Maximum Engineering for Global Advantage
FUJI INVERTERS
With the flexibility and functionality to support a wide range of
applications on all types of mechanical equipment, the FRENIC-MEGA
takes core capability, responsiveness, environmental awareness, and
easy maintenance to the next level.
The performance,
reaching the peak in the industry
High Performance Multifunctional Inverters
FRENIC-MEGA is a high performance, multifunctional inverter
Fuji Electric has developed by gathering the best of its technologies.
With our own state-of-the-art technology, the control performance has evolved to a new dimension.
Maximum Engineering for Global Advantage
Lower maintainance
Applicable control methods: PG vector
control, sensorless vector control, dynamic
torque vector control, and V/f control
Improved performance of current response
and speed response
Improved durability in overload operation
(vector control)
HD (High duty) spec: 200% for 3 sec / 150% for 1 min
Keypad with a USB connector(option)
A multi-function keypad(option)
Maintenance warning signal output
Use of parts of a longer life cycle
(Designed life: 10 years)
(Main circuit capacitor, electrolytic capacitor,
cooling fan)
:For general purpose
LD (Low duty) spec: 120% for 1 min
:For fans and pumps
Maximum Engineering for Global Advantage
Maximum Engineering for Global Advantage
FUJI INVERTERS
With the flexibility and functionality to support a wide range of
applications on all types of mechanical equipment, the FRENIC-MEGA
takes core capability, responsiveness, environmental awareness, and
easy maintenance to the next level.
Environmental
adaptation
Various applications
Various functions that accommodate a
wide range of applications
Great model variation meeting customersÕ
needs
-Basic type
-EMC filter built-in type
Example: Breakage detection by braking transistor,
improved reliability of brake signals, and operation at
Compliance with RoHS Directives (planned)
Improved resistance to the environmental
impact
a specified ratio
Expanded capacity of the brake circuit
built-in model
(Standard-equipped for 22kW or smaller models)
Variations
Warranty
Various network support
Function Settings Basic Wiring Diagram Common Specifications Standard Specifications Inverter Support Loader Keypad Operations
Improved control performance
External Dimensions
FRENIC-MEGA, the inverter with the highest performance in the industry,
is about to redefine the common sense of general-purpose inverters.
Now, it is ready to answer your needs.
Model Variations
FRENIC-MEGA has been developed to use with a variety of equipment
by improving the basic performance,
meeting the requirements for various applications, achieving lower maintenance,
and enhancing the resistance to the environmental impacts.
Characteristics
Maximum Engineering for Global Advantage
─2─
─3─
' !( ' ,- ' ./ 0
5(( 8 8 ,,! ( , '( ( , , ,, , , !
8 6 0
B $
B @>
B ! C-"
D $@>
3 ! C"
B B @>
B ! C-$"
D $@>
3 ! C"
E 3, !E 3, :8 ( ! 8! ,
8 ( -
"35 * +
= , ! 8 , 8 0, , ( 8 8 ( , 8 ,
(. :8 ( 0 !- 3, > ,, ( " 8 0 (
-?@>3
"
$
$
/, 6: ( , 8
8 , , 8- , (. > , ( , 0, , 8:- 3, ( :
( , , : , ,-
5.
#$%
7 8 $
$
4
5. , ; $-$6/ <
3, 8 ( , 0, , . ! :! . ,
( ( 8 0,
8 - 3, 8 , (( !
( , , , 8! ,78 :! " ( ? $" ( 3, 8: 0 ( , 78 " ( ? $" ( " ( 62 + 7 ,8! 7 , ! /2 /' 5A , : , , 8
, -
*
/ D( @) @, ! *) *0 ! #$%
3, , , , :, - %5HD 5A , (, , ,
,8 , ! 3, ( (( 8 , , ! (( 8 ( , ( -
5.
:6 : , 6/ - 3, 8 : , , ,
8 , 8 8! ,
3, I-$6/ :6
-
E 3, 8 0, : :6 8: ( ?6/ 6/ ?6/ $$6/ -
─4─
7
&!+ 7 % 7 7H
D 3 . .- 18 .- 9
% ,
:! .- 5A
1*D
1
4 3, 1) 8 :! , 8
, (: 6 8 : ( ,
( - B , 1) : 0 8 , 8
: , ! , 6 , -
1 3, , ( ! 8 (
+ 0 8! !- 3, ( ,
. , 0 . : ( ! - 7 , , , , 8 , 8! , , 8! : + !% #$"
!
!
#$"
. !
#"
!
' %( &"
! 2 ! . % "
-& !
,- 3, ( : ( , , ,,! , , ( , 8! ,- =! : ( , 8 1%
1A 8 , ! , :
6:! 8- B, :! , ( 0 : ,( , ( ! 5. . , 6 !
6
1 %( 1 ;*B<
3 ) 1 (
.- 1 * +
, ( , -
) /2 B % *0 / *
3, 8 , :6 :! ,
:6 - ) ! /2 /+ ( , (( , 0 !
8 ( , 8- /, , , 0 , ((G , , :6
-
7:+ : 6
= 8!
8 /
,
. 8 ,, 0,
! ,, B0 (0 8
( 1> : :( 0
(0 - ? H 4( ? )! ( ( $ B ( , ,
9 B, -4 - I ) ( , 1) (: 6
) ( /+ .&/ 0
* 4 : ! :! 3, 6 : (! , , 5D*=
DD=
3, ( 8:
, ( -
D
D
=B
=B
%
2 .,- 0+ .&/ 0
3, ( (( 8 + , , :6
0, , , 8! , :! ( , - 3, ( ,( 0,
.! , ,
- 3, ! 0 : :! ,
─5─
: , 0, , , ( 8 ( , . 6@>
3, :! ( , :6
0 ( , 8 8! D8! , 8 , ( ! ,8
: 0, , :6
- =! 8 , 0
8 , :6 :
+ !-
) * +
" /3 4
! & Maximum Engineering for Global Advantage
*+ %
,+ $% $
3
3/,
,4
!0
3
"
93+:.8;;$4$0;;59
3/, # $% & ' (
') ●
●
!
" ●#
! ●
$ %
! "
. !/
" $
0 1 !." !2"
!." 3
!0" (
$ #
!4" !
"
$
#,
!5" /
' !2" 6 ! "
*
% ) $ 12 #8 5 %9*%:*
"
● $ -, $
● B$
-3 2$ ● C @
● '@ ● /< 4 ● ?
7
3
D
)
*
7
3
E
,
#
─6─
Maximum Engineering for Global Advantage
#
■,+
■,,$-
4 ') ■-%./0 $ 1 $2+
!'7$52 " '$582 '$582 $ $ '7$52 5 6 *7 " '
) <
.; %
<
%
,
/
.; 3 #,
.; ,
.; #
*
, !"
%
+ # 8
!
8
%
! " 3%
5;=, .;;> !6 " 8;> !- "
, !"
+ " ■+
! ■#'()*
■$
%
?
! (+@()) " ─7─
■& ' ') ' ! "
3') $
* !
3.6 5 306 "
> 5-" 3*5+,999
-.. 7C.. 6! )
4
! 5
3 6!
! 5
3
> 6!
! ?4 # !
!
$ %# 5-" 5
@
3*
) 6 !
# / @
!
A @
B
2 3C$$6 3C$ 56
' 5 A"
*
) B
# 09907D<75 5
C 5
@
!
0 12
12
3
6 ! # >
! # !
3.6# !
306 > E E!
386# ! 3)
;,>( !6
316# E !
3,6# E
4,9 .99!
3<6
3
*
) %2 6!
● +3 3
●/ $ 5
5 35 >6
+
"7
%2 3%2 6
MEH654
35)<,16 !
● /3 .4' 5.' $ ─8─
# 1,*'82 1,5'82
9- 5'' # 1,*'82 1,5'82
0.4
FRN0.4G1S-4□
FRN0.4G1S-2□
FRN0.4G1E-4□
FRN0.4G1E-2□
0.75
FRN0.75G1S-4□
FRN0.75G1S-2□
FRN0.75G1E-4 □
FRN0.75G1E-2□
1.5
FRN1.5G1S-4□
FRN1.5G1S-2□
FRN1.5G1E-4□
FRN1.5G1E-2□
2.2
FRN2.2G1S-4□
FRN2.2G1S-2□
FRN2.2G1E-4□
FRN2.2G1E-2□
3.7
FRN3.7G1S-4□
FRN3.7G1S-2□
FRN3.7G1E-4□
FRN3.7G1E-2□
5.5
FRN5.5G1S-4□
FRN5.5G1S-2□
FRN5.5G1E-4□
7.5
FRN7.5G1S-4□
FRN5.5G1S-4□
FRN7.5G1S-2□ FRN5.5G1S-2□
FRN7.5G1E-4□
FRN5.5G1E-4□
FRN7.5G1E-2□ FRN5.5G1E-2□
11
FRN11G1S-4□
FRN7.5G1S-4□
FRN11G1S-2□ FRN7.5G1S-2□
FRN11G1E-4□
FRN7.5G1E-4□
FRN11G1E-2□ FRN7.5G1E-2□
15
FRN15G1S-4□
FRN11G1S-4□
FRN15G1S-2□ FRN11G1S-2□
FRN15G1E-4□
FRN11G1E-4□
FRN15G1E-2□ FRN11G1E-2□
18.5
FRN18.5G1S-4□
FRN15G1S-4□
FRN18.5G1S-2□ FRN15G1S-2□
FRN18.5G1E-4□
FRN15G1E-4□
FRN18.5G1E-2□
22
FRN22G1S-4□
FRN18.5G1S-4□
FRN22G1S-2□ FRN18.5G1S-2□
FRN22G1E-4□
FRN18.5G1E-4□
FRN22G1E-2□ FRN18.5G1E-2□
30
FRN30G1S-4□
FRN22G1S-4□
FRN30G1S-2□ FRN22G1S-2□
FRN30G1E-4□
FRN22G1E-4□
FRN30G1E-2□ FRN22G1E-2□
37
FRN37G1S-4□
FRN30G1S-4□
FRN37G1S-2□ FRN30G1S-2□
FRN37G1E-4□
FRN30G1E-4□
FRN37G1E-2□ FRN30G1E-2□
45
FRN45G1S-4□
FRN37G1S-4□
FRN45G1S-2□ FRN37G1S-2□
FRN45G1E-4□
FRN37G1E-4□
FRN45G1E-2□ FRN37G1E-2□
55
FRN55G1S-4□
FRN45G1S-4□
FRN55G1S-2□ FRN45G1S-2□
FRN55G1E-4□
FRN45G1E-4□
FRN55G1E-2□ FRN45G1E-2□
75
FRN75G1S-4□
FRN55G1S-4□
FRN75G1S-2□ FRN55G1S-2□
FRN75G1E-4□
FRN55G1E-4□
FRN75G1E-2□ FRN55G1E-2□
90
FRN90G1S-4□
FRN75G1S-4□
FRN90G1S-2□ FRN75G1S-2□
FRN90G1E-4□
FRN75G1E-4□
FRN90G1E-2□ FRN75G1E-2□
110
FRN110G1S-4□
FRN90G1S-4□
FRN90G1S-2□
FRN110G1E-4□
FRN90G1E-4□
FRN90G1E-2□
132
FRN132G1S-4□
FRN110G1S-4□
FRN132G1E-4□
FRN110G1E-4□
160
FRN160G1S-4□
FRN132G1S-4□
FRN160G1E-4□
FRN132G1E-4□
200
FRN200G1S-4□
FRN160G1S-4□
FRN200G1E-4□
FRN160G1E-4□
220
FRN220G1S-4□
FRN200G1S-4□
FRN220G1E-4□
FRN200G1E-4□
280
FRN280G1E-4□
FRN220G1E-4□
FRN5.5G1E-2□
FRN280G1S-4□
FRN220G1S-4□
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
FRN630G1S-4□
FRN500G1S-4□
630
710
FRN630G1E-4□
FRN630G1S-4□
3□6 " 5 # !
# 1,*'82 1,5'82
FRN15G1E-2□
FRN500G1E-4□
FRN630G1E-4□
" 4 "
5 4 5%
# 4 #
" '( ) *+,,-.□/0" *+,,-.□/1" ! $ 2 ! 3□4 4 545 / 6
#$ 9!1
9!;,
" 9!1>(
9!;,>(
,99
,<9
<89
F
*5+ F
*+
"%& '()* + , - . /
,99>(
,<9>(
<89>(
-
" ) "
5
#
7 " 7 5
5% 7 5
# 7 5
1
0
8/ 199:
8/ 099:
5
5
3 6
5 / .
? # ! $
%& !
─9─
9- 5'' # 1,*'82 1,5'82
" 1;2
3- 9- .'' ! 9- .'' # 7 # 5''8 9 : ,*'8 ,
7 $ ,5'8 , Maximum Engineering for Global Advantage
% !/0 + 5 6666 57 $ % 58 + <7=">? $ % <
? <57 $ %?
! 7=" 5 7 @ 7="
$ % & & + ! ! $ % " # $ % ■) : 1
2 !
3 ■
: 4 ■0 : 0 * ,- .
.
$ % &'( )
$ % $ % - ■) : & ■
: & ■0 : 0 ! & (*+ $ % &
'%() * "' )
- & ■) : & 1
2 !
3
&
&
) ■
: & ■0 : & (*+ )
, $& )
*'% )
! . -,/ !
/
■ ) 7 )
,
* - $ % & = & $&
(*+
$&
8 (*+
% 2 2 !
Display $
/&
$
+ % 2 Function
Function
(*+
'2
A ,
A
.
.
A .
&
A
Display
9&8
+$(
% /&($
A
''
,) ' . 6
Function
Display
) Function + + + + + Display
Function
% ( )-A , )-A )-A )-A , + & & ) % % % 1
!3 %
, $ % Function
+( +( 2 Function , 1 +!
+!
Function +!
1)-A33
%
1 +!
%
1 +!
Function +!
1,33
1,33
─ 10 ─
"1 % "( + ■ ■
!
!
