Mitsubishi Electric PC30 Instruction manual

Add to my manuals
286 Pages

advertisement

Mitsubishi Electric PC30 Instruction manual | Manualzz
SAFETY PRECAUTIONS
(Please read these instructions before using this equipment.)
Before using this product, please read this manual and the relevant manuals introduced in this manual
carefully and pay full attention to safety to handle the product correctly.
Refer to the Users manual of the QCPU module to use for a description of the PLC system safety
precautions.
In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".
DANGER
Indicates that incorrect handling may cause hazardous
conditions, resulting in death or severe injury.
CAUTION
Indicates that incorrect handling may cause hazardous
conditions, resulting in medium or slight personal injury or
physical damage.
CAUTION may also be linked to serious
Depending on circumstances, procedures indicated by
results.
In any case, it is important to follow the directions for usage.
Please save this manual to make it accessible when required and always forward it to the end user.
A-1
For Safe Operations
1. Prevention of electric shocks
DANGER
Never open the front case or terminal covers while the power is ON or the unit is running, as this
may lead to electric shocks.
Never run the unit with the front case or terminal cover removed. The high voltage terminal and
charged sections will be exposed and may lead to electric shocks.
Never open the front case or terminal cover at times other than wiring work or periodic
inspections even if the power is OFF. The insides of the module and servo amplifier are charged
and may lead to electric shocks.
Completely turn off the externally supplied power used in the system before mounting or removing
the module, performing wiring work, or inspections. Failing to do so may lead to electric shocks.
When performing wiring work or inspections, turn the power OFF, wait at least ten minutes, and
then check the voltage with a tester, etc. Failing to do so may lead to electric shocks.
Be sure to ground the module, servo amplifier and servomotor (Ground resistance : 100 or
less). Do not ground commonly with other devices.
The wiring work and inspections must be done by a qualified technician.
Wire the units after installing the module, servo amplifier and servomotor. Failing to do so may
lead to electric shocks or damage.
Never operate the switches with wet hands, as this may lead to electric shocks.
Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this
may lead to electric shocks.
Do not touch the module, servo amplifier, servomotor connector or terminal blocks while the
power is ON, as this may lead to electric shocks.
Do not touch the built-in power supply, built-in grounding or signal wires of the module and servo
amplifier, as this may lead to electric shocks.
2. For fire prevention
CAUTION
Install the module, servo amplifier, servomotor and regenerative resistor on incombustible.
Installing them directly or close to combustibles will lead to fire.
If a fault occurs in the module or servo amplifier, shut the power OFF at the servo amplifier's
power source. If a large current continues to flow, fire may occur.
When using a regenerative resistor, shut the power OFF with an error signal. The regenerative
resistor may abnormally overheat due to a fault in the regenerative transistor, etc., and may lead
to fire.
Always take heat measures such as flame proofing for the inside of the control panel where the
servo amplifier or regenerative resistor is installed and for the wires used. Failing to do so may
lead to fire.
Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this
may lead to fire.
A-2
3. For injury prevention
CAUTION
Do not apply a voltage other than that specified in the instruction manual on any terminal.
Doing so may lead to destruction or damage.
Do not mistake the terminal connections, as this may lead to destruction or damage.
Do not mistake the polarity ( + / - ), as this may lead to destruction or damage.
Do not touch the heat radiating fins of module or servo amplifier, regenerative resistor and
servomotor, etc., while the power is ON and for a short time after the power is turned OFF. In this
timing, these parts become very hot and may lead to burns.
Always turn the power OFF before touching the servomotor shaft or coupled machines, as these
parts may lead to injuries.
Do not go near the machine during test operations or during operations such as teaching.
Doing so may lead to injuries.
4. Various precautions
Strictly observe the following precautions. Mistaken handling of the unit may lead to faults,
injuries or electric shocks.
(1) System structure
CAUTION
Always install a leakage breaker on the module and servo amplifier power source.
If installation of an electromagnetic contactor for power shut off during an error, etc., is specified in
the instruction manual for the servo amplifier, etc., always install the electromagnetic contactor.
Install the emergency stop circuit externally so that the operation can be stopped immediately and
the power shut off.
Use the module, servo amplifier, servomotor and regenerative resistor with the correct
combinations listed in the instruction manual. Other combinations may lead to fire or faults.
Use the CPU module, base unit and positioning module with the correct combinations listed in the
instruction manual. Other combinations may lead to faults.
If safety standards (ex., robot safety rules, etc.,) apply to the system using the module, servo
amplifier and servomotor, make sure that the safety standards are satisfied.
Construct a safety circuit externally of the module or servo amplifier if the abnormal operation of
the module or servo amplifier differ from the safety directive operation in the system.
In systems where coasting of the servomotor will be a problem during the forced stop, emergency
stop, servo OFF or power supply OFF, use dynamic brakes.
Make sure that the system considers the coasting amount even when using dynamic brakes.
In systems where perpendicular shaft dropping may be a problem during the forced stop,
emergency stop, servo OFF or power supply OFF, use both dynamic brakes and electromagnetic
brakes.
The dynamic brakes must be used only on errors that cause the forced stop, emergency stop, or
servo OFF. These brakes must not be used for normal braking.
The brakes (electromagnetic brakes) assembled into the servomotor are for holding applications,
and must not be used for normal braking.
A-3
CAUTION
The system must have a mechanical allowance so that the machine itself can stop even if the
stroke limits switch is passed through at the max. speed.
Use wires and cables that have a wire diameter, heat resistance and bending resistance
compatible with the system.
Use wires and cables within the length of the range described in the instruction manual.
The ratings and characteristics of the parts (other than module, servo amplifier and servomotor)
used in a system must be compatible with the module, servo amplifier and servomotor.
Install a cover on the shaft so that the rotary parts of the servomotor are not touched during
operation.
There may be some cases where holding by the electromagnetic brakes is not possible due to the
life or mechanical structure (when the ball screw and servomotor are connected with a timing belt,
etc.). Install a stopping device to ensure safety on the machine side.
(2) Parameter settings and programming
CAUTION
Set the parameter values to those that are compatible with the module, servo amplifier,
servomotor and regenerative resistor model and the system application. The protective functions
may not function if the settings are incorrect.
The regenerative resistor model and capacity parameters must be set to values that conform to
the operation mode, servo amplifier and servo power supply module. The protective functions
may not function if the settings are incorrect.
Set the mechanical brake output and dynamic brake output validity parameters to values that are
compatible with the system application. The protective functions may not function if the settings
are incorrect.
Set the stroke limit input validity parameter to a value that is compatible with the system
application. The protective functions may not function if the setting is incorrect.
Set the servomotor encoder type (increment, absolute position type, etc.) parameter to a value
that is compatible with the system application. The protective functions may not function if the
setting is incorrect.
Set the servomotor capacity and type (standard, low-inertia, flat, etc.) parameter to values that
are compatible with the system application. The protective functions may not function if the
settings are incorrect.
Set the servo amplifier capacity and type parameters to values that are compatible with the
system application. The protective functions may not function if the settings are incorrect.
Use the program commands for the program with the conditions specified in the instruction
manual.
Set the sequence function program capacity setting, device capacity, latch validity range, I/O
assignment setting, and validity of continuous operation during error detection to values that are
compatible with the system application. The protective functions may not function if the settings
are incorrect.
A-4
CAUTION
Some devices used in the program have fixed applications, so use these with the conditions
specified in the instruction manual.
The input devices and data registers assigned to the link will hold the data previous to when
communication is terminated by an error, etc. Thus, an error correspondence interlock program
specified in the instruction manual must be used.
Use the interlock program specified in the intelligent function module's instruction manual for the
program corresponding to the intelligent function module.
(3) Transportation and installation
CAUTION
Transport the product with the correct method according to the mass.
Use the servomotor suspension bolts only for the transportation of the servomotor. Do not
transport the servomotor with machine installed on it.
Do not stack products past the limit.
When transporting the module or servo amplifier, never hold the connected wires or cables.
When transporting the servomotor, never hold the cables, shaft or detector.
When transporting the module or servo amplifier, never hold the front case as it may fall off.
When transporting, installing or removing the module or servo amplifier, never hold the edges.
Install the unit according to the instruction manual in a place where the mass can be withstood.
Do not get on or place heavy objects on the product.
Always observe the installation direction.
Keep the designated clearance between the module or servo amplifier and control panel inner
surface or the module and servo amplifier, module or servo amplifier and other devices.
Do not install or operate modules, servo amplifiers or servomotors that are damaged or that have
missing parts.
Do not block the intake/outtake ports of the servo amplifier and servomotor with cooling fan.
Do not allow conductive matter such as screw or cutting chips or combustible matter such as oil
enter the module, servo amplifier or servomotor.
The module, servo amplifier and servomotor are precision machines, so do not drop or apply
strong impacts on them.
Securely fix the module, servo amplifier and servomotor to the machine according to the
instruction manual. If the fixing is insufficient, these may come off during operation.
Always install the servomotor with reduction gears in the designated direction. Failing to do so
may lead to oil leaks.
A-5
CAUTION
Store and use the unit in the following environmental conditions.
Environment
Ambient
temperature
Ambient humidity
Storage
temperature
Atmosphere
Altitude
Vibration
Conditions
Module/Servo amplifier
According to each instruction manual.
According to each instruction manual.
According to each instruction manual.
Servomotor
0°C to +40°C (With no freezing)
(32°F to +104°F)
80% RH or less
(With no dew condensation)
-20°C to +65°C
(-4°F to +149°F)
Indoors (where not subject to direct sunlight).
No corrosive gases, flammable gases, oil mist or dust must exist
1000m (3280.84ft.) or less above sea level
According to each instruction manual
When coupling with the servomotor shaft end, do not apply impact such as by hitting with a
hammer. Doing so may lead to detector damage.
Do not apply a load larger than the tolerable load onto the servomotor shaft. Doing so may lead
to shaft breakage.
When not using the module for a long time, disconnect the power line from the module or servo
amplifier.
Place the module and servo amplifier in static electricity preventing vinyl bags and store.
When storing for a long time, please contact with our sales representative.
Also, execute a trial operation.
Make sure that the connectors for the servo amplifier and peripheral devices have been securely
installed until a click is heard.
Not doing so could lead to a poor connection, resulting in erroneous input and output.
(4) Wiring
CAUTION
Correctly and securely wire the wires. Reconfirm the connections for mistakes and the terminal
screws for tightness after wiring. Failing to do so may lead to run away of the servomotor.
After wiring, install the protective covers such as the terminal covers to the original positions.
Do not install a phase advancing capacitor, surge absorber or radio noise filter (option FR-BIF) on
the output side of the servo amplifier.
Correctly connect the output side (terminal U, V, W). Incorrect connections will lead the
servomotor to operate abnormally.
Do not connect a commercial power supply to the servomotor, as this may lead to trouble.
A-6
CAUTION
Do not mistake the direction of the surge absorbing diode installed on the DC relay for the control
signal output of brake signals, etc. Incorrect installation may lead to signals not being output
when trouble occurs or the protective functions not functioning.
Servo amplifier
DOCOM
Control output
signal
Servo amplifier
24VDC
DOCOM
Control output
signal
RA
DICOM
24VDC
RA
DICOM
For the sink output interface
For the source output interface
Do not connect or disconnect the connection cables between each unit, the encoder cable or
PLC expansion cable while the power is ON.
Securely tighten the cable connector fixing screws and fixing mechanisms. Insufficient fixing may
lead to the cables combing off during operation.
Do not bundle the power line or cables.
Use applicable solderless terminals and tighten them with the specified torque.
If any solderless spade terminal is used, it may be disconnected when the terminal screw comes
loose, resulting in failure.
(5) Trial operation and adjustment
CAUTION
Confirm and adjust the program and each parameter before operation. Unpredictable
movements may occur depending on the machine.
Extreme adjustments and changes may lead to unstable operation, so never make them.
When using the absolute position system function, on starting up, and when the module or
absolute value motor has been replaced, always perform a home position return.
Before starting test operation, set the parameter speed limit value to the slowest value, and make
sure that operation can be stopped immediately if a hazardous state occurs.
A-7
(6) Usage methods
CAUTION
Immediately turn OFF the power if smoke, abnormal sounds or odors are emitted from the
module, servo amplifier or servomotor.
Always execute a test operation before starting actual operations after the program or parameters
have been changed or after maintenance and inspection.
Do not attempt to disassemble and repair the units excluding a qualified technician whom our
company recognized.
Do not make any modifications to the unit.
Keep the effect or electromagnetic obstacles to a minimum by installing a noise filter or by using
wire shields, etc.
Electromagnetic obstacles may affect the electronic devices used near the module or servo
amplifier.
When using the CE Mark-compliant equipment design, refer to the "EMC Installation Guidelines"
(data number IB(NA)-67339) and refer to the corresponding EMC guideline information for the
servo amplifiers and other equipment.
Note that when the reference axis speed is designated for interpolation operation, the speed of
the partner axis (2nd axis, 3rd axis and 4th axis) may be larger than the set speed (larger than
the speed limit value).
Use the units with the following conditions.
Item
Conditions
Input power
According to each instruction manual.
Input frequency
According to each instruction manual.
Tolerable momentary power failure
According to each instruction manual.
A-8
(7) Corrective actions for errors
CAUTION
If an error occurs in the self diagnosis of the module or servo amplifier, confirm the check details
according to the instruction manual, and restore the operation.
If a dangerous state is predicted in case of a power failure or product failure, use a servomotor
with electromagnetic brakes or install a brake mechanism externally.
Use a double circuit construction so that the electromagnetic brake operation circuit can be
operated by emergency stop signals set externally.
Shut off with the
emergency stop
signal(EMG).
Shut off with servo ON signal OFF,
alarm, electromagnetic brake signal.
Servomotor
RA1
EMG
Electromagnetic
brakes
24VDC
If an error occurs, remove the cause, secure the safety and then resume operation after alarm
release.
The unit may suddenly resume operation after a power failure is restored, so do not go near the
machine. (Design the machine so that personal safety can be ensured even if the machine
restarts suddenly.)
(8) Maintenance, inspection and part replacement
CAUTION
Perform the daily and periodic inspections according to the instruction manual.
Perform maintenance and inspection after backing up the program and parameters for the
module and servo amplifier.
Do not place fingers or hands in the clearance when opening or closing any opening.
Periodically replace consumable parts such as batteries according to the instruction manual.
Do not touch the lead sections such as ICs or the connector contacts.
Before touching the module, always touch grounded metal, etc. to discharge static electricity from
human body. Failure to do so may cause the module to fail or malfunction.
Do not directly touch the module's conductive parts and electronic components.
Touching them could cause an operation failure or give damage to the module.
Do not place the module or servo amplifier on metal that may cause a power leakage or wood,
plastic or vinyl that may cause static electricity buildup.
Do not perform a megger test (insulation resistance measurement) during inspection.
When replacing the module or servo amplifier, always set the new module settings correctly.
When the module or absolute value motor has been replaced, carry out a home position return
operation using one of the following methods, otherwise position displacement could occur.
1) After writing the servo data to the positioning module using programming software, switch on
the power again, then perform a home position return operation.
A-9
CAUTION
After maintenance and inspections are completed, confirm that the position detection of the
absolute position detector function is correct.
Do not drop or impact the battery installed to the module.
Doing so may damage the battery, causing battery liquid to leak in the battery. Do not use the
dropped or impacted battery, but dispose of it.
Do not short circuit, charge, overheat, incinerate or disassemble the batteries.
The electrolytic capacitor will generate gas during a fault, so do not place your face near the
module or servo amplifier.
The electrolytic capacitor and fan will deteriorate. Periodically replace these to prevent secondary
damage from faults. Replacements can be made by our sales representative.
Lock the control panel and prevent access to those who are not certified to handle or install
electric equipment.
Do not mount/remove the module onto/from the base unit more than 50 times (IEC61131-2compliant), after the first use of the product. Failure to do so may cause malfunction.
Do not burn or break a module and servo amplifier. Doing so may cause a toxic gas.
(9) About processing of waste
When you discard module, servo amplifier, a battery (primary battery) and other option articles,
please follow the law of each country (area).
CAUTION
This product is not designed or manufactured to be used in equipment or systems in situations
that can affect or endanger human life.
When considering this product for operation in special applications such as machinery or systems
used in passenger transportation, medical, aerospace, atomic power, electric power, or
submarine repeating applications, please contact your nearest Mitsubishi sales representative.
Although this product was manufactured under conditions of strict quality control, you are strongly
advised to install safety devices to forestall serious accidents when it is used in facilities where a
breakdown in the product is likely to cause a serious accident.
(10) General cautions
CAUTION
All drawings provided in the instruction manual show the state with the covers and safety
partitions removed to explain detailed sections. When operating the product, always return the
covers and partitions to the designated positions, and operate according to the instruction
manual.
A - 10
REVISIONS
The manual number is given on the bottom left of the back cover.
Print Date
Apr., 2009
Dec., 2011
Manual Number
Revision
IB(NA)-0300147-A First edition
IB(NA)-0300147-B [Partial correction]
Safety Precautions, Section 4.2.1 Partial change of sentence
Japanese Manual Number IB(NA)-0300146
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent
licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property
rights which may occur as a result of using the contents noted in this manual.
© 2009 MITSUBISHI ELECTRIC CORPORATION
A - 11
INTRODUCTION
Thank you for choosing the high-speed, multi-axis Positioning Module QD74MH.
Before using the equipment, please read this manual carefully to develop full familiarity with the functions
and performance of the Positioning Module you have purchased, so as to ensure correct use.
CONTENTS
Safety Precautions .........................................................................................................................................A- 1
Revisions ........................................................................................................................................................A-11
Contents .........................................................................................................................................................A-12
Using This Manual..........................................................................................................................................A-17
Compliance with the EMC and Low Voltage Directives................................................................................A-17
1. OVERVIEW
1- 1 to 1-12
1.1 Overview................................................................................................................................................... 11.2 Mechanism of Positioning Control........................................................................................................... 11.3 Communicating Signals Between QD74MH and Each Module ............................................................. 11.4 Difference Between QD74MH and QD75MH ......................................................................................... 12. SYSTEM CONFIGURATION
1
4
5
7
2- 1 to 2-10
2.1 System Configuration............................................................................................................................... 22.2 Applicable System.................................................................................................................................... 22.3 Component List ........................................................................................................................................ 22.4 Name of Parts .......................................................................................................................................... 22.5 Basic Specifications ................................................................................................................................. 22.6 Forced Stop Input Terminal ..................................................................................................................... 22.7 Checking Function Version and Serial No. ............................................................................................. 23. DESIGN
1
2
4
5
7
8
9
3- 1 to 3- 8
3.1 System Designing Procedure .................................................................................................................. 33.2 External Circuit Design ............................................................................................................................ 33.2.1 Power supply circuit design .............................................................................................................. 33.2.2 Safety circuit design .......................................................................................................................... 34. INSTALLATION, WIRING, START-UP AND MAINTENANCE
1
2
6
7
4- 1 to 4-24
4.1 Handling Precautions............................................................................................................................... 4- 1
4.2 Wiring........................................................................................................................................................ 4- 3
4.2.1 SSCNET cable ............................................................................................................................... 4- 4
4.2.2 Forced stop input cable..................................................................................................................... 4-15
4.3 Confirming the Installation and Wiring..................................................................................................... 4-17
4.3.1 Items to confirm when installation and wiring are completed .......................................................... 4-17
4.4 Start-up ..................................................................................................................................................... 4-18
4.4.1 Checklist before trial operation ......................................................................................................... 4-18
4.4.2 Trial operation and adjustment procedure ....................................................................................... 4-19
4.5 Maintenance............................................................................................................................................. 4-22
A - 12
4.5.1 Precautions for maintenance ............................................................................................................ 4-22
4.5.2 Disposal instructions ......................................................................................................................... 4-22
4.6 Daily Inspection ........................................................................................................................................ 4-23
4.7 Periodic Inspection................................................................................................................................... 4-24
5. SPECIFICATIONS AND FUNCTIONS
5- 1 to 5- 6
5.1 Specifications of Input/Output Signals..................................................................................................... 55.1.1 List of input/output signals ................................................................................................................ 55.1.2 Input signals (QD74MH PLC CPU).............................................................................................. 55.1.3 Output signals (PLC CPU QD74MH) ........................................................................................... 55.2 Functions .................................................................................................................................................. 55.2.1 QD74MH control functions................................................................................................................ 55.2.2 Functions of QD74MH ...................................................................................................................... 56. DATA USED FOR POSITIONING CONTROL
1
1
2
3
4
4
5
6- 1 to 6-52
6.1 Memory Configuration and Roles............................................................................................................ 6- 1
6.2 Data Transmission Process..................................................................................................................... 6- 3
6.2.1 Data transmission process for operation.......................................................................................... 6- 3
6.2.2 Setting of servo amplifier series........................................................................................................ 6- 5
6.2.3 Exchange of the servo parameters................................................................................................... 6- 6
6.3 Buffer Memory Configuration................................................................................................................... 6- 8
6.4 Parameter Data........................................................................................................................................ 6-24
6.4.1 Basic parameter ................................................................................................................................ 6-24
6.4.2 OPR parameter ................................................................................................................................. 6-26
6.4.3 Manual control parameter ................................................................................................................. 6-27
6.4.4 System parameter ............................................................................................................................. 6-27
6.5 Monitor Data............................................................................................................................................. 6-28
6.5.1 Axis monitor data............................................................................................................................... 6-28
6.5.2 System monitor data ......................................................................................................................... 6-35
6.6 Control Data ............................................................................................................................................. 6-36
6.6.1 Axis control data................................................................................................................................ 6-36
6.6.2 System control data .......................................................................................................................... 6-39
6.7 Positioning Data ....................................................................................................................................... 6-42
6.8 Servo Parameter ...................................................................................................................................... 6-44
7. OPR CONTROL
7- 1 to 7-18
7.1 Outline of OPR Control ............................................................................................................................ 7- 1
7.1.1 Data used for control......................................................................................................................... 7- 1
7.1.2 Starting method of OPR.................................................................................................................... 7- 2
7.2 Proximity Dog Type.................................................................................................................................. 7- 3
7.3 Data Set Type .......................................................................................................................................... 7- 6
7.4 Stopper Type............................................................................................................................................ 7- 7
7.5 Dog Cradle Type ...................................................................................................................................... 7- 8
7.6 Limit Switch Combined Type ................................................................................................................... 7-11
7.7 Scale Origin Signal Detection Type......................................................................................................... 7-12
7.8 OP Shift Function ..................................................................................................................................... 7-14
7.8.1 Control details.................................................................................................................................... 7-14
A - 13
7.8.2 Setting range of OP shift amount ..................................................................................................... 7-15
7.9 OP Search Limit Function........................................................................................................................ 7-16
7.9.1 Control details.................................................................................................................................... 7-16
8. POSITIONING CONTROL
8- 1 to 8-16
8.1 Outline of Positioning Controls ................................................................................................................ 8- 1
8.1.1 Data required for positioning control................................................................................................. 8- 1
8.1.2 Operation patterns of positioning controls........................................................................................ 8- 2
8.1.3 Designating the positioning address................................................................................................. 8- 5
8.2 1-axis Linear Control ................................................................................................................................ 8- 6
8.2.1 Starting method ................................................................................................................................. 8- 6
8.2.2 Control details.................................................................................................................................... 8- 7
8.2.3 Restrictions for 1-aixs linear control.................................................................................................. 8- 8
8.3 Linear Interpolation Control ..................................................................................................................... 8- 9
8.3.1 Data used for control......................................................................................................................... 8- 9
8.3.2 Setting of linear interpolation axis..................................................................................................... 8-10
8.3.3 Starting method ................................................................................................................................. 8-11
8.3.4 Control details.................................................................................................................................... 8-12
8.3.5 Speed/acceleration/deceleration ...................................................................................................... 8-14
8.3.6 Restrictions ........................................................................................................................................ 8-15
9. MANUAL CONTROL
9- 1 to 9- 6
9.1 JOG Operation ......................................................................................................................................... 99.1.1 Control details.................................................................................................................................... 99.1.2 Data used for control......................................................................................................................... 99.2 Incremental Feed Operation.................................................................................................................... 99.2.1 Control details.................................................................................................................................... 99.2.2 Precautions for control ...................................................................................................................... 99.2.3 Data used for control......................................................................................................................... 910. FUNCTION DETAILS
1
2
4
5
5
6
6
10- 1 to 10-46
10.1 Servo ON/OFF ..................................................................................................................................... 10- 1
10.1.1 Control details................................................................................................................................ 10- 1
10.1.2 Data used for control..................................................................................................................... 10- 2
10.1.3 Follow up function ......................................................................................................................... 10- 2
10.2 Electronic Gear Function ..................................................................................................................... 10- 3
10.2.1 Control details................................................................................................................................ 10- 3
10.2.2 Data used for control..................................................................................................................... 10- 6
10.3 Hardware Stroke Limit Function .......................................................................................................... 10- 7
10.3.1 Control details................................................................................................................................ 10- 7
10.3.2 Data used for control..................................................................................................................... 10- 8
10.4 Software Stroke Limit Function............................................................................................................ 10- 9
10.4.1 Control details................................................................................................................................ 10- 9
10.4.2 Ristrictions at absolute position system use ................................................................................ 10-10
10.4.3 Data used for control..................................................................................................................... 10-11
10.5 Backlash Compensation Function....................................................................................................... 10-12
10.5.1 Control details................................................................................................................................ 10-12
A - 14
10.5.2 Data used for control..................................................................................................................... 10-12
10.6 Speed Limit Function ........................................................................................................................... 10-13
10.6.1 Control details................................................................................................................................ 10-13
10.6.2 Data used for control..................................................................................................................... 10-14
10.7 Acceleration/Deceleration Control....................................................................................................... 10-15
10.7.1 Control details................................................................................................................................ 10-15
10.7.2 Data used for control..................................................................................................................... 10-16
10.8 Stop Control ......................................................................................................................................... 10-17
10.8.1 Control details................................................................................................................................ 10-17
10.8.2 Data used for control..................................................................................................................... 10-17
10.9 Sudden Stop Control............................................................................................................................ 10-18
10.9.1 Control details................................................................................................................................ 10-18
10.9.2 Data used for control..................................................................................................................... 10-18
10.10 Forced Stop Control........................................................................................................................... 10-19
10.10.1 Control details ............................................................................................................................. 10-19
10.10.2 Data used for control................................................................................................................... 10-20
10.11 Command In-position Function ......................................................................................................... 10-21
10.11.1 Control details ............................................................................................................................. 10-21
10.11.2 Data used for control................................................................................................................... 10-22
10.12 Pausing Function ............................................................................................................................... 10-23
10.12.1 Control details ............................................................................................................................. 10-23
10.12.2 Data used for control................................................................................................................... 10-24
10.13 Torque Limit Function ........................................................................................................................ 10-25
10.13.1 Control details ............................................................................................................................. 10-25
10.13.2 Data used for control................................................................................................................... 10-26
10.14 Speed Change Function.................................................................................................................... 10-27
10.14.1 Control details ............................................................................................................................. 10-27
10.14.2 Precautions.................................................................................................................................. 10-28
10.14.3 Data used for control................................................................................................................... 10-28
10.15 Acceleration/Deceleration Time Change Function ........................................................................... 10-29
10.15.1 Control details ............................................................................................................................. 10-29
10.15.2 Precautions.................................................................................................................................. 10-30
10.15.3 Data used for control................................................................................................................... 10-31
10.16 Target Position Change Function...................................................................................................... 10-32
10.16.1 Control details ............................................................................................................................. 10-32
10.16.2 Data used for control................................................................................................................... 10-34
10.17 Current Value Change Function........................................................................................................ 10-35
10.17.1 Control details ............................................................................................................................. 10-35
10.17.2 Data used for control................................................................................................................... 10-35
10.18 External Signal Logic Selection ......................................................................................................... 10-36
10.18.1 Control details ............................................................................................................................. 10-36
10.18.2 Data used for control................................................................................................................... 10-36
10.19 Operation Setting for Incompletion of OPR Function ....................................................................... 10-37
10.19.1 Control details ............................................................................................................................. 10-37
10.19.2 Data used for control................................................................................................................... 10-38
10.20 Axis Error Reset ................................................................................................................................. 10-39
10.20.1 Control details ............................................................................................................................. 10-39
10.20.2 Data used for control................................................................................................................... 10-39
10.21 Absolute position system ................................................................................................................... 10-40
A - 15
10.21.1 Control details ............................................................................................................................. 10-40
10.22 Flash ROM Write Function ................................................................................................................ 10-42
10.22.1 Control details ............................................................................................................................. 10-42
10.22.2 Data used for control................................................................................................................... 10-43
10.23 Parameter Initialization Function ....................................................................................................... 10-44
10.23.1 Control details ............................................................................................................................. 10-44
10.23.2 Data used for control................................................................................................................... 10-45
10.24 Parameter Change Function ............................................................................................................. 10-46
10.24.1 Control details ............................................................................................................................. 10-46
10.24.2 Data used for control................................................................................................................... 10-46
11. TROUBLESHOOTING
11- 1 to 11-16
11.1 Error and Warning Details ................................................................................................................... 1111.1.1 Errors ............................................................................................................................................. 1111.1.2 Warnings ....................................................................................................................................... 1111.1.3 Confirming the error and warning definitions ............................................................................... 1111.1.4 Resetting errors............................................................................................................................. 1111.2 List of Errors ......................................................................................................................................... 11APPENDICES
1
1
3
3
3
4
App- 1 to App-50
Appendix 1 External Dimension Drawing..................................................................................................App- 1
Appendix 2 Sample Program.....................................................................................................................App- 2
Appendix 2.1 Sequence program ..........................................................................................................App- 2
Appendix 2.2 Creating the program.......................................................................................................App- 5
Appendix 2.3 Debugging........................................................................................................................App-10
Appendix 2.4 Positioning program example..........................................................................................App-11
Appendix 3 List of Buffer Memory Address...............................................................................................App-18
Appendix 3.1 Parameter area ................................................................................................................App-18
Appendix 3.2 Monitor data area.............................................................................................................App-20
Appendix 3.3 Control data area .............................................................................................................App-22
Appendix 3.4 Positioning data area .......................................................................................................App-24
Appendix 3.5 Servo parameter area......................................................................................................App-38
A - 16
Using This Manual
The symbols used in this manual are shown below.
Pr.
Da.
Md.
Cd.
..............................
..............................
..............................
..............................
Symbol indicating positioning parameter item.
Symbol indicating positioning data item.
Symbol indicating monitor data item.
Symbol indicating control data item.
(A serial No. is inserted in the
mark.)
Representation of numerical values used in this manual.
Buffer memory addresses, error codes and warning codes are represented in decimal.
X/Y devices are represented in hexadecimal.
Setting data and monitor data are represented in decimal or hexadecimal. Data ended by "H"
or "h" are represented in hexadecimal.
(Example) 10 Decimal
10h Hexadecimal
Compliance with the EMC and Low Voltage Directives
(1) For programmable controller system
To configure a system meeting the requirements of the EMC and Low Voltage Directives when
incorporating the Mitsubishi programmable controller (EMC and Low Voltage Directives
compliant) into other machinery or equipment, refer to Chapter 9 "EMC AND LOW VOLTAGE
DIREVTIVES" of the QCPU User's Manual (Hardware Design, Maintenance and Inspection).
The CE mark, indicating compliance with the EMC and LOW Voltage Directives, is printed on
the rating plate of the programmable controller.
(2) For programmable controller system
For the compliance of this product with the EMC and Low Voltage Directives, refer to Section
4.2 "Wiring" of the chapter 4. And, refer to the EMC Installation Guidelines (IB(NA)67339) for
the servo amplifiers or servo motors.
A - 17
Generic Terms and Abbreviations
Unless specially noted, the following generic terms and abbreviations are used in this manual.
Generic term/abbreviation
Details of generic term/abbreviation
PLC CPU
Generic term for PLC CPU on which QD74MH can be mounted.
QD74MH
Generic term for positioning module QD74MH8 and QD74MH16.
The module type is described to indicate a specific module.
MR-J3-B
Servo amplifier: Abbreviation for MR-J3-†B. († = capacity)
Peripheral device
Generic term for DOS/V personal computer that can run the following "GX Developer".
GX Developer
Abbreviation for GX Developer (SW4D5C-GPPW-E or later)
Servo amplifier
Abbreviation for SSCNET
compatible servo amplifier.
®
®
DOS/V personal computer IBM PC/AT and compatible DOS/V compliant personal computer. (Including PC98-NX )
®
®
®
PC-9800
Abbreviation for PC-9800 series. (Excluding PC98-NX )
Personal computer
Generic term for DOS/V personal computer.
Workpiece
Generic term for moving body such as workpiece and tool, and for various control targets.
Axis 1, Axis 2 ···· Axis 16
Indicates each axis connected to QD74MH.
1-axis, 2-axis ···· 16-axis
Indicates the number of axes. (Example: 2-axis = Indicates two axes such as axis 1 and axis 2,
axis 2 and axis 3, and axis 3 and axis 1.)
OPR
Abbreviation for "Home position return"
OP
SSCNET
Abbreviation for "Home position"
(Note)
High speed synchronous communication network between QD74MH and servo amplifier.
(Note): SSCNET: Servo System Controller NETwork
Component List
The table below shows the component included in respective positioning modules:
Quantity
Module name
QD74MH8
QD74MH8 positioning module
QD74MH16
1
QD74MH16 positioning module
1
Before Using the Product
1
A - 18
1 OVERVIEW
MELSEC-Q
1. OVERVIEW
This User's Manual describes the hardware specifications and handling methods of
the Q series high-speed, multi-axis Positioning Module QD74MH8/QD74MH16 (herein
after referred to as QD74MH).
1.1 Overview
QD74MH Positioning module is used in the multiple axes without complex controls.
(1) Availability of eight and sixteen axes modules
(a) Eight and sixteen axes positioning modules are available.
They can be selected according to the number of required control axes.
(Refer to Section 2.3.)
(b) For connecting any of the QD74MH modules to the base unit, a single slot
and 32 dedicated I/O channels are required.
Within the limit imposed by the maximum number of inputs and outputs
supported by the PLC CPU, up to 64 modules can be used.
(Refer to Section 2.2.)
(2) Operation Cycle
(a) Operation cycle is 0.88[ms].
(3) Easy positioning control functions
(a) Positioning control functions essential to any positioning system are
supported: positioning to an arbitrary position, incremental feed control,
continuous-locus control, and so on. (Refer to Chapter 8 or Section 9.2.)
1) Up to 32 positioning data items, including such information as " Da.6
Positioning address/movement amount", " Da.1 Control systems", and
" Da.0 Operation pattern", can be prepared for each axis.
Using the prepared positioning data, the positioning control is
performed independently for each axis. (In addition, interpolation
control is possible.)
2) Independent control of each axis can be achieved in linear control
mode.
Such control can either be the independent positioning control using a
single positioning data or the continuous positioning control enabled by
the continuous processing of multiple positioning data.
3) Coordinated control over multiple axes can take the linear interpolation
through the position control.
Such control can either be the independent positioning control using a
single positioning data or the continuous positioning control enabled by
the continuous processing of multiple positioning data.
(b) Continuous positioning control using multiple positioning data can be
executed in accordance with the operation patterns the user assigned to the
positioning data. (Refer to Section 6.7 and 8.1.2.)
1-1
1
1 OVERVIEW
MELSEC-Q
(c) OPR control is given additional features (Refer to Chapter 7.)
Six different OPR methods are provided: the proximity dog type, data set
type, stopper type, dog cradle type, limit switch combined type, and the
scale origin signal detection type.
(d) Two acceleration/deceleration control methods are provided: Liner
acceleration/deceleration and S-curve acceleration/deceleration.
(Refer to Section 10.7.)
(4) Quick startup
A positioning operation starts up quickly taking as little as 0.88[ms].
(5) SSCNET
makes the connection to the servo amplifier possible
(a) The QD74MH can be directly connected to the Mitsubishi servo amplifier
MR-J3-B using the SSCNET .
(b) Because the SSCNET cable is used to connect the QD74MH and the
servo amplifier, or servo amplifiers, saving wiring can be realized. The
maximum distance between the QD74MH and servo amplifier, servo
amplifier and servo amplifier of the SSCNET cable on the same bus was
set to 50(164.04[m(ft.)], and the flexibility improved at the system design.
(c) The servo parameters can be set on the QD74MH side to write or read
them to/from the servo amplifier using the SSCNET .
(d) The actual current value and error description contained in the servo can be
checked by the buffer memory of the QD74MH.
(e) Wiring is reduced by issuing the external signal (upper/lower stroke limit
signal, proximity dog signal) via the servo amplifier.
(6) Easy application to the absolute position system
(a) The absolute position-corresponding servo motor and servo amplifier are
used to have an application to the absolute position system.
(b) Once the OP have been established, the OPR operation is unnecessary
when the power is supplied.
(c) With the absolute position system, the data set method OPR is used to
establish the OP.
(7) Easy maintenance
Each QD74MH positioning module incorporates the following improvements in
maintainability:
(a) Data such as the positioning data and parameters can be stored on a flash
ROM inside the QD74MH, eliminating the need of a battery for retaining
data. (Refer to Section 6.1.)
(b) Error messages are classified in more detail to facilitate the initial
troubleshooting procedure. (Refer to Section 11.1.)
1-2
1 OVERVIEW
MELSEC-Q
(8) Addition of forced stop function
As forced stop input signal to the connector for external equipment connection is
added, batch forced stop is available for all axes of servo amplifier.
(Refer to Section 10.10.)
Selection for "Valid/Invalid" of the forced stop input signal by external 24VDC
can be made with parameter.
1-3
1 OVERVIEW
MELSEC-Q
1.2 Mechanism of Positioning Control
In the positioning system using the QD74MH, software and devices are used for the
following roles. The QD74MH realizes complicated positioning control when it reads in
various signals, parameters and data and is controlled with the PLC CPU.
GX Developer
PLC CPU
Stores the created program.
The QD74MH outputs the start signal and stop signal following the
stored program.
QD74MH errors, etc., are detected.
Creates control order
and conditions as a
sequence program.
Q74MH
Positioning module
Servo
amplifier
Stores the parameter and data.
Outputs data to the servo amplifier according to the instructions from
the PLC CPU and external input signal.
Receive positioning commands and control commands from QD74MH,
and drives the servo motor.
Outputs the positioning data of the servo motor and etc., and external
input signal of the servo amplifier to the QD74MH by the SSCNET .
Servo motor
Moves the machine according to commands from the servo amplifier.
Working parts
of a machine
1-4
1 OVERVIEW
MELSEC-Q
1.3 Communicating Signals Between QD74MH and Each Module
The outline of the signal communication between the QD74MH (positioning module)
and PLC CPU, peripheral device and servo amplifier, etc., is shown below.
PLC CPU
X0
X1
X2
X3
X10 to X1F
Positioning start signal
Unit READY signal
Error detection signal
Warning detection signal
Servo amplifer interface
Y10 to Y1F
Forced stop input signal
E
Operating information of the servo
amplifer
Servo parameters
External input signal of the servo
amplifier
DOG (Proximity dog signal)
FLS (Upper stroke limit signal)
RLS (Lower stroke limit signal)
Syncronization flag signal
BUSY signal
Basic parameters
OPR parameters
Manual control parameters
System parameters
Servo parameters
Control data
Positioning data
Forced stop
External interface
Y2
M
Position commands
Control commands
Servo parameters
All axis servo ON signal
PLC CPU interface
Y1
Servo motor
PLC READY signal
Buffer memory
Y0
QD74MH
Monitor data
I/O module
1-5
Servo amplifer
External signal
DOG
FLS
RLS
1 OVERVIEW
MELSEC-Q
(1) QD74MH ― PLC CPU
The QD74MH and PLC CPU communicate the following data via the base unit.
Communication
Details
Control signals
Signal related to commands
• Y0: PLC READY signal
• Y1: All axis servo ON signals
• Y2: Stop signals
• Y10 to Y1F: Positioning start signals
Write data
Data to be written to buffer memory
• Parameter
(Basic, OPR, Manual control, System, Servo)
• Control data
• Positioning data
Status signal
Signal indicating QD74MH state
• X0: Unit READY signal
• X1: Error detection signal
• X2: Warning detection signal
• X2: Synchronization flag signal
• X10 to X1F: Busy signal
Read data
Data to be read from buffer memory
• Parameters
(Basic, OPR, Manual control, System, Servo)
• Monitor data
• Control data
• Positioning data
Signal direction
PLC CPU
QD74MH
QD74MH
PLC CPU
(2) QD74MH ― Servo amplifier
The QD74MH and servo amplifier communicate the following data via the
SSCNET .
Communication
Details
Signal direction
Control signals of SSCNET
Command signals to servo amplifier
• Position commands
• Control commands
• Servo parameters
QD74MH
Status signals of SSCNET
Monitor information of the servo amplifier
• Operating information of the servo amplifier
• Servo parameters (Auto tuning, Parameter
change by MR Configurator, etc.,)
• External input signals (DOG, FLS, RLS) of the
servo amplifier
Servo amplifier
Servo amplifier
QD74MH
(3) QD74MH ― Forced stop input signal
The QD74MH and forced stop input signal communicate the following data via
the forced stop input connector.
Communication
Forced stop input signal
Details
Forced stop input signal to QD74MH
1-6
Signal direction
Forced stop input
QD74MH
1 OVERVIEW
MELSEC-Q
1.4 Difference Between QD74MH and QD75MH
(1) Comparisons of performance specifications
Model
Item
Number of control axes
Operation cycle
Control unit
Number of positioning data
QD74MH
QD75MH
8 axes/16 axes
1 axis/2 axes/4 axes
0.88ms
1.77ms
PLS
mm, inch, degree, PLS
32/axis
600/axis
Linear interpolation (2, 3, 4 axes)
Interpolation functions
Speed: Combined-speed,
Interpolation group: Up to 4 groups
Linear interpolation (2, 3, 4 axes),
Circular interpolation (2 axes)
Speed: Vector speed and reference axis
Independent
positioning
Positioning
Operation
Continuous
pattern
positioning
Continuous
control
path
Speed control
Speed-position switching
Position-speed switching
<ABS/INC system>
-2147483648 to 2147483647 [PLS]
Positioning range
<ABS/INC system>
-214748364.8 to 214748364.7 [μm]
-21474.83648 to 21474.83647 [inch]
0 to 359.99999[degree]
Note
Positioning that exceeds the positioning
range cannot be executed.
-2147483648 to 2147483647 [PLS]
-21474.83648 to 21474.83647 [degree]
(Fixed-pitch feed only)
0.01 to 20000000.00[mm/min]
Speed command range
5 to 2147000000[PLS/s]
0.001 to 2000000.000[inch/min]
0.001 to 2000000.000[degree/min]
1 to 10000000[PLS/s]
Proximity dog type, Data set type,
OPR method
Proximity dog type, Count type 1,
Limit switch combined type,
Count type 2, Data set type
Scale origin signal detection type
OPR
control
Stopper type, Dog cradle type,
OP shift function
-2147483648 to 2147483647
Retry function
OP search limit function
1-7
-2147483648 to 2147483647
1 OVERVIEW
MELSEC-Q
Performance specifications (continued)
Type
Items
QD74MH
QD75MH
(Acceleration/deceleration: Provided)
(Acceleration/deceleration: None)
Via servo amplifier
Direct input, Via servo amplifier
JOG
Manual
control
Incremental feed
(Note-1)
Manual pulse generator
input
External signal input
(Upper/lower stroke limit, Near-dog)
Forced stop input
Data save
24VDC input, Via PLC CPU,
Invalid setting enable
Flash ROM
Positioning module setting/monitor
Number of occupied slots
Flash ROM
GX Configurator-QP
tool
Number of I/O points
24VDC input, Invalid setting enable
32 points
32 points
1
1
: Provided
: N/A
(Note-1): Inching operation for QD75MH
1-8
1 OVERVIEW
MELSEC-Q
(2) Comparisons of input/output signals with PLC CPU specifications
Model
QD74MH
Item
QD75MH
X0
Unit READY
QD75 READY
X1
Error detection
Synchronization flag
X2
Warning detection
X3
Synchronization flag
Unusable
X4
Axis 1
X5
Axis 2
X6
Axis 3
X7
Axis 4
X8
Axis 1
X9
XA
Axis 2
Unusable
Axis 3
XB
Axis 4
XC
Axis 1
XD
Axis 2
XE
Axis 3
XF
M code ON
Error detection
BUSY
Axis 4
X10
Axis 1
Axis 1
X11
Axis 2
Axis 2
X12
Axis 3
Axis 3
X13
Axis 4
Axis 4
X14
Axis 5
Axis 1
X15
Axis 6
Axis 2
X16
Axis 7
Axis 3
X17
Axis 8
X18
Axis 9
X19
Axis 10
X1A
Axis 11
X1B
Axis 12
X1C
Axis 13
X1D
Axis 14
X1E
Axis 15
X1F
Axis 16
BUSY
Axis 4
Unusable
1-9
Start complete
Positioning complete
1 OVERVIEW
MELSEC-Q
Model
QD74MH
Item
QD75MH
Y0
PLC READY
PLC READY
Y1
All axis servo ON
All axis servo ON
Y2
Forced stop input
Y3
Unusable
Y4
Axis 1
Y5
Axis 2
Y6
Axis 3
Y7
Axis 4
Y8
Y9
Axis 1
Unusable
YA
Axis 2
YB
YC
Axis 3
YD
YE
Axis 4
YF
Y10
Axis 1
Axis 1
Y11
Axis 2
Axis 2
Y12
Axis 3
Axis 3
Y13
Axis 4
Axis 4
Y14
Axis 5
Axis 1
Y15
Axis 6
Axis 2
Y16
Axis 7
Axis 3
Y17
Axis 8
Y18
Axis 9
Y19
Axis 10
Y1A
Axis 11
Y1B
Axis 12
Y1C
Axis 13
Y1D
Axis 14
Y1E
Axis 15
Y1F
Axis 16
Positioning start
Axis 4
Unusable
1 - 10
Axis stop
Forward run JOG start
Reverse run JOG start
Forward run JOG start
Reverse run JOG start
Forward run JOG start
Reverse run JOG start
Forward run JOG start
Reverse run JOG start
Positioning start
Execution prohibition flag
1 OVERVIEW
MELSEC-Q
(3) Comparisons of functions
Model
Item
Communication start timing with the
servo amplifiers
QD74MH
QD75MH
PLC READY ON (First time only)
Control power supply ON of the
servo amplifier
Denominator: 32768,
Numerator: 32768
Denominator: 200000000,
Numerator: For setting units
Servo ON/OFF
Electronic gear
Hardware stroke limit function
(Via servo amplifier only)
Software stroke limit function
Backlash compensation function
Speed limit function
Acceleration/
Acceleration/
deceleration processing
deceleration
Acceleration/
control
deceleration time
0 to 65535[PLS]
(Set encoder pulse unit)
0 to 65535
(Set in the unit system)
1000000 to 2147000000[PLS/s]
(In speed control flag: None)
For command units
Liner acceleration/deceleration,
S-curve acceleration/deceleration
Trapezoidal acceleration/deceleration,
S-curve acceleration/deceleration
20000[ms]
8388608[ms]
Stop control
Sudden-stop control
Forced stop control
Command in-position control function
(Only last positioning point: ON )
Torque limit function
Speed change function
Acceleration/deceleration change
(Continuous positioning: ON )
(Restart function)
Pausing function
0.1[%] unit
5 to 2147000000[PLS/s]
0 to 20000[ms]
1[%] unit
For command units
0 to 8388608[ms]
Target position change function
Current value change function
External signal selection function
External signal selection logic function
Operation setting for incompletion of
OPR function
Axis error reset
Absolute position system
Flash ROM write function
Parameter initialization function
Gain changing
Start history (16 data),
Error history (16 data),
Warning history (16 data)
History
M code output function
: Provided
1 - 11
: N/A
1 OVERVIEW
MELSEC-Q
(4) Comparisons of major monitor data
Model
Item
QD74MH
QD75MH
Current feed value (before electronic gear)
Machine feed value
Feedrate (before electronic gear)
Positioning data No. being executed
Last executed positioning data No.
OPR request
Status
OPR complete
Positioning complete
Command in-position
Deceleration start
Movement amount after proximity dog ON
External I/O signal
Real current value (before electronic gear)
Servo READY ON
In-position
Zero speed
Servo status
Zero point pass
Torque limit
Servo alarm
Servo warning
Absolute position lost
Servo amplifier software number
: Provided
1 - 12
: N/A
2 SYSTEM CONFIGURATION
MELSEC-Q
2. SYSTEM CONFIGURATION
This section describes the system configuration and configured equipments.
2.1 System Configuration
PLC Positioning
CPU module
Main base unit
(Q3 B)
Q6 P
Qn QD74
CPU MH
2
I/O module
Intelligent function module
100/200VAC
USB/RS-232
Personal computer
IBM PC/AT
Forced stop input cable
(Q170DEMICBL M)
Forced stop input (24VDC)
SSCNET cable
(MR-J3BUS M(-A/-B))
GX Developer
(SW D5C-GPPW)
SSCNET
cable
d01
M
E
Extension cable
(QC B)
d02
M
E
d03
M
E
d16
M
E
External input signal of servo amplifier
Extension base unit
(Q6 B)
Proximity dog
Upper stroke limit
Lower stroke limit
Q6 P
MR-J3- B model Servo amplifier
QD74MH16 : Up to 16 axes
QD74MH8 : Up to 8 axes
Up to 7 extensions
2-1
2 SYSTEM CONFIGURATION
MELSEC-Q
2.2 Applicable System
The QD74MH can be used in the following system.
(1) Applicable modules and base units
The table below shows the CPU modules and base units applicable to the
QD74MH and quantities for each CPU module.
However, the power capacity may be insufficient depending on the combination
with the other installed modules and the number of installed modules.
Be sure to check the power capacity when installing the modules.
(a) Installing to a CPU module
Number of installable
(Note-1)
modules
Usable CPU modules
CPU type
CPU module
Q00JCPU
Basic model QCPU
Usable base units
Main base unit
(Note-2)
Extension base unit
Up to 8
Q00CPU
Up to 24
Q01CPU
Q02CPU
High Performance
model QCPU
Q02HCPU
Up to 64
Q06HCPU
Q12HCPU
Q25HCPU
Q02PHCPU
Process CPU
Q06PHCPU
Up to 64
Q12PHCPU
Q25PHCPU
PLC CPU
Redundant CPU
Q12PRHCPU
Up to 53
Q25PRHCPU
Q02UCPU
Up to 36
Q03UDCPU
Q04UDHCPU
Q06UDHCPU
Q13UDHCPU
Universal model QCPU Q26UDHCPU
Up to 64
Q03UDECPU
Q04UDEHCPU
Q06UDEHCPU
Q13UDEHCPU
Q26UDEHCPU
Q06CCPU-V-H01
C Controller module
Up to 64
Q06CCPU-V
Q06CCPU-V-B
: Applicable,
: Not applicable
(Note-1): Limited within the range of I/O points for the CPU module.
(Note-2): Can be installed to any I/O slot of a base unit.
2-2
2 SYSTEM CONFIGURATION
MELSEC-Q
(b) Installing to a MELSECNET/H remote I/O station
Usable network
Number of installable
modules
module
(Note-1)
Usable base unit
(Note-2)
Main base unit of
Extension base unit of
remote I/O station
remote I/O station
QJ72LP25-25
Up to 64
QJ72LP25G
QJ72BR15
: Applicable,
: Not applicable
(Note-1): Limited within the range of I/O points for the network module.
(Note-2): Can be installed to any I/O slot of a base unit.
REMARK
The basic model QCPU and C Controller module cannot configure the
MELSECNET/H remote I/O network system.
(2) Support of the Multiple CPU system
When using the QD74MH in a Multiple CPU system, refer to the QCPU User’s
Manual (Multiple CPU system).
(3) Supported software packages
GX Developer is required for use of the QD74MH.
The compatibility between the systems using the QD74MH and the software
packages is shown below.
Software version
GX Developer
Q00JCPU/Q00CPU/Q01CPU
Single PLC system
Version 7 or later
Multiple PLC system
Version 8 or later
Q02CPU/Q02HCPU/Q06HCPU/
Single PLC system
Version 4 or later
Q12HCPU/Q25HCPU
Multiple PLC system
Version 6 or later
Single PLC system
Q02PHCPU/Q06PHCPU
Multiple PLC system
Single PLC system
Q12PHCPU/Q25PHCPU
Multiple PLC system
Q02UCPU/Q03UDCPU/Q04UDHCPU/
Single PLC system
Q06UDHCPU
Multiple PLC system
Single PLC system
Q13UDHCPU/Q26UDHCPU
Multiple PLC system
Q03UDECPU/Q04UDEHCPU/Q06UDEHCPU/ Single PLC system
Q13UDEHCPU/Q26UDEHCPU
Multiple PLC system
For use on MELSECNET/H remote I/O station
2-3
Version 8.68W or later
Version 7.10L or later
Version 8.48A or later
Version 8.62Q or later
Version 8.68W or later
Version 6 or later
2 SYSTEM CONFIGURATION
MELSEC-Q
2.3 Component List
Product
Type
Positioning module
GX Developer
Up to 8 axes, SSCNET
QD74MH16
Up to 16 axes, SSCNET
SW D5C-GPPW
Refer to the GX Developer operating manual.
Personal computer
RS-232 cable
Remarks
QD74MH8
―
compatible
User-prepared
QC30R2
USB cable
compatible
―
PLC CPU
Personal computer
PLC CPU
Personal computer
User-prepared
MR-J3- B
Servo amplifier
MR-J3- B-RJ004
Refer to the servo amplifier instruction manual.
MR-J3- B-RJ006
• QD74MH
• MR-J3- B
MR-J3BUS M
MR-J3- B
MR-J3- B
• Standard cord for inside panel
• 0.15m(0.49ft.), 0.3m(0.98ft.), 0.5m(1.64ft.), 1m(3,28ft.), 3m(9.84ft.)
• QD74MH
SSCNET
cable
(Note-1)
• MR-J3- B
MR-J3BUS M-A
MR-J3- B
MR-J3- B
• Standard cable for inside panel
• 5m(16.40ft.), 10m(32.81ft.), 20m(65.62ft.)
• QD74MH
MR-J3BUS M-B
(Note-2)
• MR-J3- B
MR-J3- B
MR-J3- B
• Long distance cable
• 30m(98.43ft.), 40m(131.23ft.), 50m(164.04ft.)
Forced stop input cable
(Note-1)
Connector for forced stop
input cable
(Note-1) :
Q170DEMICBL M
Q170DEMICON
0.5m(1.64ft), 1m(3.28ft), 3m(9.84ft), 5m(16.40ft), 10m(32.80ft),
15m(49.20ft), 20m(65.62ft), 25m(82.02ft), 30m(98.43ft)
Connector for forced stop input cable production
=Cable length (015: 0.15m(0.49ft.), 03: 0.3m(0.98ft.), 05: 0.5m(1.64ft.), 1: 1m(3.28ft.), 3: 3m(9.84ft.),
5: 5m(16.40ft.), 10: 10m(32.81ft.), 20: 20m(65.62ft.), 25: 25m(82.02ft.), 30: 30m(98.43ft.),
40: 40m(131.23ft.), 50:50m(164.04ft.)
(Note-2) : Please contact your nearest Mitsubishi sales representative for the cable of less than 30m(98.43ft.).
2-4
2 SYSTEM CONFIGURATION
MELSEC-Q
2.4 Name of Parts
This section explains the names and LED display of the QD74MH.
(1) Name of parts
Side
Front
6)
7)
QD74MH16
RUN
1)
ERR.
2)
CN1
3)
EMI
4)
8)
QD74MH16
9)
5)
No.
Name
1) RUN indicator LED (green)
2) ERR indicator LED (red (error))
3)
SSCNET
cable connector (CN1)
(Note-1)
Application
• Lit: Power supply ON
• Not lit: Power supply OFF
• Lit/Flashing: Error occurrence
• Not lit: Normal operation
Connector to connect the servo amplifier.
• Input connector to stop all axes of servo amplifier in a lump.
EMI ON (opened) : Forced stop
Forced stop input connector (EMI)
EMI OFF (24VDC input) : Forced stop release
(Note): It can be invalidated by the software setting.
4)
2 1
Pin No.
Signal name
1
EMI
2
EMI.COM
(Note-2)
5) Module loading lever
Used to install the module to the base unit.
6) Module fixing hook
Hook used to fix the module to the base unit. (Auxiliary use for installation)
7) Module fixing screw hole
Used to fix the module to the base unit. (M3×12 screw: user-prepared)
8) Module fixing latch
Hook used to fix to the base unit.
9) Serial number plate
Indicates the serial number written on the rating plate.
(Note-1) : Put the SSCNET cable in the duct or fix the cable at the closest part to the QD74MH with bundle material in
order to prevent SSCNET cable from putting its own weight on SSCNET connector.
(Note-2) : As for the connection to common (EMI.COM), both “+” and “-“ are possible.
2-5
2 SYSTEM CONFIGURATION
MELSEC-Q
(2) LED display
The LED displays by the state of the QD74MH as follows.
LED display
Details
RUN
†
RUN LED (green) is OFF.
Hardware failure,
ERR.
†
ERR. LED (red) is OFF.
System error (Error code 100)
RUN
„
Steady RUN (green) LED display.
ERR.
†
ERR. LED (red) is OFF.
The module operates normally.
Description
If RUN LED (green) is OFF,
exchange the unit because it
might be a failure.
―
Check the error in the buffer
RUN
ERR.
„
Steady RUN LED (green) display.
System error (Except error code 100),
„
Steady ERR. LED (red) display.
Hardware failure
memory and dispose.
Exchange the unit for
hardware failure because it
might be a failure.
RUN
„
Steady RUN LED (green) display.
Operation error, Interface error,
ERR.
‹
ERR. LED (red) remains flashing.
Servo error
Check the error in the buffer
memory and correct the
parameter or positioning data.
†: OFF, „: ON, ‹: Flashing
2-6
2 SYSTEM CONFIGURATION
MELSEC-Q
2.5 Basic Specifications
(1) Module specifications
Item
QD74MH8
Internal current consumption (5VDC) [A]
QD74MH16
0.70
Mass [kg]
0.15
Exterior dimensions [mm(inch)]
98 (3.85)(H) × 27.4 (1.08)(W) × 90 (3.54)(D)
(2) Positioning control specifications
Model
Item
Number of control axes
Interpolation functions
QD74MH8
QD74MH16
Up to 8 axes
Up to 16 axes
2 to 4 axes linear interpolation (Up to 4 groups)
Control methods
PTP (Point to Point) control, Locus control (Linear only)
Control units
PLS
Positioning data
32 data (Positioning data No.1 to 32)/axis (by sequence program)
Basic parameters, OPR parameters, Manual control parameters,
Back-up
System parameters, Servo parameters and Positioning parameters can
be saved in the flash ROM. (Battery less)
Positioning methods
PTP control: Incremental method/Absolute method
Locus control: Incremental method/Absolute method
Absolute method: -2147483648 to 2147483647 [PLS]
Positioning range
Positioning
Incremental method: -2147483648 to 2147483647 [PLS]
(Note): Positioning that exceeds the positioning range is impossible.
Speed command range
5 to 2147000000 [PLS/s]
Acceleration/deceleration
Linear acceleration/deceleration,
processing
S-curve acceleration/deceleration
Acceleration/deceleration time
0 to 20000 [ms]
Sudden stop deceleration time
1 axis linear control
Start time
2 axes linear interpolation control
0.88 [ms]
3 axes linear interpolation control
4 axes linear interpolation control
Number of SSCNET
systems
1 system
Number of write accesses to flash ROM
Number of occupied I/O points
Up to 100000
32 points (I/O allocation: Intelligent function module 32 points)
REMARK
Refer to the QCPU User’s Manual (Hardware Design, Maintenance and Inspection)
for the general specifications.
2-7
2 SYSTEM CONFIGURATION
MELSEC-Q
2.6 Forced Stop Input Terminal
Item
Specifications
Number of input points
Forced stop signal : 1 point
Input method
Sink/Source type
Rated input current
3.5mA
Isolation method
Photocoupler
19.2 to 26.4VDC
Operating voltage range
(+10/ -20%, ripple ratio 5% or less)
ON voltage/current
17.5VDC or more/3.0mA or more
OFF voltage/current
7VDC or less/1.0mA or less
Input resistance
Response time
Approx. 6.8k
OFF to ON
ON
to OFF
External connector type
4ms or less
2 pin connector
2
0.3mm (AWG22)
Applicable wire size
2-8
2 SYSTEM CONFIGURATION
MELSEC-Q
2.7 Checking Function Version and Serial No.
The function version and serial No. can be checked at the front of the QD74MH or the
rating plate, and on the system monitor screen in GX Developer.
(1) Checking function version and serial No. at the QD74MH
(a) Front of QD74MH
The function version and serial No. is printed in the projection parts forward
of the lower side of QD74MH.
(b) Rating plate
The rating plate is situated on the side face of the QD74MH.
QD74MH8
RUN
ERR.
MITSUBISHI
MELSEC-Q
UNIT
PASSED
MODEL
CN1
SERI AL 100511100511999- B
C
UL
80M1
US LISTED
IND. CONT. EQ
MITSUBISHI ELECTRIC
EMI
QD74MH8
100511100511999- B
Function version
Serial number
(First 6 digits)
2-9
MA D E IN JA PA N
Rating plate
Serial number (First 6 digits)
Function version
2 SYSTEM CONFIGURATION
MELSEC-Q
(2) Checking function version on the system monitor screen (Module’s
Detailed Information)
Select [Module’s Detailed Information] button on the system monitor screen
(Note-1)
displayed on [Diagnostics] – [System monitor] of GX Developer
.
The function version can be checked in [Product Information] displayed on the
Module’s Detailed Information screen.
Function version
(Note-1): SW4D5C-GPPW-E or later.
Refer to the GX Developer Operating Manual for details.
2 - 10
3 DESIGN
MELSEC-Q
3. DESIGN
3.1 System Designing Procedure
Design the system which uses the QD74MH in the following procedure.
Positioning control system design
Select the QD74MH according to number of control axes.
Select I/O modules according to the specifications of the external
equipment to be controlled.
Refer to MELSEC-Q
series manual.
Select the servo amplifier and servo motor according to the motor
capacity and number of revolution from the machine mechanism
to be controlled each axis.
Refer to the servo
amplifier manual.
Refer to section 3.2
External circuit design
Power supply circuit design
Design the power supply circuit which supplies power to such
system components as the QD74MH, I/O equipment and servo
amplifiers, etc., taking into consideration the protective
coordination and noise suppression techniques.
Refer to section 3.2.1
Safety circuit design
Design the operation-ready circuit which stops the system at
occurrence of any alarm such as a QD74MH or servo amplifier
alarm or the emergency stop, the circuit which avoids a
malfunction while power is unstable at power-on, and the
electromagnetic brake circuit for servomotors.
Refer to section 3.2.2
Layout design within control panel
Layout design based on the design environment such as
temperatures and vibrations in consideration of heat generated
from modules and handling of module installation.
3-1
Refer to section 4.1
3
3 DESIGN
MELSEC-Q
3.2 External Circuit Design
Configure up the power supply circuit and main circuit which turn off the power supply
after detection alarm occurrence and servo forced stop. When designing the main
circuit of the power supply, make sure to use a no fuse breaker (NFB).
The outline diagrams of the internal circuits for the external device connection
interface are shown below.
3-phase
200 to 230VAC
R S
T
(1) Example when using the forced stop of the QD74MH
Power Supply
Q61P
NFB1
CP1
Positioning
module
QD74MH
PLC CPU
QnCPU
Output module
QY41P
Yn
INPUT
100-240VAC
Ra1
12/24VDC
FG
Forced stop
(Note-5)
LG
COM
EMI.COM EMI
SSCNET
CP2
24VDC +24V
Power
supply 24G
Emergency stop
EMG
Alarm
Ra1
(Note-1)
Operation Operation
ready
ready
OFF
ON
MC
MC
SK
3-2
3 DESIGN
MELSEC-Q
POINT
(1) (Note-1): Configure up the power supply circuit which switch off the electromagnetic contactor (MC) after detection alarm occurrence
on the PLC CPU.
(2) (Note-2): It is also possible to use a full wave rectified power supply as the power supply for the electromagnetic brake.
(3) (Note-3): It is also possible to use forced stop signal of the servo amplifier.
(4) (Note-4): Set the servo amplifier by setting the rotary switch of servo amplifier referring Section 4.2.1.
(5) (Note-5): The status of forced stop input signal can be confirmed with " Md.103 Forced stop input status".
(6) (Note-6): It recommends using one leakage breaker for one servo amplifier. When electric power is supplied to multiple servo amplifiers
for one leakage breaker, select the wire connected to the servo amplifier according to the capacity of the leakage breaker.
NFB2
(Note-6)
L1 MR-J3-B
L2
A
L3
V
V
W
W
0 DICOM
L21
Ra2
(Note-2)
ALM
CN1A
SM
ElectroGround magnetic
brake
(Note-4)
L11
SSCNET
U
U
Ra2
EM1
CN1B
DOCOM
(Note-3)
24VDC
NFB3
(Note-6)
L1 MR-J3-B
L2
B
L3
V
V
W
W
1
DICOM
Ra3
(Note-2)
ALM
CN1A
SM
ElectroGround magnetic
brake
(Note-4)
L11
L21
U
U
Ra3
EM1
CN1B
DOCOM
(Note-3)
24VDC
NFB4
(Note-6)
L1 MR-J3-B
L2
C
L3
MC
W
W
SM
Ra4
ElectroGround magnetic
brake
2
DICOM
(Note-2)
ALM
CN1A
CP3
V
V
(Note-4)
L11
L21
U
U
Ra4
EM1
CN1B
DOCOM
(Note-3)
24VDC
(Note-1): When the control power supply of servo amplifier is shut off, it is not possible to communicate with the servo amplifier after that.
Example) When the control power supply L11/L21 of servo amplifier in above B figure is shut off, it is also not possible to
communicate with the servo amplifier C . If only a specific servo amplifier control power supply is shut off, be sure to
shut off the main circuit power supply L1/L2/L3, and do not shut off the control power supply L11/L21.
(Note-2): Be sure to shut off the both of main circuit power supply L1/L2/L3 and control power supply L11/L21 at the time of exchange of
servo amplifier. At this time, it is not possible to communicate between the servo amplifier and QD74MH. Therefore, be sure to
exchange the servo amplifier after stopping the operating of machine beforehand.
(Note-3): If the forced stop input signal by external 24VDC turns OFF when setting of " Pr.101 External forced stop selection" to "0 : Valid",
servomotor is stopped with dynamic brake. (The LED display of servo amplifier indicates "E7" (Controller forced stop warning).)
3-3
3 DESIGN
MELSEC-Q
(2) Example when using the forced stop of the QD74MH and MR-J3-B
3-phase
200 to 230VAC
R S
T
Power Supply
Q61P
NFB1
CP1
PLC CPU
QnCPU
Positioning
module
QD74MH
Output module
QY41P
Yn
INPUT
100-240VAC
Ra1
12/24VDC
FG
Forced stop(Note-5)
LG
COM
EMI.COM EMI
SSCNET
Ra2
CP2
24VDC +24V
Power
supply 24G
Emergency
stop
EMG
Alarm
Ra1
(Note-1)
Operation Operation
ready
ready
OFF
ON
MC
MC
SK
3-4
3 DESIGN
MELSEC-Q
POINT
(1) (Note-1): Configure up the power supply circuit which switch off the electromagnetic contactor (MC) after detection alarm occurrence
on the PLC CPU.
(2) (Note-2): It is also possible to use a full wave rectified power supply as the power supply for the electromagnetic brake.
(3) (Note-3): Set the servo amplifier by setting the rotary switch of servo amplifier referring Section 4.2.1.
(4) (Note-4): It recommends using one leakage breaker for one servo amplifier. When electric power is supplied to multiple servo amplifiers
for one leakage breaker, select the wire connected to the servo amplifier according to the capacity of the leakage breaker.
(5) (Note-5): The status of forced stop input signal can be confirmed with " Md.103 Forced stop input status".
NFB2
(Note-4)
L1 MR-J3-B
L2
A
L3
V
V
W
W
0 DICOM
L21
CN1A
ALM
CN1B
EM1
SM
Ra3
ElectroGround magnetic
brake
(Note-3)
L11
SSCNET
U
U
(Note-2)
Ra2
Ra3
DOCOM
24VDC
NFB3
(Note-4)
L1 MR-J3-B
L2
B
L3
V
V
W
W
1
DICOM
CN1A
ALM
CN1B
EM1
SM
Ra4
ElectroGround magnetic
brake
(Note-3)
L11
L21
U
U
(Note-2)
Ra2
Ra4
DOCOM
24VDC
NFB4
(Note-4)
L1 MR-J3-B
L2
C
L3
MC
W
W
CN1A
ALM
CN1B
EM1
SM
Ra5
ElectroGround magnetic
brake
DICOM
2
CP3
V
V
(Note-3)
L11
L21
U
U
(Note-2)
Ra2
Ra5
DOCOM
24VDC
(Note-1): When the control power supply of servo amplifier is shut off, it is not possible to communicate with the servo amplifier after that.
Example) When the control power supply L11/L21 of servo amplifier in above B figure is shut off, it is also not possible to
communicate with the servo amplifier C . If only a specific servo amplifier control power supply is shut off, be sure to
shut off the main circuit power supply L1/L2/L3, and do not shut off the control power supply L11/L21.
(Note-2): Be sure to shut off the both of main circuit power supply L1/L2/L3 and control power supply L11/L21 at the time of exchange of
servo amplifier. At this time, it is not possible to communicate between the servo amplifier and QD74MH. Therefore, be sure to
exchange the servo amplifier after stopping the operating of machine beforehand.
(Note-3): The dynamic brake is operated, and servomotor occurs to the free run when EM1 (forced stop) of servo amplifier turn OFF. At the
time, the display shows the servo forced stop warning (E6). During ordinary operation, do not used forced stop signal to alternate
stop and run. The service life of the servo amplifier may be shortened.
3-5
3 DESIGN
MELSEC-Q
3.2.1 Power supply circuit design
This section describes the protective coordination and noise suppression techniques
of the power supply circuit.
(1) Separation and protective coordination (leakage current protection,
over current protection) of power supply lines
Separate the lines for PLC system power supplies from the lines for I/O devices
and servo amplifiers as shown below.
When there is much noise, connect an insulation transformer.
Main power
supply
100/200VAC
Isolation
PLC power transformer
supply
PLC
system
CP
NFB
I/O power
supply
T1
I/O equipment
CP
Motor power supply
Motor equipment
CP
Main circuit power supply
for servo amplifier
200VAC
NFB
Control power supply
for servo amplifier
Servo amplifier
CP
(2) Grounding
The PLC system may malfunction as it is affected by various noises such as
electric path noises from the power supply systems, radiated and induced noises
from other equipment, servo amplifiers and their cables, and electromagnetic
noises from conductors. To avoid such troubles, connect the earthing ground of
each equipment and the shield grounds of the shielded cables to the earth.
For grounding, use the exclusive ground terminal wire of each equipment or a
single-point earth method to avoid grounding by common wiring, where possible,
since noises may sneak from other equipment due to common impedances.
100/200VAC
Line noise filter
PLC system
SSCNET
Servo amplifier
3-6
Servomotor
3 DESIGN
MELSEC-Q
3.2.2 Safety circuit design
(1) Concept of safety circuits
When the PLC system is powered on and off, normal control output may not be
done momentarily due to a delay or a startup time difference between the PLC
power supply and the external power supply (DC in particular) for the control
target.
Also, an abnormal operation may be performed if an external power supply fault
or positioning module failure takes place.
To prevent any of these abnormal operations from leading to the abnormal
operation of the whole system and in a fail-safe viewpoint, areas which can
result in machine breakdown and accidents due to abnormal operations (e.g.
emergency stop, protective and interlock circuits) should be constructed outside
the PLC system.
(2) Emergency stop circuit
The circuit should be constructed outside of the PLC system or servo amplifier.
Shut off the power supply to the external servo amplifier by this circuit, make the
electromagnetic brakes of the servomotor operated.
(3) Forced stop circuit
(a) The forced stop of all servo amplifiers is possible in a lump by using the EMI
forced stop input by external 24VDC of QD74MH. After forced stop, the
forced stop factor is removed and the forced stop canceled.
(The servo error detection signal does not turn on with the forced stop.)
The forced stop input can be selected "valid/invalid" in the parameter
setting.
Make the forced stop input cable within 30m(98.43ft.).
The wiring example for the forced stop input of QD74MH is shown below.
Q61P
PLC CPU QD74MH
Forced stop
EMI
24VDC
EMI.COM
24VDC (Note-1)
EMI.COM
R
<Positioning module>
EMI
R
Forced stop
(Note): The forced stop input can be selected "valid/invalid" in the
parameter settings.
(Note-1): Both of positive common and negative common can be used.
3-7
3 DESIGN
MELSEC-Q
(b) The forced stop of all servo amplifiers is possible in a lump by using the
forced stop input signal [Y2] of QD74MH. After forced stop, the forced stop
factor is removed and the forced stop canceled.
(The servo error detection signal does not turn on with the forced stop.)
The wiring example and program example that uses the forced stop input of
input module (QX10) is shown below.
Q61P
PLC CPU QD74MH
QX10
Xn
00
X20
1F
X2F
EMI.COM
COM
Forced stop
EMI
100VAC
24VDC
<Input module QX10>
100VAC
TB17
QX10
TB16
LED
Internal
circuit
R
R
TB1
R
Forced stop
(Note): The forced stop input can be set in the system settings.
<Program example>
X20
Y2
(c) It is also possible to use the forced stop signal of the servo amplifier.
Refer to manual of the servo amplifier about servomotor capacity.
Operation status of the forced stop and the forced stop are as follows.
Item
Operation of
the signal ON
Remark
Shut off the power supply to the external servo amplifier
Emergency stop
Servo OFF
Forced stop
by external circuit, make the servomotor stopped.
The servomotor is stopped according to the stop
instruction from QD74MH to the servo amplifier.
3-8
4 INSTALLATION, WIRING, START-UP AND MAINTENANCE
MELSEC-Q
4. INSTALLATION, WIRING, START-UP AND MAINTENANCE
This section describes the installation, wiring, start-up and maintenance of the
product.
4.1 Handling Precautions
(1) Main body
• The main body case is made of plastic. Take care not to drop or apply strong
impacts onto the case.
• Do not remove the PCB from the case. Failure to observe this could lead to
faults.
(2) Cable
• Do not press on the cable with a sharp object.
• Do not twist the cable with force.
• Do not forcibly pull on the cable.
• Do not step on the cable.
• Do not place objects on the cable.
• Do not damage the cable sheath.
(3) Installation environment
Do not install the module in the following type of environment.
• Where the ambient temperature exceeds the 0 to 55°C range.
• Where the ambient humidity exceeds the 5 to 95%RH range.
• Where there is sudden temperature changes, or where dew condenses.
• Where there is corrosive gas or flammable gas.
• Where there are high levels of dust, conductive powder, such as iron chips, oil
mist, salt or organic solvents.
• Where the module will be subject to direct sunlight.
• Where there are strong electric fields or magnetic fields.
• Where vibration or impact could be directly applied onto the main body.
4-1
4
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
DANGER
Completely turn off the externally supplied power used in the system before clearing or tightening
the screws. Not doing so could result in electric shock.
CAUTION
Use the programmable controller in an environment that meets the general specifications contained in
CPU module User's Manual to use.
Using the programmable controller in an environment outside the range of the general specifications
could result in electric shock, fire, operation failure, and damage to or deterioration of the product.
Do not directly touch the module's conductive parts and electronic components. Doing so may could
cause an operation failure or give damage to the module.
Be sure there are no foreign matters such as sawdust or wiring debris inside the module. Such debris
could cause fire, damage, or operation failure.
Never try to disassemble or modify module. It may cause product failure, operation failure, injury or fire.
Completely turn off the externally supplied power used in the system before installation or removing the
module. Not doing so could result in damage to the module.
Because the connector has its orientation, check it before attaching or detaching the connector straight
from the front. Unless it is properly installed, a poor contact may occur, resulting in erroneous input and
output.
While pressing the installation lever located at the bottom of module, insert the module fixing tab into
the fixing hole in the base unit until it stops. Then, securely install the module with the fixing hole as a
supporting point. Incorrect installation of the module can cause an operation failure, damage or drop.
When using the module in the environment of much vibration or impact, tighten the module with a
screw. Tighten the screw in the specified torque range. Under tightening may cause a drop, short
circuit or operation failure. Over tightening may cause a drop, short circuit or operation failure due to
damage to the screw or module.
Lock the control panel and prevent access to those who are not certified to handle or install electric
equipment.
4-2
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.2 Wiring
The precautions for wiring are given below.
DANGER
Completely turn off the externally supplied power used in the system before installation or wiring.
Not doing so could result in electric shock or damage to the product.
CAUTION
Check the layout of the terminals and then properly route the wires to the module.
Solder connector for external input signal cable properly. Insufficient soldering may cause malfunction.
Be careful not to let foreign matters such as sawdust or wire chips get inside the module.
These may cause fires, failure or malfunction.
The top surface of the module is covered with protective films to prevent foreign objects such as cable
off cuts from entering the module when wiring. Do not remove this film until the wiring is complete.
Before operating the system, be sure to remove the film to provide adequate ventilation.
When removing the cable or power supply cable from the module, do not pull the cable.
When removing the cable with a connector, hold the connector on the side that is connected to the
module. Pulling the cable that is still connected to the module may cause malfunction or damage to the
module or cable.
The external input signal cable of the QD74MH and SSCNET
cable should not be routed near or
bundled with the main circuit cable, power cable and/or other such load – carrying cables other than
those for the PLC. These cables should be separated by at least 100mm (3.94inch) or more.
They can cause electrical interference, surges and inductance that can lead to mis-operation.
The shielded cable for connecting QD74MH can be secured in place.
If the shielded cable is not secured, unevenness or movement of the shielded cable or careless pulling
on it could result in damage to the QD74MH, servo amplifier or shielded cable or defective cable
connections could cause mis-operation of the unit.
4-3
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
4.2.1 SSCNET
MELSEC-Q
cable
(1) Precautions of SSCNET
cable wiring
SSCNET cable is made from optical fiber. If optical fiber is added a power
such as a major shock, lateral pressure, haul, sudden bending or twist, its inside
distorts or breaks, and optical transmission will not be available. Especially, as
optical fiber for MR-J3BUS M, MR-J3BUS M-A is made of synthetic resin, it
melts down if being left near the fire or high temperature. Therefore, do not
make it touched the part, which becomes high temperature, such as radiator or
regenerative option of servo amplifier and servomotor.
Be sure to use optical fiber within the range of operating temperature described
in this manual.
Read described item of this section carefully and handle it with caution.
(a) Minimum bend radius
Make sure to lay the cable with greater radius than the minimum bend
radius. Do not press the cable to edges of equipment or others. For
SSCNET cable, the appropriate length should be selected with due
consideration for the dimensions and arrangement of QD74MH or servo
amplifier. When closing the door of control panel, pay careful attention for
avoiding the case that SSCNET cable is hold down by the door and the
cable bend becomes smaller than the minimum bend radius.
Model name of SSCNET cable
MR-J3BUS M
Minimum bend radius [mm(inch)]
25(0.98)
MR-J3BUS M-A
Enforced covering cord: 50 (1.97), Cord: 25 (0.98)
MR-J3BUS M-B
Enforced covering cord: 50 (1.97), Cord: 30 (1.18)
(b) Tension
If tension is added on the SSCNET cable, the increase of transmission
loss occurs because of external force which concentrates on the fixing part
of SSCNET cable or the connecting part of SSCNET connector. At
worst, the breakage of SSCNET cable or damage of SSCNET
connector may occur. For cable laying, handle without putting forced
tension. (Refer to this section "(5) Specifications of SSCNET cable" for the
tension strength.)
(c) Lateral pressure
If lateral pressure is added on the SSCNET cable, the cable itself distorts,
internal optical fiber gets stressed, and then transmission loss will increase.
At worst, the breakage of SSCNET cable may occur. As the same
condition also occurs at cable laying, do not tighten up SSCNET cable
with a thing such as nylon band (TY-RAP).
Do not trample it down or tuck it down with the door of control box or others.
4-4
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
(d) Twisting
If the SSCNET cable is twisted, it will become the same stress added
condition as when local lateral pressure or bend is added. Consequently,
transmission loss increases, and the breakage of SSCNET cable may
occur at worst.
(e) Disposal
When incinerating optical cable (cord) used for SSCNET cable, hydrogen
fluoride gas or hydrogen chloride gas which is corrosive and harmful may
be generated. For disposal of SSCNET cable, request for specialized
industrial waste disposal services who has incineration facility for disposing
hydrogen fluoride gas or hydrogen chloride gas.
(f) Wiring process of SSCNET cable
Put the SSCNET cable in the duct or fix the cable at the closest part to the
QD74MH with bundle material in order to prevent SSCNET cable from
putting its own weight on SSCNET connector.
Leave the following space for wiring.
• Putting in the duct
Top of panel or wiring duct
Base unit
30mm
(1.18inch)
or more(Note-1)
QD74MH
80mm
(3.15inch)
or more
Door
Panel
70mm
(2.76inch)
or more
5mm(0.20inch)
or more(Note-2)
98mm
(3.86inch)
5mm(0.20inch)
or more
(Note-1) : For wiring duct with 50[mm] (1.97 inch) or less height.
40[mm] (1.58 inch) or more for other cases.
(Note-2) : 20mm (0.79inch) or more when the adjacent module is not removed and the extension cable is connected.
4-5
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
• Bundle fixing
Optical cord should be given loose slack to avoid from becoming smaller
than the minimum bend radius, and it should not be twisted. When laying
cable, fix and hold it in position with using cushioning such as sponge or
rubber which does not contain plasticizing material.
Base unit
QD74MH
Panel
Cord
Loose slack
Bundle material
Recommended product
NK clamp SP type (NIX,INC.)
4-6
Cable
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
(2) Connection of SSCNET
MELSEC-Q
cables
The connection method of SSCNET cable between QD74MH and servo
amplifier is explained as follows.
When absolute position detection control is executed, installed battery
(MR-J3BAT) to servo amplifier.
QD74MH
SSCNET cable length
MR-J3BUS M use
1) 3m(9.84ft.)
MR-J3BUS M-A use
1) 20m(65.62ft.)
MR-J3BUS M-B use
1) 50m(164.04ft.)
CN1
1)
CN1A
CN1A
1)
Cap
CN1B
CN1B
Servo amplifier
Servo amplifier
(Note): It cannot communicate with that the connection of
CN1A and CN1B is mistaken.
Table 4.1 List of SSCNET
No.
Model name
(Note)
Cable length
Description
0.15m(0.49ft.), 0.3m(0.98ft.), 0.5m(1.64ft.),
1m(3.28ft.), 3m(9.84ft.)
Standard cord for inside panel
MR-J3BUS M-A
5m(16.4ft.), 10m(32.81ft.), 20m(65.62ft.)
Standard cable for outside panel
MR-J3BUS M-B
30m(98.43ft.), 40m(131.23ft.), 50m(164.04ft.) Long distance cable
MR-J3BUS M
1)
cable module name
• QD74MH
MR-J3- B
• MR-J3- B
MR-J3- B
(Note):
4-7
= Cable length
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
(3) Setting of the axis number and axis select rotary switch of servo
amplifier
Axis number is used to set the axis numbers of servo amplifiers connected to
SSCNET connector(CN1) in the program.
Axis number of 1 to 16 can be set for QD74MH16, and axis number of 1 to 8 can
be set for QD74MH8.
Set the axis number by using the axis select rotary switch of servo amplifier.
Axis number and number of axis select rotary switch is allocated as shown in the
table below. Set not to overlap the axis number of servo amplifier.
Wrong setting of servo amplifier may not operate normally.
Table 4.2 Correspondence between axis number and axis select
rotary switch
1
0
2
1
3
2
4
3
5
4
6
5
7
6
8
7
4 56
Axis select rotary switch
9
8
23
Axis number
10
9
11
A
12
B
13
C
14
D
15
E
16
F
CD
AB E
F01
4-8
789
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
(4) Precautions for handling the SSCNET
MELSEC-Q
cable
• Do not stamp the SSCNET cable.
• When laying the SSCNET cable, be sure to secure the minimum cable bend
radius or more. If the bend radius is less than the minimum cable bend radius,
it may cause malfunctions due to characteristic deterioration, wire breakage,
etc.
• For connection and disconnection of SSCNET cable, hold surely a tab of
cable connector.
QD74MH
CN1
(a) Connection of SSCNET cable
• For connection of SSCNET cable to the QD74MH, connect it to the
SSCNET connector CN1 of QD74MH while holding a tab of SSCNET
cable connector. Be sure to insert it until it clicks.
• If the cord tip for the SSCNET cable is dirty, optical transmission is
interrupted and it may cause malfunctions. If it becomes dirty, wipe with a
bonded textile, etc. Do not use solvent such as alcohol.
(b) Disconnection of SSCNET cable
• For disconnection of SSCNET cable, pull out it while holding a tab of
SSCNET cable connector or the connector.
• After disconnection of SSCNET cable, be sure to put a cap (attached to
QD74MH or servo amplifier) to the QD74MH and servo amplifier.
• For SSCNET cable, attach the tube for protection optical cord's end face
on the end of connector.
CAUTION
Securely connect the connector for SSCNET
Be sure to connect SSCNET
cable to the bottom connector on the module.
cable with the connector. If the connection is mistaken, between the
QD74MH and servo amplifier cannot be communicated.
After removal of the SSCNET
cable, be sure to put a cap on the SSCNET
connector. Otherwise,
adhesion of dirt deteriorates in characteristic and it may cause malfunctions.
Do not remove the SSCNET
cable while turning on the power supply of QD74MH and servo
amplifier. Do not see directly the light generated from SSCNET
connector and the end of SSCNET
cable. When the light gets into eye, may feel something is wrong for eye. (The light source of
SSCNET
cable complies with class1 defined in JISC6802 or IEC60825-1.)
If the SSCNET
cable is added a power such as a major shock, lateral pressure, haul, sudden
bending or twist, its inside distorts or breaks, and optical transmission will not be available. Be sure to
take care enough so that the short SSCNET
cable is added a twist easily.
4-9
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
CAUTION
Be sure to use the SSCNET
cable within the range of operating temperature described in this
manual. Especially, as optical fiber for MR-J3BUS M and MR-J3BUS M-A are made of synthetic
resin, it melts down if being left near the fire or high temperature. Therefore, do not make it touched the
part which becomes high temperature, such as radiator or regenerative option of servo amplifier, or
servomotor.
When laying the SSCNET
cable, be sure to secure the minimum cable bend radius or more.
(Refer to Section 4.2.1)
Put the SSCNET
cable in the duct or fix the cable at the closest part to the QD74MH with bundle
material in order to prevent SSCNET
cable from putting its own weight on SSCNET
connector.
When laying cable, the optical cord should be given loose slack to avoid from becoming smaller than
the minimum bend radius, and it should not be twisted.
Also, fix and hold it in position with using cushioning such as sponge or rubber which does not contain
plasticizing material.
Migrating plasticizer is used for vinyl tape. Keep the MR-J3BUS M, and MR-J3BUS M-A cables
away from vinyl tape because the optical characteristic may be affected.
Cable
Optical cord
SSCNET
cable
Cord
Cable
MR-J3BUS M
MR-J3BUS M-A
MR-J3BUS M-B
: Normally, cable is not affected by plasticizer.
: Phthalate ester plasticizer such as DBP and DOP may affect optical characteristic of cable.
Generally, soft polyvinyl chloride (PVC), polyethylene resin (PE) and fluorine resin contain nonmigrating plasticizer and they do not affect the optical characteristic of SSCNET
cable. However,
some wire sheaths and cable ties, which contain migrating plasticizer (phthalate ester), may affect
MR-J3BUS M and MR-J3BUS M-A cables (made of plastic).
In addition, MR-J3BUS M-B cable (made of quartz glass) is not affected by plasticizer.
If the adhesion of solvent and oil to the cord part of SSCNET
cable may lower the optical
characteristic and machine characteristic. If it is used such an environment, be sure to do the
protection measures to the cord part.
When keeping the QD74MH or servo amplifier, be sure to put on a cap to connector part so that a dirt
should not adhere to the end of SSCNET
SSCNET
connector.
connector to connect the SSCNET
cable is put a cap to protect light device inside
connector from dust. For this reason, do not remove a cap until just before connecting SSCNET
cable. Then, when removing SSCNET
cable, make sure to put a cap.
Keep the cap and the tube for protecting light cord end of SSCNET
zipper of SSCNET
cable to prevent them from becoming dirty.
4 - 10
cable in a plastic bag with a
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
CAUTION
When exchanging the QD74MH or servo amplifier, make sure to put cap on SSCNET
connector.
When asking repair of QD74MH or servo amplifier for some troubles, make also sure to put a cap on
SSCNET
connector. When the connector is not put a cap, the light device may be damaged at the
transit. In this case, exchange and repair of light device is required.
Forcibly removal the SSCNET
cable from the QD74MH will damage the QD74MH and SSCNET
cables.
(5) Specifications of SSCNET
Generally use the SSCNET
(a) Model
cables available as our products.
Cable model
MR-J3BUS M
MR-J3BUS M-A
(Note-1)
MR-J3BUS M-B
cable
Cable length [m(ft.)]
MR-J3BUS015M
0.15 (0.49)
MR-J3BUS03M
0.3 (0.98)
MR-J3BUS05M
0.5 (1.64)
MR-J3BUS1M
1 (3.28)
MR-J3BUS3M
3 (9.84)
MR-J3BUS5M-A
5 (16.40)
MR-J3BUS10M-A
10 (32.81)
MR-J3BUS20M-A
20 (65.62)
MR-J3BUS30M-B
30 (98.43)
MR-J3BUS40M-B
40 (131.23)
MR-J3BUS50M-B
50 (164.04)
Flex life
Remark
Standard
Standard cord for
inside panel
Standard
Standard cable for
outside panel
Long flex
Long distance cable
(Note-1): For the cable of less than 30[m](98.43[ft.]), contact your nearest Mitsubishi sales representative.
(b) Specifications
Description
SSCNET cable model
0.15 (0.49)
Minimum bend radius
[mm(inch)]
70
140
420 (Enforced covering cord)
-40 to 80
(-40 to 176)
(Note-1)
980 (Enforced covering cord)
-20 to 70
(-4 to 158)
Indoors (no direct sunlight), No solvent or oil
Optical
cable
(Cord)
2.2 0.07
(0.09 0.003)
10.16(Note-2)
(0.40)
4.4 0.1
(0.17 0.004)
4.4 0.1
(0.17 0.004)
6 0.2
(0.24 0.008)
(Note-1): This temperature range for use is the value for optical cable (cord) only.
(Note-2): Dimension of connector fiber insert location. The distance of two cords is changed by how to bend it.
4 - 11
4.4 0.4
(0.17 0.016)
7.6 0.5
(0.30 0.02)
2.2 0.2
(0.09 0.008)
Ambient
External appearance
[mm(inch)]
MR-J3BUS M-B
30 to 50 (98.43 to 164.04)
Enforced covering cord: 50 (1.97) Enforced covering cord: 50 (1.97)
Cord: 25 (0.98)
Cord: 30 (1.18)
25(0.98)
Temperature range
for use [°C(°F)]
MR-J3BUS M-A
5 to 20 (16.40 to 65.62)
2.2 0.07
(0.09 0.003)
Tension strength [N]
0.3 to 3 (0.98 to 9.84)
2.2 0.07
(0.09 0.003)
SSCNET cable length [m(ft.)]
MR-J3BUS M
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
CAUTION
Use the processing method and the processing treatment device that exists in the connector when
you fix the cord part of the SSCNET
cable to the connector.
It must not cut squarely when you cut the cord part of the SSCNET
cable, the cutting edge side
must not be made smooth, and garbage etc. must not adhere.
The damage etc. must not adhere to the optical cord part when you peel off the film of the cable of
the SSCNET
cable.
If the end face of cord tip for the SSCNET
cable is dirty, optical transmission is interrupted and it
may cause malfunctions. If it becomes dirty, wipe with a bonded textile, etc. Do not use solvent such
as alcohol.
Please do not add impossible power to the connector of the SSCNET
When incinerating the SSCNET
cable.
cable (optical fiber), hydrogen fluoride gas or hydrogen chloride
gas which is corrosive and harmful may be generated. For disposal of the SSCNET
cable (optical
fiber), request for specialized industrial waste disposal services who has incineration facility for
disposing hydrogen fluoride gas or hydrogen chloride gas.
1) MR-J3BUS M
a) Model explanation
Type: MR-J3BUS MSymbol
Cable type
None Standard cord for inside panel
Standard cable for outside panel
A
B
Long distance cable
Symbol
015
03
05
1
3
5
10
20
30
40
50
4 - 12
Cable length [m(ft.)]
0.15(0.49)
0.3(0.98)
0.5(1.64)
1(3.28)
3(9.84)
5(16.40)
10(32.81)
20(65.62)
30(98.43)
40(131.23)
50(164.04)
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
b) Exterior dimensions
• MR-J3BUS015M
[Unit: mm(inch)]
6.7(0.26)
15 13.4
(0.59) (0.53)
37.65
(1.48)
20.9(0.82)
Protective tube
1.7(0.07)
2.3(0.09)
8+0
(0.31)
150 +50
-0
(5.91)
• MR-J3BUS03M to MR-J3BUS3M
Refer to the table of this section (5) for cable length (L).
[Unit: mm(inch)]
Protective tube (Note)
100
(3.94)
100
(3.94)
L
(Note) : Dimension of connector part is the same as that of MR-J3BUS015M.
• MR-J3BUS5M-A to MR-J3BUS20M-A, MR-J3BUS30M-B to
MR-J3BUS50M-B
Refer to the table of this section (5) for cable length (L).
SSCNET
Variation [mm(inch)]
cable
A
B
MR-J3BUS5M-A to MR-J3BUS20M-A
100(3.94)
30(1.18)
MR-J3BUS30M-B to MR-J3BUS50M-B
150(5.91)
50(1.97)
[Unit: mm(inch)]
Protective tube
(Note)
(A)
(B)
(B)
(A)
L
(Note) : Dimension of connector part is the same as that of MR-J3BUS015M.
POINT
Keep the cap and the tube for protecting light code end of SSCNET cable in a
plastic bag with a zipper of SSCNET cable to prevent them from becoming dirty.
4 - 13
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
2) SSCNET
MELSEC-Q
cable connector
[Unit: mm(inch)]
13.4
(0.53)
4.8(0.19)
17.6 0.2
(0.69 0.01)
2.3
(0.09)
9.3(0.37)
6.7
(0.26)
15
(0.59)
1.7
(0.07)
8
(0.31)
20.9 0.2
(0.82 0.01)
4 - 14
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.2.2 Forced stop input cable
(1) Precautions for handling the forced stop input cable
For connection or removal of the forced stop input cable, do it surely while
holding a connector of forced stop input cable.
QD74MH
CN1
Tab
(2) Connection of the forced stop input cable
For connection of a forced stop input cable to the QD74MH, connect it surely to
a EMI connector of QD74MH while holding a connector.
Be sure to insert it until it clicks.
(3) Removal of the forced stop input cable
For removal of the forced stop input cable, push a tab and pull out the cable
while holding a connector.
POINT
Forcibly removal the forced stop input cable from the QD74MH will damage the
QD74MH or forced stop input cable.
4 - 15
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
(4) Specifications of forced stop input cable
Generally use the forced stop input cable available as our products. If the
required length is not found in our products, fabricate the cable on the customer
side. Make the forced stop input cable within 30m(98.43ft.).
(a) Q170DEMICBL M
1) Model explanation
Type: Q170DEMICBL M
Symbol
05
1
3
5
10
15
20
25
30
Cable length [m(ft.)]
0.5(1.64)
1(3.28)
3(9.84)
5(16.40)
10(32.81)
15(49.21)
20(65.62)
25(82.02)
30(98.43)
2) Connection diagram
CPU module side
Solderless terminal
2
1
5556PBTL (Terminal)
5557-02R-210 (Connector)
Solderless terminal size: R1.25-3.5
EMI.COM
2
EMI.COM
EMI
1
EMI
: Twisted pair cable
(Note) : Use a cable of wire size AWG24.
3) Forced stop input connector (Molex Incorporated make)
Type Connector : 5557-02R-210
Terminal : 5556TLPBTL
[Unit: mm (inch)]
8.5
(0.33)
6.3
(0.25)
9.6
(0.38)
3.5
(0.14)
4 - 16
10.7
(0.42)
19.6 (0.77)
10.6
(0.42)
5.4
(0.21)
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.3 Confirming the Installation and Wiring
4.3.1 Items to confirm when installation and wiring are completed
Confirm the wiring after installation and wiring.
Confirm the following points in the buffer memory using GX Developer.
• Are the servo amplifiers correctly connected?
• Are the servo amplifiers and servomotors correctly connected?
• Are the external devices (input signals) correctly connected?
• Are the forced stop inputs correctly connected?
Connection with the external devices (input signals) or forced stop inputs can also be
confirmed by the following monitor data of GX Developer.
• Connection with the external devices (input signals).... Md.4 External input signal
• Connection with the forced stop input........................... Md.103 Forced stop input status
Important
If the QD74MH is faulty, or when the required signals such as the proximity dog
signal and stop signal are not recognized, unexpected accidents such as "not
decelerating at the proximity dog during OPR and colliding with the stopper", or "not
being able to stop with the stop signal" may occur.
The "connection confirmation" must be carried out not only when structuring the
positioning system, but also when the system has been changed with module
replacement or rewiring, etc.
4 - 17
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.4 Start-up
4.4.1 Checklist before trial operation
Table 4.3 Checklists before trial operation
Model name
Confirmation Items
Check
Reference
(1) Check that the main base unit has been suited with the CPU module
to be used.
(2) Check that the model name of module is correct.
(3) Check that the installation order is correct.
Main base unit/
Extension base unit
(4) Check that the damage for installed modules.
(5) Check that the modules are installed correctly.
(6) Check for looseness, rattling or distorted installation.
(7) Check that the module fixing screw tightening torque is as specified.
(8) Check that the total I/O points of I/O modules and intelligent function
modules do not exceed the I/O points of the CPU module.
(1) Check that the model name of power supply modules is correct.
(2) Check that the wire sizes of cables are correct.
(3) Check that the power line is wired correctly.
Refer to the QCPU User's
Manual (Hardware Design,
Maintenance and
Inspection)
(4) Check that FG and LG are wired correctly.
(5) Check that the terminal screws are tightened correctly.
Power supply module
(6) Check that the terminal screws are tightening torque is as specified.
(7) Check that the 100VAC, 200VAC and 24VDC wires are twisted as
closely as possible respectively and run in the shortest distance.
(8) Check that the 100VAC, 200VAC and 24VDC wires are not bind the
cable together with and run close to the power wires.
(9) Check that grounding of the earth terminal FG and LG.
(1) Check that the model name of PLC CPU modules is correct.
PLC CPU module
QD74MH
Positioning module
2.2
(2) Check that the modules are installed to CPU slot or I/O slot 0 to 2 of
the main base unit.
(1) Check that the module fixing screws are tightened correctly.
(2) Check that the connection with servo amplifier is correct.
Refer to the QCPU User's
Manual (Hardware Design,
Maintenance and
Inspection)
3.2
(3) Check that the forced stop input is wired correctly.
(1) Check that the wire size of cable is correct.
(2) Check that the terminal block screws are tightened correctly.
(3) Check that the cables connected to each terminal of terminal block
correspond to the signal names.
(4) Check that the external power supply are connected correctly.
(24VDC, 5VDC)
I/O module
(5) Check that the 100VAC, 200VAC and 24VDC wires are twisted as
closely as possible respectively and run in the shortest distance.
(6) Check that the 100VAC, 200VAC and 24VDC wires are not bind the
cable together with and run close to the I/O wires.
(7) Check that the I/O wires are wired correctly.
(1) Check that the model name of SSCNET
(3) Check that the SSCNET
cable
Refer to the QCPU User's
Manual (Hardware Design,
Maintenance and
Inspection)
cables is correct.
(2) Check that the connecting position for connector of SSCNET
are correct.
SSCNET
Refer to the I/O Module
Type Building Block User's
Manual
cables
cables are connected correctly.
(4) Check for looseness, rattling or distorted connection.
(5) Check that the minimum bend radius or more secured.
(6) Check that the MRJ3BUS M and MRJ3BUS M-A do not come in
contact with wires/cables that use materials where the plasticizing
material is contained.
4 - 18
4.2.1
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.4.2 Trial operation and adjustment procedure
Servo start-up procedure
Turn OFF PLC system power supply
Check that the system power supply is
OFF.
Check wiring and module installation
(1) Check the installation position and
condition of each modules.
(2) Check the connecting condition of
connectors.
(3) Check that all terminal screws are tight.
(4) Check the ground wires of servo
amplifier, etc..
(5) Check the servomotor wiring (U, V, W).
(6) Check the regenerative resistor wiring.
(7) Check the circuit of emergency stop or
forced stop.
Servo amplifier setting
Set the axis number of servo amplifier.
Turn ON power supply
Set the switch of PLC CPU module to
STOP, and turn ON the system power
supply.
PLC parameter setting
Refer to the QCPU User's Manual (Hardware Design,
Maintenance and Inspection) for installation of module.
DANGER
Be sure to ground the controllers, servo amplifiers
and servomotors.
(Ground resistance: 100 or less)
Do not ground commonly with other devices.
CAUTION
Check that the combination of modules is correct.
Wrong combination may damage the modules.
Refer to Section 4.2.1
CAUTION
When using a regenerative resistor, shut the
power OFF with an error signal. The regenerative
resistor may abnormally overheat due to a fault in
the regenerative transistor, etc., and may lead to
fires.
Always take heat measure such as flame proofing
for the inside of the control panel where the servo
amplifier or regenerative resistor is mounted and
for the wires used. Failing to do so may lead to
fires.
Set the parameter setting using
GX Developer.
Turn ON power supply again
Turn ON again the power supply or reset of
system.
CAUTION
Check I/O module
Check the wiring of I/O modules.
Do not mount a phase advancing capacitor, surge
absorber or radio noise filter (option FR-BIF) on
the output side of the servo amplifier.
Correctly connect the output side (terminal U, V,
W). Incorrect connections will lead the servomotor
to operate abnormally.
1)
4 - 19
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
1)
Create PLC programs
Create the PLC programs using
GX Developer.
Set the following positioning parameters.
(1) Basic parameters
(2) OPR parameters
(3) Manual control parameters
(4) System parameters
(5) Control data
(6) Positioning data
(7) Servo parameter
Write sequence programs
Write the sequence programs created to the
PLC CPU module.
Turn ON power supply again
Turn ON again or reset the power supply of
system.
Turn ON servo amplifiers power supply
Check the emergency stop ON and forced
stop ON, and turn ON the power supply of
servo amplifiers and servomotors.
PLC READY ON
CAUTION
Set parameter values to those that are compatible
with the controller, servo amplifier, servomotor
and regenerative resistor model name and the
system name application. The protective functions
may not function if the settings are incorrect.
DANGER
Never open the front case or terminal cover at
times other than wiring work or periodic
inspections even if the power is OFF. The insides
of the controller and servo amplifier are charged
and may lead to electric shocks.
When performing wiring work or inspections, turn
the power OFF, wait at least ten minutes, and
then check the voltage with a tester, etc..
Failing to do so may lead to electric shocks.
Wire the units after mounting the controller, servo
amplifier and servomotor. Failing to do so may
lead to electric shocks or damage.
CAUTION
Always mount a leakage breaker on the controller
and servo amplifier power source.
Install emergency stop circuit externally so that
operation can be stopped immediately and the
power shut off.
Use the program commands for the program with
the conditions specified in the instruction manual.
Some devices used in the program have fixed
applications, so use these with the conditions
specified in the programming manual.
Turn ON the PLC READY signal [Y0].
Check servo amplifier
Check that the mounted servo amplifiers
operate correctly.
Check external inputs
Refer to Section 6.5.1
Check that the following external inputs
operate correctly.
(1) FLS (Upper stroke limit input)
(2) RLS (Lower stroke limit input)
(3) DOG (Proximity dog signal)
2)
4 - 20
CAUTION
If safety standards (ex., robot safety rules, etc., )
apply to the system using the controller, servo
amplifier and servomotor, make sure that the
safety standards are satisfied.
Construct a safety circuit externally of the
controller or servo amplifier if the abnormal
operation of the Motion controller or servo
amplifier differ from the safety directive operation
in the system.
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
2)
Check machine operation
Check the followings by making the
machine operate with the JOG operation.
(1) Machine operates correctly
(no vibration, hunting, etc. )
(2) Stroke limits operate correctly
(3) Machine stops by the emergency stop
or forced stop.
CAUTION
The system must have a mechanical allowance so
that the machine itself can stop even if the stroke
limits switch is passed through at the max. speed.
Execute the test operation in the system that it is
low-speed as much as possible and put forced
stop, and confirm the operation and safety.
Check OPR
Check the followings by executing the OPR.
(1) OPR direction
(2) OPR data
(3) Proximity dog position
Check sequence program
Set the switch of PLC CPU module to RUN,
and check that all positioning controls by
sequence programs are correct.
Check by automatic operation
Check the sequence operation by executing
the sequence program using an actual
external input.
END
POINT
(1) Make note of servomotor module names before the servomotor is mounted on
a machine.
The servomotor name plate may not be visible after the motor is mounted.
(2) When the servo amplifier, servomotor is first turned on, check the operation
before the servomotor is mounted on a machine to avoid an unexpected
accidents such as machine breakage.
4 - 21
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.5 Maintenance
4.5.1 Precautions for maintenance
The precautions for servicing are given below. Refer to this section as well as "4.1
Handling Precautions" when carrying out the work.
DANGER
Completely turn off the externally supplied power used in the system before clearing or tightening
the screws. Not doing so could result in electric shock.
CAUTION
Never try to disassemble or modify module. It may cause product failure, operation failure, injury or
fire.
Completely turn off the externally supplied power used in the system before installation or removing
the module. Not doing so could result in electric shock, damage to the module or operation failure.
4.5.2 Disposal instructions
When you discard QD74MH, servo amplifier, a battery (primary battery) and other
option articles, please follow the law of each country (area).
CAUTION
This product is not designed or manufactured to be used in equipment or systems in situations
that can affect or endanger human life.
When considering this product for operation in special applications such as machinery or
systems used in passenger transportation, medical, aerospace, atomic power, electric power,
or submarine repeating applications, please contact your nearest Mitsubishi sales
representative.
Although this product was manufactured under conditions of strict quality control, you are
strongly advised to install safety devices to forestall serious accidents when it is used in
facilities where a breakdown in the product is likely to cause a serious accident.
4 - 22
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.6 Daily Inspection
The items that must be inspected daily are shown below.
Table 4.4 Daily inspection
Item
1
2
3
Inspection item
Criterion
Action
Mounting of base unit
Installation of I/O module
Check that the module
The module fixing hook must be engaged and installed
is not dislocated and
the unit fixing hook is correctly.
engaged securely.
Securely engaged
the module fixing
hook.
Check for loose
terminal screws.
Screws should not be loose.
Retighten the
terminal screws.
Check for distance
between solderless
terminals.
The proper clearance should be provided between
solderless terminals.
Correct.
Check the connector
part of the cable.
Connections should not be loose.
Retighten the
connector fixing
screws.
Check that the LED is
ON.
The LED must be ON (green).
(Abnormal if the LED is OFF or ON (red)).
Connecting conditions
Module indication LED
Power
supply
module
4
Inspection
Check that the fixing
screws are not loose
and the cover is not
dislocated.
PLC CPU
module
[POWER]
LED
The screws and cover must be mounted securely.
[MODE]
LED
Check that the LED is
ON.
The LED must be ON (green).
(Abnormal if the LED is OFF or flickering.)
[RUN] LED
Check that the LED is
ON in RUN status.
The LED must be ON.
(Abnormal if the LED is OFF.)
[ERR.] LED
Check that the LED is
OFF.
The LED must be OFF.
(Abnormal if the LED is ON or flickering.)
[BAT.] LED
Check that the LED is
OFF.
The LED must be OFF.
(Abnormal if the LED is ON.)
Check that the LED is
QD74MH [RUN] LED
ON.
Positioning
Check that the LED is
module
[ERR.] LED
OFF.
Input LED
Check that the LED is
ON/OFF.
Output LED
Check that the LED is
ON/OFF.
I/O module
The LED must be ON.
(Abnormal if the LED is OFF.)
The LED must be OFF.
(Abnormal if the LED is ON or flickering.)
Retighten the
screws.
Refer to the
"QCPU User's
Manual (Function
Explanation,
Program
Fundamentals)".
Refer to Section
2.4
The LED must be ON when the input power is turned ON.
The LED must be OFF when the input power is turned OFF.
Refer to
(Abnormal if the LED does not turn ON or turn OFF as
"I/O Module Type
indicated above.)
The LED must be ON when the input power is turned ON. Building Block
The LED must be OFF when the input power is turned OFF. User's Manual".
(Abnormal if the LED does not turn ON or turn OFF as
indicated above.)
4 - 23
4 INSTALLATION, WIRING, START-UP, AND MAINTENANCE
MELSEC-Q
4.7 Periodic Inspection
The items that must be inspected one or two times every 6 months to 1 year are listed
below. When the equipment is moved or modified, or layout of the wiring is changed,
also implement this inspection.
Table 4.5 Periodic inspection
3
4
Inspection
Judgment criteria
Ambient temperature
Ambient humidity
0 to 55 °C (32 to 131 °F)
Measure with a thermometer and a
5 to 95 % RH
hygrometer.
Measure corrosive gas.
No corrosive gases
Atmosphere
Remedy
When the controller is used in
the board, the ambient
temperature in the board
becomes the ambient
temperature.
85 to 132VAC
Measure a voltage across the
terminals of 100/200VAC and
24VDC.
15.6 to 31.2VDC
Looseness, rattling
Move the module to check for
looseness and rattling.
The module must be installed
solidly.
Retighten the screws.
If the CPU, I/O, or power supply
module is loose, fix it with
screws.
Adhesion of dirt and
foreign matter
Check visually.
Dirt and foreign matter must not
be present.
Remove and clean.
Looseness of terminal
screws
Try to further tighten screws with a
Screws must not be loose.
screwdriver.
Power voltage
Installation
2
Connection
1
Inspection item
Ambient environment
Item
170 to 264VAC
Change the power supply.
Retighten the terminal screws.
Proximity of solderless
Check visually.
terminals to each other
Solderless terminals must be
positioned at proper intervals.
Correct.
Looseness of
connectors
Connectors must not be loose.
Retighten the connector fixing
screws.
Check visually.
4 - 24
5 SPECIFICATIONS AND FUNCTIONS
MELSEC-Q
5. SPECIFICATIONS AND FUNCTIONS
This section describes the input/output signals with PLC CPU and functions.
5.1 Specifications of Input/Output Signals
5.1.1 List of input/output signals
The QD74MH uses 32 input points and 32 output points for exchanging data with the
PLC CPU.
The input/output signals when the QD74MH is mounted in slot No. 0 of the main base
unit are shown below.
Device X refers to the signals input from the QD74MH to the PLC CPU, and device Y
refers to the signals output from the PLC CPU to the QD74MH.
Signal direction: QD74MH
Device No.
X0
PLC CPU
Signal name
Signal direction: PLC CPU
Device No.
Signal name
Unit READY
Y0
PLC READY
X1
Error detection
Y1
All axis servo ON
X2
Warning detection
Y2
Forced stop input
X3
Synchronization flag
Y3
X4
Y4
X5
Y5
X6
Y6
X7
Y7
X8
Y8
X9
XA
Y9
Unusable
QD74MH
Unusable
YA
XB
YB
XC
YC
XD
YD
XE
YE
XF
YF
X10
Axis 1
Y10
Axis 1
X11
Axis 2
Y11
Axis 2
X12
Axis 3
Y12
Axis 3
X13
Axis 4
Y13
Axis 4
X14
Axis 5
Y14
Axis 5
X15
Axis 6
Y15
Axis 6
X16
Axis 7
Y16
Axis 7
X17
Axis 8
Y17
Axis 8
X18
Axis 9
Y18
Axis 9
BUSY
X19
Axis 10
Y19
Axis 10
X1A
Axis 11
Y1A
Axis 11
X1B
Axis 12
Y1B
Axis 12
X1C
Axis 13
Y1C
Axis 13
X1D
Axis 14
Y1D
Axis 14
X1E
Axis 15
Y1E
Axis 15
X1F
Axis 16
Y1F
Axis 16
5-1
Positioning start
5
5 SPECIFICATIONS AND FUNCTIONS
5.1.2 Input signals (QD74MH
Device No.
X0
MELSEC-Q
PLC CPU)
Signal name
ON : READY
OFF : Not READY/
Watch dog
timer error
Unit READY
Details
• When the PLC READY signal [Y0] turns from OFF to ON, the parameter
setting range is checked. If no error is found, this signal turns ON.
• It turns OFF when the PLC READY signal [Y0] turns OFF.
• It turns OFF when the watch dog timer error occurs.
• It is used for interlock in a sequence program, etc.
ON
PLC READY signal [Y0] OFF
ON
Unit READY signal [X0]
X1
X2
X3
ON : Error
occurrence
OFF : No error
Error detection
OFF
• This signal turns ON when the error occurs by any axis of from Axis 1 to 16.
• It turns OFF by error reset of all axes in which the error occurred.
(Confirm the axis error status in " Md.100 Axis error status".)
POINT
Start of positioning, OPR or manual control cannot be executed for the axis in
operation error occurrence. Start after reset errors.
• This signal turns ON when the error occurs by any axis of from Axis 1 to 16.
• It turns OFF by warning release of all axes in which the warning occurred.
(Confirm the axis warning status in " Md.101 Axis warning status".)
Warning detection
ON : Warning
occurrence
OFF : No warning
Synchronization flag
ON : Module access
enabled
OFF : Module access
disabled
• When "Asynchronous" is selected in the module synchronization setting of
the CPU module, this signal can be used as interlock for the access from a
sequence program to the QD74MH.
(After the system power supply ON or reset, this signal turns ON if the
access from the PLC CPU to the QD74MH is possible.)
ON : BUSY
OFF : Not BUSY
• This signal turns ON at the start of positioning, OPR and manual control.
• It turns OFF at passage of " Da.8 Dwell time" after positioning stops, OPR
completion and manual control completion.
• It turns OFF at error completion or positioning stop.
X10
Axis 1
X11
Axis 2
X12
Axis 3
X13
Axis 4
X14
Axis 5
X15
Axis 6
X16
Axis 7
X17
Axis 8
X18
Axis 9
X19
Axis 10
X1A
Axis 11
X1B
Axis 12
X1C
Axis 13
X1D
Axis 14
X1E
Axis 15
X1F
Axis 16
BUSY
(Note-1)
• Warnings of servo amplifier are automatically released by warning release
on the servo amplifier side also on the QD74MH side. Therefore, warnings
are not released by error reset for an axis.
POINT
(Note-1): The BUSY signal turns ON even when position control of movement
amount 0 is executed. However, since the ON time is short, the ON status
may not to be detected in the sequence program.
5-2
5 SPECIFICATIONS AND FUNCTIONS
5.1.3 Output signals (PLC CPU
Device No.
MELSEC-Q
QD74MH)
Signal name
Details
(a) This signal notifies the QD74MH that the PLC CPU is normal.
• It is turned ON/OFF with the sequence program.
(b) This signal turns OFF at the change of the basic parameters or OPR
parameters.
(c) The following processes are executed at the PLC READY signal ON.
• The setting range check of the basic parameters, OPR parameters and
system parameters.
• Unit READY signal [X0] ON
(d) The following processes are executed at the PLC READY signal from ON
to OFF.
• Unit READY signal [X0] OFF
• Sudden stop of operating axis.
Y0
PLC READY
ON : PLC READY
ON
OFF : PLC READY
OFF
Y1
All axis servo ON
ON : Servo ON
OFF : Servo OFF
• The servo ON/OFF is executed for all servo amplifiers connected to the
QD74MH.
([READY ON, Servo ON] / [READY OFF, Servo OFF])
Y2
Forced stop input
ON : Requested
OFF : Not requested
• The forced stop is requested from the PLC CPU to the QD74MH.
Y10
Axis 1
Y11
Axis 2
Y12
Axis 3
Y13
Axis 4
Y14
Axis 5
Y15
Axis 6
Y16
Axis 7
Y17
Axis 8
Y18
Axis 9
Y19
Axis 10
Y1A
Axis 11
Y1B
Axis 12
Y1C
Axis 13
Y1D
Axis 14
Y1E
Axis 15
Y1F
Axis 16
Positioning ON : Requested
start
OFF : Not requested
• Positioning, OPR and new current change is started.
• The positioning start signal becomes valid at the leading edge, and the
operation is started.
5-3
5 SPECIFICATIONS AND FUNCTIONS
MELSEC-Q
5.2 Functions
5.2.1 QD74MH control functions
(1) OPR control
"OPR control" is a function that established the start point for carrying out
positioning control, and carries out positioning toward that start point. This is
used to return a workpiece, located at a position other than the OP when the
power is turned ON or after positioning stop, to the OP. The OPR control is
preregistered in the QD74MH as the "Positioning start data No. 9000 (OPR)".
(Refer to Chapter 7 "OPR Control".)
(2) Major positioning control
This control is carried out using the positioning data stored in the QD74MH.
Positioning control is executed by setting the required items in this positioning
data and starting that positioning data. An operation pattern can be set in this
positioning data, and with this whether to carry out control with continuous
positioning data (ex.: positioning data No.1, No.2, No.3, ...) can be set.
(Refer to Chapter 8 "Positioning Control".)
(3) Manual control
Use this manual control to move the workpiece to a random position (JOG
operation) and to finely adjust the positioning (incremental feed operation).
(Refer to Chapter 9 "Manual Control".)
(4) Sub functions
When executing the above functions, control compensation, limits and functions
can be added.
(Refer to Chapter 10 "Function Details".)
5-4
5 SPECIFICATIONS AND FUNCTIONS
MELSEC-Q
5.2.2 Functions of QD74MH
Functions of QD74MH are shown below.
Sub functions
Manual
control
• Proximity dog type
• Data set type
• Stopper type
• Dog cradle type
• Limit switch combined type
• Scale origin signal detection type
Details
Reference
section
This function mechanically establishes the positioning start point using a
proximity dog, stopper or limit switch.
Chapter 7
This function executes the positioning to a target position in a linear path by the
address or movement amount set in the positioning data.
Chapter 8
JOG operation
This function executes the positioning at the specified speed while the JOG start
signal is ON.
9.1
Incremental feed operation
This function executes the positioning corresponding to minute movement
amount by manual operation.
9.2
Servo ON/OFF
This function executes the all axes servo ON/OFF or each axis servo ON/OFF.
10.1
Electronic gear function
This function changes the machine movement amount per commanded pulse by
setting of the movement amount per pulse.
10.2
Hardware stroke limit function
This function executes a deceleration stop with the limit switch input via servo
amplifier.
10.3
Software stroke limit function
If a command outside of the upper/lower limit stroke limit setting range set in the
parameters is issued, this function will not execute positioning for that command.
10.4
Backlash compensation function
This function compensates the mechanical backlash amount. Feed pulses
equivalent to the set backlash amount are output each time the movement
direction change.
10.5
Speed limit function
If the command speed exceeds " Pr.10 Speed limit value" during control, this
function limits the commanded speed within the setting range of " Pr.10 Speed
limit value".
10.6
Position control
Positioning control
OPR control
Functions
Linear control
• 1-axis linear control
• 2-axis linear interpolation
control
• 3-axis linear interpolation
control
• 4-axis linear interpolation
control
Acceleration/deceleration control
This function adjusts the acceleration/deceleration for the control.
10.7
Stop control
This function executes a deceleration stop with the stop command.
10.8
Sudden stop control
This function executes a sudden stop with the sudden stop command.
10.9
Forced stop control
This function stops the all axes of servo amplifier by input from DC24V connected
to the forced stop input connector of QD74MH or input from PLC CPU.
10.10
Command in-position function
This function calculates the remaining distance to reach the positioning stop
position at the automatic deceleration, if the value is less than the set value, the
"Command in-position ( Md.10 Status 2: b1)" signal turns ON.
10.11
Pausing function
This function pauses a positioning or continues a positioning from the interruption
position.
10.12
Torque limit function
If the torque generated by the servomotor exceeds the torque limit value during
control, this function limits the torque generated within the setting range of torque
limit value
10.13
Speed change function
This function changes the speed during positioning operation.
10.14
Acceleration/deceleration time
change function
This function changes the acceleration/deceleration time at the speed change.
10.15
5-5
5 SPECIFICATIONS AND FUNCTIONS
MELSEC-Q
Sub functions
Functions
Details
Reference
section
Target position change function
This function changes the target position during positioning operation.
10.16
Current value change function
This function changes the feed current value to any address.
10.17
External signal logic selection
This function selects a logic of I/O signals.
10.18
Operation setting for incompletion
of OPR function
This function selects whether the positioning control is started or not at the
incompletion of OPR.
10.19
Axis error reset
This function resets the errors occurred.
10.20
Absolute position system
This function restores the absolute position.
10.21
Flash ROM write function
This function writes (back-up) the parameter data and positioning data in the
flash ROM.
10.22
Parameter initialization function
This function returns the parameters and positioning data stored in the QD74MH
buffer memory and flash ROM to the default values (shipped from the factory).
10.23
5-6
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6. DATA USED FOR POSITIONING CONTROL
6.1 Memory Configuration and Roles
The QD74MH is equipped with the following two memories for data exchange with
PLC CPU and data save.
Table 6.1 Memory configuration
This area can be directly accessed with sequence program from
Buffer memory
Backup
Servo parameter area
Not
PLC CPU, and the parameter data and positioning data can be
possible
changed.
Flash ROM
Positioning data area
Control data area
Role
configuration
Monitor data area
Memory
Parameter area
Area configuration
Details of buffer memory required for positioning can be backed up.
Possible
: Accessible
: Not accessible
(1) Details of areas
(a) Parameter area
The parameters, such as basic parameters, OPR parameters, manual
control parameters or system parameters required for positioning control
can be set and stored.
(b) Monitor data area
The operation state for the common monitor or axis monitor can be stored.
(c) Control data area
The data, for positioning such as common control data or axis control data,
and for some sub functions can be set and stored.
(d) Positioning data area
The positioning data No.1 to 32 can be set and stored.
(e) Servo parameter area
The parameters required for positioning control on servo amplifier can be
set and stored.
6-1
6
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(2) Reading/writing data from buffer memory
Read and write the data from the buffer memory in the following method.
(a) Reading
1) Sequence program
• 1 word .......... Use FROM instruction or intelligent function device.
• 2 word .......... Use DFRO instruction or intelligent function device.
(b) Writing
1) Sequence program
• 1 word .......... Use TO instruction or intelligent function device.
• 2 word .......... Use DTO instruction or intelligent function device.
(3) Saving data
Data of the buffer memory cannot be backed up, and the all data are transmitted
from FLASH ROM at the system power supply ON or reset of the PLC CPU.
Therefore, back up the data required for positioning using the flash ROM write
function.
Refer to Section 10.22 for the flash ROM write function.
6-2
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.2 Data Transmission Process
6.2.1 Data transmission process for operation
PLC CPU
TO(P) instruction, DTO(P) instruction
MOV(P) instruction, DMOV(P) instruction
FROM(P) instruction, DFRO(P) instruction
MOV(P) instruction, DMOV(P) instruction
QD74MH
Internal memory
Parameter
PLC READY ON
Parameter change request
Buffer memory
System power supply ON/
Reset of the PLC CPU
Flash ROM
Positioning data
Positioning data
Servo parameter
"1" is set in " Cd.100 Flash
ROM write request".
Servo parameter
Parameter
Monitor data
Parameter
Control data
Interface for
communication with
servo amplifier
Communication start with servo amplifier
(PLC READY ON (First time only))
Servo parameter change
(Note-1)
Servo amplifier
(Note-1): When the parameters are chenged by the auto tuning or MR Configurator,
the servo parameters are read to the buffer memory of QD74MH.
The data can be transmitted with steps (1) to (6) shown below.
(1) Transmitting data when power is turned ON or PLC CPU is reset
(a) Data stored (backed up) in the flash ROM can be transmitted to the buffer
memory. (Refer to Section 10.22)
POINT
Communication with servo amplifier cannot be executed at the system power
supply ON. (The servo parameter can be transmitted from the flash ROM to the
buffer memory at the system power supply ON, however, they can not be
transmitted to the servo amplifiers.)
Communication starts with servo amplifier at the PLC READY ON (first time only).
(2) Transmitting data with command from PLC CPU
The parameters or control data can be written from the PLC CPU to the buffer
memory using the commands (TO(P) instruction, DTO(P) instruction, MOV(P)
instruction or DMOV(P) instruction).
6-3
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(3) PLC READY ON
(a) The buffer memory data of QD74MH can be taken to the internal memory.
(Refer to Section 6.4 for the parameters taken at the PLC READY ON.)
(b) The communication starts with servo amplifiers at the PLC READY ON (first
time only) after the system power supply ON, and the servo parameters to
the buffer memory can be transmitted from QD74MH to the servo amplifier.
POINT
If the backup of parameters in the flash ROM is unnecessary, set the parameters
required to the buffer memory of QD74MH with the sequence program before the
PLC READY ON after the system power supply ON.
(4) Accessing with command from PLC CPU
The data can be read from the buffer memory to the PLC CPU using the
commands (FROM(P) instruction, DFRO(P) instruction, MOV(P) instruction or
DMOV(P) instruction).
(5) Reading the servo parameter from the servo amplifier
When the parameters can be changed by the auto tuning etc. of servo amplifier,
the servo parameters can be read automatically from the servo amplifier to the
buffer memory.
Make the writing operation to the flash ROM to write the servo parameters to the
flash ROM. (Refer to Section 10.22.)
(6) Writing the flash ROM by PLC CPU request
The data can be backed up from the buffer memory to the flash ROM by setting
to "1" in " Cd.100 Flash ROM write request".
6-4
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.2.2 Setting of servo amplifier series
Up to 8 axes servo amplifies in QD74MH8 and up to 16 axes servo amplifies in
QD74MH16 can be connected. Set the servo amplifier series in the servo parameter
for each axis.
Table 6.2 Setting of servo amplifier series
Symbol
Pr.300
Item
Servo amplifier
series
Setting range
Details
0: None
1: MR-J3-B
3: MR-J3-B (Fully closed loop control)
4: MR-J3-B (Linear)
Set the servo amplifiers connected to QD74MH.
Communication with servo amplifiers is possible setting by the servo amplifier series.
The procedure to communicate with servo amplifiers is shown below.
Turn ON the system power supply.
Set the servo amplifier series.
It is not necessary to set every time, if the flash ROM write
is executed once after setting of the servo amplifier series.
Turn ON the control power supply
of servo amplifier.
Turn ON the PLC REDEY.
Communiction start with servo
amplifier.
POINT
(1) The communicate with servo amplifiers can be executed at the first PLC
READY ON after the system power supply ON.
An error code 400 will occur and the unit READY does not turn ON in the
following cases.
• The servo amplifiers corresponding to servo amplifier series cannot be
connected.
• The power supply of servo amplifiers are OFF.
The communication does not start and the error reset cannot be executed,
even if the power supply of servo amplifier is turned ON. Turn the PLC READY
ON after the power supply ON for all axes.
(2) The communication continues even if the PLC READY is turned OFF after
communication start with the servo amplifiers.
(3) The servo amplifier series cannot be changed after the PLC READY ON.
Set it before PLC READY ON in the following procedure.
• Write the data to the flash ROM beforehand.
• Set the servo amplifier series before the PLC READY ON, after turning
ON/OFF of the system power supply or reset of the PLC CPU.
(4) If the power supply of the servo amplifier is turned OFF after communication
start with the servo amplifiers, an error code 400 will occur, and the unit
READY turns OFF. The communication does not start and the error reset
cannot be executed, even if the power supply of servo amplifier is turned ON.
6-5
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.2.3 Exchange of the servo parameters
This section describes the exchange of the servo parameters.
(1) Writing the servo parameters from QD74MH to servo amplifier
Some servo parameters become valid by turning OFF/ON of the power supply of
the servo amplifiers. (Refer to Section 6.8.)
Change procedure is shown below.
1) Change the servo parameters and write them to the buffer memory.
2) Execute the flash ROM write.
3) (Change the parameters after procedure 3), if not required.)
4) Turn the power supply ON of the servo amplifiers.
5) Turn the PLC READY ON. (The parameters changed can be transmitted to
the servo amplifiers.)
6) Turn the power supply OFF of the system and the servo amplifiers.
7) Turn the power supply ON of the system and the servo amplifiers.
(The parameters changed become valid.)
8) Turn the PLC READY ON.
PLC CPU
1)
TO(P) instruction, DTO(P) instruction
MOV(P) instruction, DMOV(P) instruction
FROM(P) instruction, DFRO(P) instruction
MOV(P) instruction, DMOV(P) instruction
QD74MH
Internal memory
Parameter
PLC READY ON
3), 7)
System power supply ON/
Reset of the PLC CPU
Buffer memory
Parameter
Flash ROM
Parameter
Positioning data
Positioning data
Servo parameter
Servo parameter
Monitor data
Control data
2)
"1" is set in " Cd.100 Flash
ROM write request".
Interface for
communication with
servo amplifier
5), 8)
Communication start with servo amplifier
(PLC READY ON (First time only))
Servo parameter change
Servo amplifier
4), 6), 7)
6-6
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(2) Transmitting the servo parameters from servo amplifier to buffer
memory of QD74MH
The parameters changed in the servo amplifier can be automatically transmitted
to the buffer memory of QD74MH. However, they cannot be transmitted to the
flash ROM of QD74MH. Since the contents changed is lost by turning OFF of
the system power supply or reset of the PLC CPU, execute the flash ROM write,
if required.
There is a limitation in the write count to the flash ROM. (Refer to Section 10.22.)
Transmitting procedure is shown below.
1) The parameters can be changed by MR Configurator or the parameters, such
as gain by auto tuning.
2) The servo parameters changed in procedure 1) can be automatically
transmitted to the buffer memory of QD74MH.
3) When "1" is set in the " Cd.100 Flash ROM write request" in the sequence
program, the buffer memory data can be transmitted to the flash ROM.
PLC CPU
TO(P) instruction, DTO(P) instruction
MOV(P) instruction, DMOV(P) instruction
3) Flash ROM write request ON
FROM(P) instruction, DFRO(P) instruction
MOV(P) instruction, DMOV(P) instruction
QD74MH
Internal memory
Parameter
System power supply ON/
Reset of the PLC CPU
Flash ROM
Positioning data
Positioning data
Servo parameter
Monitor data
"1" is set in " Cd.100 Flash
ROM write request".
Servo parameter
Control data
3) Flash ROM write operation
Buffer memory
PLC READY ON
Parameter
Parameter
Interface for
communication with
servo amplifier
2)
Servo parameter change
Communication start with servo amplifier
(PLC READY ON (First time only))
Servo amplifier
1)
1)
MR Configurator
(Servo set up software)
6-7
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.3 Buffer Memory Configuration
This section describes the configuration and contents of the buffer memory.
Table 6.3 List of buffer memory
Buffer memory address
Buffer memory area configuration
Parameter area
Axis 1
Axis 2
Basic parameter
0 to 49
100 to 149
to
OPR parameter
50 to 79
150 to 179
Manual control parameter
80 to 99
180 to 199
1700 to 1799
1800 to 1899
to
System parameter
Monitor data area
Control data area
Positioning data area
Axis monitor data
3400 to 3499
to
3500 to 3599
1550 to 1579
1580 to 1599
3100 to 3199
3200 to 3299
to
4800 to 4899
4900 to 4999
9580 to 9899
9900 to 10219
5000 to 5099
5100 to 5419
5420 to 5739
Unusable
Servo parameter area
1450 to 1479
1480 to 1499
3300 to 3399
System control data
Positioning data (32 data/axis)
Axis 16
1500 to 1549
1600 to 1699
System monitor data
Axis control data
Axis 15
1400 to 1449
to
10220 to 1299
Servo parameter
10300 to 10599
10600 to 10899
Unusable
to
14500 to 14799
14800 to 15099
15100 to 32767
POINT
The range of axis No.1 to 8 is valid for the QD74MH8.
REMARK
In the buffer memory address, "n" in "0+100n", etc. indicates a value corresponding
to axis No. such as the following tables.
Axis No.
n
Axis No.
n
1
0
9
8
2
1
10
9
3
2
11
10
4
3
12
11
5
4
13
12
6
5
14
13
7
6
15
14
8
7
16
15
• Calculate as follows for the buffer memory address corresponding to each axis.
(Example) For axis 16
50+100n ( Pr.50 OPR method) = 50+100×15=1550
3415+100n ( Cd.15 Speed change request) = 3415+100×15=4915
• The range (n=0 to 7) of axis No.1 to 8 is valid for the QD74MH8.
6-8
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(1) List of basic parameter
Axis No.
Buffer memory address
1
0 to 49
2
100 to 149
3
4
5
6
7
8
9
10
11
12
13
14
15
16
200 to 249
300 to 349
400 to 449
500 to 549
600 to 649
700 to 749
800 to 849
900 to 949
1000 to 1049
1100 to 1149
1200 to 1249
1300 to 1349
1400 to 1449
1500 to 1549
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Parameter item
Pr.0
Electronic gear numerator (AP)
Pr.2
Electronic gear denominator (AL)
Pr.4
Software stroke limit upper limit value
Pr.6
Software stroke limit lower limit value
Pr.8
—
Backlash compensation amount
Unusable
Pr.10
Speed limit value
—
Pr.15
Pr.16
Pr.17
—
Unusable
Acceleration/deceleration method
S-curve acceleration/deceleration time constant
Sudden stop deceleration time
Unusable
Pr.20
Command in-position range
—
Pr.23
—
Pr.25
Unusable
Target position change overrun processing selection
Unusable
Interpolation group
Pr.26
Linear interpolation speed limit value
—
Pr.31
—
Unusable
External input signal logic selection
Unusable
6-9
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(2) List of OPR parameter
Axis No.
Buffer memory address
1
50 to 79
Parameter item
2
150 to 179
3
250 to 279
0
Pr.50
OPR method
4
350 to 379
1
Pr.51
OPR direction
5
450 to 479
2
6
550 to 579
3
Pr.52
OP address
7
650 to 679
4
8
750 to 779
5
Pr.54
OPR speed
Creep speed
Symbol
Parameter item
9
850 to 879
6
Pr.56
10
950 to 979
7
—
11
1050 to 1079
8
Pr.58
OPR acceleration time
12
1150 to 1179
9
Pr.59
OPR deceleration time
13
1250 to 1279
10
14
1350 to 1379
11
Pr.60
OP shift amount
15
1450 to 1479
12
16
1550 to 1579
13
Pr.62
OP search limit
14
15
16
—
Pr.66
Unusable
Unusable
Operation setting for incompletion of OPR
17
18
19
20
21
22
23
—
Unusable
24
25
26
27
28
29
6 - 10
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(3) List of manual control parameter
Axis No.
Buffer memory address
1
80 to 99
Parameter item
2
180 to 199
3
280 to 299
0
4
380 to 399
1
5
480 to 499
6
580 to 599
7
680 to 699
4
8
780 to 799
5
Symbol
Parameter item
Pr.80
JOG speed
2
Pr.82
JOG operation acceleration time
3
Pr.83
JOG operation deceleration time
Pr.84
Incremental feedrate
9
880 to 899
6
10
980 to 999
7
11
1080 to 1099
8
12
1180 to 1199
9
13
1280 to 1299
10
14
1380 to 1399
11
15
1480 to 1499
12
16
1580 to 1599
13
—
Unusable
14
15
16
17
18
19
6 - 11
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(4) List of system parameter
Buffer memory address
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
Symbol
Parameter item
Buffer memory address
Symbol
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
—
—
Unusable
Pr.101 External forced stop selection
—
Unusable
6 - 12
Parameter item
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(5) List of axis monitor data
Axis No.
Buffer memory
address
1
1700 to 1799
2
1800 to 1899
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1900 to 1999
2000 to 2099
2100 to 2199
2200 to 2299
2300 to 2399
2400 to 2499
2500 to 2599
2600 to 2699
2700 to 2799
2800 to 2899
2900 to 2999
3000 to 3099
3100 to 3199
3200 to 3299
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Parameter item
Md.0
Current feed value
Md.2
Feedrate
Md.4
Md.5
Md.6
Md.7
Md.8
Md.9
Md.10
External input signal
Positioning data No. being executed
Error code
Error details
Warning code
Status 1
Status 2
—
Unusable
Md.26 Real current value
Md.28 Deviation counter value
—
Unusable
Md.31 Motor current value
Md.32 Motor rotation speed
Md.34 Regenerative load ratio
Md.35 Effective load torque ratio
Md.36 Peak torque ratio
—
Unusable
Md.40 Servo status 1
Md.41 Servo status 2
—
Unusable
6 - 13
Symbol
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
—
Parameter item
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(6) List of system monitor data
Buffer memory address
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
Symbol
Parameter item
Buffer memory address
Symbol
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
—
Md.100 Axis error status
Md.101 Axis warning status
Number of write accesses to
Md.102
flash ROM
Md.103 Forced stop input status
—
Unusable
3349
6 - 14
Parameter item
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(7) List of axis control data
Axis No.
Buffer memory
address
1
3400 to 3499
2
3500 to 3599
3
4
5
6
7
8
9
10
11
12
13
14
15
16
3600 to 3699
3700 to 3799
3800 to 3899
3900 to 3999
4000 to 4099
4100 to 4199
4200 to 4299
4300 to 4399
4400 to 4499
4500 to 4599
4600 to 4699
4700 to 4799
4800 to 4899
4900 to 4999
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Cd.0
Cd.1
Cd.2
Cd.3
Cd.4
Cd.5
—
Cd.8
Cd.9
—
Cd.11
Cd.12
Cd.13
—
Cd.15
Parameter item
Axis error reset
Parameter change request
Start method
Axis stop
Axis sudden stop
Pausing
Unusable
Forward rotation JOG start
Reverse rotation JOG start
Unusable
Torque limit request
Forward rotation torque limit value
Reverse rotation torque limit value
Unusable
Speed change request
Cd.16 New speed value
Cd.18
Cd.19
Cd.20
Cd.21
—
Cd.23
Acceleration time change request
New acceleration time value
Deceleration time change request
New deceleration time value
Unusable
Target position change request
Cd.24 New target position value
—
Unusable
Cd.28 New current value
Cd.30 Each axis servo OFF
—
Unusable
Cd.46 Gain changing request
—
Unusable
6 - 15
Symbol
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
—
Parameter item
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(8) List of system control data
Buffer memory address
Symbol
Parameter item
Buffer memory address
5000
Cd.100 Flash ROM write request
5050
5001
Cd.101 Parameter initialization request
5051
5002
5052
5003
5053
5004
5054
5005
5055
5006
5056
5007
5057
5008
5058
5009
5059
5010
5060
5011
5061
5012
5062
5013
5063
5014
5064
5015
5065
5016
5066
5017
5067
5018
5068
5019
5069
5020
5070
5021
5071
5022
5072
5023
5073
5024
5074
5025
5026
—
5075
Unusable
5076
5027
5077
5028
5078
5029
5079
5030
5080
5031
5081
5032
5082
5033
5083
5034
5084
5035
5085
5036
5086
5037
5087
5038
5088
5039
5089
5040
5090
5041
5091
5042
5092
5043
5093
5044
5094
5045
5095
5046
5096
5047
5097
5048
5098
5049
5099
6 - 16
Symbol
—
Parameter item
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(9) List of positioning data
Axis Point Buffer memory
No. No.
address
1
2
1
2
5100 to 5109
5110 to 5119
3
4
5
6
7
8
9
10
11
12
5120 to 5129
5130 to 5139
5140 to 5149
5150 to 5159
5160 to 5169
5170 to 5179
5180 to 5189
5190 to 5199
5200 to 5209
5210 to 5219
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
5220 to 5229
5230 to 5239
5240 to 5249
5250 to 5259
5260 to 5269
5270 to 5279
5280 to 5289
5290 to 5299
5300 to 5309
5310 to 5319
5320 to 5329
5330 to 5339
5340 to 5349
5350 to 5359
5360 to 5369
5370 to 5379
5380 to 5389
5390 to 5399
5400 to 5409
5410 to 5419
5420 to 5429
5430 to 5439
5440 to 5449
5450 to 5459
5460 to 5469
5470 to 5479
5480 to 5489
5490 to 5499
5500 to 5509
5510 to 5519
5520 to 5529
5530 to 5539
5540 to 5549
5550 to 5559
5560 to 5569
5570 to 5579
5580 to 5589
5590 to 5599
5600 to 5609
5610 to 5619
5620 to 5629
5630 to 5639
5640 to 5649
5650 to 5659
5660 to 5669
5670 to 5679
5680 to 5689
5690 to 5699
5700 to 5709
5710 to 5719
5720 to 5729
5730 to 5739
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Axis Point Buffer memory
No. No.
address
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
3
4
6 - 17
1
2
5740 to 5749
5750 to 5759
3
4
5
6
7
8
9
10
11
12
5760 to 5769
5770 to 5779
5780 to 5789
5790 to 5799
5800 to 5809
5810 to 5819
5820 to 5829
5830 to 5839
5840 to 5849
5850 to 5859
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
5860 to 5869
5870 to 5879
5880 to 5889
5890 to 5899
5900 to 5909
5910 to 5919
5920 to 5929
5930 to 5939
5940 to 5949
5950 to 5959
5960 to 5969
5970 to 5979
5980 to 5989
5990 to 5999
6000 to 6009
6010 to 6019
6020 to 6029
6030 to 6039
6040 to 6049
6050 to 6059
6060 to 6069
6070 to 6079
6080 to 6089
6090 to 6099
6100 to 6109
6110 to 6119
6120 to 6129
6130 to 6139
6140 to 6149
6150 to 6159
6160 to 6169
6170 to 6179
6180 to 6189
6190 to 6199
6200 to 6209
6210 to 6219
6220 to 6229
6230 to 6239
6240 to 6249
6250 to 6259
6260 to 6269
6270 to 6279
6280 to 6289
6290 to 6299
6300 to 6309
6310 to 6319
6320 to 6329
6330 to 6339
6340 to 6349
6350 to 6359
6360 to 6369
6370 to 6379
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
List of positioning data (Continued)
Axis Point Buffer memory
No. No.
address
5
6
1
2
6380 to 6389
6390 to 6399
3
4
5
6
7
8
9
10
11
12
6400 to 6409
6410 to 6419
6420 to 6429
6430 to 6439
6440 to 6449
6450 to 6459
6460 to 6469
6470 to 6479
6480 to 6489
6490 to 6499
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
6500 to 6509
6510 to 6519
6520 to 6529
6530 to 6539
6540 to 6549
6550 to 6559
6560 to 6569
6570 to 6579
6580 to 6589
6590 to 6599
6600 to 6609
6610 to 6619
6620 to 6629
6630 to 6639
6640 to 6649
6650 to 6659
6660 to 6669
6670 to 6679
6680 to 6689
6690 to 6699
6700 to 6709
6710 to 6719
6720 to 6729
6730 to 6739
6740 to 6749
6750 to 6759
6760 to 6769
6770 to 6779
6780 to 6789
6790 to 6799
6800 to 6809
6810 to 6819
6820 to 6829
6830 to 6839
6840 to 6849
6850 to 6859
6860 to 6869
6870 to 6879
6880 to 6889
6890 to 6899
6900 to 6909
6910 to 6919
6920 to 6929
6930 to 6939
6940 to 6949
6950 to 6959
6960 to 6969
6970 to 6979
6980 to 6989
6990 to 6999
7000 to 7009
7010 to 7019
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Axis Point Buffer memory
No. No.
address
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
7
8
6 - 18
1
2
7020 to 7029
7030 to 7039
3
4
5
6
7
8
9
10
11
12
7040 to 7049
7050 to 7059
7060 to 7069
7070 to 7079
7080 to 7089
7090 to 7099
7100 to 7109
7110 to 7119
7120 to 7129
7130 to 7139
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
7140 to 7149
7150 to 7159
7160 to 7169
7170 to 7179
7180 to 7189
7190 to 7199
7200 to 7209
7210 to 7219
7220 to 7229
7230 to 7239
7240 to 7249
7250 to 7259
7260 to 7269
7270 to 7279
7280 to 7289
7290 to 7299
7300 to 7309
7310 to 7319
7320 to 7329
7330 to 7339
7340 to 7349
7350 to 7359
7360 to 7369
7370 to 7379
7380 to 7389
7390 to 7399
7400 to 7409
7410 to 7419
7420 to 7429
7430 to 7439
7440 to 7449
7450 to 7459
7460 to 7469
7470 to 7479
7480 to 7489
7490 to 7499
7500 to 7509
7510 to 7519
7520 to 7529
7530 to 7539
7540 to 7549
7550 to 7559
7560 to 7569
7570 to 7579
7580 to 7589
7590 to 7599
7600 to 7609
7610 to 7619
7620 to 7629
7630 to 7639
7640 to 7649
7650 to 7659
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
List of positioning data (Continued)
Axis Point Buffer memory
No. No.
address
9
10
1
2
7660 to 7669
7670 to 7679
3
4
5
6
7
8
9
10
11
12
7680 to 7689
7690 to 7699
7700 to 7709
7710 to 7719
7720 to 7729
7730 to 7739
7740 to 7749
7750 to 7759
7760 to 7769
7770 to 7779
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
7780 to 7789
7790 to 7799
7800 to 7809
7810 to 7819
7820 to 7829
7830 to 7839
7840 to 7849
7850 to 7859
7860 to 7869
7870 to 7879
7880 to 7889
7890 to 7899
7900 to 7909
7910 to 7919
7920 to 7929
7930 to 7939
7940 to 7949
7950 to 7959
7960 to 7969
7970 to 7979
7980 to 7989
7990 to 7999
8000 to 8009
8010 to 8019
8020 to 8029
8030 to 8039
8040 to 8049
8050 to 8059
8060 to 8069
8070 to 8079
8080 to 8089
8090 to 8099
8100 to 8109
8110 to 8119
8120 to 8129
8130 to 8139
8140 to 8149
8150 to 8159
8160 to 8169
8170 to 8179
8180 to 8189
8190 to 8199
8200 to 8209
8210 to 8219
8220 to 8229
8230 to 8239
8240 to 8249
8250 to 8259
8260 to 8269
8270 to 8279
8280 to 8289
8290 to 8299
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Axis Point Buffer memory
No. No.
address
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
11
12
6 - 19
1
2
8300 to 8309
8310 to 8319
3
4
5
6
7
8
9
10
11
12
8320 to 8329
8330 to 8339
8340 to 8349
8350 to 8359
8360 to 8369
8370 to 8379
8380 to 8389
8390 to 8399
8400 to 8409
8410 to 8419
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
8420 to 8429
8430 to 8439
8440 to 8449
8450 to 8459
8460 to 8469
8470 to 8479
8480 to 8489
8490 to 8499
8500 to 8509
8510 to 8519
8520 to 8529
8530 to 8539
8540 to 8549
8550 to 8559
8560 to 8569
8570 to 8579
8580 to 8589
8590 to 8599
8600 to 8609
8610 to 8619
8620 to 8629
8630 to 8639
8640 to 8649
8650 to 8659
8660 to 8669
8670 to 8679
8680 to 8689
8690 to 8699
8700 to 8709
8710 to 8719
8720 to 8729
8730 to 8739
8740 to 8749
8750 to 8759
8760 to 8769
8770 to 8779
8780 to 8789
8790 to 8799
8800 to 8809
8810 to 8819
8820 to 8829
8830 to 8839
8840 to 8849
8850 to 8859
8860 to 8869
8870 to 8879
8880 to 8889
8890 to 8899
8900 to 8909
8910 to 8919
8920 to 8929
8930 to 8939
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
List of positioning data (Continued)
Axis Point Buffer memory
No. No.
address
13
14
1
2
8940 to 8949
8950 to 8959
3
4
5
6
7
8
9
10
11
12
8960 to 8969
8970 to 8979
8980 to 8989
8990 to 8999
9000 to 9009
9010 to 9019
9020 to 9029
9030 to 9039
9040 to 9049
9050 to 9059
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
9060 to 9069
9070 to 9079
9080 to 9089
9090 to 9099
9100 to 9109
9110 to 9119
9120 to 9129
9130 to 9139
9140 to 9149
9150 to 9159
9160 to 9169
9170 to 9179
9180 to 9189
9190 to 9199
9200 to 9209
9210 to 9219
9220 to 9229
9230 to 9239
9240 to 9249
9250 to 9259
9260 to 9269
9270 to 9279
9280 to 9289
9290 to 9299
9300 to 9309
9310 to 9319
9320 to 9329
9330 to 9339
9340 to 9349
9350 to 9359
9360 to 9369
9370 to 9379
9380 to 9389
9390 to 9399
9400 to 9409
9410 to 9419
9420 to 9429
9430 to 9439
9440 to 9449
9450 to 9459
9460 to 9469
9470 to 9479
9480 to 9489
9490 to 9499
9500 to 9509
9510 to 9519
9520 to 9529
9530 to 9539
9540 to 9549
9550 to 9559
9560 to 9569
9570 to 9579
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Axis Point Buffer memory
No. No.
address
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
15
16
6 - 20
1
2
9580 to 9589
9590 to 9599
3
4
5
6
7
8
9
10
11
12
9600 to 9609
9610 to 9619
9620 to 9629
9630 to 9639
9640 to 9649
9650 to 9659
9660 to 9669
9670 to 9679
9680 to 9689
9690 to 9699
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
9700 to 9709
9710 to 9719
9720 to 9729
9730 to 9739
9740 to 9749
9750 to 9759
9760 to 9769
9770 to 9779
9780 to 9789
9790 to 9799
9800 to 9809
9810 to 9819
9820 to 9829
9830 to 9839
9840 to 9849
9850 to 9859
9860 to 9869
9870 to 9879
9880 to 9889
9890 to 9899
9900 to 9909
9910 to 9919
9920 to 9929
9930 to 9939
9940 to 9949
9950 to 9959
9960 to 9969
9970 to 9979
9980 to 9989
9990 to 9999
10000 to 10009
10010 to 10019
10020 to 10029
10030 to 10039
10040 to 10049
10050 to 10059
10060 to 10069
10070 to 10079
10080 to 10089
10090 to 10099
10100 to 10109
10110 to 10119
10120 to 10129
10130 to 10139
10140 to 10149
10150 to 10159
10160 to 10169
10170 to 10179
10180 to 10189
10190 to 10199
10200 to 10209
10210 to 10219
Parameter item
Symbol
0
1
2
3
4
5
6
7
8
9
Parameter item
Da.0
Da.1
Da.2
Da.3
Operation pattern
Control system
Acceleration time
Deceleration time
Da.4
Command speed
Da.6
Positioning address/
movement amount
Da.8
—
Dwell time
Unusable
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(9) List of servo parameter
Axis Buffer memory
No.
address
Parameter item
1
10300 to 10599
2
10600 to 10899
3
10900 to 11199
4
11200 to 11499
1
Pr.301
5
11500 to 11799
2
Pr.302
6
11800 to 12099
3
Pr.303
7
12100 to 12399
4
8
12400 to 12699
5
9
12700 to 12999
10
13000 to 13299
6
Pr.306
PA06
11
13300 to 13599
12
13600 to 13899
7
Pr.307
PA07
0
Symbol
No.
Pr.300
—
Parameter item
Servo series
Symbol
No.
Parameter item
45
Pr.345
PB13 Machine resonance suppression filter 1
PA01 For manufacturer setting
46
Pr.346
PB14 Notch shape selection 1
PA02 Regenerative option
47
Pr.347
PB15 Machine resonance suppression filter 2
PA03 Absolute position detection system
48
Pr.348
PB16 Notch shape selection 2
Pr.304
PA04 Function selection A-1
49
Pr.349
PB17 Automatic setting parameter
Pr.305
PA05
50
Pr.350
PB18 Low-pass filter setting
51
Pr.351
PB19
Vibration suppression control vibration
frequency setting
52
Pr.352
PB20
Vibration suppression control resonance
frequency setting
For manufacturer setting
13
13900 to 14199
8
Pr.308
PA08 Auto tuning mode
53
Pr.353
PB21
14
14200 to 14499
9
Pr.309
PA09 Auto tuning response
54
Pr.354
PB22
15
14500 to 14799
10
Pr.310
PA10 In-position range
55
Pr.355
PB23 Low-pass filter selection
16
14800 to 15099
11
Pr.311
PA11
56
Pr.356
PB24
12
Pr.312
PA12
57
Pr.357
PB25 For manufacturer setting
13
Pr.313
PA13
58
Pr.358
PB26 Gain changing selection
14
Pr.314
PA14 Rotation direction selection
59
Pr.359
PB27 Gain changing condition
15
Pr.315
PA15 Encoder output pulses
60
Pr.360
PB28 Gain changing time constant
16
Pr.316
PA16
61
Pr.361
PB29
For manufacturer setting
For manufacturer setting
Slight vibration suppression control
selection
Gain changing ratio of load inertia
moment to servomotor inertia moment
17
Pr.317
PA17
62
Pr.362
PB30 Gain changing position loop gain
18
Pr.318
PA18
63
Pr.363
PB31 Gain changing speed loop gain
19
Pr.319
PA19
64
Pr.364
PB32
Gain changing speed integral
compensation
20
Pr.320
65
Pr.365
PB33
Gain changing vibration suppression
control vibration frequency setting
21
Pr.321
66
Pr.366
PB34
Gain changing vibration suppression
control resonance frequency setting
22
Pr.322
67
Pr.367
PB35
23
Pr.323
68
Pr.368
PB36
24
Pr.324
69
Pr.369
PB37
25
Pr.325
70
Pr.370
PB38
26
Pr.326
71
Pr.371
PB39
27
Pr.327
72
Pr.372
PB40
28
Pr.328
73
Pr.373
PB41
29
Pr.329
74
Pr.374
PB42
30
Pr.330
75
Pr.375
PB43
31
Pr.331
76
Pr.376
PB44
32
Pr.332
77
Pr.377
PB45
33
Pr.333
PB01 Adaptive tuning mode (Adaptive filter )
78
Pr.378
34
Pr.334
Vibration suppression control tuning
PB02 mode (advanced vibration suppression
control)
79
Pr.379
For manufacturer setting
—
For manufacturer setting
—
35
Pr.335
PB03 For manufacturer setting
80
Pr.380
36
Pr.336
PB04 Feed forward gain
81
Pr.381 PC01 Error excessive alarm level
37
Pr.337
PB05 For manufacturer setting
82
Pr.382 PC02 Electromagnetic brake sequence output
38
Pr.338
Ratio of load inertia moment to servo
PB06
motor inertia moment
83
Pr.383 PC03 Encoder output pulses selection
39
Pr.339
PB07 Model loop gain
84
Pr.384 PC04 Function selection C-1
40
Pr.340
PB08 Position loop gain
85
Pr.385 PC05 Function selection C-2
41
Pr.341
PB09 Speed loop gain
86
Pr.386 PC06 Function selection C-3
42
Pr.342
PB10 Speed integral compensation
87
Pr.387 PC07 Zero speed
43
Pr.343
PB11 Speed differential compensation
88
Pr.388 PC08 For manufacturer setting
44
Pr.344
PB12 For manufacturer setting
89
Pr.389 PC09 Analog monitor 1 output
6 - 21
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
List of servo parameter (Continued)
Axis Buffer memory
No.
address
1
Parameter item
10300 to 10599
2
10600 to 10899
3
10900 to 11199
90
Symbol
Pr.390 PC10 Analog monitor 2 output
No.
Parameter item
143 Pr.443 PD31
4
11200 to 11499
91
Pr.391 PC11 Analog monitor 1 offset
144 Pr.444 PD32
5
11500 to 11799
92
Pr.392 PC12 Analog monitor 2 offset
145 Pr.445
PE01
6
11800 to 12099
7
12100 to 12399
93
Analog monitor feedback position output
Pr.393 PC13
standard data Low
146 Pr.446
PE02
8
12400 to 12699
9
12700 to 12999
94
Pr.394 PC14
Analog monitor feedback position output
standard data High
147 Pr.447
PE03
10
13000 to 13299
95
Pr.395 PC15
148 Pr.448
PE04
11
13300 to 13599
96
Pr.396 PC16
12
13600 to 13899
97
13
13900 to 14199
14
14200 to 14499
15
14500 to 14799
16
14800 to 15099
For manufacturer setting
Symbol
No.
Parameter item
149 Pr.449
PE05
Pr.397 PC17 Function selection C-4
150 Pr.450
PE06
98
Pr.398 PC18
151 Pr.451
PE07
99
Pr.399 PC19 For manufacturer setting
152 Pr.452
PE08
100 Pr.400 PC20
153 Pr.453
PE09
101 Pr.401 PC21 Alarm history clear
154 Pr.454
102 Pr.402 PC22
155 Pr.455
PE10
PE11 For manufacturer setting
103 Pr.403 PC23
156 Pr.456
PE12
104 Pr.404 PC24
157 Pr.457
PE13
105 Pr.405 PC25
158 Pr.458
PE14
106 Pr.406 PC26
159 Pr.459
PE15
107 Pr.407 PC27
160 Pr.460
PE16
108 Pr.408 PC28
161 Pr.461
PE17
109 Pr.409 PC29
162 Pr.462
PE18
110 Pr.410 PC30 For manufacturer setting
163 Pr.463
PE19
111 Pr.411 PC31
164 Pr.464
PE20
112 Pr.412 PC32
165 Pr.465
PE21
113 Pr.413 PD01
166 Pr.466
PE22
114 Pr.414 PD02
167 Pr.467
PE23
115 Pr.415 PD03
168 Pr.468
PE24
116 Pr.416 PD04
169 Pr.469
PE25
117 Pr.417 PD05
170 Pr.470
PE26 Filter coefficient 2-1
118 Pr.418 PD06
171 Pr.471
PE27 Filter coefficient 2-2
119 Pr.419 PD07 Output signal device selection 1
172 Pr.472
PE28 Filter coefficient 2-3
120 Pr.420 PD08 Output signal device selection 2
173 Pr.473
PE29 Filter coefficient 2-4
121 Pr.421 PD09 Output signal device selection 3
174 Pr.474
PE30 Filter coefficient 2-5
122 Pr.422 PD10
175 Pr.475
PE31 Filter coefficient 2-6
176 Pr.476
PE32 Filter coefficient 2-7
123 Pr.423 PD11
124 Pr.424 PD12
For manufacturer setting
177 Pr.477
PE33 Filter coefficient 2-8
125 Pr.425 PD13
178 Pr.478
PE34
126 Pr.426 PD14 Function selection D-3
179 Pr.479
PE35
127 Pr.427 PD15
180 Pr.480
PE36
128 Pr.428 PD16
181 Pr.481
PE37
129 Pr.429 PD17
182 Pr.482
PE38
130 Pr.430 PD18
183 Pr.483
PE39
131 Pr.431 PD19
184 Pr.484
PE40
132 Pr.432 PD20
185 Pr.485
133 Pr.433 PD21
186 Pr.486
134 Pr.434 PD22
135 Pr.435 PD23
For manufacturer setting
187 Pr.487
For manufacturer setting
188 Pr.488
—
136 Pr.436 PD24
189 Pr.489
137 Pr.437 PD25
190 Pr.490
138 Pr.438 PD26
191 Pr.491
139 Pr.439 PD27
192 Pr.492
140 Pr.440 PD28
193 Pr.493
PS01
141 Pr.441 PD29
194 Pr.494
PS02
142 Pr.442 PD30
195 Pr.495
PS03
6 - 22
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
List of servo parameter (Continued)
Axis Buffer memory
No.
address
Parameter item
1
10300 to 10599
2
10600 to 10899
Symbol
3
10900 to 11199
196 Pr.496
PS04
248 Pr.548
4
11200 to 11499
197 Pr.497
PS05
249 Pr.549
5
11500 to 11799
198 Pr.498
PS06
250 Pr.550
6
11800 to 12099
199 Pr.499
PS07
251 Pr.551
7
12100 to 12399
200 Pr.500
PS08
252 Pr.552
8
12400 to 12699
201 Pr.501
PS09
253 Pr.553
9
12700 to 12999
202 Pr.502
PS10
254 Pr.554
10
13000 to 13299
203 Pr.503
PS11
255 Pr.555
11
13300 to 13599
204 Pr.504
PS12
256 Pr.556
12
13600 to 13899
205 Pr.505
PS13
257 Pr.557
13
13900 to 14199
206 Pr.506
PS14
258 Pr.558
14
14200 to 14499
207 Pr.507
PS15
259 Pr.559
15
14500 to 14799
208 Pr.508
PS16
260 Pr.560
16
14800 to 15099
209 Pr.509
PS17
261 Pr.561
210 Pr.510
PS18
262 Pr.562
211 Pr.511
PS19
263 Pr.563
212 Pr.512
PS20
264 Pr.564
213 Pr.513
PS21
265 Pr.565
214 Pr.514
PS22
266 Pr.566
215 Pr.515
PS23
267 Pr.567
216 Pr.516
PS24
268 Pr.568
217 Pr.517
PS25
269 Pr.569
218 Pr.518
PS26
270 Pr.570
219 Pr.519
PS27
271 Pr.571
220 Pr.520
PS28
272 Pr.572
221 Pr.521
PS29
222 Pr.522
PS30
223 Pr.523
PS31
275 Pr.575
224 Pr.524
PS32
276 Pr.576
No.
Parameter item
Symbol
273 Pr.573
For manufacturer setting
274 Pr.574
225 Pr.525
277 Pr.577
226 Pr.526
278 Pr.578
227 Pr.527
279 Pr.579
228 Pr.528
280 Pr.580
229 Pr.529
281 Pr.581
230 Pr.530
282 Pr.582
231 Pr.531
283 Pr.583
232 Pr.532
284 Pr.584
233 Pr.533
285 Pr.585
234 Pr.534
286 Pr.586
235 Pr.535
236 Pr.536
287 Pr.587
—
288 Pr.588
237 Pr.537
289 Pr.589
238 Pr.538
290 Pr.590
239 Pr.539
291 Pr.591
240 Pr.540
292 Pr.592
241 Pr.541
293 Pr.593
242 Pr.542
294 Pr.594
243 Pr.543
295 Pr.595
244 Pr.544
296 Pr.596
245 Pr.545
297 Pr.597
246 Pr.546
298 Pr.598
247 Pr.547
299 Pr.599
6 - 23
No.
—
Parameter item
For manufacturer setting
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.4 Parameter Data
The setting value of parameters (basic, OPR, system) is checked at the PLC READY
ON. (The manual control parameters cannot be checked.)
If the setting value is outside the range, the error code will occur and the unit READY
cannot be turned ON.
The parameter number outside the range can be stored in the error details.
6.4.1 Basic parameter
Buffer
Symbol memory
address
Items
Details
Setting range
Fetch timing
Factory
default
Unit
Pr.0
0+100n Electronic gear
1+100n numerator (AP)
Set a numerator of electronic gear
1 to 32768
applied to position command.
1
—
Pr.2
2+100n Electronic gear
3+100n denominator (AL)
Set a denominator of electronic
1 to 32768
gear applied to position command.
1
—
Pr.4
4+100n Software stroke limit
5+100n upper limit value
Set the upper limit value for
software stroke limit.
-2147483648 to
2147483647
Pr.6
6+100n Software stroke limit
7+100n lower limit value
Set the lower limit value for
software stroke limit.
-2147483648 to
2147483647
Pr.8
8+100n
Pr.10
10+100n
Speed limit value
11+100n
Set the backlash compensation
Backlash
amount. Set it by the encoder
compensation amount
pulse unit.
Acceleration/
deceleration method
Pr.15
15+100n
Pr.16
S-curve acceleration/
16+100n deceleration time
constant
Sudden stop
deceleration time
Pr.17
17+100n
Pr.20
20+100n Command in-position
21+100n range
Pr.23
Set the maximum speed for each
axis.
PLC READY ON 2000000000
(First time only)
[PLS]
-2000000000 [PLS]
0 to 65535
0
1 to 2147
10
[PLS]
6
0: Linear
acceleration/
deceleration
Select the
acceleration/deceleration method. 1: S-curve
acceleration/
deceleration
×10
[PLS/s]
0
—
0
[ms]
1000
[ms]
Set the time constant for S-curve
acceleration/deceleration.
0 to 100
Set the deceleration time to
execute a sudden stop.
0 to 20000
Set the remaining distance that
turns the command in-position
ON.
0 to 2147483647
0
[PLS]
0: Stop by the
error
1: Return to
change
position after
deceleration
stop
0
—
Target position change Set the process when a stop
position exceeds a command
23+100n overrun processing
position for position change.
selection
6 - 24
PLC READY ON/
Parameter
change request
6 DATA USED FOR POSITIONING CONTROL
Buffer
Symbol memory
address
Items
Details
MELSEC-Q
Setting range
Pr.25
25+100n Interpolation group
Set the group to specify the
combination for axes to be
interpolation-controlled.
Set the same group number for
axes to be interpolation-controlled.
• Up to 4 axes can be set to one
group.
• Up to 4 groups can be set.
Pr.26
26+100n Linear interpolation
27+100n speed limit value
Set the maximum speed at the
linear interpolation control.
Fetch timing
Factory
default
Unit
—
0: None
(Single axis)
1: Group 1
2: Group 2
3: Group 3
4: Group 4
PLC READY ON
0
1 to 2147
PLC READY ON/
Parameter
change request
10
0: Negative logic
1: Positive logic
PLC READY ON
0
6
×10
[PLS/s]
Select the logic of the external
input signal.
b15 to b12b11 to b8b7 to b4b3 to b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pr.31
External input signal
31+100n
logic selection
b8: Proximity dog
b4: Lower hardware
strok limit
b0: Upper hardware
strok limit
(Note): Set to "0" for except the
above bits.
6 - 25
—
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.4.2 OPR parameter
(1) OPR parameter
Buffer
Symbol memory
address
Pr.50
Items
50+100n OPR method
Details
Setting range
Select the OPR method.
0: Proximity dog
2: Data set
3: Stopper
4: Dog cradle
5: Limit switch
combined
6: Scale origin
signal
detection
0: Positive
direction
(Address
increment
direction)
1: Negative
direction
(Address
decrement
direction)
-2147483648 to
2147483647
Fetch timing
Factory
default
Unit
0
—
0
—
0
[PLS]
PLC READY ON
(First time only)
Pr.51
51+100n OPR direction
Set the direction to execute the
OPR for proximity dog or the
movement direction at the creep
speed movement.
Pr.52
52+100n
OP address
53+100n
Set the OP address at the OPR
completion.
Pr.54
54+100n
OPR speed
55+100n
Set the movement speed for OPR. 5 to 2147000000
5
[PLS/s]
Pr.56
56+100n Creep speed
Set the creep speed after
proximity dog ON (the low speed
just before stopping after
decelerating from the OPR
speed).
5
[PLS/s]
Pr.58
Set the acceleration time at the
58+100n OPR acceleration time
OPR.
1000
[ms]
Pr.59
59+100n OPR deceleration time Set the deceleration at the OPR.
0 to 20000
1000
[ms]
Pr.60
60+100n
OP shift amount
61+100n
Set the shift amount at the OP
shift.
-2147483648 to
2147483647
0
[PLS]
Pr.62
62+100n
OP search limit
63+100n
Set the limit on the movement
amount at the OP search
movement.
If "0" is set, this function does not
operate.
0 to 2147000000
0
[PLS]
Pr.66
Operation setting for
66+100n
incompletion of OPR
Set whether the positioning control
is executed or not (When the
0: Not executed
PLC READY ON
"OPR request ( Md.9 Status 1:
1: Executed
b0)" is ON.).
0
—
6 - 26
5 to 32767
0 to 20000
PLC READY ON/
Parameter
change request
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(2) OPR parameter (MR-J3- B-RJ004 use)
Buffer
Symbol memory
address
Pr.64
Items
Details
Setting range
Set whether the incremental
linear scale is used for OPR
(except scale origin signal
Incremental linear scale detection type).
64+100n
Set to "0: Need to pass motor Z
setting
pause after the power supply is
switch on" in " Pr.397 Function
selection C-4".
1: Used
Except 1: Not
used
Fetch timing
PLC READY ON
(First time only)
Factory
default
Unit
0
—
Refer to the servo amplifier instruction manual.
Servo amplifier type
MR-J3- B-RJ004
Instruction manual name
SSCNET Compatible Linear Servo MR-J3- B-RJ004U
(SH-030054)
Instruction Manual
6.4.3 Manual control parameter
Buffer
Symbol memory
address
Items
Pr.80
80+100n
JOG speed
81+100n
Pr.82
82+100n
JOG operation
acceleration time
Pr.83
83+100n
JOG operation
deceleration time
Pr.84
84+100n
Incremental feedrate
85+100n
Details
Setting range
Fetch timing
Set the speed for JOG operation. 5 to 2147000000 Leading edge of
the forward
Set the acceleration time for JOG
rotation JOG/
0 to 20000
operation.
Reverse rotation
Set the deceleration time for JOG
JOG start
0 to 20000
operation.
Set the feedrate for incremental
feed.
0 to 2147483647
Incremental feed
start
Factory
default
Unit
0
[PLS/s]
1000
[ms]
1000
[ms]
0
[PLS]
Factory
default
Unit
1
—
6.4.4 System parameter
Buffer
Symbol memory
address
Pr.101
1601
Items
External forced stop
selection
Details
Setting range
Select "Valid/Invalid" of the forced
stop input by external 24VDC.
(Forced stop input signal [Y2]
0: Valid
does not become invalid.)
If the value outside setting range 1: Invalid
is set, the error code 1037 will
occur, and it operates considering
that it is "0: Valid".
6 - 27
Fetch timing
PLC READY ON
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.5 Monitor Data
6.5.1 Axis monitor data
(1) Axis monitor data
Symbol
Md.0
Md.2
Buffer
memory
address
Items
Details
Updated cycle
Unit
1700+100n
Current feed value
1701+100n
The currently commanded address can be stored.
When the current value is changed with the current value
change function, the changed value can be stored.
(It returns to the address before change by the system
power supply ON/OFF.)
[PLS]
1702+100n
Feedrate
1703+100n
The command output speed of operating axis can be
stored. The command speed of each axis at the
interpolation operation.
(A feedrate calculated from movement amount for every
axis can be stored. The movement amount might not
steady at the fixed speed either because of the fractions
generated when operating. Therefore, a value different
from the speed set in the positioning might be stored.)
[PLS/s]
The ON/OFF state of the external input signal can be
stored. The following items can be stored.
0.88[ms]
b15 to b12b11 to b8b7 to b4b3 to b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Md.4
b0: Upper hardware
stroke limit
b4: Lower hardware
stroke limit
b8: Proximity dog
1704+100n External input signal
—
(Note): The state of signal can be stored regardless of a
logic selection.
Md.5
Md.6
Md.7
Md.8
A positioning data No. currently being executed can be
stored.
"0" can be stored at the except for positioning execution.
—
1706+100n Error code
An error code corresponding to error content can be
stored at the error detection. Always, a latest error code
can be stored. (If new error will occur, the error code can
be updated. However, a system error cannot be
updated.)
An error code can be cleared by setting "1" in " Cd.0 Axis
error reset".
—
1707+100n Error detail
A number of error details corresponding to error content
can be stored at the error detection. (If new error will
occur, a detail corresponded to new error can be stored.)
An error detail can be cleared by setting "1" in " Cd.0
Axis error reset".
1708+100n Warning code
A warning code corresponding to warning content can be
stored at the warning detection. Always, a latest warning
code can be stored. (If new warning will occur, the
warning code can be updated.)
A warning code can be not automatically cleared even if
the warning can be released on the servo amplifier side
at the warning detection.)
1705+100n
Positioning data No. being
executed
6 - 28
Error
occurrence
—
—
6 DATA USED FOR POSITIONING CONTROL
Symbol
Buffer
memory
address
Items
MELSEC-Q
Details
Updated cycle
Unit
The ON/OFF state of various signals can be stored.
b15 to b12b11 to b8b7 to b4b3 to b0
Md.9
1709+100n Status 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
—
b0: OPR request
b1: OPR complete
The ON/OFF state of various signals can be stored.
b15 to b12b11 to b8b7 to b4b3 to b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b0: Positioning complete
b1: Command in-position
b2: Pausing
b3: Operation complete
b8: Speed change
READY
b9: Accerelation time
change READY
b10: Decerelation time
change READY
b11: Target position
change READY
Status change
Md.10
1710+100n Status 2
Md.26
1726+100n
Real current value
1727+100n
The real current value can be stored.
[PLS]
Md.28
1728+100n
Deviation counter value
1729+100n
The difference between the feed current value and real
current value can be stored.
[PLS]
Md.31
1731+100n Motor current
The motor current can be stored.
Md.32
1732+100n
Motor rotation speed
1733+100n
The motor rotation speed can be stored.
Md.34
1734+100n Regenerative load ratio
The rate of regenerative power to the allowable
regenerative power can be stored.
[%]
Md.35
1735+100n Effective load torque ratio
The effective load torque can be stored.
The average value of the load rates for the past 15
seconds to the rated torque can be stored as percentage,
rated torque being 100[%].
[%]
Md.36
1736+100n Peak torque ratio
The maximum torque can be stored.
The peak value for the past 15 seconds can be stored,
rated torque being 100[%].
[%]
—
-1
10 [%]
The ON/OFF state of various signals can be stored.
-2
10 [r/min]
0.88[ms]
b15 to b12b11 to b8b7 to b4b3 to b0
Md.40
b0: READY ON
b1: Servo ON
b7: Servo error
(Servo alarm)
b12: In-position
b13: Torque limit
b14: Absolute position
lost
b15: Servo warning
1740+100n Servo status 1
—
The ON/OFF state of various signals can be stored.
b15 to b12b11 to b8b7 to b4b3 to b0
Md.41
—
1741+100n Servo status 2
b0: Zero point pass
b3: Zero speed
6 - 29
6 DATA USED FOR POSITIONING CONTROL
(a)
MELSEC-Q
Current feed value / Md.26 Real current value / Md.28 Deviation
counter value / Md.2 Feedrate
Md.0
The following relations exist between " Md.0 Current feed value", " Md.26
Real current value", " Md.28 Deviation" and " Md.2 Feedrate".
Electronic gear numerator
Command value
= Current feed value ×
Electronic gear denominator
to servo amplifier
Real current value = Feedback value ×
Electronic gear denominator
Electronic gear numerator
Speed
Md.2 Feedrate
Time
Position
Md.0 Current feed value
Md.28 Deviation counter value
Md.26 Real current value
Time
(b)
Md.6 Error code / Md.7 Error detail / Md.100 Axis error status / Error
detection signal [X1] / Cd.0 Axis error reset
" Md.6 Error code", " Md.7 Error detail" and " Md.100 Axis error status" are
output to the buffer memory if an error will occur, and the error detection
signal [X1] is turned ON. The servo errors are also output in a similar way.
Remove the error causes and set "1" in " Cd.0 Axis error reset" to release
an error.
Error
YES
Md.6
Error code
0
Md.7
Error details
0
NO
Error code
0
Error details
0
ON
Md.100 Axis error status
OFF
ON
Error detection signal [X1] OFF
Cd.0
Axis error reset
0
6 - 30
1
0
6 DATA USED FOR POSITIONING CONTROL
(c)
MELSEC-Q
Warning code / Md.101 Axis warning status / Warning detection
signal [X2]
Md.8
" Md.8 Warning code" and " Md.101 Axis warning status" are output to the
buffer memory if a warning will occur, and the warning detection signal [X2]
is turned ON. The servo warnings are also output in a similar way.
Remove the warning causes to release a warning.
Warning
YES
Md.8 Warning code
Warning code
0
NO
0
ON
Md.101 Axis warning status
OFF
ON
Warning detection signal [X2] OFF
(d)
Md.9
Status 1
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b0: OPR request
b1: OPR complete
1) b0: OPR request
This signal turns ON when the OPR is required as the following cases,
and it turns OFF at OPR completion.
• The electronic gear (" Pr.0 Electronic gear numerator", " Pr.2
Electronic gear denominator") or the servo parameter " Pr.314
Rotation direction selection" are changed. (First PLC READY ON)
• "Error code 2025" or "Warning code 2143" occurred. (First PLC
READY ON)
• "Error code 1201" occurred. (First PLC READY ON)
• The OPR never is executed for the absolute position system. (First
PLC READY ON)
• Change the servo parameter " Pr.303 Absolute position detection
system" from "0: Invalid (Used in incremental system)" to "1: Valid
(Used absolute position detection system)". (First PLC READY ON)
• The OPR is started.
• The setting value of software stroke limit is outside the range. (First
PLC READY ON)
2) b1: OPR complete
This signal turns ON at the OPR complete.
And, It turns OFF at the positioning start.
6 - 31
6 DATA USED FOR POSITIONING CONTROL
(e)
Md.10
MELSEC-Q
Status 2
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b0: Positioning complete
b1: Command in-position
b2: Pausing
b3: Operation complete
b8: Speed change READY
b9: Accerelation time change READY
b10: Decerelation time change READY
b11: Target position change READY
1) b0: Positioning complete
This signal turns ON at the positioning control (1 axis linear control,
Interpolation control) complete.
It turns OFF at the next start (1 axis linear control, Interpolation control,
OPR, Manual control).
The BUSY signal [X10 to X1F] OFF and this signal ON can be executed
at the same timing.
2) b1: Command in-position
This signal turns ON when the remaining distance is equal to or less
than " Pr.20 Command in-position range", and it turns OFF at the
positioning control start, OPR start and manual control start.
3) b2: Pausing
This signal turns ON after sudden stop by pausing command. This
signal turns OFF by pausing release.
4) b3: Operation complete
This signal turns ON at the positioning completion as the following
cases, and it turns OFF at next positioning start.
• After the JOG stop
• After the incremental feed completion
• Positioning control completion (Only the final positioning data
completion at execution of the continuous positioning or continuous
path control.)
• After the stop by the stop signal
• After the sudden stop by the sudden stop signal
• After the stop by the hardware stroke limit
• Servo alarm occurrence (Not after the stop)
• After the stop by the operation alarm occurrence
• After the stop by the servo OFF
• After the stop by the software stroke limit
• Deceleration by the forced stop (Not after the stop)
The BUSY signal [X10 to X1F] OFF and this signal ON can be executed
at the same timing.
6 - 32
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
5) b8: Speed change READY
This signal turns ON at the ready by setting "1" in " Cd.15 Speed
change request". It does not turn ON if it cannot be changed. (The
warning code 11011 will occur.)
This signal turns OFF by setting "0" in " Cd.15 Speed change request".
6) b9: Acceleration time change READY
This signal turns ON at the ready by setting "1" is set in " Cd.18
Acceleration time change request". It does not turn ON if it cannot be
changed. (The warning code 11012 will occur.)
This signal turns OFF by setting "0" in " Cd.18 Acceleration time change
request".
7) b10: Deceleration time change READY
This signal turns ON at the ready by setting "1" is set in " Cd.20
Deceleration time change request". It does not turn ON if it cannot be
changed. (The warning code 11013 will occur.)
This signal turns OFF by setting "0" in " Cd.20 Deceleration time change
request".
8) b11: Target position change READY
This signal turns ON at the ready by setting "1" is set in " Cd.23 Target
position change request". It does not turn ON if it cannot be changed.
(The warning code 11014 will occur.)
This signal turns OFF by setting "0" in " Cd.23 Target position change
request".
(f)
Md.40
Servo status 1
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
b0: READY ON
b1: Servo ON
b7: Servo error (Servo alarm)
b12: In-position
b13: Torque limit
b14: Absolute position lost
b15: Servo warning
1) b0: READY ON
The servo READY ON/OFF status is indicated.
2) b1: Servo ON
The servo ON/OFF status is indicated.
3) b7: Servo error (Servo alarm)
This signal turns ON in the servo error occurrence.
4) b12: In-position
The dwell pulse turns ON within the servo parameter " Pr.310 Inposition range".
5) b13: Torque limit
This signal turns ON when the servo amplifier is having the torque
restricted.
6 - 33
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6) b14: Absolute position lost
This signal turns ON in "Error code 2025" and "Warning code 2143"
occurrence.
7) b15: Servo warning
This signal turns ON in servo warning occurrence.
(f)
Md.41
Servo status 2
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
b0: Zero point pass
b3: Zero speed
1) b0: Zero point pass
This signal turns ON if the zero point of the encoder has been passsed
even once.
2) b3: Zero speed
This signal turns ON when the motor speed is lower than the servo
parameter " Pr.387 Zero speed".
(2) Axis monitor data (MR-J3- B-RJ006 use)
Symbol
Buffer
memory
address
Items
Details
Updated cycle
Unit
0.88[ms]
—
b5: The switching status of the semi closed loop control/
fully closed loop control can be stored.
b15 to b12b11 to b8b7 to b4b3 to b0
Md.40
1740+100n Servo status 1
b0: Fully closed loop
control switching
0: In semi closed
loop control
1: In fully closed
loop control
Refer to the servo amplifier instruction manual.
Servo amplifier type
MR-J3- B-RJ006
Instruction manual name
SSCNET Fully Closed Loop Control MR-J3- B-RJ006 Servo Amplifier
Instruction Manual (SH-030056)
6 - 34
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.5.2 System monitor data
(1) System monitor data
Symbol
Buffer
memory
address
Items
Details
Updated cycle
Unit
Status change
(Error
occurrence,
Error reset)
—
Status change
(Warning
occurrence,
Error reset)
—
Write request
—
0.88[ms]
—
The bits corresponding to the axis that caused the error
can be stored at the error occurrence.
The error status for the axis can be turned OFF by error
reset for every axis.
b15 to b12b11 to b8b7 to b4b3 to b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Md.100
3300
b0 : Axis 1
b1 : Axis 2
b2 : Axis 3
b3 : Axis 4
b4 : Axis 5
b5 : Axis 6
b6 : Axis 7
b7 : Axis 8
b8 : Axis 9
b9 : Axis 10
b10: Axis 11
b11: Axis 12
b12: Axis 13
b13: Axis 14
b14: Axis 15
b15: Axis 16
Axis error status
The bits corresponding to the axis in which the warning
occurred can be stored at the warning occurrence.
The warning status for the axis can be turned OFF by the
warning release.
b15 to b12b11 to b8b7 to b4b3 to b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b0 : Axis 1
b1 : Axis 2
b2 : Axis 3
b3 : Axis 4
b4 : Axis 5
b5 : Axis 6
b6 : Axis 7
b7 : Axis 8
b8 : Axis 9
b9 : Axis 10
b10: Axis 11
b11: Axis 12
b12: Axis 13
b13: Axis 14
b14: Axis 15
b15: Axis 16
Md.101
3301
Axis warning status
Md.102
3302
Number of write accesses
to flash ROM
Number of write accesses to flash ROM and the number
of parameter initializations after the system power supply
ON can be stored.
Forced stop input status
The status of the forced stop input can be stored. (The
status of forced stop input by external 24VDC and the
forced stop input signal [Y2] with input signal from PLC
CPU can be stored.)
0: Forced stop
1: Forced stop release
Md.103
3303
6 - 35
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.6 Control Data
6.6.1 Axis control data
(1) Axis control data
Symbol
Cd.0
Cd.1
Buffer
memory
address
Items
3400+100n Axis error reset
3401+100n
Parameter change
request
Details
Setting range
Release error that occurs in axis.
• Clear the error detection signal
[X1], " Md.6 Error code" and
" Md.7 Error detail".
• Turn the bit of " Md.100 Axis
error status" OFF for target
axis.
• Transmit the error reset on
0: Not commanded
servo amplifier side. (The error
1: Commanded
reset cannot be executed for
(Leading edge
some servo errors. Refer to the
only)
servo amplifier instruction
manuals for details.)
• Clear the warning detection
signal [X2] and " Md.8 Warning
code".
• Turn the bit of " Md.101 Axis
warning status" OFF for target
axis.
Fetch timing
Factory
default
Unit
0
—
0
—
0
—
Main cycle
(Note-1)
0: Not requested
Execute the parameter change 1: Requested
request when the fetch timing of (Note): "0" can be
automatically
the basic parameter or OPR
set after the
parameter is set to "parameter
change of
change request".
parameter.
Cd.2
3402+100n Start method
Set the start method.
1 to 32: Positioning
data No. to
be started.
9000: OPR
9003: New current
value
Cd.3
3403+100n Axis stop
Stop the operating axis.
0: Not commanded
1: Commanded
0
—
Cd.4
3404+100n Axis sudden stop
Stop the operating axis
suddenly.
0: Not commanded
1: Commanded
0
—
Cd.5
3405+100n Pausing
Command the pausing.
0: Pausing release
1: Pausing
0
—
0
—
Leading edge
of the
positioning
start signal
[Y10 to Y1F]
0.88[ms]
Cd.8
3408+100n
Forward rotation JOG
Start the forward rotation JOG.
start
0: Stop
1: Start
Cd.9
3409+100n
Reverse rotation JOG
Start the reverse rotation JOG.
start
0: Stop
1: Start
0
—
0: Not requested
1: Requested
0
—
Cd.11 3411+100n Torque limit request
Command the torque limit
request.
(Note-1): Cycle of processing executed at free time except the positioning control. It changes by status of axis start.
6 - 36
6 DATA USED FOR POSITIONING CONTROL
Symbol
Buffer
memory
address
Items
Details
MELSEC-Q
Setting range
Set the limiting torque
Forward rotation torque generated in the CW direction
0 to 32767
Cd.12 3412+100n
when the servo motor is
limit value
(Note): It is treated
executing in the CCW direction.
as "0" if the
Set the limiting torque
negative
Reverse rotation torque generated in the CCW direction
value is set.
Cd.13 3413+100n
when the servo motor is
limit value
executing in the CW direction.
Cd.15 3415+100n Speed change request
Cd.16
3416+100n
New speed value
3417+100n
Execute the speed change
request.
10 [%]
0
10 [%]
-1
-1
—
Set the speed after the change. 5 to 2147000000
Speed
change
request
0
[PLS/s]
0.88[ms]
0
—
Acceleration
time change
request
0
[ms]
0.88[ms]
0
—
Deceleration
time change
request
0
[ms]
0.88[ms]
0
—
Target
position
change
request
0
New current
value start
0
0: Not requested
1: Requested
Cd.19 3419+100n
New acceleration time
value
Set the acceleration time after
the change.
0 to 20000
Cd.20 3420+100n
Deceleration time
change request
Execute the deceleration time
change request.
0: Not requested
1: Requested
Cd.21 3421+100n
New deceleration time Set the deceleration time after
value
the change.
0 to 20000
Cd.23 3423+100n
Target position change Execute the target position
request
change request.
0: Not requested
1: Requested
Cd.30 3430+100n Each axis servo OFF
0
0
Execute the acceleration time
change request.
3428+100n
New current value
3429+100n
Unit
0.88[ms]
Acceleration time
change request
Cd.28
Torque limit
request,
For every
0.88[ms]
Factory
default
0: Not requested
1: Requested
Cd.18 3418+100n
3424+100n New target position
Cd.24
3425+100n value
Fetch timing
Set the target position after the
change.
-2147483648 to
2147483647
Set the address after change.
Execute the servo ON/OFF for
each axis.
Execute the gain changing of
the servo amplifier from
Cd.46 3446+100n Gain changing request QD74MH.
Refer to the servo amplifier
instruction manual.
6 - 37
0: Not commanded
1: Commanded
0: Not requested
1: Requested
[PLS]
0
—
0
—
0.88[ms]
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(2) Axis control data (MR-J3- B-RJ006 use)
Symbol
Buffer
memory
address
Items
Details
Setting range
0: Semi closed loop
control
Semi/Fully closed loop Execute the sSemi/Fully closed
Cd.45 3445+100n
1: Fully closed loop
switching request
loop switching request.
control
(Note): The above command is enable when "1" is set to "
Pr.445
Fetch timing
Factory
default
Unit
0.88[ms]
0
—
(PE01) Fully closed loop selection 1".
Refer to the servo amplifier instruction manual.
Servo amplifier type
MR-J3- B-RJ006
Instruction manual name
SSCNET Fully Closed Loop Control MR-J3- B-RJ006 Servo Amplifier
Instruction Manual (SH-030056)
6 - 38
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.6.2 System control data
(1) System control data
Symbol
Cd.100
Cd.101
Buffer
memory
address
Items
Details
Setting range
Fetch timing
0: Not requested
Write the contents (Basic
1: Requested
parameters, OPR parameters,
(Note): "0" can be
Manual control parameters, System
automatically
parameters, Positioning data and
stored after the
servo parameters) from the buffer
writing
memory to the flash ROM.
completion.
5000
Flash ROM write
request
5001
0: Not requested
Execute the parameter (Basic
1: Requested
parameters, OPR parameters,
Manual control parameters, System (Note): "0" can be
automatically
parameters, Positioning data and
stored after the
Parameter initialization servo parameters) initialization
initialization
request stored in the flash ROM.
request
completion. (Also,
(Note): Initialization
"0" can be stored
The setting data can be
at the initialization
returned to the factory
error occurrence.)
default.
Factory
default
0
Main cycle
(Note-1)
0
(Note-1): Cycle of processing executed at free time except the positioning control. It changes by status of axis start.
6 - 39
6 DATA USED FOR POSITIONING CONTROL
(a)
MELSEC-Q
Flash ROM write request / Md.102 Number of write accesses to
flash ROM
Cd.100
Set "1" in " Cd.100 Flash ROM write request" in the state of the PLC
READY signal [Y0] OFF. 1 is added to " Md.102 Number of write accesses
to flash ROM", and the value can be wrote to the flash ROM. "0" can be
automatically set in " Cd.100 Flash ROM write request" with the writing
completion.
ON
PLC READY signal [Y0]
OFF
Cd.100 Flash ROM write
0
request
1
0
ON
Flash ROM write process
(QD74MH)
OFF
Md.102 Number of write
accesses to flash ROM
0
1
POINT
(1) Do not turn the system power supply OFF or reset the PLC CPU while writing
to the flash ROM. If the system power supply is turned OFF or the PLC CPU is
reset to forcibly end the process, the data backed up in the flash ROM will be
lost.
(2) Do not write the data to the buffer memory before writing to the flash ROM is
completed.
(3) The number of the flash ROM write with the sequence program after the single
system power supply ON or single PLC CPU reset is limited to up to 25.
Writing of the 26th times will cause an "error code 1902".
(4) The number of writes to the flash ROM after the system power supply ON can
be monitored in " Md.102 Number of write accesses to flash ROM".
(5) The flash ROM write can be executed, after the system's power supply ON
and the PLC READY signal [Y0] ON. If the flash ROM write is executed
without turning ON the PLC READY signal [Y0] after the system's power
supply ON, a "warning code 10001" will occur and the flash ROM write cannot
be executed.
6 - 40
6 DATA USED FOR POSITIONING CONTROL
(b)
Cd.101
MELSEC-Q
Parameter initialization request
Set "1" in " Cd.101 Parameter initialization request " in the state of the PLC
READY signal [Y0] OFF. Process of the parameter initialization can be
executed. "0" can be automatically set in " Cd.101 Parameter initialization
request "with the process completion.
ON
PLC READY signal [Y0]
OFF
Cd.101 Parameter initialization
0
request
Parameter initialization
process (QD74MH)
1
0
ON
OFF
POINT
(1) Execute the parameter initialization when the positioning control do not
execute (PLC READY signal [Y0] OFF). An "error code 1903" will occur if it is
executed at the PLC READY signal [Y0] ON.
(2) A writing to the flash ROM is up to 100,000 times. If writing exceeds 100,000
times, the writing may be become impossible, and an "error code 1901" will
occur.
(3) Be sure to turn the system power supply ON/OFF or reset the PLC CPU after
the parameter initialization.
(4) The number of the flash ROM write with the sequence program after the single
system power supply ON or single PLC CPU reset is limited to up to 25.
Writing of the 26th times will cause an "error code 1902".
(5) The number of parameter initialization after the system power supply ON can
be monitored in " Md.102 Number of write accesses to flash ROM".
(6) The parameter initialization can be executed, after the system's power supply
ON and the PLC READY signal [Y0] ON. If the parameter initialization is
executed without turning ON the PLC READY signal [Y0] after the system's
power supply ON, a "warning code 10001" will occur and the parameter
initialization cannot be executed.
6 - 41
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.7 Positioning Data
The positioning data of 32 points can be set for one axis.
The positioning data stored in the buffer memory of QD74MH are shown below.
16 axes positioning data
No.1
9900 to 9909
No.2
9910 to 9919
No.3
9920 to 9929
2 axes positioning data
1 axis positioningNo.1
data 5420 to 5429
No.1
5100 to No.2
5109 5430 to 5439
No.2
5110 to No.3
5119 5440 to 5449
No.3
5120 to 5129
No.32
No.32
5410 to 5419
No.32 10210 to 10219
5730 to 5739
Table 6.9 List of buffer memory for positioning data
Point
No.
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
Axis 7
Axis 8
Axis 9
Axis 10 Axis 11 Axis 12 Axis 13 Axis 14 Axis 15 Axis 16
No.1
5100
5420
5740
6060
6380
6700
7020
7340
7660
7980
8300
8620
8940
9260
9580
9900
to 5109 to 5429 to 5749 to 6069 to 6389 to 6709 to 7029 to 7349 to 7669 to 7989 to 8309 to 8629 to 8949 to 9269 to 9589 to 9909
No.2
5110
5430
5750
6070
6390
6710
7030
7350
7670
7990
8310
8630
8950
9270
9590
9910
to 5119 to 5439 to 5759 to 6079 to 6399 to 6719 to 7039 to 7359 to 7679 to 7999 to 8319 to 8639 to 8959 to 9279 to 9599 to 9919
No.3
5120
5440
5760
6080
6400
6720
7040
7360
7680
8000
8320
8640
8960
9280
9600
9920
to 5129 to 5449 to 5769 to 6089 to 6409 to 6729 to 7049 to 7369 to 7689 to 8009 to 8329 to 8649 to 8969 to 9289 to 9609 to 9929
to
to
No.31
5400
5720
6040
6360
6680
7000
7320
7640
7960
8280
8600
8920
9240
9560
9880
to 5409 to 5729 to 6049 to 6369 to 6689 to 7009 to 7329 to 7649 to 7969 to 8289 to 8609 to 8929 to 9249 to 9569 to 9889
10200
to
10209
No.32
5410
5730
6050
6370
6690
7010
7330
7650
7970
8290
8610
8930
9250
9570
9890
to 5419 to 5739 to 6059 to 6379 to 6699 to 7019 to 7339 to 7659 to 7979 to 8299 to 8619 to 8939 to 9259 to 9579 to 9899
10210
to
10219
6 - 42
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(1) Positioning data
Symbol
Buffer
memory
address
Items
Details
Setting range
Fetch timing
Factory
default
Unit
5100+320n Operation pattern
Set the operation pattern for
the continuous positioning
data.
0: Independent positioning
(Positioning complete)
1: Continuous positioning
3: Continuous path
0
—
Da.1
5101+320n Control system
Set the positioning control
system.
0: ABS linear 1
1: INC linear 1
2: ABS linear interpolation
3: INC linear interpolation
0
—
Da.2
5102+320n Acceleration time
Set the acceleration time.
0 to 20000
0
[ms]
Da.3
5103+320n Deceleration time
Set the deceleration time.
0 to 20000
0
[ms]
Da.4
5104+320n
Command speed
5105+320n
Set the positioning speed.
5 to 2147000000
0
[PLS/s]
Da.6
Set the positioning
address/movement amount. 1 axis linear control:
-2147483648 to
Set an absolute address in
5106+320n Positioning address/
2147483647
the absolute system, and set
5107+320n movement amount
Interpolation control:
a movement amount with
-999999999 to 999999999
sign in the incremental
system.
0
[PLS]
Da.8
5108+320n Dwell time
0
[ms]
Da.0
Set the time from when the
positioning data ends to when 0 to 65535
the positioning completes.
6 - 43
Positioning
data execution
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
6.8 Servo Parameter
Symbol
Pr.300
Buffer
memory
address
Items
10300+300n Servo series
Details
Setting range
Set the servo amplifier series connected
to QD74MH.
POINT
Set correctly the servo amplifier series
to match the number of axes and axis
number to be connected.
If the servo amplifier series setting is not
corresponding to the actual number of
axes, an error will occur and the system
cannot be started.
0: None
1: MR-J3-B
3: MR-J3-B (Fully closed
loop control)
4: MR-J3-B (Linear)
Fetch timing
Factory
default
First PLC
READY ON
after the
system power
supply ON
0
Refer to the servo amplifier instruction manual.
Instruction Manual list is shown below.
Servo amplifier type
Instruction manual name
MR-J3- B
SSCNET
Compatible MR-J3- B Servo Amplifier Instruction Manual (SH-030051)
MR-J3- B-RJ004
SSCNET Compatible Linear Servo MR-J3- B-RJ004U
(SH-030054)
MR-J3- B-RJ006
SSCNET Fully Closed Loop Control MR-J3- B-RJ006 Servo Amplifier Instruction
Manual (SH-030056)
Instruction Manual
POINT
Parameters whose symbol is followed by "∗" or "∗∗" become valid as follows.
Set the parameter value and transmit the parameter to servo amplifier from
QD74MH with the PLC READY ON. And then, once execute the power cycle of
servo amplifier to make the parameter setting valid.
Refer to Section 6.2.3 for details of change procedure.
6 - 44
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(1) Servo parameter (MR-J3- B use)
(a) Basic setting parameters
Symbol
Buffer memory
address
No.
Symbol
Pr.301
10301+300n
PA01
—
Pr.302
10302+300n
PA02
Pr.303
10303+300n
PA03
Pr.304
10304+300n
PA04
Pr.305
10305+300n
PA05
—
Pr.306
10306+300n
PA06
—
Name
For manufacturer setting
REG∗∗ Regenerative option
ABS*
Absolute position detection system
AOP1* Function selection A-1
For manufacturer setting
Factory default
of QD74MH
Unit
Setting range
0000h
—
0000h to 0230h
0000h
—
0000h to 000Ah
0000h
—
0000h to 0001h
0000h
—
0000h to 0110h
0
—
—
1
—
—
1
—
—
0001h
—
0000h to 0003h
Pr.307
10307+300n
PA07
—
Pr.308
10308+300n
PA08
ATU
Auto tuning mode
Pr.309
10309+300n
PA09
RSP
Auto tuning response
12
—
1 to 32
Pr.310
10310+300n
PA10
INP
In-position range
100
PLS
0 to 50000
Pr.311
10311+300n
PA11
—
10000
—
—
Pr.312
10312+300n
PA12
—
10000
—
—
For manufacturer setting
Pr.313
10313+300n
PA13
—
Pr.314
10314+300n
PA14
POL*
Rotation direction selection
Pr.315
10315+300n
PA15
ENR*
Encoder output pulses
Pr.316
10316+300n
PA16
—
Pr.317
10317+300n
PA17
—
Pr.318
10318+300n
PA18
—
Pr.319
10319+300n
PA19
—
For manufacturer setting
6 - 45
0000h
—
—
0
—
0 to1
4000
PLS/rev
1 to 65535
0
—
—
0000h
—
—
0000h
—
—
000Bh
—
0000h to FFFFh
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(b) Gain/filter parameters
Symbol
Buffer memory
address
No.
Symbol
Pr.333
10333+300n
PB01
FILT
Pr.334
10334+300n
PB02
Pr.335
Pr.336
Pr.337
10335+300n
10336+300n
10337+300n
PB03
PB04
PB05
Pr.338
10338+300n
PB06
Pr.339
Pr.340
Pr.341
10339+300n
10340+300n
10341+300n
PB07
PB08
PB09
Pr.342
10342+300n
PB10
VIC
Pr.343
Pr.344
Pr.345
Pr.346
Pr.347
Pr.348
Pr.349
Pr.350
10343+300n
10344+300n
10345+300n
10346+300n
10347+300n
10348+300n
10349+300n
10350+300n
PB11
PB12
PB13
PB14
PB15
PB16
PB17
PB18
VDC
—
NH1
NHQ1
NH2
NHQ2
—
LPF
Pr.351
10351+300n
PB19
VRF1
Pr.352
10352+300n
PB20
VRF2
Pr.353
Pr.354
Pr.355
Pr.356
Pr.357
Pr.358
Pr.359
Pr.360
10353+300n
10354+300n
10355+300n
10356+300n
10357+300n
10358+300n
10359+300n
10360+300n
PB21
PB22
PB23
PB24
PB25
PB26
PB27
PB28
—
—
VFBF
MVS*
—
CDP*
CDL
CDT
Pr.361
10361+300n
PB29
Pr.362
Pr.363
10362+300n
10363+300n
PB30
PB31
Low-pass filter selection
Slight vibration suppression control selection
For manufacturer setting
Gain changing selection
Gain changing condition
Gain changing time constant
Gain changing ratio of load inertia moment to
GD2B
servomotor inertia moment
PG2B Gain changing position loop gain
VG2B Gain changing speed loop gain
Pr.364
10364+300n
PB32
VICB
Pr.365
10365+300n
PB33
VRF1B
Pr.366
10366+300n
PB34
Pr.367
Pr.368
Pr.369
Pr.370
Pr.371
Pr.372
Pr.373
Pr.374
Pr.375
Pr.376
Pr.377
10367+300n
10368+300n
10369+300n
10370+300n
10371+300n
10372+300n
10373+300n
10374+300n
10375+300n
10376+300n
10377+300n
PB35
PB36
PB37
PB38
PB39
PB40
PB41
PB42
PB43
PB44
PB45
Name
Adaptive tuning mode (Adaptive filter )
Vibration suppression control tuning mode
VRFT
(Advanced vibration suppression control)
—
For manufacturer setting
FFC Feed forward gain
—
For manufacturer setting
Ratio of load inertia moment to servo motor
CD2
inertia moment
PG1 Model loop gain
PG2 Position loop gain
VG2 Speed loop gain
Speed integral compensation
Speed differential compensation
For manufacturer setting
Machine resonance suppression filter 1
Notch shape selection 1
Machine resonance suppression filter 2
Notch shape selection 2
Automatic setting parameter
Low-pass filter setting
Vibration suppression control vibration
frequency setting
Vibration suppression control resonance
frequency setting
For manufacturer setting
Gain changing speed integral compensation
Gain changing vibration suppression control
vibration frequency setting
Gain changing vibration suppression control
VRF2B
resonance frequency setting
—
—
—
—
—
For manufacturer setting
—
—
—
—
—
—
6 - 46
Factory default
of QD74MH
Unit
Setting range
0000h
—
0000h to 0002h
0000h
—
0000h to 0002h
0
0
500
—
%
—
—
0 to 100
—
70
×10 times
0 to 3000
24
37
823
rad/s
rad/s
rad/s
1 to 2000
1 to 1000
20 to 50000
337
×10 ms
1 to 10000
980
0
4500
0000h
4500
0000h
—
3141
—
—
Hz
—
Hz
—
—
Hz
0 to 1000
—
100 to 4500
0000h to 0330h
100 to 4500
0000h to 0331h
0000h to 031Fh
100 to 18000
1000
×10 Hz
1000
×10 Hz
1 to 1000
0
0
0000h
0000h
0000h
0000h
10
1
—
—
—
—
—
—
—
ms
—
—
0000h to 0011h
0000h to 0031h
—
0000h to 0014h
0 to 9999
0 to 100
70
×10 times
0 to 3000
37
823
rad/s
rad/s
1to 2000
20 to 50000
337
×10 ms
1000
×10 Hz
1000
×10 Hz
1 to 1000
0
0
100
0
0
0
1125
1125
0004h
0
0000h
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
-1
-1
-1
-1
-1
-1
-1
-1
1 to 1000
1 to 50000
1 to 1000
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(c) Expansion setting parameters
Symbol
Buffer memory
address
No.
Symbol
Name
Factory default
of QD74MH
Unit
Setting range
Pr.381
10381+300n
PC01
ERZ*
Error excessive alarm level
3
rev
1 to 200
Pr.382
10382+300n
PC02
MBR
Electromagnetic brake sequence output
0
ms
0 to 1000
Pr.383
10383+300n
PC03
0000h
—
0000h to 0021h
Pr.384
10384+300n
PC04 COP1** Function selection C-1
0000h
—
0000h to 1110h
Pr.385
10385+300n
PC05 COP2** Function selection C-2
0000h
—
0000h to 1110h
Pr.386
10386+300n
PC06 COP3** Function selection C-3
0000h
—
0000h to 3021h
Pr.387
10387+300n
PC07
ZSP
Zero speed
50
r/min
0 to 10000
Pr.388
10388+300n
PC08
—
For manufacturer setting
0
—
—
Pr.389
10389+300n
PC09
MOD1 Analog monitor 1 output
0000h
—
0000h to 041Fh
Pr.390
10390+300n
PC10
MOD2 Analog monitor 2 output
0001h
—
0000h to 041Fh
Pr.391
10391+300n
PC11
MO1
Analog monitor 1 offset
0
mV
-999 to 999
Pr.392
10392+300n
PC12
MO2
Analog monitor 2 offset
0
mV
-999 to 999
Pr.393
10393+300n
Analog monitor feedback position output
PC13 MOSDL
standard data Low
0
PLS
-9999 to 9999
Pr.394
10394+300n
PC14 MOSDH
Analog monitor feedback position output
standard data High
0
10000PLS
-9999 to 9999
ENRS* Encoder output pulses selection
Pr.395
10395+300n
PC15
—
Pr.396
10396+300n
PC16
—
0
—
—
0000h
—
—
Pr.397
10397+300n
Pr.398
10398+300n
PC17 COP4** Function selection C-4
0000h
—
0000h to 0001h
PC18
—
0000h
—
Pr.399
—
10399+300n
PC19
—
0000h
—
—
Pr.400
10400+300n
PC20
—
0000h
—
—
Pr.401
10401+300n
PC21
—
0000h
—
0000h to 0001h
Pr.402
10402+300n
PC22
—
0000h
—
—
Pr.403
10403+300n
PC23
—
0000h
—
—
Pr.404
10404+300n
PC24
—
0000h
—
—
Pr.405
10405+300n
PC25
—
0000h
—
—
Pr.406
10406+300n
PC26
—
0000h
—
—
Pr.407
10407+300n
PC27
—
0000h
—
—
Pr.408
10408+300n
PC28
—
0000h
—
—
Pr.409
10409+300n
PC29
—
0000h
—
—
Pr.410
10410+300n
PC30
—
0000h
—
—
For manufacturer setting
For manufacturer setting
Alarm history clear
For manufacturer setting
Pr.411
10411+300n
PC31
—
0000h
—
—
Pr.412
10412+300n
PC32
—
0000h
—
—
6 - 47
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(d) I/O setting parameters
Symbol
Buffer memory
address
No.
Symbol
Factory default
of QD74MH
Unit
Setting range
Pr.413
10413+300n
PD01
Pr.414
10414+300n
PD02
—
0000h
—
—
—
0000h
—
Pr.415
10415+300n
—
PD03
—
0000h
—
Pr.416
10416+300n
—
PD04
—
0000h
—
—
Name
For manufacturer setting
Pr.417
10417+300n
PD05
—
0000h
—
—
Pr.418
10418+300n
PD06
—
0000h
—
—
Pr.419
10419+300n
PD07
DO1*
Output signal device selection 1
0005h
—
0000h to 003Fh
Pr.420
10420+300n
PD08
DO2*
Output signal device selection 2
0004h
—
0000h to 003Fh
Pr.421
10421+300n
PD09
DO3*
Output signal device selection 3
0003h
—
0000h to 003Fh
Pr.422
10422+300n
PD10
—
0000h
—
—
Pr.423
10423+300n
PD11
—
0004h
—
—
Pr.424
10424+300n
PD12
—
0000h
—
—
Pr.425
10425+300n
PD13
—
0000h
—
—
Pr.426
10426+300n
PD14
0000h
—
0000h to 0100h
Pr.427
10427+300n
PD15
—
0000h
—
—
Pr.428
10428+300n
PD16
—
0000h
—
—
Pr.429
10429+300n
PD17
—
0000h
—
—
Pr.430
10430+300n
PD18
—
0000h
—
—
Pr.431
10431+300n
PD19
—
0000h
—
—
Pr.432
10432+300n
PD20
—
0000h
—
—
Pr.433
10433+300n
PD21
—
0000h
—
—
Pr.434
10434+300n
PD22
—
0000h
—
—
Pr.435
10435+300n
PD23
—
0000h
—
—
Pr.436
10436+300n
PD24
—
0000h
—
—
Pr.437
10437+300n
PD25
—
0000h
—
—
Pr.438
10438+300n
PD26
—
0000h
—
—
Pr.439
10439+300n
PD27
—
0000h
—
—
Pr.440
10440+300n
PD28
—
0000h
—
—
Pr.441
10441+300n
PD29
—
0000h
—
—
Pr.442
10442+300n
PD30
—
0000h
—
—
For manufacturer setting
DOP3* Function selection D-3
For manufacturer setting
Pr.443
10443+300n
PD31
—
0000h
—
—
Pr.444
10444+300n
PD32
—
0000h
—
—
6 - 48
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(e) Extension control parameters
Symbol
Buffer memory
address
No.
Symbol
Factory default
of QD74MH
Unit
Setting range
Pr.445
10445+300n
PE01
Pr.446
10446+300n
PE02
—
0000h
—
—
—
0102h
—
Pr.447
10447+300n
—
PE03
—
0002h
—
Pr.448
—
10448+300n
PE04
—
1
—
—
Pr.449
10449+300n
PE05
—
1
—
—
Pr.450
10450+300n
PE06
—
400
—
—
Pr.451
10451+300n
PE07
—
100
—
—
Pr.452
10452+300n
PE08
—
10
—
—
Pr.453
10453+300n
PE09
—
0000h
—
—
Name
Pr.454
10454+300n
PE10
—
0000h
—
—
Pr.455
10455+300n
PE11
—
0
—
—
Pr.456
10456+300n
PE12
—
Pr.457
10457+300n
PE13
—
Pr.458
10458+300n
PE14
—
Pr.459
10459+300n
PE15
Pr.460
10460+300n
PE16
Pr.461
10461+300n
Pr.462
40
—
—
FFFEh
—
—
0111h
—
—
—
20
—
—
—
0000h
—
—
PE17
—
0000h
—
—
10462+300n
PE18
—
0000h
—
—
Pr.463
10463+300n
PE19
—
0000h
—
—
Pr.464
10464+300n
PE20
—
0000h
—
—
Pr.465
10465+300n
PE21
—
0000h
—
—
Pr.466
10466+300n
PE22
—
0000h
—
—
Pr.467
10467+300n
PE23
—
0000h
—
—
Pr.468
10468+300n
PE24
—
0000h
—
—
Pr.469
10469+300n
PE25
—
0000h
—
—
Pr.470
10470+300n
PE26
IIRC21 Filter coefficient 2-1
0000h
—
0000h to FFFFh
Pr.471
10471+300n
PE27
IIRC22 Filter coefficient 2-2
0000h
—
0000h to FFFFh
Pr.472
10472+300n
PE28
IIRC23 Filter coefficient 2-3
0000h
—
0000h to FFFFh
Pr.473
10473+300n
PE29
IIRC24 Filter coefficient 2-4
0000h
—
0000h to FFFFh
Pr.474
10474+300n
PE30
IIRC25 Filter coefficient 2-5
0000h
—
0000h to FFFFh
Pr.475
10475+300n
PE31
IIRC26 Filter coefficient 2-6
0000h
—
0000h to FFFFh
Pr.476
10476+300n
PE32
IIRC27 Filter coefficient 2-7
0000h
—
0000h to FFFFh
Pr.477
10477+300n
PE33
IIRC28 Filter coefficient 2-8
0000h
—
0000h to FFFFh
Pr.478
10478+300n
PE34
—
0
—
—
Pr.479
10479+300n
PE35
—
0
—
—
Pr.480
10480+300n
PE36
—
0
—
—
Pr.481
10481+300n
PE37
—
0
—
—
Pr.482
10482+300n
PE38
—
0
—
—
Pr.483
10483+300n
PE39
—
0
—
—
Pr.484
10484+300n
PE40
—
0
—
—
For manufacturer setting
For manufacturer setting
6 - 49
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(f) Special setting parameters
Symbol
Buffer memory
address
No.
Symbol
Factory default
of QD74MH
Unit
Setting range
Pr.493
10493+300n
PS01
Pr.494
10494+300n
PS02
—
0
—
—
—
0
—
Pr.495
10495+300n
—
PS03
—
0
—
Pr.496
—
10496+300n
PS04
—
0
—
—
Pr.497
10497+300n
PS05
—
0
—
—
Pr.498
10498+300n
PS06
—
0
—
—
Pr.499
10499+300n
PS07
—
0
—
—
Pr.500
10500+300n
PS08
—
0
—
—
Pr.501
10501+300n
PS09
—
0
—
—
Pr.502
10502+300n
PS10
—
0
—
—
Pr.503
10503+300n
PS11
—
0
—
—
Pr.504
10504+300n
PS12
—
0
—
—
Pr.505
10505+300n
PS13
—
0
—
—
Pr.506
10506+300n
PS14
—
0
—
—
Pr.507
10507+300n
PS15
—
0
—
—
Pr.508
10508+300n
PS16
—
0
—
—
Pr.509
10509+300n
PS17
—
0
—
—
Pr.510
10510+300n
PS18
—
0
—
—
Pr.511
10511+300n
PS19
—
0
—
—
Pr.512
10512+300n
PS20
—
0
—
—
Pr.513
10513+300n
PS21
—
0
—
—
Pr.514
10514+300n
PS22
—
0
—
—
Pr.515
10515+300n
PS23
—
0
—
—
Pr.516
10516+300n
PS24
—
0
—
—
Pr.517
10517+300n
PS25
—
0
—
—
Pr.518
10518+300n
PS26
—
0
—
—
Pr.519
10519+300n
PS27
—
0
—
—
Pr.520
10520+300n
PS28
—
0
—
—
Pr.521
10521+300n
PS29
—
0
—
—
Pr.522
10522+300n
PS30
—
0
—
—
Name
For manufacturer setting
Pr.523
10523+300n
PS31
—
0
—
—
Pr.524
10524+300n
PS32
—
0
—
—
6 - 50
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(2) Servo parameters (MR-J3- B-RJ006 use)
The parameters (refer to this section (1)) used in the MR-J3- B besides the
following parameters are required.
Symbol
Buffer memory
address
No.
Factory default
of QD74MH
Unit
Setting range
Pr.301
10301+300n
PA01
STY** Control mode
Pr.316
10316+300n
PA16
ENR2* Encoder output pulses 2
0000h
—
0000h, 0010h
0
—
Pr.381
10381+300n
PC01
0 to 65535
3
rev
Pr.383
10383+300n
PC03
1 to 200
0000h
—
0000h to 0131h
Pr.406
10406+300n
Pr.407
10407+300n
PC26 COP8** Function selection C-8
0000h
—
0100h, 1100h
PC27 COP9** Function selection C-9
0000h
—
0000h to 0101h
Pr.414
10414+300n
PD02
0000h
—
—
Pr.445
10445+300n
PE01
FCT1** Fully closed loop selection 1
0000h
—
0000h to 0001h
Pr.447
10447+300n
PE03
FCT2* Fully closed loop selection 2
0002h
—
0000h, 1013h
Pr.448
10448+300n
PE04
FBN**
Fully closed loop feedback pulse electronic
gear numerator 1
1
—
1 to 65535
Pr.449
10449+300n
PE05
FBD**
Fully closed loop feedback pulse electronic
gear denominator 1
1
—
1 to 65535
Pr.450
10450+300n
PE06
BC1
Fully closed loop control speed deviation error
detection level
400
r/min
1 to 50000
Pr.451
10451+300n
PE07
BC2
Fully closed loop control position deviation error
detection level
100
kPLS
1 to 20000
Pr.452
10452+300n
PE08
DUF
Fully closed loop dual feedback filter
10
rad/s
0 to 4500
Pr.454
10454+300n
PE10
FCT3
Fully closed loop selection 3
Symbol
ERZ
Name
Error excessive alarm level
ENRS* Encoder output pulses selection
DIA2* For manufacturer setting
0000h
—
0000h to 1200h
0
—
0 to 32767
Fully closed loop feedback pulse electronic
gear denominator 2
0
—
0 to 32767
Pr.478
10478+300n
PE34
Fully closed loop feedback pulse electronic
FBN2**
gear numerator 2
Pr.479
10479+300n
PE35
FBD2**
REMARK
• When using the fully closed loop control system, set "0010h" in " Pr.301 Control
mode".
• When using the fully closed loop control system, the default value of servo
amplifier differs from the default value of QD74MH. Set an appropriate value
referring to the servo amplifier instruction manual. (The servo amplifier does not
operate normally with the default value of QD74MH.)
Refer to the servo amplifier instruction manual for details
Servo amplifier type
MR-J3- B-RJ006
Instruction manual name
SSCNET Fully Closed Loop Control MR-J3- B-RJ006 Servo Amplifier Instruction
Manual (SH-030056)
6 - 51
6 DATA USED FOR POSITIONING CONTROL
MELSEC-Q
(3) Servo parameter (MR-J3- B-RJ004 use)
The parameters (refer to this section (1)) used in the MR-J3- B besides the
following parameters are required.
Symbol
Buffer memory
address
No.
Symbol
Pr.301
10301+300n
PA01
STY** Control mode
Pr.316
10316+300n
PA16
ENR2* Encoder output pulses 2
Setting range
0000h
—
—
0
—
1 to 65535
10381+300n
PC01
Pr.383
10383+300n
PC03
3
mm
1 to 1000
0000h
—
0010h to 0031h
Pr.406
10406+300n
Pr.407
10407+300n
PC26 COP8** Function selection C-8
0000h
—
0100h, 1100h
PC27 COP9** Function selection C-9
0000h
—
0000h to 0101h
Pr.414
10414+300n
PD02
DIA2* Input signal automatic ON selection
0000h
—
0000h to 0003h
Pr.493
10493+300n
PS01
LIT1** Linear function selection 1
0000h
—
0000h to 1601h
Pr.494
10494+300n
PS02
LIM**
0
—
1 to 65535
Pr.495
10495+300n
PS03
LID**
Linear encoder resolution setting denominator
Pr.496
10496+300n
PS04
LIT2*
Linear function selection 2
Pr.497
10497+300n
PS05
LB1
Pr.498
10498+300n
PS06
Pr.499
10499+300n
PS07
10500+300n
PS08
Pr.501
10501+300n
PS09
Error excessive alarm level
Unit
Pr.381
Pr.500
ERZ
Factory default
of QD74MH
Name
ENRS* Encoder output pulses selection
Linear encoder resolution setting numerator
0
—
1 to 65535
0000h
—
0000h to 1007h
Linear servo motor control position deviation
error detection level
0
mm
1 to 1000
LB2
Linear servo motor control speed deviation
error detection level
0
mm/s
1 to 5000
LB3
Linear servo motor control thrust deviation error
detection level
0
%
1 to 1000
LIT3*
Linear function selection 3
0000h
—
0010h to 0012h
0
%
0 to 100
0
Hz
1 to 500
LPWM Magnetic pole detection voltage level
Pr.502
10502+300n
PS10
LFH
At magnetic pole detection current detection
method Identification signal frequency
Pr.503
10503+300n
PS11
LIDH
At magnetic pole detection current detection
method Identification signal amplitude.
0
%
50 to 100
Pr.504
10504+300n
PS12
—
For manufacturer setting
0
—
—
REMARK
• When using the linear servo, set "0040h" in " Pr.301 Control mode".
• When using the linear servo, the default value of servo amplifier differs from the
default value of QD74MH. Set an appropriate value referring to the servo amplifier
instruction manual. (The servo amplifier does not operate normally with the default
value of QD74MH.)
Refer to the servo amplifier instruction manual.
Servo amplifier type
MR-J3- B-RJ004
Instruction manual name
SSCNET
030054)
Compatible Linear Servo MR-J3- B-RJ004U
6 - 52
Instruction Manual (SH-
7 OPR CONTROL
MELSEC-Q
7. OPR CONTROL
7.1 Outline of OPR Control
In OPR control, a position is established as the starting point when executing
positioning control. The six methods of OPR control are shown below.
Through use of any of the methods, the current position becomes the value set in
" Pr.52 OP address" at OPR completion, and the "OPR complete ( Md.9 Status 1: b1)"
turns ON. "OPR complete" turns OFF at the next operation start.
The OPR retry in the negative direction is executed at the hardware stroke limit
detection for some OPR methods. Presence/absence of retry is also shown below.
Table 7.1 OPR method list
Method
Details
Retry
Proximity dog type
A method where deceleration being when the proximity dog turns ON and then the OP is
defined as the first zero point after the proximity dog turns back OFF.
Data set type
A method which uses the JOG operation to move to any arbitrary position and then sets
that position as the home position. A proximity dog is unnecessary.
Stopper type
To set the OP, first set the torque limit to a value in which the stopper will not be
damaged. Next, perform a JOG operation and continue to JOG until the torque limit is
reached due to the stopper. The stopper type OPR is now set.
Dog cradle type
The dog cradle method performs a deceleration when the proximity dog turns ON. Then,
movement direction is reversed until the dog turns back OFF. At this point, movement is
again towards the dog sensor but at the set creep speed. As soon as the dog turns back
ON again, movement stops and the OP is defined.
Limit switch combined type
The limit switch sensor in the opposite direction of the home sensor is used for OPR.
This method moves towards the limit switch and beings decelerating when the sensor
turns on. Movement then reverses and the home position is the first Z pulse after the
sensor turns back off.
Scale origin signal detection type
The scale origin signal detection method beings deceleration upon the dog sensor ON.
Then, movement is reversed and the system detects for the linear scale's OP signal.
Once detected, the system decelerates to a stop and then returns to the scale's OP at
the set creep speed.
: Possible
7
: Not possible
7.1.1 Data used for control
The parameters and control data used for OPR are shown below.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Control data
Items
Details
Pr.50
OPR method
Pr.51
OPR direction
Select the OPR method.
Set the direction to execute the OPR.
Pr.52
OP address
Set the OP address at the OPR completion.
Pr.54
OPR speed
Set the movement speed for OPR.
Pr.56
Creep speed
Set the creep speed after proximity dog ON.
Pr.58
OPR acceleration time
Set the acceleration time at the OPR.
Pr.59
OPR deceleration time
Set the deceleration at the OPR.
Pr.60
OP shift amount
Set the shift amount at the OP shift.
Pr.62
OP search limit
Set the limit on the movement amount at the OP search movement.
Cd.2
Start method
Set the start method (9000: OPR).
7-1
7 OPR CONTROL
MELSEC-Q
7.1.2 Starting method of OPR
Starting method of OPR is shown below.
1) Set the OPR control related parameters as shown Table 7.1.1.
2) Set "9000" in " Cd.2 Start method".
3) Turn the positioning start signal [Y10 to Y1F] ON.
4) "OPR request ( Md.9 Status 1: b0)" is turned OFF with the OPR completion, and
"OPR complete ( Md.9 Status 1: b1)" is turned ON.
V
Pr.51 OPR direction
Pr.54 OPR speed
Pr.56 Creep speed
OP
Proximity dog
Zero
point
1) OPR related parameter setting
OPR related parameter
Cd.2
Start method
2) 9000
ON
Positioning start signal
[Y10 to Y1F]
OFF
3)
ON
OPR request
( Md.9 Status 1: b0)
OFF
ON 4)
OPR complete
( Md.9 Status 1: b1)
OFF
7-2
7 OPR CONTROL
MELSEC-Q
7.2 Proximity Dog Type
A method where deceleration being when the proximity dog turns ON and then the OP
is defined as the first zero point after the proximity dog turns back OFF.
Operation outline is shown below.
(1) There is a proximity dog in the direction of OPR
1) Start the OPR.
(It starts to accelerate at the time set in" Pr.58 OPR acceleration time" to the
direction set in " Pr.51 OPR direction", and it moves at the speed set in
" Pr.54 OPR speed".)
2) The proximity dog ON is detected, and it starts to decelerate at the speed
set in " Pr.56 Creep speed".
3) It decelerates to the creep speed, and subsequently moves at the creep
speed.
4) It stops with the proximity dog OFF. Thereafter, it restarts and the OPR
completes at the first zero point.
V
Pr.51 OPR direction
Pr.54 OPR speed
2)
Pr.56 Creep speed
3)
1)
4)
OP
OPR start
Proximity dog
Zero point
7-3
7 OPR CONTROL
MELSEC-Q
(2) There is a proximity dog in the opposite direction against of OPR
1) Start the OPR.
(It starts to accelerate at the time set in" Pr.58 OPR acceleration time" to the
direction set in " Pr.51 OPR direction", and it moves at the speed set in
" Pr.54 OPR speed".)
2) It stops at the time set in " Pr.17 Sudden stop deceleration time" with the
limit switch detection of "OPR direction".
3) After stop, it moves in the opposite direction against of OPR at the OPR
speed.
4) If the zero point is passed with the proximity dog OFF, a deceleration stop is
made. (If the zero point is not passed, it continues to move until the zero
point is passed, and then a deceleration stop is made.)
5) After deceleration stop, it moves in the direction of OPR at the OPR speed.
6) The proximity dog ON is detected, and it starts to decelerate at the speed
set in " Pr.56 Creep speed".
7) It decelerates to the creep speed, and subsequently moves at the creep
speed.
8) It stops with the proximity dog OFF. Thereafter, it restarts and the OPR
completes at the first zero point.
V
Pr.51 OPR direction
2)
6)
Pr.56 Creep speed
7)
5)
1)
3)
8)
OP
OPR start
4)
Pr.54 OPR speed
Limit switch
Proximity dog
Zero point
POINT
When the limit switch of OPR direction is detected again without the proximity dog
ON after operation in (5) the above, the retry (continuation from operation in (2)) is
executed again.
7-4
7 OPR CONTROL
MELSEC-Q
(3) The start position is on a proximity dog
1) It moves in the opposite direction against of direction set in " Pr.51 OPR
direction" at the speed set in " Pr.54 OPR speed".
2) If the zero point is passed with the proximity dog OFF, a deceleration stop is
made. (If the zero point is not passed, it continues to move until the zero
point is passed, and then a deceleration stop is made.)
3) After deceleration stop, it moves in the direction of OPR at the OPR speed.
4) The proximity dog ON is detected, and it starts to decelerate at the speed
set in " Pr.56 Creep speed".
5) It decelerates to the creep speed, and subsequently moves at the creep
speed.
6) It stops with the proximity dog OFF. Thereafter, it restarts and the OPR
completes at the first zero point.
V
Pr.51 OPR direction
Pr.54 OPR speed
4)
Pr.56 Creep speed
5)
3)
1)
6)
OPR start
Pr.54 OPR speed
OP
2)
Proximity dog
Zero point
(4) A limit switch is detected at the start up position
If a limit switch in the direction of OPR is ON, the OPR is executed in operation
of this section (2). If the limit switch in the opposite direction against of OPR is
ON, the OPR is executed in operation of this section (1).
7-5
7 OPR CONTROL
MELSEC-Q
7.3 Data Set Type
A method which uses the JOG operation to move to any arbitrary position and then
sets that position as the home position. A proximity dog is unnecessary.
OP is the commanded position at the OPR operation.
V
The commanded position
at the OPR start is OP.
OPR start
(Positioning start signal ON)
POINT
When the hardware stroke limit is detected at the OPR start, an "error code 1500"
will occur, and the OPR is not completed.
7-6
7 OPR CONTROL
MELSEC-Q
7.4 Stopper Type
To set the OP, first set the torque limit to a value in which the stopper will not be
damaged. Next, perform a JOG operation and continue to JOG until the torque limit is
reached due to the stopper. The stopper type OPR is now set.
V
The position that has stopped
by stopper, etc. is OP.
Torque limit
OPR start
(Positioning start signal ON)
POINT
When the "Torque limit ( Md.40 Servo status 1: b13)" is not ON at the OPR start, an
"error code 1095" will occur, and the OPR is not completed.
7-7
7 OPR CONTROL
MELSEC-Q
7.5 Dog Cradle Type
The dog cradle method performs a deceleration when the proximity dog turns ON.
Then, movement direction is reversed until the dog turns back OFF. At this point,
movement is again towards the dog sensor but at the set creep speed. As soon as the
dog turns back ON again, movement stops and the OP is defined.
Operation outline is shown below.
(1) There is a proximity dog in the direction of OPR
1) Start the OPR.
(It starts to accelerate at the time set in" Pr.58 OPR acceleration time" in the
direction set in " Pr.51 OPR direction", and it moves at the speed set in
" Pr.54 OPR speed".)
2) The proximity dog ON is detected, and a deceleration stop is made.
3) After deceleration stop, it moves in the opposite direction against of OPR at
the OPR speed.
4) If the zero point is passed with the proximity dog OFF, a deceleration stop is
made. (If the zero point is not passed, it continues to move until the zero
point is passed, and then a deceleration stop is made.)
5) After deceleration stop, it moves in the direction of OPR at the speed set in
" Pr.56 Creep speed", and the OPR completes at the first zero point after
proximity dog ON.
Pr.51 OPR direction
V
Pr.54 OPR speed
2)
5)
Pr.56 Creep speed
3)
1)
OP
OPR start
4)
Proximity dog
Zero point
7-8
7 OPR CONTROL
MELSEC-Q
(2) There is a proximity dog in the opposite direction against of OPR
1) Start the OPR.
(It starts to accelerate at the time set in" Pr.58 OPR acceleration time" to the
direction set in " Pr.51 OPR direction", and it moves at the speed set in
" Pr.54 OPR speed".)
2) It stops at the time set in " Pr.17 Sudden stop deceleration time" with the
limit switch detection of "OPR direction".
3) After stop, it moves in the opposite direction against of OPR at the OPR
speed.
4) If the zero point is passed with the proximity dog OFF, a deceleration stop is
made. (If the zero point is not passed, it continues to move until the zero
point is passed, and then a deceleration stop is made.)
5) After deceleration stop, it moves in the direction of OPR at the speed set in
" Pr.56 Creep speed", and the OPR completes at the first zero point after
proximity dog ON.
V
2)
Pr.51 OPR direction
5)
Pr.56 Creep speed
1)
3)
OP
OPR start
4)
Pr.54
Limit switch
Proximity dog
Zero point
7-9
OPR speed
7 OPR CONTROL
MELSEC-Q
(3) The start position is on a proximity dog
1) It moves in the opposite direction against of direction set in " Pr.51 OPR
direction" at the speed set in " Pr.54 OPR speed".
2) If the zero point is passed with the proximity dog OFF, a deceleration stop is
made. (If the zero point is not passed, it continues to move until the zero
point is passed, and then a deceleration stop is made.)
3) After deceleration stop, it moves in the direction of OPR at the speed set in
" Pr.56 Creep speed", and the OPR completes at the first zero point after
proximity dog ON.
V
Pr.51 OPR direction
3)
Pr.56 Creep speed
OP
2)
1)
OPR start
Pr.54 OPR speed
Proximity dog
Zero point
(4) A limit switch is detected at the start up position
If a limit switch in the direction of OPR is ON, the OPR is executed in operation
of this section (2). If the limit switch in the opposite direction against of OPR is
ON, the OPR is executed in operation of this section (1).
7 - 10
7 OPR CONTROL
MELSEC-Q
7.6 Limit Switch Combined Type
The limit switch sensor in the opposite direction of the home sensor is used for OPR.
This method moves towards the limit switch and beings decelerating when the sensor
turns on. Movement then reverses and the home position is the first Z pulse after the
sensor turns back off.
Operation outline is shown below.
1) It moves in the opposite direction against of direction set in " Pr.51 OPR
direction" at the speed set in " Pr.54 OPR speed".
2) A deceleration stop is made with the limit switch detection of the opposite
direction against of OPR.
3) After deceleration stop, it moves in direction of OPR at the speed set in
" Pr.56 Creep speed", and it stops at the limit switch detection. Thereafter, it
restarts and the OPR completes at the first zero point.
V
Pr.51 OPR direction
Pr.54 OPR speed
2)
3)
1)
OPR start
OP
Pr.56 Creep speed
Limit switch
Zero point
POINT
While it is moving in the direction of OPR at the speed set in " Pr.56 Creep speed",
the OPR is executed by calculating the movement distance to OP even if the zero
point in not passed at the limit switch OFF.
However, it cannot be stopped to zero point securely in the incremental encoder.
(1) A limit switch is detected at the start up position
If a limit switch of the opposite direction against of OPR is ON at the start, the
OPR is executed in operation of this section 3).
7 - 11
7 OPR CONTROL
MELSEC-Q
7.7 Scale Origin Signal Detection Type
The OPR is executed using a home position signal (zero point) on a linear scale.
The scale origin signal detection method beings deceleration upon the dog sensor
ON. Then, movement is reversed and the system detects for the linear scale's OP
signal. Once detected, the system decelerates to a stop and then returns to the
scale's OP at the set creep speed. For linear scales that have multiple home position
signals, the position of the home position signal that is nearest the proximity dog
becomes the home position. Operation outline is shown below.
CAUTION
Set "Need to pass motor Z phase after the power supply is switched on" in " Pr.397 Function
selection C-4" when using the OPR for scale origin signal detection type. An "error code 1100"
will occur at the start of the OPR for scale origin signal detection type, if "Not need to pass
motor Z phase after the power supply is switched on" is set.
(1) There is a proximity dog in the direction of OPR
1) Start the OPR.
(It starts to accelerate at the time set in" Pr.58 OPR acceleration time" in the
direction set in " Pr.51 OPR direction", and it moves at the speed set in
" Pr.54 OPR speed".)
2) The proximity dog ON is detected, and a deceleration stop is made.
3) After deceleration stop, it moves in the opposite direction against of OPR at
the OPR speed.
4) After proximity dog ON, a home position signal (zero point) on a linear scale
is detected, and a deceleration stop is made.
5) After deceleration stop, it moves in direction of OPR at the speed set in
" Pr.56 Creep speed", and the OPR completes at the position of home
position signal (zero point).
V
Pr.51 OPR direction
Pr.54 OPR speed
2)
5)
Pr.56 Creep speed
3)
1)
OP
OPR start
4)
Proximity
dog
Limit switch
OP signal (Zero point)
7 - 12
7 OPR CONTROL
MELSEC-Q
POINT
(1) When a limit switch is detected, an "error code 1500" will occur and the OPR is
terminated. (Retry is not executed.) When there is a proximity dog in the
opposite direction against of OPR, an "error code 1500" will surely occur.
Therefore, position the proximity dog in front of the limit switch signal, and as
shown in the diagram, position the proximity dog signal so that it overlaps the
limit switch signal.
(2) While it is moving in the opposite direction against of OPR, it cannot be
stopped until the home position search limit or the limit switch of opposite is
detected.
(3) The start position is on a proximity dog
1) It moves in the opposite direction against of direction set in " Pr.51 OPR
direction" at the speed set in " Pr.54 OPR speed".
2) After proximity dog ON, a home position signal (zero point) on a linear scale
is detected, and a deceleration stop is made.
3) After deceleration stop, it moves in direction of OPR at the speed set in
" Pr.56 Creep speed", and the OPR completes at the position of home
position signal (zero point).
V
Pr.51 OPR direction
3)
Pr.56 Creep speed
OP
1)
Pr.54
2)
Proximity
dog
Limit switch
OP signal (Zero point)
7 - 13
OPR start
OPR speed
7 OPR CONTROL
MELSEC-Q
7.8 OP Shift Function
When the OPR is executed, a home position is set by using the proximity dog or zero
point signal. However, by using the OP shift function, the position to which only the
specified movement amount was moved from the position which detected the zero
point signal can be regarded as home position.
The OPR methods corresponding to the OP shift function are shown below.
OPR Method
OP shift function
Proximity dog type
Data set type
Stopper type
Dog cradle type
Limit switch combined type
Scale origin signal detection type
: Possible
: Not possible
7.8.1 Control details
Operation for the OP shift function is shown below.
(1) OP shift amount is positive value
When a positive value is set in " Pr.60 OP shift amount", it moves in the
direction set in " Pr.51 OPR direction".
V
Pr.51 OPR direction
Pr.54 OPR speed
Pr.56 Creep speed
Pr.60 OP shift amount
OPR start
Proximity dog
Zero point
7 - 14
OP
7 OPR CONTROL
MELSEC-Q
(1) OP shift amount is negative value
When a negative value is set in " Pr.60 OP shift amount", it moves in the
opposite direction against of direction set in " Pr.51 OPR direction".
V
Pr.51 OPR direction
Pr.54 OPR speed
Pr.60 OP shift amount
Pr.56 Creep speed
OP
OPR start
Pr.56 Creep speed
Proximity dog
Zero point
7.8.2 Setting range of OP shift amount
Set " Pr.60 OP shift amount" within the range of from the detected zero point signal to
upper/lower limit switches. If the outside the range is set, an "error code 1500" will
occur and the OPR is not completed.
Setting range of negative
" Pr.60 OP shift amount"
Limit switch in the
opposite direction
of OPR
Setting range of positive
" Pr.60 OP shift amount"
Limit switch in the
direction of OPR
Proximity dog
Pr.51 OPR direction
Zero point
7 - 15
7 OPR CONTROL
MELSEC-Q
7.9 OP Search Limit Function
This function is that through movement operation in the opposite direction of OPR
(movement operation in the direction of OPR foe the limit switch combined type), if the
movement exceeds the parameter set in " Pr.62 OP search limit", an "error code
1098" will occur and the OPR is terminated. (It stops by setting of sudden stop time.)
This function is used to prevent over run in case the proximity dog signal and limit
switch cannot detect correctly due to a failure.
The OPR methods corresponding to the OP search limit function are shown below.
Method
OP search limit function
Proximity dog type
Data set type
Stopper type
Dog cradle type
Limit switch combined type
Scale origin signal detection type
: Possible
: Not possible
7.9.1 Control details
Operation for the OP search limit function is shown below.
(1) OPR for dog cradle type (ex. The proximity dog OFF cannot be
detected.)
V
Pr.51 OPR direction
Pr.54 OPR speed
OPR start
Alarm stop due to " Pr.62 OP
search limit" being exceeded
The proximity dog OFF cannot
be detected for some reason.
Proximity dog
Zero point
7 - 16
7 OPR CONTROL
MELSEC-Q
(2) OPR for limit switch combined type (ex. The limit switch OFF
cannot be detected.)
V
Pr.51 OPR direction
Pr.54 OPR speed
OPR start
Pr.56 Creep speed
Alarm stop due to " Pr.62 OP
search limit" being exceeded
The proximity dog OFF cannot
be detected for some reason.
Limit switch
Zero point
7 - 17
7 OPR CONTROL
MELSEC-Q
MEMO
7 - 18
8 POSITIONING CONTROL
MELSEC-Q
8. POSITIONING CONTROL
8.1 Outline of Positioning Controls
Positioning controls can be executed using the positioning data stored in QD74MH.
It can be executed by starting the positioning data that set the required items,
Set the control system in " Da.1 Control system" of the positioning data.
Positioning control list is shown below.
Positioning control
ABS linear 1
INC linear 1
1-axis linear control
Linear
control
Details
Control system
Interpolation 2 to 4-axes linear
control
interpolation control
Positioning of a designated 1 axis can be executed from the
start address (current stop position) to the designated position.
ABS linear interpolation
INC linear interpolation
Using the designated 2 to 4 axes which group is set by
parameter, linear interpolation control can be executed out
from the start address (current stop position) to the designated
position.
POINT
Up to 4 groups can be set as a group for combination of
interpolation axis.
8.1.1 Data required for positioning control
Positioning data used for positioning controls are shown below.
The positioning data of 32 points can be set for each axis.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Positioning data
Items
Details
Da.0
Operation pattern
Set the operation pattern of continuous positioning data.
Da.1
Control system
Set the control system of positioning.
Da.2
Acceleration time
Set the acceleration time to accelerate for positioning.
Da.3
Deceleration time
Set the deceleration time to decelerate for positioning.
Da.4
Command speed
Set the speed of positioning.
Da.6
Positioning address/movement
amount
Set the positioning address/movement amount of positioning.
Da.8
Dwell time
Set the time from the completion of positioning data until the judgment of
the QD74MH positioning completion.
8-1
8
8 POSITIONING CONTROL
MELSEC-Q
8.1.2 Operation patterns of positioning controls
" Da.0 Operation pattern" can be set to designate whether to continue executing
positioning data after the started positioning data.
The following 3 types can be set in " Da.0 Operation pattern".
• Independent positioning (Operation pattern: 0)
• Continuous positioning (Operation pattern: 1)
• Continuous path (Operation pattern: 3)
Examples of operation patterns in which "1-axis linear control (ABS linear 1)" is set in
positioning data No.1 to No.6 of axis 1 is shown below.
No.1 Start
Positioning data No.1 Positioning to address [A] at command speed [a] Operation pattern = 3: Continuous path
No.2 Positioning to address [B] at command speed [b] Operation pattern = 3: Continuous path
No.3 Positioning to address [C] at command speed [a] Operation pattern = 1: Continuous positioning
No.4 Positioning to address [D] at command speed [b] Operation pattern = 1: Continuous positioning
No.5 Positioning to address [E] at command speed [a] Operation pattern = 0: Independent positioning
No.6 Positioning to address [F] at command speed [b] Operation pattern = 3: Continuous path
V
Da.0 Operation pattern
3
b
a
Positioning
complete
1
3
1
0
The machine stops,
and then continues
the next positioning
Speed is changed
without stopping
No.1
A
No.2
B
Positioning complete
t
No.3
C
No.4
D
No.5
Address
E
F
(Note): It is possible to start from an arbitrary point by setting the point.
8-2
8 POSITIONING CONTROL
MELSEC-Q
(1) Independent positioning
One positioning data can be executed in this control. If a dwell time is set, the
positioning will complete after the specified time elapses.
V
Independent positioning
Da.8 Dwell time
t
Positioning start signal
[Y10 to Y1F]
ON
OFF
ON
BUSY signal
[X10 to X1F]
OFF
ON
Positioning complete
( Md.10 Status 2: b0)
OFF
(Turn OFF at the next
positioning start)
(2) Continuous positioning
It always automatically decelerates each time the positioning is completed.
Acceleration to operate the next positioning data is executed after the command
speed reaches "0".
If a dwell time is set, acceleration to operate the next positioning data after the
specified time elapses.
In operation by continuous positioning, the next positioning is automatically
executed. Always set the independent positioning in the last positioning data to
complete the positioning.
If the independent positioning is not set, an "error code 1022" will occur at the
nd
switching to the 32 point, and the positioning cannot be started.
V
Continuous positioning
Continuous positioning
Da.8
Dwell time
Da.8
Dwell time
t
Set "0" in Da.8 .
Positioning start signal
[Y10 to Y1F]
Independent positioning
ON
OFF
ON
BUSY signal
[X10 to X1F]
Positioning complete
( Md.10 Status 2: b0)
OFF
ON
OFF
8-3
8 POSITIONING CONTROL
MELSEC-Q
(3) Continuous path
The speed can be changed without deceleration stop between the command
speed of the positioning data currently being run and the speed of the
positioning data that will be run next. The speed switching of next positioning
data is executed after passing the point.
If a dwell time is set, a deceleration stop is made and it starts to move to the next
point after the specified time elapses.
In operation by continuous path, the next positioning is automatically executed.
Always set the independent positioning in the last positioning data to complete
the positioning.
If the independent positioning is not set, an "error code 1022" will occur at the
nd
switching to the 32 point, and a deceleration stop is made.
Da.8 Dwell time(=0)
V
Continuous path
Continuous path
Independent
positioning
Continuous path
t
Set "0" in Da.8 .
Positioning start signal
[Y10 to Y1F]
Set "0" in Da.8 .
ON
OFF
ON
BUSY signal
[X10 to X1F]
Positioning complete
( Md.10 Status 2: b0)
OFF
ON
OFF
POINT
(1) Do not reverse a movement direction in the "positioning data" of continuous
path for 1-axis linear control. If a direction is reversed, an "error code 1024" will
occur and a deceleration stop is made. (A movement direction can be reversed
in the continuous path at the interpolation control.)
(2) Set an address or movement amount where continuous stop is possible in the
positioning data of continuous path end. If the movement amount is small, a
"warning code 11005" or "warning code 11006" will occur, and the operation is
stopped suddenly.
(3) The point data is input at the timing of point switching for the continuous path.
8-4
8 POSITIONING CONTROL
MELSEC-Q
8.1.3 Designating the positioning address
There are two methods (absolute system and incremental system) to design a
position in the positioning control. Each method can be set in " Da.1 Control system".
(1) Absolute system
Positioning can be executed by specifing a position (absolute address) based on
the home position.
Address 100
Start point
Address 150
End point
Address 300
Address 150
Address 100
Address 150
0
100
150
300
(2) Incremental system
Positioning can be executed by specifing a movement direction and movement
amount based on the position that has currently stopped.
Movement amount
+100
Start point
End point
Movement amount
+100
Movement amount -200
Movement amount -150
0
100
8-5
150
250
300
8 POSITIONING CONTROL
MELSEC-Q
8.2 1-axis Linear Control
This control is used to execute the position control for 1 axis.
Da.1
Control system
0: ABS linear 1
1: INC linear 1
8.2.1 Starting method
The starting method for 1-axis linear control is shown below.
1) Set the items of positioning data.
2) Set the starting positioning data No. in " Cd.2 Start method".
3) Turn the positioning start signal [Y10 to Y1F] ON.
4) The BUSY signal [X10 to X1F] is turns OFF by the positioning completion, and the
"Positioning complete ( Md.10 Status 2: b0)" is turns ON.
V
Continuous path
Independent
positioning
Continuous path
1) Positioning data setting
Positioning data
Cd.2 Start type
Positioning start signal
[Y10 to Y1F]
2) Starting positioning data No.
ON
OFF
3)
ON
BUSY signal
[X10 to X1F]
Positioning complete
( Md.10 Status 2: b0)
Md.5 Positioning data No.
being executed
OFF
4)
ON
OFF
Started positioning
data No.
8-6
Started positioning
data No. +1
Started positioning
data No. +2
0
8 POSITIONING CONTROL
MELSEC-Q
8.2.2 Control details
(1) ABS linear 1
In absolute system 1-axis linear control, positioning is executed from the start
point address (current stop position) to the end point address (address set in
" Da.6 Positioning address/movement amount") by using addresses established
by OPR.
Example
The start point address is 1000, and the end point address is 8000.
Start point address
(Current stop position)
0
End point address
(Positioning address)
1000
8000
Positioning control (Movement amount 7000)
(2) INC linear 1
In incremental system 1-axis linear control, positioning is executed from the start
point address (current stop position) to a position at the end of the movement
amount set in " Da.6 Positioning address/movement amount" by using
addresses established by OPR are used. The movement direction is depended
by a sign of movement amount.
Start point address
(Current stop position)
Reverese
direction
Forward
direction
Negative movement amount
Positive movement amount
Example
The start point address is 5000, and the movement amount is -7000.
Address after positioning control
-3000
-2000 -1000
0
1000
2000
3000
4000
Positioning control in the reverse direction
(Movement amount -7000)
8-7
5000
Start point address
(Current stop position)
6000
8 POSITIONING CONTROL
MELSEC-Q
8.2.3 Restrictions for 1-aixs linear control
(1) When the "continuous positioning" or "continuous path is set in " Da.0 Operation
pattern", and the "ABS linear 1" or " INC linear 1" is set in " Da.1 Control system",
if the except "1-axis linear control" is set to the next positioning data, an "error
code 1023" will occur at the point shift , and the positioning is completed. (The
point shift from "ABS linear 1" to "INC linear 1", or from "INC linear 1" to "ABS
linear 1" are possible.)
In an "error code 1023" occurs at the point shift of continuous path, the operation
will stops immediately.
(2) If the following setting value is set that it decelerates at once after it reaches the
command speed by acceleration and is set, it does not reach the command
speed, and the constant speed section is caused.
• " Da.2 Acceleration time"
• " Da.3 Deceleration time"
• " Da.4 Command speed"
• " Da.6 Positioning address/movement amount"
If it does not reach the command speed because the setting value of "positioning
address/movement amount" is small, it becomes operation similar to the above.
Da.4 Command speed
Actual speed
If the setting value of " Da.2 Acceleration time" is short, the constant speed
section might become long.
8-8
8 POSITIONING CONTROL
MELSEC-Q
8.3 Linear Interpolation Control
This control is used to execute the position control in a linear path while executing
interpolation for the axis directions set in each axis for the axes set as a group.
Up to 4 axes interpolation controls are possible in QD74MH.
The linear interpolation control for all axes set in one group can be executed by setting
the positioning address and command speed in the positioning data, and by input the
positioning start signal.
Da.1
Control system
2: ABS linear interpolation
3: INC linear interpolation
Afterwards, the axis in which the positioning start signal is input is defined as the
"reference axis", and the other axis is defined as "interpolation axis".
8.3.1 Data used for control
There are data that set to both of "reference axis" and "interpolation axis", and data
that set to only "reference axis".
The parameters, control data and positioning data used for the linear interpolation
control are shown below.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Pr.10
Parameter
Control data
Reference
axis
Details
Interpolation
axis
Speed limit value
Set the maximum speed for each axis.
Pr.25
Interpolation group
Set the group to specify the combination for
axes to be interpolation-controlled.
Pr.26
Linear interpolation speed limit
value
Set the maximum speed at the linear
interpolation control.
⎯
Start method
Set the starting positioning data No.
Set to only "reference axis". The positioning
data of the same No. as the "interpolation axis"
are used to the "interpolation axis".
⎯
Cd.2
Da.0
Operation pattern
Set the operation pattern for the continuous
positioning data.
⎯
Da.1
Control system
Set the positioning control system.
⎯
Set the acceleration time.
⎯
Set the deceleration time.
⎯
Set the positioning speed.
⎯
Da.2
Positioning
data
Items
Da.3
Da.4
Da.6
Da.8
Acceleration time
Same
Deceleration time
positioning
Command speed
No.
Positioning address/
movement amount
Dwell time
Set the positioning address/movement amount.
Set the time from when the positioning data
ends to when the positioning completes.
: Must be set
8-9
⎯
⎯ : Must be not set
8 POSITIONING CONTROL
MELSEC-Q
8.3.2 Setting of linear interpolation axis
Always set the basic parameter " Pr.25 Interpolation group" to execute the linear
interpolation. The interpolated axis can be set to "interpolation group". Set the same
value to "interpolation group" of interpolated axes. Up to 4 axes can be set to one
group, and up to 4 groups can be set.
The interpolation control can be executed for the axes that set the same value to the
interpolation group. When the "ABS linear interpolation" or "INC linear interpolation" is
set in " Da.1 Control system" of reference axis, and the positioning start signal [Y10 to
Y1F] is turned ON, the all axes of same interpolation group can be started to execute
the interpolation control.
The data of reference axis are used in the following positioning data. (The value set in
the positioning data of the interpolation axis is ignored.)
• " Da.0 Operation pattern"
• " Da.1 Control system"
• " Da.2 Acceleration time"
• " Da.3 Deceleration time"
• " Da.4 Command speed"
• " Da.8 Dwell time",
Set only " Da.6 Positioning address/movement amount" for the all axes of the same
group for the interpolation control.
POINT
(1) Always set the basic parameter " Pr.25 Interpolation group" to execute the
interpolation. When "0" is set to interpolation group, an "error code 1040" will
occur.
(2) The interpolation group becomes valid by input from the buffer memory at the
PLC READY ON.
(3) Do not turn ON the positioning start signal [Y10 to Y1F] of the interpolation axis
except reference axis at the interpolation control start. An error may occur at
the start.
(4) The linear interpolation can be started for the axes that set the same value to
the interpolation group. A part of the axes cannot be started among those
axes.
(5) A single axis can be started by setting the "ABS linear interpolation" or "INC
linear interpolation" in " Da.1 Control system" even if "Interpolation group" is
set.
8 - 10
8 POSITIONING CONTROL
MELSEC-Q
8.3.3 Starting method
The starting method for linear interpolation control is shown below.
1) Set the parameters required for linear interpolation control.
2) Set the items of positioning data. Set the all items for reference axis, and set only
" Da.6 Positioning address/movement amount" for interpolation axis.
3) Set the starting positioning data No. in " Cd.2 Start method" of reference axis.
3) Turn the positioning start signal [Y10 to Y1F] ON of reference axis.
4) The BUSY signal [X10 to X1F] both of reference axis and interpolation axis are
turn OFF by the positioning completion, and the "Positioning complete ( Md.10
Status 2: b0)" is turns ON.
V
Reference axis
Interpolation axis
Positioning data
2) Positioning data setting
"Reference axis"
Cd.2 Start type
3) Starting positioning data No.
ON
"Reference axis"
Positioning start signal
[Y10 to Y1F]
OFF
"Reference axis"
BUSY signal [X10 to X1F]
OFF
4)
ON
ON 5)
"Reference axis"
Positioning complete
( Md.10 Status 2: b0)
OFF
"Interpolation axis"
BUSY signal [X10 to X1F]
OFF
"Interpolation axis"
Positioning complete
( Md.10 Status 2: b0)
OFF
ON
ON 5)
8 - 11
8 POSITIONING CONTROL
MELSEC-Q
8.3.4 Control details
(1) ABS linear interpolation
In absolute system 1-axis linear control, linear interpolation positioning is
executed from the start point address (current stop position) to the end point
address (address set in " Da.6 Positioning address/movement amount") by
using addresses established by OPR.
• 2-axes linear interpolation control
Forward direction (Y-axis)
Start point address (X1, Y1)
(Current stop position)
Y2
End point address (X2, Y2)
(Positioning address)
Operation by linear interpolation for
X-axis and Y-axis
Y1
Reverse direction
X1
X2
Forward direction (X-axis)
Reverse direction
Example
The start point address is (1000, 1000) and the end point address is (10000, 4000).
Axis 2 Start point address
(Current stop position)
4000
End point address
(Positioning address)
Axis 2
Movement amount
(4000-1000=3000)
1000
Axis 1
1000
8 - 12
5000
Axis 1 Movement amount
(10000-1000=9000)
10000
8 POSITIONING CONTROL
MELSEC-Q
(2) INC linear
In incremental system 2-axes linear interpolation control, linear interpolation
positioning is executed from the start point address (current stop position) to a
position at the end of the movement amount set in " Da.6 Positioning
address/movement amount" by using addresses established by OPR are used.
The movement direction is depended by a sign of movement amount.
• 2-axes linear interpolation control
Forward direction (Y-axis)
Start point address (X1, Y1)
(Current stop position)
Y2
Y-axis
Movement amount
Operation by linear interpolation for
X-axis and Y-axis
Y1
Reverse direction
X1
Reverse direction
X-axis
Movement amount
X2
Forward direction (X-axis)
Example
The start point address is (1000, 4000), the movement amount of axis 1 is 9000
and the movement amount of axis 2 is -3000.
Axis 2
4000
Start point address
(Current stop position)
Axis 2
Movement amount
(-3000)
Stop address after the
positioning control
1000
Axis 1
5000
1000
Axis 1 Movement amount (9000)
8 - 13
10000
8 POSITIONING CONTROL
MELSEC-Q
8.3.5 Speed/acceleration/deceleration
The speed of each axis in linear interpolation control is equal to the speed at which
" Da.4 Command speed" set in the positioning data of reference axis is distributed
with the movement amount.
Axis 2
Da.4 Command speed (F)
Axis 2 Speed (F2)
• Axis 1 movement amount: D1
• Axis 2 movement amount: D2
• Da.4 Command speed: F
F × D1
2
2
D1 +D2
F × D2
Axis 2 speed: F1 =
2
2
D1 +D2
Axis 1 speed: F1 =
Axis 1 Speed (F1)
Axis 1
Fig. 8.1 Speed for linear interpolation control
POINT
(1) The vector speed is limited by " Pr.26 Linear interpolation speed limit value" in
the interpolation control.
(2) Also, the speed of each axis is limited by the parameter " Pr.10 Speed limit
value" of each axis. In that case, the speed for the other axes is also cramped
to match the cramped axes.
Set the acceleration/deceleration time to the positioning data of reference axis in the
linear interpolation control.
Set " Da.2 Acceleration time" and " Da.3 Deceleration time" within the range of
" Pr.26 Linear interpolation speed limit value".
V
Pr.26 Linear interpolation
speed limit value
Da.4 Command speed
1-axis speed
2-axis speed
Actual
acceleration time
Actual
deceleration time
Da.2
Da.3
Acceleration time
Deceleration time
Fig. 8.2 Acceleration/deceleration time for linear interpolation control
8 - 14
8 POSITIONING CONTROL
MELSEC-Q
8.3.6 Restrictions
(1) Up to 4 groups can be set in " Pr.25 Interpolation group". For 16 axes control, it
cannot be used as "2 axes interpolation × 8 groups".
(2) In the following cases, an "error code 1040" will occur in reference axis, and the
linear interpolation cannot be started.
• One group is defined with 5 or more axes.
• The linear interpolation is started with a group number that exceeds the valid
group number.
(3) In the following cases, an "error code 1041" will occur in reference axis, and an
"error code 1016" will occur in interpolation axis, and the linear interpolation
cannot be started.
• There is an axis whose amount of movement exceeds the maximum of
999999999 in one axis.
(4) An "error code 1042" will occur in reference axis, and the linear interpolation
cannot be started, if it is started while the busy signal is ON, or an alarm is set in
the linear interpolation control.
(5) A corresponding error in the axis that caused the error, and an "error code 1016"
in the other axes will occur, if an error will occur in the linear interpolation control
start.
(6) An "error code 1501" in the corresponding axis and an "error code 1016" in the
other axes will occur, if there is an axis that moves from within software stroke
limits to outside the limits.
(7) The command change is executed to the reference axis. Request of change to
the interpolation axis becomes invalid, and the following warning codes will occur.
• Warning code 11011 ..................................... When changing speed
• Warning code 11012 ..................................... When changing acceleration time
• Warning code 11013 ..................................... When changing deceleration time
(8) Target position change cannot be executed in the linear interpolation control.
Request of target position change becomes invalid, and an "warning code 11014"
will occur.
(9) When the "continuous positioning" or "continuous path is set in " Da.0 Operation
pattern", and the "ABS linear 1" or " INC linear 1" is set in " Da.1 Control system",
if the except "linear interpolation" is set to the next positioning data, an "error
code 1023" will occur at the point shift , and the deceleration stop is made. (The
point shift from "ABS linear 1" to "INC linear 1", or from "INC linear 1" to "ABS
linear 1" are possible.)
8 - 15
8 POSITIONING CONTROL
MELSEC-Q
(10) If the following setting value is set that it decelerates at once after it reaches the
command speed by acceleration and is set, it does not reach the command
speed, and the constant speed section is caused.
• " Da.2 Acceleration time"
• " Da.3 Deceleration time"
• " Da.4 Command speed"
• " Da.6 Positioning address/movement amount"
If it does not reach the command speed because the setting value of
"positioning address/movement amount" is small, it becomes operation similar
to the above.
Da.4 Command speed
Actual speed
If the setting value of " Da.2 Acceleration time" is short, the constant speed
section might become long.
8 - 16
9 MANUAL CONTROL
MELSEC-Q
9. MANUAL CONTROL
"Manual control" refers to control in which positioning data is not used.
The two types (JOG operation, incremental feed operation) of this "manual control"
are explained below.
9.1 JOG Operation
In the JOG operation, the command is output from the QD74MH to the servo amplifier
while "1" is set by setting "1" in " Cd.8 Forward rotation JOG start" or " Cd.9 Reverse
rotation JOG start", and it makes to move the work piece in the specified direction.
While the positioning start signal [Y10 toY1F] is ON, "forward rotation JOG start" and
"reverse rotation JOG start" for that axis are ignored regardless of positioning
executing.
CAUTION
The feed (unlimited length feed) that exceeds the moveable range cannot be executed using the JOG
operation. Doing so may cause an error with the software stroke limit, and the operation stops.
9
9-1
9 MANUAL CONTROL
MELSEC-Q
9.1.1 Control details
Operation procedure for JOG operation is shown below.
1) When "1" is set in " Cd.8 Forward rotation JOG start" or " Cd.9 Reverse rotation
JOG start", an acceleration is started by the specified direction and the
acceleration time set in " Pr.82 JOG operation acceleration time". At this time, the
BUSY signal [X10 to X1F] changes from OFF to ON.
2) When the command reaches the speed set in " Pr.80 JOG speed", the movement
continues at this speed.
3) When the JOG start is changed from "1" to "0", a deceleration is started by the
deceleration time set in " Pr.83 JOG operation deceleration time" from the current
speed.
4) The operation stops when the speed becomes "0". At this time, the BUSY signal
[X10 to X1F] changes from ON to OFF.
Pr.80 JOG speed
Acceleration set in " Pr.82 JOG
operation acceleration time"
1)
Cd.8
Forward rotation
JOG start
Cd.9
Reverse rotation
JOG start
Deceleration set in " Pr.83 JOG
operation deceleration time"
Forward rotation
JOG operation
0
2)
3)
4)
Reverse rotation
JOG operation
1
0
0
1
0
ON
BUSY signal [X10 to X1F] OFF
POINT
• JOG operation can be used without completing OPR.
• Set "0" in " Pr.84 Incremental feedrate". If except "0" is set, the incremental feed
operation is executed.
9-2
9 MANUAL CONTROL
MELSEC-Q
(1) When "1" is set in both the forward rotation JOG start and reverse
rotation JOG start simultaneously
When "1" is set in both " Cd.8 Forward rotation JOG start" and " Cd.9 Reverse
rotation JOG start" simultaneously for one axis, the "forward rotation JOG start"
is given priority. In this case, the reverse rotation JOG start signal is validated
when the forward rotation JOG operation is stopped.
Forward rotation
JOG operation
Reverse rotation
JOG operation
Cd.8
Forward rotation
JOG start
0
1
0
Reverse rotation JOG
start signal is ignored.
Cd.9
Reverse rotation
JOG start
0
0
1
ON
BUSY signal [X10 to X1F] OFF
(2) When "1" is set again in JOG start during deceleration caused by
changing from "1" to "0" of JOG start setting
When "1" is set again in JOG start for same direction during deceleration caused
by changing from "1" to "0" of JOG start setting, the acceleration and JOG
operation are executed without wating for the stop.
Forward rotation JOG operation
Cd.8
Forward rotation
JOG start
0
1
ON
BUSY signal [X10 to X1F] OFF
9-3
0
1
0
9 MANUAL CONTROL
MELSEC-Q
9.1.2 Data used for control
The parameters and control data used for JOG operation are shown below.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Control data
Item
Details
Pr.80
JOG speed
Set the speed for JOG operation.
Pr.82
JOG operation acceleration time
Set the acceleration time for JOG operation.
Pr.83
JOG operation deceleration time
Set the deceleration time for JOG operation.
Cd.8
Forward rotation JOG start
Start the forward rotation JOG.
Cd.9
Reverse rotation JOG start
Start the reverse rotation JOG.
9-4
9 MANUAL CONTROL
MELSEC-Q
9.2 Incremental Feed Operation
In the incremental feed operation, the constant feedrate set in " Pr.84 Incremental
feedrate" is output to the servo amplifier by setting "1" in " Cd.8 Forward rotation JOG
start" or " Cd.9 Reverse rotation JOG start".
While the positioning start signal [Y10 toY1F] is ON, "forward rotation JOG start" and
"reverse rotation JOG start" for that axis are ignored regardless of positioning
executing.
9.2.1 Control details
Operation procedure for incremental feed operation is shown below.
1) When except "0" is set in " Pr.84 Incremental feedrate", and "1" is set in " Cd.8
Forward rotation JOG start" or " Cd.9 Reverse rotation JOG start", an acceleration
is started by the specified direction and the acceleration time set in " Pr.82 JOG
operation acceleration time". At this time, the BUSY signal [X10 to X1F] changes
from OFF to ON.
2) When the command reaches the speed set in " Pr.80 JOG speed", the movement
continues at this speed.
3) A deceleration is started by the deceleration time set in " Pr.83 JOG operation
deceleration time" so that the movement amount that moved after operation start
becomes the incremental feedrate.
4) The operation stops when the speed becomes "0". At this time, the BUSY signal
[X10 to X1F] changes from ON to OFF.
Pr.80 JOG speed
Stop after moving the
movement amount set
in " Pr.84 Incremental
feedrate"
Forward rotation
incremental feed
operation
1)
Pr.84 Incremental feedrate
Cd.8
Forward rotation JOG
start
2)
3)
4)
Feedrate
0
1
0
ON
BUSY signal [X10 to X1F]
OFF
POINT
• Incremental feed operation can be used without completing OPR.
• When both the forward rotation start and reverse rotation start are set
simultaneously, the "forward rotation start" is given priority. Reverse operation
cannot be executed after the forward incremental feed stop.
• Set except "0" in " Pr.84 Incremental feedrate". If "0" is set, the incremental feed
operation is executed.
9-5
9 MANUAL CONTROL
MELSEC-Q
9.2.2 Precautions for control
If the following setting value is set that it decelerates at once after it reaches the
specified JOG speed by acceleration and is set, it does not reach the specified JOG
speed, and the constant speed section is caused.
• " Pr.82 JOG operation acceleration time"
• " Pr.83 JOG operation deceleration time"
• " Pr.80 JOG speed"
• " Pr.84 Incremental feedrate"
If it does not reach the specified JOG speed because the setting value of "positioning
address/movement amount" is small, it becomes operation similar to the above.
Da.4 Command speed
Actual speed
If the setting value of " Pr.82 JOG operation acceleration time" is short, the constant
speed section might become long.
9.2.3 Data used for control
The parameters and control data used for incremental feed operation are shown
below.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Pr.84
Item
Incremental feedrate
Details
Set the feedrate for incremental feed.
9-6
10 FUNCTION DETAILS
MELSEC-Q
10. FUNCTION DETAILS
10.1 Servo ON/OFF
This function is used to execute the servo ON or OFF of the servo amplifiers
connected to the QD74MH.
By establishing the servo ON status with the servo ON command, servomotor
operation is enabled.
10.1.1 Control details
The following two types of servo ON or OFF can be used.
• All axis servo ON signal [Y1]
• Cd.30 Each axis servo OFF
A combination of the "All axis servo ON signal [Y1]" and " Cd.30 Each axis servo OFF"
is shown below.
Cd.30
Each axis servo OFF
Set value "0" LED indication of Set value "1" LED indication of
servo amplifier
servo amplifier
All axis servo ON
signal [Y1]
ON
OFF
(Note-1)
(Note-2)
d
b
(Note-3)
(Note-2)
c
b
: Servo ON (Servo operation enabled)
: Servo OFF (Servo operation disabled)
The procedure for servo ON/OFF is shown below.
(1) Servo ON (Servo operation enabled) ........................................ The above (Note-1)
(a) Make sure that the servo LED indicates "b ".
(b) Set "0" in " Cd.30 Each axis servo OFF".
(c) Turn ON "All axis servo ON signal [Y1]".
(LED indication of servo amplifier : d )
(2) All axis servo OFF (Servo operation disabled) ........................... The above (Note-2)
(a) Turn OFF "All axis servo ON signal [Y1]".
(LED indication of servo amplifier : b )
(3) Each axis servo OFF (Servo operation disabled) ...................... The above (Note-3)
(a) Turn ON "All axis servo ON signal [Y1]".
(b) Set "1" in " Cd.30 Each axis servo OFF".
(LED indication of servo amplifier : c )
(Thereafter, the servo operation enabled if "0" is set again in " Cd.30 Each
axis servo OFF".)
10 - 1
10
10 FUNCTION DETAILS
MELSEC-Q
POINT
• If the servomotor is rotated by external force during the servo OFF status, the
follow up processing is executed.
• An "error code 1702" will occur and the operation does not start, if the OPR
control, positioning control or manual control is started in servo OFF,.
• An "error code 1703" will occur and the servo OFF can be executed after sudden
stop. If the servo OFF is executed in the positioning, The positioning interrupted
by servo OFF cannot be resumed even if the servo OFF is executed again.
• When the servo OFF is executed to all axes, "All axis servo ON signal [Y1]" is
applied even if all axis servo ON command is turned ON to OFF with " Cd.30
Each axis servo OFF" set "0".
10.1.2 Data used for control
Set the following data for the servo ON/OFF.
Refer to Section "5.1 Specifications of Input/Output Signals" and Section 6.3 to 6.8 for
the buffer memory address and details.
Symbol
Input/output
signal
⎯
Control data
Cd.30
Items
Details
All axis servo ON signal [Y1]
The servo for all servo amplifiers connected to the QD74MH is turned
ON or OFF.
Each axis servo OFF
Execute the servo ON/OFF for each axis.
10.1.3 Follow up function
If the servomotor is rotated by external force during the servo OFF status, the follow
up processing is executed.
The follow up processing monitors the number of motor rotations (real current value)
with the servo OFF and reflects the value in the "Current feed value ".
Therefore, even if the servomotor rotates while the servo OFF, the servomotor will not
just rotate for the quantify of droop pulses the next time the servo turns ON but
positioning can be performed from the stop position.
POINT
• The follow up processing is executed if "QD74MH and the servo amplifier is
turned ON" and "servo OFF" regardless of the presence of the absolute position
system.
10 - 2
10 FUNCTION DETAILS
MELSEC-Q
10.2 Electronic Gear Function
This function is used to adjust the position command units at positioning command to
QD74MH. The machine can be moved using an arbitrary multiplication constant for
the movement amount by changing the electronic gear.
10.2.1 Control details
The position in which the value of an electronic gear is multiplied by the command
value to the QD74MH are output to the servo amplifier.
The electronic gear is shown by the following expression.
Electronic gear numerator (AP)
Electronic gear = Electronic gear denominator (AL)
POINT
The setting range of the electronic gear is "1/12<AP/AL<10000".
An "error code 1037" will occur, and the unit READY does not turn ON if the
electronic gear is "1/12" or less.
(1) Setting example when the command unit is [μm] for a machine that uses ball
screws
(a) Machine specifications
Ball screw lead
: Pb = 10[mm] = 10000[μm]
Reduction ratio
: n = 1/2
Encoder resolution : Pt = 262144[PLS/rev]
Pt
262144
262144 32768
AP Pt
= 5000 = 625
AL = S = n × Pb = 1
2 × 10000
(Note):
S is the movement amount for 1 revolution of the servomotor.
Deceleration ratio n=1/2
Servomotor
Ball screw lead Pb=10[mm]
Encoder resolution
Pt=262144
10 - 3
10 FUNCTION DETAILS
MELSEC-Q
(2) Setting example when the gear's value is outside the settable range
(a) Machine specification
Ball screw lead
: Pb = 10[mm] = 10000[μm]
Reduction ratio
: n = 1/6
Encoder resolution : Pt = 262144[PLS/rev]
Pt
262144
AP Pt
=
AL = S = n × Pb = 1
×
10000
6
19660.8 19660
= 125
125
262144 × 6
32768 × 3
16
5
32768 × 3
=
10000 =
625
625
16
5
When the electronic gear's value is outside the settable range or contains a
decimal point, calculate the denominator and numerator according to the
following procedure.
<Procedure for setting the numerator and denominator>
The calculated value after reduction must be as close as possible to the
origial value.
1) Reduce both the numerator and denominator to as small an integer as
possible. In thsi case, the minimum integer value is found by reducing
the denominator and numerator by 16.
2) Regarding the numerator and dinominator, one must be a true integer
and the othr should be rounded off to an integer. Both must be a value
equal to or less than 32768.
a) Calculated value without reduction
Divide using simple division and keep the remainder after the
decimal point.
262144 × 6
16
262144
262144 × 6
32768 × 3
AP
=
= 10000 = 10000 =
= 157.2864
625
AL 1
×
10000
16
6
b) Result of reduction when AL is chosen to be the true integer.
Reduce the denominator (AL) to an integer, and keep the
remainder after the decimal point.
AP 32768 × 3
=
625
AL =
32768 × 3
5
19660.8
= 125
625
5
19660
125 = 157.2800
c) Result of reduction when AP is chosen to be the true integer
Reduce the numerator (AP) to an integer, and keep the remainder
after the decimal point.
AP 32768 × 3
=
625
AL =
32768 × 3
3
32768
= 208.333
625
3
10 - 4
32768
208 = 157.5384
10 FUNCTION DETAILS
MELSEC-Q
d) Subtract the result of expression a) above from that of c) and b)
respectively, and then compare the results as shown below.
| b) - a) | = | 157.2800 - 157.2864 | = 0.0064
| c) - a) | = | 157.5384 - 157.2864 | = 0.2520
From the above comparison, it is easy to see that the calculation
result of b) is closer to the value of a).
3) The value of the electronic gear has setting range and integer
restrictions. Therefore, round down the calculated value of the
numerator (AP) from expression (2) to the nearest integer and set it as
follows.
AP = 19660, AL = 125
(Note): Due to rounding down the numerator, this setting will result in a
differenve in value between the machine's actual position and
the position calculated by the controller.
This example's calculation error.
125
⎛ 19660 ⎞
-3
⎜ 625 - 1⎟ × 100 = 4.07 × 10 [%]
⎝(3 × 32768) ⎠
This mwans that for every 1km of movement, there is 40.7[mm]
of error. The error at the home position is 0.
Also, in an absolute position system, error does not accumulate
even if power is removed at the 1km mark mentiond in this
example.
10 - 5
10 FUNCTION DETAILS
MELSEC-Q
(3) Setting example when the command unit is [μm] for the linear servo
QD74MH
AP
AL
Command
value
PLS
Servo
amplifier
Linear servo motor
PLS
PLS
Feedback pulse
Linear encoder
Calculate the number of pulses (AP) and movement amount (AL) for the linear
encoder in the following conditions.
Number of pulses(AP)
Liner encoder resolution = Movement amount value(AL)
Liner encoder resolution: 0.05[μm]
1
20
20
AP
AL = 0.05 = 1.0 = 1[×1μm] ................................ For command unit: 1[μm]
2
20
= 10[×0.1μm] = 1 .................... For command unit: 0.1[μm]
Set the followings.
For command unit: 1[μm]........... Pr.0 Electronic gear numerator = 20
Pr.2 Electronic gear denominator = 1
For command unit: 0.1[μm]........ Pr.0 Electronic gear numerator = 2
Pr.2 Electronic gear denominator = 1
Set the number of pulses in " Pr.0 Electronic gear numerator ", and the
movement amount in " Pr.2 Electronic gear denominator" in the actual setting.
10.2.2 Data used for control
Set the following parameters for the electronic gear function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Items
Details
Pr.0
Electronic gear numerator (AP)
Set a numerator of electronic gear applied to position command.
Pr.2
Electronic gear denominator (AL)
Set a denominator of electronic gear applied to position command.
10 - 6
10 FUNCTION DETAILS
MELSEC-Q
10.3 Hardware Stroke Limit Function
CAUTION
When the hardware stroke limit is required to be wired, ensure to wire it in the negative logic
using B-contact. If it is set in positive logic using A-contact, the hardware stroke limit may not be
detected even if the signal wires are disconnected.
This function is used to make stop (sudden stop) the control by the input of a signal
from the limit switch, by setting the limit switches at the upper/lower limit of the
physical moveable range.
Damage to the machine can be prevented by stopping the control before the
upper/lower limit of the physical moveable range is reached.
Use "external input signal of servo amplifier" in the hardware stroke limit.
10.3.1 Control details
The operation for the hardware stroke limit function is shown below.
Lower limit
Upper limit
Control moveable range
Mechanical stopper
Movement
direction
Start
Movement
direction
Mechanical stopper
Sudden stop at lower
limit switch detection
Sudden stop at upper
limit switch detection
Lower limit
switch
Upper limit
switch
QD74MH
Servo amplifier
Servo amplifier input
POINT
The deceleration stop is executed by setting the sudden stop deceleration time.
Keep enough distance between the limit switch and the mechanical stopper in
consideration of a distance necessary for the stop.
10 - 7
10 FUNCTION DETAILS
MELSEC-Q
The relation between the hard ware stroke limit and the each control is shown below.
Control
Positioning
control
Manual
control
At the start
1-axis linear control
2 to 4-axes linear interpolation
control
If the limit switch of positioning direction is
in operaion, an "error code 1500" will occur
in the axis that the stroke limit is detected,
an "error code 1016" will occur in the other
axes, and then the operation does not start.
JOG operation
Incremental feed operation
Refer to "Section 7 OPR CONTROL".
Data set type
If the upper or lower limit switch is in
operaion, an "error code 1500" will occur
and the operation does not start.
Dog cradle type
Limit switch combined type
Other
If the limit switch of positioning direction is
operated, an "error code 1500" will occur in
the axis that the stroke limit is detected, an
"error code 1016" will occur in the other
axes, and then the operation does not start.
If the limit switch of positioning direction is If the limit switch of positioning direction is
in operaion, an "error code 1500" will occur operated, an "error code 1500" will occur
and the operation does not start
and the operation does not start
Proximity dog type
Stopper type
OPR
In operation
If the limit switch of positioning direction is If the limit switch of positioning direction is
in operaion, an "error code 1500" will occur operated, an "error code 1500" will occur
and the operation does not start
and the operation does not start
Refer to "Section 7 OPR CONTROL".
Scale origin signal detection type
If the limit switch of OPR direction is in
operaion, an "error code 1500" will occur
and the operation does not start.
Current value change
Possible to change
If the limit switch of current rotation
direction is operated, an "error code 1500"
will occur, and the sudden stop is made.
(However, an error will not occur at retry.
Refer to "Section 7 OPR CONTROL".)
⎯
POINT
(1) If the servo is stopped with the position (prohibited area) in which the limit
switch operated, it can be moved in the direction of the movement allowed
area. However, execute the start operation after resetting the errors.
Limit switch
Movement allowed area
(Including the bounds)
Prohibited area
Movement
prohibited
Movement allowed
Currnet position
(2) If S-curve acceleration/deceleration is set, the " Pr.16 S-curve acceleration/
deceleration time constant" is always valid. Therefore, sudden stop as well will
use the S-curve acceleration/deceleration.
10.3.2 Data used for control
Refer to Section "10.18 External Signal Logic Selection" for the input signal logic
selection of limit switch.
10 - 8
10 FUNCTION DETAILS
MELSEC-Q
10.4 Software Stroke Limit Function
The address established by OPR is used to set the upper and lower limits of the
moveable range of the workpiece in this function.
Movement commands issued to addresses outside that setting range will not be
executed.
10.4.1 Control details
The relation between the software stroke limit and the each control is shown below.
Control
Operation
1-axis linear control
If the positioning data of position command exceeds the software limit is started, an
"error code 1501" will occur and the operation does not start.
And, an "error code 1501" will occur and the deceleration stop is made at point change in
operation.
2 to 4-axes linear interpolation
control
If the positioning data of position command exceeds the software limit is set for the axes
in one group, an "error code 1501" will occur and the operation does not start.
And, an "error code 1501" will occur and the deceleration stop is made at point change in
operation.
JOG operation
If it starts in the opposite direction against of OPR from outside the software limit range,
an "error code 1501" will occur and the operation does not start.
If it is reached to the software stroke limit in operation, an "error code 1502" will occur
and the deceleration stop is made so as not to exceed the software stroke limit.
Incremental feed operation
If the incremental feed amount that exceeds the software stroke limit is set, an "error
code 1501" will occur and the operation does not start.
Positioning
control
Manual
control
Proximity dog type
Data set type
OPR
Stopper type
The software stroke limit is not checked.
Dog cradle type
Limit switch combined type
Scale origin signal detection type
Target position change
If the change address exceeds the software stroke limit at target position change
function execution, an "error code 1501" will occur and the deceleration stop is made.
Current value change
If the change address exceeds the software stroke limit, an "error code 1501" will occur
and the current value change is not executed.
Other
POINT
• If a continuous path is set in " Da.0 Operation pattern" and the target address
after changing the positioning data exceeds the software stroke limit, an "error
code 1501" will occur at positioning data change, and the deceleration stop is
made. At this time, if a distance to software stroke limit is shorter than a distance
that needed for deceleration, the servo may stop outside the software stroke limit.
• In an error set due to exceeding the software stroke limit, the servo is stopped by
" Da.3 Deceleration time".
10 - 9
10 FUNCTION DETAILS
MELSEC-Q
If the current value is outside the software stroke limit range (prohibited area), the
servo can be moved in the direction of the movement allowed area. However,
execute the start operation after resetting the errors.
Sftware limit
Movement allowed area
(Including the bounds)
Prohibited area
Movement
prohibited
Movement allowed
Currnet position
POINT
The software stroke limit is also valid at incompletion of OPR. In the absolute
position system, the current position address becomes the outside the movement
allowed area differing from a position of the actual machine, the JOG operation
might be impossible according to the machine specifications. Execute the current
value change to the rough position matched to the actual machine, and then
execute the OPR.
10.4.2 Ristrictions at absolute position system use
The range that the current value can be restored changes by setting value of the
electronic gear and OP address at absolute position system use ("1: Valid" is set in
" Pr.303 Absolute position detection system" of servo parameter). Set the software
stroke limit range within the range that the current value can be restored as follows.
• Electronic gear numerator > Electronic gear denominator
" Pr.4 Software
stroke limit upper limit
(Note-2)
value"
" Pr.6 Software
stroke limit lower limit
(Note-2)
value"
⎛
⎝"
⎛
⎝"
Pr.0
Pr.0
2147483647
⎞ (Note-1) × "
Electronic gear numerator"⎠
Pr.2
Electronic gear denominator" + "
Pr.52
OP address"
(Note-3)
-2147483647
⎞ (Note-1) × "
Electronic gear numerator"⎠
Pr.2
Electronic gear denominator" + "
Pr.52
OP address"
(Note-3)
• Electronic gear numerator Electronic gear denominator
"
-2147483648 + "
Pr.52
OP address"
(Note-3)
Pr.4
value"
Software stroke limit upper limit
(Note-2)
or
"
Pr.6
value"
2147483647 + "
Pr.52
OP address"
(Note-3)
Software stroke limit lower limit
(Note-2)
(Note-1): Fractions omitted
(Note-2): "-2147483648 to 2147483647" can be set when the calculated result is outside the settable range "-2147483648 to 2147483647".
(Note-3): Use " Pr.52 OP address" set at OPR for the setting range check at first PLC READY ON.
10 - 10
10 FUNCTION DETAILS
MELSEC-Q
An error will occur if the outside the settable range is set. The error occurrence timing
and the operation are shown below.
(1) At OPR start
The above setting range is checked. An "error code 1101" will occur if the
outside the settable range is set, and the OPR does not start. ("OPR request
( Md.9 Status 1: b0)" turns ON.)
(2) At first PLC READY ON (OPR completion in the absolute position system)
The above setting range is checked. An "error code 1101" will occur if the
outside the settable range is set, and the current value is not restored. (The
current value is set to "0", and "OPR request ( Md.9 Status 1: b0)" turns ON.)
10.4.3 Data used for control
Set the following parameters for the software stroke limit function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Item
Details
Pr.4
Software stroke limit upper limit
value
Set the upper limit value for software stroke limit.
Pr.6
Software stroke limit lower limit
value
Set the lower limit value for software stroke limit.
Parameter
CAUTION
The unlimited length feed cannot be executed in QD74MH. (The software stroke limit cannot be
invalidated.)
The moveable range of QD74MH is "-2147483648 to 2147483647". Return to within the
moveable range by JOG, etc. if it exceeds the moveable range.
POINT
If the upper software stroke limit value is the lower value or less, an "error code
1504" will occur at positioning start.
10 - 11
10 FUNCTION DETAILS
MELSEC-Q
10.5 Backlash Compensation Function
This function is used to compensate the backlash amount in the mechanical system.
10.5.1 Control details
When the backlash compensation amount is set, an extra amount of command
aquipment to the set backlash amount is output every time the movement direction
changes.
The backlash compensation is executed at OPR control.
Feed screw
Workpiece
Pr.8
Backlash compensation amount
POINT
Set " Pr.8 Backlash compensation amount" by encoder pulse unit (PLS unit of
instruction to servo amplifier).
10.5.2 Data used for control
Set the following parameters for the backlash compensation function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Pr.8
Item
Backlash compensation amount
Details
Set the backlash compensation amount.
10 - 12
10 FUNCTION DETAILS
MELSEC-Q
10.6 Speed Limit Function
This function is used to limit the command speed to the speed limit value when the
command speed in control exceeds the "speed limit value".
10.6.1 Control details
The relation between the speed limit function and each control is shown below.
Control
OPR control
Speed limit function
OPR control
Set item
Pr.10
Speed limit value
2 to 4-axes linear
Pr.10
Speed limit value
interpolation control
Pr.26
Linear interpolation speed limit value
Pr.10
Speed limit value
1-axis linear control
Positioning
Position
control
control
Manual
JOG operation
control
Incremental feed operation
: Valid
(1) Speed clamp
The each axis speed is limited with the speed limit value. When the axis speed
exceeds the speed limit value set in the each axis, the axis speed is cramped
with the speed limit value.
A "warning code 11001" will occur by executing the speed cramp. (However, a
warning will occur at positioning start. It will not occur when the speed reached
the speed limit value.)
Speed before clamp
Speed after clamp
Pr.10 Speed limit value
Da.2
Acceleration time
Positioning start signal
OFF
[Y10 to Y1F]
Da.3
Deceleration time
ON
Refer to Section 8.3.5 for the speed of the linear interpolation control.
10 - 13
10 FUNCTION DETAILS
MELSEC-Q
10.6.2 Data used for control
Set the following parameters for the speed limit function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Item
Details
Pr.10
Speed limit value
Set the maximum speed for each axis.
Pr.26
Linear interpolation speed limit
value
Set the maximum speed at the linear interpolation control.
10 - 14
10 FUNCTION DETAILS
MELSEC-Q
10.7 Acceleration/Deceleration Control
This function is used to adjust the acceleration/deceleration when each control is
executed.
10.7.1 Control details
The relation between the acceleration/deceleration control and each control is shown
below.
Acceleration/deceleration
control
Control
OPR control
Set item
Pr.58
OPR acceleration time
1-axis linear control
Pr.59
OPR deceleration time
2 to 4-axes linear
Da.2
Acceleration time
interpolation control
OPR control
Positioning
Position
control
control
Da.3
Deceleration time
Manual
JOG operation
Pr.82
JOG operation acceleration time
control
Incremental feed operation
Pr.83
JOG operation deceleration time
: Valid
(1) Linear acceleration/deceleration
The linear acceleration/deceleration is executed as follows.
Set the time to reaching to " Pr.10 Speed limit value" in " Da.2 Acceleration
time" or " Da.3 Deceleration time".
Da.2
Acceleration time
Da.3
Deceleration time
Pr.10 Speed limit value
Da.4
Command speed
(2) S-curve acceleration/deceleration
The smooth acceleration/deceleration is executed by setting S-curve
acceleration/deceleration. At this time, the actual acceleration and actual
deceleration time make the profile be longer.
Actual
acceleration time
Actual
deceleration time
Pr.10 Speed limit value
Da.4
Command speed
Pr.16 S-curve acceleration/
deceleration time constant
10 - 15
Pr.16 S-curve acceleration/
deceleration time constant
10 FUNCTION DETAILS
MELSEC-Q
10.7.2 Data used for control
Set the following parameters and control data used for the acceleration/deceleration
control.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Parameter
Positioning data
Symbol
Item
Pr.15
Acceleration/deceleration method
Select the acceleration/deceleration method.
Details
Pr.16
S-curve acceleration/deceleration
time constant
Set the time constant for S-curve acceleration/deceleration.
Pr.58
OPR acceleration time
Set the acceleration time at the OPR.
Pr.59
OPR deceleration time
Set the deceleration at the OPR.
Pr.82
JOG operation acceleration time
Set the acceleration time for JOG operation.
Pr.83
JOG operation deceleration time
Set the deceleration time for JOG operation.
Da.2
Acceleration time
Set the acceleration time.
Da.3
Deceleration time
Set the deceleration time.
10 - 16
10 FUNCTION DETAILS
MELSEC-Q
10.8 Stop Control
10.8.1 Control details
The operating axis stops by setting "1" in " Cd.3 Axis stop". (Errors and warnings are
not output.) The operation does not resume even if "1" is set again in "axis stop". The
deceleration time used for stopping for stop axis is " Da.3 Deceleration time". If the
axis stop is executed in positioning, the "Positioning complete signal ( Md.10 Status 2:
b0)" does not turn ON.
Da.3
Deceleration time
Pr.10 Speed limit value
Command speed
Operation does not
resume.
Actual
deceleration time
Cd.3
0
Axis stop
1
0
POINT
If S-curve acceleration/deceleration is set, " Pr.16 S-curve acceleration/
deceleration time constant" is always valid. Therefore, stop as well will use the
S-curve acceleration/deceleration.
The operation for when the axis sudden stop or forced stop is commanded in stop
control is shown below.
Control
In axis stop control
Input
"1" is set in "
stop".
Cd.4
Operation
Axis sudden
The sudden stop control is executed.
The forced stop is commanded. The forced stop control is executed.
10.8.2 Data used for control
Set the following control data for the stop control.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Cd.3
Item
Axis stop
Details
Stop the operating axis.
10 - 17
10 FUNCTION DETAILS
MELSEC-Q
10.9 Sudden Stop Control
10.9.1 Control details
The operating axis stops abruptly by setting "1" in " Cd.4 Axis sudden stop ". (Errors
and warnings are not output.) The operation does not resume even if "1" is set again
in "axis stop".
The deceleration time used for stopping for sudden stop axis is " Pr.17 Sudden stop
deceleration time". If the axis sudden stop is executed in positioning, the "Positioning
complete signal ( Md.10 Status 2: b0)" does not turn ON.
Pr.10 Speed limit value
Command speed
Operation does not
resume.
Actual sudden stop deceleration time
Pr.17 Sudden stop deceleration time
Cd.4
Axis sudden stop
0
1
0
POINT
(1) If S-curve acceleration/deceleration is set, the S-curve acceleration/
deceleration time constant is always valid. Therefore, sudden stop as well will
use the S-curve acceleration/deceleration.
(2) The sudden stop control is executed by setting "1" in " Cd.4 Axis sudden stop"
in deceleration stop of positioning.
(3) When the sudden stop time is linger than the stop time (" Pr.83 JOG operation
deceleration time", " Pr.59 OPR deceleration time"), a "Warning code 11002"
will occur at axis sudden stop command, and then the sudden stop time is
cramped with the stop time.
The operation when the axis stop or forced stop is commanded in sudden stop
control is shown below.
Control
Input
Operation
Axis sudden stop
"1" is set in "
control
The forced stop is commanded. The forced stop control is executed.
Cd.3
Axis stop".
It is ignored.
10.9.2 Data used for control
Set the following control data for the sudden stop control.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Cd.4
Item
Axis sudden stop
Details
Stop the operating axis suddenly.
10 - 18
10 FUNCTION DETAILS
MELSEC-Q
10.10 Forced Stop Control
10.10.1 Control details
Set the command speed to "0" at forced stop. When the forced stop command is
input to the servo amplifier ftrom the controller, the base circuit is shut off and the
dynamic brake operates to bring the servomotor to stop.
Refer to the "Servo amplifier Instruction Manual" for the dynamic brake
characterisrics.
The current position is updated in forced stop. Therefore, the origin coordinate
processing such as OPR is not necessary at forced stop removing.
Command speed
Stop using dynamic brake
Actual speed
Forced stop
ON
OFF
Current position
Current position is updated according
to movement in forced stop.
Tthe external forced stop input by external 24VDC or the forced stop input signal [Y2]
with input signal from PLC CPU is used to execute the forced stop.
Valid/invalid of the external forced stop can be selected in " Pr.101 External forced
stop selection".
The forced stop input signal [Y2] with input signal from PLC CPU is valid regardless
of "valid/Invalid' of the external forced stop, and it operates with positive logic.
(The forced stop is operated by the signal ON, and it is releaced by the signal OFF.)
The operation when the stop or sudden stop is commanded in sudden stop control is
shown below.
Control
Axis forced stop
control
Input
Operation
"1" is set in "
Cd.3
Axis stop".
"1" is set in "
stop".
Cd.4
Axis sudden
10 - 19
It is ignored.
10 FUNCTION DETAILS
MELSEC-Q
10.10.2 Data used for control
Set the following control data for the external forced stop control by external 24VDC.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
There are no set parameters for the forced stop input signal [Y2] with input signal
from PLC CPU.
Symbol
Parameter
Pr.101
Item
External forced stop selection
Details
Select "Valid/Invalid" of the forced stop input by external 24VDC.
Check the following monitor data for the status of the forced stop.
Refer to Section 6.3 to 6.8 for the buffer memory address and monitor details.
Symbol
Monitor data
Item
Md.103 Forced stop input status
Details
The status of the forced stop input can be stored.
10 - 20
10 FUNCTION DETAILS
MELSEC-Q
10.11 Command In-position Function
This function is used to check the remaining distance to the stop position at automatic
deceleration of positioning control, and to turn ON the signal. This signal is called the
"Command in-position ( Md.10 Status 2: b1)". This signal is used as a front-loading
signal indicating beforehand the completion of the position control.
10.11.1 Control details
When the command remaining distance (difference between the positioning address
and feed current value) becomes equal to or less than " Pr.20 Command in-position
range" "Command in-position ( Md.10 Status 2: b1)" is turned ON.
This function is valid at only last positioning data execution in positioning control (1axis linear, 2-4 axes linear interpolation). Therefore, it does not turn ON at positioning
data execution on the way.
Continuous
path
Continuous
positioning
Independent
positioning
Command speed
Actual speed
Pr.20 Command in-position range
ON
Command in-position
( Md.10 Status 2: b1)
OFF
ON
In-position
( Md.40 Servo status 1: b12)
OFF
"Command in-position ( Md.10 Status 2: b1)" does not turn ON at the point on the way
of the continuous positioning.
Use the indevendent positioning to start the next positioning after confirming the
command in-position.
ex.) When the positioning is started after confirming the 1-axis command in-position
signal ON.
1-axis
Independent
positioning
Actual speed
Command speed
2-axis
Independent positioning
1-axis
Command in-position OFF
( Md.10 Status 2: b1)
2-axis positioning start
OFF
signal [Y11]
10 - 21
ON
ON
10 FUNCTION DETAILS
MELSEC-Q
When the remaining distance of all interpolation axes becomes to within the
command in-position range at interpolation control, "Command in-position ( Md.10
Status 2: b1)" of all axes turn ON.
"Command in-position" signal turns OFF in the following cases.
• At positioning start
• At OPR start
• At manual operation start
10.11.2 Data used for control
Set the following parameters for the command in-position function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Pr.20
Item
Command in-position range
Details
Set the remaining distance that turns the command in-position ON.
The command in-position signal is stored in the following buffer memory address.
Refer to the Section 6.3 to 6.8 for the buffer memory address and monitoring details.
Symbol
Monitor data
Md.10
Item
Status 2
Details
b1: Command in-position
10 - 22
10 FUNCTION DETAILS
MELSEC-Q
10.12 Pausing Function
10.12.1 Control details
The relation between the pausing function and the each control is shown below.
Control
Pausing function
Set item
1-axis linear control
Positioning
Position
control
control
Manual
JOG operation
control
Incremental feed operation
2 to 4-axes linear
interpolation control
Cd.5
Pausing
Proximity dog type
Data set type
OPR
Stopper type
⎯
Dog cradle type
Limit switch combined type
Scale origin signal detection type
: Valid
: Invalid
The positioning is paused by setting "1" in " Cd.5 Pausing". "Pausing ( Md.10 Status
2: b2)" signal turns ON in positioning stop. The operation is resumed by setting "0".
CAUTION
Do not command " Cd.5 Pausing" for the control of pausing disable. Operation may cause errors.
Deceleration is started according to the sudden stop time to stop by " Cd.5 Pausing".
Pr.17
Sudden stop
deceleration time
Da.2
Acceleration
time
Pr.10 Speed limit value
Da.4
Command speed
Cd.5
Pausing
0
1
0
ON
Pausing
( Md.10 Status 2: b2) OFF
POINT
When the sudden stop time is longer than the stop time (" Pr.83 JOG operation
deceleration time", " Pr.59 OPR deceleration time"), a "Warning code 11002" will
occur at axis sudden stop command, and the sudden stop time is cramped with the
stop time.
10 - 23
10 FUNCTION DETAILS
MELSEC-Q
When the pausing is removed in deceleration, the positioning is resumed without
waiting for the stop. At this time, "Pausing ( Md.10 Status 2: b2)" does not turn ON.
Da.4
Command speed
Cd.5
0
Pausing
1
0
Pausing
( Md.10 Status 2: b2) OFF
POINT
(1) When " Cd.3 Axis stop" or " Cd.4 Axis sudden stop" is executed in pausing,
the positioning does not resume even if the pausing is removed.
(2) If S-curve acceleration/deceleration are set, the S-curve acceleration/
deceleration time constant" are always valid. Therefore, the sudden stop or
acceleration will use S-curve acceleration/deceleration.
(3) If the positioning is started by setting "1" in " Cd.5 Pausing", an "error code
1013" will occur, and the operation does not start. Start after removing the
pausing.
(4) It is ignored, even if the positioning is started while paused in positioning
control.
(5) If "1" is set in "pausing" for even by 1 axis in the linear interpolation group, all
axes in one group are terminated. And, the operation resumes by removing
the pausing of all axes in one group. All axes in one group turn ON in pausing.
(6) Pausing is also valid in positioning deceleration. If pausing is turned OFF after
the sudden stop by pausing, the deceleration is started after the acceleration is
executed to the speed in deceleration. However, because the acceleration/
deceleration for pausing is executed more extra than normal deceleration, the
sudden stop is executed when it reached the target position after pausing.
(7) Pausing is also valid in deceleration by the axis stop. The operation stops with
the sudden stop by pausing. After that, the positioning does not resume even if
the pausing is turned OFF.
10.12.2 Data used for control
Set the following control data for the pausing function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Cd.5
Item
Pausing
Details
Command the pausing.
The pausing flag is stored in the following buffer memory.
Refer to the Section 6.3 to 6.8 for the buffer memory address and monitoring details.
Symbol
Monitor data
Md.10
Item
Status 2
Details
b2: Pausing
10 - 24
10 FUNCTION DETAILS
MELSEC-Q
10.13 Torque Limit Function
This function is used to limit the generated torque to the torque limit value when the
torque of the servomotor exceeds the torque limit value.
10.13.1 Control details
The relation between the torque limit fnction and the each control is shown below.
Control
Torque limit function
OPR control
OPR control
Positioning
Position
control
control
Manual
JOG operation
control
Incremental feed operation
Set item
1-axis linear control
2 to 4-axes linear
Cd.12
Forward rotation torque limit value
interpolation control
Cd.13
Reverse rotation torque limit value
: Valid
When "1" is set in " Cd.11 Torque limit request", the torque is limited by the torque
limit values set in " Cd.12 Forward rotation torque limit value" and " Cd.13 Reverse
rotation torque limit value". At this time, "Torque limit ( Md.40 Servo status 1: b13)"
turns ON. If the actual torque does not reach to the torque limit value even if "torque
limit request" is "1", "torque limit" does not turn ON.
The torque limit fnction can also be implemented in acceleration or deceleration. Also,
this function can be used in servo ON even not positioning.
1)
2)
3)
1)
Motor maximum torque
1) Control with motor maximum torque
2) Limit with torque limit value 1
3) Limit with torque limit value 2
Torque limit value1 "80"
Torque limit value2 "50"
Cd.11 Torque limit request
Torque limit value
0
1
Torque limit value1 "80"
0
Torque limit value2 "50"
POINT
(1) " Cd.12 Forward rotation torque limit value" and " Cd.13 Reverse rotation can
be separately set in the torque limit function. However, " Cd.11 Torque limit
request" is valid to both of the forward rotation/reverse rotation, so set the
same value normally to both of them.
(2) When " Cd.11 Torque limit request" is "0", the torque limit value is set to the
motor maximum torque.
10 - 25
10 FUNCTION DETAILS
MELSEC-Q
10.13.2 Data used for control
Set the following control data for the torque limit function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Item
Details
Cd.11
Torque limit request
Command the torque limit request.
Cd.12
Forward rotation torque limit value
Set the limiting torque generated in the CW direction when the servo
motor is executing in the CCW direction.
Cd.13
Reverse rotation torque limit value
Set the limiting torque generated in the CCW direction when the servo
motor is executing in the CW direction.
Check the following monitor data for the status of the torque limit.
Refer to Section 6.3 to 6.8 for the buffer memory address and monitor details.
Symbol
Monitor data
Md.40
Item
Servo status 1
Details
b13: Torque limit
10 - 26
10 FUNCTION DETAILS
MELSEC-Q
10.14 Speed Change Function
This function is used to change the speed in control to a newly designated speed at
any timing.
10.14.1 Control details
The relation between the speed change function and the each control is shown below.
Control
Speed Change function
OPR control
OPR control
Positioning
Position
control
control
Manual
JOG operation
control
Incremental feed operation
Set item
1-axis linear control
2 to 4-axes linear
Cd.16
interpolation control
New speed value
: Valid
: Invalid
When "1" is set in " Cd.15 Speed change repuest", it is changed to the speed set in
" Cd.16 New speed value".
The speed change fnction can also be implemented in acceleration or deceleration.
Da.3
Deceleration
time
Da.2
Acceleration
time
Da.2
Acceleration
time
Pr.10 Speed limit value
Command speed 3
Da.4
Command speed
Command speed 2
Cd.16 New speed value
Command speed 2
Command speed 3
ON
Positioning start signal
[Y10 to Y1F]
OFF
Cd.15 Speed change request
0
1
0
1
0
ON
Speed change READY
( Md.10 Status 2: b8)
OFF
A "Warning code 11011" will occur and the speed change does not execute in the
following cases.
• In operation stop
• In decerelation by the stop command, sudden stop command or alarm
• In OPR
• In current value change
• In pausing
10 - 27
10 FUNCTION DETAILS
MELSEC-Q
10.14.2 Precautions
(1) The pausing command was given to make a stop after a speed change that had
been made in position control. After that, the speed when the paising is removed
is the new speed value.
Da.4
Speed change
command
Command speed
Cd.16 New speed value
Pausing removal
Pausing command
.
(2) When the value set in " Cd.16 New speed value" is more than the speed limit
value, the speed is cramped with the speed limit value. In this case, a "Warning
code 11001" will occur at speed change request.
(3) Set the required speed in the reference axis to change the speed at interpolation
control.
(4) The new speed is valid in execution of the positioning data for which the speed
was changed. Even if the speed is changed to the new speed by executing the
speed change at continuous positioning control and continuous path control, the
control is executed with the previously set speed at the changeover to the next
positioning data.
10.14.3 Data used for control
Set the following control data for the speed change function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Item
Details
Cd.15
Speed change request
Execute the speed change request.
Cd.16
New speed value
Set the speed after the change.
Check the following monitor data for the status of the speed change.
Refer to Section 6.3 to 6.8 for the buffer memory address and monitor details.
Symbol
Monitor data
Md.10
Item
Status 2
Details
b8: Speed change READY
10 - 28
10 FUNCTION DETAILS
MELSEC-Q
10.15 Acceleration/Deceleration Time Change Function
10.15.1 Control details
The relation between the acceleration/deceleration time change function and the
each control is shown below.
Acceleration/deceleration
Control
Set item
time change function
OPR control
OPR control
Positioning
Position
control
control
Manual
JOG operation
control
Incremental feed operation
1-axis linear control
2 to 4-axes linear
Cd.19
New acceleration time value
interpolation control
Cd.21
New deceleration time value
: Valid
: Invalid
When "1" is set in " Cd.18 Acceleration time change request" or " Cd.20 Deceleration
time change request", it is changed to the acceleration/deceleration time set in
" Cd.19 New acceleration time value" or " Cd.21 New deceleration time value".
The acceleration/deceleration time change can also be implemented in acceleration
or operation.
(1) When the acceleration time is changed in acceleration
Da.2
Acceleration time
Acceleration
time 2
Pr.10 Speed limit value
Da.4
Command speed
Cd.19 New acceleration
time value
Acceleration time 2
ON
Positioning start signal
[Y10 to Y1F]
OFF
Cd.18 Acceleration time
change request
Accerelation time change
READY
( Md.10 Status 2: b9)
0
1
ON
OFF
10 - 29
0
10 FUNCTION DETAILS
MELSEC-Q
A "Warning code 11012" or "Warning code 11013" will occur and the
acceleration/deceleration time change does not execute in the following cases.
• In operation stop
• In decerelation
• In OPR
• In current value change
• In pausing
(2) When the speed change function is used simultaneously
When this function and the speed change function are simultaneously used, the
speed change is executed after the acceleration/deceleration time change.
Da.4
Command speed
New deceleration time
Command speed 2
Deceleration time before
change
Cd.21 New deceleration time
value
Deceleration time 2
Cd.20 Deceleration time
change request
Decerelation time change
READY
( Md.10 Status 2: b10)
1
0
0
ON
OFF
Cd.16 New speed value
Command speed 2
Cd.15 Speed change request
0
1
0
ON
Speed change READY
( Md.10 Status 2: b8)
OFF
10.15.2 Precautions
(1) The new acceleration/deceleration time is valid in execution of the positioning
data for which the acceleration/deceleration was changed. Even if the
acceleration/deceleration is changed to the new acceleration/deceleration by
executing the acceleration/deceleration change at continuous positioning control
and continuous path control, the control is executed with the previously set
acceleration/deceleration at the changeover to the next positioning data.
(2) Even if the acceleration/deceleration time change is set to disable after the new
acceleration/deceleration time is validated, the positioning data for which the new
acceleration/deceleration time was validated will continue to be controlled with
that value. (The next positioning data will be controlled with the previously set
acceleration/deceleration time.)
10 - 30
10 FUNCTION DETAILS
MELSEC-Q
10.15.3 Data used for control
Set the following control data for the acceleration/deceleration time change function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Control data
Symbol
Item
Cd.18
Acceleration time change request
Execute the acceleration time change request.
Details
Cd.19
New acceleration time value
Set the acceleration time after the change.
Cd.20
Deceleration time change request
Execute the deceleration time change request.
Cd.21
New deceleration time value
Set the deceleration time after the change.
Check the following monitor data for the status of the acceleration/deceleration time
change.
Refer to Section 6.3 to 6.8 for the buffer memory address and monitor details.
Symbol
Monitor data
Md.10
Item
Status 2
Details
b9: Acceleration time change READY
b10: Deceleration time change READY
10 - 31
10 FUNCTION DETAILS
MELSEC-Q
10.16 Target Position Change Function
This function is used to change the target position in position control (1-axis linear
control) to a newly designated target position at any timing.
Set an absolute address as the change value in the absolute positioning system. And,
set a movement direction and movement amount from start position in the
incremental positioning system.
10.16.1 Control details
The relation between the target position change function and the each control is
shown below.
Target position change
Control
OPR control
Set item
function
⎯
OPR control
1-axis linear control
Cd.24
New target position value
Positioning
Position
control
control
Manual
JOG operation
⎯
control
Incremental feed operation
⎯
2 to 4-axes linear
⎯
interpolation control
: Valid
: Invalid
When "1" is set in " Cd.23 Target position change request", it is changed to the
position set in " Cd.24 New target position value".
The target position change fnction can also be implemented in acceleration or
deceleration.
The target position change cannot be changed in the linear interpolation operation.
Da.3
Deceleration time
Da.2
Acceleration time
Pr.10 Speed limit value
Da.4
Command speed
Command
position
Cd.24 New target position
value
Command
position 2
Command position 2
ON
Positioning start signal
[Y10 to Y1F]
OFF
Cd.23 Target position
change request
Target position change
READY
( Md.10 Status 2: b11)
0
1
ON
OFF
10 - 32
0
10 FUNCTION DETAILS
MELSEC-Q
When the position change to the movement direction from the current value is
executed in deceleration stop, the axis is accelerated again and positioned.
Pr.10 Speed limit value
Da.4
Command speed
Command
position
Cd.24 New target position
value
Command
position 2
Command position 2
ON
Positioning start signal
[Y10 to Y1F]
OFF
Cd.23 Target position
change request
Target position change
READY
( Md.10 Status 2: b11)
0
1
0
ON
OFF
The operation for when the axis passed the change position by position change, or
the deceleration stop position passes the change position can be selected in " Pr.23
Target position change overrun processing selection" ("Stop by the error" or "Return
to change position after deceleration stop").
If "Stop by the error" is selected, an "error code 1024" will occur after turning the
target position change READY ON at target position change request.
If "Return to change position after deceleration stop" is selected , the operation is
shown next page.
Da.2
Acceleration time
Da.3
Deceleration time
Pr.10 Speed limit value
Da.4
Command speed
Command position
at positioning start
Command
position 2
Cd.24 New target position
value
Command position 2
ON
Positioning start signal
[Y10 to Y1F]
OFF
Cd.23 Target position
change request
Target position change
READY
( Md.10 Status 2: b11)
0
1
ON
OFF
10 - 33
0
10 FUNCTION DETAILS
MELSEC-Q
A "Warning code 11014" will occur and the position change is not executed in the
following cases.
• In operation stop
• In decerelation by the stop command, sudden stop command or alarm
• In JOG operation
• In OPR
• In linear interpolation
• In current value change
• In pausing
10.16.2 Data used for control
Set the following parameters and control data for the target position change function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Control data
Item
Details
Target position change overrun
processing selection
Set the process when a stop position exceeds a command position for
position change.
Cd.23
Target position change request
Execute the target position change request.
Cd.24
New target position value
Set the target position after the change.
Pr.23
Check the following monitor data for the status of the target position change function.
Refer to Section 6.3 to 6.8 for the buffer memory address and monitor details.
Symbol
Monitor data
Md.10
Item
Status 2
Details
b11: Target position change READY
10 - 34
10 FUNCTION DETAILS
MELSEC-Q
10.17 Current Value Change Function
This function is used to change the current position of stopped axis to the address set
in " Cd.28 New current value".
10.17.1 Control details
Set the new address in " Cd.28 New current value". The current value is changed by
setting "9003" in " Cd.2 Start method" to turn the positioning start signal [Y10 to Y1F]
ON.
If the data outside the stroke limit is set in "new current value", an "error code 1501"
will occur.
Command speed
Start of data No. 9003
Md.0 Current feed value
Positioning address
new address
ON
Positioning start signal
[Y10 to Y1F]
OFF
ON
Positioning complete
( Md.10 Status 2: b0)
Cd.2
Start type
OFF
Data No. during positioning execution
Cd.28 New current value
9003
new address
POINT
If the system's power cycle is executed after current value change in the absolute
position system, it returns to the address before current value change.
CAUTION
If the operation to one direction within the software stroke limit repeats using the current value
change function, the current value may not be correctly restored in the absolute position system.
Do not execute such positioning in the absolute position system.
10.17.2 Data used for control
Set the following control data for the current value change function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Item
Details
Cd.2
Start method
Set the start method (9003: New current value)
Cd.28
New current value
Set the address after change.
10 - 35
10 FUNCTION DETAILS
MELSEC-Q
10.18 External Signal Logic Selection
10.18.1 Control details
The upper hardware stroke limit (FLS), the lower hardware stroke limit (RLS), and the
dog signal (DOG) can be input by using the input signal of the servo amplifier.
And, the logic selection of input signal is possible. Select the negative logic or positive
logic in " Pr.31 External input signal logic selection".
(1) Negative logic
(a) Input signal is OFF.
Limit switch is in operation. (Stroke prohibited area)
1) FLS, RLS
OFF
2) DOG
(b) Input signal is ON.
1) FLS, RLS
Limit switch is removed. (Stroke movement allowed area)
ON (DOG ditection)
2) DOG
(2) Positive logic
Opposite of the negative logic
CAUTION
When the hardware stroke limit is required to be wired, ensure to wire it in the negative logic
using B-contact. If it is set in positive logic using A-contact, the hardware stroke limit may not be
detected even if the signal wires are disconnected.
10.18.2 Data used for control
Set the following parameters for the external signal logic selection.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Parameter
Pr.31
Item
Details
External input signal logic selection Select the logic of the external input signal.
10 - 36
10 FUNCTION DETAILS
MELSEC-Q
10.19 Operation Setting for Incompletion of OPR Function
This function is used to select whether positioning control is operated or not, when
OPR request flag is ON.
10.19.1 Control details
An "Error code1090" will occur if the positioning control is executed with the "OPR
request flag ( Md.9 Status 1: b0)" has been turned ON, when "0: Positioning control is
not executed" (initial value in " Pr.66 Operation setting for incompletion of OPR") is
selected.
The manual control and OPR can be implemented.
The positioning control can be executed even if OPR request flag is ON, when "1:
Positioning control is executed." is selected.
CAUTION
Do not execute the positioning control with the OPR request flag has been turned ON in the
axes used in the positioning.
Failure to observe this could lead to an accident such as a collosion.
The following table shows whether the positioning can be started at operation setting
for incompletion of OPR.
Pr.66
Control details
Positioning control
Manual control
Operation setting for incompletion of OPR
"0: Positioning control is
"1: Positioning control is
not executed." and "OPR
executed." and "OPR
request flag ON"
request flag ON"
1-axis linear control
2 to 4-axes interpolation control
JOG operation
Incremental feed operation
Proximity dog type
Data set type
OPR
Stopper type
Dog cradle type
Limit switch combined type
Scale origin signal detection type
Other
Current value change
: Applicable
10 - 37
: Not applicable
10 FUNCTION DETAILS
MELSEC-Q
10.19.2 Data used for control
Set the following parameters for the operation setting for incompletion of OPR
function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Parameter
Symbol
Item
Pr.66
Operation setting for incompletion
of OPR
Details
Set whether the positioning control is executed or not (When the "OPR
request" ( Md.9 Status 1: b0)" is ON.)
10 - 38
10 FUNCTION DETAILS
MELSEC-Q
10.20 Axis Error Reset
10.20.1 Control details
The error status is removed after executing the following processing by setting "1" in
" Cd.0 Axis error reset" of the buffer memory for axis error reset.
• Error detection signal [X1] OFF
• " Md.6 Error code" clear
• " Md.7 Error detail" clear
• Bit OFF correcponding axis of error reset command set in" Md.100 Axis error status"
• Error reset transmission to the servo amplifier
• Warning detection signal [X2] OFF
• " Md.8 Warning code" clear
• Bit OFF correcponding axis of error reset command set in " Md.101 Axis warning
status"
CAUTION
The error reset cannot be executed for some servo errors. The error detection of QD74MH cannot
be removed even if the error reset is executed at such the servo errors occurrence.
Refer to the Servo amplifier Instruction Manuals for details.
The servo warning cannot be reset even if the error reset is executed in servo warning occurrence.
Execute the error reset after eliminating the error cause, and then clear the servo warning of
QD74MH.
10.20.2 Data used for control
Set the following control data for the axis error reset.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Cd.0
Item
Axis error reset
Details
Release error that occurs in axis.
10 - 39
10 FUNCTION DETAILS
MELSEC-Q
10.21 Absolute position system
10.21.1 Control details
In the absolute position system, if machinery position is determined at the system
startup, there is no need to execute the OPR because the absolute position is
detected at system's power supply ON.
Use the OPR for the determination of machinery position.
POINT
While "OPR request ( Md.9 Status 1: b0)" in ON, the current value becomes "0" at
system's power supply ON, and the current value is not restored.
Be sure to execute the OPR when the OPR request turned ON in the absolute
position system.
CAUTION
When using the absolute position system function, on starting up, and when the Motion
controller or absolute value motor has been replaced, always perform a home position return.
In the case of the absolute position system, use the PLC program to check the home position
return request before performing the positioning control.
Failure to observe this could lead to an accident such as a collision.
The "OPR request ( Md.9 Status 1: b0)" turns ON in the following cases.
1) The electronic gear (" Pr.0 Electronic gear numerator", " Pr.2 Electronic gear
denominator") or the servo parameter " Pr.314 Rotation direction selection" are
changed. (First PLC READY ON)
2) "Error code 2025" or "Warning code 2143" occurred. (First PLC READY ON)
3) "Error code 1201" occurred. (First PLC READY ON)
4) The OPR never is executed for the absolute position system. (First PLC READY
ON)
5) Change the servo parameter " Pr.303 Absolute position detection system" from "0:
Invalid (Used in incremental system)" to "1: Valid (Used absolute position detection
system)". (First PLC READY ON)
6) The OPR is started.
7) The setting value of software stroke limit is outside the range. (First PLC READY
ON)
POINT
When "0: Invalid (Used in incremental system)" is set in " Pr.303 Absolute position
detection system" of servo parameter, the "OPR request ( Md.9 Status 1: b0)" turns
ON at every first PLC READY ON.
10 - 40
10 FUNCTION DETAILS
MELSEC-Q
Select "1: Valid (Used absolute position detection system" in Pr.303 Absolute position
detection system" of servo parameter to use as the absolute position system.
Be sure to install a battery for retaining the location of the OPR in the servo amplifier.
POINT
When the servo parameter " Pr.303 Absolute position detection system" is changed
from "1: Valid (Used absolute position detection system" to "0: Invalid (Used in
incremental system)", the established machinery position before change becomes
invalid. Execute again the OPR to used as the absolute position system.
10 - 41
10 FUNCTION DETAILS
MELSEC-Q
10.22 Flash ROM Write Function
When the buffer memory data of QD74MH are rewritten from the PLC CPU, the
changed data are not saved if the system's power supply is turned OFF.
This function is used to backup by writing the changed data to the flash ROM. The
data that was backed up is written to the buffer memory when the system's power
supply is turned ON next.
10.22.1 Control details
The flash ROM write is executed by setting "1" in " Cd.100 Flash ROM write request".
"0" is automatically set in "flash ROM write request" by QD74MH after writing.
Important
Do not turn the system's power ON/OFF or resetting PLC CPU in writing to the
flash ROM. The flash ROM data may be corrupted.
The data that can be written to the flash ROM by flash ROM write are shown below.
• Basic parameters
• OPR parameters
• Manual control parameters
• System parameters
• Positioning data
• Servo parameters
POINT
The absolute position information is automatically backed up in the absolute
position system. It is not necessary to back up them by the flash ROM write
function.
(1) Cautions
(a) Execute the flash ROM write when the positioning control do not execute
(PLC READY signal [Y0] OFF).
(b) A writing to the flash ROM is up to 100,000 times. If writing exceeds
100,000 times, the writing may be become impossible, and an "error code
1901" will occur.
(c) The total number of the flash ROM write and parameter initialization with
the sequence program after the error reset, system's power supply ON or
PLC CPU reset is limiter to up to 25. Writing of the 26th will cause an "error
code 1902". Execute the error reset, system's power cycle or PLC CPU
reset at error occurrence.
(d) The flash ROM write can be executed, after the system's power supply ON
and the PLC READY signal [Y0] ON. If the flash ROM write is executed
without turning ON the PLC READY signal [Y0] after the system's power
supply ON, a "warning code 10001" will occur and the flash ROM write
cannot be executed.
10 - 42
10 FUNCTION DETAILS
MELSEC-Q
10.22.2 Data used for control
Set the following control data for the flash ROM write function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Item
Cd.100 Flash ROM write request
Details
Write the contents from the buffer memory to the flash ROM
Number of write accesses to flash ROM by the flash ROM write function is stored in
the following buffer memory.
Refer to the Section 6.3 to 6.8 for the buffer memory address and monitoring details.
Symbol
Monitor data
Item
Details
Number of write accesses to flash Number of write accesses to flash ROM and the number of parameter
Md.102
ROM
initializations after the system power supply ON can be stored.
10 - 43
10 FUNCTION DETAILS
MELSEC-Q
10.23 Parameter Initialization Function
This function is used to return the setting data set in the buffer memory of QD74MH
and flash ROM to the factory default.
10.23.1 Control details
The parameter initialization is executed by setting "1" in " Cd.101 Parameter
initialization request". "0" is automatically set in "parameter initialization request" by
QD74MH after initialization.
Important
Do not turn the system's power ON/OFF or resetting PLC CPU in parameter
initialization. The flash ROM data may be corrupted.
The data that can be initialized by the parameter initialization are shown below.
• Basic parameters
• OPR parameters
• Manual control parameters
• System parameters
• Positioning data
• Servo parameters
(1) Cautions
(a) Execute the parameter initialization when the positioning control do not
execute (PLC READY signal [Y0] OFF). An "error code 1903" will occur if it
is executed at PLD READY ON.
(b) A writing to the flash ROM is up to 100,000 times. If writing exceeds
100,000 times, the writing may be become impossible, and an "error code
1901" will occur.
(c) A PLC CPU reset or system's restart must be executed after the parameter
initialization.
(d) The total number of the flash ROM write and parameter initialization with
the sequence program after the error reset, system's power supply ON or
PLC CPU reset is limiter to up to 25. Writing of the 26th will cause an "error
code 1902". Execute the error reset, system's power cycle or PLC CPU
reset at error occurrence.
(e) A parameter initialization can be executed, after the system's power supply
ON and the PLC READY signal [Y0] is turned ON to OFF. If the parameter
initialization is executed without turning ON the PLC READY signal [Y0]
after the system's power supply ON, a "warning code 10001" will occur and
a writing to the parameter initialization cannot be executed.
10 - 44
10 FUNCTION DETAILS
MELSEC-Q
10.23.2 Data used for control
Set the following control data for the parameter initialization function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Item
Cd.101 Parameter initialization request
Details
Execute the parameter initialization request stored in the flash ROM
Number of write accesses to flash ROM by the parameter initialization function is
stored in the following buffer memory.
Refer to the Section 6.3 to 6.8 for the buffer memory address and monitoring details.
Symbol
Monitor data
Item
Details
Number of write accesses to flash Number of write accesses to flash ROM and the number of parameter
Md.102
ROM
initializations after the system power supply ON can be stored.
10 - 45
10 FUNCTION DETAILS
MELSEC-Q
10.24 Parameter Change Function
The basic parameters or OPR parameters are taken from the buffer memory at PLC
READY ON in QD74MH.
This function is used to change the part of these parameters in PLC READY ON.
10.24.1 Control details
The following parameters are changed by setting "1" in Cd.1 Parameter change
request". "0" will be automatically set in "parameter change request" by QD74MH
after changing all parameters.
If there are parameters outside the range at parameter change request, an "error
code 1037" will occur and the erroneous parameters cannot be changed. In this case,
the all parameters within the setting range changed, and "0" is set in "parameter
change request".
Parameters that can be changed by the parameter change request are shown below.
• Pr.4 Software stroke limit upper limit value
• Pr.6 Software stroke limit lower limit value
• Pr.10 Speed limit value
• Pr.15 Acceleration/deceleration method
• Pr.16 S-curve acceleration/deceleration time constant
• Pr.17 Sudden stop deceleration time
• Pr.20 Command in-position range
• Pr.23 Target position change overrun processing selection
• Pr.26 Linear interpolation speed limit value
• Pr.52 OP address
• Pr.54 OPR speed
• Pr.56 Creep speed
• Pr.58 OPR acceleration time
• Pr.59 OPR deceleration time
• Pr.60 OP shift amount
• Pr.62 OP search limit
POINT
"Parameter change request" is executed for every axis. Set "1" in " Cd.1 Parameter
change request" for target axes to change the parameters for the multiple axes.
10.24.2 Data used for control
Set the following control data for the parameter change function.
Refer to Section 6.3 to 6.8 for the buffer memory address and details.
Symbol
Control data
Cd.1
Item
Parameter change request
Details
Execute the parameter change request.
10 - 46
11 TROUBLESHOOTING
MELSEC-Q
11. TROUBLESHOOTING
11.1 Error and Warning Details
Outline for the error codes and warning codes detected by the QD74MH are shown
below.
Error/warning code
1 to 999
1000 to 1899
Details
System error
Operation error
(1200s errors are used for errors for the absolute position system.)
1900 to 1999
Interface error
2000 to 2099
Servo error
2100 to 2199
Servo warning
11000 to 11999
Operation warning
11.1.1 Errors
Types of errors are shown below.
• System errors by hardware failure, etc.
• Operation errors at operation start or in operation
• Interface errors
• Servo errors detected by servo amplifier
Error code ( Md.6 ) and error detail ( Md.7 ) are represented in decimal. Confirm the
error codes by the decimal in the buffer memory.
Axis cannot be started in error occurrence. Eliminate the error cause, and then start
the axis after resetting the error. If the axis is started in error occurrence, the error
code is unchanged.
(1) System errors (Error code: 1 to 999)
The system errors occur by hardware failure, etc. The system errors cannot be
reset. If the multiple system errors occur simultaneously, the smallest number is
given to priority.
(2) Operation errors (Error code: 1000 to 1899)
The operation errors occur at the following timing.
If the other errors occur at operation error occurrence, the error code is updated.
(a) At PLC READY ON
The parameters are checked at leading edge (OFF to ON) of PLC READY
signal ON [Y0] (at parameter change request). An "error code 1037" will
occur if there is a mistake in the parameter setting details.
At that time, the Unit READY signal [X0] does not turn ON. Correct the
parameters, and then turn ON the PLC READY signal [Y0] after resetting
the error.
11 - 1
11 TROUBLESHOOTING
MELSEC-Q
(b) At operation start or in operation
The errors are detected at operation start or in operation such as OPR
control, positioning control and JOG operation.
If this error occurs at interpolation operation, the error number is stored in
both the reference axis and interpolation axis.
Release the errors by error reset after eliminating the error cause.
(3) Interface errors (Error code: 1900 to 1999)
The interface errors occur when the interface with hardware or CPU such as the
errors at FLASH ROM writing or PLC CPU failure is abnormal.
The interface error is detected as the error for Axis 1.
Execute the error reset for Axis 1 after eliminating the error cause.
If the other errors occur at interface error occurrence, the error code is updated.
(4) Servo errors (Error code: 2000 to 2099)
The servo errors occur when the hardware such as servo amplifier and
servomotor, or the servo parameter are abnormal.
The axis stops by servo OFF at error occurrence.
Execute the error reset after eliminating the error cause for the errors that can be
execute the axis error reset by the controller.
Execute the power cycle of the servo amplifier or system after eliminating the
error cause for the errors that cannot be executed the axis error reset by the
controller.
Refer to the Servo Amplifier Instruction Manual for details of the servo errors.
If the other errors occur at servo error occurrence, the error code is updated.
POINT
Start of positioning, OPR or manual control cannot be executed for the axis in
operation error occurrence. Start after reset errors.
11 - 2
11 TROUBLESHOOTING
MELSEC-Q
11.1.2 Warnings
Types of warnings are shown below.
• Servo warnings detected by servo amplifier
• Operation warnings at operation start or in operation
Warning code ( Md.8 ) is represented in decimal. Confirm the warning codes by the
decimal in the buffer memory.
(1) Servo warnings (Warning code: 2100 to 2199)
The servo warnings occur in the state immediately before error occurrence such
as the excessive regeneration or overload.
Error or normality operation cannot be executed by waning when warning is left
as it is though servo off is not executed.
The warnings can be automatically released by eliminating the warning cause in
the servo amplifier side. However, at that time, the detected servo warnings
cannot be automatically released in the QD74MH side.
Eliminate the error cause, and then execute the error reset after confirming the
warning release of the servo amplifier side.
If the other warnings occur at servo warning occurrence, the warning code is
updated.
(2) Operation warnings (Warning code: 11000 to 11999)
The operation warnings occur when the operation is limited by the wrong
positioning setting value at operation start or in operation. The positioning can be
executed or continued. However, the intended operation may not execute by the
warnings.
Execute the error reset after eliminating the error cause.
If the other warnings occur at operation warning occurrence, the warning code is
updated.
11.1.3 Confirming the error and warning definitions
The error detection signal [X1] turns ON" at error occurrence. Simultaneously, the bit
corresponding to axis No. of axis that caused the error of the buffer memory " Md.100
Axis error status" turns ON.
The error codes are stored in buffer memory " Md.6 Error code", and the numbers of
error details are stored in buffer memory " Md.7 Error detail" of axis that caused the
error. Confirm the errors using these information.
The warning detection signal [X2] turns ON" at warning occurrence. Simultaneously,
the bit corresponding to axis No. of axis that caused the warning of the buffer memory
" Md.101 Axis warning status" turns ON.
The warning codes are stored in buffer memory " Md.8 Warning code" of axis that
caused the warning. Confirm the warnings using these information.
11.1.4 Resetting errors
Refet to Section10.20 for the error reset.
11 - 3
11 TROUBLESHOOTING
MELSEC-Q
11.2 List of Errors
(1) System errors (1 to 999)
Error Error
code detail
Error
1
1
Flash ROM error
2
1
DRAM error
4
1
High speed SRAM error
6
1
SSCNET communication IC send
buffer error
7
1
SSCNET communication IC receive
buffer error
8
1
Board information error
9
1
"Hold" is set for QD74MH in "Error time
output mode" of the PLC CPU
parameter.
1
CPU error (Instruction code error at
power supply ON)
4
CPU error (Instruction code error)
5
CPU error (Watch dog)
100
Error check
At power supply ON
Unit READY does not
turn ON.
Set "Clear" for QD74MH in "Error
time output mode" of the
parameter.
Unit READY turns
OFF.
Check the influence of noise.
Replace the hardware.
Execute the power cycle after
checking the followings.
(1) Setting for " Pr.300 Servo
series" matches to the
connecting status and rotary
switch of servo amplifier.
(1) Setting for " Pr.300 Servo series"
(2) Power supply status to servo
differs from the connecting status of
amplifier.
servo amplifier.
After PLC READY ON,
(3) SSCNET cable connection
(2) Communication was cut off by the
servo amplifier's power supply OFF. Always
status.
(4) Discconection of SSCNET
cable.
(Note): Turn the servo amplifire's
power supplies on the
Forced stop for except
communication route ON.
axis that caused the
error, and unit READY Check the followings.
SSCNET communication error
turns OFF.
(1) SSCNET cable connection
(CRC error)
status.
SSCNET communication error
(2) Discconection of SSCNET
(Data ID error)
cable.
1
401
1
403
1
405
1
Setting for " Pr.300 Servo series" differs
from the connecting type of servo
At PLC READY ON
amplifier.
406
1
SSCNET communication error
(Connector not connected error)
1
Remedy
Replace the QH74MH.
400
407
Operation status at
error occurrence
After PLC READY ON,
Always
No response from the servo amplifier
and a communication time out occurred.
11 - 4
Check the connected servo
amplifiers.
Check the followings.
(1) Power supply status to servo
amplifier.
(2) SSCNET cable connection
status.
(3) Discconection of SSCNET
cable.
11 TROUBLESHOOTING
MELSEC-Q
System errors (1 to 999) (continued)
Error Error
code detail
800
801
1
1
Error
Error check
Sum check error of parameter stored in
the FLASH ROM. (The system's power
At power supply ON
supply was turned OFF in FLASH ROM
write.)
Data cannot be written to the FLASH
ROM.
Operation status at
error occurrence
Remedy
Unit READY does not
turn ON.
Return to the parameters at
(Note)
factory default using the
FALSH ROM write/
parameter initialization function.
parameter initialization
function can be used.
At FALSH ROM write/
parameter initialization FALSH ROM write/
parameter initialization Replace the QH74MH.
function use after the
cannot be executed.
system error
occurrence
11 - 5
11 TROUBLESHOOTING
MELSEC-Q
(2) Oparation errors (1000 to 1899)
Error Error
code detail
1
1010
2
1012
1
Error
Error check
• At positioning start
• At OPR start
The axis sudden stop command is ON. • At manual operation
start
The axis stop command is ON.
Operation status at
error occurrence
The operation does
not start.
Remedy
Remove the axis stop.
Remove the axis sudden stop.
• In positioning control
or at positioning start
(1) The forced stop was input in
In start: Forced stop
• In OPR control or at
positioning.
At strat: The operation Remove the forced stop.
(2) The operation was started in forced OPR start
does not start.
• In manual control or at
stop.
manual control start
1013
1
In pausing
• At positioning start
• At OPR start
• At manual operation
start
1016
1
An error occurred for the interpolation
group configured axis.
• At interpolation control
start
• In interpolation control
1
The command speed is 4 [PLS/s] or
less.
• At OPR start (OPR
speed and creep
speed)
• At positioning start
Set the command speed to 5
• At "positioning data"
[PLS/s] or more.
point change of
At strat: The operation
positioning control
does not start.
• At JOG operation start
In control: ecerelation
• At incremental feed
stop
operation start
4
The positioning data number set in
" Cd.2 Start method" is outside the
range.
Set the " Cd.2 Start method"
within the setting range.
5
• At positioning start
All " Da.0 Operation pattern" for from
• At point change
the positioning data number to final
positioning data No.32 set in " Cd.2
Start method" are set to the continuous
positioning or continuous path only.
Set the final positioning data to the
independent positioning in " Da.0
Operation pattern".
1
(1) The control method was changed in
positioning. (1 axis linear ↔ Linear
interpolation)
(2) The manual control start or OPR
start was requested in positioning. At positioning data
change
(3) The positioning start or OPR start
was requested in manual control.
(4) The positioning start or manual
control start was requested in OPR
control.
1021
1022
1023
11 - 6
The operation does
not start.
Remove the pausing
Remove the error cause for the
erroneous axis.
Positioning end
(Immediate stop in
continuous path)
(1) Review the positioning data
(" Da.1 Control system").
(2) Review the start timing of the
positioning control. manual
control or OPR control.
11 TROUBLESHOOTING
MELSEC-Q
Oparation errors (1000 to 1899) (Continued)
Error Error
code detail
1024
Error check
Operation status at
error occurrence
1
(1) The movement direction was
reversed in the "positioning data" on
• At positioning data
the way continuous path.
change of continuous
(2) "Stop by the error" is set in " Pr.23
Deceleration stop
path
Target position change overrun
• At target position
processing selection", and the
chnage
change position was passed by the
target position change.
1
Setting of "
wrong.
Da.1
2
Setting of "
wrong.
Da.0
1
A negative value is set in "
Incremental feedrate".
1025
1026
Error
Control system" is
Operation pattern" is
Pr.84
• At positioning start
• At positioning data
change
At strat: The operation
does not start.
In control:
Positioning end
(Immediate stop in
continuous path)
• At JOG operation start
The operation does
• At incremental feed
not start.
operation start
Remedy
(1) Set " Da.6 Positioning
address/movement amount"
not to reverse.
(2) Execute the position command
in which minimum required
deceleration distance to stop
was secured.
Set " Da.1 Control system"
correctly.
Set " Da.0 Operation pattern"
correctly.
Set "0 to 2147483647" in "
Incremental feedrate".
Pr.84
Setting value of parrameters is outside
the range.
1037
→
1091
Pr.0
1
Pr.1
to
to
99
Pr.99
101
Pr.101
300
Pr.300
• At PLC READY ON
• At parameter change
request
• Unit READY turns
OFF.
• The operation does
not start.
Set the parameters within the
range.
There are 5 or more axes in the group
formation of linear interpolation.
Set the group formation up to 4
axes.
3
The linear interpolation was started with
the invalid linear interpolation group
number.
Review the setting of linear
interpolation group.
1
There is an axis whose movement
amount exceeds the maximum of
999999999 in the group.
1
The linear interpolation cannot be
started because the interpolation axis is
in operation.
2
The linear interpolation cannot be
started because an error has set for the
interpolation axis.
Remove the error cause on the
interpolation axis.
1
The positioning control or current value • At positioning start
• At current value
change were executed without
change
executing the OPR.
Execute the OPR. Or, Set "1:
Executed" in " Pr.66 Operation
setting for incompletion of OPR".
1
(1) The zero point has not been passed
at limit switch combined type OPR.
(2) "1: Used" is set in " Pr.64
At proximity dog OFF
Incremental linear scale setting",
and the zero point has not been
passed at proximity dog type OPR.
1042
1090
Parameter No.
0
2
1040
1041
Stored value
At linear interpolation
start
11 - 7
Review the setting for movement
amount.
The operation does
not start.
Start after making sure all axes in
the group formation are OFF.
Turn the servomotor more than 1
The sudden stop/OPR
revolution in the + / - direction,
is not completed.
and then execute the OPR.
11 TROUBLESHOOTING
MELSEC-Q
Oparation errors (1000 to 1899) (Continued)
Error Error
code detail
Error
Error check
Operation status at
error occurrence
Remedy
Lengthen the proximity dog. Or,
The sudden stop/OPR
adjust the OPR speed to stop on
is not completed.
the proximity dog.
1092
1
The proximity sog has been turned OFF
before it reached to the cramp speed in At proximity dog OFF
the proximity dog type OPR.
1094
1
The OPR direction and push direction
are opposite in the stopper type OPR.
1
"Torque limit ( Md.40 Servo status 1:
b13)" has not been turned ON at
stopper type OPR.
1
"AL96" has occuured in the servo
amplifier, and the OP setting has been
failed.
Even after 1000[ms] passed at OPR
stop, in-position was not achieved.
At OPR stop
1
Even after 1800[ms] passed at OPR
stop, in-position was not achieved.
At OPR stop
(Before setting of the
distance to Z phase)
(1) Reduce the OPR speed and
creep speed.
(2) Lengthen the OPR time
constant.
(3) Broaden the in-position range.
1
When the dog cradle type, proximity
dog type or limit switch combined type
OPR is used, the movement amount
moved to detect the proximity dog
signal or zero point exceeded the value
set in " Pr.62 OP search limit".
When the movement
amount of oppsite
direction against of
OPR direction passed
the "OP search limit".
Sudden stop
(1) Confirm the input status of
proximity dog signal, etc.
(2) Confirm the setting value of OP
serch limit.
2
When the scale origin signal direction
type OPR, or dog cradle type, proximity
dog type and limit switch combined type
using the incremental linear scale is
At OPR start
used, "Need to pass motor Z phase
after the power supply is switched on" is
not set in " Pr.397 Function selection C4".
The OPR does not
start.
Set "Need to pass motor Z phase
after the power supply is switched
on" in " Pr.397 Function selection
C-4".
1
The setting value of software stroke
limit exceeded the setting range at OPR At OPR start
start.
The OPR does not
start.
(The OPR request
turns ON.)
1095
1096
1097
1098
1100
1101
At stopper type OPR
start
Set the OPR direction to be the
same as the push direction.
The stopper type OPR
is not completed.
Execute push, and after turning
the torque limit on, start OPR.
Adjust the servo amplifier so that it
stabilizes quickly at OPR stop.
The OPR is not
completed.
Set the value of software stroke
limit within the range.
(Refer to Section 10.4.2.)
2
The OPR request
The setting value of software stroke
turns ON.
limit exceeded the setting range at first At first PLC READY ON
(The current value
PLC READY ON.
does not restored.)
1
The backup data for current value
restoration is wrong.
The OPR has not been executed after
At PLC READY ON
setting the absolute position system.
The servo parameter " Pr.314 Rotation
direction selection" was changed.
The current value
does not restored.
Execute the OPR.
2
The backup data for current value
restoration cannot be saved normally.
The OPR is not
completed.
Replace the QH74MH.
1201
At OPR completion
11 - 8
11 TROUBLESHOOTING
MELSEC-Q
Oparation errors (1000 to 1899) (Continued)
Error Error
code detail
Error
Error check
Operation status at
error occurrence
Remedy
(Note)
1
is OFF at "+"
"+" side limit switch
side positioning start.
(Note)
"+" side limit switch
turned OFF in
"+" side positioning.
(Note): Upper hardware stroke limit swich
1500
(Note)
2
is OFF at "-"
"-" side limit switch
side positioning start.
(Note)
"-" side limit switch
turned OFF in
"-" side positioning.
At positioning start
At strat: The operation
does not start. Move in the opposite direction by
the JOG operation, etc.
In control: Sudden
stop
(Note): Lower hardware stroke limit swich
1501
1
At strat: The operation
does not start.
• At positioning start
Set the movement command
Positioning outside the software stroke
• At manual control start In continuous path:
within the software stroke limit.
limit was set.
Deceleration
• In continuous path
stop
When the deceleration
stop position from
Deceleration stop
current value passed
the software stroke
limit.
Move in the opposite direction by
the JOG operation, etc.
1502
1
The software stroke limit has been
reached.
1504
1
The parameter settings for the software
stroke limits is "upper stroke limit
At positioning start
lower stroke limit".
The operation does
not start.
Set the parameter for the software
stroke limit as such "upper stroke
limit > lower stroke limit".
1
The axis not to set the servo series was
At positioning start
started.
The operation does
not start.
Set "
3
(1) The operation started in servo ready
OFF.
• At positioning start
(2) The servo ready OFF mode was
• In positioning
entered in positioning.
(Servo amplifier status)
At strat: The operation
does not start.
(1) Remove the servo alarm.
In start: Stop by
(2) Turn the main circuit ON.
dynamic
brake
1
(1) Servo is OFF status at positioning
start, OPR start or manual operation
• At positioning start
start.
• In positioning
(2) The servo off mode was entered in
positioning. (Servo amplifier status)
At strat: The operation
does not start.
In start: Stop by
dynamic
brake
1
• At all axis servo OFF
(1) The all axis servo ON command
(in positioning)
was turned OFF in positioing.
• At " Cd.30 Each axis
(2) "1" is set in " Cd.30 Each axis servo
servo OFF" ON
OFF".
(in positioning)
Sudden stop
1
The operation started in servo warinig
(2146, 2149) occurrence.
At positioning start
The operation does
not start.
2
The servo warinig (2146) occuured in
operation start.
In positioning
Servo forced stop
(Stop by dynamic
brake)
1700
1702
1703
1704
11 - 9
Pr.300
Servo series".
Enter the servo ON.
Remove the servo warning.
11 TROUBLESHOOTING
MELSEC-Q
(3) Interface errors (1900 to 1999)
Error Error
code detail
1901
Error
1
Data is not written to the flash ROM.
2
A sum check error occurred while data
is written to the flash ROM.
Error check
• At flash ROM write
function use
• At parameter
initialization
function use
Operation status at
error occurrence
Remedy
Replace the QH74MH.
The flash ROM write/
Review the sequence program
parameter initialization
not to exceed 25 times flash
is not executed.
ROM write and parameter
initialization in system's power
supply ON.
1902
1
Over 25 times flash ROM write and
parameter initialization were executed
from the sequence program in power
supply ON.
1903
1
The parameter initialization is requested At parameter
in PLC READY ON.
initialization request
The parameter
initialization is not
executed.
The PLC CPU has an error.
(Stop error)
In strat: Deceleration
Refer to the "QCPU User's
stop
Manual (Hardware Design,
At start: The operation
Maintenance and Inspection)".
does not start.
1904
1
Always
11 - 10
Execute the parameter
initialization after PLC READY
OFF.
11 TROUBLESHOOTING
MELSEC-Q
(4) Servo errors (2000 to 2099)
Refer to the "Servo amplifier Instruction Manual" for details of servo error.
Error code
LED indicator of
servo amplifier
Error detail
2010
10
0
Error name
Undervoltage
2012
12
0
Memory error 1 (RAM)
2013
13
0
Clock error
2015
15
0
Memory error 2 (EEP-ROM)
2016
16
0
Encoder error 1 (At power on)
2017
17
0
Board error
2019
19
0
Memory error 3 (Flash-ROM)
2020
20
0
Encoder error 2
2024
24
0
Main circuit error
2025
25
0
Absolute position erase
2030
30
0
Regenerative error
2031
31
0
Overspeed
2032
32
0
Overcurrent
2033
33
0
Overvoltage
2034
34
0
Receive error 1
2035
35
0
Command frequency error
2036
36
0
Receive error 2
2037
37
Refer to next page.
2045
45
0
Main circuit device overheat
2046
46
0
Servomotor overheat
2047
47
0
Cooling fan error
2050
50
0
Overload 1
Parameter error
2051
51
0
Overload 2
2052
52
0
Error excessive
2060
1A
0
Motor combination error
2088
888
0
Watchdog
2090
8A
0
USB communication time-out error
2094
8E
0
USB communication error
11 - 11
11 TROUBLESHOOTING
MELSEC-Q
• Error detail of parameter errors (Error code: 2037)
Error detail
Parameter No.
Error detail
Parameter No.
Error detail
Parameter No.
Error detail
Parameter No.
1
PA01
64
PB32
117
PD05
167
PE23
2
PA02
65
PB33
118
PD06
168
PE24
3
PA03
66
PB34
119
PD07
169
PE25
4
PA04
67
PB35
120
PD08
170
PE26
5
PA05
68
PB36
121
PD09
171
PE27
6
PA06
69
PB37
122
PD10
172
PE28
7
PA07
70
PB38
123
PD11
173
PE29
8
PA08
71
PB39
124
PD12
174
PE30
9
PA09
72
PB40
125
PD13
175
PE31
10
PA10
73
PB41
126
PD14
176
PE32
11
PA11
74
PB42
127
PD15
177
PE33
12
PA12
75
PB43
128
PD16
178
PE34
13
PA13
76
PB44
129
PD17
179
PE35
14
PA14
77
PB45
130
PD18
180
PE36
15
PA15
81
PC01
131
PD19
181
PE37
16
PA16
82
PC02
132
PD20
182
PE38
17
PA17
83
PC03
133
PD21
183
PE39
18
PA18
84
PC04
134
PD22
184
PE40
19
PA19
85
PC05
135
PD23
193
PS01
33
PB01
86
PC06
136
PD24
194
PS02
34
PB02
87
PC07
137
PD25
195
PS03
35
PB03
88
PC08
138
PD26
196
PS04
36
PB04
89
PC09
139
PD27
197
PS05
37
PB05
90
PC10
140
PD28
198
PS06
38
PB06
91
PC11
141
PD29
199
PS07
39
PB07
92
PC12
142
PD30
200
PS08
40
PB08
93
PC13
143
PD31
201
PS09
41
PB09
94
PC14
144
PD32
202
PS10
42
PB10
95
PC15
145
PE01
203
PS11
43
PB11
96
PC16
146
PE02
204
PS12
44
PB12
97
PC17
147
PE03
205
PS13
45
PB13
98
PC18
148
PE04
206
PS14
46
PB14
99
PC19
149
PE05
207
PS15
47
PB15
100
PC20
150
PE06
208
PS16
48
PB16
101
PC21
151
PE07
209
PS17
49
PB17
102
PC22
152
PE08
210
PS18
50
PB18
103
PC23
153
PE09
211
PS19
51
PB19
104
PC24
154
PE10
212
PS20
52
PB20
105
PC25
155
PE11
213
PS21
53
PB21
106
PC26
156
PE12
214
PS22
54
PB22
107
PC27
157
PE13
215
PS23
55
PB23
108
PC28
158
PE14
216
PS24
56
PB24
109
PC29
159
PE15
217
PS25
57
PB25
110
PC30
160
PE16
218
PS26
58
PB26
111
PC31
161
PE17
219
PS27
59
PB27
112
PC32
162
PE18
220
PS28
60
PB28
113
PD01
163
PE19
221
PS29
61
PB29
114
PD02
164
PE20
222
PS30
62
PB30
115
PD03
165
PE21
223
PS31
63
PB31
116
PD04
166
PE22
224
PS32
11 - 12
11 TROUBLESHOOTING
MELSEC-Q
(5) Servo warning (2100 to 2199)
Refer to the "Servo amplifier Instruction Manual" for details of servo warning.
Warning code
LED indicator of
servo amplifier
2101
91
Main circuit device overheat warning
2102
92
Battery cable disconnection warning
2106
96
Home position setting warning
2116
9F
Battery warning
2140
E0
Excessive regeneration warning
2141
E1
Overload warning 1
2143
E3
Absolute position counter warning
2144
E4
Parameter warning
2146
E6
Servo forced stop warning
2147
E7
Controller forced stop warning
2148
E8
Cooling fan speed reduction warning
2149
E9
Main circuit off warning
2151
EB
The other axis fault warning
2152
EC
Overload warning 2
2153
ED
Output watt excess warning
Warning name
11 - 13
11 TROUBLESHOOTING
MELSEC-Q
(6) Operation warnings (11000 to 11999)
Warning
code
Error
Error check
• At flash ROM write
The flash ROM write request or
request
10001 parameter initialization request turned ON
• At parameter initialization
after the first PLC READY ON.
request
The speed command that exceeds the
11001
speed limit value was executed.
The flash ROM write
or parameter
initialization is not
executed.
Remedy
Turn the PLC READY ON.
• At positioning start
The speed is cramped
Set the speed within the speed
• At OPR start
with the speed limit
limit value.
• At manual control start
value.
• At speed change request
The setting of " Pr.17 Sudden stop
• At axis sudden stop
deceleration time" is lager than the
11002 deceleration time (" Pr.83 JOG operation command
• At pausing command
deceleration time", " Pr.59 OPR
deceleration time").
The speed command that exceeds the
11003
maximum motor speed was executed.
Operation status at
warning occurrence
The speed is cramped
with the deceleration
time (JOG operation,
OPR).
Shorten the setting of " Pr.17
Sudden stop deceleration time"
than the deceleration time
(" Pr.83 JOG operation
deceleration time", " Pr.59 OPR
deceleration time").
• At positioning start
The speed is cramped
Set the speed within the maximum
• At OPR start
with the maximum
motor speed.
• At manual control start
motor speed.
• At speed change request
For the positioning data of continuous
path completion, the machine passed a
In cotinuous path
11005 command position and immediately
stopped, because the movement amount
was short.
• At independent
The machine immediately stopped with
positioning
the specified address in positioning,
• At continuous path last
11006 because the movement amount required
point
to execute the deceleration stop from the
• At Incremental feed
currend speed cannot be secured.
operation
Set the address/movement
amount required to execute the
deceleration stop.
Immediately stop (If
the positioning data
continues, the
positioning is executed
after immediately stop. Set the positioning data required
to execute the deceleration stop.
The speed change request was executed
in the following cases.
• In operation stop
• In deceleration by stop command,
At speed change request
sudden stop command or error
11011
occurrence
• In OPR
• In current value change
• In pausing
The speed change is
not executed.
The acceleration speed change request
was executed in the following cases.
• In operation stop
11012 • In deceleration
• In OPR
• In current value change
• In pausing
At acceleration time
change request
The acceleration time Change the acceleration time
when the speed change can be
change is not
executed.
executed.
The deceleration speed change request
was executed in the following cases.
• In operation stop
11013 • In deceleration
• In OPR
• In current value change
• In pausing
At deceleration time
change request
The deceleration time Change the deceleration time
when the speed change can be
change is not
executed.
executed.
11 - 14
Change the speed when the
speed change can be executed.
11 TROUBLESHOOTING
MELSEC-Q
Operation warnings (11000 to 11999) (continued)
Warning
code
Error
The target position change request was
executed in the following cases.
• In operation stop
• In deceleration by stop command,
sudden stop command or error
11014
• In JOG operation
• In OPR
• In linear interpolation
• In current value change
• In pausing
Error check
At target position change
request
11 - 15
Operation status at
warning occurrence
The target position
change is not
executed.
Remedy
Change the target position when
the speed change can be
executed.
11 TROUBLESHOOTING
MELSEC-Q
MEMO
11 - 16
APPENDICES
MELSEC-Q
APPENDICES
Appendix 1 External Dimension Drawing
(1) QD74MH8
APP
QD74MH8
RUN
CN1
98(3.86)
ERR.
EMI
23(0.91)
90(3.54)
27.4(1.08)
4(0.16)
QD74MH8
(2) QD74MH16
QD74MH16
RUN
CN1
98(3.86)
ERR.
EMI
23(0.91)
27.4(1.08)
90(3.54)
APP - 1
4(0.16)
QD74MH16
APPENDICES
MELSEC-Q
Appendix 2 Sample Program
Appendix 2.1 Sequence program
Creation procedure for the standard sequence program of QD74MH is shown below.
CAUTION
The sequence program of this appendix is used to make operate the servo motor for 1 axis.
When diverting the programs examples introduced in this manual to the actual system, fully verify
that there are no problems in the controllability of the target system. And, add the interlock condition if
required in the target system.
(1) JOG operation, OPR operation positioning control and continuous path control
can be executed by setting the data to the buffer memory in QD74MH.
The monitor data of the current value and error codes, etc. can be referred by
reading the data of buffer memory.
Data is transferred via the buffer memory between the PLC CPU and QD74MH
in the figure below.
Use the GX Developer to create the sequence program and debugging.
GX Developer
Sequence program
Device
Monitor
ON/OFF/
Current value
U0\G1700
10000000
U0\G1702
100000
PLC CPU
QD74MH
Sequence program
Buffer memory
Parameter
Monitor data
Control data
Positioning data
Transfer the parameters,
positioning data and control
data to the buffer memory.
APP - 2
Servo parameter
Positioning
control
APPENDICES
MELSEC-Q
(2) System configuration
The configuration figure for 1 axis absolute position system of 1 axis assumed
by the sequence program is shown below.
Equipment configuration
Base unit
Power supply module
PLC CPU module
QD74MH8
Servo amplifiers MR-J3-10B
Servomoter
HF-KP13
Ball screw lead
10[mm]
CN1
External I/O
Battery
(a) Setting for the electronics gear
Command unit
: 0.1[μm]
Ball screw lead
: Pb = 10[mm] = 100000[×0.1μm]
Encoder resolution : Pt = 262144[PLS/rev]
Gear ratio
: n = 1/1
Pt
262144
8192
AP Pt
= 3125
AL = S = n × Pb = 1
1 × 10000
" Pr.0 Electronic gear numerator" = 8192,
" Pr.2 Electronic gear denominator" = 3125
(b) Unit of the positioning address and command speed
The command unit of the QD74MH is PLS only. When an electronic gear is
set, programming in units of [mm] is possible.
When the command unit is 0.1[µm], " Da.6 Positioning address/movement
amount" and " Da.4 Command speed" can also be set using units of
0.1[µm].
POINT
When the command unit is 0.1[µm] = 1[PLS], the ball screw lead of 10[mm] is
100000 [PLS]. When the electronic gear numerator (AP) and denominator (AL) are
calculated by this value, the command unit can be either PLS or 0.1[µm].
APP - 3
APPENDICES
MELSEC-Q
(c) Setting for the speed limit value
Speed limit value[PLS/s] =
(Motor's maximum velocity[r/min] × Gear ratio(n)) × Ball screw lead
60[s]
Example) When the speed limit is set to match the motor's maximum
velocity (6000[r/min])
Speed limit value =
⎛6000 × 1⎞ × 10
1⎠
⎝
60
= 1000[mm/s]
When the command unit is 0.1[µm],
6
1000[mm/s] = 10000000[PLS/s] = 10 × 10 [PLS/s]
6
Therefore, set 10 so that the " Pr.10 Speed limit value" is [×10
PLS/s] unit.
APP - 4
APPENDICES
MELSEC-Q
Appendix 2.2 Creating the program
This section describes the operation program actually used for positioning control.
Add the monitor program according to the system to monitor the control.
(1) Program configuration
Creating the program
No.1 Parameter setting program
No.1-1 Basic parameter Pr.0 to Pr.31
No.1-2 OPR parameter Pr.50 to Pr.66
No.1-3 Manual control parameter Pr.80 to Pr.84
No.1-4 Servo parameter Pr.300 to Pr.599
Program to set the parameters
No.2 Parameter setting complete program
No.3 Positioning data setting program
No.3-1 Positioning data point 1
No.3-2 Positioning data point 2
Program to set the positioning data
No.4 PLC READY signal[Y0] ON program
No.5 All axis servo ON signal[Y1] ON program
No.6 Monitor program
No.6-1 System monitor Md.100 to Md.103
No.6-2 Axis monitor Md.0 to Md.41
Monitor program
The monitor information of QD74MH is led
before the manual ccontrol, positioning
control and each change program.
No.7 JOG operation setting program
No.8 Incremental feed operation setting program
No.9 JOG operation/Incremental feed operation
execute program
1)
APP - 5
Program requierd for manual control
APPENDICES
MELSEC-Q
1)
No.10 OPR selection program
No.11 New current value selection program
No.12 Positioning selection program
Program requierd for OPR control, positioning
control
Add or delete "No.11 New current value selection
program" according to the control content of
system.
No.13 Positioning start program
No.14 Stop program
No.14-1 Axis stop of each axis
No.14-2 Axis sudden stop of each axis
No.14-3 Pausing of each axis
Stop proguram
No.15 Error reset program
Error reset program
No.16 Flash ROM write program
Flash ROM write program
No.17 Speed change program
No.18 Acceleration time change program
No.19 Deceleration time change program
Add or delete according to the control content of
system.
No.20 Target position change program
No.21 Torque limit program
No.22 Parameter change request program
END
APP - 6
APPENDICES
MELSEC-Q
(2) Device list
The devices used by the sequence program that has been described to this
appendix are allocated as follows.
The I/O number is a number when the QD74MH is installed in the first slot of the
main base unit. Change them to I/O number at installed position if the QD74MH
is installed in except the first slot of the main base unit.
Change the external input/output, internal relay and data register according to
the system used.
(a) Input/output, external input, external output, internal relay
Type
Input
Output
Device No.
Signal name
Type
Device No.
Signal name
X0
Unit READY
M0
Parameter setting flag
X1
Error detection
M1
Parameter setting complete flag
X2
Warning detection
M2
Position data setting flag
X3
Synchronization flag
M4
Flash ROM write memo
X10
Axis 1 BUSY
M5
Deceleration time change request memo
Y0
PLC READY
M7
In JOG/incremental feed operation memo
Y1
All axis servo ON
M8
Speed change request memo
Y2
Forced stop input
M9
Acceleration time change request memo
Y10
Axis 1 Positioning start
M10
Axis 1 Error detection signal
X20
Positioning start
M29
Target position change request memo
X21
Axis stop
M30
Axis 1 Warning detection signal
X22
Pausing
M47
Axis 1 Speed change request memo
X23
Axis sudden stop
X24
All axis servo ON request
M63
Internal M64
relay
M80
Positioning start pulse
Axis 1 Positioning start
Axis 1 Acceleration time change request
memo
X25
PLC READY ON request
X26
Error reset
M96
Axis 1 Deceleration time change request
memo
X27
Parameter change request
M112
Axis 1 Target position change request memo
External X28
X29
input
Flash ROM write
M128
Axis 1 In JOG/incremental feed operation
Acceleration time change request
M160
Axis 1 Positioning complete
X2A
Deceleration time change request
M161
Axis 1 Command in-position
X2B
Speed change request
M162
Axis 1 Pausing
X2C
Incremental feed
M163
Axis 1 Operation complete
X2E
Forward rotation JOG/Incremental feed
M168
Axis 1 Speed change READY
X2F
Reverse rotation JOG/Incremental feed
M169
Axis 1 Acceleration time change READY
X30
Torque limit value change request
M170
Axis 1 Deceleration time change READY
X31
Target position change request
M171
Axis 1 Target position change READY
X33
Positioning selection
X34
Current value change selection
X35
OPR selection
APP - 7
APPENDICES
MELSEC-Q
(b) Data register
Type
Device No.
D24
Incremental feedrate
D31
Axis 1 Start data No./type
D100
D101
D102
D103
Data register
Signal name
Md.0 Axis 1 Current feed value
Md.2 Axis 1 Feedrate
Low-order 16 bits
High-order 16 bits
Low-order 16 bits
High-order 16 bits
D104
Md.4 Axis 1 External input signal
D105
Md.5 Axis 1 Positioning data No. being executed
D106
Md.6 Axis 1 Error code
D107
Md.7 Axis 1 Error detail
D108
Md.8 Axis 1 Warning code
D109
Md.9 Axis 1 Status 1
D110
Md.10 Axis 1 Status 2
D126
D127
D128
D129
Md.26 Axis 1 Real current value
Md.28 Axis 1 Deviation counter value
D131
Md.31 Axis 1 Motor current value
D132
Md.32 Axis 1 Motor rotation speed
D134
Md.34 Axis 1 Regenerative load ratio
D135
Md.35 Axis 1 Effective load torque ratio
D136
Md.36 Axis 1 Servo status 2
D140
Md.40 Axis 1 Servo status 1
D141
Md.41 Axis 1 Servo status 2
Low-order 16 bits
High-order 16 bits
Low-order 16 bits
High-order 16 bits
(Note): Transmit the current feed value, feedrate and real current value, etc. using the 32 bit
transmission instruction.
APP - 8
APPENDICES
MELSEC-Q
(3) Parameters and positioning data
Types of parameters include: Basic parameters, OPR parameters, Manual
control parameters and Servo parameters.
The parameters to be changed are shown below.
Add and change the parameters and positioning data according to the system.
Table 2.1 Parameters for 1 axis
Type
Basic
OP
Manual
Servo
Word
Value for 1-axis
Pr.0
Symbol
Electronic gear numerator (AP)
Item
2
8192
U0\G0+100n
Address
Remark
Pr.2
Electronic gear denominator (AL)
2
3125
U0\G2+100n
Pr.4
Software stroke limit upper limit value
2
819100000
U0\G4+100n
Pr.6
Software stroke limit lower limit value
2
-819100000
U0\G6+100n
Pr.10
Speed limit value
2
10
U0\G10+100n
Pr.25
Interpolation group
1
1
U0\G25+100n
Pr.26
Linear interpolation speed limit value
2
10
U0\G26+100n
Pr.31
External input signal logic selection
1
H0
U0\G31+100n
H0 : Negative logic
H111: Positive logic
Pr.50
OPR method
1
2
U0\G50+100n
Data set type
Pr.52
OP address
2
0
U0\G52+100n
Pr.80
JOG speed
2
2500000
U0\G80+100n
Pr.84
Incremental feedrate
2
0
U0\G84+100n
Set "0" at JOP operation.
Pr.300
Servo series
1
1
U0\G10300+100n
MR-J3-B
Pr.303
PA03 Absolute position detection system
1
1
U0\G10303+100n
Absolute position system
Pr.304
PA04 Function selection A-1
1
0
U0\G10304+100n
H0 : Forced stop: Valid
H100: Forced stop: Invalid
Pr.308
PA08 Auto tuning mode
1
1
U0\G10308+100n
Pr.309
PA09 Auto tuning response
1
12
U0\G10309+100n
Pr.314
PA14 Rotation direction selection
1
0
U0\G10314+100n
Set these parameters
according to the system.
Set these parameters
according to movement
range for the system.
0: CCW direction
1: CW direction
Table 2.2 Positioning data for 1-axis
Type
Point 1
Point 2
Word
Value for 1-axis
Da.0
Symbol
Operation pattern
Item
1
1
Address
Da.1
Control system
1
0
U0\G5101+10n
ABS linear 1
Da.2
Acceleration time
1
1000
U0\G5102+10n
1000[ms]
Da.3
Deceleration time
1
1000
U0\G5103+10n
1000[ms]
Da.4
Command speed
2
1000000
U0\G5104+10n
100[mm/s]
Da.6
Positioning address/movement amount
2
5000000
U0\G5106+10n
Move to address 50[mm]
U0\G5100+10n
Remark
Continuous positioning
Da.8
Dwell time
1
0
U0\G5108+10n
0[s]
Da.0
Operation pattern
1
0
U0\G5110+10n
Independent positioning
Da.1
Control system
1
0
U0\G5111+10n
ABS linear 1
Da.2
Acceleration time
1
100
U0\G5112+10n
1000[ms]
Da.3
Deceleration time
1
100
U0\G5113+10n
1000[ms]
Da.4
Command speed
2
2500000
U0\G5114+10n
250[mm/s]
Da.6
Positioning address/movement amount
2
0
U0\G5116+10n
Move to address 0[mm]
Da.8
Dwell time
1
0
U0\G5118+10n
0[s]
APP - 9
APPENDICES
MELSEC-Q
Appendix 2.3 Debugging
(1) Debugging
GX Developer is used to create the sequence program and debug in QD74MH.
First, create the device comment to create the sequence program.
The device comment is displayed by registering the devices to the entry data
monitor. It becomes easy to debug by the device and comment being displayed
simultaneously.
(2) Flash ROM write
Execute the flash ROM write after completion of the adjustment for servo
amplifier. The following buffer memories of servo parameter are changed when
the auto tuning mode is valid.
• Pr.338 Ratio of load inertia moment to servo motor inertia moment
• Pr.339 Model loop gain
• Pr.340 Position loop gain
• Pr.341 Speed loop gain
• Pr.342 Speed integral compensation
The buffer memory data returns to former data by the system power supply
OFF. Set "1" in Cd.100 Flash ROM write request before the system power
supply OFF.
APP - 10
APPENDICES
MELSEC-Q
Appendix 2.4 Positioning program example
*
* No.1 Parameter setting program
*
* Basic parameter, OPR parameter, Manual control parameter
* Servo parameter, System parameter
* Write the parameters to the buffer memory*
*
*SM403 is added so that M0 may turn ON/OFF by the PLC RUN/STOP.
X3
SM403
0
M0
* No.1-1 Basic parameter Pr.0 to Pr.31
* Axis 1 setting example
M0
12
DMOVP K8192
U0\
G0
<Electronic gear numerator>
DMOVP K3125
U0\
G2
<Electronic gear denominator>
DMOVP K819100000
U0\
G4
<Upper limit value 81910mm>
DMOVP K-819100000
U0\
G6
<Lower limit value -81910mm>
DMOVP K10
U0\
G10
<Speed limit value 6000r/min>
MOVP
U0\
G25
<Interpolation group No.1>
DMOVP K10
U0\
G26
<Interpolation speed limit value 6000r/min>
MOVP
H0
U0\
G31
<DOG, FLS, RLS: Negative logic>
MOVP
K2
U0\
G50
<Data set method OPR>
DMOVP K0
U0\
G52
<OP address = 0>
K1
* No.1-2 OPR parameter Pr.50 to Pr.66
* Axis 1 setting example
M0
60
* No.1-3 Manual control parameter Pr.80 to Pr.84
* Axis 1 setting example
M0
74
U0\
DMOVP K2500000 G80
DMOVP K0
APP - 11
U0\
G84
<JOG speed 250mm/s>
<Incremental feedrate = 0>
APPENDICES
MELSEC-Q
* No.1-4 Servo parameter Pr.300 to Pr.599
* Axis 1 PA02 to PA15 setting example
M0
89
MOVP
K1
U0\
G10300
<MR-J3-B selection>
MOVP
K1
U0\
G10303
<Absolute position system>
MOVP
H0
U0\
G10304
<Servo amplifier forced stop input: Valid>
MOVP
K1
U0\
G10308
<Auto tuning mode 1>
MOVP
K12
U0\
G10309
<Response = 12>
MOVP
K0
U0\
G10314
<Motor rotation direction = CCW>
M1
<Parameter setting complete>
*
* No.2 Parameter setting complete program
*
* Set the basic parameter, OPR parameter, manual control parameter and system parameter
* ahead of this step.
M0
SM403
122
M1
*
* No.3 Positioning data setting program
* Positioning data setting flag ON
M0
M2
132
*
* No.3-1 Positioning data point 1
M2
137
MOVP
K1
U0\
G5100
MOVP
K0
U0\
G5101
<ABS linear>
MOVP
K1000
U0\
G5102
<Acceleration time = 1000ms>
MOVP
K1000
U0\
G5103
<Deceleration time = 1000ms>
U0\
DMOVP K1000000 G5104
U0\
DMOVP K5000000 G5106
MOVP
APP - 12
K0
U0\
G5108
<Operation pattern = Continuous
positioning>
<Command speed = 100mm/s>
<Positioning address/movement
amount = 500mm>
<Dwell time = 0ms>
APPENDICES
MELSEC-Q
*
* No.3-2 Positioning data point 2
M2
177
MOVP
K0
U0\
G5110
<Positioning end>
MOVP
K0
U0\
G5111
<ABS linear>
MOVP
K100
U0\
G5112
<Acceleration time = 100ms>
MOVP
K100
U0\
G5113
<Deceleration time = 100ms>
U0\
DMOVP K2500000 G5114
<Command speed = 250mm/s>
DMOVP K0
U0\
G5116
MOVP
U0\
G5118
<Dwell time = 0ms>
Y0
<PLC READY ON program>
Y1
<All axis servo ON command>
K0
<Positioning address/movement
amount = 0mm>
* No.4 PLC READY signal[Y0] ON program
M1
SM403
M4
X25
216
* No.5 All axis servo ON signal[Y1] ON program
X0
X3
X24
Y0
223
Y1
*
* No.6 Monitor program
*
* No.6-1 System monitor Md.100 to Md.103
SM403
FROM
231
H0
K3300
D3000
K4
<System monitor Md.100 to Md.103>
MOV
D3000
K4M10
<Axis error M10 to M25>
MOV
D3001
K4M30
<Axis warning M30 to M45>
K1700
D100
K21
<Axis monitor Md.0 to Md.41>
MOV
D110
K4M160
<Status 2 M160 to M175>
DMOVP K0
D24
<0PLS at JOG operation>
DMOVP K1000
D24
<Incremental feedrate = 1000PLS>
* No.6-2 Axis monitor Md.0 to Md.41
SM403
DFRO
250
H0
SM403
258
* No.7 JOG operation setting program
X2C
262
* No.8 Incremental feed operation setting program
X2C
268
APP - 13
APPENDICES
MELSEC-Q
*
* No.9 Execution operation for JOG operation/Incremental feed operation
*
X2E
X0
X10
DMOVP D24
274
U0\
G84
<Set the incremental feedrate>
X2F
SET
X2E
U0\G3408.0
<Forward rotation JOG/Forward
rotation incremental feed ON>
U0\G3409.0
<Reverse rotation JOG/Reverse
rotation incremental feed ON>
RST
M128
<JOG/Incremental feed operating flag
OFF>
M128
294
X2E
<JOG/Incremental feed operating flag
ON>
M128
288
X2F
M128
X2F
M128
300
*
* No.10 OPR selection program
*
X35
305
MOVP
K9000
D31
<OPR command No. = 9000>
MOVP
K9003
D31
<Axis 1 Current value change No.
= 9003>
*
* No.11 Current value change selection program
*
X34
312
DMOVP K0
U0\
G3428
<Axis 1 Current position = 0>
MOVP
D31
<Point 1 specification>
PLS
M63
<Positioning start pulse>
SET
M64
<Positioning start ON>
RST
Y10
*
* No.12 Positioning selection program
*
X33
325
K1
*
* No.13 Positioning start program
*
* The input signal is made to the pulse
* This pulse signal is used for each axis start operation
X20
332
M63
Y10
X10
M7
341
Y10
X10
347
X20
M64
356
U0\G1710.3
X10
MOVP
APP - 14
U0\
G3402
<Set the start number>
SET
Y10
<Positioning start signal ON>
RST
M64
<Positioning start OFF>
D31
APPENDICES
MELSEC-Q
*
* No.14 Stop program
*
* No.14-1 Axis stop for each axis
X21
367
U0\G3403.0
<Axis stop signal ON/OFF>
U0\G3404.0
<Axis sudden stop signal ON/OFF>
U0\G3405.0
<Pausing signal ON/OFF>
U0\G3400.0
<Error reset ON/OFF>
SET
M4
<Flash ROM write memo ON>
U0\
G5000
<Flash ROM write request = ON>
RST
M4
<Flash ROM write memo OFF>
PLS
M8
<Speed change request memo pulse>
* No.14-2 Axis sudden stop for each axis
X23
376
* No.14-3 Pausing for each axis
X22
382
* No.15 Error reset program
X26
388
*
* No.16 Flash ROM write program
*
X28
Y0
X10
394
MOVP
M4
407
=
U0\
G5000
K0
K1
*
* No.17 Speed change program
*
X2B
414
M8
M47
X10
421
DMOVP K10000
U0\
G3416
MOVP
U0\
G3415
K1
SET
M47
M168
437
MOVP
X2B
K0
M47
U0\
G3415
<Axis 1 New speed value =
10000PLS/s>
<Axis 1 Speed change request ON>
<Axis 1 Speed change request memo
ON>
<Axis 1 Speed change request OFF>
M163
RST
APP - 15
M47
<Axis 1 Speed change request memo
OFF>
APPENDICES
MELSEC-Q
*
* No.18 Acceleration time change program
*
X29
450
PLS
M9
M80
X10
457
MOVP
K10000
U0\
G3419
MOVP
K1
U0\
G3418
SET
M80
M169
MOVP
472
X29
M9
K0
M80
U0\
G3418
<Acceleration time change request
memo pulse>
<Axis 1 Acceleration time = 10000s>
<Axis 1 Acceleration time change
request ON>
<Axis 1 Acceleration time change
request memo ON>
<Axis 1 Acceleration time change
request OFF>
M163
RST
M80
<Axis 1 Acceleration time change
request memo OFF>
PLS
M5
<Deceleration time change request
pulse>
*
* No.19 Deceleration time change program
*
X2A
485
M5
M96
X10
492
MOVP
K10000
U0\
G3421
MOVP
K1
U0\
G3420
SET
M96
M170
507
MOVP
X2A
K0
M96
U0\
G3420
<Axis 1 Deceleration time = 10000s>
<Axis 1 Deceleration time change
request ON>
<Axis 1 Deceleration time change
request memo ON>
<Axis 1 Deceleration time change
request OFF>
M163
RST
M96
<Axis 1 Deceleration time change
request memo OFF>
PLS
M29
<Target position change request pulse>
DMOVP K-10000
U0\
G3424
<Axis 1 Target position = -10000PLS>
MOVP
U0\
G3423
*
* No.20 Target position change program
*
X31
520
M29
M112
X10
527
K1
SET
M112
M171
543
MOVP
X31
K0
M112
U0\
G3423
<Axis 1 Target position change request
ON>
<Axis 1 Target position change request
memo ON>
<Axis 1 Target position change request
OFF>
M163
RST
APP - 16
M112
<Axis 1 Target position change request
memo OFF>
APPENDICES
MELSEC-Q
*
* No.21 Torque limit program
*
X30
556
MOVP
K1000
U0\
G3412
MOVP
K1000
U0\
G3413
MOVP
K1
U0\
G3411
MOVP
K0
U0\
G3411
MOVP
K1
U0\
G3401
X30
576
<Axis 1 Forward rotation torque limit
value = 100.0%>
<Axis 1 Reverse rotation torque limit
value = 100.0%>
<Axis 1 Torque limit value change
request ON>
<Axis1 Torque limit value change
request OFF>
*
* No.22 Parameter change request program
*
X27
582
END
590
APP - 17
<Parameter change request ON>
APPENDICES
MELSEC-Q
Appendix 3 List of Buffer Memory Address
Appendix 3.1 Parameter area
Symbol
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
Pr.0
Electronic gear numerator (AP)
0
1
100
101
200
201
300
301
400
401
500
501
Pr.2
Electronic gear denominator (AL)
2
3
102
103
202
203
302
303
402
403
502
503
Pr.4
Software stroke limit upper limit value
4
5
104
105
204
205
304
305
404
405
504
505
Pr.6
Software stroke limit lower limit value
6
7
106
107
206
207
306
307
406
407
506
507
Pr.8
Backlash compensation amount
8
108
208
308
408
508
Pr.10
Speed limit value
10
11
110
111
210
211
310
311
410
411
510
511
Pr.15
Acceleration/deceleration method
15
115
215
315
415
515
Pr.16
S-curve acceleration/deceleration time constant
16
116
216
316
416
516
Pr.17
Sudden stop deceleration time
17
117
217
317
417
517
Pr.20
Command in-position range
20
21
120
121
220
221
320
321
420
421
520
521
Pr.23
Target position change overrun processing
selection
23
123
223
323
423
523
Pr.25
Interpolation group
25
125
225
325
425
525
Linear interpolation speed limit value
26
27
126
127
226
227
326
327
426
427
526
527
Pr.31
External input signal logic selection
31
131
231
331
431
531
Pr.50
OPR method
50
150
250
350
450
550
Pr.51
OPR direction
51
151
251
351
451
551
Pr.52
OP address
52
53
152
153
252
253
352
353
452
453
552
553
Pr.54
OPR speed
54
55
154
155
254
255
354
355
454
455
554
555
556
Pr.26
Pr.56
Creep speed
56
156
256
356
456
Pr.58
OPR acceleration time
58
158
258
358
458
558
Pr.59
OPR deceleration time
59
159
259
359
459
559
Pr.60
OP shift amount
60
61
160
161
260
261
360
361
460
461
560
561
Pr.62
OP search limit
62
63
162
163
262
263
362
363
462
463
562
563
Pr.66
Operation setting for incompletion of OPR
66
166
266
366
466
566
JOG speed
80
81
180
181
280
281
380
381
480
481
580
581
Pr.80
Pr.82
JOG operation acceleration time
82
182
282
382
482
582
Pr.83
JOG operation deceleration time
83
183
283
383
483
583
Pr.84
Incremental feedrate
84
85
184
185
284
285
384
385
484
485
584
585
Pr.101
External forced stop selection
1601
APP - 18
APPENDICES
MELSEC-Q
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
600
601
700
701
800
801
900
901
1000
1001
1100
1101
1200
1201
1300
1301
1400
1401
1500
1501
602
603
702
703
802
803
902
903
1002
1003
1102
1103
1202
1203
1302
1303
1402
1403
1502
1503
604
605
704
705
804
805
904
905
1004
1005
1104
1105
1204
1205
1304
1305
1404
1405
1504
1505
606
607
706
707
806
807
906
907
1006
1007
1106
1107
1206
1207
1306
1307
1406
1407
1506
1507
608
708
808
908
1008
1108
1208
1308
1408
1508
610
611
710
711
810
811
910
911
1010
1011
1110
1111
1210
1211
1310
1311
1410
1411
1510
1511
615
715
815
915
1015
1115
1215
1315
1415
1515
616
716
816
916
1016
1116
1216
1316
1416
1516
617
717
817
917
1017
1117
1217
1317
1417
1517
620
621
720
721
820
821
920
921
1020
1021
1120
1121
1220
1221
1320
1321
1420
1421
1520
1521
623
723
823
923
1023
1123
1223
1323
1423
1523
625
725
825
925
1025
1125
1225
1325
1425
1525
626
627
726
727
826
827
926
927
1026
1027
1126
1127
1226
1227
1326
1327
1426
1427
1526
1527
631
731
831
931
1031
1131
1231
1331
1431
1531
650
750
850
950
1050
1150
1250
1350
1450
1550
651
751
851
951
1051
1151
1251
1351
1451
1551
652
653
752
753
852
853
952
953
1052
1053
1152
1153
1252
1253
1352
1353
1452
1453
1552
1553
654
655
754
755
854
855
954
955
1054
1055
1154
1155
1254
1255
1354
1355
1454
1455
1554
1555
656
756
856
956
1056
1156
1256
1356
1456
1556
658
758
858
958
1058
1158
1258
1358
1458
1558
659
759
859
959
1059
1159
1259
1359
1459
1559
660
661
760
761
860
861
960
961
1060
1061
1160
1161
1260
1261
1360
1361
1460
1461
1560
1561
662
663
762
763
862
863
962
963
1062
1063
1162
1163
1262
1263
1362
1363
1462
1463
1562
1563
666
766
866
966
1066
1166
1266
1366
1466
1566
680
681
780
781
880
881
980
981
1080
1081
1180
1181
1280
1281
1380
1381
1480
1481
1580
1581
682
782
882
982
1082
1182
1282
1382
1482
1582
683
783
883
983
1083
1183
1283
1383
1483
1583
684
685
784
785
884
885
984
985
1084
1085
1184
1185
1284
1285
1384
1385
1484
1485
1584
1585
1601
APP - 19
Memory
area
Parameter area
Axis 11
Basic parameters
Axis 10
OPR parameters
Axis 9
Manual control
parameter
Axis 8
System
parameters
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
Appendix 3.2 Monitor data area
Symbol
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
Md.0
Current feed value
1700
1701
1800
1801
1900
1901
2000
2001
2100
2101
2200
2201
Md.2
Feedrate
1702
1703
1802
1803
1902
1903
2002
2003
2102
2103
2202
2203
Md.4
External input signal
1704
1804
1904
2004
2104
2204
Md.5
Positioning data No. being executed
1705
1805
1905
2005
2105
2205
Md.6
Error code
1706
1806
1906
2006
2106
2206
Md.7
Error detail
1707
1807
1907
2007
2107
2207
Md.8
Warning code
1708
1808
1908
2008
2108
2208
Md.9
Status 1
1709
1809
1909
2009
2109
2209
Md.10
Status 2
1710
1810
1910
2010
2110
2210
Md.26
Real current value
1726
1727
1826
1827
1926
1927
2026
2027
2126
2127
2226
2227
Md.28
Deviation counter value
1728
1729
1828
1829
1928
1929
2028
2029
2128
2129
2228
2229
Md.31
Motor current value
1731
1831
1931
2031
2131
2231
Motor rotation speed
1732
1733
1832
1833
1932
1933
2032
2033
2132
2133
2232
2233
Md.34
Regenerative load ratio
1734
1834
1934
2034
2134
2234
Md.35
Effective load torque ratio
1735
1835
1935
2035
2135
2235
Md.36
Peak torque ratio
1736
1836
1936
2036
2136
2236
Md.32
Md.40
Servo status 1
1740
1840
1940
2040
2140
2240
Md.41
Servo status 2
1741
1841
1941
2041
2141
2241
Md.100
Axis error status
3300
Md.101
Axis warning status
3301
Md.102
Number of write accesses to flash ROM
3302
Md.103
Forced stop input status
3303
APP - 20
APPENDICES
MELSEC-Q
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
2300
2301
2400
2401
2500
2501
2600
2601
2700
2701
2800
2801
2900
2901
3000
3001
3100
3101
3200
3201
2302
2303
2402
2403
2502
2503
2602
2603
2702
2703
2802
2803
2902
2903
3002
3003
3102
3103
3202
3203
3204
2304
2404
2504
2604
2704
2804
2904
3004
3104
2305
2405
2505
2605
2705
2805
2905
3005
3105
3205
2306
2406
2506
2606
2706
2806
2906
3006
3106
3206
2307
2407
2507
2607
2707
2807
2907
3007
3107
3207
3208
2308
2408
2508
2608
2708
2808
2908
3008
3108
2309
2409
2509
2609
2709
2809
2909
3009
3109
3209
2310
2410
2510
2610
2710
2810
2910
3010
3110
3210
2326
2327
2426
2427
2526
2527
2626
2627
2726
2727
2826
2827
2926
2927
3026
3027
3126
3127
3226
3227
2328
2329
2428
2429
2528
2529
2628
2629
2728
2729
2828
2829
2928
2929
3028
3029
3128
3129
3228
3229
2331
2431
2531
2631
2731
2831
2931
3031
3131
3231
2332
2333
2432
2433
2532
2533
2632
2633
2732
2733
2832
2833
2932
2933
3032
3033
3132
3133
3232
3233
2334
2434
2534
2634
2734
2834
2934
3034
3134
3234
2335
2435
2535
2635
2735
2835
2935
3035
3135
3235
2336
2436
2536
2636
2736
2836
2936
3036
3136
3236
2340
2440
2540
2640
2740
2840
2940
3040
3140
3240
2341
2441
2541
2641
2741
2841
2941
3041
3141
3241
3300
3301
3302
3303
APP - 21
Memory
area
Monitor data area
Axis 9
Axis monitor data
Axis 8
System monitor data
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
Appendix 3.3 Control data area
Symbol
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
3900
Cd.0
Axis error reset
3400
3500
3600
3700
3800
Cd.1
Parameter change request
3401
3501
3601
3701
3801
3901
Cd.2
Start method
3402
3502
3602
3702
3802
3902
Cd.3
Axis stop
3403
3503
3603
3703
3803
3903
Cd.4
Axis sudden stop
3404
3504
3604
3704
3804
3904
Cd.5
Pausing
3405
3505
3605
3705
3805
3905
Cd.8
Forward rotation JOG start
3408
3508
3608
3708
3808
3908
Cd.9
Reverse rotation JOG start
3409
3509
3609
3709
3809
3909
Cd.11
Torque limit request
3411
3511
3611
3711
3811
3911
Cd.12
Forward rotation torque limit value
3412
3512
3612
3712
3812
3912
Cd.13
Reverse rotation torque limit value
3413
3513
3613
3713
3813
3913
Cd.15
Speed change request
3415
3515
3615
3715
3815
3915
Cd.16
New speed value
3416
3417
3516
3517
3616
3617
3716
3717
3816
3817
3916
3917
Cd.18
Acceleration time change request
3418
3518
3618
3718
3818
3918
Cd.19
New acceleration time value
3419
3519
3619
3719
3819
3919
Cd.20
Deceleration time change request
3420
3520
3620
3720
3820
3920
Cd.21
New deceleration time value
3421
3521
3621
3721
3821
3921
Cd.23
Target position change request
3423
3523
3623
3723
3823
3923
Cd.24
New target position change value
3424
3425
3524
3525
3624
3625
3724
3725
3824
3825
3924
3925
Cd.28
New current value
3428
3429
3528
3529
3628
3629
3728
3729
3828
3829
3928
3929
Cd.30
Each axis servo OFF
3430
3530
3630
3730
3830
3930
Cd.46
Gain changing request
3446
3546
3646
3746
3846
3946
Cd.100
Flash ROM write request
5000
Cd.101
Parameter initialization request
5001
APP - 22
APPENDICES
MELSEC-Q
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
4900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4001
4101
4201
4301
4401
4501
4601
4701
4801
4901
4002
4102
4202
4302
4402
4502
4602
4702
4802
4902
4003
4103
4203
4303
4403
4503
4603
4703
4803
4903
4004
4104
4204
4304
4404
4504
4604
4704
4804
4904
4005
4105
4205
4305
4405
4505
4605
4705
4805
4905
4908
4008
4108
4208
4308
4408
4508
4608
4708
4808
4009
4109
4209
4309
4409
4509
4609
4709
4809
4909
4011
4111
4211
4311
4411
4511
4611
4711
4811
4911
4012
4112
4212
4312
4412
4512
4612
4712
4812
4912
4013
4113
4213
4313
4413
4513
4613
4713
4813
4913
4015
4115
4215
4315
4415
4515
4615
4715
4815
4915
4016
4017
4116
4117
4216
4217
4316
4317
4416
4417
4516
4517
4616
4617
4716
4717
4816
4817
4916
4917
4018
4118
4218
4318
4418
4518
4618
4718
4818
4918
4019
4119
4219
4319
4419
4519
4619
4719
4819
4919
4020
4120
4220
4320
4420
4520
4620
4720
4820
4920
4021
4121
4221
4321
4421
4521
4621
4721
4821
4921
4023
4123
4223
4323
4423
4523
4623
4723
4823
4923
4024
4025
4124
4125
4224
4225
4324
4325
4424
4425
4524
4525
4624
4625
4724
4725
4824
4825
4924
4925
4028
4029
4128
4129
4228
4229
4328
4329
4428
4429
4528
4529
4628
4629
4728
4729
4828
4829
4928
4929
4030
4130
4230
4330
4430
4530
4630
4730
4830
4930
4046
4146
4246
4346
4446
4546
4646
4746
4846
4946
5000
5001
APP - 23
Memory
area
Control data area
Axis 9
Axis control data
Axis 8
System control data
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
Appendix 3.4 Positioning data area
Data
No.
1
2
3
4
5
Symbol
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
6700
Da.0
Operation pattern
5100
5420
5740
6060
6380
Da.1
Control system
5101
5421
5741
6061
6381
6701
Da.2
Acceleration time
5102
5422
5742
6062
6382
6702
Da.3
Deceleration time
5103
5423
5743
6063
6383
6703
Da.4
Command speed
5104
5105
5424
5425
5744
5745
6064
6065
6384
6385
6704
6705
Da.6
Positioning address/movement amount
5106
5107
5426
5427
5746
5747
6066
6067
6386
6387
6706
6707
Da.8
Dwell time
5108
5428
5748
6068
6388
6708
Da.0
Operation pattern
5110
5430
5750
6070
6390
6710
Da.1
Control system
5111
5431
5751
6071
6391
6711
Da.2
Acceleration time
5112
5432
5752
6072
6392
6712
Da.3
Deceleration time
5113
5433
5753
6073
6393
6713
Da.4
Command speed
5114
5115
5434
5435
5754
5755
6074
6075
6394
6395
6714
6715
Da.6
Positioning address/movement amount
5116
5117
5436
5437
5756
5757
6076
6077
6396
6397
6716
6717
Da.8
Dwell time
5118
5438
5758
6078
6398
6718
Da.0
Operation pattern
5120
5440
5760
6080
6400
6720
Da.1
Control system
5121
5441
5761
6081
6401
6721
Da.2
Acceleration time
5122
5442
5762
6082
6402
6722
Da.3
Deceleration time
5123
5443
5763
6083
6403
6723
Da.4
Command speed
5124
5125
5444
5445
5764
5765
6084
6085
6404
6405
6724
6725
Da.6
Positioning address/movement amount
5126
5127
5446
5447
5766
5767
6086
6087
6406
6407
6726
6727
Da.8
Dwell time
5128
5448
5768
6088
6408
6728
Da.0
Operation pattern
5130
5450
5770
6090
6410
6730
Da.1
Control system
5131
5451
5771
6091
6411
6731
Da.2
Acceleration time
5132
5452
5772
6092
6412
6732
Da.3
Deceleration time
5133
5453
5773
6093
6413
6733
Da.4
Command speed
5134
5135
5454
5455
5774
5775
6094
6095
6414
6415
6734
6735
Da.6
Positioning address/movement amount
5136
5137
5456
5457
5776
5777
6096
6097
6416
6417
6736
6737
Da.8
Dwell time
5138
5458
5778
6098
6418
6738
Da.0
Operation pattern
5140
5460
5780
6100
6420
6740
Da.1
Control system
5141
5461
5781
6101
6421
6741
Da.2
Acceleration time
5142
5462
5782
6102
6422
6742
Da.3
Deceleration time
5143
5463
5783
6103
6423
6743
Da.4
Command speed
5144
5145
5464
5465
5784
5785
6104
6105
6424
6425
6744
6745
Da.6
Positioning address/movement amount
5146
5147
5466
5467
5786
5787
6106
6107
6426
6427
6746
6747
Da.8
Dwell time
5148
5468
5788
6108
6428
6748
APP - 24
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7020
7340
7660
7980
8300
8620
8940
9260
9580
9900
7021
7341
7661
7981
8301
8621
8941
9261
9581
9901
7022
7342
7662
7982
8302
8622
8942
9262
9582
9902
7023
7343
7663
7983
8303
8623
8943
9263
9583
9903
7024
7025
7344
7345
7664
7665
7984
7985
8304
8305
8624
8625
8944
8945
9264
9265
9584
9585
9904
9905
7026
7027
7346
7347
7666
7667
7986
7987
8306
8307
8626
8627
8946
8947
9266
9267
9586
9587
9906
9907
7028
7348
7668
7988
8308
8628
8948
9268
9588
9908
7030
7350
7670
7990
8310
8630
8950
9270
9590
9910
7031
7351
7671
7991
8311
8631
8951
9271
9591
9911
7032
7352
7672
7992
8312
8632
8952
9272
9592
9912
7033
7353
7673
7993
8313
8633
8953
9273
9593
9913
7034
7035
7354
7355
7674
7675
7994
7995
8314
8315
8634
8635
8954
8955
9274
9275
9594
9595
9914
9915
7036
7037
7356
7357
7676
7677
7996
7997
8316
8317
8636
8637
8956
8957
9276
9277
9596
9597
9916
9917
7038
7358
7678
7998
8318
8638
8958
9278
9598
9918
7040
7360
7680
8000
8320
8640
8960
9280
9600
9920
7041
7361
7681
8001
8321
8641
8961
9281
9601
9921
7042
7362
7682
8002
8322
8642
8962
9282
9602
9922
7043
7363
7683
8003
8323
8643
8963
9283
9603
9923
7044
7045
7364
7365
7684
7685
8004
8005
8324
8325
8644
8645
8964
8965
9284
9285
9604
9605
9924
9925
7046
7047
7366
7367
7686
7687
8006
8007
8326
8327
8646
8647
8966
8967
9286
9287
9606
9607
9926
9927
7048
7368
7688
8008
8328
8648
8968
9288
9608
9928
7050
7370
7690
8010
8330
8650
8970
9290
9610
9930
7051
7371
7691
8011
8331
8651
8971
9291
9611
9931
7052
7372
7692
8012
8332
8652
8972
9292
9612
9932
7053
7373
7693
8013
8333
8653
8973
9293
9613
9933
7054
7055
7374
7375
7694
7695
8014
8015
8334
8335
8654
8655
8974
8975
9294
9295
9614
9615
9934
9935
7056
7057
7376
7377
7696
7697
8016
8017
8336
8337
8656
8657
8976
8977
9296
9297
9616
9617
9936
9937
7058
7378
7698
8018
8338
8658
8978
9298
9618
9938
7060
7380
7700
8020
8340
8660
8980
9300
9620
9940
7061
7381
7701
8021
8341
8661
8981
9301
9621
9941
7062
7382
7702
8022
8342
8662
8982
9302
9622
9942
7063
7383
7703
8023
8343
8663
8983
9303
9623
9943
7064
7065
7384
7385
7704
7705
8024
8025
8344
8345
8664
8665
8984
8985
9304
9305
9624
9625
9944
9945
7066
7067
7386
7387
7706
7707
8026
8027
8346
8347
8666
8667
8986
8987
9306
9307
9626
9627
9946
9947
7068
7388
7708
8028
8348
8668
8988
9308
9628
9948
APP - 25
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
Data
No.
6
7
8
9
10
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
6750
Da.0
Operation pattern
5150
5470
5790
6110
6430
Da.1
Control system
5151
5471
5791
6111
6431
6751
Da.2
Acceleration time
5152
5472
5792
6112
6432
6752
Da.3
Deceleration time
5153
5473
5793
6113
6433
6753
Da.4
Command speed
5154
5155
5474
5475
5794
5795
6114
6115
6434
6435
6754
6755
Da.6
Positioning address/movement amount
5156
5157
5476
5477
5796
5797
6116
6117
6436
6437
6756
6757
Da.8
Dwell time
5158
5478
5798
6118
6438
6758
Da.0
Operation pattern
5160
5480
5800
6120
6440
6760
Da.1
Control system
5161
5481
5801
6121
6441
6761
Da.2
Acceleration time
5162
5482
5802
6122
6442
6762
Da.3
Deceleration time
5163
5483
5803
6123
6443
6763
Da.4
Command speed
5164
5165
5484
5485
5804
5805
6124
6125
6444
6445
6764
6765
Da.6
Positioning address/movement amount
5166
5167
5486
5487
5806
5807
6126
6127
6446
6447
6766
6767
Da.8
Dwell time
5168
5488
5808
6128
6448
6768
Da.0
Operation pattern
5170
5490
5810
6130
6450
6770
Da.1
Control system
5171
5491
5811
6131
6451
6771
Da.2
Acceleration time
5172
5492
5812
6132
6452
6772
Da.3
Deceleration time
5173
5493
5813
6133
6453
6773
Da.4
Command speed
5174
5175
5494
5495
5814
5815
6134
6135
6454
6455
6774
6775
Da.6
Positioning address/movement amount
5176
5177
5496
5497
5816
5817
6136
6137
6456
6457
6776
6777
Da.8
Dwell time
5178
5498
5818
6138
6458
6778
Da.0
Operation pattern
5180
5500
5820
6140
6460
6780
Da.1
Control system
5181
5501
5821
6141
6461
6781
Da.2
Acceleration time
5182
5502
5822
6142
6462
6782
Da.3
Deceleration time
5183
5503
5823
6143
6463
6783
Da.4
Command speed
5184
5185
5504
5505
5824
5825
6144
6145
6464
6465
6784
6785
Da.6
Positioning address/movement amount
5186
5187
5506
5507
5826
5827
6146
6147
6466
6467
6786
6787
Da.8
Dwell time
5188
5508
5828
6148
6468
6788
Da.0
Operation pattern
5190
5510
5830
6150
6470
6790
Da.1
Control system
5191
5511
5831
6151
6471
6791
Da.2
Acceleration time
5192
5512
5832
6152
6472
6792
Da.3
Deceleration time
5193
5513
5833
6153
6473
6793
Da.4
Command speed
5194
5195
5514
5515
5834
5835
6154
6155
6474
6475
6794
6795
Da.6
Positioning address/movement amount
5196
5197
5516
5517
5836
5837
6156
6157
6476
6477
6796
6797
Da.8
Dwell time
5198
5518
5838
6158
6478
6798
APP - 26
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7070
7390
7710
8030
8350
8670
8990
9310
9630
9950
7071
7391
7711
8031
8351
8671
8991
9311
9631
9951
7072
7392
7712
8032
8352
8672
8992
9312
9632
9952
7073
7393
7713
8033
8353
8673
8993
9313
9633
9953
7074
7075
7394
7395
7714
7715
8034
8035
8354
8355
8674
8675
8994
8995
9314
9315
9634
9635
9954
9955
7076
7077
7396
7397
7716
7717
8036
8037
8356
8357
8676
8677
8996
8997
9316
9317
9636
9637
9956
9957
7078
7398
7718
8038
8358
8678
8998
9318
9638
9958
7080
7400
7720
8040
8360
8680
9000
9320
9640
9960
7081
7401
7721
8041
8361
8681
9001
9321
9641
9961
7082
7402
7722
8042
8362
8682
9002
9322
9642
9962
7083
7403
7723
8043
8363
8683
9003
9323
9643
9963
7084
7085
7404
7405
7724
7725
8044
8045
8364
8365
8684
8685
9004
9005
9324
9325
9644
9645
9964
9965
7086
7087
7406
7407
7726
7727
8046
8047
8366
8367
8686
8687
9006
9007
9326
9327
9646
9647
9966
9967
7088
7408
7728
8048
8368
8688
9008
9328
9648
9968
7090
7410
7730
8050
8370
8690
9010
9330
9650
9970
7091
7411
7731
8051
8371
8691
9011
9331
9651
9971
7092
7412
7732
8052
8372
8692
9012
9332
9652
9972
7093
7413
7733
8053
8373
8693
9013
9333
9653
9973
7094
7095
7414
7415
7734
7735
8054
8055
8374
8375
8694
8695
9014
9015
9334
9335
9654
9655
9974
9975
7096
7097
7416
7417
7736
7737
8056
8057
8376
8377
8696
8697
9016
9017
9336
9337
9656
9657
9976
9977
7098
7418
7738
8058
8378
8698
9018
9338
9658
9978
7100
7420
7740
8060
8380
8700
9020
9340
9660
9980
7101
7421
7741
8061
8381
8701
9021
9341
9661
9981
7102
7422
7742
8062
8382
8702
9022
9342
9662
9982
7103
7423
7743
8063
8383
8703
9023
9343
9663
9983
7104
7105
7424
7425
7744
7745
8064
8065
8384
8385
8704
8705
9024
9025
9344
9345
9664
9665
9984
9985
7106
7107
7426
7427
7746
7747
8066
8067
8386
8387
8706
8707
9026
9027
9346
9347
9666
9667
9986
9987
7108
7428
7748
8068
8388
8708
9028
9348
9668
9988
7110
7430
7750
8070
8390
8710
9030
9350
9670
9990
7111
7431
7751
8071
8391
8711
9031
9351
9671
9991
7112
7432
7752
8072
8392
8712
9032
9352
9672
9992
7113
7433
7753
8073
8393
8713
9033
9353
9673
9993
7114
7115
7434
7435
7754
7755
8074
8075
8394
8395
8714
8715
9034
9035
9354
9355
9674
9675
9994
9995
7116
7117
7436
7437
7756
7757
8076
8077
8396
8397
8716
8717
9036
9037
9356
9357
9676
9677
9996
9997
7118
7438
7758
8078
8398
8718
9038
9358
9678
9998
APP - 27
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
Data
No.
11
12
13
14
15
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
6800
Da.0
Operation pattern
5200
5520
5840
6160
6480
Da.1
Control system
5201
5521
5841
6161
6481
6801
Da.2
Acceleration time
5202
5522
5842
6162
6482
6802
Da.3
Deceleration time
5203
5523
5843
6163
6483
6803
Da.4
Command speed
5204
5205
5524
5525
5844
5845
6164
6165
6484
6485
6804
6805
Da.6
Positioning address/movement amount
5206
5207
5526
5527
5846
5847
6166
6167
6486
6487
6806
6807
Da.8
Dwell time
5208
5528
5848
6168
6488
6808
Da.0
Operation pattern
5210
5530
5850
6170
6490
6810
Da.1
Control system
5211
5531
5851
6171
6491
6811
Da.2
Acceleration time
5212
5532
5852
6172
6492
6812
Da.3
Deceleration time
5213
5533
5853
6173
6493
6813
Da.4
Command speed
5214
5215
5534
5535
5854
5855
6174
6175
6494
6495
6814
6815
Da.6
Positioning address/movement amount
5216
5217
5536
5537
5856
5857
6176
6177
6496
6497
6816
6817
Da.8
Dwell time
5218
5538
5858
6178
6498
6818
Da.0
Operation pattern
5220
5540
5860
6180
6500
6820
Da.1
Control system
5221
5541
5861
6181
6501
6821
Da.2
Acceleration time
5222
5542
5862
6182
6502
6822
Da.3
Deceleration time
5223
5543
5863
6183
6503
6823
Da.4
Command speed
5224
5225
5544
5545
5864
5865
6184
6185
6504
6505
6824
6825
Da.6
Positioning address/movement amount
5226
5227
5546
5547
5866
5867
6186
6187
6506
6507
6826
6827
Da.8
Dwell time
5228
5548
5868
6188
6508
6828
Da.0
Operation pattern
5230
5550
5870
6190
6510
6830
Da.1
Control system
5231
5551
5871
6191
6511
6831
Da.2
Acceleration time
5232
5552
5872
6192
6512
6832
Da.3
Deceleration time
5233
5553
5873
6193
6513
6833
Da.4
Command speed
5234
5235
5554
5555
5874
5875
6194
6195
6514
6515
6834
6835
Da.6
Positioning address/movement amount
5236
5237
5556
5557
5876
5877
6196
6197
6516
6517
6836
6837
Da.8
Dwell time
5238
5558
5878
6198
6518
6838
Da.0
Operation pattern
5240
5560
5880
6200
6520
6840
Da.1
Control system
5241
5561
5881
6201
6521
6841
Da.2
Acceleration time
5242
5562
5882
6202
6522
6842
Da.3
Deceleration time
5243
5563
5883
6203
6523
6843
Da.4
Command speed
5244
5245
5564
5565
5884
5885
6204
6205
6524
6525
6844
6845
Da.6
Positioning address/movement amount
5246
5247
5566
5567
5886
5887
6206
6207
6526
6527
6846
6847
Da.8
Dwell time
5248
5568
5888
6208
6528
6848
APP - 28
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7120
7440
7760
8080
8400
8720
9040
9360
9680
10000
7121
7441
7761
8081
8401
8721
9041
9361
9681
10001
7122
7442
7762
8082
8402
8722
9042
9362
9682
10002
7123
7443
7763
8083
8403
8723
9043
9363
9683
10003
7124
7125
7444
7445
7764
7765
8084
8085
8404
8405
8724
8725
9044
9045
9364
9365
9684
9685
10004
10005
7126
7127
7446
7447
7766
7767
8086
8087
8406
8407
8726
8727
9046
9047
9366
9367
9686
9687
10006
10007
7128
7448
7768
8088
8408
8728
9048
9368
9688
10008
7130
7450
7770
8090
8410
8730
9050
9370
9690
10010
7131
7451
7771
8091
8411
8731
9051
9371
9691
10011
7132
7452
7772
8092
8412
8732
9052
9372
9692
10012
7133
7453
7773
8093
8413
8733
9053
9373
9693
10013
7134
7135
7454
7455
7774
7775
8094
8095
8414
8415
8734
8735
9054
9055
9374
9375
9694
9695
10014
10015
7136
7137
7456
7457
7776
7777
8096
8097
8416
8417
8736
8737
9056
9057
9376
9377
9696
9697
10016
10017
7138
7458
7778
8098
8418
8738
9058
9378
9698
10018
7140
7460
7780
8100
8420
8740
9060
9380
9700
10020
7141
7461
7781
8101
8421
8741
9061
9381
9701
10021
7142
7462
7782
8102
8422
8742
9062
9382
9702
10022
7143
7463
7783
8103
8423
8743
9063
9383
9703
10023
7144
7145
7464
7465
7784
7785
8104
8105
8424
8425
8744
8745
9064
9065
9384
9385
9704
9705
10024
10025
7146
7147
7466
7467
7786
7787
8106
8107
8426
8427
8746
8747
9066
9067
9386
9387
9706
9707
10026
10027
7148
7468
7788
8108
8428
8748
9068
9388
9708
10028
7150
7470
7790
8110
8430
8750
9070
9390
9710
10030
7151
7471
7791
8111
8431
8751
9071
9391
9711
10031
7152
7472
7792
8112
8432
8752
9072
9392
9712
10032
7153
7473
7793
8113
8433
8753
9073
9393
9713
10033
7154
7155
7474
7475
7794
7795
8114
8115
8434
8435
8754
8755
9074
9075
9394
9395
9714
9715
10034
10035
7156
7157
7476
7477
7796
7797
8116
8117
8436
8437
8756
8757
9076
9077
9396
9397
9716
9717
10036
10037
7158
7478
7798
8118
8438
8758
9078
9398
9718
10038
7160
7480
7800
8120
8440
8760
9080
9400
9720
10040
7161
7481
7801
8121
8441
8761
9081
9401
9721
10041
7162
7482
7802
8122
8442
8762
9082
9402
9722
10042
7163
7483
7803
8123
8443
8763
9083
9403
9723
10043
7164
7165
7484
7485
7804
7805
8124
8125
8444
8445
8764
8765
9084
9085
9404
9405
9724
9725
10044
10045
7166
7167
7486
7487
7806
7807
8126
8127
8446
8447
8766
8767
9086
9087
9406
9407
9726
9727
10046
10047
7168
7488
7808
8128
8448
8768
9088
9408
9728
10048
APP - 29
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
Data
No.
16
17
18
19
20
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
6850
Da.0
Operation pattern
5250
5570
5890
6210
6530
Da.1
Control system
5251
5571
5891
6211
6531
6851
Da.2
Acceleration time
5252
5572
5892
6212
6532
6852
Da.3
Deceleration time
5253
5573
5893
6213
6533
6853
Da.4
Command speed
5254
5255
5574
5575
5894
5895
6214
6215
6534
6535
6854
6855
Da.6
Positioning address/movement amount
5256
5257
5576
5577
5896
5897
6216
6217
6536
6537
6856
6857
Da.8
Dwell time
5258
5578
5898
6218
6538
6858
Da.0
Operation pattern
5260
5580
5900
6220
6540
6860
Da.1
Control system
5261
5581
5901
6221
6541
6861
Da.2
Acceleration time
5262
5582
5902
6222
6542
6862
Da.3
Deceleration time
5263
5583
5903
6223
6543
6863
Da.4
Command speed
5264
5265
5584
5585
5904
5905
6224
6225
6544
6545
6864
6865
Da.6
Positioning address/movement amount
5266
5267
5586
5587
5906
5907
6226
6227
6546
6547
6866
6867
Da.8
Dwell time
5268
5588
5908
6228
6548
6868
Da.0
Operation pattern
5270
5590
5910
6230
6550
6870
Da.1
Control system
5271
5591
5911
6231
6551
6871
Da.2
Acceleration time
5272
5592
5912
6232
6552
6872
Da.3
Deceleration time
5273
5593
5913
6233
6553
6873
Da.4
Command speed
5274
5275
5594
5595
5914
5915
6234
6235
6554
6555
6874
6875
Da.6
Positioning address/movement amount
5276
5277
5596
5597
5916
5917
6236
6237
6556
6557
6876
6877
Da.8
Dwell time
5278
5598
5918
6238
6558
6878
Da.0
Operation pattern
5280
5600
5920
6240
6560
6880
Da.1
Control system
5281
5601
5921
6241
6561
6881
Da.2
Acceleration time
5282
5602
5922
6242
6562
6882
Da.3
Deceleration time
5283
5603
5923
6243
6563
6883
Da.4
Command speed
5284
5285
5604
5605
5924
5925
6244
6245
6564
6565
6884
6885
Da.6
Positioning address/movement amount
5286
5287
5606
5607
5926
5927
6246
6247
6566
6567
6886
6887
Da.8
Dwell time
5288
5608
5928
6248
6568
6888
Da.0
Operation pattern
5290
5610
5930
6250
6570
6890
Da.1
Control system
5291
5611
5931
6251
6571
6891
Da.2
Acceleration time
5292
5612
5932
6252
6572
6892
Da.3
Deceleration time
5293
5613
5933
6253
6573
6893
Da.4
Command speed
5294
5295
5614
5615
5934
5935
6254
6255
6574
6575
6894
6895
Da.6
Positioning address/movement amount
5296
5297
5616
5617
5936
5937
6256
6257
6576
6577
6896
6897
Da.8
Dwell time
5298
5618
5938
6258
6578
6898
APP - 30
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7170
7490
7810
8130
8450
8770
9090
9410
9730
10050
7171
7491
7811
8131
8451
8771
9091
9411
9731
10051
7172
7492
7812
8132
8452
8772
9092
9412
9732
10052
7173
7493
7813
8133
8453
8773
9093
9413
9733
10053
7174
7175
7494
7495
7814
7815
8134
8135
8454
8455
8774
8775
9094
9095
9414
9415
9734
9735
10054
10055
7176
7177
7496
7497
7816
7817
8136
8137
8456
8457
8776
8777
9096
9097
9416
9417
9736
9737
10056
10057
7178
7498
7818
8138
8458
8778
9098
9418
9738
10058
7180
7500
7820
8140
8460
8780
9100
9420
9740
10060
7181
7501
7821
8141
8461
8781
9101
9421
9741
10061
7182
7502
7822
8142
8462
8782
9102
9422
9742
10062
7183
7503
7823
8143
8463
8783
9103
9423
9743
10063
7184
7185
7504
7505
7824
7825
8144
8145
8464
8465
8784
8785
9104
9105
9424
9425
9744
9745
10064
10065
7186
7187
7506
7507
7826
7827
8146
8147
8466
8467
8786
8787
9106
9107
9426
9427
9746
9747
10066
10067
7188
7508
7828
8148
8468
8788
9108
9428
9748
10068
7190
7510
7830
8150
8470
8790
9110
9430
9750
10070
7191
7511
7831
8151
8471
8791
9111
9431
9751
10071
7192
7512
7832
8152
8472
8792
9112
9432
9752
10072
7193
7513
7833
8153
8473
8793
9113
9433
9753
10073
7194
7195
7514
7515
7834
7835
8154
8155
8474
8475
8794
8795
9114
9115
9434
9435
9754
9755
10074
10075
7196
7197
7516
7517
7836
7837
8156
8157
8476
8477
8796
8797
9116
9117
9436
9437
9756
9757
10076
10077
7198
7518
7838
8158
8478
8798
9118
9438
9758
10078
7200
7520
7840
8160
8480
8800
9120
9440
9760
10080
7201
7521
7841
8161
8481
8801
9121
9441
9761
10081
7202
7522
7842
8162
8482
8802
9122
9442
9762
10082
7203
7523
7843
8163
8483
8803
9123
9443
9763
10083
7204
7205
7524
7525
7844
7845
8164
8165
8484
8485
8804
8805
9124
9125
9444
9445
9764
9765
10084
10085
7206
7207
7526
7527
7846
7847
8166
8167
8486
8487
8806
8807
9126
9127
9446
9447
9766
9767
10086
10087
7208
7528
7848
8168
8488
8808
9128
9448
9768
10088
7210
7530
7850
8170
8490
8810
9130
9450
9770
10090
7211
7531
7851
8171
8491
8811
9131
9451
9771
10091
7212
7532
7852
8172
8492
8812
9132
9452
9772
10092
7213
7533
7853
8173
8493
8813
9133
9453
9773
10093
7214
7215
7534
7535
7854
7855
8174
8175
8494
8495
8814
8815
9134
9135
9454
9455
9774
9775
10094
10095
7216
7217
7536
7537
7856
7857
8176
8177
8496
8497
8816
8817
9136
9137
9456
9457
9776
9777
10096
10097
7218
7538
7858
8178
8498
8818
9138
9458
9778
10098
APP - 31
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
Data
No.
21
22
23
24
25
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
6900
Da.0
Operation pattern
5300
5620
5940
6260
6580
Da.1
Control system
5301
5621
5941
6261
6581
6901
Da.2
Acceleration time
5302
5622
5942
6262
6582
6902
Da.3
Deceleration time
5303
5623
5943
6263
6583
6903
Da.4
Command speed
5304
5305
5624
5625
5944
5945
6264
6265
6584
6585
6904
6905
Da.6
Positioning address/movement amount
5306
5307
5626
5627
5946
5947
6266
6267
6586
6587
6906
6907
Da.8
Dwell time
5308
5628
5948
6268
6588
6908
Da.0
Operation pattern
5310
5630
5950
6270
6590
6910
Da.1
Control system
5311
5631
5951
6271
6591
6911
Da.2
Acceleration time
5312
5632
5952
6272
6592
6912
Da.3
Deceleration time
5313
5633
5953
6273
6593
6913
Da.4
Command speed
5314
5315
5634
5635
5954
5955
6274
6275
6594
6595
6914
6915
Da.6
Positioning address/movement amount
5316
5317
5636
5637
5956
5957
6276
6277
6596
6597
6916
6917
Da.8
Dwell time
5318
5638
5958
6278
6598
6918
Da.0
Operation pattern
5320
5640
5960
6280
6600
6920
Da.1
Control system
5321
5641
5961
6281
6601
6921
Da.2
Acceleration time
5322
5642
5962
6282
6602
6922
Da.3
Deceleration time
5323
5643
5963
6283
6603
6923
Da.4
Command speed
5324
5325
5644
5645
5964
5965
6284
6285
6604
6605
6924
6925
Da.6
Positioning address/movement amount
5326
5327
5646
5647
5966
5967
6286
6287
6606
6607
6926
6927
Da.8
Dwell time
5328
5648
5968
6288
6608
6928
Da.0
Operation pattern
5330
5650
5970
6290
6610
6930
Da.1
Control system
5331
5651
5971
6291
6611
6931
Da.2
Acceleration time
5332
5652
5972
6292
6612
6932
Da.3
Deceleration time
5333
5653
5973
6293
6613
6933
Da.4
Command speed
5334
5335
5654
5655
5974
5975
6294
6295
6614
6615
6934
6935
Da.6
Positioning address/movement amount
5336
5337
5656
5657
5976
5977
6296
6297
6616
6617
6936
6937
Da.8
Dwell time
5338
5658
5978
6298
6618
6938
Da.0
Operation pattern
5340
5660
5980
6300
6620
6940
Da.1
Control system
5341
5661
5981
6301
6621
6941
Da.2
Acceleration time
5342
5662
5982
6302
6622
6942
Da.3
Deceleration time
5343
5663
5983
6303
6623
6943
Da.4
Command speed
5344
5345
5664
5665
5984
5985
6304
6305
6624
6625
6944
6945
Da.6
Positioning address/movement amount
5346
5347
5666
5667
5986
5987
6306
6307
6626
6627
6946
6947
Da.8
Dwell time
5348
5668
5988
6308
6628
6948
APP - 32
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7220
7540
7860
8180
8500
8820
9140
9460
9780
10100
7221
7541
7861
8181
8501
8821
9141
9461
9781
10101
7222
7542
7862
8182
8502
8822
9142
9462
9782
10102
7223
7543
7863
8183
8503
8823
9143
9463
9783
10103
7224
7225
7544
7545
7864
7865
8184
8185
8504
8505
8824
8825
9144
9145
9464
9465
9784
9785
10104
10105
7226
7227
7546
7547
7866
7867
8186
8187
8506
8507
8826
8827
9146
9147
9466
9467
9786
9787
10106
10107
7228
7548
7868
8188
8508
8828
9148
9468
9788
10108
7230
7550
7870
8190
8510
8830
9150
9470
9790
10110
7231
7551
7871
8191
8511
8831
9151
9471
9791
10111
7232
7552
7872
8192
8512
8832
9152
9472
9792
10112
7233
7553
7873
8193
8513
8833
9153
9473
9793
10113
7234
7235
7554
7555
7874
7875
8194
8195
8514
8515
8834
8835
9154
9155
9474
9475
9794
9795
10114
10115
7236
7237
7556
7557
7876
7877
8196
8197
8516
8517
8836
8837
9156
9157
9476
9477
9796
9797
10116
10117
7238
7558
7878
8198
8518
8838
9158
9478
9798
10118
7240
7560
7880
8200
8520
8840
9160
9480
9800
10120
7241
7561
7881
8201
8521
8841
9161
9481
9801
10121
7242
7562
7882
8202
8522
8842
9162
9482
9802
10122
7243
7563
7883
8203
8523
8843
9163
9483
9803
10123
7244
7245
7564
7565
7884
7885
8204
8205
8524
8525
8844
8845
9164
9165
9484
9485
9804
9805
10124
10125
7246
7247
7566
7567
7886
7887
8206
8207
8526
8527
8846
8847
9166
9167
9486
9487
9806
9807
10126
10127
7248
7568
7888
8208
8528
8848
9168
9488
9808
10128
7250
7570
7890
8210
8530
8850
9170
9490
9810
10130
7251
7571
7891
8211
8531
8851
9171
9491
9811
10131
7252
7572
7892
8212
8532
8852
9172
9492
9812
10132
7253
7573
7893
8213
8533
8853
9173
9493
9813
10133
7254
7255
7574
7575
7894
7895
8214
8215
8534
8535
8854
8855
9174
9175
9494
9495
9814
9815
10134
10135
7256
7257
7576
7577
7896
7897
8216
8217
8536
8537
8856
8857
9176
9177
9496
9497
9816
9817
10136
10137
7258
7578
7898
8218
8538
8858
9178
9498
9818
10138
7260
7580
7900
8220
8540
8860
9180
9500
9820
10140
7261
7581
7901
8221
8541
8861
9181
9501
9821
10141
7262
7582
7902
8222
8542
8862
9182
9502
9822
10142
7263
7583
7903
8223
8543
8863
9183
9503
9823
10143
7264
7265
7584
7585
7904
7905
8224
8225
8544
8545
8864
8865
9184
9185
9504
9505
9824
9825
10144
10145
7266
7267
7586
7587
7906
7907
8226
8227
8546
8547
8866
8867
9186
9187
9506
9507
9826
9827
10146
10147
7268
7588
7908
8228
8548
8868
9188
9508
9828
10148
APP - 33
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
Data
No.
26
27
28
29
30
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
6950
Da.0
Operation pattern
5350
5670
5990
6310
6630
Da.1
Control system
5351
5671
5991
6311
6631
6951
Da.2
Acceleration time
5352
5672
5992
6312
6632
6952
Da.3
Deceleration time
5353
5673
5993
6313
6633
6953
Da.4
Command speed
5354
5355
5674
5675
5994
5995
6314
6315
6634
6635
6954
6955
Da.6
Positioning address/movement amount
5356
5357
5676
5677
5996
5997
6316
6317
6636
6637
6956
6957
Da.8
Dwell time
5358
5678
5998
6318
6638
6958
Da.0
Operation pattern
5360
5680
6000
6320
6640
6960
Da.1
Control system
5361
5681
6001
6321
6641
6961
Da.2
Acceleration time
5362
5682
6002
6322
6642
6962
Da.3
Deceleration time
5363
5683
6003
6323
6643
6963
Da.4
Command speed
5364
5365
5684
5685
6004
6005
6324
6325
6644
6645
6964
6965
Da.6
Positioning address/movement amount
5366
5367
5686
5687
6006
6007
6326
6327
6646
6647
6966
6967
Da.8
Dwell time
5368
5688
6008
6328
6648
6968
Da.0
Operation pattern
5370
5690
6010
6330
6650
6970
Da.1
Control system
5371
5691
6011
6331
6651
6971
Da.2
Acceleration time
5372
5692
6012
6332
6652
6972
Da.3
Deceleration time
5373
5693
6013
6333
6653
6973
Da.4
Command speed
5374
5375
5694
5695
6014
6015
6334
6335
6654
6655
6974
6975
Da.6
Positioning address/movement amount
5376
5377
5696
5697
6016
6017
6336
6337
6656
6657
6976
6977
Da.8
Dwell time
5378
5698
6018
6338
6658
6978
Da.0
Operation pattern
5380
5700
6020
6340
6660
6980
Da.1
Control system
5381
5701
6021
6341
6661
6981
Da.2
Acceleration time
5382
5702
6022
6342
6662
6982
Da.3
Deceleration time
5383
5703
6023
6343
6663
6983
Da.4
Command speed
5384
5385
5704
5705
6024
6025
6344
6345
6664
6665
6984
6985
Da.6
Positioning address/movement amount
5386
5387
5706
5707
6026
6027
6346
6347
6666
6667
6986
6987
Da.8
Dwell time
5388
5708
6028
6348
6668
6988
Da.0
Operation pattern
5390
5710
6030
6350
6670
6990
Da.1
Control system
5391
5711
6031
6351
6671
6991
Da.2
Acceleration time
5392
5712
6032
6352
6672
6992
Da.3
Deceleration time
5393
5713
6033
6353
6673
6993
Da.4
Command speed
5394
5395
5714
5715
6034
6035
6354
6355
6674
6675
6994
6995
Da.6
Positioning address/movement amount
5396
5397
5716
5717
6036
6037
6356
6357
6676
6677
6996
6997
Da.8
Dwell time
5398
5718
6038
6358
6678
6998
APP - 34
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7270
7590
7910
8230
8550
8870
9190
9510
9830
10150
7271
7591
7911
8231
8551
8871
9191
9511
9831
10151
7272
7592
7912
8232
8552
8872
9192
9512
9832
10152
7273
7593
7913
8233
8553
8873
9193
9513
9833
10153
7274
7275
7594
7595
7914
7915
8234
8235
8554
8555
8874
8875
9194
9195
9514
9515
9834
9835
10154
10155
7276
7277
7596
7597
7916
7917
8236
8237
8556
8557
8876
8877
9196
9197
9516
9517
9836
9837
10156
10157
7278
7598
7918
8238
8558
8878
9198
9518
9838
10158
7280
7600
7920
8240
8560
8880
9200
9520
9840
10160
7281
7601
7921
8241
8561
8881
9201
9521
9841
10161
7282
7602
7922
8242
8562
8882
9202
9522
9842
10162
7283
7603
7923
8243
8563
8883
9203
9523
9843
10163
7284
7285
7604
7605
7924
7925
8244
8245
8564
8565
8884
8885
9204
9205
9524
9525
9844
9845
10164
10165
7286
7287
7606
7607
7926
7927
8246
8247
8566
8567
8886
8887
9206
9207
9526
9527
9846
9847
10166
10167
7288
7608
7928
8248
8568
8888
9208
9528
9848
10168
7290
7610
7930
8250
8570
8890
9210
9530
9850
10170
7291
7611
7931
8251
8571
8891
9211
9531
9851
10171
7292
7612
7932
8252
8572
8892
9212
9532
9852
10172
7293
7613
7933
8253
8573
8893
9213
9533
9853
10173
7294
7295
7614
7615
7934
7935
8254
8255
8574
8575
8894
8895
9214
9215
9534
9535
9854
9855
10174
10175
7296
7297
7616
7617
7936
7937
8256
8257
8576
8577
8896
8897
9216
9217
9536
9537
9856
9857
10176
10177
7298
7618
7938
8258
8578
8898
9218
9538
9858
10178
7300
7620
7940
8260
8580
8900
9220
9540
9860
10180
7301
7621
7941
8261
8581
8901
9221
9541
9861
10181
7302
7622
7942
8262
8582
8902
9222
9542
9862
10182
7303
7623
7943
8263
8583
8903
9223
9543
9863
10183
7304
7305
7624
7625
7944
7945
8264
8265
8584
8585
8904
8905
9224
9225
9544
9545
9864
9865
10184
10185
7306
7307
7626
7627
7946
7947
8266
8267
8586
8587
8906
8907
9226
9227
9546
9547
9866
9867
10186
10187
7308
7628
7948
8268
8588
8908
9228
9548
9868
10188
7310
7630
7950
8270
8590
8910
9230
9550
9870
10190
7311
7631
7951
8271
8591
8911
9231
9551
9871
10191
7312
7632
7952
8272
8592
8912
9232
9552
9872
10192
7313
7633
7953
8273
8593
8913
9233
9553
9873
10193
7314
7315
7634
7635
7954
7955
8274
8275
8594
8595
8914
8915
9234
9235
9554
9555
9874
9875
10194
10195
7316
7317
7636
7637
7956
7957
8276
8277
8596
8597
8916
8917
9236
9237
9556
9557
9876
9877
10196
10197
7318
7638
7958
8278
8598
8918
9238
9558
9878
10198
APP - 35
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
Data
No.
31
32
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
7000
Da.0
Operation pattern
5400
5720
6040
6360
6680
Da.1
Control system
5401
5721
6041
6361
6681
7001
Da.2
Acceleration time
5402
5722
6042
6362
6682
7002
Da.3
Deceleration time
5403
5723
6043
6363
6683
7003
Da.4
Command speed
5404
5405
5724
5725
6044
6045
6364
6365
6684
6685
7004
7005
Da.6
Positioning address/movement amount
5406
5407
5726
5727
6046
6047
6366
6367
6686
6687
7006
7007
Da.8
Dwell time
5408
5728
6048
6368
6688
7008
Da.0
Operation pattern
5410
5730
6050
6370
6690
7010
Da.1
Control system
5411
5731
6051
6371
6691
7011
Da.2
Acceleration time
5412
5732
6052
6372
6692
7012
Da.3
Deceleration time
5413
5733
6053
6373
6693
7013
Da.4
Command speed
5414
5415
5734
5735
6054
6055
6374
6375
6694
6695
7014
7015
Da.6
Positioning address/movement amount
5416
5417
5736
5737
6056
6057
6376
6377
6696
6697
7016
7017
Da.8
Dwell time
5418
5738
6058
6378
6698
7018
APP - 36
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
7320
7640
7960
8280
8600
8920
9240
9560
9880
10200
7321
7641
7961
8281
8601
8921
9241
9561
9881
10201
7322
7642
7962
8282
8602
8922
9242
9562
9882
10202
7323
7643
7963
8283
8603
8923
9243
9563
9883
10203
7324
7325
7644
7645
7964
7965
8284
8285
8604
8605
8924
8925
9244
9245
9564
9565
9884
9885
10204
10205
7326
7327
7646
7647
7966
7967
8286
8287
8606
8607
8926
8927
9246
9247
9566
9567
9886
9887
10206
10207
7328
7648
7968
8288
8608
8928
9248
9568
9888
10208
7330
7650
7970
8290
8610
8930
9250
9570
9890
10210
7331
7651
7971
8291
8611
8931
9251
9571
9891
10211
7332
7652
7972
8292
8612
8932
9252
9572
9892
10212
7333
7653
7973
8293
8613
8933
9253
9573
9893
10213
7334
7335
7654
7655
7974
7975
8294
8295
8614
8615
8934
8935
9254
9255
9574
9575
9894
9895
10214
10215
7336
7337
7656
7657
7976
7977
8296
8297
8616
8617
8936
8937
9256
9257
9576
9577
9896
9897
10216
10217
7338
7658
7978
8298
8618
8938
9258
9578
9898
10218
APP - 37
Memory
area
Positioning data area
Axis 8
Positioning data
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
Appendix 3.5 Servo parameter area
Symbol
No.
Default
value
0
Item
Servo series
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
11800
Pr.300
—
10300
10600
10900
11200
11500
Pr.301
PA01
0000h For manufacturer setting
10301
10601
10901
11201
11501
11801
Pr.302
PA02
0000h Regenerative option
10302
10602
10902
11202
11502
11802
Pr.303
PA03
0000h Absolute position detection system
10303
10603
10903
11203
11503
11803
Pr.304
PA04
0000h Function selection A-1
10304
10604
10904
11204
11504
11804
Pr.305
PA05
0
10305
10605
10905
11205
11505
11805
Pr.306
PA06
1
11806
Pr.307
PA07
1
Pr.308
PA08
Pr.309
PA09
12
Auto tuning response
10309
10609
10909
11209
11509
11809
Pr.310
PA10
100
In-position range
10310
10610
10910
11210
11510
11810
Pr.311
PA11
10000
10311
10611
10911
11211
11511
11811
Pr.312
PA12
10000 For manufacturer setting
10312
10612
10912
11212
11512
11812
Pr.313
PA13
0000h
11813
Pr.314
PA14
0
Pr.315
PA15
4000
For manufacturer setting
0001h Auto tuning mode
10306
10606
10906
11206
11506
10307
10607
10907
11207
11507
11807
10308
10608
10908
11208
11508
11808
10313
10613
10913
11213
11513
Rotation direction selection
10314
10614
10914
11214
11514
11814
Encoder output pulses
10315
10615
10915
11215
11515
11815
11816
Pr.316
PA16
0
10316
10616
10916
11216
11516
Pr.317
PA17
0000h
10317
10617
10917
11217
11517
11817
Pr.318
PA18
0000h
10318
10618
10918
11218
11518
11818
Pr.319
PA19
000Bh
10319
10619
10919
11219
11519
11819
Pr.333
PB01
Adaptive tuning mode
0000h
(Adaptive filter )
10333
10633
10933
11233
11533
11833
Pr.334
PB02
Vibration suppression control
0000h tuning mode (advanced vibration
suppression control)
10334
10634
10934
11234
11534
11834
11835
For manufacturer setting
Pr.335
PB03
0
For manufacturer setting
10335
10635
10935
11235
11535
Pr.336
PB04
0
Feed forward gain
10336
10636
10936
11236
11536
11836
Pr.337
PB05
500
For manufacturer setting
10337
10637
10937
11237
11537
11837
Pr.338
PB06
70
Ratio of load inertia moment to
servo motor inertia moment
10338
10638
10938
11238
11538
11838
Pr.339
PB07
24
Model loop gain
10339
10639
10939
11239
11539
11839
Pr.340
PB08
37
Position loop gain
10340
10640
10940
11240
11540
11840
Pr.341
PB09
823
Speed loop gain
10341
10641
10941
11241
11541
11841
Pr.342
PB10
337
Speed integral compensation
10342
10642
10942
11242
11542
11842
Pr.343
PB11
980
Speed differential compensation
10343
10643
10943
11243
11543
11843
Pr.344
PB12
0
For manufacturer setting
10344
10644
10944
11244
11544
11844
Pr.345
PB13
4500
Machine resonance suppression
filter 1
10345
10645
10945
11245
11545
11845
Pr.346
PB14
0000h Notch shape selection 1
10346
10646
10946
11246
11546
11846
10347
10647
10947
11247
11547
11847
11848
Pr.347
Machine resonance suppression
filter 2
PB15
4500
Pr.348
PB16
0000h Notch shape selection 2
Pr.349
PB17
Pr.350
PB18
Pr.351
Pr.352
10348
10648
10948
11248
11548
Automatic setting parameter
10349
10649
10949
11249
11549
11849
3141
Low-pass filter setting
10350
10650
10950
11250
11550
11850
PB19
1000
Vibration suppression control
vibration frequency setting
10351
10651
10951
11251
11551
11851
PB20
1000
Vibration suppression control
resonance frequency setting
10352
10652
10952
11252
11552
11852
APP - 38
APPENDICES
MELSEC-Q
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
12100
12400
12700
13000
13300
13600
13900
14200
14500
14800
12101
12401
12701
13001
13301
13601
13901
14201
14501
14801
12102
12402
12702
13002
13302
13602
13902
14202
14502
14802
12103
12403
12703
13003
13303
13603
13903
14203
14503
14803
12104
12404
12704
13004
13304
13604
13904
14204
14504
14804
12105
12405
12705
13005
13305
13605
13905
14205
14505
14805
12106
12406
12706
13006
13306
13606
13906
14206
14506
14806
12107
12407
12707
13007
13307
13607
13907
14207
14507
14807
12108
12408
12708
13008
13308
13608
13908
14208
14508
14808
12109
12409
12709
13009
13309
13609
13909
14209
14509
14809
12110
12410
12710
13010
13310
13610
13910
14210
14510
14810
12111
12411
12711
13011
13311
13611
13911
14211
14511
14811
12112
12412
12712
13012
13312
13612
13912
14212
14512
14812
12113
12413
12713
13013
13313
13613
13913
14213
14513
14813
12114
12414
12714
13014
13314
13614
13914
14214
14514
14814
12115
12415
12715
13015
13315
13615
13915
14215
14515
14815
12116
12416
12716
13016
13316
13616
13916
14216
14516
14816
12117
12417
12717
13017
13317
13617
13917
14217
14517
14817
12118
12418
12718
13018
13318
13618
13918
14218
14518
14818
12119
12419
12719
13019
13319
13619
13919
14219
14519
14819
12133
12433
12733
13033
13333
13633
13933
14233
14533
14833
12134
12434
12734
13034
13334
13634
13934
14234
14534
14834
12135
12435
12735
13035
13335
13635
13935
14235
14535
14835
12136
12436
12736
13036
13336
13636
13936
14236
14536
14836
12137
12437
12737
13037
13337
13637
13937
14237
14537
14837
12138
12438
12738
13038
13338
13638
13938
14238
14538
14838
12139
12439
12739
13039
13339
13639
13939
14239
14539
14839
12140
12440
12740
13040
13340
13640
13940
14240
14540
14840
12141
12441
12741
13041
13341
13641
13941
14241
14541
14841
12142
12442
12742
13042
13342
13642
13942
14242
14542
14842
12143
12443
12743
13043
13343
13643
13943
14243
14543
14843
12144
12444
12744
13044
13344
13644
13944
14244
14544
14844
12145
12445
12745
13045
13345
13645
13945
14245
14545
14845
12146
12446
12746
13046
13346
13646
13946
14246
14546
14846
12147
12447
12747
13047
13347
13647
13947
14247
14547
14847
12148
12448
12748
13048
13348
13648
13948
14248
14548
14848
12149
12449
12749
13049
13349
13649
13949
14249
14549
14849
12150
12450
12750
13050
13350
13650
13950
14250
14550
14850
12151
12451
12751
13051
13351
13651
13951
14251
14551
14851
12152
12452
12752
13052
13352
13652
13952
14252
14552
14852
APP - 39
Memory
area
Servo parameter area
Axis 9
Basic setting parameters
Axis 8
Gain/filter parameters
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
No.
Default
value
Pr.353
PB21
0
Pr.354
PB22
0
Pr.355
PB23
0000h Low-pass filter selection
Pr.356
PB24
0000h
Pr.357
PB25
0000h For manufacturer setting
Pr.358
PB26
0000h Gain changing selection
10358
10658
10958
11258
11558
11858
Pr.359
PB27
10
Gain changing condition
10359
10659
10959
11259
11559
11859
Pr.360
PB28
1
Gain changing time constant
10360
10660
10960
11260
11560
11860
70
Gain changing ratio of load inertia
moment to servomotor inertia
moment
10361
10661
10961
11261
11561
11861
Symbol
Pr.361
PB29
Item
For manufacturer setting
Slight vibration suppression
control selection
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
11853
10353
10653
10953
11253
11553
10354
10654
10954
11254
11554
11854
10355
10655
10955
11255
11555
11855
10356
10656
10956
11256
11556
11856
10357
10657
10957
11257
11557
11857
Pr.362
PB30
37
Gain changing position loop gain
10362
10662
10962
11262
11562
11862
Pr.363
PB31
823
Gain changing speed loop gain
10363
10663
10963
11263
11563
11863
Pr.364
PB32
337
Gain changing speed integral
compensation
10364
10664
10964
11264
11564
11864
Pr.365
PB33
1000
Gain changing vibration
suppression control vibration
frequency setting
10365
10665
10965
11265
11565
11865
Pr.366
PB34
1000
Gain changing vibration
suppression control resonance
frequency setting
10366
10666
10966
11266
11566
11866
Pr.367
PB35
0
10367
10667
10967
11267
11567
11867
Pr.368
PB36
0
10368
10668
10968
11268
11568
11868
Pr.369
PB37
100
10369
10669
10969
11269
11569
11869
Pr.370
PB38
0
10370
10670
10970
11270
11570
11870
Pr.371
PB39
0
10371
10671
10971
11271
11571
11871
Pr.372
PB40
0
Pr.373
PB41
1125
Pr.374
PB42
1125
10374
10674
10974
11274
11574
11874
Pr.375
PB43
0004h
10375
10675
10975
11275
11575
11875
For manufacturer setting
10372
10672
10972
11272
11572
11872
10373
10673
10973
11273
11573
11873
Pr.376
PB44
0
10376
10676
10976
11276
11576
11876
Pr.377
PB45
0000h
10377
10677
10977
11277
11577
11877
Pr.381
PC01
3
Error excessive alarm level
10381
10681
10981
11281
11581
11881
0
Electromagnetic brake sequence
output
10382
10682
10982
11282
11582
11882
Pr.382
PC02
Pr.383
PC03
0000h Encoder output pulses selection
10383
10683
10983
11283
11583
11883
Pr.384
PC04
0000h Function selection C-1
10384
10684
10984
11284
11584
11884
Pr.385
PC05
0000h Function selection C-2
10385
10685
10985
11285
11585
11885
Pr.386
PC06
0000h Function selection C-3
10386
10686
10986
11286
11586
11886
Pr.387
PC07
Pr.388
PC08
Pr.389
PC09
Pr.390
PC10
0001h Analog monitor 2 output
50
Zero speed
10387
10687
10987
11287
11587
11887
0
For manufacturer setting
10388
10688
10988
11288
11588
11888
0000h Analog monitor 1 output
10389
10689
10989
11289
11589
11889
10390
10690
10990
11290
11590
11890
Pr.391
PC11
0
Analog monitor 1 offset
10391
10691
10991
11291
11591
11891
Pr.392
PC12
0
Analog monitor 2 offset
10392
10692
10992
11292
11592
11892
Pr.393
PC13
0
Analog monitor feedback position
output standard data Low
10393
10693
10993
11293
11593
11893
Pr.394
PC14
0
Analog monitor feedback position
output standard data High
10394
10694
10994
11294
11594
11894
APP - 40
APPENDICES
MELSEC-Q
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
12153
12453
12753
13053
13353
13653
13953
14253
14553
14853
12154
12454
12754
13054
13354
13654
13954
14254
14554
14854
12155
12455
12755
13055
13355
13655
13955
14255
14555
14855
12156
12456
12756
13056
13356
13656
13956
14256
14556
14856
12157
12457
12757
13057
13357
13657
13957
14257
14557
14857
12158
12458
12758
13058
13358
13658
13958
14258
14558
14858
12159
12459
12759
13059
13359
13659
13959
14259
14559
14859
12160
12460
12760
13060
13360
13660
13960
14260
14560
14860
12161
12461
12761
13061
13361
13661
13961
14261
14561
14861
12162
12462
12762
13062
13362
13662
13962
14262
14562
14862
12163
12463
12763
13063
13363
13663
13963
14263
14563
14863
12164
12464
12764
13064
13364
13664
13964
14264
14564
14864
12165
12465
12765
13065
13365
13665
13965
14265
14565
14865
12166
12466
12766
13066
13366
13666
13966
14266
14566
14866
12167
12467
12767
13067
13367
13667
13967
14267
14567
14867
12168
12468
12768
13068
13368
13668
13968
14268
14568
14868
12169
12469
12769
13069
13369
13669
13969
14269
14569
14869
12170
12470
12770
13070
13370
13670
13970
14270
14570
14870
12171
12471
12771
13071
13371
13671
13971
14271
14571
14871
12172
12472
12772
13072
13372
13672
13972
14272
14572
14872
12173
12473
12773
13073
13373
13673
13973
14273
14573
14873
12174
12474
12774
13074
13374
13674
13974
14274
14574
14874
12175
12475
12775
13075
13375
13675
13975
14275
14575
14875
12176
12476
12776
13076
13376
13676
13976
14276
14576
14876
12177
12477
12777
13077
13377
13677
13977
14277
14577
14877
12181
12481
12781
13081
13381
13681
13981
14281
14581
14881
12182
12482
12782
13082
13382
13682
13982
14282
14582
14882
12183
12483
12783
13083
13383
13683
13983
14283
14583
14883
12184
12484
12784
13084
13384
13684
13984
14284
14584
14884
12185
12485
12785
13085
13385
13685
13985
14285
14585
14885
12186
12486
12786
13086
13386
13686
13986
14286
14586
14886
12187
12487
12787
13087
13387
13687
13987
14287
14587
14887
12188
12488
12788
13088
13388
13688
13988
14288
14588
14888
12189
12489
12789
13089
13389
13689
13989
14289
14589
14889
12190
12490
12790
13090
13390
13690
13990
14290
14590
14890
12191
12491
12791
13091
13391
13691
13991
14291
14591
14891
12192
12492
12792
13092
13392
13692
13992
14292
14592
14892
12193
12493
12793
13093
13393
13693
13993
14293
14593
14893
12194
12494
12794
13094
13394
13694
13994
14294
14594
14894
APP - 41
Memory
area
Servo parameter area
Axis 9
Gain/filter parameters
Axis 8
Extension setting parameters
Buffer memory address
Axis 7
APPENDICES
Default
value
MELSEC-Q
Item
Symbol
No.
Pr.395
PC15
0
Pr.396
PC16
0000h
Pr.397
PC17
0000h Function selection C-4
For manufacturer setting
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
11895
10395
10695
10995
11295
11595
10396
10696
10996
11296
11596
11896
10397
10697
10997
11297
11597
11897
Pr.398
PC18
0000h
10398
10698
10998
11298
11598
11898
Pr.399
PC19
0000h For manufacturer setting
10399
10699
10999
11299
11599
11899
Pr.400
PC20
0000h
10400
10700
11000
11300
11600
11900
Pr.401
PC21
0000h Alarm history clear
10401
10701
11001
11301
11601
11901
Pr.402
PC22
0000h
10402
10702
11002
11302
11602
11902
Pr.403
PC23
0000h
10403
10703
11003
11303
11603
11903
Pr.404
PC24
0000h
10404
10704
11004
11304
11604
11904
Pr.405
PC25
0000h
10405
10705
11005
11305
11605
11905
Pr.406
PC26
0000h
10406
10706
11006
11306
11606
11906
Pr.407
PC27
0000h
10407
10707
11007
11307
11607
11907
Pr.408
PC28
0000h
10408
10708
11008
11308
11608
11908
Pr.409
PC29
0000h
10409
10709
11009
11309
11609
11909
Pr.410
PC30
0000h For manufacturer setting
10410
10710
11010
11310
11610
11910
Pr.411
PC31
0000h
10411
10711
11011
11311
11611
11911
Pr.412
PC32
0000h
10412
10712
11012
11312
11612
11912
Pr.413
PD01
0000h
10413
10713
11013
11313
11613
11913
Pr.414
PD02
0000h
10414
10714
11014
11314
11614
11914
Pr.415
PD03
0000h
10415
10715
11015
11315
11615
11915
Pr.416
PD04
0000h
10416
10716
11016
11316
11616
11916
Pr.417
PD05
0000h
10417
10717
11017
11317
11617
11917
Pr.418
PD06
0000h
10418
10718
11018
11318
11618
11918
Pr.419
PD07
0005h Output signal device selection 1
10419
10719
11019
11319
11619
11919
Pr.420
PD08
0004h Output signal device selection 2
10420
10720
11020
11320
11620
11920
Pr.421
PD09
0003h Output signal device selection 3
10421
10721
11021
11321
11621
11921
Pr.422
PD10
0000h
10422
10722
11022
11322
11622
11922
Pr.423
PD11
0004h
10423
10723
11023
11323
11623
11923
Pr.424
PD12
0000h
10424
10724
11024
11324
11624
11924
Pr.425
PD13
0000h
10425
10725
11025
11325
11625
11925
Pr.426
PD14
0000h Function selection D-3
10426
10726
11026
11326
11626
11926
Pr.427
PD15
0000h
10427
10727
11027
11327
11627
11927
Pr.428
PD16
0000h
10428
10728
11028
11328
11628
11928
Pr.429
PD17
0000h
10429
10729
11029
11329
11629
11929
For manufacturer setting
Pr.430
PD18
0000h
10430
10730
11030
11330
11630
11930
Pr.431
PD19
0000h
10431
10731
11031
11331
11631
11931
Pr.432
PD20
0000h
10432
10732
11032
11332
11632
11932
Pr.433
PD21
0000h
10433
10733
11033
11333
11633
11933
Pr.434
PD22
0000h
10434
10734
11034
11334
11634
11934
Pr.435
PD23
0000h
10435
10735
11035
11335
11635
11935
Pr.436
PD24
0000h
Pr.437
PD25
0000h
For manufacturer setting
10436
10736
11036
11336
11636
11936
10437
10737
11037
11337
11637
11937
Pr.438
PD26
0000h
10438
10738
11038
11338
11638
11938
Pr.439
PD27
0000h
10439
10739
11039
11339
11639
11939
Pr.440
PD28
0000h
10440
10740
11040
11340
11640
11940
Pr.441
PD29
0000h
10441
10741
11041
11341
11641
11941
Pr.442
PD30
0000h
10442
10742
11042
11342
11642
11942
Pr.443
PD31
0000h
10443
10743
11043
11343
11643
11943
Pr.444
PD32
0000h
10444
10744
11044
11344
11644
11944
APP - 42
APPENDICES
MELSEC-Q
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
12195
12495
12795
13095
13395
13695
13995
14295
14595
14895
12196
12496
12796
13096
13396
13696
13996
14296
14596
14896
12197
12497
12797
13097
13397
13697
13997
14297
14597
14897
12198
12498
12798
13098
13398
13698
13998
14298
14598
14898
12199
12499
12799
13099
13399
13699
13999
14299
14599
14899
12200
12500
12800
13100
13400
13700
14000
14300
14600
14900
12201
12501
12801
13101
13401
13701
14001
14301
14601
14901
12202
12502
12802
13102
13402
13702
14002
14302
14602
14902
12203
12503
12803
13103
13403
13703
14003
14303
14603
14903
12204
12504
12804
13104
13404
13704
14004
14304
14604
14904
12205
12505
12805
13105
13405
13705
14005
14305
14605
14905
12206
12506
12806
13106
13406
13706
14006
14306
14606
14906
12207
12507
12807
13107
13407
13707
14007
14307
14607
14907
12208
12508
12808
13108
13408
13708
14008
14308
14608
14908
12209
12509
12809
13109
13409
13709
14009
14309
14609
14909
12210
12510
12810
13110
13410
13710
14010
14310
14610
14910
12211
12511
12811
13111
13411
13711
14011
14311
14611
14911
12212
12512
12812
13112
13412
13712
14012
14312
14612
14912
12213
12513
12813
13113
13413
13713
14013
14313
14613
14913
12214
12514
12814
13114
13414
13714
14014
14314
14614
14914
12215
12515
12815
13115
13415
13715
14015
14315
14615
14915
12216
12516
12816
13116
13416
13716
14016
14316
14616
14916
12217
12517
12817
13117
13417
13717
14017
14317
14617
14917
12218
12518
12818
13118
13418
13718
14018
14318
14618
14918
12219
12519
12819
13119
13419
13719
14019
14319
14619
14919
12220
12520
12820
13120
13420
13720
14020
14320
14620
14920
12221
12521
12821
13121
13421
13721
14021
14321
14621
14921
12222
12522
12822
13122
13422
13722
14022
14322
14622
14922
12223
12523
12823
13123
13423
13723
14023
14323
14623
14923
12224
12524
12824
13124
13424
13724
14024
14324
14624
14924
12225
12525
12825
13125
13425
13725
14025
14325
14625
14925
12226
12526
12826
13126
13426
13726
14026
14326
14626
14926
12227
12527
12827
13127
13427
13727
14027
14327
14627
14927
12228
12528
12828
13128
13428
13728
14028
14328
14628
14928
12229
12529
12829
13129
13429
13729
14029
14329
14629
14929
12230
12530
12830
13130
13430
13730
14030
14330
14630
14930
12231
12531
12831
13131
13431
13731
14031
14331
14631
14931
12232
12532
12832
13132
13432
13732
14032
14332
14632
14932
12233
12533
12833
13133
13433
13733
14033
14333
14633
14933
12234
12534
12834
13134
13434
13734
14034
14334
14634
14934
12235
12535
12835
13135
13435
13735
14035
14335
14635
14935
12236
12536
12836
13136
13436
13736
14036
14336
14636
14936
12237
12537
12837
13137
13437
13737
14037
14337
14637
14937
12238
12538
12838
13138
13438
13738
14038
14338
14638
14938
12239
12539
12839
13139
13439
13739
14039
14339
14639
14939
12240
12540
12840
13140
13440
13740
14040
14340
14640
14940
12241
12541
12841
13141
13441
13741
14041
14341
14641
14941
12242
12542
12842
13142
13442
13742
14042
14342
14642
14942
12243
12543
12843
13143
13443
13743
14043
14343
14643
14943
12244
12544
12844
13144
13444
13744
14044
14344
14644
14944
APP - 43
Memory
area
Servo parameter area
Axis 9
Extension setting parameters
Axis 8
I/O setting parameters
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
No.
Default
value
Pr.445
PE01
Pr.446
PE02
Pr.447
PE03
Pr.448
Pr.449
Pr.450
PE06
400
10450
10750
11050
11350
11650
11950
Pr.451
PE07
100
10451
10751
11051
11351
11651
11951
Pr.452
PE08
10
10452
10752
11052
11352
11652
11952
Pr.453
PE09
0000h
10453
10753
11053
11353
11653
11953
Pr.454
PE10
0000h
10454
10754
11054
11354
11654
11954
Pr.455
PE11
0
10455
10755
11055
11355
11655
11955
Pr.456
PE12
Symbol
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
0000h
10445
10745
11045
11345
11645
11945
0102h
10446
10746
11046
11346
11646
11946
0002h
10447
10747
11047
11347
11647
11947
PE04
1
10448
10748
11048
11348
11648
11948
PE05
1
10449
10749
11049
11349
11649
11949
40
PE13 FFFEh For manufacturer setting
10456
10756
11056
11356
11656
11956
Pr.457
10457
10757
11057
11357
11657
11957
Pr.458
PE14
0111h
10458
10758
11058
11358
11658
11958
Pr.459
PE15
20
10459
10759
11059
11359
11659
11959
Pr.460
PE16
0000h
10460
10760
11060
11360
11660
11960
Pr.461
PE17
0000h
10461
10761
11061
11361
11661
11961
Pr.462
PE18
0000h
10462
10762
11062
11362
11662
11962
Pr.463
PE19
0000h
10463
10763
11063
11363
11663
11963
Pr.464
PE20
0000h
10464
10764
11064
11364
11664
11964
Pr.465
PE21
0000h
10465
10765
11065
11365
11665
11965
Pr.466
PE22
0000h
10466
10766
11066
11366
11666
11966
Pr.467
PE23
0000h
10467
10767
11067
11367
11667
11967
Pr.468
PE24
0000h
10468
10768
11068
11368
11668
11968
Pr.469
PE25
0000h
10469
10769
11069
11369
11669
11969
Pr.470
PE26
0000h Filter coefficient 2-1
10470
10770
11070
11370
11670
11970
Pr.471
PE27
0000h Filter coefficient 2-2
10471
10771
11071
11371
11671
11971
Pr.472
PE28
0000h Filter coefficient 2-3
10472
10772
11072
11372
11672
11972
Pr.473
PE29
0000h Filter coefficient 2-4
10473
10773
11073
11373
11673
11973
Pr.474
PE30
0000h Filter coefficient 2-5
10474
10774
11074
11374
11674
11974
Pr.475
PE31
0000h Filter coefficient 2-6
10475
10775
11075
11375
11675
11975
Pr.476
PE32
0000h Filter coefficient 2-7
10476
10776
11076
11376
11676
11976
Pr.477
PE33
0000h Filter coefficient 2-8
10477
10777
11077
11377
11677
11977
Pr.478
PE34
0
10478
10778
11078
11378
11678
11978
Pr.479
PE35
0
10479
10779
11079
11379
11679
11979
Pr.480
PE36
0
10480
10780
11080
11380
11680
11980
Pr.481
PE37
0
10481
10781
11081
11381
11681
11981
Pr.482
PE38
0
10482
10782
11082
11382
11682
11982
Pr.483
PE39
0
10483
10783
11083
11383
11683
11983
Pr.484
PE40
0
10484
10784
11084
11384
11684
11984
Pr.493
PS01
0
10493
10793
11093
11393
11693
11993
Pr.494
PS02
0
10494
10794
11094
11394
11694
11994
Pr.495
PS03
0
10495
10795
11095
11395
11695
11995
Pr.496
PS04
0
10496
10796
11096
11396
11696
11996
Pr.497
PS05
0
10497
10797
11097
11397
11697
11997
Pr.498
PS06
0
10498
10798
11098
11398
11698
11998
Pr.499
PS07
0
10499
10799
11099
11399
11699
11999
Pr.500
PS08
0
10500
10800
11100
11400
11700
12000
Pr.501
PS09
0
10501
10801
11101
11401
11701
12001
For manufacturer setting
APP - 44
APPENDICES
MELSEC-Q
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
12245
12545
12845
13145
13445
13745
14045
14345
14645
14945
12246
12546
12846
13146
13446
13746
14046
14346
14646
14946
12247
12547
12847
13147
13447
13747
14047
14347
14647
14947
12248
12548
12848
13148
13448
13748
14048
14348
14648
14948
12249
12549
12849
13149
13449
13749
14049
14349
14649
14949
12250
12550
12850
13150
13450
13750
14050
14350
14650
14950
12251
12551
12851
13151
13451
13751
14051
14351
14651
14951
12252
12552
12852
13152
13452
13752
14052
14352
14652
14952
12253
12553
12853
13153
13453
13753
14053
14353
14653
14953
12254
12554
12854
13154
13454
13754
14054
14354
14654
14954
12255
12555
12855
13155
13455
13755
14055
14355
14655
14955
12256
12556
12856
13156
13456
13756
14056
14356
14656
14956
12257
12557
12857
13157
13457
13757
14057
14357
14657
14957
12258
12558
12858
13158
13458
13758
14058
14358
14658
14958
12259
12559
12859
13159
13459
13759
14059
14359
14659
14959
12260
12560
12860
13160
13460
13760
14060
14360
14660
14960
12261
12561
12861
13161
13461
13761
14061
14361
14661
14961
12262
12562
12862
13162
13462
13762
14062
14362
14662
14962
12263
12563
12863
13163
13463
13763
14063
14363
14663
14963
12264
12564
12864
13164
13464
13764
14064
14364
14664
14964
12265
12565
12865
13165
13465
13765
14065
14365
14665
14965
12266
12566
12866
13166
13466
13766
14066
14366
14666
14966
12267
12567
12867
13167
13467
13767
14067
14367
14667
14967
12268
12568
12868
13168
13468
13768
14068
14368
14668
14968
12269
12569
12869
13169
13469
13769
14069
14369
14669
14969
12270
12570
12870
13170
13470
13770
14070
14370
14670
14970
12271
12571
12871
13171
13471
13771
14071
14371
14671
14971
12272
12572
12872
13172
13472
13772
14072
14372
14672
14972
12273
12573
12873
13173
13473
13773
14073
14373
14673
14973
12274
12574
12874
13174
13474
13774
14074
14374
14674
14974
12275
12575
12875
13175
13475
13775
14075
14375
14675
14975
12276
12576
12876
13176
13476
13776
14076
14376
14676
14976
12277
12577
12877
13177
13477
13777
14077
14377
14677
14977
12278
12578
12878
13178
13478
13778
14078
14378
14678
14978
12279
12579
12879
13179
13479
13779
14079
14379
14679
14979
12280
12580
12880
13180
13480
13780
14080
14380
14680
14980
12281
12581
12881
13181
13481
13781
14081
14381
14681
14981
12282
12582
12882
13182
13482
13782
14082
14382
14682
14982
12283
12583
12883
13183
13483
13783
14083
14383
14683
14983
12284
12584
12884
13184
13484
13784
14084
14384
14684
14984
12293
12593
12893
13193
13493
13793
14093
14393
14693
14993
12294
12594
12894
13194
13494
13794
14094
14394
14694
14994
12295
12595
12895
13195
13495
13795
14095
14395
14695
14995
12296
12596
12896
13196
13496
13796
14096
14396
14696
14996
12297
12597
12897
13197
13497
13797
14097
14397
14697
14997
12298
12598
12898
13198
13498
13798
14098
14398
14698
14998
12299
12599
12899
13199
13499
13799
14099
14399
14699
14999
12300
12600
12900
13200
13500
13800
14100
14400
14700
15000
12301
12601
12901
13201
13501
13801
14101
14401
14701
15001
APP - 45
Memory
area
Servo parameter area
Axis 9
Extension control parameters
Axis 8
Special setting parameters
Buffer memory address
Axis 7
APPENDICES
No.
Default
value
Pr.502
PS10
Pr.503
PS11
Pr.504
PS12
Pr.505
Pr.506
Pr.507
Pr.508
Pr.509
Pr.510
Pr.511
Pr.512
Pr.513
Pr.514
Pr.515
Pr.516
Pr.517
Symbol
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
0
10502
10802
11102
11402
11702
12002
0
10503
10803
11103
11403
11703
12003
0
10504
10804
11104
11404
11704
12004
PS13
0
10505
10805
11105
11405
11705
12005
PS14
0
10506
10806
11106
11406
11706
12006
PS15
0
10507
10807
11107
11407
11707
12007
PS16
0
10508
10808
11108
11408
11708
12008
PS17
0
10509
10809
11109
11409
11709
12009
PS18
0
10510
10810
11110
11410
11710
12010
PS19
0
10511
10811
11111
11411
11711
12011
PS20
0
10512
10812
11112
11412
11712
12012
PS21
0
10513
10813
11113
11413
11713
12013
PS22
0
10514
10814
11114
11414
11714
12014
PS23
0
10515
10815
11115
11415
11715
12015
PS24
0
10516
10816
11116
11416
11716
12016
PS25
0
10517
10817
11117
11417
11717
12017
Pr.518
PS26
0
10518
10818
11118
11418
11718
12018
Pr.519
PS27
0
10519
10819
11119
11419
11719
12019
Pr.520
PS28
0
10520
10820
11120
11420
11720
12020
Pr.521
PS29
0
10521
10821
11121
11421
11721
12021
Pr.522
PS30
0
10522
10822
11122
11422
11722
12022
Pr.523
PS31
0
10523
10823
11123
11423
11723
12023
Pr.524
PS32
0
10524
10824
11124
11424
11724
12024
Pr.525
PF1
0
Pr.526
PF2
0
For manufacturer setting
10525
10825
11125
11425
11725
12025
10526
10826
11126
11426
11726
12026
Pr.527
PF3
0
10527
10827
11127
11427
11727
12027
Pr.528
PF4
0
10528
10828
11128
11428
11728
12028
Pr.529
PF5
0
10529
10829
11129
11429
11729
12029
Pr.530
PF6
0
10530
10830
11130
11430
11730
12030
Pr.531
PF7
0
10531
10831
11131
11431
11731
12031
Pr.532
PF8
0
10532
10832
11132
11432
11732
12032
Pr.533
PF9
10000
10533
10833
11133
11433
11733
12033
Pr.534
PF10
100
10534
10834
11134
11434
11734
12034
Pr.535
PF11
100
10535
10835
11135
11435
11735
12035
Pr.536
PF12
100
10536
10836
11136
11436
11736
12036
Pr.537
PF13
0
10537
10837
11137
11437
11737
12037
Pr.538
PF14
10
10538
10838
11138
11438
11738
12038
Pr.539
PF15
0
10539
10839
11139
11439
11739
12039
Pr.540
PF16
0
10540
10840
11140
11440
11740
12040
Pr.541
PO1
0
10541
10841
11141
11441
11741
12041
Pr.542
PO2
0
10542
10842
11142
11442
11742
12042
Pr.543
PO3
0
10543
10843
11143
11443
11743
12043
Pr.544
PO4
0
10544
10844
11144
11444
11744
12044
Pr.545
PO5
0
10545
10845
11145
11445
11745
12045
Pr.546
PO6
0
10546
10846
11146
11446
11746
12046
Pr.547
PO7
0
10547
10847
11147
11447
11747
12047
Pr.548
PO8
0
10548
10848
11148
11448
11748
12048
Pr.549
PO9
0
10549
10849
11149
11449
11749
12049
APP - 46
APPENDICES
MELSEC-Q
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
12302
12602
12902
13202
13502
13802
14102
14402
14702
15002
12303
12603
12903
13203
13503
13803
14103
14403
14703
15003
12304
12604
12904
13204
13504
13804
14104
14404
14704
15004
12305
12605
12905
13205
13505
13805
14105
14405
14705
15005
12306
12606
12906
13206
13506
13806
14106
14406
14706
15006
12307
12607
12907
13207
13507
13807
14107
14407
14707
15007
12308
12608
12908
13208
13508
13808
14108
14408
14708
15008
12309
12609
12909
13209
13509
13809
14109
14409
14709
15009
12310
12610
12910
13210
13510
13810
14110
14410
14710
15010
12311
12611
12911
13211
13511
13811
14111
14411
14711
15011
12312
12612
12912
13212
13512
13812
14112
14412
14712
15012
12313
12613
12913
13213
13513
13813
14113
14413
14713
15013
12314
12614
12914
13214
13514
13814
14114
14414
14714
15014
12315
12615
12915
13215
13515
13815
14115
14415
14715
15015
12316
12616
12916
13216
13516
13816
14116
14416
14716
15016
12317
12617
12917
13217
13517
13817
14117
14417
14717
15017
12318
12618
12918
13218
13518
13818
14118
14418
14718
15018
12319
12619
12919
13219
13519
13819
14119
14419
14719
15019
12320
12620
12920
13220
13520
13820
14120
14420
14720
15020
12321
12621
12921
13221
13521
13821
14121
14421
14721
15021
12322
12622
12922
13222
13522
13822
14122
14422
14722
15022
12323
12623
12923
13223
13523
13823
14123
14423
14723
15023
12324
12624
12924
13224
13524
13824
14124
14424
14724
15024
12325
12625
12925
13225
13525
13825
14125
14425
14725
15025
12326
12626
12926
13226
13526
13826
14126
14426
14726
15026
12327
12627
12927
13227
13527
13827
14127
14427
14727
15027
12328
12628
12928
13228
13528
13828
14128
14428
14728
15028
12329
12629
12929
13229
13529
13829
14129
14429
14729
15029
12330
12630
12930
13230
13530
13830
14130
14430
14730
15030
12331
12631
12931
13231
13531
13831
14131
14431
14731
15031
12332
12632
12932
13232
13532
13832
14132
14432
14732
15032
12333
12633
12933
13233
13533
13833
14133
14433
14733
15033
12334
12634
12934
13234
13534
13834
14134
14434
14734
15034
12335
12635
12935
13235
13535
13835
14135
14435
14735
15035
12336
12636
12936
13236
13536
13836
14136
14436
14736
15036
12337
12637
12937
13237
13537
13837
14137
14437
14737
15037
12338
12638
12938
13238
13538
13838
14138
14438
14738
15038
12339
12639
12939
13239
13539
13839
14139
14439
14739
15039
12340
12640
12940
13240
13540
13840
14140
14440
14740
15040
12341
12641
12941
13241
13541
13841
14141
14441
14741
15041
12342
12642
12942
13242
13542
13842
14142
14442
14742
15042
12343
12643
12943
13243
13543
13843
14143
14443
14743
15043
12344
12644
12944
13244
13544
13844
14144
14444
14744
15044
12345
12645
12945
13245
13545
13845
14145
14445
14745
15045
12346
12646
12946
13246
13546
13846
14146
14446
14746
15046
12347
12647
12947
13247
13547
13847
14147
14447
14747
15047
12348
12648
12948
13248
13548
13848
14148
14448
14748
15048
12349
12649
12949
13249
13549
13849
14149
14449
14749
15049
APP - 47
Memory
area
Servo parameter area
Axis 10
Special setting parameters
Axis 9
Other setting
Axis 8
Option unit
Buffer memory address
Axis 7
APPENDICES
Symbol
No.
Default
value
Pr.550
PO10
Pr.551
PO11
Pr.552
PO12
MELSEC-Q
Item
Buffer memory address
Axis 1
Axis 2
Axis 3
Axis 4
Axis 5
Axis 6
0
10550
10850
11150
11450
11750
12050
0
10551
10851
11151
11451
11751
12051
0
10552
10852
11152
11452
11752
12052
For manufacturer setting
Pr.553
PO13
0
10553
10853
11153
11453
11753
12053
Pr.554
PO14
0
10554
10854
11154
11454
11754
12054
Pr.555
PO15
0
10555
10855
11155
11455
11755
12055
Pr.556
PO16
0
10556
10856
11156
11456
11756
12056
APP - 48
APPENDICES
MELSEC-Q
Axis 9
Axis 10
Axis 11
Axis 12
Axis 13
Axis 14
Axis 15
Axis 16
12350
12650
12950
13250
13550
13850
14150
14450
14750
15050
12351
12651
12951
13251
13551
13851
14151
14451
14751
15051
12352
12652
12952
13252
13552
13852
14152
14452
14752
15052
12353
12653
12953
13253
13553
13853
14153
14453
14753
15053
12354
12654
12954
13254
13554
13854
14154
14454
14754
15054
12355
12655
12955
13255
13555
13855
14155
14455
14755
15055
12356
12656
12956
13256
13556
13856
14156
14456
14756
15056
APP - 49
Memory
area
Servo parameter area
Axis 8
Option unit
Buffer memory address
Axis 7
APPENDICES
MELSEC-Q
MEMO
APP - 50
WARRANTY
Please confirm the following product warranty details before using this product.
1. Gratis Warranty Term and Gratis Warranty Range
If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service
Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at
the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing onsite that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated
place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc.,
which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels
on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused
by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions
or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary
by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual have been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found to not be the responsibility of Mitsubishi or that admitted not to be so by the user.
2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.
3. Overseas service
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.
4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to damages caused by any cause
found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi
products, special damages and secondary damages whether foreseeable or not, compensation for damages to products
other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other
tasks.
5. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.
6. Product application
(1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will
not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and
that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
(2) The Mitsubishi general-purpose programmable logic controller has been designed and manufactured for applications
in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and
other power plants operated by respective power companies, and applications in which a special quality assurance
system is required, such as for Railways companies or Public service purposes shall be excluded from the
programmable logic controller applications.
In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical
applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and
safety devices, shall also be excluded from the programmable logic controller range of applications.
However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi
representative outlining the special requirements of the projects, and providing that all parties concerned agree to the
special circumstances, solely at the users discretion.
Microsoft Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States
and other countries.
Other company and product names herein may be either trademarks or registered trademarks of their
respective owners.
IB(NA)-0300147-B

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement