Agilent Technologies
System DC Power Supply
Series N8700
User’s Guide

Legal Notices
© Agilent Technologies, Inc. 2009
No part of this document may be
photocopied, reproduced, or translated to
another language without the prior
agreement and written consent of Agilent
Technologies, Inc. as governed by United
States and international copyright laws.
Warranty
The material contained in this document
is provided “as is,” and is subject to
being changed, without notice, in future
editions. Further, to the maximum extent
permitted by applicable law, Agilent
disclaims all warranties, either express or
implied, with regard to this manual and
any information contained herein,
including but not limited to the implied
warranties of merchantability and fitness
for a particular purpose. Agilent shall not
be liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or performance
of this document or of any information
contained herein. Should Agilent and the
user have a separate written agreement
with warranty terms covering the material
in this document that conflict with these
terms, the warranty terms in the separate
agreement shall control.
Manual Editions
Manual Part Number: N8700-90001
Edition 2, July 2009
Printed in Malaysia.
Reprints of this manual containing minor
corrections and updates may have the
same printing date. Revised editions are
identified by a new printing date.
Declaration of Conformity
Declarations of Conformity for this
product and for other Agilent products
may be downloaded from the Web. Go to
http://regulations.corporate.agilent.com
and click on “Declarations of Conformity.”
You can then search by product number
to find the latest Declaration of
Conformity.
2
Waste Electrical and
Electronic Equipment (WEEE)
Directive 2002/96/EC
This product complies with the WEEE
Directive 2002/96/EC) marketing
requirement. The affixed product label
(see below) indicates that you must not
discard this electrical/electronic product
in domestic household waste.
Product Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as
“Monitoring and Control instrumentation”
product.
Do not dispose in domestic household
waste.
To return unwanted products, contact our
local Agilent office, or see
www.agilent.com/environment/product
for more information.
Certification
Agilent Technologies certifies that this
product met its published specifications
at time of shipment from the factory.
Agilent Technologies further certifies that
its calibration measurements are
traceable to the United States National
Institute of Standards and Technology, to
the extent allowed by the Institute's
calibration facility, and to the calibration
facilities of other International Standards
Organization members.
Exclusive Remedies
Assistance
This product comes with the standard
product warranty. Warranty options,
extended support contacts, product
maintenance agreements and customer
assistance agreements are also available.
Contact your nearest Agilent
Technologies Sales and Service office for
further information on Agilent
Technologies' full line of Support
Programs.
Technologies Licenses
The hardware and or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.
Restricted Rights Legend
Software and technical data rights
granted to the federal government include
only those rights customarily provided to
end user customers. Agilent provides this
customary commercial license in
Software and technical data pursuant to
FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the
Department of Defense, DFARS 252.2277015 (Technical Data – Commercial
Items) and DFARS 227.7202-3 (Rights in
Commercial Computer Software or
Computer Software Documentation).
Trademarks
Microsoft and Windows are U.S.
registered trademarks of Microsoft
Corporation.
THE REMEDIES PROVIDED HEREIN ARE
THE CUSTOMER'S SOLE AND EXCLUSIVE
REMEDIES. AGILENT TECHNOLOGIES
SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY
OTHER LEGAL THEORY.
Series N8700 User’s Guide
Safety Notices
The following general safety precautions
must be observed during all phases of
operation of this instrument. Failure to
comply with these precautions or with
specific warnings or instructions
elsewhere in this manual violates safety
standards of design, manufacture, and
intended use of the instrument. Agilent
Technologies assumes no liability for the
customer's failure to comply with these
requirements.
General
Do not use this product in any manner
not specified by the manufacturer. The
protective features of this product may be
impaired if it is used in a manner not
specified in the operation instructions.
Before Applying Power
Verify that all safety precautions are
taken. Make all connections to the unit
before applying power. Note the
instrument's external markings described
under "Safety Symbols"
Ground the Instrument
This product is a Safety Class I
instrument (provided with a protective
earth terminal). To minimize shock
hazard, the instrument chassis and cover
must be connected to an electrical
ground. The instrument must be
connected to the ac power mains through
a grounded power cable, with the ground
wire firmly connected to an electrical
ground (safety ground) at the power
outlet. Any interruption of the protective
(grounding) conductor or disconnection of
the protective earth terminal will cause a
potential shock hazard that could result in
personal injury.
Fuses
The instrument contains an internal fuse,
which is not customer accessible.
Series N8700 User’s Guide
Do Not Operate in an Explosive
Atmosphere
Safety Symbols
Direct current
Do not operate the instrument in the
presence of flammable gases or fumes.
Alternating current
Do Not Remove the Instrument
Cover
Both direct and alternating
current
Only qualified, service-trained personnel
who are aware of the hazards involved
should remove instrument covers. Always
disconnect the power cable and any
external circuits before removing the
instrument cover.
Three phase alternating
current
Do Not Modify the Instrument
Frame or chassis terminal
Do not install substitute parts or perform
any unauthorized modification to the
product. Return the product to an Agilent
Sales and Service Office for service and
repair to ensure that safety features are
maintained.
In Case of Damage
Instruments that appear damaged or
defective should be made inoperative and
secured against unintended operation
until they can be repaired by qualified
service personnel
CAUTION
A CAUTION notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION notice
until the indicated conditions are fully
understood and met.
WARNING
A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or the
like that, if not correctly performed
or adhered to, could result in
personal injury or death. Do not
proceed beyond a WARNING notice
until the indicated conditions are
fully understood and met.
Earth (ground) terminal
Protective earth ground
terminal.
Terminal is at earth potential.
Neutral conductor on
permanently installed
equipment
Line conductor on
permanently installed
equipment.
On supply
Off supply
Standby supply. Unit is not
completely disconnected from
ac mains when switch is off
In position of a bi-stable push
switch
Out position of a bi-stable
push switch
Caution, risk of electric shock
Caution, hot surface
Caution, refer to
accompanying
documents
Do not dispose in domestic
household waste.
3
In this Book
This User’s Manual contains the operating instructions, installation
instructions, and specifications of the Agilent Technologies Series
N8700 3.3kW and 5kW System DC Power Supplies. Specific chapters
in this manual contain the following information:
NOTE

Quick Reference – Chapter 1 is a quick reference section that
helps you quickly become familiar with your Agilent N8700
power supply.

Installation – Chapter 2 describes how to install your power
supply. It describes how to connect various loads to the output. It
discusses remote sensing as well as parallel and series operation.

Operating the Power Supply Locally – Chapter 3 describes how to
operate the power supply from the front panel and from the
analog connector on the rear panel. It also includes a turn-on
check-out procedure to verify the unit is operating properly.

Operating the Power Supply Remotely – Chapter 4 describes how
to configure the remote interfaces. It also gives a brief overview
of the SCPI command structure and basic programming concepts.

Language Reference – Chapter 5 describes all of the SCPI
programming commands.

Programming Examples – Chapter 6 provides Visual BASIC
example programs that illustrate some common applications.

Specifications – Appendix A describes specifications and
supplemental characteristics.

Verification and Calibration Procedures – Appendix B explains
the verification and calibration procedures.

Service – Appendix C describes what to do if your unit requires
service.

Compatibility – Appendix D documents the compatibility
commands of the Agilent 603xA power supplies that are
supported by the Agilent N8700 power supplies.
You can contact Agilent Technologies at one of the following telephone
numbers for warranty, service, or technical support information.
In the United States: (800) 829-4444
In Europe: 31 20 547 2111
In Japan: 0120-421-345
Or use our Web link for information on contacting Agilent in your country or
specific location: www.agilent.com/find/assist
Or contact your Agilent Technologies Representative.
The web contains the most up to date version of the manual. Go to
http://www.agilent.com/find/N8700 to get the latest version of the manual.
4
Series N8700 User’s Guide
Contents
1 - Quick Reference
The Agilent N8700 DC Power Supplies – At a Glance ................................. 8
The Front Panel - At a Glance......................................................................... 10
The Rear Panel – At a Glance ......................................................................... 12
2 - Installation
General Information .......................................................................................... 16
Inspecting the Unit ........................................................................................... 16
Installing the Unit.............................................................................................. 17
Connecting the Line Cord ................................................................................ 19
Connecting the Load......................................................................................... 23
Output Voltage Sensing ................................................................................... 27
Load Considerations ......................................................................................... 29
Parallel Connections ......................................................................................... 31
Series Connections ........................................................................................... 33
J1 Connector Connections .............................................................................. 35
3 - Operating the Power Supply Locally
Turn-On Check-Out ........................................................................................... 38
Normal Operation .............................................................................................. 40
Protection Functions ........................................................................................ 41
Output On/Off Controls.................................................................................... 44
Analog Programming of Output Voltage and Current ................................. 47
4 - Operating the Power Supply Remotely
Connecting to the Interfaces .......................................................................... 52
SCPI Commands – an Introduction ................................................................ 62
5 - Language Reference
SCPI Command Summary ................................................................................ 68
Calibration Commands ..................................................................................... 70
Measure Commands......................................................................................... 71
Output Commands ............................................................................................ 72
Source Commands ............................................................................................ 73
Status Commands ............................................................................................. 75
System Commands ........................................................................................... 81
Trigger Commands ............................................................................................ 83
Series N8700 User’s Guide
5
6 - Programming Examples
Output Programming Example ........................................................................ 86
Trigger Programming Example........................................................................ 88
Appendix A - Specifications
Performance Specifications ............................................................................ 92
Supplemental Characteristics ......................................................................... 93
Outline Diagram................................................................................................. 96
Appendix B - Verification and Calibration
Verification ......................................................................................................... 97
Calibration ........................................................................................................ 126
Appendix C - Service
Types of Service Available............................................................................. 130
Repackaging for Shipment............................................................................. 130
Operating Checklist......................................................................................... 130
Error Messages ............................................................................................... 132
Recycling Plastic Components ..................................................................... 136
Appendix D - Compatibility
Differences – In General ................................................................................ 138
Compatibility Command Summary ............................................................... 139
Index ........................................................................................................................................................... 141
6
Series N8700 User’s Guide
1
Quick Reference
The Agilent N8700 DC Power Supplies – At a Glance ................................. 8
The Front Panel - At a Glance......................................................................... 10
The Rear Panel – At a Glance ......................................................................... 12
This chapter concisely describes the Agilent Technologies Series
N8700 Power Supplies.
This chapter is not meant to describe every operating feature in
detail. It is simply a quick reference guide to quickly become familiar
with the essential components of the power supply. It can also be
used as a memory jogger for experienced users to quickly find a
front/rear panel function.
A quick reference programming command chart is included in the
beginning of chapter 5.
Series N8700 User’s Guide
7
1
Quick Reference
The Agilent N8700 DC Power Supplies – At a Glance
The Agilent Technologies Series N8700 System DC Power Supplies
are general-purpose, 2U (two rack units) high, switching power
supplies that are available with a wide variety of output voltage and
current ratings. There are both 3.3 kW and 5 kW models.
These power supplies are power-factor corrected and have flexible
AC input voltage options. Output voltage and current are
continuously displayed and LED indicators show the complete
operating status of the power supply.
The front panel controls allow the user to set the output parameters,
over-voltage, under-voltage, and over-current protection levels, and
preview the settings.
The rear panel includes the necessary connectors to control and
monitor the power supply operation by analog signals or by the builtin remote communication interfaces.
Output Features

Constant voltage/constant current with automatic crossover.

High-resolution voltage and current front panel controls.

Accurate voltage and current readback.

Independent edge-triggered external shut-off, and leveltriggered external enable/disable.

Parallel master/slave operation with active current sharing.

Remote sensing to compensate for voltage drop in load leads.

Analog output programming and monitoring.

Built-in GBIB/LAN/USB interface.

A built-in Web server that lets you control the instrument
directly from an internet browser on your computer.

Zero-gap stacking - no ventilation holes at the top and bottom
surface of the power supply.

Active power factor correction.

Fan speed control for low noise and extended fan life.
System Features
8
Series N8700 User’s Guide
Quick Reference
1
Programmable Functions

Output voltage and current setting.

Output voltage and current measurement.

Output voltage and current trigger setting.

Output On/Off control.

Over-current protection setting.

Over-voltage protection setting and readback.

Under-voltage limit setting and readback.

Start-up mode (either last setting or reset mode)

Status register setting and readback.

Bus trigger

Calibration
Model Ratings
3.3 kW Models Note 1, 2
5 kW Models Note 1, 2
Model
Voltage
Range
Current
Range
Model
Voltage
Range
Current
Range
N8731A
0 – 8V
0 – 400A
N8754A
0 – 20V
0 – 250A
N8732A
0 – 10V
0 – 330A
N8755A
0 – 30V
0 – 170A
N8733A
0 – 15V
0 – 220A
N8756A
0 – 40V
0 – 125A
N8734A
0 – 20V
0 – 165A
N8757A
0 – 60V
0 – 85A
N8735A
0 – 30V
0 – 110A
N8758A
0 – 80V
0 – 65A
N8736A
0 – 40V
0 – 85A
N8759A
0 – 100V
0 – 50A
N8737A
0 – 60V
0 – 55A
N8760A
0 – 150V
0 – 34A
N8738A
0 – 80V
0 – 42A
N8761A
0 – 300V
0 – 17A
N8739A
0 – 100V
0 – 33A
N8762A
0 – 600V
0 – 8.5A
N8740A
0 – 150V
0 – 22A
N8741A
0 – 300V
0 – 11A
N8742A
0 – 600V
0 – 5.5A
Note 1: Minimum output voltage is ≤ 0.2% of the rated output voltage.
Note 2: Minimum output current is ≤ 0.4% of the rated output current.
Series N8700 User’s Guide
9
1
Quick Reference
The Front Panel - At a Glance
1
2
VOLTAGE
3
4
DC VOLTS
DC AMPS
CV
1 – VOLTAGE knob
18
17
16
CURRENT
CC
PROT
19
6
5
15
FINE
14
LIMIT/
OVP
UVL
13
OCP/488
12
LAN
11
OUT ON
10
9
8
7
Voltage function: Adjusts the output voltage, the over-voltage protection level, and the
under-voltage limit. If over-voltage protection or under-voltage limits have been set,
you cannot program the output voltage outside those limits. Press the FINE button to
set fine adjustment resolution.
GPIB address: Selects the GPIB address when OCP/488 is pressed and held.
2 – VOLTAGE indicator
Indicates the unit is in constant voltage mode – with the output voltage held constant.
3 – DC VOLTS display
Normally displays the voltage measured at the sense terminals.
- Indicates the programmed voltage setting when the LIMIT button is pressed.
- Indicates either the OVP or UVL setting when the OVP/UVL button is pressed.
- Indicates the GPIB address when the OCP/488 button is pressed and held.
- Indicates the IP and Ethernet address when the LAN button is pressed and held.
4 – DC AMPS display
Normally displays the current measured at the output terminals.
- Indicates the programmed current setting when the LIMIT button is pressed.
- Indicates the IP and Ethernet address when the LAN button is pressed and held.
5 – CURRENT indicator
Indicates the unit is in constant current mode – with the output current held constant.
6 – CURRENT knob
Adjusts the output current. Press the FINE button to set fine adjustment resolution.
7 – OUT ON indicator
Indicates the output is enabled or on.
8 – OUT ON button
Output function: Press the OUT ON button to turn the output on or off. Press the OUT
ON button to reset the unit and return the output to on after an OVP or OCP event.
Start-Up function: Press and hold the OUT ON button to toggle between the Safe-Start
and Auto-Restart modes. The display cycles between SAF and AU7. Releasing the OUT
ON button while one of the modes is displayed selects that mode.
10
Series N8700 User’s Guide
Quick Reference
1
9 – LAN indicator
Indicates the LAN has been configured and is operating normally. Set another unit on
the N8700 unit’s Web home page and the LAN indicator blinks to identify that unit.
10 – LAN button
View address: Press the LAN button to view the IP and Ethernet address. The display
first scrolls through the four segments of the IP address, followed by the six segments
of the Ethernet (EA) address. Press any key to turn the address display off.
Reset address: Press and hold the LAN button for three seconds. Pressing the LAN
button again while the message “LAn rES” is displayed resets the LAN configuration
to the factory-shipped settings (see chapter 4 for settings). The display returns to
normal and the configuration is not changed if the LAN button is not pressed again.
11 – OCP/488 indicator
Indicates over-current protection is enabled or on.
12 – OCP/488 button
Enable OCP: Press the OCP/488 button to turn over-current protection on. Press the
OCP/488 button again to turn over-current protection off.
Reset OCP: Press the OUT ON button to enable the output and re-arm over-current
protection following an over-current protection event.
GPIB address: Press and hold the OCP/488 button for three seconds to set the GPIB
address with the Voltage knob.
13 – OVP/UVL button
OVP function: Press the OVP/UVL button once to set the over-voltage protection level
with the Voltage knob (the display shows OUP). You cannot set the over-voltage
protection lower than about 5% above the present output voltage setting.
UVL function: Press the OVP/UVL button twice to set the under-voltage programming limit with the Voltage knob (the display shows UUL). You cannot set the undervoltage protection higher than about 5% below the present output voltage setting.
14 – LIMIT button
Limit function: Press the LIMIT button to display the output voltage and current limit.
Settings are shown on the display for five seconds then the display returns to show
the actual output voltage and current.
Lock function: Press and hold the LIMIT button to toggle between ‘Locked’ front panel
(LFP) and ‘Unlocked’ front panel (UFP). The display will cycle between LFP and UFP.
Releasing the LIMIT button while one of the modes is displayed selects that mode. If
the display indicates rLFP, the front panel has been locked by a remote programming
command.
15 – LIMIT indicator
Indicates the LIMIT button is pressed.
16 – FINE button
Sets Fine or Coarse adjustment control for the Voltage and Current knobs.
Press the FINE button to set Fine mode; press again to return to Coarse mode.
- Fine mode: Knobs operate with high resolution.
- Coarse mode: Knobs operate with lower resolution (approximately six turns).
17 – FINE indicator
Indicates the unit is in the high resolution ‘Fine’ adjustment mode.
18 – PROT indicator
Blinks when a fault has occurred.
OVP, OCP, OTP, Enable fail, and AC fail detection will cause the PROT (protection)
indicator to blink. The PROT indicator may blink and the display will indicate AC for a
few seconds after the unit is turned off because of residual energy inside the unit.
19 – POWER switch
Turns the power supply on or off.
Series N8700 User’s Guide
11
1
Quick Reference
The Rear Panel – At a Glance
6
7
8
9
150V – 600V
(wire clamp)
2-phase VAC
(three-conductor)
5
3
4
2
3-phase VAC
(four-conductor)
1
1 – AC input connector
Header with mating plug-in connector for both the 3.3 kW and 5 kW output models.
A 3-conductor plug is provided for single-phase VAC.
A 4-conductor plug is provided for 3-phase VAC.
2 – DC output connector
Wire clamp connector is used for 150V, 300V and 600V models.
Bus bars are used for 8V to 100V models.
3 – Analog
programming
connector
Connector for the analog interface. Includes output voltage and current limit
programming and monitoring signals, Shut-Off control (electrical signal),
Enable/Disable control (dry-contact), power supply ok (Power Supply OK) signal and
operation mode (CV/CC) signal. (See next page for details)
4 – SW1 setup switch
Nine-position switch for selecting remote programming and monitoring modes for
Output Voltage, Current Limit and other control functions. (See next page for details)
5 – Remote Sense
connector
Connector for making remote sensing connections for regulating the load voltage and
compensating for wiring voltage drop. (See next page for details)
6 – GPIB connector
Connector for connecting to a GPIB interface. See chapter 4 for setup.
7 – LAN connector
Connector for connecting to a LAN interface. LINK LED indicates link integrity. TX LED
indicates LAN activity. See chapter 4 for LAN setup.
8 – USB connector
Connector for connecting to a USB interface. See chapter 4 for setup.
9 – Ground screw & nut
M4x8 screws with nut for making chassis ground connections
WARNING
12
8V – 100V
(bus bar)
SHOCK HAZARD The AC power cable provides a chassis ground through the
ground conductor. Be certain that your power source is three-conductor for
single-phase models or four-conductor for 3-phase models with the ground
conductor (green/yellow) connected to earth ground.
Series N8700 User’s Guide
Quick Reference
1
J2 Sense Connector
1 – Remote sense (+)
2 – Local sense (+)
3 – Not used
4 – Local sense (–)
5 – Remote sense (–)
The factory-shipped configuration is shown in the figure.
SW1 Setup Switch
1
2
3
4
5
6
7
8
9
The factory-shipped setting is Down for all switches.
1 – Output voltage, voltage
programming
Down: The output voltage is programmed by the front panel.
Up:
The output voltage is programmed by the external voltage signal.
2 – Output current, voltage
programming
Down: The output current is programmed by the front panel.
Up:
The output current is programmed by the external voltage signal.
3 – Programming range
(voltage/resistance)
Down: The remote programming range is: 0 – 5V / 0 – 5KΩ.
Up:
The remote programming range is: 0 – 10V / 0 – 10KΩ.
4 – Voltage and Current
monitoring range
Down: The remote monitoring range is: 0 – 5V.
Up:
The remote monitoring range is: 0 – 10V.
5 – Shut-Off Logic Select
Down: OUT OFF = Low (0 – 0.6V) or short; OUT ON = High (2V – 15V) or open.
Up:
OUT OFF = High (2V – 15V) or open; OUT ON = Low (0 – 0.6V) or short.
6 – Not Used
7 – Output voltage, resistive
programming
Down: The output voltage is programmed by the front panel.
Up:
The output voltage is programmed by the external resistor.
8 – Output current, resistive
programming
Down: The output current is programmed by the front panel.
Up:
The output current is programmed by the external resistor.
9 – Enable/Disable control
Down: The J1 Enable+/Enable– pins are not active.
Up:
The J1 Enable+/Enable– pins are active.
Series N8700 User’s Guide
13
1
Quick Reference
J1 Analog Programming Connector
Current Program
Voltage Program
Local / Analog
Voltage Monitor
Common (-S)
CV / CC
13
25
12
24
11
23
10
22
9
8
21
20
6
7
19
18
5
17
Chassis Common
Chassis Common
Enable IN
4
16
1
2
3
15
14
Parallel
Current Monitor
Current Prog. Return
Voltage Prog. Return
Local / Analog State
Enable OUT
Shut Off
Power Supply OK
The factory-shipped default configuration is Local operation, which
does not require connection to J1.
Pin 1:
Enable IN
Connect Pin 1 to Pin 14 to enable the output. Disconnect to disable the output.
Pin 2, 3:
Chassis Common
Signal return for Pin 15 and Pin 16. Connected to chassis.
Pin 4–7:
Not Used
No connection
Pin 8:
Local/Analog
Input for selecting between front panel or analog programming of the output.
Pin 9:
Voltage Program
Input for voltage or resistance programming of the output voltage.
Pin 10:
Current Program
Input for voltage or resistance programming of the output current.
Pin 11:
Voltage Monitor
Output for monitoring the output voltage.
Pin 12:
Common
Signal return for Pin 8, Pin11, Pin 13, and Pin 24. Referenced internally to the
negative sense potential.
Pin 13:
CV/CC
Output for constant voltage/constant current mode indication.
Pin 14:
Enable OUT
Connect Pin 14 to Pin 1 to enable the output. Disconnect to disable the output.
Pin 15:
Shut Off
Input for Shut-Off control of the output. Referenced to Chassis Common.
Pin 16:
Power Supply OK
Output to indicate the power supply status. Referenced to Chassis Common.
Pin 17–20:
Not Used
No connection
Pin 21:
Local/Analog State
Output for indication of local or analog programming mode.
Pin 22:
Voltage Prog. Return
Signal return for Pin 9. Connected internally to pin 12.
Pin 23:
Current Prog. Return
Signal return for Pin 10. Referenced internally to pin 12.
Pin 24:
Current Monitor
Output for monitoring the output current.
Pin 25:
Parallel
Output for current balancing in parallel operation. Connected internally to pin 24.
14
Series N8700 User’s Guide
2
Installation
General Information .......................................................................................... 16
Inspecting the Unit ........................................................................................... 16
Installing the Unit.............................................................................................. 17
Connecting the Line Cord ................................................................................ 19
Connecting the Load......................................................................................... 23
Output Voltage Sensing ................................................................................... 27
Load Considerations ......................................................................................... 29
Parallel Connections ......................................................................................... 31
Series Connections ........................................................................................... 33
J1 Connector Connections .............................................................................. 35
This chapter describes how to install your power supply. It discusses
installation, rack mounting, and line cord connections.
This chapter also discusses how to connect your load to the output
terminals. It discusses what you need to know about wire sizes and
how to compensate for voltage drops in the load leads. It also
discusses various loads configurations and how to connect units in
series and parallel.
Before getting started, check the list under “Items Supplied” and
verify that you have received these items with your instrument. If
anything is missing, please contact your nearest Agilent Sales and
Service Office.
Series N8700 User’s Guide
15
2
Installation
General Information
Models
3.3 kW Models
5 kW Models
N8731A – N8739A
N8754A – N8759A
N8740A – N8742A
N8760A – N8762A
Items Supplied
Item
Description
Power Cord
A power cord appropriate for your location.
Units are supplied with unterminated power cords.
Strain relief assembly
A strain relief assembly for unterminated power cords.
AC input cover
A cover for the AC input on which the strain relief assembly
is mounted.
Analog connector
A DB25 subminiature connector plug for analog control
connections.
Shield assembly
A safety shield appropriate for the output terminal
connections (either wire clamp or bus bar).
Hardware
Nuts, washers, and bolts for connecting load leads to output
bus bars (only used for 8V to 100V units).
Documentation Set
Contains User’s Guide with Product Reference CD-ROM.
Certificate of Calibration
A certificate of calibration referenced to the serial number.
Automation-Ready
CD-ROM
E2094N - contains Agilent IO Libraries Suite.
Item
Description
N5740A
Rack-mount slide kit for installing in system II cabinets
Accessories
Inspecting the Unit
When you receive your power supply, inspect it for any obvious
damage that may have occurred during shipment. If there is damage,
notify the shipping carrier and nearest Agilent Sales and Service
Office immediately. Refer to Appendix C for more information.
Until you have checked out the power supply, save the shipping
carton and packing materials in case the unit has to be returned.
16
Series N8700 User’s Guide
Installation
2
Installing the Unit
Safety Considerations
This power supply is a Safety Class I instrument, which means it has
a protective earth terminal. That terminal must be connected to earth
ground through power source equipped with a ground receptacle.
Refer to the Safety Summary page at the beginning of this guide for
general safety information. Before installation or operation, check
the power supply and review this guide for safety warnings and
instructions. Safety warnings for specific procedures are located at
appropriate places throughout this Guide.
Refer to all WARNINGS, CAUTIONS, and NOTES in the “Connecting
the Line Cord” section prior to connecting the unit to an AC source.
Environment
WARNING
Do not operate the instrument in the presence of flammable gasses or fumes.
The environmental conditions, dimensions of the instrument, as well
as an outline diagram are given in Appendix A. The instrument
should only be operated indoors in a controlled environment. Do not
operate the power supply in an area where the ambient temperature
exceeds +40°C.
NOTE
Agilent N8700 power supplies generate magnetic fields, which may affect the
operation of other instruments. If your equipment is susceptible to magnetic
fields, do not position it adjacent to the power supply.
Airflow
Fans cool the power supply by drawing air through the front and
exhausting it out the back. The instrument must be installed in a
location that allows sufficient space of at least 10 cm (4 in) at the
front and back of the unit for adequate air circulation.
Bench Installation
Attach the four plastic feet that are supplied with the unit when the
instrument is mounted on a surface or when units are stacked
without rack support. When using the plastic feet, a maximum of
three units can be stacked. You must allow for free airflow into the
front of the unit and out of the back of the unit. (see “Airflow”).
WARNING
Series N8700 User’s Guide
CONNECTION TO AC SOURCE The power supply must be connected to the AC
mains through a protective device such as a circuit breaker or fuse with a
rating as described under “Connecting the Line Cord”. The line cord cannot
be used as a disconnect device for the power supply.
17
2
Installation
Rack Installation
CAUTION
Ensure that the screws used to attach the rack slide kit do not penetrate more
than 6 mm into the sides of the unit.
Do not block the air intake at the front, or the exhaust at the rear of the unit.
The Agilent N8700 power supplies can be mounted in a standard 19inch rack panel or cabinet. They are designed to fit in two rack units
(2U) of space. To install the power supply in a rack:
1. Use the front panel rack-mount brackets to install the power
supply in the rack.
2. Use a support bracket to provide adequate support for the rear of
the power supply.
3. Rack mount slides can be attached to the unit when installing the
unit in a standard 19-inch equipment rack. Use the Agilent N5740A
Rack-Mount Slide Kit and refer to the following figure for assembly
instructions. Use two #10-32 x 3/8 in (max.) screws on each side. To
prevent internal damage, use the specified screw length only.
Cleaning
WARNING
SHOCK HAZARD To prevent electric shock, unplug the unit before cleaning.
Use a dry cloth or one slightly dampened with water to clean the
external case parts. Do not attempt to clean internally.
18
Series N8700 User’s Guide
Installation
2
Connecting the Line Cord
WARNING
SHOCK HAZARD The power cable provides a chassis ground through the
ground conductor. Be certain that the power cable has the ground conductor
connected to earth ground at the source and instrument AC input connector.
FIRE HAZARD Use only the power cable that was supplied with your
instrument. Using other types of power cables may cause overheating of the
power cable and result in fire.
WARNING
CAUTION
CONNECTION TO AC SOURCE The power supply must be connected to the
AC mains through a protective device such as a circuit breaker or fuse with
ratings as follows:
For single-phase models: 30A maximum per phase
For 3-phase models: 20A maximum per phase
Connection of either a 3.3 kW or 5 kW power supply to an AC power source
must be made by a qualified electrician in accordance with local electrical
codes.
The POWER on/off switch is not the main disconnect device and does
not completely disconnect all circuits from the AC source. A
disconnect device, either a switch or circuit breaker for permanent or
multi-phase configurations must be provided in the final installation.
The disconnect device must comply with UL/CSA/EN 61010-1
requirements. It shall be in close proximity to the equipment, shall be
easily accessible, and shall be marked as the disconnect device for
this equipment. The disconnect device must meet the input ratings
requirements listed on the INPUT RATING label located on the top
cover of each unit. Refer to “AC Input” In Appendix A for details.
One of the following unterminated power cables is provided with
each unit. If required, connect an appropriate locking-type power
plug to the end of the power cable.
Cable Option/Part no.
Description
Rating
Wire Size
Length
Approvals
OPT 831, p/n 8121-1949
3.3kW single-phase
300V, 25 A, 60°C
3 x 10 AWGNote1,3
2.5 m
UL/CSA
OPT 832, p/n 8121-1331
3.3kW single-phase
250V, 32 A, 60 °C
2.5 m
Harmonized
OPT 861, p/n 8121-1946
300V, 25 A, 90 °C
3.3kW/5kW 3-phase
(190-240 VAC nominal)
4 x 10 AWG Note2,3
2.5 m
UL/CSA
OPT 862, p/n 8121-1948
450V, 20 A, 70 °C
3.3kW/5kW 3-phase
(380-415 VAC nominal)
4 x 2.5 mm2 Note2
2.5 m
Harmonized
3x 4
mm2 Note1
Note 1: 2-wire plus one green/yellow safety ground conductor
Note 2: 3-wire plus one green/yellow safety ground conductor
Note 3: 10 AWG corresponds to 4mm2
Series N8700 User’s Guide
19
2
Installation
WARNING
CONNECTION TO AC MAINS Applying incorrect AC mains voltage or
incorrectly wiring to the AC mains will damage the power supply and void the
warranty.
Single-phase mains connections for 3.3 kW units
L1
L2
phase
phase
Earth
(safety ground)
208 V
Option 230 units wired
for nominal AC input
190 – 240 VAC
L3
L1
Disconnect
device
Single-phase power supply
attached to 208 V, phaseto-phase distribution.
phase
L2
phase
phase
Disconnect
device
Earth
(safety ground)
Single-phase power supply
attached to 230 V, phaseto-neutral distribution.
230 V
L3
phase
3-phase mains connections for 3.3 kW and 5 kW units
Disconnect
device
L2 phase
L1 phase
Option 208 units wired
for nominal AC input
190 – 240 VAC
208 V
Earth
(safety ground)
3-phase power supply
attached to 208 V, phaseto-phase distribution.
L3 phase
Disconnect
device
L2 phase
L1 phase
Option 400 units wired
for nominal AC input
380 – 415 VAC
400 V
Earth
(safety ground)
3-phase power supply
attached to 400 V, phaseto-phase distribution.
L3 phase
20
Series N8700 User’s Guide
Installation
2
Input Connections for 3.3 kW and 5 kW units
The AC input connector is located on the rear panel. It is a 3-terminal
wire clamp for 3.3 kW single-phase units, or a 4-terminal wire clamp
for 3.3 kW and 5 kW 3-phase units. Input voltage and current ratings
are as follows:
Unit
Nominal AC
Input
Input Current @
100% load
Frequency
3.3 kW single-phase
190 – 240 VAC
23 – 24 A max.
50/60 Hz
3.3 kW 3-phase
190 – 240 VAC
13.6 – 14.5 A max.
50/60 Hz
380 – 415 VAC
6.8 – 7.2 A max.
50/60 Hz
190 – 240 VAC
21 – 22 A max.
50/60 Hz
380 – 415 VAC
10.5 – 12 A max.
50/60 Hz
5 kW 3- phase
NOTE
The AC input line voltage rating is permanently built into the unit and cannot
subsequently be changed.
Connect the cable to the AC input connector as follows:
1
Strip the outside insulation of the AC cable approximately 10 cm
(4 in). Trim the wires so that the green/yellow ground wire is 10
mm (0.4 in) longer than the other wires. Strip 10 mm (0.4 in) at
the end of each of the wires.
2
Unscrew the base of the strain relief from the wire compression
nut. Place the locknut inside the AC input cover with the flat side
of the nut against the cover. Insert the base through the outside
opening of the AC input cover. Screw the base securely onto the
locknut from the outside. Tighteming torque: 17 ft-lb (23 Nm).
3
Slide the wire compression nut over the AC cable. Insert the
stripped wires through the strain relief base until the outer cable
jacket is flush with the inside edge of the base. Place a wrench on
the base to keep it from turning. Now tighten the compression
nut to the base while holding the cable in place. Tightening
torque: 14 – 16.2 ft-lb (19 – 22 Nm). Refer to the following figure.
3-phase cable (shown)
has four conductors.
Single-phase cable has
three conductors.
Series N8700 User’s Guide
21
2
Installation
4
Route the AC wires to the input connector terminals as required.
To connect the wires, loosen the terminal screw, insert the
stripped wire into the terminal, and tighten the screws securely
as indicated in the following figures. Ensure that you have the
green/yellow ground conductor connected to the ground terminal
on the connector. Plug the connector onto the rear panel header
and secure it with the side screws. Screw tightening torque: 10.7
– 13.4 in-lb (1.2 – 1.5 Nm).
or
5
22
Plug Type:
PC 6/4-STF-10,16 or PC 6/3-STF-10,16 Phoenix
Wire Size:
AWG 18 to AWG 8
Stripping Length:
12 mm (0.5 in.)
Torque:
10.7 – 13.4 in-lb (1.2 – 1.5 Nm)
Route the wires inside the cover to prevent pinching while sliding
the cover towards the rear panel for attachment. Fasten the cover
to the unit using the M3 x 8mm flat head screws provided. Screw
tightening torque: 4.8 in-lb (0.54 Nm). Refer to the following
figure.
Series N8700 User’s Guide
Installation
2
Connecting the Load
WARNING
SHOCK HAZARD Turn off AC power before making rear panel connections.
Wires and straps must be properly connected and screws securely tightened.
The following factors should be considered when selecting wiring to
connect the load to the power supply:

Current carrying capacity of the wire

Insulation rating of the wire should be at least equivalent to
the maximum output voltage of the power supply

Load wire voltage drop

Noise and impedance effects of the load wiring
Wire Size
WARNING
FIRE HAZARD To satisfy safety requirements, load wires must be large
enough not to overheat when carrying the maximum short-circuit current of
the power supply. If there is more than one load, then any pair of load wires
must be capable of safely carrying the full-rated current of the supply.
Paralleled load wires may be required for larger-ampacity power supplies.
The following table lists the characteristics of AWG (American Wire
Gauge) copper wire.
AWG
18
16
14
12
10
8
6
4
2
1/0
2/0
3/0
Note 1.
Note 2.
Series N8700 User’s Guide
nearest Metric
equivalent
Ampacity
Resistance
wire size
Note 1
(Ω/1000 feet) Note 2
area in mm2
14
6.385
0.823
1.0 mm2
18
4.016
1.31
1.5 mm2
25
2.526
2.08
2.5 mm2
30
1.589
3.31
4 mm2
2
40
0.9994
5.26
6 mm
60
0.6285
8.37
10 mm2
80
0.3953
13.30
16 mm2
105
0.2486
21.15
25 mm2
2
140
0.1564
33.62
35 mm
195
0.0983
53.48
70 mm2
225
0.0779
67.43
70 mm2
260
0.0618
84.95
95 mm2
Ampacity is based on 30 °C ambient temperature with the conductor rated at
60 °C. For ambient temeratures other than 30 °C, multiply the above
ampacities by the following constants:
Temp (°C) Constant
Temp (°C) Constant
21-25 1.08
31-35 0.91
26-30 1.00
36-40 0.82
Resistance is nominal at 20 °C wire temperature.
23
2
Installation
Along with conductor temperature, you must also consider voltage
drop when selecting wire sizes. Although the power supply will
compensate for up to 5 volts in each load wire, it is recommended to
minimize the voltage drop to less than 1 volt to prevent excessive
output power consumption from the power supply and poor dynamic
response to load changes.
Load Connections for 8V to 100V Models
WARNING
SHOCK HAZARD Hazardous voltages may exist at the outputs and the load
connections when using a power supply with a rated output greater than 40V.
To protect personnel against accidental contact with hazardous voltages,
ensure that the load and its connections have no accessible live parts. Ensure
that the load wiring insulation rating is greater than or equal to the maximum
output voltage of the power supply.
CAUTION
Ensure that the load wiring mounting hardware does not short the output
terminals. Heavy connecting cables must have some form of strain relief to
prevent loosening the connections or bending the bus-bars.
1
As shown in the following figure all load wires should be
properly terminated with wire terminal lugs securely attached.
DO NOT use unterminated wires for load connections at the
power supply. Attach the wire terminals to the inside of the busbars to ensure enough space for installing the shield.
M10 x 25
bolt
Wire Lug
Paralleled
wire lugs
Hex nut
Spring
washer
2
24
Flat
washers
Install the shield after you have finished connecting the load
wires. Route the load wires through the openings in the back of
the shield. If necessary, use diagonal cutters and remove the
Series N8700 User’s Guide
Installation
2
appropriate cut-outs for the larger sized wires as indicated in the
following figure. Secure the shield using the tab on the left side
and the M3 x 8mm flat head screw on the right side. Screw
tightening torque: 4.8 - 5.3 in-lb (0.54 – 0.6 Nm).
Remove this cut-out for
bus rail installation.
Opening for wire sizes
from AWG 2-1/0.
(cut-out
has been removed)
Remove this cut-out for
wire sizes AWG 2/0- 3/0.
Opening for wire sizes
from AWG 4-10.
Load Connections for 150V, 300V and 600V Models
WARNING
SHOCK HAZARD Hazardous voltages may exist at the outputs and the load
connections when using a power supply with a rated output greater than 40V.
To protect personnel against accidental contact with hazardous voltages,
ensure that the load and its connections have no accessible live parts. Ensure
that the load wiring insulation rating is greater than or equal to the maximum
output voltage of the power supply.
The 150V, 300V and 600V models have a four-terminal wire clamp
output connector. The two left terminals are the positive outputs and
the two right terminals are the negative outputs. The connector
specifications are as follows:
Series N8700 User’s Guide
Wire Size:
AWG 18 to AWG 10
Stripping Length:
10 mm (0.4 in)
Torque:
4.4 – 5.3 in-lb (0.5 – 0.6 Nm)
25
2
Installation
Connect load wires to the power supply output wire clamp connector
as follows:
1
Strip wires back approximately 10 mm (0.4 in).
2
Loosen the connector terminal screws and insert the stripped
wires into the terminal. Tighten the terminal screws securely.
Positive
(+) output
Negative
(-) output
Load wires
3
Loosen the chassis screw marked A and remove (save).
A
4
Slide the slotted tab on the protective shield’s left side into the
chassis slot and lock into place. Insert the right side shield screw
A (previously removed) to fix the shield to the chassis. Screw
tightening torque: 4.8 - 5.3 in-lb (0.54 - 0.6 Nm).
5
Route the load wires to the tab at the top of the shield. Ensure
the wire length inside the shield is long enough to provide proper
strain relief.
6
Attach the load wires to the notched shield tab using a tie-wrap
or equivalent as shown in the following figure.
Load wires
26
Series N8700 User’s Guide
Installation
2
Output Voltage Sensing
WARNING
SHOCK HAZARD There is a potential shock hazard at the sense connector
when using a power supply with a rated output greater than 40V. Ensure that
the local sense and remote sense wiring insulation rating is greater than or
equal to the maximum output voltage of the power supply. Ensure that the
connections at the load end are shielded to prevent accidental contact with
hazardous voltages.
Local and remote sense connections are made at the J2 connector.
The connector has a removable plug that makes it easy for you to
make your wire connections. Refer to the following figure for the
terminal assignments.
1
2
3
4
5
Remote sense (+)
Local sense (+)
Not connected
Local sense (-)
Remote sense (-)
The J2 connector plug specifications are as follows:
Plug Type:
MC 1.5/5-ST-3.81, Phoenix
Wire Size:
AWG 28 to AWG 16
Stripping Length:
0.28 in. (7 mm)
Torque:
1.95 – 2.21 in-lb (0.22 – 0.25 Nm)
Local Sensing
The power supply is shipped with the rear panel J2 sense connector
wired for local sensing of the output voltage. With local sensing, the
output voltage regulation is made at the output terminals. This
method does not compensate for voltage drop on the load wires,
therefore it is recommended only for low load current applications or
where the load regulation is less critical. The following figure
illustrates the internal connections of the J2 connector.
+V
Power
Supply
+
Load
-V
-Rem.sense
Error
Amp.
- Local sense
+Local sense
Load lines, twisted
pair, shortest length
possible.
+Rem.sense
Series N8700 User’s Guide
27
2
Installation
If the power supply is operated without the local sense jumpers or without the
remote sense lines connected, it will continue to work, but the output voltage
regulation will be degraded. Also, the OVP circuit may activate and shut down
the power supply. Note that the internal wiring between +V and + local sense
and between –V and – local sense will fail if load current flows through it.
NOTE
Remote Sensing
Use remote sensing in applications where load regulation at the load
is critical. Remote sensing allows the power supply to automatically
compensate for the voltage drop in the load leads. Refer to Appendix
A for the maximum allowable voltage drop on the load wires.
Remote sensing is especially useful in constant voltage mode with
load impedances that vary or have significant lead resistance. It has
no effect in constant current mode. Because sensing is independent
of other power supply functions it can be used regardless of how the
power supply is programmed. With remote sensing, voltage readback
monitors the load voltage at the remote sense points.
Use twisted or shielded wires to minimize noise pick-up. If shielded
wires are used, the shield should be connected to the ground at one
point, either at the power supply chassis or the load ground. The
optimal point for the shield ground should be determined by
experimentation.
To configure the power supply for remote sensing:

Turn off the power supply.

Remove the local sense jumpers from the J2 connector.

Connect the negative sense lead to terminal 5 (-S) and the
positive sense lead to terminal 1 (+S). Make sure that the
connector plug is securely inserted into the connector body.

Turn on the power supply.
Load lines. Twisted pair
shortest length possible.
+V
+
Load
Power
Supply
-V
- Rem.sense
-Local sense
+Local sense
+Rem.sense
28
Sense lines.
Twisted pair or
shielded wires.
Series N8700 User’s Guide
Installation
2
If the power supply is operated with remote sensing and either the positive or
negative load wire is not connected, an internal protection circuit will activate
and shut down the power supply. To resume operation, turn the power supply
off, connect the open load wire, and turn on the power supply.
NOTE
Load Considerations
Multiple Loads
The following figure shows multiple loads connected to one power
supply. Each load should be connected to the power supply’s output
terminals using separate pairs of wires. It is recommended that each
pair of wires will be as short as possible and twisted or shielded to
minimize noise pick-up and radiation. The sense wires should be
connected to the power supply output terminals or to the load with
the most critical load regulation requirement.
Load lines, twisted pair,
shortest length possible.
+V
Power
Supply
+
Load#1
-V
+
- Rem.sense
-Local sense
+
+Local sense
+Rem.sense
Load#2
Load#3
If remotely located distribution terminals are used, as shown in the
following figure, the power supply output terminals should be
connected to the remote distribution terminals by a pair of twisted
and/or shielded wires. Connect each load to the distribution
terminals separately. Remote voltage sensing is recommended under
these circumstances. Sense either at the remote distribution
terminals or, if one load is more sensitive than the others, directly at
the critical load.
+V
Power
Supply
+V
+
Load#1
-V
- Rem.sense
-Local sense
+Local sense
+Rem.sense
Series N8700 User’s Guide
Distribution terminal
+
-V
+
Load#2
Load#3
29
2
Installation
Output Noise and Impedance Effects
To minimize the noise pickup or radiation, the load wires and remote
sense wires should be twisted-pairs to the shortest possible length.
Shielding of sense leads may be necessary in high noise
environments. Where shielding is used, connect the shield to the
chassis via a rear panel ground screw. Even if noise is not a concern,
the load and remote sense wires should be twisted-pairs to reduce
coupling, which might impact the stability of power supply. The sense
leads should be separated from the power leads.
Twisting the load wires reduces the parasitic inductance of the cable,
which could produce high frequency voltage spikes at the load and
the output because of current variation in the load itself.
The impedance introduced between the power supply output and the
load could make the ripple and noise at the load worse than the noise
at the power supply rear panel output. Additional filtering with
bypass capacitors at the load terminals may be required to bypass the
high frequency load current.
Inductive Loads
Inductive loads can produce voltage spikes that may be harmful to
the power supply. A diode should be connected across the output.
The diode voltage and current rating should be greater than the
power supply maximum output voltage and current rating. Connect
the cathode to the positive output and the anode to the negative
output of the power supply.
Where positive load transients such as back EMF from a motor may
occur, connect a surge suppressor across the output to protect the
power supply. The breakdown voltage rating of the suppressor must
be approximately 10% higher than the maximum output voltage of the
power supply.
Battery Charging
CAUTION
If a battery or external voltage source is connected across the output and the
output is programmed below the battery or external voltage source, the power
supply will continuously sink current from the external source. This could
damage the power supply.
To avoid damaging the power supply, insert a reverse blocking diode
in series with the + output connection of the power supply. Connect
the diode’s cathode to the + battery terminal or external voltage
source. Connect the diode’s anode to the + output terminal of the
power supply.
30
Series N8700 User’s Guide
Installation
2
Grounding the Output
The output of the power supply is isolated from earth ground. Either
positive or negative voltages can be obtained from the output by
grounding (or "commoning") one of the output terminals. Always use
two wires to connect the load to the output regardless of where or
how the system is grounded.
To avoid noise problems caused by common-mode current flowing
from the load to ground, it is recommended to ground the output
terminal as close as possible to the power supply chassis ground.
SHOCK HAZARD
WARNING
For models up to 60 VDC rated output, no point on the output shall be more
than ±60 VDC above or below chassis ground.
For models greater than 60 VDC rated output, no point on the Positive output
shall be more than ±600 VDC above or below chassis ground.
For models greater than 60 VDC rated output, no point on the Negative output
shall be more than ±400 VDC above or below chassis ground.
Parallel Connections
Only power supplies that have identical voltage and current ratings can be
connected in parallel.
CAUTION
Up to four units of the same voltage and current rating can be
connected in parallel to provide up to four times the output current
capability. Refer to the following figures for typical connections of
parallel power supplies using either local or remote sensing. The
figures show two units, however, the same connection method
applies for up to four units.
-S
-LS
+LS
+S
+V
As short as possible
MASTER
POWER SUPPLY
-V
J1-25
J1-8
J1-12
J1-12
Parallel
Common
Curr Prog
Curr Prog Rtn
J1-10
Twisted
pair
LOAD
J1-23
+V
SLAVE
POWER SUPPLY
-V
-S
-LS
+LS
+S
Local Sensing
Series N8700 User’s Guide
31
2
Installation
+S
-S
Twisted pair
-S
+S
+V
As short as possible
MASTER
POWER SUPPLY
-V
J1-25
J1-8
J1-12
+S
J1-12
Parallel
Common
Curr Prog
Curr Prog Rtn
J1-10
Twisted
pair
LOAD
J1-23
+V
SLAVE
-S
POWER SUPPLY
-V
-S
-LS
+LS
+S
Remote Sensing
One of the units operates as a master and the remaining units are
slaves. The slave units operate as controlled current sources
following the master output current. In remote operation, only the
master unit can be programmed by the computer while the slave
units may be connected to the computer for voltage, current and
status readback only.
It is recommended that each unit supplies only up to 95% of its
current rating because of the imbalance that may be caused by
cabling and connections voltage drops.
Setting up the Master Unit
Connect the sensing circuit for either local or remote sensing as
shown in the previous figures. Set the master unit output voltage to
the desired voltage. Program the current limit to the desired load
current limit divided by the number of parallel units. During
operation, the master unit operates in constant voltage mode,
regulating the load voltage at the programmed output voltage.
Setting up the Slave Units
Set the rear panel setup switch SW1 position 2 to it’s up position. Set
the rear panel setup switch SW1 position 3 to the same position as
the SW1 position 4 of the master unit. Connect J1 pin 10 (Curr Prog)
of the slave unit to J1 pin 25 (Parallel) of the master unit. Connect J1
pin 23 (Curr Prog Rtn) of the slave unit to J1 pin 12 (Common) of the
master unit. Also connect a short between J1 pin 8 and J1 pin 12.
The output voltage of the slave units should be programmed HIGHER
than the output voltage of the master unit to prevent interference
with the master unit’s control. The current limit of each unit should
be programmed to the desired load current limit divided by the
number of parallel units.
32
Series N8700 User’s Guide
Installation
2
Setting the Over-Voltage Protection
The master unit OVP should be programmed to the desired OVP level.
The OVP of the slave units should be programmed to a HIGHER
value than the master. When the master unit shuts down, it programs
the slave unit to zero output voltage. If a slave unit shuts down when
its OVP is set lower than the master output voltage, only that unit
shuts down and the remaining slave units will supply the entire load
current.
Setting the Over-Current Protection
Over-current protection, if desired, may only be used with the
MASTER unit. When the master unit shuts down, it programs the
slave units to zero output voltage.
Series Connections
WARNING
SHOCK HAZARD
For models up to 60 VDC rated output, no point on the output shall be more
than ±60 VDC above or below chassis ground.
For models greater than 60 VDC rated output, no point on the Positive output
shall be more than ±600 VDC above or below chassis ground.
For models greater than 60 VDC rated output, no point on the Negative output
shall be more than ±400 VDC above or below chassis ground.
CAUTION
Only power supplies that have identical voltage and current ratings can be
connected in series.
Two units of the same voltage and current rating can be connected in
series to provide up to two times the output voltage capability.
Because the current is the same through each element in a series
circuit, outputs connected in series must have equivalent current
ratings. Otherwise, the higher rated output could potentially damage
the lower rated output by forcing excessive current through it under
certain load conditions. Refer to the following figures for typical
series connections using either local or remote sensing.
It is recommended that diodes be connected in parallel with each
output to prevent reverse voltage during start up sequence or in case
one unit shuts down. Each diode should be rated to at least the rated
output voltage and output current of the power supply.
Series N8700 User’s Guide
33
2
Installation
+LS +S
+LS +S
POWER
SUPPLY
-LS
+
-
POWER
SUPPLY
(*)
-LS
-S
+
-
(*)
-S
+
+
LOAD
LOAD
-
+LS +S
POWER
SUPPLY
-LS
+
-
POWER
SUPPLY
(*) Diodes are
user supplied.
(*)
-
+LS +S
-LS
-S
+
-
(*)
-S
Remote Sensing
Local Sensing
As shown in the following figure, two units of the same voltage and
current rating can be connected in a split-connection series
configuration to provide positive and negative output voltages.
+LS +S
POWER
SUPPLY
+
-LS
-S
-
(*)
+
-
+LS +S
POWER
SUPPLY
+
-
(*)
(*) Diodes are user supplied.
-LS -S
CAUTION
34
This caution applies when using analog voltage programming with seriesconnected power supplies. The analog programming circuits of these power
supplies are referenced to the negative sense (-S) potential. Therefore, the
analog voltage circuits used to control each series-connected unit must be
separated and floated from each other.
Series N8700 User’s Guide
Installation
2
J1 Connector Connections
SHOCK HAZARD There is a potential shock hazard at the J1 connector when
using a power supply with a rated output greater than 40V. Ensure that the
load wiring insulation rating is greater than or equal to the maximum output
voltage of the power supply.
WARNING
External programming and monitoring signal are located on the J1
connector. The power supply is shipped with a mating plug that
makes it easy for you to make your wire connections. It is essential to
use this plastic-body plug to conform to safety agency requirements.
If a shield is required for the J1 wires, connect the shield to the
ground screw located on the power supply chassis.
Refer to the following figure for the pin assignments. A description of
the pins is given in chapter 1.
Current Program
Voltage Program
Local / Analog
Voltage Monitor
Common (-S)
CV / CC
13
12
25
24
11
10
23
22
9
8
21
20
6
7
19
18
5
17
Chassis Common
Chassis Common
Enable IN
4
16
1
2
3
15
14
Enable OUT
Shut Off
Power Supply OK
Parallel
Current Monitor
Current Prog. Return
Voltage Prog. Return
Local / Analog State
Pins on this side are
referenced to the negative
sense (-S) terminal.
Pins on this side are isolated
from output terminals and are
referenced to chassis ground.
The mating plug specifications for the J1 connector are as follows:
CAUTION
Mating Plug:
AMP part number 745211-2
Wire Size:
AWG 26 to AWG 22
Extraction tool:
AMP part number 91232-1 or equivalent
Manual pistol grip tool:
Handle: AMP p/n 58074-1
Head: AMP p/n 58063-1
Pins 12, 22 and 23 of J1 are connected internally to the negative sense (-S)
potential of the power supply. Do not attempt to bias any of these pins relative
to the negative output terminal. Use an isolated, ungrounded, programming
source to prevent ground loops and to maintain the isolation of the power
supply when programming from J1.
Chapter 3 describes how to configure the J1 connector when using it
to program the output voltage and current.
Series N8700 User’s Guide
35
3
Operating the Power Supply Locally
Turn-On Check-Out ........................................................................................... 38
Normal Operation .............................................................................................. 40
Protection Functions ........................................................................................ 41
Output On/Off Controls.................................................................................... 44
Analog Programming of Output Voltage and Current ................................. 47
This chapter contains examples on how to operate your power supply
from the front panel. A check-out procedure is included to let you
verify that the power supply is operating properly. Additionally,
information about programming the power supply using the J1
analog programming connector is also provided.
The simple examples discussed in this chapter show you how to
program:

output voltage and current functions

protection functions

output on/off functions

safe-start and auto-restart

analog programming of voltage and current

front panel locking
Refer to chapters 4 and 5 for information on programming your
power supply using SCPI commands.
Series N8700 User’s Guide
37
3
Operating the Power Supply Locally
Turn-On Check-Out
Before Turn-On
Ensure that the power supply is configured as follows:
WARNING

The unit is connected to an appropriate AC source as
described in chapter 2.

The POWER switch is in the off position.

Sense connector pins 1 and 2 are jumpered; sense connector
pins 4 and 5 are jumpered.

All switches on Connector J2 are in the down position.
SHOCK HAZARD Be aware that hazardous voltages can be present on the
output terminals. Do not set the output voltage above 40 VDC during the turnon check-out procedure. Check to make sure that the startup mode is set to
Safe-Start (see page 44).
Constant Voltage Check
1
Turn the POWER switch on.
2
Turn the output on by pressing the OUT ON button. The green
OUT ON indicator should be illuminated.
3
The green CV indicator should also be illuminated. If the CC
indicator is illuminated, rotate the current knob until the CV
indicator becomes illuminated.
4
Rotate the voltage knob while observing the DC VOLTS display.
The output voltage should vary while the knob is turned. The
voltage range is from zero to the maximum rated output for the
power supply model.
1
Rotate the voltage knob and set the output voltage of the unit to
50% of its full-scale rating or 30 volts, whichever is lower.
2
Press the OVP/UVL button once so that the DC AMPS display
indicates OUP. The DC VOLTS display shows the OVP level.
3
Use the voltage knob and set the OVP level of the unit to 75% of
its full-scale voltage rating or 40 volts, whichever is lower.
4
Wait a few seconds until the DC VOLTS display returns to show
the output voltage.
5
Use the voltage knob and raise the output voltage of the unit until
it approaches the OVP setting. Check to make sure that the
output voltage cannot be set higher than the OVP setting.
6
Press the OVP/UVL button again. Rotate the voltage knob and
reset the OVP level of the unit to its maximum setting.
OVP Check
38
Series N8700 User’s Guide
Operating the Power Supply Locally
3
UVL Check
1
Press the OVP/UVL button twice so that the DC AMPS display
indicates UUL. The DC VOLTS display shows the UVL level.
2
Use the voltage knob and set the UVL level of the unit to 50% of
its full-scale voltage rating or 30 volts, whichever is lower.
3
Wait a few seconds until the DC VOLTS display returns to show
the output voltage.
4
Use the voltage knob and lower the output voltage of the unit
until it approaches the UVL setting. Check to make sure that the
output voltage cannot be set lower than the UVL setting.
5
Press the OVP/UVL button twice. Rotate the voltage knob and
reset the UVL level of the unit to its minimum setting.
Constant Current Check
1
Turn the POWER switch off. Wait a few seconds until the AC
indicator on the front panel goes out.
2
Use a heavy wire and short the +V and –V output terminals
together.
3
Turn the POWER switch on.
4
Turn the output on by pressing the OUT ON button. The green
OUT ON indicator should be illuminated. The green CC indicator
should be also illuminated.
5
Rotate the current knob while observing the DC AMPS display.
The output current should vary while the knob is turned. The
current range is from zero to the maximum rated output for the
power supply model.
1
Rotate the current knob and set the current limit of the unit to
about 10% of its full-scale current rating.
2
Press the OCP/488 button. This should trip the OCP protection.
The OCP indicator should be illuminated, the DC VOLTS display
should indicate OCP, and the Alarm indicator should be blinking.
3
Press the OCP/488 button again to cancel OCP protection. The
DC VOLTS display should indicate OFF because the OCP
protection is latched.
4
Press the OUT ON button to reset the OCP protection. The output
should return to its previous setting.
5
Turn the POWER switch off.
6
Remove the short from the +V and –V output terminals.
OCP Check
Series N8700 User’s Guide
39
3
Operating the Power Supply Locally
Normal Operation
The power supply has two basic operating modes: constant voltage
and constant current mode. In constant voltage mode, the power
supply regulates the output voltage at the selected value, while the
load current varies as required by the load. In constant current
mode, the power supply regulates the output current at the selected
value, while the voltage varies as required by the load. The mode in
which the power supply operates at any given time depends on the
voltage setting, current limit setting, and the load resistance.
Constant Voltage Mode
When the power supply is operating in constant voltage mode, the CV
indicator on the front panel illuminates.
Adjustment of the output voltage can be made when the output is
enabled (On) or disabled (Off). When the output is enabled, simply
rotate the voltage knob to program the output voltage.
When the output is disabled, press the LIMIT button and then rotate
the voltage knob. The DC VOLTS display will show the programmed
voltage for 5 seconds after the adjustment has been completed and
then indicate OFF.
The voltage knob can be set to coarse or fine resolution. Press the
FINE button to select finer resolution. The FINE indicator turns on.
NOTE
If you cannot adjust the voltage to the value that you desire, the power supply
may be operating at its current limit. Check the load condition and the current
limit setting. Also, the voltage cannot be programmed lower than about 5%
above the UVL setting, or higher than about 5% below the OVP setting.
Constant Current Mode
When the power supply is operating in constant current mode, the
CC indicator on the front panel illuminates.
Adjustment of the output current limit can be made when the output
is enabled (On) or disabled (Off). When the output is enabled and in
constant current mode, simply rotate the current knob to program
the current limit. If the output is in constant voltage mode, press the
LIMIT button and then rotate the current knob. The DC AMPS display
will show the programmed current for 5 seconds after the adjustment
has been completed and then indicate the actual output current.
When the output is disabled, press the LIMIT button and then rotate
the current knob. The DC AMPS display will show the programmed
current for 5 seconds after the adjustment has been completed and
then go blank because the output is off.
The current knob can be set to coarse or fine resolution. Press the
FINE button to select finer resolution. The FINE indicator turns on.
40
Series N8700 User’s Guide
Operating the Power Supply Locally
3
CV/CC Mode Crossover
If the power supply is in constant voltage mode and the load current
increases above the current limit setting, the power supply switches
to constant current mode. If the load decreases below the current
limit setting, the power supply switches to constant voltage mode.
CV/CC Signal
CAUTION
Do not connect the CV/CC signal to a voltage source higher than 30 VDC.
Always connect the CV/CC signal to the voltage source with a series resistor to
limit the sink current to less than 10mA.
The CV/CC signal available on the J1 connector indicates the
operating mode of the power supply. The CV/CC signal is an open
collector output with a 30V parallel zener at J1 pin 13, referenced to
common at J1 pin 12. J1 pin 12 is connected internally to the –S
terminal. When the power supply operates in constant voltage mode,
CV/CC output is open. When the power supply operates in constant
current mode, CV/CC signal output is low (0 - 0.6V), with maximum
10 mA sink current.
Protection Functions
Over-Voltage Protection
The over-voltage protection protects against over-voltage conditions
on the output. If the output voltage attempts to exceed the
programmed limit in response to an analog programming signal or in
the event of a power supply failure, the over-voltage protection
circuit will protect the load by disabling the output. The voltage is
monitored at the sense terminals, thus providing the protection level
directly at the load. Upon detection of an over-voltage condition, the
output is disabled, the display shows OVP, the PROT indicator blinks,
and OV is set in the Questionable Condition status register.
Adjustment of the over-voltage setting can be made when the output
is enabled (On) or disabled (Off). To set the OVP level, press the
OVP/UVL button so that the display indicates OUP. The display will
show the OVP setting. Rotate the voltage knob to adjust the OVP level.
The display will show OVP and the setting value for another five
seconds and then return to its previous state.
The OVP settings are limited at the minimum level to approximately
5% above the output voltage setting. Attempting to adjust the OVP
below this limit will result in no response to the adjustment attempt.
Refer to Appendix A for the maximum OVP settings.
Use one of the following methods to reset the OVP circuit after it
activates. If the condition that caused the over-voltage shutdown is
still present, the OVP circuit will turn the output off again.
Series N8700 User’s Guide
41
3
Operating the Power Supply Locally
1
Press the OUT ON button to turn the output on.
2
Turn the AC power off, wait a few seconds, and turn it on.
3
Turn the output off, then on again using the Shut Off pin on the
J1 connector. This only applies in Auto-Restart mode.
4
If the OVP continues to trip, try lowering the output voltage
below the OVP setting, or raising the OVP setting.
Under-Voltage Limit
Under-voltage limit is a protection function that prevents adjustment
of the output voltage below a set limit either from the front panel or
remote interface. It does NOT include protection trip circuitry like
the over-voltage protection. The combination of UVL and OVP lets
you create a protection window for sensitive load circuitry.
Setting the UVL can be made when the output is enabled (On) or
disabled (Off). To set the UVL level, press the OVP/UVL button twice,
so that the display shows UUL. The display will show the UVL
setting. Rotate the voltage knob to adjust the UVL level. The display
will show UUL and the setting value for another five seconds and
then return to its previous state.
The UVL settings are limited at the maximum level to approximately
5% below the output voltage setting. Attempting to adjust the UVL
above this limit will result in no response to the adjustment attempt.
The minimum UVL setting is zero.
Over-Current Protection
Over-current protection will shut down the power supply output if
the load current reaches the current limit setting. This protection is
useful when the load is sensitive to an over-current condition.
To arm the over-current protection, press the OCP/488 button so that
the OCP indicator illuminates. When armed, a transition from
constant voltage to constant current mode will activate the overcurrent protection. When an over-current protection event occurs,
the output is disabled, the display shows OCP, the PROT indicator
blinks, and OC is set in the Questionable Condition status register.
Use one of the following methods to reset over-current protection
after it activates. If the load current is still higher than the current
limit setting, the over-current protection will be activated again.
42
1
Press the OUT ON button to turn the output on.
2
Turn the AC power off, wait a few seconds, and turn it on.
3
Turn the output off, then on again using the Shut Off pin on the
J1 connector. This only applies in Auto-Restart mode.
4
Press the OCP/488 button to cancel over-current protection. The
display will show OFF because OCP protection is latched. Press
the OUT ON button to reset OCP. With this method, the overcurrent protection is disabled. If the load current is still higher
than the current limit setting, the power supply will only attempt
to limit the current at the current limit setting.
Series N8700 User’s Guide
Operating the Power Supply Locally
3
Over-Temperature Protection
The over-temperature protection circuit shuts down the power
supply before the internal components can exceed their safe internal
operating temperature. This can occur if there is a cooling fan failure.
When an OTP condition occurs, the output is disabled, the display
shows O7P, the PROT indicator blinks, and the OT status bit is set in
the Questionable Condition status register. Resetting the OTP circuit
can be automatic (non-latched) or manual (latched) depending on the
Safe-Start or Auto-Restart mode.
In Safe-Start mode, the OTP circuit is latched. The display continues
to show O7P and the PROT indicator continues to blink. To reset the
OTP circuit, press the OUT ON button.
In Auto-Restart mode, the OTP circuit is non-latched. The power
supply returns to its last setting automatically when the overtemperature condition is removed.
Power-Fail Protection
If the AC power stops briefly, but returns before the power supply
has reset, the power-fail protection circuit trips and the PF status bit
is set in the Questionable Condition status register. Resetting the
power-fail protection can be automatic (non-latched) or manual
(latched), depending on the Safe-Start or Auto-Restart mode.
In Safe-Start mode, the output of the power supply is Off, as specified
by the reset state when AC power returns. In Auto-Restart mode, the
power supply recovers its last settings when AC power returns.
Front Panel Lock-Out
The front panel controls can be locked to protect from accidental
power supply parameter change. Press and hold the LIMIT button to
toggle between Locked front panel and Unlocked front panel. The
display will cycle between LFP and UFP. Releasing the LIMIT button
while one of the modes is displayed, selects that mode.
In Unlocked front panel mode, the front panel controls are enabled
to program and monitor the power supply parameters.
In Locked front panel mode, the VOLTAGE and CURRENT knobs,
the OCP/488 button, and the OUT ON button are disabled
The power supply will not respond to attempts to use these controls.
The display will show LFP to indicate that the front panel is locked.
The OVP/UVL button remains active to preview the OVP and UVL
setting. The LIMIT button also remains active to preview the output
voltage and current setting or to unlock the front panel.
NOTE
Series N8700 User’s Guide
This function operates independently of the SCPI SYST:COMM:RLST command.
If the front panel has been locked from the front panel, it cannot be unlocked by
SYST:COMM:RLST. Conversely, if the front panel has been locked by
SYST:COMM:RLST, it cannot be unlocked from the front panel.
43
3
Operating the Power Supply Locally
Output On/Off Controls
The Output On/Off controls turn the power supply output on or off.
This can be done with the front panel OUT ON button or from the
rear panel J1 connector. With the output off, adjustments can be
made to the power supply or the load without shutting off AC power.
OUT ON button
The OUT ON button can be pressed at any time to enable or disable
the power supply output. When the output is disabled, the output
voltage and current go to zero and the display shows OFF.
Safe-Start and Auto-Restart
The power supply can be programmed to have either the last
operating settings (Auto-Restart) or the reset settings (Safe-Start)
apply at turn-on. Press and hold the OUT ON button to select between
Safe-Start and Auto-Restart modes. The display continuously cycles
between SAF and AUT every three seconds. Releasing the OUT ON
button while one of the modes is displayed, selects that mode.
In Safe-Start mode, the power supply turns on with the reset
settings (see chapter 5 under “*RST”). The output is disabled and the
output voltage and current are zero. This is the factory default.
In Auto-Restart mode, the power supply restores the operating
settings that were saved when it was last turned off (see below). The
output is either enabled or disabled according to its last setting.
Output On/Off state
UVL level
Output voltage setting
OCP setting
Output current setting
Locked/Unlocked front panel
OVP level
Start-up mode
Output Shut-Off Terminals
Output Shut-Off (SO) terminals are available on the J1 connector to
enable or disable the power supply output. This function is edgetriggered. J1 pin 15 is the Shut-Off input, and pins 2 and 3, which
are connected internally, are the signal common. All pins are
optically isolated from the power supply output. The Shut-Off input
accepts a 2.5V-to-15V signal or an open/short contact to enable or
disable the output. The Shut-Off control logic is selected by SW1
setup switch 5.
When an on-to-off transition is detected at the Shut-Off input, the
Shut-Off function enables or disables the output according to the
signal level or the open/short applied to J1 pin 15. When the output
has been disabled by the Shut-Off function, the display shows SO to
indicate the output is disabled.
44
Series N8700 User’s Guide
Operating the Power Supply Locally
3
To re-enable the output after it has shut down, you must disable the
Shut-Off signal. In Auto-Restart mode, operation resumes
automatically. In Safe-Start mode the Shut-Off function is latched.
You must also press the OUT ON button or send an
OUTPut:PROTection:CLEar command to resume operation.
The Shut-Off function can be used to shut down multiple power
supplies in a daisy-chain fashion as explained later in this chapter. It
can also be used to reset the OVP and OCP as previously described.
SW1 switch 5
SO Signal Level
Output
Display
Down (default)
2 - 15V or Open
On
Voltage/Current
0 – 0.4V or Short
Off
SO
2 - 15V or Open
Off
SO
0 – 0.4V or Short
On
Voltage/Current
Up
NOTE
Because this function is edge-triggered, it may not be triggered by every state
change. For example, after applying AC power, the output will not be disabled
by the Shut Off function if the Shut-Off input is in the shut-off state. This is
because the unit has not detected an on-to-off signal transition.
Enable/Disable Terminals
CAUTION
To prevent possible damage to the unit, do not connect the Enable + or Enable –
terminals to the positive or negative output terminals.
Enable/Disable terminals are available on the J1 connector to enable
or disable the power supply output. This function is level-triggered.
Simply connect a switch or relay between J1 pins 1 and 14. This
function is activated by SW1 setup switch 9.
These pins disable the output when they are opened. When the
output is disabled, the PROT indicator on the front panel will blink.
To re-enable the output after it has shut down, you must short the
Enable + and Enable – terminals. In Auto-Restart mode, operation
resumes automatically. In Safe-Start mode the Enable/Disable
function is latched. You must also press the OUT ON button or send
an OUTPut:PROTection:CLEar command to resume operation.
SW1 switch 9
ENA+/ENA– pins
Output
Display
Prot Indicator
Down (default)
Not active
On
Voltage/Current
Off
Up
Opened
Off
ENA
Blinking
Shorted
On
Voltage/Current
Off
Series N8700 User’s Guide
45
3
Operating the Power Supply Locally
Power Supply OK Signal
The Power Supply OK signal on the J1 connector indicates a fault
condition in the power supply. J1 pin 16 is a TTL output signal. Pins
2 and 3, which are connected internally, are the signal common. All
pins are optically isolated from the power supply output. With no
fault, Power Supply OK is high, with a maximum source current of
2mA. When a fault occurs, Power Supply OK is low, with a maximum
sink current of 1mA. The following faults set this signal low:
Over-voltage protection
Enable/Disable signal true
Over-current protection
Shut Off signal true
Over-temperature protection
Remote interface failure
AC line failure
Output turned off
Daisy-Chained Output Shut-down
It is possible to configure a multiple power supply system to shut
down all the units when a fault condition occurs in one of the units.
SW1 setup switch 5 must be in the Down position to enable the daisychain operation. Other switches are unaffected by this setting.
If a fault occurs in one unit, its Power Supply OK signal is set low and
its display will indicate the fault. The other units shut off with their
displays indicating SO. When the fault condition is cleared, all units
will recover according to their Safe-Start or Auto-Restart settings.
The following figure shows three units daisy-chained - the same
connection method can be used with additional units. The Shut Off
and Power Supply OK signals are referenced to Chassis Common (J1
pins 2 and 3).
POWER SUPPLY
#1
J1-2,3 J1-16
Com
46
POWER SUPPLY
J1-15
Supply OK
Shut Off
J1-2,3
Com
#2
J1-16
POWER SUPPLY
#3
J1-15
Supply OK
Shut Off
J1-2,3
Com
J1-16
J1-15
Supply OK
Shut Off
Series N8700 User’s Guide
Operating the Power Supply Locally
3
Analog Programming of Output Voltage and Current
CAUTION
J1 pin 12, pin 22, and pin 23 are internally connected to the negative sense
terminal. Do not reference these pins to any terminal other than the negative
sense terminal, as it may damage the unit.
In Local mode, the output voltage and current is programmed with
the front panel VOLTAGE and CURRENT knobs or over the remote
interface. In Analog mode, the output voltage and current can be
programmed either by an analog voltage or by resistors connected to
the rear panel J1 connector.
The J1 connector also provides monitoring signals for the output
voltage and output current. The programming range and monitoring
signal range can be selected using the SW1 setup switch.
NOTE
With analog programming enabled, you cannot program the output voltage or
current using the front panel knobs or the remote interface. However, you can
read back output voltage or current from the front panel or the remote interface.
Analog Programming Control Terminals
J1 connector pin 8 accepts a TTL signal or an open/short contact
switch (referenced to pin 12) to select between Local or Analog
programming of the output voltage and current. This function is
enabled or disabled by SW1 setup switches 1 and 2.
J1 connector pin 21 is an open collector output that indicates if the
power supply is in Local mode or in Analog mode. To use this output,
connect a pull-up resistor to a voltage source of 30 VDC maximum.
Choose the pull-up resistor so that the sink current will be less than
5mA when the output is in low state.
SW1 switch 1 and 2
J1 pin 8
function
J1 pin 21
signal
Output voltage/
current control
Both Down (default)
No effect
Open
Local
Either one, or both Up
0 or Short
0~0.6V
Analog
1 or Open
Open
Local
OUTPUT VOLTAGE
PROGRAMMING
CURRENT LIMIT
PROGRAMMING
+
12
+
10
9 8
13
1
25
14
23
Series N8700 User’s Guide
22
47
3
Operating the Power Supply Locally
Voltage Programming of Output Voltage and Current
To maintain the isolation of the power supply and prevent ground loops, use an
isolated programming source when operating the unit using analog programming.
CAUTION
Voltage programming sources of 0 - 5V or 0 - 10V can be used to
program the output voltage and current limit from zero to full scale.
Set the power supply to analog voltage programming as follows:
1
Make sure that the power supply is turned off.
2
Set SW1 setup switch 1 (for voltage) and 2 (for current) to the Up
position.
3
Set SW1 setup switch 3 to select programming voltage range
according to the table following these procedure steps.
4
Make sure that SW1 setup switches 7 and 8 are set Down.
5
Connect a short between J1 pin 8 and J1 pin 12 (see following
figure).
6
Connect the programming source to the mating plug of J1 as
shown in the following figure. Observe the correct polarity for the
voltage source.
7
Set the programming sources to the desired levels and turn the
power supply on. Adjust the programming sources to change the
power supply output.
The analog control circuits let you set the output voltage and current
limit up to 5% over the model-rated maximum value. The power
supply will operate within the extended range, however it is not
recommended to operate the power supply over its voltage and
current rating, and performance in this region is not guaranteed.
48
SW1 switch 3
Voltage Programming
(J1 pin 9)
Current Programming
(J1 pin 10)
Down (default)
0 – 5V
0 – 5V
Up
0 – 10V
0 – 10V
Series N8700 User’s Guide
Operating the Power Supply Locally
3
Resistance Programming of Output Voltage and Current
Resistances of 0 - 5 kΩ or 0 - 10 kΩ can be selected to program the
output voltage and current limit from zero to full scale. Internal
current sources supply a 1 mA current through the external resistors.
The voltage drop across the resistors is used as the programming
voltage for the power supply. To maintain the temperature stability
specification of the power supply, only use resistors that are stable
and low noise, with a temperature coefficient less than 50 ppm.
Set the power supply to resistance programming as follows:
1
Make sure that the power supply is turned off.
2
Set SW1 setup switch 1 (for voltage) and 2 (for current) to the UP
position.
3
Set SW1 setup switch 3 to select programming resistance range
according to the table following these procedure steps.
4
Set SW1 setup switch 7 (for voltage) and 8 (for current) to the Up
position to enable resistance programming.
5
Connect a short between J1 pin 8 and J1 pin 12 (see figure).
6
Connect the programming resistors to the mating plug of J1 as
shown in the following figure. A variable resistor can control the
output over its entire range, or a combination of variable resistor
and series/parallel resistors can control the output over a
restricted portion of its range.
7
Set the programming resistors to the desired resistance and turn
the power supply on. Adjust the resistors to change the power
supply output.
The analog control circuits let you set the output voltage and current
limit up to 5% over the model-rated maximum value. The power
supply will operate within the extended range, however it is not
recommended to operate the power supply over its voltage and
current rating, and performance in this region is not guaranteed.
SW1 switch 3
Voltage Programming
(J1 pin 9)
Current programming
(J1 pin 10)
Down (default)
0 – 5 kΩ
0 – 5 kΩ
Up
0 – 10 kΩ
0 – 10 kΩ
OUTPUT VOLTAGE
PROGRAMMING
CURRENT LIMIT
PROGRAMMING
PROGRAMMING
RESISTOR
PROGRAMMING
RESISTOR
12
10
9 8
13
1
14
25
OPTIONAL SETS
LOWER LIMIT
OPTIONAL SETS
UPPER LIMIT
Series N8700 User’s Guide
23
22
OPTIONAL SETS
LOWER LIMIT
OPTIONAL SETS
UPPER LIMIT
49
3
Operating the Power Supply Locally
External Monitoring of Output Voltage and Current
The J1 connector also provides analog signals for monitoring the
output voltage and current. Selection of the voltage range between 0
– 5V or 0 – 10V is made by SW1 setup switch 4. The monitoring
signals represent 0 to 100% of the power supply output voltage and
current rating. The monitor outputs have a 500Ω series output
resistance. Make sure that the sensing circuit has an input resistance
greater than 500 kΩ or the accuracy will be reduced.
SW1 switch 4
Voltage
range
J1 signal
connection
Signal function
Down (default)
0 – 5V
J1 pin 11
Voltage Monitor
J1 pin 24
Current Monitor
J1 pin 11
Voltage Monitor
J1 pin 24
Current Monitor
Up
0 – 10V
J1 pin 12 is the signal common for J1 pins 11 and 24.
50
Series N8700 User’s Guide
4
Operating the Power Supply Remotely
Connecting to the Interfaces .......................................................................... 52
SCPI Commands – an Introduction ................................................................ 62
This chapter contains information on how to configure the three
remote interfaces that are provided on the back of the instrument. In
most cases you can connect your power supply to any one of these
interfaces and be up and running with a minimum amount of
configuration.
NOTE
Detailed information on configuring the remote interfaces is included in the
USB/LAN/GPIB Interfaces Connectivity Guide document located on the
Automation-Ready CD-ROM included with this product.
This chapter also contains a brief introduction to the SCPI
Programming language. SCPI (Standard Commands for
Programmable Instruments) is a programming language for
controlling instrument functions over the GPIB. SCPI is layered on
top of the hardware-portion of IEEE 488.2. The same SCPI commands
and parameters control the same functions in different classes of
instruments.
Series N8700 User’s Guide
51
4
Operating the Power Supply Remotely
Connecting to the Interfaces
The Agilent N8700 power supplies support remote interface
communication using a choice of three interfaces: GPIB, USB, and
LAN. All three interfaces are live at power-on.
GPIB Interface
NOTE
For detailed information about GPIB interface connections, refer to the Agilent
Technologies USB/LAN/GPIB Interfaces Connectivity Guide, located on the
Automation-Ready CD-ROM that is shipped with your product.
The following steps will help you quickly get started connecting your
instrument to the General Purpose Interface Bus (GPIB). The
following figure illustrates a typical GPIB interface system.
1
If you have not already done so, install the Agilent IO Libraries
Suite from the Automation-Ready CD-ROM that is shipped with
your product.
2
If you do not have a GPIB interface card installed on your
computer, turn off your computer and install the GPIB card.
3
Connect your instrument to the GPIB interface card using a GPIB
interface cable.
4
Use the Connection Expert utility of the Agilent IO Libraries
Suite to configure the installed GPIB interface card’s parameters.
5
The power supply is shipped with its GPIB address set to 5. Use
the front panel menu if you need to change the GPIB address.
6
52
a
Press and hold the OCP/488 button for about three seconds.
The DC VOLTS display will show the present GPIB address.
b
To change the GPIB address, turn the voltage knob until the
desired GPIB address appears in the display. Valid GPIB
addresses are in the range of 0 to 30.
You can now use Interactive IO within the Connection Expert to
communicate with your instrument, or you can program your
instrument using the various programming environments.
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
USB Interface
NOTE
For detailed information about USB interface connections, refer to the Agilent
Technologies USB/LAN/GPIB Interfaces Connectivity Guide, located on the
Automation-Ready CD-ROM that is shipped with your product.
The following steps will help you quickly get started connecting your
USB-enabled instrument to the Universal Serial Bus (USB). The
following figure illustrates a typical USB interface system.
NOTE
1
If you have not already done so, install the Agilent IO Libraries
Suite from the Automation-Ready CD-ROM that is shipped with
your product.
2
Connect your instrument to the USB port on your computer.
3
With the Connection Expert utility of the Agilent IO Libraries
Suite running, the computer will automatically recognize the
instrument. This may take several seconds. When the instrument
is recognized, your computer will display the VISA alias, IDN
string, and VISA address. This information is located in the USB
folder.
The VISA address is: USB0::2391::2055::model-serialnumber::0:INSTR
where 2391 is the Agilent code, 2055 is the N8700 code, model is the 6character model number, and serialnumber is the 10-character serial number
located on the label on the side of the unit.
4
You can now use Interactive IO within the Connection Expert to
communicate with your instrument, or you can program your
instrument using the various programming environments.
LAN Interface
NOTE
For detailed information about LAN interface connections, refer to the Agilent
Technologies USB/LAN/GPIB Interfaces Connectivity Guide, located on the
Automation-Ready CD-ROM that is shipped with your product.
The following steps will help you quickly get started connecting and
configuring your instrument on a local area network (LAN). The two
types of local area networks connections that are discussed in this
section are site networks and private networks.
Series N8700 User’s Guide
53
4
Operating the Power Supply Remotely
Connecting to a Site LAN
A site LAN is a local area network in which LAN-enabled instruments
and computers are connected to the network through routers, hubs,
and/or switches. They are typically large, centrally-managed
networks with services such as DHCP and DNS servers.
1
If you have not already done so, install the Agilent IO Libraries
Suite from the Automation-Ready CD-ROM that is shipped with
your product.
2
Connect the instrument to the site LAN. Provided that your
network has a DHCP server and uses Dynamic DNS naming
service, the instrument will automatically obtain an IP address
from the network. This may take up to one minute. It will also
register its hostname with the dynamic DNS server. The default
hostname can then be used to communicate with the instrument.
The front panel LAN indicator will come on when the LAN port
has been configured. If you are unable to communicate with the
instrument, check that a valid IP address has been assigned.
Press the front panel LAN button to view the IP address.
NOTE
Each Agilent N8700 power supply is shipped with a default hostname with the
format: A-modelnumber-serialnumber where modelnumber is the instrument’s
6-character model number (e.g. N8741A), and serialnumber is 5th through the
9th character of the 10-character serial number located on the label on the side
of the unit (e.g. H1234 if the serial number is US24H12345). A-N8741A-H1234 is
an example of a hostname.
3
NOTE
If this does not work, refer to the chapter on “Troubleshooting Guidelines” in
the Agilent Technologies USB/LAN/GPIB Interfaces Connectivity Guide.
4
54
Use the Connection Expert utility of the Agilent IO Libraries
Suite to add the N8700 power supply and verify a connection. To
add the instrument, you can request the Connection Expert to
discover the instrument. If the instrument cannot be found, you
can add the instrument using the instrument’s hostname.
You can now use Interactive IO within the Connection Expert to
communicate with your instrument, or you can program your
instrument using the various programming environments. You
can also use the Web browser on your computer to communicate
with the instrument as described under “Using the Web Server”
later in this chapter.
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
Connecting to a Private LAN:
A private LAN is a network in which LAN-enabled instruments and
computers are directly connected, and not connected to a site LAN.
They are typically small, with no centrally-managed resources.
NOTE
1
If you have not already done so, install the Agilent IO Libraries
Suite from the Automation-Ready CD-ROM that is shipped with
your product.
2
Connect the instrument to the computer using a LAN crossover
cable. Alternatively, connect the computer and the instrument to
a standalone hub or switch using regular LAN cables.
Make sure your computer is configured to obtain its address from DHCP and that
NetBIOS over TCP/IP is enabled. If the computer had been connected to a site LAN,
it may still retain previous network settings from the site LAN. Wait one minute after
disconnecting it from the site LAN before connecting it to the private LAN. This
allows Windows to sense that it is on a different network and restart the network
configuration. If you are running Windows 98, you may need to manually release the
previous settings.
3
The factory-shipped instrument LAN settings are configured to
automatically obtain an IP address from the network using a
DHCP server, or using AutoIP if a DHCP server is not present.
You can leave these settings as they are. Most Agilent products
and most computers will automatically choose an IP address
using auto-IP if a DHCP server is not present. Each assigns itself
an IP address from the block 169.254.nnn. Note that this may
take up to one minute.
The front panel LAN indicator will come on when the LAN port
has been configured. If you are unable to communicate with the
instrument, check that a valid IP address has been assigned.
Press the front panel LAN button to view the IP address.
4
NOTE
Series N8700 User’s Guide
Use the Connection Expert utility of the Agilent IO Libraries
Suite to add the N8700 power supply and verify a connection. To
add the instrument, you can request the Connection Expert to
discover the instrument. If the instrument cannot be found, you
can add the instrument using the instrument’s hostname. The
default hostname is described under “Connecting to a Site LAN”.
If this does not work, refer to the chapter on “Troubleshooting Guidelines” in the
Agilent Technologies USB/LAN/GPIB Interfaces Connectivity Guide.
55
4
Operating the Power Supply Remotely
5
You can now use Interactive IO within the Connection Expert to
communicate with your instrument, or you can program your
instrument using the various programming environments. You
can also use the Web browser on your computer to communicate
with the instrument as described under “Using the Web Server”.
LAN Communication
The Agilent IO Libraries Suite along with instrument drivers for
specific programming environments can be used to communicate
with your power supply. Your can also communicate with your power
supply using its built-in Web server, the Telnet utility, or sockets.
These latter methods are a convenient way to communicate with the
power supply without using I/O libraries or drivers.
Ethernet Connection Monitoring
Agilent N8700 power supplies that have the LXI label on the front
panel provide Ethernet connection monitoring. With Ethernet
connection monitoring, the instrument’s LAN port is continually
monitored, and automatically reconfigured when the instrument is
unplugged for a minimum of 20 seconds and then reconnected to a
network. The front panel LAN indicator will come on when the LAN
port is connected and configured.
Using the Web Server
Your power supply has a built-in Web server that lets you control it
directly from an internet browser on your computer. With the Web
server, you can control and configure all of the front panel functions
as well as additional functions such as triggering and the LAN
parameters, which are not available from the front panel.
NOTE
The built-in Web server only operates over the LAN interface. It requires Internet
Explorer 7+. You also need the Java Plug-in version 7+. This is included in the
Java Runtime Environment.
The Web server is enabled when shipped. To launch the Web server:
1
Open the internet browser on your computer.
2
Select Connections in the Tools menu, under Internet Options.
Then select LAN Settings and make sure that the Bypass proxy
server for local addresses box is checked.
3
Enter the instrument’s hostname into the browser’s Address field
to launch the Web server. The following home page will appear.
4
Click on the Browser Web Control button in the navigation bar
on the left to begin controlling your instrument.
5
For additional help about any of the pages, click on the Help with
this Page button.
If desired, you can control access to the Web server using password
protection. As shipped from the factory, no password is set. To set a
password, refer to the section “Configuring the LAN Parameters”.
56
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
Using Telnet
In an MS-DOS Command Prompt box type: telnet hostname 5024
where hostname is the N8700 hostname or IP address, and 5024 is
the instrument’s telnet port.
You should get a Telnet session box with a title indicating that you
are connected to the power supply. Type the SCPI commands at the
prompt.
Using Sockets
Agilent instruments have standardized on using port 5025 for SCPI
socket services. A data socket on this port can be used to send and
receive ASCII/SCPI commands, queries, and query responses. All
commands must be terminated with a newline for the message to be
parsed. All query responses will also be terminated with a newline.
The power supply allows any combination of up to three
simultaneous data socket and telnet connections to be made.
The socket programming interface also allows a control socket
connection. The control socket can be used by a client to send device
clear and to receive service requests. Unlike the data socket, which
uses a fixed port number, the port number for a control socket varies
and must be obtained by sending the following SCPI query to the data
socket: SYSTem:COMMunicate:TCPip:CONTrol?
After the control port number is obtained, a control socket
connection can be opened. As with the data socket, all commands to
the control socket must be terminated with a newline. All query
responses will also be terminated with a newline.
To send a device clear, send the string “DCL” to the control socket.
When the power supply has finished performing the device clear it
echoes the string “DCL” back to the control socket.
Series N8700 User’s Guide
57
4
Operating the Power Supply Remotely
Service requests are enabled for control sockets using the Service
Request Enable register. Once service requests have been enabled,
the client program listens on the control connection. When SRQ goes
true the instrument will send the string “SRQ +nn” to the client. The
“nn” is the status byte value, which the client can use to determine
the source of the service request.
Configuring the LAN Parameters
To configure the LAN parameters from the instrument’s Web server,
launch the Web server as previously described, and click on the View
& Modify Configuration tab on the left side of the page. Then click on
the Modify Configuration button on the top of the page. The following
screen lets you modify the LAN parameters:
The configurable LAN parameters are described as follows:
58
Obtain IP
Address
This parameter configures the addressing of the instrument. Auto
automatically configures the addressing. When selected, the instrument first
tries to obtain an IP address from a DHCP server. If a DHCP server is found,
the DHCP server assigns an IP address, Subnet Mask, and Default Gateway to
the instrument. If a DHCP server is unavailable, the instrument tries to obtain
an IP address using AutoIP. AutoIP automatically assigns an IP address,
Subnet Mask, and Default Gateway addresses on networks that do not have a
DHCP server. Manual allows you to manually configure the addressing of the
instrument by entering values in the following three fields.
IP Address
This value is the Internet Protocol (IP) address of the instrument. An IP
address is required for all IP and TCP/IP communications with the instrument.
An IP Address consists of 4 decimal numbers separated by periods. Each
decimal number ranges from 0 through 255.
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
Subnet Mask
This value is used to enable the instrument to determine if a client IP address
is on the same local subnet. When a client IP address is on a different subnet,
all packets must be sent to the Default Gateway.
Default
Gateway
This value is the IP Address of the default gateway that allows the instrument
to communicate with systems that are not on the local subnet, as determined
by the subnet mask setting.
DNS
DNS is an internet service that translates domain names into IP addresses.
This parameter indicates whether the IP address of the Domain Name System
(DNS) server is obtained automatically or manually. Auto obtains the DNS
server address from DHCP. Manual uses the DNS server in the following field.
DNS Server
This value is the address of the Domain Name System (DNS) server. If DHCP
is disabled, the DNS server parameter is needed for the instrument to be able
to find and display its hostname.
Naming
Service
This parameter specifies the Naming service, if any, to be used to register the
instrument. NetBIOS indicates the instrument will be registered using the RFC
NetBIOS naming protocol. Dynamic DNS indicates the instrument will be
registered using the Dynamic DNS naming system.
Host Name
This field registers the supplied name with the selected naming service. If the
field is blank, no name is registered. A hostname may contain upper and lower
case letters, numbers and dashes(-). The maximum length is 15 characters.
The format is A-modelnumber-serialnumber. Modelnumber is the instrument’s
6-character model number, and serialnumber is 5th through the 9th character
of the 10-character serial number located on the label on the side of the unit.
Domain
This field registers the Internet domain for the instrument. The Domain must
start with a letter and may contain upper and lower case letters, numbers,
dashes(-) and dots(.).
Description
This field lets you assign a user-friendly name to the instrument. This name is
used as the title of the instrument’s Web home page.
LAN
Keepalive
Timeout
This value sets the LAN keepalive in seconds. The instrument uses the LAN
keepalive timer to determine if a client is still reachable. If there has been no
activity on the connection after the specified time, the instrument will send
keepalive probes to the client to determine if it is still alive. If not, the
connection will be marked as down or "dropped." The instrument will release
any resources that were allocated to that client. When setting this parameter,
it is recommended that the largest value be used that still meets the
application's need for unreachable client detection. Smaller keepalive timeout
values will generate more keepalive probes (network traffic), using more of the
available network bandwidth. Check the Enable box to enable the LAN
Keepalive function. Allowed values: 720-99999 seconds.
GPIB Address
This field shows the instrument's GPIB bus address. The GPIB address can be
configured using the instrument's front panel.
Change
Password
Series N8700 User’s Guide
This field lets you change the Web password. Enter the old password to
confirm access. Enter the new password in the Enter New field and in the
Confirm New field. The password can be up to 12 alpha-numeric characters
(letters, numbers, underscore); case insensitive. The first character must be a
letter. If the fields are blank, password checking is disabled.
59
4
Operating the Power Supply Remotely
Factory-shipped LAN Settings
The factory-shipped LAN settings documented in the following table
are optimized for connecting your power supply to a site network.
They should also work well for other network configurations.
The factory-shipped settings can be restored by pressing and holding
the front panel LAN button for three seconds. Pressing the LAN
button again while the message “LAn rES” is displayed resets the
LAN settings.
Factory-shipped non-volatile LAN settings
Get IP Address
Automatic
Dynamic DNS naming service
Enabled
IP Address
169.254.57.0
NetBIOS naming service
Enabled
Subnet Mask
255.255.0.0
Domain name
Blank
Default Gateway
0.0.0.0
TCP keepalive
Enabled
Obtain DNS server from DHCP
Enabled
TCP keepalive seconds
1800
DNS server
Blank
Ethernet Auto-negotiation
Enabled
Host name
A-N87xxA-xxxxx
Ping server
Enabled
Web password
Blank
Using the Setup Utility
A Setup utility that lets you configure the LAN settings of your
instrument is provided on the Product Reference CD-ROM included
with this manual. Install and run this Setup utility if you cannot
configure the LAN interface as previously described in this section.
Note that the utility requires the Agilent IO Libraries Suite.
60
1
Connect your power supply to your computer using either the
USB interface or the GPIB interface as previously described.
2
Install the Setup utility on your computer. Run the Setup utility
by clicking Start|Programs|Agilent|N8700 Setup Utility.
3
Configure the following LAN address parameters. These are
located under the Settings tab. For a description of these
parameters, refer to the previous section.
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
4
Enable the LAN and, optionally, the built-in Web server using the
applicable check boxes.
5
Click the Set button to save all the settings information.
6
Connect the LAN cable to your instrument and computer. Reboot
the instrument. Wait for the instrument to configure the new
LAN settings.
7
View the LAN settings by clicking the LAN Status tab. Click the
Refresh button to update the display with the assigned IP
Address and Subnet Mask.
8
You can view information about the GPIB or USB interface by
clicking the Connections tab.
You can also use the Setup utility to view model-specific information
about your power supply. Click the Model About tab to view the
model number, serial number, active firmware version, backup
firmware version, and output ratings.
Series N8700 User’s Guide
61
4
Operating the Power Supply Remotely
SCPI Commands – an Introduction
SCPI (Standard Commands for Programmable Instruments) is an
ASCII-based instrument command language designed for test and
measurement instruments. SCPI commands are based on a
hierarchical structure, also known as a tree system. In this system,
associated commands are grouped together under a common node or
root, thus forming subsystems. Subsystem commands perform
specific power supply functions. A portion of the SOURce subsystem
is shown below to illustrate the tree system.
[SOURce:]
CURRent
[:LEVel]
[:IMMediate] <NRf+>
:TRIGgered <NRf+>
:PROTection
:STATe <Bool>
SOURce is the root keyword of the command, CURRent is a secondlevel keyword, LEVel and PROTection are third-level keywords, and
IMMediate, TRIGgered and STATe are fourth-level keywords. Colons
(:) separate higher-level from lower-level keywords.
Syntax
The following command syntax is used in this manual:
Square Brackets [ ]
Items within square brackets are optional. The representation [SOURce:]VOLTage
means that SOURce: may be omitted.
Angle brackets < >
Items within angle brackets are parameter descriptions. For example, <NR1>
indicates a specific form of numerical data.
Vertical bar
Vertical bars separate alternative parameters. For example, VOLT | CURR indicates
that either "VOLT" or "CURR" can be used as a parameter.
|
The syntax characters cannot be included in the command string.
Multiple Commands in a Message
Multiple SCPI commands can be combined and sent as a single
message with one message terminator. There are two important
considerations when sending several commands within a single
message:

Use a semicolon (;) to separate commands within a message.

There is an implied path that affects how commands are
interpreted by the power supply.
The command path can be thought of as a string that gets inserted
before each keyword within a message. For the first command in a
message, the path is a null string. For each subsequent command the
path is defined as the characters that make up the keywords of the
62
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
previous command in the message up to and including the last colon
separator. An example of a message with two commands is:
OUTPut:STATe ON;PROTection:CLEar
which shows the use of the semicolon separating the two commands,
and also illustrates the command path concept. Note that with the
second command, the leading keyword OUTPut was omitted because
after the OUTPut:STATe ON command, the path became defined as
OUTPut, and thus the second command was interpreted as:
OUTPut:PROTection:CLEar
In fact, it would have been incorrect to include the OUTPut keyword
in the second command, because the result after combining it with
the command path would be:
OUTPut:OUTPut:PROTection:CLEar
which would result in a syntax error.
Commands from Different Subsystems
In order to combine commands from different subsystems, you need
to be able to reset the command path to a null string within a
message. Beginning the command with a colon (:), discards the
previous path. For example, you could clear the output protection
and check the status of the Operation Condition register in one
message by using a root specifier as follows:
OUTPut:PROTection:CLEar;:STATus:OPERation:CONDition?
The following message shows how to combine commands from
different subsystems as well as within the same subsystem.
VOLTage:LEVel 7.5;PROTection 10;:CURRent:LEVel 0.25
Note the use of the optional keyword LEVel to maintain the correct
path within the subsystems, and the use of the root specifier (:) to
move between subsystems.
Message Unit
The simplest SCPI command is a single message unit consisting of a
keyword followed by a message terminator such as newline. The
message unit may include a parameter after the keyword. The
parameter can be numeric or a string.
ABORt<NL>
VOLTage 20<NL>
VOLTage:TRIGgered MINimum<NL>
Colons (:) separate higher-level keywords from lower-level keywords.
Use a blank space to separate parameters from keywords. If a
command requires more than one parameter, use commas to
separate adjacent parameters.
Series N8700 User’s Guide
63
4
Operating the Power Supply Remotely
In the previous examples, the upper-case letters indicate the
abbreviated spelling for the keyword. For shorter program lines, you
can send the abbreviated form. For better program readability, you
can send the long form. For example, VOLT and VOLTage are both
acceptable forms. You can use upper- or lower-case letters. Therefore,
VOLTAGE, Volt, and volt are all acceptable. Other forms, such as VOL
and VOLTAG, generate an error.
Queries
You can query the current value of most commands by adding a
question mark to the command (VOLTage?, VOLTage:TRIGgered?). If
a query contains a parameter, place the query indicator at the end of
the last keyword. Observe the following precautions with queries:

Add a blank space between the query indicator (?) and any
subsequent parameter. (VOLTage:TRIGgered? MAX)

Set up the proper number of variables for the returned data.

Read back all the results of a query before sending another
command to the power supply. Otherwise a Query Interrupted
error will occur and the unreturned data will be lost.
Common Commands
Common commands generally control overall power supply
functions, such as reset, status, and synchronization. All common
commands consist of a three-letter mnemonic preceded by an
asterisk: *RST *IDN? *SRE 8
You can combine common commands with subsystem commands in
the same message. Use semicolons to separate the common command
from the subsystem commands. Common commands do not affect the
command path; you may insert them anywhere in the message.
VOLTage:TRIGgered 10;:INITiate;*TRG
OUTPut OFF;*RCL 2;OUTPut ON
Command Terminators
A terminator informs SCPI that it has reached the end of a command.
Three permitted command terminators are:

newline (<NL>), which is ASCII decimal 10 or hex 0A.

end or identify (<END>)

both of the above (<NL><END>).
In the examples of this guide, the message terminator is assumed.
64
Series N8700 User’s Guide
Operating the Power Supply Remotely
4
Parameter Types
Data programmed or queried from the power supply is ASCII. The
data may be numerical or character string.
Numeric Parameters
Symbol
Response Formats
<NR1>
Digits with an implied decimal point assumed at the right of the
least-significant digit. Examples: 273
<NR2>
Digits with an explicit decimal point. Example: 27.3
<NR3>
Digits with an explicit decimal point and an exponent. Example:
2.73E+02
Parameter Formats
<NRf>
Extended format that includes <NR1>, <NR2> and <NR3>.
Examples: 273 27.3 2.73E+02
<NRf+>
Expanded decimal format that includes <NRf> and MIN, MAX.
Examples: 273 27.3 2.73E+02 MAX.
MIN and MAX are the minimum and maximum limit values that
are implicit in the range specification for the parameter.
<Bool>
Boolean Data. Can be numeric (0, 1), or named (OFF, ON).
<SPD>
String program data. String parameters enclosed in single or
double quotes.
Suffixes and Multipliers
Class
Suffix
Unit
Unit with Multiplier
Current
A
ampere
MA (milliampere)
Amplitude
V
volt
MV (millivolt)
Time
S
second
MS (millisecond)
Common Multipliers
1E3
K
kilo
1E-3
M
milli
1E-6
U
micro
Response Data Types
Series N8700 User’s Guide
Symbol
Response Formats
<CRD>
Character Response Data. Returns discrete parameters. Only
the short form of the parameter is returned.
<AARD>
Arbitrary ASCII Response Data. Permits the return of
undelimited 7-bit ASCII. This data type has an implied message
terminator.
<SRD>
String Response Data. Returns string parameters enclosed in
double quotes.
65
4
Operating the Power Supply Remotely
SCPI Command Completion
SCPI commands sent to the power supply are processed either
sequentially or in parallel. Sequential commands finish execution
before a subsequent command begins. Parallel commands allow other
commands to begin executing while the parallel command is still
executing.
The following is a list of parallel commands. You should use some
form of command synchronization as discussed in this section before
assuming that these commands have completed.
OUTPut:STATe
VOLTage
CURRent
INITiate
OUTPut:PROTection:CLEar
The *WAI, *OPC, and *OPC? common commands provide different
ways of indicating when all transmitted commands, including any
parallel ones, have completed their operations. Some practical
considerations for using these commands are as follows:
*WAI This command prevents the power supply from processing subsequent
commands until all pending operations are completed. For example,
the *WAI command can be used to make a voltage measurement after
an output on command has completed:
OUTPut ON;*WAI;:MEASure:VOLTage?
*OPC? This command places a 1 in the Output Queue when all pending
operations have completed. Because it requires your program to read
the returned value before executing the next program statement,
*OPC? can be used to cause the controller to wait for commands to
complete before proceeding with its program.
*OPC This command sets the OPC status bit when all pending operations
have completed. Since your program can read this status bit on an
interrupt basis, *OPC allows subsequent commands to be executed.
NOTE
The trigger subsystem must be in the Idle state for the status OPC bit to be
true. As far as triggers are concerned, OPC is false whenever the trigger
subsystem is in the Initiated state.
Device Clear
You can send a Device Clear at any time to abort a SCPI command
that may be hanging up the GPIB interface. Device Clear clears the
input and output buffers of the power supply. The status registers,
error queue, and all configuration states are left unchanged by Device
Clear. Device Clear also prepares the power supply to accept a new
command string. The following statement shows how to send a device
clear over the GPIB interface using Agilent BASIC:
CLEAR 705
66
IEEE-488 Device Clear
Series N8700 User’s Guide
5
Language Reference
SCPI Command Summary ................................................................................ 68
Calibration Commands ..................................................................................... 70
Measure Commands......................................................................................... 71
Output Commands ............................................................................................ 72
Source Commands ............................................................................................ 73
Status Commands ............................................................................................. 75
System Commands ........................................................................................... 81
Trigger Commands ............................................................................................ 83
This section gives the syntax and parameters for all the IEEE 488.2
SCPI Subsystem commands and Common commands used by the
power supply. It is assumed that you are familiar with the material in
chapter 4, which explains the terms, symbols, and syntactical
structures used here and gives an introduction to programming. You
should also be familiar with chapter 3, in order to understand how
the power supply functions.
Subsystem commands are specific to functions. They can be a single
command or a group of commands. The groups are comprised of
commands that extend one or more levels below the root. The
subsystem commands are arranged alphabetically according to the
function they perform.
Common commands begin with an * and consist of three letters
(command) or three letters and a ? (query). They are defined by the
IEEE 488.2 standard to perform common interface functions.
Common commands are grouped along with the subsystem
commands according to the function they perform.
Series N8700 User’s Guide
67
5
Language Reference
SCPI Command Summary
NOTE
Some [optional] commands have been included for clarity. All settings commands
have a corresponding query.
Subsystem Commands
SCPI Command
Description
ABORt
Aborts the triggered action
CALibrate
:CURRent[:LEVel]
:DATA <NRf>
:DATE <”SPD”>
:LEVel P1 | P2
:PASSword <NRf>
:STATE <Bool> [,<NRf>]
:VOLTage[:LEVel]
Calibrates the output current programming
Enters the calibration value
Sets the calibration date
Advances to the next calibration step
Sets the numeric calibration password
Enables/disables calibration mode
Calibrates the output voltage programming
INITiate
[:IMMediate][:TRANsient]
:CONTinuous[:TRANsient]
Initiates the trigger system
Enables/disables continuous triggers
MEASure
[:SCALar]
:CURRent[:DC]?
:VOLTage[:DC]?
Returns the measured output current
Returns the measured output voltage
OUTPut
[:STATe] <Bool>
:PON
:STATe RST | AUTO
:PROTection
:CLEar
[SOURce:]
CURRent
[:LEVel]
[:IMMediate][:AMPLitude] <NRf+>
:TRIGgered[:AMPLitude] <NRf+>
:PROTection
:STATe <Bool>
VOLTage
[:LEVel]
[:IMMediate][:AMPLitude] <NRf+>
:TRIGgered[:AMPLitude] <NRf+>
:LIMit
:LOW <NRf+>
:PROTection
[:LEVel] <NRf+>
68
Enables/disables the specified output
Programs the Power-On State
Resets latched protection
Sets the output current
Sets the triggered output current
Enables/disables over-current protection
Sets the output voltage
Sets the triggered output voltage
Sets the low-voltage limit
Sets the over-voltage protection level
Series N8700 User’s Guide
Language Reference
SCPI Command
5
Description
STATus
:OPERation
[:EVENt]?
:CONDition?
:ENABle <NRf>
:NTRansition<NRf>
:PTRansition<NRf>
:PRESet
:QUEStionable
[:EVENt]?
:CONDition?
:ENABle <NRf>
:NTRansition<NRf>
:PTRansition<NRf>
Returns the value of the operation event register
Returns the value of the operation condition register
Enables specific bits in the Event register
Sets the Negative transition filter
Sets the Positive transition filter
Presets all enable and transition registers to power-on
Returns the value of the questionable event register
Returns the value of the questionable condition register
Enables specific bits in the Event register
Sets the Negative transition filter
Sets the Positive transition filter
SYSTem
:COMMunicate
:RLSTate LOCal | REMote | RWLock
:ERRor?
:VERSion?
Specifies the Remote/Local state of the instrument
Returns the error number and error string
Returns the SCPI version number
TRIGger
:SOURce BUS
[:TRANsient][:IMMediate]
Sets the transient trigger source
Generates a transient trigger
Common Commands
Series N8700 User’s Guide
Command
Description
*CLS
*ESE <NRf>
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*OPT?
*RCL <NRf>
*RST
*SAV <NRf>
*SRE <NRf>
*SRE?
*STB?
*TRG
*TST
*WAI
Clear status
Standard event status enable
Return standard event status enable
Return event status register
Return instrument identification
Enable "operation complete" bit in ESR
Return a "1" when operation complete
Return option number
Recalls a saved instrument state
Reset
Saves an instrument state
Set service request enable register
Return service request enable register
Return status byte
Trigger
Performs self-test, then returns result
Holds off bus until all device commands done
69
5
Language Reference
Calibration Commands
Calibration commands let you enable and disable the calibration
mode, change the calibration password, calibrate current and voltage
programming, and store new calibration constants in nonvolatile
memory.
NOTE
If calibration mode has not been enabled with CALibrate:STATe, the calibration
commands will generate an error.
CALibrate:CURRent[:LEVel]
This command initiates the calibration of the output current.
CALibrate:DATA <value>
This command enters a calibration value that you obtain by reading
an external meter. You must first select a calibration level (with
CALibrate:LEVel) for the value being entered. Data values are
entered in either volts or amperes, depending on which function is
being calibrated.
CALibrate:DATE <“date”>
CALibrate:DATE?
This command stores the date the unit was last calibrated. The data
must be of the numeric format “yyyy/mm/dd” where yyyy indicates
the year, mm indicates the month, and dd indicates the day. The
query returns the date.
CALibrate:LEVel P1|P2
This command selects the next point in the calibration sequence.
P1 is the first calibration point,
P2 is the second calibration point.
CALibrate:PASSword <password>
This command lets you change the calibration password. A new
password is automatically stored in nonvolatile memory. If the
password is set to 0, password protection is removed and the ability
to enter calibration mode is unrestricted. The default password is 0
(zero).
70
Series N8700 User’s Guide
Language Reference
5
CALibrate:STATe ON|OFF [,<password>]
CALibrate:STATe?
This command enables/disables calibration mode. Calibration mode
must be enabled for the power supply to accept any other calibration
commands. The first parameter specifies the enabled or disabled
state On (1) or Off (0). The second parameter is the password.
A password is required if calibration mode is being enabled and the
existing password is not 0. If the password is not entered or is
incorrect, an error is generated and the calibration mode remains
disabled. The query returns only the state, not the password.
The *RST value = Off.
CALibrate:VOLTage[:LEVel]
This command initiates the calibration of the output voltage.
Measure Commands
Measure commands measure the output voltage or current. MEASure
commands acquire new data before returning the reading.
Measurement overflows return a reading of 9.91E+37.
MEASure[:SCALar]:CURRent[:DC]?
MEASure[:SCALar]:VOLTage[:DC]?
These queries perform a measurement and return the DC output
current in amperes or DC output voltage in volts.
Series N8700 User’s Guide
71
5
Language Reference
Output Commands
Output commands enable the output, power-on, and protection
functions.
OUTPut[:STATe] ON|OFF
OUTPut[:STATe]?
This command enables or disables the specified output(s). The
enabled state is On (1); the disabled state is Off (0). The state of a
disabled output is a condition of zero output voltage and a zero
source current (see *RST). The query returns 0 if the output is off,
and 1 if the output is on. The *RST value = Off.
OUTPut:PON:STATe RST|AUTO
OUTPut:PON:STATe?
This command determines if the power-on state will be determined
by the reset state, or the settings the unit had when it was turned off.
RST programs the unit to the reset state; AUTO programs the unit to
the settings it had when it was turned off. The power-on state
information is saved on non-volatile memory.
Refer to *RST and *RCL under System Commands for details.
OUTPut:PROTection:CLEar
This command clears the latched signals that have disabled the
output. The over-voltage and over-current conditions are always
latching. The over-temperature condition, AC-fail condition, Enable
pins, and SO pins are latching if OUTPut:PON:STATe is RST, and nonlatching if OUTPut:PON:STATe is AUTO.
All conditions that generate the fault must be removed before the
latch can be cleared. The output is then restored to the state it was in
before the fault condition occurred.
72
Series N8700 User’s Guide
Language Reference
5
Source Commands
Source commands program the voltage, current, triggered, and
protection functions.
[SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude] <value>|MIN|MAX
[SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude]? [MIN|MAX]
[SOURce:]CURRent[:LEVel]:TRIGgered[:AMPLitude] <value>|MIN|MAX
[SOURce:]CURRent[:LEVel]:TRIGgered[:AMPLitude]? [MIN|MAX]
These commands set the immediate and the triggered output current.
Values are programmed in amperes. The immediate level is the
output current setting. The triggered level is a stored value that
transfers to the output when a trigger occurs. The *RST values = Min.
Model ( I rating)
400A
330A
220A
165A
110A
85A
55A
42A
33A
22A
11A
5.5A
Minimum current
0
0
0
0
0
0
0
0
0
0
0
0
Maximum current
420
346.5
231
173.25
115.5
89.25
57.75
44.1
34.65
23.1
11.55
5.775
Model ( I rating)
250A
170A
125A
85A
65A
50A
34A
17A
8.5A
Minimum current
0
0
0
0
0
0
0
0
0
Maximum current
262.5
178.5
131.25
89.25
68.25
52.5
35.7
17.85
8.925
[SOURce:]CURRent:PROTection:STATe ON|OFF
[SOURce:]CURRent:PROTection:STATe?
This command enables or disables the over-current protection (OCP)
function. The enabled state is On (1); the disabled state is Off (0). If
the over-current protection function is enabled and the output goes
into constant current operation, the output is disabled and OC is set
in the Questionable Condition status register. The *RST value = Off.
An over-current condition can be cleared with the Output Protection
Clear command after the cause of the condition is removed.
[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude] <value>|MIN|MAX
[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude]? [MIN|MAX]
[SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPLitude] <value>|MIN|MAX
[SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPLitude]? [MIN|MAX]
These commands set the immediate and the triggered output voltage.
Values are programmed in volts. The immediate level is the output
voltage setting. The triggered level is a stored value that transfers to
the output when a trigger occurs. The *RST values = Min.
The range of values that can be programmed for these commands is
coupled with the voltage protection and the voltage limit low settings.
The maximum value for the immediate and triggered voltage level is
either the value in the following table, or the voltage protection
setting divided by 1.05; whichever is lower. The minimum value is
either the value in the table, or the low voltage setting divided by
0.95; whichever is higher.
Series N8700 User’s Guide
73
5
Language Reference
Note that triggered values can be programmed outside these limits,
but an error will be generated when the trigger occurs.
Model (V rating)
8V
10V
15V
20V
30V
40V
60V
80V
100V
150V
300V
600V
Minimum voltage
0
0
0
0
0
0
0
0
0
0
0
0
Maximum voltage
8.4
10.5
15.75
21
31.5
42
63
84
105
157.5
315
630
[SOURce:]VOLTage:LIMit:LOW <value>|MIN|MAX
[SOURce:]VOLTage:LIMit:LOW? [MIN|MAX]
This command sets the low voltage limit of the output. When a low
voltage limit has been set, the instrument will ignore any
programming commands that attempt to set the output voltage below
the low voltage limit. The*RST value = Min.
The range of values that can be programmed for this command is
coupled with the immediate voltage level setting. The maximum value
for the low voltage limit is either the value in the following table, or
the immediate voltage setting multiplied by 0.95; whichever is lower.
The minimum setting is the value in the table.
Model (V rating)
8V
10V
15V
20V
30V
40V
60V
80V
100V
150V
300V
600V
Minimum low limit
0
0
0
0
0
0
0
0
0
0
0
0
Maximum low limit
7.6
9.5
14.25
19
28.5
38
57
76
95
142
285
570
[SOURce:]VOLTage:PROTection:LEVel <value>|MIN|MAX
[SOURce:]VOLTage:PROTection:LEVel? [MIN|MAX]
This command sets the over-voltage protection (OVP) level of the
output. The values are programmed in volts. If the output voltage
exceeds the OVP level, the output is disabled and OV is set in the
Questionable Condition status register. The*RST value = Max.
The range of values that can be programmed for this command is
coupled with the immediate voltage level setting. The minimum value
for the voltage protection level is either the value in the following
table, or the immediate voltage setting multiplied by 1.05; whichever
is higher. The maximum setting is the value in the table.
An over-voltage condition can be cleared with the Output Protection
Clear command after the condition that caused the OVP trip is
removed.
Model (V rating)
8V
10V
15V
20V
30V
40V
60V
80V
Min. protection limit
0.5
0.5
1.0
1.0
2.0
2.0
5.0
5.0
5.0
5.0
5.0
5.0
Max. protection limit
10
12
18
24
36
44
66
88
110
165
330
660
74
100V
150V
300V
Series N8700 User’s Guide
600V
Language Reference
5
Status Commands
Status commands program the power supply’s status registers. As
shown in the following figure, the power supply has three groups of
status registers; Operation, Questionable, and Standard Event. The
Operation and Questionable status groups each consist of the
Condition, Enable, and Event registers and NTR and PTR filters.
QUESTIONABLE STATUS
CONDITION PTR/NTR
EVENT
ENABLE
0
1
1
1
1
1
2
2
2
2
PF
2
4
4
4
4
OT
4
16
16
16
16
OV
OC
INH
UNR
9
10
512
512
512
512
1024
1024
1024
1024
STAT:QUES:COND?
STAT:QUES:PTR |:NTR <n>
STAT:QUES:PTR |:NTR ?
LOGICAL
OR
STAT:QUES:ENAB <n>
STAT:QUES:ENAB
ERROR QUEUE
Err
STAT:QUES:EVEN?
ERROR
QUEUE
NOT
EMPTY
Err
Err
STANDARD EVENT
STATUS
EVENT
STATUS BYTE
OUTPUT BUFFER
ENABLE
2
OPC
0
1
Data
1
Data
QYE
DDE
EXE
CME
PON
2
4
4
8
8
16
16
32
32
128
128
*ESR?
*ESE<n>
*ESE?
3
4
5
7
QUEUE
NOT
EMPTY
Data
LOGICAL
OR
QUES 3
MAV
4
ESB
5
MSS
6
OPER
7
SERVICE
REQUEST
ENABLE
4
4
8
8
16
16
32
32
64
128
*STB?
LOGICAL
OR
RQS
128
*SRE<n>
*SRE?
OPERATION STATUS
CONDITION PTR/NTR
EVENT
WTG 5
32
32
32
32
CV 8
256
256
256
256
1024
1024
1024
CC 10 1024
STAT:OPER:COND?
STAT:OPER:PTR |:NTR <n>
STAT:OPER:PTR |:NTR ?
SERVICE
REQUEST
GENERATION
ENABLE
LOGICAL
OR
STAT:OPER:ENAB <n>
STAT:OPER:ENAB
STAT:OPER:EVEN?
Series N8700 User’s Guide
75
5
Language Reference
The Standard Event group is programmed with Common commands
as described later in this section. Common commands also control
additional status functions such as the Service Request Enable and
the Status Byte registers.
STATus:PRESet
This command sets all defined bits in the Operation and Questionable
PTR registers. The command clears all defined bits in the Operation
and Questionable NTR and Enable registers.
STATus:OPERation[:EVENt]?
This query returns the value of the Operation Event register. The
Event register is a read-only register, which stores (latches) all events
that are passed by the Operation NTR and/or PTR filter. Reading the
Operation Event register clears it. The bit configuration of the
Operation status registers is as follows:
Bit Position
15-11
10
9
8
7-6
5
4-0
Bit Value
−
1024
−
256
−
32
−
Bit Name
−
CC
−
CV
−
WTG
−
CC = The output is in constant current
CV = The output is in constant voltage
WTG = The unit is waiting for a transient trigger
STATus:OPERation:CONDition?
This query returns the value of the Operation Condition register.
That is a read-only register, which holds the live (unlatched)
operational status of the power supply.
STATus:OPERation:ENABle <value>
STATus:OPERation:ENABle?
This command and its query set and read the value of the
Operational Enable register. This register is a mask for enabling
specific bits from the Operation Event register to set the operation
summary bit (OPER) of the Status Byte register. This bit (bit 7) is the
logical OR of all the Operational Event register bits that are enabled
by the Status Operation Enable register. The Preset value = 0.
76
Series N8700 User’s Guide
Language Reference
5
STATus:OPERation:NTR <value>
STATus:OPERation:PTR <value>
STATus:OPERation:NTR?
STATus:OPERation:PTR?
These commands set or read the value of the Operation NTR
(Negative-Transition) and PTR (Positive-Transition) registers. These
registers serve as polarity filters between the Operation Condition
and Operation Event registers to cause the following actions:

When a bit in the Operation NTR register is set to 1, then a 1-to-0
transition of the corresponding bit in the Operation Condition
register causes that bit in the Operation Event register to be set.

When a bit of the Operation PTR register is set to 1, then a 0-to-1
transition of the corresponding bit in the Operation Condition
register causes that bit in the Operation Event register to be set.

If the same bits in both NTR and PTR registers are set to 1, then
any transition of that bit at the Operation Condition register sets
the corresponding bit in the Operation Event register.

If the same bits in both NTR and PTR registers are set to 0, then
no transition of that bit at the Operation Condition register can
set the corresponding bit in the Operation Event register.
The Preset value are: NTR = 0; PTR = 32767
STATus:QUEStionable[:EVENt]?
This query returns the value of the Questionable Event register. The
Event register is a read-only register, which stores (latches) all events
that are passed by the Questionable NTR and/or PTR filter. Reading
the Questionable Event register clears it. The bit configuration of the
Questionable status registers is as follows:
Bit Position
15-11
10
9
8-5
4
3
2
1
0
Bit Value
−
1024
512
−
16
−
4
2
1
Bit Name
−
UNR
INH
−
OT
−
PF
OC
OV
UNR = The output is unregulated
INH = The output is turned off by one of the external J1 inhibit signals
OT = The output is disabled by the over-temperature protection
PF = The output is disabled because AC power has failed
OC = The output is disabled by the over-current protection
OV = The output is disabled by the over-voltage protection
STATus:QUEStionable:CONDition?
This query returns the value of the Questionable Condition register.
That is a read-only register, which holds the real-time (unlatched)
questionable status of the power supply.
Series N8700 User’s Guide
77
5
Language Reference
STATus:QUEStionable:ENABle <value>
STATus:QUEStionable:ENABle?
This command and its query set and read the value of the
Questionable Enable register. This register is a mask for enabling
specific bits from the Questionable Event register to set the
questionable summary bit (QUES) of the Status Byte register. This bit
(bit 3) is the logical OR of all the Questionable Event register bits that
are enabled by the Questionable Status Enable register. The Preset
value = 0.
STATus:QUEStionable:NTR <value>
STATus:QUEStionable:PTR <value>
STATus:QUEStionable:NTR?
STATus:QUEStionable:PTR?
These commands set or read the value of the Questionable NTR
(Negative-Transition) and PTR (Positive-Transition) registers. These
registers serve as polarity filters between the Questionable Condition
and Questionable Event registers to cause the following actions:

When a bit of the Questionable NTR register is set to 1, then a 1to-0 transition of the corresponding bit of the Questionable
Condition register causes that bit in the Questionable Event
register to be set.

When a bit of the Questionable PTR register is set to 1, then a 0to-1 transition of the corresponding bit in the Questionable
Condition register causes that bit in the Questionable Event
register to be set.

If the same bits in both NTR and PTR registers are set to 1, then
any transition of that bit at the Questionable Condition register
sets the corresponding bit in the Questionable Event register.

If the same bits in both NTR and PTR registers are set to 0, then
no transition of that bit at the Questionable Condition register
can set the corresponding bit in the Questionable Event register.
The Preset values are: NTR = 0; PTR = 32767
*CLS
This command causes the following actions on the status system:
78

Clears the Standard Event Status, Operation Status Event, and
Questionable Status Event registers

Clears the Status Byte and the Error Queue

If *CLS immediately follows a program message terminator
(<NL>), then the output queue and the MAV bit are also cleared.
Series N8700 User’s Guide
Language Reference
5
*ESE
*ESE?
This command programs the Standard Event Status Enable register
bits. The programming determines which events of the Standard
Event Status Event register (see *ESR?) are allowed to set the ESB
(Event Summary Bit) of the Status Byte register. A "1" in the bit
position enables the corresponding event.
All of the enabled events of the Standard Event Status Event Register
are logically OR-ed to cause the Event Summary Bit (ESB) of the
Status Byte Register to be set. The query reads the Standard Event
The query reads the Standard Event Status Enable register. The bit
configuration of the Standard Event register is as follows:
Bit Position
7
6
5
4
3
2
1
0
Bit Value
128
−
32
16
8
4
−
1
Bit Name
PON
−
CME
EXE
DDE
QUE
−
OPC
PON = Power-on has occurred
CME = Command error
EXE = Execution error
DDE = Device-dependent error
QUE = Query error
OPC = Operation complete
*ESR?
This query reads the Standard Event Status Event register. Reading
the register clears it. The bit configuration is the same as the
Standard Event Status Enable register (see *ESE).
*OPC
*OPC?
This command causes the instrument to set the OPC bit (bit 0) of the
Standard Event Status register when the instrument has completed
all pending operations. Pending operations are complete when:

All commands sent before *OPC have been executed. This
includes overlapped commands. Most commands are sequential
and are completed before the next command is executed.
Commands that affect output voltage, current or state, relays,
and trigger actions are executed in parallel (or overlapped) with
subsequent commands sent to the power supply. The *OPC
command provides notification that all overlapped commands
have been completed.

All triggered actions are completed
*OPC does not prevent processing of subsequent commands, but bit 0
will not be set until all pending operations are completed.
*OPC? causes the instrument to place an ASCII "1" in the Output
Queue when all pending operations are completed. Unlike *OPC,
*OPC? prevents processing of all subsequent commands. It can be
used at the end of a command line so that the program can monitor
the bus for data until it receives the "1" from the Output Queue.
Series N8700 User’s Guide
79
5
Language Reference
*SRE
*SRE?
This command sets the condition of the Service Request Enable
Register. This register determines which bits from the Status Byte
Register are allowed to set the Master Status Summary (MSS) bit and
the Request for Service (RQS) summary bit. A 1 in any Service
Request Enable Register bit position enables the corresponding
Status Byte Register bit and all such enabled bits then are logically
OR-ed to cause Bit 6 of the Status Byte Register to be set.
When the controller conducts a serial poll in response to SRQ, the
RQS bit is cleared, but the MSS bit is not. When *SRE is cleared (by
programming it with 0), the power supply cannot generate an SRQ to
the controller. The query returns the current state of *SRE.
*STB?
This query reads the Status Byte register, which contains the status
summary bits and the Output Queue MAV bit. Reading the Status
Byte register does not clear it. The input summary bits are cleared
when the appropriate event registers are read. The MAV bit is cleared
at power-on, by *CLS' or when there is no more response data
available.
A serial poll also returns the value of the Status Byte register, except
that bit 6 returns Request for Service (RQS) instead of Master Status
Summary (MSS). A serial poll clears RQS, but not MSS. When MSS is
set, it indicates that the power supply has one or more reasons for
requesting service.
Bit Position
7
6
5
4
3
2
1−0
Bit Value
128
64
32
16
8
4
−
Bit Name
OPER
MSS
(RQS)
ESB
MAV
QUES
ERR
−
OPER = Operation status summary
MSS = Master status summary
(RQS) = Request for service
ESB = Event status byte summary
MAV = Message available
QUES = Questionable status summary
ERR = Error queue not empty
*WAI
This command instructs the power supply not to process any further
commands until all pending operations are completed. Pending
operations are as defined under the *OPC command. *WAI can be
aborted only by sending the power supply a Device Clear command.
80
Series N8700 User’s Guide
Language Reference
5
System Commands
System commands control system functions that are not directly
related to output control, measurement, or status functions. Common
commands are also used to control system functions.
SYSTem:COMMunicate:RLSTate LOCal|REMote|RWLock
SYSTem:COMMunicate:RLSTate?
This command configures the remote/local state of the instrument
according to the following settings.
LOCal The instrument is set to front panel control (front panel keys are active).
REMote The instrument is set to remote interface control (front panel keys are active).
RWLock The front panel keys are disabled (the instrument can only be controlled via the
remote interface).
The remote/local state can also be set by interface commands over
the GPIB and some other I/O interfaces. When multiple remote
programming interfaces are active, the interface with the most
recently changed remote/local state determines the instrument’s
remote/local state.
The remote/local state is unaffected by *RST or any SCPI commands
other than SYSTem:COMMunicate:RLState. At power-on however, the
communications setting always returns to LOCal.
SYSTem:COMMunicate:TCPip:CONTrol?
This query returns the control connection port number. This is used
to open a control socket connection to the instrument. Refer to
chapter 4 under “Using Sockets” for more information.
SYSTem:ERRor?
This query returns the next error number and its corresponding
message string from the error queue. The queue is a FIFO (first-in,
first-out) buffer that stores errors as they occur. As it is read, each
error is removed from the queue. When all errors have been read, the
query returns 0, NO ERROR. If more errors are accumulated than the
queue can hold, the last error in the queue will be -350, TOO MANY
ERRORS (see Appendix C for error codes).
SYSTem:VERSion?
This query returns the SCPI version number to which the instrument
complies. The returned value is of the form YYYY.V, where YYYY
represents the year and V is the revision number for that year.
Series N8700 User’s Guide
81
5
Language Reference
*IDN?
This query requests the power supply to identify itself. It returns a
string of four fields separated by commas.
Agilent Technologies
xxxxxA
0
<A.xx.xx>,<A.xx.xx>
Manufacturer
Model number followed by a letter suffix
Zero or serial number if available
Firmware revision, power supply revision
*OPT?
This query requests the unit to identify any installed options. A 0
indicates no options are installed.
*RCL <state>
This command restores the power supply to a state that was
previously stored in memory locations 0 through 15 with the *SAV
command. Note that you can only recall a state from a location that
contains a previously-stored state.
NOTE
All saved instrument states are lost when the unit is turned off.
*RST
This command resets the power supply to a factory-defined state.
This state is defined as follows. Note that *RST also forces an ABORt
command. The *RST settings are as follows:
CAL:STAT
Off
[SOUR:]CURR:PROT:STAT
Off
INIT:CONT
Off
[SOUR:]VOLT
0
OUTP
Off
[SOUR:]VOLT:LIM
0
[SOUR:]CURR
0
[SOUR:]VOLT:TRIG
0
[SOUR:]CURR:TRIG
0
[SOUR:]VOLT:PROT
MAXimum
*SAV <state>
This command stores the present state of the power supply to
memory locations 0 through 15.
NOTE
All saved instrument states are lost when the unit is turned off.
*TST?
This query always returns a zero.
82
Series N8700 User’s Guide
Language Reference
5
Trigger Commands
Trigger commands consist of the Abort, Trigger, and Initiate
commands. Initiate commands initialize the trigger system. Trigger
commands control the triggering of the power supply.
ABORt
This command cancels any trigger actions in progress and returns
the trigger system to the IDLE state, unless INIT:CONT is enabled. It
also resets the WTG bit in the Status Operation Condition register.
ABORt is executed at power-on and upon execution of *RST.
INITiate[:IMMediate][:TRANsient]
This command controls the enabling of output triggers. When a
trigger is enabled, a trigger causes the specified triggering action to
occur. If the trigger system is not enabled, all triggers are ignored.
INITiate:CONTinuous[:TRANsient] ON|OFF
INITiate:CONTinuous[:TRANsient]?
This command continuously initiates output triggers. The enabled
state is On (1); the disabled state is Off (0). When disabled, the trigger
system must be initiated for each trigger with the INITiate command.
TRIGger[:TRANsient][:IMMediate]
If the trigger system has been initiated, this command generates an
immediate output trigger. When sent, the output trigger will:

Initiate an output change as specified by the CURR:TRIG or
VOLT:TRIG settings.

Clear the WTG bits in the Status Operation Condition register
after the trigger action has completed.
TRIGger:SOURce BUS
TRIGger:SOURce?
This command selects the trigger source for the output trigger
system. Only BUS can be selected as the trigger source.
*TRG
This command generates a trigger when the trigger source is set to
BUS. The command has the same affect as the Group Execute Trigger
(<GET>) command.
Series N8700 User’s Guide
83
6
Programming Examples
Output Programming Example ........................................................................ 86
Trigger Programming Example........................................................................ 88
This chapter contains several example programs to help you develop
programs for your own application. The example programs are for
illustration only, and are provided with the assumption that you are
familiar with the programming language being demonstrated and the
tools used to create and debug procedures. See Chapter 5, “Language
Dictionary” for the SCPI command syntax.
You have a royalty-free right to use, modify, reproduce and distribute
the example programs (and/or any modified version) in any way you
find useful, provided you agree that Agilent Technologies has no
warranty, obligations, or liability for any example programs.
The example programs are written in Microsoft Visual Basic 6.0 using
the VISA COM IO library. The VISA COM library must be downloaded
from the Automation-Ready CD-ROM to use these programs. For
information about using VISA COM in another Visual Basic project,
refer to “Programming Your Instruments” in the USB/LAN/GPIB
Interfaces Connectivity Guide, also included on the AutomationReady CD-ROM.
NOTE
Series N8700 User’s Guide
Example programs for the following programming environments are also
included on the Product-Reference CD-ROM located at the back of this guide:
Microsoft Visual Basic 6.0
Microsoft Visual C++ 6.0
Microsoft Excel
The CD also contains IVI-COM and LabVIEW drivers for your power supply.
85
6
Programming Examples
Output Programming Example
This program sets the voltage, current, over-voltage, and the overcurrent protection. It turns the output on and takes a voltage
measurement. When done, the program checks for instrument errors
and gives a message if there is an error.
Sub main_EZ()
Dim IDN As String
Dim IOaddress As String
Dim ErrString As String
' This variable controls the voltage
Dim VoltSetting As Double
' This variable measures the voltage
Dim measVolt As Double
' This variable controls the current
Dim CurrSetting As Double
' These variables control the over voltage protection settings
Dim overVoltSetting As Double
' These variables control the over current protection
Dim overCurrOn As Long
'These variable are neccessary to initialize the VISA COM.
Dim ioMgr As AgilentRMLib.SRMCls
Dim Instrument As VisaComLib.FormattedIO488
' The following command line provides the program with the VISA name of the
' interface that it will communicate with. It is currently set to use GPIB.
IOaddress = "GPIB0::5::INSTR"
' Use the following line for LAN communication
' IOaddress="TCPIP0::141.25.36.214"
' Use the following line instead for USB communication
' IOaddress = "USB0::2391::1799::N8741A-US00000002"
' Initialize the VISA COM communication
Set ioMgr = New AgilentRMLib.SRMCls
Set Instrument = New VisaComLib.FormattedIO488
Set Instrument.IO = ioMgr.Open(IOaddress)
VoltSetting = 3
CurrSetting = 1.5
overVoltSetting = 10
overCurrOn = 1
' amps
'1 for on, 0 for off
With Instrument
' Send a power reset to the instrument
.WriteString "*RST"
' Query the instrument for the IDN string
.WriteString "*IDN?"
IDN = .ReadString
' Set the voltage
.WriteString "VOLT" & Str$(VoltSetting)
86
Series N8700 User’s Guide
Programming Examples
6
' Set the over voltage level
.WriteString "VOLT:PROT:LEV " & Str$(overVoltSetting)
' Turn on over current protection
.WriteString "CURR:PROT:STAT " & Str$(overCurrOn)
' Set the current level
.WriteString "CURR " & Str$(CurrSetting)
' Turn the output on
.WriteString "OUTP ON"
' Make sure that the output is on before continuing
.WriteString "*OPC?"
.ReadString
' Measure the voltage
.WriteString "Meas:Volt?"
measVolt = .ReadNumber
MsgBox "Measured Voltage is " & Str$(measVolt)
' Check instrument for any errors
.WriteString "Syst:err?"
ErrString = .ReadString
' give message if there is an error
If Val(ErrString) Then
MsgBox "Error in instrument!" & vbCrLf & ErrString
End If
End With
End Sub
Series N8700 User’s Guide
87
6
Programming Examples
Trigger Programming Example
This example illustrates how to set up and trigger a voltage and
current change. The voltage is measured before and after the trigger.
Sub main_Trig()
Dim IDN As String
Dim IOaddress As String
Dim ErrString As String
Dim msg1 As String
' This variable is used to monitor the status
Dim stat As Long
' This variable controls the voltage
Dim VoltSetting As Double
' This variable measures the voltage
Dim MeasureVolt As Double
' This variable controls the current
Dim CurrSetting As Double
' This variable represents the trigger current setting
Dim trigCurrSetting As Double
' This variable controls the triggered voltage setting
Dim trigVoltSetting As Double
' This constant represents the register value for Waiting for Trigger
Const WTG = 32
' These variables are necessary to initialize the VISA COM
Dim ioMgr As AgilentRMLib.SRMCls
Dim Instrument As VisaComLib.FormattedIO488
' The following line provides the VISA name of the GPIB interface
IOaddress = "GPIB0::5::INSTR"
' Use the following line instead for LAN communication
' IOaddress="TCPIP0::141.25.36.214"
' Use the following line instead for USB communication
' IOaddress = "USB0::2391::1799::N8741A-US00000002"
' Initialize the VISA COM communication
Set ioMgr = New AgilentRMLib.SRMCls
Set Instrument = New VisaComLib.FormattedIO488
Set Instrument.IO = ioMgr.Open(IOaddress)
VoltSetting = 3
CurrSetting = 2
trigVoltSetting = 5
trigCurrSetting = 3
'
'
'
'
volts
amps
volts
amps
With Instrument
' Send a power reset to the instrument
.WriteString "*RST"
' Query the instrument for the IDN string
.WriteString "*IDN?"
IDN = .ReadString
88
Series N8700 User’s Guide
Programming Examples
6
' Set the voltage
.WriteString "VOLT" & Str$(VoltSetting)
' Set the current level
.WriteString "CURR " & Str$(CurrSetting)
' Set the triggered voltage and current levels
.WriteString "VOLT:TRIG " & Str$(trigVoltSetting)
.WriteString "CURR:TRIG " & Str$(trigCurrSetting)
' Turn the output on
.WriteString "OUTP ON"
' Make sure that the output is on
.WriteString "*OPC?"
.ReadString
' Measure the voltage before triggering the change
.WriteString "MEAS:VOLT?"
MeasureVolt = .ReadNumber
' Save the value for later display
msg1$ = "Voltage before trigger = " & Str$(MeasureVolt)
' Initiate the trigger system
.WriteString "INIT"
' Make sure that the trigger system is initiated
Do
.WriteString "STAT:OPER:COND?"
stat = .ReadNumber
Loop Until ((stat And WTG) = WTG)
' Trigger the unit
.WriteString "*TRG"
'Make sure that the trigger is done
.WriteString "*OPC?"
.ReadString
' Measure the voltage after triggering the change
.WriteString "MEAS:VOLT?"
MeasureVolt = .ReadNumber
' Display the measured values
MsgBox msg1$ + Chr$(13) + "Voltage after trigger = " & Str$(MeasureVolt)
' Check instrument for any errors
.WriteString "Syst:err?"
ErrString = .ReadString
' Give message if there is an error
If Val(ErrString) Then
MsgBox "Error in instrument!" & vbCrLf & ErrString
End If
End With
End Sub
Series N8700 User’s Guide
89
Appendix A
Specifications
Performance Specifications ............................................................................ 92
Supplemental Characteristics ......................................................................... 93
Outline Diagram................................................................................................. 96
This chapter lists the specifications and supplemental characteristics
of the Agilent N8700 power supplies. A dimensional line drawing of
the unit is included at the end of the chapter.
Unless otherwise noted, specifications are warranted over the
ambient temperature range of 0°to 40°C. Sensing is at the rear
terminals of the power supply after a 30-minute warm-up period.
Sense terminals are externally jumpered to their respective output
terminals.
Supplemental characteristics are not warranted but are descriptions
of typical performance determined either by design or type testing.
Series N8700 User’s Guide
91
Appendix A
Specifications
Performance Specifications
Agilent Models N8731A – N8742A and Models N8754A – N8762A
Model
3.3kW
5kW
N8731A
N8732A
N8733A
N8734A
N8754A
N8735A
N8755A
N8736A
N8756A
N8737A
N8757A
N8738A
N8758A
N8739A
N8759A
N8740A
N8760A
N8741A
N8761A
N8742A
N8762A
8V
10V
15V
20V
30V
40V
60V
80V
100V
150V
300V
600V
20V
30V
40V
60V
80V
100V
150V
300V
600V
400A
330A
220A
165A
110A
85A
55A
42A
33A
22A
11A
5.5A
250A
170A
125A
85A
65A
50A
34A
17A
8.5A
3.2kW
3.3kW
3.3kW
3.3kW
3.3kW
3.4kW
3.3kW
3.36kW
3.3kW
3.3kW
3.3kW
3.3kW
5kW
5.1kW
5kW
5.1kW
5.2kW
5kW
5.1kW
5.1kW
5.1kW
60mV
60mV
60mV
60mV
80mV
100mV
100mV
300mV
500mV
75mV
75mV
75mV
75mV
100mV
100mV
120mV
300mV
500mV
DC Output Ratings: NOTE 1
Voltage 3.3kW
Voltage 5kW
Current 3.3kW
Current 5kW
Power 3.3kW
Power 5kW
Output Ripple and Noise:
CV p-p NOTE 2 3.3kW
60mV
60mV
60mV
CV p-p NOTE 2 5kW
CV rms
NOTE 3
3.3kW
8mV
8mV
8mV
CV rms NOTE 3 5kW
8mV
8mV
8mV
8mV
25mV
25mV
25mV
100mV
120mV
10mV
10mV
10mV
10mV
15mV
15mV
25mV
60mV
120mV
8mV
9.5mV
11mV
14mV
17mV
20mV
27.5mV
50mV
95mV
8mV
9.5mV
11mV
14mV
17mV
20mV
27.5mV
50mV
95mV
11.6mA
9.4mA
7.2mA
6.1mA
50mA
34mA
17mA
8.5mA
Load Effect: (change from 10% to 90% of full load)
Voltage 3.3kW
6.2mV
6.5mV
7.3mV
Voltage 5kW
Current 3.3kW
85mA
71mA
49mA
Current 5kW
38mA
27mA
22mA
16mA
13.4mA
250mA
170mA
125mA
85mA
65mA
Source Effect: (change from 170-265 Vac for 200 Vac models, or 342-460 Vac for 400 Vac models; with constant load)
Voltage 3.3kW
2.8mV
3mV
3.5mV
4mV
2mV
3mV
4mV
6mV
8mV
10mV
15mV
30mV
60mV
42mA
35mA
24mA
18.5mA
13mA
10.5mA
7.5mA
6.2mA
5.3mA
4.2mA
3.1mA
2.6mA
125mA
85mA
62.5mA
42.5mA
32.5mA
25mA
17mA
8.5mA
4.3mA
10mV
15mV
20mV
30mV
40mV
50mV
75mV
150mV
300mV
15mV
22.5mV
30mV
45mV
60mV
75mV
112.5mV
225mV
450mV
330mA
220mA
170mA
110mA
84mA
66mA
44mA
22mA
11mA
750mA
510mA
375mA
255mA
195mA
150mA
102mA
51mA
25.5mA
20mV
30mV
40mV
60mV
80mV
100mV
150mV
300mV
600mV
25mV
37.5mV
50mV
75mV
100mV
125mV
187.5mV
375mV
750mV
495mA
330mA
255mA
165mA
126mA
99mA
66mA
33mA
16.5mA
750mA
510mA
375mA
255mA
195mA
150mA
102mA
51mA
25.5mA
Voltage 5kW
Current 3.3kW
Current 5kW
Programming Accuracy:
Voltage 3.3kW 0.05%+
Current 5kW
6mV
8mV
10mV
12mV
17mV
32mV
62mV
NOTE 1
4mV
5mV
7.5mV
Voltage 5kW 0.025%+
Current 3.3kW 0.1%+
5mV
800mA
660mA
440mA
0.1%+
Measurement Accuracy:
Voltage 3.3kW 0.1%+
8mV
10mV
15mV
Voltage 5kW 0.025%+
Current 3.3kW 0.1%+
1.2A
990mA
660mA
Current 5kW 0.1%+
Load Transient Recovery Time:
(time for output voltage to recover within 0.5% of its rated output for a load change from 10% to 90% of its rated output current)
Time 3.3kW
Time 5kW
≤ 1 ms
≤ 1 ms
≤ 1 ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 2ms
≤ 2ms
≤ 2ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 1ms
≤ 2ms
≤ 2ms
≤ 2ms
Output set point
From 10% to 100% of rated output
NOTE 1 Minimum voltage is guaranteed to a maximum of 0.2% of the rated output voltage.
Minimum current is guaranteed to a maximum of 0.4% of the rated output current.
NOTE 2 20MHz
NOTE 3 From 5Hz - 1MHz
92
Series N8700 User’s Guide
Specifications
Appendix A
Supplemental Characteristics
Agilent Models N8731A – N8742A and Models N8754A – N8762A
Model
3.3kW
5kW
N8731A
N8732A
N8733A
N8734A
N8754A
N8735A
N8755A
N8736A
N8756A
N8737A
N8757A
N8738A
N8758A
N8739A
N8759A
N8740A
N8760A
N8741A
N8761A
N8742A
N8762A
Output Response Time: (to settle to within ±1.0% of the rated output, with a resistive load)
Up, full load 3.3kW
0.08s
0.08s
0.08s
Up, full load 5kW
Down, full load 3.3kW
0.02s
0.1s
0.1s
Down, full load 5kW
Down, no load 3.3kW
0.5s
0.6s
0.7s
Down, no load 5kW
0.08s
0.08s
0.08s
0.15s
0.15s
0.15s
0.15s
0.15s
0.25s
0.03s
0.03s
0.03s
0.05s
0.05s
0.05s
0.05s
0.05s
0.1s
0.1s
0.16s
0.16s
0.16s
0.3s
0.3s
0.3s
0.3s
0.5s
0.05s
0.08s
0.08s
0.08s
0.1s
0.1s
0.1s
0.1s
0.2s
0.8s
0.9s
1.0s
1.1s
1.2s
1.5s
2.0s
3.5s
4.0s
0.7s
0.8s
0.9s
1.0s
1.2s
1.5s
2.0s
2.5s
3.0s
Command Response Time: (add this to the output response time to obtain the total programming time)
100 ms
Remote Sense Compensation: (the load lead drop reduces the maximum available voltage at the load)
Volts/load lead 3.3kW
2V
2V
2V
Volts/load lead 5kW
2V
5V
5V
5V
5V
5V
5V
5V
5V
2V
5V
5V
5V
5V
5V
5V
5V
5V
1-24V
2-36V
2-44V
5-66V
5-88V
5-110V
5-165V
5-330V
5-660V
1-24V
2-36V
2-44V
5-66V
5-88V
5-110V
5-165V
5-330V
5-660V
Over-voltage Protection:
Range
3.3kW
Range
5kW
0.5-10
0.5-12
1-18
Output Ripple and Noise: (for 8V-15V models, from 2V to 100% of rated output; for all other models, from 10% to 100% of rated output;)
CC rms 3.3kW
1.3A
1.2A
880mA
CC rms 5kW
660mA
300mA
200mA
100mA
80mA
70mA
60mA
20mA
10mA
1.0A
460mA
300mA
150mA
120mA
100mA
90mA
30mA
15mA
2.4mV
3.6mV
4.8mV
7.2mV
9.6mV
12mV
18mV
36mV
72mV
2.4mV
3.6mV
Programming Resolution:
Measurement Resolution:
Voltage 3.3kW
0.96mV
1.2mV
1.8mV
Voltage 5kW
Current 3.3kW
48mA
4.8mV
7.2mV
9.6mV
12mV
18mV
36mV
72mV
39.6mA 26.4mA 19.8mA 13.2mA 10.2mA
6.6mA
5.0mA
4.0mA
2.6mA
1.3mA
0.66mA
30mA
10.2mA
7.8mA
6.0mA
4.1mA
2.0mA
1.0mA
400mV
500mV
750mV
1.5 V
3.0 V
Current 5kW
20.4mA
15mA
Front Panel Display Accuracy: (4 digits; +% of rated output voltage; \1 count)
Voltage 3.3kW
40mV
50mV
75mV
100mV
100mV
150mV
200mV
300mV
400mV
500mV
750mV
1.5 V
3.0 V
2.0A
1.65A
1.10A
825mA
550mA
425mA
275mA
210mA
165mA
110mA
55mA
27.5mA
1.25A
850mA
625mA
425mA
325mA
250mA
170mA
85mA
42.5mA
75mV
150mV
300mV
Voltage 5kW
Current 3.3kW
Current 5kW
150mV
200mV
300mV
Temperature Stability: (over 8 hours, after a 30 minute warm-up, with constant line, load, and temperature)
Voltage 3.3kW
4mV
5mV
7.5mV
10mV
10mV
15mV
40mV
50mV
75mV
150mV
300mV
200mA
165mA
110mA
82.5mA
55mA
42.5mA 27.5mA
21mA
16.5mA
11mA
5.5mA
2.8mA
125mA
85mA
62.5mA 42.5mA
32.5mV
25mV
17mA
8.5mA
4.3mA
Voltage 5kW
Current 3.3kW
Current 5kW
15mV
20mV
30mV
20mV
30mV
40mV
50mV
Temperature Coefficient: (after a 30 minute warm-up)
Voltage 3.3kW units
100 PPM/°C from rated output voltage
Voltage 5kW units
100 PPM/°C from rated output voltage
Current 3.3kW units
200 PPM/°C from rated output current
Current 5kW units
100 PPM/°C from rated output current
Series N8700 User’s Guide
93
Appendix A
Specifications
Supplemental Characteristics (continued)
Model
3.3kW
5kW
N8731A
N8732A
N8733A
N8734A
N8754A
N8735A
N8755A
N8736A
N8756A
N8737A
N8757A
N8738A
N8758A
N8739A
N8759A
N8740A
N8760A
N8741A
N8761A
N8742A
N8762A
Analog Programming and Monitoring:
Vout voltage
Iout voltage
Vout resistance
0 - 100%, 0-5V or 0-10V, user selectable, Accuracy & linearity = ± 0.5% of rated Vout
0 - 100%, 0-5V or 0-10V, user selectable, Accuracy & linearity = ± 1% of rated Iout
0 - 100%, 0-5kW or 0-10kW, user selectable, Accuracy & linearity = ± 1% of rated Vout
Iout resistance
0 - 100%, 0-5kW or 0-10kW, user selectable, Accuracy & linearity = ± 1.5% of rated Iout
Iout monitor
Vout monitor
On/Off control
PS OK signal
0-5V or 0-10V, user selectable, Accuracy = ± 1%
0-5V or 0-10V, user selectable, Accuracy = ± 1%
Electrical voltage; 0-0.6V or 2-15V or dry contact, user selectable logic
TTL high (4-5V) = OK; 0V = FAIL; 500W series resistance
CV/CC signal 3.3kW
CV/CC signal 5kW
Enable/Disable
CV = TTL high (4-5V) source current 10 mA; CC = TTL low (0-0.6V) sink current 10 mA
Open collector; CV mode: OFF, CC mode: ON, Maximum voltage = 30V; Maximum sink current = 10 mA
Dry contact. Open=Off, Short=On. Maximum voltage at terminal = 6V.
Series and Parallel Capability:
Parallel operation
Up to 4 identical units can be connected in master/slave mode with single–wire current balancing
Series operation
Up to 2 identical units can be connected using external protection diodes (see Output Terminal Isolation)
Savable states:
In volatile memory
16 (in memory locations 0-15)
Interface Capabilities:
GPIB
LXI Compliance
USB 2.0
10/100 LAN
SCPI - 1993, IEEE 488.2 compliant interface
Class C (only applies to units with the LXI label on the front panel)
Requires Agilent IO Library version M.01.01 and up, or 14.0 and up
Requires Agilent IO Library version L.01.01 and up, or 14.0 and up
Environmental Conditions:
Environment
Indoor use, installation category II (AC input), pollution degree 2
Operating temp.
0°C to 40°C @ 100% load
Storage temp.
–20°C to 85°C
Operating humidity
Up to 90% relative humidity (no condensation)
Storage humidity
10% to 95% relative humidity (no condensation)
Altitude
Up to 3000 meters.
Above 2000m, derate the output current by 2%/100m and derate the maximum ambient temperature by 1°C/100m.
Built-in Web server
Requires Internet Explorer 5+ or Netscape 6.2+
Output Terminal Isolation:
8V to 60V units
No output terminal may be more than ± 60 VDC from any other terminal or chassis ground.
80V to 600V units
No Positive output terminal may be more than ± 600 VDC from any other terminal or chassis ground.
No Negative output terminal may be more than ± 400 VDC from any other terminal or chassis ground.
Acoustic Noise Declaration:
Statements provided to comply with requirements of the German Sound Emission Directive, from 18 January 1991:
Sound Pressure Lp <70 dB(A), * At Operator Position, * Normal Operation, * According to EN 27779 (Type Test).
Schalldruckpegel Lp <70 dB(A) * Am Arbeitsplatz, * Normaler Betrieb, * Nach EN 27779 (Typprüfung).
94
Series N8700 User’s Guide
Specifications
Appendix A
Supplemental Characteristics (continued)
Model
3.3kW
5kW
N8731A
N8732A
N8733A
N8734A
N8754A
N8735A
N8755A
N8736A
N8756A
N8737A
N8757A
N8738A
N8758A
N8739A
N8759A
N8740A
N8760A
N8741A
N8761A
N8742A
N8762A
Regulatory Compliance:
EMC
Complies with European EMC Directive for test and measurement products.
● IEC/EN 61326-1
● CISPR 11, Group 1, class A
● AS/NZS CISPR 11
● ICES/NMB-001
Complies with the Australian standard and carries the C-Tick mark.
This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme à la norme NMB-001 du Canada.
Safety
Complies with the European Low Voltage Directive and carries the CE-marking.
Conforms to UL 61010-1 and CSA C22.2 61010-1.
AC Input:
Nominal Input
3.3kW single-phase
3.3kW & 5kW 3-phase
3.3kW & 5kW 3-phase
ALL Models:
190 – 240 Vac; 50/60Hz
200 Vac Models: 190 – 240 Vac; 50/60Hz
400 Vac Models: 380 – 415 Vac; 50/60Hz
Input Current
3.3kW single-phase
3.3kW 3-phase
3.3kW 3-phase
ALL Models:
23 – 24A Max @ 100% load
200 Vac Models: 13.6 – 14.5A Max @ 100% load
400 Vac Models: 6.8 – 7.2A Max @ 100% load
5kW 3-phase
5kW 3-phase
200 Vac Models: 21 – 22A Max @ 100% load
400 Vac Models: 10.5 – 12A Max @ 100% load
Input Range
Single-phase models
3-phase, 200V models
3-phase, 400V models
170 – 265 Vac; 47 – 63 Hz
170 – 265 Vac; 47 – 63 Hz
342 – 460 Vac; 47 – 63 Hz
Input VA
3.3kW units
5kW units
4000 VA
5800 VA
Power Factor
3.3kW units
3.3kW units
5kW units
Single-phase models: 0.99 at nominal input and rated output power
3-phase models: 0.95 at nominal input and rated output power
3-phase models: 0.94 at nominal input and rated output power
Efficiency
3.3kW units
5kW units
82% – 88%
83% – 88%
Inrush Current
Single-phase models
3-phase, 200V models
3-phase, 400V models
< 50A
< 50A
< 20A
Series N8700 User’s Guide
95
Appendix A
Specifications
88.0mm+/-0.3mm
Outline Diagram
VOLTAGE

DC VOLTS
DC AMPS
CURRENT
OVP
PROT FINE LIMIT UVL OCP/488 LAN OUT ON
N8749A
System DC Power Supply
482.0+/-1.0mm
39.0mm+/-0.3mm
423.0+/-1.0mm
60.5mm
92.0mm
A
86.0mm+/-0.3mm
A
42.0mm
497.5mm (150V to 600V models)
A
92.0mm
442.5+/-1.0mm
Bus-Bar Detail
8V to 100V Models
40.0
mm
80.0mm
5.0mm
Output Cover Detail
8V to 100V Models
30.0mm
10.5mm
50.0mm
108.0mm
NOTES:
Holes marked “A” are for chassis slide mounting.
Use only screws designated #10-32x0.38” maximum.
96
Series N8700 User’s Guide
Appendix B
Verification and Calibration
Verification ......................................................................................................... 97
Calibration ........................................................................................................ 126
The verification procedures described in this appendix verify that the
power supply is operating normally and is within published
specifications.
This appendix also includes calibration procedures for the Agilent
N8700 power supplies. Instructions are given for performing the
procedures from a controller over the GPIB.
NOTE
Perform the verification tests before calibrating your power supply. If the power
supply passes the verification tests, the unit is operating within its calibration
limits and does not need to be re-calibrated.
The recommended calibration interval for Agilent N8700 power
supplies is one year.
Verification
Verification procedures are of two types:
Performance
These procedures verify that the power supply is operating normaly and
meets all of the published specifications listed in Appendix A. These tests
also verify the power supply is properly calibrated.
Calibration
These procedures calibrate the power supply and set operation within the
published specifications. Calibration is recommended annually.
If the power supply fails any of the verification tests, perform the
calibration procedures. If calibration is unsuccessful, return the unit
to an Agilent Technologies repair facility (see Appendix D).
Series N8700 User’s Guide
97
Appendix B
Verification and Calibration
Equipment Required
The equipment listed in the following table, or the equivalent to this
equipment, is required for the calibration and performance tests.
Test records for all models are at the end of this verification section.
Type
Specifications
Recommended Model
Digital Voltmeter
Resolution: 10 nV @ 1V; Readout: 8 1/2 digits;
Accuracy: 20 ppm
Agilent 3458A or equivalent
Current Monitor
15A (0.1Ω) 0.04%, TC=4ppm/°C
100A (0.01Ω) 0.04%, TC=4ppm/°C
300A (0.001Ω) 0.04%, TC=4ppm/°C
500A (0.0005Ω) 0.04%, TC=4ppm/°C
Guildline 9230/15
Guildline 9230/100
Guildline 9230/300
Guildline 9230/500
Load Resistor
(nominal values)
For 3.3 kW models:
0.02Ω, 0.03Ω, 0.068Ω, 0.12Ω, 0.27Ω, 0.47Ω, 1.1Ω, 1.9Ω,
3.0Ω, 6.8Ω, 27.3Ω, 109Ω - all resistors 3.5 kW minimum.
For 5 kW models:
0.08Ω, 0.176Ω, 0.32Ω, 0.705Ω, 1.23Ω, 2.0Ω, 4.40Ω,
17.6Ω, 70.6Ω - all resistors 5.5 kW minimum.
Electronic Load
150V, 400A, 3.3kW minimum for Models N8731- N8740A
150V, 250A, 5kW minimum for Models N8754- N8760A
Agilent N3300A mainframes (up to 4);
Agilent N3305A modules (up to 11);
Agilent N3306A modules (up to 9)
600 V, 300 A, 5kW minimum - optional for models
N8741A, N8742A, N8761A, N8762A
Amrel Model PLA-5K-600-300
GPIB Controller
Full GPIB capabilities - for calibrating over the GPIB
Agilent 82350B or equivalent
Oscilloscope
Sensitivity: 1 mV: Bandwidth Limit: 20 MHz
Probe: 1:1 with RF tip
Agilent Infiniium or equivalent
RMS Voltmeter
True RMS; Bandwidth: 20 MHz; Sensitivity: 100V
Rhode and Schwartz Model URE3 or
equivalent
Differential
Amplifier
Bandwidth: 20 MHz
LeCroy 1855A, DA1850A,
or equivalent
Terminations
1 – 50W BNC termination
2 – 50W, 1/8W termination resistors
Variable-voltage
xfmr or AC source
Power: 3 Phase 24KVA; Range: 180-235V 47 - 63Hz;
360- 440V 47 - 63Hz
Superior Powerstat
1156DT-3Y, 0-280V, 50A,
24.2 KVA or equivalent
Test Records
Test records for each power supply model are provided after the test
procedure sections.
3.3 kW test records are provided followed by the 5 kW test records.
98
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Measurement Techniques
Electronic Load
Many of the test procedures require the use of a variable load capable
of dissipating the required power. If a variable resistor is used,
switches should be used to either; connect, disconnect, or short the
load resistor. For most tests, an electronic load can be used. The
electronic load is considerably easier to use than load resistors, but it
may not be fast enough to test transient recovery time and may be
too noisy for the noise (PARD) tests.
Fixed load resistors may be used in place of a variable load, with
minor changes to the test procedures. Also, if computer controlled
test setups are used, the relatively slow (compared to computers and
system voltmeters) settling times and slew rates of the power supply
may have to be taken into account. "Wait" statements can be used in
the test program if the test system is faster than the power supply.
Current-Monitoring Resistor
The 4-terminal current shunt is used to eliminate output current
measurement error caused by voltage drops in the load leads and
connections. It has special current-monitoring terminals inside the
load connection terminals. Connect the voltmeter directly to these
current-monitoring terminals.
Test Set-up
The following figure illustrates the test set-up used for the
verification procedures.
Power Supply
+S +LS
+V -V
-LS -S
Power Supply
+S +LS
+
+V -V
+S +LS
+V -V
-LS -S
Load
Resistor
+
DC voltmeter,
scope, or
rms voltmeter
DC voltmeter,
scope, or
rms voltmeter
Electronic load
or resistor
Current
shunt
50
50
BNC
BNC
+
+
+
A.
-LS -S
Power Supply
B.
Electronic load
or resistor
Differential
amplifier
output
BNC
50 ohm
termination
C.
Series N8700 User’s Guide
input
Scope or
rms voltmeter
99
Appendix B
Verification and Calibration
WARNING
SHOCK HAZARD Before starting the verification procedures, check to make
sure that the startup mode is set to Safe-Start (see page 44).
Constant Voltage Tests
Refer to the appropriate test record in the following section for the
instrument settings for each of the following tests.
Voltage Programming and Readback Accuracy
Test category = performance, calibration
This test verifies that the voltage programming and measurement
functions are within specifications.
1
Turn off the power supply and connect a DVM directly across the
+S and -S terminals as shown in figure A. Do not connect a load.
2
Turn on the power supply and program the output voltage to zero
and the output current to its maximum programmable value
(Imax) with the load off. The CV annunciator should be on and
the output current reading should be approximately zero.
3
Record the output voltage readings on the digital voltmeter
(DVM) as well as the measurement readback. The readings
should be within the limits specified in the test record for the
model being tested under Voltage Programming and Readback,
Minimum Voltage Vout.
4
Program the output voltage to its full-scale rating.
5
Record the output voltage readings on the DVM as well as the
measurement readback. The readings should be within the limits
specified in the test record for the appropriate model under
Voltage Programming and Readback, High Voltage Vout.
CV Load Effect
Test category = performance
This test measures the change in output voltage resulting from a
change in output current from full load to no load.
100
1
Turn off the power supply and connect a DVM and an electronic
load as shown in figure A.
2
Turn on the power supply and program the output current to its
maximum programmable value (Imax) and the output voltage to
its full-scale value.
3
Set the electronic load for the output’s full-scale current. The CV
annunciator on the front panel must be on. If it is not, adjust the
load so that the output current drops slightly.
4
Record the output voltage reading from the DVM.
5
Open the load and record the voltage reading from the DVM
again. The difference between the DVM readings in steps 4 and 5
is the load effect, which should not exceed the value listed in the
test record for the appropriate model under CV Load Effect.
Series N8700 User’s Guide
Verification and Calibration
Appendix B
CV Source Effect
Test category = performance
This test measures the change in output voltage that results from a
change in AC line voltage from the minimum to maximum value
within the line voltage specifications.
1
Turn off the power supply and connect the ac power line through
a variable voltage transformer.
2
Connect a DVM and an electronic load as shown in figure A. Set
the variable voltage transformer to nominal line voltage.
3
Turn on the power supply and program the output current to its
maximum programmable value (Imax) and the output voltage to
its full-scale value.
4
Set the electronic load for the output’s full-scale current. The CV
annunciator on the front panel must be on. If it is not, adjust the
load so that the output current drops slightly.
5
Adjust the transformer to the low-line voltage (170 VAC for 200
nominal line; 342 VAC for 400 nominal line).
6
Record the output voltage reading from the DVM.
7
Adjust the transformer to the high-line voltage (265 VAC for 200
nominal line; 460 VAC for 400 nominal line).
8
Record the output voltage reading on the DVM. The difference
between the DVM reading in steps 6 and 8 is the source effect,
which should not exceed the value listed in the test record for the
appropriate model under CV Source Effect.
CV Noise
Test category = performance
Periodic and random deviations in the output combine to produce a
residual AC voltage superimposed on the DC output voltage. This
residual voltage is specified as the rms or peak-to-peak output
voltage in the frequency range specified in Appendix A.
Series N8700 User’s Guide
1
Turn off the power supply and connect the load resistor,
differential amplifier, and an oscilloscope (ac coupled) to the
output as shown in figure C. Use the indicated load resistor for
3.3kW outputs; use the indicated load resistor for 5kW outputs.
2
As shown in the diagram, use two BNC cables to connect the
differential amplifier to the + and − output terminals. Each cable
should be terminated by a 50 Ω resistor. The shields of the two
BNC cables should be connected together. Connect the output of
the differential amplifier to the oscilloscope with a 50 Ω
termination at the input of the oscilloscope.
3
Set the differential amplifier to multiply by ten, divide by one,
and 1 Megohm input resistance. The positive and negative inputs
of the differential amplifier should be set to AC coupling. Set the
oscilloscope’s time base to 5 ms/div, and the vertical scale to 10
mV/div. Turn the bandwidth limit on (usually 20 or 30 MHz), and
set the sampling mode to peak detect.
101
Appendix B
Verification and Calibration
4
Program the power supply to program the output current to its
maximum programmable value (Imax) and the output voltage to
its full-scale value and enable the output. Let the oscilloscope run
for a few seconds to generate enough measurement points. On
the Agilent Infiniium scope, the maximum peak-to-peak voltage
measurement is indicated at the bottom of the screen on the right
side. Divide this value by 10 to get the CV peak-to-peak noise
measurement. The result should not exceed the peak-to-peak
limits in the test record form for the appropriate model under CV
Ripple and Noise, peak-to-peak.
(If the measurement contains any question marks, clear the
measurement and try again. This means that some of the data
received by the scope was questionable.)
5
Disconnect the oscilloscope and connect an ac rms voltmeter in
its place. Do not disconnect the 50 Ω termination. Divide the
reading of the rms voltmeter by 10. The result should not exceed
the rms limits in the test record for the appropriate model under
CV Ripple and Noise - rms.
Transient Recovery Time
Test category = performance
This measures the time for the output voltage to recover to within the
specified value following a 10% to 90% change in the load current.
6
Turn off the power supply and connect the output as in figure A
with the oscilloscope across the +S and -S terminals.
7
Turn on the power supply and program the output current to its
maximum programmable value (Imax) and the output voltage to
its full-scale value. Do not program voltages greater than 200
VDC when testing the 300 and 600 volt models.
8
Set the electronic load to operate in constant current mode.
Program its load current to 10% of the power supply’s full-scale
current value.
9
Set the electronic load's transient generator frequency to 100 Hz
and its duty cycle to 50%.
10 Program the load's transient current level to 90% of the power
supply's full-scale current value. Turn the transient generator on.
11 Adjust the oscilloscope for a waveform similar to that shown in
the following figure.
12 The output voltage should return to within the specified voltage
in the specified time following the 10% to 90% load change. Check
both loading and unloading transients by triggering on the
positive and negative slope. Record the voltage at time “t” in the
performance test record under Transient Response.
Loadi ng
Transi ent
tttt
t
v
t
v
Unl oadi ng
Transi ent
102
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Constant Current Tests
Refer to the appropriate test record in the following section for the
instrument settings for each of the following tests.
Current Programming and Readback Accuracy
Test category = performance, calibration
This test verifies that the current programming and measurement
functions are within specifications.
1
Turn off the power supply and connect the current shunt directly
across the output. Connect the DVM across the current shunt.
2
Turn on the power supply and program the output voltage to its
full-scale value and the output current to zero. The CC
annunciator should be on and the output voltage reading should
be approximately zero.
3
Divide the voltage drop (DVM reading) across the current shunt
by its resistance to convert to amps and record this value (Iout).
Also record the current measurement readback. The readings
should be within the limits specified in the test record for the
appropriate model under Current Programming and Readback,
Minimum Current Iout.
4
Program the output current to its full-scale rating.
5
Divide the voltage drop (DVM reading) across the current shunt
by its resistance to convert to amps and record this value (Iout).
Also record the current measurement readback. The readings
should be within the limits specified in the test record for the
appropriate model under Current Programming and Readback,
High Current Iout.
CC Load Effect
Test category = performance
This test measures the change in output current resulting from a
change in output voltage from full scale to short circuit.
Series N8700 User’s Guide
1
Turn off the power supply and connect the current shunt, DVM,
and electronic load as shown in figure B. Connect the DVM
directly across the current shunt.
2
To ensure that the values read during this test are not the
instantaneous measurement of the AC peaks of the output
current ripple, several DC measurements should be made and
averaged. With an Agilent 3458A, you can set the voltmeter to do
this automatically. From the instrument’s front panel, program
100 power line cycles per measurement. Press NPLC 100 ENTER.
3
Turn on the power supply and program the output current to its
full-scale value and the output voltage to its maximum
programmable value (Vmax).
4
With the electronic load in CV mode, set it for the output’s fullscale voltage. The CC annunciator on the front panel must be on.
If it is not, adjust the load so that the voltage drops slightly.
103
Appendix B
Verification and Calibration
5
Divide the voltage drop (DVM reading) across the current
monitoring resistor by its resistance to convert to amps and
record this value (Iout).
6
Short the electronic load. Divide the voltage drop (DVM reading)
across the current shunt by its resistance to convert to amps and
record this value (Iout). The difference in the current readings in
steps 4 and 5 is the load effect, which should not exceed the
value listed in the test record for the appropriate model under
CC Load Effect.
CC Source Effect
Test category = performance
This test measures the change in output current that results from a
change in AC line voltage from the minimum to maximum value
within the line voltage specifications.
1
Turn off the power supply and connect the ac power line through
a variable voltage transformer or AC source.
2
Connect the current shunt, DVM, and electronic load as shown in
figure B. Connect the DVM directly across the current shunt. Set
the variable voltage transformer to nominal line voltage.
3
To ensure that the values read during this test are not the
instantaneous measurement of the AC peaks of the output
current ripple, several DC measurements should be made and
averaged. If you are using an Agilent 3458A, you can set up the
voltmeter to do this automatically. From the instrument’s front
panel, program 100 power line cycles per measurement. Press
NPLC 100 ENTER.
4
Turn on the power supply and program the output current to its
full-scale value and the output voltage to its maximum
programmable value (Vmax).
5
With the electronic load in CV mode, set it for the output’s fullscale voltage. The CC annunciator on the front panel must be on.
If it is not, adjust the load so that the voltage drops slightly.
6
Adjust the transformer to the lowest rated line voltage (170 VAC
for 200 nominal line; 342 VAC for 400 nominal line).
7
Divide the voltage drop (DVM reading) across the current
monitoring resistor by its resistance to convert to amps and
record this value (Iout).
8
Adjust the transformer to the highest rated line voltage (265 VAC
for 200 nominal line; 460 VAC for 400 nominal line).
9
Divide the voltage drop (DVM reading) across the current shunt
by its resistance to convert to amps and record this value (Iout).
The difference between the DVM reading in steps 6 and 8 is the
source effect, which should not exceed the value listed in the test
record for the appropriate model under CC Source Effect.
10 Return the voltage and current settings to zero.
104
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8731A [8V, 400A, 3.3kW]
Agilent N8731A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 8 mV
_____________
_____________
+ 20 mV
Vout + 8 mV
High Voltage Vout
Measurement Readback
7.992 V
Vout − 16 mV
_____________
_____________
8.008 V
Vout + 16 mV
CV Load Effect
− 6.2 mV
_____________
+ 6.2 mV
CV Source Effect
− 2.8 mV
_____________
+ 2.8 mV
N/A
60 mV
N/A
_____________
_____________
− 40 mV
_____________
+ 40 mV
0 mA
Iout − 1.2 A
398.8 A
Iout − 1.6 A
_____________
_____________
_____________
_____________
+ 2.4 A
Iout + 1.2 A
401.2 A
Iout + 1.6 A
CC Load Effect
− 85 mA
_____________
+ 85 mA
CC Source Effect
− 42 mA
_____________
+ 42 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8731A Settings
Voltage Programming & Readback, Min Voltage
≤16 mV, 1.6A
Voltage Programming & Readback, High Voltage
8V, 1.6A
CV Load Effect, Source Effect, Ripple and Noise
8V, 400A
Transient Response
8V, from 40A to 360A
Current Programming & Readback, Min Current
1.6A, 8V
Current Programming & Readback, High Current
400A, 8V
CC Load Effect, Source Effect
400A, 8V
N8731A Load Requirements
Current shunt
0.0005W 500 A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
0.02W 3.5 kW
Series N8700 User’s Guide
105
Appendix B
Verification and Calibration
Test Record – Agilent N8732A [10V, 330A, 3.3kW]
Agilent N8732A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 10 mV
_____________
_____________
+ 25 mV
Vout + 10 mV
High Voltage Vout
Measurement Readback
9.990 V
Vout − 20 mV
_____________
_____________
10.010 V
Vout + 20 mV
− 6.5 mV
_____________
+ 6.5 mV
− 3 mV
_____________
+ 3 mV
N/A
60 mV
N/A
_____________
_____________
− 50 mV
_____________
+ 50 mV
0 mA
Iout − 990 mA
329.01 A
Iout − 1.32 A
_____________
_____________
_____________
_____________
+ 1.98 A
Iout + 990 mA
330.99 A
Iout + 1.32 A
CC Load Effect
− 71 mA
_____________
+ 71 mA
CC Source Effect
− 35 mA
_____________
+ 35 mA
Voltage Programming & Readback
CV Load Effect
CV Source Effect
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8732A Settings
Voltage Programming & Readback, Min Voltage
≤20 mV, 1.32A
Voltage Programming & Readback, High Voltage
10V, 1.32A
CV Load Effect, Source Effect, Ripple and Noise
10V, 330A
Transient Response
10V, from 33A to 297A
Current Programming & Readback, Min Current
1.32A, 10V
Current Programming & Readback, High Current
330A, 10V
CC Load Effect, Source Effect
330A, 10V
N8732A Load Requirements
Current shunt
106
0.0005W 500 A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
0.03W 3.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8733A [15V, 220A, 3.3kW]
Agilent N8733A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 15 mV
_____________
_____________
+ 37.5 mV
Vout + 15 mV
High Voltage Vout
Measurement Readback
14.985 V
Vout − 30 mV
_____________
_____________
15.015 V
Vout + 30 mV
CV Load Effect
− 7.3 mV
_____________
+ 7.3 mV
CV Source Effect
− 3.5 mV
_____________
+ 3.5 mV
N/A
60 mV
N/A
_____________
_____________
− 75 mV
_____________
+ 75 mV
0 mA
Iout − 660 mA
219.34 A
Iout − 880 mA
_____________
_____________
_____________
_____________
+ 1.32 A
Iout + 660 mA
220.66 A
Iout + 880 mA
CC Load Effect
− 49 mA
_____________
+ 49 mA
CC Source Effect
− 24 mA
_____________
+ 24 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8733A Settings
Voltage Programming & Readback, Min Voltage
≤30 mV, 880 mA
Voltage Programming & Readback, High Voltage
15V, 880 mA
CV Load Effect, Source Effect, Ripple and Noise
15V, 220 A
Transient Response
15V, from 22A to 198A
Current Programming & Readback, Min Current
880 mA, 15V
Current Programming & Readback, High Current
220A, 15V
CC Load Effect, Source Effect
220A, 15V
N8733A Load Requirements
Current shunt
0.001W 300A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
0.068W 3.5 kW
Series N8700 User’s Guide
107
Appendix B
Verification and Calibration
Test Record – Agilent N8734A [20V, 165A, 3.3kW]
Agilent N8734A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 20 mV
_____________
_____________
+ 50 mV
Vout + 20 mV
High Voltage Vout
Measurement Readback
19.98 V
Vout − 40 mV
_____________
_____________
20.02 V
Vout + 40 mV
CV Load Effect
− 8 mV
_____________
+ 8 mV
CV Source Effect
− 4 mV
_____________
+ 4 mV
N/A
60 mV
N/A
_____________
_____________
− 100 mV
_____________
+ 100 mV
0 mA
Iout − 495 mA
164.505 A
Iout − 660 mA
_____________
_____________
_____________
_____________
+ 990 mA
Iout + 495 mA
165.495 A
Iout + 660 mA
− 38 mA
_____________
+ 38 mA
− 18.5 mA
_____________
+ 18.5 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
CC Load Effect
CC Source Effect
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8734A Settings
Voltage Programming & Readback, Min Voltage
≤40 mV, 660 mA
Voltage Programming & Readback, High Voltage
20V, 660 mA
CV Load Effect, Source Effect, Ripple and Noise
20V, 165A
Transient Response
20V, from 16.5A to 148.5A
Current Programming & Readback, Min Current
660 mA, 20V
Current Programming & Readback, High Current
165A, 20V
CC Load Effect, Source Effect
165A, 20V
N8734A Load Requirements
Current shunt
108
0.001W 300 A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
0.21W 3.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8735A [30V, 110A, 3.3kW]
Agilent N8735A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 30 mV
_____________
_____________
+ 75 mV
Vout + 30 mV
High Voltage Vout
Measurement Readback
29.97 V
Vout − 60 mV
_____________
_____________
30.03 V
Vout + 60 mV
− 9.5 mV
_____________
+ 9.5 mV
− 5 mV
_____________
+ 5 mV
N/A
60 mV
N/A
_____________
_____________
− 150 mV
_____________
+ 150 mV
0 mA
Iout −330 mA
109.67 A
Iout − 440 mA
_____________
_____________
_____________
_____________
+660 mA
Iout + 330 mA
110.33 A
Iout + 440 mA
CC Load Effect
− 27 mA
_____________
+ 27 mA
CC Source Effect
− 13 mA
_____________
+ 13 mA
Voltage Programming & Readback
CV Load Effect
CV Source Effect
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8735A Settings
Voltage Programming & Readback, Min Voltage
≤60 mV, 440 mA
Voltage Programming & Readback, High Voltage
30V, 440 mA
CV Load Effect, Source Effect, Ripple and Noise
30V, 110 A
Transient Response
30V, from 11A to 99A
Current Programming & Readback, Min Current
440 mA, 30V
Current Programming & Readback, High Current
110A, 30V
CC Load Effect, Source Effect
110A, 30V
N8735A Load Requirements
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
0.27W 3.5 kW
Series N8700 User’s Guide
109
Appendix B
Verification and Calibration
Test Record – Agilent N8736A [40V, 85A, 3.3kW]
Agilent N8736A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 40 mV
_____________
_____________
+ 100 mV
Vout + 40 mV
High Voltage Vout
Measurement Readback
39.96 V
Vout − 80 mV
_____________
_____________
40.04 V
Vout + 80 mV
CV Load Effect
− 11 mV
_____________
+ 11 mV
CV Source Effect
− 6 mV
_____________
+ 6 mV
N/A
60 mV
N/A
_____________
_____________
− 200 mV
_____________
+ 200 mV
0 mA
Iout − 255 mA
84.745 A
Iout − 340 mA
_____________
_____________
_____________
_____________
+ 510 mA
Iout + 255 mA
85.255 A
Iout + 340 mA
− 22 mA
_____________
+ 22 mA
− 10.5 mA
_____________
+ 10.5 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
CC Load Effect
CC Source Effect
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8736A Settings
Voltage Programming & Readback, Min Voltage
≤80 mV, 340 mA
Voltage Programming & Readback, High Voltage
40V, 340 mA
CV Load Effect, Source Effect, Ripple and Noise
40V, 85A
Transient Response
40V, from 8.5A to 76.5A
Current Programming & Readback, Min Current
340 mA, 40V
Current Programming & Readback, High Current
85A, 40V
CC Load Effect, Source Effect
85A, 40V
N8736A Load Requirements
110
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
0.47W 3.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8737A [60V, 55A, 3.3kW]
Agilent N8737A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 60 mV
_____________
_____________
+ 150 mV
Vout + 60 mV
High Voltage Vout
Measurement Readback
59.94 V
Vout − 120 mV
_____________
_____________
60.06 V
Vout + 120 mV
CV Load Effect
− 14 mV
_____________
+ 14 mV
CV Source Effect
− 8 mV
_____________
+ 8 mV
N/A
60 mV
N/A
_____________
_____________
− 300 mV
_____________
+ 300 mV
0 mA
Iout − 165 mA
54.835 A
Iout − 220 mA
_____________
_____________
_____________
_____________
+ 330 mA
Iout + 165 mA
55.165 A
Iout + 220 mA
CC Load Effect
− 16 mA
_____________
+ 16 mA
CC Source Effect
− 7.5 mA
_____________
+ 7.5 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
8 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8737A Settings
Voltage Programming & Readback, Min Voltage
≤120 mV, 220 mA
Voltage Programming & Readback, High Voltage
60V, 220 mA
CV Load Effect, Source Effect, Ripple and Noise
Transient Response
60V, 55A
60V, from 5.5A to 49.5A
Current Programming & Readback, Min Current
220 mA, 60V
Current Programming & Readback, High Current
55A, 60V
CC Load Effect, Source Effect
55A, 60V
N8737A Load Requirements
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
6 – N3306A
Fixed Resistor for CV Ripple and Noise
1.1W 3.5 kW
Series N8700 User’s Guide
111
Appendix B
Verification and Calibration
Test Record – Agilent N8738A [80V, 42A, 3.3kW]
Agilent N8738A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 80 mV
_____________
_____________
+ 200 mV
Vout + 80 mV
High Voltage Vout
Measurement Readback
79.92 V
Vout − 160 mV
_____________
_____________
80.08 V
Vout + 160 mV
Voltage Programming & Readback
CV Load Effect
− 17 mV
_____________
+ 17 mV
CV Source Effect
− 10 mV
_____________
+ 10 mV
N/A
80 mV
N/A
_____________
_____________
− 400 mV
_____________
+ 400 mV
0 mA
Iout − 126 mA
41.874 A
Iout − 168 mA
_____________
_____________
_____________
_____________
+ 252 mA
Iout + 126 mA
42.126 A
Iout + 168 mA
CC Load Effect
− 13.4 mA
_____________
+ 13.4 mA
CC Source Effect
− 6.2 mA
_____________
+ 6.2 mA
CV Ripple and Noise
peak-to-peak
rms
25 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8738A Settings
Voltage Programming & Readback, Min Voltage
≤160 mV, 168 mA
Voltage Programming & Readback, High Voltage
80V, 168 mA
CV Load Effect, Source Effect, Ripple and Noise
80V, 42A
Transient Response
80V, from 4.2A to 37.8A
Current Programming & Readback, Min Current
168 mA, 80V
Current Programming & Readback, High Current
42A, 80V
CC Load Effect, Source Effect
42A, 80V
N8738A Load Requirements
112
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
7 – N3305A
Fixed Resistor for CV Ripple and Noise
1.9W 3.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8739A [100V, 33A, 3.3kW]
Agilent N8739A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 100 mV
_____________
_____________
+ 250 mV
Vout + 100 mV
High Voltage Vout
Measurement Readback
99.9 V
Vout − 200 mV
_____________
_____________
100.1 V
Vout + 200 mV
Voltage Programming & Readback
CV Load Effect
− 20 mV
_____________
+ 20 mV
CV Source Effect
− 12 mV
_____________
+ 12 mV
N/A
100 mV
N/A
_____________
_____________
− 500 mV
_____________
+ 500 mV
0 mA
Iout − 99 mA
32.901 A
Iout − 132 mA
_____________
_____________
_____________
_____________
+198 mA
Iout + 99 mA
33.099 A
Iout + 132 mA
CC Load Effect
− 11.6 mA
_____________
+ 11.6 mA
CC Source Effect
− 5.3 mA
_____________
+ 5.3 mA
CV Ripple and Noise
peak-to-peak
rms
25 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8739A Settings
Voltage Programming & Readback, Min Voltage
≤200 mV, 132 mA
Voltage Programming & Readback, High Voltage
100V, 132 mA
CV Load Effect, Source Effect, Ripple and Noise
100V, 33A
Transient Response
100V, from 3.3A to 29.7A
Current Programming & Readback, Min Current
132 mA, 100V
Current Programming & Readback, High Current
33A, 100V
CC Load Effect, Source Effect
33A, 100V
N8739A Load Requirements
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
7 – N3305A
Fixed Resistor for CV Ripple and Noise
3.0W 3.5 kW
Series N8700 User’s Guide
113
Appendix B
Verification and Calibration
Test Record – Agilent N8740A [150V, 22A, 3.3kW]
Agilent N8740A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 150 mV
_____________
_____________
+ 375 mV
Vout + 150 mV
High Voltage Vout
Measurement Readback
149.85 V
Vout − 300 mV
_____________
_____________
150.15 V
Vout + 300 mV
− 27.5 mV
_____________
+ 27.5 mV
− 17 mV
_____________
+ 17 mV
N/A
100 mV
N/A
_____________
_____________
− 750 mV
_____________
+ 750 mV
0 mA
Iout − 66 mA
21.934 A
Iout − 88 mA
_____________
_____________
_____________
_____________
+ 132 mA
Iout + 66 mA
22.066 A
Iout + 88 mA
CC Load Effect
− 9.4 mA
_____________
+ 9.4 mA
CC Source Effect
− 4.2 mA
_____________
+ 4.2 mA
Voltage Programming & Readback
CV Load Effect
CV Source Effect
CV Ripple and Noise
peak-to-peak
rms
25 mV
Transient Response
Voltage @ 2 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8740A Settings
Voltage Programming & Readback, Min Voltage
≤300 mV, 88 mA
Voltage Programming & Readback, High Voltage
150V, 88 mA
CV Load Effect, Source Effect, Ripple and Noise
150V, 22A
Transient Response
150V, from 2.2A to 19.8A
Current Programming & Readback, Min Current
88 mA, 150V
Current Programming & Readback, High Current
22A, 150V
CC Load Effect, Source Effect
22A, 150V
N8740A Load Requirements
114
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
7 – N3305A
Fixed Resistor for CV Ripple and Noise
6.8W 3.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8741A [300V, 11A, 3.3kW]
Agilent N8741A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 300 mV
_____________
_____________
+ 750 mV
Vout + 300 mV
High Voltage Vout
Measurement Readback
299.7 V
Vout − 600 mV
_____________
_____________
300.3 V
Vout + 600 mV
Voltage Programming & Readback
CV Load Effect
− 50 mV
_____________
+ 50 mV
CV Source Effect
− 32 mV
_____________
+ 32 mV
N/A
300 mV
N/A
_____________
_____________
− 1.5V
_____________
+ 1.5V
0 mA
Iout − 33 mA
10.967 A
Iout − 44 mA
_____________
_____________
_____________
_____________
+ 66 mA
Iout + 33 mA
11.033 A
Iout + 44 mA
CC Load Effect
− 7.2 mA
_____________
+ 7.2 mA
CC Source Effect
− 3.1 mA
_____________
+ 3.1 mA
CV Ripple and Noise
peak-to-peak
rms
100 mV
Transient Response
Voltage @ 2 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8741A Settings
Voltage Programming & Readback, Min Voltage
≤600 mV, 44 mA
Voltage Programming & Readback, High Voltage
300V, 44 mA
CV Load Effect, Source Effect, Ripple and Noise
300V, 11A
Transient Response
200V, from 1.1A to 9.9A
Current Programming & Readback, Min Current
44 mA, 300V
Current Programming & Readback, High Current
11A, 300V
CC Load Effect, Source Effect
11A, 300V
N8741A Load Requirements
Current shunt
Use fixed resistor instead of load modules
Fixed Resistor for CV Ripple and Noise
Series N8700 User’s Guide
0.1W 15 A
27.3W 3.5 kW
(or Amrel 5KW 600V 300A electronic load)
27.3W 3.5 kW
115
Appendix B
Verification and Calibration
Test Record – Agilent N8742A [600V, 5.5A, 3.3kW]
Agilent N8742A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 600 mV
_____________
_____________
+ 1.5 V
Vout + 600 mV
High Voltage Vout
Measurement Readback
599.4 V
Vout − 1.2 V
_____________
_____________
600.6 V
Vout + 1.2 V
Voltage Programming & Readback
CV Load Effect
− 95 mV
_____________
+ 95 mV
CV Source Effect
− 62 mV
_____________
+ 62 mV
N/A
500 mV
N/A
_____________
_____________
− 3V
_____________
+ 3V
0 mA
Iout − 16.5 mA
5.4835 A
Iout − 22 mA
_____________
_____________
_____________
_____________
+ 33 mA
Iout + 16.5 mA
5.5165 A
Iout + 22 mA
CC Load Effect
− 6.1 mA
_____________
+ 6.1 mA
CC Source Effect
− 2.6 mA
_____________
+ 2.6 mA
CV Ripple and Noise
peak-to-peak
rms
120 mV
Transient Response
Voltage @ 2 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8742A Settings
Voltage Programming & Readback, Min Voltage
≤1.2V, 22 mA
Voltage Programming & Readback, High Voltage
600V, 22 mA
CV Load Effect, Source Effect, Ripple and Noise
600V, 5.5A
Transient Response
200V, from 0.55A to 4.95A
Current Programming & Readback, Min Current
22 mA, 600V
Current Programming & Readback, High Current
5.5A, 600V
CC Load Effect, Source Effect
5.5A, 600V
N8742A Load Requirements
Current shunt
Use fixed resistor instead of load modules
Fixed Resistor for CV Ripple and Noise
116
0.1W 15 A
109W 3.5 kW
(or Amrel 5KW 600V 300A electronic load)
109W 3.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8754A [20V, 250A, 5kW]
Agilent N8754A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 25 mV
_____________
_____________
+ 55 mV
Vout + 25 mV
High Voltage Vout
Measurement Readback
19.98 V
Vout − 30 mV
_____________
_____________
20.02 V
Vout + 30 mV
CV Load Effect
− 8 mV
_____________
+ 8 mV
CV Source Effect
− 2 mV
_____________
+ 2 mV
N/A
75 mV
N/A
_____________
_____________
− 100 mV
_____________
+ 100 mV
0 mA
Iout − 750 mA
249 A
Iout − 1.0 A
_____________
_____________
_____________
_____________
+ 1.75 A
Iout + 750 mA
251 A
Iout + 1.0 A
CC Load Effect
− 250 mA
_____________
+ 250 mA
CC Source Effect
− 125 mA
_____________
+ 125 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
10 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8754A Settings
Voltage Programming & Readback, Min Voltage
≤30 mV, 1A
Voltage Programming & Readback, High Voltage
20V, 1A
CV Load Effect, Source Effect, Ripple and Noise
20V, 250A
Transient Response
20V, from 25A to 225A
Current Programming & Readback, Min Current
1A, 20V
Current Programming & Readback, High Current
250A, 20V
CC Load Effect, Source Effect
250A, 20V
N8754A Load Requirements
Current shunt
0.001W 300 A
Agilent N3300 Electronic load modules
9 – N3306A
Fixed Resistor for CV Ripple and Noise
0.08W 5.5 kW
Series N8700 User’s Guide
117
Appendix B
Verification and Calibration
Test Record – Agilent N8755A [30V, 170A, 5kW]
Agilent N8755A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 37.5 mV
_____________
_____________
+ 82.5 mV
Vout + 37.5 mV
High Voltage Vout
Measurement Readback
29.97 V
Vout − 45 mV
_____________
_____________
30.03 V
Vout + 45 mV
− 9.5 mV
_____________
+ 9.5 mV
− 3 mV
_____________
+ 3 mV
N/A
75 mV
N/A
_____________
_____________
− 150 mV
_____________
+ 150 mV
0 mA
Iout − 510 mA
169.32 A
Iout − 680 mA
_____________
_____________
_____________
_____________
+ 1.19 A
Iout + 510 mA
170.68 A
Iout + 680 mA
CC Load Effect
− 170 mA
_____________
+ 170 mA
CC Source Effect
− 85 mA
_____________
+ 85 mA
Voltage Programming & Readback
CV Load Effect
CV Source Effect
CV Ripple and Noise
peak-to-peak
rms
10 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8755A Settings
Voltage Programming & Readback, Min Voltage
≤45 mV, 680 mA
Voltage Programming & Readback, High Voltage
30V, 680 mA
CV Load Effect, Source Effect, Ripple and Noise
30V, 170 A
Transient Response
30V, from 17A to 153A
Current Programming & Readback, Min Current
680 mA, 30V
Current Programming & Readback, High Current
170A, 30V
CC Load Effect, Source Effect
170A, 30V
N8755A Load Requirements
Current shunt
118
0.001W 300 A
Agilent N3300 Electronic load modules
9 – N3306A
Fixed Resistor for CV Ripple and Noise
0.176W 5.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8756A [40V, 125A, 5kW]
Agilent N8756A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 50 mV
_____________
_____________
+ 110 mV
Vout + 50 mV
High Voltage Vout
Measurement Readback
39.96 V
Vout − 60 mV
_____________
_____________
40.04 V
Vout + 60 mV
CV Load Effect
− 11 mV
_____________
+ 11 mV
CV Source Effect
− 4 mV
_____________
+ 4 mV
N/A
75 mV
N/A
_____________
_____________
− 200 mV
_____________
+ 200 mV
0 mA
Iout − 375 mA
124.5 A
Iout − 500 mA
_____________
_____________
_____________
_____________
+ 875 mA
Iout + 375 mA
125.5 A
Iout + 500 mA
CC Load Effect
− 125 mA
_____________
+ 125 mA
CC Source Effect
− 62.5 mA
_____________
+ 62.5 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
10 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8756A Settings
Voltage Programming & Readback, Min Voltage
≤60 mV, 500 mA
Voltage Programming & Readback, High Voltage
40V, 500 mA
CV Load Effect, Source Effect, Ripple and Noise
40V, 125A
Transient Response
40V, from 12.5A to 112.5A
Current Programming & Readback, Min Current
500 mA, 40V
Current Programming & Readback, High Current
125A, 40V
CC Load Effect, Source Effect
125A, 40V
N8756A Load Requirements
Current shunt
0.001W 300 A
Agilent N3300 Electronic load modules
9 – N3306A
Fixed Resistor for CV Ripple and Noise
0.32W 5.5 kW
Series N8700 User’s Guide
119
Appendix B
Verification and Calibration
Test Record – Agilent N8757A [60V, 85A, 5kW]
Agilent N8757A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 75 mV
_____________
_____________
+ 165 mV
Vout + 75 mV
High Voltage Vout
Measurement Readback
59.94 V
Vout − 90 mV
_____________
_____________
60.06 V
Vout + 90 mV
CV Load Effect
− 14 mV
_____________
+ 14 mV
CV Source Effect
− 6 mV
_____________
+ 6 mV
N/A
75 mV
N/A
_____________
_____________
− 300 mV
_____________
+ 300 mV
0 mA
Iout − 255 mA
84.66 A
Iout − 340 mA
_____________
_____________
_____________
_____________
+ 595 mA
Iout +255 mA
85.34 A
Iout + 340 mA
− 85 mA
_____________
+ 85 mA
− 42.5 mA
_____________
+ 42.5 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
10 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
CC Load Effect
CC Source Effect
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8757A Settings
Voltage Programming & Readback, Min Voltage
≤90 mV, 340 mA
Voltage Programming & Readback, High Voltage
60V, 340 mA
CV Load Effect, Source Effect, Ripple and Noise
60V, 85A
Transient Response
60V, from 8.5A to 76.5A
Current Programming & Readback, Min Current
340 mA, 60V
Current Programming & Readback, High Current
85A, 60V
CC Load Effect, Source Effect
85A, 60V
N8757A Load Requirements
120
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
9 – N3306A
Fixed Resistor for CV Ripple and Noise
0.705W 5.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8758A [80V, 65A, 5kW]
Agilent N8758A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 100 mV
_____________
_____________
+ 220 mV
Vout + 100 mV
High Voltage Vout
Measurement Readback
79.92 V
Vout − 120 mV
_____________
_____________
80.08 V
Vout + 120 mV
CV Load Effect
− 17 mV
_____________
+ 17 mV
CV Source Effect
− 8 mV
_____________
+ 8 mV
N/A
100 mV
N/A
_____________
_____________
− 400 mV
_____________
+ 400 mV
0 mA
Iout − 195 mA
79.74 A
Iout − 260 mA
_____________
_____________
_____________
_____________
+ 455 mA
Iout + 195 mA
80.26 A
Iout + 260 mA
− 65 mA
_____________
+ 65 mA
− 32.5 mA
_____________
+ 32.5 mA
Voltage Programming & Readback
CV Ripple and Noise
peak-to-peak
rms
15 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
CC Load Effect
CC Source Effect
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8758A Settings
Voltage Programming & Readback, Min Voltage
≤120 mV, 260 mA
Voltage Programming & Readback, High Voltage
80V, 260 mA
CV Load Effect, Source Effect, Ripple and Noise
80V, 65A
Transient Response
80V, from 6.5A to 58.5A
Current Programming & Readback, Min Current
260 mA, 80V
Current Programming & Readback, High Current
65A, 80V
CC Load Effect, Source Effect
65A, 80V
N8758A Load Requirements
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
11 – N3305A
Fixed Resistor for CV Ripple and Noise
1.23W 5.5 kW
Series N8700 User’s Guide
121
Appendix B
Verification and Calibration
Test Record – Agilent N8759A [100V, 50A, 5kW]
Agilent N8759A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 125 mV
_____________
_____________
+ 275 mV
Vout + 125 mV
High Voltage Vout
Measurement Readback
99.9 V
Vout − 150 mV
_____________
_____________
100.1 V
Vout + 150 mV
Voltage Programming & Readback
CV Load Effect
− 20 mV
_____________
+ 20 mV
CV Source Effect
− 10 mV
_____________
+ 10 mV
N/A
100 mV
N/A
_____________
_____________
− 500 mV
_____________
+ 500 mV
0 mA
Iout − 150 mA
99.8 A
Iout − 200 mA
_____________
_____________
_____________
_____________
+ 350 mA
Iout +150 mA
100.2 A
Iout + 200 mA
CC Load Effect
− 50 mA
_____________
+ 50 mA
CC Source Effect
− 25 mA
_____________
+ 25 mA
CV Ripple and Noise
peak-to-peak
rms
15 mV
Transient Response
Voltage @ 1 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8759A Settings
Voltage Programming & Readback, Min Voltage
≤150 mV, 200 mA
Voltage Programming & Readback, High Voltage
100V, 200 mA
CV Load Effect, Source Effect, Ripple and Noise
100V, 50A
Transient Response
100V, from 5A to 45A
Current Programming & Readback, Min Current
200 mA, 100V
Current Programming & Readback, High Current
50A, 100V
CC Load Effect, Source Effect
50A, 100V
N8759A Load Requirements
122
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
11 – N3305A
Fixed Resistor for CV Ripple and Noise
2.0W 5.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8760A [150V, 34A, 5kW]
Agilent N8760A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 187 mV
_____________
_____________
+ 422.5 mV
Vout + 187 mV
High Voltage Vout
Measurement Readback
149.85 V
Vout − 225 mV
_____________
_____________
150.15 V
Vout + 225 mV
− 27.5 mV
_____________
+ 27.5 mV
− 15 mV
_____________
+ 15 mV
N/A
120 mV
N/A
_____________
_____________
− 750 mV
_____________
+ 750 mV
0 mA
Iout − 102 mA
33.864 A
Iout − 136 mA
_____________
_____________
_____________
_____________
+ 238 mA
Iout + 102 mA
34.136 A
Iout + 136 mA
CC Load Effect
− 34 mA
_____________
+ 34 mA
CC Source Effect
− 17 mA
_____________
+ 17 mA
Voltage Programming & Readback
CV Load Effect
CV Source Effect
CV Ripple and Noise
peak-to-peak
rms
25 mV
Transient Response
Voltage @ 2 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8760A Settings
Voltage Programming & Readback, Min Voltage
≤225 mV, 136 mA
Voltage Programming & Readback, High Voltage
150V, 136 mA
CV Load Effect, Source Effect, Ripple and Noise
150V, 34A
Transient Response
150V, from 3.4A to 30.6A
Current Programming & Readback, Min Current
136 mA, 150V
Current Programming & Readback, High Current
34A, 150V
CC Load Effect, Source Effect
34A, 150V
N8760A Load Requirements
Current shunt
0.01W 100 A
Agilent N3300 Electronic load modules
11 – N3305A
Fixed Resistor for CV Ripple and Noise
4.4W 5.5 kW
Series N8700 User’s Guide
123
Appendix B
Verification and Calibration
Test Record – Agilent N8761A [300V, 17A, 5kW]
Agilent N8761A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 375 mV
_____________
_____________
+ 825 mV
Vout + 375 mV
High Voltage Vout
Measurement Readback
299.7 V
Vout − 450 mV
_____________
_____________
300.3 V
Vout + 450 mV
Voltage Programming & Readback
CV Load Effect
− 50 mV
_____________
+ 50 mV
CV Source Effect
− 30 mV
_____________
+ 30 mV
N/A
300 mV
N/A
_____________
_____________
− 1.5V
_____________
+ 1.5V
0 mA
Iout − 51 mA
16.932 A
Iout − 68 mA
_____________
_____________
_____________
_____________
+ 119 mA
Iout + 51 mA
17.068 A
Iout + 68 mA
CC Load Effect
− 17 mA
_____________
+ 17 mA
CC Source Effect
− 8.5 mA
_____________
+ 8.5 mA
CV Ripple and Noise
peak-to-peak
rms
60 mV
Transient Response
Voltage @ 2 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8761A Settings
Voltage Programming & Readback, Min Voltage
≤450 mV, 68 mA
Voltage Programming & Readback, High Voltage
300V, 68 mA
CV Load Effect, Source Effect, Ripple and Noise
300V, 17A
Transient Response
200V, from 1.7A to 15.3A
Current Programming & Readback, Min Current
68 mA, 300V
Current Programming & Readback, High Current
17A, 300V
CC Load Effect, Source Effect
17A, 300V
N8761A Load Requirements
Current shunt
Use fixed resistor instead of load modules
Fixed Resistor for CV Ripple and Noise
124
0.1W 15 A
17.6W 5.5 kW
(or Amrel 5KW 600V 300A electronic load)
17.6W 5.5 kW
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Test Record – Agilent N8762A [600V, 8.5A, 5kW]
Agilent N8762A
Report No _______________
Description
Date __________________
Minimum Specs.
Results
Maximum Specs.
Minimum Voltage Vout
Measurement Readback
0 mV
Vout − 750 mV
_____________
_____________
+ 1.65 V
Vout + 750 mV
High Voltage Vout
Measurement Readback
599.4 V
Vout − 900 mV
_____________
_____________
600.6 V
Vout + 900 mV
Voltage Programming & Readback
CV Load Effect
− 95 mV
_____________
+ 95 mV
CV Source Effect
− 60 mV
_____________
+ 60 mV
N/A
500 mV
N/A
_____________
_____________
− 3V
_____________
+ 3V
0 mA
Iout − 25.5 mA
8.466 A
Iout − 34 mA
_____________
_____________
_____________
_____________
+ 59.5 mA
Iout + 25.5 mA
8.534 A
Iout + 34 mA
CC Load Effect
− 8.5 mA
_____________
+ 8.5 mA
CC Source Effect
− 4.3 mA
_____________
+ 4.3 mA
CV Ripple and Noise
peak-to-peak
rms
120 mV
Transient Response
Voltage @ 2 ms
Current Programming & Readback
Minimum Current Iout
Measurement Readback
High Current Iout
Measurement Readback
WARNING
Return the voltage and current settings to zero when verification is completed
Test Description
N8762A Settings
Voltage Programming & Readback, Min Voltage
≤0.9V, 34 mA
Voltage Programming & Readback, High Voltage
600V, 34 mA
CV Load Effect, Source Effect, Ripple and Noise
600V, 8.5A
Transient Response
200V, from 0.85A to 7.65A
Current Programming & Readback, Min Current
34 mA, 600V
Current Programming & Readback, High Current
8.5A, 600V
CC Load Effect, Source Effect
8.5A, 600V
N8762A Load Requirements
Current shunt
Use fixed resistor instead of load modules
Fixed Resistor for CV Ripple and Noise
Series N8700 User’s Guide
0.1W 15 A
70.6W 5.5 kW
(or Amrel 5KW 600V 300A electronic load)
70.6W 5.5 kW
125
Appendix B
Verification and Calibration
Calibration
Refer to the “Equipment Required” section in this appendix for a list
of the equipment required for calibration. A general outline of the
procedure is as follows:

As shipped from the factory the calibration password is 0, which
means password protection is removed and the ability to enter
calibration mode is unrestricted. If a password has subsequently
been set, you must enter the correct password - otherwise an
error will occur. Once calibration has been entered, the password
can be changed by the user.

You do not have to do a complete calibration. If appropriate, you
may calibrate only the voltage or current functions and then save
the calibration constants. You can also save the date when the
calibration was preformed (see CAL:DATE <”date”>).

As each calibration sequence is completed, the instrument saves
the calibration constants and begins using them.

Exit the calibration mode. Note that a Reset command (*RST)
also sets the calibration state to OFF.
Calibration Procedure
Unless instructed otherwise, connect the +sense terminal to the
+output, and the -sense terminal to the -output.
When calibrating the unit using SCPI commands, most calibration
steps involve sending an *OPC? query to synchronize with the power
supply’s command completion before proceeding. The response from
the instrument must be read each time *OPC? is given.
NOTE
The CAL:LEV and CAL:DATA commands may take several seconds to complete.
If a timeout occurs in your VISA application, you may need to change the
VI_ATTR_TMO_VALUE in the ViSetAttribute function.
Voltage Programming and Measurement Calibration
Step 1. Connect the Agilent 3458A voltage input to the output.
Step 2. Enable voltage calibration mode.
*RST
OUTP ON
CAL:STAT ON
Step 3. Set the current limit high enough to allow unrestricted voltage
programming.
ISET 0.5
Step 4. Select voltage calibration.
CAL:VOLT
126
Series N8700 User’s Guide
Verification and Calibration
Appendix B
Step 5. Select the first voltage calibration point.
CAL:LEV P1
*OPC?
Step 6. Measure the output voltage and enter the data.
CAL:DATA <data>
Step 7. Select the second voltage calibration point.
CAL:LEV P2
*OPC?
Step 8. Measure the output voltage and enter the data.
CAL:DATA <data>
Step 9. Exit calibration mode.
CAL:STAT OFF
Current Programming and Measurement Calibration
Step 1. Connect a precision shunt resistor to an output. Connect the Agilent
3458A across the shunt. The shunt should be able to measure at least
120% of the power supply’s rated full-scale current.
Step 2. Enable current calibration mode.
*RST
OUTP ON
CAL:STAT ON
Step 3. Set the output voltage high enough to compensate for any voltage
drops on the load leads and current shunt.
VSET 0.5
Step 4. Select current calibration.
CAL:CURR
Step 5. Select the first current calibration point.
CAL:LEV P1
*OPC?
Step 6. Calculate the shunt current (I=V/R) and enter the data.
CAL:DATA <data>
Step 7. Select the second current calibration point.
CAL:LEV P2
*OPC?
Step 8. Calculate the shunt current (I=V/R) and enter the data.
CAL:DATA <data>
Step 9. Exit calibration mode.
CAL:STAT OFF
Series N8700 User’s Guide
127
Appendix C
Service
Types of Service Available............................................................................. 130
Repackaging for Shipment............................................................................. 130
Operating Checklist......................................................................................... 130
Error Messages ............................................................................................... 132
Recycling Plastic Components ..................................................................... 136
This chapter discusses the procedures involved for returning a failed
instrument to Agilent Technologies for service or repair. A procedure
is included for diagnosing specific symptoms.
Series N8700 User’s Guide
129
Appendix C Service
Types of Service Available
If your instrument fails during the warranty period, Agilent
Technologies will replace or repair it free of charge. After your
warranty expires, Agilent Technologies will replace or repair it at a
competitive price.
Contact your nearest Agilent Technologies Service Center. They will
arrange to have your instrument repaired or replaced.
Repackaging for Shipment
If the unit is to be shipped to Agilent Technologies for service or
repair, be sure to:

Attach a tag to the unit identifying the owner and indicating the
required service or repair. Include the model number and full
serial number.

Place the unit in its original container with appropriate
packaging material for shipping.

Secure the container with strong tape or metal bands.
If the original shipping container is not available, place your unit in a
container that will ensure at least 4 inches of compressible packaging
material around all sides for the instrument. Use static-free
packaging materials to avoid additional damage to your unit.
Agilent Technologies suggests that you always insure shipments.
Operating Checklist
If the power supply appears to be operating improperly, use the
following procedures to determine whether the power supply, load,
or external circuits are the cause.
Turn-on check out procedure
Turn off the unit and remove all external connections to the
instrument. Follow the turn-on checkout procedure in chapter 2.
Trouble-shooting guide
If you have encountered problems during the checkout procedure,
use the following guide to diagnose a specific symptom. If the action
does not remedy the problem, return the unit for service.
130
Series N8700 User’s Guide
Service
Appendix C
Symptom
Check
Action
No output.
All displays and indicators are blank.
Is the AC power cord defective?
Check continuity. Replace if necessary.
Is the AC input voltage within range?
Check AC input voltage. Connect to
appropriate voltage source.
Output is present momentarily, but shuts
off quickly. Display indicates AC.
Does the AC source voltage sag when a load
is applied?
Check AC input voltage. Connect to
appropriate voltage source.
Output is present momentarily, but shuts
off quickly. Display indicates OUP.
Is the power supply configured for remote
sensing?
Check if the positive or negative load wire
is loose.
Output voltage will not adjust.
Front panel CC LED is on.
Is the power supply in constant current
mode?
Check the current limit setting and load
current.
Output voltage will not adjust.
Front panel CV LED is on.
Is the output voltage being adjusted above
the OVP setting or below the UVL setting?
Set the OVP or UVL so that they will not
limit the output.
Output current will not adjust.
Front panel CV LED is on.
Is the unit in constant voltage mode?
Check the current limit and voltage
setting.
Large ripple present in output.
Is the power supply in remote sense?
Check load and sense wires connection
for noise and impedance effects.
Is the voltage drop on the load wire high?
Minimize the drop on the load wires.
No output.
Display indicates OUP.
Over-voltage circuit has tripped.
Turn off the POWER switch. Check load
connections. If analog programming is
used, check if the OVP is set lower than
the output.
No output.
Front panel PROT indicator is blinking.
Display indicates EΠA?
Check connector J1 ENABLE connection.
Also check SW1 switch setting.
Display indicates SO?
Check connector J1 Output Shut-Off
connection.
Display indicates O7P?
Check if air intake or exhaust is blocked.
Check if unit is installed next to heatgenerating equipment.
Display indicates OCP?
Check OCP setting and load current.
Poor load regulation.
Front panel CV LED is on.
Are sense wires properly connected?
Connect sense wires according to
instructions in chapter 2.
Front panel controls are nonfunctional.
Is the power supply in Local Lockout mode?
Turn off the POWER switch and wait until
the display turns off. Turn on the POWER
switch and press the REM/LOC button.
Series N8700 User’s Guide
131
Appendix C Service
Error Messages
Displaying the SCPI error queue
The entire error queue is read, then emptied, using the following
command: SYST:ERR?
Error List
The following table documents the various error messages that the
power supply supports:
132
Error
Device-dependent Errors (these errors set Standard Event Status register bit #3)
0
No error
This is the response to the ERR? query when there are no errors.
100
Too many channels
You have specified more channels than are installed in the mainframe.
101
Calibration state is off
Calibration is not enabled. The instrument will not accept calibration commands.
102
Calibration password is incorrect
The calibration password is incorrect.
104
Bad sequence of calibration commands
Calibration commands have not been entered in the proper sequence.
114
CAL:DATE must be yyyy/mm/dd
The calibration date must be entered in the numeric format yyyy=year, mm=month, dd=date
203
Compatibility function not implemented
The requested compatibility function is not available.
204
NVRAM checksum error
A checksum error has occurred in the instrument’s nonvolatile random access memory.
205
NVRAM full
The nonvolatile random access memory of the instrument is full.
206
File not found
The internal calibration file or the internal channel attribute file was not found in NVRAM.
209
Output communications failure
A hardware failure has occurred on the power supply.
302
Option not installed
The option that is programmed by this command is not installed.
351
VOLT setting conflicts with VOLT:PROT setting
Attempted to program the voltage above the over-voltage protection setting.
352
VOLT:PROT setting conflicts with VOLT setting
Attempted to set the over-voltage protection below the voltage setting.
353
VOLT setting conflicts with VOLT:LIM:LOW setting
Attempted to program the voltage below the under-voltage limit setting.
354
VOLT:LIM:LOW setting conflicts with VOLT setting
Attempted to set the under-voltage limit above the voltage setting
Series N8700 User’s Guide
Service
Appendix C
Command Errors (these errors set Standard Event Status register bit #5)
−100
Command error
Generic syntax error.
−101
Invalid character
An invalid character was found in the command string.
−102
Syntax error
Invalid syntax was found in the command string. Check for blank spaces.
−103
Invalid separator
An invalid separator was found in the command string. Check for proper use of , ; :
−104
Data type error
A different data type than the one allowed was found in the command string.
−105
GET not allowed
A group execute trigger is not allowed in a command string.
−108
Parameter not allowed
More parameters were received than were expected.
−109
Missing parameter
Fewer parameters were received than were expected.
−110
Command header error
An error was detected in the header.
−111
Header separator error
A character that was not a valid header separator was found in the command string.
−112
Program mnemonic too long
The header contains more than 12 characters.
−113
Undefined header
A command was received that was not valid for this instrument.
−114
Header suffix out of range
The value of the numeric suffix is not valid.
−120
Numeric data error
Generic numeric data error.
−121
Invalid character in number
An invalid character for the data type was found in the command string.
−123
Exponent too large
The magnitude of the exponent was larger than 32000.
−124
Too many digits
The mantissa of a numeric parameter contained more than 255 digits, excluding leading zeros.
−128
Numeric data not allowed
A numeric parameter was received but a character string was expected.
−130
Suffix error
Generic suffix error
−131
Invalid suffix
A suffix was incorrectly specified for a numeric parameter.
−134
Suffix too long
The suffix contains more than 12 characters.
−138
Suffix not allowed
A suffix is not supported for this command.
−140
Character data error
Generic character data error
Series N8700 User’s Guide
133
Appendix C Service
Command Errors (continued)
−141
Invalid character data
Either the character data element contains an invalid character, or the element is not valid.
−144
Character data too long
The character data element contains more than 12 characters.
−148
Character data not allowed
A discrete parameter was received, but a string or numeric parameter was expected.
−150
String data error
Generic string data error
−151
Invalid string data
An invalid character string was received. Check that the string is enclosed in quotation marks.
−158
String data not allowed
A character string was received, but is not allowed for this command.
−160
Block data error
Generic block data error
−161
Invalid block data
The number of data bytes sent does not match the number of bytes specified in the header.
−168
Block data not allowed
Data was sent in arbitrary block format but is not allowed for this command.
−170
Expression error
Generic expression error
−171
Invalid expression data
The expression data element was invalid.
−178
Expression data not allowed
Expression data element was sent but is not allowed for this command.
Execution Errors (these errors set Standard Event Status register bit #4)
134
−200
Execution error
Generic syntax error
−220
Parameter error
A data element related error occurred.
−221
Settings conflict
A data element could not be executed because of the present instrument state.
−222
Data out of range
A data element could not be executed because the value was outside the valid range.
−223
Too much data
A data element was received that contains more data than the instrument can handle.
−224
Illegal parameter value
An exact value was expected but not received.
−225
Out of memory
The device has insufficient memory to perform the requested operation.
−226
Lists not same length
One or more lists are not the same length.
−230
Data corrupt or stale
Possible invalid data. A new reading was started but not completed.
Series N8700 User’s Guide
Service
Appendix C
Execution Errors (continued)
−231
Data questionable
The measurement accuracy is suspect.
−232
Invalid format
The data format or structure is inappropriate.
−233
Invalid version
The version of the data format is incorrect to the instrument.
−240
Hardware error
The command could not be executed because of a hardware problem with the instrument.
−241
Hardware missing
The command could not be executed because of missing hardware, such as an option.
−260
Expression error
An expression program data element related error occurred.
−261
Math error in expression
An expression program data element could not be executed due to a math error.
Query Errors (these errors set Standard Event Status register bit #2)
−400
Query Error
Generic error query
−410
Query INTERRUPTED
A condition causing an interrupted query error occurred.
−420
Query UNTERMINATED
A condition causing an unterminated query error occurred.
−430
Query DEADLOCKED
A condition causing a deadlocked query error occurred.
−440
Query UNTERMINATED after indefinite response
A query was received in the same program message after a query indicating an
indefinite response was executed.
Series N8700 User’s Guide
135
Appendix C Service
Recycling Plastic Components
The following table identifies the plastic components in your
instrument that must be recycled when the instrument is disposed of.
Description, Qty,
Material
Image
Description, Qty,
Material
Front panel – slotted
(qty 1)
CYCOLOY C6200
Fan pcb insulator –
clear (qty 1)
LEXAN FR60
Voltage/current knobs
(qty 2)
CYCOLOY C6200
Airflow deflector –
clear (qty 1)
LEXAN FR60
Pushbuttons (qty 6)
CYCOLOY C6200
FET dust shield clear (qty 2)
LEXAN FR60
Nameplate (qty 1)
8B35V
FET/diode insulator
– pink, assorted sizes
(qty varies)
TC-30-CG
Controls label (qty 1)
8010VC
Bus bar spacers –
red, black (qty 2)
VALOX 310 SEO
Foot (qty 4)
AR 790
Fan push-rivet –
black (qty 12)
NYLON 6
Analog connector
cover (qty 2)
LEXAN 243R
PCB standoff – white
(qty 5)
NYLON 6/6
Image
Line cord strain relief
(qty 1)
Polyamide PA
Display insulator –
clear (qty 1)
LEXAN FR60
Cover insulator –
clear (qty 1)
LEXAN FR60
Chassis insulator –
clear (qty 1)
LEXAN FR60
136
Series N8700 User’s Guide
Appendix D
Compatibility
Differences – In General ................................................................................ 138
Compatibility Command Summary ............................................................... 139
The Agilent N8700 power supplies are programmatically compatible
with the Agilent 603xA power supplies. This means that you can
remotely program the Agilent N8700 power supplies using the same
commands that are used to program the 603xA power supplies.
CAUTION
Series N8700 User’s Guide
Do not mix Compatibility with SCPI commands in the same program. This will
result in unpredictable instrument behavior.
137
Index
Differences – In General
The following table documents the general differences between the
way Compatibility commands work on the Agilent N8700 power
supplies and the way they worked on the Agilent 603xA power
supplies.
Item
Differences
Queries
The Agilent N8700 will respond to multiple queries.
It will not allow a space separator between numbers.
It will not allow a user to query information, read back only a portion of the information,
send another command, and finish reading back the information from the original query.
Sending a second query without reading the response to the first will generate an error.
Model number queries will only return the N8700 model numbers.
Status functions
Serial Poll will be controlled by the SCPI status model and will not act like a 603xA
power supply.
SRQ will be controlled by the SCPI status model.
Parallel poll will not work.
138
Settings
The full-scale limits will match the Agilent N8700 limits.
Measurement
Floating point numbers returned by the instrument may not have exactly the same
syntax or number of digits.
Calibration
Calibration must be done in SCPI.
Storage states
The Agilent N8700 units have 16 volatile states.
Series N8700 User’s Guide
Index
Compatibility Command Summary
The following table documents the compatibility commands that the
Agilent N8700 power supplies support. All compatibility commands
are accepted; however, some commands do nothing.
Compatibility Command
Description
Similar SCPI Command
ASTS? Note 1
Queries the accumulated status (ASTS). The response represents the
sum of the binary weights of the ASTS register bits. The ASTS register is
set to the present status after being queried.
STAT:OPER:EVEN?
STAT:QUES:EVEN?
*ESE?
CLR
Returns the power supply to the power-on state. Same as *RST.
*RST
DLY <delay>
Generates error 203.
DLY?
Generates error 203.
ERR?
Queries the present programming or hardware error. An error code
number is returned over the GPIB to identify the error. The error register
is cleared after being read.
SYST:ERR?
FAULT? Note 1
Queries the fault register. A bit is set in the fault register when the
corresponding bit in both the status and the mask registers. The
response is an integer 0 to 255. The fault register is cleared after being
read.
STAT:OPER?
STAT:QUES?
*ESE?
FOLD
Turns the OCP on or off. This is only allowed for constant current mode
(FOLD 2). Constant voltage mode (FOLD1) generates error 203.
CURR:PROT:STAT
FOLD?
Queries the OCP setting. The response is FOLD 2.
CURR:PROT:STAT?
HOLD
When turned on (HOLD 1), causes the VSET, ISET, FOLD, and UNMASK
values to be held until a trigger occurs. This only applies to the
compatibility functions, not the SCPI functions
VOLT:TRIG
CURR:TRIG
HOLD?
Queries the hold setting. The response is HOLD 1.
ID?
Queries the identification (model number) of the power supply.
IMAX
Sets a soft programming limit for current. Attempting to program the
current above this setting will generate an error.
IMAX?
Queries the IMAX setting. The response is a real number.
IOUT?
Queries the measured output current. The response is a real number.
MEAS:CURR?
ISET <current>
Sets the output current.
CURR
ISET?
Queries the present current setting. The response is a real number.
CURR?
OUT <on|off>
Turns the output on or off. On/off equals 1 turns the output on; equals 0
turns the output off.
OUTP:STAT
OUT?
Queries whether the output is turned on or off . The response is OUT 1
(on) or OUT O (off). The front panel displays OFF when the output is off.
OUTP:STAT?
OVP
Sets the over-voltage trip point.
VOLT:PROT:LEV
OVP?
Queries the present over-voltage setting. The response is a real number.
VOLT:PROT:LEV?
Series N8700 User’s Guide
*IDN?
139
Index
Compatibility Command
Description
Similar SCPI Command
RCL <reg>
Recalls the saved settings. There are up to 16 store/recall states. Saved
settings must have been previously stored using the STO command.
*RCL
ROM?
Queries the revision date of the power supply's firmware.
*IDN?
RST
Resets any tripped protection.
OUTP:PROT:CLE
SRQ <setting>
Generates error 203. The service request capability of the power supply
is only supported using the SCPI commands
*SRQ
SRQ?
Always returns 0.
*SRQ?
STO <reg>
Stores the present power supply settings in the specified register. There
are up to 16 store/recall states.
*SAV
STS? Note 1
Queries the present status. The response represents the sum of the
binary weights of the status register bits. The response is STS <n>
STAT:OPER:COND?
STAT:QUES:COND?
TEST?
Always returns 0.
*TST?
TRG
Causes the settings held with HOLD 1 to be executed.
UNMASK <setting> Note 1
Sets the bits in the mask register to the setting. The setting is an integer
that represents the sum of the binary weights of the bits. The mask
register operates in conjunction with the status and fault registers.
STAT:OPER:NTR
STAT:OPER:PTR
STAT:QUES:NTR
STAT:QUES:PTR
UNMASK? Note 1
Queries the present setting of the mask register. The response is
UNMASK <n>.
STAT:OPER:NTR?
STAT:OPER:PTR?
STAT:QUES:NTR?
STAT:QUES:PTR?
VMAX
Sets the soft programming limit for voltage. Attempting to program the
voltage above this setting will generate an error.
VMAX?
Queries the VMAX setting. The response is VMAX <n>.
VOUT?
Queries the measured output voltage. The response is a real number.
MEAS:VOLT?
VSET <voltage>
Sets the output voltage.
VOLT
VSET?
Queries the present voltage setting. The response is a real number.
VOLT?
Note 1: Compatibility status definitions and values are as follows
140
Status condition
Bit position
Bit weight
CV – constant voltage
0
1
CC – constant current
1
2
OR – overrange
2
4
OV – overvoltage tripped
3
8
OT – overtemperature tripped
4
16
AC – AC line voltge overage.dropout
5
32
FOLD – foldback tripped
6
64
ERR – programming error
7
128
RI – remote inhibit tripped
8
256
Series N8700 User’s Guide
Index
Index
4
488 .................................................................................. 11, 52
A
ABOR ................................................................................... 83
AC input
connections ................................................................... 21
AC INPUT ...................................................................... 12, 95
accessories ......................................................................... 16
analog programming
external resistance ....................................................... 49
external voltage............................................................. 48
terminals ......................................................................... 47
AUT ...................................................................................... 10
auto-restart ......................................................................... 44
C
calibration ......................................................................... 126
current programming and measurement................ 127
equipment ...................................................................... 98
procedure ..................................................................... 126
voltage programming and measurement ............... 126
calibration commands ...................................................... 70
CAL CURR....................................................................... 70
CAL DATA ...................................................................... 70
CAL DATE ....................................................................... 70
CAL LEV .......................................................................... 70
CAL PASS ....................................................................... 70
CAL STAT ....................................................................... 71
CAL VOLT ....................................................................... 71
caution ................................................................................... 3
combining commands
common commands ..................................................... 64
from different subsystems .......................................... 63
root specifier .................................................................. 63
command
completion ..................................................................... 66
synchronization ............................................................. 66
common commands.......................................................... 67
*CLS ................................................................................. 78
*ESE ................................................................................. 79
*ESR?............................................................................... 79
*IDN? ............................................................................... 82
*OPC ................................................................................ 79
Series N8700 User’s Guide
*OPT? ............................................................................... 82
*RCL ................................................................................. 82
*RST ................................................................................. 82
*SAV ................................................................................ 82
*SRE ................................................................................. 80
*STB? ............................................................................... 80
*TST ................................................................................. 82
*WAI ................................................................................ 80
TRG .................................................................................. 83
common mode current...................................................... 30
compatibility
command summary .................................................... 139
differences .................................................................... 138
connections
6V to 60V models .......................................................... 24
80V to 600V models ...................................................... 25
analog .............................................................................. 14
J1 ..................................................................................... 35
J2 ..................................................................................... 27
multiple load................................................................... 29
parallel............................................................................. 31
sense ............................................................................... 13
series ............................................................................... 33
series diode .................................................................... 33
constant current (CC)
CC ..................................................................................... 10
check ............................................................................... 39
load effect ..................................................................... 103
mode ................................................................................ 40
source effect ................................................................ 104
constant voltage (CV)
CV ..................................................................................... 10
load effect ..................................................................... 100
mode ................................................................................ 40
noise .............................................................................. 101
source effect ................................................................ 101
control socket ..................................................................... 57
CURRENT ............................................................................ 10
current monitoring, external ............................................ 50
current programming accuracy ..................................... 103
current readback accuracy............................................. 103
current shunt ...................................................................... 99
CV/CC crossover ............................................................... 41
CV/CC signal ...................................................................... 41
141
Index
D
J
daisy-chain shut down ..................................................... 46
damage ................................................................................ 16
data socket ......................................................................... 57
DC AMPS ............................................................................ 10
DC VOLTS............................................................................ 10
Default Gateway ................................................................ 59
device clear......................................................................... 66
distribution
3-phase ........................................................................... 20
single-phase................................................................... 20
DNS ...................................................................................... 59
Domain ................................................................................ 59
J1 connector ....................................................................... 12
J2 connector ....................................................................... 12
E
electronic load ................................................................... 99
enable/disable terminals ................................................. 45
environmental conditions .......................................... 17, 94
ERR ....................................................................................... 80
error messages ................................................................ 132
ESB ....................................................................................... 80
F
features ................................................................................. 8
FINE...................................................................................... 11
front panel locking ............................................................ 43
functions ............................................................................... 9
G
GPIB address ...................................................................... 52
GPIB interface .................................................................... 52
grounding ...................................................................... 17, 30
H
history .................................................................................... 2
Hostname ............................................................................ 59
I
impedance effects ............................................................. 30
inductive loads ................................................................... 30
initiate commands
INIT .................................................................................. 83
INIT CONT ...................................................................... 83
inspection ........................................................................... 16
IO .......................................................................................... 52
IP Address .......................................................................... 58
items supplied .................................................................... 16
142
K
Keepalive ............................................................................. 59
keywords ............................................................................. 63
L
LAN....................................................................................... 11
LAN interface ..................................................................... 53
setup utility..................................................................... 60
sockets ............................................................................ 57
Telnet.........................................................................57, 60
LAN, private ........................................................................ 55
LAN, site .............................................................................. 54
last setting memory........................................................... 44
LFP ........................................................................................ 11
LIMIT .................................................................................... 11
load wiring .......................................................................... 23
local voltage sensing ........................................................ 27
lock front panel .................................................................. 43
M
magnetic fields ................................................................... 17
master unit .......................................................................... 32
MAV ..................................................................................... 80
measure commands .......................................................... 71
MEAS CURR? ................................................................. 71
MEAS VOLT? .................................................................. 71
message terminator .......................................................... 64
end or identify ................................................................ 64
newline............................................................................ 64
model numbers .................................................................. 16
model ratings ........................................................................ 9
MSS ...................................................................................... 80
multiple load connections ................................................ 29
multipliers ........................................................................... 65
N
numerical data formats..................................................... 65
O
OCP ....................................................................................... 11
OPER .................................................................................... 80
operating checklist .......................................................... 130
optional commands ........................................................... 62
Series N8700 User’s Guide
Index
rack mounting .................................................................... 18
recycling
plastic componenets .................................................. 136
remote voltage sensing .................................................... 28
repackaging ...................................................................... 130
repacking............................................................................. 16
response data types .......................................................... 65
RQS ...................................................................................... 80
command path ............................................................... 62
commands ...................................................................... 68
device clear .................................................................... 66
message unit.................................................................. 63
multiple commands ...................................................... 62
syntax .............................................................................. 62
shut off terminals .............................................................. 44
slave unit ............................................................................. 32
sockets................................................................................. 57
source commands ............................................................. 73
[SOUR] CURR [IMM]..................................................... 73
[SOUR] CURR PROT STAT ........................................... 73
[SOUR] CURR TRIG ....................................................... 73
[SOUR] VOLT [IMM] ..................................................... 73
[SOUR] VOLT LIM LOW ............................................... 74
[SOUR] VOLT PROT LEV .............................................. 74
[SOUR] VOLT TRIG ........................................................ 73
specifications
characteristics ............................................................... 93
performance ................................................................... 92
status commands .............................................................. 75
STAT OPER COND? ....................................................... 76
STAT OPER ENAB......................................................... 76
STAT OPER NTR ............................................................ 77
STAT OPER PTR ............................................................ 77
STAT OPER? ................................................................... 76
STAT PRES ..................................................................... 76
STAT QUES COND? ...................................................... 77
STAT QUES ENAB ........................................................ 78
STAT QUES NTR............................................................ 78
STAT QUES PTR ............................................................ 78
STAT QUES? ................................................................... 77
Subnet Mask....................................................................... 59
subsystem commands ...................................................... 67
suffixes ................................................................................ 65
support rails ........................................................................ 18
SW1 switch ...................................................................12, 13
system commands ............................................................. 81
SYST COMM RLST ........................................................ 81
SYST COMM TCP CONT .............................................. 81
SYST ERR? ...................................................................... 81
SYST VERS?.................................................................... 81
S
T
SAF ....................................................................................... 10
safe-start ............................................................................. 44
safety ............................................................................... 3, 17
SCPI
command completion................................................... 66
Telnet .............................................................................57, 60
transient recovery time ................................................... 102
trigger commands .............................................................. 83
TRIG ................................................................................. 83
TRIG SOUR ..................................................................... 83
OUP ...................................................................................... 11
OUT ON ............................................................................... 10
outline diagram .................................................................. 17
output commands ............................................................. 72
OUTP ............................................................................... 72
OUTP PON STAT ........................................................... 72
OUTP PROT CLE ............................................................ 72
output grounding ............................................................... 30
output noise ....................................................................... 30
output on/off control ........................................................ 44
output programming example ......................................... 86
over-current check ............................................................ 39
over-current protection .............................................. 33, 42
over-temperature protection ........................................... 43
over-voltage check ............................................................ 38
over-voltage protection .............................................. 33, 41
OVP ...................................................................................... 11
P
POWER ................................................................................ 11
power cord, connecting.................................................... 19
power receptacle ............................................................... 17
power supply OK signal .................................................... 46
power-fail protection ........................................................ 43
print date ............................................................................... 2
PROT .................................................................................... 11
protection functions .......................................................... 41
Q
queries ................................................................................. 64
QUES .................................................................................... 80
R
Series N8700 User’s Guide
143
Index
trigger programming example ......................................... 88
turn-on check out .............................................................. 38
U
UFP ....................................................................................... 11
under-voltage check ......................................................... 39
under-voltage limit ............................................................ 42
USB ID string ...................................................................... 53
USB interface ..................................................................... 53
UUL....................................................................................... 11
UVL ....................................................................................... 11
V
verification equipment ...................................................... 98
VOLTAGE ............................................................................. 10
voltage monitoring, external ............................................ 50
voltage programming accuracy ..................................... 100
voltage readback accuracy ............................................ 100
voltage sensing .................................................................. 27
W
warning .................................................................................. 3
Web server .......................................................................... 56
web URL’s ............................................................................. 4
wire sizes ............................................................................ 23
verification .......................................................................... 97
144
Series N8700 User’s Guide
Manual Updates
The following updates have been made to this manual since its
publication date.
9/28/10
Information about battey charging has been added to page 30.
Information about parallel connections has been updated on pages 31
and 32.
2/28/11
Text changes have been made to the single-phase distribution figure
on page 20, and to the Note on page 21.
1/11/12
Under Environmental Conditions, information about operating
humidity has been updated, and the LED statement has been
removed on page 94.
The Regulatory Compliance section has been updated with the latest
requirements on page 95.
Amrel loads have been added to the equipment list on page 98.
Enable IN and Enable OUT names are corrected on pages 14 and 35.
5/30/13
On pages 38 and 100, a warning about Safe-Start has been added. On
page 104, step #10 has been added. A warning has been added to the
verification test records.
7/31/13
Figure changes have been made on pages 14 and 35.
Text and figure changes have been made on page 20.
Information about setting up the slave units has been updated on
page 32.
Information about the Java version has been added to the note on
page 56.
Compatibility information has been added to page 140.