2 $ % 3 % "*45 %36
'., -)$18(( 9 9((9(3a +
a%! .
2a+!a,
# $ " " : ; !
! ■ ■
■ Maximum Engineering for Global Advantage
─ 11 ─
( )
,- &$$ #$%& ''() * #* ) , #"56□□□71-&□)
$%&
I
517 ! 5&.7 $ 5&7 )
'%'
.%'
11
1'
13%'
22
0$
0.
&'
''
%(
%(:,
(,
(
)(:
,(,
:(,
,
=(,
)%
):
,
,,
(
(B
(=
(
4(=
%
=
B
)
,
,:
4B
=,
B
)(,
=(,
(,
)
)B
,
4%
:,
B
(,
,(,
,%E 4%DH
+
.*
!
0%.
,%6 ' E %%6 ' )(%
-## )=% =%&E ,%94%DH
0#E $E 'C !
+ J
ー
0#E $E 'C !
.*
! + ' ' J
0#E $E 'C ! ,
&E 'C ! $
ー
%(=,
(4
)(%
(,
:(,
%(4
(
(
=(=
),(,
(
,:(%
4=(,
=)(
%
+
# ?/
(:
)(
,(B
=(
)(%
:()
)(
))
)(=
,()
4%(4
::(B
B()
%
+
# ?/
%(4
(
(
)(
,(
:(
%
,
%
,
)%
%
=
,=
:
5.7 :
C
+ ! ! 5&.7 =
;
# )=% =%&E ,%94%DH
&@% ,6 & " @6 4 C !@G, ,6
+
# ?/
2%2
(,
"
!
'C ! 5DH7
2
1%'
-## )=% =%& +
# .&
/ 5.7
$
-C 567 B
%%6
,%6
$%.'
% ,6
ー
Ω7 2
( #
%6
$ 5
%%
-C 567
4%
=%6
Ω
=%6
Ω
:%
"
=%6
=%6
=
)
4
=%6
=%6
=%6
=%6
ー
Ω
4%
ー
=%
ー
,
,
?/ "
4
Ω
:%
57
6<?
B4
)
,
)
)
ー
;
'C !@%(% 4%(%DHE @ %(% )%(%E $@% %%6
?/ ?/ %
.
" '! >F,%=/E /(I(E <I,%:=@BB:
< </4%,B
0% </4%,B
/
#
I
1
#92 57
!E >F ! >F ,%
(:
(4
0%% !E
(:
)
4(,
#.' /0$() * #* ) 4(,
,(=
B(,
%
,
4
4$
11$
102
1/$
2$$
22$
23$
01'
0''
&$$
'$$
/0$
I
517 :,
B%
%
)
4%
%%
%
=%
),
),,
%%
,%%
4)%
)
4%
B
)
=:
)4
)B4
,
B,
,4)
:)
=B
)%
)::
,
,%
,=,
4,%
:%
B4%
:%
,
.'
! 5&.7 / 5.7
,%
%
,)
,%E 4%DH
2
-## )=% =%&E ,%DH
+
-## )=% =%&E 4%DH
0#E $E 'C !
+ J
;
# )=% =%&E ,%94%DH
0#E $E 'C !
.*
! + ' 'J
;
# )=% %&E ,%DH
0#E $E 'C ! ,
;
# )=% =%&E 4%DH
&E 'C ! $
&@G% ,6 & " @6 4 C !@G, ,6
+
# ?/
)=
4
%
)=
=4
),:
)B%
,%%
,,B
4=
:%,
==
+
# ?/
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
+
# ?/
B4
%
4,
BB
=
:
):
)==
)4
=B
4
::)
5.7 :
C
+ ! ! 5&.7 =
% ,6
-C 567 B
:4
,%6 ' E %%6 ' )(%
"
!
'C ! 5DH7
.*
!
ー
Ω7 2
( #
)
-## )=% =%& +
# .&
$ 5&7 )
$
B(,
, #"56□□□71-&□)
>F !
$ 5
ー
-C 567
?/ "
;
'C !@%(% 4%(%DHE @ %(% )%(%E $@% %%6
?/ ?/ %
; .
" '! >F,%=/E /(I(E <I,%:=@BB:
< </4%,B
0%</4%,B
/
#
1
#92 57
!
!E >F ! >F ,%
4
4
%)
%)
! ) $
"! # $ %& ' ## %%& %& ' ## %%& (
* # + ! $(
, -# *
! + ./ ' + +#
"
# # #
# + ' 012
$ +
# + $ ' ( 3! (
×4:; </4=%%)( > # ?/ 4 # $ " 567 8 *( $ 5&7 ( $ 5&79)# $ $ 5&7
: -# $ # # $ +
# + !
! ' ,%%&. % # $
= "
+# ?/ ?/ (
B .$ "
C "
"! ' ( &
+
# # ''
! ' # (
% -# ,,1 ?/ ?/ +
# D? E $
! +
# F? (
─ 12 ─
./@ +# +
# ) 6 ' " (
! ' # $
! * ,%&. 6A ,6(
))
! +
# ?/
" +
# ?/
, #"56□□□71-&□)
,- &$$ , #"56□□□71-&□)
Maximum Engineering for Global Advantage
×4:
─ 13 ─
( )
&' ()) # $# % & $"34□□□5/'(□%
5'
>
) '1
*)
) '1
! "
"# $% ! &' $ ! () %
*& "
+#
! ,-)"# ./
6 "") 2
C7110 &'0 ,-)"#
%)D# " 2 )E
C7110 &'0 ,-)"#
%)D# 2 ) , , E
C7110 &'0 ,-)"# $'0 ,-)"# &1
27 9(!
! ") % 27) 9(!
!-) 2 1)
# "
"# $% 27 9(!
3-) 4 5' 11
6 7" &) Ω 3-) 4
5)8 +' 11"
5' 1
4=9
9( :" +'
9( " 9(! %
"+ 1,# 11
="1) >=(
(' 7
'7?611 '
)+, )+-. /+.
(+(
0+-
378
71 $ 27 %$!
4 , 0 4 , 1
0 ./
.+.
-+.
*)
) '1
! "
"# $% ! &' $ ! () % 5'
/.
/1+.
((
0)
0-
,.
..
-.
378
71 $ 27 %$!
2)
378
71 $0 ./
378
71 $0 ./
@'8
71 $0 ?./
ー
@'8
71 $0 ?./
@'8
71 $0 ./
@'8
71 $0 ./
ー
$';+ 84 $' )+";4 11 <-)"#;+ 84
ー
ー
4
4
4 4
ー
5)8
ー
4
4
4 4 4 4 4
4
Ω
Ω
Ω
ー
1
ー
ー
@' ,-)"#; ./0 5' ; 10 5' &; 4
*
@ ""11#
AB(0 (0 = ;
>C >=( "1 #
0 AB #
AB >C #
0 AB #
< "'
) "'
)+, )+-. /+.
(+(
0+-
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
-+.
//
/.
/1+.
((
0)
0-
,.
..
-.
378
71 $ 27 %$!
378
71 $ 27 %$!
4 , 0 ./
378
71 $0 ./
378
71 $0 ?./
378
71 $0 ./
2)
@'8
71 $0 ?./
@'8
71 $0 ./
@'8
71 $0 ./
$';F 84 $' )+";4 11 <-)"#;+ 84
ー
ー
ー
4
4
4
5)8
ー
ー
4 4 4 4 4 4
Ω
ー
1 1
ー
ー
@' ,-)"#; ./0 5' ; 10 5' &; 4
*
@ ""11#
AB(0 (0 = ;
>C >=( "1 #
0 AB #
AB >C #
0 AB #
< "'
ー
ー
ー
.+.
@'8
71 $0 ?./
ー
>
) '1
*& "
+#
! ,-)"# ./
6 "") 2E
C7110 &'0 ,-)"#
%)D# " 2 )E
C7110 &'0 ,-)"#
%)D# 2 ) , ,E
C7110 &'0 ,-)"# $'0 ,-)"# &1
27 9(!
! ") % 27) 9(!
!-) 2 1)
# "
"# $% 27 9(!
3-) 4 5' 11
6 7" &) Ω 3-) 4
5)8 +' 11"
5' 1
4=9
9( :" +'
9( " 9(! %
"+ 1,# 11
="1) >=(
(' 7
'7?611 '
//
378
71 $0 ?./
$* % & $"34□□□5/'(□%
<):G1 8
1 ! "
"# 1 "") +# 11)' 7 )
) &' 1 $ , 78
71 $ 11 $ , 78
71 $ 11
*)
) &' " D" 7 2 1)
# &'
7 )1' 7 & 7 + ) , ℃ & 27 " ,-)"# ./ 7'70 :)1 7 ") ) "))1 )' + 7 &) 2 +# "' 7 37 )D# 2 ) 1 )1 1 %( , 2 ) 27 "+' 7 ) 1)"7 1 7'7 2 ," C6 "& 27 2 '& ,)" H# )1
>
71 &' )+" 4 I D &' $ 8 &' $?8
71 &' &' $× @ >=(8 A1 7 9( " %(!; 27 )1 27 4 , )+" 37 &) 1 "") 11)
7 7 & 1 "" 27 2 1)
# "
"# , $% 1 7 & "
"# , 7 & "
"# D"1 $% 4J 1 4
*+ 27 9( " 9(! 1 )1
%&' +' -) + +# )1 , $1 27 7 ,,""# , 7 37 9( " 9(! 1 27 .9 1
"0 1 & 1 1 ""11# 27 B9 1
"
─ 14 ─
Maximum Engineering for Global Advantage
$ 6' %
(+(
0+-
378
71 $ 27 %$!
4 , 0 4 , 1
0 ./
.+.
5'
>
) '1
*)
) '1
! "
"# $% ! &' $ ! () %
*& "
+#
! ,-)"# ./
6 "") 2
C7110 &'0 ,-)"#
%)D# " 2 )E
C7110 &'0 ,-)"#
%)D# 2 ) , ,E
C7110 &'0 ,-)"# $'0 ,-)"# &1
27 9(!
! ") % 27) 9(!
!-) 2 1)
# "
"# $% 27 9(!
3-) 4 5' 11
6 7" &) Ω
3-) 4
9( :" +'
=6( ,
9( " 9(! %
"+ 1,# 11
="1) >=(
(' 7
'7?611 '
-+.
//
/.
/1+.
((
0)
0-
,.
..
378
71 $0 ?./
@'8
71 $0 ?./
ー
ー
$';F 84 $' )+";4 11 <-)"#;F 84
4
4
4 4
5)8
ー
ー
4
4
4 4 4 4 4
4
Ω Ω
Ω
Ω
ー
1
ー
ー
@' ,-)"#; ./0 5' ; 10 5' &; 4
=6( 1 "
"; ('# ( 1 # 11 =& 1 )# =8;
*
AB(0 (0 = ;
>C #
0 AB #
>C>=( "1 #
0 AB #
AB < "'
) "'
$-. 80)7% # $# % & $"34□□□5/ ',□%
-.
2)
//)
/0(
/8)
378
71 $ 27 %$!
4 , 0 4 , 1
0 ./
378
71 $?./
378
71 $?./
())
(()
(1)
0/.
0..
,))
.))
80)
ー
ー
ー
ー
@'8
71 $0 ?./
@'8
71 $?./
@'8
71 $?./
$';F 84 $' )+";4 11 <-)"#;F 84
ー
ー
4
ー
ー
ー
ー
ー
ー
ー
ー
ー
@' ,-)"#; ./0 5' ; 10 5' &; 4
=6( 1 "
"; ('# ( 1 # 11 =& 1 )# =8;
@ ""11#
AB(0 (0 = ;
>C #
0 AB #
< "'
<):G1 8
1 ! "
"# 1 "") +# 11)' 7 )
) &' 1 $ , 78
71 $ 11 $ , 78
71 $ 11
*)
) &' " D" 7 2 1)
# &'
37 )D# 2 ) 1 )1 1 %( , 2 ) 27 "+' 7 ) 1)"7 1 7'7 2 ," C6 "& 27 2 '& ,)" H# )1
>
71 &' )+" 4 I D &' $ 8 &' $?8
71 &' &' $× @ >=(8 A1 7 9( " %(!; 27 )1 27 4 , )+" 37 &) 1 "") 11)
7 7 & 1 "" 27 2 1)
# "
"# , $% 1 7 & "
"# , 7 & "
"# D"1 $% 4J 1 4
*+ 27 9( " 9(! 1 )1
%&' +' -) + +# )1 , $1 27 7 ,,""# , 7 37 9( " 9(! 1 27 .9 1
"0 1 & 1 1 ""11# 27 B9 1
"
─ 15 ─
/+.
" )+-.
! 5'
>
) '1
*)
) '1
! "
"# $% ! &' $ ! () %
*& "
+#
! ,-)"# ./
6 "") 2
C7110 &'0 ,-)"#
%)D# " 2 )E
C7110 &'0 ,-)"#
%)D# 2 ) , , E
C7110 &'0 ,-)"# $'0 ,-)"# &1
27 9(!
! ") % 27) 9(!
!-) 2 1)
# "
"# $% 27 9(!
3-) 4 5' 11
6 7" &) Ω
3-) 4
5)8 +' 11"
5' 1
4=9
9( :" +'
=6( ,
9( " 9(! %
"+ 1,# 11
="1) >=(
(' 7
'7?611 '
)+,
& $"34□□□5/ ',□%
$)+, ..7% # $# % &' ,)) # 7* '
)* +,, #$%$ $$&' #( ' ) #"34□□□50 *+□'
,%-$
0%$
1%1
/%-
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
$%$
00
0$
02%$
ー
ー
$%&% - 0./
)E((# &' (&F
>%- 4- +"#
ー
1(&% - 0./
)E((# &' (& + + F
>%- 4- +"# ー
ー
- +"# 4((
ー
:& (
'(% C7*
'(% C7*
'(% C7*
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
23(
*"(8 &' &&# &(# ?3)A $" ?A 23( (
6( %,( 4 ?ΩA
$" ?A
2(( 3( (
23( (,?A
5C
C7 (D( 3(
567 +(
C7 C7* )&&( +# 88
5 =57
7( ,%8
@(%06 ?3A
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
) #"34□□□50 *+□'
-$
:& (
9,( &&(8 , ?3@A *8 &(# ?3)A *8 4 ?A *8 7 ?)A
:48 &((#
*8 +"# ?./A
6,
00,
0/1
$$
11,
12,
/0$
/$$
+,,
$,,
./,
!"# 1(&% - 0./
)E((# &' (& + +F
>%- 4- +"# 1(&% 0./
1(&% 0./
*"(8 &' &&# &(# ?3)A $" ?A 23( (
6( %,( 4 ?ΩA
$" ?A
C7 (D( 3(
567 +(
C7 C7* )&&( +# 88
5 =57
7( ,%8
@(%06 ?3A
+$
$%&% '(% )*
+ ,(
- ./
)E((# &' (&F
>%- 4- +"#
*8 ?)A /-
1,,
$%&% 0./
$%&% 0./
'(% C7*
'(% C7*
'(% C7*
/,
0.,
6( (( &'
>%- 4- +"#
- +"# 4((
11
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
1( +"# ./- 23( (, - 23( 4 567 88 ,&( 7# 7 ( # ,(( 8 8 54 ( (,,(# 59 188 #
;<7- 79 - 59 => & #&- ;< & #&
! (
!D(G & 88 ,
*8 &(# ( 8 # ,( % & 8 4 + %&% ( 8 + %&% (
:& 4 E8 % &' &&# 4
$% E((# &' (& ( 8 )7 + &' (& '% ,(( % ( % %(% &' + >@6 4 '(% &' (4 +( H# 8
=&% 4 (?A I ,E 4 ?A ,( 4 ?A 0&% 4 4 ?A×
1 =57 ; % C7 )7* &( '% 8 '(% + (
$% 4 ( 8 ,&( % % (4 ( 8 '(% &' &&# &(# + 3) (, % (4 &(# (+ % (4 &(# E8 3) 8 J ( :(8 '% C7 C7* ( 8
)4 3( " (8 # + , ( '(% % ++((# + % ,
$% 3@ C7 C7* ( &( '(% .C &- 8 ( &4(88 88 # '(% <C &
─ 16 ─
!"# ー
2((
ー
ー
Ω
ー
ー
ー
1( +"# ./- 23( (, - 23( 4 567 88 ,&( 7# 7 ( # ,(( 8 8 54 ( (,,(# 59 188 #
:&(
;<7- 79 - 59 => =57 8 #&- ;< & #& ;< => & #&- ;< & #&
! (
#-$ ./,&' #( ' =& (
-%$
6( (( &'
>%- 4- +"#
*8 ?)A 23(
$%&% '(% )*
+ ,(
- ./
9,( &&(8 , ?3@A *8 &(# ?3)A *8 4 ?A *8 7 ?)A
:48 &((#
*8 +"# ?./A
=& (
,%+
Maximum Engineering for Global Advantage
00
0$
02%$
11
/,
-$
6,
9,( &&(8 , ?3@A *8 &(# ?3)A *8 4 ?A *8 7 ?)A
:48 &((#
*8 +"# ?./A
$%&% '(% )*
+ ,(- + - ./
$%&% '(% )*
=& (
6( (( &'
>%- 4- +"#
$%&% - 0./
)E((# &' (&F
>%- 4- +"#
ー
)E((# &' (& + + F
>%- 4- +"# ー
- +"# 4((
*8 ?)A '(% C7*
'(% C7*
'(% C7*
23(
*"(8 &' &&# &(# ?3)A $" ?A 23( (
6( %,( 4 ?ΩA $" ?A
2(( 3( (
23( (,?A
5C
C7 (D( 3(
567 +(
C7 C7* )&&( +# 88
5 =57
7( ,%8
@(%06 ?3A
1(&% - 0./
,%+ ,%-$ 0%$
1%1
/%-
$%$
1(&% - 0./
02%$
11
/,
-$
6,
ー
$%&% '(% )*
ー
ー
ー
ー
ー
ー
ー
*8 7 ?)A ー
ー
ー
ー
-%$
$%&% '(% )*
ー
00
0$
/-
+$
$$
ー
+ ,(
- ./
6( (( &'
>%- 4- +"#
ー
$%&% - 0./
$%&% - ./
$%&% - ./
)E((# &' (&F
>%- 4- +"#
ー
1(&% - 0./
1(&% - 0./
)E((# &' (& + + F
>%- 4- +"# ー
ー
:48 &((#
*8 +"# ?./A
ー
- +"# 4((
*8 ?)A ー
'(% C7*
'(% C7*
'(% C7*
*"(8 &' &&# &(# ?3)A $" ?A 23( (
6( %,( 4 ?ΩA
$" ?A
2(( 3( (
23( (,?A
5C
C7 (D( 3(
567 +(
C7 C7* )&&( +# 88
5 =57
7( ,%8
@(%06 ?3A
!"# ー
ー
ー
2((
ー
Ω
Ω
Ω
ー
ー
ー
1( +"# ./- 23( (, - 23( 4 567 88 ,&( 7# 7 ( # ,(( 8 8 54 ( (,,(# 59 :&(
188 #
;<7- 79 - 59 => 8 #&- ;< & #&
=> & #&- ;< & #&
! (
9 (
ー
:& (
$$
ー
=& (
+$
1(&% 0./
1(&% 0./
9,( &&(8 , ?3@A *8 &(# ?3)A *8 4 ?A 23(
/-
$%&% - ./
$%&% - ./
#( ' ) #"34□□□50 *1□'
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
ー
$%&% - ./
$%&% - ./
!"# ー
2((
ー
ー
ー
ー
Ω
ー
ー
ー
1( +"# ./- 23( (, - 23( 4 567 88 ,&( 7# 7 ( # ,(( 8 8 54 ( (,,(# 59 :&(
188 #
;<7- 79 - 59 => =57 8 #&- ;< & #& ;< => & #&- ;< & #&
! (
!D(G & 88 ,
*8 &(# ( 8 # ,( % & 8 4 + %&% ( 8 + %&% (
:& 4 E8 % &' &&# 4
@% ( % (4 ( % ,( ,& + ℃ 4 8 '(% ( +"# 3./ %(%- 8D % 8 ( ( % 4 ( ' # ( % 8
$% E((# &' (& ( 8 )7 + &' (& '% ,(( % ( % %(% &' + >@6 4 '(% &' (4 +( H# 8
=&% 4 (?A I ,E 4 ?A ,( 4 ?A 0&% 4 4 ?A×
1 =57 ; % C7 )7* &( '% 8 '(% + (
$% 4 ( 8 ,&( % % (4 ( 8 '(% &' &&# &(# + 3) (, % (4 &(# (+ % (4 &(# E8 3) 8 J ( :(8 '% C7 C7* ( 8
)4 3( " (8 # + , ( '(% % ++((# + % ,
$% 3@ C7 C7* ( &( '(% .C &- 8 ( &4(88 88 # '(% <C &
─ 17 ─
-%$
" $%$
! /%-
1%1
,%+ ,%-$ 0%$
:& (
) #"34□□□50 *1□'
8 #8 ' )* 1,, 9% ' 3"!
"
%
" "
#$ %
!
%
" "
#$ %
!
%
" " #$
%
!
%
" " #$
%
!
" $
"
42 $
?
3
2% %
!
!
" #$ %
& " #$ %
!
@ #$ $
!
) >) ) " #$2#$ %
!
・)1 > ; ( )/ ;<& ( ) =) ;<!
・)1 ; ( 1 ;<&
( ;<!
・)1 > ; ( ,, &
( 1 ;<!
:
( ?$
"" % %
% $
%
% %
$
) ?$
% 3
3"
)!
・'" ( ±)* ±℃!
・+
% ( ±)* , -℃!
・'" ( 27 2 4 %!
・+
% ( ) AA)AA "
!& ) ) ) !
・; %
( "
3"
$
""# # %
, 2 , ) !
( %
( %
& /0& 1) 2!
( ( % !
・
・
'" ( ±)* 3
%
±℃!
" ( ±)* 3
%
, -℃!
・
・
( %
( %
& /0& 2& / %2!
( / ( % !
・
・
'" ( ±)* ±℃!
" ( ±)* , -℃!
・
・
42 "
"
4
" #$ %
4
" #$ %
#$ %" 05 !
・03"
% "
3
・'48 " 9:2966 "
3"
) :,"
42 %
#$ $
3 %)
・' 3 " !
・ " 3( 3 ) )*! 3
)
・
"
%%" " #$ 671) 43"
" " !
;< 3
"#( * & 7 ;< 3
( =* 8
( )7 #$ "% %
3
・
・
・
・
+
% ;
!& " " # ! )!&
"; 8,/=2
" 3 %!!
・8
2"" %
・
─ 18 ─
" %
8 # & & "
",
%!& "
'2C '2C /!& 3"
7,#
%
& %& "& 3"
" " %& @& "
2& "
/& 3"
3;& "
"
"
"& #$ " %#
!& #$ " %#
> !& G0 % !& 9<: % !& 3"
$
#$ ;
% & " 0F "& #$ "2
%
& ";&
3"
"; 8,/= " 3 %!& " F& 3"
$ " %
& %& %
,
& 0F " " %
& $" 0F " %
&
"
"" ;
% ! %
& %
$
# & 3"
" "
"
!& 3"
" " "
> !& %"
%& %"
& #$ " %#
%
/!& "
% "& ,"; 05 "!&
" 05 " 05 "!
'" % @
2
2"
!& "
$$ "#!& 3 & @%
& @ %
& %
,
& #$ " %#
& " %#
#$ &
" 9:2966 "& "
/& %
# & " F& " 9&
" '9& " "
・9
" %
"& $& "% %
& "
,
"!&
% "& 0F %
"& 0F "& "
$
% 3; %3"!&
・9"
・
" #& "
& "
・$ "& & " ・
" " ) > 2,
2"
& '
"
2 "
/ #$3"
・8 $
% & ,,%& %)
・ 3;( ; % > !& % 7) !& %
"
" % *!
・H
%
" " #$ %
)!
・?% "& % %#
"
& % "
%
・
& $
#$$ $
%#
"
& $
& $ " %
・
"
%
"
" *!
・9
" 3 $ #
?$ 3
"
)!
・?
" "
±7*!
・?
"
2& "
3"
2 3"
& " " "
! ',
%#
"
#
"
?
"
+
% (
;
'" % '" % 3
#$ " "
2
%!(
± 42 ± * " BD& B4D!
-/ - ' 2 * " BD!
・G029<: %
( ",
> %!& >,3 %""
"
・0"
% !( 0"
% I BJ1D "&
8" I 9
$
" % " % BJ1D
・; %
( 4 3
%!
・8
#$& 8
2"" #$& '" & 0%" %
& F
%
・
・
"
'
"
2
"
% "
!
9%
$
3
#
" BC:D B0D % $
E % ,,%!)
%" #$ C:A/, )7!
C3"
%
% !
6
Maximum Engineering for Global Advantage
─ 19 ─
!
+ !
& "'# B)& "'# ) !& !!&
' !# & ! & " # ! "& #
& #! !& # & ! !
!B!B !& %@ " !# & ! #& " !& & 6D& # & "
& " & ! & ! & ) !& & .6 & .6 & .6 !! "& ! ' &
' ( !& *& " & & !& .+ & & "'# " EF& ! ! !& ! & .= & & & # !
" # "& & ! ! & " % !
+ E<F E<(F0
D! 6 8 58 9 6 * (8 %
3 ! 0
D! "'# " ! !& " ! !& ! & ! & ! '&
"& ! !& .6 " .9& ! .= " & 6 & %D&
!& & .6 39& .6 ! 9
1B!!
D! & ! & ' & ! !& .6 & .6 " &
D "
3! " "'# 2G& ! "'#& !& " !& !& ! H
.6 !& "& !& ' & ", & ! & ! " # & & & ! & " !
BD & # ! !& ! ! , "" " ! !
+! +! #0 3 !# * ! " !$
13*;4 D ! " #! & 13*;4 D ! ( & -3 !
#! "
. -! " # ! " 4 & " ! !$ " # !
" # ! " & " ! " ! "
! ! # ! " $
─ 20 ─
Maximum Engineering for Global Advantage
4
90'
45
/%
%A
to +/$#A
( to ±/$#)
/%
%
to ±/$#
(+)
(−)
#
%
to $#
(+)
(−)
<
:
/
<% .
# /
5/$#
/
/
49#
$8'
$8 B!
<
#
*
4>#0B>#
@;
5 /$#
/
@CBD
@;
.
= ?#
?
?
?
?
?
#?
.
4
(
= "%
@
0
@
0
(
C(
%
# &4
@E:'#6
$% .
&" '
(
$% !"
#!! $% &;$
'6/
#
/$#
to $#
#
4
%
= &
@;
.
$ 5
$ !
1
#
.
#
8
> .
4
"
=
)
・4"
(%
"- .
「#B : 」
・& "
"- .
「#B '」「
0 #B ;」
'
>
<% $8
;
90>
'
>
7= "
.
4
5
90@
7= "
.
% 4
'
= .
4"
/ to /
0123
/ to /
0123
!
+
,
-!
,%
%
+
,
. .
#
>2'
@;
.
$ 0
(
@$
'@! +
'@! 'F! ,
= @;
.
:@8 !
" !# " ! $ % & !# ' !#$
( " ! " ! !!#& ! " & #$
) ! # ! # ! " ! !# ! " !$
* + ,# ! # #$ - ! " !
./ 0 123 " ./ $
4 1 . .5 6 61 !$ 6 44/ 6 ! 74/ '!! #$ - 6 ! !!# " !# 4889% 8 !# " & #
" "$
: + .5 6 " 7$4/ $ , !$
7 % " $ #$
; < & $ = $ + ! " & ! # " " ! 0 8 $ > $
/ & $
? " " " "# 0 </6& 19 @ @? !& A A* !& A4%B& )8%BB # !$
8 + $ 3 -C " $
9 ! & !$ 3 -C " $
─ 21 ─
$# $#' .
" 67
+,% $8' .1
45
! # ■
" ■" ●" ( " "
#
Data Protection
Frequency Command 1
Operation Method
Maximum Frequency 1
Base Frequency 1
Rated Voltage at Base Frequency 1
Maximum Output Voltage 1
Acceleration Time 1
Deceleration Time 1
Torque Boost 1
Electronic Thermal Overload
Protection for Motor1 (Select motor characteristics)
(Overload detection level)
(Thermal time constant)
Restart Mode after Momentary
Power Failure (Mode selection)
Frequency Limiter (High)
(Low)
Bias (Frequency command 1)
DC Braking 1 (Braking starting frequency)
(Braking level)
(Braking time)
Starting Frequency 1
(Holding time)
Stop Frequency
Motor Sound (Carrier frequency)
(Tone)
Analog Output [FM1]
(Mode selection)
(Voltage adjustment)
(Function)
Analog Output [FM2] (Mode selection)
(Voltage adjustment)
(Function)
0 : Disable both data protection and digital reference protection
1 : Enable data protection and disable digital reference protection
2 : Disable data protection and enable digital reference protection
3 : Enable both data protection and digital reference protection
0 :
/
keys on keypad
1 : Voltage input to terminal [12] (-10 to +10 VDC)
2 : Current input to terminal [C1] (4 to 20 mA DC)
3 : Sum of voltage and current inputs to terminals [12] and [C1]
5 : Voltage input to terminal [V2] (0 to ±10 VDC)
7 : Terminal command UP/DOWN control
8 :
/
keys on keypad(balanceless-bumpless switching available)
11 : Digital input interface card (option)
12 : PG interface card
0 : RUN/STOP keys on keypad (Motor rotational direction specified by terminal command FWD/REV)
1 : Terminal command FWD or REV
2 : RUN/STOP keys on keypad (forward)
3 : RUN/STOP keys on keypad (reverse)
25.0 to 500.0 Hz
25.0 to 500.0 Hz
0 : Output a voltage in proportion to input voltage
80 to 240 V : Output an AVR-controlled voltage(for 200 V class series)
160 to 500 V : Output an AVR-controlled voltage(for 400 V class series)
80 to 240 V : Output an AVR-controlled voltage(for 200 V class series)
160 to 500 V : Output an AVR-controlled voltage(for 400 V class series)
0.00 to 6000 s
No te: Entering 0.00 cancels the acceleration time, requiring external soft-start.
0.0% to 20.0% (percentage with respect to "Rated Voltage at Base Frequency 1")
1 : For a general-purpose motor with shaft-driven cooling fan
2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan
0.00: Disable
1% to 135% of the rated current (allowable continuous drive current) of the motor
0.5 to 75.0 min
0 : Trip immediately
1 : Trip after a recovery from power failure
2 : Trip after decelerate-to-stop
3 : Continue to run, for heavy inertia or general loads
4 : Restart at the frequency at which the power failure occurred, for general loads
5 : Restart at the starting frequency
0.0 to 500.0 Hz
0.0 to 500.0 Hz
-100.00% to 100.00%
0.0 to 60.0 Hz
0% to 100% (HD mode), 0% to 80% (LD mode)
0.00 (Disable); 0.01 to 30.00 s
0.0 to 60.0 Hz
0.00 to 10.00 s
0.0 to 60.0 Hz
0.75 to 16 kHz (HD-mode inverters with 55 kW or below and LD-mode ones with 18.5 kW or below)
0.75 to 10 kHz (HD-mode inverters with 75 to 630 kW and LD-mode ones with 22 to 55 kW)
0.75 to 6 kHz (LD-mode inverters with 75 to 630 kW)
0 : Level 0 (Inactive)
1 : Level 1
2 : Level 2
3 : Level 3
0 : Output in voltage (0 to 10 VDC)
1 : Output in current (4 to 20 mA DC)
0% to 300%
Select a function to be monitored from the followings.
0 : Output frequency 1 (before slip compensation)
1 : Output frequency 2 (after slip compensation)
2 : Output current
3 : Output voltage
4 : Output torque
5 : Load factor
6 : Input power
7 : PID feedback amount
8 : PG feedback value
9 : DC link bus voltage
10 : Universal AO
13 : Motor output
14 : Calibration (+)
15 : PID command (SV)
16 : PID output (MV)
0: Output in voltage (0 to 10 VDC)
1: Output in current (4 to 20 mA DC)
0% to 300%
Select a function to be monitored from the followings.
0 : Output frequency 1 (before slip compensation)
1 : Output frequency 2 (after slip compensation)
2 : Output current
3 : Output voltage
4 : Output torque
─ 22 ─
' $ $ %& $%&
○
○
0
○
○
○
×
○
0
○
○
○
×
○
2
○
○
○
×
×
×
○
○
△2
*1
50.0
*1
○
○
○
○
○
○
○
○
○
×
△2
*1
○
×
×
○
○
○
○
○
○
○
○
*2
*2
*3
1
○
○
○
○
○
○
×
○
○
○
×
○
○
△1△2
*4
○
○
○
○
○
○
○
*5
1
○
○
○
○
○
○
○
○
◎
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
70.0
0.0
0.00
0.0
0
0.00
0.5
0.00
0.2
2
(Asia)
15
(EU)
0
○
×
×
○
○
0
○
○
○
◎
○
○
○
100
0
○
○
○
○
○
○
○
○
0
○
○
○
◎
○
○
○
100
0
○
○
○
○
○
○
Stop Frequency (Detection mode)
(Holding Time)
Torque Limiter 1-1
1-2
Drive Control Selection 1
Current Limiter (Mode selection)
(Level)
Electronic Thermal Overload
Protection for Braking Resistor (Discharging capability)
(Allowable average loss)
(Resistance)
Switching between HD and LD drive modes
●
( ! ) "
#
Terminal [X1] Function
Terminal [X2] Function
Terminal [X3] Function
Terminal [X4] Function
Terminal [X5] Function
Terminal [X6] Function
Terminal [X7] Function
Selecting function code data assigns the corresponding function to
terminals [X1] to [X7] as listed below.
0 (1000) : Select multi-frequency (0 to 1 steps)
(SS1)
1 (1001) : Select multi-frequency (0 to 3 steps)
(SS2)
2 (1002) : Select multi-frequency (0 to 7 steps)
(SS4)
3 (1003) : Select multi-frequency (0 to 15 steps)
(SS8)
4 (1004) : Select ACC/DEC time (2 steps)
(RT1)
5 (1005) : Select ACC/DEC time (4 steps)
(RT2)
6 (1006) : Enable 3-wire operation
(HLD)
7 (1007) : Coast to a stop
(BX)
8 (1008) : Reset alarm
(RST)
9 (1009) : Enable external alarm trip (9 = Active OFF, 1009 = Active ON) (THR)
10 (1010) : Ready for jogging
(JOG)
11 (1011) : Select frequency command 2/1
(Hz2/Hz1)
12 (1012) : Select motor 2
(M2)
13 (1012) : Enable DC braking
(DCBRK)
14 (1014) : Select torque limiter level 2/1
(TL2/TL1)
15 (1012) : Switch to commercial power (50 Hz)
(SW50)
16 (1012) : Switch to commercial power (60 Hz)
(SW60)
17 (1017) : UP (Increase output frequency)
(UP)
18 (1018) : DOWN (Decrease output frequency)
(DOWN)
19 (1019) : Enable data change with keypad
(WE-KP)
20 (1020) : Cancel PID control
(Hz/PID)
21 (1021) : Switch normal/inverse operation
(IVS)
22 (1022) : Interlock
(IL)
24 (1024) : Enable communications link via RS-485 or fieldbus (option) (LE)
25 (1025) : Universal DI
(U-DI)
26 (1026) : Enable auto search for idling motor speed at starting (STM)
30 (1030) : Force to stop (30 = Active OFF, 1030 = Active ON) (STOP)
32 (1032) : Pre-excitation
(EXITE)
33 (1033) : Reset PID integral and differential components
(PID-RST)
34 (1034) : Hold PID integral component
(PID-HLD)
35 (1035) : Select local (keypad) operation
(LOC)
36 (1036) : Select motor 3
(M3)
The shaded function codes (
) are applicable to the quick setup.
*1 The factory default differs depending upon the shipping destination.
*2 6.00 s for inverters with a capacity of 22 kW or below; 20.00 s for those with 30 kW or above.
*3 The factory default differs depending upon the inverter's capacity.
*4 The motor rated current is automatically set.
*5 5.0 min for inverters with a capacity of 22 kW or below; 10.0 min for those with 30 kW or above.
*6 0 for inverters with a capacity of 7.5 kW or below; OFF for those with 0.11 kW or above.
<Data change, reflection and strage> × : Not available ○ : After changing data with using
data with using
keys, save the data by pressing
key.
─ 23 ─
○
○
0
○
○
○
×
○
1
○
×
○
×
○
0
×
×
○
○
○
○
×
○
○
○
○
0.00
999
999
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
2
○
×
×
○
○
○
△1△2
160
6
○
○
×
○
×
○
○
○
×
△1△2
△1△2
○
0.001
0.01
0
○
○
○
○
○
○
○
○
○
' $ $ %& $%&
×
×
×
×
×
×
×
keys, execute and save data by pressing
○
○
○
○
○
○
○
0
1
2
3
4
5
8
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
key, ◎ After changing and executing
Load Selection/
Auto Torque Boost/
Auto Energy Saving Operation 1
5 : Load factor
6 : Input power
7 : PID feedback amount
8 : PG feedback value
9 : DC link bus voltage
10 : Universal AO
13 : Motor output
14 : Calibration
15 : PID command (SV)
16 : PID output (MV)
0 : Variable torque load
1 : Constant torque load
2 : Auto torque boost
3 : Auto energy saving(Variable torque load during ACC/DEC)
4 : Auto energy saving(Constant torque load during ACC/DEC)
5 : Auto energy saving(Auto torque boost during ACC/DEC)
0 : Detected speed
1 : Commanded speed
0.00 to 10.00 s
-300% to 300%; 999 (Disable)
-300% to 300%; 999 (Disable)
0 : V/f control with slip compensation inactive
1 : Dynamic torque vector control
2 : V/f control with slip compensation active
5 : Vector control without speed sensor
6 : Vector control with speed sensor
0 : Disable (No current limiter works.)
1 : Enable at constant speed (Disable during ACC/DEC)
2 : Enable during ACC/constant speed operation
20% to 200% (The data is interpreted as the rated output current of the inverter for 100%.)
0 (Braking resistor built-in type), 1 to 9000 kWs,
OFF (Disable)
0.001 to 99.99 kW
0.01 to 999Ω
0 : HD (High Duty) mode
1 : LD (Low Duty) mode
' $ $ %& $%&
" Analog Output [FM2] (Function)
! #
●" ( " "
Maximum Engineering for Global Advantage
" ■" ●
# ! $ "
%
& CH;E ?(
1 & & 1 & & 1 & 8
& 8
,( #& ,( #& & CJ
E ?(
& CJE ?(
& CJE ?(
& CJ8E ?(
& CJ-1@E ?(
& C1@.@E ?(
= (("
; ;" ) & 8
*8"
7 " & +& ! !
D"
8 " 0 ! ,( && - %3" ')D-"
8
" 0 ! ,( && 6 %3" ')D6"
8; 8;" )$/ &&!
#:"
89 " ( ( $0 & CH;E ;""
'B"
87 87" ( $0 & < CH;E 6"" )'B"
; ;" ( ( & + && !$ & =IB*
"
; ;" ( ( & + && !$ & =IB*"
;8 ;8" ( ( & + && !$ & =IB*"
;- ;-" ( ( & + && !$ & 8 =IB*8"
;6 ;6" ) ! =::"
;; ;;" &
#"
) $( + " 0$ $ ( &2
2 6 B 2 &> ,( < +
! 2
5 54 777 0"
5 54 777 0"
) +( ! ! ! +( & CJ
E CJ-1@E ! C1@.@E ! 0 2
" '$ (
=IB"
" ?,( !" $ ?1="
" ?,( !" !!
?"
" I!$ !! '$ !"
#I"
8 8" ,( !!
.@"
- -" '$ (( &
':#"
6 6" 1( + && +(
'?"
; ;" * $! :#"
9 9" ! 0!
"
" '$ ! (
=J"
" ) & !$ ( 0 && ! $ ((
? * && "
)D99"
" ) & !$ ( 0 && ! $ ((
? ! !"
)D-"
" ) & !$ ( 0 && ! $ ((
? & !"
)D-
"
- -" ) 1H & +( ? * & !"
1H"
" '$ (( & !
':#"
- -" + ?1B"
6 6" 1(
=J"
; ;" I$ :
I:"
9 9" % / $ :%"
" #+& &
#'?"
" ?,( !" !! ?"
" =+ !!
=? :??"
- -" '$ (( =IB"
6 6" :$! $ :#"
; ;" ( !!
'"
9 9" ( !! '"
7 7" ( !! '"
8
8
" # ( !!
'#"
8 8" ' &
'1#*"
8 8" I! ' '#"
88 88" * ! !( + (! ' ')"
8- 8-" # (( ,( !!
I#"
86 86" ,( !! "
8; 8;" ,( !! "
89 89" * !
)D*
"
87 87" * !
)D*"
- -" * !
)D*"
-
-
" * 8 !
)D*8"
- -" =( + !
?=IB"
- -" =( $
==IB"
-8 -8" ' & =*"
-6 -6" * $ !! 0 &
%*"
-; -;" ./ .=)"
-9 -9" ?,( !" !! ?"
-7 -7" & C
E 0/
:??"
; ;" )! $!
BK)"
;
;
" )! &
)1"
; ;" ?,( !" $ ?1="
;6 ;6" !!
=="
9 9" & )"
98 98" * &
*B"
79 79" # &
#1#*"
77 77" 1& (( + &"
1#*"
" 0 ( +( !!
?"
" 0 ( :??
B :??"
─ 24 ─
& ' '() '()
×
○
9
○
○
○
○
×
○
○
○
○
○
○
○
×
○
○
×
×
×
○
○
×
×
×
×
○
×
○
○
×
×
○
○
○
×
×
×
×
○
○
○
○
○
○
○
○
○
○
×
×
×
×
×
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
G
G
G
G
G
G
777
777
;
77
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
×
○
×
×
○
×
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
×
×
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
# * '& "
#( "
"
# * )! & &"
++ + )! '!
++ + '( D( ! *( ! &!"
?,( #$"
( #$"
&"
& C
E <!! ?(
& C
E <!! ?(
& CFE <!! ?(
)$ + =+ ?,(
=+ # (( ( +,("
,( #$"
&"
,( @#$"
# ,( &"
& C?DE ?(
& C=FE ?(
!! +( ! " 0 ,(/ (2
G
+ !+( !++ !! ( !2
G 62 + $ + /D 0 4 2 + /D 0$2
G8 & ! ( (& 2
L > + ! M × B $0 ○ 1+ ! (
! (
/> $ ! 0 /2
─ 25 ─
×
○
77
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
△
△
○
○
△
△
○
○
○
○
○
2G
2
G8
2
G
G8
2
2
2
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
2
2
○
○
○
○
○
○
○
○
○
○
○
○
○
○
G
G8
2
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
○
○
○
○
○
○
777
2
2
79
77
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
×
△△
/> <( ! $ ! 0 /> ◎ 1+ ! <(
!"
- -" ./ 0/
.1#"
) $( + " 0$ $ ( &2
2 2 %3
2 -2 %3
2 -2 %3
2 0"4 ( $( + 5 5 + $ ! (
2
62
2 -2%3
2 0"4 ( $( + 5 5 + $ ! (
2
62 777 2 777
777 2 777
2 -2 )! & 0 89"
:(( (
8 :(( $
9 (! ,(
7 '( ' &&!
' +!0/ &(
8 ' ((
- #! +
6 * ((
; 1 (
,( ( 5"
8 * +(< &&! 5"
- '( (
)+! $(
:(( $(
=( (> ! ! (!
. + (( +,(> ( ! (! ,(
*(+( /! "
&
?
8 )
- '
# " %"
:(( +,( .+ &"
:(( +,( 1+ &"
=+ +,(
* ! @&
8 #! + ! @&
- # ! &@&
; ! 5
2
2
2 @"> 2
7777
?( ! ! ! &! *( A> A
> ! A;"
?( ! ! / &! *( A ! A;"
?(&( &!
2 -2 %3
2 0"4 ( $( + 5 5 + $ ! (
2
62 B
1(< +,( &&! 1(< +,( &&! ' &&! - ' +!0/ &(
6 = ; 1 ,( & $( 1
9 1 ,( & $( .
1 ( &
1(& $ & (! :??"
)$ 0 /
> 5 5> 777 0
5 5
2
62 5 5
2
62 ) +( ! ! ! +( & C?DE ! C=FE ! 0 2
" ) &(+,( "
))
"
" ) &(+,( "
))"
" ) &(+,( ; "
))8"
" ) &(+,( - "
))9"
8 8" ) 1@ & "
=
"
& ' '() '()
" & C1@.@E ?(
= (("
?,( 1$ !"
?,( #$"
% !"
:$! D@#$"
( &"
?,( #$"
( @ #$"
# ( &"
' ++ 1
' ++ .
# ?
# * '& "
! %
# ! $ "
●
Maximum Engineering for Global Advantage
" ■" ●
●
# ! $ "
&
" F/@G /:#
" FDG /:#
!"
#
"#
$%
& & # # #
'(
) ) "
* * +
" " "* , -
.//0 * , -
.1 $
23 4#" 5#666
7.8
4"
9:
3 #2 $;$;
##" <
"=6
'>
#"9:
" -
%%
!? # #
" #!
" $;
@
!? # #
" #!
" $;
@
& & AB C"
#:: 4"
9:
3
AB
) ) .@1 "
#:: 4"
9:
3
.@1
* * 2 ?6
!? =
32
@ >B
BC #"#
$;BC
!? #"-
"
#
"#
CD
C
"#=
C%
#:# = - ) #" 4
2:
%
A-
" C
A C
:# "? 4#" 26 ##" 2 "6 <
/#"
# # , -
.//0 , -
.1
.B
B"
+#
(C
BC 6" 2 244
"
##
BC $#2 BC 6" ##
BC $%
# =
32 #
"#
%.
##" <
& & ##" <
* & B"#
##" 4"# 2
! #2
#
@B
& 6"
2 9:
# !? # #
" #!
" $; C@
& 6"
2 9:
# !? # #
" #!
" $; C@
& & "-# #= #2
%.>
* * B:
" 6
C81
& & #: ?
": #4 #
" #!
" 2"-
##" A1 <
& & #: ?
": #4 #
" #!
" 2"-
##" A1 <
& & #: ?
": #4 #
" #!
" 2"-
##" A1 <
& & #: ?
": #4 #
" #!
" 2"-
##" A1 <
& & 2"## #"#
..B
&& && B8 "
B8 %
*) & : 4#"!"2
/@
** & : "
-
"
D
6 ?
-:
#4 "
?
?#! #-
6 6-
#6 : # "E
# " "%
&
7: /"
9:
3 $3
"
!2?
<: 4"
9:
3 &
)
*
7#666 /"
9:
3
/"
9:
3 #2 #6 C: 25:
4#" FG.44
8
/
" #
8 #
B#"3
E # E $;
E # E $;
E # E $;
E # E $;
=
3 # ?
=
32
#6 -#6
: # " FG # H D
#6 :""
: # " FG # #6 : #4 -#6
2 :""
: # " FG 2 FG
#6 -#6
: # " FDG # D
& " #2 AB.@1 #"#
) =
3 # ?
=
32 :
!?6 -
6 : "4
"2 ##
B8 "4
"2
EI # EI
EI # EI
E # E EI # EI
'#"
A#"
─ 26 ─
' * * (+ *(+
×
×
○
○
98
99
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
×
×
×
○
×
×
×
×
○
×
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
×
×
○
○
×
×
×
×
○
○
○
○
' * * (+ *(+
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
◎
◎
○
◎
×
○
○
○
○
○
E
E
E
E
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
&
#6 C: 25:
4#" FG .44
8
/
" #
8 #
#6 C: 25:
4#" FDG .44
8
/
" #
8 #
B#"3
'/"
9:
3 #2 ' #
'BC #2 ' -:
' #
# #4 1#"C-
"
.
"#
/"
9:
3 #2 EI # EI
EI # EI
E # E
EI # EI
EI # EI
EI # EI
E # E EI # EI
'#"
A#"
EI # EI
EI # EI
EI # EI
1#" #
"#
C-
"
#
"#
●( # ) (
&
1#E #4 #
# #
2 3 E # =@ !?
B** , 0 0 #" E # $B !?
B** , 2 :""
E # :# :6 :
!?
?
##" #E I0 I( 2 "
2 4"
9:
3
:
!?
?
##" "#6 :2
" D4 #"#I0 I(0 "
2 4"
9:
30 # #2 :""
0
6
:"# 4#" # 0 2 6
:"# +
# 4#" JJ # JJ
:
!?
?
##" "#6 :2
" -
#" #"#I0 I(0 "
2 4"
9:
30 # #2 :""
06
:"# 4#" # 0 2 6
:"# +
# 4#" JJ # JEJ -
!?
?
-
#" #"# 2E
1# #2 :""
E # I EI # EI
I( EI # EI
#
# 6 4#" 2"-6 EI # EI
#
# "
#
E # E #
# 6 4#" "=6 EI # EI
2 4"
9:
3 E # E $;
C"# # 4#" EI # EI
C"# # 4#" EI # EI
C"# # 4#" EI # EI
<6
:"# 4#" EI # EI
<6
:"# 4#" EI # EI
<6
:"# 4#" EI # EI
<6
:"# 4#" EI # EI
<6
:"# 4#" EI # EI
<6
:"# +
# 4#" JJ EI # EI
<6
:"# +
# 4#" JJ EI # EI
<6
:"# +
# 4#" JJ EI # EI
I( #""
# 4#" I # I
I( #""
# 4#" I # I
#"9:
:""
:2
" -
#" #"# E # C2:
2 -#6
4#" :2
" -
#" #"# I # I
E # E "-
2 K*
<##" ?"
" /:5 2"2 ##"0 ) "
<##" #
<##" ?"
" $B "6 ##"
<##" ?"
" /:5 ##" +:-
3 2
6
2 4#" -
#" #"#
<##" ?"
" /:5 2"2 ##"0 "
.?
" ##"
<##" ' * * (+ *(+
◎
◎
○
◎
◎
◎
○
◎
×
○
○
○
○
○
○
○
○
○
E
E
E
E
E
E
E
E
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
◎
◎
◎
○
○
○
○
○
E
E
E
○
○
○
○
○
○
○
○
○
○
○
○
' * * (+ *(+
×
×
△ △ △ △ K&
○
○
○
○
○
○
×
×
△ △ ×
K&
○
○
○
○
○
○
×
○
○
◎
○
◎
×
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
×
△ △ △ △ △ △ ○
△ △ ○
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ K&
K&
K&
E
E
E
K&
K&
E
E
K&
K&
K&
K&
K&
K&
K&
K&
K&
)
E)
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
×
―
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
―
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
―
○
=
30 ◎ 4
" ?66 2 +
:6
?
?2
2 4:# #2
"
# ?
9:= :E
K& ?
##" # :#3 0 2
26 :# ?
-
"
"L 3 2 ?6 2
#E
K* ?
4:# #2
"
"
"-
2 4#" ":" :4:"
"E A
#?
"!
4
20 2# # ?
4:# #2
E
M ?6
0 "
4
# 2 "6
N × 1# -
○ 4
" ?66 2 !? :6
=
30 +
:
2 -
2 3 "
6
2 !? :6
=
30 -
?
2 3 "
6
=
3E
" # " "%
! ●
Maximum Engineering for Global Advantage
─ 27 ─
" ■" ●# $ # % "
&
Data Initialization
(Times)
(Reset interval)
Cooling Fan ON/OFF Control
Auto-reset
Acceleration/Deceleration Pattern
Rotational Direction Limitation
Starting Mode (Auto search)
Deceleration Mode
Instantaneous Overcurrent Limiting (Mode selection)
Restart Mode after Momentary(Restart time)
Power Failure (Frequency fall rate)
(Continuous running level)
(Allowable momentary power failure time)
Thermistor (for motor)
(Mode selection)
(Level)
Droop Control
Communications Link Function
(Mode selection)
Capacitance of DC Link Bus Capacitor
Cumulative Run Time of Cooling Fan
Startup Counter for Motor 1
Mock Alarm
Starting Mode (Auto search delay time 2)
Initial Capacitance of DC Link Bus Capacitor
Cumulative Run Time of Capacitors on Printed Circuit Boards
Starting Mode (Auto search delay time 1)
Non-linear V/f Pattern 1 (Frequency)
(Voltage)
Non-linear V/f Pattern 2 (Frequency)
(Voltage)
Acceleration Time (Jogging)
Deceleration Time (Jogging)
Deceleration Time for Forced Stop
1st S-curve acceleration range (Leading edge)
2nd S-curve acceleration range (Trailing edge)
1st S-curve deceleration range (Leading edge)
2nd S-curve deceleration range (Trailing edge)
UP/DOWN Control
(Initial frequency setting)
Low Limiter (Mode selection)
(Lower limiting frequency)
Non-linear V/f Pattern 3 (Frequency)
(Voltage)
Auto Energy Saving Operation
(Mode selection)
Slip Compensation 1
(Operating conditions)
0 : Disable initialization
1 : Initialize all function code data to the factory defaults
2 : Initialize motor 1 parameters
3 : Initialize motor 2 parameters
4 : Initialize motor 3 parameters
5 : Initialize motor 4 parameters
0 : Disable; 1 to 10
0.5 to 20.0 s
0 : Disable (Always in operation)
1 : Enable (ON/OFF controllable)
0 : Linear
1 : S-curve (Weak)
2 : S-curve (Arbitrary, according to H57 to H60 data)
3 : Curvilinear
0 : Disable
1 : Enable (Reverse rotation inhibited)
2 : Enable (Forward rotation inhibited)
0 : Disable
1 : Enable (At restart after momentary power failure)
2 : Enable (At restart after momentary power failure and at normal start)
0 : Normal deceleration 1: Coast-to-stop
0 : Disable
1 : Enable
0.1 to 10.0 s
0.00: Deceleration time selected by F08, 0.01 to 100.00 Hz/s,
999: Follow the current limit command
200 to 300 V for 200 V class series
400 to 600 V for 400 V class series
0.0 to 30.0 s 999: Automatically determined by inverter
0 : Disable
1 : PTC (The inverter immediately trips with
displayed.)
2 : PTC (The inverter issues output signal THM and continues to run.)
3 : NTC (When connected)
0.00 to 5.00 V
60.0 to 0.0 Hz
Frequency command Run command
0 : F01/C30
F02
1 : RS-485 (Port 1)
F02
2 : F01/C30
RS-485 (Port 1)
3 : RS-485 (Port 1)
RS-485 (Port 1)
4 : RS-485 (Port 2)
F02
5 : RS-485 (Port 2)
RS-485 (Port 1)
6 : F01/C30
RS-485 (Port 2)
7 : RS-485 (Port 1)
RS-485 (Port 2)
8 : RS-485 (Port 2)
RS-485 (Port 2)
Indication for replacement of DC link bus capacitor 0000 to FFFF (hex.)
Indication for replacement of cooling fan
(in units of 10 hours)
Indication of cumulative startup count 0000 to FFFF (hex.)
0 : Disable
1 : Enable (Once a mock alarm occurs, the data automatically returns to 0.)
0.1 to 10.0 s
Indication for replacement of DC link bus capacitor 0000 to FFFF (hex.)
Indication for replacement of capacitors (The cumulative run time can be modified or reset in units of 10 hours.)
0.0 to 10.0 s
0.0: Cancel, 0.1 to 500.0 Hz
0 to 240: Output an AVR-controlled voltage (for 200 V class series)
0 to 500: Output an AVR-controlled voltage (for 400 V class series)
0.0: Cancel, 0.1 to 500.0 Hz
0 to 240: Output an AVR-controlled voltage (for 200 V class series)
0 to 500: Output an AVR-controlled voltage (for 400 V class series)
0.00 to 6000 s
0.00 to 6000 s
0.00 to 6000 s
0% to 100%
0% to 100%
0% to 100%
0% to 100%
0 : 0.00 Hz
1 : Last UP/DOWN command value on releasing the run command
0 : Limit by F16 (Frequency limiter: Low) and continue to run
1 : If the output frequency lowers below the one limited by F16 (Frequency limiter: Low), decelerate to stop the motor.
0.0: Depends on F16 (Frequency limiter, Low) 0.1 to 60.0 Hz
0.0: Cancel, 0.1 to 500.0 Hz
0 to 240: Output an AVR-controlled voltage (for 200 V class series)
0 to 500: Output an AVR-controlled voltage (for 400 V class series)
0 : Enable during running at constant speed
1 : Enable in all modes
0 : Enable during ACC/DEC and at base frequency or above
1 : Disable during ACC/DEC and enable at base frequency or above
2 : Enable during ACC/DEC and disable at base frequency or above
3 : Disable during ACC/DEC and at base frequency or above
─ 28 ─
' ( ( %) (%)
×
×
0
○
○
○
○
○
○
○
○
○
0
5.0
0
○
○
○
○
○
○
○
○
○
○
○
0
○
○
○
×
○
0
○
○
○
×
○
0
○
×
×
○
○
○
○
0
1
○
○
○
×
○
×
○
○
△ 1△ 2
○
*3
999
○
○
○
○
○
○
○
△2
○
○
○
○
○
○
○
235
470
999
0
○
○
○
○
○
○
○
○
○
○
○
○
0.35
0.0
0
○
○
○
○
○
○
○
○
○
○
○
×
×
―
―
○
○
○
○
○
○
○
○
×
×
―
○
○
○
○
○
○
○
○
○
○
×
×
△ 1△ 2
×
×
○
○
△2
*7
0.0
*8
*8
○
○
○
○
○
○
○
○
○
○
×
×
×
○
○
○
×
×
×
×
○
△2
0.0
0
○
○
×
×
×
×
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
*2
*2
*2
10
10
10
10
1
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
0
○
○
○
○
×
×
○
○
△2
1.6
0.0
0
○
○
○
×
×
×
×
×
×
○
○
0
○
×
○
×
○
0
○
×
×
0
―
―
0 : Disable
Automatic Deceleration
(Mode selection) 2 : Torque limit control with Force-to-stop if actual deceleration time exceeds three times the specified one
3 : DC link bus voltage control with Force-to-stop if actual deceleration time exceeds three times the specified one
4 : Torque limit control with Force-to-stop disabled
5 : DC link bus voltage control with Force-to-stop disabled
Overload Prevention Control 0.00: Follow the deceleration time selected 0.01 to 100.0 Hz/s
999: Cancel
Deceleration Characteristics 0 : Disable
1 : Enable
Main Power Down Detection 0 : Disable
(Mode selection) 1 : Enable
Torque Limiter (Operating conditions) 0 : Enable during ACC/DEC and running at constant speed
1 : Disable during ACC/DEC and enable during running at constant speed
2 : Enable during ACC/DEC and disable during running at constant speed
(Frequency increment limit for braking) 0.0 to 500.0 Hz
Service Life of DC Link Bus Capacitor (Remaining time) 0 to 8760 (in units of 10 hours)
Maintenance Interval (M1) 0: Disable; 1 to 9999 (in units of 10 hours)
Preset Startup Count for Maintenance (M1) 0000: Disable; 0001 to FFFF (hex.)
Output Current Fluctuation Damping Gain for Motor 1 0.00 to 0.40
0000 to FFFF (hex.)
Light Alarm Selection 1
0000 to FFFF (hex.)
Light Alarm Selection 2
Pre-excitation (Initial level) 100% to 400%
(Time) 0.00: Disable; 0.01 to 30.00 s
0 to 2
Reserved *9
25.0 to 500.0 Hz
Reserved *9
0 to 3; 999
Reserved *9
0, 1
Reserved *9
0, 1
Reserved *9
PID Feedback Wire Break Detection 0.0: Disable alarm detection 0.1 to 60.0 s
Continuity of Running (P) 0.000 to 10.000 times; 999
( I ) 0.010 to 10.000 s; 999
Cumulative Motor Run Time 1 0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.)
DC Braking (Braking response mode) 0 : Slow 1 : Quick
Data STOP key priority Start check function
STOP Key Priority/
0:
Disable
Disable
Start Check Function
1:
Enable
Disable
2:
Disable
Enable
3:
Enable
Enable
0 : Disable
Clear Alarm Data
1 : Enable (Setting "1" clears alarm data and then returns to "0.")
Protection/Maintenance Function 0 to 255: Display data in decimal format
(Mode selection) Bit 0: Lower the carrier frequency automatically (0: Disabled; 1: Enabled)
Bit 1: Detect input phase loss
(0: Disabled; 1: Enabled)
Bit 2: Detect output phase loss
(0: Disabled; 1: Enabled)
' ( ( %) (%)
○
○
0
○
○
○
○
○
999
○
○
○
○
○
0
○
×
×
○
○
1
○
○
○
×
○
0
○
○
○
○
○
○
○
○
○
○
×
×
―
―
―
―
―
○
○
○
○
○
○
×
○
○
○
×
○
○
○
○
―
―
―
―
―
○
○
○
○
×
○
×
○
○
○
×
○
○
○
○
―
―
―
―
―
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
5.0
×
―
×
8760
×
0
○ 0.20 *10
○
0
○
0
○
100
○
0.00
△1△2 0 *11
○
25.0
×
0
○
0
○
0
○
0.0
△ 1△ 2
999
△ 1△ 2
999
×
―
○
1
○
0
○
×
0
○
○
○
○
○
83
○
○
○
Bit 3: Select life judgment threshold of DC link bus capacitor (0: Factory default level; 1: User setup level)
Bit 4: Judge the life of DC link bus capacitor
(0: Disabled; 1: Enabled)
Bit 5: Detect DC fan lock
(0: Enabled; 1: Disabled)
Bit 6: Detect braking transistor error(for 22 kW or below) (0: Disabled; 1: Enabled)
Bit 7: IP20/IP40 switching
(0: IP20; 1: IP40)
&
25.0 to 500.0 Hz
Maximum Frequency 2
25.0 to 500.0 Hz
Base Frequency 2
0 : Output a voltage in proportion to input voltage
Rated Voltage at Base Frequency 2
80 to 240 : Output an AVR-controlled voltage (for 200 V class series)
160 to 500 : Output an AVR-controlled voltage (for 400 V class series)
Maximum Output Voltage 2 80 to 240 : Output an AVR-controlled voltage (for 200 V class series)
160 to 500 : Output an AVR-controlled voltage (for 400 V class series)
0.0% to 20.0% (percentage with respect to "A03:Rated Voltage at Base Frequency 2")
Torque Boost 2
Electronic Thermal Overload Protection for Motor 2 1 : For a general-purpose motor with shaft-driven cooling fan
(Select motor characteristics) 2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan
(Overload detection level) 0.00: Disable 1% to 135% of the rated current (allowable continuous drive current) of the motor
(Thermal time constant) 0.5 to 75.0 min
DC Braking 2 (Braking starting frequency) 0.0 to 60.0 Hz
(Braking level) 0% to 100% (HD mode), 0% to 80% (LD mode)
(Braking time) 0.00: Disable; 0.01 to 30.00 s
0.0 to 60.0 Hz
Starting Frequency 2
0 : Variable torque load
Load Selection/
1 : Constant torque load
Auto Torque Boost/
Auto Energy Saving Operation 2 2 : Auto-torque boost
3 : Auto-energy saving operation(Variable torque load during ACC/DEC)
4 : Auto-energy saving operation(Constant torque load during ACC/DEC)
5 : Auto-energy saving operation(Auto-torque boost during ACC/DEC)
' ( ( %) (%)
×
×
×
○
○
△2
*1
50.0
*1
○
○
○
○
○
○
○
○
○
×
△2
*1
○
×
×
○
○
○
○
*3
1
○
○
×
○
×
○
○
○
○
○
○
○
×
△ 1△ 2
○
○
○
○
○
○
*4
*5
0.0
0
0.00
0.5
1
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
*1 The factory default differs depending upon the shipping destination.
*2 6.00 s for inverters with a capacity of 22 kW or below; 20.00 s for those with 30 kW or above.
*3 The factory default differs depending upon the inverter's capacity.
*4 The motor rated current is automatically set.
*5 5.0 min for inverters with a capacity of 22 kW or below; 10.0 min for those with 30 kW or above.
*7 The motor constant is automatically set, depending upon the inverter's capacity and shipping destination.
*8 The factory default differs depending upon the inverter's capacity.
*9 These function codes are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.
*10 0.10 for 200 V class series of inverters with a capacity of 37 kW or above.
*11 2 for 200 V class series of inverters with a capacity of 37 kW or above.
<Data change, reflection and strage> × : Not available ○ : After changing data with using
keys, execute and save data by pressing
data with using
keys, save the data by pressing
key.
─ 29 ─
●* $ + %
" &
! key, ◎ After changing and executing
●# $ # % "
Maximum Engineering for Global Advantage
" ■" ●' $ ( &
)
$
$
$
+ $ + + +6 +6
+
$
$
$ +12 #+12 $+ 5 +6 !"
% : ; # : . 5 $ : ; ) : ;
< : ;
$ $$ %(%# #%%% 4= + /" > %? $( &%(%# #%%% @ + /" > #%(%% $%%% /
% : 3
# : ( +1#? 12 5.$ : ; +1#? 12? 5.? 0 ?
# )? 7
88 88 : +1#? 12? 5.? 0 ? : # )? 7
88 8(8/3 3(%(%% $%%% /
%(%%1 )%(%%1
%(%%1 )%(%%1
%(%1 $%%(%1
%(%# #%(%%
%(%1 $%%(%1
%(%% #)(%% @A
%(%%1 $%(%%1
%(%%1 $%(%%1
%(%%1 $%(%%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
% : % +B ? *0# : # +@ $ : $ +B 7. : +B ? <0& : % : C3 / C 3 5. 3
# : 3 / C 3 3 5. 3
$ : C3 / C 3 3 5. 3
: 3 / C 3 5. 3
%(%% %(&%
% : +
$ # : +
/ %(%%% )(%%% %(%%% %(#%% %(# $%%(% %(%%# #(%%% %(%%% %(#%% % """" + 3 #% (6
%%%% +7(%1 %%1
%1 %%1
%(%% $%%% /
)% #%%
%(%%% $%(%%% )
$
+,( +
.+
+/
0
-
+,0 +1#+12+ + + 34+
5.+6 #+6 $+6 +
#+
$+
+
&+
)+
7
88+
7
838+
7
88
$ $ +
-
●# $ % &
$)(% )%%(% @A
7 5. $)(% )%%(% @A
D 5. % : ;
D 5. *% $&% : /;0
+ $%% ; #<% )%% : /;0
+ &%% ; 7 ;
*% $&% : /;0
+ $%% ; #<% )%% : /;0
+ &%% ; %(%1 $%(%1+
83%: ;
D 5. 85 D
C
# : 0 0 +
- $ : 0 ? 0
? . + - %(%%: 3 #1 #)1 +3 - + - %() ')(% D4 +D4 5.- %(% <%(% @A
+D4 - %1 #%%1 +@ -? %1 *%1 +E +D4 - %(%%: 3F %(%# %(%% %(% <%(% @A
5. % : ;3 5 E # : 5 /
5 D
/
C. $ : /
0
5 3
: /
0. +;3 5 / C& : /
0. +
5 / C) : /
0. +/
0
5 3
/ C─ 30 ─
, * * &+ *&+
×
○
%
○
○
○
×
×
△ #△ $
△ #△ $
&
!'
○
○
○
○
○
○
×
×
△ #△ $
×
!'
%
○
○
○
○
○
○
×
○
○
◎
○
◎
×
○
○
○
○
○
○
○
○
○
○
○
×
△ #△ $
△ #△ $
△ #△ $
○
△ #△ $
○
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
!'
!'
!'
#%%(%
%(#$
#%%(%
!'
!'
%(%%
%(%%
!'
!'
!'
!'
!'
!'
!'
!'
%
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
%
○
×
×
○
×
○
○
%($%
%
○
○
×
○
×
○
○
◎
◎
◎
○
×
○
○
○
×
×
×
○
○
○
○
○
×
×
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
×
×
×
×
×
○
○
○
○
×
×
―
○
○
○
○
○
○
○
○
○
○
○
―
○
○
○
○
○
○
○
○
○
○
○
―
%(%$%
%(%%)
#%(%
%(#%%
%(%%$
―
―
#%%
#%%
!'
*)
%(%*$
, * * &+ *&+
×
×
×
○
○
△$
!#
)%(%
!#
○
○
○
○
○
○
○
○
○
×
△$
!#
○
×
×
○
○
○
○
!
#
○
○
×
○
×
○
○
○
○
○
○
○
×
△ #△ $
○
○
○
○
○
○
!&
!)
%(%
%
%(%%
%()
#
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
+ + + +6 +6
+
+12 #+12 $
+ 5 +6 !"
% : ; # : . 5 $ : ; ) : ;
< : ;
$ $$ %(%# #%%% 4= + 3" > %? $? &%(%# #%%% @ + 3" > #%(%% $%%% /
% : 3
# : ( +1#? 12 5.$ : ; +1#? 12? 5.? 0 ?
$ : # )? 7
88 88 : +1#? 12? 5.? 0 ? $ : # )? 7
88 8(8/3 3(%(%% $%%% /
%(%%1 )%(%%1
%(%%1 )%(%%1
%(%1 $%%(%1
%(%# #%(%% %(%1 $%%(%1
%(%% #)(%% @A
%(%%1 $%(%%1
%(%%1 $%(%%1
%(%%1 $%(%%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
%(%1 %%(%1
% : % +B ? *0# : # +@ $ : $ +B 7. : +B ? <0& : % : C3 / C 3 5. 3
# : 3 / C 3 3 5. 3
$ : C3 / C 3 3 5. 3
: 3 / C 3 5. 3
%(%% %(&%
% : +
# : +
3 %(%%% )(%%% %(%%% %(#%% %(# $%%(% %(%%# #(%%% %(%%% %(#%% % """" + 3 #% (6
%%%% +7(%1 %%1
%1 %%1
%(%% $%%% /
)% #%%
%(%%% $%(%%% )
+,( +
.+
+/
0
-
+,0 +1#+12+ + + 34+
5.+6 #+6 $+6 +
#+
$+
+
&+
)+
7
88+
7
838+
7
88
+
-
● $ - &
!#
!
!&
!)
!'
!"
I
$)(% )%%(% @A
7 5. &
$)(% )%%(% @A
D 5. &
% : ;
D 5. &
*% $&%: /;0
+ $%% ; #<% )%%: /;0
+ &%% ; 7 ;
& *% $&%: /;0
+ $%% ; #<% )%%: /;0
+ &%% ; %(%1 $%(%1+
8%:
;
D 5. &85 D
&
C
# : 0 0 & +
- $ : 0 ? 0
? . + - %(%%: 3 #1 #)1 +3 - + - %() ')(% D4 & +D4 5.- %(% <%(% @A
+D4 - %1 #%%1 +@ -? %1 *%1 +E +D4 - %(%%: 3F %(%# %(%% %(% <%(% @A
5. &
×
○
%
○
○
○
×
×
△ #△ $
△ #△ $
&
!'
○
○
○
○
○
○
×
×
△ #△ $
×
!'
%
○
○
○
○
○
○
×
○
○
◎
○
◎
×
○
○
○
○
○
○
○
○
○
○
○
×
△ #△ $
△ #△ $
△ #△ $
○
△ #△ $
○
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
!'
!'
!'
#%%(%
%(#$
#%%(%
!'
!'
%(%%
%(%%
!'
!'
!'
!'
!'
!'
!'
!'
%
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
%
○
×
×
○
×
○
○
%($%
%
○
○
×
○
×
○
○
◎
◎
◎
○
×
○
○
○
×
×
×
○
○
○
○
○
×
×
△ #△ $
△ #△ $
△ #△ $
△ #△ $
△ #△ $
×
×
×
×
×
○
○
○
○
×
×
―
○
○
○
○
○
○
○
○
○
○
○
―
○
○
○
○
○
○
○
○
○
○
○
―
―
―
#%%
#%%
!'
*)
%(%*$
, * * &+ *&+
×
×
×
○
○
△$
!#
)%(%
!#
○
○
○
○
○
○
○
○
○
×
△$
!#
○
○
×
○
○
○
○
!
#
○
○
×
○
×
○
○
○
○
○
○
○
△ #△ $
○
○
○
○
○
!&
!)
%(%
%
%(%%
%()
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
. (
. G .(
. (
)(% . $$ 4= 3F #%(% % 4= 3(
. ? G . (
( H ? (
? J × : ,
3 ○ : /
4.? 7
3. 4.? 3. 4.(
─ 31 ─
%(%$%
%(%%)
#%(%
%(#%%
%(%$%
4.?
◎
/
7
, * * &+ *&+
" ! )
●# $ % &
Maximum Engineering for Global Advantage
" ■" ● # $ %
&
Load Selection/
Auto Torque Boost/
Auto Energy Saving Operation 4
0 : Variable torque load
1 : Constant torque load
2 : Auto-torque boost
3 : Auto-energy saving operation (Variable torque load during ACC/DEC)
4 : Auto-energy saving operation (Constant torque load during ACC/DEC)
5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC)
0 : V/f control with slip compensation inactive
1 : Dynamic torque vector control
2 : V/f control with slip compensation active
5 : Vector control without speed sensor
6 : Vector control with speed sensor
2 to 22 poles
0.01 to 1000 kW (when r39 = 0, 2, 3 or 4)
0.01 to 1000 HP (when r39 = 1)
0.00 to 2000 A
0 : Disable
1 : Tune while the motor stops. (%R1, %X and rated slip frequency)
2 : Tune while the motor is rotating under V/f control (%R1, %X, rated slip frequency, no-load current,
2 : magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c")
3 : Tune while the motor is rotating under vector control (%R1, %X, rated slip frequency, no-load current, magnetic
2 : saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c." Available when the vector control is enabled.)
0.00 to 2000 A
0.00% to 50.00%
0.00% to 50.00%
0.0% to 200.0%
0.01 to 10.00 s
0.0% to 200.0%
0.00 to 15.00 Hz
0.00% to 20.00%
0.00% to 20.00%
0.00% to 20.00%
0.0% to 300.0%
0.0% to 300.0%
0.0% to 300.0%
0.0% to 300.0%
0.0% to 300.0%
0.0% to 300.0%
0.0% to 300.0%
0.0% to 300.0%
0 : Motor characteristics 0 (Fuji standard motors, 8-series)
1 : Motor characteristics 1 (HP rating motors)
2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control)
3 : Motor characteristics 3 (Fuji standard motors, 6-series)
4 : Other motors
0 : Enable during ACC/DEC and at base frequency or above
1 : Disable during ACC/DEC and enable at base frequency or above
2 : Enable during ACC/DEC and disable at base frequency or above
3 : Disable during ACC/DEC and at base frequency or above
0.00 to 0.40
0 : Motor (Switch to the 4th motor)
1 : Parameter (Switch to particular r codes)
0.000 to 5.000 s
0.000 to 0.100 s
0.1 to 200.0 times
0.001 to 1.000 s
0.000 to 0.100 s
0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.)
Indication of cumulative startup count 0000 to FFFF (hex.)
0% to 300%
0% to 300%
0.00 to 2000 A
50 to 100
0.000 to 20.000 s
Drive Control Selection 4
Motor 4
(No. of poles)
(Rated capacity)
(Rated current)
(Auto-tuning)
(No-load current)
(%R1)
(%X)
(Slip compensation gain for driving)
(Slip compensation response time)
(Slip compensation gain for braking)
(Rated slip frequency)
(Iron loss factor 1)
(Iron loss factor 2)
(Iron loss factor 3)
(Magnetic saturation factor 1)
(Magnetic saturation factor 2)
(Magnetic saturation factor 3)
(Magnetic saturation factor 4)
(Magnetic saturation factor 5)
(Magnetic saturation extension factor "a")
(Magnetic saturation extension factor "b")
(Magnetic saturation extension factor "c")
Motor 4 Selection
Slip Compensation 4 (Operating conditions)
Output Current Fluctuation Damping Gain for Motor 4
Motor/Parameter Switching 4 (Mode selection)
Speed Control 4 (Speed command filter)
(Speed detection filter)
P (Gain)
I (Integral time)
(Output filter)
Cumulative Motor Run Time 4
Startup Counter for Motor 4
Motor 4 (%X correction factor 1)
(%X correction factor 2)
(Torque current under vector control)
(Induced voltage factor under vector control)
Reserved *9
─ 32 ─
) ' ' %( '%(
×
○
1
○
×
○
×
○
0
○
○
○
×
×
△ 1△ 2
△ 1△ 2
4
*7
○
○
○
○
○
○
×
×
△ 1△ 2
×
*7
0
○
○
○
○
○
○
×
○
○
◎
○
◎
×
○
○
○
○
○
○
○
○
○
○
○
×
△ 1△ 2
△ 1△ 2
△ 1△ 2
○
△ 1△ 2
○
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
*7
*7
*7
100.0
0.12
100.0
*7
*7
0.00
0.00
*7
*7
*7
*7
*7
*7
*7
*7
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
0
○
×
×
○
×
○
○
0.20
0
○
○
×
○
×
○
○
◎
◎
◎
○
×
○
○
○
×
×
×
○
○
○
○
○
×
×
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
△ 1△ 2
0.020
0.005
10.0
0.100
0.020
×
×
×
×
×
○
○
○
○
×
×
―
○
○
○
○
○
○
○
○
○
○
○
―
○
○
○
○
○
○
○
○
○
○
○
―
―
―
100
100
*7
85
0.082
PID Control (Mode selection) 0 : Disable
1 : Enable (Process control, normal operation)
2 : Enable (Process control, inverse operation)
3 : Enable (Dancer control)
(Remote command SV) 0 : / keys on keypad
1 : PID process command 1 (Analog input terminals [12], [C1], and [V2])
3 : UP/DOWN
4 : Command via communications link
P (Gain) 0.000 to 30.000 times
I (Integral time) 0.0 to 3600.0 s
D (Differential time) 0.00 to 600.00 s
(Feedback filter) 0.0 to 900.0 s
(Pressurization starting frequency) 0.0 to 500.0 Hz
(Pressurizing time) 0 to 60 s
(Anti reset windup) 0% to 200%
(Select alarm output) 0 : Absolute-value alarm
1 : Absolute-value alarm (with Hold)
2 : Absolute-value alarm (with Latch)
3 : Absolute-value alarm (with Hold and Latch)
4 : Deviation alarm
5 : Deviation alarm (with Hold)
6 : Deviation alarm (with Latch)
7 : Deviation alarm (with Hold and Latch)
(Upper level alarm (AH)) -100% to 100%
(Lower level alarm (AL)) -100% to 100%
(Stop frequency for slow flowrate) 0.0: Disable; 1.0 to 500.0 Hz
(Slow flowrate level stop latency) 0 to 60 s
(Starting frequency) 0.0 to 500.0 Hz
(Upper limit of PID process output) -150% to 150%; 999: Depends on setting of F15
(Lower limit of PID process output) -150% to 150%; 999: Depends on setting of F16
Dew Condensation Prevention (Duty) 1% to 50%
Commercial Power Switching 0 : Keep inverter operation (Stop due to alarm)
1 : Automatically switch to commercial-power operation
Sequence
PID Control (Speed command filter) 0.00 to 5.00 s
(Dancer reference position) -100% to 0% to 100%
(Detection width of dancer position deviation) 0: Disable switching PID constant
1% to 100% (Manually set value)
P (Gain) 2 0.000 to 30.000 times
I (Integral time) 2 0.0 to 3600.0 s
D (Differential time) 3 0.00 to 600.00 s
(PID control block selection) 0 to 3
bit 0 : PID output polarity
0 : Plus (add), 1: Minus (subtract)
bit 1 : Select compensation factor for PID output
0 = Ratio (relative to the main setting)
1 = Speed command (relative to maximum frequency)
Braking Signal (Brake-OFF current) 0% to 300%
(Brake-OFF frequency/speed) 0.0 to 25.0 Hz
(Brake-OFF timer) 0.0 to 5.0 s
(Brake-ON frequency/speed) 0.0 to 25.0 Hz
(Brake-ON timer) 0.0 to 5.0 s
(Brake-OFF torque) 0% to 300%
(Speed selection) 0 : Detected speed
1 : Commanded speed
(Gain) 0.00 to 10.00
Servo-lock
(Completion timer) 0.000 to 1.000
(Completion width) 0 to 9999
) ' ' %( '%(
×
○
0
○
○
○
×
○
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
0.100
0.0
0.00
0.5
0.0
0
200
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
100
0
0.0
30
0.0
999
999
1
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
0.10
0
0
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
0.100
0.0
0.00
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
100
1.0
1.0
1.0
1.0
100
0
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
0.10
0.100
10
×
×
×
×
×
×
○
○
○
key, ◎ After changing and executing
*7 The motor constant is automatically set, depending upon the inverter's capacity and shipping destination.
*9 These function codes are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.
<Data change, reflection and strage> × : Not available ○ : After changing data by using
keys, execute and save data by pressing
data by using
keys, save the data by pressing
key.
&
" ! ●* # + " ,
Maximum Engineering for Global Advantage
─ 33 ─
" ■" ● ( ) " *
#
3 )3 *
)3 *
@ )F*
)
*
)- *
3 )E*
)3 *
)3 *
@ )F*
)
*
)- *
1= )@ *
)+ *
)@ *
)@ *
38A@F + ); *
)> *
@F + @
G 3 "
83 3 : )3 *
)3 *
, H&
, H&
, H&
, H&
, H&
")@ *
)@ *
)1 *
)@ *
)@ *
3 /)8 *
, H&
, H&
@ A@ 1 A, 8A? & $ +8# )B * ) # *
&&&&
&&&&
C C
" 3 3 ( @ C
C
+ D
> D
@ A@ 1 A, 8A? & &&&&
&&&&
>
+ )8 *
+ )8 *
;D
'
─ 34 ─
$ % % &' %&'
○
◎
◎
◎
○
○
○
○
○
○
○
○
×
×
×
×
×
×
○
○
○
○
○
○
○
○
○
○
○
○
◎
◎
◎
○
×
○
○
○
○
○
×
×
×
×
×
○
○
○
○
×
○
○
○
○
○
×
×
×
○
○
×
○
○
○
○
○
○
$ ) $ * ×
×
×
×
×
×
×
×
×
○
○
○
○
○
○
○
○
○
×
○
×
○
○
○
○
○
×
×
×
×
×
○
○
○
○
○
○
○
○
H H H H ×
×
×
―
―
―
―
―
○
○
○
―
―
―
―
―
○
○
○
―
―
―
―
―
×
○
○
○
○
○
×
×
×
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
×
×
○
○
○
$
―
―
―
―
―
―
36$% " )3 * )" * !
! " )* # )? * $ $% &# & $ %$ )> * % ' )@ =* ( ) *
+, ) *
- ) *
( ) *
)3 * )(6 * ( . # ) ,* )@ * / 0 1+(
" 2 )34 *
15 6 , 36$% " )3 * )" * !
! " )* # )? * $ $% &# & $ %$ )> * % ' )@ =* ( ) *
+, ) *
- ) *
( ) *
)3 * )(6 * ( . # ) ,* )@ * / 0 15 6 , " > 3 3 3, , ) *
7 ) *
3, , )8 , ! 9 9*
1: ? 2= 1 )/ *
1 ; 1 ; < 1 ; 1 ; < < < 1: 2 2= 1 )/ *
1 ; &% 1 ; &% < 36$% =
1 ; &% )1+(
" 2*
1 ; &% < 36$% = )1+(
" 2*
< 36$% =
< 36$% = )1+(
" 2*
)1+(
" 2* $ % % &' %&'
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
×
○
○
○
=! ◎ 8 B
H& , 0 ! H ,I , ' =7 )$ =7 +0* . =7 =7. =7 ,
J> ! K × ( , ○ 8 =! B , =! , =
#
" ! ● ( # "
Maximum Engineering for Global Advantage
─ 35 ─
! # $% " & $'
● (
$%:&
×#
$%:&
Fig.D
×#
×#
$%:&
'(")□*■ '(")□*■
'(")□*■ '(")□*■
Fig.C
'(")□*■+ '(")□*■
'(")□*■+ '(")□*■
$%:&
×#
Fig.B
Fig.A
'()□*■ '()□*■
'()□*■ '()□*■
'(")□*■ '()□*■
'(")□*■ '()□*■
$%:&
"
!"
’
’
’
’
!"
’
’
Fig.E
’
'()□*■ '()□*■
'()□*■ '()□*■
!"
─ 36 ─
Maximum Engineering for Global Advantage
*3/
9
FRN0.4G1□-2■
FRN0.75G1□-2■
FRN1.5G1□-2■
FRN2.2G1□-2■
FRN3.7G1□-2■
FRN5.5G1□-2■
FRN7.5G1□-2■
FRN11G1□-2■
FRN15G1□-2■
FRN18.5G1□-2■
FRN22G1□-2■
FRN30G1□-2■
FRN37G1□-2■
FRN45G1□-2■
FRN55G1□-2■
FRN75G1□-2■
FRN90G1□-2■
FRN0.4G1□-4■
FRN0.75G1□-4■
FRN1.5G1□-4■
FRN2.2G1□-4■
FRN3.7G1□-4■
FRN5.5G1□-4■
FRN7.5G1□-4■
FRN11G1□-4■
FRN15G1□-4■
FRN18.5G1□-4■
FRN22G1□-4■
FRN30G1□-4■
FRN37G1□-4■
FRN45G1□-4■
FRN55G1□-4■
FRN75G1□-4■
FRN90G1□-4■
FRN110G1□-4■
FRN132G1□-4■
FRN160G1□-4■
FRN200G1□-4■
FRN220G1□-4■
FRN280G1□-4■
FRN315G1□-4■
FRN355G1□-4■
FRN400G1□-4■
FRN500G1□-4■
FRN630G1□-4■
A
A
B
B
B
C
C
C
D
D
D
E
E
E
E
−
−
A
A
B
B
B
C
C
C
D
D
D
E
E
E
E
E
E
E
E
E
E
E
−
−
−
−
−
−
W
W1
W2
Main body external dimensions(mm)
W3 W4
H
H1 H2
D
D1 D2
17
130
110
145
150
113
D3
41.5
56.5
32
−
−
−
−
N
2×#6
6
Panel cutout dimensions(mm)
W’ W’
1 W’
2 H’ H’
1 H’2 M’
−
260
−
M
−
220
−
−
−
−
−
312
288
323
240
275
530
595
512
577
275
−
720
702
−
−
−
−
−
312
288
240
530
512
323
275
275
−
595
655
720
577
637
702
710
685
430
430
970
945
−
−
9
4×M8
−
−
9
4×M8
138.7
250
2×#10 10
105
90
500 261.3
565
115
276.3
690
140
255
155
270
195
400
326.2 320
240 310.2 304
361.2 355
275 345.2 339
136.5
550
615
530
595
740
720
2×#10 10
347
-< 130
110
145
150
17
113
41.5
56.5
32
−
−
−
−
−
2×#6
6
−
260
−
220
138.7
195
250
105
90
326.2 320
361.2 355
240 310.2 304
550
530
500 261.3
275 345.2 339
615
675
595
655
720
115
565
625 276.3
690
500.6 740
535.8
530
686.4 680
140
500
10
2×#10
10
155
710 678.7 321.3 135
255
315
2×#15
180
1000 970 939.5 366.3 180
347
270
430 506.4
536.4
2×#10
136.5
400
510
360
3×#15
580 656.4 650.6
4×M12
12.5
15
660
580
580
6×M12
-< □:0:0, 73+ :::; 2, <* 73
●$ ) #* + % & '
"
"
2 3 4 -. 2,
5 5
"
"
"
"
(, -.
"
./ %01 , "
*2
"
"
"
"
A
128.5
"
"
"
"
"
"
"
"
"
80
"
$%:&
*3/
9
0.4
0.75
1.5
2.2
3.7
5.5
7.5
11
15
18.5
22
30
37
45
55
75
90
0.4
0.75
1.5
2.2
3.7
5.5
7.5
11
15
18.5
22
30
37
45
55
75
90
110
132
160
200
220
280
315
355
400
500
600
(& 8-,, 73 '4
" ., 337 33
-
4 ,6
! ■ %
● (
─ 37 ─
# $ "% "& ' ( )
* + $ $ ,
-, " * .
-9- " $ ! " ## ## $% $! & '! ( )
# * +
##, ##
-9/ ! # ( )
( )
& ! " $! " (# '! " (# # %! / (# 2! " ( )
,! " 0! " 3! " 4! " # $! '! " ! ! 5 -92, #0 - & # # /, ! 0 1 ,
. # 2, . * * 1 * * 34 *5
/ ! 0
0 & 01 # 6, # .
(
(
7, " + 8, &0 - /
( ─ 38 ─
". : 9
<&
3
486/5
". : 7;;;<--
3
46;2 = 5
3
46-2 :5
". : 7;;;*--
3
46;25
<
?
". : 9
3
487/ = 5
3
4872 :5
". : 9 3
466/5
". : 9
3
466- = 5
3
467- :5
". : 7;;;<>
3
46;75
". : 7;;;
<7
*
"
491 9 &+ & +
! 8 "1 $6678 6% 46 "1 %6678 6% ,'6 !
;+ ; +
! 8 "1 $6678 02 6 "1 %6678 02 0 6 !
; < )=/ 1 =
; "
=
1 >*? " 1
@
&+ 8 $669 ' 269 ;+ 8 $69 491 9 9 Capacity range expanded
"1 $6678 6$ 46 "1 %6678 6% ,'6 !
(# $669 62&:
" /
$$ !
Capacity range expanded
"1 "1 $6678 22 6 "1 %6678 22 0 6 !
*
" 1 1 - 1 4 1 "1 $6678 6 2 *1 $6678 6 $$ "1 %6678 6% 2 !
" 1 6 ! .&*
+
$662!
5 =
) :
11
"1 3 0 ? 5
"1 $6678 602 6 "1 %6678 602 2,6 !
+ 5 + 1 "1 $6678 6 '0 "1 %6678 6% '0 *1 $6678 6 $$ *1 6678 6 602 !
- 1 ; ; + 4 1 Capacity range expanded
"1 $6678 602 46 "1 %6678 '0 366 !
- -
" 1
$ $ "1 $6678 '0 %2 !
- $ " 1 " 1 > = $ /
1 (# * + /
: 3 :,5
" &
! "% ●#
Maximum Engineering for Global Advantage
─ 39 ─
NOTES
When running general-purpose motors
Driving a 400V general-purpose motor
When driving a 400V general-purpose motor with
an inverter using extremely long cables, damage to
the insulation of the motor may occur. Use an output
circuit filter (OFL) if necessary after checking with
the motor manufacturer. Fuji's motors do not require
the use of output circuit filters because of their
reinforced insulation.
Torque characteristics and temperature rise
When the inverter is used to run a general-purpose
motor, the temperature of the motor becomes
higher than when it is operated using a commercial
power supply. In the low-speed range, the cooling
effect will be weakened, so decrease the output
torque of the motor. If constant torque is required in
the low-speed range, use a Fuji inverter motor or a
motor equipped with an externally powered
ventilating fan.
Vibration
When the motor is mounted to a machine,
resonance may be caused by the natural
frequencies, including that of the machine.
Operation of a 2-pole motor at 60Hz or more may
cause abnormal vibration.
* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump
frequency control to avoid resonance points.
Noise
When an inverter is used with a general-purpose
motor, the motor noise level is higher than that with
a commercial power supply. To reduce noise, raise
carrier frequency of the inverter. High-speed
operation at 60Hz or more can also result in more
noise.
When running special motors
High-speed motors
When driving a high-speed motor while setting the
frequency higher than 120Hz, test the combination
with another motor to confirm the safety of highspeed motors.
Explosion-proof motors
When driving an explosion-proof motor with an
inverter, use a combination of a motor and an
inverter that has been approved in advance.
Submersible motors and pumps
These motors have a larger rated current than
general-purpose motors. Select an inverter whose
rated output current is greater than that of the
motor.
These motors differ from general-purpose motors in
thermal characteristics. Set a low value in the
thermal time constant of the motor when setting the
electronic thermal facility.
Brake motors
For motors equipped with parallel-connected
brakes, their braking power must be supplied from
the primary circuit (commercial power supply). If the
brake power is connected to the inverter power
output circuit (secondary circuit) by mistake,
problems may occur.
Do not use inverters for driving motors equipped
with series-connected brakes.
Geared motors
If the power transmission mechanism uses an oil-
lubricated gearbox or speed changer/reducer, then
continuous motor operation at low speed may
cause poor lubrication. Avoid such operation.
not use power factor correcting capacitors in the
inverter output circuit (secondary). An overcurrent
trip will occur, disabling motor operation.
Synchronous motors
Discontinuance of surge killer
Single-phase motors
Reducing noise
It is necessary to use software suitable for this
motor type. Contact Fuji for details.
Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase
motors.
* Even if a single-phase power supply is available,
use a three-phase motor as the inverter provides
three-phase output.
Environmental conditions
Installation location
Use the inverter in a location with an ambient
temperature range of -10 to 50C.
The inverter and braking resistor surfaces become
hot under certain operating conditions. Install the
inverter on nonflammable material such as metal.
Ensure that the installation location meets the
environmental conditions specified in "Environment"
in inverter specifications.
Combination with peripheral devices
Installing a molded case circuit
breaker (MCCB)
Install a recommended molded case circuit breaker
(MCCB) or an earth leakage circuit breaker (ELCB)
in the primary circuit of each inverter to protect the
wiring. Ensure that the circuit breaker capacity is
equivalent to or lower than the recommended
capacity.
Installing a magnetic contactor (MC)
in the output (secondary) circuit
If a magnetic contactor (MC) is mounted in the
inverter's secondary circuit for switching the motor
to commercial power or for any other purpose,
ensure that both the inverter and the motor are fully
stopped before you turn the MC on or off. Remove
the surge killer integrated with the MC.
Installing a magnetic contactor (MC)
in the input (primary) circuit
Do not turn the magnetic contactor (MC) in the
primary circuit on or off more than once an hour as
an inverter fault may result. If frequent starts or
stops are required during motor operation, use
FWD/REV signals.
Protecting the motor
The electronic thermal facility of the inverter can
protect the motor. The operation level and the motor
type (general-purpose motor, inverter motor) should
be set. For high-speed motors or water-cooled
motors, set a small value for the thermal time
constant to protect the motor.
If you connect the motor thermal relay to the motor
with a long cable, a high-frequency current may flow
into the wiring stray capacitance. This may cause
the relay to trip at a current lower than the set value
for the thermal relay. If this happens, lower the
carrier frequency or use the output circuit filter
(OFL).
Discontinuance of power-factor correcting capacitor
Do not mount power factor correcting capacitors in
the inverter (primary) circuit. (Use the DC
REACTOR to improve the inverter power factor.) Do
! "#
$% &'!'(' )*% &'!'('+
,-. / 0 Do not mount surge killers in the inverter output
(secondary) circuit.
Use of a filter and shielded wires are typical
measures against noise to ensure that EMC
Directives are met.
Measures against surge currents
If an overvoltage trip occurs while the inverter is
stopped or operated under a light load, it is
assumed that the surge current is generated by
open/close of the phase-advancing capacitor in the
power system.
We recommend connecting a DC REACTOR to the
inverter.
Megger test
When checking the insulation resistance of the
inverter, use a 500V megger and follow the
instructions contained in the Instruction Manual.
Wiring
Wiring distance of control circuit
When performing remote operation, use the twisted
shield wire and limit the distance between the
inverter and the control box to 20m.
Wiring length between inverter and motor
If long wiring is used between the inverter and the
motor, the inverter will overheat or trip as a result of
overcurrent (high-frequency current flowing into the
stray capacitance) in the wires connected to the
phases. Ensure that the wiring is shorter than 50m.
If this length must be exceeded, lower the carrier
frequency or mount an output circuit filter (OFL).
Wiring size
Select cables with a sufficient capacity by referring
to the current value or recommended wire size.
Wiring type
Do not use multicore cables that are normally used
for connecting several inverters and motors.
Grounding
Securely ground the inverter using the grounding
terminal.
Selecting inverter capacity
Driving general-purpose motor
Select an inverter according to the applicable motor
ratings listed in the standard specifications table for
the inverter. When high starting torque is required or
quick acceleration or deceleration is required, select
an inverter with a capacity one size greater than the
standard.
Driving special motors
Select an inverter that meets the following condition:
Inverter rated current > Motor rated current.
Transportation and storage
When transporting or storing inverters, follow the
procedures and select locations that meet the
environmental conditions that agree with the
inverter specifications.
$. . ##.
$. "# + '! 1 '2 3 ),
Open as PDF
Similar pages