables manual dressing procedure on the Dress Block. Applicable only if the system configuration includes a Dress

Station.

Enables manual Dress Block replacement. Applicable only if the system configuration includes a Dress

Station.

Displays the Override Workspace, as

described in section 2.2.10.6.

Displays the Dressing Workspace, as

described in section 2.2.10.6.

Displays the Blade Info Workspace, as

described in section 2.2.10.6.

Maintenance Menu

The Maintenance menu contains the following menu options:

Protection!

When selected in Workbook Workspace, enables a User with the necessary access rights to carry out operations in the selected workbook normally protected by the software.

Creates the database backup copy Create Backup

Periodical Backup Creates a backup of the current status of the System.

Restores the database from the Backup.

Restore Periodical

Backup

Backup Access Rights Displays access rights to backup.

Restore Access Rights Displays access rights to database restoration.

Log File Displays the Log File viewer. For more

information, see section 3.8.

Advanced Dicing Technologies Ltd.

2.2-4

2.2.1.6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Help Menu

The Help menu contains the following menu options:

Books Online

About

Enables the User to open the soft copy of

Model 7100 Series Operations Manual,

Maintenance Manual, Pre-Installation

Guide and the manuals for additional

options (see Chapter 9).

Displays the version number of the

Model 7100 Series software, DCE version and the Vision Card type (see

Figure 2-11).

2.2.2

Figure 2-11: Help/About Screen

Toolbar

The toolbar changes according to the Workspace. In all Workspaces, the toolbar contains the following buttons:

Video Workspace See section 2.2.10.2.

Main Workspace

See section 2.2.10.1.

Programming

Workspace

See section 2.2.10.3.

P/N 97100-9002-000-14 Ver 06/05

2.2-5

Graphical User Interface

Load Monitor

Workspace

Multiview

1, 4 or 12

See section 2.2.10.5.

Displays the current Kerf Check.

Displays the last four models found.

Workbook

Workspace

Blade Info/

Override/

Dressing

Workspace

Displays up to 12 Kerf Checks.

See section 2.2.10.4.

See section 2.2.10.6

2.2.2.1

Help Loads the Operation Manual file.

Additional Tools - Main & Video Workspace

In the Main Workspace and Video Workspace, the toolbar contains the following additional buttons:

Load/Unload

Wafer

Wafer Auto-

Alignment

Wafer Manual

Alignment

Enables a Workpiece to be placed on and removed from the Cutting

Chuck. For more information, see

Chapter 3.

Performs Auto Alignment on the selected Workpiece. For more

information, see Chapter 6.

Starts the Manual Alignment process. For more information, see

Chapter 6.

Advanced Dicing Technologies Ltd.

2.2-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

2.2.2.2

Manual Y Offset Starts the Manual Y Offset procedure. For more information, see

Chapter 6.

Auto/Manual Cut

Verification

Starts the Cut Verification process.

For more information, see Chapter 6.

Manual Kerf

Check

Starts the Manual Kerf Check process. For more information about

Kerf Checking, see Chapter 6.

Wafer Full/

Partial Cut

Dress Station

Gives the user two options: Full

Wafer Cut and Partial Wafer Cut.

For more information, see Chapter 6.

Gives the user two options: Dress on

Dress Block and Change Dress

Block. Applicable only if the system configuration includes a Dress

Station.For more information, see

Chapter 9

Unlock LU Cover Disengages the Load/Unload Cover

Interlock. (Available on EUR and LA configured systems).

Additional Tools - Programming Workspace

In the Programming Workspace, the toolbar contains the following additional buttons:

Save

Cancel

Saves the current parameters defined in the Programming

Workspace.

Cancels the last changes.

Delete

Apply

Deletes any selected recipe except for the templates or the active recipe.

Applies the last change.

P/N 97100-9002-000-14 Ver 06/05

2.2-7

Graphical User Interface

2.2.2.3

Additional Tools - Workbook Workspace

In the Workbook Workspace, the toolbar contains the following additional buttons:

Save

Cancel

Saves the current parameters defined in Workbook Workspace.

Cancels the last changes.

2.2.3

2.2.3.1

Gauges

The Gauges on the right side of the main window indicate the speed of the

Spindle, current load on the Spindle, Blade Cooling Water and Spray indication, Main Air Inlet Pressure and Vacuum level on the Workpiece

Holder.

Spindle Speed Gauge

The speed of the Spindle (in KRPM) is indicated by the needle on the gauge. The Spindle can be activated or deactivated by right-clicking the Spindle gauge and selecting Operate from the menu that appears.

2.2.3.2

2.2.3.3

Load Gauge

The Load Gauge indicates the electrical current of the Spindle

Motor during dicing, and represents the dicing behavior. Load

Monitor indicates if the motor is overloaded with torque due to dicing failure or bad dicing parameters. For more information

about Load Monitoring, refer to Chapter 8.

Note: On the Fortis machines (AC Spindle), the Load Gauge is not presented, because with the AC type of spindle, the load changes as a function of velocity and does not represent the load.

Air Pressure Gauge

Air Pressure Gauge indicates the Main Inlet Air Pressure supplied to X-axis, spindle and other subsystems of the machine.

Advanced Dicing Technologies Ltd.

2.2-8

2.2.3.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Wafer Holder Gauge

Wafer Holder Gauge indicates the status of the wafer

(substrate) Vacuum level.

2.2.3.5

Water Adjust

The Water Adjust Gauge indicates the flow rate and spray of the cutting water and cleaning jets.

Pressing the Water Adj. button activates the water flow.

2.2.4

Dicer Status Indicator

The lower right section of the main window displays the status of the Dicer.

Figure 2-12: Dicer Status Indicator

The status of the Dicer is indicated by the following LEDs:

Red: An error/failure exists. The System stops working and an error message appears on the screen.

Yellow: User assistance required. A message appears on the screen.

Green: When blinking, the station is carrying out an operation.

Otherwise, green indicates that the station is in idle mode.

For example, when placing a Workpiece on the Cutting Chuck, at the point when the User should load the Workpiece, the yellow light goes on.

The User can also initialize the Dicer by right-clicking the Dicer Status

Indicator and selecting (Dicer) Init from the popup menu displayed. For

further information about initialization, refer to Chapter 10.

Double-clicking on the Dicer Status Indicator displays the last error message.

P/N 97100-9002-000-14 Ver 06/05

2.2-9

Graphical User Interface

2.2.5

2.2.6

Active User Field

The Active User field displays the current recipe file name assigned to the loaded workpiece, and the operations performed, according to the recipe.

Activity Log

The Activity Log is located in the lower left corner. It provides a history log of activities performed by the system.

2.2.7

Figure 2-13: Activity Log

Events that have scrolled off the display can be reviewed using the scroll buttons.

Blade Indicator

The Blade Indicator on the left side of the main window displays the Blade exposure. The bar, which represents the Blade in the system, provides a guide as to the condition of the Blade based on the Blade parameters specified in the Blade properties and the current Recipe. The black pointer moves slowly up the guide as the Blade wears down.

The colors in the Blade Indicator bar indicate the following:

Green: Blade exposure satisfactory, cutting can continue

Yellow: Blade exposure critical, cutting can only continue for a short time

Red: Blade requires changing, no cutting possible

For more information about Blades and Blade changing, see Chapter 7.

Advanced Dicing Technologies Ltd.

2.2-10

2.2.8

2.2.9

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Run Button

The Run Button serves both as a control and an indicator while the system is in Auto Mode.

Ready The system is idle. Press the button to run the process.

In Progress System is active. A process in progress.

Paused Process paused. The machine stops at the end of the current kerf.

Stop Button

The Stop Button damaging the material.

stops any activity in order to prevent self-injury or

The soft Stop button functions similarly to the Stop-Off button on

the Model 7100 Series Front Panel (see section 2.1.1.2). Clicking the Stop

Button stops the system and a pop-up message appears on the screen:

At this point, after clicking OK, the User can either press the OFF button to power down the System, or continue the interrupted process from the point, at which the soft Stop button was clicked.

Note: Wait at least one second between the first button press and the confirmation.

Upon clicking the Stop Button, the system stops at its current location in all axes, excluding the Z-axis, which moves up (if Stop is clicked during the first init, the Z-axis also freezes) and the spindle, which turns off only if so defined in the recipe. Stopping the cooling block water can also be defined in the recipe.

P/N 97100-9002-000-14 Ver 06/05

2.2-11

Graphical User Interface

If the Stop button is clicked, while the system is in Auto Run mode, the system finishes the current process and brings the workpiece to the manual unload station. The user is prompted to manually unload the workpiece. In order to return to the Auto Run mode, press Auto Run.

The Stop button parameters can be defined under Cutting Block station

(see Figure 2-14).

2.2.10

Figure 2-14: Stop Button Parameters

In systems with Autoloader, the Stop button behaves the same way as in a standard system. Upon Stop confirmation (clicking Yes in the pop-up message), the system becomes idle, while the Autoloader performs initiation. All buttons are disabled until the Autoloader initiation is completed.

Note: The user is prompted to manually remove all the workpieces that are not properly positioned in the cassette but are situated elsewhere between the

Cassette Compartment and the Cutting Chuck. The workpieces are to be

removed before Stop confirmation.

Workspaces

The central portion of the main window is called the Workspace. The

Model 7100 software contains six Workspaces that are used to perform different tasks, as follows:

Main Workspace: Displays a graphical representation of the Cutting

Chuck, Spindle and Vision System, as well as a representation of the

Cassette Compartment (only for Systems equipped with the optional

Autoloader).

Advanced Dicing Technologies Ltd.

2.2-12

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Video Workspace: Displays a real-time video image of the Workpiece on the Cutting Chuck. The Video Workspace also displays the Cut Map and the Wizards that guide the User through selected procedures.

Programming Workspace: Enables the User to create and edit

Recipes assigned to Workpieces.

Workbook Workspace: Displays a set of operations and parameters used to prepare the System for operation. There are two Workbooks, as follows:

Setup & Diagnostics Workbook

Calibration Workbook

Load Monitor Workspace: Displays load monitoring statistics.

Blade Info/Override/Dressing Workspace: Displays the Blade parameters and the set of operations and parameters used for Blade

Dressing.

The Workspace displayed in the main window is selected by clicking one of the following buttons from the toolbar:

Main Video

Load

Programming Workbook Monitoring

Override/

Dressing

Blade Info

Multi-

Language

Support

Figure 2-15: Workspace Buttons

P/N 97100-9002-000-14 Ver 06/05

2.2-13

Graphical User Interface

2.2.10.1

Main Workspace

The Main Workspace is automatically displayed when the software is launched and can be redisplayed at any time by clicking the Main

Workspace toolbar button. When selected, the Main Workspace displays the following:

Figure 2-16: Main Workspace

The Main Workspace displays an animated graphical representation of the

Workpiece being processed in real-time.

Advanced Dicing Technologies Ltd.

2.2-14

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

2.2.10.1.1

Top View Area

The Top View area depicts the System stations from above, including the

Workpiece (if present), Spindle, Blade and Camera. When cutting is performed, the Blade is shown moving across the surface of the Workpiece.

1

2

1 Y-Axis

2 Spindle with

Blade

3 Camera

4 X Bellows

5 Cutting Chuck

3

5 4

Figure 2-17: Top View Area

The presence of a Workpiece within the System is indicated by a blue disk on the Chuck.

Right-clicking anywhere in the Top View area displays the following popup menu:

Figure 2-18: Top View Popup Menu

The options in the popup menu enable the Top View to be manipulated, as follows:

Wafer zoom: Displays a close-up view of the Top View area.

Full View: Displays the Top View area in full, along with an insert displaying the side view of the Theta Table.

P/N 97100-9002-000-14 Ver 06/05

2.2-15

Graphical User Interface

Show Z view: Toggles the display of the Side View area (see section

2.2.10.1.2).

Show Cameras: Toggles the display of the Camera, Microscope, and

Spindle with Blade in the Top View area.

Auto Switch Views: The System automatically switches between

Main Workspace and Video Workspace when necessary, for example, after Manual Alignment is completed in Video Workspace and the

User clicks Finish, the Main Workspace is automatically displayed.

Load Monitoring: Specifies whether the current on the load monitor is reflected in the color of the cuts displayed in the cut map.

Load Monitor Graph: Displays a real-time Load Monitor graph at the bottom of the Top View area showing the current of the Spindle.

1

1 Upper Limit

2 Lower Limit

2

Figure 2-19: Load Monitor Graph

If the current is above the Upper Limit or below the Lower Limit, the

Spindle stops.

The User can click in the Load Monitor graph to zoom in and click to display the Load Monitor graph in full again. The graph can be resized by clicking and dragging its borders.

Additionally, the buttons at the top of the Top View area enable the Top

View area to be manipulated as follows:

Gradually zooms in on the Top View area.

Gradually zooms out of the Top View area.

Displays the Top View area in full.

Displays a close-up view of the Cut Map.

Advanced Dicing Technologies Ltd.

2.2-16

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

2.2.10.1.2

Side View Area

The Side View area depicts the Dicer from the side, showing the Dicer and

Workpiece (if present).

1 Theta Table

2 Cutting Chuck

2

1

Figure 2-20: Side View Area

When Process Height is performed, the Blade is shown being lowered to the surface of the Cutting Chuck before returning to its previous position.

When dicing is performed, the Blade is shown moving across the surface of the Workpiece, one cut index at a time, in the Y direction.

1

2

1 Spindle

2 Blade

3 Workpiece

3

Figure 2-21: Dicing from the Side View

The buttons at the top of the Side View area enable the Side View area to be manipulated as follows:

Gradually zooms in on the Side View area.

Gradually zooms out of the Side View area.

Displays the Side View area in full.

P/N 97100-9002-000-14 Ver 06/05

2.2-17

Graphical User Interface

2.2.10.2

Video Workspace

The Video Workspace is selected by clicking toolbar.

Main Workspace Window (Reduced) Field of View

in the main window

Illumination Controls

Wizard/Model Axes Controls

Figure 2-22: Video Workspace

The Video Workspace displays a real-time video image of the Cutting

Chuck from the camera mounted on the Spindle. The area of the Video

Workspace where the video image is displayed is called the Field of View

(FOV). The portion of the Workpiece in focus in the FOV can be precisely positioned using the Display Controls.

Right-clicking in the Video Workspace enables the User to refresh the image, save it or load an image stored on the computer.

Illumination of the Workpiece is set with the Illumination Controls. These controls define the type of light used to illuminate the part of the

Workpiece in focus and its intensity.

The Video Workspace contains tools for setting magnification levels (Zoom) used to display, align and cut objects, according to specific needs.

Note: The Zoom option is available only on machines that support a “Teli” camera type.

Advanced Dicing Technologies Ltd.

2.2-18

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

In other operation modes, the Video Workspace also contains additional tools for:

Changing the type of Search Area used in the FOV

Teaching and finding models

Setting Auto Focus

Setting illumination intensity

2.2.10.2.1

Field of View (FOV)

The FOV displays real-time video images of the Cutting Chuck, as viewed by the active camera. The FOV is used when doing any of the following procedures:

• Teaching Alignment

Teaching Index

Teaching Kerf Checking

Inspection

Note: Procedures performed with the FOV are described in detail in Chapter 6.

The FOV includes three visual Guides that are used to precisely position a particular location of the Workpiece in the center of the FOV display:

Reticle

Search Area

Teach Area

Teach Area

(blue)

Figure 2-23: FOV Display Guides

P/N 97100-9002-000-14 Ver 06/05

2.2-19

Graphical User Interface

Reticle

The Reticle consists of green crosshairs that are used to pinpoint a location on the part of the Workpiece displayed in the FOV. In addition, the horizontal line of the Reticle is used when teaching Alignment or performing Manual Alignment. The length of the lines of the Reticle can be adjusted by using the Guide Control (the central Display Control.)

Teach Area

The Teach Area is a blue box that is used when Teaching Alignment or

Kerf Checking. The Teach Area defines the area to be taught to the system when performing these procedures. The size of the Teach Area can be adjusted by using the Guide Control (the central Display Control) or by clicking and dragging its borders with the mouse.

Search Area

The Search Area is used to define the field the Vision System will use to search for anything taught in the Teach Area box.

In addition, the Search Area is a guide that can be used to focus on a particular area of a Workpiece when performing certain operations. For example, when performing Alignment, the Search Area helps the User to focus on a particular street. The Search Area has a green outline, and its shape is selected from the following options in the drop-down list to the right of the FOV:

Box: A box centered in the FOV.

Parallel: Two horizontal parallel lines centered in the FOV.

Dashed: Two dashed horizontal parallel lines centered in the FOV.

The size of the Search Area can be adjusted using the Guide Control (the central Display Control) or by clicking and dragging with the mouse.

2.2.10.2.2

Display Controls

The Video Workspace contains three Display Controls beneath the FOV that are used to move the X, Y, Z and Theta axes and to precisely position the image of the Workpiece displayed by the active camera.

X/Y-Axis Controls

The X/Y-Axis Controls (left Display Control) move the image displayed in the FOV along the X and Y Axes of the Workpiece.

The left and right arrows move the Cutting Chuck along the X-Axis. The exact position is displayed in the X field. The up and down arrows move the camera along the Y-Axis. The exact position is displayed in the Y field.

Advanced Dicing Technologies Ltd.

2.2-20

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Clicking on an axis button turns the coordinate value on the current axis

into a reference point (zero) as shown in Figure 2-24.

Figure 2-24: Zeroed Axis Buttons

The Axis buttons turn blue and an "r" (reference) letter appears next to the

Axis letter.

Clicking the central box changes the type of movement, as follows:

F: Moves at the Fast Velocity, as defined in the X and Y Axes parameters in the Setup & Diagnostics workbook.

S: Moves at the Slow Velocity, as defined in the X and Y Axes parameters in the Setup & Diagnostics workbook.

P: Moves one pixel at a time.

I: Moves Index by Index along the Y-Axis, using the Index value specified in the Recipe (relevant only if a Cut Map exists).

Note: The Workpiece and the Vision head can be moved along the X and Y

Axes by double-clicking a location inside the FOV.

Guide Controls

The Guide Control (central Display Control) is used to change the size of the Guides (Reticle, Teach Area and Search Area) displayed in the FOV.

Clicking the central box toggles the item to be resized, as follows:

S: Search Area

R: Reticle

T: Teach Area

The left and right buttons adjust the width of the selected Guide, while the up and down buttons adjust the height of the selected Guide.

Note: When the Search Area is Parallel or Dashed, the left and right buttons are disabled. Only the height can be changed when using these Search Areas.

P/N 97100-9002-000-14 Ver 06/05

2.2-21

Graphical User Interface

Double-clicking any point in the FOV bring the FOV center to that point.

Center-clicking moves the FOV center 1 pixel along the axes, depending on the zone clicked:

Click here to move 1 pixel up

X Axis

Click here to move 1 pixel down

Note: The axes can also be moved by typing in coordinates values and pressing Enter.

Z/T Axis Controls

The Z/T Axis Controls (right Display Control) move the image displayed in the FOV along the Z and Theta Axes.

The left and right arrows rotate the Cutting Chuck along the Theta Axis.

The exact position on the Theta Axis is displayed in the T field. The up and down arrows move the camera along the Z-Axis (change the focus of the camera on the Workpiece). The exact position on the Z-Axis is displayed in the Z field.

Clicking the central box changes the type of movement, as follows:

F: Moves at the Fast Velocity, as defined in the Z and T Axis parameters in the Setup & Diagnostics workbook.

S: Moves at the Slow Velocity, as defined in the Z and T Axis parameters in the Setup & Diagnostics workbook.

P: Moves one pixel at a time.

A: Toggles between the angles defined in the Recipe.

Note: For more information about the Setup & Diagnostics workbook, refer to the ADT Model 7100 Semi-Automatic Dicing System Maintenance Manual.

Advanced Dicing Technologies Ltd.

2.2-22

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

2.2.10.2.3

Zoom Controls

Note: The Zoom option is available only on machines that support a “Teli” camera type.

Digital Magnification enables using digital zoom to improve system performance regarding alignment and accuracy. The Video Workspace contains the tools for setting magnification levels used to display, align and cut objects, according to specific needs. The feature supports a continuous digital magnification range between X0.5 and X2.0.

Note: This option is available only on machines supporting Scorpion cameras.

The user can set magnifications for a variety of applications, including:

Inspection

Y-Offset

Teaching models

Alignment Procedure

Teaching Kerf Checking

To Enable the Zoom Option:

1 Open the main workspace Configuration screen by selecting

Configuration from the User menu.

2 In the value column, next to the parameter Zoom, select: Yes.

The camera type automatically changes to Teli (see Figure 2-25).

3 Click Save.

Figure 2-25: Zoom Option Configured

P/N 97100-9002-000-14 Ver 06/05

2.2-23

Graphical User Interface

After configuring the Zoom option, magnification can be set in the Video

Workspace by using the following controls (see Figure 2-26):

Manually adjusting the Magnification/Zoom ComboBox control to x1, x2 or x4

Clicking the +/- button in the video screen of the Video Workspace GUI

Figure 2-26: Zoom Controls

Note: During the Teach Align Mode Pre-Condition state, the user must choose the Magnification size. It is also possible to teach Magnification for each model individually.

To Enable Digital Magnification:

1 Open the main workspace Configuration screen.

2 In the value column, next to the parameter Zoom, select: Yes.

The camera type automatically changes to Scorpion.

3

Click Save (see Figure 3).

Figure 3: Enabling Digital Magnification

To Use Digital Magnification:

In the Video Workspace, magnification can be set according to the following:

Note: The magnification increment unit is X0.1.

• Manually entering a Magnification value between X0.5 and X2.0.

Advanced Dicing Technologies Ltd.

2.2-24

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

• Clicking the “ticker” up and down arrows next to the magnification value in the Video Workspace GUI.

Figure 4: Using Digital Magnification

2.2.10.2.4

Illumination Controls

The two Illumination Controls to the right of the FOV are used to adjust the following display values:

The intensity of the Vertical (Coaxial) illumination used on the part of the Workpiece displayed in the FOV.

The intensity of the Oblique (Ring) illumination used on the part of the Workpiece displayed in the FOV.

Each setting is defined by entering a value in the box to the right of each control or by using the arrows. Illumination of the Workpiece intensifies the display of each pixel viewed using a range of 0-255, where 0 produces a very dark (black) display, and 255 produces a very light (white) display.

In addition, the vertical (coaxial) or oblique (ring) illumination can be turned on and off (set to zero) by clicking the small box next to the arrows. The box is green when the Illumination Control is activated and gray when it is deactivated.

2.2.10.2.5

Wizard/Model Area

The Wizard/Model area at the lower left of the Video Workspace helps guide the User through the steps needed to carry out a procedure, such as

Manual Alignment or Removing a Workpiece, and displays a close-up of the Models being taught or searched for.

P/N 97100-9002-000-14 Ver 06/05

2.2-25

Graphical User Interface

Wizard

The Wizard tab displays step-by-step instructions for carrying out a selected procedure.

Figure 2-1: Wizard Tab

In the example given in Figure 2-1, the User would place the workpiece on

the Cutting Chuck, and then click Finish.

The buttons located beneath the Wizard are used to do the following:

Aborts the current procedure.

Reverts to the previous step in a procedure.

Proceeds to the next step in a procedure.

Instructs the System to complete the procedure.

When a step in a procedure includes a physical action that the User has to perform, the Wizard displays the appropriate instruction. For example, when placing or removing a Workpiece from the Cutting Chuck, the

Wizard indicates when the User should perform the action before returning to the software to click Finish.

Advanced Dicing Technologies Ltd.

2.2-26

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Model

After the Teach procedure has been performed, the Model tab displays the

Model that was taught. During Alignment or Kerf Checking, the Model tab displays the Model currently being searched.

Figure 2-2: Model Tab

2.2.10.2.6

Main Workspace Window

The Main Workspace Window provides a small representation of the Main

Workspace, as described in section 2.2.10.1. It depicts the Dicer from

above, including the Workpiece (if present), the Spindle and the Blade.

The User can manipulate the Main Workspace Window the same way as in the Main Workspace. For example, right-clicking anywhere in the Main

Workspace Window displays the popup menu shown in Figure 2-18 and described in section 2.2.10.1.1.

When working in the Video Workspace, it is useful if the Main Workspace

Window displays a close-up of the Cutting Chuck showing the Cut Map of the current Workpiece (if one has been defined), including the position of all Index cuts.

P/N 97100-9002-000-14 Ver 06/05

2.2-27

Graphical User Interface

Figure 2-3: Main Workspace Window in Video Workspace

The colors of the Indexes on the Cut Map reflect the following:

Yellow (blinking): The Index currently being cut.

Green: Completed Indexes.

Red: Cuts that have failed.

Blue: Indexes waiting to be cut.

Yellow: Indexes that have been cut once but are waiting to be cut again, for example, Bevel cuts.

2.2.10.2.7

Other Buttons

The additional buttons that appear to the right of the FOV in the Video

Workspace are used to focus the Camera automatically, as follows:

At Height: The System performs auto focus with the

Camera at the current height.

On Wafer: The System performs auto focus according to the height of the Workpiece defined in the Recipe.

Advanced Dicing Technologies Ltd.

2.2-28

2.2.10.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Programming Workspace

The Programming Workspace, selected by clicking in the main window toolbar, enables the User to create and edit Recipes assigned to

Workpieces.

Figure 2-4: Programming Workspace

Selecting a Recipe in the Programming tree on the left of the Programming

Workspace displays its properties on the right of the Workspace. For example, in the above figure, the properties for the TMPL_GPC Recipe are displayed. Properties are modified by double-clicking in the Value field and entering a value or selecting a value from a drop-down list.

Recipes include parameters that are divided into categories, listed below the Recipe in the Programming tree. Selecting a category displays the

P/N 97100-9002-000-14 Ver 06/05

2.2-29

Graphical User Interface parameters for that category on the right of the Programming Workspace, as follows:

2.2.10.4

Figure 2-5: Recipe Parameters

Parameters are modified by double-clicking in the Value field and entering a value or selecting a value from a drop-down list.

The buttons (tools) in the lower pane of the Programming Workspace enable the User to perform the following operations:

Add parameters to and delete parameters from a Recipe, for more

details see Chapter 5.

Import and export Recipes, for more details see Chapter 5.

Teach Alignment, for more details see Chapter 6.

Teach Kerf Checking, for more details see Chapter 6.

Teach other parameters, for example, the Index, for more details see

Chapter 6.

For a detailed description of the Programming Workspace, see Chapter 5.

For a detailed description of Recipe parameters, refer to Appendix 3.

Workbook Workspace

The Workbook Workspace is selected by clicking toolbar.

in the main window

Advanced Dicing Technologies Ltd.

2.2-30

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

There are three workbooks, as follows:

Setup & Diagnostics workbook, see section 2.2.10.4.1.

Calibration workbook, see section 2.2.10.4.2.

The User can open workbooks by selecting them from the Select

Workbook drop-down list or using the Explorer-style tree on the left of the

Workbook Workspace.

2.2.10.4.1

Setup & Diagnostics Workbook

By default, the Setup & Diagnostics workbook is displayed after clicking the Workbook Workspace button in the main window toolbar, as follows:

Figure 2-6: Setup & Diagnostics Workbook

The Setup & Diagnostics Workbook enables the User to perform setup and diagnostics procedures on all System components and sub-components.

Selecting a station, or one of its elements, in the Setup & Diagnostics tree on the left of the workbook displays its setup parameters on the upper right of the workbook. The lower pane changes according to the selected axis.

For example, Figure 2-6 displays the setup parameters for the X Axis in

the upper right pane of the workbook, as well as diagnostic functions relating to the X Axis in the lower right pane. Setup parameters are modified by double-clicking in the Value field and entering a value or by selecting a value from a drop-down list.

P/N 97100-9002-000-14 Ver 06/05

2.2-31

Graphical User Interface

Overflow Sensor

In the Setup & Diagnostics tree, under Saw, the Overflow sensor is displayed. This sensor is intended to prevent the damage to the System due to the drain pan overflow, which may be caused by clogged drain outlet

Figure 2-7: Overflow Sensor Indication

If the drain pan becomes overflown, the indicator (see Figure 2-7) changes its color from gray to red, and an error message appears (see Figure 2-8).

Figure 2-8: Water Overflow Message

Once an overflow is indicated the di-water supply to the cooling block and to the Non-Contact Height Device becomes disabled. During the time that the overflow sensor is on, the operator cannot operate the water. For more details about the Overflow sensor, refer to the 7100 Series Maintenance

Manual.

For a detailed description of the setup parameters and diagnostic tests for each station, refer to the ADT Model 7100 Semi-Automatic Dicing System

Maintenance Manual .

Advanced Dicing Technologies Ltd.

2.2-32

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

2.2.10.4.2

Calibration Workbook

The Calibration Workbook enables the User to calibrate specific elements in the System.

Figure 2-9: Calibration Workbook

The following elements of the System can be calibrated:

Pixel Size

Illumination

Axes (Error Mapping)

Sensors (see below)

Selecting the High Magnifying Camera for the Vision Head (Microscope) in the Calibration tree on the left of the workbook displays calibration parameters on the right of the workbook. The User can perform pixel size and illumination calibration by clicking the Calibrate buttons on the top right of the workbook.

Parameters can be modified by double-clicking in the Value field and entering a value.

Caution: Changing the calibration values can affect the performance of the

Model 7100.

P/N 97100-9002-000-14 Ver 06/05

2.2-33

Graphical User Interface

Sensors

The following sensors are listed under Sensor Calibration (see

Figure 2-10):

Main Air Sensor

Wafer Holder Vacuum Sensor

Chuck Holder Vacuum Sensor

Theta Vacuum Sensor

Theta Air Sensor

Figure 2-10: Calibration Workbook: Sensor Calibration

This section is designed for use by version 4.5.2 or later.

Advanced Dicing Technologies Ltd.

2.2-34

2.2.10.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Load Monitor Workspace

The Load Monitor Workspace is selected by clicking window toolbar.

in the main

2.2.10.6

Figure 2-11: Load Monitor Workspace

The Load Monitor Workspace displays load monitoring statistics from different perspectives. For a detailed description of this Workspace, refer to

Chapter 8.

Blade Info/Override/Dressing Workspace

The Blade Info/Override/Dressing Workspace is selected by clicking or in the main window toolbar. Toggle between these buttons by clicking the arrow next to the button and selecting either Dressing,

Override, or Blade Info from the options displayed.

P/N 97100-9002-000-14 Ver 06/05

2.2-35

Graphical User Interface

Figure 2-12: Dressing Workspace

Advanced Dicing Technologies Ltd.

2.2-36

Figure 2-13: Override Workspace

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Graphical User Interface

Figure 2-14: Blade Info Screen

The Blade Info/Override/Dressing Workspace enables the User to start and stop Blade Dressing and displays information about the Blade

Dressing procedure. Blade Dressing is performed to prepare a Blade for use, either using a Dressing Workpiece or by Override cutting.

The Blade Info/Override/Dressing Workspace is described in section

7.4.3.

P/N 97100-9002-000-14 Ver 06/05

2.2-37

Graphical User Interface

Advanced Dicing Technologies Ltd.

2.2-38

2.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

System Configuration

System Configuration

The Configuration Dialog box shown in Figure 2-15 enables the user to see

what components are installed on the system. The user can update the system configuration if there are any changes (e.g. Height Device type change). Once configured, the System is aware of which features it is equipped with.

To Configure the System:

1 From the User Menu, select Configuration. The Configuration screen appears.

Figure 2-15: Configuration Dialog Box

2 Configure the features according to the System by double-clicking the

Value cell of each feature and selecting Yes or No from the drop-down list.

3 Click Save. A pop-up dialog box appears informing the user that after saving the changes, the system will exit to Windows, and the user will need to restart the GUI.

P/N 97100-9002-000-14 Ver 06/05

2.3-1

System Configuration

Advanced Dicing Technologies Ltd.

2.3-2

2.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Menu Navigation Chart

Menu Navigation Chart

P/N 97100-9002-000-14 Ver 06/05

2.4-1

Menu Navigation Chart

Advanced Dicing Technologies Ltd.

2.4-2

3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

System Operation

SYSTEM OPERATION

This chapter describes the Model 7100 operation in automatic and manual workflows and includes the following sections:

Powering Up and Down, section 3.1

Logging in, section 3.2

System Initialization, section 3.3

Defining Jobs, section 3.4

Placing/Removing Workpieces, section 3.5

Model 7100 Workflows, section 3.6

Stopping System Operation, section 3.7

Log File, section 3.8

P/N 97100-9002-000-14 Ver 06/05

3-1

System Operation

Advanced Dicing Technologies Ltd.

3-2

3.1

3.1.1

3.1.1.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Powering Up/Down Procedures

Powering Up/Down Procedures

Powering Up the System

This section describes the procedure for powering up the Model 7100 at the beginning of a session. Once powered on, the Model 7100 can be run continuously. It only needs to be powered down in order to perform repair and maintenance procedures. For additional information about powering

down the System, see section 3.1.2.

Note: Before powering up the system, make sure that both the computer and the monitor are powered off (monitor LED is off).

To Power Up the System:

1 Turn on the main Circuit Breaker at the right side of the System, if it has been turned off (normally it is left in the On position).

2 On the System Front Panel, press the ON button. The PC inside the System turns on and automatically launches the Model 7100 software.

Powering Up After an Abnormal Shut Down

In case the System has abnormally shut down, the user has to restore the process database. Follow the on-screen instruction of the Database

P/N 97100-9002-000-14 Ver 06/05

3.1-1

Powering Up/Down Procedures

Restore dialog window that appears on the monitor screen after an abnormal shut down:

Figure 3-1: Database Restore dialog window

Checking the "Allow Database Restoration" checkbox enables the options of database restoration from backup.

Note: After Power On, and before normal operation, it is recommended to warm up the system by running a simulated dicing session for thirty minutes.

The User should place a Workpiece on the Cutting Chuck, define and assign a

Recipe, and run simulated dicing for thirty minutes. The User must ensure that the Cut Depth is set so that the Blade does not enter the Workpiece and no

Kerf Check or Cut Verification algorithm is selected. The spindle should rotate at typical speed (the speed used for dicing) with cutting water on.

This simulated dicing, in the system steady state, warms up the Model 7100 to prepare it for normal operation. Advanced Dicing Technologies Ltd. suggest creating a warm-up recipe.

Advanced Dicing Technologies Ltd.

3.1-2

3.1.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Powering Up/Down Procedures

Powering Down the System

Powering down is required to perform maintenance on the Model 7100.

Powering down the System every night is not required.

Note: It is recommended to stop System operation before initiating the power down procedure.

To Power Down the System:

1 Press the Stop>OFF button. The system stops and a pop-up message appears on the screen:

3.1.2.1

2 Press the Stop>OFF button a second time (equivalent to clicking Yes in the pop-up message), the system shuts down. For more details about

the Stop>OFF button, refer to section 2.1.1.2,

Note: Wait at least one second between the first button press and the confirmation.

Danger: Voltage remains in the inlet of the Main Power Unit (MPU) even after completing the preceding Power Down procedure. Be sure to totally disconnect the System from the electricity supply before performing maintenance or repair procedures.

The system powers down in the following order:

1 The computer shuts down

2 The machine turns off

3 The monitor turns off in about 45 seconds after the machine.

The powering down process takes 1 to 1.5 minutes.

Note: Before powering the system up, make sure that both the computer and the monitor are powered off (monitor LED is off).

Lockout/Tagout

To Lockout/Tagout the System:

1 Shut down the main circuit breaker on the right side of the machine.

2 In order to lock the machine in power-off state, lock the main circuit breaker door.

P/N 97100-9002-000-14 Ver 06/05

3.1-3

Powering Up/Down Procedures

Advanced Dicing Technologies Ltd.

3.1-4

3.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Logging In

Logging In

When the Model 7100 software is launched, the login dialog box is the first window displayed. The User Interface will not open unless a valid user name and password are entered.

Figure 3-2: Login Dialog Box

To Log into the System:

1 Select a name from the User drop-down list.

2 Enter the password in the Password field. Asterisks are displayed in place of each character.

Note: Click Reset to clear the User and Password fields, if required.

3 Check the Unit system checkbox in order to have the System run its initialization routine immediately after displaying the 7100 Opening

Screen.

Note: If the Init system checkbox is not checked, the System can be initialized manually by selecting System Init from the User menu. For further information, see Chapter 4 of the ADT Model 7100 Semi-Automatic Dicing

System Maintenance Manual.

4 Click OK. The 7100 Graphic User Interface Opening Screen is displayed, and the System automatically begins running its initialization routine (unless the Init system checkbox has not been selected).

Note: For information about adding new Users and User access levels, see

Chapter 4.

P/N 97100-9002-000-14 Ver 06/05

3.2-1

Logging In

Advanced Dicing Technologies Ltd.

3.2-2

3.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

System Initialization

System Initialization

Once the machine is powered up and the user has logged in, the user can initialize the system.

When the System is successfully initialized, the green light is lit on the

Dicer Status Indicator, in the lower right corner of the screen, as shown below:

Figure 3-3: Dicer Status Indicator

A red light indicates that the Dicer was not successfully initialized. For additional information, refer to the ADT Model 7100 Semi-Automatic

Dicing System Maintenance Manual.

If initialization was not performed when the software was launched, it can be performed afterwards by selecting System Init from the User menu.

When initialization is complete, the System is ready for operation.

P/N 97100-9002-000-14 Ver 06/05

3.3-1

System Initialization

Advanced Dicing Technologies Ltd.

3.3-2

3.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Defining the Job

Defining the Job

Defining the job means defining specific recipe as active so that this recipe is assigned when the Workpiece is loaded.

To Assign a Recipe From the Auto menu:

1 Select Define Job to display the following:

Figure 3-4: Job Dialog Box

2 The name of the currently assigned recipe is displayed in the field in the upper left corner. The adjacent field displays a description of the

Recipe, if one has been defined.

Note: Check Dicer to assign the recipe to the Workpiece currently mounted on the cutting chuck. There is no need to unload the Workpiece and load it again.

Check Default Recipe to define the chosen recipe as the active recipe. The system will remember this setting at the next power up.

3 Select a Recipe from the tree displayed in the Recipe area. (To view the properties of a particular Recipe in the Programming Workspace, click Quick View, then click Cancel to return to the Define Job screen.)

4 In the Job dialog box, click Apply to assign the Recipe without closing the dialog, or OK to assign the Recipe and close the dialog box.

P/N 97100-9002-000-14 Ver 06/05

3.4-1

Defining the Job

To Assign a Recipe From the Setup & Diagnostics Workbook:

1 Click in the toolbar to display the Setup & Diagnostics workbook.

From the Setup & Diagnostics tree, select Saw to display the following:

Figure 3-5: Assigning Recipe from Saw Screen

2 Double-click the Value cell for the Recipe parameter and select a

Recipe from the drop-down list that appears in the cell.

3 Click Save . The Recipe becomes active.

Advanced Dicing Technologies Ltd.

3.4-2

3.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Placing/Removing a Workpiece

Placing/Removing a Workpiece

To Place a Workpiece on the Cutting Chuck in Auto Mode:

1 Click the Run button in the toolbar.

2 Place a Workpiece on the Cutting Chuck, following the Wizard instructions.

3 Close the Load/Unload Cover and click Finish in the Wizard.

To Place a Workpiece on the Cutting Chuck in Manual Mode:

1 Click the Load/Unload Wafer button , or from the Manual menu, select Services > Place Workpiece, or press Ctrl+L.

2 Place a Workpiece on the Cutting Chuck.

3 Close the Load/Unload Cover and click Finish in the Wizard.

To Remove a Workpiece from the Cutting Chuck in Auto Mode:

Note: Remove operation is available only after the machine has finished cutting the Workpiece.

1 Follow the Wizard instructions.

2 Click Finish in the Wizard, when prompted to do so by the System.

3 Remove the Workpiece from the Cutting Chuck.

A Workpiece can also be unloaded by pausing the process and clicking

, or using manual unload while the process is paused.

To Remove a Workpiece from the Cutting Chuck in Manual Mode:

1 Click the Load/Unload Wafer button , or from the Manual menu, select Services > Remove Workpiece, or press Ctrl+R. The

Load/Unload Cover disengages.

2 Click Finish in the Wizard.

3 Remove the Workpiece from the Cutting Chuck

P/N 97100-9002-000-14 Ver 06/05

3.5-1

Placing/Removing a Workpiece

Advanced Dicing Technologies Ltd.

3.5-2

3.6

3.6.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Model 7100 Workflows

Model 7100 Workflows

The workflows for operating the Model 7100 can be divided into two basic types:

• Workflows for existing recipes

Workflows for new recipes

The procedures included in the workflows are described in sections 3.6.4.1

through 3.6.4.6

Auto Mode Workflow - Existing Recipe

The Model 7100 has been designed so that once Recipes have been defined,

Alignment taught and the Height procedure performed, the System can be operated merely by assigning the Recipe to be used, placing a Workpiece on the Cutting Chuck, and selecting the Run command.

The basic workflow when operating the Model 7100 in Auto mode is as follows:

Define Job

Dicing

Define Job: The Recipe contains the information about properties of the

Workpiece to be cut and the Blade that will be doing the cutting. In addition, the Recipe includes the algorithms and parameters that define exactly how the cutting procedure will be carried out.

The procedure of assigning a Recipe to a Workpiece is known as defining the job. If the User does not assign a Recipe to a Workpiece, the last Recipe used is assigned.

P/N 97100-9002-000-14 Ver 06/05

3.6-1

Model 7100 Workflows

For additional information about Defining Jobs, see section 3.4. For

additional information about Recipes, see Chapter 5 and Appendix 3.

Run: Once the job has been defined, the System can be activated in Auto mode by clicking the Run button on the toolbar. From that point on,

System operation is entirely automatic. The User only needs to intervene when changing a Workpiece or replacing the Blade.

Auto mode is halted if an error occurs while a Workpiece is being processed or if the System detects any of the following:

Alignment has not been taught

Blade does not fit the assigned recipe

Kerf Check has not been taught

Place Workpiece on Cutting Chuck: Each Workpiece must be properly placed on the Cutting Chuck in order for the System to function properly.

For additional information about placing Workpieces on the Cutting

Chuck, see 3.6.4.2.

The User can perform the missing procedure, then continue running the

System in Auto mode.

For additional information about performing Alignment and teaching the

Index, see Chapter 6.

Advanced Dicing Technologies Ltd.

3.6-2

3.6.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Model 7100 Workflows

Auto Mode Workflow - New Recipe

Additional steps must be added to the Auto mode workflow when cutting the first in a new series of workpieces (First Work).

Create Recipe

Define Job

Place Workpiece on Cutting Chuck

Teach Pre-conditions,

Focus and Illumination

Teach Index

& Teach Alignment

Run

Pause System

After 2nd Cut

Teach Kerf Checking

(if algorithm is specified)

Continue

The additional steps are as follows:

Create Recipe: Creating the Recipe includes defining the Workpiece and

Blade properties, as well as specifying algorithms and parameters that define exactly how the Workpiece will be processed by the System.

For additional information about creating a Recipe, see Chapter 5.

P/N 97100-9002-000-14 Ver 06/05

3.6-3

Model 7100 Workflows

Inspection Illumination: Teaching the Inspection Illumination for the best view of the workpiece inspected. This setting is used later during

Manual inspection and Y-offset operations. For the instruction as to how to

teach the Inspection Illumination, refer to section 8.7.

Note: The above is correct for manual Mode Workflow as well

Teach Focus & Illumination: Teaching the Focus and Illumination for the best view of the workpiece to be diced. This setting is used later on for the Inspection mode.

Teach Index & Teach Alignment: Teaching the Index involves defining the exact distance between Streets on a Workpiece. Knowing the exact

Index is essential to ensure accurate cuts. The Index is taught by defining a repetitive pattern on the Workpiece that can be used by the System as a

Model. The index can be taught either automatically or manually.

Teaching alignment is performed for future manual or automatic alignment.

Teaching Alignment for auto-alignment involves teaching Models that enable the System to precisely align a Workpiece on the Cutting Chuck before cutting.

For additional information about teaching the Index and teaching

Alignment, see Chapter 6.

Teach Kerf Checking (if Kerf Check algorithm is specified): After the first cut has been performed on the First workpiece, the System must be paused to enable the User to teach Kerf Checking. This involves using the Vision System to examine the cut made by the Blade and to ensure that it falls along the center of the Street of the Workpiece. The kerf is usually checked at several points along the length of the cut to ensure that the cut quality and position are within the parameters specified in the Recipe.

Once Kerf Checking has been successfully taught, the System can automatically perform Kerf Checking throughout the dicing process at regular intervals according to the parameters specified in the Recipe. All subsequent Workpieces assigned the same Recipe are kerf checked in the same way.

For additional information about Kerf Checking, see section 6.3.

After this full Auto workflow has been performed for the First workpiece, the basic Auto mode workflow can be used on Workpieces that share the same characteristics and Recipe as the First workpiece, as described in

section 3.6.1.

Advanced Dicing Technologies Ltd.

3.6-4

3.6.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Model 7100 Workflows

Manual Mode Workflow

When operating entirely in Manual mode (for example, when cutting a single Workpiece), the typical workflow is as follows:

Define Job

Place Workpiece on Cutting Chuck

Align & Cut

Workpiece

3.6.4

Remove the Workpiece

From the Dicer

Each of these steps can be performed manually, using the commands available in the Manual menu or the toolbar icons.

Procedures Included in the Workflows

When operating the Model 7100, the most frequently used procedures include the following:

Creating Recipes, Chapter 5.

Defining Jobs, section 3.6.4.1

Placing/Removing Workpieces, section 3.6.4.2

Teaching Focus, Zoom and Illumination, sections 2.1.2.1.2, 8.6,

2.2.10.2.3

Teaching the Index, section 3.6.4.4

Teaching Alignment, section 3.6.4.3

Manual Alignment, section 3.6.4.5

Height Procedures, section 7.3

Blade Changing, section 3.6.4.6

Y-Offset, section 3.6.4.7

Height Button Replacement, section 7.3.1.1

P/N 97100-9002-000-14 Ver 06/05

3.6-5

Model 7100 Workflows

3.6.4.1

3.6.4.1.1

Assigning Recipes

When a Workpiece enters the System it is assigned the default Recipe, unless a new Recipe is assigned using the Define Jobs procedure.

The Define Jobs procedure is executed from the Auto menu by clicking

Auto > Define Job.

3.6.4.2

Defining Jobs

When defining jobs, the User selects a Recipe to be assigned to a Workpiece or series of Workpieces. The Recipe contains information about the Blade that will do the cutting, the Workpiece that will be cut and the algorithms and parameters that define exactly how the Workpieces are processed.

Placing/Removing Workpieces

Once the recipe is created and assigned, the next step of operating the

Model 7100 is to place a Workpiece onto the Cutting Chuck.

The actual instructions as to how to place and remove the Workpiece are

given in section 3.5.

3.6.4.3

3.6.4.4

Teaching Alignment

When teaching Alignment, the User uses the Vision System to teach the

System how to perform Manual or Auto Alignment on a particular type of

Workpiece. Once Alignment has been successfully taught, the System is able to process any Workpiece to which the Recipe that includes that

Alignment information, has been assigned.

For additional information about Teaching Alignment, see Chapter 6.

Teaching the Index

Along with Teaching Alignment (see section 3.6.4.3), Teaching the Index is

required in order for the System to perform Auto Alignment.

When teaching the Index, the User operates the Vision System to teach the

System the exact distance along the Y-Axis between Streets on the

Workpiece. When teaching the Index, the User must first define a Model, which is a pattern that is repeated at regular intervals throughout the

Workpiece. Teaching the correct Index is essential for creating a cut map and for dicing accuracy.

For additional information about Teaching the Index, see section 6.1.2.1.

Advanced Dicing Technologies Ltd.

3.6-6

3.6.4.5

3.6.4.6

3.6.4.7

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Model 7100 Workflows

Manual Alignment

When performing Manual Alignment, the User operates the Vision System to precisely align a Workpiece for cutting. This includes using the Vision

System to ensure that the Streets on the Workpiece are parallel to the

Blades, as well as defining a Cut Position as a reference point. Proper

Alignment is required in order to cut Workpieces accurately.

Manual Alignment is often used when only one or two Workpieces require cutting.

For additional information about Manual Alignment, see section 6.1.1.

Blade Changing

The Model 7100 provides the User with several indicators when Blade replacement is required, including:

• Error messages displayed on the screen

Flashing lights on the Light Tower

In addition, the User may decide to perform the Blade Change procedure at any time during operation.

For additional information about Blade Changing, see section 7.4.

Manual Y Offset

The Manual Y Offset procedure teaches the System the difference in position between the Blade and the Microscope in the Y direction, enabling the System to make the necessary adjustments during the dicing process.

The Manual Y Offset procedure is performed after a Blade change or before cutting a series of Workpieces. The User performs a single cut and then positions the Microscope exactly over the cut. The single cut can be performed within the cut map or outside the cut map on the tape.

The Y Offset is a parameter that can be automatically calculated and taught to the System during the Kerf Check process.

For more information about Y Offset, refer to section 6.4.

P/N 97100-9002-000-14 Ver 06/05

3.6-7

Model 7100 Workflows

Advanced Dicing Technologies Ltd.

3.6-8

3.7

3.7.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Stopping System Operation

Stopping System Operation

System operation can be halted in different ways, depending on whether it is operating in Auto mode or Manual mode:

Emergency Stop, see section 3.7.1

Stop/OFF Button, see section 3.7.2

Pausing Process in Auto mode, see section 3.7.3

Manual Stop, see section 3.7.4

Each way of halting System operation has a different effect on the System and on the Workpiece currently being processed.

Emergency Stop

The Emergency Stop button on the System Front Panel is used to immediately stop all System operation to avert potential harm to the User or System.

3.7.2

Figure 3-6: Emergency Stop Button

When the Emergency Stop button is pressed, the Main Circuit Breaker is turned off, cutting power to the System. All System operation comes to an immediate halt. The Air Tank continues to supply air to the Spindle for a short period of time in order to prevent damage to the Spindle.

To recover from an Emergency Stop, pull the plastic cover off the button, pull the button outward, and then turn the Main Circuit Breaker back on.

STOP/OFF Button and Soft Stop Button

The operator can immediately stop any activity in order to prevent selfinjury or damaging the material. The system can be stopped either by clicking the Stop icon on the screen, or by pressing the OFF

button on the control panel of the system (see also section 2.1.1.2 and

section 2.2.9).

Note: The STOP/OFF button is spring-loaded to always be ready in its "out" position.

P/N 97100-9002-000-14 Ver 06/05

3.7-1

Stopping System Operation

3.7.3

3.7.4

Pausing a Process

When running in Auto mode, System operation can be paused at any time by clicking the Run button in the toolbar. The button’s appearance changes to . This is useful when the User needs to suspend System operation for a moment in order to check a component or perform a quick inspection on the substrate.

To resume System operation, click Run button again. The System resumes operation from the point at which it stopped.

Manual Stop

When performing a manual operation using the Wizard/Model area in the

Video Workspace, clicking the Cancel button aborts the manual operation.

When running in Manual mode, the System operation can be paused any time by clicking on the Full Wafer Cut button to

(The icon changes

) or by clicking on the Cancel button below the Wizard/Model area.

Advanced Dicing Technologies Ltd.

3.7-2

3.8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Log File

Log File

The Model 7100 software generates a Log File that contains the main system events, the time of their occurance, their Attributes and values. The

list of Events and Attributes is provided in Appendix 3.

To access the Log File, select Log File from the Maintenance Menu. The

Log File Viewer appears:

Figure 3-7: Log File Viewer

Note: The following restictions apply while operating the Log File viewer:

The Log File viewer can be opened only when the machine is idle.

Whenever the Auto Run or Manual Cut buttons are pressed, the Log File viewer is closed automatically.

Only one Log File viewer window can be opened.

File Name

The top line of the screen displays the name and path of the displyed Log

File. By clicking the browse button (...), the user can select a different Log

File to view (see section 3.8.3).

P/N 97100-9002-000-14 Ver 06/05

3.8-1

Log File

3.8.1

Time and Date Settings

By default, the Time and Date setting for the current Log File is twelve hours backwards and twelve forward in relation to the current time

(defined by the current OS time settings).

Note: The user can view Log Files that are up to 1-year old.

Applying Log Filters

The user can set a filter for the Events for viewing only the events of interest. Click the Filter button to open the Filter configuration screen

(Figure 3-8).

Note: By default, the Log data is presented according to the last Filter settings.

3.8.2

Figure 3-8: Log File Filter Configuration

The Log data can be filtered by using two types of filters:

Date filter: set start and end time values to limit the log to a specific time period.

Event filter: limit the events included in the log file by selecting their respective checkboxes.

Log File Find Feature

Use the find feature to locate specific values within a selected log column.

To locate a numeric value, type in the full number in the Find dialog window.

Advanced Dicing Technologies Ltd.

3.8-2

3.8.3

3.8.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Log File

Exporting Log Files

Log data can be exported as two different file types:

*.mdb. The file will be exported according to the Time and Date data defined in the Log File, but ignoring the Event Filter. When this file type is used, the following folder and files are created:

Log - The Folder that contains the Log Files per day

GUI_DB.mdb - Database file

PERS_DB.mdb - Database file

LOG_DBfile name.mdb - Database file with the name of the exported Log file.

Note: The .mdb file type is used when sending the Log File for debugging purposes. Before sending the Log File for debugging, the user must create a zip file of all exported files and folders.

*.csv. This type will export the Log File as a text file that can be imported into an Microsoft Excel file (*.xls). This exporting type exports the Log File according to the Time, Date and Event filter settings.

The Log Files are saved daily in the folder: D:\7700sw\db\log. The names of the files are Log_machine serial number_date_time.mdb

Periodical backup

When the Automatic Periodical Backup parameter is set to Yes

(Maintenance menu > Periodical Backup), the Log Files are backed up with the rest of the database and can be found as zip files under the same location where the system Periodical Backups are stored, or under D:\

7700sw\db\Recent\Log (default).

P/N 97100-9002-000-14 Ver 06/05

3.8-3

Log File

Advanced Dicing Technologies Ltd.

3.8-4

4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Administration

ADMINISTRATION

Access Levels are categories that provide security by enabling the

Customer to determine which personnel (Users) are authorized to perform specific activities, including the viewing and modification of parameters in the Model 7100 software. Each User is registered in the System as a member of a particular level (group). Each level is configured to permit access to those activities and parameters that the Customer decides are appropriate for the specific tasks to be performed by the Users at that level.

This chapter includes the following sections:

Access Levels, section 4.1

Modifying Access Levels, section 4.2

Adding and Removing Users, section 4.3

P/N 97100-9002-000-14 Ver 06/05

4-1

Administration

Advanced Dicing Technologies Ltd.

4-2

4.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Access Levels

Access Levels

There are five Access Levels. Four of these allow for User designation by the Customer, while the highest level ("ADT software eng.") is intended for

ADT personnel only.

The Customer levels in ascending order are as follows:

Operator: Users who only perform basic operating procedures.

Technician: Users who have received additional training and/or are more experienced in operating the System, and are authorized to perform mechanical repairs.

Engineer: Users who have the authorization to perform high level tasks.

Administrator: Users who manage and control the access rights of other Users and who have authorization to perform any task on the

Model 7100, including adding and removing other Users.

The ADT level is as follows:

Software Engineer: ADT software development personnel.

The color of the Model 7100 software title bar changes according to the

Access Level of the current User, as follows:

Operator: blue

Technician: maroon

Engineer: green

Administrator: black

P/N 97100-9002-000-14 Ver 06/05

4.1-1

Access Levels

Advanced Dicing Technologies Ltd.

4.1-2

4.2

4.2.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Modifying Access Levels

Modifying Access Levels

Users with read-write access to a parameter or software function can modify the access rights allowed to Users with a lower access level than themselves. The following can be modified:

Process Program Parameters, section 4.2.1

User Interface Elements, section 4.2.2

Protected Mode, section 4.2.3

Process Program Parameters

Users with read-write access can limit access to Setup&Diagnostics,

Calibration and Manual Functions, as well as to each parameter in a

Recipe individually. Each parameter grid in the Workbook Workspace has four columns on the far right side that specify access rights, one for each

Access Level.

1 2

1 Green

2 Yellow

3 Red

3

Figure 4-9: Access Rights Columns

The color of the square below each Access Level indicates the type of access that the User has to that specific parameter, as follows:

Color

Green

Yellow

Red

Table 4-1: Access Rights Color Codes

Access

Read-write

Read-only

Hidden

Explanation

User can see a parameter and modify it.

User can see a parameter but not modify it.

User cannot see or modify a parameter.

Users with read only access can see the detail of the parameters and the access rights columns. However, the parameters are disabled (grayed out) and cannot be modified.

Users with hidden access cannot see the parameters at all, including the access rights columns.

P/N 97100-9002-000-14 Ver 06/05

4.2-1

Modifying Access Levels

To Modify Access Rights to Parameters:

1 Double-click anywhere in the access rights columns of a grid row. The existing access rights for the row appear in a multi-colored bar, as follows:

1 Slider (blue)

2 Slider (orange)

1 2

Figure 4-10: Access Rights Bar

2 Drag the sliders to change the access rights for each User type. For example, drag the orange slider to the right to extend read only access to the Users defined as Technicians.

4.2.2

Figure 4-11: Extending Access Rights

3 Press Enter, or click outside the area of the multi-colored bar, to save the modified access rights

- or -

Click Cancel to cancel the last change.

4 Click Save to save the modified access rights in the Recipe.

Note: When modifying access rights, a lower Access Level cannot have greater access rights than a higher Access Level. This means:

The Administrator cannot have less access rights than the Engineer,

Technician or Operator.

The User cannot deprive him or herself of rights. For example, an

Administrator cannot modify a parameter to be hidden or read-only for other Administrators.

User Interface Elements

Access to the following functions in the Model 7100 software User Interface can be restricted:

Adding and Deleting Parameters: Users with read-write access can determine which Users can add or delete parameters by limiting access to the Add and Delete buttons in the Parameters section of the

Programming Workspace.

Advanced Dicing Technologies Ltd.

4.2-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Modifying Access Levels

Importing and Exporting Recipes: Users with read-write access can determine which Users can import and export Recipes by limiting access to the PP Import and PP Export buttons in the Import/Export section of the Programming Workspace.

Teaching Options: Users with read-write access can determine which

Users can execute the Teach Alignment, Teach Kerf Check and Teach

Index functions by limiting access to the Teach Align, Teach Kerf and

Teach Parameter buttons in the Program section of the Programming

Workspace.

Adding and Moving Angles: Users with read-write access can determine which Users can add, move or delete angles by limiting access to the Angle tab popup menu in the Programming Workspace.

Workbook Workspace: Users with read-write access can limit access to the Workbook Workspace (including the Setup & Diagnostics and

Calibration workbooks) by disabling the Workbook Workspace button in the toolbar.

Note: Access to the Programming Workspace cannot be modified.

Lower Right Pane of the Workbook Workspace: Users with read-write access can limit access to the lower right pane of the Setup &

Diagnostics workbook and Calibration workbook. When access is blocked to the lower right pane, it remains blocked for that workbook regardless of which element of the tree is selected.

To Modify Access Rights to User Interface Elements:

1 Right-click anywhere in the surrounding area of the User Interface element to be modified. For example, when modifying the access to the adding and deleting parameters buttons, right-click in the Parameters section of the Programming Workspace.

P/N 97100-9002-000-14 Ver 06/05

4.2-3

Modifying Access Levels

2 The existing access rights for the selected element appear in a multi-colored bar, as follows:

1 Slider (blue)

2 Slider (orange)

1 2

Figure 4-12: Access Rights Bar

3 The type of access for each User is indicated by color, as follows:

Color

Green

Yellow

Red

Table 4-2: User Interface Elements Access Color Codes

Access

User can operate the GUI elements inside the selected area and manipulate access rights to those GUI elements.

User can operate the GUI elements inside the selected area but cannot manipulate access rights to those GUI elements.

User cannot operate the GUI elements inside the selected area or manipulate access rights to those GUI elements.

4 Drag the sliders to change the access rights for each User type. For example, drag the orange slider to the left to disable the buttons for

Technicians.

5 Press Enter on the keyboard, or click outside the area of the multi-colored bar to save the modified access rights.

Figure 4-13: Access Rights to Parameter Buttons

Note: The access rights for Sample Blade Calibration are set separately, as it is a very delicate procedure.

Advanced Dicing Technologies Ltd.

4.2-4

4.2.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Modifying Access Levels

Protected Mode

The Model 7100 software normally operates in Protected mode. The software prevents performing diagnostic operations. Switching to

Unprotected mode enables such operations to be performed in the Setup &

Diagnosis workbook, for example, on the flow of water to the Cooling Block.

When working in unprotected mode, the responsibility passes from the software to the User performing the task.

Danger: Care should always be taken when working in Unprotected mode that the User is very familiar with the operation of the Model 7100.

Users with read-write and read-only access can switch to Unprotected mode by selecting Protection! from the Maintenance menu or pressing

Ctrl+P on the keyboard. Protected mode is automatically restored when the User leaves the screen on which Unprotected mode was used.

Users with read-write access can limit access to Unprotected mode, as described in the following procedure.

To Modify Access Rights to Unprotected Mode:

1 From the Maintenance menu, select Protection access rights. The existing access rights appear in a multi-colored bar, as follows:

1 Slider (blue)

2 Slider (orange)

1 2

Figure 4-14: Protection Access Rights Bar

2 The type of access for each User is indicated by color, as described in the table on the previous page.

3 Drag the sliders to change the access rights for each User type. For example, drag the blue slider to the left to change a Technician User’s access from read-write to read only. This provides a Technician User

P/N 97100-9002-000-14 Ver 06/05

4.2-5

Modifying Access Levels with access to unprotected mode but with no ability to modify the access rights of other Users to unprotected mode.

Figure 4-15: Access Rights to Unprotected Mode

4 Press Enter on the keyboard, or click outside the area of the multicolored bar to save the modified access rights.

Advanced Dicing Technologies Ltd.

4.2-6

4.3

4.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Adding and Removing Users

Adding and Removing Users

Administrators can add and remove Users using the Registration command in the User menu.

Note: Registration is enabled only when an Administrator is logged in. This option is disabled for Users with other Access Levels.

Adding Users

Administrators can add Users by performing the following procedure.

To Add a User:

1 From the User menu, select Registration to display the User

Manager dialog box, as shown below:

4.3.2

Figure 4-16: User Manager Dialog Box

2 Enter a name in the User name field.

3 Select an Access Level from the Group drop-down list.

4 Enter a password for the new User in the Password field, and retype it in the Confirmed Password field.

5 Click Add. The User is added to the selected Access Level group.

Removing Users

Administrators can remove Users by performing the procedure described below.

To Remove a User:

1 From the User menu, select Registration to display the User

Manager dialog box.

2 Select a User from the User name drop-down list.

3 Click Remove. The User is immediately removed from the list of registered users.

P/N 97100-9002-000-14 Ver 06/05

4.3-1

Adding and Removing Users

Advanced Dicing Technologies Ltd.

4.3-2

5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Building Recipes

BUILDING RECIPES

Recipes are the settings, algorithms and parameters that control the operation of the Model 7100. Recipes can either be assigned to an individual Workpiece, or used by an unlimited number of Workpieces that share the same characteristics. Usually, Recipes are assigned to

Workpieces at the beginning of the dicing process. For more information

about assigning Recipes to Workpieces, see section 3.4.

The Model 7100 has a number of Default Recipes that can be used as a base for creating further Recipes to meet the exact requirements of a particular dicing application. Some Recipes specify the details of every stage of the cutting process. Other Recipes may define only a few particular stages.

Recipes are organized into groups, enabling selected Recipes to belong to a particular category or a particular User. This logical grouping helps the

User store and locate Recipes. When viewed in the tree display in

Workbook Workspace, groups and Recipes appear as follows:

Group

Recipe

Figure 5-1: Groups and Recipes in Tree Display)

A Recipe is made up of the following:

Properties: The properties of a Recipe define the following:

Recipe name.

Recipe group.

P/N 97100-9002-000-14

5-1

Building Recipes

• The type of blade to be used for this recipe, including the size, exposure, and thickness.

The type of Workpiece, its shape and its dimensions.

The algorithms that control the operation of the System.

The Author (see Table 5-1) of the Recipe, the date it was created,

and the date it was updated.

Parameters: The parameters included in a Recipe contain the essential information for operating the System. Parameters are divided into categories.

The following sections are included in this chapter:

Building Recipes Workflow, section 5.1

Creating a New Recipe, section 5.2

Defining Recipe Properties, section 5.3

Specifying Recipe Parameters, section 5.4

Importing and Exporting Recipes, section 5.5

Recipe Templates, section 5.6

Advanced Dicing Technologies Ltd.

5-2

5.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Building Recipes Workflow

Building Recipes Workflow

The workflow for building Recipes using the Model 7100 software is as follows:

Create a New Recipe

Define Recipe

Properties

Specify Recipe

Parameters

Figure 5-2: Building Recipes Workflow

Each step in the workflow is described in the following sections.

P/N 97100-9002-000-14 Ver 06/05

5.1-1

Building Recipes Workflow

Advanced Dicing Technologies Ltd.

5.1-2

5.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Creating a New Recipe

Creating a New Recipe

When first installed, the Model 7100 software contains the following

Default Recipes:

APC Standard Template (for details, see section 5.6.1)

APC Loop Cut Template (for details, see section 5.6.2)

GPC Standard Template (for details, see section 5.6.3)

GPC Multi Die Size Template (for details, see section 5.6.4)

Standard Dressing Template (for details, see section 5.6.5)

GPC Dressing Template (for details, see section 5.6.6)

These Default Recipes cannot be deleted or changed. They can be used as is or as a template for new Recipes. New Recipes are created by duplicating an existing Recipe. The new Recipe initially has the same properties and parameters as the old one, but these can be modified as required.

To Create a New Recipe:

1 Click to display the Programming Workspace.

2 Select an existing Recipe from the Programming tree.

3 Click the Duplicate Recipe button at the bottom of the Programming

Workspace to display the following:

Figure 5-3: Duplicate Recipe Dialog Box

4 Enter a name for the new recipe in the New recipe name field and select or create a different group if required from the drop-down list. To

P/N 97100-9002-000-14 Ver 06/05

5.2-1

Creating a New Recipe create a new Template Recipe that will be kept permanently, type

"Template_" before the name of the recipe.

5 Click OK. The new Recipe is created based on the Recipe selected in

Step 2, including all of its properties and parameters. When the save is complete, the new Recipe appears in the Programming tree.

Note: Recipes cannot be renamed. The only way to rename a recipe file is to duplicate it and assign a new name to the copy.

Advanced Dicing Technologies Ltd.

5.2-2

5.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Defining Recipe Properties

Defining Recipe Properties

When a new Recipe is created, it inherits the properties and parameters of the Recipe that was used as a base or template for the new Recipe. The

User can modify the properties of the new Recipe, which are as follows:

Property

Name

Group

Blade

Wafer Shape

Wafer Material

Wafer Diameter

Wafer Width (Y)

Wafer Length (X)

Wafer Thickness

Tape Thickness

Wafer Type

Table 5-1: Recipe Properties

Description Editable

The name of the recipe.

The group to which the recipe belongs.

The name of the blade assigned to the recipe.

Possible values: See section 5.3.

The shape of the Workpiece.

Possible values: Circular, Rectangular.

The material from which the Workpiece is made.

Possible values: Silicon, GA-AS (gallium arsenide), Glass, PZT, N/A.

The diameter of the Workpiece.

This parameter is only applicable when the shape of the Workpiece is Circular.

The dimension of the Workpiece along the Y-Axis.

This parameter is not applicable when the shape of the Workpiece is Circular.

The dimension of the Workpiece along the X Axis.

This parameter is not applicable when the shape of the Workpiece is Circular.

The thickness of the Workpiece.

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

The thickness of the tape to which the

Workpiece is attached.

The type of Workpiece.

Possible values: Regular, Dressing

Wafer, Dressing Block, Calibration (a

Workpiece with special targets to aid in calibration).

Yes

Yes

P/N 97100-9002-000-14 Ver 06/05

5.3-1

Defining Recipe Properties

Property

Author

Created

Updated

Comment

Cut

Align

Kerf Check

Recipe Teach

Kerf Teach

Table 5-1: Recipe Properties

Description

The User Name of the creator of the

Recipe. The creator is the person logged into the System at the time the Recipe is created (read-only).

The creation date of the Recipe (readonly).

The date when the Recipe was last edited

(read-only).

Optional description field.

The algorithm for cutting the Workpiece.

Possible values: Standard APC,

Standard Dressing, Standard GPC,

None.

The algorithm for aligning the Workpiece.

Possible values: Process Alignment,

Dress Alignment, None.

The algorithm for performing Kerf

Checking.

Possible values: Kerf Check algorithm,

None.

The algorithm that teaches Alignment to the System.

Possible values: Full Teach algorithm,

None.

The algorithm that teaches Kerf Checking to the System.

Possible values: Kerf Check Teach,

None.

Editable

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

To Define Recipe Properties:

1 Click to display the Programming Workspace.

Advanced Dicing Technologies Ltd.

5.3-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Defining Recipe Properties

2 Select the Recipe from the Programming tree. The properties for the

Recipe are displayed on the right.

Figure 5-4: Recipe Properties

3 Double-click the Value cell for each property in turn and enter a value or select a value from a drop-down list.

Note: To add a descriptive comment to any Recipe, double-click the

Comments cell and enter the desired text.

4 Click Save . The new Recipe is saved to the System. The System checks which parameters are required in the Recipe according to the algorithms selected. If it is found that the Recipe does not include some of the required parameters, the Missing Parameters Report is displayed, as follows:

Figure 5-5: Missing Parameters Report

5 Click Close. The missing parameters are added to the Recipe.

Note: The missing parameters are added with their default values, which might not fit the process program (recipe). Refer to the programming panel to modify the values so that they fit the recipe.

P/N 97100-9002-000-14 Ver 06/05

5.3-3

Defining Recipe Properties

5.3.1

5.3.2

Defining Blade Properties

The blade property of the Recipe specifies the name of the blade that is used to cut the Workpiece. The User can select a blade from the drop-down list in the Value field, as described in the previous procedure. Additionally, the User can view detailed properties about the blade and add new blades to the System.

This section describes how the User can:

Display the blade properties for the selected blade, section 5.3.2.

Change blades, section 5.3.2.1.

Define a new blade for the System, section 5.3.2.2.

Modify the properties for a selected blade, section 5.3.2.3.

Delete a blade from the System, section 5.3.2.4.

Displaying Blade Properties

Blade properties can be displayed by performing the procedure described below.

1 Click once in the Value cell of the blade property to display a browse button .

2 Click the browse button to display the following:

Advanced Dicing Technologies Ltd.

5.3-4

Figure 5-6: Blade Properties (2" Hub Blade)

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Defining Recipe Properties

A list of existing blades defined in the System is displayed in the upper pane.

The properties of the blade selected in the upper pane are displayed in the lower pane, as follows:

Parameter

Blade

Blade Type

Diameter

Exposure

Exp. Tolerance

Thickness

Dress Wafer

Hub Type

Matrix

Density

Size Diamond

Bond

Company

Identifier

Table 5-2: Blade Properties

Description

The name of the blade. Any name, up to 255 characters in length, can be entered.

The type of blade.

Possible values: Regular, Bevel, Step.

The diameter of the blade.

The blade exposure nominal value. Relevant for hub blades only.

The exposure tolerance, within which the actual exposure can differ from the nominal value.

The thickness of the blade.

Whether or not Dressing Workpieces are used for

Dressing the specific blade.

Possible values: Name of the Dress Recipe

assigned to the blade, None.

Whether or not the blade is a hub or hubless blade.

Possible values: Hub Blade, Hubless Blade.

The Matrix of the blade.

Possible values: Matrix Nickel, Matrix Resinoid.

The concentration of diamonds.

Possible values: Density S, Density L.

The size of the diamonds.

Possible values: Size Diamond S, Size Diamond F,

Size Diamond K.

The matrix of the blade.

Possible values: Bond Q, Bond E, Bond L, Bond V.

The company that manufactures the blade.

A unique Id number for the blade.

P/N 97100-9002-000-14 Ver 06/05

5.3-5

Defining Recipe Properties

5.3.2.1

Changing Blades in a Recipe

A blade assigned to the recipe can be changed by performing the procedure described below.

To Change Blades:

1 Double-click the Value cell for the blade property to display a dropdown list arrow .

2 Click . The Blade Selection List appears.

5.3.2.2

Figure 5-7: Blade Selection List

3 Select the desired blade.

4 Click Save .

Defining New Blades

A new blade can be added to the System by performing the procedure described below.

Advanced Dicing Technologies Ltd.

5.3-6

Figure 5-8: Blade Properties

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Defining Recipe Properties

To Define a new blade:

1 Click once in the Value cell of the blade property to display a browse button .

2 Click the browse button to display the Blade Properties screen (see

Figure 5-8).

3 Select a blade that has the most similar properties to the blade you want to define.

4 Click Duplicate Blade. The Duplicate Blade dialog box appears.

5.3.2.3

Figure 5-9: Duplicate Blade Dialog Box

5 Enter the name of the new blade and click OK.

6 Change the appropriate Values of the new blade.

7 Click Save .

Modifying Blade Properties

The properties of a blade can be modified in the Blade Properties screen by performing the procedure described below.

To Modify Blade Properties:

1 In the Blade Properties screen, double-click the Value cell for a property and enter the appropriate value.

2 Repeat step 1 for as many properties as required.

Note: When properties are modified, a Save button the blade properties.

is displayed below

3 Click Save.

4 Click OK to return to the Recipe properties in the Programming

Workspace.

P/N 97100-9002-000-14 Ver 06/05

5.3-7

Defining Recipe Properties

5.3.2.4

Deleting Blades

Blades can be deleted from the System by performing the procedure described below.

To delete a blade:

1 Select a blade from the list in the upper pane of the Blade Properties screen.

2 Click Delete blade to display the following message.

Figure 5-10: Delete Blade Message

3 Click Yes. The selected blade is removed from the list in the upper pane and is no longer available as a selection for the Blade Recipe property in the Programming Workspace.

Note: If this blade is used in a different recipe a message notifies the User that they blade cannot be deleted.

Advanced Dicing Technologies Ltd.

5.3-8

5.4

5.4.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Specifying Recipe Parameters

Specifying Recipe Parameters

When a new Recipe is created, it inherits the properties and parameters of the Recipe that was used a base or template for the new Recipe. The User can modify the parameters of the Recipe, as required.

Accessing Parameters

Recipe parameters may be compulsory, optional or automatic:

Compulsory: Parameters that must be included in the Recipe in order for an algorithm to function.

Optional: Parameters that can be added by the User to further customize System operation.

Automatic: Parameters that are automatically defined by the System.

Compulsory parameters must be added to the Recipe when a Recipe’s properties are defined. When the Recipe is saved, the System checks which parameters are compulsory according to the algorithms selected. If any compulsory parameters are missing from the Recipe, the System displays them in the Missing Parameters Report and adds them with their default

values (see section 5.3).

Recipe parameters are divided into categories, displayed beneath the

Recipe in the Programming tree, as follows:

Figure 5-11: Parameter Categories in the Programming Tree

Each category includes parameters that define a particular aspect of

System operation, as shown below. For a more detailed description of

Recipe parameters and their categories, see Appendix 3.

P/N 97100-9002-000-14 Ver 06/05

5.4-1

Specifying Recipe Parameters

Parameter Category

Air

Align

Align Model

Align Pos

Average Index

Blade

Camera

Cut

Cut Depth Comp

Cut Verify

Cut Verify Limit

Dress Block

Dressing

Height

Kerf Check

Kerf Check Limit

Kerf Check pos

LM Baseline

LM Cutting

LM Override and

Dressing

Table 5-3: Parameter Categories

Description

Defines the duration of the air puff used to release

Workpieces from the Cutting Chuck.

Defines how Alignment is performed.

Contains the Kerf model options when the Align Kerf type models are used.

Defines the conditions under which Alignment is performed.

Contains parameters required for Average Index calculation.

Defines the wear and exposure limits of the blade and the new blade treatment.

Defines settings for oblique and vertical illumination in the Camera.

Defines how Workpieces are cut, including the Index,

Cut Depth and Cut Length.

Defines the Cut Depth Compensation procedure.

Contains general parameters for the Cut-Verification procedure.

Contains the limit parameters for the Cut-Verification procedure.

Contains the Optional Dress Station parameters.

Defines how the blade is dressed. Applicable when using the dressing wafer or dressing block mounted on the Chuck.

Contains parameters, according to which the system performs the height procedure (rate, type and settling time).

Defines how Kerf Checking is performed.

Contains the limit parameters for the Kerf Check procedure.

Defines the Camera settings, Field of View settings and Model settings when performing Kerf Check.

Defines how the Baseline load is monitored.

Defines how the load is monitored during the cutting

process. Refer to section 5.4.2 below.

Defines how the load is monitored during override and dressing.

Advanced Dicing Technologies Ltd.

5.4-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Specifying Recipe Parameters

Parameter Category

Loop cut

Manual Inspection

Model Processing

Multi-panel

Override

Shrinkage

Teach Center

Tilted Spindle

Y Offset

Table 5-3: Parameter Categories

Description

Defines how to cut using repetitive patterns.

Defines the regularity of Automatic Inspection and the

Inspection Illumination settings.

Contains parameters for special model processing models with a variation in gray levels.

Contains parameters required for Multi-panel applications.

Defines how the System performs Dressing Using

Override.

Contains parameters used when dicing substrates that suffer from shrinkage.

Defines whether the workpiece is centered on the

Chuck.

Contains parameters used by the Tilted Spindle

Option.

Defines location and limits for Y Offset procedure.

P/N 97100-9002-000-14 Ver 06/05

5.4-3

Specifying Recipe Parameters

To Display Recipe Parameters:

1 Expand the Recipe in the Programming tree to display its parameter categories.

2 Select any parameter category in the Programming tree. The parameters for the Recipe are displayed in the Parameter Table in the upper right pane of the Programming Workspace, as follows:

5.4.2

Figure 5-12: Recipe Parameters

Note: The Parameter Table is automatically scrolled to the category selected in the Programming tree.

Monitoring the Cutting Process

The load monitor feature allows data collection using the Log file. The load can be presented per cut or at the beginning of each angle. The Cut Monitor is defined in a recipe by the parameter: “Load Logging”, located under the

LM Cutting Recipe Parameter category. This parameter has three states:

“No” - don't execute cut monitoring

“First cut” - execute cut monitoring on first cut in angle

“Each cut” - execute cut monitoring on each cut in angle

When this feature is activeted, the monitoring data is collected and

recorded in the Log File. Refer section 3.8 to for more information about the

Log File.

Advanced Dicing Technologies Ltd.

5.4-4

5.4.3

5.4.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Specifying Recipe Parameters

General and Angle Parameters

Certain parameters in a Recipe are defined for each angle to be cut in the

Workpiece, while others are considered general because they apply to the

Workpiece as a whole. Angle parameters appear in the Angle tabs, and general parameters appear in the General tab. Before specifying parameters, define the angles along which the Workpiece will be cut.

Note: If a parameter is defined under both General and angle tabs, the value under an angle tab is the effective one.

Defining Angles

When defining a Recipe, the User must define the angles along which the

Workpiece will be cut. The User can define as many angles as needed.

Angles can be redefined or deleted at any time.

Note: Only positive values can be used to define the angles.

Angle 90

Workpiece

Angle 0

Figure 5-13: Workpiece with Two Defined Angles

5.4.3.1.1

Adding New Angles

New angles can be added to the Recipe by performing the procedure described below.

P/N 97100-9002-000-14 Ver 06/05

5.4-5

Specifying Recipe Parameters

To Define New Angles:

1 In the Programming Workspace, right-click on any existing Angle tab to display the following popup menu:

Figure 5-14: Angle Tab Popup Menu

2 Click Insert to display the following dialog box:

Figure 5-15: PP Insert Dialog Box

3 Enter the desired angle and select whether to have the parameter tab for the angle added Before or After the parameter tab selected in the text box.

4 Click OK. A tab for the angle is added to the Parameter Table, as shown below.

Figure 5-16: Angle Tab Added

The parameters defined in the tab will be the same as those for the existing

angle. The parameters can then be modified, as described below in section

5.4.3.2.

5.4.3.1.2

Moving Angle Tabs

The order in which Angle tabs are displayed in the Parameter Table can be modified by performing the procedure described below.

Note: The order in which Angle tabs are displayed in the Parameter Table has no affect on the functionality of the Recipe.

Advanced Dicing Technologies Ltd.

5.4-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Specifying Recipe Parameters

To Move Angle Tabs in the Parameter Table:

1 In the Parameter Table, right-click the tab to be moved to display the

popup menu (see Figure 5-14).

2 Click Move to display the following dialog box:

Figure 5-17: PP Move Dialog Box

3 Select the place to move the tab by selecting one of the parameter tabs displayed and then clicking After or Before.

4 Click OK. The Angle tab is moved to its new location in the Parameter

Table.

Figure 5-18: Moving an Angle Tab

5.4.3.1.3

Modifying Angles

The angles defined for the Recipe can be modified at any time by performing the procedure described below.

To Modify Angles:

1 In the Parameter Table, right-click the tab to be modified to display

the popup menu (see Figure 5-14).

P/N 97100-9002-000-14 Ver 06/05

5.4-7

Specifying Recipe Parameters

2 Click Change to display the following dialog box:

5.4.3.1.4

Angle Access Rights

Users with read-write access can determine which Users can add, move

and modify angles by limiting access to the popup menu (see Figure 5-14).

For further information on limiting access rights, refer to Chapter 4.

5.4.3.2

Figure 5-19: PP Change Dialog Box

3 Enter the new angle, then click OK. The angle is redefined in the

Parameter Table. The parameters defined in the tab remain the same as before.

Specifying Parameters

After defining the cutting angles, Users with read-write access to parameters can add, modify and delete the parameters for each angle as needed. The User can also add, modify and delete the parameters in the

General tab, which are applicable to all angles. The values defined for each parameter determine the way the algorithms in the Recipe control the operation of the System.

5.4.3.2.1

Adding Parameters

Parameters are added to the Recipe by selecting them from the relevant parameter category and adding them to the Parameter Table, as described below. It is recommended that parameters first be defined for the General tab, before adding parameters for each defined angle.

To Add Parameters to the General and Angle Tabs:

1 In the Parameter Table, click the General tab. The General tab displays those parameters that were defined for the Recipe from which

this new Recipe was created (see section 5.2).

Advanced Dicing Technologies Ltd.

5.4-8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Specifying Recipe Parameters

2 In the Parameter area below the Parameter Tree, select a parameter category from the Category drop-down list, as shown below:

Figure 5-20: Parameter Category List

3 Select a parameter from the Parameter drop-down list, as shown below:

Figure 5-21: Parameter List

4 Click Add. The parameter is added to the Parameter Table with the default value for the parameter assigned. (For more information about default parameter values, see Appendix 1. To modify these values, see

section 5.4.3.2.2.)

5 Repeat steps 2-4 until all the parameters required for the tab have been added.

6 Click . The new settings are saved to the Recipe.

7 Click the first Angle tab and repeat steps 2 through 6 to define the parameters that are specific to that angle.

8 Repeat steps 2 through 6 for all additional Angle tabs.

5.4.3.2.2

Modifying Parameters

Users with read-write access can modify the values of parameters in the

Recipe at any time by performing the procedure described below.

P/N 97100-9002-000-14 Ver 06/05

5.4-9

Specifying Recipe Parameters

To Modify Parameter Values:

1 In the Parameter Table, double-click the Value cell of the parameter to be modified. If the User can choose from among a list of preset values, a drop-down list with those values appears in the cell.

Otherwise, a blinking cursor appears.

2 Select a value from the drop-down list or enter the value directly. Only values within the min and max range are valid.

3 Click . The new settings are saved to the Recipe.

5.4.3.2.3

Deleting Parameters

Parameters can be deleted from the Recipe by performing the following procedure.

To Delete Parameters from the Recipe:

1 Select a parameter in the Parameter Table. Any cell on the line, including the parameter name, can be selected.

2 In the Parameter area, click Delete. The selected parameter is deleted from the Parameter Table.

If more than one index was defined for the parameter, clicking Delete deletes the value for the selected index. (Click Delete additional times to delete other indexes, where applicable.)

3 Click to confirm the deletion of the parameter or to cancel the procedure and restore the parameter to its previous value.

Advanced Dicing Technologies Ltd.

5.4-10

5.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Importing and Exporting Recipes

Importing and Exporting Recipes

Recipes can be imported from other Systems or exported to other Systems, by using the network (if the System is connected to a network) or by using a diskette. This enables the same Recipe to be copied and used on multiple

Systems.

To Export a Recipe:

1 In the Programming Workspace, click Recipe Export to display the following dialog box:

Figure 5-22: Recipe Export Dialog Box

The Export Info area displays instructions for continuing the procedure. The Name of the Recipe and the Group to which the Recipe belongs appear in the Recipe Info area.

2 Select the path to which to export the Recipe.

3 In the File List, select the type of the file to be exported (database or zip.)

P/N 97100-9002-000-14 Ver 06/05

5.5-1

Importing and Exporting Recipes

4 [optional] Change the name of the Recipe by entering a new name in the Change Recipe Name field, if required.

5 Click OK. The Recipe is exported to the selected System.

Note: The exported recipe contains a file pecipe.mdb and a folder named

"Blobs of recipe".

To Import a Recipe:

1 In the Programming Workspace, click Recipe Import to display the following dialog box:

Figure 5-23: Recipe Import Dialog Box

The Import Info area displays instructions for continuing the procedure.

2 Select the path from which to import the Recipe. The Name of the

Recipe and the Group to which the Recipe belongs appear in the Recipe

Info area.

3 [optional] Change the name of the Recipe by entering a new name in the Change Recipe Name field, if required.

Advanced Dicing Technologies Ltd.

5.5-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Importing and Exporting Recipes

4 [optional] Change the name of the blades by entering a new name in the Change Blade Name fields, if required.

5 Click OK. The Recipe is imported into the System.

Note: If the recipe/blade being imported already exists in the System, a dialog box is displayed to give the user two options: add the recipe/blade, changing its name, or replace the existing recipe/blade, with the new one being imported.

P/N 97100-9002-000-14 Ver 06/05

5.5-3

Importing and Exporting Recipes

Advanced Dicing Technologies Ltd.

5.5-4

5.6

5.6.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Recipe Templates

Recipe Templates

As explained above, a new recipe is created by duplicating an existing recipe template file. This section contains the recipe templates of the Model

7100 and the cut maps based on these templates.

All the Model 7100 templates have the Taught parameter (Align

category) set to "Yes". The user can create a cut map (see Figures 5-24,

5-25, 5-26 and 5-27) in three steps given below:

1 Load a workpiece.

2 Press the Auto Align button.

3 Follow the wizard instruction.

APC Standard Template

Parameters

Workpiece Shape

Workpiece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Loop offset

Loop count

Depth

Angle 0 Angle 90

Rectangular

100 x 100 mm

1 mm

00777-6045-010-QIP

Manual

20 krpm

18 mm

N/A

5

6 mm/sec

NA

NA

3 mm

N/A

15 mm

6

20 mm/sec

P/N 97100-9002-000-14 Ver 06/05

5.6-1

Recipe Templates

5.6.2

Figure 5-24: APC Standard Cut Map

APC Loop Cut Template

Angle 0 Angle 90

Parameters

Work piece Shape

Work piece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Chop velocity

Loop

Loop offset

Loop count

Depth

Rectangular

100 x 100 mm

1 mm

00777-6045-010-QIP

Manual

20 krpm

3 mm

N/A

5

10 mm/sec

0.5 mm/sec

From Ang.1

X=20mm

5

3 mm

N/A

20 mm

5

10 mm/sec

N/A

to Ang.1

Y=22mm

Advanced Dicing Technologies Ltd.

5.6-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Recipe Templates

5.6.3

Figure 5-25: APC Loop Cut Map

GPC Standard Template

Parameters

Work piece Shape

Work piece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Loop offset

Loop count

Depth

Angle 0 Angle 90

Circular

150 mm

0.635 mm

00777-6045-010-QIP

Manual

20 krpm

18 mm

N/A

5

6 mm/sec

NA

NA

3 mm

15 mm

6

20 mm/sec

P/N 97100-9002-000-14 Ver 06/05

5.6-3

Recipe Templates

5.6.4

Parameters

Workpiece Shape

Workpiece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Loop offset

Loop count

Depth

Figure 5-26: GPC Standard Cut Map

GPC Multi Die Size Template

Angle 0 Angle 90

Circular

150 mm

0.635 mm

00777-4300-050-BLO

Manual

30 krpm

20 mm

5

5

5

45 mm/sec

NA

NA

3 mm

20 mm

N/A

N/A

6

Advanced Dicing Technologies Ltd.

5.6-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Recipe Templates

5.6.5

Figure 5-27: GPC Multi-Die Size Cut Map

Standard Dressing Template

Angle 0 Angle 90

Parameters

Workpiece Shape

Workpiece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Loop offset

Loop count

Depth

Rectangular

75 mm

0.635 mm

00777-4300-050-BLO

Manual Dress

75 mm

P/N 97100-9002-000-14 Ver 06/05

5.6-5

Recipe Templates

5.6.6

GPC Dressing Template

Parameters

Workpiece Shape

Workpiece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Loop offset

Loop count

Depth

Angle 0 Angle 90

Rectangular

100 mm

1 mm

00777-4300-050-BLO

Manual

40 krpm

18 mm

N/A

N/A

5

30 mm/sec

NA

NA

3 mm

100 mm

15 mm

6

Advanced Dicing Technologies Ltd.

5.6-6

6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

DICER PROCEDURES

This chapter contains the instructions that deal with:

1

Workpiece Alignment, section 6.1

2

Cut Verification, section 6.2

3

Kerf Checking, section 6.3

4

Y-Offset, section 6.4

5

Special Cut Procedures, section 6.5

P/N 97100-9002-000-14 Ver 06/05

6-1

Dicer Procedures

Advanced Dicing Technologies Ltd.

6-2

6.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

Workpiece Alignment

Alignment uses the Vision System to precisely align a Workpiece parallel to the Blade to ensure accurate cutting down the middle of each Street. The

User has the option of choosing either Auto Alignment (performed automatically by the Pattern Recognition System - PRS) or Manual

Alignment (performed by the User). In order to perform Auto Alignment, the System must first be taught Alignment. Once Alignment has been taught for a Recipe, the System automatically align all the Workpieces that have been assigned the same Recipe.

1

2

5

1 First Align Point

2 Alignment Line

3 Second Align

Point

4 X-Axis

5 Alignment Line parallel to the X-

Axis

3

4

Figure 6-1: Workpiece Before and After Alignment

The idea of alignment is based on having the System remember two points on the workpiece. These two points define the baseline for adjusting the parallelism of the kerfs. Once the Workpiece has been aligned, the alignment is taught to the System. Afterwards, the System automatically updates (straightens) the substrate position on the Cutting Chuck by turning the Theta Axis.

This section provides information about the following alignment features:

Manual Alignment - see section 6.1.1

Auto Alignment - see section 6.1.2

Teach Alignment - see section 6.1.3

Model Types - see section 6.1.5

Model Processing Filters - see section 6.1.6

Rotational Shrinkage - see section 6.1.7

Average Index - see section 6.1.8

Updating the Workpiece Alignment - see section 6.1.9

P/N 97100-9002-000-14 Ver 06/05

6.1-1

Workpiece Alignment

6.1.1

6.1.1.1

Manual Alignment

Manual Alignment is generally used when there are no eyepoints for Auto

Alignment. It may also be used when making one or two cuts on a single

Workpiece in order to test the results of a Recipe before it is put into use.

Likewise, Manual Alignment is a part of the Teach Alignment procedure

(see section 6.1.3.2).

Note: As Manual Alignment is performed by the operator of the System, the accuracy achieved depends upon the skill of the operator and is therefore subject to human error.

Once Manual Alignment has been performed, the Workpiece can be cut, using the parameters defined in the Recipe.

Manual Alignment comprises the following steps:

Aligning the Workpiece, to ensure the Streets are parallel to the Blade

Defining the Cut Position.

Aligning a Workpiece

The first step in Manual Alignment is aligning the Workpiece parallel to the Blade, by aligning the Reticle in the Field of View (FOV) with a selected Street.

To Perform Manual Alignment:

1 From the Manual menu, select Vision > Manual Alignment, or click in the toolbar. The display automatically switches to the

Video Workspace, where the first step to be performed by the User is displayed in the Wizard.

2 Follow the direction given in the Wizard.

Note: If a cut map for the wafer already exists, the system goes to the defined cut position. To perform the alignment manually click Back.

Note: Adjust focus and illumination

3 Position the horizontal line of the Reticle along the edge of a Street on the Workpiece using either the X/Y-Axis Controls or by double-clicking

Advanced Dicing Technologies Ltd.

6.1-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment the location in the FOV. Adjust the Theta Axis, if required, by using the Z/T Axis Controls.

6.1.1.2

Figure 6-2: Aligning the Reticle

4 Click Next. The Workpiece moves along the X-Axis until the left side of the Workpiece is beneath the microscope. (This distance is limited by the Area parameter in the Align category.)

5 Position the Reticle on the same Street edge using the X/Y-Axis

Control or by double-clicking the location in the FOV. Perform Theta correction and Y-Axis correction.

6 Click Next. The Workpiece moves along the X-Axis until the right side of the Workpiece is beneath the microscope. (This distance is limited by the Area parameter in the Align category.)

7 Repeat Steps 4 to 6 by clicking Next to move from one side of the

Workpiece to the other and adjusting the position of the Reticle until the Reticle remains on the edge of the Street in both positions.

8 Click Finish to complete the first step in the Manual Alignment procedure. The Workpiece remains aligned until it is unloaded from the Cutting Chuck

Note: Even after clicking Finish, it is possible to return to previous steps in the procedure by clicking Back.

Defining Cut Position

The second step in Manual Alignment is defining a Cut Position, which is a reference point on the Workpiece. It is recommended to select a Cut

Position at a well-defined point on the Workpiece.

P/N 97100-9002-000-14 Ver 06/05

6.1-3

Workpiece Alignment

To Define the Cut Position:

1 Use the X/Y-Axis Controls to move the Camera to the reference point.

2 Click Finish. The System automatically calculates and displays the cut map for that angle in the Main Workspace Window in the Video

Workspace, according to the recipe parameters.

Note: For APC algorithm the defined cut position is normally the point where the blade enters the Workpiece. For GPC algorithm, the defined cut position is anywhere in a center of a street. The cut map is displayed according to the cut position referred to the chuck center.

When the User has completed the two steps that comprise Manual

Alignment, the entire procedure is repeated for the other angles defined in the Recipe for that Workpiece. For instance, if Angles 0º and 90º have been defined, Manual Alignment is first performed at 0º then at 90º. Switch between the two angles by changing the Theta using the Z/T Axis Controls

(selecting then or ).

6.1.2

Figure 6-3: Sample Cut Position

Auto Alignment

During normal operation, the Model 7100 uses Auto Alignment when processing a large number of identical Workpieces. In order to use Auto

Alignment, the following two procedures must first be performed:

Teach Index (obligatory for "Street" alignment type only)

Teach Alignment

Advanced Dicing Technologies Ltd.

6.1-4

6.1.2.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

Teach Index

Note: Teach Index procedure for Street alignment type must be performed also to update the Align Index. This procedure is critical for the Street alignment type, because otherwise Teaching Alignment will not succeed.

Teaching the Index defines the exact distance along the Y-Axis between each Street on a Workpiece. Once defined, each cut to be performed along a

Street is called a Main Index Cut. Although the Index can be entered directly into the Recipe, the exact value is usually not known, and is therefore taught using the following procedure. The Index must be specified for each angle defined in the Recipe.

Note: If the indexes are inconsistent, use also the Average Index feature (see

section 6.1.8) for substrates with Shrinkage (see section 6.1.7) that use two-

point alignment.

1

1 Cut

2 Index

2

Figure 6-4: Index

To Teach the Index:

1 Click to display the Programming Workspace.

2 Expand the Recipe assigned to the Workpiece in the Programming tree and select the Cut parameter category of that Recipe. The parameter table for the Recipe is displayed on the right.

3 In the parameter table, select the tab for the first defined angle.

P/N 97100-9002-000-14 Ver 06/05

6.1-5

Workpiece Alignment

4 Scroll to the Index parameter and click the cell containing the value defined for the Index parameter. The Teach Parameter button in the lower right corner becomes enabled.

Figure 6-5: Teach Parameter Button Enabled

5 Click Teach Parameter. The following message box is displayed:

Figure 6-6: Teach Alignment Process Message Box

6 Click Update to modify a previously taught Index, or New to teach the

Index for the first time.

Note: If a cut map for the wafer already exists, the system goes to the defined cut position. To perform the alignment manually click Back.

7

Perform Manual Alignment (see section 6.1.1). At the end, click

Finish.

Advanced Dicing Technologies Ltd.

6.1-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

8

Define a Cut Position (see section 6.1.1.2). At the end, click Finish.

The following dialog box is displayed:

Figure 6-7: Teach Index Process Dialog Box

9 Click Auto.

Note: Click Auto if there are clearly visible models on the substrate. Clicking

Manual enables the User to teach the Index manually as described in section

6.1.2.1.1.

10 Click Next. The Camera moves to the top of the Workpiece.

11 Select a Model to be taught by moving it to the center of the FOV using the X/Y-Axis Controls.

12 Toggle the center box of the Guide Control until T appears, then use the Guide Control to size the Teach Area.

13 Adjust the Focus and Illumination for the best view of the model.

14 Select the confidence level for the model.

15 Click Teach. If the Model selected is successfully taught to the

System, the FOV will flash the message Model Taught, along with a score (based on a scale of 0-100). Click Find to test whether the

System can correctly identify the Model.

16 Click Next. When updating an existing index, the System moves one

Index along the Y-Axis, based on the value currently defined for the

Index parameter in the Recipe and searches for the taught Model.

When teaching a new index, the System moves one millimeter along the Y-Axis.

17 Use the X/Y-Axis Controls to adjust the position of the Reticle along the Y-Axis until the Model is approximately centered inside the Search

Area.

Note: In order to verify the adjustment before completing the procedure, another manual Index move can be made by clicking Next.

18 Click Finish. The System automatically attempts to find the Model at each of five consecutive Index jumps. After each jump, the System

P/N 97100-9002-000-14 Ver 06/05

6.1-7

Workpiece Alignment flashes a score indicating whether the Model has been successfully found and displaying the index distance.

Note: If a Model is not found, the System prompts the user to move to the next

Model.

After the fifth Index jump, the Camera moves to the bottom of the cut map (80% of the number of cuts defined in that angle) and attempts to locate the Model again. If the attempt is successful, the System calculates the remaining Index positions along the selected angle.

Once this is complete, a confirmation box appears asking the User whether to update the Index and Align Index parameters with the new values. (The Align Index parameter is the Cut Index for the opposite angle. For example, the Cut Index defined for Angle 0º is the same value as the Align Index for Angle 90º.)

Figure 6-8: Update Parameters Dialog Box

19 Click Yes. The new values for the Index and Align Index parameters are saved to the Recipe.

6.1.2.1.1

Teaching the Index Manually

A Workpiece must contain a minimum of six streets in order for the System to be taught the Index automatically. If a Workpiece contains fewer than six streets, or in case the models are not clear or repeatable, the Index must be taught manually by performing the following procedure:

To Teach the Index Manually:

1

Perform steps 1 to 8, as described in section 6.1.2.1.1.

2

Click Manual in the Teach Index Process dialog box (see Figure 6-7).

3 Click Next. The Camera moves to the top of the Workpiece.

4 Move to an align point on a Street where a cut is required, using the

X/Y-Axis Controls.

5 Click Next to move to the next align point.

6 Repeat steps 4 and 5 for each additional align point, as required. At the last align point, click Finish. The System calculates the Index and the

Advanced Dicing Technologies Ltd.

6.1-8

6.1.3

6.1.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

Index is defined and flashed on the screen. The Update Parameters

dialog box, shown in Figure 6-8, is displayed.

7 Click Yes. The new values for the Index and Align Index parameters are saved to the Recipe.

Teach Alignment

In order to perform Auto Alignment on a group of Workpieces that share the same Recipe, Alignment must first be taught to the System, using a sample of the Workpieces to be cut. This procedure is known as Teach

Alignment. Before performing Teach Alignment, an Align Type must be selected. The Align Type describes the method used by the System to align the Workpiece. Once the Alignment is taught, it can be updated for the

whole Recipe or for a specific angle. For more details see section 6.1.9.

Selecting an Align Type

Before performing Teach Alignment, an Align Type must be selected for each angle of the Workpiece. The Align Type defines the way Alignment is performed by the System during the Auto Alignment process.

Note: The default for the Manual Alignment type is Horizontal. To perform

Manual Vertical Alignment, under the Align category, set the parameter

Vertical Manual Alignment to Yes. Then, select Manual as the Align Type.

The following Align Types are available:

No: No Alignment is performed on the Workpiece; instead, the center of the

Cutting Chuck is used by the System as a reference point. If Alignment has been previously taught and then set to "No", the last taught Alignment and reference point are used. This Align Type is useful when working with blank Workpieces.

Note: The following diagrams illustrate the method of finding Models for the different Align Types.

Cut position

Street Dice

Manual: The System waits for the User to perform

Manual Alignment before proceeding to cut the

Workpiece.

Move manually

P/N 97100-9002-000-14 Ver 06/05

6.1-9

Workpiece Alignment

4 3 2 1 5

Street: Auto Alignment is performed by finding a

Model (repeating pattern) along the Street.

2

Align Index

1

2-Points: Auto Alignment is performed by finding two different Models at two pre-defined locations.

The accuracy depends on the accuracy of the Manual

Alignment taught.

1

3

2

1

4

V-Street: Similar to the Street Align Type but performed on the vertical (Y) axis.

V-Street is only recommended when cutting a

Workpiece that is vertically-oriented (that is, has a very short X-Axis), such as capacitors.

V-2-Points: Auto Alignment is performed by finding a Model on the vertical (Y) axis that is repeated at two defined locations.

2

Copy - From: Alignment and dicing are carried out using the results of the last alignment performed, according to the degrees in the angle. This option can be used for more than one additional angle.

Copy - From Ref: Alignment and dicing are carried out using the results of the last alignment performed, according to the degrees in the angle. The user has to define a cut position for this angle. This option can be used for more than one additional angle. For example, the alignment types can be defined as follows:

• angle 0/1 - Manual angle 0/2 - Copy - From Ref angle 0/3 - Copy - From Ref angle 90/4 - 2-Point Alignment

Advanced Dicing Technologies Ltd.

6.1-10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

Note: In order for the entire cut map to be copied from one cut to another, the following parameters must be identical in both cuts:

Index

Number of cuts

Figure 6-9: Copy From Angle - Enhancement Parameters

To Select an Align Type:

1 Click to display the Programming Workspace.

2 Expand the Recipe assigned to the Workpiece in the Programming tree, and select the Align parameter category of that Recipe. The parameter table for the Recipe is displayed on the right, as shown in

Figure 6-10.

3 In the parameter table, select the tab for the first defined angle.

4 Scroll to the cell containing the value defined for the Type parameter.

5 Select an Align Type from the drop-down list.

6 Click . The new value is saved to the Recipe.

Note: Once Teach Alignment has been performed, as described in the following section, the Align Type should not be changed.

P/N 97100-9002-000-14 Ver 06/05

6.1-11

Workpiece Alignment

6.1.3.2

Figure 6-10: Selecting an Align Type

Performing Teach Alignment

After the Align Type has been selected and the Index has been taught,

Teach Alignment can be performed for each angle defined in the Recipe.

The Teach Alignment procedure begins by setting the focus, zoom and illumination for the Vision System. Manual Alignment is then performed

as described in section 6.1.1. The Model is taught in the process of

alignment, so after Manual Alignment is complete, the Model is defined.

As it was mentioned above, the Models should be clear and repeatable. It is recommended to use crosses, rectangle angles or the Models imprinted with special material for alignment purposes.

The final step involves having the System test the Alignment to verify that it has been taught successfully.

After Alignment has been successfully taught, the System can process

Workpieces using Auto Alignment.

Note: The procedure for teaching Alignment may vary according to the Align

Type selected. The following procedure is used when the Align Type is set to

Street.

Advanced Dicing Technologies Ltd.

6.1-12

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

To Perform Teach Alignment:

1 Click to display the Programming Workspace.

2 Expand the Recipe assigned to the Workpiece in the Programming tree, and select any parameter category of that Recipe. The parameter table for the Recipe is displayed on the right.

3 In the parameter table, select the tab for the first defined angle.

4 Click Teach Align in the Program area of the lower right pane. The

Wizard tab displays the first step to be performed in the procedure.

5 Click Next.

Note: A confirmation box is displayed if Alignment has already been taught for the selected angle. The User can decide whether to override the existing information or to cancel the procedure.

Figure 6-11: Teach Alignment Opening Wizard

6 Using the Illumination controls, Magnification settings and the Z/T

Axis controls (see Chapter 2), define optimal illumination, zoom and

focus settings for the Vision System, so these settings can be used later on for inspection.

7 Click Next. The Pre-Conditions are now completed.

8

Manually Align the Workpiece (see section 6.1.1.1). Click Finish.

Note: If a cut map for the wafer already exists, the system goes to the defined cut position. To perform the alignment manually click Back.

9

Define the Cut Position (see section 6.1.1.2). Click Finish, then click

Next.

Note: For APC algorithm the defined cut position is normally the point where the blade enters the Workpiece. For GPC algorithm, the defined cut position is anywhere in a center of a street. The cut map is displayed according to the cut position referred to the chuck center.

P/N 97100-9002-000-14 Ver 06/05

6.1-13

Workpiece Alignment

10 Select the confidence level for the Model.

Note: Focus, Zoom and Illumination settings can be defined per Model.

6.1.3.3

11 Teach the Model by using the X/Y-Axis Control and the Guide Control to set the Search Area and Teach Window around the selected Model.

Click Teach.

A flashing message is displayed indicating that the Model has been successfully taught. To test the Model, click Find. Another flashing message is displayed if the Model was successfully found by the

System. The same message displays both the taught and the final scores.

12 Click Next to move to the next Model and follow the wizard.

Once the first angle for the Workpiece has been taught, the process is repeated for all additional angles defined in the Recipe.

Auto Alignment can now be performed on all Workpieces that have been assigned this Recipe, as part of the automatic cutting process. Auto

Alignment can also be activated at any time by the User by clicking.

in the toolbar or by selecting Vision > Auto Alignment from the

Manual menu.

It is important to take into account, that Final Accuracy and Maximum

no. of iterations settings depend on the camera magnification. In order to achieve higher Theta accuracy, set the Maximum no. of iterations to 9 and the Final Accuracy according to the table below:

Camera

Magnification

X60

X120

X240

Final Accuracy

At least 0.08

Up to 0.08

Up to 0.05

Street Align Algorithm (Advanced)

To deal with the issue of corrupted models, allowing to complete Auto

Alignment without the operator’s interference, the Align algorithm searches for better models in two stages:

• Low Model Detection

Main Model Detection

Advanced Dicing Technologies Ltd.

6.1-14

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

6.1.3.3.1

Low Model Detection

After the first low model is detected at the taught position, the system starts searching for the second model. If the search fails, the system

performs an index spiral search (see Figure 6-12).

7 8 1

6

5

Original Model

4

Small Spiral Search

2

3

Figure 6-12: Spiral Search

In case the Index spiral search fails, the system performs a directional search as shown below.

Figure 6-13: Directional Search

Note: A directional spiral search is a search in which the model is searched in positions whose X coordinates are advanced in a defined direction by an interval of the X align index. In each position a spiral search is performed.

After having found the second model (2), the system starts searching for the third model (3). If it fails, it performs both an index spiral search and a directional spiral search the same way as it does for the second model. The starting position of the first directional spiral search is the mirror model of the third model, which is related to the first model. The second directional

P/N 97100-9002-000-14 Ver 06/05

6.1-15

Workpiece Alignment spiral search starts from the model situated after the third model. The search ending positions are the same as for the second model.

Note: The search for the second model is performed in the direction from the center to the edge and the search for the third model is performed from the edge towards the center.

In case both directional spiral searches for the second model fail, the system starts the whole alignment procedure again, on the upper

1

/

3

of the wafer. This includes finding the first model again, and searching for the second and the third models using index spiral search and directional search if needed.

If the system still fails to find the second model, the alignment procedure is repeated again on the lower

1

/

3

of the wafer. If finding the second model still fails, the whole alignment procedure fails and the user assistance is required.

The algorithm for finding the third model is identical to that for finding the second model, given above.

The directional search areas are limited by the align area of the wafer. The search is never performed outside the Align Area (parameter defined in the Align category).

This limitation may cause any of the directional spiral searches not to take place.

6.1.3.3.2

Main Model Detection

Once the low models have been found, the system starts looking for the main model to perform the fine alignment. If the main model is not found, the system performs an index spiral search..

Figure 6-14: Main Model Search

If the index spiral search fails, the system performs one directional spiral search, starting from the model situated next to the first model, in the direction of the second model on the X-Axis, as long as the distance from the second model is more than ½ of the align area.

Unlike the search for low models, the search for main models is carried out in the direction from the workpiece periphery to the center as shown in

Figure 6-14.

In case this search fails, the system begins the fine (main) alignment over again on the upper

1

/

3

of the wafer. This includes a spiral search and a

Advanced Dicing Technologies Ltd.

6.1-16

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment directional search if needed. If the system still fails to find the second model, the fine (main) alignment procedure is repeated again on the lower

1

/

3

of the wafer.

If finding the second model still fails, the whole fine (main) alignment procedure fails and the user assistance is required.

For the second main model the procedure is similar.

The directional search areas are limited by the align area of the wafer. The search is never performed outside the Align Area (parameter defined in the Align category).

As in low alignment, this limitation may cause any of the directional spiral searches not to take place.

Figure 6-15 below represents the Street Alignment algorithm as a whole.

Find the First Low

Model (L

1

)

Look in the Upper 1/3 of the Wafer

No

L

1

Found

Yes

Find the Second

Low Model (L

2

)

No

L

1

Found

Look in the Loewr 2/3 of the Wafer

Yes

L

2

Found

No

Manual

Assist

Yes

Find the Third Low

Model (L

3

)

No

L

3

Found

Look for M

1

Yes

Look for M

1

Yes

L

1

Found

No

No

M

1

Found

Yes

Look for M

2

Manual

Assist

Manual

Assist

Yes

M

2

Found

No

Manual

Assist

Manual

Assist

Figure 6-15: Alignment Algorithm

Note: The algorithm allows the user to find the models manually (Manual

Assist) or perform Manual Alignment instead.

6.1.3.3.3

Alignment High/Low Score Parameters

The algorithm also uses the concept of sub-model. The sub-model is used for Main model verification purposes. For example, if the model is not

P/N 97100-9002-000-14 Ver 06/05

6.1-17

Workpiece Alignment sharp enough, the user can teach a sub-model (clear model not on the same street), which will be used to verify the main models’ thresholds.

Normally, the system is set up to use models, where the threshold would not be lower than 80%. When teaching alignment for a workpiece with corrupted models, models with threshold set between 65% and 80% are used. These models require verification against the sub-model.

When teaching alignment for a workpiece with corrupted models, the threshold for these models should be set to 65% - 70%. In the recipe, the high score parameter should be set to 80% or higher. It is also recommended to teach a sub-model for such a workpiece.

The algorithm is used in case the main model found has the threshold score between the taught score and the high score (65% - 80%). If it succeeds, and the found distance between the main and the low models is within tolerance (see Main to Sub-model accuracy values below), the main model is regarded as properly found.

The parameters are:

Use sub-model: Use the sub-model detection for low threshold main model detection or not. If not then no change is made to the algorithm.

Low model high score (%): The high score for low models, above which the low model is considered found, with no need to verify it through finding a sub-model.

Main model high score (%): The high score for main models, above which the main model is considered found, with no need to verify it through finding a sub-model (currently not in use).

Sub-model high score (%): The high score for sub-models, above which the sub-model is considered found.

Main to Sub-model accuracy: the maximum allowed distance (for both

X and Y coordinates) of the found sub-model from the found main model in order for the detection to be considered successful. The recommended values for this parameter are:

For x240 magnification systems: 2 microns.

For x120 magnification systems: 4 microns.

For x60 magnification systems: 7 microns.

Note: If parameter Use sub-model = Yes, the models should be taught with a

60%-70% threshold. Otherwise, they should be taught with a regular (80%) score

Advanced Dicing Technologies Ltd.

6.1-18

6.1.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

Note: If no sub-models are taught, this algorithm is not performed even if the parameter Use Sub-model is set to "Yes".

The low and sub-models are always found using the taught (low) threshold.

Any score above it or equal to it is considered to be a success, so in these cases there is no use for this algorithm.

The algorithm is performed as follows:

1 Find the main model as in the usual algorithm (no change for low models).

2 Check the find score:

• If it is above the parametric high threshold, the find succeeded (no change).

If it is below the taught low threshold, the find failed (no change).

If it is between the high and the low thresholds:

3 Move the camera to the sub-model.

4 Find the sub-model.

5 Determine if the distance (X, Y) between the main model and the submodel is within tolerance.

6 Move back to the main model and find it again.

In case the threshold score at which the sub-model was found, and the distance between the main model and the sub-model are within tolerance, the main model is regarded as successfully found. Otherwise, the model finding procedure is considered failed.

Note, that during spiral/directional searches the system searches for models with the taught (low) threshold. If the model with this low threshold is found, a regular find operation will be performed at the finding location, this time using the algorithm, described above. The new parameters - Low Model High Score, Main Model High Score and Sub

Model High Score are given in the parameter tables in Appendix 3.

Choice of Cutting Angle by Panel

There are two viable options for aligning and cutting Multi-Panels, each appropriate for certain situations.

Standard: cut all angles on all panels either by:

Cutting each angle on all panels in turn or

Cutting all angles on each panel in turn.

P/N 97100-9002-000-14 Ver 06/05

6.1-19

Workpiece Alignment

For more information regarding the standard Multi-Panel option, see

section 6.5.5.

The new option “Choice of cutting angle by panel” enables cutting in such a manner as to always have the debris-laden water directed to the outside of the workpiece, away from the other panels. This option does not interfere with any other feature supported by the software.

Figure 6-16 illustrates the concept of this new option. Between each view

(A, B, C, and D), the workpiece has been rotated 90 degrees counterclockwise.

Figure 6-16: Conceptual Cutting by Angle diagram

In view “A”(at angle 0), panels 1 and 2 are cut at their idx0 angle.

In view “B” (at angle 90), panel 2 is cut at its idx1 angle and panel 3 at its idx0 angle.

In view “C” (at angle 180), panel 3 is cut at its idx1 angle and panel 4 at its idx0 angle.

In view “D” (at angle 270), panel 4 is cut at its idx1 angle and panel 1 at its idx1 angle, completing both angles for all four panels.

Note: The parameter idx contains the information regarding the Workpiece position. For more details, refer to Model 7100 Operation Manual.

This new option requires the use of new parameters and some changes in the Teach procedures. When performing the procedure “Creating a Multi-

Panel”, section 6.5.5, notice that four new parameters and four new tabs

Advanced Dicing Technologies Ltd.

6.1-20

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

are added to a recipe as shown in Figure 6-17. Before running the Teach

Align, modify the recipe with the new parameters as shown in Figure 6-17.

Figure 6-17: Multi-Panel Teach Screen

At the end of the teach process, there will be new tabs of angless, as shown

in Figure 6-18.

Figure 6-18: Multi angles View

P/N 97100-9002-000-14 Ver 06/05

6.1-21

Workpiece Alignment

6.1.4.1

6.1.4.2

6.1.5

6.1.5.1

Multi-Panel Bar Code Identification

The new option “Choice of cutting angle by panel” can synchronize with bar code reading ability to enable naming each of the panels according to the bar code identified with it. The panel name will be displayed on the animated cut map.

Teach Alignment Multi-Panel Adaptations

To adjust the Teach Alignment procedure in an existing recipe for a multipanel application, conduct the following steps:

1

Add new angles to recipe, see Figure 6-17.

2 Define the number of panels (1 to 4).

3 Set the parameter values for each panel (angles, idx, etc.).

4 Follow the instructions of the Teach Align Wizard, similar to the standard Multi-Panel Teach Align process, only with Cut Position definition for the specific angles for the different panels.

Model Types

The 7100 Dicing Series machines use two major types of alignment models:

Die Model, see section 6.1.5.1

Align Kerf Model, see section 6.1.5.2

The model option can be selected from the drop-down menu to the right

from the Video Workspace, as shown in Figure 6-19.

Die Model

The Die models are the models used for the traditional alignment based on having the System remember two eye-points on the workpiece. These two points define the baseline for adjusting the parallelism of the kerfs. Once the Workpiece has been aligned, the alignment is taught to the System.

Afterwards, the System automatically updates (straightens) the substrate position on the Cutting Chuck by turning the Theta Axis.

The Die Models can be used as Main, Low or Sub-models. Before teaching alignment, add all the categories and parameters for each angle in the recipe, save the recipe, and then teach the alignment.

Advanced Dicing Technologies Ltd.

6.1-22

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

6.1.5.2

6.1.6

Figure 6-19: Model Options

Align Kerf Model

The Align Kerf Model is a standard alignment model that can be selected from the model list. It allows detection of black streets on white background.

These streets can be used as Main models or Sub-models (the Low model is always the die model). A model needs to be defined as an Align Kerf Model during every step of Teach Alignment procedure. The Align Kerf Model can be found only if the street width falls between the W-min and W-max

values (see Table A-3). Before teaching alignment, add all the categories

and parameters for each angle in the recipe, save the recipe, and then teach the alignment.

Model Processing Filters

The model preprocessing mechanism enables detecting the gray levels variation in the model images during the Teach Alignment process

When the "Model Processing” filter option is defined in the recipe, the

Teach Model and Find Model processes activate the selected option and perform the defined number of iterations. The results of the preprocessing are displayed for the user to view.

Note: Activating this option requires the user to teach/re-teach alignment with the defined filter.

Each model can be preprocessed by using a different Processing Method.

However, it is possible to assign one Method to all the models, by defining

P/N 97100-9002-000-14 Ver 06/05

6.1-23

Workpiece Alignment the Processing Method for All Models parameter. This parameter provides the Vision with a capability to perform pre-processing for each model, i.e., sub, main, low.

The following is a list of possible filter options:

Horizontal Edge Filter - detects the horizontal edges of the model image by enhancing horizontal edges and removing the vertical ones. The recommended number of iterations is 1.

Vertical Edge Filter - detects the vertical edges of the model image by enhancing horizontal edges and removes the horizontal ones. The recommended number of iterations is 1.

Smooth Filter - reduces the random noise, and selectively smooths the model image; removes the edge information. Number of iterations may be one or more.

Open Morphology- removes small extraneous graphic information by taking all neighboring pixels into account. Makes the model cleaner. The recommended number of iterations is 3 to 6.

Close Morphology- fills in the gaps between the model image components by taking all neighboring pixels into account. Makes the model sharper.

The recommended number of iterations is 3 to 6.

Edge Filter - emphasizes the boundaries of the Model that is to undergo preprocessing.

It is recommended to combine filters in order to improve the model image detection, especially because the models can vary slightly from one batch of substrates to the other.

Note: Define the "No. of iteration" parameter for every filter included in the recipe. The index that appears to the left of the parameter identifies the filter related to this parameter.

Advanced Dicing Technologies Ltd.

6.1-24

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

For example, in a ceramic application, the Close Morphology is usually the main filter with the number of iterations set to 5. The Smooth filter is added once to smooth the model image.

6.1.7

Figure 6-20: Model Processing Filter Parameters

Rotational Shrinkage

The Rotational Shrinkage feature is designed to solve the following cutting issues:

Varying distance between streets

Different Y coordinates of two models on the same street

This feature allows recalculating the Y coordinates and the Theta angle and updating the existing cut map. It supports two-point alignment and uses the Cut Verify option for calculation.

When the system is set up only to handle the varying distance between the streets, it calculates the new Y coordinate, and does not calculate the Theta angle. The system uses the first and second Cut Verify models to find their

Y coordinates and calculate the average Y shift accordingly. The cut map is updated according to the new calculated Y value.

When the system is set up to handle two models that are on the same street but are not on the same Y coordinate, then it calculates both Y and Theta

P/N 97100-9002-000-14 Ver 06/05

6.1-25

Workpiece Alignment coordinate values. The system uses the first and second Cut Verify models

to find their Y coordinates and Theta angle (see Figure 6-21).

6.1.8

Figure 6-21: Rotational Shrinkage Parameters

Setting the Yes/No parameter called "Shrinkage before cutting" to Yes allows the shrinkage algorithm to be fully activated prior to the cutting stage.

Average Index

When the index in a part of the cut map changes, the system can be set up to calculate the average index. The system finds the first and the last model of each cut verification sequence and calculates the average index for each group of indexes.

When the nominal distance between the first and last index of an application is known, a Nominal Distance algorithm can be employed.

Nominal Distance defines the assumed, or estimated, distance between the highest and lowest points along the Y-Axis, between which the streets are located. It enables measuring a vertical distance between two cut-verify models and calculating an average index. This feature is based on the existing average index State Machine.

Advanced Dicing Technologies Ltd.

6.1-26

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

If the new calculated index is within the allowed tolerance, the cut map is updated according to it. If required, the calculated index can be expanded

for the entire workpiece (see Figure 6-22).

Figure 6-22: Average Index Parameters

Note: The Average Index feature is applicable only for two-point alignment type.

P/N 97100-9002-000-14 Ver 06/05

6.1-27

Workpiece Alignment

6.1.9

Updating the Workpiece Alignment

Once the workpiece alignment has been taught, and there is a complete cut map, the operator can use the Align Update tool in order to update the existing cut map as required without having to reteach the whole sequence.

The Align Update tool allows the operator to choose which angle to modify and which angle to skip (leave as it is), should there be any changes to be done to the existing cut map. Likewise, the operator can modify specific parameters for each alignment angle.

Clicking the Teach Align button pops up a dialog box:,

The operator can select one of the following:

Full Teach: Update the whole cut map angle by angle

Cut Positions: Update cut position only by moving the camera above the cut position and updating it. The operator is instructed to click

Finish in the wizard once the cut position is updated.

New: Teach a completely new alignment, i.e. create a new cut map

Cancel: Cancel the procedure

Clicking Full Teach pops up an additional dialog box:

Advanced Dicing Technologies Ltd.

6.1-28

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Workpiece Alignment

This window refers to a specific angle in the recipe. At this stage, the operator can perform one of the following:

Full angle: Re-teach all the settings for the current angle

Skip: Skip the current angle

Cut Position: Update only the cut position by moving the camera above the cut position and updating it

Cancel: Cancel the procedure and return to the previous screen

Clicking Cut Position pops up the following dialog box:

The operator can click:

Skip: To skip the current angle

Cut Position: Update the cut position by moving the camera above the cut position and updating it

Cancel: Cancel the procedure and return to the previous screen

P/N 97100-9002-000-14 Ver 06/05

6.1-29

Workpiece Alignment

Advanced Dicing Technologies Ltd.

6.1-30

6.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Cut Verification

Cut Verification

Cut Verification is a procedure that checks the position of the verification model in order to define the next cut position and update the Cut Map created during Alignment.

Cut Verification can be performed either automatically, as defined in the recipe, or manually, at any time during the dicing process to check the cut position and verify the Cut Map. The System finds the Model, and if the

Model position is different from that found during Alignment, the System creates a new shifted Cut Map. The Cut Position is relative to the Model taught. The Cut Map is updated accordingly.

Note: In APC mode, the Model used for cut verification (Low, Main, Verification or Sub) should be as close as possible in the Y-Axis to the cut position. The system refers to the Cut Verification Models in the order they were taught. For example, in two-point alignment, if the right model was taught before the left model, during the Cut Verification, the system will search for the right model.

In case the selected model was not taught in the Teach Align Process the system automatically activates the Manual Cut Verification process.

In order for Cut Verification to be performed automatically on a Workpiece during dicing, the following parameters in the Cut Verify category must be specified in the Recipe assigned to the Workpiece:

Activate: Whether to perform Cut Verification. This parameter must be set to Yes.

First Cut No: The cut number where Cut Verification begins.

Last Cut No: The cut number where Cut Verification ends.

Note: Multiple First Cut and Last Cut parameters can be defined, allowing the user to define different ranges for different areas on the cut map.

Use Y Shift. This parameter influences the Cut Verification settings as follows: a. If it is set to "Yes” (default), the Cut Verify models are searched relatively to the cut position and Cut Map Y Shift.

b. If it is set to "No”, the Cut Verify models are searched relatively to the cut position only.

Rate: The number of cuts between each instance of Cut Verification.

Note: Multiple Rate parameters can be defined, allowing the user to define different rates for different areas on the cut map.

Model Type: The type of cut verification model used as main model.

Number of Models: This feature enables the verification of two models to be used for the Average Index. Additionally, it defines the

P/N 97100-9002-000-14 Ver 06/05

6.2-1

Cut Verification required cut position and updates the Cut Map created during

Alignment. Refer to section 6.1.8 for more information on the Avarage

Index feature.

For information about setting the above parameters, refer to Chapter 5.

6.2.1

When the Activate parameter is set to Yes, the System dices the

Workpiece as normal until it reaches the cut specified in First Cut No.

After that cut, the System finds the Model and revises the Cut Map, if necessary. Subsequent cuts are diced according to the revised Cut Map.

After every number of cuts specified in the Rate parameter, the System repeats the verification procedure until the cut specified in Last Cut No. is reached.

By defining additional First Cut No, Last Cut No and Rate parameters,

Cut Verification can be performed several times at different areas on the cut map.

Cut Verification can also be activated manually at any time by clicking

in the toolbar.

Cut verification results are recorded in the Log File. For more information

about this feature, refer to section 3.8.

Cut Verification: Special Search

The Special Search parameter should be used in order to enhance cut

verification on partial wafers (see section 6.5.1) or wafers with poor models.

Advanced Dicing Technologies Ltd.

6.2-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Cut Verification

In case the system fails to detect a cut verification model (X

1 in the drawing below), it starts looking for a secondary cut verification model (X

2 drawing below), jumping one index at a time. in the

X

1

X

2

6.2.2

The next cut verification is performed according to the last X

2

The X between X

1

and X

2

. In case X

2 perform manual cut verification.

model found.

2 position updates the Kerf Check coordinates according to the delta

is not found, the system requests the user to

Auto Cut Verification

Sometimes, due to model inconsistency or color variations, the Cut Verify process fails. When the Auto Cut Verify option is selected, the system automatically searches for a replacement Cut Verify model, if the expected one is not detected.

The system searches for the Cut Verify model in alternative positions. By default, it searches one street down from the current position, then another street down, and finally one street in the X direction towards the substrate center from the original position. If all the searches fail, the system activates the Manual Cut Verification procedure, which requires user assistance.

This function works only if the Special Search (Cut Verify category) option is deactivated.

The Manual Cut Verification procedure can be activated from either the

User Menu or the Toolbar, under the Cut Verify entry.

P/N 97100-9002-000-14 Ver 06/05

6.2-3

Cut Verification

Advanced Dicing Technologies Ltd.

6.2-4

6.3

6.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

Kerf Checking

Kerf Checking uses the Vision System to inspect the Kerf to check the quality and position of the cut. This section describes the various Kerf

Check functions available in the 7100 Series.

Kerf Check Glossary

The following terms are used when describing Kerf Check functions:

Alignment Center: The position of the center of the Street as taught

during Teach Alignment (see section 6.1.3).

Cut Center: The center of the actual Cut-line (Kerf).

Chipping Area: The area of chipping measured in either front (lower) or rear (upper) part of the Kerf.

dY: The deviation of the Blade center from the Alignment center (also called Y-Offset).

Rear Chipping: The maximum chipping measured from WMin to the rear-most (uppermost) chipped point.

Front Chipping: The maximum chipping measured from WMin to the front-most (lowermost) chipped point.

Center-to-Max Chipping: The maximum chipping from the Alignment center.

WMax: The maximum Kerf width.

WMin: The minimum Kerf width.

6.3.2

Figure 6-23: Kerf Check Glossary

Standard Kerf Check Algorithm

When the Kerf Check Algorithm parameter value is set to Standard, the

Kerf Teach and Kerf Identification are performed according to the taught

P/N 97100-9002-000-14 Ver 06/05

6.3-1

Kerf Checking black/white threshold. The system memorizes the number of checks per cut and the positions, on which it performs the Kerf Check later on.

6.3.3

The Kerf Check is performed on each position, until the system passes a sufficient number of Kerf Checks or until the number of allowed fails is reached.

The user should define the number of Kerf Checks per street and the number of check points, on which the Kerf Check is allowed to fail. For example, if the Kerf Check is performed on five points, and the user has defined that there can be no more than three fails, the system will perform the Kerf Check procedure until one of the two results is reached:

• The Kerf Check has failed three times - Fail

The Kerf Check has been successful twice - Pass

If the Kerf Check fails, the system displays an error message. If the Kerf

Check is successful, the system resumes dicing.

There are seven options of the Kerf Check Algorithm:

1

Standard Kerf Check Algorithm (see above)

2

Adaptive, see section 6.3.7.1

3

Advanced, see section 6.3.7.2

4

Adaptive Only, see section 6.3.7.3

5

Advanced Only, see section 6.3.7.4

6

Upper Bar, see section 6.3.7.5

7

Upper Bar, see section 6.3.7.6

Kerf Check Workflow

Kerf Checks are performed automatically by the Model 7100 according to the Kerf Check algorithm specified in the Recipe. If no Kerf Check algorithm has been specified, no Kerf Check is performed. In addition to the algorithm, Kerf Checks are influenced by Kerf Check parameters, defined for each angle in the Recipe. The Kerf Check parameters and

algorithm are described in detail in Appendix 1 and Appendix 3. The Kerf

Check Algorithm is specified in the main recipe screen shown in

Figure 6-34, and can be activated or disabled by selecting "Yes" or "No"

under the General tab of the recipe.

Advanced Dicing Technologies Ltd.

6.3-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

Kerf Checks are performed at defined intervals throughout the cutting process. The workflow is as follows:

Step 1: Cut n Streets: The number of Streets cut in Auto mode between Kerf Checks, where n is the number specified in the Rate parameter (Kerf Check category).

Step 2: Cutting Process Pauses: When n Streets have been cut, the automatic cutting process pauses.

Step 3: Kerf Check Taught?: If the Kerf Check has already been taught, a Kerf Check is performed automatically on the current cut.

Automatic Kerf Checks are described in section 6.3.4. If the results of

the Kerf Check are within the boundaries specified by the Kerf Check parameters, the automatic cutting process resumes.

If the Kerf Check has not been taught, a yellow error message is displayed instructing the User to perform the Teach Kerf Check

procedure, as described in section 6.3.6. When the Kerf Check has been

taught successfully, the automatic cutting process resumes.

Step 4: Final Cut Reached?: The automatic cutting process continues, pausing every n Streets, and a Kerf Check is performed until the final cut for the first angle has been completed.

Step 5: Move to Next Angle: When cutting of the first angle is completed, the cutting process automatically continues on the next

P/N 97100-9002-000-14 Ver 06/05

6.3-3

Kerf Checking angle. The Kerf Check has to be taught for the second angle before automatic Kerf Checks can be performed on that angle.

Step 1:

Cut n Streets

Step 2: Cutting

Process Pauses

Yes

Kerf Check

Performed

Step 3: Kerf

Check

Taught?

No

Teach Kerf

Check

6.3.4

No

Step 4:

Final Cut

Reached?

Yes

Step 5: Move to Next Angle

Figure 6-24: Kerf Check Workflow

Automatic Kerf Checking

After the Kerf Check has been taught, a Kerf Check is performed automatically after every interval of cuts specified in the Rate parameter in the Kerf Check category. The No. Checks per Cut parameter determines how many Kerf Checks are performed along the length of each

Street. Performing three checks per Street is usually sufficient for most applications.

To Perform Automatic Kerf Checking:

From the Manual menu, select Vision > Auto Kerf Check. The Video

Workspace is displayed and the Camera moves to each check point and checks the Kerf.

The measurements performed during an automatic Kerf Check include the following:

Advanced Dicing Technologies Ltd.

6.3-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

Figure 6-25: Kerf Check Measurements

The distance between the red lines is the maximum Kerf width (Wmax in

Figure 6-25) and the distance between the green lines is the minimum Kerf width (Wmin in Figure 6-25). The yellow line is the center of the Kerf.

The results of each Kerf Check are displayed in the FOV.

If the limits are exceeded, the System’s action depends on the option specified in the Recover parameter, as follows:

Pause: An error is shown, and the automatic cutting process does not resume. The User then decides whether to continue the cutting procedure, change the Kerf Check parameters or cancel the cutting process.

Ignore: No error is shown, and the automatic cutting process continues.

Report: An error is shown, but the automatic cutting process continues.

The results of a Kerf Check are also displayed in the Top View Area and the Multiview-12.

P/N 97100-9002-000-14 Ver 06/05

6.3-5

Kerf Checking

6.3.4.1

Main Workspace Window

The Main Workspace Window, in the top left corner of the Video

Workspace, shows the cut map for the current Workpiece.

Figure 6-26: Main Workspace Window Showing Kerf Check Results

The Kerf Checks performed on each cut are marked by a small square. The color of the square indicates if the Kerf Check passed (cyan) or failed (red).

Clicking on a Kerf Check mark displays a close-up of the Kerf in the FOV, which may help the User understand why a Kerf Check failed.

Note: The Main Workspace Window is described in detail in Chapter 2.

Figure 6-27: Model Tab Kerf Check Results

Clicking on a Kerf Check mark displays a close-up of the Model in the

Model tab, in the lower left corner of the Video Workspace.

Advanced Dicing Technologies Ltd.

6.3-6

6.3.5

6.3.5.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

Double-clicking on the Model displays a close-up of the Kerf in the

Multiview of the FOV, which may help the User to understand why a Kerf

Check failed.

Note: The Model tab is described in detail in Chapter 2.

Manual Kerf Check

Although the Model 7100 automatically performs Kerf Checking according to the Kerf Check algorithm specified in the Recipe, once Kerf Check has been taught, Manual Kerf Checking can be performed at any time. For

more information on Teaching Kerf Check, see section 6.3.6.

To Perform Manual Kerf Check:

1 Click in the toolbar. The Wizard in the Video Workspace guides the User through each step of the procedure.

2 Click Finish.

Manual Cut Depth Compensation

This of Manual Kerf Check is applicable for systems that use Bevel-type blades. The option allows the user to manually adjust the Kerf Check using calculations or by visual confirmation. The Manual Kerf Check option can

P/N 97100-9002-000-14 Ver 06/05

6.3-7

Kerf Checking be selected from the main screen by activating the pulldown menu next to

the Automatic Kerf Check button, as shown in Figure 6-28.

Figure 6-28: Manual Kerf Check Screen

This Manual Kerf Check option allows the user to manually adjust the kerf by moving the inner box and selecting the limit of the kerf. Another way of manually adjusting the kerf is by adding a numeric value to a new textbox titled Kerf Width. The inserted value changes the inner box according to the kerf paramters. After finishing the correction, clicking on Finish ends

the Manual Kerf session. The screen options are shown in Figure 6-28

Note: The limits of the Automatic Kerf Check also apply for the Manual Kerf

Check. Adjusting the box or inserting a value that is out of bounds will prompt an error message.

To activate the Manual Kerf Check option, the following steps should be completed:

1 Install a Bevel-type blade on the system.

2 Partially cut a wafer and leave it on the Cutting Chuck.

Advanced Dicing Technologies Ltd.

6.3-8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

3 Add the Activate parameter in Cut Depth Compensation category.

4 Change the Activate option on the Cut Depth Compensation recipe list

value to YES, as shown in Figure 6-29.

6.3.6

Figure 6-29: Cut Depth Compensation value list

There are two methods of conducting a Manual Kerf Check. The first one is selecting the Cancel option during dicing and stop the system after it had partially cut the Wafer. The second method is to define, in Manual

Inspection Category, the Rate and Number of Cuts parameters, enabling the user to change the kerf, if needed, after the Wafer is partially diced.

Teach Kerf Check

The Teach Kerf Check procedure involves teaching the System a Model and sets the limits for the automatic Kerf Check. Models are taught for each check point along the Kerf.

The Teach Kerf Check procedure must be carried out separately for all angles defined in the Recipe.

Before the Kerf Check can be taught, it is recommended to modify the following Recipe parameters in the Kerf Check category:

No. Checks per Cut, default is 5

Area, default is 80%

P/N 97100-9002-000-14 Ver 06/05

6.3-9

Kerf Checking

The Teach Kerf-Check procedure is carried out according to the following attributes: Pattern Type and Model Reference Position.

To Define Teach Kerf Attributes:

1

Select a Model Reference Position (see Figure 6-30):

• Center (default)

• Lower Edge

Upper Edge

Figure 6-30: Reference Position Options

2 Choose a pattern type:

Kerf Up - to force the reference position “Lower edge”

Kerf Down - to force the reference position “Upper edge”

Middle - to force the reference position “Center” (default)

Advanced Dicing Technologies Ltd.

6.3-10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

Figure 6-31 below illustrates a user choosing a Reference Position: Lower

Edge Model and Pattern Type: Kerf up during the Kerf Teach process.

Figure 6-31: Pattern: “Kerf Up” with Reference Position: “Lower Edge”

Other parameters relating to Kerf Checks are either optional or are automatically specified by the Teach procedure.

For more information about Kerf Check parameters, see Appendix 3.

To Teach the Kerf Check:

1 Click Run . The System starts dicing the Workpiece automatically, according to the parameters defined in the Recipe.

2 After two or three cuts, select Auto Stop from the Auto menu or click .

3 In the Programming Workspace, click Teach Kerf. The Video

Workspace is displayed with a blue Teach Area in the Field of View

(FOV). The Camera moves over the Cut Position defined during

Alignment (see section 6.1.1.2).

4 Click Next. The Camera moves to the first check point.

5 Set the focus, zoom and illumination using the Z/T Axis, Zoom and

Illumination Controls respectively, so that the image is clear. It is recommended to set illumination so that outside information on the edge of the Kerf is eliminated as much as possible. Ideally, the Kerf should appear as dark and the outside area as white/light as possible.

Refer to section 2.2.10.2 for more information about setting these

features.

6 Move to the Kerf center: using the Display Controls, position the Teach

Window so that it fully surrounds a section of Kerf in the Y direction,

P/N 97100-9002-000-14 Ver 06/05

6.3-11

Kerf Checking

1 including some of the Workpiece beyond the edges of the Kerf, as shown below:

2

3

4

1 Kerf (Black)

2 Search Area

(Green)

3 Reticle (Green)

4 Teach Window

(Blue)

Figure 6-32: Teach Kerf Check

7 Set the value for Black/White threshold. (The threshold setting is located below the illumination setting windows on the right pane of the screen.)

Note: When teaching the Kerf for angle 0 degrees, make sure it does not cross the Kerf of 90 degrees.

8 Click Teach. The first Model is taught. The Wizard confirms whether the Model has been taught successfully.

9 Click Next. The Find button is enabled.

10 [Optional] Click Find to verify that the taught Model (Kerf) is satisfactory. The System searches for the taught Model in the FOV.

The results of the Find procedure are displayed in the FOV, as follows:

Wmax: Maximum Kerf Width.

Wmin: Minimum Kerf Width.

DY: Cut displacement (equivalent to Y Offset).

Center-To-Max Chip: The distance from the center of the Kerf to the maximum chipped point.

Skew: The maximum offset in the Y-Axis between the current

Model and the last Model found .

Top Chipping: The maximum chipping measured from Wmin to the front-most (lowermost) chipped point.

Bot Chipping: The maximum chipping measured from Wmin to the rear-most (uppermost) chipped point.

Advanced Dicing Technologies Ltd.

6.3-12

6.3.7

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

Top Chip Area: The area of all chipping measured from WMin to

WMax at the front of the Kerf (ddY).

Bot Chip Area: The area of all chipping measured from WMin to

WMax at the rear of the Kerf (ddY).

Select the Model tab on the lower left of the Video workspace to see the taught Model.

11 Click Next. The System finds the current Model and moves the

Camera to the next check point to learn the next Model (the distance of this move is the second angle Align Index). The parameters for the first

Model (including Y, Z and Theta values) remain the same; only the X value must be learned. The User can only make adjustments in the X direction when setting up the second Model.

12 Repeat Step 10 for as many check points as specified in the No.

Checks per Cut parameter in the Recipe.

13 Click Finish. The System finds the final Model, completing the Teach procedure.

14 Click Run to resume dicing. The System is now set to automatically check the kerf after every number of cuts, according to the values, defined in the Kerf Check parameter of the recipe.

15 After two or three cuts of the second angle (Angle 90/2), select Auto

Stop from the Auto menu.

16 Repeat steps 3 through 13 for the Angle 90/2.

When the Teach procedure is completed, the User is prompted to save the

Recipe. Click Yes to save the information learned during the Teach procedure.

Kerf Check Options

The parameter Number of Steps per Check defines whether the Kerf

Check is performed in one step or in two steps. When set to 2, all Kerf

Check parameters have two lines in the parameter table (as shown in

P/N 97100-9002-000-14 Ver 06/05

6.3-13

Kerf Checking

Figure 6-33) in order to enable the user to set values for each step of the

process.

Figure 6-33: Two-step Kerf Check Parameter Table

This feature was developed for the applications that deal with two-layer

workpieces and one-edged Kerfs (section 6.3.7.5 provides an example). The

Kerf Check can be performed in two steps:

1 Y-Offset Correction

2 Z-Compensation, according to the measured Kerf width.

The two-Step Kerf Check is also referred to as One-Edge Model Z

Compensation.

Teaching two-step Kerf Check is a longer procedure than that for a onestep Kerf-Check. Start the Teach Kerf Check procedure as usual and follow the wizard that gives guiding instructions throughout the process.

There are seven options of the Kerf Check Algorithm (see Figure 6-34):

1

Standard Kerf Check Algorithm (see above)

2

Adaptive

3

Advanced

4

Adaptive Only

5

Advanced Only

6

Upper Bar

7

Lower Bar

Advanced Dicing Technologies Ltd.

6.3-14

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Checking

6.3.7.1

6.3.7.2

6.3.7.3

Figure 6-34: Kerf Check Algorithm Options

Adaptive

This option is intended to solve the issue of ink dots and dark areas situated close to the Kerf Areas. While performing Find Kerf, the system calculates the black/white threshold, disregarding the threshold data of the taught Kerf.

Note: In case the Adaptive option is selected, the system performs Standard

Kerf Check first. If all the Kerf Check attempts fail, the system performs Kerf

Check according to the Adaptive Kerf Check Algorithm for all the taught positions. If there is no problem, it continues dicing.

Whenever teaching Kerf Check on a dark area or on a ink-dotted area, open a larger search box. According to this algorithm, the system detects the ink dots and removes them from the taken picture. The Kerf width is measured after the picture is corrected.

Advanced

This option combines the Standard mode and Chipping Removal. Use this option to measure the Kerf width (W-min) in order to define the Y-Offset correction if necessary. The system uses only the W-min and Y-Offset correction parameters set in the Kerf Check limit parameters of the recipe.

Adaptive Only

This option is intended for ink dots removal. When the Adaptive Only option is selected, the system does not perform the standard Kerf Check procedure. The system calculates the black/white threshold according to

P/N 97100-9002-000-14 Ver 06/05

6.3-15

Kerf Checking

6.3.7.4

6.3.7.5

6.3.7.6

the current cut and not according to the taught one. All the Kerf Check tests are performed on the taught X-positions.

Advanced Only

When this option is selected, the system performs Chipping Removal only.

Use this option to measure the Kerf width (W-min) in order to define the Y-

Offset correction if necessary. The system uses only the W-min and Y-

Offset correction parameters set in the Kerf Check limit parameters of the recipe. The found W-min value that falls between the W-min and W-max set in the recipe, will be taken by the system as legal.

Upper Bar

This option should be chosen when working with one side bar on the upper side of the street. It allows performing kerf check on one pad ignoring any

"noise" that might appear on the opposite side of the pad.

Lower Bar

This option should be chosen when working with one side bar on the lower side of the street. It allows performing kerf check on one pad ignoring any

"noise" that might appear on the opposite side of the pad.

Advanced Dicing Technologies Ltd.

6.3-16

6.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Manual Y Offset

Manual Y Offset

The Manual Y Offset procedure teaches the System the difference in position between the Blade and the Microscope in the Y direction, enabling the System to make the necessary adjustments during the dicing process.

1 Microscope

2 Blade

3 Y Offset

6.4.1

2

1

3

Figure 6-35: Y Offset Between Microscope and Blade

The Manual Y Offset procedure is normally performed after a Blade change or before cutting a series of Workpieces. The User performs a single cut and then positions the Microscope exactly over the cut. The single cut can be performed within the cut map or outside the cut map (for example, on the tape.)

The Y Offset is a parameter that can be automatically calculated and taught to the System during the Kerf Check process.

Required Recipe Parameters for Manual Y Offset

Before the Manual Y Offset adjustment can be performed, the System has to be taught where to place the single cut that will be used in the procedure. In order to teach this to the System, the current recipe must include the following parameters:

In cut map only: (Y Offset category) Determines, whether to perform the single cut within the cut map (Yes), or outside of the cut map (No).

If set to "No", the following two parameters must be defined:

Define End Location from Edge: (Y Offset category) The distance from the upper and lower edge of the Workpiece towards

P/N 97100-9002-000-14 Ver 06/05

6.4-1

Manual Y Offset

• the center of the Workpiece within which the single cut can be performed.

Define Start Location from Edge: (Y Offset category) The distance from the upper and lower edge of the Workpiece towards the edge of the frame within which the single cut can be performed.

Note: For information regarding adding parameters to a recipe, see Chapter 5.

6.4.2

Performing Manual Y Offset

To Perform Manual Y Offset:

1 Make sure that the water flow is adjusted

2 Make sure the Workpiece is loaded onto the cutting chuck

3 Click Manual Y Offset in the toolbar. The User is prompted to either perform a single cut or to abort the Manual Y Offset procedure.

Click Yes to continue. The cut is performed and the User is prompted to find the center of the Kerf.

Note: If a single cut was performed before clicking Manual Y Offset in the toolbar, the Microscope automatically moves to the center of that cut.

4 Use the up and down arrows of the X/Y-Axis Controls to move the reticle (representing the Microscope position) to the center of the cut.

Select S or P to move the Microscope slowly or one pixel at a time.

Select T at the center of the Guide Controls, then use the Guide

Controls to size the blue Teach Window around the cut so that its borders are aligned over the edges of the Kerf.

Note: The reticle can also be positioned over the center of the cut by clicking and dragging the blue borders of the Teach Window.

1

2

1 Cut

2 Teach Window

3 Reticle

3

Figure 6-36: Manual Y Offset: Positioning the Microscope

5 Click Finish. The System is automatically updated.

Advanced Dicing Technologies Ltd.

6.4-2

6.4.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Manual Y Offset

Y-Offset Reference Positions

This feature enables Teaching the reference position (center, lower edge or upper edge) and the pattern type (middle, kerf up, kerf down, upper bar or lower bar) of each kerf model separately. Reference position refers to the part of the kerf model from which the Y coordinate result should be taken.

The Y-coordinate can be based on the following options:

Lower Edge: The Y coordinate result would be taken from the lower edge of the kerf.

Upper Edge: The same as lower edge, only for the upper edge.

Center: The Y coordinate result is taken from the kerf's center.

To set Y-Offset Reference Position

1 Under the General tab, locate the Y-Offset category.

2 Select a value for Y-Offset Reference Position parameter. The default value is “Center”. (see Figure 2-5).

6.4.4

Figure 6-37: Y-Offset Reference Position

Y-Offset on Dress Block

Y-Offset can be performed either on the Workpiece or on the Dress Block.

The Y-Offset location depends on whether or not a cut was already performed:

If the previous cut was on the Workpiece, Y-Offset is performed on the

Workpiece.

P/N 97100-9002-000-14 Ver 06/05

6.4-3

Manual Y Offset

If the previous cut was on the Dress Block, Y-Offset is performed on the Dress Block.

If there is no previous cut, the Y-Offset location is determined by

Cutting Location parameter.

Advanced Dicing Technologies Ltd.

6.4-4

6.5

6.5.1

6.5.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Cut Procedures

Special Cut Procedures

This section contains instructions as to how to perform the special cut procedures, such as:

1

Partial Wafer Cut, section 6.5.1.

2

Sub-Index, section 6.5.2.

3

Loop Cut, section 6.5.3.

4

Chopping, section 6.5.4.

5

Multi-Panel Alignment, section 6.5.5

6

Cut Depth Compensation, section 6.5.6

7

Negative Index, section 6.5.7

Partial Wafer Cut

The Partial Wafer Cut option enables the user to:

Resume cutting a Workpiece that has already been partially cut.

Dice a partial substrate.

Note: The Kerf Check and Cut Verify positions are updated according to the

Cut Verify model. In case X-position correction takes place, the new coordinate stays in the recipe up until the system fails to detect a model again.

The Cut command in the Manual menu enables the initiation of the

Partial Wafer Cut procedure, as described below:

To Perform Partial Wafer Cut:

1 Load a partially cut Workpiece on the Cutting Chuck.

2 Press the Wafer Cut button and select the Partial Wafer Cut from the drop-down menu, or from the Manual menu, select Cut > Partial

Wafer Cut. The software switches to the Video Workspace and displays the next step to be performed in the wizard.

3 Follow the wizard step-by-step instructions.

Sub-Index

The Sub-Index option enables the System to create a cut map, where there is one set of main indexes and one or more sets of sub-indexes.

To create a recipe with sub-indexes, add more indexes in the desired angle of the recipe.

Every index is indicated by (idx)# in the left column of the recipe.

P/N 97100-9002-000-14 Ver 06/05

6.5-1

Special Cut Procedures

6.5.3

The cut map and basic parameters for building sub-index recipes are given

in section 5.6.

Note: After a cut map is generated, with all main and sub-indexes, the saw dices from rear to front, regardless of whether the next index is a main index or a sub-index.

Loop Cut

The Loop-Cut option enables the System to create a cut map, where the existing angles can be duplicated an unlimited number of times with fixed

X/Y shift.

The User can configure the Loop-Cut so that different combinations of the angles existing in the recipe are looped.

The cut map and basic parameters for building Loop-Cut recipes are given

in section 5.6.

To Create a Loop-Cut Recipe

1

In the General recipe field, add the Loop-Cut category (see Figure 6-

38).

Figure 6-38: Loop Cut Screen

2 Define the First Angle parameter.

Advanced Dicing Technologies Ltd.

6.5-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Cut Procedures

3 Define the Last Angle parameter.

4 Define the Number of repetitions parameter.

5 Set the X-shift value.

6 Set the Y-shift value.

7 Click Save.

The User can create several loops in the same recipe. In this case, there should be an additional set of the Loop-Cut parameters for each loop.

Note: Every loop is indicated by (idx)# in the left column of the recipe.

Table Table 6-1 and Figure 6-39 illustrate Loop Cut parameter set and a

cut map.

Parameters

Table 6-1: APC Loop Cut Parameters

Angle 0 Angle 90

Work piece Shape

Work piece Size

Thickness

Blade

Align type

Spindle speed

Index

Sub index

Cut count

Cut speed

Chop velocity

Loop

Loop offset

Loop count

Depth

Rectangular

100 x 100 mm

1 mm

00777-6045-010-QIP

Manual

20 krpm

3 mm

N/A

5

10 mm/sec

0.5 mm/sec

From Ang.1

X=20mm

5

3 mm

N/A

20 mm

5

10 mm/sec

N/A

to Ang.1

Y=22mm

Note: In a Lop Cut recipe, the parameter Optimized Order (under Cut category) must be set to "No".

P/N 97100-9002-000-14 Ver 06/05

6.5-3

Special Cut Procedures

6.5.4

6.5.5

Figure 6-39: Loop Cut Map

Chopping

"Chopping” is cutting within the substrate, as opposed to the usual cutting that starts at the circumference.

To use this feature, the User should specify the Chopping Z Start (default value is 20 mil/0.5 mm above the substrate) and the Chopping Velocity parameters. After the saw reaches the cut position in X and Y axes, it descends to the Chopping Z Start height and from there slows down to

Chopping Velocity.

If in a chopping recipe the Cut Length parameter value is set other than

0, the blade will descend and cut the workpiece at the defined length.

Multi-Panel Alignment

This option is intended for those applications that use multiple identical rectangular workpieces loaded on the same cutting chuck.

The idea is to teach the system to align and dice multiple workpieces, using one of them as a reference. The system is taught the models for the alignment of the first workpiece (panel). Once the first panel has been taught, the user should define the reference positions for the rest of the panels. The system is now capable of performing automatic alignment on all the panels loaded on the same chuck.

The Multi-Panel category can be added to a standard recipe (template).

Advanced Dicing Technologies Ltd.

6.5-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Cut Procedures

This section contains the following features:

Create a Multi-Panel Recipe

Teach Multi-Panel Alignment

Angle Tabs

Multipanel Animation

Deleting an Angle/Panel

Multi-Panel Recipes with Loop Cuts

Changing a Multi-Panel Recipe to a Regular Recipe

Multi-Panel Cutting Sequences

To Create a Multi-Panel Recipe

1 Open an existing recipe or template.

2 Select the Multi-Panel category.

3 Under the Multi-Panel category, select No. of panels.

4 Add this parameter to the recipe.

5 Save the recipe. The Multi-Panel category and the No. of panels parameter will now appear in the recipe data field.

The difference between a standard recipe and a Multi-Panel recipe is in the

Teach Alignment process.

To Teach Multi-Panel Alignment

1 Open the Multi-Panel recipe (see above)

2 Select the Alignment type.

3 Click the Teach Alignment button to teach the 0/1 (0 degrees) angle on panel #1 (the reference workpiece), following the instructions given

P/N 97100-9002-000-14 Ver 06/05

6.5-5

Special Cut Procedures by the wizard. At the end of teaching process the following message appears:

4 Click Yes.

Note: It is important to take into consideration, that the workpieces in the Multi-

Panel applications must be rectangular unlike most wafers.

Figure 6-40 illustrates the alignment lines for the two alignment

angles in a Multi-Panel application.

4 1

3 1 4 2

2 3

0/1 (0 Degrees Alignment Line) 90/5 (90 Degrees Alignment Line)

Figure 6-40: The Align Lines

5 Teach the 90/5 (90 degrees) angle on panel #1 (the reference workpiece), following the instructions given by the wizard. At the end of the teaching process, the following message appears:

Advanced Dicing Technologies Ltd.

6.5-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Cut Procedures

6 Click Yes. At this point the System performs automatic alignment of the reference panel.

7 Define the 0 degrees cut positions for all the panels.

Note: The angles’ reference numbers and panel numbers appear in the lowerright corner of the video workspace. By default, after defining a cut position, the vision system returns to the first panel. Therefore, when moving to the next panel, the user has to move the camera manually.

8 Define the 90 degrees cut positions for all the panels.

Having defined cut position for all the panels, the System performs alignment and asks the user to define the exact cut positions for every angle. These cut positions are based on the previously taught models and alignment. Once the exact cut positions are assigned, the Teach Alignment process is completed. The alignment can now be performed automatically.

P/N 97100-9002-000-14 Ver 06/05

6.5-7

Special Cut Procedures

In case one of the alignment models is not found, the System stops the process and an error message asking for manual help appears on the

screen. The wizard gives four options as shown in Figure 6-41.

6.5.5.1

Figure 6-41: Wizard - Model Not Found

The User can now either find a model, or proceed with manual alignment, or skip alignment for this specific angle of this specific panel.

Angle Tabs

Once the number of panels is defined and the Teach Align procedure is

completed, the number of tabs is updated accordingly. Figure 6-42 shows

the angle tabs of a multi-panel recipe.

Figure 6-42: Multi-Panel Angle Tabs

Each angle is associated with a group of angles, which is reflected by L0 or

L1, appearing on each tab.

The tabs P1 L0 and P1 L1 are the master tabs (being those of first panel).

Any parameter changes in either of the master angles result in parameter changes in all the angles of the same link. For example, changing the

Depth parameter value in the angle 0/1 P1 L0 would result in changing the Depth parameter value in the angles 0/2 P2 L0, 0/3 P3 L0, 0/4 P4 L0.

Advanced Dicing Technologies Ltd.

6.5-8

6.5.5.2

6.5.5.3

6.5.5.4

6.5.5.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Cut Procedures

Multipanel Animation

In the Simulation Workspace, the workpiece animation reflects the quantity and location of the workpieces on the Chuck, once the cut map has been built.

Deleting an Angle/Panel

To Delete an Angle or Panel:

1 Right-click on the angle tab.

2 Choose Delete from the pop-up menu. The specific angle/tab is deleted.

Multi-Panel Recipes with Loop Cuts

To Create a Multi-Panel Recipe with Loop Cuts

1

Create a Loop Cut recipe (see section 6.5.3).

2 Define the angles for the Lop Cut.

3 Save the links according to the Multi-Panel procedure.

Note: To delete one of the loops, insert an irrelevant value, such as "0", in the start/end loop cut index. The system will now disregard the loop.

Changing a Multi-Panel Recipe to a Regular Recipe

Do one of the following to change a Multi-Panel Recipe to a Regular Recipe:

Duplicate the recipe and remove the links. The links can be removed during the duplication process, by checking the Remove Links

checkbox as shown in Figure 6-43.

Figure 6-43: Removing Links

Change the No. of panels under Multi-Panel category to 1.

P/N 97100-9002-000-14 Ver 06/05

6.5-9

Special Cut Procedures

6.5.5.6

Multi-Panel Cutting Sequences

The Multi-Panel cutting sequences can vary depending on the users

requirements. Table 6-2 shows the cutting sequences according to the

combination of the three parameter values:

Cut per Panel

Alignment Algorithm

Optimize Order

No.

1

2

3

4

5

Cut per

Panel set to

Table 6-2: Multi-Panel Cutting Sequences

Alignment

Algorithm

Optimize

Order set to

Cutting Sequence

No

No

No

No

Yes

AACC

ACAC

AACC

ACAC

AACC

Yes

Yes

No

No

Yes

Align: 0/1, 0/2, 0/3, 0/4, 90/5,

90/6, 90/7, 90/8

Cut: 90/8, 90/7, 90/6, 90/5, 0/4,

0/3, 0/2, 0/1

Align: 0/1, 0/2, 0/3, 0/4

Cut: 0/4, 0/3, 0/2, 0/1

Align: 90/5, 90/6, 90/7, 90/8

Cut: 90/8, 90/7, 90/6, 90/5

Align: 0/1, 0/2, 0/3, 0/4, 90/5,

90/6, 90/7, 90/8

Cut: 0/1, 0/2, 0/3, 0/4, 90/5,

90/6, 90/7, 90/8

Align: 0/1, 0/2, 0/3, 0/4

Cut: 0/1, 0/2, 0/3, 0/4

Align: 90/5, 90/6, 90/7, 90/8

Cut: 90/5, 90/6, 90/7, 90/8

Align: 0/1, 90/5; Cut: 90/5, 0/1

Align: 0/2, 90/6; Cut: 90/6, 0/2

Align: 0/3, 90/7; Cut: 90/7, 0/3

Align: 0/4, 90/8; Cut: 90/8, 0/4

6 Yes

7

8

Yes

Yes

ACAC

AACC

ACAC

Yes

No

No

As above

Align: 0/1, 90/5; Cut: 90/1, 90/5

Align: 0/2, 90/6; Cut: 0/2, 90/6

Align: 0/3, 90/7; Cut: 0/3, 90/7

Align: 0/4, 90/8; Cut: 0/4, 90/8

As above

Advanced Dicing Technologies Ltd.

6.5-10

6.5.6

6.5.7

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Cut Procedures

Cut Depth Compensation

When Cut Depth Compensation category is activated, the System automatically lowers or raises the Z-Axis to ensure a uniform cut width of mid-way between the limits specified by the Max Cut Depth, Max and

Min Cut Width parameters. The System measures the width of the Bevel cut during a Kerf Check. Cut Depth Compensation can only be performed when the Kerf Check algorithm is selected in the Recipe’s properties and the System is performing Kerf Checks.

When the cut is deeper than the limit (the street is too wide), an error message appears and the cut depth is corrected for the next cut. After performing a Teach Kerf Check during the process, followed by a manual or automatic Kerf Check, the above correction is made based on the results from the most recent Kerf Check.

The Cut Depth Compensation parameters define values used as compensation when cutting with Bevel Blades. For more information, see

Table A-8.

Negative Index

This feature enables cutting in both directions: front to back and back to front. Furthermore, it allows deciding the direction that the cut map is built. To enable this feature, define the required parameters under the Cut

category. Refer to Table A-10 , located under Appendix 3: “Recipe

Parameters”.

P/N 97100-9002-000-14 Ver 06/05

6.5-11

Special Cut Procedures

Advanced Dicing Technologies Ltd.

6.5-12

7

7.1

7.1.1

7.1.2

7.1.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Saw Procedures

SAW PROCEDURES

This chapter includes the topics related to:

1

Z-Axis Safety, section 7.1

2

Blade Expansion, section 7.2

3

Height Measurements, section 7.3

4

Blade Handling, section 7.4

5

Chuck Change, section 7.5

Z-Axis Safety

To ensure the Z-Axis safety, the System defines the Z Height Movement, which is the lowest point that Z-Axis can travel while the X and Y Axes are in motion. The Z Height Movement is the minimum of three values which are all parameters in the Setup and Diagnostics workbook. These parameters are entitled Z-Axis Safety Position, Z-Axis Return Height,

Calibration Start Position, and Pre Non Contact Height.

Z-Axis Safety Position

The Z-Axis Safety Position is an area on the Z-Axis set with reference to the Workpiece used and its tape thickness. It is automatically calculated by the following formula: [Chuck position - Substrate thickness - tape thickness - Safe parameter].This parameter can be viewed in Setup and

Diagnostics > Dicer > Axes > Z > Axis Z Safety Position. If this value is lower (from the top) than Calibration Safety Position or Pre Non Contact

Height, it is used for the Z Height Movement.

Z-Axis Return Height

The Z-Axis Return Height is the height at which the blade should move above the workpiece while returning from the end of the finished cut to the beginning of the next one.

This parameter can be viewed in Setup and Diagnostics > Dicer > Axes

> Z > Z-Axis Return Height. Its value should not be lower (from the top) than the Z-Axis Safety Position.

Calibration Start Position

Calibration Start Position is the parameter which determines the safety area above the Chuck that can be used for the Z Height Movement. This parameter is set by the User.

P/N 97100-9002-000-14 Ver 06/05

7-1

Saw Procedures

Z-Axis Safety

7.1.4

To set the Calibration Start Position:

1 Manually set the largest blade in use approximately 2 mm above the

Chuck. (If the system uses more than one type of chuck, perform this step with the thickest chuck.)

2 In the Setup and Diagnostics workbook, select Dicer > Axes > Z.

3 Double-click Calibration Start Position. Teach is activated.

4 Click Teach. The Calibration Start Position is recorded as one of the possibilities for the Z Height Movement.

Pre Non Contact Height

Pre Non Contact Height is the parameter which determines the safety area above the NCHD/Mechanical Height Button (depending on what the

System is equipped with) that can be used for the Z Height Movement. This parameter is set by the User.

To set Pre Non Contact Height:

1 Manually set the largest blade in use approximately 2 mm above the

NCHD/Mechanical Height Button.

2 In the Setup and Diagnostics workbook, select Dicer > Axes > Z.

3 Double-click Non Contact Height Device. Teach is activated.

4 Click Teach. The Calibration Start Position is recorded as one of the possibilities for the Z Height Movement.

Note: The Z Height Movement is constantly updated according to which of the three values is the lowest (from the top).

Advanced Dicing Technologies Ltd.

7-2

7.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Expansion

Blade Expansion

There are three blade expansion parameters that are set in the Setup &

Diagnostics workbook to monitor blade expansion.

To access the blade expansion parameters:

In the Setup & Diagnostics workbook, select Saw > Dicer > Cutting

Block. The blade expansion parameters appear on the parameters list.

The following is a list and explanation of the blade expansion parameters:

Max. Blade Expansion: The amount that the blade is permitted to expand between Height procedures until a response is triggered.

Max. Blade Expansion after init: The amount that the blade is permitted to expand between Height procedures after initialization until a response is triggered.

Button Height/NCHD Repetitions: The number of times the Height procedure is repeated if the blade expansion value is beyond the Max.

Blade Expansion or the Max Wear value.

Note: It is important to repeat the Height procedure in case the blade surpassed the maximum expansion on the first reading due to excess dirt or water on the blade.

If the Max. Blade Expansion parameter has been surpassed during the

Height procedure more times than allowed by the Button Height/NCHD

Repetitions parameter, a message with three options appears:

Retry: The System performs the Height procedure again to measure the expansion of the blade.

Accept: The System accepts the measured blade expansion as the new value for Max. Blade Expansion.

Cancel: The error message "Blade is bigger than expected” appears.

The User can continue the cutting process by pressing either Run or

Full Wafer Cut.

P/N 97100-9002-000-14 Ver 06/05

7.2-1

Blade Expansion

Advanced Dicing Technologies Ltd.

7.2-2

7.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Height Procedures

Height Procedures

The Height procedure is performed in order to determine the Cutting

Chuck position along the Z-Axis.

Figure 7-1: Height Procedure

Height is performed by lowering the Spindle until the edge of the Blade makes contact with either the Cutting Chuck (Contact Height) or the

Height Device (Button Height). The Height Device, located next to the

Cutting Chuck, can be either a Mechanical Button or an optical device

(Non-Contact Height Device).

Height procedure performed during the cutting process is referred to as

Process Height. Process Height is performed throughout the cutting process in order to compensate for changes in the Z position of the cutting edge due to the Blade wear. Process Height is usually a non-Chuck Height, meaning it is performed on the Height Device.

However, the User can configure the System so that Process Height is a

Contact Height, meaning it is performed on the Cutting Chuck by changing the Height Type parameter in the Recipe from Regular (process height performed in the Height Device) to Defer (process height performed on the

Cutting Chuck). This option is generally used in case there is a problem with the Height Device. It allows the user to keep using the machine, while the problem is being solved.

The User determines when Process Height is performed by configuring the following two parameters in the Height category of the Recipe:

Height Check Units: Determines whether Process Height is performed after a defined number of cuts or after a defined cut length.

Height Check Rate: Determines the number of cuts or the total cut length after which Process Height is performed.

P/N 97100-9002-000-14 Ver 06/05

7.3-1

Height Procedures

Process Height can be performed manually at any point during the cutting process.

To Manually Perform Process Height:

Pause the dicing process, exit to Inspection. Then,

• Right-click on the spindle icon and select Height from the drop-down menu.

or

From the Manual menu, select Services > Process Height.

The System moves to the NCH station and lowers the Blade towards the

Height Device. The System calculates the exact distance traveled. When completed, the message "Button/Non-Contact Height completed" appears in the Wizard.

Height can also be performed when dicing is not in progress using the

Height tools in the Setup & Diagnostics Workbook in the Workbook

Workspace, as follows:

NCH/Button Height section 7.3.1

Chuck Height, section 7.3.2

Chuck to Non-Chuck (Height Device) Delta Measurement, section

7.3.3

Sample Blade Calibration section 7.3.4

Advanced Dicing Technologies Ltd.

7.3-2

Figure 7-2: Button Height Procedure Tools in GUI

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Height Procedures

7.3.1

Figure 7-3: Non-Contact Height Procedure Tools in GUI

The user can configure the system to perform Height procedure upon every initialization by setting the Height After Init parameter to "Yes". This parameter, under Saw > Dicer in Setup & Diagnostics screen, determines whether to perform a Height procedure after saw initialization, regardless of the height rate value in the recipe.

Height Reference Device

Height Device (height reference point) determines the Cutting Chuck position along the Z-Axis by lowering the Blade until the edge either makes contact with the Mechanical Button, or breaks the beam of light emitted by the Non-Contact Height Device (NCHD).

There are two advantages to performing the Height procedure on the

Height Device rather than the Cutting Chuck:

Can be performed with a Workpiece on the Cutting Chuck

Does not damage the Chuck and the Blade

Using a Non-Contact Height Device (NCHD), does not cause wear to the Blade

Non-Contact Height Device Mechanical Button

Figure 7-4: Height Devices

P/N 97100-9002-000-14 Ver 06/05

7.3-3

Height Procedures

7.3.1.1

To Perform Button Height:

1 In the Setup & Diagnostics Workbook, select Saw > Dicer > Height to

display the Height tools, as shown in Figure 7-2.

2 Click NCH/Button. The System lowers the Blade to the Height Device and calculates the exact distance traveled. When completed, the message "Contact Height completed" appears in the Wizard.

Change Button Procedure

When using a Mechanical Button as the Height device, the System automatically tracks the number of Height procedures that can be performed before the Button must be replaced. This number is displayed after each Height procedure in the Activity Log at the lower left pane of the screen. When the limit is reached, the System displays a message instructing the User to perform the Change Button procedure to replace the worn Mechanical Button with a new one.

To Replace the Mechanical Button:

Note: Remove the Workpiece from the Cutting Chuck before performing the button replacement.

1 Clean the area around the Mechanical Button so that it is free of dust and water.

2 Click in the toolbar to display the Setup & Diagnostics workbook.

3 From the Setup & Diagnostics tree, select Saw > Dicer > Height.

4 In the lower right pane, click Change Button. The software switches to the Video Workspace and displays the Wizard with instructions that guide the User step by step through the procedure.

Note: The instructions given in the wizard do not replace the instructions given in steps 5 through 16 of the present section.

5 On the Mechanical Button housing, loosen the screw securing the upper C-clamp and remove the C-clamp.

6 Remove the Mechanical Button by inserting a small screwdriver into any of the four slots and prying upwards to release the Button.

7 Insert the new Mechanical Button into its housing, leaving it slightly higher than it needs to be.

8 Replace and partially tighten the upper C-clamp.

9 Place a Straitness Block across the Chuck and Mechanical Button and use the Block to press firmly on the Mechanical Button to ensure that it is flat and parallel to the to the top surface of the Cutting Chuck.

Advanced Dicing Technologies Ltd.

7.3-4

7.3.2

7.3.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Height Procedures

10 Firmly tighten the upper C-clamp on the Mechanical Button housing.

11 In the Wizard in the Video Workspace, click Next and then Finish

(according to the wizard). The System automatically performs a flatness check on the Mechanical Button and then performs the Chuck to Non-Chuck Delta Measurement procedure to calibrate the difference in height between the Mechanical Button and the Cutting Chuck.

Several delta measurements can be carried out, as described in section

7.3.3.1.

Chuck Height

Chuck Height determines the Cutting Chuck position along the Z-Axis by lowering the Blade until it touches the surface of the Cutting Chuck boundary. This type of Height procedure is a contact Height, as physical contact is made between the Blade and the Cutting Chuck.

Note: The contact height can be performed on a ceramic chuck either on the left or right side of the chuck. This ip done by defining the Chuck Height Side parameter, located under Diagnostics > Chuck.

There are two disadvantages to using Chuck Height:

Having the Blade make physical contact with the Cutting Chuck wears both Blade and the Chuck.

Chuck Height can only be performed when no Workpiece is present on the Cutting Chuck.

To Perform Chuck Height:

1 In the Setup & Diagnostics Workbook, select Saw > Dicer > Height to

display the Height tools, as shown in Figures 7-2 or 7-3.

2 Click Chuck. The System lowers the Blade to the Cutting Chuck and calculates the exact distance traveled. When completed, the message

"Contact Height completed” appears in the Wizard.

Chuck to Height Device Delta Measurement

This procedure measures the difference between the Chuck Height, as performed on the Chuck, and the non-Chuck Height, as performed using a

Height Device (NCHD or Button). This enables the System to calibrate the two measurements and use the non-chuck height device as reference point.

Several delta measurements can be carried out, as described in section

7.3.3.1 below.

Chuck to Reference Point (Height Device) Delta Measurement is normally performed after changing the position of the Cutting Chuck relative to the

Height Device, or vice versa. Because the procedure involves performing

P/N 97100-9002-000-14 Ver 06/05

7.3-5

Height Procedures

7.3.3.1

7.3.4

contact Height, it can only be done when no Workpiece is present on the

Cutting Chuck.

Note: This procedure should be performed using a dressed blade (especially, for the systems equipped with NCHD).

To Perform Chuck to Height Device Delta Measurement:

1 In the Setup & Diagnostics Workbook, select Saw > Dicer > Height to

display the Height tools, as shown in Figures 7-2 or 7-3.

2 Click Chuck to Height Device Delta Measurement. The System performs Chuck Height, followed by Button Height, then calibrates the two values. When completed, the message "Button/Non-Contact

Height completed" appears in the Wizard.

Multi-Delta/Contact Calculations

To increase chuck to non-chuck delta measurement validity and increase accuracy, several measurements can be performed and avaraged. This is done by checking the delta several times and comparing the current result to the previous one. The machine seeks two results that are within a defined tolerance. After this is established, the machine calculates the average of these two results and compares it to a second tolerance parameter. This logic is also used when performing Sample blade calibration, except that the calculated results are of the contact height and not the delta.

To Enable Multi-Delta/Contact Calculations:

1 Access the Workbook Workspace by clicking toolbar.

2 Select the Height category.

3 Define the following parameters as required:

in the main window

Number of delta measurement: 1 to 10 measurements

Chuck to non-chuck init tolerance: this value defines the initial tolerance between measuraments.

Chuck to non-chuck tolerance: this value defines the calculated avarage tolerance.

Sample Blade Calibration

Sample Blade Calibration is performed using a new Blade of known diameter to set the benchmark spindle position value. This value is then used during operation to determine the accurate exposure of the current

Blade when performing Process Height (e.g. using a high accuracy and high magnification microscope).

Advanced Dicing Technologies Ltd.

7.3-6

7.3.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Height Procedures

Sample Blade Calibration is performed at the factory and should be carried out after Spindle adjustment or replacement.

Note: Since this procedure is very delicate, it has its own access rights setting.

To Perform Sample Blade Calibration

1 Accurately Measure the blade diameter (e.g. using microscope.)

2 Go to SetUp > Saw > Cutting Block > Sample Diameter, enter the blade diameter value in the relevant field and click Save.

3 Click on the Sample Blade Calibration button. The system performs contact height on the chuck.

4 Wait until the wizard displays a message that calibration height is completed.

Auto Height Compensation

The Auto Height Compensation feature is used to calculate the rate of blade exposure and use this information to automatically adjust the blade height in order to compensate for the exposure.

When this feature is activated, the calculated blade exposure as a function of cut length is displayed in the exposure graph next to the actual exposure. In addition, whenever the ADT Model 7100 Semi-Automatic

Dicing System uses the exposure calculation to automatically compensate

for the exposure, a blue caption is displayed on screen (see Figure 7-5).

1 Compensation

Indication

2 Exposure graphs:

green - actual

blue - calculated

2

Figure 7-5: Auto Height Compensation

P/N 97100-9002-000-14 Ver 06/05

7.3-7

Height Procedures

Advanced Dicing Technologies Ltd.

7.3-8

7.4

7.4.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

Blade Handling

This chapter describes the software and hardware procedures related to

Blade functions for the 7100 Series.

Note: Setting parameter values and selecting a blade per recipe are described

in Chapter 5.

The following topics are discussed in this chapter:

Blade Information, section 7.4.1

Blade Replacement, section 7.4.2

Blade Dressing, section 7.4.3

Blade Information

Information about the current Blade wear and exposure is displayed in the

Blade Information screen.

To Display the Blade Information Screen:

Right-click the Blade Indicator in the left lower corner of the main window, and select Blade Info from the popup menu or click the

Blade Info button in the toolbar. The Blade Information screen is displayed:

Figure 7-6: Blade Information Screen

P/N 97100-9002-000-14 Ver 06/05

7.4-1

Blade Handling

7.4.1.1

The Blade Information screen includes the following sections:

Blade Exposure Chart/Wear Rate Chart, section 7.4.1.1

Export Data Tab, section 7.4.1.2

Blade Change Tab, section 7.4.1.3

Blade Type Tab, section 7.4.1.4

Blade Status Tab, section 7.4.1.5

Blade Exposure Chart/Wear Rate Chart

In the upper half of the Blade Information screen, the User can toggle between a chart depicting Blade Exposure and a chart displaying information about the Blade Wear Rate.

7.4.1.1.1

Blade Exposure Chart

The Blade Exposure Chart shows changes in the Blade exposure during cutting as a function of the cut length.

To Display the Blade Exposure Chart:

If not already displayed, click Exposure chart in the center of the

Blade Information screen.

Figure 7-7: Blade Exposure Chart

The Blade Information screen cursor can be used as a graphic tool. To use this feature, double-click in the graph field. The graphic tool options are as follows:

Advanced Dicing Technologies Ltd.

7.4-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

Arrow-shaped cursor - click on a point in the graph to get the Cut

Length and Blade Exposure values

Cross-shaped cursor - click and drag to zoom in

Arrowed Cross-shaped cursor - click and drag to move the zoomed graph

The red line in the graph is the maximum Blade wear or minimum Blade exposure permitted, and the yellow line is a warning that Blade exposure has reached a critical level.

These values are specified in the Recipe in the following parameters:

Either,

Min Exposure Left: The minimum blade exposure permitted before a blade stops cutting.

Min Exposure Warn Delta: The minimum blade exposure that triggers a warning.

or

Max Wear: The maximum amount of wear permitted on the Blade and after which the Blade has to be replaced.

Max Wear Warn Delta: The maximum amount of wear on the Blade that triggers a warning.

For further information about Blade parameters, see Appendix 3.

7.4.1.1.2

Wear Rate Chart

The Wear Rate Chart displays the relation between the cut length and

Blade wear.

P/N 97100-9002-000-14 Ver 06/05

7.4-3

Blade Handling

To Display the Wear Rate Chart:

If not already displayed, click Wear rate chart in the center of the

Blade Information screen.

7.4.1.2

Figure 7-8: Wear Rate Chart

Note: The Wear rate chart button is only enabled when the Process Height procedure has been performed at least once.

The graph displays the Blade wear versus the cut length. A straight horizontal line indicates that the wear rate is consistent, whereas peaks stand for high wear within short distance.

Export Data

The Blade Exposure/ Wear Rate charts can be exported to a location selected by the user and saved as a text file.

The exported data can be used later on for blade behavior analysis.

To Export a Blade Exposure/ Wear Rate chart

1 Click .

2 In the Export Blade Statistics Data window, define the *.txt file name and location to be saved.

3 Click Save.

Advanced Dicing Technologies Ltd.

7.4-4

7.4.1.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

Blade Change Tab

The Blade Change tab is selected in the lower half of the Blade Information screen.

Figure 7-9: Blade Change Tab (2" and 4" Systems without BBD)

Figure 7-10: Blade Change Tab (2" Systems with BBD)

Note: The gauge in the Blade Change tab shows the tuning position of the

BBD sensor (2” Spindle only). For further information, refer to BBD tuning,

section 7.4.2.2.2.

The User can start the Blade Change procedure by clicking Change in the

Blade Change tab. For further information, refer to the Blade Replacement

procedure described in section 7.4.2.

P/N 97100-9002-000-14 Ver 06/05

7.4-5

Blade Handling

7.4.1.4

Blade Type Tab

The Blade Type tab displays the properties for the currently mounted

Blade, as follows:

Figure 7-11: Blade Type Tab (Hub Blade)

7.4.1.5

Figure 7-12: Blade Type Tab (Hubless Blade)

Blade properties are described in section 5.3.1.

Blade Status Tab

The Blade Status tab displays the following:

Figure 7-13: Blade Status Tab

The Standard Diameter is the Blade diameter entered by the User in

the Blade properties (see Chapter 5.)

Advanced Dicing Technologies Ltd.

7.4-6

7.4.2

7.4.2.1

7.4.2.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

The Measured Diameter is the Blade diameter measured by the

System during the Height Procedure. The measured diameter is a reference for the next Height procedure. This value is also displayed in the log window.

When changing a blade, if the System detects that the measured blade diameter is smaller than the minimal standard diameter, the Apply button becomes active and the user is prompted to confirm the current blade usability by clicking Apply.

Note: If the System prompts the user to confirm the blade usability, this confirmation is obligatory. Having closed the Blade Status screen without clicking Apply, the user will have to go back to this screen by right-clicking on the Blade Gauge and selecting Blade Info.

Blade Replacement (Change)

Blades are replaced on the Model 7100 for a variety of reasons, including:

Worn Blades

Blade type or size is not appropriate for the required job

Bad kerfs (which may indicate a problem with a Blade)

Broken Blades

Danger: The Spindle and Blade rotate at extremely high speeds. Touching either of these components while the Spindle is rotating will cause bodily harm.

For safety reasons, the Spindle Cover features an Interlock that prevents the

Cover from opening while the Spindle is rotating. First, toggle the Spindle off and wait for it to stop rotating before opening the Spindle Cover and performing the procedures given in this chapter.

Conditions for Blade Change

The system detects that a Blade needs replacing in one of the following ways:

Performing Process Height

Detection by the BBD (2” Spindle only)

Performing a Kerf Check

Blade Indicator

In addition, the Blade lifespan estimate is shown in the Blade

Indicator on the lower left corner of the main window. The bar, representing the Blade in the system, provides a guide as to the condition of the Blade based on the Blade parameters specified in the Recipe. The black pointer moves slowly up the guide as the

Blade is worn.

P/N 97100-9002-000-14 Ver 06/05

7.4-7

Blade Handling

The colors in the Blade Indicator bar indicate the following:

Green: Blade exposure satisfactory, cutting can continue.

Yellow: Blade exposure critical, cutting can only continue for a short time.

(The length of time is defined by the parameters in the Blade category of the Recipe, as described in Appendix 1.)

Red: Blade requires changing, no cutting possible.

The system provides the following indicators when Blade replacement is required:

An error message is displayed on the screen

The yellow light of the Light Tower flashes

7.4.2.2.1

Blade Change Detection by Performing Process Height

The System automatically performs the Process Height procedure during the cutting process at intervals specified in the Recipe, as described in

Chapter 3. If the System calculates a Z position that is outside the boundaries set in the Recipe (indicating excessive Blade wear), the System displays an error message with details and troubleshooting instructions, which indicates that the Blade needs replacing.

7.4.2.2.2

Blade Change Detection Using the Broken Blade Detector (for Systems equipped with a 2” Spindle and BBD only)

The BBD uses an Optical Sensor to detect partial or total Blade breakage.

The BBD Transmitter, which provides a light source, and the BBD

Receiver are both located at the top of the Cooling Block.

The BBD should be adjusted whenever a Blade is changed or whenever the

Blade exposure has changed due to wear. (The BBD may detect a Blade as broken when it is, actually, just worn.) Adjustment is not always necessary when the Blade is replaced with another of the same type; however, the

BBD reading should be checked before using the new Blade.

The BBD is equipped with two Securing Nuts and an Adjustment Nut that allow manual adjustment and securing of the BBD position. The top securing nut is a limit nut (a split nut with a securing screw). It can be set at the required position and then locked in place. This securing nut position is pre-set at the factory. It is set so that it limits the BBD lowering and prevents the BBD form touching the Blade (hub type) or the Blade

Flange (hubless type).

The Lower (Adjustment) Nut enables setting the BBD in correct position.

Once the position is adjusted, the BBD is locked in place by the Middle

Advanced Dicing Technologies Ltd.

7.4-8

7.4.2.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

Securing Nut. This nut is intended for final locking the BBD in place after setting.

The BBD adjusting is performed automatically during the Blade

Replacement procedure, as described in section 7.4.2.3. The user needs to

adjust it manually so the readout of the analog sensor is between 12 and 18.

Periodic cleaning of the BBD with a cotton swab and isopropyl alcohol or water is required daily and at every blade change in order to eliminate false results due to muddy cutting debris on the Transmitter and Receiver.

To Manually Tune the BBD:

1 Stop the spindle.

2 Release the BBD Lower and Middle Nuts.

3

Tune the BBD by turning the Adjustment Nut of the BBD (see Figure

7-20) until the BBD Analog Sensor gauge in the Blade Change tab of

the Blade Information screen reaches the maximum setting (see Figure

7-9).

4 Continue turning the Adjustment Nut until the reading in the gauge drops to approximately 12.

5 Raise the above value to 18.

6 Lock the Middle Securing Nut.

Replacing a Blade

A Blade can be replaced at any point during the cutting process, even in the middle of cutting a Workpiece. The procedure for replacing a Blade includes both software and hardware components. The following tools are required:

Figure 7-14: 4" Blade Removing Tool

4" Blade Removing Tool (see Figure 7-14)

Blade Handling Toolkit for 2" Spindle (see Figure 7-15)

P/N 97100-9002-000-14 Ver 06/05

7.4-9

Blade Handling

To Replace a Blade:

1 Initiate the Blade Change procedure in one of the following ways:

• Right-click the Blade Indicator and select Blade Change.

• From the Manual menu, select Services > Blade Change.

In the Blade Change tab of the Blade Information screen (see

Figure 7-9), click Change.

3

1 Blade Holder

2 Torque Wrench

3 Hex Wrench

4 Spanner Tool

4

2

1

Figure 7-15: Full Blade Handling Toolkit for 2" Spindle

The Spindle stops rotating and moves automatically to the Blade

Change station to enable easy access to the Blade. The GUI displays the Define Blade screen.

The Spindle Interlock automatically unlocks, which enables the user to open the cover and change the blade.

Opening the cover disconnects the spindle and axes drivers from power. At the end of a regular Blade Change procedure the System automatically performs initialization.

The Flange diameter field of the Define Blade screen becomes active, when the blade type is defined as hubless.

Set the lot number in the Set Lot Number field. This information is later saved in the Log File. For more information about this feature,

refer to section 3.8.

Check the Leave current blade checkbox, if the Blade is not being replaced, for example, if there was a false alarm.

Advanced Dicing Technologies Ltd.

7.4-10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

The new exposure value is displayed once the process height is finished.

Figure 7-16: Define Blade Screen

2 Open the Cooling Block by unscrewing the Thumbscrew and lifting it away from the Spindle.

Figure 7-17: 2" Spindle with Cooling Block

P/N 97100-9002-000-14 Ver 06/05

7.4-11

Blade Handling

Figure 7-18: 4" Spindle with Cooling Block

3 Attach the Spanner Tool onto the Torque Wrench and remove the

Holding Nut in the center of the Spindle by turning the Spanner Tool clockwise.

Note: [2" Spindle only] If the Holding Nut cannot be removed with the Torque

Wrench, use the Hex Wrench (Allen Key).

Note: Steps 4, 6 and 7 refer to 2" spindles only.

4 Pull up the silver Release Ring on the Blade Holder and place the

Blade Holder over the Blade.

5 Remove the Blade by pulling it off the Spindle.

6 Release the old Blade from the Blade Holder by pulling up on the silver

Release Ring.

Advanced Dicing Technologies Ltd.

7.4-12

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

7 Insert the new Blade into the Blade Holder (the Blade must be face up).

Figure 7-19: 2" Blade Holder

8 Install the new Blade onto the Spindle.

9 Replace the Holding Nut and tighten it with the Torque Wrench (if available) until there is a click.

Note: For 2" spindles the Torque wrench is set to 2.2 Nm

10 Close the Cooling Block and tighten the Thumbscrew.

11 In the Define Blade screen, click OK.

12 (2” Spindle only) Tune the BBD by turning the Adjustment Nut of the

BBD (see Figure 7-20) until the BBD Analog Sensor gauge in the Blade

Change tab of the Blade Information screen reaches the maximum

setting (see Figure 7-9).

Note: Do not touch the Travel Securing Nut. It is preset in order to prevent

BBD crashing into the Blade.

13 Continue turning the Adjustment Nut until the reading in the gauge drops to approximately 12.

14 Raise the above value to 18.

P/N 97100-9002-000-14 Ver 06/05

7.4-13

Blade Handling

15 Lock the Middle Securing Nut.

1

2

3

1 BBD Travel

Securing Nut

2 Middle Securing

Nut

3 Adjustment Nut

7.4.2.4

Figure 7-20: Tuning the BBD

16 Close the cutting cover.

17 Click Finish. The Blade Information screen is displayed. The System performs initialization. The Spindle starts rotating and the System performs a Height procedure.

Note: It is recommended to perform manual Y Offset after changing the Blade.

See Chapter 6 for details.

18 If Dressing or Override is specified in the After Change Treatment parameter in the Recipe, the System automatically starts the Dressing process.

Blade Change to a Different Type

When performing Blade Change to a different type of blade, the system performs either a standard height procedure or both standard and Chuck to Non-Chuck Delta Measurement. Several delta measurements can be

carried out, to incease accuracy, as described in section 7.3.3.1.

If the system is configured with a Non-Contact Height Device, it performs only the Non-Contact Height procedure.

If the system is configured with a Button Height Device, during blade change (to a different type of blade) the system performs Contact Height on the Chuck, followed by a Button height.

Advanced Dicing Technologies Ltd.

7.4-14

7.4.3

7.4.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

This process updates the value of Chuck to NCH/Button Delta under

Saw > Dicer > Cutting Blocks in Setup and Diagnostics screen.

Note: It is recommended to perform a Chuck to Non-Chuck Delta

Measurement procedure only with a blade that has been dressed or worked with.

Blade Dressing

Blade Dressing is performed in order to prepare a Blade for use. Blade

Dressing has three main purposes:

Expose the new diamonds

Shape the blade

Reduce runout

There are three methods of Dressing a Blade:

Using a Dressing Workpiece (wafer or block) mounted on the Cutting

Chuck

Performing Override cutting on the same substrate under process

Using the Dress Station that enables the user to perform Blade dressing as part of the dicing process (For more details about this

option, refer to section 9.3.)

When the Dressing algorithm has been selected in a Recipe and a Blade is changed, the System automatically performs Dressing according to the method specified in the After Change Treatment parameter (Blade category). If the After Change Treatment parameter is set to None, no automatic Dressing is performed, but the User can perform manual

Dressing if required.

Comparison Between Dressing with a Dressing Workpiece and

Override

The two major differences between dressing with a Dressing Workpiece and Override are:

Dressing is performed on a specially designated workpiece, whereas

Override is performed on a production workpiece

Only one speed can be defined for the entire length of the cut in

Override. That speed is less than the speed used for a normal cut.

Table 7-1 describes in detail the differences between the two methods.

P/N 97100-9002-000-14 Ver 06/05

7.4-15

Blade Handling

7.4.3.2

Subject

Use

Setup

Steps

Increment

Feed Rate

Cut Depth

Step Length

Step Feed Rate

Activation

Table 7-1: Dressing vs. Override

Dress Mode Override

Usually used for performing Dressing on

Dressing Block or

Dressing wafers.

Assign a cutting algorithm for a specific Workpiece, and specify standard cutting parameters.

Suitable for any Blade.

Unlimited

Usually used for Dressing on production Workpieces.

Blade Dressing parameters are defined for a normal Workpiece.

Unlimited

Increment is gradual. Each cut of every step is performed faster than the previous cut.

Increment is by steps. All cuts of a specific step are performed at the same speed.

Feed rate during Dressing can be higher than the final Cutting Feed Rate.

Feed rate during Dressing cannot exceed the final

Cutting Feed Rate.

Each step can be performed at a different

Cut Depth.

The length of each step can only be set as the

Cutting Length.

Cut Depth is the same for all steps.

The length of each step can only be set as the

Cutting Length.

The feed rate of each step is set as an absolute value.

The feed rate of each step is set as an absolute value.

With standard System configuration, Dressing is automatically activated after each Blade replacement, if there is no

Workpiece on the Cutting

Chuck.

With standard System configuration, Override is automatically activated after each Blade replacement, if there is a

Workpiece on the Cutting

Chuck.

Building a Dressing Recipe

Dressing Recipe is a special work program for dressing a new or used blade. Dressing Recipes use their own parameters as well as those taken from the main recipes.

Following is a step-by step instruction as to how to build a dressing recipe.

Advanced Dicing Technologies Ltd.

7.4-16

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

7.4.3.2.1

Creating a Dressing Program

Note: Dress recipes are based on GPC concept except for defining cut positions.

Once a new dressing recipe file is created, do the following:

1 Open the first recipe screen.

2 Define the wafer shape.

3 Define the wafer dimensions.

4 Define the wafer type (select either Dressing Wafer or Dressing Block).

5 Define the cut type as Standard Dressing.

6 Define the Align Type as Full Dress Alignment.

7 Click the General tab.

8 Define the height check rate.

9 Define the Y-Offset parameters.

10 Define the overcut and overtravel parameters for both X and Y Axes.

Note: The spindle speed value is taken from the main recipe.

11 Click the Angle tab.

12 Under the Angle tab, define the Align Type as Dress_Manual_Once.

13 Add parameter Y Overtravel under Cut category.

14 Define the Y Overtravel value (usually - negative).

Note: Since the dressing recipe is based on GPC concept, the Overtravel values are defined for both X and Y axes. In order to prevent cutting outside the workpiece, the Y Overtravel should be set negative.

15 Click Save.

7.4.3.2.2

Dressing Settings in the Main Recipe

Since the dressing recipes use a number of the main recipe parameters, it is necessary to do the following:

1 Open the main recipe.

2 In the recipe General screen, add the category Dress with all the relevant parameters.

3 Under the General tab, Open the Blade category.

P/N 97100-9002-000-14 Ver 06/05

7.4-17

Blade Handling

4 Set the After Change Treatment parameter to Dressing.

5 Open the Blade properties, double-click the Dress Wafer parameter

and enter the filename of the dressing recipe described in section

7.4.3.2.1.

Note: Dressing program does not create a cut map.

7.4.3.3

Performing Dressing Using the Override Option

In this method of Dressing, a production Workpiece is used to dress the

Blade during the actual cutting process. Dressing using Override can be performed while continuing to cut the production Workpiece. There is no need to remove a partly cut Workpiece and replace it with a special

Dressing Workpiece.

The cutting process changes while the Blade is Dressed, and operates according to the parameters in the Override category specified in the

Recipe. Only one cutting speed can be defined when using Override.

Parameter

Override Length

Override Start Speed

Override End Speed

Table 7-2: Override Parameters

Description

The length of the cut when performing Override.

The speed of the X-Axis at the beginning of the

Override process.

The speed of the X-Axis at the end of the Override process.

When dicing has been completed for the specified Override Length, the

System automatically switches from Override mode to Auto mode and continues the dicing process.

7.4.3.3.1

Manual Dressing Using Override

The User can select Override mode manually at any time and perform

Dressing using Override by performing the following procedure.

To Perform Dressing Using Override Manually:

1 Click Pause to pause the dicing process.

2 From the Manual menu, select Blade Treatment > Override. The

label is displayed below the Run button.

3 Click Run to resume dicing in Override mode.

Advanced Dicing Technologies Ltd.

7.4-18

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

7.4.3.3.2

Override Screen

Information about Dressing using Override is displayed in the Override

Screen.

To Display the Override Screen

Click the Override button in the toolbar to display the following:

Figure 7-21: Override Steps Screen

Note: If the Override button is not displayed, click the arrow next to the

Dressing/Blade Info button in the toolbar, and select Override to display the

Override button.

The graph at the top shows the relation between the cutting speed and the cut length for the Blade.

The Sensor Values graph displays a load analysis according to the current pressure on the Spindle.

P/N 97100-9002-000-14 Ver 06/05

7.4-19

Blade Handling

7.4.3.3.3

Override Manual Stop

To Stop the Override Dressing Process Manually

1 Click the Override button in the toolbar. The following dialog box is displayed:

7.4.3.4

2 Click OK to stop the Override sequence or Cancel to resume override.

Dressing with a Dressing Workpiece

A Dressing Workpiece is a special substrate used only to dress the Blade in order to condition it for cutting. The Blade is abraded by the special substrate, which can be either the Workpiece itself or a dedicated Dressing

Block. When the After Change Treatment parameter in the Recipe is set to Dressing, the System automatically performs Dressing after a Blade is changed and Process Height performed.

The Dressing Workpiece is placed on the Cutting Chuck. After a blade change, the wizard instructs the user to do so. The Dressing Workpiece is then cut according to the parameters in the Dress Recipe and Dressing category specified in the main Recipe.

Parameter

Dress Length

Dressing End Speed

Dressing Depth

Table 7-3: Dressing Parameters

Dressing Start Speed

Description

The total length of the cut to be performed.

Blade Dressing can include multiple cut lengths.

For every Dress Length defined, the User must define a Dressing Cut Depth (or Depth), Dressing

Start Speed and Dressing End Speed.

The speed of the X-Axis at the beginning of the

Dressing process.

The speed of the X-Axis at the end of the Dressing process.

The distance along the Z-Axis between Chuck

Level and the cutting edge of the Blade in its cutting position.

Advanced Dicing Technologies Ltd.

7.4-20

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

Parameter

Dressing Cut Depth

Dressing Index

Table 7-3: Dressing Parameters

Description

The distance along the Z-Axis between the top of the Dressing Workpiece (or Dressing Block) and the cutting edge of the Blade in its cutting position.

The distance along the Y-Axis between adjacent cuts in a Workpiece.

Additionally, in the Wafer Type property of the Recipe, the type of

Workpiece must be defined as a Dressing Wafer or a Dressing Block.

7.4.3.4.1

Manual Dressing With a Dressing Workpiece

Dressing is performed automatically after a Blade change when specified in the Recipe. The User can also initiate the Dressing process at any time by performing the following procedure.

To Perform Dressing Manually:

1 Place a Dressing Workpiece on the Cutting Chuck.

2 From the Manual menu, select Blade Treatment > Dressing. The

label is displayed below the Run button, and the user is prompted to load the dressing workpiece.

3 Perform manual Alignment following the instructions given by the

wizard. After the Alignment is finished, the Dressing screen (Figure 7-

22) is displayed.

4 Click Continue to perform Blade Dressing or Exit to quit.

When Dressing is in progress, selecting Blade Treatment > Dressing from the Manual menu, displays the Dressing Policy dialog box with the buttons Abort, Retry and Ignore. This enables the User to stop and restart the Dressing process.

7.4.3.4.2

Dressing Screen

Information about the Dressing process is displayed in the Dressing screen.

P/N 97100-9002-000-14 Ver 06/05

7.4-21

Blade Handling

To Display the Dressing Screen:

Click the Dressing button in the toolbar to display the following.

Figure 7-22: Dressing Screen

Note: If the Dressing button is not displayed, click the arrow next to the

Override/Blade Info button in the toolbar, and select Dressing to display the

Dressing button.

The graph at the top shows the relation between the cutting speed and the cut length for the Blade.

The Sensors Values graph displays a load analysis according to the current pressure on the Spindle.

Advanced Dicing Technologies Ltd.

7.4-22

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Blade Handling

7.4.3.4.3

Dressing Manual Stop

To Stop the Dressing Process Manually

1 Click the Dressing button in the toolbar. The following dialog box is displayed:

7.4.3.5

2 Click Abort to exit the Dressing sequence or Retry to resume

Dressing.

Dressing on a Dressing Block

Another way to perform Blade dressing involves the Model 7100 optional

Dress Station.

This option enables the dressing process to be done as part of the dicing process program. Dressing can be done during a workpiece dicing without unloading it. In a process program, the User can set the amount of cuts, after which the system performs a certain amount of dress cuts on the

Dress Station.

For more information regarding the optional dress station, refer to

section 9.3

P/N 97100-9002-000-14 Ver 06/05

7.4-23

Blade Handling

Advanced Dicing Technologies Ltd.

7.4-24

7.5

7.5.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Chuck Change

Chuck Change

The Model 7100 can use various cutting chucks, designed for different production needs and applications. Chuck replacement can be carried out on-site and does not require ADT Field Service staff involvement.

The chuck replacement procedure is performed in two steps, completed in the following order:

1

Replacing the Chuck

2

Reteaching the Focus on the Chuck

Replacing the Chuck

When replacing a chuck on the 7100 dicing saw, there are three replacement options, depending on the chuck’s thickness:

replace a chuck of the same thickness

replace a Thin chuck with a Thick one

replace a Thick chuck with a Thin one

Note: the following rules apply to possible scenarios while replacing chucks:

If both Thin and Thick Chucks are in use, ALWAYS set the saw for the

Thick Chuck.

If the system is equipped with the Dressing Station option, adjust it to the same level as the NCH / Button as described in this procedure.

If the system is equipped with the Wash-pipe option, adjust it up/down by the measured difference of Chuck's thickness.

To replace a chuck of the same thickness

Note: When physically replacing the chuck, ensure that the Theta table is clean.

1 Access Z-Axis parameters: Workbook Workspace

Axes > Z.

> Saw > Dicer >

2 Check the following Z-Axis parameters and verify that they are correct with regards to the new chuck:

Pre Non Contact Height Position

Calibration Start Position

3 Browse to Chuck screen (Workbook Workspace -> Saw -> Dicer ->

Chuck) and click Chuck Change icon

P/N 97100-9002-000-14 Ver 06/05

7.5-1

Chuck Change

4 Follow the Wizard instructions. Click Next to install a new chuck or

Finish to leave the current chuck.

Note: After chuck replacement, set the Calibration Start Position according to the largest blade and the highest chuck.

Note: It is recommended to perform the Chuck to Non-chuck Height procedure using a dressed blade.

5

Update the Auto-Focus on dicer chuck, as described in section 7.5.2

below.

To replace a Thin chuck with a Thick one

Note: When physically replacing the chuck, ensure that the Theta table is clean.

1 Measure the thickness of the New and Old Chucks.

2 Access Z-Axis parameters: Workbook Workspace

Axes > Z.

> Saw > Dicer >

3 Check and increase the following Z-Axis parameters according to the measured difference of Chuck thickness:

Pre Non Contact Height Position

Calibration Start Position

4 Browse to Chuck screen (Workbook Workspace

Chuck) and click Chuck Change icon

> Saw > Dicer >

5 Replace the chuck and lift the NCH or Button device. Use the NCH/

Button Adjustment Bar to level the height device with the chuck top surface.

Note: For Vectus and Fortis series, lift the NCH or Button by lifting the whole assembly (Open screw on the X-table bracket). For older series, lift NCH or

Button device. Make sure, that the device is not taken out from the internal Oring of the device base.

6 Follow the Wizard instructions. Click Next to install a new chuck or

Finish to leave the current chuck.

Note: After chuck replacement, set the Calibration Start Position according to the largest blade and the highest chuck.

Note: It is recommended to perform the Chuck to Non-chuck Height procedure using a dressed blade.

7

Update the Auto-Focus on dicer chuck, as described in section 7.5.2

below.

Advanced Dicing Technologies Ltd.

7.5-2

7.5.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Chuck Change

To replace a Thick chuck with a Thin one

Note: When physically replacing the chuck, ensure that the Theta table is clean.

1 Measure the thickness of the New and Old Chucks.

2 Access Z-Axis parameters: Workbook Workspace

Axes > Z.

> Saw > Dicer >

3 Check and decrease the following Z-Axis parameters according to the measured difference of Chuck thickness:

Pre Non Contact Height Position

Calibration Start Position

4 Browse to Chuck screen (Workbook Workspace

Chuck) and click Chuck Change icon

> Saw > Dicer >

5 Replace the chuck and lower the NCH or Button device. Use the NCH/

Button Adjustment Bar to level the height device with the chuck top surface.

Note: For Vectus and Fortis series, lower the NCH or Button by lowering the whole assembly (Open screw on the X-table bracket). For older series, lower

NCH or Button device. Make sure, that the device is not taken out from the internal O-ring of the device base.

6 Follow the Wizard instructions. Click Next to install a new chuck or

Finish to leave the current chuck.

Note: After chuck replacement, set the Calibration Start Position according to the largest blade and the highest chuck.

Note: It is recommended to perform the Chuck to Non-chuck Height procedure using a dressed blade.

7

Update the Auto-Focus on dicer chuck, as described in section 7.5.2

below.

Reteaching the Focus on the Chuck

To Re-Teach Focus on Chuck:

1 Click in the toolbar to display the Video Workspace.

2 Using the Z/T Axis Controls, manually focus the new Microscope on the

Cutting Chuck.

3 Click to display the Setup & Diagnostics workbook.

4 From the Setup & Diagnostics tree, select saw > Dicer > Axes > Z.

5 In the upper right area of the screen, scroll to the Axis Points category.

P/N 97100-9002-000-14 Ver 06/05

7.5-3

Chuck Change

6 Click on the field name Autofocus on Dicer Chuck to display the

Teach button.

7 Click Teach.

8 Click Apply in the toolbar to apply the new settings for the current work session.

9 Click Save in the toolbar to save the new settings.

Perform the camera adjustment procedure as described in section 8.1.1 of the Model 7100 Maintenance Manual.

Advanced Dicing Technologies Ltd.

7.5-4

8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Special Features

SPECIAL FEATURES

This chapter describes the special features available for the Model 7100, including:

Load Monitoring, section 8.1.

Multi-Language GUI, section 8.2

Wafer Vacuum Check, section 8.3

Open Loop Theta Accuracy Procedures, section 8.4

Spindle Velocity, section 8.5.

Focus Change, section 8.6

Manual Inspection Illumination, section 8.7

Daily Database Backup, section 8.8

Theta Safety Limits on X-Axis, section 8.9

Change of Length Unit Type, section 8.10

P/N 97100-9002-000-14 Ver 06/05

8-1

Special Features

Advanced Dicing Technologies Ltd.

8-2

8.1

8.1.1

8.1.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Load Monitoring

Load Monitoring

The Load Monitor consists of a sensor that measures the electrical current of the spindle motor and provides the relevant statistics that represent the cutting behavior.

Load Monitoring with DC or AC Spindle

If the system is equipped with a DC Spindle, the Load Monitor graph shows the change in current. The current is a function reflecting the spindle torque, i. e. if the Workpiece requires a greater torque, the spindle uses more current and this can be seen on the load monitor graph.

If the system is equipped with an AC Spindle, the Load Monitor graph shows the change in current as well, but in this case the current is a function of the Spindle Velocity. Therefore, if the spindle velocity is higher the current grows higher, thus the graph shows a higher value. It represents the load as well: if the workpiece requires a greater torque, the spindle should be rotating at a higher velocity, which is reflected by the load monitor graph.

Note: On the Fortis machines (AC Spindle), the Load Gauge is not presented.

For more information about the Load Gauge, refer to section 2.2.3.2.

Online Monitoring

The Online Monitoring mode provides information and statistics about the load exerted during dicing of the current Workpiece. This monitoring is termed "Online” because it monitors the current Workpiece while the

Spindle is operating and the cutting process is running.

Load monitoring statistics are viewed from the Load Monitor Workspace.

To Access the Load Monitor Workspace:

The User can access the Load Monitor Workspace in one of the following ways:

Click the Load Monitor Workspace button

From the Load Monitor menu, click Load

in the toolbar.

On the right of the GUI main window, right-click the Load Monitor gauge.

P/N 97100-9002-000-14 Ver 06/05

8.1-1

Load Monitoring

The Load Monitor Workspace is divided into two graphs, the top measuring the Average Value per Cut and the bottom measuring the Raw Data.

8.1.2.1

Figure 8-1: Load Monitor Workspace During Cutting

Average Value per Cut

This graph illustrates the current Workpiece’s average load value for the last several cuts. The vertical axis measures the spindle current in Amps, while the horizontal axis displays the last several cuts. The graph displays four different lines:

High Average Load Limit: set by the User in the High Average

Limit Response parameter (see Table 8-1).

Low Average Load Limit: set by the User in the Low Average Limit

Response parameter (see Table 8-1).

Baseline Values: The load of the Spindle when the blade is not cutting. During the process, these values are represented by a pink

line (see Figure 8-1). The difference between the Average Load Value

and the Baseline Values is the average load of the cutting itself and is referred to as the Net Value.

Average Load Values: The average load values of each cut line during the cutting process of the current Workpiece. During cutting, these values are represented by a fluorescent green line as shown in

Figure 8-1. These values should be between the High and Low Average

Load Limits for the cut to proceed properly.

Advanced Dicing Technologies Ltd.

8.1-2

8.1.2.2

8.1.2.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Load Monitoring

Raw Data

The Raw Data graph illustrates the load values during the cutting process.

The vertical axis measures the spindle current value in Amps while the horizontal axis shows the progress of the current cut in seconds. This graph displays two lines, the Baseline Values and the Load Values. When cutting begins, the lower Raw Data graph displays the spindle current values for the current cut. If cutting pauses or stops, the line of the Raw Data graph continues as long as the Spindle is running.The Load Monitor gauges reflect the activity in the Raw Data graph.

Note: On both graphs, the User can change the interval of the vertical axis.

The lowest value shown can be lowered by clicking the downward pointing arrow at the each graph’s bottom right and raised by clicking the upward pointing arrow just above it. The highest value shown can be lowered by clicking the downward pointing arrow at the each graph’s top right and raised

by clicking the upward pointing arrow just above it (see Figure 8-1).

Displaying or Hiding Lines

The User can choose to display or hide any of the lines from the two graphs.

Hiding lines helps to focus on the data that requires analysis.

To display or hide lines from the Average Value per Cut graph:

1 Right-click anywhere inside the Average Value per Cut graph. A popup menu appears.

Figure 8-2: Display and Hide Lines Popup Menu (Top Graph)

2 Check or uncheck the lines you want to display or hide. The desired lines appear on the graph.

To display or hide lines from the Raw Data graph:

1 Right-click anywhere inside the Raw Data graph. A popup menu appears.

Figure 8-3: Display and Hide Lines Popup Menu (Bottom)

2 Check or uncheck the lines you want to display or hide. The desired lines appear on the graph.

P/N 97100-9002-000-14 Ver 06/05

8.1-3

Load Monitoring

8.1.2.4

Parameter Name

F Sp High AVG Limit

F Sp Low AVG Limit

Table 8-1: Parameters for Cutting

Parameter Description

The highest average load the Load Monitor allows until the response is triggered.

The lowest average load the Load Monitor allows until the response is triggered.

Load Monitor Baseline Parameters

The Baseline is the load of the Spindle when the blade is not cutting. It includes the Spindle Idle Load and the drag force of the cooling water. If the Baseline measurements are taken incorrectly, the Net Load limit values will be inaccurate.

Parameter Name

F Sp Flow Control

Stabilization Delay

Table 8-2: Baseline Parameters

Parameter Description

The delay before measuring the Baseline which allows the System to stabilize the water flow rate

(See section 8.1.2.4.1).

8.1.2.4.1

Flow Control Stabilization Delay

This parameter is set to ensure that the Baseline measurement taken is correct once the flow rates have stabilized. There may be a need to increase the Flow Control Stabilization Delay if the supply line water pressure is not steady.

8.1.2.5

Load Monitor Control Screen

The Load Monitor control Screen contains certain settings with which the

User controls the variables of Load Monitor.

Advanced Dicing Technologies Ltd.

8.1-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Load Monitoring

To Access the Load Monitor Control Screen:

From the Load Monitor menu, click Control. The Control screen appears.

Figure 8-4: Control Screen

The Load Monitor Control screen contains the following features:

Sampling Period: The frequency of load sampling. This value is preset to sample every 100 msecs. It is recommended not to change this value.

System Overload: The maximum load value that Model 7100 can handle. If the load exceeds this value, the cutting stops. This value is also used as the max value for the analog gauge.

Measure Baseline: Allows the User to check the baseline between cuts if required.

Display Data as Net Load: Displays the Baseline on both graphs as zero. This feature causes the Load Monitor to illustrate the Net Load of the cut only.

Save: Saves the changes made.

Spindle’s Idle Load Calibration: Sets the idle load characteristics of the

Spindle to produce similar characteristics as that of the Spindle of another Model 7100.

P/N 97100-9002-000-14 Ver 06/05

8.1-5

Load Monitoring

Advanced Dicing Technologies Ltd.

8.1-6

8.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Language Selection

Language Selection

The Model 7100 is supplied with an option to change the GUI language.

The software supports one local language and English (default).

To Activate the Feature

1 In the menu bar click User > Language. The Language local selection

screen is displayed (see Figure 8-5).

2 Set one of the local languages to Yes. The system is now set up to support English and another pre-defined language. The Multi

Language button is displayed on the Toolbar.

Pressing the Multi Language button switches between the languages.

Figure 8-5: Language Local Selection Screen

To Switch Between the GUI Languages

1 Click to enter the Maintenance mode.

2 Click the Language Change button in the toolbar .

3 Select the required interface language.

4 Click Save. A pop-up dialog box appears informing the user that after saving the changes, the system will exit to Windows, and the user will need to restart the GUI.

Note: The changes will apply only after the computer is restarted. If the User decides not to restart the computer, the language setting will not change.

P/N 97100-9002-000-14 Ver 06/05

8.2-1

Language Selection

The active language is displayed in the Setup and Diagnostic workspace in

both English and the local language (see Figure 8-6)

Figure 8-6: Simplified Chinese GUI

Advanced Dicing Technologies Ltd.

8.2-2

8.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Wafer Vacuum Check

Wafer Vacuum Check

During initialization, the System checks if there is a Workpiece on the

Chuck. The User can set exactly when this check takes place by setting the

Vacuum Check Delay parameter. This parameter determines how much time in seconds elapses between the initial operation of the vacuum during initialization and performance of the check by the sensor. This parameter should be optimized according to the chuck type.

To set Vacuum Check Delay:

1 In the Setup & Diagnostics workbook, select Saw > Dicer. Vacuum

Check Delay appears on the parameters list.

2 Double-click Vacuum Check Delay and type the amount of seconds desired.

P/N 97100-9002-000-14 Ver 06/05

8.3-1

Wafer Vacuum Check

Advanced Dicing Technologies Ltd.

8.3-2

8.4

8.4.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Open Loop Theta Accuracy Procedures

Open Loop Theta Accuracy Procedures

Stress Release

This function, when enabled, serves to follow the Theta axis motions and detect when the Theta axis exceeds the defined limits (see below). If the

Theta axis exceeds one of these limits, the system performs back and forth movement between the defined Theta Stress Release Left and Right coordinate points (see below) before any angle move or alignment. For instance, if the alignment procedure takes place for the first time after the

Theta initiation (i.e. the Theta axis reaches the 0 degrees, which is less than Theta Stress Right Crd), the axis moves back and forth a number of times.

Changing the Theta Align Stress Enable parameter from "No" to "Yes" enables the following parameters:

Theta Stress Move Delay - pause between the Theta movements while performing the Stress Release.

Theta Stress Right Limit - the right-most point of the Theta axis motion. In case the Theta axis moves beyond this limit, the system performs Stress Release. This parameter value should be less than that of Theta Stress Right Crd. The default value for this parameter is 20 degrees.

Theta Stress Left Limit - the left-most point of the Theta axis motion. In case the Theta axis moves beyond this limit, the system performs Stress Release. This parameter value should be greater than that of Theta Stress Left Crd. The default value for this parameter is 160 degrees.

Theta Stress Right Crd (coordinate) - the right-most point of the process. The default value for this parameter is 40 degrees.

Theta Stress Left Crd (coordinate) - the left-most point of the process. The default value for this parameter is 140 degrees.

Theta Number of SR Repetitions - number of times the Theta axis moves between the left and right coordinates while

P/N 97100-9002-000-14 Ver 06/05

8.4-1

Open Loop Theta Accuracy Procedures performing the Stress Release. The default value for this parameter is 3.

Figure 8-7: Theta Align Stress Disabled

8.4.2

Figure 8-8: Theta Align Stress Enabled

Theta Motion Replay

While the system is being taught the Workpiece Alignment, it records every movement of the Theta axis. Once the Theta Stress Release is enabled, the system replays all the Theta motions, which had been taught for a specific workpiece, each time when performing angle move. Having

Advanced Dicing Technologies Ltd.

8.4-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Open Loop Theta Accuracy Procedures changed angles, the Theta axis may perform slight movements for final correction of the new position.

Note: Using this feature can significantly improve the Theta Axis accuracy. It should be used only with open loop Theta Axis (cable type).

It is important to take into account, that Final Accuracy and Maximum

no. of iterations settings depend on the camera magnification. In order to achieve higher Theta accuracy, set the Maximum no. of iterations to 9 and the Final Accuracy according to the table below:

Camera

Magnification

X60

X120

X240

Final Accuracy

At least 0.08

Up to 0.08

Up to 0.05

P/N 97100-9002-000-14 Ver 06/05

8.4-3

Open Loop Theta Accuracy Procedures

Advanced Dicing Technologies Ltd.

8.4-4

8.5

8.5.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Spindle Velocity

Spindle Velocity

The speed of the spindle rotation can be varied for different purposes.

Reduced Height Velocity

When the blade descends to the NCHD, it creates "mist" between the prisms due to high-speed spindle rotation. This phenomenon reduces the

NCH accuracy, or prevents the photoelectric cell from properly registering the moment when the blade crosses the ray. The Reduced Height

Velocity parameter is intended to solve this problem.

Once the Reduced Height Velocity parameter is defined, the system automatically reduces the revolting speed when performing the height procedure.

Note: This feature is intended for 4” systems only.

To Set the Reduced Height Velocity Parameter

1 Click to open the Workbook Workspace

2 Select Setup and diagnostics > Saw > Dicer.

3 Under Dicer parameters, locate the Use Reduced Height Velocity parameter and set it to "Yes".

4 Locate the Reduced Height Velocity parameter and set it to 7000.

Note: Advanced Dicing Technologies Ltd. recommends the Reduced Height

Velocity value falling between 6000 rpm and 8000 rpm as optimal.

P/N 97100-9002-000-14 Ver 06/05

8.5-1

Spindle Velocity

8.5.2

Reduced Vision Spindle Velocity

This feature allows the user to set a different spindle speed to be used while the Vision Tasks (Inspection, Teaching Alignment, Auto/Manual

Alignment, Kerf Teaching and Checking, Cut Verification) are performed.

This feature is useful if the spindle vibration affects the image on the monitor. This may happen if the Blade and the Flange are not balanced.

If the image looks blurry:

• Ensure that the Blade and the Flange are balanced

If possible, work at a different spindle speed.

If the problem of the blurry image still persists, use the Reduced Vision

Spindle Velocity function. Upon setting the desired value in the Reduced

Vision Spindle Velocity parameter, the spindle speed will be reduced to the defined value, while performing all Vision Tasks.

To Set the Reduced Vision Spindle Velocity Parameter

1 Click the button in the toolbar to open the Workbook Workspace.

2 Select Setup and Diagnostics > Saw > Dicer.

3 Under the Saw parameters, set the Use Reduced Vision Spindle

Vel parameter to "Yes".

4 Set the Reduced Vision Spindle Vel parameter to the appropriate value in rpm/krpm.

Advanced Dicing Technologies Ltd.

8.5-2

8.6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Focus Change (Initial Focus Position)

Focus Change (Initial Focus Position)

When the thickness of the Workpiece is changed after Alignment has been taught (for example, change in the tape thickness), instead of reteaching

Alignment, there is a simpler and faster process of updating the Initial

Focus Shift parameter (Align category). This parameter specifies a position of the Z-Axis that provides an acceptable default focus.

Note: This effect all the Z-Axis focus values, such as focus for models, etc.

To Teach the Initial Focus Shift:

1 Click to display the Programming Workspace.

2 Expand the Recipe assigned to the Workpiece in the Programming tree and select the Align parameter category of that Recipe. The parameter table for the Recipe is displayed on the right.

3 In the General tab of the parameter table, scroll to the Align category, in the Programming tree, and click the cell containing the value defined for the Initial Focus Shift parameter. The Teach Parameter button becomes enabled.

4 Click Teach Parameter.

5 In the Wizard area of the Video Workspace, click Next.

6 Using the Z/T Axis Controls, set the optimal focus for the Camera.

Click Finish. The Focus Position is now taught.

7 Click Yes to save the parameter to the Recipe.

P/N 97100-9002-000-14 Ver 06/05

8.6-1

Focus Change (Initial Focus Position)

Advanced Dicing Technologies Ltd.

8.6-2

8.7

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Manual Inspection Illumination

Manual Inspection Illumination

To provide the best illumination for manual workpiece inspection, the user can pre-set the illumination parameters in the Manual Inspection category:

Coaxial Illumination After Cut - Defines the Coaxial illumination intensity for the inspection that is done after the cut.

Oblique Illumination After Cut - Defines the Oblique illumination intensity for the inspection that is done after the cut.

Inspection Focus Type Before Cut - Defines the Z position for the inspection that is done before the cut.

Coaxial Illumination Before Cut - Defines the Coaxial illumination intensity for the inspection that is done before the cut. (This parameter is inserted manually).

Oblique Illumination Before Cut - Defines the Oblique illumination intensity for the inspection that is done before the cut.

(This parameter is inserted manually).

Note: The Yes/No parameter "Inspection before Cut" allows performing inspection on the street prior to the cut.

The value for each parameter is the light intensity the saw will use during

Manual Inspection. The values can be taught at any point during process.

To Teach the Manual Inspection Illumination

1 Pause the saw. The system switches to Inspection mode.

2 Set the best illumination for inspection.

3 Insert the Before Cut parameters, if required.

4 Right click in the main video screen and select "set illumination".

For more information, refer to Table A-21 in Manual Inspection

Parameters.

P/N 97100-9002-000-14 Ver 06/05

8.7-1

Manual Inspection Illumination

Advanced Dicing Technologies Ltd.

8.7-2

8.8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Database Backup

Database Backup

The system can be set to perform automatic backup of the database files, to prevent data loss. Once set, the system performs the automatic backup according to the set Frequency and Time, unless it is in the middle of any auto-cycle or manual operation. In this case, the automatic backup is postponed until the operation is completed.

The default drive for the backup is drive D. Set the path to the CD-RW drive to store the backup on a CD-RW. Ensure that there is a CD-RW in the CD-RW drive.

To Perform Automatic Database Backup:

1 Click to open the Workbook Workspace.

2 Select Setup and Diagnostics > Saw.

3 Under Saw parameters, locate the Automatic Backup Enabled

parameter (see Figure 8-9).

Note: The default value for this parameter is "Yes". To change it, choose "No"

from the drop-down list (see Figure 8-10). It is not recommended to change the

Automatic Backup parameter value to No.

ADT recommends performing Backup procedure (Create Backup) after making major changes

Figure 8-9: Automatic Backup Enabled

P/N 97100-9002-000-14 Ver 06/05

8.8-1

Database Backup

4 To perform the backup on a CD-RW, type the CD-RW drive (for example: E:\) in the Value line. If the user does not define the backup location, the system automatically saves the backup files on drive D:\.

Figure 8-10: Backup Drop-Down List

Advanced Dicing Technologies Ltd.

8.8-2

8.9

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Theta Safety Limits on X-Axis

Theta Safety Limits on X-Axis

When the Height Theta Safety Zone in system configuration is set to

Yes (see Figure 2-15), the following stations become enabled:

Theta Safety Right

Theta Safety Left

Figure 8-11: Dicer Tree

Note: Using this option requires a hardware change: additional hardware limit and a special double flag on the X-Axis.

Each of the stations contains only one parameter - axX, which is associated with the Model 7100 hardware X-Axis limits.

P/N 97100-9002-000-14 Ver 06/05

8.9-1

Theta Safety Limits on X-Axis

The axX values define the Right (see Figure 8-12) and Left (see Figure 8-

13) X-limits respectively.

Figure 8-12: Right X Limit

Figure 8-13: Left X Limit

The left limit is more critical for systems that use Autoloader option and square cutting chucks, because the frame/chuck can damage the curtain between the Model 7100 and the Autoloader.

Advanced Dicing Technologies Ltd.

8.9-2

8.10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Change of Length Unit Type

Change of Length Unit Type

By default, all the length units used by the System are set in millimeters.

The user can change the unit type to inches.

To Change the Length Unit Type

1 Click to open the Workbook Workspace.

2 Select Setup and Diagnostics > Saw.

3 Under Saw parameters, double-click the Length Units parameter.

4 Select the desired option (mm/inch) from the drop-down menu.

5 Click Save in the toolbar.

When the change is completed, all the length units are converted to the new type.

Note: It is also possible to change the unit type for a specific parameter. To do so, double-click the unit type box and choose the desired type from the dropdown menu.

P/N 97100-9002-000-14 Ver 06/05

8.10-1

Change of Length Unit Type

Advanced Dicing Technologies Ltd.

8.10-2

8.11

8.11.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Multi-Panel Bar Code

Multi-Panel Bar Code

The Bar Code feature allows tracking and monitoring of parts that are being processed in the machine. It logs the part number that is either manually typed in or scanned by using a bar code scanner (not supplied).

This feature allows the user to use the log file data in order to understand or track process parameters.

This feature must be added to the current recipe before it can be uses.

Activating the Bar Code Feature

1 Access the Recipe Parameters screen.

2 Select the Align group of categories.

3 In the Bar Code category, toggle the Activate parameter to "Yes" (see

Figure 8-14.)

Figure 8-14: Activating the Bar Code Reader

P/N 97100-9002-000-14 Ver 06/05

8.11-1

Multi-Panel Bar Code

8.11.2

Using the Bar Code Reader

While performing an Auto-Run operation or Wafer-Cut operation, the Bar

Code screen appears (see Figure 8-15.).

Figure 8-15: Bar Code Dialog Box

In the Lot column next to Panel 1, manually enter a number (the panel number is defined during the Teach Alignment procedure.) The system then automatically enters the same Lot number for the remaining three panels. If a different Lot number is entered, the system continues to enter that number for the remaining panels. The same procedure is followed when entering Substrate numbers.

Note: The system software automatically validates the lot number according to customer specifications. If the validation fails, the number appears in Red (see

Figure 8-15.) To continue working, the user must enter a valid number.

Note: If Lot numbers are missing for specific applications, the user must return to the Bar Code Reader Screen and change the Activate parameter value to

"No" for the relevant recipe.

Figure 8-16: Bar Code Validation Failed

The following Bar Code attributes are recorded in the Log File:

Blade Change - Lot number

Cut Start - Bar Code, Substrate number, Panel number.

Advanced Dicing Technologies Ltd.

8.11-2

9

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Configuration Options

CONFIGURATION OPTIONS

This Chapter contains the descriptions and instructions for the following

Model 7100 Series optional features:

Autoloader, see section 9.1

Tilted Spindle, see section 9.2

Dress Station, see section 9.3

Wash Pipe, see section 9.4

The 7100 Series Configuration Options can be divided by two categories:

Machine Configuration Options available at the factory and unavailable as field retrofit (Autoloader, Tilted Spindle and Dress

Station)

Machine Configuration Option available both at the factory and as field retrofit (Wash Pipe)

P/N 97100-9002-000-14 Ver 06/05

9-1

Configuration Options

Advanced Dicing Technologies Ltd.

9-2

9.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

Autoloader

The Autoloader option has been developed for the Model 7100 to meet the need for a system that automates the loading and unloading processes.

This option enables the system to automatically load metal frames from a

Cassette onto the Cutting Chuck, and later unload them from the Cutting

Chuck back to the Cassette when the dicing procedure is complete.

Note: Plastic frames cannot be used in the Autoloader, as they are not sufficiently flat or reflective.

1 7100 model

2 Autoloader

1

2

9.1.1

Figure 9-1: Model 7100 with Autoloader

Autoloader Description

The Autoloader is attached to the Model 7100 and uses the internal power supply of the system. This means that turning the Model 7100 On or Off also turns the Autoloader On or Off, respectively.

P/N 97100-9002-000-14 Ver 06/05

9.1-1

Autoloader

The Autoloader consists of the following components:

Mechanical Modules

Linear Arm (X Axis)

Elevator (Z Axis)

Finger (Y Axis)

Dry System

Cassette Compartment

Curtain

Utility and Electrical Compartment

The Autoloader uses its mechanical modules to move frames from the

Cassette to the Cutting Chuck and back. The entire load/unload procedure is handled automatically by the Autoloader. The user is required only to change Cassettes when necessary.

Turning On the Model 7100 also turns On the Autoloader, and begins its initialization process: Each axis learns its limit position and the home location of the system. The Frame Scanner Sensor scans the Cassette to learn the location of each existing frame, and to ensure that all frames have been properly placed in the Cassette.

The Autoloader begins operation when the user presses the RUN button on the Model 7100's main window.

The operational steps carried out by the Autoloader are as follows:

1 The Elevator moves to the lowest slot of the Cassette that contains a frame to be processed.

2 The Finger moves towards the Cassette and grabs the frame.

3 The Finger pulls out the frame and places it on the Elevator Load/

Unload Station, then returns to its home position.

4 The Elevator rises to its Load/Unload Station to meet the Linear Arm and the Pick-Up Arm.

5 The Pick-Up Arm grabs the frame using four vacuum cups and holds it while the Linear Arm moves the frame from the Autoloader to the

Cutting Chuck. After the Pick-Up Arm releases the Frame onto the

Cutting Chuck, the Linear Arm returns to its home position.

6 The Curtain rises in order to prevent water from entering the

Autoloader. The dicing procedure is then carried out as usual.

7 When the dicing procedure is complete, the Curtain is lowered and the

Linear Arm moves into position above the Cutting Chuck. As the

Advanced Dicing Technologies Ltd.

9.1-2

9.1.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

Linear Arm moves into position, the Upper Dry System at the front of the Pick-Up Arm dries the top surface of the frame.

8 The Pick-Up Arm grabs the frame with its four vacuum cups and holds it while the Linear Arm returns the frame to the Autoloader. As the

Frame passes over the lowered Curtain, the Lower Dry System attached to the Curtain dries the bottom surface of the frame.

9 The Linear Arm returns to its Load/Unload Station. The Pick-Up Arm places the frame on the Elevator.

10 The Elevator moves to the level of the slot from which the frame was taken.

11 The Finger grabs the frame and slides it into its slot.

These steps are automatically repeated on the remaining frames until all frames are processed. The system notifies the user when the Cassette needs to be replaced.

For more information regarding the Autoloader mechanical units, refer to the 7100 Series Maintenance Manual.

Autoloader User Interface

This section describes the features added to the Model 7100 user interface, in order to support the Autoloader.

Figure 9-2: Autoloader Features in the Model 7100 User Interface

P/N 97100-9002-000-14 Ver 06/05

9.1-3

Autoloader

Most Autoloader features are implemented in two dedicated Workbooks:

MHS (see section 9.1.2.2), which monitors and controls the Pick-Up Arm,

and CassComp (see section 9.1.2.1), which monitors and controls all other

aspects of the Autoloader.

In the User field two Status Indicators are added:

Linear Arm status indicator.

Cassette Compartment status indicator.

Cassette Compartment Simulation

Next to each Status Indicator there are three virtual LEDs:

Red: An error/failure exists. The system stops working and an error message appears on the screen.

Yellow: User assistance required. A message appears on the screen.

Green: When blinking, the station is carrying out an operation.

Otherwise, green indicates that the station is in idle mode.

Advanced Dicing Technologies Ltd.

9.1-4

9.1.2.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

CassComp Workbook

Select CassComp from the Setup & Diagnostics tree to display the following:

Figure 9-3: CassComp Workbook

The CassComp screen enables the user to do the following:

Initialize the Autoloader Parts:

Cassettes Compartment

Elrvator

Finger

Perform a New Cassette Setup •

The CassComp section of the Setup & Diagnostics tree includes the following subsections:

Axes (see section 9.1.2.1.1), used for positioning and teaching the axes

(Elevator and Finger).

Cassette1, (see section 9.1.2.1.2), used for elevating and lowering the

Curtain and providing indications about the Cassette status.

P/N 97100-9002-000-14 Ver 06/05

9.1-5

Autoloader

9.1.2.1.1

Axes

The Axes subsection of the CassComp section of the Setup &

Diagnostics tree includes the following:

• Elevator

Finger

The Setup & Diagnostics screens for each axis are very similar. These screens enable the user to initialize the individual axes, perform self tests and manually position the axis at a specific location.

Elevator and Finger Axes

Select an axis from the Setup & Diagnostics tree to display the following:

Figure 9-4: Elevator Screen

The lower right pane (identical for Elevator and Finger screens) displays a representation of the travel of the selected axis, with its home position on the left and the farthest distance it can travel on the right.

Advanced Dicing Technologies Ltd.

9.1-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

In the lower right pane (identical for Elevator and Finger screens), the user can do the following:

Position the axis manually: Move the module along its axis in one of the following ways:

Click and hold one of the arrow buttons.

Clicking the button between the arrows selects whether the slider moves fast (F) or slow (S), as defined by the Fast Velocity and

Slow Velocity parameters in the upper pane.

• Enter an axis position in the edit box (next to the Move button) and click Move.

Initialize the selected axis: Click Init.

Perform a Self Test: Click Toggle Self Test to have the axis move automatically between its home position and its limit. The axis continues to move back and forth until Toggle Self Test is clicked again .

The upper right pane includes parameters that define the Scale Factor, speed and travel of the selected axis.

The following parameters can be defined in the upper right pane of the

Elevator screen:

Fast velocity - velocity, at which the Elevator moves when the button between the arrows (see above) is set to (F).

Acceleration

Slow acceleration

Deceleration

Kill deceleration

Self test delay

LU - Elevator Load/Unload station coordinate

Elevator wafer wait position

Cassette setup start pos - Elevator position, when starting a New

Cassette Setup

Elevator cassette slot 1 - Z-coordinate, to which the Elevator descends to pick up the frame from the lowest slot

The following parameters can be defined in the upper right pane of the

Finger screen:

Fast velocity - velocity, at which the Finger moves when the button between the arrows (see above) is set to (F).

Acceleration

P/N 97100-9002-000-14 Ver 06/05

9.1-7

Autoloader

Slow acceleration

Deceleration

Kill deceleration

Self test delay

LU - Finger Load/Unload station coordinate

Home

Finger safety position

Finger cassette slot 1 - Y-coordinate, to which the Finger moves to pick up the frame from the lowest slot

Advanced Dicing Technologies Ltd.

9.1-8

Figure 9-5: Finger Screen

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

9.1.2.1.2

Cassette1

Select Cassette1 from the Setup & Diagnostics tree to display the following:

9.1.2.2

Figure 9-6: CassComp > Cassette1 Workbook

The upper right pane includes parameters that define the number of

slots, and the pitch between the slots. It also contains the Dress parameter. The lower right pane displays the Cassette Compartment status.

If the Dress parameter is set to Yes, the user should define the Dress frame. The Dress frame turns grey in the Cassette simulation under the

Stop button.

MHS Workbook

The Setup & Diagnostics screens for the MHS enable the user to initiate the MHS, release and engage vacuum, lower and elevate the Pick-Up Arm, accept or release frames, activate the Backside and Top Side Dry System, and define the Dry Speed settings.

P/N 97100-9002-000-14 Ver 06/05

9.1-9

Autoloader

Select MHS from the Setup & Diagnostics tree to display the following:

Figure 9-7: MHS General Screen

In the upper left pane of the MHS main screen, the user can define the values of Dry system speed. In the Software Version 5.1 or later, the Top

Side Dry Speed parameter can be added to a Process Program a number of times so that the workpiece is dried several times before it is placed back into cassette.

In the lower right pane, the user can do the following:

Engage and release vacuum:

Clear the Vacuum check box to release the vacuum. Select the

Vacuum check box to engage the vacuum in the Vacuum Cups.

The gauge within the Vacuum area indicates the level of the vacuum when engaged. To set the vacuum level, press CTRL+P in order to enable the

Vacuum gauge, then click within the green zone of the gauge and drag until the desired level is displayed above the gauge.

Activate and deactivate the Vacuum Cups :

Click Pick Up to activate the Vacuum Cups while elevating the Pick-Up Arm.

Click Drop On to deactivate the Vacuum Cups while lowering the Pick-Up

Arm.

Activate/Deactivate the backside Dry System:

Select the Backside Dry check box to activate the Dry System. Clear the Backside Dry check box to deactivate it.

Advanced Dicing Technologies Ltd.

9.1-10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

Initiate the MHS:

Click MHS Init to initiate the the whole Material Handling System.

Initiate the Linear Axis:

Click Linear Axis Init to initiate the Linear Axis.

Elevate or Lower the Curtain:

Click Close to elevate the Curtain.

• Click Open to lower it.

Figure 9-8: MHS Axes Screen

The following parameters can be defined in the upper right pane for the

Linear Arm:

Fast velocity - velocity, at which the Arm moves when the button between the arrows (see above) is set to (F).

Acceleration

Slow acceleration

Deceleration

Kill deceleration

Self test delay

Linear axis air

P/N 97100-9002-000-14 Ver 06/05

9.1-11

Autoloader

9.1.3

LU Dicer - the Linear Arm Load/Unload position coordinate for the

Dicer station

LU Prealign - the Linear Arm Load/Unload position coordinate for the Prealign station

Autoloader Operation

This section describes the operation of the Model 7100 with the Autoloader, including the following topics:

Loading and Unloading workpieces using the Autoloader

(see section 9.1.3.1)

Running the Model 7100 with the Autoloader (see section 9.1.3.2)

Loading a Cassette to the Autoloader (see section 9.1.3.3)

Disable / Enable the Autoloader (see ssection 9.1.3.4)

Recovery Operations (see section 9.1.3.5)

9.1.3.1

Loading / Unloading a Workpiece

If the Model 7100 is equipped with Autoloader, the Load/Unload procedure can be carried out in three ways:

Automatic Loading/Unloading a Workpiece using the Autoloader

Manual Loading/Unloading from the Autoloader

Manual Loading/Unloading without using the Autoloader

9.1.3.1.1

Automatic Loading/Unloading of a Workpiece

To Automatically Load/Unload a Workpiece:

Click the Run button. The system starts an Autorun cycle and performs Loading/Unloading automatically

Advanced Dicing Technologies Ltd.

9.1-12

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

9.1.3.1.2

Manual Loading/Unloading from the Autoloader

To Manually Load a Workpiece from the Autoloader:

In the Main Load screen, click the Load button (see Figure 9-9).

Figure 9-9: Main Load Screen

To Manually Unload a Workpiece to the Autoloader:

In the Main Unload screen, click the Unload button (see Figure 9-10).

Figure 9-10: Main Unload Screen

P/N 97100-9002-000-14 Ver 06/05

9.1-13

Autoloader

9.1.3.1.3

Manual Loading/Unloading a Workpiece

To Manually Load a Workpiece:

Press Ctrl+L to neutralize the Autoloader and enable the Manual

Load procedure. The Manual Load screen appears:

Figure 9-11: Manual Load Screen

To Manually Unload a Workpiece:

Press Ctrl+R to neutralize the Autoloader and enable the Manual

Unload procedure. The Manual Unload screen appears:

Advanced Dicing Technologies Ltd.

9.1-14

Figure 9-12: Manual Unload Screen

9.1.3.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

Running the Model 7100 with the Autoloader

The 7100-Autoloader model operates exactly as a regular Model 7100, except for loading and unloading frames automatically by the Autoloader.

It is possible, however, to disable the Autoloader option and operate a

7100-Autoloader model as if it was a regular Model 7100, loading and

unloading wafers manually. This option is described in section 9.1.3.4.

To Run the 7100 Auto Mode with the Autoloader:

1 Load a Cassette into the Cassette Compartment, as instructed in

section 9.1.3.3.

2 Select the desired recipe and click the Run icon.

3 The Autoloader moves the first frame from the Cassette to the Cutting

Chuck.

4 Once the Frame has been diced, the Autoloader returns it to the

Cassette and proceeds to the next frame, and so on.

5 Once the system has processed all the frames in the Cassette and returned them to their slots, the system displays the message “Change

Cassette”.

6 Unload the processed Cassette.

7 If there are more Cassettes to be processed, load the next Cassette into

the Cassette Compartment, as instructed in section 9.1.3.3, and click

the Run icon.

8 Repeat steps 3-4 until all Cassettes are processed.

To Run the 7100 Manual Mode with the Autoloader:

1 Load a Cassette into the Cassette Compartment, as instructed in

section 9.1.3.3.

2 Make sure that the Autoloader scans the Cassette.

3 Select the desired recipe and click the Manual icon.

4 The Autoloader moves the first frame from the Cassette to the Cutting

Chuck.

5 Click the (Auto or Manual) Alignment icon.

6 Click the Full Wafer Cut icon. The wafer is processed.

7 Click the Unload icon. The Autoloader returns the wafer to the

Cassette.

P/N 97100-9002-000-14 Ver 06/05

9.1-15

Autoloader

9.1.3.3

9.1.3.4

Loading Cassettes to the Autoloader

Before the Autoloader can be operated, you must load a Cassette, as follows:

To Load the Cassette:

1 Fill the Cassette with frames, as needed. Not all slots need to be filled in order to operate the Autoloader.

2 Open the Cassette Compartment Cover.

3 Place the Cassette on the Adapter (see Figure 16). Make sure that the two placement-pins at the bottom of the Cassette are fitted into the corresponding voids at the rear of the Adapter.

4 Close the Cassette Compartment Cover.

Disabling/Enabling the Autoloader

To Disable/Enable the Autoloader (Administrator only):

1 Select User > Configuration. The Options window opens:

9.1.3.5

Figure 9-13: Configuration Screen

2 Change the Autoloader parameter value to Yes or to No, depending on whether it should be enabled or disabled

3 Click Save.

Recovery Operations

The procedure for recovering from a system failure when using the Model

7100 with Autoloader option depends on the severity of the problem.

9.1.3.5.1

Recovering After a System Failure

A failure such as a loss of vacuum or a frame improperly positioned inside the Cassette causes the system to suspend operation.

Advanced Dicing Technologies Ltd.

9.1-16

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Autoloader

The system notifies the user by

Displaying an error message

Flashing the yellow light on the Light Tower

Indicating the fault location by illuminating the appropriate virtual

LEDs on the Model 7100 window.

The system does not resume operation until the problem is corrected, following the steps outlined below.

To Recover From a System Failure:

1 Remove the frame that was being processed at the time the failure occurred. The frame must be removed regardless of its location in the system.

Note: In the case of a frame improperly positioned in the Cassette, the frame may be repositioned without removing it from the system.

2 In the error message box, click OK. The Model 7100 initiates.

3 Click Run.

Note: The system resumes operation with the next available frame.

4 If the problem persists, use the Troubleshooting Flow Diagram given in section 14.9 of the Maintenance Manual to isolate the problem and correct it.

P/N 97100-9002-000-14 Ver 06/05

9.1-17

Autoloader

9.1.3.5.2

Recovery After a Severe System Failure

A severe failure, such as the loss of air or water pressure, causes the system to immediately suspend operation.

The system notifies the user by flashing the red light on the Light, but will not necessarily display an error message on the screen.

Once the problem has been corrected, the system restarts the programmed cutting procedure from the first available frame in the Cassette (and not from the frame that was being processed when the severe failure occurred).

To Recover From a Severe System Failure:

1 Remove the frame that was being processed at the time the failure occurred. The frame must be removed regardless of its location in the system.

2 Use the Troubleshooting Flow Diagram given in the Autoloader section of the Model 7100 Maintenance Manual to isolate the problem and correct it.

3 In case a error message is displayed, click OK to close it and initiate the Model 7100.

Otherwise, click Init on the Model 7100 GUI main window.

4 Click Run.

Advanced Dicing Technologies Ltd.

9.1-18

9.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Tilted Spindle

Tilted Spindle

This option enables the System to cut wafers at any angle that falls between 0 and 15 degrees by changing the orientation of the Spindle and the Microscope. Proximity sensors, controlled by the software, detect whether the Spindle and the Microscope are correctly positioned at the selected angle. Systems that include the Tilted Spindle option, are delivered pre-configured with all the settings necessary for cutting at both standard and tilted orientation.

Figure 9-14: Tilted Spindle

P/N 97100-9002-000-14 Ver 06/05

9.2-1

Tilted Spindle

9.2.1

Changing the Spindle Angle in a Recipe

Once the Spindle Angle is changed in the Setup screen, it should be changed in the relevant recipes.

To Change the Spindle Angle in a Recipe

1 Locate the relevant recipe on the programming screen.

2 Select the Spindle Angle parameter under the Titled category and

type the new Spindle Angle value (see Figure 9-15).

9.2.2

Figure 9-15: Programming Screen

Before any cutting process starts, the Model 7100 Software verifies that the Spindle Angle is set according to the parameters of the specific process program.

Height Procedure Changes

Since in the tilted position the blade wear causes the Y-Offset to change, the new option has been added to the Software: the System can be programmed to perform Y-Offset after every Height procedure.

To Define Y-Offset After Each Height Procedure

1 In the Programming screen, locate the relevant recipe.

2 Locate the Tilted Spindle parameter category.

3 Set the Y Offset After Height parameter value to Yes.

4 Click Save.

Advanced Dicing Technologies Ltd.

9.2-2

9.2.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Tilted Spindle

Changing the Spindle Angle

Changing the Spindle Angle on Model 7100 does not require powering down the System. Follow the instructions given in this chapter in order to perform the Spindle Angle change.

It is important not to change the blade, while changing the Spindle

Angle. If, for any reason, a new blade was installed, while changing the

Spindle Angle, run Sample Blade Calibration before operating the

System.

The procedures given in this chapter use the Spindle Angle parameter values (0 and 15) as sample values. The Tilt Angle may be set to any value between 0 and 15.

Changing the Spindle Angle From Level to Tilted Position

Once a recipe that involves Tilted Spindle has been assigned to the System, the Spindle Angle should be adjusted accordingly, by carrying out the procedure given below.

To Change the Spindle Angle From Level to Tilted Position

1

Click on the Change button (see Figure 9-16). The yellow light on the

Light Tower lights, and the "Spindle Angle change in progress" message appears in the lower left corner of the screen.

Note: This message and the Light Tower indication remain until the Y-Offset procedure is performed.

2 In the wizard click Next. The GUI returns to the Setup screen.

3 In the Setup screen, locate the Spindle Angle parameter and change the angle value from 0 to 15, by selecting the new value from the dropdown list.

P/N 97100-9002-000-14 Ver 06/05

9.2-3

Tilted Spindle

4 Click Save.

Figure 9-16: Setup Screen

5 In the wizard click Finish. The dicer moves to the Change station.

The following message appears:

6 Use an 8 mm socket wrench to release the three Spindle holding

screws shown in Figure 9-17.

7 Change the angle using the 8 mm socket wrench (keep rotating the tool until it reaches the stopper).

Advanced Dicing Technologies Ltd.

9.2-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Tilted Spindle

8 Secure the Spindle holding screws.

1 Spindle Holding

Screws

1

Figure 9-17: Spindle Holding Screws

9

Release the Camera holding screws (see Figure 9-18) using 5 mm alien

wrench.

1 Camera Holding

Screws

1

Figure 9-18: Camera Holding Screws

10 Manually set the camera height by sliding the Camera downwards.

11 Secure the Camera holding screws.

12 Click Next in the wizard. The System performs the Init procedure and

Chuck-to-Non-Chuck Height procedure.

13 Click Finish in the wizard.

14 Before running any working cycle, perform Y-Offset procedure.

P/N 97100-9002-000-14 Ver 06/05

9.2-5

Tilted Spindle

If one of the sensors detects that the Spindle or the Camera is at a wrong angle, no angle indicator illuminates and an error message is displayed

(see Figure 9-19).

9.2.3.1

Figure 9-19: Error Message

Changing the Spindle Angle From Tilted to Level Position

To Change the Spindle Angle From Tilted to Level Position

1

Click on the Change button (see Figure 9-16). The dicer moves to the

Change station. The yellow light on the Light Tower lights, and the

"Spindle Angle change in progress" message appears in the lower left corner of the screen.

Note: This message and the Light Tower indication remain until the Y-Offset procedure is performed.

2 In the wizard click Next. The GUI returns to the Setup screen.

3 In the Setup screen, locate the Spindle Angle parameter and change the angle value from 15 to 0, by selecting the new value from the dropdown list.

4 Click Save.

Advanced Dicing Technologies Ltd.

9.2-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Tilted Spindle

5 In the wizard click Finish. The following message appears:

9.2.4

9.2.4.1

6 Use 8 mm socket wrench to release the three Spindle holding screws

shown in Figure 9-17.

7 Change the angle using the 8 mm socket wrench (keep rotating the tool until it reaches the stopper).

8 Secure the Spindle holding screws.

9

Release the Camera holding screws (see Figure 9-18) using 5 mm alien

wrench.

10 Manually set the camera height by sliding the Camera upwards.

11 Secure the Camera holding screws.

12 Click Next in the wizard. The System performs the Init procedure and

Chuck-to-Non-Chuck Height procedure.

13 Click Finish in the wizard.

14 Before running any working cycle, perform Y-Offset procedure.

Mechanical Adjustments

This chapter documents mechanical adjustments and additional teaching procedures required for modifying and fine tuning of the Spindle Angle.

Fine Adjustment of the Spindle Angle

Use this procedure in two cases:

• Fine-tuning for an existing Spindle Angle

Modifying the existing Spindle Angle (for example, changing the Tilted

Angle from 8 to 15 degrees

Before performing any of the procedures given below, verify that the

System setup is corresponding the angle being adjusted.

P/N 97100-9002-000-14 Ver 06/05

9.2-7

Tilted Spindle

9.2.4.2

9.2.4.3

To Adjust the Spindle Angle

1 Release the three spindle holding screws.

2 Release the Spindle upper stopper lock.

3 Move the Spindle up or down, using an 8 mm socket wrench, so that it does not rest on the stopper.

4 Rotate the stopper clockwise to reduce the angle or counterclockwise to increase it.

5 Lock the stopper.

6 Rotate the adjusting screw until the Spindle reaches the stopper.

7 Secure the holding screws.

Adjusting the Camera position.

To Adjust the Camera position

1 Release the two Camera holding screws.

2 Release the securing nut of the relevant stopper.

3 Rotate the relevant (upper or lower) adjusting screw to set the camera height.

4 Close the securing nut.

5 Secure the holding screws.

6 Release the securing nut of the Camera position sensor.

7 Move the sensor in the direction of adjustment until the sensor LED goes on.

Caution: After the saw and the Camera have been adjusted to the tilted angle, they are lower than they were in the level position. Move them carefully and only in manual mode.

Once the mechanical parts have been adjusted to the new angle, initiate the System and teach the new stations.

Modifying the Spindle Angle

Follow the instructions given in this section only when modifying the

Spindle Angle value.

To Modify the Tilted Spindle Angle

1 Open the Setup and Diagnostic screen.

2 Locate the Spindle Angle parameter under Saw > Dicer.

Advanced Dicing Technologies Ltd.

9.2-8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Tilted Spindle

3 Update this parameter value according to the mechanical change.

4 Click Save.

9.2.4.4

Tilted Spindle Stations Setup

9.2.4.4.1

Teaching the Chuck center

To Teach the Chuck center

1 Open the Calibration screen.

2 Locate the Dicer station.

3 Manually bring the Camera to the Chuck center.

4 Click the Chuck Center parameter and then click Teach.

5 Click Save.

9.2.4.4.2

Teaching the Auto Focus on Dicer Chuck Under Z

To Teach the Auto Focus on Dicer Chuck

1 Focus the Camera on the Chuck center.

2 Locate the Z-Axis screen.

3 Click on the Auto focus Parameter.

4 Click Teach.

5 Click Save.

Note: If the Z-Axis does not reach the desired height, change the Z travel value and click Apply. Then check if the new value fits and teach again.

9.2.4.4.3

Teaching the NCH Station

To Teach the NCH Station

1 Manually bring the blade over the NCHD slit center.

2 In the Setup screen locate the NCH station and click on it.

3 Click Teach.

4 Click Save.

Note: After changing the Spindle Angle, the Y-Offset has also changed. This might influence the blade-to-Height device contact position.

P/N 97100-9002-000-14 Ver 06/05

9.2-9

Tilted Spindle

9.2.4.4.4

Sample Blade Calibration

Note: Before performing Sample Blade Calibration, update the Z Calibration start position according to the new Blade height.

To Perform Sample Blade Calibration

1 Open the Blade screen.

2 Enter the current Blade diameter as the Sample Blade diameter.

3 Open the Height screen.

4 Perform Sample Blade Calibration.

5 Click Save.

9.2.4.4.5

Chuck to Non-Chuck Height

To Perform Chuck to Non-Chuck Height Procedure

1 In the Height screen, click Chuck to Non-Chuck Height.

2 Click Save.

Note: Several Chuck to Non-Chuck measurements can be carried out, to

increase accuracy, as described in section 7.3.3.1.

9.2.4.4.6

Teaching the New Y-Offset

To Teach the New Y-Offset

1 Perform a single cut.

2 Click the Y-Offset calibration icon.

Advanced Dicing Technologies Ltd.

9.2-10

9.3

9.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Dress Station

Dress Station

The Dress Station is intended to periodically clean and reshape the cutting blade in order to enhance the Kerf quality, without interrupting the cutting process, i.e. without having to unload the workpiece from the Cutting

Chuck (see Figure 9-20)

1 Dressing Block

2 Holding Clamps

3 Clamp-Opening

Button

2

1

3

Figure 9-20: Dress Station

This option enables the dressing process to be done as part of the dicing process program. Dressing can be done during a workpiece dicing without unloading it. In a process program, the user can set the amount of cuts, after which the system performs a certain amount of dress cuts on the

Dress Station.

Configuring the Dress Station

In order to enable the Dress Station option the System configuration should be changed as follows:

To Configure the Dress Station

1 Run the Model 7100 GUI.

P/N 97100-9002-000-14 Ver 06/05

9.3-1

Dress Station

2 In the Menu Bar click User > Configuration. Configuration screen appears.

3 Set the Dress Station value to Yes.

4 Click Save.

Once the Dress Station is enabled, it can be setup in the recipes so that the

System performs Blade Dressing as required by the process. Dressing procedure can also be run by the user regardless of the process program settings, by clicking the Dress Station arrow button and selecting Dress

on Dress Block:

9.3.2

Teaching the Dress Station

The Model 7100 supports two types of Dressing Blocks:

8” Cutting Chucks can be used with 1”x 1” Dressing Blocks

6” Cutting Chucks can be used with 1”x 3” Dressing Blocks

Advanced Dicing Technologies Ltd.

9.3-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Dress Station

The new Dress Station position parameters (see Figure 9-21) are

automatically updated upon running the Changing Dress Block procedure.

Figure 9-21: Dress Station Screen

By selecting Manual > Blade Treatment > Change Dress Block from the Menu Bar;

• By clicking the Dress Block button in the Toolbar and selecting

Change Dress Block from the drop-down menu;

• By clicking the Change Dress Block button in the Dicer setup screen.

P/N 97100-9002-000-14 Ver 06/05

9.3-3

Dress Station

Once the Change Dress Block procedure is started, follow the Wizard instructions. Perform the following procedure when asked to physically replace the Dressing Block:

To Replace the Dressing Block

1

Push the Clamp-Opening buttons as shown in Figure 9-22. The

Clamps open.

Figure 9-22: Replacing the Dressing Block

2 Slide the Dressing Block to the right and remove it from the Dress

Station.

3 Slide in the new Dressing Block into the Dress Station.

4 Release the buttons.

5 Click Finish in the wizard.

At this point, the System asks the User to define the upper-left corner of the Dressing Block. This location is saved under Dress Station parameters and serves for building the Dressing Block Cut Map.

Advanced Dicing Technologies Ltd.

9.3-4

9.3.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Dress Station

To Teach the Dressing Block Lower-left Corner Location

1 Manually bring the Camera over the Dressing Block lower-left corner.

2 Focus the Camera on the Dressing Block.

3 Click Finish in the Wizard.

Running the Change Dress Block procedure updates the Dress Station parameters that are taught in the Dress Station setup screen.

Dress Station Setup

After the Dress Station location has been taught, the following dressing block parameters can be setup:

Dressing Block size and Height parameters

• Dress Block Length (X)

Dress Block Width (Y)

Dress Block Thickness

Dress Block to Chuck Delta

The Y Safety from Boundaries parameter serves to prevent the blade from collision into the Dressing Block holding clamps. The fine adjustment of this value can be performed manually, so that the user can visually ensure that there is enough distance between the clamps and the first/last cut line of the Dressing Block Cut Map.

The Continue Option enables the user to decide what to do after the

Dressing Block is finished: continue cutting without dressing or replace the

Dressing Block and resume cutting.

The Illumination parameters define the illumination type used for the

Dressing Block inspection. The illumination parameters can be updated by right clicking in the video workspace and selecting Set Dress Illumination.

P/N 97100-9002-000-14 Ver 06/05

9.3-5

Dress Station

9.3.4

For more information about specific parameters, see Table 9-1.

Table 9-1: Dressing Block Parameters

Parameter Description axX axY1 axZ1

Defines the Dressing Block upper-left corner position on the X-Axis

Defines the Dressing Block upper-left corner position on the Y-Axis

Defines the Z-Axis height above the Dressing Block

(focus).

Y Safety From

Boundaries

Dress Block

Length (X)

Dress Block to

Chuck Delta

Continue Option

Defines the distance taken from the Dressing Block holding clamps on two sides of the Dressing Block.

Default = 3 mm

Defines the Dressing Block length along the X-Axis.

Options: 1”

Dress Block Width

(Y)

Defines the Dressing Block length along the X-Axis.

Options: 1”; 3”

Dress Block

Thickness

Defines the Dressing Block Thickness.

Options: 1 - 3 mm

Defines the height delta between the Dress Station surface (does not include the Dressing Block thickness) and the Cutting Chuck surface. For example, if this parameter value is set to 1, the Dress

Station is 1 mm higher than the Cutting Chuck.

Default = 0

When set to Yes, when the dressing block is finished while running a cutting process, the user is prompted to select one of the two options: continue cutting without dressing or replace the Dressing Block and resume cutting.

When set to No, the System automatically starts the

Dressing Block replacement, when the dressing block is finished.

Options: Yes (Default), No

Dressing Modes

The dressing mode should be selected before setting the parameter values, in order to ensure that only the relevant parameters are updated. The

System also enables the user to change the Dressing parameters (Dress

Mode or any other) while the Cutting process is paused for inspection.

Advanced Dicing Technologies Ltd.

9.3-6

9.3.4.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Dress Station

The blade dressing on a Dressing Block can be performed in one of the two modes:

Cut, see section 9.3.4.1

Chop, see section 9.3.4.2

Cut Mode

When the selected dressing mode is Cut, the recipe programming screen displays the relevant parameters:

9.3.4.2

For detailed information about specific parameters, refer to Table A-13.

Chop Mode

When the selected dressing mode is Chop, the recipe programming screen displays the relevant parameters:

For detailed information about specific parameters, refer to Table A-13.

P/N 97100-9002-000-14 Ver 06/05

9.3-7

Dress Station

9.3.4.3

Dressing Block Cut Mapping

Once the Dressing parameters (see section 9.3.4.1 and section 9.3.4.2) have

been setup, follow the Dress Block Change Wizard instructions in order to build the dressing Cut Map, which is displayed in the Simulation

window as shown in Figure 9-23

1 2

1 Chop Mode Cut

Map

2 Cut Mode Cut

Map

Figure 9-23: Dressing Cut Map Animation

Note: The Dressing Cut Maps are built in different directions: when in Cut

Mode, the System builds the Cut Map from the top of the Dressing Block to the bottom, whereas in the Chop mode it builds the Cut Map from the bottom of the

Dressing block to its top ("Top" and "Bottom" are as related to the animation displayed). The animation is updated as the current cut is completed.

After replacing a dress block, click Finish in the Dress Block Change

Wizard to maintain the previous dress block setup.

Advanced Dicing Technologies Ltd.

9.3-8

Figure 9-24: Dress Block Change Wizard

9.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Wash Pipe

Wash Pipe

The Wash Pipe is an optional feature that enhances the ability to clean the workpiece during or after cutting. The wash pipe is a metal pipe with spray

nostrils that can be mounted on the Dicer as shown in Figure 9-25.

Figure 9-25: Wash Pipe

For the Wash Pipe mounting instructions refer to the Model 7100 Series

Maintenance Manual.

1 Dicing Blade

2 Camera

3 X-Axis

4 Cutting Chuck

5 Wash Pipe

Figure 9-26: Wash Pipe Feature Schematic Diagram

P/N 97100-9002-000-14 Ver 06/05

9.4-1

Wash Pipe

The washing mechanism is based on the Wash Pipe and a toggle move of

the X axis between the two points - A and B (see Figure 9-26).

The Wash Pipe can be retrofitted into an existing machine or installed at the factory. In order to enable the Wash Pipe, the corresponding option in the Model 7100 configuration screen should be set to Yes (refer to the following procedure). The Wash Pipe water supply works simultaneously with the Cooling Block.

The following Setup and Diagnostics parameters, that reside under the

Axis Point Category, need to be defined (see Figure 9-27 below):

Left Washing Position - defines the position of point A, shown in

Figure 9-26.

Right Washing position - defines the position of point B, shown in

Figure 9-26.

Figure 9-27: Wash Pipe Setup and Diagnostic Parameters

Refer to Table A-29 in Appendix 3 for a list of Wash Pipe program

parameters that have to be defined before using this feature.

Advanced Dicing Technologies Ltd.

9.4-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Wash Pipe

To Activate the Wash Pipe

1 Click User > Configuration. The Configuration screen appears.

9.4.1

2 Scroll down to the Wash Pipe.

3 Set the value to Yes.

4 Click Save. The Wash Pipe option is now active.

Manual Operation

The Wash Pipe feature can be activated manually, using the Wash Pipe

icon (see Figure 9-29) in the GUI Toolbar. Once this icon is pressed, the

washing procedure is activated.

The following operation options are available through the wash pipe

activation window (see Figure 9-28):

Pause - Stops the wash pipe activation and restarts the countdown to the next activation

Stop - Cancels the wash pipe activation until the next cut is performed.

Figure 9-28: Stop and Pause Wash Pipe Operation

P/N 97100-9002-000-14 Ver 06/05

9.4-3

Wash Pipe

9.4.2

Figure 9-29: Wash Pipe Activation Icon

Model 7100 Vectus and ProVectus

The Model 7100 Vectus/ProVectus standard configuration uses the standard Spray Bars. Optionally, the user can also enable the Wash Pipe option. Once the Wash Pipe option is enabled, the GUI displays a sensor or the water flow on both Spray Bars and optional Wash Pipe

(see Figure 9-30).

Advanced Dicing Technologies Ltd.

9.4-4

Figure 9-30: Spray/Wash Indicator

9.4.3

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Wash Pipe

Model 7100 Fortis and ProFortis

The optional Wash Pipe is not included in the Model 7100 Fortis/ProFortis default configuration, so the sensor is not connected to the System, and no

GUI indication is provided (see Figure 9-31).

Figure 9-31: No Water Flow Indicator

However, the optional Wash Pipe can be installed on the Model 7100

Fortis/ProFortis as an option. In this case, once the water flow sensor is connected to the System, the GUI indicator is displayed as shown in

Figure 9-32.

Figure 9-32: Wash Pipe Water Flow Indicator

P/N 97100-9002-000-14 Ver 06/05

9.4-5

Wash Pipe

Advanced Dicing Technologies Ltd.

9.4-6

10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Troubleshooting

TROUBLESHOOTING

The Model 7100 provides several options for troubleshooting problems that may occur while operating the System, including:

Error Message Information, Section section 10.1.

Recipe Problems, section 10.2

Initializing the System, section 10.3

Height Problem, section 10.4

Database Restoration, section 10.5

Camera Installation After Emergency Stop, section 10.6

If Nothing Helps, section 10.7

KMI and Database, section 10.7.1

UPS Bypass, section 10.8

Note: For more detailed information about diagnostic and maintenance procedures for the Model 7100, refer to the ADT Model 7100 Semi-Automatic

Dicing System Maintenance Manual.

P/N 97100-9002-000-14 Ver 06/05

10-1

Troubleshooting

Advanced Dicing Technologies Ltd.

10-2

10.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Error Message Information

Error Message Information

Error messages, described in the Model 7100 Maintenance Manual, can be used to help diagnose problems that occur while operating the System.

Each error message is divided by three fields:

Main Field

Details Field

Troubleshooting

The user can identify the problem source using the data given in the Main

Screen and the Details Screen. The Troubleshooting Screen contains specific steps that may help solving the problem. The Troubleshooting steps are numbered as separate tasks. The first step is the most likely to solve the problem.

The color of the error massage frame indicates to which type the error belongs:

Green - user interference is required (e.g. change blade)

Yellow - user interference is required to verify if the system is functioning properly

Red - user interference is required due to a serious problem (e.g. software, machinery)

The errors are also indicated by the Light Tower (if installed). For more

details about the Light Tower states, see section 2.1.3.

If a problem occurs that cannot be resolved using the details and/or troubleshooting information, write down the information displayed in the

Error Details field of the error message and the Details pane before contacting the ADT service representative.

Note: If there is an error, the Light Tower indicator in the lower-right corner of the GUI screen blinks red. To display an error message, double-click the indicator.

P/N 97100-9002-000-14 Ver 06/05

10.1-1

Error Message Information

Figure 10-1: Sample Error Messages

Note: To view Troubleshooting, select the Troublehooting checkbox. To view the Error Details, select the Details checkbox.

The Error Messages Browser, located at the bottom of the error message window, is useful when several errors occur simultaneously. Instead of having all of them display at once, the System enables the User to use the drop-down list to select the error message to display.

The error messages displayed by the System can be saved for reference as follows:

1 Once an Error message is displayed, check the Detail and

Troubleshooting boxes.

2 Press the Print Screen key on the keyboard.

3 Press Ctrl+Esc on the keyboard.

4 Scroll to: Programs > Accessories > Paint.

5 Paste (Ctrl+V) the copied screen.

6 Save the file.

7 Compress the file using the Zip program.

Advanced Dicing Technologies Ltd.

10.1-2

10.2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Recipe Problems

Recipe Problems

If the system reports a recipe problem (e.g. missing model message), the user can try doing the following:

Check the recipe parameters.

Ensure that the active recipe and the workpiece on Dicer fit. If they do not fit, either redefine the job, or unload and reload the workpiece.

Reteach Alignment.

Recreate the recipe (in some cases, the user has to create the recipe from scratch because the file itself is corrupted). It is important to use a working recipe or template, and not the corrupted file for duplication.

P/N 97100-9002-000-14 Ver 06/05

10.2-1

Recipe Problems

Advanced Dicing Technologies Ltd.

10.2-2

10.3

10.3.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Initializing the System

Initializing the System

When a problem occurs in the Model 7100, the user can try to solve the problem by re-initializing the System. This will often solve the problem and enable normal operation to resume.

Before re-initializing the whole system, it is recommended to first try re-

initializing a specific system component (see section 10.3.1), then the Dicer,

and only if the problem persists, the whole system.

Caution: It is recommended to remove the Workpiece, if present, from the

Cutting Chuck before running the initialization routine.

Note: For systems equipped with an Autoloader, refer to the Autoloader

Manual.

To Initialize the System:

From the User menu, select System Init.

Note: The System can also be initialized by clicking Dicer Init in the Saw screen of the Setup & Diagnostics workbook, or by right-clicking the Dicer

Status Indicator (see Chapter 2) and selecting (Dicer) Init from the popup menu displayed.

Initializing Dicer Components

When a problem occurs in a component of the Model 7100, the User can try to solve the problem by reinitializing that particular component. This will often solve the problem and enable normal operation to resume.

To Initialize Dicer Components:

1 Remove the Workpiece, if present, from the Cutting Chuck.

2 Click in the toolbar to display the Setup & Diagnostics workbook.

P/N 97100-9002-000-14 Ver 06/05

10.3-1

Initializing the System

3 From the Setup & Diagnostics tree, select Saw > Dicer to display the following:

Figure 10-2: Subsystem Initialization Screen

4 Click Init Z initialize the Z-Axis.

5 Initialize the X, Y and T (Theta) axes by clicking the buttons provided.

The X, Y and T axes may be initialized in any order.

6 Click Init Spindle to initialize the Spindle.

7 Click Init Vision to initialize the Vision System

Note: While Dicer components must be initialized in the order described above, there is no need to wait for one initialization procedure to finish before performing the next one.

Advanced Dicing Technologies Ltd.

10.3-2

10.4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Height Problem

Height Problem

If there is a problem with performing a Height process, and it can neither be solved by Blade Change, nor it is a hardware problem (the Height device is functioning properly), then try performing a sample Blade Calibration procedure.

Note: Carefully read the instructions on how to perform this procedure.

P/N 97100-9002-000-14 Ver 06/05

10.4-1

Height Problem

Advanced Dicing Technologies Ltd.

10.4-2

10.5

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Database Restoration and PC Recovery

Database Restoration and PC Recovery

If when powering up the system, the Database Restore screen is displayed,

use the instructions given in section 3.1.1.1.

All the 7100 Series machines starting from version 4.3 are supplied with an Image disc, providing a complete backup of the PC hard drives

(including the database). The Image disc, together with the Ghost software

(supplied on a floppy disc), enables the user to restore the Software and the

Operating System in case of a crash.

If the database problem persists, use instructions given in the Model 7100

Maintenance Manual, regarding the PC recovery and the Database restoration. Contact ADT field service.

P/N 97100-9002-000-14 Ver 06/05

10.5-1

Database Restoration and PC Recovery

Advanced Dicing Technologies Ltd.

10.5-2

10.6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Camera Installation After Emergency Stop

Camera Installation After Emergency Stop

After using the Emergency Stop, the following message may appear:

For correct and proper functioning of the System, follow the camera installation procedure given below:

1 Click No on the MIL DLL Message and Exit to Windows.

2 On the Desktop, right-click the My Computer icon and select

Properties. System Properties window appears:

3 Select Hardware > Device Manager.

P/N 97100-9002-000-14 Ver 06/05

10.6-1

Camera Installation After Emergency Stop

4 In the Device Manager, double-click Imaging Devices.

5 Right-click on 1394 Digital Camera and select Uninstall. The

Confirm Device Removal dialog box appears.

6 Click OK.

7 Close all the windows.

8 Right click My Computer icon and select Properties. System

Properties window appears.

Advanced Dicing Technologies Ltd.

10.6-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Camera Installation After Emergency Stop

9 Select Hardware > Add Hardware Wizard. Add Hardware

Wizard appears.

10 Click Next. Found New Hardware Wizard appears.

Note: Make sure, that Install the software automatically (Recommended) check box is checked.

P/N 97100-9002-000-14 Ver 06/05

10.6-3

Camera Installation After Emergency Stop

11 Click Next. Hardware Installation dialog box appears.

12 Click Continue Anyway.

13 In the Completing the Found New Hardware Wizard window, click Finish.

During the installation process, the Found New Hardware label appears in the Taskbar.

Advanced Dicing Technologies Ltd.

10.6-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Camera Installation After Emergency Stop

Once the installation process is completed, the Completing the Add

Hardware Wizard window appears.

14 Click Finish.

15 Close all windows.

16 Restart the computer.

If Nothing Helps

As in most computerized systems, not all the problems, which occur while running the Model 7100, are identifiable. If the steps, suggested in the

Troubleshooting field of the error messages do not solve the problem, powering the system down and then back up can be a solution.

KMI and Database

The Model 7100 software has two fundamental components: the KMI software and the Model 7100 Database. Higher level troubleshooting may require access to these components. Contact ADT for details.

P/N 97100-9002-000-14 Ver 06/05

10.6-5

Camera Installation After Emergency Stop

Advanced Dicing Technologies Ltd.

10.6-6

10.7

10.7.1

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

If Nothing Helps

If Nothing Helps

As in most computerized systems, not all the problems, which occur while running the Model 7100, are identifiable. If the steps, suggested in the

Troubleshooting field of the error messages do not solve the problem, powering the system down and then back up can be a solution.

KMI and Database

The Model 7100 software has two fundamental components: the KMI software and the Model 7100 Database. Higher level troubleshooting may require access to these components. Contact ADT for details.

P/N 97100-9002-000-14 Ver 06/05

10.7-1

If Nothing Helps

Advanced Dicing Technologies Ltd.

10.7-2

10.8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

UPS Bypass

UPS Bypass

The following procedure covers the situations of UPS battery Discharge or

Failure.

Caution: if the UPS is bypassed the PC may be damaged by a loss of power.

This procedure defines the steps that should be taken to bypass the UPS in the 7100 Software.

Caution: This process must be finished within 110 seconds.

To Bypass the UPS in case of its Discharge or Failure

1 Verify that the Windows is UP.

2 Start the 7100.

3 Press Alt+Ctrl+Delete to open the Windows Task Manager.

4 Click the Application Tab.

5

Mark "7000 Dicing System" and click End Task (see Figure 10-3).

6 Click End Task in the additional dialog window.

Figure 10-3: Stopping the 7100 Software

7 Click Start > Settings > Control Panel > Services.

P/N 97100-9002-000-14 Ver 06/05

10.8-1

UPS Bypass

8 In the Services screen, mark PowerMon II and click Stop

(see Figure 10-4). The status changes from "Started" to " __ " (empty).

Figure 10-4: Stopping the PowerMon II

9 Click Start in the Services window.

10 Change the Startup Type from Automatic to Disable (see Figure 10-5).

Advanced Dicing Technologies Ltd.

10.8-2

11 Click OK.

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

UPS Bypass

Figure 10-5: Changing the Startup Type

12 Click the Dicing System icon in the Desktop to start the 7100 GUI and operate the machine.

13 After replacing the UPS, change the Startup Type (see step 10 and

Figure 10-5) back from Disable to Automatic.

14 Click Start in the Services window (services control will pop up and the status will change from "_________" to Started).

15 Click Close to close the Service windows.

P/N 97100-9002-000-14 Ver 06/05

10.8-3

UPS Bypass

Advanced Dicing Technologies Ltd.

10.8-4

A

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

The Model 7100 Glossary

APPENDICES

This chapter includes the following appendices:

Appendix 1: “The Model 7100 Glossary”

Appendix 2: “Algorithms”

Appendix 3: “Recipe Parameters”

Appendix 1: The Model 7100 Glossary

Access Level

Categories that permit or deny to Users the right to perform specific activities, view or change program specific parameters.

Administrator

The highest Access Level. See also Access Level

.

Align Kerf Model

Orientational referencing model based on a performed cut position and not

on the eye-points, as opposed to Die Model .

Alignment

Precise rotation of the Workpiece in relation to the

X-Axis (on the

Cutting

Chuck ) in preparation for cutting.

Alignment Types

Classification of alignment conditions by category.

Angle

A set of parallel streets on a Workpiece. See

Channel .

Auto Mode

Semi-automatic System operation which requires no User intervention

during processing, other than placing and removing the Workpiece on the

Cutting Chuck .

Axis

(plural: Axes)

Coordinates along which System components move; as well as the (Axis) components themselves.

Blade

A sharp sawing tool that cuts Workpieces by rotating at high speed in an upright position. Blades are classified into two main categories: see

Hub

Blade

and

Hubless Blade .

Blade Center

The center of the Cut-line ( Kerf ).

Blade Exposure

See

Exposure .

Blade Properties

P/N 97100-9002-000-14 Ver 06/05

A-1

The Model 7100 Glossary

The characteristics of a particular Blade .

Block

A series of cuts which are defined in a recipe (0/1, 90/2, 90/3 etc).

Button Height

See

Height .

Channel

Set of parallel streets. There are usually two channels (CH1 and CH2) on each

Workpiece

, located at 90-degree angles to each other. The Workpiece is completely cut in one channel and then the

Cutting Chuck is rotated 90

degrees to enable cutting in the other channel. See

Angle

.

Chipping Area

The area of chipping measured on either side of the

Kerf .

Chuck

Rotating table on which a Workpiece is mounted and held in place by

vacuum during processing.

Chuck Height

See

Height .

Configuration

Defines the particular arrangement, presence or absence of System components (such as Mechanical Height Button or Non-Contact Height

Device).

Cross-Point

Street center intersection.

Cut Depth

The depth to which the

Blade

is inserted into the Workpiece measured

from its top surface.

Cut-Line

The cutting path; the

Kerf

.

Cutting Chuck

The table on which the Workpiece is mounted and held by vacuum during

cutting.

Cutting Table

See

Cutting Chuck .

Developer

ADT software development personnel.

DI Water

De-ionized water.

Dice

(1) To cut a

Workpiece into segments. (2) Plural of die (see

Die

).

Die

Advanced Dicing Technologies Ltd.

A-2

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

(plural: Dice)

That portion of a

Workpiece which has been cut into a segment separate

from the Workpiece.

Die Model

Reference eye-point used in two-point alignment.

Downcut

The Blade enters the

Workpiece from the top and exits from the bottom.

Dress

To prepare a Blade for use by cutting it into a dedicated Dressing block in

order to condition the

Blade

for cutting.

Dress Station

An optional Dicer component intended to

Dress the

Blade as part of a

process program.

Engineer

The second-highest Access Level. See also Access Level

.

Exposure

The amount of the

Blade edge that is usable for cutting.

Feed Rate

The speed at which the Workpiece on the

Cutting Chuck is moved into the

Blade

.

Flange

The wheel that holds a

Hubless Blade in place on the Spindle Shaft.

Flow Control

The rate at which the s sprays water on the blades to cool and clean them in preparation for cutting.

Frame

The ring that holds the tape on which a Workpiece is mounted.

Height

The Height procedure is performed in order to determine Chuck position along the

Z-Axis . Height is performed by lowering the Spindle until the

edge of the

Blade

makes contact with either the

Cutting Chuck or the

Height Device. Height is updated regularly by the System in order to compensate for differences in Z position due to Blade wear.

There are four types of Height procedures:

1 Chuck Height determines Chuck position by lowering the

Blade onto

the Cutting Chuck .

2 Button Height determines Chuck position by lowering the Blade until the makes contact with the Mechanical Button and the System detects an electrical shortage.

P/N 97100-9002-000-14 Ver 06/05

A-3

The Model 7100 Glossary

3 Non-Contact Height Secondary Device detects if the beam is obstructed by the

Blade

.

4 Chuck to Non-Chuck Delta Measurement measures the difference between Chuck Height and Button Height/NCHD.

5 Sample Blade Calibration, performed after Spindle adjustment or replacement, uses a new

Blade

of known diameter to set the benchmark Chuck position value, which is then used during operation to determine the accurate exposure of the current

Blade

by performing

Chuck or Button Height.

Hub Blade

A circular Blade

that has an integral center section and which therefore does not need a flange to hold it in place.

Hubless Blade

A circular Blade

that consists only of a cutting surface and which must be held to the Spindle Shaft with an external flange.

Initialization

Also known as homing

The act of finding the specific points for the different Axes and components.

Inspection

The act of stopping the cutting process for the purpose of inspecting the quality of the cut.

Kerf

The cut made in a Workpiece by a

Blade .

Kerf Check

Visual inspection of the Kerf . Can be performed manually or automatically

by the Pattern Recognition System (PRS).

Load Monitoring

Enables the User to measure the load on the Spindle (measured in Amps)

caused by resistance encountered by the Blade

during operation.

Login

Enables use of the System according to the designated

Access Level .

Loop Cut

A repetition of a cut or Block .

Manual Mode

Requires User intervention for procedures, for example, Manual

Alignment.

Mechanical Button

A Height Device onto which the

Blade is lowered while performing Button

Height. The Blade height is computed at the point where the Blade makes

contact with the flat surface of the Mechanical Button.

Advanced Dicing Technologies Ltd.

A-4

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Mixed

The workpiece is cut in both directions, i.e. it is fed in the right-to-left direction at one index and left-to-right at the next index.

Model

(also known as eyepoint or fiducial)

A set of points which constitute a pattern, located on the Workpiece , and

used by the Vision System for locational and orientational referencing. See also

Die Model and

Align Kerf Model

.

Model Scoring

Rating an Alignment Model in order to determine reliability of the recognizable patterns.

Model Teaching

See

Teaching

.

Non-Contact Height (Optical)

The Blade is lowered into a light beam emitted from the Non-Contact

Height Device. The

Blade height is computed at the point where the light

beam is blocked.

Operator

The lowest Access Level; can perform only basic operations. See also

Access

Level

.

Override

Dressing a

Blade

while cutting a regular Workpiece. Initial cutting speed is reduced and gradually returns to regular cutting speed in accordance with the steps programmed by the User.

Pattern Recognition System (PRS)

The aspect of the Vision System that learns and identifies patterns to be used as locational reference points.

Recipe

Setting algorithm or parameter that controls the operation of the Model

7100. Recipe can be either assigned to an individual Workpiece, or to an unlimited number of Workpieces that share the same characteristics.

Setup

(1) The preparation and adjustment of the System or any of its components to perform its assigned tasks. (2) The set of parameters that are defined for components in order to prepare and adjust them to perform their assigned tasks.

Street

Usually the path in which to cut. Streets are physically predefined during

Workpiece

manufacture.

Substrate

See

Workpiece .

P/N 97100-9002-000-14 Ver 06/05

A-5

The Model 7100 Glossary

Supplier

ADT production personnel, field engineers and customer support personnel.

Table

Rotating platform on which a

Workpiece

is mounted and held in place by vacuum during processing.

Teaching

The System is taught Models. In Teach Alignment, the System is taught to find the center of the streets to be cut and in Teach Kerf Check, the System is taught which part of the kerf to inspect.

Technician

(formerly known as Keeper)

Middle-rank Access Level. Technicians have received training and are experienced in performing the maintenance of the System. See also

Access

Level

.

Theta (T) Axis

Theta components rotate around the T Axis. See also

Axis . Also referred to

as Turntable, on which the cutting chuck is mounted.

UPS

(Un-interrupted Power Supply)

The backup power source that allows completion of the currently running operation in the case of power failure.

Uni-directional Cutting

All cutting is performed in one direction (the Workpiece

is fed into the rotating Blade from left to right).

Upcut

The Blade

enters the Workpiece from the bottom and exits from the top.

User

A general term to describe any person who operates, adjusts or maintains

the System, regardless of Access Level. See also Access Level

.

Wash Pipe

A metal pipe mounted on the Dicer and intended for cleaning the

Workpiece

before, after or while dicing.

WMax

Maximum

Kerf

width.

WMin

Minimum Kerf width.

Work

Workpiece

(s).

Workpiece

Also known as a wafer, substrate, semiconductor material or work.

Advanced Dicing Technologies Ltd.

A-6

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

X-Axis

X-Axis components move left and right. See also Axis .

Y-Axis

Y-Axis components move front and back. See also

Axis .

Y Offset

The deviation of the

Blade Center

from the Camera/Vision System Center.

Y Offset Correction

Automatic compensation and correction for deviation of the Blade center

from the Camera/Vision System Center.

Z-Axis

Z-Axis components move up and down. See also

Axis .

P/N 97100-9002-000-14 Ver 06/05

A-7

Algorithms

Cut Algorithms

Appendix 2: Algorithms

The Model 7100 software contains the algorithms described in the following sections. Each section describes an algorithm and the compulsory parameters that must be defined in order for the algorithm to function. For more information about the function of algorithms and selecting

algorithms in Recipes, see Chapter 5. For a detailed description of each

parameter, see Appendix 3. The following algorithms are described in this

appendix:

Cut Algorithms

Align Algorithms

Kerf Check Algorithm

Bright Kerf Algorithm

Full Teach Alignment Algorithm

Kerf Check Teach Algorithm

Cut Algorithms

The Cut algorithm controls the manner in which cutting is performed by the System. The following Cut algorithms can be selected:

Standard APC

Standard Dressing

Standard GPC

Standard APC

The Standard APC algorithm offers an advance method for dicing complex

Workpieces. Workpieces diced with this algorithm can include multiple angles (blocks), with each angle containing a defined series of cuts. For each series of cuts, the User can define:

• Cut position (reference point)

Cut length

Cut index

Number of repetitions

The Standard APC algorithm makes this level of definition possible by making use of loop cutting. Loop cutting involves the repetition of a cut or series of cuts. For this reason, the Standard APC algorithm is often used to control the cutting process when working with irregular shaped

Workpieces, multiple Workpieces on a single frame or Workpieces that require special processing. The Standard APC algorithm can also be used

Advanced Dicing Technologies Ltd.

A-8

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Align Algorithms to cut regular round or rectangular Workpieces placed in the center of the

Cutting Chuck.

Standard Dressing

The Standard Dressing algorithm is used to control the Blade Dressing procedure. It is used for both dressing Workpieces and dressing blocks. For

more information about Blade Dressing, see Chapter 7.

Note: The Standard Dressing algorithm is applicable only when using a dressing block or workpiece mounted on the Chuck as the dressing medium.

Standard GPC

The Standard GPC algorithm is used to control the cutting process when working with round or rectangular Workpieces placed in the center of the

Cutting Chuck. In Standard GPC, once the Index and reference point have been defined for a Workpiece, it is possible to perform all the necessary cuts in that Workpiece.

Align Algorithms

The Align algorithms control the manner in which the System performs

Auto Alignment and Alignment on a Workpiece. The following Align algorithms can be selected:

Full Auto Alignment

Full Dress Alignment

Full Auto Alignment

The Full Auto Alignment algorithm is used to control the Auto Alignment procedure. Auto Alignment can only be performed once Alignment has been taught.

There are no compulsory parameters that have to be included in the Recipe in order for Auto Alignment to be performed, since all necessary parameters are generated by the Full Teach Alignment procedure.

However, it is recommended that the default values assigned to the parameters when they are generated be modified as necessary.

Note: Do not change the following parameters: Alignment X-Shift, Alignment

Y-Shift, Align Exact Angle, Align Points No and Alignment Taught.

Full Dress Alignment

The Full Dress Alignment algorithm is used to control the Alignment procedure on a Dressing Workpiece. Full Dress Alignment can only be performed once Alignment has been taught. In order for Full Dress

P/N 97100-9002-000-14 Ver 06/05

A-9

Algorithms

Kerf Check Algorithm

Alignment to be performed, the Align Type parameter must be specified as Dress Manual Once.

Note: The Full Dress Alignment algorithm is applicable only when using a dressing block or workpiece mounted on the Chuck as the dressing medium.

Kerf Check Algorithm

The Kerf Check algorithm controls the manner in which the System performs Kerf Checking on Workpieces. Kerf Checking can only be performed once the Teach Kerf Check procedure has been completed. There are no compulsory parameters that have to be included in the Recipe in order for Kerf Checking to be performed, since all necessary parameters are generated by the Teach Kerf Check procedure. However, it is recommended that the default values assigned to the parameters when they are generated be modified as necessary.

There is no need to change the values of the Head Taught parameter.

Note: The values of the following parameters can only be adjusted downwards: Kerf Checks Per Cut and Kerf Checks per Area.

Bright Kerf Algorithm

Note: This algorithm is available only when a specially designed Illuminated

Chuck is installed and configured on the system.

By means of this algorithm, the Model 7100 software causes the system to search for the cutting area according to dark-bright-dark sections, which means once the system receives a pattern of dark section-bright sectiondark section on the wafer, the system knows how to process the image. In order for the Bright Kerf algorithm to function, Bottom Illumination must be installed on the system and enabled under the User

Configuration Options.

Full Teach Alignment Algorithm

The Full Teach Alignment algorithm controls the manner in which

Alignment is taught to the System. In order for the Full Teach Alignment algorithm to function, the following parameters must be included in the

Recipe:

Align category

Align-Cut Sequence

Angle Difference Tolerance

Index

Advanced Dicing Technologies Ltd.

A-10

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Check Teach Algorithm

• Type

Wafer Mounting Angle Tolerance

Once the Full Teach Alignment procedure has been performed, some parameters are automatically generated and included in the Recipe, and default values assigned. These default values can be changed before performing the Alignment procedure.

Kerf Check Teach Algorithm

The Kerf Check Teach Algorithm controls the manner in which Kerf

Checking is taught to the System. For more information about Kerf

Checks, see Chapter 6. There are no compulsory parameters that have to

be included in the Recipe in order for Kerf Check Teach to be performed, however, it is recommended that the following two parameters be included in the Recipe:

Kerf Check category

Area

No. Checks per Cut

Once the Teach Kerf Check procedure has been performed, the following parameters are automatically generated and included in the Recipe, and assigned default values. These default values can be changed before performing the Kerf Check procedure.

P/N 97100-9002-000-14 Ver 06/05

A-11

Recipe Parameters

Air Parameters

Category

Air

Air

Appendix 3: Recipe Parameters

The Model 7100 software contains the parameters described in the following sections. Parameters are listed alphabetically by category.

For information about how to specify parameters and adding parameters to

Recipes, see Chapter 5.

Note: When defining parameters in a Recipe (for example, Index), the User can select a different unit of measurement for each parameter, including: millimeters inches mils centimeters meters microns

• degrees radians

The Possible Values provided for each parameter in this Appendix are rendered in millimeters, unless otherwise specified.

Air Parameters

Table A-1 lists the Air parameter available in the Model 7100. This

parameter is used for the air puff feature employed by the System when unloading Workpieces from the Cutting Chuck.

Parameter

Stop Air After Air

Puff

Unload Air Puff

Table A-1: Air Parameters

Description

Defines whether or not to stop the air puff after the

Unload Air Puff time has elapsed.

Possible Values:

Yes (Default); No

The duration (in sec.) of the air puff used for releasing

Workpieces from the Cutting Chuck.

Possible Values: min = 0, max = 100, Default = 2

Advanced Dicing Technologies Ltd.

A-12

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Align Parameters

Category

Align

Align

Align

Align

Align

Align

Align

Align Parameters

Table A-2 lists the Align parameters available in the Model 7100. Align

parameters are used to define how Alignment is performed.

Table A-2: Align Parameters

Parameter

Align-Cut

Sequence

Angles Difference

Tolerance

Area

Center Coordinate X

Center Coordinate Y

Copy From Angle

Final Accuracy

Description

The sequence of the cutting process.

Possible Values:

Align, Align Cut, Cut (default): Align all angles and then cut all angles (A,AC,C).

Align, Cut, Align, Cut: Align first angle and cut it, align second angle and cut it, and so on (A,C,A,C).

The maximum acceptable deviation (in degrees) between the X, Y and Theta axes.

Possible Values: min = 0.001, max = 10

The percentage length of the Workpiece where

Alignment is performed.

Possible Values: min = 10, max = 100, Default = 80

The place where the User defines the center of the substrate along the x-axis (used by the camera in

Teach Center, see Table A-27).

Possible Values: min = -300, max = 300, Default = 0

The place where the User defines the center of the substrate along the y-axis (used by the camera in

Teach Center, see Table A-27).

Possible Values: min = -300, max = 300, Default = 0

Defines from which previous angle the cut information is copied.

The maximum misalignment (in microns) permitted after Alignment. This amount represents the final accuracy to be achieved by Alignment procedure.

Possible Values: min =.001, max =.99, Default =.01

P/N 97100-9002-000-14 Ver 06/05

A-13

Recipe Parameters

Align Parameters

Category

Align

Align

Align

Align

Align

Align

Align

Align

Parameter

Initial X-Shift

Initial Y-Shift

Low Alignment

Verification

Low Model

Enabled

Low Model High

Score (%)

Table A-2: Align Parameters

Index Tolerance

Initial Focus-Shift

Initial Theta-Shift

Description

The permitted variation between the index found during Alignment and the index specified in the

Recipe.

Possible Values: min =.001, max = 900, Default =.01

The relative position of the Z-Axis that provides an acceptable default focus. (This can be used when the thickness of the Workpiece is changed after

Alignment has been taught. Instead of reteaching

Alignment, the User can use the simpler and faster process of updating the focus.)

Possible Values: min = -20, max = 20, Default = 0

The difference in the Theta Axis position (in degrees) between the current Workpiece and the taught

Workpiece.

Possible Values: min = -300, max = 300, Default = 0

The difference in the X-Axis position between the current Workpiece and the taught Workpiece.

Possible Values: min = -300, max = 300, Default = 0

The difference in the Y-Axis position between the current Workpiece and the taught Workpiece.

Possible Values: min = -300, max = 300, Default = 0

When set to Yes, the System performs Alignment by

Low Model until the final accuracy value is reached.

It is recommended to set this parameter to Yes, when the Align Kerf Model is used as the Main Model.

Default value: No

If set to "Yes", the option to teach and use the Low

Models in the second angle is enabled.

Possible Values: "Yes", "No"

Should be set to "Yes"

The threshold value after which the verification of the model is not required

Possible Values: 50% - 100%

Should be set to 70%

Advanced Dicing Technologies Ltd.

A-14

Category

Align

Align

Align

Align

Align

Align

Align

Align

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Align Parameters

Table A-2: Align Parameters

Parameter Description

Main Model High

Score (%)

The threshold value after which the verification of the model is not required

Possible Values: 50% - 100%

Should be set to 70%

Main to Sub model accuracy

It defines the accuracy to accept low threshold model as a valid model based on the sub model.

Possible values:

1 - 50 µm

Default - 2 µm

Maximum No. of

Iterations

Recover Option

The amount of times the system will repeat the alignment in order to enter Align - Final Accuracy.

Possible Values: min = 0, max = 10, Default = 0

The action taken by the 7100 if Alignment fails or the

Model is not found.

Possible Values: Manual; Reject

Manual (default): Waits for User intervention, for example, for the User to find the Model.

Settling Time

Spiral Search

Length (X)

Spiral Search

Width (Y)

Spiral-Index

Search Length (X)

The amount of time the Workpiece is allowed to dry before Alignment begins.

Possible Values: min = 0, max = 20, Default = 0

The length of the spiral search area within the Index.

Defined per Angle.

Possible Values: min = 0, max = 50, Default = 5

The width of the spiral search area within the Index.

Defined per Angle.

Possible Values: min = 0, max = 50, Default = 5

The length of the spiral search area outside the Index.

When the System fails to find a Model, it makes a spiral search around the area. The parameter is defined per Angle.

Possible Values: min = 0, max = 300, Default = 50

P/N 97100-9002-000-14 Ver 06/05

A-15

Recipe Parameters

Align Parameters

Category

Align

Align

Align

Align

Parameter

Spiral-Index

Street Index

Sub Model High

Score (%)

Taught

Table A-2: Align Parameters

Search Width (Y)

Description

The width of the spiral search area outside the Index.

When the System fails to find a Model, it makes a spiral search around the area. The parameter is defined per Angle.

Possible Values: min = 0, max = 300, Default = 50

During the Teach Index procedure, this parameter is updated according to the Cut Index of the second angle. Only relevant if Street is selected as the Align

Type.

Possible Values: min = 0.1, max = 300, Default = 1

The threshold value which serves for model verification

Should be set to 80% or higher

Whether Alignment has been taught. If Alignment has already been taught, the User can teach it again and override or update existing parameters. Defined per

Angle.

Possible Values:

Yes, No (default)

Advanced Dicing Technologies Ltd.

A-16

Category

Align

Align

Align

Align

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Align Parameters

Parameter

Type

Use Model Angle

Verification

Table A-2: Align Parameters

Verify All Models

Description

The way Auto Alignment is performed. Defined per

Angle.

Possible Values:

No (default): No Alignment is performed on the

Workpiece. The center of the Cutting Chuck is used as a reference point or the previous taught alignment.

Manual: The User must perform Manual Alignment.

Street: Auto Alignment is performed by finding a

Model (repeating pattern) along a Street.

2-Points: Auto Alignment is performed by finding two different Models at two pre-defined locations.

V-Street: Similar to the Street Align Type but performed on the vertical Y-Axis.

V-2-Points: Auto Alignment is performed by finding a

Model on the vertical Y-Axis that is repeated at two defined locations.

Dress Manual Once: Type of Manual Alignment performed on a Dressing Workpiece (relevant only for dressing recipes).

Copy-From: Dicing is performed using the same Cut

Position defined for the previous Angle.

Copy-From Ref: The user has to define a cut position for this angle.

Whether to roughly align the Workpiece using the first

Model found before continuing with the Alignment process. This option is used (1) when the mounting angle is unknown or is larger than the Wafer Mounting

Angle Tolerance or (2) when the model is clear and has a defined orientation.

Possible Values:

Yes (default), No

Whether the Model 7100 should confirm Alignment by finding two Models to re-check Alignment accuracy.

Possible Values:

Yes, No (default)

Whether the Model 7100 should confirm Alignment by bringing each Model in turn to the center of the FOV and performing Find. This option is rarely used unless there is a problem with the axes or pixel.

Possible Values:

Yes, No (default)

P/N 97100-9002-000-14 Ver 06/05

A-17

Recipe Parameters

Align Kerf Model Parameters

Category

Align

Align

Align

Parameter

Table A-2: Align Parameters

Vertical Manual

Alignment

Verification

Wafer Mounting

Angle Tolerance

Description

When a vertical Alignment Type is specified, whether manual Alignment is still horizontal.

Possible Values:

Yes, No (default)

Whether the Model 7100 should confirm Alignment by finding two Models to re-check Alignment accuracy.

Possible Values: Yes, No (default)

For Cree purposes this parameter should be set to

Yes.

The maximum acceptable deviation (in degrees) between horizontal Streets and the horizontal edge of the frame holding the Workpiece.

Possible Values: min = 0.01, max = 30, Default = 3

Align Kerf Model Parameters

Table A-3 lists the parameters in the Align Keft Model category.

Category

Align Keft

Model

Align Kerf

Model

Align Kerf

Model

Align Kerf

Model

Table A-3: Align Keft Model Parameters

Parameter

Kerf Model Mask

Box Width*

Kerf Model W-min*

Kerf Model W-max*

Kerf Model

Processing Iteration

Description

Defines the Kerf model masking width (Y direction value). Should be added to each angle in the recipe.

Units [mm], Min = 0, Max=1 default=0

Defines the minimum allowed kerf width for "Align

Kerf Model”. If the actual kerf width is below the defined value, the software fails to find the "Align Kerf

Model” and displays an error message. Should be added to each angle in the recipe.

Units [mm], Min = 0.005, Max = 1, Default 0.01

Defines the maximum allowed kerf width for "Align

Kerf Model”. If the actual kerf width is above the defined value, the software fails to find the "Align Kerf

Model” and displays an error message. Should be added to each angle in the recipe.

Units [mm], Min = 0.005, Max = 1, Default 0.02

Defines the number of iterations for each filter defined in the Processing Method. This feature follows the same principles as those of sub-indexes.

Possible Values: min = 1, max = 20, Default = 1

Advanced Dicing Technologies Ltd.

A-18

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Auto Height Compensation

Category

Align Kerf

Model

Align Kerf

Model

Kerf Model

Processing

Methods

Table A-3: Align Keft Model Parameters

Parameter

Cut Position

Centering

Description

Defines the algorithm to be used. It works like sub indexes. Read the chapter describing each filter.

Optional values: Close Morphology, Open

Morphology, Vertical Edge Filter, Horizontal Edge

Filter, Smooth Filter.

Configures the machine to cut in the center of the kerf and ignore the learned cut position. (The default value is No).

* These parameters are available for each module (Low, Main, Sub, and

Verification) separately.

Auto Height Compensation

Table A-4 lists the parameters are involved in activating and using the

Auto Height Compensation feature.

Category

Height

Compensation

Height

Compensation

Height

Compensation

Height

Compensation

Table A-4: Auto Height Compensation Parameters

Parameter

Activate

Compensate

Cut Depth

Tolerance

Rate

Description

Activates the exposure calculation and teaching process. The information is used only if the

Compensate parameter is enabled.

Possible values:

Yes, No (default)

Toggles the compensation process ON/OFF.

Possible values:

Yes, No (default)

Determines the depth tolerance in microns by which the calculations take place. A high tolerance value means that the exposure calculations are more easily made, at the expense of accuracy.

Possible values:

5 - 500 microns, default: 10

Determines the rate in which non contact height procedure is performed, by effecting the Height Rate parameter. The non contact height results are used to calculate blade exposure.

Possible values:

1 (default) - 3

P/N 97100-9002-000-14 Ver 06/05

A-19

Recipe Parameters

Average Index Parameters

Average Index Parameters

Table A-5 lists the parameters in the Average Index category.

Category

Table A-5: Average Index Parameters

Parameter

Average Index Active

Average Index Extend

Average Index Index Tolerance

Average Index Nominal Distance

Description

When set to Yes, the system calculates the Average

Index between the Start Index and Stop Index and defined category

Optional values: Yes, No (default)

When set to Yes, the system uses the calculated

Average Index throughout the cut map. The cut map can be extended to cover unmapped areas. The extension is based on the closest mapped area, for which the Average Index was calculated (see

Figure 6-22).

Optional values: Yes, No (default)

Defines the tolerance for acceptable value of calculated index based on original value (defined by the user in the cutting index for each angle in the recipe).

If the calculated value exceeds the tolerance value, the system fails to build a cut map, and an error message is displayed. The user should check the actual index and update the value of the expected index or tolerance.

Possible values: min=.001, max=1, Default=.015

Defines the assumed, or estimated, distance between the highest and lowest points along the Y-Axis, between which the streets are located. It enables measuring a vertical distance between two cut-verify models and calculating an average index. This feature is based on the existing Average Index State

Machine.

Possible values: min=0, max=300, Default=95

Defines the number of Cut Verify models used to calculate the Average Index.

Since the measurement takes place between a single high point and a single low point along the Y-Axis, the user selects the value: 1

Two Cut Verify models can be taught only if the

Rotational Shrinkage category is activated.

Optional values: 1, 2 (default)

Advanced Dicing Technologies Ltd.

A-20

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Bar Code Parameters

Category

Average Index Y Range

Table A-5: Average Index Parameters

Parameter

Average Index Start Index

Average Index Stop Index

Description

Defines the position, from which the system will start calculating the Average Index using the Cut Verify models.

Units: Index

Possible Values: min = 1, max = 5000, Default = 1

Defines the position, from which the system will stop calculating the Average Index using the Cut Verify models.

Units: Index

Possible Values: min = 3, max = 5000, Default = 3

Defines the subgroups within the area between the

Start Index and Stop Index, according to which the system calculates the Average Index for the specific group.

Possible Values: min = 1, max = 5000, Default = 2

Bar Code Parameters

Table A-6 lists the Bar Code parameters. Blade parameters are used to

define the permitted wear of the Blade.

Category

Bar Code

Reader

Table A-6: Bar Code Reader Parameters

Parameter

Activate

Description

Activates the Bar Code feature for Multi-Panel.

Possible Values:

No (default), Yes

P/N 97100-9002-000-14 Ver 06/05

A-21

Recipe Parameters

Blade Parameters

Category

Blade

Blade

Blade

Blade

Blade

Blade Parameters

Table A-7 lists the Blade parameters. Blade parameters are used to define

the permitted wear of the Blade.

Parameter

After Change

Treatment

Min Exposure

Warn Delta

Table A-7: Blade Parameters

Max Wear Rate

Min Exposure Left

Warn Cut Length

Description

Whether to perform Dressing, Override or neither after a Blade Change.

Possible Values:

None (default), Override, Dressing

The maximum amount the Blade can wear down within a specified cut length.

Possible Values: min = 0, max = 100, Default = 0

The minimum exposure permitted before a Blade stops cutting.

A value must be specified for this parameter and Min

Exposure Warn Delta OR Max Wear and Max Wear

Warn Delta.

Possible Values: min = 0, max = 100, Default =.1

The minimum exposure on the Blade that triggers a warning.

This parameter should be specified with Min

Exposure Left.

Possible Values: min = 0, max = 100, Default =.1

The maximum cut length permitted before the Blade must be changed.

Possible Values: min = 0, max = 1E+06, Default = 1E+06

Advanced Dicing Technologies Ltd.

A-22

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Cut Depth Comp

Category

Cut Depth

Comp

Cut Depth

Comp

Cut Depth

Comp

Cut Depth

Comp

Cut Depth

Comp

Cut Depth

Comp

Cut Depth Comp

Table A-8 lists the Cut Depth Comp parameters. The Cut Depth Comp

parameters define values used as compensation when cutting with Bevel

Blades.

Activate

Blade Angle

Factor

Shift Depth Every

Angle

Table A-8: Cut Depth Comp Parameters

Parameter

Min Cut Depth

Max Cut Width

Min Cut Width

Description

Whether to perform Cut Depth Compensation.

Possible Values:

Yes, No (default)

The number by which you divide the amount of compensation in order to determine by how much you need to lower the Z-Axis.

Possible Values: min = 0, max = 10, Default = 0

The minimum permitted variation in cut depth.

Possible Values: min = 0, max = 1, Default = 0

The maximum permitted cut width.

Possible Values: min = 0, max = 1, Default = 0

The minimum permitted cut width.

Possible Values: min = 0, max = 1, Default = 0

The amount by which the Z-Axis is moved during the

Turntable rotation to compensate for shifts in the

Cutting Chuck. The default value of 0 is recommended.

Possible Values: min = -1, max = 1, Default = 0

P/N 97100-9002-000-14 Ver 06/05

A-23

Recipe Parameters

Cut Parameters

Category

Cut

Cut

Cut

Cut

Cut

Cut

Cut

Cut Parameters

Table A-9 lists the parameters in the Cut category. Cut parameters define

the way Workpieces are cut in the Model 7100.

Table A-9: Cut Parameters

Parameter Description

Chopping Velocity

Chopping Z Start

The speed of the Z-Axis (mm/sec) when performing a chop into a Workpiece. Usually performed with the

Standard APC algorithm.

Possible Values: min =.05, max = 2, Default =.1

The height above the workpiece, at which the spindle switches to the chopping velocity.

Default = 20 mil (0.5 mm)

Copy All Cut Map

Cut Depth

When set to Yes, all the cut information, including shrinkage, average index and cut angle are copied and used.

When set to No, only the absolute angle is copied and used (this is similar to the method before the feature update).

The distance along the Z-Axis between the top of the

Workpiece and the cutting edge of the Blade in its cutting position.

Possible Values (mm): min =.001, max = 8, Default =.1

Cut Entry Speed

Cut Exit Speed

Cut Length

The speed of the Cutting Chuck (mm/sec) in the X direction during the entry to the Workpiece.

(See Figure A-1.)

Possible Values: min =.01, max = 300, Default = 10

The speed of the Cutting Chuck (mm/sec) in the X direction during the exit from the cut.

(See Figure A-1.)

Possible Values: min =.01, max = 300, Default = 10

The length of each cut. This parameter is relevant when cutting using the Standard APC algorithm.

Possible Values: min = 0, max = 400, Default = 200

Advanced Dicing Technologies Ltd.

A-24

Category

Cut

Cut

Cut

Cut

Cut

Cut

Cut

Cut

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Cut Parameters

Parameter

Cut Map Build

Direction

Cut Map - X Shift

Cut Map - Y Shift

Cut Type

Cuts No.

Cutting Speed

Depth

Table A-9: Cut Parameters

Cutting Direction

Description

Defines the direction in which the Cut Map is built.

Possible Values:

Front to Back, Back to Front (default)

Defines an offset in the X direction for determining the cut position used to draw the Cut Map.

Possible Values: min = -200, max = 200, Default = 0

Defines an offset in the Y direction for determining the cut position used to draw the Cut Map.

Possible Values: min = -200, max = 200, Default = 0

The cutting direction.

Possible Values:

Normal (default): The direction of the Chuck during cutting is from left to right.

Back: The direction of the Chuck during cutting is from right to left.

Mixed: The direction of the Chuck during cutting alternates after each cut.

The number of cuts. This parameter is relevant when cutting using the Standard APC algorithm.

Possible Values: min = 0, max = 9999, Default = 16

Defines the cutting direction.

Possible Values:

Front to Back, Back to Front (default)

The speed of the Cutting Chuck (mm/sec) in the X direction during the cut. (In effect, this is the speed at which the Blade moves through the Workpiece.) (See

Figure A-1.)

Possible Values: min =.01, max = 300, Default = 10

The distance along the Z-Axis between Chuck Level and the cutting edge of the Blade in its cutting position.

Possible Values: min =.015, max = 30, Default =.045

P/N 97100-9002-000-14 Ver 06/05

A-25

Recipe Parameters

Cut Parameters

Category

Cut

Cut

Cut

Cut

Cut

Cut

Parameter

Entry Overcut

Exit Overcut

From Index

Index

Overcut

Table A-9: Cut Parameters

Optimized Order

Description

The distance for which the entry speed is maintained to ensure the Blade enters the Workpiece at the specified speed.

Possible Values ( µ/sec): min = 0, max = 30, Default = 0

The distance the exit speed is maintained to ensure the Blade actually exits the Workpiece at the specified speed.

Possible Values ( µ/sec): min = 0, max = 30, Default = 0

The number of the Index in the Cut Map at which to start cutting.

Possible Values: min = 1, max = 999, Default = 1

The distance along the Y-Axis between adjacent cuts in a Workpiece. Multiple Indices of various lengths can de defined for a Workpiece. The first Index is the

Main Index and subsequent Indices are subindices.

Each Index can have a different Cut Depth and

Speed.

Possible Values: min =-300, max = 300, Default =.1

The cutting sequence. If set to "Yes" the cutting starts from the last alignment angle.

Possible Values:

No: Align Angle 0, align Angle 90, cut Angle 0, cut

Angle 90

Yes: Align Angle 0, align Angle 90, cut Angle 90, cut

Angle 0

The distance for which the entry and exit speed is maintained to ensure the Blade enters and exits the

Workpiece at the specified speed.

Possible Values: min = 0, max = 100, Default = 0

Advanced Dicing Technologies Ltd.

A-26

Category

Cut

Cut

Cut

Cut

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Cut Parameters

Parameter

Overtravel

Overtravel - Y-

Axis

Spindle Speed

(KRPM)

To Index

Table A-9: Cut Parameters

Description

The distance along the X-Axis that is added to the cut to ensure that all cuts begin from beyond the edge of the Workpiece.

For APC, this distance is added only to the start cut.

The cut length should compensate for this addition.

For GPC, this distance is added to both X and Y. (See

Overtravel - Y-Axis.)

This value compensates for any inaccuracies in placement of the Workpiece on the Cutting Chuck.

Possible Values: min = 0, max = 100, Default = 10

The distance along the Y-Axis that is added to the cuts to ensure that all cuts begin from beyond the edge of the Workpiece.

This value compensates for any inaccuracies in placement of the Workpiece on the Cutting Chuck.

Possible Values: min = -100, max = 100, Default = 10

The rotational speed of the Spindle (in KPRM).

Possible Values: min = 1, max = 30, Default = 4

The number of the Index in the Cut Map at which to stop cutting.

Possible Values: min = 1, max = 999, Default = 999

P/N 97100-9002-000-14 Ver 06/05

A-27

Recipe Parameters

Cut Verify Parameters

The following diagram illustrates the velocity and travel of the X-Axis during cutting:

Speed

Cutting Speed

Cut Exit Speed

Cut Entry Speed

X Axis

A

Overtravel:

Distance between A - B and D - F

Overcut:

Distance between A - C and D

– F

(A – C is cut at Entry speed. D

– F is cut at Exit speed.)

B C

Cut:

Distance between C – D

(Cut at Cutting Speed.)

D E F

Category

Cut Verify

Cut Verify

Cut Verify

Cut Verify

Figure A-1: Velocity of X-Axis

Cut Verify Parameters

Table A-10 lists the parameters in the Cut Verify category. The Cut Verify

parameters define the Cut Verification procedure.

Activate

Table A-10: Cut Verify Parameters

Parameter

First Cut No.

Last Cut No.

Model Type

Description

Whether to perform Cut Verification.

Possible Values:

Yes, No (default)

The cut number where Cut Verification begins.

Possible Values: min = 1, max = 999, Default = 0

The cut number where Cut Verification ends.

Possible Values: min = 1, max = 999, Default = 999

Allows to select the type of the model used for Cut

Verification.

Possible Values: Main, Low, Sub, Verification.

Advanced Dicing Technologies Ltd.

A-28

Category

Cut Verify

Cut Verify

Cut Verify

Cut Verify

Cut Verify

Cut Verify

Cut Verify

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Cut Verify Parameters

Table A-10: Cut Verify Parameters

Parameter

Number of Models

Rate

Recover Option

Settling Time

Special Search

Use Y Shift

Verification Offset

Tolerance

Description

Enables the verification of two models to be used for

Average Index with Nominal Distance.

While performing the Average Index procedure with two models, the value of this parameter should be: 2

Optional values: 1 (default), 2

The number of cuts between each instance of Cut

Verification.

Possible Values: min = 0, max = 999, Default = 10

When Pause is selected, if model detection fails, the system displays an error message and forces the user to repeat the Cut Verify sequence, using automatic Cut Verify or manual cut verify, until it passes.

If Report is selected, the system displays an error message, but continues cutting according to the original index, until the next cut verification, defined by the Cut Verify rate.

Optional values: Pause (default), Report

The amount of time the Workpiece is allowed to dry before the Cut Verification begins.

Possible Values: min = 0, max = 20, Default = 0.5

If "Yes" is selected and in case the original model has not been found, the system performs a search along the X-Axis for Cut Verification Models.

Possible Values:

Yes, No (default)

If it is set to Yes, the Cut Verify models are searched relatively to the cut position and Cut Map Y Shift.

If it is set to No, the Cut Verify models are searched relatively to the cut position only.

Optional values: Yes (default), No

This parameter defines the acceptable offset deviation during cut.

This parameter is used when the X Search parameter value is greater than 1.

P/N 97100-9002-000-14 Ver 06/05

A-29

Recipe Parameters

Cut Verify Limit Parameters

Category

Cut Verify

Cut Verify

Cut Verify

Parameter

X Pos

Y Pos

Table A-10: Cut Verify Parameters

X Searches

Description

The position on the X-Axis where Cut Verification is performed.

This value is automatically specified.

Possible Values: min = 0, max = 300, Default = 0

The number of places for which the machine will search. These points are taught in the “Teach Align” procedure.

The position on the Y-Axis where Cut Verification is performed.

This value is automatically specified.

Possible Values: min = 0, max = 300, Default = 0

Cut Verify Limit Parameters

Table A-11 lists the Cut Verify Limit parameters. The Cut Verify Limit

parameters define limits for the Cut Verification procedure.

Category

Cut Verify

Limit

Cut Verify

Limit

Cut Verify

Limit

Cut Verify

Limit

X-Shift

Table A-11: Cut Verify Limit Parameters

Parameter

Head1 X-Shift

Head1 Y-Shift

Manual Head1

Manual Head1

Y-Shift

Description

The maximum shift of the new cut position in the X direction. Used for Auto Cut Verification.

Possible Values: min = 0, max = 600, Default = 3

The maximum shift of the new cut position in the Y direction. Used for Auto Cut Verification

Possible Values: min = 0, max = 600, Default = 3

The maximum shift of the new cut position in the X direction. Used for Manual Cut Verification.

Possible Values: min = 0, max = 600, Default = 3

The maximum shift of the new cut position in the Y direction. Used for Manual Cut Verification.

Possible Values: min = 0, max = 600, Default = 3

Advanced Dicing Technologies Ltd.

A-30

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Diagnostisc Parameters

Diagnostisc Parameters

Table A-13 lists the parameters in the Dressing category. Dressing

parameters define how the Blade is dressed.

Category

Diagnostics >

Chuck

Diagnostics

Parameter

Table A-12: Dressing Parameters

Chuck height side

Chuck to non chuck tolerance

Description

Possible Values:

Left, Right (default)

Possible Values: min = 0, max = -, Default = 10

Diagnostics

Diagnostics

Chuck to non chuck Init

Tolerance

Number of delta measurement

Possible Values: min = 0, max = -, Default = 30

Possible Values: min = 1, max = 10, Default = 1

Dressing Parameters

Table A-13 lists the parameters in the Dressing category. Dressing

parameters define how the Blade is dressed.

Category

Dressing

Dressing

Dressing

Parameter

Dressing Cut

Depth

Table A-13: Dressing Parameters

Dress Length

Dressing Depth

Description

The total length of the cut to be performed.

Blade Dressing can include multiple Cut Lengths. For every Cut Length defined, the User must define a Cut

Depth (or Depth), Begin Speed and End Speed.

Possible Values: min = 0, max = 200000, Default = 5000

The distance along the Z-Axis between the top of the dressing Workpiece (or Dressing Block) and the cutting edge of the Blade in its cutting position.

Possible Values: min = 0, max = 18, Default = 0

The distance along the Z-Axis between Chuck Level and the cutting edge of the Blade in its cutting position.

Possible Values: min =.015, max = 30, Default =.05

P/N 97100-9002-000-14 Ver 06/05

A-31

Recipe Parameters

Dress Block Parameters

Category

Dressing

Dressing

Dressing

Parameter

Dressing End

Speed

Dressing Start

Speed

Table A-13: Dressing Parameters

Dressing Index

Description

The speed of the X-Axis (mm/sec) at the end of the

Dressing process.

Possible Values: min = 1, max = 200, Default = 30

The distance along the Y-Axis between adjacent cuts in a Dressing Workpiece.

Possible Values: min =.05, max = 100, Default = 2

The speed of the X-Axis (mm/sec) at the beginning of the Dressing process.

Possible Values: min = 1, max = 200, Default = 30

Dress Block Parameters

Table A-14 lists the parameters in the Dress Block category. Dress Block

parameters define the Dress Block settings for the Model 7100 applications

Category

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Activate

Animation Chop

Length

Dress/Chop Cut

Depth

Table A-14: Dress Block Parameters

Parameter

Chop X-Index

Chop Z-Start

Chopping Velocity

Description

Defines if the Dress Block is activated.

Options: Yes (Default), No

Defines the animation lines displayed after every chop.

Options: 1- 30 mm. Default = 2

Defines the X-Index at which the saw jumps between the chops within the X-Axis.

Options: 0.1 - 30 mm. Default = 5

Defines the Z-Axis position above the Dressing Block, at which the Chopping Velocity is applied.

Options: 0.1 - 5 mm. Default = 0.3

Z-Axis velocity at the last stage of chopping.

Options: 0.001 - 5 mm/sec. Default = 0.2

Cut depth to which the blade enters the Dressing

Block.

Options: 0.1 - 5 mm. Default = 1

Advanced Dicing Technologies Ltd.

A-32

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Dress Block Parameters

Category

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Dress Block

Table A-14: Dress Block Parameters

Parameter Description

Dress/Chop Depth

Dress/Chop Rate

Cut depth to which the blade enters the Dressing

Block as related to the Dress Station surface.

Options: 0.1 - 5 mm. Default = 1

Defines the number of wafer cuts, after which the

System performs blade dressing.

Options: 0 - 100 cuts. Default = 0

Dress After a No. of Heights

Dress Cut Length

Dress Cutting

Speed

Dressing Mode

Height After Dress

Height Before

Dress

Number of Dress/

Chop Cuts

Dress Spindle

Speed

Defines the number of Height procedures, after which the System performs blade dressing.

Options: 0 - 100 Height Procedures. Default = 0

Defines the total cut length of the Dressing Block, including the over-travel.

Options: 0 - 60 mm. Default = 40

Defines the X-Axis speed in dressing process

(relevant only for Cut mode).

Options: 0.001 - 100 mm/sec. Default = 1

Defines the dressing mode used in a specific recipe. It is important to select the mode before setting the other parameter values.

Options: Cut (Default), Chop

Defines if dressing should be followed by Height procedure.

Options: Yes (Default), No

Defines if dressing should be preceded by Height procedure.

Options: Yes, No (Default)

Defines the number of cuts in either dressing mode, required for sufficient blade dressing.

Options: 1-100, Default = 2

Defines the Dressing process spindle speed.

Options: 1 - 60 KRPM, Default = 10

P/N 97100-9002-000-14 Ver 06/05

A-33

Recipe Parameters

Height Parameters

Category

Height

Height

Height

Height

Height Parameters

Table A-15 lists the parameters in the Height category. Height parameters

define the way the Model 7100 performs the Height procedure.

Parameter

Height Check

Units

Height Type

Height Check

Rate

Table A-15: Height Parameters

Settling Time

Description

The unit of measurement for height checks.

Possible Values:

Length, No of Cuts (default)

Whether to postpone the Process Height procedure for the normal Blade.

Possible Values:

Regular (default): Perform the Process Height procedure as normal.

Defer: Postpone the Process Height procedure after cutting the current Workpiece. (Used to perform height only after the Workpiece is removed.)

Time delay between the time the saw reaches the

NCH/Button station and the beginning of blade descending to perform the Height procedure. This gives more time for the air to clean and dry the workpiece.

Possible Values: min = 0, max = 20, Default = 0.5

How often a height check is performed.

Possible Values: min = 1, max = 2x10 6 , Default = 10

Advanced Dicing Technologies Ltd.

A-34

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Check Parameters

Category

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check Parameters

Table A-16 lists the parameters in the Kerf Check category. Kerf Check

parameters define the way the Model 7100 performs Kerf Checks, which examine the quality and position of cuts performed on a Workpiece.

Table A-16: Kerf Check Parameters

Parameter Description

Active

Area

Auto Y Offset

Correction

Bevel Mask Box

Height

Enables/disables the Kerf Check function.

Possible Values:

Yes, No

The percentage area of the cut map that should be checked.

Possible Values: min = 10, max = 100, Default = 80

Whether to correct the Y Offset automatically.

Possible Values:

Yes (default), No

The size of the mask that covers the center of the Kerf when cutting with a Bevel Blade. Without a mask, the variation in color of a Bevel cut may lead the System to misjudge the cut (for example, find two cuts) during the Teach Kerf Check procedure. The parameter should be about 25% less than the width of the Kerf.

Possible Values: min = 0, max = 1, Default = 0

Check Main Street

Only

Defines whether the Kerf Check should check only the main street (Yes) or all the streets (No).

Possible Values:

Yes, No (default)

First Cut No.

The Street where Kerf Checking begins.

Possible Values: min = 1, max = 999, Default = 1

The default value of 0 means a Kerf Check is performed on the first cut.

Head1 Taught

Kerf Check

Algorithm

Whether Kerf Checking has been taught.

Possible Values:

Yes, No (default)

Possible values: N/A, Standard (default),

Adaptive, Advanced, Adaptive Only, Advanced

Only, Upper Bar, Lower Bar (see section 6.3)

P/N 97100-9002-000-14 Ver 06/05

A-35

Recipe Parameters

Kerf Check Parameters

Category

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Kerf Check

Parameter

Last Cut No.

Max. Failures per

Cut

No. Checks per

Cut

Number of Steps per Check

Perform Y-Offset in Step

Perform

Z-Compensation in Step

Rate

Table A-16: Kerf Check Parameters

Recover Option

Description

The Street where Kerf Checking ends.

Possible Values: min = 1, max = 999, Default = 999

The default value of 999 means Kerf Checking is performed to the last cut.

The number of Kerf Check failures permitted per cut.

If more than this number of Kerf Checks fail, the

Recover option comes into play.

Possible Values: min = 0, max = 99, Default = 10

The number of Kerf Checks performed on each cut.

Possible Values: min = 0, max = 99, Default = 5

Defines whether the Kerf Check will be performed in one step or in two steps. When set to 2, all Kerf Check parameters have two lines in the parameter table (see

Figure 6-33)

Possible Values: 1-2

Default value: 1

Defines the Kerf Check step, in which the Y-Offset procedure is performed.

Options: 1 (Default), 2

Defines, according to which Kerf Check step the

System performs Z-Compensation.

Options: 1, 2 (Default)

The number of Streets cut before a Kerf Check is performed.

Possible Values: min = 0, max = 999, Default = 5

The action taken by the Model 7100 should the Kerf

Check fail.

Possible Values:

Pause (default): Machine stops and waits for User intervention, for example, for the user to find a Model.

Report: Failure reported, machine continues cutting.

Ignore: Failure ignored, machine continues cutting.

Advanced Dicing Technologies Ltd.

A-36

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Kerf Check Limit Parameters

Category

Kerf Check

Kerf Check

Table A-16: Kerf Check Parameters

Parameter

Settling Time

Use Model-to-Kerf

Description

The amount of time the Workkpiece is allowed to dry before the Kerf Check begins.

Possible Values: min = 0, max = 20, Default = 0.5

Whether the System checks the Model during a Kerf

Check and uses the Model-to-Kerf distance to check the position of the cut. If the Kerf Check finds that the

Model to Kerf distance is more or less than a specified value, dicing stops. This method is used when the

Index is not constant (Y-Axis offset is based on the

Index), or the Workpiece is not stable and moves during cutting (for example, ceramic Workpieces).

In order for this method to be used, the Kerf Check algorithm must be selected in the Recipe’s properties and the Activate parameter in the Cut Verify category must be No.

Possible Values:

Yes, No (default)

Kerf Check Limit Parameters

Table A-17 lists the parameters in the Kerf Check Limit category. Kerf

Check Limit parameters define the range of acceptable Kerf Check results.

Category

Kerf Check

Limit

Kerf Check

Limit

Table A-17: Kerf Check Limit Parameters

Parameter

Head1 Bottom

Chipping

Head1 Bottom

Chipping Area

Description

The maximum distance permitted from the lowest point of a chip to the tip of the largest chip on the lower-cut edge. If this figure is exceeded, even for one Kerf Check on a cut, the entire cut fails and the

Recover option comes into effect.

Possible Values: min = 0, max = 9999, Default = 0

The maximum area permitted for the total chipping area on the lower edge of the cut. If this figure is exceeded, even for one Kerf Check on a cut, the entire cut fails and the Recover option comes into effect.

Possible Values: min = 0, max = 1, Default = 0

P/N 97100-9002-000-14 Ver 06/05

A-37

Recipe Parameters

Kerf Check Limit Parameters

Category

Kerf Check

Limit

Kerf Check

Limit

Kerf Check

Limit

Kerf Check

Limit

Kerf Check

Limit

Kerf Check

Limit

Kerf Check

Limit

Kerf Check

Limit

Table A-17: Kerf Check Limit Parameters

Parameter

Head1

Head1 No

Correction DY

Offset

Center-To-Max

Chip

Head1 Correction

DY Offset

Head1 Skew

Head1 Top

Chipping

Head1 Top

Chipping Area

Head1 WMax

Head1 WMin

Description

The maximum distance permitted from the center of the cut to the tip of the largest chip.

Possible Values (mm): min = 0, max = 1, Default = 0

When the Kerf Check finds a dY Offset above this value, no automatic Y Offset correction is performed but an error is found. When the Kerf Check finds a dY

Offset below this value, automatic Y Offset correction is performed.

This parameter only takes effect when Auto Y Offset

Correction is Yes.

Possible Values (mm): min = 0, max = 1, Default = 0

When the Kerf Check finds a dY Offset below this value, no automatic Y Offset correction is performed.

When the Kerf Check finds a dY Offset above this value, automatic Y Offset correction is performed.

This parameter only takes effect when Auto Y Offset

Correction is Yes.

Possible Values: min = 0, max = 9999, Default = 0

The maximum offset permitted in the Y-Axis between the first and last Model found.

Possible Values: min = 0, max = 1, Default = 0

The maximum distance permitted from the lowest point of a chip to the tip of the largest chip on the upper-cut edge.

Possible Values (mm): min = 0, max = 1, Default = 0

The maximum area permitted for the total chipping area on the upper edge of the cut.

Possible Values: min = 0, max = 9999, Default = 0

The maximum allowed cut width.

Possible Values: min = 0, max = 1, Default = 0

The minimum allowed cut width.

Possible Values: min = 0, max = 1, Default = 0

Advanced Dicing Technologies Ltd.

A-38

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Load Monitor Cutting Parameters

Load Monitor Cutting Parameters

Table A-18 lists the parameters in the Load Monitor Cutting category.

Load Monitor parameters define the way Model 7100 monitors the electrical charge required to spin the Spindle and allow the blades to function for cutting.

Note: Load Monitor Cutting Parameters apply to future versions of the Model

7100 only.

Category

LM Cutting

LM Cutting

LM Cutting

F Sp High AVG

Limit

F Sp Low AVG

Limit

Table A-18: Load Monitor Cutting Parameters

Parameter

Load Logging

Description

The highest average load the Load Monitor allows until the response is elicited.

Possible Values: min = 0 max = 15 Default = 13

The lowest average load the Load Monitor allows until the response is elicited.

Possible Values: min = 0 max= 15 Default= 0

Defines cut monitoring.

Possible Values:

First Cut, Each Cut, No (default)

Load Monitor Baseline

Table A-19 lists the parameters in the Load Monitor Baseline category.

Load Monitor parameters define the way Model 7100 monitors the load of the Spindle excluding the load of the actual cutting process.

Note: Load Monitor Baseline Parameters apply to future versions of the Model

7100 only.

Category

LM Baseline

Table A-19: Load Monitor Baseline Parameters

Parameter Description

F Sp Flow Control

Stabilization Delay

The delay before measuring the Baseline which allows the water flow rate to stabilize.

Possible Values: min = 0 max= 100 Default= 2

P/N 97100-9002-000-14 Ver 06/05

A-39

Recipe Parameters

Loop Cut Parameters

Category

Manual

Inspection

Manual

Inspection

Loop Cut Parameters

Table A-20 lists the parameters in the Loop Cut category. Loop Cut

parameters define the way the Model 7100 cuts using the Standard APC algorithm and repetitive patterns.

Category

Loop Cut

Loop Cut

Loop Cut

Loop Cut

Loop Cut

Parameter

First Angle

Last Angle

Number of

Repetition

X Shift

Y Shift

Table A-20: Loop Cut Parameters

Description

The angle where the loop starts.

Possible Values (Pure): min = 0, max = 99, Default = 0

The angle where the loop ends.

Possible Values (Pure): min = 0, max = 99, Default = 0

The number of times a loop is performed.

Possible Values: min = 0, max = 1024, Default = 0

The offset from the last cut position in the X direction, between the loop repetitions.

Possible Values: min = -990, max = 999, Default = 0

The offset from the last cut position in the Y direction, between the loop repetitions.

Possible Values: min = -990, max = 999, Default = 0

Manual Inspection Parameters

Table A-21 lists the parameters in the Manual Inspection category.

Coaxial

Illumination After

Cut

Table A-21: Manual Inspection Parameters

Parameter

Activate

Description

Defines whether or not the Manual Inspection feature is activated.

Optional Values:

Yes, No (Default)

Defines the Coaxial illumination intensity for the inspection that is done after the cut. (This parameter value is inserted manually).

Possible Values: min = 0, max = 255, Default = 0

Advanced Dicing Technologies Ltd.

A-40

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Manual Inspection Parameters

Category

Manual

Inspection

Manual

Inspection

Manual

Inspection

Manual

Inspection

Manual

Inspection

Manual

Inspection

Manual

Inspection

Manual

Inspection

Manual

Inspection

Table A-21: Manual Inspection Parameters

Parameter Description

Coaxial

Illumination Before

Cut

First Cut No.

Defines the Coaxial illumination intensity for the inspection that is done before the cut. (This parameter value is inserted manually).

Possible Values: min = 0, max = 255, Default = 0

Possible Values: min = 1, max = 999, Default = 1

Focus on Kerf

Step After Cut

Focus on Kerf

Step Before Cut

Defines what focus settings are used for manual inspection after cut. The focus setting are taught at the Teach Kerf Check stage for every step of Kerf

Check.

Options: 1 (Default); 2

Defines what focus settings are used for manual inspection before cut. The focus setting are taught at the Teach Kerf Check stage for every step of Kerf

Check.

Options: 1 (Default); 2

Inspection Before

Cut

Inspection Focus

Type After Cut

Inspection Focus

Type Before Cut

Last Cut No.

Oblique

Illumination After

Cut

When set to Yes, enables performing inspection on a cut map street prior to the cut.

Optional Values:

Yes, No (Default)

Defines the Z position for the inspection that is done after the cut.

Possible Values:

Wafer (Default), Align, Kerf

Defines the Z position for the inspection that is done before the cut.

Possible Values:

Wafer (Default), Align, Kerf

Possible Values: min = 1, max = 999, Default = 1

Defines the intensity of Coaxial Illumination for the

Manual Inspection after cut.

Possible Values: min = 0, max = 255, Default = 0

P/N 97100-9002-000-14 Ver 06/05

A-41

Recipe Parameters

Model Precessing Parameters

Category

Manual

Inspection

Manual

Inspection

Table A-21: Manual Inspection Parameters

Parameter Description

Oblique

Illumination Before

Cut

Rate

Defines the intensity of Coaxial Illumination for the

Manual Inspection before cut.

Possible Values: min = 0, max = 255, Default = 0

Possible Values: min = 0, max = 255, Default = 124

Model Precessing Parameters

Table A-22 lists the parameters in the Model Processing category.

Category

Model

Preprocessing

Model

Table A-22: Model Processing Parameters

Parameter

Delay After

Preprocessing

Preprocessing Method Iterations

Model

Preprocessing

Model

Preprocessing

Processing

Method

Processing

Method for All

Models

Description

Defining the delay enables the user to review the models after preprocessing. The delay is used only for defining the preprocessing parameters for the specific process.

Optional values: 0 - 20, default = 0. Units [Sec]

Defines the number of iterations for each filter defined in the Processing Method. This feature follows the same principles as those of sub-indexes.

Possible Values: min = 1, max = 20, Default = 1

Defines the algorithm to be used. It works like sub indexes. Read the chapter describing each filter.

Optional values: Close Morphology, Open

Morphology, Vertical Edge Filter, Horizontal Edge

Filter, Smooth Filter, Edge Filter.

Provides the Vision a capability to perform the preprocessing for each model, i.e., sub, main, low.

Optional values: Close Morphology, Open

Morphology, Vertical Edge Filter, Horizontal Edge

Filter, Smooth Filter, Edge Filter.

Advanced Dicing Technologies Ltd.

A-42

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

MHS Parameters

MHS Parameters

Table A-23 lists the parameters in the MHS (Material Handling System)

category.

Category

MHS

Parameter

Top Side Dry

Speed

Table A-23: MHS Parameters

Description

This parameter defines how many times and at what speed the Top Side drying will be performed.

Optional values: Min=1, Max=200, Default 50

Multi-Panel Parameters

Table A-24 lists the parameters in the Multi-Panel category.

Category

Multi-Panel

Multi-Panel

Table A-24: Material Handling System Parameters

Parameter

Cut Per Panel

No. of Panels

Description

Defines whether the Multi-Panel application will cut the substrates per Panel or per Angle.

Optional values: Yes, No (Default)

Defines the number of substrates in a Multi-Panel application.

Min = 1, Max = 10, Default 1

Override Parameters

Table A-25 lists the parameters in the Override category. Override

parameters define how the Model 7100 performs Override on a production

Workpiece as a means of dressing a new Blade.

Category

Override

Parameter

Override End

Speed

Table A-25: Override Parameters

Description

The speed of the X-Axis (mm/sec) at the end of the

Override process.

Possible Values: min = 1, max = 200, Default = 30

P/N 97100-9002-000-14 Ver 06/05

A-43

Recipe Parameters

Shrinkage Parameters

Category

Override

Override

Parameter

Override Start

Speed

Table A-25: Override Parameters

Override Length

Description

The total length of the cut when performing Override.

Possible Values: min = 0, max = 200000, Default = 5000

The speed of the X-Axis (mm/sec) at the beginning of the Override process.

Possible Values: min = 1, max = 200, Default = 30

Shrinkage Parameters

Table A-26 lists the parameters in the Rotational Shrinkage category.

Category

Shrinkage

Shrinkage

Parameter

Activate

Table A-26: Shrinkage Parameters

Align Correction

Description

When Yes is selected, the rotational option is activated.

The Rotational Shrinkage options are:

1. Performing Y Correction for specific street, according to two Cut Verify models (relevant only for two-point alignment). The software calculates the average Y cut position, based on the Cut Verify model detection. The "Align Correction” parameter should be set to No.

2. The second option is to perform full two-point alignment according to the Cut Verify models (The

"Align Correction” parameter should be set to Yes.

The "Align Correction Verification" can also be activated in order to verify this alignment.)

Optional values: Yes, No (default)

When Yes is selected, the system performs two-point alignment on the specific street, using the Cut Verify models. When No selected, and Active is set to Yes, the system performs only Y correction without Theta correction.

Optional values: Yes, No (default)

Advanced Dicing Technologies Ltd.

A-44

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Shrinkage Parameters

Category

Shrinkage

Shrinkage

Shrinkage

Shrinkage

Parameter

Align Correction

Verification

Shrinkage

Shrinkage Before

Cutting

Table A-26: Shrinkage Parameters

Interpolation

Theta Tolerance

Description

When Yes is selected, and Align Correction is set to

Yes, the system performs alignment using the cut verify models. Then the system performs verification using the Final Alignment Accuracy, defined under

Align category (General tab). When using this parameter, the Iteration(s) under Align category

(General tab) should be set to No.

Optional values: Yes, No (default)

When set to No, Average Y Index and the Theta angle of the first cut will be implemented between the two cuts, on which the Cut Verification was perfomed.

When set to Yes, Average Y Index and Average

Theta angle Index will be implemented between two cuts, on which the Cut Verification was performed.

Optional values: Yes, No (default)

Defines if to perform the Shrinkage algorithm during

Alignment, prior to dicing.

Optional values: Yes (default), No

Defines the tolerance allowed between original alignment Theta position (as defined in the recipe) and the actual Theta position observed in the cut verify procedure. This parameter is used in order to prevent the system from aligning the workpiece according to the model fount in the wrong street (one street below).

Default = 0.5, Units [degree], Min = 0.001, Max = 3

P/N 97100-9002-000-14 Ver 06/05

A-45

Recipe Parameters

Teach Center Parameters

Category

Shrinkage

Shrinkage

Table A-26: Shrinkage Parameters

Parameter

X Search Streets

Y Search Streets

Description

Defines the numbers of streets on which the system will perform a search if the model has not been found and the Y search also failed.

The logic is as follows: when a Cut Verify cannot be found, the system looks for additional models one street below in the Y direction, if this search still fails, the system starts searching the next street below in the Y direction, and finally it looks on street into the substrate according to the defined X Search Streets.

Optional values: 0 - 15; Default =1. Units [index]

Defines the numbers of streets on which the system will perform a search if the model has not been found in the Y direction.

The logic is as follows: when a Cut Verify cannot be found, the system looks for additional models one street below in the X direction, if this search still fails, the system starts searching the next street below in the X direction, and finally it looks on street into the substrate according to the defined Y Search Streets.

Optional values: 0 - 15; Default =2. Units [index]

Teach Center Parameters

Table A-27 lists the parameters in Teach Center category. Teach Center is

the category which allows the User to define the edges of Substrates when working in multi panel mode.

Category

Teach Center

Teach Center

Parameter

Taught

Workpiece’s

Center on Chuck

Center

Table A-27: Teach Center

Description

Shows if the Center has been taught.

Possible Values:

Yes, No (default)

If yes is selected, the camera finds the center of the substrate by locating the center of the Chuck.

Correlated by using the Align parameters, Center Coordinate X, Center Co-ordinate Y, and Number of

Substrates (See Table A-2).

Possible Values:

Yes (default), No

Advanced Dicing Technologies Ltd.

A-46

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Tilted Spindle Parameters

Tilted Spindle Parameters

Table A-28 lists the parameters in the Tilted Spindle category.

Category

Tilted Spindle

Tilted Spindle

Tilted Spindle

Angle

Y-Offset After

Height

Table A-28: Tilted Spindle Parameters

Parameter Description

Defines the Spindle tilt angle value.

Options: 0 - 15 degrees. Default = 2

Defines if the System is to perform Y-Offset after every Height procedure.

Options: Yes; No (Default)

Wash Pipe Parameters

Table A-29 lists the parameters in the Wash Pipe category.

Category

Wash Pipe

Wash Pipe

Wash Pipe

Wash Pipe

Wash Pipe

Wash Pipe

Wash Pipe After

Cut

Wash Pipe After

Cut No.

Washing Start

Delay

Table A-29: Wash Pipe Parameters

Parameter

Activate

Display time

Wash Speed

Description

Defines whether the wash pipe is active or not.

Options: Yes; No (Default) defines the time that elapses between displaying the wash delay message and the activation of the washing procedure.

Possible Values: min = 1, max = 1000 (sec), Default = 10

Once set to yes will perform a washing action after the cut and before the next vision action.

Options: Yes; No (Default)

Number of wash actions after the cut and before the next vision action.

Possible Values: min = 1, max = 10 (times), Default = 1

Defines the X-Axis speed while washing.

Possible Values: min = 0.01, max = 300 (mm/sec), Default = 10

Defines the time that passes after the dicing stops and before the washing procedure is activated.

Possible Values: min = 6, max = 10000 (sec), Default = 30

P/N 97100-9002-000-14 Ver 06/05

A-47

Recipe Parameters

Y Offset Parameters

Category

Y-Offset

Y Offset

Y Offset

Y Offset

Y Offset

Y Offset Parameters

Table A-30 lists the parameters in the Y Offset category. The Y Offset

parameters define how the Model 7100 performs the Y Offset procedure that measures the difference between the Blade and the Microscope in the

Y direction.

Parameter

Define End

Location from

Edge

Define Start

Location from

Edge

Table A-30: Y Offset Parameters

Cutting Location

In Cut Map Only

New to Old Y

Offset Max Delta

Description

Defines the Y-Offset location in cases where there is no previous cut.

Next Cut (default): the next Y-Offset cut location

(Workpiece or Dress Block) is determined by the user’s choice.

Workpiece: the next Y-Offset cut is performed on the

Workpiece.

Dress Block: the next Y-Offset cut is performed on the Dress Block.

The distance from the upper and lower edge of the

Workpiece towards the center of the Workpiece within which the single cut can be performed.

This parameter is relevant when Manual Y Offset is performed outside the cut map, meaning In Cut Map

Only is set to No.

Possible Values: min = 0, max = 300, Default = 10

The distance from the upper and lower edge of the

Workpiece towards the edge of the frame within which the single cut can be performed.

This parameter is relevant when Manual Y Offset is performed outside the cut map, meaning In Cut Map

Only is set to No.

Possible Values: min = 0, max = 300, Default = 3

Whether the Y Offset procedure can be performed outside the Cut Map.

Possible Values:

Yes, No (default)

Maximum allowable change between current Y Offset and previous Y Offset.

Possible Values: min = 0, max = 300, Default = 0.01

Advanced Dicing Technologies Ltd.

A-48

Category

Y Offset

Y Offset

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Y Offset Parameters

Parameter

Y Offset

Reference

Position

Table A-30: Y Offset Parameters

Y Offset After

Blade Change

Description

Whether the Y Offset procedure should be automatically performed after each Blade change.

Possible Values:

Yes, No (default)

Enables Teaching the reference position (center, lower edge or upper edge) and the pattern type

(middle, kerf up, kerf down, upper bar or lower bar) of each kerf model separately.

Possible Values:

Lower Edge, Upper Edge, Center (default)

P/N 97100-9002-000-14 Ver 06/05

A-49

Recipe Parameters

Y Offset Parameters

Advanced Dicing Technologies Ltd.

A-50

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Index

INDEX

A

Access Levels, 4-1, A-1

Administrator, A-1

modifying, 4.2-1

Operator, A-5

Protected mode, 2.2-4

Technician, A-6

Access Rights. See

Access Levels

Activate, A-23

Activate (Cut Verify) parameter, 6.2-1

Activate Dress Block Parameter, A-32

Activate Parameter, A-28

Activate Wash Pipe Parameter, A-47

Active User Field, 2.2-10

Activity Log, 2.2-10

Administration, 4-1

Administrator, 4.1-1, A-1

After Change Treatment, 7.4-14

After Change Treatment Parameter, A-22

Air Parameters, A-12

Air Pressure Gauge, 2.2-8

Algorithms, 6.3-2, A-8, A-12

Align, A-9

Bright Kerf, A-10

Cut, A-8

Full Auto Alignment, A-9

Full Dress Alignment, A-9

Full Teach Alignment, A-10

Kerf Check, A-10

Kerf Check Teach, A-11

Standard APC, A-8

Standard Dressing, A-9

Standard GPC, A-9

Align Correction Parameter, A-44

Align Correction Verification Parameter, A-45

Align Index, 6.1-8

Align Kerf Model, A-1, A-18

Align Parameters, A-13

Align Type, 6.1-9, 6.1-11, A-10

2-Points, 6.1-10

Copy - From, 6.1-10

Dress Manual All, 6.1-10

Manual, 6.1-9

Street, 6.1-10

Street and Map, 6.1-12

V-2-Points, 6.1-10

V-Street, 6.1-10

Align Type Parameter, A-17

Align-Cut Sequence, A-10

Align-Cut Sequence Parameter, A-13

Aligning a Workpiece, 6.1-2

Alignment, 3.6-4, A-1

Auto, 6.1-4, 6.1-14, A-9

Manual, 3.6-7, 6.1-2, 6.1-12

Teaching, 3.6-4, 3.6-6, 6.1-12, A-6

Alignment Types, A-1

Angle, A-1

Angle Difference Tolerance, A-10

Angle Difference Tolerance Parameter, A-10, A-13

Angles

access rights, 5.4-8

adding, 4.2-3

defining, 5.4-5

modifying, 5.4-7

moving tabs, 5.4-6

Animation Chop Length Parameter, A-32

Area (Align) Parameter, 6.1-3

Area (Kerf Check), 6.3-9, A-11

Area Parameter (Align Category), A-13

Area Parameter (Kerf Check Category), A-35

Assigning Recipes, 2.2-2, 3.6-2, 3.6-6

Auto Alignment, 6.1-4

Auto Focus, 2.2-28

Auto Loader, 1-3

Auto Menu, 2.2-2

Auto Mode, 1-2, A-1

Auto Mode Workflows

Existing Recipe, 3.6-1

New Recipe, 3.6-3

Auto Y Offset Correction Parameter, A-35

Autoloader, 9.1-1

Autoloader User Interface, 9.1-3

Available Models, 1-3, 1.6-1

Average Index, 6.1-26

Average Index, Nominal Distance, 6.1-26

Average Value per Cut, 8.1-2

Axes, A-1

Theta Axis, A-6

X-Axis, A-7

Y-Axis, A-7

Z-Axis, A-7

B

Bar Code, 8.11-1

Bar Code attributes in Log File, 8.11-2

Bar Code Parameters, A-21

Bar Code Reader, using the, 8.11-2

Bar Code, activating, 8.11-1

Baseline Parameters, 8.1-4

BBD, 7.4-7, 7.4-8

tuning, 7.4-9, 7.4-13

Bevel Mask Box Height Parameter, A-35

Bi-directional cutting, A-1

Blade, 5.3-1, 5.3-5, A-1

Changing, 3.6-7

Dressing. See

Dressing

exposure, A-3

Height. See

Height

Hub, A-4

P/N 97100-9002-000-14 Ver 06/05

Index-i

Index

Hubless, A-4

Indicators, 2.2-10, 7.4-7

Information, 7.4-1

Wear, 7.4-2

Blade Angle Factor, A-23

Blade Change, 2.2-3, 3.6-7

BBD, 7.4-8

conditions, 7.4-7 detection, 7.4-7

procedure, 7.4-9

Process Height, 7.4-8

Blade Change procedure, 1.1-vi

Blade Change Tab, 7.4-5

Blade Expansion, 7.1-2, 7.2-1

Blade Indicator, 7.4-7

Blade Indicators, 2.2-10, 7.4-7

Blade Parameters, A-22

Blade Replacement, 7.4-7

Blade Status Tab, 7.4-6

Blade Treatment

menu options, 2.2-4

Blade Type, 5.3-5

Blade Type Tab, 7.4-6

Blade Wear Chart, 7.4-2

Bottom illumination, A-10

Bright Kerf, A-10

Building Recipes, 5-1

Button Height, A-3

C

Calibration, 2.2-33

Calibration Start Position, 7.1-1

Calibration Workbook, 2.2-33

Cameras, 2.1-5

Center Co-ordinate X, A-13

Center Co-ordinate Y, A-13

Change Button Procedure, 7.3-4

Channel, A-2

Check Main Street Only Parameter, A-35

Chipping Area. See

Kerf Check

Chop Velocity, A-24

Chop X-Index Parameter, A-32

Chop Z-Start Parameter, A-32

Chopping Velocity Parameter, A-32

Chuck, A-2

Chuck Change, 7.5-1

Chuck Height, 7.3-5, A-2, A-3

Chuck Illumination, A-10

chuck replacement

same thickness, 7.5-1

thick to thin, 7.5-3

thin to thick, 7.5-2

chuck thickness, 7.5-1

Chuck to Non-Chuck Delta Measurement, A-4

chuck to non-chuck, multiple calculations of, 7.3-6

chuck, replaceing a, 7.5-1

Configuration, A-2

contact height, 7.3-5 on both sides, 7.3-5

Advanced Dicing Technologies Ltd.

Index-ii

Copy All Cut Map Parameter, A-24

Copy From Angle Parameter, A-13

Creating a Dressing Program, 7.4-17

Creating Recipes, 3.6-3, 5-1, 5.2-1, 5.4-1

workflow, 5.1-1

Cross-Point, A-2

Cut

menu options, 2.2-3

Cut Depth, A-2

Cut Depth Parameter, A-24

Cut Entry Speed Parameter, A-24

Cut Exit Speed Parameter, A-24

Cut Length Parameter, A-24

Cut Map - X Offset Parameter, A-25

Cut Map - Y Offset Parameter, A-25

Cut Monitoring, 5.4-4

Cut Position

defining, 6.1-2, 6.1-3

Cut Type Parameter, A-25

Cut Verification, 6.2-1

Auto cut verification, 6.2-3

Special Search, 6.2-2

Cut Verify Limit Parameters, A-30

Cut Verify Parameters, A-28

Cut-line, A-2

Cuts No. Parameter, A-25

Cutting

Uni-directional, A-6

Cutting Chuck, A-2

Cutting Direction, A-25

Cutting Location Parameter, A-48

cutting process, monitoring the, 5.4-4

Cutting Speed Parameter, A-24, A-25

Cutting Table, A-2

D

Database Backup, 8.8-1

Database Restoration, 10.5-1

Define End Location from Edge, 6.4-1

Define Jobs procedure, 3.6-6

Define Start Location from Edge, 6.4-2

Define Start Location from Edge Parameter, A-48

Defining

angles, 5.4-5

Blade Properties, 5.3-4

Cut Position, 6.1-2, 6.1-3

parameters, 5.4-8

Defining Jobs. See

Assigning Recipes

Defining New Blades, 5.3-6

Defining the Job, 3.4-1

Depth Parameter, A-25

Diagnostics, 2.2-31

Diagnostisc Parameters, A-31

Diameter (Blade), 5.3-5

Diameter (Workpiece), 5.3-1

Dicer, 2.1-4

Dicer Procedures Overview, 6-1

Dicer Status Indicator, 3.3-1

Dicer Status Indicators, 2.2-9

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Index

Die Model, 6.1-22, A-3

Display Controls, 2.2-20

Guide Control, 2.2-21

X/Y Axis Control, 2.2-20

Z/T Axis Control, 2.2-22

Downcut, A-3

Dress after a No. of Heights Parameter, A-33

Dress Cut Length Parameter, A-33

Dress Cutting Speed Parameter, A-33

Dress Length, 7.4-20

Dress Length Parameter, A-31

Dress Spindle Speed Parameter, A-33

Dress Station, 9.3-1, A-3

Configuring, 9.3-1

Dressing Modes, 9.3-6

Teaching, 9.3-2

Dress Station Setup, 9.3-5

Dress Wafer, 5.3-5

Dress/Chop Cut Depth Parameter, A-32

Dress/Chop Depth Parameter, A-33

Dress/Chop Rate Parameter, A-33

Dressing, 7.4-14, 7.4-20, A-3, A-9

comparison to Override, 7.4-15

manual, 7.4-21

Override.

See Override

Workpiece, 7.4-20

Dressing Cut Depth, 7.4-21

Dressing Cut Depth Parameter, A-31

Dressing Depth, 7.4-20

Dressing Depth Parameter, A-31

Dressing End Speed, 7.4-20

Dressing End Speed Parameter, A-32

Dressing Index, 7.4-21

Dressing Index Parameter, A-32

Dressing Mode Parameter, A-33

Dressing Parameters, A-31, A-32

Dressing Settings in the Main Recipe, 7.4-17

Dressing Start Speed, 7.4-20

Dressing Start Speed Parameter, A-32

E

Emergency Stop, 2.1-1, 3.7-1

Engineer, 4.1-1, A-3

Entry Overcut Parameter, A-26

Error messages, 10.1-1

Exhibition Mode, 1-3

Exit Overcut Parameter, A-26

Exp. Tolerance, 5.3-5

Exposure, 5.3-5

F

Feed Rate, A-3

Field of View.

See FOV

Final Accuracy Parameter, A-13

First Angle Parameter, A-40

First Cut No (Cut Verify) parameter, 6.2-1

First Cut No. Parameter, A-28, A-35

Flange, A-3

Flow Control, A-3

Flow Control Stabilization Delay, A-39

FOV, 2.1-5, 2.2-19

Reticle, 2.2-20

Search Area, 2.2-20

Teach Window, 2.2-20

Frame, A-3

From Index, A-26

Front Panel

Emergency Stop, 2.1-1

On/Off buttons, 2.1-1

Power Lights, 2.1-3

Full Auto Alignment Parameter, A-9

Full Dress Alignment Parameter, A-9

G

Gauges

Load, 2.2-8

Spindle Speed, 2.2-8

Glossary, A-1

Guide Control, 2.2-21

H

Head1 Bottom Chipping Area Parameter, A-37

Head1 Bottom Chipping Parameter, A-37

Head1 Center-To-Max Chip Parameter, A-38

Head1 Correction dY Offset Parameter, A-38

Head1 No Correction dY Offset Parameter, A-38

Head1 Skew Parameter, A-38

Head1 Taught Parameter, A-35

Head1 Top Chipping Area Parameter, A-38

Head1 Top Chipping Parameter, A-38

Head1 WMax Parameter, A-38

Head1 WMin Parameter, A-38

Head1 X-Shift Parameter, A-30

Head1 Y-Shift Parameter, A-30

Height, 5.3-1

Button, A-2

Chuck, 7.3-5, A-2, A-3

Chuck to Non-Chuck Delta Measurement, 7.3-5

Non-Contact, A-5

Process, 2.2-3, 7.4-7, 7.4-8

Sample Blade Calibration, 7.3-6

Height After Dress Parameter, A-33

Height After Init Parameter, 7.3-3

Height Before Dress Parameter, A-33

Height Check Rate, 7.3-1

Height Check Rate Parameter, A-34

Height Check Units, 7.3-1

Height Check Units Parameter, A-34

Height Device, 7.3-6

Height Parameters, A-34

Height Problem, 10.4-1

Height Process, 7.3-1

Height Type, 7.3-1

Height Type Parameter, A-34

P/N 97100-9002-000-14 Ver 06/05

Index-iii

Index

Help Menu, 2.2-5

High AVG Limit, A-39

I

Illumination, 2.1-5

coaxial, 2.1-6 oblique, 2.1-6

Oblique (Ring), 2.2-25

Vertical (Coaxial), 2.2-25

Illumination Controls, 2.2-25

In Cut Map Only Parameter, A-48

In cut map only parameter, 6.4-1

Index (Align), A-10

Index (Cut)

Teaching, 3.6-4, 3.6-6, 6.1-5

Index (Cut) Parameter, 6.1-6, 6.1-8

Index Parameter (Cut Category), A-26

Index Tolerance Parameter, A-14

Initial Focus, 8.6-1

Initial Focus Shift parameter, 8.6-1

Initial Focus-Shift Parameter, A-14

Initial Theta-Shift Parameter, A-14

Initial X-Shift Parameter, A-14

Initial Y-Shift Parameter, A-14

Initializing, 3.2-1, A-4

Dicer components, 10.3-1

Inspection, A-4

Inspection Illumination, 3.6-4

Interlock

Load/Unload, 1.1-vi

Spindle, 1.1-v

J

Job

defining, 3.4-1

K

Kerf, A-4

Kerf Check, 6.3-1, 7.4-7, A-4, A-10

Alignment Center, 6.3-1

automatic, 6.3-4

Bot Chip Area, 6.3-13

Bot Chipping, 6.3-12

Center-To-Max Chip, 6.3-12

Chipping Area, 6.3-1

Cut Center, 6.3-1

DY, 6.3-12

dY, 6.3-1

Front Chipping, 6.3-1 glossary, 6.3-1

Rear Chipping, 6.3-1

Skew, 6.3-12

Teaching, 3.6-4, 6.3-9, A-6, A-11

Top Chip Area, 6.3-13

Top Chipping, 6.3-12

Advanced Dicing Technologies Ltd.

Index-iv

WMax, 6.3-1

Wmax, 6.3-12

WMin, 6.3-1

Wmin, 6.3-12

workflow, 6.3-2

Kerf Check Active Parameter, A-35

Kerf Check Algorithm Parameter, A-35

Kerf Check Limit Parameters, A-37

Kerf Check Parameters, A-35

Kerf, Bright, A-10

L

Last Angle Parameter, A-40

Last Cut No (Cut verify) parameter, 6.2-1

Last Cut No. Parameter, A-36

Last No. Parameter, A-28

Light Tower, 2.1-6

Load, 2.2-8

Load Monitor, 2.2-35, 8.1-1

limits, 8.1-4

Online, 8.1-1

Load Monitor Control Screen, 8.1-4

Load Monitor Menu, 2.2-3

Load Monitor Workspace, 2.2-13, 2.2-35, 8.1-1

Load Monitoring, 1-2, A-4

Load/Unload Interlock, 1.1-vi

Log File, 3.8-1

accessing, 2.2-4

bar code attributes in, 8.11-2

exporting, 3.8-3

filters, 3.8-2 find, 3.8-2

periodical backup, 3.8-3

Log File Viewer, 3.8-1

Log File Viewer, restrictions, 3.8-1

Logging In, 3.2-1

Login, A-4

Loop Cut, 6.5-2, A-4

Loop Cut Parameters, A-40

Loop Cut Template, 5.6-2

Low Alignment Verification Parameter, A-14

Low AVG Limit, A-39

Low Model High Score Parameter, A-14

M

Main Index, 6.1-5

Main Model High Score Parameter, A-15

Main to Sub model accuracy, A-15

Main Workspace, 2.2-12, 2.2-14

Side View area, 2.2-17

Top View area, 2.2-15

Maintenance Menu, 2.2-4

Manual Head1 X-Shift Parameter, A-30

Manual Head1 Y-Shift Parameter, A-30

Manual Inspection

Activate Parameter, A-40

Coaxial Illumination After Cut Parameter, A-40, A-41

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Index

First Cut No. Parameter, A-41

Focus on Kerf Step Parameter, A-41

Inspection Before Cut Parameter, A-41

Inspection Focus Type After Cut Parameter, A-41

Last Cut No. Parameter, A-41

Oblique Illumination After Cut, A-41, A-42

Rate, A-42

Manual Kerf Check, 6.3-7

Manual Menu, 2.2-3

Manual Mode, 1-2, A-4

Workflow, 3.6-5

Manual Vertical Alignment Parameter, 6.1-9

Manual Y Offset, 3.6-7, 6.4-1 required parameters, 6.4-1

Material, 5.3-1

Max Cut Width, A-23

Max Wear, 7.4-3

Max Wear Rate Parameter, A-22

Max Wear Warn Delta, 7.4-3

Max. Failures Per Cut Parameter, A-36

Maximum No. of Iterations, A-15

Mechanical Button, A-4

Menu

Auto, 2.2-2

Help, 2.2-5

Load Monitor, 2.2-3

Maintenance, 2.2-4

Manual, 2.2-3

User, 2.2-2

Menu bar, 2.2-2

Menu Navigation Chart, 2.4-1

Microscopes, 2.1-5

Min Cut Depth, A-23

Min Cut Width, A-23

Min Exposure Left, 7.4-3

Min Exposure Left Parameter, A-22

Min Exposure Warn Delta, 7.4-3

Min Exposure Warn Delta Parameter, A-22

Mixed Cutting, A-5

Model, 3.6-6, A-5

Scoring, A-5

Model 7100

front panel, 2.1-1

glossary, A-1

graphic user interface, 2.2-1

initialization, 3.2-1 logging in, 3.2-1

overview, 1-1

pausing, 3.7-2

powering down, 3.1-3

powering up, 3.1-1 starting, 2.2-2, 3.1-1

stations, 2.2-15

status, 2.1-6

stopping, 2.2-2, 3.1-3, 3.7-1

workflows, 3.6-1

Model 7700

features, 1-2

Model tab, 2.2-27, 6.3-6

Model Type, 6.2-1

Model Type Parameter (Cut Verify Category), A-28

Model Types, 6.1-22

Model, processing filters, 6.1-23

Modes of operation, 1-2

Multi Language Support, 8.2-1

multi-delta calculations, 7.3-6

Multi-lingual Interface, 1-3

Multi-Panel Alignment, 6.5-4

Angle Tabs, 6.5-8

Animation, 6.5-9

Changing recipe to regular, 6.5-9

creating recipe, 6.5-5

cutting sequences, 6.5-10

deleting a panel, 6.5-9

Recipes with loop cuts, 6.5-9

teaching, 6.5-5

multiple contact calculations, 7.3-6

N

New Recipe, 5.2-1

New to Old Y Offset Max Delta Parameter, A-48

No. Checks Per Cut, A-11

No. Checks per Cut, 6.3-4, 6.3-9, 6.3-13

No. Checks Per Cut Parameter, A-36

No. Checks per Cut Parameter, A-11

Nominal Distance, 6.1-26, A.A-20

Non-Contact Height, A-5

Number of Dress/Chop Cuts Parameter, A-33

Number of Models, 6.2-1, A.A-29

Number of Repetitions Parameter, A-40

Number of Steps per Check Parameter, A-36

O

On/Off Buttons, 2.1-1

One-Edge Model Z Compensation, 6.3-14

Operation Overview, 3-1

Operator, 4.1-1, A-5

Optimized Order, A-26

optional features, Model 7100, 9-1

Options, 1-3

Options, Configuration, 9-1

Overcut Parameter, A-26

Override, 2.2-35, 7.4-14, 7.4-18

comparison to Dressing, 7.4-15

manual, 7.4-18 parameters, 7.4-18

Override End Speed, 7.4-18

Override End Speed Parameter, A-43

Override Length, 7.4-18

Override Length Parameter, A-44

Override Parameters, A-43

Override Start Speed, 7.4-18

Override Start Speed Parameter, A-44

Override/Dressing Workspace, 2.2-13, 2.2-35, 7.4-18, 7.4-

21

Overtravel - Y axis Parameter, A-27

Overtravel Parameter, A-27

P/N 97100-9002-000-14 Ver 06/05

Index-v

Index

P

Parameters, A-12

access, 4.2-1

adding, 4.2-2, 5.4-8

categories, 5.4-2

defining, 5.4-8

deleting, 4.2-2, 5.4-10

modifying, 5.4-9

Parameters for Cutting, 8.1-4

Partial Wafer Cut, 6.5-1

Pattern Recognition System, A-5

PC Recovery, 10.5-1

Perform Y-Offset in Step Parameter, A-36

Perform Z-Compensation in Step Parameter, A-36

Placing Workpieces, 3.5-1

Placing/Removing Workpieces, 3.6-6

Power Lights, 2.1-3

Powering down, 3.1-3

Powering up, 3.1-1

Pre Non Contact Height, 7.1-2

Process Height, 2.2-3, 2.2-17, 7.3-1, 7.4-7, 7.4-8

Process Programs

browsing, 5.3-1

exporting, 4.2-3 importing, 4.2-3

Processing Method, for all models, 6.1-24

Processing, models, 6.1-23

Programming Workspace, 2.2-13, 2.2-29

Protected mode, 2.2-4, 4.2-5

access, 4.2-5

R

Rate (Cut Verify) parameter, 6.2-1

Rate (Kerf Check), 6.3-4

Rate Parameter (Cut Verify Category), A-29

Rate Parameter (Kerf Check Category), A-36

Raw Load Data, 8.1-3

Recipe, A-5

adding parameters, 5.4-8

browsing, 5.3-1

components, 5-1

deleting parameters, 5.4-10

exporting, 5.5-1 importing, 5.5-1

modifying parameters, 5.4-9

parameters, 5.4-1

Recipe Parameters, 5.4-4

Recipe Properties, 5.3-1

Recipes, 2.2-29, 5-1

assigning, 2.2-2, 3.6-1, 3.6-6

creating, 3.6-3, 5-1, 5.2-1

properties, 3.4-1, 5.3-1, 5.4-1

Recover, 6.3-5

Recover Option Parameter, A-15, A-29, A-36

Reticle, 2.2-20

Rotational Shrinkage, 6.1-25

Run Button, 2.2-11

Run Button and Stop Button, 2.2-11

Advanced Dicing Technologies Ltd.

Index-vi

S

Sample Blade Calibration, A-4

Search Area, 2.2-20

Sensor

Chuck Holder Vacuum, 2.2-34

Main Air, 2.2-34

Overflow, 2.2-32

Theta Air, 2.2-34

Theta Vacuum, 2.2-34

Wafer Holder Vacuum, 2.2-34

Sensors Values graph, 7.4-19, 7.4-22

Services

menu options, 2.2-3

Settling Time, A-15, A-29, A-34, A-37

Setup, 2.2-31, A-5

Setup & Diagnostics Workbook, 2.2-31

Setup & Diagnostics workbook, 7.5-3

Shape, 5.3-1

Shift Depth Every Angle, A-23

Shrinkage Activate Parameter, A-44

Shrinkage Before Cutting Parameter, A-45

Shrinkage Interpolation Parameter, A-45

Special Features, 8-1

Special Search, A-29

Spindle Speed Parameter, A-27

Spiral Search Height Parameter, A-15

Spiral Search Width Parameter, A-15

Spiral-Index Search Height Parameter, A-15

Spiral-Index Search Width Parameter, A-16

Stations

Status Indicators, 2.2-9, 3.3-1

Statistics Menu, 2.2-5

Stop

Emergency, 3.7-1

Manual, 3.7-2

Stop Button (Soft), 2.2-11

Street, A-5

Street Index, A-16

Sub Model High Score, A-16

Substrate.

See Workpiece

subsystems, 2-1

System Description, 2-1

T

Table, A-6

Tape Thickness, 5.3-1

Taught Parameter, A-16

Teach Center - Taught Parameter, A-46

Teach Focus & Illumination, 3.6-4

Teach Parameter button, 6.1-6, 8.6-1

Teach Window, 2.2-20

Teaching, A-6

access, 4.2-3

Alignment, 3.6-4, 3.6-6, 6.1-12

Index, 3.6-4, 3.6-6, 6.1-5

Kerf Check, 3.6-4, 6.3-9, 6.3-11, A-11

Technician, 4.1-1, A-6

Theta Motion Replay, 8.4-2

Theta Safety Limits on X-Axis, 8.9-1

Theta Tolerance Parameter, A-45

Thickness (Blade), 5.3-5

Thickness (Workpiece), 5.3-1

Tilted Spindle

Changing the Spindle Angle in a Recipe, 9.2-2

Height Procedure Changes, 9.2-2

Mechanical Adjustments, 9.2-7

Y-Offset After Height Parameter, A-47

Tilted Spindle Angle Parameter, A-47

To Index, A-27

Toolbar, 2.2-5

Troubleshooting, overview, 10-1

Two-Step Kerf Check, 6.3-14

Type (Workpiece), 5.3-1

U

Uni-directional Cutting, A-6

Unload Air Puff Parameter, A-12

Upcut, A-6

Updating the Workpiece Alignment, 6.1-28

UPS, 1-2, 2.1-8, A-6

Use Model Angle Parameter, A-17

Use Model-to-Kerf Parameter, A-37

Use Y Shift, 6.2-1

Use Y Shift Parameter, A-29

User, A-6

User Interface Elements

access, 4.2-2

User Menu, 2.2-2

Users

adding, 4.3-1 removing, 4.3-1

V

Verification Offset Tolerance, A-29

Verification Parameter, A-17, A-18

Verify All Models Parameter, A-17

Vertical Manual Alignment Parameter, A-18

Video Workspace, 2.2-13, 2.2-18

Checklist tab, 2.2-27

Display Controls, 2.2-20

FOV, 2.2-19

Illumination Controls, 2.2-25

Model tab, 2.2-27, 6.3-6

other buttons, 2.2-28

Reticle, 2.2-20

Search Area, 2.2-20

Teach Window, 2.2-20

Wizard tab, 2.2-25, 2.2-26

Zoom Controls, 2.2-23

Vision

menu options, 2.2-3

Vision System, 2.1-5, 3.6-7

ADT Model 7100 Semi-Automatic Dicing System Operations Manual

Index

W

Wafer Holder Gauge, 2.2-9

Wafer Mounting Angle Tolerance, A-11

Wafer Mounting Angle Tolerance Parameter, A-11, A-18

Wafer Penetration Delta Parameter, A-48

Wafer.

See Workpiece

Warn Cut Length Parameter, A-22

Wash Pipe, 9.4-1, A-6

Model 7100 Fortis and ProFortis, 9.4-5

Model 7100 Vectus and ProVectus, 9.4-4

Wash Pipe After Cut No. Parameter, A-47

Wash Pipe After Cut Parameter, A-47

Wash Pipe Parameter

Display time, A-47

Wash Speed, A-47

Washing Start Delay, A-47

Wash Pipe process parameters, A.A-47

Wash Pipe setup parameters, 9.4-2

Water Adjust, 2.2-9

Wear Rate Chart, 7.4-3

Width, 5.3-1

Wizard tab, 2.2-26

WMax. See

Kerf Check

WMin. See

Kerf Check

Work.

See Workpiece

Workbook Workspace, 2.2-13, 2.2-30

access, 4.2-3

Calibration Workbook, 2.2-33

Setup & Diagnostics Workbook, 2.2-31

Workflow

Auto Mode, 3.6-1, 3.6-3

Manual Mode, 3.6-5

Workpiece Alignment

Update, 6.1-28

Workpiece’s Center on Chuck Center, A-46

Workpieces, A-6

placing, 3.5-1

Workspace, 2.2-12

Load Monitor, 2.2-13, 8.1-1

Main, 2.2-12, 2.2-14

Override/Dressing, 2.2-13, 7.4-18, 7.4-21

Programming, 2.2-13, 2.2-29

Video, 2.2-13, 2.2-18

Workbook, 2.2-13

X

X Pos Parameter, A-30

X Search Streets Parameter, A-46

X Searches Parameter, A-30

X Shift Parameter, A-40

X/Y Axis Control, 2.2-20

X-Axis, A-7

Y

Y Offset, 6.4-2, A-7

Y Offset After Blade Change Parameter, A-49

P/N 97100-9002-000-14 Ver 06/05

Index-vii

Index

Y Offset Parameters, A-48

Y Offset Reference Position Parameter, A-49

Y Offset, reference position, 6.4-3

Y Pos Parameter, A-30

Y Search Streets Parameter, A-46

Y Shift Parameter, A-40

Y-Axis, A-7

Y-coordinate, 6.4-3

Y-coordinate, reference position, 6.4-3

Z

Z/T Axis Control, 2.2-22

Z-Axis, A-7

Z-Axis Return Height, 7.1-1

Z-Axis Safety, 7.1-1

Z-Axis Safety Position, 7.1-1

Zoom Controls, 2.2-23

Zoom, controlling, 2.2-24

Zoom, enabling, 2.2-23

Advanced Dicing Technologies Ltd.

Index-viii

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals