SinCosin X8 - LTI Motion

ServoOne
Specification
Option 2 - Technology
2nd SinCos Encoder
AC SO
DC SO
AC SO
4-450 A
4-450 A
junior
SinCos
X8
in
Specification Option 2 - Technology
2nd SinCos encoder
ID No: 1308.21B.2-00
Date: 07/2015
This documentation applies to:
Series
Model
Hardware version
Firmware version
ServoOne
Single axis system
AC SO
4-450 A
SO82.xxx.0xx1
SO84.xxx.0xx1
from ...1.xxxx.2
from ...1.xxxx.2
all
SO84.xxx.1xx1
from ...1.xxxx.2
all
NOTE:
This document does not replace the ServoOne junior Operation Manual. Please
be sure to observe the information contained in the “For your safety”, “Intended
use” and “Responsibility” sections of the Operation Manual (ID no.: 1300.20B.xxx). For information on installation, setup and commissioning, and details of the
warranted technical characteristics of the ServoOne junior, refer to the additional
documentation (Operation Manual, User Manual, etc.).
ServoOne
Multi axis system
DC SO
4-450 A
The content of our specification was compiled with the greatest care and attention, and
based on the latest information available to us.
ServoOne junior
AC SO
junior
We reserve the right to make technical changes.
SO22.xxx.xxx1
SO24.xxx.xxx1
from ...1.xxxx.0
from ...1.xxxx.0
from V1.10
We should nevertheless point out that this document cannot always be updated in line
with ongoing technical developments in our products.
Information and specifications may be subject to change at any time.
Please visit www.lti-motion.com for details of the latest versions.
Table of Contents
1
SinCos / TTL encoder............................................................... 5
1.1
Operating modes:................................................................................................5
1.2
Technical data.....................................................................................................6
1.3
1.2.1
SinCos / TTL signal evaluation.............................................................6
1.2.2
Absolute value encoder........................................................................6
1.2.3
Voltage supply for external encoder.....................................................6
1.2.4
Cable type and layout..........................................................................7
Pin assignment....................................................................................................7
1.4Configuration ......................................................................................................8
1.5
1.4.1
Configuration of the encoder channel X8.............................................8
1.4.2
Zero pulse wiring test...........................................................................9
1.4.3
Interface configuration of encoder for loop control...............................10
Increment-coded reference marks......................................................................11
1.5.1
Rotary measurement system...............................................................11
1308.21B.2-00 07/2015

Specification 2nd SinCos Encoder
3

1308.21B.2-00 07/2015
Specification 2nd SinCos Encoder
4
Fig.
Function
Sin/Cos encoder with zero pulse:
e. g. Heidenhain ERN1381, ROD486
Operating modes:
SinCos encoders are designed as optical encoders, and meet the highest accuracy
demands. They emit two sinusoidal, 90° offset signals, A and B, which are scanned
by analog/digital converters. The signal periods are counted and the phase angles of
signals A and B are used to calculate the rotation and count direction.
14
13
12
11
Heidenhain encoder with purely digital EnDat interface:
e. g. 25 bit single- turn encoder and 12 bit multi-turn encoder (EQN 1337)
15
1
6
2
7
3
8
4
9
Encoder/ SSI
Digital interface:
The digital time-discrete interface is based on a transfer protocol. The current positional
information is transmitted from the encoder to the receiver. This may be done either serially or in parallel. As the transfer only takes place at certain times, it is a time-discrete
interface.
Encoders are specified in terms of their rated voltage and current consumption, and the
pin assignment. Maximum permissible cable lengths are additionally specified.
Heidenhain SinCos encoder with EnDat interface:
e. g. 13 bit single-turn encoder (ECN1313) and 25 bit multi-turn encoder
(EQN1325)
X8
5
1.1
SinCos / TTL encoder
10
1
SinCos encoder with SSI interface:
z. B. 13 Bit Singleturn- und 25 Bit Multiturn-Geber
(ECN413-SSI, EQN425-SSI)
Encoder with purely digital SSI interface:
e. g. Kübler encoder 12 bit single-turn and 12 bit multi-turn
(F3663.xx1x.B222)
Sick-Stegmann SinCos encoder with HIPERFACE® interface:
Encoder interface X8 enables the evaluation of the following encoder types. For the
technical specifications of the various encoder types refer to the documentation from
the encoder manufacturers.
TTL encoder with zero pulse:
e. g. Heidenhain: ROD 426, ERN 1020
Table 1.1
Suitable encoder types on X8
ATTENTION:
Only one encoder with a purely digital EnDat or SSI interface can be used on
connector X8 or X7 (see Operation Manual, page 25/26).
1308.21B.2-00 07/2015
SinCos / TTL encoder
Specification 2nd SinCos Encoder
5
SinCos / TTL encoder
1.2
Technical data
Specification
Differential switching level "High"
1.2.1
Table 1.3
xx Differential voltage input, RS422-compatible;
Pay attention to voltage range!
xx Max. cable length: 10 m
xx Connector: 15-pin D-SUB, High-Density, female
xx Surge terminating impedance built-in to device: 120 Ω
min.
max.
0 Hz
500 kHz
Signal level reffered to ground
Table 1.2
1.2.2
-0.1 V
0V
+5V
Absolute value encoder
Specification
Interface
xx RS485-compliant
xx Connector: 15-pin D-SUB, High-Density, female
xx Surge terminating impedance built-in to device: 120 Ω
Pulse frequency:
min.
EnDat
max.
typ.
2 MHz
SSI
1 MHz
Output voltage:
min.
max.
Signal level reffered to ground
0V
+ 3.3 V
-
1.5 V
3.3 V
Surge impedance ≥
57 Ω
min.
max.
typ.
Differential output voltage IUI
Input voltage
Table 1.3
Absolute value encoder input on X8
Specification
min.
max.
typ.
+ 4.75 V
+ 5.25 V
+5V
typ.
250 mA
Output voltage with Hiperface
+ 12 V
Output current with Hiperface-interface
100 mA
Table 1.4
SinCos / TTL encoder input on X8
+ 12 V
Voltage supply for external encoder
Output current with SinCos , TTL,
EnDat, SSI encoders
+ 0.1 V
Differential switching level "Low"
1.2.3
-7V
Absolute value encoder input on X8
Output voltage with SinCos , TTL,
EnDat, SSI encoders
Input voltage
Differential switching level "High"
-0.2 V
Signal level refferd to ground
Specification
Input frequency
+ 0.2 V
Differential switching level "Low"
SinCos / TTL signal evaluation
Interface
6
Specification 2nd SinCos Encoder
1308.21B.2-00 07/2015
Voltage supply for external encoders on X8
NOTE:
The encoder supply at X8/3 is short-circuit proof in both 5 V and 12 V operation.
The controller remains in operation enabling the generation of a corresponding
error message when evaluating the encoder signals.
Encoders with a power supply of 5 V ± 5 % must have a separate sensor cable
connection. The encoder cable detects the actual supply voltage at the encoder,
thereby compensating for the voltage drop on the cable. Only use of the sensor
cable ensures that the encoder is supplied with the correct
voltage. The sensor cable must always be connected.
If a SinCos encoder is not delivering sense signals, connect pins 12 and 13
(+ / -Sense) to pins 3 and 8 (+ 5 V/GND) on the encoder cable end.
1.2.4
Cable type and layout
The cable type should be chosen as specified by the motor/encoder manufacturer.
1.3
Pin assignment
The assignment of the 15-pin D-Sub female connector on slot X8 is set out in the
following table.
The following conditions must be met:
Pin
Absolute value encoder
Absolute value
encoder SSI, EnDat
HIPERFACE
Signal
Signal
Signal
1
Track A –
REFCos
2
Track A +
+ Cos
3
+5V
Encoder supply
+ 12 V
Encoder supply
11
12
13
14
15
2
7
6
1
X8
3
Do not separate the encoder cable, for example to route the signals via terminals
in the switch cabinet.
8
yy
Connection
4
Interconnect the differential track signals A, B, R or DATA and CLK by
twisted-pair cables.
9
yy
SinCos /TTL encoder
5
Shield on both sides.
10
Use only shielded cables.
yy
Encoder/ TTL
yy
4
R+ / Data +
5
R- / Data -
6
Track B–
REFSin
7
-
Us-Switch *
8
GND
9
R+ / Data+ 1)
10
R- / Data- 1)
11
Track B+
+ Sin
12
Sense +
Us-Switch *
13
Sense -
-
14
CLK +
-
15
CLK -
–
1) from delivery week 15/2011 on and from device serial No. SN 1115 ... on
Table 1.5
Pin assignment of the SinCos module on X8
* The jumper between pins 7 and 12 produces a voltage on pins 3 and 8 of 12 V.
1308.21B.2-00 07/2015
SinCos / TTL encoder
Specification 2nd SinCos Encoder
7
SinCos / TTL encoder
Specification 2nd SinCos Encoder
1308.21B.2-00 07/2015
1.4
Configuration
1.4.1
Configuration of the encoder channel X8
Parameter
no.
0
Encoder
Type Selection
P 0507
0 = OFF
1 = SinCos
2 = SSI
3 = TTL
4 = EnDat
5 = HALL
6 = TWINsync
Absolute
Interface Selektor
1
P 0570
2
3
P 0502
Off
Designation in DM5
ENC_CH3_ActVal
(0)
00...00hex
Single-turn
(1)
00...00hex
Multi-turn
SSI
EnDat
Function
Actual value parameter: Raw data of
single-turn and multi-turn information to
test encoder evaluation.
The raw data are displayed after the
electronic gearing and before the
scaling (see figure 1.1).
HIPERFACE
in preporation
P 0507
Gearnumerator
ON
OFF
P 0571
Number
of lines
P 0572
P 0514
P 0515
Actual value
Multiturn
P 502 - 1
Singleturn
P 502 - 0
Control
Index Pulssignal
Testmode
Figure 1.1
Setting
Selection of encoder
(0)
OFF
No function
No function
(1)
SinCos encoder
SinCos
SinCos selection
(2)
SSI encoder
SSI
SSI selection
(3)
TTL encoder
TTL
TTL selection
(4)
EnDat 2.1/2.2
ENDAT
EnDat selection
(5)
TTL encoder with
commutation signals
HALL
HALL selection
(function not supported)
(6)
TWINsync
TWINsync
TWINsync selection
(function not supported)
P 0514
- (231)... + (231-1)
ENC_CH3_Num
P 0515
1...(231-1)
ENC_CH3_Denom
Configuration encoder channel X8
NOTE:
When using an encoder with incremental tracks (SinCos signal),
P 0507 must be set to (1). Selector P 0570 is set to the desired encoder interface.
ENC_CH3_ Sel
Absolute Position
Interface select
P 0570
Numerator of encoder gearing
Denominator of encoder gearing
Absolute interface selector
(0)
Off
No evaluation
(1)
SSI
SSI interface
(2)
EnDat
EnDat interface
(3)
Hiperface
Hiperface interface (in preparation)
Table 1.6
Basic setting of encoder channel
8
Parameter
no.
Setting
Function
ENC_CH3_NpTest
Zero pulse wiring test
(more details following)
OFF
No function
No function
ON
P 0571
(0)
Designation in DM5
(1)
ENABLE_ISR
Zero pulse test mode active
P 0572
Input of number of
lines per revolution
1 - 65536
ENC_CH3_Lines
Setting of number of lines
(max. 65536) of TTL encoder per
motor revolution
P 0573
Multi-turn bits
0-25 bits
Number of Multi Turn
Bits
Number of bits of multi-turn
information
P 0574
Single-turn bits
0-29 bits
Number of SingleTurn
Bits
Number of bits of single-turn
information
ENC_CH3_Code
Code Select (SSI
Absolut Position
Interface)
Selection of code with which the
SSI encoder is to be evaluated.
(0)
BINARY (0)
Binary coded data
Evaluation of the binary code
(1)
GRAY (1)
Gray coded data
Evaluation of the gray code
P 0577
0-0,5
Encoder Observation
Minimum
sqrt (a2+b2)
Sensitivity for encoder monitoring
P 0630
0 - 65535
Nominal increment A
of reference marks
P 0631
0 - 65535
Nominal increment B
of reference marks
P 0575
Table 1.6
1.4.2
Zero pulse wiring test
To enable evaluation for the wiring test parameter P 0571 = ON (1) is set.
On the oscilloscope it can then be depicted with the measurement variables CH3-Np .
To make the zero pulse clearly visible, the measurement variable remains at High level
until the next zero pulse appears. Conversely, the measurement variable remains at
Low level until another zero pulse appears.
In this, the pulse width of the scope signal does not match the pulse width of the actual
zero pulse.
CH3-Np
Zero pulse
Mesurement
variable CH3-Np
Setting of the increment-coded reference
marks. These values are given on the
encoder data sheet.
Time between
two zero pulses
Basic setting of encoder channel
t
Figure 1.2
Zero pulse recording via measurement variable CH3-NP
NOTE:
In zero pulse test mode zero pulse evaluation of homing runs is disabled.
1308.21B.2-00 07/2015
SinCos / TTL encoder
Specification 2nd SinCos Encoder
9
SinCos / TTL encoder
Specification 2nd SinCos Encoder
1308.21B.2-00 07/2015
1.4.3
Interface configuration of encoder for loop control
By way of P 0520, P 0521, P 0522 the physical encoder interface is adapted to the
current, speed or position controller.
0 OFF
Singleturninformation
P 0520
1 Channel 1
2 Channel 2
3 Channel 3
Parameter
no.
Setting
P 0520
P 0521
P 0522
Designation in DM5
OFF
ENC_MCon:
Encoder: Channel Select
for Motor Commutation and
Current control
Selection of encoder channel for commutation angle and current control.
Feedback signal for fieldoriented regulation.
ENC_SCon:
Encoder: Channel select for
Speed Control
Selection of encoder channel for speed
configuration.
Feedback signal for speed
controller
ENC_PCon: Encoder:
Channel select for Position
Control
Selection of encoder channel for position information.
Feedback signal for position controller
0 OFF
1 Channel 1
Speedinformation
P 0521
2 Channel 2
3 Channel 3
CH1
Channel 1: SinCos on X7
(2)
CH2
Channel 2: Resolver on X6
(3)
CH3
Channel 3: Option on X8
Speed control
0 OFF
No encoder selected
(1)
Table 1.7
Current control
Function
Parameter settings apply to P 0520, P 0521, P 0522
(0)
10
Positioninformation
P 0522
1 Channel 1
2 Channel 2
3 Channel 3
Position control
Encoder configuration
Figure 1.3
Display of encoder configuration for encoder channel X8
ATTENTION:
A parameter can only be written or read with the appropriate access rights (e.g.
"Local administrator"). A changed parameter must always be saved on the device.
When editable online, a parameter executes a reaction on the device
immediately, so inputs must always be carefully checked.
1.5
Increment-coded reference marks
ement
. incr
Nom
In the case of relative encoders with increment-coded reference marks, multiple reference marks are distributed evenly across the entire travel distance. The absolute position information, relative to a specific zero point of the measurement system, is determined by counting the individual measuring increments between two reference marks.
B
Nom. in
c
reme
nt
nes
503 Li
502
s
0 Line
100
s
ne
0L
es
Lin
Figure 1.4
s
ine
00
10
In the worst-case scenario this requires a rotation of up to 360°. To determine the
reference positon over the shortest possible distance, encoders with increment-coded
reference marks are supported (HEIDENHAIN ROD 280C).
The reference mark track contains multiple reference marks with defined increment
differences. The tracking electronics determines the absolute reference when two
adjacent reference marks are passed over – that is to say, after just a few degrees of
rotation.
1.5.1
Zeroposition
i
Lin
es
Lin
es.
0L
ine
s
10
0
50
4
100
1L
50
The absolute position of the scale defined by the reference mark is assigned to precisely one measuring increment. So before an absolute reference can be created or the last
selected reference point found, the reference mark must be passed over.
A
Schematic view of circular graduations with increment-coded reference marks
Rotary measurement system
Rotary encoder:
Example of a rotary measurement system
Basic increment, reference measure A: (small increment e.g. 1000)
corresponding to parameter P 0630 ENC_CH3_Nominal Increment A
Basic increment, reference measure B: (large increment e.g. 1001)
corresponding to parameter P 0631 ENC_CH3_Nominal Increment B
The lines per revolution are entered in parameter P 0572 ENC_CH3_Lines.
A sector increment difference of +1 and +2 is supported.
Lines per revolution
P 0572
18 x 1000
lines
Table 1.8
Number of
Basic Increment G Nominal
reference marks
Increment A P 0630
18 basic marks +
18 coded masks =
Σ 36
Reference measure A =
1000 lines corresponding
to 20°
Basic Increment G
Nominal Increment B
P 0631
Reference measure B
1001 lines
Example of a rotary system
One mechanical revolution is precisely one whole multiple of the basic increment A.
1308.21B.2-00 07/2015
SinCos / TTL encoder
Specification 2nd SinCos Encoder
11
SinCos / TTL encoder
Specification 2nd SinCos Encoder
1308.21B.2-00 07/2015
Linear measurement system:
In preparation:
Linear measurement system
Division period (dp)
P 0572 ENC_CH3_Number of lines
Referece marks
501
502
503
1001
1001
1000
1000
“smal distance“
for after next
Reference mark
P 0630 ENC_CH3_Nominal Increment A
“wide distance“
for after next
Refernce mark
P 0631 ENC_CH3_Nominal Increment B
Increment-coded
reference mark A
Increment-coded
reference mask B
Figure 1.5
Schematic for a linear scale
Homing method for increment-coded encoders:
Supported encoder types:
Type -6:
Increment-coded encoders with negative direction of rotation
Type -7:
Increment-coded encoders with positive direction of rotation
12
LTI Motion GmbH
Copyright (©)
Gewerbestraße 5-9
35633 Lahnau
Germany
Fon +49 6441 966-0
Fax +49 6441 966-137
All content of the documentation, in particular the text, photographs and
graphics
www.lti-motion.com
info@lti-motion.com
it contains are protected by copyright.
The copyright lies, unless otherwise expressly stated, with LTI Motion GmbH.