Pulse | LEDBAR 24.1 | User manual | EN / ACA 635 IGBT Supply Sections User`s Manual

Add to my manuals
112 Pages

advertisement

Pulse | LEDBAR 24.1 | User manual | EN / ACA 635 IGBT Supply Sections User`s Manual | Manualzz
ACS 600
This manual includes
• Safety
• Commissioning of the
Supply Section with ISU
• Functional Description
• Parameters
• Fault Tracing
• Technical Data
User’s Manual
ACA 635 IGBT Supply Sections (ISU)
260 to 4728 kVA
ACS 600 MultiDrive Manuals (Air-cooled Units, English Originals)
GENERAL MANUALS
*Safety and Product Information EN 63982229
• Complete general Safety Instructions
• Technical data for DSU and TSU supplies and Drive Sections: ratings,
power losses, dimensions, weights, fuses etc.
*System Description EN 63700151
• General description of ASC 600 MultiDrive
*Hardware Manual EN 63700118
• General Safety Instructions
• Hardware description of the Drive Section
• Cable selection
• ACS 600 MultiDrive mechanical and electrical installation
• Hardware commissioning of the Drive Section
• Preventive maintenance of ACS 600 MultiDrive
ACS 600 MultiDrive Control Electronics LED Indicators
EN 64289721
• LED descriptions
**Modules Product Catalogue EN 64104268
• Supply Unit components
• Drive Unit components
• Dynamic Braking Units
• DriveWare information
• Dimensional drawings
• Single line diagrams
• Auxiliary power consumption
• Master component tables
**Modules Installation Manual EN 64119010
• Cabinet assembly
• Wiring
FIRMWARE MANUALS FOR DRIVE APPLICATION PROGRAMS
(appropriate manual is included in the delivery)
System EN 63700177
• Commissioning of the System Application Program
• Control Panel use
• Software description
• Parameters of the System Application Program
• Fault tracing
• Terms
Application Program Template EN 63700185
• Commissioning of the Drive Section
• Control Panel use
• Software description
• Parameters
• Fault tracing
• Terms
Standard EN 61201441
• Control Panel use
• Standard application macros with external control connection diagrams
• Parameters of the Standard Application Program
• Fault tracing
• Fieldbus control
Note: a separate Start-up Guide is attached
Crane Drive EN 3BSE 011179
• Commissioning of the Crane Drive Application Program
• Control Panel use
• Crane program description
• Parameters of the Crane Drive Application Program
• Fault tracing
CONTROL SECTION MANUALS (delivered with optional Control Section)
**EMC Compliant Installation and Configuration for a Power Drive
System EN 61348280
Advant Controller 80 User’s Manual EN 64116487
• AC 80 hardware and connections
• AC 80 software
• Programming
• Diagnostics
* Included with cabinet-assembled systems only
** Included in Modules deliveries only
Advant Controller 80 Reference Manual PC Elements EN 64021737
• Description of PC and DB elements
SUPPLY SECTION MANUALS (depending on the supply type one of these
manuals is included in the delivery)
Advant Controller 80 Reference Manual TC Elements EN 64331868
• Description of TC elements
Diode Supply Sections User’s Manual (DSU) EN 61451544
• DSU specific Safety Instructions
• DSU hardware and software descriptions
• DSU commissioning
• Earth fault protection options
BRAKING SECTION MANUAL (delivered with optional Braking Section)
Thyristor Supply Sections User’s Manual (TSU) EN 64170597
• TSU operation basics
• TSU firmware description
• TSU program parameters
• TSU commissioning
MANUALS FOR OPTIONAL EQUIPMENT (delivered with optional
equipment)
**Grounding and Cabling of the Drive System EN 61201998
• Grounding and cabling principles of a variable speed drive system
IGBT Supply Sections User’s Manual (ISU) EN 64013700
• ISU specific Safety Instructions
• Main components of ISU
• ISU ratings
• ISU power losses
• ISU dimensions and weights
• ISU fuses
• ISU program parameters
• Earth fault protection options
ACA 621/622 Braking Sections User’s Manual EN 64243811
• Installation, Start-up, Fault tracing,Technical data
• Dimensional drawings
Fieldbus Adapters, I/O Extension Modules, Braking Choppers etc.
• Installation
• Programming
• Fault tracing
• Technical data
ACA 635 IGBT Supply Sections
260 to 4728 kVA
User’s Manual
This manual concerns the ACS 600 MultiDrive
supply sections (ACA 635) equipped with an IGBT
Supply Unit and the ACS/ACC 617 drives.
3BFE 64013700 R0125 REV B
EN
EFFECTIVE: 10.11.2000
SUPERSEDES: 21.10.1999
ã 2000 ABB Industry Oy. All Rights Reserved.
Safety Instructions
Overview
The complete safety instructions for the ACA 6xx in Safety and Product
Information (EN code: 63982229) and for the ACS/ACC 617 in
Hardware Manual (EN code: 61329005) must be followed when
installing, operating and servicing the drives. Study the complete safety
instructions carefully.
Installation and
Maintenance Safety
These safety instructions are intended for all who work on the ACA 6xx
or the ACS/ACC 617. Ignoring these instructions can cause physical
injury or death.
WARNING! All electrical installation and maintenance work on the
drive should be carried out by qualified electricians.
Any installation work must be done with power off, and power is not to
be reconnected unless the installation work is complete. Dangerous
residual voltages remain in the capacitors when the disconnecting
device is opened. Wait for 5 minutes after switching off the supply
before starting work. Always ensure by measuring that the voltage
between the terminals UDC+ and UDC- and the frame is close to 0 V
and that the supply has been switched off before performing any work
on the equipment or making main circuit connections.
If the main circuit of the inverter unit is live, the motor terminals are also
live even if the motor is not running!
Open switch fuses of all parallel connected inverters before doing
installation or maintenance work on any of them. These switch fuses
are not included in the ACS/ACC 617.
Check the cable connections at the shipping split joints before
switching on the supply voltage.
If the auxiliary voltage circuit of the drive is powered from an external
power supply, opening the disconnecting device does not remove all
voltages. Control voltages of 115/230 VAC may be present in the digital
inputs or outputs even though the inverter unit is not powered. Before
starting work, check which circuits remain live after opening of the
disconnecting device by referring to the circuit diagrams for your
particular delivery. Ensure by measuring that the part of the cabinet
you are working on is not live.
ACA 635 IGBT Supply Sections
iii
Safety Instructions
The control boards of the converter unit may be at the main circuit
potential. Dangerous voltages may be present between the control
boards and the frame of the converter unit, when the main circuit
voltage is on. It is critical that the measuring instruments, such as an
oscilloscope, are used with caution and safety as a high priority. The
fault tracing instructions give special mention of cases in which
measurements may be performed on the control boards, also indicating
the measuring method to be used.
Live parts on the inside of doors are protected against direct contact.
Special safety attention shall be paid when handling shrouds made of
sheet metal.
Do not make any voltage withstand tests on any part of the unit while
the unit is connected. Disconnect motor cables before making any
measurements on motors or motor cables.
WARNING! Close switch fuses of all parallel connected inverters
before starting the drive.
Do not open the drive section switch fuses when the inverter is
running.
Do not use Prevention of Unexpected Start for stopping the drive
when the inverter is running. Give a Stop command instead.
CAUTION! Fans may continue to rotate for a while after the
disconnection of the electrical supply.
CAUTION! Some parts like heatsinks of power semiconductors and
toroidal cores on motor cables inside the cabinet remain hot for a while
after the disconnection of the electrical supply.
Automatic Resets
WARNING! If an external source for start command is selected and it is
ON, the ACA 635 will start immediately after fault reset.
iv
ACA 635 IGBT Supply Sections
Safety Instructions
Dedicated Transformer
WARNING! The ACA 635 must be supplied with a transformer
dedicated to drives and motors or equipment of equal or higher power,
or with a transformer equipped with two secondary windings, one of
which is dedicated to drives and motors. Resonances might occur if
there is capacitive load (e.g. lighting, PC, PLC, small power factor
compensation capacitors) in the same network with the ACA 635. The
resonance current might damage some unit in the network.
Medium voltage network
Supply transformer
Neighbouring network
Low voltage
Low voltage
Other load than
drives and motors
Motors
ACA 635
Other drives
or
Medium voltage network
Supply transformer
Low voltage
Other load than
drives and motors
ACA 635
Other drives and
motors
ACA 635 IGBT Supply Sections
v
Safety Instructions
vi
ACA 635 IGBT Supply Sections
Table of Contents
ACS 600 MultiDrive Manuals (Air-cooled Units, English Originals)
Safety Instructions
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Installation and Maintenance Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Automatic Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Dedicated Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents
Chapter 1 – Introduction
About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
ISU-related Information in Other Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
Chapter 2 – Operation Basics
Operation of ISU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Main Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2
Current Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Line Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2
DC Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3
Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Voltage Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4
Line Current Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4
Chapter 3 – Hardware Description
Main Components of ACS 600 MultiDrive with ISU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Auxiliary Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
Incoming Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
Filter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
IGBT Supply Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
Main Circuit Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Basic Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4
Parallel Connected Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4
ISU and DSU in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5
Braking Chopper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6
ACA 635 IGBT Supply Sections User’s Manual
vii
Chapter 4 – Commissioning the Supply Section with ISU
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Installation Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Checks with No Voltage Connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Connecting Voltage to Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Checks with Voltage Connected to Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Connecting Voltage to IGBT Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Checks with ISU Supply Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Controlling the ISU with an Overriding System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Fieldbus Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
On-load Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Chapter 5 – Earth Fault Protection
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Floating Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Insulation Monitoring Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
System-earthed Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Chapter 6 – Firmware Description
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Control Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Identification Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Starting Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Start by the Starting Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Start via Fieldbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
Level Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Missing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
Control Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
DC References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
DC Voltage Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13
Reactive Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
Chapter 7 – Fault Tracing
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Fault Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Fault Resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Fault History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Fault and Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
What to Do in Case of an Earth Fault Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
viii
ACA 635 IGBT Supply Sections User’s Manual
Chapter 8 – Parameters
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
1 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
2 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
3 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
4 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
7 Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
8 Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
9 Fault Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
11 Reference Selects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
13 Analogue Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
14 Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10
15 Analogue Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
16 System Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12
18 LED Panel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13
19 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14
Trend Monitoring with Drive Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-14
Sending a value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-14
19 Data Storage Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-15
21 Start/Stop Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16
23 DC Bus Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18
Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-18
24 Reactive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18
30 Fault Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
51 Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20
70 DDCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20
71 DriveBus Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22
90, 91 Data Set Receive Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23
92, 93 Data Set Transmit Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24
98 Option Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25
99 Start-up Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26
Appendix A – Technical Data
Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Ratings 380...690 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Dimensions and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Input Power Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Ambient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
IGBT Supply Section AC Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
IGBT Supply Unit DC Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
ACA 635 IGBT Supply Sections User’s Manual
ix
Power Cable Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Tightening Torque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
IGBT Supply Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
Drive Control Unit NDCU-2x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9
NIOC Board Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10
Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11
NLMD-01 Monitoring Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11
NIOC Board Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11
Applicable Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-12
CE Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-13
Compliance with the EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-13
Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-14
Appendix B – Circuit Diagrams
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
x
ACA 635 IGBT Supply Sections User’s Manual
Chapter 1 – Introduction
About this Manual
The ACA 635 supply section includes an Auxiliary Control Unit, an
Incoming Unit, a Filter Unit and an IGBT Supply Unit (ISU). This
manual covers:
•
Safety Instructions
•
Use of the ISU
•
Descriptions for system, hardware and software (version Ixxx 5060
and later). The descriptions provide the possibility to operate and
optimize the unit for a particular system.
•
The commissioning of the supply section
•
Parameters of the IGBT supply unit control program
•
Fault tracing
•
Technical data giving information concerning the ratings, fuses,
cooling requirements, power losses etc.
Study this manual carefully before installing, commissioning, operating
or servicing the supply section equipped with an IGBT supply unit. We
expect that you have a basic knowledge of physical and electrical
fundamentals, electrical wiring practices, electrical components and
electrical schematic symbols.
Note: The parameters of the ISU listed in this manual need not be
set in a normal start-up procedure or in normal use. However, the
ISU parameters can be viewed and changed with the Control Panel.
ACA 635 IGBT Supply Sections User’s Manual
1-1
Chapter 1 – Introduction
ISU-related
Information in Other
Manuals
Task
Items concerning the ACA 635 not described in this manual are listed
below with a reference to the manual where they are described. For EN
codes of the manuals refer to the inside of the front cover of this
manual.
Described in
Instruction/Information
Mechanical and
Electrical Installation of
ISU
ACS 600 MultiDrive
Hardware Manual (EN
code: 63700118) or
ACx 6x7 Hardware
Manual (EN code:
61329005)
Perform the installation according to the instructions. See the required
general data from the ACS 600 MultiDrive Safety and Product
Information guide (or Appendix A in ACx 6x7 Hardware Manual, EN
code 61329005) and the ISU specific data from Appendix A –
Technical Data in this manual.
Preventive
Maintenance
as above
Installation of Optional
Modules and
DriveWindow
as above
Install any optional modules and DriveWindow according to the
instructions given in Chapter 3 – Electrical Installation.
Associating ISU with
DriveWindow
DriveWindow Start-up
Guide EN code
36458585
When associating DriveWindow 1.3 and 1.4 with the ISU proceed as
follows:
System Configuration Messages
User Interface
1-2
What to do
Error: Encountered target ‘ISU600xxxx-x’ is unknown. Do you wish to
associate it?
Click OK.
Associate ‘ISU600-xxxx-x’ With
Choose ACS600 MultiDrive
from the list.
Do you wish association ‘ISU600xxxx-x’ = ACS600 MultiDrive be
permanent?
Click Yes.
The use of the Control
The user interface of the IGBT Supply Unit is a CDP 312 Control
Panel is described in
Panel or PC, which is equipped with a DDCC board and DriveWindow.
detail in ACS 600
Firmware Manual (for
System, Standard or
Crane Drive Application
Program).
ACA 635 IGBT Supply Sections User’s Manual
Chapter 2 – Operation Basics
Operation of ISU
The ISU is a four-quadrant switching-mode converter. The a.c. current
of the ISU is nearly sinusoidal at a unity power factor. In addition, the
power flow through the converter is reversible. As a default, the ISU
controls the DC link voltage to the peak value of the line-to-line voltage.
The DC voltage reference can be set also higher by a parameter.
Main Circuit Diagram
A diagram of the main circuit of the IGBT supply is shown below.
Control and Gate Drivers
Common DC bus
Idc
Supply network
AC choke
Iu
Uc
U0
U1
U2
Converter
Control
The control and modulation is based on the Direct Torque Control
(DTC) method typically used in ACS 600 motor control. Two line
currents and DC link voltage are measured and used for the control.
The control boards are similar to the boards of the inverter.
Voltage Waveform
The high frequency switching and high du/dt slightly distorts the
voltage waveform at the input of the converter. The depth of the
voltage notches depends on the ratio of network inductance to total line
inductance (network + AC choke inductance).
ACA 635 IGBT Supply Sections
2-1
Chapter 2 – Operation Basics
Diagram
The waveforms of u0 and u1 shown below. The measuring points are
given in the main circuit diagram above.
(V)
400
u0
300
200
u1
100
t (ms)
0
100
102
104
106
108
110
112
114
116
118
-100
-200
-300
-400
Current Waveform
The line current has a sinusoidal waveform, whereas the d.c. current
consists of a d.c. component and a high switching frequency
component.
A typical line current (iu) waveform is shown below. u2 denotes
converter input voltage.
Line Current
(A, V)
500
400
300
u2
iu
200
100
t (ms)
0
100
102
104
106
108
110
112
114
116
118
-100
-200
-300
-400
-500
2-2
ACA 635 IGBT Supply Sections
Chapter 2 – Operation Basics
DC Current
A typical DC current (idc) waveform is shown below.
(A)
500
idc
450
400
350
300
250
200
150
100
50
0
100
Harmonics
ACA 635 IGBT Supply Sections
102
104
106
108
110
112
114
116
118 t (ms)
IGBT supply unit does not generate characteristic current/voltage
overtones the way a traditional 6- or 12-pulse bridge does, because of
the sinusoidal waveform of the line current. The typical spectrum of the
line current and line-to-line voltage harmonics is quite wide, but there
are no high individual components. The Total Harmonic Distortion
(THD) in voltage depends highly on the Short Circuit Ratio in the Point
of Common Coupling (PCC), refer to Appendix A – Technical Data.
2-3
Chapter 2 – Operation Basics
Voltage Harmonics
A typical spectrum of the voltage harmonics at the output of the
transformer is shown below. Each harmonic is presented as a
percentage of the fundamental voltage. n denotes the order of the
harmonic.
7
6
5
4
3
2
1
0
THD
Line Current Harmonics
11
21
31
41
51
61
71
81
91
101
111
121
131
141
151
161
171
181
191
n
A typical spectrum of the line current harmonics is shown below. Each
harmonic is presented as a percentage of the fundamental current. n
denotes the order of the harmonic.
4
3.5
3
2.5
2
1.5
1
0.5
0
THD
2-4
11
21
31
41
51
61
71
81
91
101
111
121
131
141
151
161
171
181
191
n
ACA 635 IGBT Supply Sections
Chapter 3 – Hardware Description
Main Components of
ACS 600 MultiDrive
with ISU
The main components of an ACS 600 MultiDrive frequency converter
(AC Drive) equipped with an IGBT supply unit are shown below. Two
drive sections are drawn in the diagram, in reality the number of them
varies. This chapter describes the supply section.
Supply Section
Auxiliary
Control
Unit
Incoming
Unit
Filter
Unit
Drive Sections
Braking Sections
IGBT
Supply
Unit
Braking Unit
(optional)
Common DC Bus
FIU
ISU
NDCU
Chopper
IGBT
Supply
Unit
24 V
Resistor
ICU
ACU
NAMC
1 L 1242 r pm I
SPEED 124 2 rpm
CURRENT 76 A
TORQUE 86 %
NAMC
1 L 1242 r pm I
SPEED 124 2 rpm
CURRENT 76 A
TORQUE 86 %
1 L 124 2 rpm I
SPEED 1 242 rpm
CURRENT 76 A
TORQUE 8 6 %
Inverter
Inverter
AC
Supply Section
The supply section consists of the units listed below:
• Auxiliary Control Unit (ACU)
• Incoming Unit (ICU)
• Filter Unit (FIU)
• IGBT Supply Unit (ISU).
ACA 635 IGBT Supply Sections
3-1
Chapter 3 – Hardware Description
Auxiliary Control Unit
The following components are located in the Auxiliary Control Unit:
• Drive Control Unit (NDCU), which includes an Application and Motor
Controller (NAMC) Board and a standard I/O (NIOC) Board
• Optical Branching Unit (NPBU) with parallel connected IGBT Supply
Units (frames 2 or 4 times R11i and R12i). NPBU is connected
between NAMC and NINT boards (inside the converter module).
• Control voltage supply (fuses and transformer)
• On/off switch on the cabinet door and relays
• Optional CDP 312 Control Panel and NLMD-01 Monitoring Display
• Optional voltage and current meters
• Control wiring and relays
• Auxiliary voltage filter for sensitive equipment (IN = 17 A, 230/115 V)
• Optional emergency and earth fault protection components
• Other options (fieldbus adapter modules, man/machine interfaces
etc.)
Incoming Unit
The following components are located in the Incoming Unit:
• Terminals for the input power (a.c. supply) connection
• Frames R8i to R10i: switch fuse (including AC fuses) and main
contactor. Frames R11i and above: air circuit breaker.
• Optional earthing switch
• Charging fuses and contactor
• Current transformer of optional ammeters
Filter Unit
The following components are located in the Filter Unit:
• AC filter
• Cooling fan for filter
• Charging resistors
• AC fuses (frames R11i and above)
3-2
ACA 635 IGBT Supply Sections
Chapter 3 – Hardware Description
IGBT Supply Unit
The IGBT Supply Unit includes the parts listed below:
• Converter (ACN 634 xxxx)
• Converter cooling fans
• DC fuses
• the following control boards inside the converter:
- Thick-film Hybrid Board (NRED) in 690 V units only for limiting the
maximum voltage
- Power Supply Board (NPOW)
- Main Circuit Interface Board (NINT)
- Control Distribution Board (NXPP) in frame sizes R10i to 4 x R12i
- Gate Driver Power Supply Board (NGPS) in frame sizes R12i and
up for supplying power to NGDR boards
- Gate Driver Board (NGDR)
Converter
The converter consists of an IGBT bridge which forms controlled d.c.
voltage from the supply network a.c. voltage. The bridge is capable of
delivering braking energy back to the network.
Frame Size
A converter (ACN 634 xxxx) consists of
R8i to R9i
one converter module
~
=
R10i to R12i
three phase modules (ACN 644 xxxx) = one converter
Þ
~
=
2 x R11i, 2 x R12i
two times three phase modules (ACN 644 xxxx) = two phase
module blocks Þ one converter
Þ
=
=
No. 2
No. 1
4 x R11i, 4 x R12i
~
~
four times three phase modules (ACN 644 xxxx) = four phase
module blocks Þ one converter
Þ
No. 2
No. 1
~
ACA 635 IGBT Supply Sections
~
~
=
No. 3
=
No. 4
~
=
=
3-3
Chapter 3 – Hardware Description
Main Circuit
Construction
The converter consists of six insulated gate bipolar transistors (IGBT)
with free wheeling diodes and DC capacitors. Frames R8i and R9i are
equipped with parallel connected IGBTs for each phase located on
three power plates. Frames R10i and R11i include six power plates
and frame R12i nine power plates. An a.c. choke is connected between
the supply transformer and the converter. The AC choke impedance is
20 percent of the nominal impedance of the ISU.
Configurations
The sections below describe possible configurations of ISU modules.
Basic Configuration
The hardware of the IGBT supply unit is equal to the hardware of the
ACS 600 MultiDrive inverter. One NAMC board controls the converter
module. It is located in the Auxiliary Control Unit inside the Drive
Control Unit (NDCU) box as well as the NIOC board. The supply
section is equipped with an a.c. reactor and AC and DC fuses.
ICU
ISU
FIU
Converter
Module
AC fuses
DC fuses
~
=
(230/115 V)
(230/115 V)
NAMC
Charging circuit
NDCU
ACU
Parallel Connected
Modules
3-4
Parallel connected IGBT supply converter module configuration is
equal to parallel connected inverter module configuration of the
ACS 600 MultiDrive. One NAMC board controls all parallel connected
modules. Each module is equipped with an a.c. reactor and AC and DC
fuses. If one module fails, it can be disconnected by removing the
fuses on both sides of it. The whole supply has a common
disconnecting device. Full redundancy is not possible. The modules
cannot supply the DC link separately, with independent NAMC boards.
ACA 635 IGBT Supply Sections
Chapter 3 – Hardware Description
NDCU
NAMC
NPBU
~
=
~
=
~
=
~
=
ICU
ISU and DSU in Parallel
FIU
ISU
A diode supply unit must not be connected galvanically in parallel with
an IGBT supply unit in the same a.c. supply as the synchronisation
would fail. The parallel configuration is allowed only with a supply
transformer equipped with two secondary windings. This configuration
is beneficial when the motoring power is considerably higher than the
braking power and the brakings are short.
Start mode DC LEVEL START (Parameter 21.01 value 1) must be
used. During motoring the ISU is not modulating, only the free wheeling
diodes are conducting. The motoring current is flowing mainly through
the DSU diode bridge, because the line impedance of the ISU is a lot
higher than the impedance of the DSU diode bridge.
Diagram
An allowable parallel configuration of the ISU and the DSU is shown
below.
DSU
~
=
~
=
ISU
ACA 635 IGBT Supply Sections
3-5
Chapter 3 – Hardware Description
Braking Chopper
A braking chopper can be connected in parallel with an IGBT supply
unit. The configuration is beneficial when the braking is continuous and
the drive is not allowed to stop if the supply network trips for a short
time.
~
=
Braking
Resistor
3-6
Braking
Chopper
ACA 635 IGBT Supply Sections
Chapter 4 – Commissioning the Supply Section with ISU
Overview
This chapter describes the commissioning of a supply section that is
equipped with the IGBT Supply Unit (ISU).
WARNING! Only qualified electricians are allowed to commission the
drive. The Safety Instructions on the first pages of this manual must be
followed. Ignoring the safety instructions can cause injury or death.
Installation Checklist
The installation must be checked before commissioning the supply
section. This table refers to the more detailed instruction.
Action
Check that the mechanical and electrical installation of the
frequency converter is inspected and OK.
Ensure that the insulation resistance of the assembly is
checked according to instructions given in the Hardware
Manual.
Ensure that the surroundings and inside of the cabinet is
free from dust and loose objects (like cable trimmings and
other waste left from the installation).
ACA 635 IBGT Supply Sections
Information
See ACS 600 MultiDrive Hardware
Manual (EN code: 63700118) or ACx
6x7 Hardware Manual (EN
code:61329005). Refer to Installation
Checklist and Insulation Checks
(Chapter 3).
After the start, the cooling air fans may
suck nearby loose objects into the unit.
This might cause failure and damage the
unit.
4-1
Chapter 4 – Commissioning the Supply Section with ISU
Checks with No
Voltage Connected
This table is a commissioning checklist for the supply section with no
voltage connected.
Action
Information
WARNING! Ensure that the disconnector of the supply transformer is locked to open
position, i.e. no voltage is, or can be connected to the drive inadvertently. Check also by
measuring that there actually is no voltage connected.
1.
Air Circuit Breaker, Relays, Switches
If the supply section is equipped with an air circuit breaker,
check the current trip levels of the air circuit breaker.
The trip levels have been preset at the
factory. In most applications there is no
need to change these settings.
Check the settings of the relays for the emergency stop
circuit.
See the circuit diagrams delivered with
the device.
Check the settings of the time relays.
See the circuit diagrams delivered with
the device.
Check the settings of other relays.
See the circuit diagrams delivered with
the device.
Check the settings of the breakers/switches of the auxiliary
circuits.
See the circuit diagrams delivered with
the device.
Check that all breakers/switches of the auxiliary circuits are
open.
2.
Supply Tripping Circuit
Check the operation of the supply transformer tripping
option.
3.
Auxiliary Control Voltage Transformer
Check the wirings to the primary and secondary side
terminals of the auxiliary control voltage transformer.
4-2
This is an optional feature. See the
circuit diagrams delivered with the
device.
See the circuit diagrams delivered with
the device for the correspondence
between the wirings and the voltage
levels.
ACA 635 IBGT Supply Sections
Chapter 4 – Commissioning the Supply Section with ISU
Connecting Voltage to
Auxiliary Circuits
This table describes how to connect voltage to the supply section input
terminals and to the Auxiliary Control Unit (ACU) for the first time.
Action
Information
WARNING! When voltage is connected to the input terminals of the supply section,
the voltage will also be connected to the auxiliary control unit and to auxiliary circuits
- also to the ones wired to drive sections.
Make sure that it is safe to connect voltage to the input terminals. Ensure that while
the voltage is connected:
• Nobody is working with the unit or circuits that are wired from outside into the
cabinets.
• The cabinet doors are closed.
Disconnect the 230 VAC cables that lead from the terminal
blocks to the outside of the equipment and have not yet
been checked, and the connections which may not yet have
been completed.
Make sure that the main contactor/air circuit breaker cannot
inadvertently be remote controlled to close, e.g. by
temporarily opening some connection in its control circuit.
Be ready to trip the main breaker of the supply transformer
in case anything abnormal occurs.
Ensure that all cabinet doors are closed.
Close the main breaker of the supply transformer.
Close the main disconnecting switch of the supply section.
Close the main disconnecting switch of the auxiliary circuit.
ACA 635 IBGT Supply Sections
4-3
Chapter 4 – Commissioning the Supply Section with ISU
Checks with Voltage
Connected to
Auxiliary Circuits
This table is a commissioning checklist for the supply section with
voltage connected to the input terminals, and Auxiliary Control Unit
(ACU).
Action
Information
WARNING! This section includes instructions for checking/measuring circuits under
voltage. Only a qualified person is allowed to do the work. An appropriate and
approved meter must be used.
IF IN DOUBT, DO NOT PROCEED!
Ensure the actions described in section Connecting Voltage
to Auxiliary Circuits are completed.
Measure phase voltages by using the switch and meter on
the cabinet door.
This is an optional feature. If included,
see the circuit diagrams delivered with
the device.
Check the secondary side voltage of the auxiliary voltage
transformer. Close the protection switch on the secondary
side.
See the circuit diagrams delivered with
the device.
Close the breakers of the auxiliary circuits one by one.
Check each circuit by
Note: The cooling fans of the IGBT
supply unit will start after the main
contactor is closed.
• measuring correct voltage in terminal blocks
• checking the operation of the devices connected to the
circuit.
Check for the correct connection from an external auxiliary
voltage source (e.g. from an Uninterrupted Power Supply,
UPS) to the auxiliary control unit.
4-4
This is an optional feature. If included,
see the circuit diagrams delivered with
the device.
ACA 635 IBGT Supply Sections
Chapter 4 – Commissioning the Supply Section with ISU
Connecting Voltage to
IGBT Supply Unit
This table describes how to connect voltage to the IGBT supply unit
and the DC busbars for the first time.
Action
Information
WARNING! When connecting voltage to the IBGT supply unit, the DC busbars will
become live, as will all the inverters connected to the DC busbars.
Make sure that it is safe to connect voltage to the IBGT supply unit. Ensure that:
• Nobody is working with the unit or circuits that are wired from outside into the
cabinets.
• All cabinet doors are closed.
1.
First Voltage Switch-on for the IGBT Supply Unit
If the supply section is equipped with an air circuit breaker,
set the air circuit breaker current settings to 50% of the onload values.
It is recommended to set relatively low
current values at the first voltage switchon.
Ensure that all cabinet doors are closed.
Be ready to trip the main breaker of the supply transformer if
anything abnormal occurs.
Close the main disconnecting switch of the supply section.
Close the main contactor / air circuit breaker of the supply
section.
2.
Air Circuit Breaker Current Settings
Increase the air circuit breaker current settings to the onload values.
ACA 635 IBGT Supply Sections
4-5
Chapter 4 – Commissioning the Supply Section with ISU
Starting
This procedure instructs how to start the IGBT supply unit.
Action
Information
WARNING! When starting the IGBT supply unit, the DC busbars will become live, as
will all the inverters connected to the DC busbars.
Make sure that it is safe to start the IGBT supply unit. Ensure that:
• Nobody is working with the unit or circuits that are wired from outside into the
cabinets.
• All cabinet doors are closed.
• The covers of the motor terminal boxes are on.
Ensure the actions described in subsections Checks with No
Voltage Connected and Checks with Voltage Connected to
Auxiliary Circuits are completed.
Be ready to trip the main breaker of the supply transformer if
anything abnormal occurs.
Close the main disconnecting switch of the auxiliary circuit.
Close the main disconnecting switch of the supply section.
Start the ISU:
• reset the starting logic by the RESET button on the cabinet
door.
• turn the starting switch on the cabinet door from position 0
to 1, and
• turn the starting switch to the START position and release
it.
4-6
ACA 635 IBGT Supply Sections
Chapter 4 – Commissioning the Supply Section with ISU
Checks with ISU
Supply Started
This table is a list of checks to be done after the IGBT supply unit is
started and the DC busbars are live.
Action
Information
WARNING! This section includes instructions for checking/measuring circuits under
voltage. Only a qualified person is allowed to do the work. An appropriate and
approved measuring instrument must be used.
IF IN DOUBT, DO NOT PROCEED!
1.
Basic Checks
Check that the cooling fan in the supply section rotates
freely in the right direction, and the air flows upwards.
A paper sheet set on the lower gratings
stays. Fan runs noiselessly.
FLOATING NETWORK (IT NETWORK)
1.
Earth Fault Protection Based on an Insulation Monitoring Device
Check the setting of Parameter 30.04 EXT EARTH FAULT,
and the connection to DI4.
Check the tuning of the insulation monitoring device for the
earth fault protection (Bender).
The insulation monitoring device is tuned at the factory. If
further tuning is required, see the IRDH265 Operating
Manual by Bender (code: TGH1249).
This is an optional feature (IRDH265-x).
If included, see the circuit diagrams
delivered with the device. For
information on the protection principle
see the IRDH265 Operating Manual by
Bender (code: TGH1249) and Chapter 5
– Earth Fault Protection.
SYSTEM EARTHED NETWORK (TN NETWORK)
1.
Earth Fault Protection Based on Internal Current Measurement
Check the setting of Parameter 30.02 EARTH FAULT.
Parameters
ACA 635 IBGT Supply Sections
This is a programmable feature. For
information on the protection principle
see Chapter 5 – Earth Fault Protection
The parameters of the ISU need not be set in a normal start-up
procedure or in normal use.
4-7
Chapter 4 – Commissioning the Supply Section with ISU
Controlling the ISU
with an Overriding
System
This procedure instructs how to control or monitor the IGBT supply unit
from an overriding system by using data sets 1 and 2 or 10 to 33 with
DDCS and DriveBus communication protocols.
Action
Parameter
Set this parameter to MCW if the ISU will be controlled with 98.01 COMMAND SEL
an overriding system. Set to I/O if the ISU is only monitored.
Set this parameter to FBA DSET1 or FBDSET 10 depending 98.02 COMM MODULE
on what datasets the overriding system uses.
Connect the fibre optic cables to channel CH0 on the NAMC
board.
Set the node address and communication mode for channel 70.01 CH0 NODE ADDR
71.01 CH0 DRIVEBUS MODE
CH0 as follows:
Controller
APC2
AC70
AC80
FCI (CI810A)
Node Address
DDCS
DriveBus
ModuleBus
1
-
1...12
-
17...125
17...125
17...125
Par. 71.01 CH0
DRIVEBUS MODE
Note: Setting of Par. 71.01 is valid after
the next power-up.
NO
NO
YES
NO
Check that the communication is working.
Set the delay time for a coommunication fault indication.
70.04 CH0 TIMEOUT
Select the action upon a communication fault on channel
CH0.
70.05 CH0 COMM LOSS CTRL
Select RING, if channels CH0 on the NAMC boards are
connected in a ring. The dafault setting STAR is typically
used with DDCS branching units NDBU-85/95.
70.19 CH0 HW CONNECTION
If a PC is used for control/monitoring, set the node address
for channel CH3. Addresses 1...75 and 126...254 are
allowable. The rest of the addresses are reserved for
branching units NDBU-85/95 (see NDBU-85/95 User’s
Manual, code: 64285513).
70.15 CH3 NODE ADDR
Note: If the channels CH3 of several supply units have been connected in
a ring or in a star (via a branching unit), give each converter a unique
node address. The new address becomes valid only on the next NAMC
board power-on.
Select RING, if channels CH3 on the NAMC boards have
been connected in a ring. The dafault setting STAR is
typically used with DDCS branching units NDBU-85/95.
4-8
70.20 CH3 HW CONNECTION
ACA 635 IBGT Supply Sections
Chapter 4 – Commissioning the Supply Section with ISU
Action
Select the addresses for the data to be received from the
overriding system and for the data to be transmitted to the
overriding system. Note the different updating intervals.
Parameter
Groups 90 and 91 DATASET
RECEIVE ADDRESSES
Groups 92 and 93 DATASET
TRANSMIT ADDRESSES
Test the functions with received and transmitted data.
Fieldbus Adapters
.
Action
Parameter
Set the communication with these parametes. See the
Group 51 COMMUNICATION
appropriate fieldbus adapter Installation and Start-up Guide. MODULE
On-load Checks
This table is a commissioning checklist for the loaded supply section.
Action
Check the correct operation of the current meters.
Information
This is an optional feature. See the
circuit diagrams delivered with the
device.
Check the correct operation of the emergency-stop circuits. This is an optional feature. See the
circuit diagrams delivered with the
device.
ACA 635 IBGT Supply Sections
4-9
Chapter 4 – Commissioning the Supply Section with ISU
4-10
ACA 635 IBGT Supply Sections
Chapter 5 – Earth Fault Protection
Overview
This chapter contains descriptions of the earth fault protection solutions
available for a drive equipped with an IGBT supply unit. The settings
required at the start up are given in Chapter 4 – Commissioning the
Supply Section with ISU.
Floating Network
This section describes the earth fault protection principle in a floating
network.
Insulation Monitoring
Device
Diagram
This diagram shows earth fault protection implemented with an
insulation monitoring device.
L1 L2 L3
Transformer
Supply Unit
Inverter Units
DC Busbar
~
=
BENDER
Insulation
Monitoring
Device
=
=
~
~
IL > 0, Leakage Current
M
3~
Description
M
3~
The monitoring device is connected between the unearthed system
and the equipotential bonding conductor (PE).
A pulsating AC measuring voltage is superimposed on the system
(measuring principle Adaptive Measuring Pulse, AMP is developed by
BENDER, patent pending). The measuring pulse consists of positive
and negative pulses of the same amplitude. The period depends on the
respective leakage capacitances and the insulation resistance of the
system to be monitored.
The setting of the response values and other parameters can be
carried out via the function keys. The parameters are indicated on the
display and they are stored in a non-volatile memory after setting.
ACA 635 IGBT Supply Sections
5-1
Chapter 5 – Earth Fault Protection
With Bender’s insulation monitoring device it’s possible to set up two
response values: ALARM1 and ALARM2. Both values have an own
alarm LED, which illuminates if reading is below these selected
response values.
In Case of an Earth Fault
An earth fault closes the measuring circuit. An electronic evaluation
circuit calculates the insulation resistance which is indicated on an LC
display or an external ohmmeter after the response time.
The alarm actions depend on the electric connection: for example
ALARM1 may only give a warning and ALARM2 may trip the device.
Further Information
System-earthed
Network
Diagram
Further information about the insulation monitoring device is available
in IRDH265 Operating Manual (code TGH1249) published by the
manufacturer, BENDER companies.
In a system-earthed network, the neutral point of the supply
transformer is earthed solidly. This section describes an internal earth
fault protection principle in a system-earthed network.
This diagram shows earth fault protection implemented with internal
current transducers in the ACA 635.
L1 L2 L3
Transformer
IGBT Supply Unit
Inverter Units
DC Busbar
~
=
=
=
~
IL > 0, Leakage Current
M
3~
~
M
3~
Description
The line current unbalance is calculated from measured currents IU, IV
and Iw.
In Case of an Earth Fault
In normal operation the current sum is zero. An earth fault leads to an
unbalance in the 3-phase system and therefore to a current sum
different from zero. If the current unbalance exceeds the limit set in
Par. 30.03 EARTH FAULT LEVEL, an alarm is given or the device is
tripped.
5-2
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
Overview
This chapter describes the IGBT supply unit control program. Note:
The parameters listed in this chapter need not be set in normal
use. They are mentioned for explaining the control principle only.
The following symbols are used:
1.10
ACA 635 IGBT Supply Sections
Actual signal or parameter (described in Chapter 8 –
Parameters).
11.11
Parameter / actual signal below 100 (described in Chapter 8
– Parameters).
113.05
Parameter above 100. These parameters are not visible to
the user unless passcode is entered for the Parameter Lock
in Parameter 16.03 PASS CODE. These parameters are not
allowed to be changed without ABB’s permission.
6-1
Chapter 6 – Firmware Description
Control Principle
The fundamental theory of line converter operation can be presented
by an equivalent circuit with an AC choke and vector diagrams (below),
where
____ motoring
_ _ _ generating
U1
network voltage vector
U2
line converter voltage vector
UL AC choke voltage vector
y “network flux” vector
y
“line converter flux” vector
yL
“AC choke flux” vector
d
power transfer angle.
jwLi = UL
U2gen.
jwL
U1
U1
I
U2
U2
y
I
d
yL
y
Igen
6-2
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
The primary function of the ISU is to control the power transfer
between the network and the DC link. The purpose of the AC choke
(represented by reactance X = jwL) is to smooth the line current and to
act as an energy storage for the switch-mode supply. Power transfer
equation between the network and the ISU is presented below:
U 1U 2
sin @
X
P =
Real power is being transferred only if an angle difference exists
between the two voltage vectors. Reactive power transfer equation is
presented below:
Q=
U 12 U 1U 2
cos @
X
X
For the desirable magnitude and the direction of the power and
reactive power flow, the length of the converter voltage vector and its
phase angle @ (with respect to the line voltage vector) must be
controlled. The d.c. voltage is controlled by keeping the power (energy)
equilibrium between the line and the drives in the DC link constant. The
sign of the angle determines the direction of the power flow.
The output a.c.voltage is controlled by setting the length of the flux
reference to correspond to the desired output voltage level producing
cosfii = 1.0.
The ISU control needs measurements of the DC link voltage and two
line currents. The “stator flux” (integral of the voltage vector of the ISU)
is calculated by integrating the voltage vector used to generate the
output voltage of the ISU. This is due to the fact that the existing
voltage in the network can be thought to be generated by a rotating
magnetic flux encircled by coils. Each of these coils is one of the line
voltage phases. The voltage in the coils can be expressed by the
formula below:
U
=
dO
dt
The virtual torque generated by the ISU is calculated as a cross
product of flux and current vectors:
T
= O x I
Power can also be expressed as a product of torque and angular
velocity:
P = MT
ACA 635 IGBT Supply Sections
6-3
Chapter 6 – Firmware Description
If the network frequency is constant, power is directly proportional to
the torque. By controlling torque, power transferred between the ISU
and the network can be set to a value that keeps the DC link voltage
constant. These basic facts enable the use of the DTC method which
relies on control of flux and torque.
The main difference between DTC and conventional PWM is that
torque is controlled at the same time level as power switches (25 ms).
There is no separate voltage and frequency controlled PWM
modulator. All selections of the switches are based on the
electromagnetic state of the ISU. This kind of control method can be
realised only by using a high speed signal processing technology. The
digital signal processor Motorola 56002 is used in the ACS 600 product
family to achieve sufficient speed.
Identification Routine
The ISU adapts itself to the supply network and no data concerning the
network conditions is to be set. The converter rating plate data is
downloaded in the software package.
When the ISU is connected to the network for the first time a
identification routine must be completed. The identification routine is
executed each time after the NAMC board is powered.
The identification routine can be executed manually also after next
start (without power up) by setting the Parameter 99.07 LINE SIDE ID
RUN to YES and pressing the Control Panel Start key. This can be
done if there is doubt that the automatic identification routine has failed,
or an automatic routine is not desirable as it takes approximately 5
seconds and requires that the motor is not loaded.
The references 2.07 DC REF INITIALIZ and 150.01 FLUX REF USED
NOM are calculated from internal DC link voltage measurement during
the identification routine. If Par. 2.07 DC REF INITIALIZ exceeds the
trip limit (Ö2 × the limit given in the description of Fault NET VOLT FLT)
a fault is set (Parameter 9.11 bit 9 NET VOLT FLT). If the reference
value is within allowed limits the procedure goes on further to define
the frequency of the network (50 Hz or 60 Hz) and the phase order.
6-4
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
The parameters concerning the identification routine are presented
below.
Code
99.07
99.08
2.07
150.02
150.01
115.03
115.04
115.12
9.11 bit 9
Charging
Parameter
LINE SIDE ID RUN
AUTO LINE ID RUN
DC REF INITIALIZ
FLUX REF USED
NOM
50 HZ IDENTIFICA
60 HZ IDENTIFICA
INITIALIZING DONE
Fault
NET VOLT FLT
Unit
V
%
Description
Manual identification run
Automatic identification run
Nominal DC reference
Nominal flux reference
50 Hz network frequency (status)
60 Hz network frequency (status)
Initialization completed (status)
Supply voltage is not valid
When the control has received a start command, the charging
contactor is closed. After the DC link voltage is high, the main
contactor/breaker is closed and the charging contactor is opened. This
procedure is controlled by the NAMC board via NIOC board digital
outputs R01 to R03.
If the charging is not completed, i.e. the DC link voltage has not
exceeded the value of Parameter 30.12 DC UNDERVOLT TRIP or the
charging current is not below 5% of I1base10s/60s, a fault is set
(Parameter 9.11 SUPPLY FAULT WORD bit 0 CHARGING FLT).
Synchronization
The ISU is synchronized to the network by two three-phase shortcircuits of 200 ms in length at an interval of 6 ms. On the basis of the
short-circuit current, the ISU can identify the phase order of the supply
network and the starting point for the flux/voltage vector. The phase
order of the supply can be changed without performing the
identification routine again. The ISU must be stopped during a phase
order change.
The synchronization can also be done with only one 200 ms shortcircuit by Parameter 99.06 FAST SYNC selection YES. Note: In this
case no phase order check is performed.
If a synchronization trial fails, the ISU makes up to 9 additional trials.
One reason for a failed synchronization is too low a short-circuit current
due to the high impedance of the network.
ACA 635 IGBT Supply Sections
6-5
Chapter 6 – Firmware Description
The synchronization parameters are listed below.
Code
140.10
140.11
99.06
Starting Sequence
9.02
Parameter
Unit
ZERO VECT LENGTH 200 ms
PHASE LOSS LIMIT
A
FAST SYNC
Fault
SUPPLY PHASE
9.11
SYNCHRO FLT
Description
Length of the short-circuit pulse
Current limit for short-circuit current
One short-circuit pulse is used
Synchronization failed, phase(s)
missing
Synchronization failed, short-circuit
current below limit
During the charging procedure the main contactor is closed, and after
the synchronization routine is completed, the modulator is started and
the ISU runs normally.
A simplified block diagram of the modulator starting (from starting
switch on the cabinet door or via fieldbus) is presented below. For
description of the starting procedure see the next pages.
COMMAND SEL
enable (1) = I/O
98.01
MAIN CTRL WORD
bit 0
7.01
DI2
&
(0)
(1)
MAIN CTRL WORD
bit 3
7.01
&
(0)
MAIN STATUS WORD
>1
8.01
bit 8
(1)
(0)
(1)
SWITCH
6-6
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
Start by the Starting
Switch
By default, the ISU control commands (ON/OFF) are given by the
starting switch on the cabinet door which is wired to digital input DI2.
The starting sequence is as follows:
On/off switch
On/off from relay via
digital input DI2
2.5 s
0.5 s
Charging contactor
Main contactor
6 ms
Synchronization
Modulating
Step
ACA 635 IGBT Supply Sections
Function
1.
ISU control receives the ON command (DI2 rising edge) from the starting
switch.
2.
ISU control logic closes the charging contactor control circuit (RO1)
3.
ISU control logic closes the main contactor and cooling fan control circuit
(RO3).
4.
ISU control logic receives the “main contactor on” acknowledgement (DI3).
5.
ISU control logic receives the “cooling air fan in operation” acknowledgement
(DI1).
6.
ISU synchronizes itself to the supply network in case DC voltage is OK
(charging is completed successfully).
7.
ISU control starts modulation. The inverter units can be started.
6-7
Chapter 6 – Firmware Description
Start via Fieldbus
To enable the fieldbus control Parameter 98.01 COMMAND SEL must
be set to MCW. The DC bus can be charged and the modulator started
separately via fieldbus. The DC bus can be charged in two ways:
1. by rising edge of Parameter 7.01 MAIN CTRL WORD bit 0 and
simultaneous high level of digital input DI2 (starting switch on the
cabinet door in position 1).
High level of digital
input DI2
Parameter 7.01 MAIN
CTRL WORD bit 0
2.5 s
0.5 s
Charging contactor
Main contactor
2. by rising edge of digital input DI2 (from starting switch) and
simultaneous high level of Parameter 7.01 MAIN CTRL WORD bit
0
Parameter 7.01 MAIN
CTRL WORD bit 0 = 1
Digital input DI2
2.5 s
0.5 s
Charging contactor
Main contactor
The modulator is started by high level of Parameter 7.01 MAIN CTRL
WORD bit 3, and stopped by low level of bit 3. The modulator can be
started only after the charging of the DC bus is completed.
6 ms
Synchronization
Modulating:
Parameter 7.01
MAIN CTRL WORD
bit 3
6-8
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
Level Start
Level Start is used with parallel connected DSU and ISU
configurations. Level Start is enabled by Parameter 21.01 LEVEL
START selection YES. In Level Start mode the ISU starts modulating
after the DC link voltage exceeds a preset limit and modulates only
when power flows from DC link to network. The DC voltage level to
trigger the modulator is set by Parameter 21.02 DC VOLTAGE LEVEL.
When motoring power (positive direction from network to the DC link)
exceeds Parameter 21.04 STOP LEVEL POWER for a time set by
Parameter 21.03 STOP LEVEL TIME, the modulator is stopped.
Parameter 21.04 STOP LEVEL POWER is always positive because
stopping the ISU during braking is not desirable.
Parameters affecting Level Start mode are listed below.
Code
21.01
21.02
21.03
21.04
Stop
Parameter
DC LEVEL START
DC VOLTAGE LEVEL
STOP LEVEL TIME
STOP LEVEL POWER
Unit
V
s
kW
Description
Enables level start
High level start condition
Stop condition time
Stop condition power
A stop signal from the on/off switch on the cabinet door is disabling the
modulator and opening the main contactor. The modulator can be
stopped also from the
key on the Control Panel and from
DriveWindow in local mode, and from an overriding system in remote
mode. These functions do not open the main contactor.
When the modulator is stopped in local mode or by an overriding
system, the ISU moves to 6-pulse diode bridge mode. The nominal
references, Parameters 2.07 DC REF INITIALIZ and 150.01 FLUX
REF USED NOM, are updated, if Parameter 124.04 STOP INIT
DENIED is set to FALSE.
Stop parameters are listed below.
Code
Enable Parameter
124.04 STOP INIT DENIED
Unit
Output Parameters
2.07 150.02 DC REF INITIALIZ
V
150.01 FLUX REF USED NOM %
ACA 635 IGBT Supply Sections
Description
Denies update of nominal DC
reference when set to TRUE.
Nominal DC voltage reference
Nominal flux reference
6-9
Chapter 6 – Firmware Description
Missing Phase
There is no direct a.c. voltage measurement in the ISU. The lost supply
voltage is identified with current and DC voltage measurement.
When the ISU detects that the current has been below the value of
Parameter 142.01 NET LOST CUR LIM for the time defined by
Parameter 142.02 ZERO CUR DELAY, an alarm (Parameter 9.12
SUPPLY ALARM WORD bit 10 NET LOST) is generated. The ISU tries
to resynchronize as long as the DC voltage is greater than (Par. 2.07
DC REF INITIALIZ - Par. 142.04 DC START DEV NET). The
resynchronizing checks are made at intervals defined by Parameter
142.03 NET TEST DEL. If the voltage in the DC link falls below the limit
defined by Par. 145.04 DC UNDERVOLT TRIP, the ISU will open the
main contactor/breaker and a fault (Parameter 9.11 bit 14 DC
UNDERVOLT) is generated.
The sensitivity to the detection of a missing supply phase can be set by
the following parameters:
Code
142.01
142.02
142.03
Parameters
NET LOST CUR LIM
ZERO CUR DELAY
NET TEST DEL
142.04 DC START DEV NET
145.04 DC UNDERVOLT TRIP
Alarm
9.12 bit 10
NET LOST
Fault
9.11 bit 14
DC UNDERVOLT
6-10
Unit
A
ms
ms
V
V
Description
Current limit for supply lost
Time delay for detection
Time between supply back
checks
Allowed DC voltage
measurement deviation from
Par. 2.07 DC REF INITIALIZ
before resynchronization
Undervoltage tripping limit
Supply lost alarm
Undervoltage tripping
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
Control Diagram
A block diagram of the measurements and principle of the ISU control
program is shown below. S1, S2 and S3 denote the power switches.
Direct torque and flux
hysteresis control
ASICs
Torque bits
Hysteresis
Flux bits
Torque ref.
Control bits
Optimal
switching
logic
S1, S1, S3
Flux ref.
Actual
flux
Actual
torque
Actual value
calculation
Reference value
calculation
L
DC voltage
S1, S2, S3
DC voltage
control
Current
Switching
frequency control
Supply network
Switching frequency reference
Controllers
The control includes two main controllers:
• torque and flux hysteresis control
• dc voltage controller
On the basis of measurements the following items are calculated:
• actual value for flux
• actual value for torque
• actual value for reactive power
• estimate for frequency
ACA 635 IGBT Supply Sections
6-11
Chapter 6 – Firmware Description
DC References
The ISU control has two reference values for the DC voltage control:
• Parameter 23.01 DC VOLT REF (user given reference)
• Parameter 2.05 DC REF Q-CTRL.
DC reference chain is initialized during synchronization. The value of
Par. 2.07 DC REF INITIALIZ is copied to parameters 2.05 DC REF QCTRL and 2.06 DC REF RAMP.
Reference Selection
A block diagram of reference selection (Parameter 23.01 DC VOLT
REF / Parameter 2.05 DC REF Q-CTRL) after synchronization is
shown below.
DC REF Q-CTRL
2.05
SELECTOR
LIMITER
RAMPING
DC VOLT REF
A
DC REF RAMP
2.06
MAX(A,B)
23.01
B
113.01 DC REF MAX
120.01 DC RAMP UP
113.02 DC REF MIN
120.02 DC RAMP DOWN
In normal mode the ramped value of Parameter 23.01 DC VOLT REF
is selected, if it is higher than Parameter 2.05 DC REF Q-CTRL. The
DC reference ramping times are set by Parameters 120.01 DC UP
TIME and 120.02 DC DOWN TIME. Minimum and maximum values for
the DC reference are set by Parameters 113.01 DC REF MAX and
113.02 DC REF MIN.
Reference List
6-12
The references are listed below.
Code
23.01
113.01
113.02
120.01
120.02
Parameter
DC VOLT REF
DC REF MAX
DC REF MIN
DC RAMP UP
DC RAMP DOWN
Actual Value
113.05 DC REF Q-CTRL
150.02 DC REF INITIALIZ
122.02 DC REF RAMP
Description
User given reference
Upper limit for the reference
Lower limit for the reference
Ramp up time
Ramp down time
2.05
2.07
2.06
Reference from cosfii control
Initialized reference
Ramped and limited reference
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
DC Voltage Controller
The DC voltage controller is the primary controller for the ISU. A block
diagram of the DC voltage controller is presented below.
NONLINEAR PID
CONTROLLER
LIMITER
DC REF RAMP
2.06
DC VOLTAGE ERROR
+
PID
122.01
TORQUE CALC REF
TORQUE REF LIM
122.03
122.04
137.01 TORQUE
REF MAX
DC VOLTAGE
1.10
TORQUE ACT
161.07
121.03 GAIN REL
CALC
FILTER
TORQUE FILT ACT
121.04 DER TIME
CALC
161.08
GAIN REL
121.01
DERIVATION TIME
121.02
121.05 DC CTRL
INTEG
POWER
CALCULATION
T
FREQUENCY
1.05
f
POWER
P=T×2×p×f
1.08
The DC voltage controller keeps the DC voltage in a preset reference
in all load conditions. An error signal is calculated from DC voltage
measurement (Actual Signal 1.10 DC VOLTAGE) and Actual Signal
2.06 DC REF RAMP. The gain (Parameter 121.03 GAIN REL CALC)
and derivation time (Parameter 121.04 DER TIME CALC) of the PID
controller depend on signals 122.01 DC VOLTAGE ERROR and
161.08 TORQUE FILT ACT. ParameterS 121.01 GAIN REL CALC and
121.02 DERIVATION TIME are used to calculate the output of the PID
algorithm. The output of the DC voltage controller is Parameter 122.04
TORQUE REF LIM, which is used as torque reference for hysteresis
control. The sign of rotation (supply phase order) determines the sign
of torque reference.
The PID controller parameters are pretuned. There is no need to
retune them.
The active power is calculated as a product of angular velocity and
torque seen by the ISU. Positive power means power flow from the
supply network to the DC link.
ACA 635 IGBT Supply Sections
6-13
Chapter 6 – Firmware Description
The parameters and actual values of DC voltage control are listed
below.
Code
121.01
121.02
121.03
121.04
121.05
161.07
161.08
1.05 161.09
1.08 161.13
1.10 160.04
122.01
Parameter
GAIN REL
DERIVATION TIME
GAIN REL CALC
DER TIME CALC
DC CTRL INTEG
Actual Value
TORQUE ACT
TORQUE FILT ACT
FREQUENCY
POWER
DC VOLTAGE
DC VOLTAGE ERROR
122.03 TORQUE CALC REF
122.04 TORQUE REF LIM
Current Limit Control
Unit
%
ms
%
ms
ms
Description
Initial gain
Initial derivation time
Calculated relative gain
Calculated derivation time
Initial integration time
%
%
Hz
kW
V
V
Nonfiltered torque value
Filtered torque value
Calculated line frequency
Active power
Actual DC voltage
Error value between reference and
actual voltage
PID controller output
Torque hysteresis controller input
%
%
Because of the free wheeling diodes on the power plates, the
modulating ISU cannot limit the current when power flows from supply
network to the DC link. If the motoring power of the inverters increases
momentarily from the nominal level (allowed short term overload level),
current will flow from the network to the capacitors regardless of the
control. The waveform changes from sinusoidal to diode bridge mode
waveform, in which current peaks are considerably higher with the
same power. Overcurrent tripping limit is 98 percent of the maximum
value of the converter current measuring range (Parameter 4.08 CONV
MAX CURRENT).
During regeneration (braking) the current can be limited by means of
Parameter 137.01 TORQUE REF MAX. The calculated torque
reference (Parameter 122.03 TORQUE CALC REF) is limited to the
absolute value of Parameter 137.01 TORQ REF MAX, which is 220
percent of the ISU nominal “torque”. Current limitation will cause a
voltage rise in the DC link. When the voltage reaches the limit of
Parameter 145.03 DC OVERVOLT TRIP, bit 15 DC OVERVOLT of
Parameter 9.11 SUPPLY FAULT WORD will be set and the ISU will
trip.
An alarm (Parameter 9.12 SUPPLY ALARM WORD bit 5 CURRENT
LIM) is generated, when the line current (Actual Signal 1.06 LINE
CURRENT) is exceeds the value of Parameter 137.04 CURRENT
LIMIT. Par. 137.04 CURRENT LIMIT is 220 percent of Parameter
112.02 HEAVY DUTY CUR which equals to I1base (10s/60s). This limit is
so close to the overcurrent trip limit, that an alarm is rarely generated
(before an overcurrent trip).
6-14
ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
When the current limit alarm is active, the internal control first lowers
the ramped reactive power reference (when Par. 24.01 Q POWER
REF is not zero) controlling the current towards the current limit. In
case the current limit is not reached (when the ramped reactive power
reference has been controlled to zero), the internal control, secondly,
lowers the ramped d.c. reference, further controlling the current
towards the current limit. In case the current limit is still not reached
(current limit alarm is still active and the ramped d.c.reference equals
the value of Par. 2.05 DC REF Q-CTRL), the current can be lowered by
limiting inverter actual power.
The alarm is removed when the current falls below the current limit.
A block diagram of the current limit alarm is presented below.
LINE CURRENT
1.06
COMPARATOR
a
CURRENT LIMIT
137.04
CURRENT LIM
a>b=1
9.12 bit 5
b
The current limit parameters are presented below.
1.06
Code
137.04
137.01
161.03
145.03
9.12 bit 5
9.01 bit 1
9.11 bit 15
Reactive Power Control
Parameter
CURRENT LIMIT
TORQUE REF MAX
LINE CURRENT
DC OVERVOLT TRIP
Alarm
CURRENT LIM
Fault
OVERCURRENT
DC OVERVOLT
Unit
%
%
A
V
Description
Current limit
Absolute torque limit
Measured line current (actual value)
Current limit alarm
Overcurrent fault
DC overvoltage fault
The base value for the flux reference is Parameter 150.01 FLUX REF
USED NOM. The DC voltage and output voltage references are
defined during identification routine for setting cosfii to 1.0. However,
the voltage level in the network can fluctuate greatly. To have cosfii
equal to 1.0 at every point, the DC voltage and output voltage
references have to be adapted.
The reactive power control sets the output voltage reference (Actual
Signal 2.05 DC REF Q-CTRL) and the flux length reference
(Parameter 130.02 FLUX SQ REF) to values with which zero reactive
power is achieved.
ACA 635 IGBT Supply Sections
6-15
Chapter 6 – Firmware Description
Reactive power control is capable of generating a preset amount of
reactive power (Parameter 24.01 Q POWER REF) to the network
(positive = capacitive, negative = reactive) by changing the flux length.
Increasing the ISU flux length higher than the network flux length,
capacitive power is generated to the network and vice versa. Increased
flux means that the output voltage of the ISU is higher than the network
voltage.
Reactive power control parameters are listed below.
Code
Parameter
2.07 150.02 DC REF INITIALIZ
150.01 FLUX REF USED
NOM
2.05 113.05 DC REF Q-CTRL
130.02 FLUX SQ REF
24.01 123.04 Q POWER REF
1.07 161.15
120.03
120.04
130.01
130.03
Unit Description
V
Nominal DC voltage
%
Nominal flux reference
V
%
%
DC voltage reference from cosfii control
Squared flux reference from cosfii control
Reactive power in percentage of the
nominal power
REACTIVE POWER
kVAr Calculated reactive power
QPOW RAMP UP
s
Ramp up time
QPOW RAMP DOWN s
Ramp down time
FLUX REF
%
PI controller output
FLUX REF LENGTH %
Flux reference from cosfii control
A block diagram of reactive power control is shown below.
FLUX REF USED NOM
150.1
FLUX REF USED NOM
X
150.1
+
PI CONTROLLER
FILTER
REACTIVE POWER
1.07
130.01
-
FLUX SQ REF
130.02
FLUX REF
FLUX REF LENGTH
130.03
+
+
Antiwindup
123.06 REACT
CTRL GAIN
123.07 REACT
CTRL INTEG
RAMPING
Q POWER REF
24.01
CALCULATION
120.01 QPOW RAMP UP
120.02 QPOW RAMP DOWN
FLUX REF USED NOM
150.01
DC REF INITIALIZ
FILTER
DC REF Q-CTRL
2.05
2.07
6-16
ACA 635 IGBT Supply Sections
Chapter 7 – Fault Tracing
Overview
This chapter explains the ACA 635 fault tracing procedure with the
Control Panel. For Control Panel use and motor-side inverter fault
tracing, see the Firmware Manual of the application program.
All Warning and Fault messages of the ACA 635 are presented in
tables below with information on the cause and remedy for each case.
Most Warning and Fault conditions can be identified and cured with
that information. If not, contact an ABB service representative. For
specific instructions on when/how to change control boards or their
wiring or power plates refer to ACS 600 Service Manual (EN code:
64401131).
CAUTION! Do not attempt any measurement, parts replacement or
other service procedure not described in this manual. Such action will
void guarantee, endanger correct operation, and increase downtime
and expense.
WARNING! All electrical installation and maintenance work described
in this chapter should only be undertaken by a qualified electrician. The
Safety Instructions on the first pages of this manual must be followed.
Fault Tracing
The ACA 635 is equipped with advanced protection features that
continuously guard the unit against damage and down time due to
incorrect operating conditions and electrical and mechanical
malfunctions.
The warning message disappears when any of the Control Panel keys
are pressed. The warning will reappear in one minute if conditions
remain unchanged. If the frequency converter is operated with the
Control Panel detached, the red LED in the Control Panel mounting
platform indicates fault condition.
For setting of programmable warning and fault messages and
functions, refer to Chapter 8 – Parameters.
Fault Resetting
ACA 635 IGBT Supply Sections
An active fault can be reset either by pressing the keypad RESET key,
by digital input or fieldbus, or switching the supply voltage off for a
while. When the fault has been removed, the ACA 635 can be started.
7-1
Chapter 7 – Fault Tracing
Fault History
When a fault is detected, it is stored in the Fault History. The last faults
and warnings are stored with the time the fault was detected.
WARNING! After a fault reset, the ACA 635 will start if the start signal
is on. Before the reset, switch off the external start signal or ensure that
it is safe to start.
The Fault History can be viewed by pressing
or
in the Actual
Signal Display Mode. The Fault History can then be scrolled with
and
. To exit the Fault History press
or
. The Fault History
can be cleared by pressing the RESET key.
Fault and Warning
Messages
The tables below show the warning and fault messages.
Warning Messages
Warning
Cause
What to do
ACS 600 TEMP
Par. 9.12 bit 4
The ACS 600 internal temperature is
excessive. A warning is given if the converter
module temperature exceeds 115 °C.
AI<MIN FUNC
Par. 9.12 bit 3
I/O reference 4...20 mA is below 3.1 mA when
Par. 13.06 MINIMUM AI2 or Par. 13.10
MINIMUM AI3 is set to 4 mA.
Communication break detected on CH0
receive.
(can be deactivated: see Parameter 70.04)
Check ambient conditions.
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
Check line current against unit current.
Check for proper analogue control signal level.
Check the control wiring.
CH0 TIMEOUT
Par. 9.12 bit 0
Check the fibre optic cables between the
NAMC board and overriding system (or
fieldbus adapter). Test with new fibre optic
cables.
Check that the CH0 node address (Par. 70.01
CH0 NODE ADDR) is correct in the ISU.
Check the status of the fieldbus adapter. See
appropriate fieldbus adapter manual.
CURRENT LIM
Par. 9.12 bit 5
Current limit is exceeded. The limit is 220 % of
I1base(10s/60s).
DI5 = 0
Par. 9.12 bit 14
E EARTH FLT
Par. 9.12 bit 13
Digital input DI5 is OFF (0).
7-2
IT Network
Impedance between a live part (e.g. phase
conductor, DC link, motor cable or motor) and
earth/ground is too low.
Earth fault in AC filter, line converter, DC link,
inverter(s), motor cables or motor.
Check parameter settings of Group 51, if a
fieldbus adapter is present. Check the
connections between the fieldbus and the
adapter.
Check that the bus master is communicating
and correctly configured.
Limit inverter actual power or lower the
reactive power percentage in Par. 24.01 Q
POWER REF.
Check the function indicated via digital input
DI5.
Check motors.
Check motor cables.
Check ISU.
Check inverter(s).
Check AC filter.
ACA 635 IGBT Supply Sections
Chapter 7 – Fault Tracing
Warning Messages
Warning
Cause
What to do
EARTH FAULT
Par. 9.12 bit 13
Earthed/Grounded Network
The sum of line currents measured with
internal current transducers is too high.
Earth fault in AC filter, line converter, DC link,
inverter(s), motor cables or motor, or current
unbalance in parallel connected converters.
NET LOST
Par. 9.12 bit 10
Network voltage is lost during modulation. Line
current is below 0.0064 × I1base (10s/60s). The
situation may cause DC link undervoltage.
A Local Control device (CDP 312 or
DriveWindow) has ceased communicating.
This can be caused by the disconnection of the
selected local control device during local
control or an internal fault in the local
controlling device. This warning transfers the
ISU to remote mode.
This message is generated by the Control
Panel CDP 312 control program.
There is a cabling problem or a hardware
malfunction on the Panel Link.
(4) = Panel type is not compatible with the
version of the converter application program.
The ID number of the ISU has been changed
from 1 (the change is not displayed on the
Control Panel CDP 312).
Check motors.
Check motor cables.
Check the ISU fuses (parallel connected
units).
Check the ISU.
Check inverter(s).
Check AC filter.
Check network conditions.
PANEL LOST
Par. 9.12 bit 1
NO COMMUNICATION
(x)
Check Control Panel connector. Replace
Control Panel in the mounting platform.
Check the Panel Link connections.
Press the RESET key. The panel reset may
take up to half a minute, please wait.
Check the Panel type and the version of the
drive application program. The Panel type is
printed on the cover of the Panel.
To change the ID number back to 1 go to Drive
Selection Mode by pressing DRIVE. Press
ENTER. Set the ID number to 1. Press
ENTER.
Factory parameter settings are being restored. Please wait.
ID N CHANGED
LOAD FACTORY
Fault Messages
Fault Text
Cause
What to do
ACS 600 TEMP
Par. 9.01 bit 3
Par. 9.11 bit 3
The ACS 600 internal temperature is
excessive. The trip level of the converter
module temperature is 125 °C.
Check ambient conditions.
Check air flow and fan operation.
Check heatsink fins for dust pick-up.
Check line current against unit current.
AMBIENT TEMP
Par. 9.02 bit 7
I/O control board temperature is lower than
+5 °C or exceeds +73 °C.
Check ambient temperature in the auxiliary
control unit (ACU).
CHARGING FLT
Par. 9.11 bit 0
DC link voltage is not high enough after
charging procedure.
DC link voltage has not exceeded the value of
Par. 30.12 DC UNDERVOLT TRIP or current is
not below 5% of I1base (10s/60s) at the end of the
charging.
Check charging circuit fuses.
Check charging circuit.
Check possible short-circuit in DC link.
Check the setting of Par. 30.12 DC
UNDERVOLT TRIP.
Faulty PPCC link (DC voltage measurement is
zero).
Check the PPCC link. See fault message
PPCC LINK.
ACA 635 IGBT Supply Sections
7-3
Chapter 7 – Fault Tracing
Fault Messages
Fault Text
Cause
What to do
CH0 COM LOST
Par. 9.02 bit 12
Par. 9.11 bit 10
Communication break detected on CH0
receive.
(programmable fault, see Parameter 70.05)
Check the fibre optic cables between the
NAMC board and overriding system (or
fieldbus adapter). Test with new fibre optic
cables.
Check that the CH0 node address (Parameter
70.01) is correct in the ISU.
Check the status of the fieldbus adapter. See
appropriate fieldbus adapter manual.
Check parameter settings of Group 51, if a
fieldbus adapter is present. Check the
connections between the fieldbus and the
adapter.
Check that the bus master is communicating
and correctly configured.
DC OVERVOLT
Par. 9.01 bit 2
Par. 9.11 bit 15
Intermediate circuit DC voltage is excessive.
Check the level of supply voltage, DC voltage
This can be caused by
and converter nominal voltage.
1. static or transient overvoltages in the mains.
2. too high supply voltage during
synchronisation.
The default trip limit is 740 V d.c for 415 V
units, 891 V d.c for 500 V units and 1230 V d.c
for 690 V units. The trip limit can be changed
with Par. 30.11 DC OVERVOLT TRIP.
DC UNDERVOLT
Par. 9.02 bit 2
Par. 9.11 bit 14
Intermediate circuit DC voltage is not sufficient. Check supply and inverter fuses.
This can be caused by a missing mains phase, Check supply voltage.
a blown fuse or a rectifier bridge internal fault.
The default trip limit is 293 V d.c for 415 V
units, 354 V d.c for 500 V units and 488 V d.c
for 690 V units. The tip limit can be changed
with Par. 30.12 DC UNDERVOLT TRIP.
DI5 = 0
Par. 9.11 bit 2
Digital input DI5 is OFF (0).
Check the function indicated via digital input
DI5.
E EARTH FLT
Par. 9.11 bit 4
IT Network
Impedance between a live part (e.g. phase
conductor, DC link, motor cable or motor) and
earth/ground is too low.
Earth fault in AC filter, line converter, DC link,
inverter(s), motor cables or motor.
Check motors.
Check motor cables.
Check ISU.
Check inverter(s).
Check AC filter.
EARTH FAULT
Par. 9.01 bit 4
Par. 9.11 bit 12
Earthed/grounded Network
The sum of line currents measured with internal
current transducers is too high.
Earth fault in AC filter, line converter, DC link,
inverter(s), motor cables or motor, or current
unbalance in parallel connected converters.
Check motors.
Check motor cables.
Check the ISU fuses (parallel connected units).
Check the ISU.
Check inverter(s).
Check AC filter.
7-4
ACA 635 IGBT Supply Sections
Chapter 7 – Fault Tracing
Fault Messages
Fault Text
Cause
What to do
FAN FLT
Par. 9.11 bit 5
Fan is not rotating, or contactor connection is
loose.
Check the acknowledge circuit connection to
the digital input DI1.
Check the condition of the bearings of the fan
motor by rotating fan motor manually. If the
bearings are faulty replace the fan (available as
spare part).
Replace the fan if trippings continue and the
bearings are OK.
IO FAULT
Par. 9.02 bit 6
I/O communication fault or error detected on
CH1. This can be caused by a fault in the NIOC
board or a faulty/loose fibre optic cable
connection.
Check for loose connections between the
NIOC and NAMC board.
Test with new fibre optic cables.
If the fault is still active, replace the NIOC
board.
MAIN CNT FLT
Par. 9.11 bit 6
Main contactor is not functioning properly, or
loose wiring.
Check main contactor control circuit wiring and
signal wiring.
Check main contactor control voltage level
(should be 230 V).
NET VOLT FLT
Par. 9.11 bit 9
Mains voltage is out of allowable range during Check mains voltage.
synchronisation or ID Run. Trip limits are 208 V Start again.
for 415 V units, 250 V for 500 V units and
345 V for 690 V units.
OVER SWFREQ
Par. 9.02 bit 9
Switching overfrequency fault. This may be due Replace the NAMC board.
to a hardware fault in the electronic boards.
Replace the NINT board.
On units with parallel connected inverters,
replace the NPBU board.
OVERCURRENT
Par. 9.01 bit 1
Par. 9.11 bit 1
Input current is excessive. The overcurrent trip
limit is 0.98 × (Par. 4.08 CONV MAX
CURRENT). The trip limit is approximately
190 % of the converter nominal current I1N
(Par. 4.05 CONV NOM CURRENT).
Check motor load.
Check supply voltage.
Check that there is no power factor
compensation capacitors in the supply.
Check ISU power semiconductors and current
transducers.
PPCC LINK
Par. 9.02 bit 11
NINT board current measurement or
communication fault between the NAMC and
NINT boards.
The fault indication is not activated, when the
DC link voltage is disconnected, but the NAMC
board has an external power supply. The
indication is activated when the charging is
completed and the DC link voltage is “high”.
Check the fibre optic cables connected
between the NAMC and NINT boards. In
parallel connected inverters, also check the
cabling on the NPBU-xx board.
If the fault is still active, replace the NPBU
board (only with parallel connected inverters),
NAMC and NINT board (in this order) until the
fault disappears.
Test with new fibre optic cables in the PPCC
(power plate control board) link.
SHORT CIRC
Par. 9.01 bit 0
Short-circuit current has been detected on a
power plate.
Measure the resistance of the power plate(s).
If a faulty power plate is detected, replace the
power plate and the NINT and NGDR boards,
or change the whole converter phase module.
Check the main circuit.
ACA 635 IGBT Supply Sections
7-5
Chapter 7 – Fault Tracing
Fault Messages
Fault Text
Cause
What to do
SC (INU 1)
Par. 9.01 bit 12
Short-circuit in parallel connected phase
module block 1
Check the fibre optic cables between the NPBU
board channel CH1 and the NINT board of
phase module block 1.
Check the motor and the motor cable.
Check all power plates in the phase module
block 1. If a faulty power plate is detected,
replace the whole phase module.
SC (INU 2)
Par. 9.01 bit 13
Short-circuit in parallel connected phase
module block 2
Check the fibre optic cables between the NPBU
board channel CH1 and the NINT board of
phase module block 2.
Check the motor and the motor cable.
Check all power plates in the phase module
block 2. If a faulty power plate is detected,
replace the whole phase module.
SC (INU 3)
Par. 9.01 bit 14
Short-circuit in parallel connected phase
module block 3
Check the fibre optic cables between the NPBU
board channel CH1 and the NINT board of
phase module block 3.
Check the motor and the motor cable.
Check all power plates in the phase module
block 3. If a faulty power plate is detected,
replace the whole phase module.
SC (INU 4)
Par. 9.01 bit 15
Short-circuit in parallel connected phase
module block 4
Check the fibre optic cables between the NPBU
board channel CH1 and the board of phase
module block 4.
Check the motor and the motor cable.
Check all power plates in the phase module
block 4. If a faulty power plate is detected,
replace the whole phase module.
SUPPLY PHASE
Par. 9.02 bit 0
Missing phase during synchronisation
Check supply fuses.
Check for supply network unbalance.
SYNCHRO FLT
Par. 9.11 bit 13
Synchronisation to supply network is failed.
Supply frequency has changed too much after
ID Run.
Perform the ID Run again. See Parameter
99.07.
USER MACRO
There is no User Macro saved or the file is
defective.
Create the User Macro again.
What to Do in Case of
an Earth Fault
Indication
7-6
This section describes how to trace the cause of an internal earth fault
indication (Warning/Fault EARTH FAULT) of the ACA 635.
An earth fault indication does not always indicate an actual earth fault.
The indication can sometimes be caused by a faulty IGBT or a faulty
NGDR control board.
ACA 635 IGBT Supply Sections
Chapter 7 – Fault Tracing
Flowchart
Use this flowchart for tracing the cause of an earth fault indication and
for locating faulty parts. The flowchart includes remedies.
Earth fault
indication
TN
network?
No
Check whether
Par. 160.01 IU and
Par. 160.03 IW are
appr. 0 A when
UDC is on.
Yes
Yes
Measure
Earth leakage on
motor or cabling?
No
No
Set Par. 30.03 EARTH
FAULT LEVEL to 4.
Change :
1. NINT board
2. current transducers
3. cabling between NINT
and NXPP boards and
current transducers
4. NXPP board
Yes
1. Locate the hottest power plate: See
Par. 3.12 PP 0 TEMP to Par. 3.15 PP 3
TEMP and ACS 600 Service Manual:
Indicator LEDs on the NINT and NXPP
Boards.
2. Change the NGDR board of the hottest
power plate.
No
Fault fixed?
Change:
damaged motor,
switchgear or
cabling
Yes
Frame Size
2xR11i, 2xR12i
4xR11i or 4xR12?
No
No
Fault fixed?
Fault fixed?
No
Yes
Yes
Yes
Is the
difference between
Par. 3.12 PP 0 TEMP
to Par. 3.15 PP 3
TEMP < 5 °C?
Faulty NGDR
board.
Breakthrough
fault.
No
Change the NGDR
board of the adjacent
power plate.
Yes
No
Fault fixed?
A faulty
fibre between NINT
and NPBU
boards?
No
Yes
Contact ABB for
permission to set Par.
30.03 EARTH FAULT
LEVEL to 5.
Faulty NGDR
board. No
control.
Yes
Change the fibre.
Fault fixed?
Yes
No
Contact ABB for
permission to set Par.
30.03 EARTH FAULT
LEVEL to 6.
No
Fault fixed?
OK
ACA 635 IGBT Supply Sections
Change
cabling to
less
capacitive
Yes
7-7
Chapter 7 – Fault Tracing
7-8
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
Overview
Parameters for the IGBT supply unit control program are described in
the tables below.
Symbols used in the tables:
Column Type: I = integer, R = real, B = boolean, C = character string
ISU = ACA 635 IGBT Supply Unit
ACA 635 IGBT Supply Sections
8-1
Chapter 8 – Parameters
1 Actual Signals
Code Parameter
Range/Unit
1
ACTUAL
SIGNALS
1.05 FREQUENCY
Hz
1.06 LINE CURRENT
A
1.07 REACTIVE POWER
kVAr
1.08 POWER
kW
1.09 POWER
%
1.10
1.11
1.12
1.13
DC VOLTAGE
MAINS VOLTAGE
PP TEMP
TIME OF USAGE
1.14
1.15
KWH SUPPLY
DI6-1 STATUS
1.16
KWH MOTORING
kWh
1.17
KWH GENERATING
kWh
1.19
AI1 [V)
0...10
1.20
AI2 [mA]
0...20
1.21
AI3 [mA]
0...20
1.22
RO3-1 STATUS
0000000...
0000111
1.23
AO1 [mA]
0...20 mA
1.24
AO2 [mA]
0...20 mA
1.26
LED PANEL
OUTPUT
COSFII
1.27
8-2
V
V
°C
h
kWh
0000000...
0111111
%
Description
Integer Scaling
Calculated line frequency
Measured line current
Calculated reactive power
Calculated line converter power
Input power in percentage of nominal value (Par. 4.06
CONV NOM POWER)
Measured intermediate circuit voltage
Calculated input voltage
Temperature of the power plate in degrees Celcius
Elapsed time meter. The timer is running when the NAMC
board is powered.
This actual signal counts the kilowatt hours in operation.
Status of the digital inputs in the software.
0 VDC = “0” +24 VDC = “1”
Example
Control Panel (CDP 312) display when digital inputs 1 and
4 are activated is 0001001, where the digits for digital
inputs are read from right to left (DI1 to DI6).
This actual signal counts the kilowatt hours of motoring
(power flow from mains to intermediate circuit).
This actual signal counts the kilowatt hours of regenerative
braking (power flow from intermediate circuit to mains).
Non-scaled value of analogue input AI1. See Par. 13.0 AI1
HIGH VALUE and 13.02 AI1 LOW VALUE.
Non-scaled value of analogue input AI2. See Par. 13.04
AI2 HIGH VALUE and 13.05 AI2 LOW VALUE.
Non-scaled value of analogue input AI3. See Par. 13.08
AI3 HIGH VALUE and 13.09 AI3 LOW VALUE.
Status of the standard I/O board relay outputs.
Example
Control Panel (CDP 312) display when relay outputs 2 and
3 are activated is 0000110, where the digits are read from
right to left (DO1 to DO6)
Value of analogue output 1 signal in milliamperes. For
signal selecting and scaling, see Parameter Group 15.
Value of analogue output 2 signal in milliamperes. For
signal selecting and scaling, see Parameter Group 15.
Monitoring of the NLMD-01 LED panel output. See
Parameter Group 18.
Calculated cosfii
100 = 1 Hz
1= 1 A
1 = 1 kVAr
1= 1 kW
1= 1 %
1= 1 V
1= 1 V
1 = 1 °C
1=1h
1 = 100 kWh
1= 1
1 = 100 kWh
1 = 100 kWh
10000 = 10 V or
20 mA
20000 = 20 mA,
2 V or 10 V
20000 = 20 mA
1=1
20000 = 20 mA
20000 = 20 mA
1= 1
100 = 1
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
2 Actual Signals
Code
Parameter
Unit
Description
2
2.05
ACTUAL
SIGNALS
DC REF Q-CTRL
V
2.06
DC REF RAMP
V
2.07
DC REF INITIALIZ
V
Integer
Scaling
Intermediate circuit voltage reference calculated by reactive power 1 = 1 V
control
Ramped and limited intermediate circuit voltage reference for
1=1V
power control
Initialized intermediate circuit voltage reference based on line-side 1 = 1 V
ID Run. The voltage reference is calculated from DC voltage
measurement and is approximately Ö2 × supply network voltage.
3 Actual Signals
Code Parameter
3
ACTUAL
SIGNALS
3.12
3.13
3.14
3.15
PP 0 TEMP
PP 1 TEMP
PP 2 TEMP
PP 3 TEMP
Unit
ACA 635 IGBT Supply Sections
Description
°C
°C
°C
°C
These parameters are visible in parallel connected units (frame
sizes 2xR11i/R12i and 4xR11i/R12i) only and show the highest
power plate temperatures of the phase module blocks no. 1 to 4
(see Chapter 3 – Hardware Description: IGBT Supply Unit). LEDs
on the NINT board indicate the hottest phase (U, V or W) of each
module block. See Chapter 7 – Fault Tracing / What to Do in Case
of an Earth Fault Indication.
The highest power plate temperature of phase module block 1.
The highest power plate temperature of phase module block 2.
The highest power plate temperature of phase module block 3.
The highest power plate temperature of phase module block 4.
Integer
Scaling
1 = 1 °C
1 = 1 °C
1 = 1 °C
1 = 1 °C
8-3
Chapter 8 – Parameters
4 Information
Code
Parameter
4
4.01
INFORMATION
SOFTWARE
VERSION
DTC SW
VERSION
The software version (Parameters 4.01 and 4.03) is expressed as
follows:
Character
no
1
2
3
Example
Meaning
I
M
4
4
5 to 8
B
5060
I = Input bridge software
Product: M= ISU
Software type:
4 = non-parallel connected ISU (Parameter 4.01)
5 = parallel connected ISU (Parameter 4.01)
A = application software (Parameter 4.03)
Control board: B = NAMC-2x, E = NAMC-11
Software version number
T Range/Unit
y
p
e
Description
C IM4x xxxx
Integer
Scaling
4.03
APPLIC SW
VERSION
C IxAx xxxx
4.04
CONV NOM
VOLTAGE
CONV NOM
CURRENT
CONV NOM
POWER
CONV MAX
VOLTAGE
CONV MAX
CURRENT
R V
This signal describes the software of the downloaded loading
package.
Software version number of the flux software. This fixed part of
the software consists of the line converter control, operation
system, communication control of the DDCS channels and
Modbus software for the control panel.
The application software name can be identified by means of
this signal. This part of the software has been written using PC
elements.
Downloaded line converter nominal supply voltage
1=1V
R A
Downloaded line converter nominal line current
1=1A
R kW
Line converter nominal power.
1 = 1 kW
R V
Maximum value of converter voltage measuring range
1=1V
R A
Maximum value of converter current measuring range
1=1A
4.02
4.05
4.06
4.07
4.08
8-4
C xxxx
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
7 Control Word
Parameter 7.01 is the control word of the line converter. The control
word is a 16-bit packed boolean word displayed as a hex value and
updated at 10 ms intervals.
Parameter 7.01 MAIN CTRL WORD (Control word of the line converter)
Bit
0
Name
1, 2
3
START
4...6
7
RESET
8...15
8 Status Word
Value
0Þ1
0
0
1
0
0
0Þ1
0
0
ON
OFF
Description
Starts charging
Opens main contactor
Not in use
Starts modulation
Stops modulation
Not in use
Makes a reset
–
Not in use
This parameter is a 16-bit packed boolean word displayed as a hex
value and updated at 4 ms intervals.
Parameter 8.01 MAIN STATUS WORD (Status signals of the line converter)
Bit
0
RDY_ON
1
RDY_RUN
2
RDY_REF
3
TRIPPED
4, 5, 6
7
ALARM
8
MODULATING
9
REMOTE
10
NET OK
11
12, 13
14
15
ACA 635 IGBT Supply Sections
Name
CHARGING
Value
1
0
1
0
1
0
1
0
–
1
0
1
0
1
0
1
0
–
–
1
0
–
STATE/Description
Ready to switch on = no fault
Not ready to switch on = fault
Ready to operate = DC bus charged
Not ready to operate
Operation enabled
Fault
No fault
Not in use
Warning
No Warning
Line converter modulates.
Line converter not modulating
Drive control location: REMOTE
Drive control location: LOCAL
Network voltage is OK.
Network voltage is lost.
Not in use
Not in use
Charging contactor closed
Charging contactor open
Not in use
8-5
Chapter 8 – Parameters
9 Fault Words
Code
9
9.01
Parameter
FAULT WORDS
FAULT WORD 1
These parameters are 16-bit words. They are displayed as hex values.
Bit value 1 = Fault, and 0 = No Fault. Parameters are updated at
100 ms intervals.
Bit
Name
Description
0
1
2
3
4
5, 6
7
SHORT CIRC
OVERCURRENT
DC OVERVOLT
ACS 600 TEMP
EARTH FAULT
Short-circuit in the main circuit
Overcurrent
Intermediate circuit DC overvoltage
Power plate overtemperature
Internally detected earth fault
Not in use
Internal faults. If this bit is 1 write down the value of Parameter
9.03. Contact ABB.
Not in use
Short-circuit in parallel connected phase module block 1
Short-circuit in parallel connected phase module block 2
Short-circuit in parallel connected phase module block 3
Short-circuit in parallel connected phase module block 4
8...11
12
13
14
15
9.02
FAULT WORD 2
0
1
2
3...5
6
7
8
9
10
11
12
13...15
9.03
SUPPLY PHASE
DC UNDERVOLT
IO FAULT
AMBIENT TEMP
OVER SWFREQ
PPCC LINK
CH0 COM LOST
Missing phase during synchronisation
Not in use
Intermediate circuit DC undervoltage
Not in use
I/O device fault on CH1
I/O control board (NIOC) temperature
Not in use
Switching overfrequency
Not in use
Current measurement or communication fault of NINT board
Communication break on CH0
Not in use
FAULT WORD 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8-6
SC (INU1)
SC (INU2)
SC (INU3)
SC (INU4)
FLT (F1_7)
USER MACRO
FLT (F1_4)
FLT (F1_5)
FLT (F2_12)
FLT (F2_13)
FLT (F2_14)
FLT (F2_15)
FLT (F2_16)
FLT (F2_17)
FLT (F2_18)
FLT (F2_19)
FLT (F2_3)
FLT (F2_1)
FLT (F2_0)
Factory default parameter file error
User Macro file error
EPROM operating error
FPROM data error
Internal time level 2 overflow (100 ms)
Internal time level 3 overflow (1 ms)
Internal time level 4 overflow (50 ms)
Internal time level 5 overflow (1 s)
State machine overflow
Application program execution error
Application program execution error
Illegal instruction
Register stack overflow
System stack overflow
System stack underflow
Reserved
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
Code
9
9.07
Parameter
FAULT WORDS
INT FAULT INFO
Bit
Name
0
1
2
3
4
5
6
7
8
9
10
11
12...15
Description
* Bits 0 to 3 are in use with parallel-connected converters only.
Control board NINT 1 (of phase module block 1) is connected to
branching unit board NPBU channel CH1, NINT 2 is connected
to channel CH2 etc.
NINT 1 board fault *
NINT 2 board fault *
NINT 3 board fault *
NINT 4 board fault *
NPBU board fault *
Not in use
Short-circuit in phase U upper-leg IGBT(s)
Short-circuit in phase U lower-leg IGBT(s)
Short-circuit in phase V upper-leg IGBT(s)
Short-circuit in phase V lower-leg IGBT(s)
Short-circuit in phase W upper-leg IGBT(s)
Short-circuit in phase W lower-leg IGBT(s)
Not in use
NINT 1 FAULT
NINT 2 FAULT
NINT 3 FAULT
NINT 4 FAULT
NPBU FAULT
U-PH SC U
U-PH SC L
V-PH SC U
V-PH SC L
W-PH SC U
W-PH SC L
Converter Phase Module Block
Upper-leg IGBTs
NAMC
NINT
Lower-leg IGBTs
U
V
W
Converter Constructed of Two to Four Parallel-connected Phase Module Blocks
NDCU
NPBU
CH1 CH2
NAMC
NINT 1
NXPP
NXPP
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
V
V
NGDR
NGDR
U
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
U
ACA 635 IGBT Supply Sections
NGDR
NGDR
W
NINT 3
NXPP
NINT 2
NXPP
NGDR
NGDR
V
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
U
CH3
W
W
8-7
Chapter 8 – Parameters
Code
9
9.11
9.12
Parameter
FAULT WORDS
SUPPLY FAULT
WORD
Bit
Name
Description
0
1
2
3
4
5
6
7
8
CHARGING FLT
OVERCURRENT
DI5 = 0
ACS 600 TEMP
E EARTH FLT
FAN FLT
MAIN CNT FLT
SHORT CIRC
9
10
11
12
13
14
15
NET VOLT FLT
CH0 COM LOST
DC link short-circuit during charging
Overcurrent
External fault indicated via DI5
Power plate overtemperature
Earth fault detected by an external monitoring device
Fan failure. Fault is activated 5 seconds after failure.
Main contactor failure
Short-circuit in the main circuit (indication from power plate).
Internal faults. If this bit is 1 write down the value of Parameter
9.03. Contact ABB.
Supply voltage out of range during synchronisation
Communication break on CH0
Not in use
Internally detected earth fault
Synchronisation to supply failed
Intermediate circuit DC undervoltage
Intermediate circuit DC overvoltage
SUPPLY ALARM
WORD
0
1
2
3
4
5
6...9
10
11, 12
13
14
15
8-8
EARTH FAULT
SYNCHRO FLT
DC UNDERVOLT
DC OVERVOLT
CH0 TIMEOUT
PANEL LOST
AI<MIN FUNC
ACS 600 TEMP
CURRENT LIM
NET LOST
EARTH FAULT
E EARTH FLT
DI5 = 0
Communication break detected
Local control lost
Not in use
Current below 4 mA (4 mA minimum selected)
ACS 600 internal temperature excessive
Current limit exceeded
Not in use
Network voltage lost
Not in use
Internally detected earth fault
Earth fault detected by an external monitoring device
External fault indicated via DI5
Not in use
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
11 Reference Selects
Code Parameter
11
T Default
y
p
e
11.01
REFERENCE
SELECT
DC REF SELECT I
11.02
Q REF SELECT I
PARAM
23.1
PARAM
24.1
Alternative Settings
Description
( ) Fieldbus Equivalent
Integer
Scaling
(1) PARAM 23.1;
Source for intermediate circuit DC voltage
(2) AI1; (3) AI2; (4) AI3 reference
(1) PARAM 24.1;
Source for reactive power reference
(2) AI1; (3) AI2; (4) AI3
1=1
Alternative Settings
Description
( ) Fieldbus Equivalent
Integer
Scaling
1=1
1=1
13 Analogue Inputs
Code Parameter
13
T Default
y
p
e
13.01
ANALOGUE
INPUTS
AI1 HIGH VALUE I
20000
-32768...32767
13.02
AI1 LOW VALUE I
0
-32768...32767
13.03
FILTER AI1
13.04
AI2 HIGH VALUE I
0
-32768...32767
13.05
AI2 LOW VALUE I
0
-32768...32767
13.06
MINIMUM AI2
I
0 mA
(1) 0 mA; (2) 4 mA
13.07
FILTER AI2
R 1000 ms 0...30000 ms
13.08
AI3 HIGH VALUE I
10000
-32768...32767
13.09
AI3 LOW VALUE I
0
-32768...32767
13.10
MINIMUM AI3
I
0 mA
(1) 0 mA; (2) 4 mA
13.11
FILTER AI3
R 1000 ms 0...30000 ms
R 1000
ACA 635 IGBT Supply Sections
0...30000 ms
This value corresponds to the maximum input
voltage on analogue input AI1.
This value corresponds to the minimum input
voltage on analogue input AI1.
Filter time constant for analogue input AI1.
The hardware filter time constant is 20 ms.
This value corresponds to the maximum input
in milliamperes (20 mA) on analogue input
AI2.
This value corresponds to the minimum input
in milliamperes (0 or 4 mA) on analogue input
AI2.
This value corresponds to the minimum
reference from analogue input AI2.
Filter time constant for analogue input AI2.
The hardware filter time constant is 20 ms.
This value corresponds to the maximum input
in milliamperes (20 mA) on analogue input
AI3.
This value corresponds to the minimum input
in milliamperes (0 or 4 mA) on analogue input
AI3.
This value corresponds to the minimum
reference from analogue input AI3.
Filter time constant for analogue input AI3.
The hardware filter time constant is 20 ms.
1=1
1 = 1 ms
1=1
1=1
1 = 1 ms
1=1
1=1
1 = 1 ms
8-9
Chapter 8 – Parameters
14 Digital Outputs
Code Parameter
14
14.04
14.05
8-10
DIGITAL
OUTPUTS
DO2
GROUP+INDEX
DO2 BIT
NUMBER
T Default
y
p
e
Range
Description
Integer
Scaling
801
-199999...+199999
0
0...15
This parameter selects the signal that controls 1 = 1
digital output D02 by the bit specified with Par.
14.05 DO2 BIT NUMBER.
Example: When bit number 0 (RDY_ON) of
Par 8.01 MAIN STATUS WORD is selected to
digital output D02, the value of Par. 14.04 is
set to 801, where 8 indicates the group and 01
the index of the selected signal. The bit
number is specified with Par. 14.05 DO2 BIT
NUMBER.
Note: Invertation of the output is set with a
minus sign of the Par. 14.04 value.
This parameter specifies the bit number of the 1 = 1
signal selected with Par. 14.04 DO2 GROUP+
INDEX. See the example above.
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
15 Analogue Outputs
Code Parameter
15
15.01
ANALOGUE
OUTPUTS
ANALOGUE
OUTPUT 1
T Default
y
p
e
Alternative Settings
Description
( ) Fieldbus Equivalent
Integer
Scaling
I
0...30000
1=1
106
15.02
15.03
INVERT AO1
MINIMUM AO1
B NO
I 0 mA
15.04
15.05
FILTER AO1
SCALE AO1
R 0.10 s
R 100
(0) NO; (1) YES
(1) 0 mA; (2) 4 mA;
(3) 10 mA
0...10 s
0...65536
15.06
I
0...30000
15.07
15.08
ANALOGUE
OUTPUT 2
INVERT AO2
MINIMUM AO2
B NO
I 0 mA
15.09
15.10
FILTER AO2
SCALE AO2
R 0.10 s
R 3000
101
ACA 635 IGBT Supply Sections
(0) NO; (1) YES
(1) 0 mA; (2) 4 mA
(3) 10 mA
0...10 s
0...65536
Analogue output signal 1 source selection.
Example: To link Par. 23. 01 DC VOLT REF to
analogue output 1, set Parameter 15.01 to
value 2301.
Analogue output signal 1 inversion
Analogue output signal 1 offset in
milliamperes
Filter time constant for AO1
Nominal value of AO1 (Par. 15.01
ANALOGUE OUTPUT 1). It corresponds to
20 mA at the output.
Example: Par. 1.06 LINE CURRENT is linked
to Parameter 15.01 ANALOGUE OUTPUT 1.
The value of Par. 15.05 is 100. When the
value of Par. 1.06 LINE CURRENT is 100 A,
the output of AO1 is 20 mA.
Analogue output signal 2 source selection.
See example in Par. 15.01.
Analogue output signal 2 inversion
Analogue output signal 2 offset in
milliamperes
Filter time constant for AO2
Nominal value of AO2 signal (Par. 15.06
ANALOGUE OUTPUT 2). It corresponds to
20 mA at the output. See example in Par.
15.05.
100 = 1 s
1=1
1=1
100 = 1 s
1=1
8-11
Chapter 8 – Parameters
16 System Control
Inputs
Code
Parameter
16
SYSTEM CTR
INPUTS
PARAMETER
LOCK
16.02
T Default
y
p
e
Alternative Settings
( ) Fieldbus Equivalent
B OPEN
(1) LOCKED
(0) OPEN
16.03
PASS CODE
I
0
16.06
PARAMETER
BACKUP
I
DONE
(0) DONE
(1) SAVE
Description
With this parameter unauthorised parameter
changes by CDP 312 Control Panel or the
DriveWindow PC tool can be inhibited for
Parameter Groups 0...99.
Parameter changes are disabled.
Parameter changes are enabled.
Pass code for the Parameter Lock. The default
value is 0. To open the Parameter Lock for
parameter groups below 100, change the value to
358. After the Parameter Lock is opened, the
value is automatically reset.
Parameter value after the saving has been
completed
Parameter saving from RAM to permanent
FPROM memory.
Note: Parameter changes done through the
CDP 312 Control Panel or DriveWindow are
saved automatically to FPROM. Parameter
changes done by an overriding control system
(e.g. fieldbus or AC 80) via CH0 of the NAMC
board are saved only to the volatile RAM
memory. The changes need to be saved to
FPROM separately using this parameter
selection.
8-12
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
18 LED Panel Control
Code
Parameter
18
LED PANEL
CTRL
T Default
y
p
e
Range
Description
Integer
Scaling
The NLMD-01 Monitoring Display has a LED bar
to show an absolute real type value:
0 50 100 150 %
.
The source and the scale of the display signal
are defined by this parameter group.
18.01
LED PANEL
OUTPUT
I
109
0...30000
18.02
SCALE PANEL
R 100
0...65536
ACA 635 IGBT Supply Sections
Note: If NLMD -01 and CDP 312 Control Panel
are used together, Actual Signal 1.26 LED
PANEL OUTPUT must be the first signal in
CDP 312 Actual Signal Display Mode. Otherwise
the NLMD-01 LED bar display will show an
incorrect value.
Signal source selection for the NLMD-01
1=1
Monitoring Display.
Example: To link Par. 1.09 POWER to the
display set Parameter 18.01 to value 109.
Scaling factor for the NLMD-01 Monitoring
1=1
Display.
Example: Par. 1.05 FREQUENCY is linked to
Parameter 18.01. The frequency is 50 Hz (= 100
· 50 = 5000 as integer scaled). Value 5000 of
Parameter 18.02 gives 100% display on the
NLMD-01.
8-13
Chapter 8 – Parameters
19 Data Storage
Parameters of this group are storages for receiving information from or
sending it to an overriding system. The parameters are unconnected.
They can be used for linking, testing and commissioning purposes.
Trend Monitoring with
Drive Window
Example 1.
Address of data set 14 index 2 is 90.08. For monitoring a signal
assigned for drive control from data set 14 index 2 (data word 14.2) by
DriveWindow follow the steps below.
3. Set Parameter 90.08 D SET 14 VAL 2 to 1901 (denoting Parameter
19.01).
4. Set DriveWindow monitoring channel to read Parameter 19.01.
APC2, AC80
PC
NAMC-xx
Data set table
Data Index
set
PC element
ACSRX
A
.
.
Data set 14
.
.
1
Index: 1
Index: 2
14
2
Address
Assignment
of Data set
Group Index
90
08
For
DriveWindow
PC Tool
Drive Window
Parameter
table
19.01
3
Index: 3
.
.
.
19.01
.
.
.
A = a value assigned from overriding system to drive control
Sending a value
Example 1.
To send a value to overriding system data set 15 index 2, set
Parameter 92.08 D SET 15 VAL 2 to 1902 by a CDP 312 Control Panel
or DriveWindow.
APC2, AC80
PC
NAMC-xx
Data set table
PC element
ACSRX
B
Data set 15
Index: 1
Index: 2
Index: 3
Data Index
set
.
.
.
.
1
15
2
Address
Assignment
of Data set
Group Index
92
3
.
.
.
.
.
.
08
From
DriveWindow
PC Tool
Drive Window
Parameter
table
19.02
19.02
B = a value assigned for overriding system application
8-14
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
19 Data Storage
Parameter Table
Integer scaling of these parameters is 1 = 1, the type is real and the
range is -32768...+32767.
Code
19
19.01
19.02
19.03
19.04
19.05
19.06
19.07
19.08
ACA 635 IGBT Supply Sections
Parameter
DATA STORAGE
DATA 1
DATA 2
DATA 3
DATA 4
DATA 5
DATA 6
DATA 7
DATA 8
8-15
Chapter 8 – Parameters
21 Start/Stop
Functions
Code Parameter
T Default
y
p
e
Range/Unit
Description
Disable level start
Enable level start. Note: If Par. 99.08 AUTO LINE ID
RUN is set to YES, the ACA 635 performs the ID Run
in NAMC board power-up and modulates for one
second thereafter. The ACA 635 stops and waits until
DC voltage exceeds the level of Par. 21.02 DC
VOLTAGE LEVEL.
Intermediate circuit DC voltage level at which the
modulation starts
21
START/STOP
21.01
DC LEVEL START B NO
(0) NO
(1) YES
21.02
DC VOLTAGE
LEVEL
See table below.
R See table
below.
Par. 4.04 CONV
Default of Par. 21.02:
NOM VOLTAGE 1.1 × Ö2 × Par. 4.04 CONV
NOM VOLTAGE
(V)
(V)
415
646
500
778
690
1073
21.03
STOP LEVEL
TIME
R 1000 ms
ms
21.04
STOP LEVEL
POWER
R 0 kW
kW
8-16
Range of Par. 21.02:
(65% ...120%) × Ö2 × Par. 4.04 CONV
NOM VOLTAGE
Minimum (V)
Maximum (V)
380
706
457
851
632
1174
Modulator is stopped when the power is higher than
defined with Par. 21.04 STOP LEVEL POWER for a
time defined with this parameter.
Motoring power to stop the modulator
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
The functions set by this parameter group are visualised below. Uc is
intermediate circuit DC voltage. P is converter supply power.
P, U
Uc
+
Pm
Pg
Par. 21.02
Par. 21.04
P
t
Par. 21.03
-
Modulation
starts
ACA 635 IGBT Supply Sections
Modulation
stops
8-17
Chapter 8 – Parameters
23 DC Bus Reference
With the help of the Parameter 23.01 DC VOLT REF, the DC link
voltage can be raised higher than with a conventional 6-pulse diode
rectifier in order to compensate a low voltage level in the network.
Note: Check the motor insulation requirement. See
ACS 600 MultiDrive Safety and Product Information guide, EN code
63982229, or ACS/ACC 6x7 Hardware Manual, EN code 61329005.
Example
Code Parameter
23
T
y
p
e
If the line voltage is 380 V, fully loaded DC voltage with 6-pulse diode
rectifier is 1.35 × 380 V = 513 V. If the desired motor rms level is 400 V
with sinusoidal voltage (peak value = Ö2 × 400 V = 565 V), the voltage
drop can be compensated simply by setting Parameter 23.01 DC
VOLT REF to value 565. However, the input current to produce the
output power is still calculated on the basis of 380 V: P = Ö3 × 380 × line
current.
Range
Description
Integer
Scaling
User-given setpoint value for intermediate circuit DC voltage
reference
1=1V
DC VOLT REF
23.01 DC VOLT REF
R See table below.
Par. 4.04 CONV NOM
VOLTAGE
(V)
415
500
690
Range of Par. 23.01:
(65% ...120%) × Ö2 × Par. 4.04 CONV
NOM VOLTAGE
Minimum (V)
Maximum (V)
380
706
457
851
632
1174
24 Reactive Power
Code Parameter
24
24.01
8-18
REACTIVE
POWER
Q POWER REF
T
y
p
e
Default
Range
Description
Integer
Scaling
R
0%
-100%...+100%
Setpoint value for reactive power control in
1=1%
percentage of Par. 4.06 CONV NOM POWER.
Reactive power control is capable of generating
the set amount of reactive power to the network
(positive = capacitive, negative = reactive).
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
30 Fault Functions
Code Parameter
T
y
p
e
Default
FAULT
FUNCTIONS
30.02 EARTH FAULT B WARNING
Alternative
Settings
( ) Fieldbus
Equivalent
Description
30
1=1
(0) WARNING
(1) FAULT
30.03 EARTH FAULT R 4
LEVEL
1
2
3
4
5
6
7
8
30.04 EXT EARTH
FAULT
I NO
(1) NO
(2) DI4=0 FAULTS
(3) DI4=1 FAULTS
(4) DI4=0 ALARMS
(5) DI4=1 ALARMS
30.05 EXT EVENT
I NO
30.11 DC
OVERVOLT
TRIP
(1) NO
(2) DI5=0 ALARMS
(3) DI5=0 FAULTS
R 740/891/1230 0...747 VDC
(415 V units)
0...900 VDC
(500 V units)
0...1242 V DC
(690 V units)
ACA 635 IGBT Supply Sections
Integer
Scaling
A warning is given in an earth fault condition.
Converter trips in an earth fault.
Non-parallel connected conveters (frame sizes
R8i, R9i, R10i, R11i and R12i): This parameter
sets the earth fault trip level through the PPCC
link.
Parallel connected converters (frame sizes
2xR11i, 2xR12i, 4xR11i, 4xR12i): current
unbalance protection of converter output, e.g,
in a short-circuit.
1 % unbalance in the sum current
3 % unbalance in the sum current
8 % unbalance in the sum current
13 % unbalance in the sum current
18 % unbalance in the sum current
28 % unbalance in the sum current
39 % unbalance in the sum current
62 % unbalance in the sum current
Earth fault detector is connected to digital input
DI4. This parameter selects the converter
reaction.
Not in use
Converter trips on EARTH FAULT if DI4 is OFF
(0).
Converter trips on EARTH FAULT if DI4 is ON
(1).
A warning is given if DI4 is OFF (0).
A warning is given if DI4 is ON (1).
This parameter selects the converter reaction
to the state of digital input DI5.
Not in use
A warning is given if DI5 is OFF (0).
Converter trips if DI5 is OFF (0).
Intermediate circuit DC overvoltage trip limit.
The lower range limit is determined by Par.
30.12 DC UNDERVOLT TRIP. When the
setting of this parameter is changed, the
corresponding higher range limit of Par. 30.12
DC OVERVOLT TRIP will also change.
1=1
1=1
1=1
1=1
1=1
8-19
Chapter 8 – Parameters
30.12 DC
UNDERVOLT
TRIP
R 293/354/488
0...747 VDC
(415 V units)
0...900 VDC
(500 V units)
0...1242 V DC
(690 V units)
Intermediate circuit DC undervoltage trip limit. 1 = 1
The higher range limit is determined by Par.
30.11 DC OVERVOLT TRIP. When the setting
of this parameter is changed, the
corresponding lower range limit of Par. 30.11
DC OVERVOLT TRIP will also change. This
parameter also determines DC voltage check
limit during charging.
51 Communication
Module
Code Parameter
51
COMMUNICATION
MODULE
51.01
51.02
...
51.15
FIELDBUS PAR1
FIELDBUS_PAR2
...15
T
y
p
e
C
R
Description
This group defines the communication parameters for a fieldbus adapter module. The
parameter names are copied from the module when it is installed and its connection to the
drive is activated with Parameter 98.02 COMM MODULE. See the module manual.
Module type and software version
According to module type
70 DDCS Control
Code Parameter
T
y
p
e
Default
Alternative Settings
( ) Fieldbus Equivalent
R
1
1...125
70
70.01
DDCS CONTROL
CH0 NODE ADDR
70.02
CH0 LINK
CONTROL
R
10
70.03
CH0 BAUD RATE
I
4 Mbit/s
70.04
CH0 TIMEOUT
R
100 ms
8-20
Description
Integer
Scaling
Node address for channel CH0. When
1=1
using the AC 80 system, the address must
be 1. In other control systems, node
address is set according to the
application.
1...15
DDCS channel CH0 intensity control for 1= 1
transmission LEDs. This parameter can
be used in special cases to optimise the
communication performance in the link.
(0) 8 Mbit/s (not in use); Channel CH0 communication speed. This
(1) 4 Mbit/s;
parameter must be set to 4 Mbits/s, when
(2) 2 Mbit/s (not in use); FCI communication module is used.
(3) 1 Mbit/s
Otherwise overriding system
automatically sets the communication
speed.
0...60000 ms
The delay time before a communication
1 = 1 ms
break fault is indicated. The time count
starts when the link does not update the
message. During the time elapsing, CH0
TIMEOUT warning is set by 9.12 SUPPLY
ALARM WORD bit 0. When the value of
Par. 70.04 is zero, timeout is not
monitored and CH0 COM LOST fault is
not indicated regardless of the value of
Par. 70.05.
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
70.05
CH0 COMM LOSS
CTRL
I
FAULT
(1) NO FAULT
(2) FAULT
70.06
CH1 LINK
CONTROL
R
10
1...15
70.15
CH3 NODE ADDR
R
1
1...254
70.16
CH3 LINK
CONTROL
R
15
1...15
70.19
CH0 HW
CONNECTION
B
STAR
(0) RING
(1) STAR
70.20
CH3 HW
CONNECTION
B
STAR
(0) RING
(1) STAR
ACA 635 IGBT Supply Sections
This parameter is in use when Par. 98.01
COMMAND SEL is set to MCW and Par.
98.02 COMM MODULE to FBA DSET1,
FBA DSET10 or INVERTER.
A warning is given on communication loss
on channel CH0.
Converter trips on communication loss on
channel CH0.
DDCS channel CH1 intensity control for
transmission LEDs. This value is adjusted
through the link including each device in
the link. This parameter can be used in
special cases to optimise the
communication performance in the link.
Node address for the channel CH3. This
channel is normally used with the start-up
and maintenance tools. If CH3 of the
several drives have been connected to
the ring or star (by branching unit)
connection, each one must be set an
unique node address. The new node
address becomes valid only after auxiliary
power shutdown of the NAMC board.
DDCS channel CH3 intensity control for
transmission LEDs. This value is adjusted
through the link including each device in
the link. This parameter can be used in
special cases to optimise the
communication performance in the link.
This parameter is used for enabling or
disabling regeneration of channel CH0
optical transmitter in DDCS mode. DDCS
mode is typically used with APC2, AC70
and AC450 controllers. In regeneration
mode any message received by the
channel is echoed back. This parameter is
not in use in DriveBus mode.
Regeneration enabled. Select RING if the
CH0 channels on the NAMC boards are
connected to a ring configuration.
Regeneration disabled. Select STAR with
a star configuration as AC450 – CI810 –
NDBU-95 optical branching unit(s) –
ACS 600.
This parameter is used for enabling or
disabling regeneration of channel CH3
optical transmitter. In regeneration mode
any message received by the channel is
echoed back.
Regeneration enabled. Select RING if the
CH3 channels on the NAMC boards are
connected to a ring configuration.
Regeneration disabled. Select STAR with
a star configuration as DriveWindow (PC)
– NDBU-95 optical branching unit(s) –
ACS 600.
1=1
1=1
1=1
1=1
1=1
8-21
Chapter 8 – Parameters
71 DriveBus
Communication
Code Parameter
71
70.01
DRIVEBUS
COMM
CH0 DRIVEBUS
MODE
T
y
p
e
Default
B
YES
Alternative Settings
( ) Fieldbus Equivalent
(0) NO
(1) YES
8-22
Description
Integer
Scaling
This parameters selects the
1=1
communication mode for channel CH0 on
the NAMC board.The new mode becomes
valid only on the next NAMC board poweron.
DDCS mode
DriveBus mode with AC 80 controller
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
90, 91 Data Set
Receive Addresses
Parameters of this group are addresses for received data from the
overiding system. Integer scaling of the parameters is 1 = 1 and range
0...9999.
Overriding
System
NAMC-xx
Dataset Table
DDCS link
10
12
14
Address
Assignment
of Dataset
Group
AMC
Table
90.01...90.18
91.01...91.09
Ch0
32
Parameter description in the table below: Data set xx value x (e.g. data
set 10 value 1) receive address.
Code Parameter
90, 91 DATA SET RECEIVE
ADDRESSES
90.01 D SET 10 VAL 1
90.02 D SET 10 VAL 2
90.03 D SET 10 VAL 3
90.04 D SET 12 VAL 1
90.05 D SET 12 VAL 2
90.06 D SET 12 VAL 3
90.07 D SET 14 VAL 1
90.08 D SET 14 VAL 2
90.09 D SET 14 VAL 3
90.10 D SET 16 VAL 1
90.11 D SET 16 VAL 2
90.12 D SET 16 VAL 3
90.13 D SET 18 VAL 1
90.14 D SET 18 VAL 2
90.15 D SET 18 VAL 3
90.16 D SET 20 VAL 1
90.17 D SET 20 VAL 2
90.18 D SET 20 VAL 3
91.01 D SET 22 VAL 1
91.02 D SET 22 VAL 2
91.03 D SET 22 VAL 3
91.04 D SET 24 VAL 1
91.05 D SET 24 VAL 2
91.06 D SET 24 VAL 3
91.07 D SET 32 VAL 1
91.08 D SET 32 VAL 2
91.09 D SET 32 VAL 3
ACA 635 IGBT Supply Sections
Default
Updating Interval (ms)
701
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
500
500
500
1000
1000
1000
8-23
Chapter 8 – Parameters
92, 93 Data Set
Transmit Addresses
Parameters of this group are signal addresses for transmitted data to
the overiding system. Integer scaling of the parameters is 1 = 1 and
range 0...9999.
Overriding
System
NAMC-xx
Dataset Table
11
13
15
DDCS link
Address
Assignment
of Dataset
Group
AMC
Table
92.01...92.18
93.01...93.09
Ch0
33
Parameter description in the table below: Data set xx value x (e.g. data
set 11 value 1) transmit address.
Code
8-24
Parameter
Default
Updating Interval (ms) /
Description
92, 93 DATA SET TRANSMIT
ADDRESSES
92.01 D SET 11 VAL 1
92.02 D SET 11 VAL 2
92.03 D SET 11 VAL 3
92.04 D SET 13 VAL 1
92.05 D SET 13 VAL 2
92.06 D SET 13 VAL 3
92.07 D SET 15 VAL 1
92.08 D SET 15 VAL 2
92.09 D SET 15 VAL 3
92.10 D SET 17 VAL 1
92.11 D SET 17 VAL 2
92.12 D SET 17 VAL 3
92.13 D SET 19 VAL 1
92.14 D SET 19 VAL 2
92.15 D SET 19 VAL 3
92.16 D SET 21 VAL 1
92.17 D SET 21 VAL 2
92.18 D SET 21 VAL 3
93.01 D SET 23 VAL 1
93.02 D SET 23 VAL 2
93.03 D SET 23 VAL 3
93.04 D SET 25 VAL 1
93.05 D SET 25 VAL 2
93.06 D SET 25 VAL 3
93.07 D SET 33 VAL 1
801
110
0
0
111
106
911
0
0
912
115
122
0
0
0
108
112
0
0
0
0
0
0
0
0
93.08
D SET 33 VAL 2
0
93.09
D SET 33 VAL 3
0
4
4
4
100
100
100
100
100
100
100
100
100
500
500
500
500
500
500
500
500
500
500
500
500
Data set 33 value 1, address
feedback for 91.07 D SET 32
VAL 1 (100 ms interval)
Data set 33 value 2 inquire data
(100 ms interval)
Data set 33 value 3 inquire
address feedback (100 ms
interval)
ACA 635 IGBT Supply Sections
Chapter 8 – Parameters
98 Option Modules
Code Parameter
98
98.01
OPTION
MODULES
COMMAND SEL
T Default
y
p
e
Alternative
Settings
( ) Fieldbus
Equivalent
B I/O
(0) MCW
(1) I/O
98.02
COMM MODULE I
NO
(1) NO
(2) FBA DSET1
(3) FBA DSET10
(4) INVERTER
ACA 635 IGBT Supply Sections
Description
This parameter selects the control command
interface(s).
The ISU control program reads the control commands
via a serial link and through the digital input terminals.
The ISU control program reads the control commands
through the digital input terminals.
This parameter defines the control mode and place in
the REMOTE mode.
The drive is controlled using I/O: DI2
The drive is controlled through the communication link
(CH0) using datasets 1 and 2. This is a typical setting
for use with a fieldbus adapter module.
The drive is controlled through the communication link
(CH0) using datasets 10 to 33. (for example APC2,
AC 70, AC80, NPBA-02, NCSA-01)
Not in use
8-25
Chapter 8 – Parameters
99 Start-up Data
Code
Parameter
Alternative
Settings
( ) Fieldbus
Equivalent
Description
99
99.01
START UP
DATA
LANGUAGE
The line converter displays the information in the selected
language. Note: only English is available at the time of
publishing.
DEVICE NAME C
(0) ENGLISH
(1) ENGLISHAM
(2) DEUTSCH
(3) ITALIANO
(4) ESPAÑOL
(5) PORTUGUÊS
(6) NEDERLANS
(7) FRANÇAIS
(8) DANSK
(9) SUOMI
(10) SVENSKA
Max. 32 characters
99.02
99.06
FAST SYNC
(0) NO
T
y
p
e
Default
I ENGLISH
B YES
(1) YES
99.07
LINE SIDE ID
RUN
B NO
(0) NO
(1) YES
99.08
AUTO LINE ID
RUN
B YES
(0) NO
(1) YES
99.09
99.10
8-26
APPLIC
RESTORE
SUPPLY ID
NUMBER
B NO
(0) NO
I 0
0...32767
The name of the supply section can be typed here by
DriveWindow. The name is shown in the System
Configuration display of DriveWindow.
Synchronization with phase order check (two
synchronization pulse)
Synchronization without phase order check (one
synchronization pulses)
Line-side converter ID Run is not performed after next
start.
Next start makes line-side converter ID Run. It takes about
5 seconds. After ID Run converter keeps on modulating. It
is not allowed to load the motor during the ID Run.
No automatic line-side converter ID Run after power-up
Line-side converter ID Run is performed automatically
after power-up and start.
This parameter can be used by the overriding system to
check the right connections of the optical cables to the
drive type. This parameter requires support from the
overriding system to verify the correct connection.
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Ratings
Abbreviations
This table explains the abbreviations used in the following rating table.
Supply Section
Total rms input current (continuous a.c. current)
I1N
Duty Cycle (1 min / 5 min)
I1base
Maximum base current with I1max.
I1max
Short term rms overload a.c. current (allowed for one minute every 5
minutes).
I1max
I1base
1 min
4 min
Duty Cycle (10 s / 60 s)
I1base
Maximum base current with I1max.
I1max
Short term rms overload a.c. current (allowed for 10 seconds every
60 seconds)
I1max
I1base
10 s
SN
P2N
Ploss
UN
Notes
50 s
Rated apparent supply power of the supply section
Nominal power of intermediate d.c. link (continuous active motor
or generator power)
Power loss
Nominal mains voltage
Note 1: The ratings given correspond to voltage UN and fan supply
voltage 230 V or 115 V.
Note 2: Ploss is the heat loss of a unit with basic options. The value
depends on the options included.
Note 3: Noise level applies to echoless room.
ACA 635 IGBT Supply Sections
A-1
Appendix A – Technical Data
Ratings 380...690 V
Type Marking
Nominal Ratings
I1N
P2N
SN
kVA
A
kW
This table shows the nominal ratings for the IGBT supply sections.
Duty Cycle (1 min / 5 min)
I1base
I1max
A
Duty Cycle (10 s / 60 s)
I1base
I1max
Frame
Size
Air Flow
Ploss
Noise
Level
kW
dBA
A
A
A
ACA 635-0265-3
260 379
254
284
ACA 635-0405-3
400 576
386
432
ACA 635-0500-3
500 720
482
540
ACA 635-0765-3
697 1006
673
755
ACA 635-1125-3 1035 1494
1000
1121
ACA 635-1440-3 1325 1913
1280
1434
ACA 635-2145-3 1966 2838
1900
2129
ACA 635-2820-3 2594 3744
2506
2809
IBGT supply sections (380...500 V Range,UN = 500 V)
426
684
810
1132
1681
2152
3193
4212
260
395
494
691
1036
1381
2072
2762
520
790
988
1384
2072
2762
4144
5524
R8i
R9i
R10i
R11i
R12i
2xR11i
2xR12i
4xR11i
2300
2300
4650
4650
6200
9300
12400
18600
7.8
12.0
15.0
20.9
31.1
39.8
59.0
77.8
62
62
67
67
70
70
72
73
ACA 635-0325-5
320 368
308
276
ACA 635-0495-5
490 565
473
424
ACA 635-0610-5
610 700
586
525
ACA 635-0935-5
855 987
826
741
ACA 635-1385-5 1270 1466
1227
1099
ACA 635-1760-5 1625 1876
1570
1407
ACA 635-2625-5 2411 2784
2329
2088
ACA 635-3450-5 3181 3673
3073
2754
IGBT supply sections (525...690 V Range,UN = 690 V)
414
636
788
1111
1649
2110
3133
4132
240
365
456
638
957
1276
1915
2552
480
730
912
1277
1914
2552
3829
5104
R8i
R9i
R10i
R11i
R12i
2xR11i
2xR12i
4xR11i
2300
2300
4650
4650
6200
9300
12400
18600
9.6
14.7
18.3
25.7
38.1
48.8
72.3
95.4
62
62
67
67
70
70
72
73
ACA 635-0315-6
ACA 635-0485-6
ACA 635-0600-6
ACA 635-0900-6
ACA 635-1385-6
ACA 635-1710-6
ACA 635-2545-6
ACA 635-3350-6
ACA 635-5140-6
297
461
565
781
1196
1485
2204
2907
4451
179
265
340
464
695
926
1390
1853
2778
358
530
680
927
1389
1853
2780
3706
5557
R8i
R9i
R10i
R11i
R12i
2xR11i
2xR12i
4xR11i
4xR12i
2300
2300
4650
4650
6200
9300
12400
18600
24800
9.3
14.7
18.0
24.9
38.1
47.3
70.2
92.6
141.8
62
62
67
67
70
70
72
73
73
m3/h
IGBT supply sections (380...415 V Range,UN = 415 V)
310
490
600
831
1271
1578
2341
3088
4728
264
410
502
695
1064
1320
1959
2584
3956
305
473
580
802
1229
1524
2262
2984
4568
198
308
377
521
798
990
1469
1938
2967
PDM code 00012716 -A
A-2
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Dimensions and
Weights
This table shows the dimensions and weights of the IGBT supply
sections. The weights are estimates and apply to units with basic
options and aluminium DC busbars. The width and weight of the
auxiliary control unit are included: 400 mm (for frame sizes R8i and
R9i, approximately 100 kg) or 600 mm (for frame sizes R11i and
above, approximately 150 kg).
Type Marking
Width
Height
Weight
mm
mm
kg
IGBT supply sections (380...415 V Range,UN = 415 V)
ACA 635-0265-3
1800 (400+400+400+600)
ACA 635-0405-3
2000 (400+400+600+600)
ACA 635-0500-3
2800 (600+400+600+1000)
ACA 635-0765-3
3200 (600+600+1000+1000)
ACA 635-1125-3
3700 (600+600+1000+1500)
ACA 635-1440-3
5200 (600+600+2x(1000+1000))
ACA 635-2145-3
6200 (600+600+2x(1000+1500))
ACA 635-2820-3
9600 (600+1000+4x(1000+1000))
IBGT supply sections (380...500 V Range,UN = 500 V)
2130
2130
2130
2130
2130
2130
2130
2130
650
700
1100
1250
1850
2200
3350
4100
ACA 635-0325-5
1800 (400+400+400+600)
ACA 635-0495-5
2000 (400+400+600+600)
ACA 635-0610-5
2800 (600+400+600+1000)
ACA 635-0935-5
3200 (600+600+1000+1000)
ACA 635-1385-5
3700 (600+600+1000+1500)
ACA 635-1760-5
5200 (600+600+2x(1000+1000))
ACA 635-2625-5
6200 (600+600+2x(1000+1500))
ACA 635-3450-5
9600 (600+1000+4x(1000+1000))
IGBT supply sections (525...690 V Range,UN = 690 V)
2130
2130
2130
2130
2130
2130
2130
2130
650
700
1100
1250
1850
2200
3350
4100
ACA 635-0315-6
ACA 635-0485-6
ACA 635-0600-6
ACA 635-0900-6
ACA 635-1385-6
ACA 635-1710-6
ACA 635-2545-6
ACA 635-3350-6
ACA 635-5140-6
2130
2130
2130
2130
2130
2130
2130
2130
2130
650
700
1100
1250
1850
2200
3350
4100
6400
1800 (400+400+400+600)
2000 (400+400+600+600)
2800 (600+400+600+1000)
3200 (600+600+1000+1000)
3700 (600+600+1000+1500)
5200 (600+600+2x(1000+1000))
6200 (600+600+2x(1000+1500))
9200 (600+600+4x(1000+1000))
11600 (600+1000+4x(1000+1500))
PDM code 00012716-A
ACA 635 IGBT Supply Sections
A-3
Appendix A – Technical Data
Input Power
Connection
Voltage (U1):
380/400/415 VAC 3-phase for 415 VAC units
380/400/415/440/460/480/500 VAC 3-phase for 500 VAC units
525/550/575/600/660/690 VAC 3-phase for 690 VAC units
-40% *, +10% variation from converter nominal voltage is allowed.
* The ACA 635 can raise voltage with setting of Parameter 23.01 DC
VOLT REF. Example: With 400 V supply voltage and 1000 VDC
intermediate circuit voltage, it is possible to drive a 690 V motor with
nominal motor voltage.
400 VAC
~
1000 VDC
690 VAC
~
M
3~
Short-circuit Capability (IEC 439): The rated short-time withstand
current of a drive equipped with an IGBT supply section is given below.
Frame Size
I cw / 1 s
I pk
kA
kA
R8i
37
78
R9i
37
78
R10i
37
78
R11i ... 4 x R11i
50
105
R12i ... 4 x R12i
50
105
Frequency: 50 ± 2 Hz or 60 ± 2 Hz. Maximum rate of change 17%/s.
Unbalance: Max. ± 3 % of nominal phase to phase input voltage
Voltage Dips: Max. 15 %
Power Factor:
cos j1 = 1.00 (fundamental at nominal load)
l = I1/Irms · cos j1 > 0.98 (total) , where
l is power factor,
I1
is fundamental input current rms value,
Irms is total input current rms value.
A-4
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Harmonic Distortion
This table gives total harmonic distortion (THD) of the ACA 635.
THD
Voltage
%
THD
Current
%
Rsc
8
4
20
2
4
100
Definitions
Total Harmonic Distortion:
æI ö
THD = å ç n ÷
2 è I1 ø
40
2
In
nth harmonic component
I1
fundamental current
THD is calculated as follows: ratio of the rms value of the harmonics (n
= 2...40) to the rms value of the fundamental. The voltage THD
depends on the short-circuit ratio. The spectrum of the distortion also
contains interharmonics. See also Applicable Standards.
Ratio of the short-circuit power of the supply network (source) to the
fundamental apparent power of the ACA 635 at point of common
coupling:
Rsc = Scc/Sequ, where
Scc = short-circuit power at point of common coupling (PCC),
Sequ = apparent power of the equipment calculated with rated rms line
current.
Switching Frequency
2 kHz (average).
Ambient Conditions
See ACS 600 MultiDrive Safety and Product Information (EN code:
63982229) guide or ACx 6x7 Hardware Manual (EN code: 61329005).
Efficiency
97 % at nominal power level
ACA 635 IGBT Supply Sections
A-5
Appendix A – Technical Data
Fuses
The fuses (ultrarapid) of the IGBT supply section are given below. Only
ultra rapid fuses guarantee proper protection for the rectifier
semiconductors. Equivalent fuses from other manufacturers can also
be used. UN and IN are nominal voltage and current of the fuse.
IGBT Supply Section AC
Fuses
The a.c. fuses used in the ACA 635 IGBT supply sections are listed
below.
Fuse
IGBT Supply Type
ACA 635-0265-3
ACA 635-0405-3
ACA 635-0500-3
ACA 635-0765-3
ACA 635-1125-3
ACA 635-1440-3
ACA 635-2145-3
ACA 635-2820-3
ACA 635-0325-5
ACA 635-0495-5
ACA 635-0610-5
A-6
UN
(V)
IN
(A)
Type
660 630 170M6810 DIN 43620
660 1000 170M6814
1250 1250 170M6299
690
690
690
690
690
3
3
170M5874
170M5876 DIN 43653
170M5874
170M5876
170M5874
2
2
2
2
2
660 630 170M6810 DIN 43620
660 1000 170M6814
1250 1250 170M6299
3
3
ACA 635-0935-5
ACA 635-1385-5
ACA 635-1760-5
ACA 635-2625-5
ACA 635-3450-5
690
690
690
690
690
ACA 635-0315-6
ACA 635-0485-6
ACA 635-0600-6
1250
1250
1250
ACA 635-0900-6
ACA 635-1385-6
ACA 635-1710-6
ACA 635-2545-6
ACA 635-3350-6
ACA 635-5140-6
690
690
690
690
690
690
700
900
700
900
700
Size
700
900
700
900
700
170M5874
DIN 43653
170M5876
170M5874
170M5876
170M5874
2
2
2
2
2
400 170M6303 DIN 43620 3SHT
630 170M6205
3SHT
800 170M6203
900
700
900
700
900
700
170M5876
170M5874
170M5876 DIN 43653
170M5874
170M5876
170M5874
2
2
2
2
2
2
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
IGBT Supply Unit DC
Fuses
IGBT Supply
Section Frame
Type
UN
[V]
The d.c. fuses (Bussmann) used in the IGBT supply units are listed
below.
Size
IN
[A]
Type
415 V and 500 V Range
R8i, R10i
R9i
R11i
2xR11
4xR11i
R12i
2xR12i
660V
660V
IGBT Supply
Section Frame
Type
UN
[V]
IN
[A]
Size
Type
690 V Range
3
3
630
1000
170M6810
170M6814
R8i, R10i
R9i
R11i
4xR11i
R12i
2xR12i
4xR12i
1250V
1250V
3SHT
3SHT
400
630
170M6303
170M6205
PDM code 00018306
Power Cable Entries
Tightening Torque
Notes concerning the cable entry table are below.
The tightening torques for screw connections, applicable to zinc and
chrome platings and screw strength class 8.8 are presented below.
Screw
Torque (Nm) *
Soft aluminium
Alloyed aluminium and copper
M5
3.5
3.5
M6
6
9
M8
17
20
M10
35
40
M12
55
70
M16
130
180
* valid also for greased screws
Marking
Below is explained how cable connections are marked in the following
table. The terminals accept cable lugs according to DIN 46234 for
copper cables and DIN 46329 for aluminium cables.
4x(13)
Number of connection
holes in a terminal
Connection hole (max. screw) diameter in mm
Note: Cable lugs can also be fastened using screws one size down from the hole
size. Example: A cable lug with a hole diameter of 12.5 mm can be fastened with
either a M12 or a M10 bolt.
ACA 635 IGBT Supply Sections
A-7
Appendix A – Technical Data
IGBT Supply Sections
The connection holes for cable lugs are presented below.
Type
Holes for cable
lugs per phase
Number of
cable entries
at bottom
(diameter
60 mm)
Bottom plate
opening
dimensions
Number of
cable entries at
top (diameter
60 mm)
4x(Æ14)
4x(Æ14)
4x(Æ14)
6x(13x18)
8x(13x18)
16x(13x18)
16x(13x18)
16x(13x18)
6
6
6
6
12
18
18
18
270x511
270x511
270x511
270x911
195x501
270x711
270x711
270x711
6
6
6
6
12
18
18
18
4x(Æ14)
4x(Æ14)
4x(Æ14)
6x(13x18)
8x(13x18)
16x(13x18)
16x(13x18)
16x(13x18)
6
6
6
6
6
12
18
18
270x511
270x511
270x511
270x911
270x911
195x501
270x711
270x711
6
6
6
6
6
12
18
18
4x(Æ14)
4x(Æ14)
4x(Æ14)
6x(13x18)
8x(13x18)
8x(13x18)
16x(13x18)
16x(13x18)
32x(13x18)
6
6
6
6
12
12
18
18
18
270x511
270x511
270x511
270x911
195x501
195x501
270x711
270x711
270x911
6
6
6
6
12
12
18
18
18
(mm)
380V, 400V, 415V
ACA 635-0265-3
ACA 635-0405-3
ACA 635-0500-3
ACA 635-0765-3
ACA 635-1125-3
ACA 635-1440-3
ACA 635-2145-3
ACA 635-2820-3
440V, 460V, 500V
ACA 635-0325-5
ACA 635-0495-5
ACA 635-0610-5
ACA 635-0935-5
ACA 635-1385-5
ACA 635-1760-5
ACA 635-2625-5
ACA 635-3450-5
575V, 660V, 690V
ACA 635-0315-6
ACA 635-0485-6
ACA 635-0600-6
ACA 635-0900-6
ACA 635-1385-6
ACA 635-1710-6
ACA 635-2545-6
ACA 635-3350-6
ACA 635-5140-6
A-8
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Drive Control Unit
NDCU-2x
This figure shows the NDCU-21 containing an NAMC-21 board and an
NIOC-01 board. The NDCU-22 with an NAMC-22 board and an NIOC01 board looks similar.
9
91
NAMC-21
72
NIOC-01
9
NIOC
NAMC
NDCU-21 DRIVE CONTROL UNIT
NIOC-01
V REF
2
GND
3
AI1+
4
5
AI1AI2+
6
AI2-
7
AI3+
8
9
AI3AO1+
10
AO1-
11
AO2+
V18
12
AO2-
CH2
X6
ANALOG
INPUTS
&
OUTPUTS
1
3.6 V
2
GND
V20
NiCd
BATT.
...
X21
NAMC-21
1
DDCS
(PC)
CH3
V19
DDCS
(MSTR-FOLL)
X22
X28
1
2
DI1
DI2
3
DI3
4
5
6
DI4
DI5
DI6
7
24 DV
8
9
DGND
DIGITAL
INPUTS
V16
DDCS
(I/O)
CH1
V15
CH0
24 DV
TXD
V14
RS-485
RXD
DDCSe
(APPLICATION
CONTROLLER)
CH0
V13
X29
...
V17
RS-485
265
V12
PPCS
(INVERTER)
V25
DDCS
(AMC-I/O)
V11
V26
24 V
X24
X23
1
2
24 V
GND
3
24 V
4
GND
1
2
24 V
1
X25
2
3
1
X26
2
3
GND
24 V
IN
24 V
OUT
200 mA
R01 NC RELAY
OUTPUT
R01 C
1
R01 NO
X
5
1
2
3
TERMINATED
X
5
X4
RS-485
NLMD-01
Monitoring
Display
X3
RS-485
(CONTROL
PANEL)
CPD 312
Control Panel
R02 NC RELAY
OUTPUT
R02 C
2
R02 NO
R03 NC RELAY
OUTPUT
R03 C
3
R03 NO
WATCH
DOG
RS-485 TERMINATION
NOT TERMIN
1
X2
X27
5V
FAULT
X1
24 V
2
0V
3
4
24 V
1
2
24 V
24 V
IN
0V
0V
24 V
IN
6399 3051
PDM code 00014221-B
ACA 635 IGBT Supply Sections
A-9
Appendix A – Technical Data
External control connections for the IGBT Supply Unit on the NIOC
board are shown below.
NIOC Board
NIOC Board
Connections
Terminal Block Size
X21, X22: cables 0.5 to 1.5 mm2
X23, X25, X26, X27: cables 0.5 to 2.5 mm2
Factory Settings
Programmable
X21
1
VREF
Reference voltage 10 V d.c.
2
GND
1 k9< RL < 10 k9
3
AI1+
By default, not in use. 0(2) ... 10 V
4
AI1-
Rin > 200 k9
5
AI2+
By default, not in use.
6
AI2-
0(4) ... 20 mA, Rin = 100 9
7
AI3+
By default, not in use.
8
AI3-
0(4) ... 20 mA, Rin = 100 9
9
AO1+
By default, not in use.
10
AO1-
0(4) ... 20 mA, Rin = 100 9
11
AO2+
By default, not in use.
12
AO2-
0(4) ... 20 mA, Rin = 100 9
1
DI1
Acknowledgement of converter fan
2
DI2
Stop/Start
3
DI3
Acknowledgement of main contactor
4
DI4
Earth fault
5
DI5
–
6
DI6
Reset
7
+24V
+24 V d.c. max. 100 mA
Fixed
X22
RS 485 serial line connector X28 *
1
TRANS
2
GND
3
B-
8
+24V
9
DGND
Fixed
X23
Not in use with the NAMC-21/
22
1
+24 V
2
GND
4
A+
5
GND
X25
6
+24V
1
RO11
2
RO12
3
RO13
RS 485 serial line connector X28 *
1
TRANS
2
FAULT Not in use with the NAMC-21/
22
B-
3
1
RO21
2
RO22
RO23
A+
3
5
GND
X27
+24V
1
RO31
2
RO32
3
RO33
* Connector shield is connected via RC filter to frame.
Relay output 1
Charging contactor control
Fixed
4
6
Auxiliary voltage output, non-isolated,
24 V d.c. 250 mA
Fixed
X26
Fault
Digital Ground
Relay output 2
Fault (-1)
Fixed
Relay output 3
Main contactor control
230/115 V
N
A-10
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Control Panel
RS-485 Termination
Settings
The Control Panel (CDP 312) is connected to 6-pin modular connector
X3 on the NAMC-21/22 board. The modular connectors on the NIOC
board are not intended for the Control Panel.
When the Control Panel CDP 312 is connected to one NAMC-21/22
board only, the RS-485 line must be terminated on the NAMC-21/22
board by jumpers X5 as follows:
Terminated
If the CDP 312 is connected to several NAMC 21/22 boards (RS-485
panel bus), the first and the last NAMC 21/22 board must be
terminated and the intermediate boards not terminated.
Not terminated
NLMD-01 Monitoring
Display
The NLMD-01 monitoring display is connected to 6-pin modular
connector X4 on the NAMC-21/22 board. The modular connectors on
the NIOC board are not intended for the monitoring display.
NIOC Board
Specifications
This table gives data for the external control connection board NIOC01 of the IGBT supply section. For external control connections of the
control section refer to Common Drive Control Manuals.
IGBT Supply Section NIOC-01 Board
Constant Voltage Output
Voltage: 10 VDC ± 0.5 % (Full-scale Range) at 25 °C. Temperature Coefficient:
± 100 ppm/°C, max.
Maximum Load: 10 mA
Auxiliary Power Output
Applicable Potentiometer: 1 kW to 10 kW
Voltage: 24 VDC ± 10 %, Short-circuit proof
Analogue Outputs
Maximum Current: 250 mA or 130 mA with NLMD-01 option
Two Programmable Current Outputs: 0 (4) to 20 mA, RL < 700 W
Resolution: 0.1 % (10 bit)
Inaccuracy: ± 1 % (Full-scale Range) at 25 °C. Temperature Coefficient:
± 200 ppm/°C, max.
Digital Inputs
Output Updating Time: 4 ms
Six Digital Inputs (Common Ground): 24 VDC, -15 to +20 %
Logical Thresholds: < 8 VDC
“0”, > 12 VDC
“1”
Input Current: DI1 to DI 5: 10 mA, DI6: 5 mA
Filtering Time Constant: 1 ms
Internal Supply For Digital Inputs (+24 VDC): Short-circuit proof, group isolated
Isolation Test Voltage: 500 VAC, 1 minute
Input Updating Time: 10 ms
An external 24 VDC supply can be used instead of the internal supply.
ACA 635 IGBT Supply Sections
A-11
Appendix A – Technical Data
IGBT Supply Section NIOC-01 Board
Relay Outputs
Three Relay Outputs
Switching Capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC
Maximum Continuous Current: 2 A rms
Contact Material: Silver Cadmium Oxide (AgCdO)
Isolation Test Voltage: 4 kVAC, 1 minute
DDCS Fibre Optic Link
Applicable Standards
Output Updating Time: 100 ms
Protocol: DDCS (ABB Distributed Drives Communication System)
The ACA 635 complies with the following standards:
• EN 60204-1: 1992 + Corr. 1993 (IEC 204-1). Safety of machinery.
Electrical equipment of machines. Part 1: General requirements.
• EN 60529: 1991 (IEC 529), IEC 664-1: 1992. Degrees of protection
provided by enclosures (IP code). EN 50178: 1986. Electronic
equipment for use in power installations.
• EN 61800-3 (1996): EMC product standard including specific test
methods.
• IEC 1000-3-4 TR2 Stage 3. Limitation of emission of harmonic
currents in low voltage power supply sytems with rated currrent
greater than 16 A. (for line current)
• IEC 1000-2-4 Class 3. Compatibility levels in industrial plants for
low-frequency conducted disturbances. (for line voltage)
• IEEE 519: 1992. Recommended practicies and requirements for
harmonic control in electrical power systems. Total demand
distortion (TDD).
A-12
ACA 635 IGBT Supply Sections
Appendix A – Technical Data
CE Marking
A CE mark is attached to ACS 600 MultiDrive frequency converters (380...690 V
ranges) to verify that the unit fulfils the European Low Voltage and EMC Directives
(Directive 73/23/EEC, as amended by 93/68/EEC and Directive 89/336/EEC, as
amended by 93/68/EEC).
Compliance with the
EMC Directive
EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic
equipment to operate without problems within an electromagnetic environment.
Likewise, the equipment must not disturb or interfere with any other product or system
within its locality.
The EMC Directive defines the requirements for immunity and emissions of electrical
equipment used in the European Economic Area. The EMC product standard EN
61800-3 covers the requirements stated for frequency converters.
The ACS 600 MultiDrive frequency converters comply with the EMC Directive in
industrial low-voltage network, and IT networks (unearthed mains) with the following
provisions.
Industrial Low-Voltage
Network
1. It is ensured that no excessive emission is propagated to neighbouring lowvoltage networks. In some cases, the natural suppression in transformers and
cables is sufficient. If in doubt, the supply transformer with static screening
between the primary and secondary windings can be used.
2. The ACS 600 MultiDrive is installed according to the instructions given in the
Hardware Manual (EN code 63700118).
3. The motor and control cables are selected as specified in the Hardware Manual
(EN code 63700118).
Note: The ACA 635 must not be equipped with the EMC filtering.
Table A-1 The EMC filtering of the ACx 600 units is marked in the type code as
follows. * du/dt Filters + EMC Filters, ** du/dt Filters + No EMC Filters, *** EMC Cabinet
with EMC Filters.
Type Code
ACS 600 Type
ACS 600 MultiDrive
Supply Section
Character no.
EMC Filter
Selections
No EMC Filter
Selections
1, 2***
0
1
0
ACA63xxxxxxxxxxxxx...
16
Drive Section
ACA610xxxxxxxxxxxx...
16
ACA 635 IGBT Supply Sections
A-13
Appendix A – Technical Data
Medium voltage network
Supply transformer
Neighbouring network
Static screen
Point of measurement
Low voltage
Low voltage
Equipment
(victim)
Equipment
ACx 600
Equipment
Use of the ACx 600 in Second Environment without EMC filtering (EN 61800-3: second
environment includes all establishments other than those directly connected to a lowvoltage power supply network which supplies buildings used for domestic purposes.)
Unearthed Mains
(IT Network)
1. It is ensured that no excessive emission is propagated to neighbouring lowvoltage networks. In some cases, the natural suppression in transformers and
cables is sufficient. If in doubt, the supply transformer with static screening
between the primary and secondary windings can be used.
2. The ACS 600 MultiDrive is installed according to the instructions given in the
Hardware Manual (EN code 63700118).
3. The motor and control cables are selected as specified in the Hardware Manual
(EN code 63700118).
4. Note: The ACS 600 MultiDrive must not be equipped with EMC filtering when
installed to floating networks. The mains becomes connected to earth potential
through the EMC filter capacitors. In floating networks this may cause danger or
damage the unit.
Machinery Directive
A-14
ACS 600 MultiDrive frequency converters comply with the European Union Machinery
Directive (89/392/EEC) requirements for an equipment intended to be incorporated into
machinery.
ACA 635 IGBT Supply Sections
Appendix B – Circuit Diagrams
Overview
ACA 635 IGBT Supply Sections
The following pages contain some circuit diagrams of supply sections
equipped with an IGBT supply unit for helping to understand the
configuration of the supply section. The diagrams do not necessarily
match with each delivery. The wiring varies depending on the power
rating and the selected equipment. The circuit diagrams valid for each
supply section are included in the delivery.
B-1
H
Appendix B – Circuit Diagrams
B-2
ACA 635 IGBT Supply Sections
Appendix B – Circuit Diagrams
ACA 635 IGBT Supply Sections
B-3
Appendix B – Circuit Diagrams
B-4
ACA 635 IGBT Supply Sections
Appendix B – Circuit Diagrams
ACA 635 IGBT Supply Sections
B-5
Appendix B – Circuit Diagrams
B-6
ACA 635 IGBT Supply Sections
Appendix B – Circuit Diagrams
ACA 635 IGBT Supply Sections
B-7
Appendix B – Circuit Diagrams
B-8
ACA 635 IGBT Supply Sections
Appendix B – Circuit Diagrams
ACA 635 IGBT Supply Sections
B-9
Appendix B – Circuit Diagrams
B-10
ACA 635 IGBT Supply Sections
3BFE 64013700 R0125 REV B
EFFECTIVE: 10.11.2000 EN
ABB Industry Oy
Drives
P.O. Box 184
FIN-00381 HELSINKI
FINLAND
Telephone +358 10 22 2000
Telefax
+358 10 22 22681
Internet
http://www.abb.com/automation

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement