Configuring the Satellite Network Virtualization (nV) System


Add to my manuals
86 Pages

advertisement

Configuring the Satellite Network Virtualization (nV) System | Manualzz

Configuring the Satellite Network Virtualization

(nV) System

This module describes Satellite Network Virtualization (Satellite nV) system configurations on Cisco ASR

9000 Series Aggregation Services Routers .

Table 1: Feature History for Configuring Satellite System

Modification Release

Release 4.2.1

• Support for Satellite Network

Virtualization (Satellite nV)

Service was included on the

Cisco ASR 9000 Series

Router for Cisco ASR 9000v

Satellite .

Release 4.2.3

• Support for 36-Port

10-Gigabit Ethernet Line

Card was included.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

1

Release 4.3.0

Release 4.3.1

Configuring the Satellite Network Virtualization (nV) System

• Support for Cisco ASR 9001 and Cisco ASR 9922 Series

Routers as hosts was included.

• Support for Cisco ASR 901, and Cisco ASR 903 as

Satellite devices was included.

• Support for Cisco ASR

901-1G series router.

• Username and password

(limited AAA) support for satellites.

• Support for Auto-IP feature was included.

• Support for Link Layer

Discovery Protocol (LLDP) over Satellite access interface over bundle ICL was included.

• Caveat for multiple members from the same NP belonging to same ICL bundle was removed .

• Procedure to convert a Cisco

ASR 901 or Cisco ASR 903

Router to a satellite was added.

2

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Release 5.1.1

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

3

Configuring the Satellite Network Virtualization (nV) System

These features are included on

Cisco ASR 9000v and Cisco ASR

901 satellites:

• Support for Simple Ring

Satellite nV topology was included.

• Support for dual-homed

Satellite nV network architecture was included.

• Support for Layer 2 Fabric network architecture was included.

• Support for Fabric Ethernet

Connectivity Fault

Management (Ethernet

CFM) was included.

• Support for 1G ICL on ports

1/45 and 1/46 on Cisco ASR

9000v satellite was included for all the Satellite nV topologies by using 1G

SFPs.

• Support for these new satellites was included:

◦Cisco ASR 901 Series

Aggregation Services

Router Chassis,

Ethernet-only interfaces, 10 GE, DC power, USB

(A901-6CZ-F-D)

◦Cisco ASR 901 Series

Aggregation Services

Router Chassis,

Ethernet and TDM interfaces, 10 GE, DC power, USB

(A901-6CZ-FT-D)

◦Cisco ASR 901 Series

Aggregation Services

Router Chassis,

Ethernet-only interfaces, 10 GE, AC power, USB

(A901-6CZ-F-A)

4

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Release 5.2.0

Release 5.3.0

Release 5.3.1

◦ Cisco ASR 901 Series

Aggregation Services

Router Chassis,

Ethernet and TDM interfaces, 10 GE, AC power, USB

(A901-6CZ-FT-A)

• Support for QoS Offload over Satellite was supported.

See Cisco ASR 9000 Series

Aggregation Services Router

QoS Configuration Guide for more details.

• Support for SyncE in

Satellite nV System was included.

• A9K-MPA- 4X10GE

• Support for Cisco ASR 903

Router as satellite is removed.

• Support for Unidirectional

Link Detection (UDLD) protocol over Satellite access interface over bundle ICL was included.

• The Performance Monitoring

(PM) for Connectivity Fault

Management (CFM) on the nV Satellite system has been improved by processing the

CFM PM frames on the satellite instead of the

ASR9K host.

• Support for ICL Fabric Port

Monitoring was included.

• Support for Soft Minimum

Active Links for Dual Home

Topology was included.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

5

Release 5.3.2

Release 5.3.3

Release 5.3.4

Configuring the Satellite Network Virtualization (nV) System

• Support for Multiple ICCP groups for Dual Head topology was included.

• Support for Dynamic ICL for

Cisco ASR 9000v satellite was included.

• Support for access bundle with fabric redundancy feature was included.

• Support for 802.3ah

Loopback on bundled and non-bundled ICLs was included.

• Support for ARP redundancy in Dual Head topology was included.

• Satellite nV Usability

Enhancements were introduced.

Support for A9K-MOD400 line card was added with following

Modular Port Adaptors (MPAs):

• A9K-MPA-2X10GE

• A9K-MPA-4X10GE

• A9K-MPA-8X10GE

• A9K-MPA-20X10GE

Support for Cisco ASR 901 Router as satellite type is removed.

Support tunnable DWDM SFP + configuration on satellite console.

6

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Release 6.0.1

Release 6.0.2

• Support for Multiple ICL for

Layer 2 Fabric Network

Topology was included.

• Support for DHCP on

Satellite nV System Bundle

Over Bundle was included.

• Support for L1 Physical ICL while configuring CFM on a

Satellite nV Fabric link interface.

• Support for Cisco NCS 5001/

NCS 5002 Series Router as satellite to Cisco ASR 9000

Series Host was included.

This includes the support for:

◦10/100 GigE ICL ports and 1/10GigE access ports.

◦Inband image upgrade through the nV pie .

◦Improved manageability options such as nV fabric port management, satellite login/password configuration, and satellite host name remote configuration.

◦Dynamic ICL through configurable fabric port feature.

◦Bundle ICL support including Bundle over

Bundle.

◦A9K-MOD400G-SE/TR with MPA-20x10G as satellite hosting line card on Cisco ASR

9000 series host.

Support for Delayed Switchback for nV Dual Hosts was added.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

7

Configuring the Satellite Network Virtualization (nV) System

Prerequisites for Configuration

Prerequisites for Configuration, page 8

Overview of Satellite nV System, page 9

Benefits of Satellite nV System, page 10

Cisco ASR 9000 Series Router Satellite nV Hardware Compatibility Matrix, page 11

IOS XR 64 Bit (eXR) Satellite nV Hardware Compatibility Matrix, page 12

Overview of Port Extender Model, page 13

Satellite System Physical Topology, page 15

Advanced Satellite nV System Network Topologies, page 15

Features Supported in the Satellite nV System, page 24

Restrictions of the Satellite nV System, page 39

Satellite nV Usability Enhancements, page 42

Implementing a Satellite nV System, page 44

Overview of SyncE in Satellite nV System, page 57

Restrictions of SyncE in Satellite nV System, page 58

Hub-and-Spoke Topology for Frequency Synchronization, page 58

Configuring SyncE on ASR 9000 Hosts, page 59

Upgrading and Managing Satellite nV Software, page 63

Configuration Examples for Satellite nV System, page 76

Additional References, page 84

Prerequisites for Configuration

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Before configuring the Satellite nV system, you must have these hardware and software installed in your chassis:

• Hardware (Host):

- Cisco ASR 9000 Series Aggregation Services Routers with Cisco ASR 9000 Enhanced Ethernet line cards as the location of Inter Chassis Links. Cisco ASR 9000 Ethernet Line Cards can co-exist in the

Satellite nV System but cannot be used for Satellite ICLs and also with ISM/VSM.

• Hardware (Satellite) :

- Cisco ASR9000v, Cisco ASR9000v-V2,

- Cisco NCS 5002 Series Routers (PID: NCS-5002-ACSR, NCS-5002-FN-BK, NCS-5002-FLT-BK,

NCS-5002-FN-FR, NCS-5002-FLT-FR)

- Cisco NCS 5001 Series Routers (PID: NCS-5001-ACSR, NCS-5001-FN-BK, NCS-5001-FLT-BK,

NCS-5001-FN-FR, NCS-5001-FLT-FR)

8

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Overview of Satellite nV System

Note

RSP2 is not qualified with Cisco NCS 5000 Series satellites. Also, the RSP needs to have at least 2 GB of free space in the memory for nV pies/ SMUs. Hence, RSP-440

TR cards are not recommended with Cisco NCS 5000 Series satellites. For more information, see Hardware Installation Guide for Cisco NCS 5000 Series Routers.

• Software — Cisco IOS XR Software Release 4.2.1 or later. To use Cisco ASR9000v-V2 as satellite,

Cisco IOS XR Software Release 5.2.2 or later must be installed on the host. To use Cisco NCS 5002

Series Router as satellite, Cisco IOS XR Software Release 6.0.x or later must be installed on the host.

To use Cisco NCS 5001 Series Router as a satellite, Cisco IOS XR Software Release 6.0.1 or later must be installed on the host.

For more information on other hardware requirements and list of TMG optics supported, see Cisco ASR 9000

Series Aggregation Services Router Hardware Installation Guide and Cisco ASR 9000 Series Aggregated

Services Router Satellite Systems Installation Guide.

Overview of Satellite nV System

The Cisco ASR 9000 Series Router Satellite Network Virtualization (nV) service or the Satellite Switching

System enables you to configure a topology in which one or more satellite switches complement one or more

Cisco ASR 9000 Series routers, to collectively realize a single virtual switching system. In this system, the satellite switches act under the management control of the routers. The complete configuration and management of the satellite chassis and features is performed through the control plane and management plane of the Cisco

ASR 9000 Series Router, which is referred to as the host.

Note

Cisco ASR 9001, Cisco ASR 9904, Cisco ASR 9006, Cisco ASR 9010, Cisco ASR 9912 and Cisco ASR

9922 Series Routers, or Cisco CRS-3 Router with Modular Services Line Card can also be used as hosts in the Satellite nV System.

Interconnection between the Cisco ASR 9000 Series Router and its satellites is through standard Ethernet interfaces. When the Satellite nV service was introduced in Cisco IOS XR Release 4.2.x, Cisco ASR 9000v was used as the satellite device. It supports one Gigabit Interchassis Links (ICL) in two of the ports (1/45 and

1/46).

In general, the type of interface used on the host is decided on the basis of the satellite device used as shown in the figure.

Note

1-Gigabit Ethernet, 10-Gigabit Ethernet, and 100-Gigabit Ethernet interfaces can be used as ICL and these are supported on the Cisco ASR 9000 Enhanced Ethernet line card and not on the Cisco ASR 9000 Ethernet line card.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

9

Configuring the Satellite Network Virtualization (nV) System

Benefits of Satellite nV System

Note

Cisco NCS 5002 Series Router can only support 100G ICL in Cisco IOS XR Software Release 6.0.0 while

Cisco NCS 5002 and 5001 Series Router can support 10GigE dynamic ICLs also from Cisco IOS XR

Software Release 6.0.1.

Figure 1: Cisco ASR 9000 Series Satellite nV Switching System

Note

Though the above figure shows Nx10GigE links, Satellite nV System also supports Nx1GigE and

Nx100GigE links.

This type of architecture can be realized in a carrier Ethernet transport network, with the satellite switches used as either access switches, or pre-aggregation and aggregation switches. These switches feed into an edge router, such as the Cisco ASR 9000 Series Router where more advanced Layer 2 and Layer 3 services are provisioned. The network topology depicted in the figure is called the Hub and Spoke network topology.

You can also utilize this model in a Fiber To The Business (FTTB) network application, where business internet and VPN services are offered on a commercial basis. Further, it can also be used in other networks, such as wireless or Radio Access Network (RAN) backhaul aggregation networks.

Benefits of Satellite nV System

The Cisco ASR 9000 Series satellite nV system offers these benefits:

1

Extended port scalability and density - You can create a virtual line card with more than 400 physical

Gigabit Ethernet ports. There is a significant increase of Ethernet port density in the resulting logical Cisco

ASR 9000 Series Router. For example, a single 24-port Ten Gigabit Ethernet line card on the Cisco ASR

9000 Series Router could integrate up to 24 satellite switches each with 44 GigE ports; this results in an effective port density of 1056 Gigabit Ethernet ports for each Cisco ASR 9000 Series Router line card slot. In other configurations, even higher port density can be achieved. This is beneficial because the Cisco

ASR 9000 Series Router has a per-slot non blocking capacity of up to 400 Gbps (with appropriate RSPs)

10

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Cisco ASR 9000 Series Router Satellite nV Hardware Compatibility Matrix

and there is no other way of physically fitting hundreds of gigabit ethernet ports/ SFPs on the face plate of a single Cisco ASR 9000 Series line card. As a result, in order to utilize the full capacity of an Cisco

ASR 9000 Series line card, it is necessary to physically separate out the ethernet ports, while maintaining logical management control. This would appear as if all ports were physically on a single large line card of the Cisco ASR 9000 Series Router.

Note

Similar port scalability can be achieved for 10GigE access ports and 100GigE uplinks using the Cisco

NCS 5000 Series satellites from Cisco IOS XR Software Release 6.0.x.

2

Reduced cost - All the edge-routing capabilities and application features of the Cisco IOS XR Software are available on low cost access switches.

3

Reduced operating expense - You can upgrade software images, and also manage the chassis and services from a common point. This includes a single logical router view, single point of applying CLI or XML interface for the entire system of switches, a single point of monitoring the entire system of switches and a single point of image management and software upgrades for the entire system.

4

Enhanced feature consistency - All the features on the regular GigE ports and 10GigE ports of

Cisco ASR 9000 Series Router are also available on the access ports of a satellite access switch in a functionally identical and consistent manner. The typical application of a satellite system would be in the access and aggregation layers of a network. By integrating the access switches along with the aggregation or core switch, you can ensure that there are no feature gaps between the access switch and the aggregation or core switch. All features, such as carrier ethernet features, QoS and OAM, function consistently, from access to core, because of this integrated approach.

5

Improved feature velocity - With the satellite solution, every feature that is implemented on the

Cisco ASR 9000 Series Router becomes instantly available at the same time in the access switch, resulting in an ideal feature velocity for the edge switch.

6

Better resiliency - The nV satellite solution enables better multi-chassis resiliency, as well as better end-to-end QoS. For more information on QoS capabilities, see Cisco ASR 9000 Series Aggregation

Services Router QoS Configuration Guide .

Cisco ASR 9000 Series Router Satellite nV Hardware

Compatibility Matrix

The following table lists Satellite Network Virtualization (nV) hardware compatibility matrix for the Cisco

ASR 9000 Series Routers.

Table 2: Cisco ASR 9000 Series Router Satellite nV Hardware Compatibility Matrix

Line Cards

A9K-MPA-20X1GE on MOD80 and MOD160

9000v Supported Version

4.2.1

A9K-MPA-2X10GE on MOD80 and MOD160

4.2.1

NCS5000 Series Supported Version

6.0.1

6.0.1

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

11

Configuring the Satellite Network Virtualization (nV) System

IOS XR 64 Bit (eXR) Satellite nV Hardware Compatibility Matrix

Line Cards

A9K-MPA-4X10GE on MOD80 and MOD160

9000v Supported Version

4.2.1

A9K-24X10GE-SE

A9K-24X10GE-TR

4.2.1

4.2.1

A9K-36X10GE-SE

A9K-36X10GE-TR

A9K-40GE-TR

4.2.3

4.2.3

5.2.2

A9K-40GE-SE

A9K-8X100G-SE

A9K-8X100G-TR

A9K-MPA-20x10GE

A9K-MPA-2X10GE on MOD400 5.3.3

A9K-MPA-4X10GE on MOD400 5.3.3

A9K-MPA-8X10GE on MOD400 5.3.3

A9K-MPA-20X10GE on MOD400 5.3.3

A9K-MPA-20X10GE on MOD200 6.2.1

5.2.2

5.3.1

5.3.1

5.3.3

NCS5000 Series Supported Version

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.0.1

6.2.1

IOS XR 64 Bit (eXR) Satellite nV Hardware Compatibility Matrix

The following table lists the IOS XR 64 bit (eXR) Satellite nV hardware compatibility matrix.

Table 3: IOS XR 64 Bit (eXR) Satellite nV Hardware Compatibility Matrix

Line Cards 9000v Supported Version

A9K-MPA-4X10GE on MOD400

A9K-MPA-20X10GE on MOD400

A9K-MPA-20X1GE on MOD400

6.2.1

6.2.1

6.2.1

NCS5000 Series Supported

Version

6.2.1

6.2.1

6.2.1

12

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Overview of Port Extender Model

Line Cards

A9K-MPA-4X10GE on MOD200

A9K-MPA-20X10GE on MOD200

A9K-MPA-20X1GE on MOD200

A9K-8X100G-SE

A9K-8X100G-TR

9000v Supported Version

6.2.1

6.2.1

6.2.1

6.2.1

6.2.1

NCS5000 Series Supported

Version

6.2.1

6.2.1

6.2.1

6.2.1

6.2.1

Overview of Port Extender Model

In the Port Extender Satellite switching system also called as Hub and Spoke model, a satellite switch is attached to its host through physical ethernet ports.

Note

In releases later than Cisco IOS XR Software Release 4.2.1, attachment models beyond the port extender model are also supported.

The parent router, Cisco ASR 9000 Series Router is referred to as the host in this model. From a management or a provisioning point of view, the physical access ports of the satellite switch are equivalent to the physical ethernet ports on the Cisco ASR 9000 Series Router. You do not need a specific console connection for managing the Satellite Switching System, except for debugging purposes. The interface and chassis level

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

13

Configuring the Satellite Network Virtualization (nV) System

Overview of Port Extender Model

features of the satellite are visible in the control plane of Cisco IOS XR software running on the host. This allows the complete management of the satellites and the host as a single logical router.

Figure 2: Port Extender Satellite Switching System

In this model, a single Cisco ASR 9000 Series Router hosts two satellite switches, SAT1 and SAT2, to form an overall virtual Cisco ASR 9000 switching system; represented by the dotted line surrounding the Cisco

ASR 9000 Series Router, SAT1, and SAT2 in the Figure.

This structure effectively appears as a single logical Cisco ASR 9000 Series Router to the external network.

External access switches (A1, A2 and A3) connect to this overall virtual switch by physically connecting to

SAT1 and SAT2 using normal ethernet links. The links between the satellite switches and the Cisco ASR

9000 Series Router are ethernet links referred to as the Inter-Chassis Links (ICL). The Cisco ASR 9000 Series

Router is referred to as the Host. When there is congestion on the ICLs, an inbuilt QoS protection mechanism is available for the traffic.

Note

SAT1, SAT2, and the host Cisco ASR 9000 Series Router need not be located in the same geographic location. This means that the ICLs need not be of nominal length for only intra-location or intra-building use. The ICLs may be tens, hundreds, or even thousands of miles in length, thereby creating a logical satellite switch spanning a large geography.

Note

In a Cisco ASR 9000 Series Router multi-chassis cluster system, there are multiple Cisco ASR 9000 Series

Router systems within a single virtual switch system. Logically, however, it is still considered a single host system.

14

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Satellite System Physical Topology

Satellite System Physical Topology

The satellite system supports the point-to-point, simple ring, hub and spoke physical topology, and the Layer

2 Fabric network topology for the ICLs between satellite switches and the host. These topologies allows a physical Ethernet MAC layer connection from the satellite to the host. This can be realized using a direct

Ethernet over Fiber or Ethernet over Optical transport (such as Ethernet over a SONET/ SDH/ CWDM/

DWDM network).

These topologies also allow a satellite switch to be geographically at a separate location, other than that of the host. There is no limit set for the distance, and the solution works even when the satellite is placed at a distance of tens, hundreds, or even thousands of miles from the host.

Note

For tunable DWDM optics, the same wavelength needs to be configured on both host and the satellite.

For the ASR9000v series satellite, if this is the first ICL, then the following CLI command should be used from a direct console connection on the ASR9000v series satellite to set the wavelength channel number on the satellite side:

test dwdm wavelength set port_number_as_on_faceplate wavelength_channel_number

For subsequent ICLs, the satellite can be accessed via telnet from the host to configure this command for those ICLs.

For ASR9k host side configuration, please refer to "Configuring Dense Wavelength Division Multiplexing

Controllers" chapter in the Cisco ASR 9000 Series Aggregation Services Router Interface and Hardware

Component Configuration Guide.

Advanced Satellite nV System Network Topologies

The Satellite nV system supports the dual-homed network architecture as shown in the Figure. In the dual home architecture, two hosts are connected to a satellite through the Satellite Discovery And Control (SDAC)

Protocol. The SDAC Protocol provides the behavioral, semantic, and syntactic definition of the relationship between a satellite device and its host.

Both these dual-homed hosts act in the active/standby mode for the satellite. The standby host takes control of the satellite only when the active host is down. The two hosts can leverage the ICCP infrastructure to provide redundant Layer 2 and Layer 3 services for Satellite Ethernet interfaces. The network traffic is switched through the active host. In case of connection loss to the active host due to various types of failure such as cut cable and host or client connection interface failure, the standby host becomes the active host and the active host becomes the new standby host. The hosts communicate with each other using ORBIT/ICCP

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

15

Configuring the Satellite Network Virtualization (nV) System

Advanced Satellite nV System Network Topologies

protocols. The Satellite Discovery and Control (SDAC) session is established from both the active and standby hosts, and it is only the traffic flows that are in the active/standby mode.

Figure 3: Dual Home Network Architecture

The advanced satellite nV system network topologies can be realized based on one of these architecture:

• Hub and Spoke network topology

• Dual Home network topology

• Simple Ring topology

• Layer 2 Fabric network topology

This table summarizes the network encapsulation techniques used by different Satellite nV System topologies.

Table 4: Supported Satellite Network Encapsulation

Topology Type

Hub and Spoke

Layer 2 Fabric

Simple Ring

SDAC Discovery Protocol Packets

Untagged LLC SNAP

Single tagged LLC SNAP

Untagged LLC SNAP

SDAC Control Protocol Packets

Untagged TCP

Single tagged TCP

Untagged TCP

Data Packets

802.1ad + customer payload

802.1ah + customer payload

Note

Supports both 802.1ad and 802.1q as outer tag. Using 802.1q outer tag is a non-standard way of 802.1ah Encapsulation.

802.1ah + customer payload

Note

Supports both 802.1ad and 802.1q as outer tag. Using 802.1q outer tag is a non-standard way of 802.1ah Encapsulation.

16

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Features of Dual Home Network Architecture

Features of Dual Home Network Architecture

These are some of the enhanced features offered by the dual home network architecture:

Shared control for chassis functionality — Chassis control functionality which includes software upgrade, chassis reload, and environment monitoring is completely shared by all hosts connected to the

Satellite. Both the hosts get equal access to the information, and have full control of any available actions.

As a result, a disruptive change initiated by one host, such as an upgrade is noticed by the other host as well. This means that here is no segregation of the chassis functionality and provides multiple views to the same information.

Active/Standby determination — Active/Standby determination is controlled by the hosts. They exchange the pertinent information through ORBIT protocol, which includes electing a priority selection algorithm to use. This algorithm determines the factors that are taken into account when calculating priority information. The hosts then each send a single numerical priority value to the Satellite. The

Satellite only picks the lowest-host priority value, and forwards data to that host. If the host-priority is same and a simple ring topology is used, the lower hop count is used. If the hop count is same, the lower chassis MAC address is used for picking the active host. Independently, the hosts make the same determination, and the traffic flows bi-directionally between the Active host and the Satellite. The hosts take a number of parameters into account when calculating the priority value, including the user-configured priority, the hop-count (path length) from the host to the Satellite, and a tie-break of the chassis MAC for each host.

Cisco IOS XR Software uses these parameters to calculate the priority, where each item is more important than any of the subsequent ones. This means that the subsequent parameters are only taken into account, if the higher-priority items are identical across the two hosts.

Connectivity – Indicates whether the Host and Satellite can currently exchange data.

PE isolation – Indicates that if the PE is isolated, then it defers to the other host.

Minimum Links – Indicates that if the number of active links is less than the configured value in bundled ICL, then it defers to the other host. For more information, see

Soft Minimum Active

Links for Dual Home Topology, on page 19

.

Configured Priority – This is as early as possible to allow the greatest flexibility for the operator.

Hop Count – This only affects simple rings, and provides a default traffic engineering algorithm based on number of intervening Satellite devices.

Parity of the Satellite ID – This is used as a late tie breaker to provide some load balancing across two Hosts with numerous hub-and-spoke Satellites, in which the even-numbered Satellites prefer one host, while the odd-numbered Satellites prefer the other host.

On a tie-breaker of all the previous priorities, it falls back to the Primary host, which is the one with the lowest chassis MAC address based on byte size.

Support for seamless Split Brain handling — A Split Brain is a condition in which the two hosts are no longer able to communicate with each other, but each of them can still communicate with the Satellite device. This scenario can be hazardous, because the devices can reach different conclusions, resulting in traffic loss, or loops and broadcast storms.

The Satellite protocol has these features to cope with such a situation:

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

17

Configuring the Satellite Network Virtualization (nV) System

Features of Dual Home Network Architecture

◦When connected to each other, the two hosts publish a shared System MAC. This allows the

Satellites to recognize probes from what appear to be different hosts, but in fact come from a paired set of hosts.

◦Whenever a host-to-host connection is lost, each peer publishes the Chassis MAC as the System

MAC. This operation is seamless and does not require a reset of the state machines, and hence causes no traffic loss. This allows the Satellite to react, most likely by dropping its connection to the standby host.

◦Whenever the connection is restored, the hosts again start publishing the System MAC seamlessly and allowing the Satellite to restore functionality to the standby host.

◦If the host-to-host connection is lost while the host is PE-isolated, it immediately drops discovery to the satellite. This ensures that the satellite uses the host with an available path to the core, if one exists.

Delayed Switchback for nV Dual Hosts

In a highly scaled dual host nV system, a switchback to the original active host (after it is back online) can sometimes lead to traffic outages if the switchback happens before that host is ready to forward traffic. The delayed switchback feature sets a hold-time, which is the duration in seconds a higher-priority standby device that has just started waits, before preempting the current active host. Before allowing a switchover to the active host, the delayed switchback feature checks whether the current standby host pending switchover has met the following criteria:

• Creation of satellite port instances and application of basic user configuration on the satellite ports in the hardware forwarding path on the host that is to take up the active role (This does not include the verification of access port feature programming in that hardware.)

• Full synchronization of information with the satellites that would failover, to minimize the chances of any outage post failover

• Hold timer of 5 minutes to allow for the programming of related features that set up the overall forwarding path

The delayed switchback feature is primarily useful when switchback needs to be delayed after a host has reloaded and its various modules are still initializing. Also, in a scenario where the satellite is discovered by one host for which another host acts as the active host and successfully forwards traffic, delayed switchback helps ensure that the redundancy mechanism of dual host failover does not end up causing traffic outages by a premature failover.

Note

• Even when the partner device is unable to forward traffic and cannot continue as an active host, a switchover can still occur.

• For ICL partitioned systems, the delayed switchback is guaranteed to consider only one partition.

Issues in forwarding path for remaining partitions may not be considered for the hold timer.

• Currently, the feature applies only at a per-satellite level.

You can use the show nv satellite redundancy command to check if host is active or standby, figure out priorities for the local and partner device and understand different priority levels.

18

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Soft Minimum Active Links for Dual Home Topology

For details of this command, see the Cisco ASR 9000 Series Aggregation Services Router nV System Command

Reference .

Soft Minimum Active Links for Dual Home Topology

The Soft minimum active links feature for dual home network topology allows you to configure a minimum number of active links in a bundle satellite-fabric-link. Hence, in a Dual Home setup, if the number of active links to the active host is less than the configured minimum due to any failure on member links, then the satellite failover to the standby host. When soft minimum active links is configured, failover is executed if another suitable host is available or else the traffic is left unaffected. In the case where both the active and standby hosts have less active links than the configured values, then no switch over occurs.

Note

If a split brain event occurs followed by the number of active links on the active host dropping below the configured amount, then the satellite does not failover unless there are no active links remaining.

General Limitations of Satellite nV System Network Topologies

1

A satellite can be connected to only one Host in the Hub and Spoke topology model and can be connected to only two hosts in a Dual-homed network architecture.

2

All the advanced Satellite nV network topologies are supported on the Cisco ASR9000v, Cisco

ASR9000v-V2,Satellite types.

3

During configuration changes that removes an ICL from a satellite, there is no guarantee that a reject packet will be transmitted. Hence, it is recommended that you shut down the ICL port before you change or remove a configuration on an ICL interface or wait for an idle time out (which is 30 seconds) to bring down sdac discovery.

4

SyncE is not supported on one gigabit ethernet ICL.

Simple Ring Satellite nV Topology

These are the salient features of this topology:

• A satellite or ring of satellites can be dual-homed to two hosts. In the following figure, all the three satellites are connected to the redundant hosts Host A and Host B.

• The two hosts communicate using the ORBIT protocol over ICCP.

• In simple ring topology, the satellite chassis serial number is a mandatory configuration to identify the satellite.

• When the ring span is broken. the satellite and hosts detect the link failure using LOS mechanism and perform the necessary switching based Dual Home management.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

19

Configuring the Satellite Network Virtualization (nV) System

Simple Ring Satellite nV Topology

• The link failure is detected by LOS (loss of signal) in the case of Ring and Hub and Spoke topologies.

Figure 4: Simple Ring Topology

For configuration samples of Dual home architecture, see Satellite Configuration with Dual-homed Hosts.

For a sample configuration of the simple ring topology, see the Configuration Examples for Satellite nV

System section.

Simple Ring Topology Configuration

This is a sample ICL running configuration for a simple ring topology: interface GigabitEthernet0/1/0/0 ipv4 point-to-point ipv4 unnumbered Loopback10 nv satellite-fabric-link network redundancy

!

iccp-group 2 satellite 500

!

remote-ports GigabitEthernet 0/0/0-9 satellite 600 remote-ports GigabitEthernet 0/0/0-9

!

satellite 700 remote-ports GigabitEthernet 0/0/0-9

!

satellite 800 remote-ports GigabitEthernet 0/0/0-9

!

Limitations of Simple Ring Topology

• If one of the satellite in a simple ring setup is removed from the ICL configuration, the subtending satellites remain in the connected state.

20

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Layer 2 Fabric Network Architecture

• When the configuration for a new satellite is applied, then the existing conflicting nV configuration must be removed.

• In a simple ring or a dual head topology, the local Layer-2 xconnects having satellite interfaces from active and standby satellites are not supported. All the satellites part of the local xconnect have to be in active state.

• Bundle ICL interfaces are not supported in the Simple Ring topology, but sat-ether port bundle is supported.

• When you activate a new image on the satellite in a simple ring topology based network, you need to initiate install transfer followed by an install activate. For more information, see

Installing a Satellite .

• Satellite access bundles with bundles members spanning across different satellites are not supported.

For example, if there are three satellites, namely, sat 100, sat200, and sat 300, then you cannot have an access bundle with members from sat 100, sat 200 and sat 300. This is because each of the satellite could be active/standby to different hosts and hence leads to unpredictability in their behavior.

• In a simple ring topology, the access ports might not achieve full line rate. All downstream traffic sent from host to satellite for an access port is subject to a port level shaper on the host. There is an overhead of 22 bytes of nv tag on each data packet. This shaper oversubscribes the port based flow to account for the overhead. But there is a hardware limitation on the traffic manager used on the host line card, which has a metering granularity of 4 bytes. Therefore the host interprets 22 bytes as 20 bytes. Hence, shaping is done assuming 20 bytes overhead for each packet. However, 22 bytes are stripped off from each packet received on ICL on the satellite before it is sent out on access port. This results in approximately 3% undersubscription of data packets on the access port. The percentage of undersubscription reduces as the packet size increases.

Layer 2 Fabric Network Architecture

In the Layer 2 Fabric network architecture, a satellite is connected to one or two hosts through one of two

Ethernet Virtual Circuits (EVC) of Layer 2 Fabric network. An EVC can be identified by two transports

VLAN IDs, such as TP-VID-S and TP-VID-H. TP-VID-S is the VLAN ID assigned by the satellite side transport and TP-VID-H is the VLAN ID assigned by the host. The CFM based Fast Fabric Link Failure

Detection is supported only in the Layer 2 Fabric Network Architecture. These illustrations show different variants of Layer 2 Fabric network topology.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

21

Configuring the Satellite Network Virtualization (nV) System

Layer 2 Fabric Network Architecture

Note

CFM is mandatory in the case of Layer 2 Fabric Network Architecture to ensure that link failure detection is fast.

Figure 5: Layer 2 Fabric Satellite Network Architecture with dual host

Figure 6: Layer 2 Fabric Single Home (SH) with Single Physical ICL on Host and Satellite

Figure 7: DH : Single physical ICLs on hosts and Multiple physical ICLs on satellite

22

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Layer 2 Fabric Network Architecture

Limitations of Layer 2 Fabric Network Topology

1

Bundle interfaces are not supported in Layer 2 Fabric architecture. In the Layer 2 Fabric topology, bundle

ICL is not supported but sat-ether port bundle is supported.

2

Point to Multi-point Layer 2 cloud is not supported.

3

A Satellite can support only one encapsulation on a given physical interface. So, the Layer 2 fabric connections from both hosts must be configured with the same encapsulation type.

4

A Satellite cannot support multiple Layer 2 fabric connections with the same VLAN on the same physical

ICL interface.

5

When Satellite ethernet bundle interfaces are configured on the access ports, the bundle wait timer needs to be configured to zero to get better convergence.

6

Cisco ASR 9000v has these limitations on the Layer 2 Fabric network topology:

• The usable VLAN range is from 2 to 4093.

• Only four 10 Gigabit Ethernet ICLs can be used on the ports 1/45 to 1/48.

• Only two 1 Gigabit Ethernet ICLs can be used on the ports 1/45 and 1/46.

• Only 44 satellite ports are present (namely, Gig1/1 to Gig1/44).

• On a satellite, a VLAN can be used on a single ICL only. Though there can be two L2FAB ICLs on a physical port, they must not use the same VLAN.

• L2FAB ICL cannot be configured on a bundle interface.

• When service policies are applied on L2FAB ICL, it will fetch policy statistics at physical port level due to hardware limitation on the platform.

7

When a single physical ICLs is connected on both hosts and multiple physical ICLs are connected on satellite, the following limitations are applied:

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

23

Configuring the Satellite Network Virtualization (nV) System

Features Supported in the Satellite nV System

• A satellite can support different encapsulations from both hosts till the layer 2 fabric connections from both the hosts terminate on different satellite ICL links.

• A satellite can support multiple Layer 2 fabric connections with same VLAN on different physical

ICL interfaces.

8

In the Dual-home scenario, for multiple satellites with a single physical ICL connected on hosts and

Satellite, both hosts must use same encapsulation and VLANs must be different from Satellite point of view.

9

In the Dual-home scenario, for multiple satellites with multiple physical ICLs on one host, both hosts must use same encapsulation and VLANs must be different from Satellite point of view.

10

In the Dual-home scenario, if the L1 and L2 Fabric connections are on the same host, there is no limitation till same type of topology is used to connect both hosts on the Satellite side. There is no restriction on the host side.

11

In L2 Fabric ICL topology, the ICL port encapsulation does not change without shutting down the ICL port. To change the encapsulation, in the sub-interface, firstly do a port shut and commit the configuration.

Secondly, with no encapsulation commit the configuration. And then change the encapsulation, do a no shut and commit the configuration.

12

In a Layer 2 Fabric network topology, the access ports might not achieve full line rate. All downstream traffic sent from host to satellite for an access port is subject to a port level shaper on the host. There is an overhead of 22 bytes of nv tag on each data packet. This shaper oversubscribes the port based flow to account for the overhead. But there is a hardware limitation on the traffic manager used on the host line card, which has a metering granularity of 4 bytes. Therefore the host interprets 22 bytes as 20 bytes. Hence, shaping is done assuming 20 bytes overhead for each packet. However, 22 bytes are stripped off from each packet received on ICL on the satellite before it is sent out on access port. This results in approximately

3% undersubscription of data packets on the access port. The percentage of undersubscription reduces as the packet size increases.

Features Supported in the Satellite nV System

This section provides details of the features of a satellite system.

Inter-Chassis Link Redundancy Modes and Load Balancing

The Cisco ASR 9000 Series Satellite system supports these redundancy modes:

Non-redundant inter-chassis links mode - In this mode, there is no link level redundancy between inter-chassis links of a satellite.

Redundant inter-chassis links mode - In this mode, the link level redundancy between inter-chassis links are provided using a single link aggregation (LAG) bundle.

In the redundant ICL mode, the load balancing of traffic between members of the IC bundle is done using a simple hashing function based on the satellite access port ID, and not based on the flow based hash using L2 or L3 header contents from the packets. This ensures that a single ICL is used by all packets for a given satellite access port. As a result, the actions applied for QoS and other features consider all the packets belonging to a single satellite access port.

24

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Multiple ICL for the Layer 2 Fabric Network Topology

Note

Cisco IOS XR Software supports the co-existence of redundant and non-redundant ICL modes on the same satellite shelf from Cisco IOS XR Software Release 4.3.x onwards in the case of Cisco ASR 9000v satelliteand from Cisco IOS XR Software Release 6.0.x for Cisco NCS 5000 Series satellite.

Note

If a satellite system is operating in redundant ICL mode, then Ethernet OAM features are not supported on the access ports of that satellite. Additionally, redundant ICL mode is not supported for Layer 2 fabric and simple ring network topologies.

For more details on QoS application and configuration on ICLs, see Cisco ASR 9000 Series Aggregation

Services Router Modular Quality of Service Configuration Guide .

Multiple ICL for the Layer 2 Fabric Network Topology

This feature allows you to configure 4 physical Layer 2 Fabric ICLs for each satellite. This indicates that in a dual home topology setup, each physical ICL port can have a pair of Layer 2 Fabric ICLs, one each from active and standby host. Hence, the Layer 2 Fabric network topology provides up to 8 Layer 2 Fabric ICLs.

1GE ports supporting Dynamic ICL feature can be used as an ICL on Cisco ASR9000v or Cisco ASR9000v2.

These ICLs can be a combination of 1GigE and 10GigE links. Layer 2 Fabric ICLs to active and standby hosts can terminate on a single physical port on satellite or on separate ports. The encapsulation for an ICL can be based on IEEE 802.1ad or 802.1q, which is independent of encapsulation on other ICLs.

Note

This feature is supported only on Cisco ASR 9000v and ASR 9000v2 satellite boxes. Bundling of multiple

ICLs is not supported. Failover to standby host does not happen unless there is total loss of connectivity to the active host.

Multiple ICL for the Layer 2 Fabric Network Topology Configuration

A time delay of approximately 40 seconds is required before and after a cross link in L2fab topology is added or deleted.

If a CFM on ICL is present, first remove the ICL interface configuration and then remove the nV satellite global configuration.

Note

If the CCM fails in any one of the ICL, CFM brings down the SDAC immediately. The remaining ICLs take 30 seconds time to go down SDAC discovery (after SDAC timeout). Hence, satellite hardware programming takes time to delete the MIM port. So, we recommend to follow the above steps to remove the nV satellite configuration when you have the CFM on fabric port.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

25

Configuring the Satellite Network Virtualization (nV) System

Satellite Discovery and Control Protocols

Satellite Discovery and Control Protocols

Cisco's proprietary discovery and control protocols are used between the satellite switches and the host Cisco

ASR 9000 Series Router devices, to handle discovery, provisioning, and monitoring of the satellite devices from the host Cisco ASR 9000 Series Satellite System in-band over the ICLs. The Satellite Discovery And

Control (SDAC) Protocol provides the behavioral, semantic, and syntactic definition of the relationship between a satellite device and its host.

Satellite Discovery and Control Protocol IP Connectivity

The connectivity for the SDAC protocol is provided through a normal in-band IP routed path over the ICLs using private and public IP addresses appropriate for the carrier's network.

You can configure a management IP address on the host CLI for each satellite switch and corresponding IP addresses on the ICLs. You can select addresses from the private IPv4 address space (for example, 10.0.0.0/8 or 192.1.168.0/24) in order to prevent any conflict with normal service level IPv4 addresses being used in the

IPv4 FIB. You can also configure a private VRF that is used for only satellite management traffic, so that the

IP addresses assigned to the satellites can be within this private VRF. This reduces the risk of address conflict or IP address management complexity compared to other IP addresses and VRFs that are used on the router.

Note

Auto-IP is the recommended mode of configuration. For more information on Auto-IP mode, see

Auto-IP,

on page 46 .

ICL Fabric Port Monitoring

This feature enables the host to create virtual fabric port interfaces locally to represent each of the fabric facing interfaces on the satellite.

This allows you to monitor the information related to the links within fabric ports and get their Layer 1 and

Layer 2 parameters from the host. The satellite sends the ICL interface details to the host through the topology channel messages. You can run SNMP queries on these interfaces. The show interface

nvFabric-TenGigE/GigE interface provides L1 details and L2 statistics for these interfaces. The host uses the information received on the topology channel to create the virtual fabric port interfaces locally. The topology channel TLVs are modified such that they provide the detail port definition in the format of

slot/subslot/port. Currently, there is no TLV in Layer 1 and Layer 2 channel for MTU to be exchanged from host to satellite. Hence, the host just hard codes it to 9212.

Note

In the case of Cisco ASR 9000v, nVFabric-TenGigE interface is created irrespective of whether 1 GigE or 10GigE ICL is used.

For Cisco NCS 5000 Series Satellites nVFabric-HundredGigE and nVFabric-TengGigE interfaces are created for 100G and 10G ICLs.

The virtual interfaces are deleted if they are not configured via the candidate fabric port configuration and:

• If the satellite informs the host that the port is no longer used as a fabric link.

26

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Dynamic ICL

• If the satellite is removed from the network topology.

• If the topology channel moves to “Down” state for other reasons, such as authentication failing due to an incorrect serial ID.

Note

The show nv satellite topology command is updated to use the name of the Satellite nV Fabric interface.

RP/0/0/CPU0:Router#

show nv satellite topology

GigabitEthernet0/1/0/11

-----------------------

Redundancy-Group: 10

Ring Whole: False

Discovery status: Running

Satellites:

Satellite 200 (BVID 2)

----------------------

Received Serial Number: CAT1709U06V

MAC address: 7cad.7404.6028

Satellite fabric links:

GE/0/0/11 (nVFabric-GigE200/0/0/11) (Remote ID: 0xb):

Host (GigabitEthernet0/1/0/11)

GE/0/0/10 (nVFabric-GigE200/0/0/10) (Remote ID: 0xa):

Remote port not yet identified

----------

RP/0/RSP1/CPU0:vkg1#sh nv sat topology

TenGigE0/3/1/2

--------------

Redundancy-Group: 10

Ring Whole: False

Discovery status: Running

Satellites:

Satellite 100 (BVID 2)

----------------------

Received Serial Number: CAT1721U0ED

MAC address: 8478.ac03.6404

Satellite fabric links:

TenGE/0/0/46 (nVFabric-TenGigE100/0/0/46) (Remote ID: 0x3):

Host (TenGigE0/3/1/2)

TenGE/0/0/44 (nVFabric-TenGigE100/0/0/44) (Remote ID: 0x1):

Remote port not yet identified

Dynamic ICL

The Dynamic ICL feature allows you to configure ICL on the 1 GigE satellite ports 42 and 43 apart from the designated four 10GigE ports on the Cisco ASR 9000v and Cisco ASR 9000v2 satellites. The Cisco ASR

9000v satellites can have, by default, up to 6 potential ICLs. These are the four 10 GigE ports(44-47) and two

1 GigE ports (42-43) and 42 fixed 1 GigE access ports (0-41). The two 1 GigE ports (42-43) that are considered as potential ICLs are special ports that can be used either as ICLs or as access ports. When these two ports

(42-43) are configured as access ports, they are not considered as potential ICLs thereafter and therefore behave like any other 1 GigE access ports till the next reload. When the satellite reloads and comes back up, those two ports again become as potential ICLs. When the satellite gets discovered and connects back to the host and if the host cross-link configuration still has the ports 42 and 43 as access ports, then these ports again switch to the access port mode and exhibit the behavior like any other 1 GigE access ports. This feature is supported on all the existing satellite topologies.

In case of dual head satellite network topology, if any of these ports (42-43) is configured as access port in at least one of the host and if that host becomes active, then that port are not considered as potential ICLs

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

27

Dynamic ICL

Configuring the Satellite Network Virtualization (nV) System

anymore till next satellite reload. Also, the two ports (42 and 43) when used as access ports, lose the link integrity when the satellite reloads. The remote devices connected to these two ports stay up momentarily just after the satellite reload and till the satellite gets connected to the host and receives the cross-link configuration again.

You cannot bundle Dynamic ICL ports that are of dissimilar types. For example, you cannot bundle 1GigE and 10GigE ports.

Dynamic ICL is supported on 10G ports on Cisco NCS 5000 Series satellite either as an access port or an ICL fabric port based on user configurations done through the configurable fabric port functionality. By default, the highest 2x10G ports on both Cisco NCS 5001 (38 and 39) and Cisco NCS 5002 (78 and 79) are turned on as the ICL ports in the satellite mode (only the highest 10G port turns on for plug and play in factory reset

/ default mode). When the links come up over these default fabric ports and the satellite is connected, you can configure a list of candidate fabric ports. This gives the flexibility of using ports other than the default fabric ports as additional ICLs.

The default fabric ports (highest 2x10G ports) and the configured fabric ports lose link-integrity even if they are later configured as access ports until the satellite discovery goes down next. The default fabric ports permanently lose link integrity as they come up as potential ICLs every time the cross-link mapping to an

ICL goes away. This is a necessary trade off to have certain ports available for zero touch plug and play.

Therefore, at instances where link integrity is crucial, the default fabric ports, either must not be connected to such peers or must be connected over non-revertive switch-over topologies.

Configurable fabric ports

All satellite hardware variants have default set of fabric ports (permanent as well as dynamic) that can be used to connect them as ICLs. These include 4x10G ports and the highest 2x1G ports (port 42,43) for Cisco ASR

9000v. For Cisco NCS 5000 series satellites, these include 4x100G ports and the highest 2x10G ports. The highest 1G/10G ports are dynamic ICLs that can either be used as access ports or as ICLs based on whether they have an active mapping to another ICL at a given time or not.

Apart from these ports, the host also allows additional 10G ports on Cisco NCS 5000 series satellites to be configured as fabric ports. These are configurable as Candidate Fabric Ports on the host under the nV satellite global configuration. When the configured list is accepted, the satellite reports these interfaces to the host

(including the default/permanent candidate fabric ports) and subsequently sends change notifications when that set changes or during re-synchronization with the host. The satellite might choose to reject some of these configured candidate fabric ports if they are already being used as active access ports. As in the case of the normal Satellite nV System fabric ports, these interfaces are deleted if they have no configuration presence and become inactive in the fabric topology, either as notified by the satellite over the topology channel, or if the satellite is entirely undiscovered by the host. The information about the nV fabric port, and specifically fabric port statistics, does not persist across deletion and re-creation of an nV Fabric interface with the same name.

An overlapping configuration using the same port as both access port and candidate fabric port is not recommended. However, when such a configuration is used, the behavior depends on the chronological ordering of whether the port was first discovered as an ICL or whether it got mapped as an access port to another active ICL. While a configuration is rejected to map the port in one mode when the port is already active in the other mode, there might be cases where the candidate fabric port is configured and is waiting to be discovered. If it is also mapped as an access port to another ICL, then the port becomes an active access port and cannot be discovered thereafter, until the access port mapping goes away.

The list of permanent and configured fabric ports, including their acceptance status is displayed in the status of show commands under Monitoring the Satellite Software section.

28

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Multiple ICCP Groups for Satellite nV System Network Topologies

Note

With respect to the existing dynamic ICLs, link integrity is not supported for ports configured as fabric ports. Therefore, if they are also used as access ports, the ports will come up as soon as the access port mapping goes away. This is required for listening to discovery when they act as dynamic fabric ports.

Note

In the case of Cisco IOS XR Software Release 6.0.1, this feature is only supported on Cisco NCS 5000 series satellites.

Multiple ICCP Groups for Satellite nV System Network Topologies

The Multiple ICCP group feature allows you to configure multiple redundancy groups on a single host. These redundancy groups function completely independently of each other. The primary function of this feature is to support multiple satellites that are dual-homed to different but overlapping pairs of Cisco ASR 9000 Series

Routers. Multiple redundancy groups are supported on all the advanced satellite network topologies, such as:

• Dual Home network topology

• Hub & Spoke topology

• Simple Ring topology

• Layer 2 Fabric topology

In a multiple ICCP redundancy group setup, failovers can happen similar to the case of a basic Dual Home setup. See the

Features of Dual Home Network Architecture, on page 17

for information on support for seamless split brain handling.

Satellite nV System Access Port Bundles along with ICL Bundles

This feature provides redundancy for Inter-Chassis Links(ICLs) along with redundancy for satellite access ports. These are different deployment models for this feature:

• Bundles of Satellite interfaces with ICL links as non-redundant links.

• Satellite interfaces with ICL links as redundant links (ICL links in a bundle).

• Bundles of Satellite interfaces with ICL links as redundant links (ICL links in a bundle).

These are the topologies and features supported when bundles of satellite interfaces exist with redundant ICL bundles:

1

Bundles of Satellite interfaces with ICL redundant links to single host.

2

Bundles of Satellite interfaces with ICL redundant links to two hosts, which are connected by ICCP to provide node redundancy.

3

Bundles of Satellite interfaces with many ICL redundant links to single host.

4

Sub-interfaces over Bundles of Satellite interfaces with ICL redundant links to single host.

5

Sub-interfaces over Bundles of Satellite interfaces with ICL redundant links to two hosts.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

29

Configuring the Satellite Network Virtualization (nV) System

Satellite nV System Access Port Bundles along with ICL Bundles

6

LACP over virtual Satellite access member interfaces.

7

BFD configuration of BLB.

8

L2VPN support for both VPWS and VPLS connectivity.

9

IPv4 and IPv6 protocols with and without L3VPNs.

10

Netflow, ACL, and routing protocols such as BGP, OSPF, ISIS.

11

Dynamic Host Configuration Protocol(DHCP).

12

Host QoS and QoS offload are supported.

13

Layer 2 Multicast Offload with Hub and Spoke Topology is supported.

Use Cases for Satellite nV System Access Port Bundles

These are different use cases of satellite topologies with Satellite nV System access port bundles along with redundant ICL.

Figure 8: Multiple Access Bundles over single ICL Bundle to Single Host

30

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Satellite nV System Access Port Bundles along with ICL Bundles

In this case, different members of the access bundle can be configured over different ICL bundle links.

Figure 9: Multiple Access Bundles over many ICL bundles to Single Host

Figure 10: Multiple Access Bundles over many ICL bundles to Dual-Homed Hosts

Note

In the figures 8, 9, and 10, the satellite can also be Cisco NCS 5000 Series Router in place of Cisco ASR

9000v.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

31

Port Partitioning

Configuring the Satellite Network Virtualization (nV) System

In this case where MC-LAG solution is provided to CPE device, wherein each member in the CPE bundle is connected to different satellite box. The satellite is single homed to a Cisco ASR 9000 host.

Figure 11: Access Bundle over ICL Bundles to two different hosts in CPE dual homing

Port Partitioning

The Cisco ASR 9000 Series Satellite system allows you to split or partition the satellite ethernet ports across multiple ICL interfaces. You can split the satellite ports between 4 ICLs in Cisco ASR 9000v satellite.You

can split the satellite ports between upto 10 ICLs that can be either 100G or 10G ICLs in Cisco NCS 500x

Series satellites. See Support of 10x10G ICLs on Cisco NCS500x satellites section for additional information.

Note

Port partitioning is not supported for simple ring and Layer 2 fabric network topologies.

BFD over Satellite Interfaces

Bidirectional Forwarding Detection (BFD) over satellite interfaces feature enables BFD support on satellite line cards. Satellite interfaces are known as virtual (bundle) interfaces. BFD uses multipath infrastructure to support BFD on satellite line cards. BFD over satellite is a multipath (MP) single-hop session and is supported on IPv4 address, IPv6 global address, and IPv6 link-local address. The BFD over Satellite is supported only on ASR 9000 Enhanced Ethernet Line Card and is supported in asynchronous mode. BFD over satellite is not supported in echo mode.

Note

• The bfd multipath include location node-id command is not supported on ASR 9000 Ethernet Line

Card. Hence, BFD over Satellite Interfaces feature does not work on the ASR 9000 Ethernet Line

Card.

BNG Interoperability

The BNG interoperability allows BNG to exchange and use information with other larger heterogeneous networks. These are the key features:

32

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Layer-2 and L2VPN Features

• BNG Coexists with ASR9001:

ASR9001 is a standalone high processing capability router that comprises of a route switch processor

(RSP), linecards (LC), and ethernet plugs (EPs). All BNG features are fully supported on the ASR9001 chassis.

• BNG Supports nV Satellite:

The only topology that is supported with BNG-nV Satellite is - bundled Ethernet ports on the CPE side of the Satellite node connected to the Cisco ASR 9000 through non-bundle configuration (static-pinning).

That is,

CPE --- Bundle --- [Satellite] --- Non Bundle ICL --- ASR9K

Although the following topology is supported on Satellite nV System (from Cisco IOS XR Software

Release 5.3.2 onwards), it is not supported on BNG:

◦Bundled Ethernet ports on the CPE side of the satellite node, connected to the Cisco ASR 9000 through bundle Ethernet connection.

• BNG interoperates with Carrier Grade NAT (CGN):

To address the impending threat from IPv4 address space depletion, it is recommended that the remaining or available IPv4 addresses be shared among larger numbers of customers. This is done by using CGN, which primarily pulls the address allocation to a more centralized NAT in the service provider network.

NAT44 is a technology that uses CGN and helps manage depletion issues of the IPv4 address space.

BNG supports the ability to perform NAT44 translation on IPoE and PPPoE-based BNG subscriber sessions.

Note

For BNG and CGN interoperability, configure the BNG interface and the application service virtual interface (SVI) on the same VRF instance.

Restrictions

• Only bundle access with non-bundle ICLs are supported for BNG interfaces over Satellite nV System access interfaces.

Layer-2 and L2VPN Features

All L2 and L2VPN features that are supported on physical ethernet or bundle ethernet interfaces are also supported on Satellite Ethernet interfaces. The maximum number of bundles supported by Cisco ASR 9000

Series Router is increased to 510.

For more details on L2VPN features supported on the Cisco ASR 9000 Series Satellite System, see Cisco

ASR 9000 Series Aggregation Services Router L2VPN and Ethernet Services Configuration Guide.

Layer-3 and L3VPN Features

All MPLS L3VPN features supported on ethernet interfaces are also supported on the Cisco ASR 9000 Series

Satellite nV System.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

33

Configuring the Satellite Network Virtualization (nV) System

Layer-2 and Layer-3 Multicast Features

For more information on these features, see Cisco ASR 9000 Series Aggregation Services Router MPLS Layer

3 VPN Configuration Guide and Cisco ASR 9000 Series Aggregation Services Router Netflow Configuration

Guide.

Layer-2 and Layer-3 Multicast Features

All Layer-2 and Layer-3 multicast features, including IGMP, IGMP snooping, PIM, mLDP, MVPNv4,MVPNv6,

P2MP TE, are supported on Satellite Ethernet interfaces, as they are supported on normal Ethernet and Bundle

Ethernet interfaces.

For more information on these features, see Cisco ASR 9000 Series Aggregation Services Routers Multicast

Configuration Guide.

Multicast IRB

Multicast IRB provides the ability to route multicast packets between a bridge group and a routed interface using a bridge-group virtual interface (BVI). It can be enabled with multicast-routing. THE BVI is a virtual interface within the router that acts like a normal routed interface. For details about BVI, refer Cisco ASR 9000

Series Aggregation Services Router Interface and Hardware Component Configuration Guide

BV interfaces are added to the existing VRF routes and integrated with the replication slot mask. After this integration, the traffic coming from a VRF BVI is forwarded to the VPN.

Quality of Service

Most Layer-2, Layer-3 QoS and ACL features are supported on Satellite Ethernet interfaces that are similar to normal physical Ethernet interfaces, with the exception of any ingress policy with a queuing action. However, for QoS, there may be some functional differences in the behavior because, in the Cisco IOS XR Software

Release 4.2.x, user-configured MQC policies are applied on the Cisco ASR 9000 Series Router, and not on the satellite switch interfaces.

For more detailed information on QoS offload and QoS policy attributes, features, and configuration, see

Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Configuration Guide .

Note

User-configured QoS policies are independent of any default port level QoS that are applied in order to handle IC link congestion and over-subscription scenarios. In addition to the default port-level QoS applied on the satellite system ports, default QoS is also applied on the Cisco ASR 9000 Series Router Host side, to the ingress and egress traffic from and to the Satellite Ethernet ports.

Cluster Support

A cluster of Cisco ASR 9000 Series Routers is supported along with the satellite mode. A single cluster system can act like one logical Cisco ASR 9000 Series Router host system for a group of satellite switches. A satellite switch can also have some ICLs connect to rack 0 and other ICLs connect to rack 1 of a cluster system.

For more information, see Configuring the nV Edge System on the Cisco ASR 9000 Series Router chapter.

34

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Time of Day Synchronization

Note

The Satellite Ethernet interfaces cannot be used as cluster inter-rack links.

Time of Day Synchronization

The Time of Day parameter on the satellite switch is synchronized with the time of day on the host. This ensures that time stamps on debug messages and other satellite event logs are consistent with the host, and with all satellite switches across the network. This is achieved through the SDAC Discovery Protocol from the host to the satellite switch when the ICLs are discovered.

Satellite Chassis Management

The chassis level management of the satellite is done through the host because the satellite switch is a logical portion of the overall virtual switch. This ensures that service providers get to manage a single logical device with respect to all aspects including service-level, as well as box-level management. This simplifies the network operations. These operations include inventory management, environmental sensor monitoring, and fault/alarm monitoring for the satellite chassis through the corresponding CLI, SNMP, and XML interfaces of the host Cisco ASR 9000 Series Router.

Note

The satellite system hardware features, support for SFPs, and compatible topologies are described in the

Cisco ASR 9000 Series Aggregation Services Router Hardware Installation Guide.

Note

All the SNMP features supported on the Cisco ASR 9000 Series router is supported for satellite. For more information, see Cisco ASR 9000 Series Aggregation Services Router MIB Specification Guide.

ARP Redundancy Support for Dual Head Topology

The Address Resolution Protocol(ARP) redundancy support feature allows you to synchronize the ARP table entries between the active and standby hosts in a dual home Satellite nV System topology. In the Dual Head

Satellite nV System topology, all satellite traffic flows to one host router (active host) and therefore all ARP entries reside on the active host. When the active host goes down, the standby host needs to rebuild the ARP table. But with a large number of devices, this can take a significant amount of time, impacting the network uptime. The process of synchronizing the ARP database between the active and standby hosts can reduce this downtime. The synchronization happens as and when a new entry is learnt or when the active host goes down.

There is no specific frequency for synchronization. You can also pause or restart the synchronization process whenever required.

The ARP database is distributed across all the nodes (RP/LC) in the router. The ARP entries are programmed for an interface only in the node where the data plane is replicated. In case of virtual interfaces (like

Bundle-Ether, BVI and so on), where the control plane is located in RP, the ARP entries are programmed only in the line cards wherever the data plane is replicated. The RP would have entries only for the physical interfaces that have its control plane in RP like Management interfaces. The Txlist infrastructure library

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

35

Configuring the Satellite Network Virtualization (nV) System

Ethernet Link OAM

facilitates the ARP table entries synchronization process to happen. The ARP table has three key entries, which are the IPv4 address, MAC address, and the corresponding interface.

The current architecture can support only two host nodes in a redundancy group. But a specific host router can be part of multiple redundancy groups. This is a sample configuration for ARP synchronization.

group <id-number> peer <neighbor ipv4 address> source-interface <interface-name> interface-list interface <interface-name to be synced> id <unique-id>

!

!

!

You can use the show arp redundancy summary location command to display the summary of entries.

Ethernet Link OAM

The Satellite nV system Ethernet interfaces support Ethernet Link OAM feature when ICL is a physical interface. Cisco IOS XR Software also supports Ethernet Link OAM feature over Satellite Ethernet interfaces when the ICL is a bundle interface.

802.3ah Loopback Support on Satellite nV System

The 802.3ah loopback feature allows you to loopback all the non OAMPDU packets from the remote node that is defined as slave. The port that is defined as master controls the loopback status on the remote node.

You can conduct various performance and quality testing on the remote port that is in slave state using this feature. This loopback mode is disruptive because the traffic does not flow through the router in slave state.

The Loopback function is supported on the satellite nV system ports both in over protected and unprotected

ICL modes. You can define the loopback function on the node that is in master state using the remote-loopback command in the ethernet oam interface configuration mode.

You can use the ethernet oam loopback enable <interface> and ethernet oam loopback disable <interface> commands from the master node to enable and disable the loopback respectively on the slave node.

Note

You cannot loopback the Layer 2 protocol packets such as CFM, OAM, and LACP.

This configuration snippet shows how to configure loopback.

RP/0/RSP0/CPU0:router(config)#

interface gigabitEthernet 0/1/0/9

RP/0/RSP0/CPU0:router(config-if)#

ethernet oam

RP/0/RSP0/CPU0:router(config-if-eoam)#

remote-loopback

RP/0/RSP0/CPU0:router(config-if-eoam)#

commit

This is a sample output of the show ethernet oam discovery command, which indicates that loopback is supported.

RP/0/RSP0/CPU0:router#

show ethernet oam discovery

Local client

------------

Administrative configuration:

PDU revision:

Mode:

Unidirectional support:

Link monitor support:

9

Active

Y

Y

36

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

CFM Performance Monitoring

Remote loopback support:

MIB retrieval support:

Maximum PDU size:

Operational status:

Port status:

Loopback status:

Interface mis-wired:

Y <<Indicates loopback is supported

Y

1500

Operational

Remote <<Indicates master

N

For more information on Ethernet OAM configuration and commands, see the Configuring Ethernet OAM and Ethernet OAM Commands on the Cisco ASR 9000 Series Router modules in the Cisco ASR 9000 Series

Aggregation Services Router Interface and Hardware Component Configuration Guide and Cisco ASR 9000

Series Aggregation Services Router Interface and Hardware Component Command Reference respectively.

CFM Performance Monitoring

The Connectivity Fault Management (CFM) feature is supported on the nV Satellite system. To use this feature the Maintenance End Points (MEPs) must be configured on the satellite access ports so that they belong to the CFM service over which performance monitoring is being implemented. In an nV Satellite system, the

MEPs that are set on the satellite access ports are configured on the Cisco ASR 9000 Series host. For additional details on CFM configuration, refer to the topic "Ethernet CFM" in the Cisco ASR 9000 Series Aggregation

Services Router Interface and Hardware Component Configuration Guide

CFM Performance Monitoring (PM) applies time-stamps or sequence numbers on CFM PM frames (PDUs), at the two MEPs (controller and responder) between which performance is being measured. The controller

MEP initiates the PM process by sending frames to the responder. The responder MEP processes the frames and sends them back to the controller, for the latter to evaluate the frames and calculate the PM result.

Prior to Cisco IOS XR Release 5.3.1, MEPs configured on Satellite Access ports processed (time-stamped) performance monitoring frames at the host. To ensure accuracy in performance monitoring, the frames are now processed on the satellite instead of the ASR9K host.

The features supported in Release 5.3.1 are:

• Up MEPs process (timestamp) only those CFM PM frames on the satellite that meet the criteria (see processing locations table), and the remaining CFM PM frames are processed on the ASR9K host.

Down MEPs process all CFM PM frames on the ASR9K host.

• Only the responder functionality for two-way delay measurement is available on the satellite. The controller functionality is managed by the ASR9K host. Also, the two CFM processes, the Loopback process and the Synthetic Loss Measurement process are managed by the ASR9K host.

Note

From Release 5.3.1 onwards, if the satellite supports it, the processing of relevant frames on the satellite happens by default. To turn off the satellite processing functionality, use the nv satellite sla processing

disable command in the ethernet cfm configuration mode. If the frames are not processed on the satellite, they are processed on the ASR9K host by default.

nV Satellite CFM Performance Monitoring Processing Locations

This table lists various parameters and functionalities, and the corresponding locations where the CFM PM frames are processed. The location can either be the satellite or the ASR9K host.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

37

Configuring the Satellite Network Virtualization (nV) System

CFM Performance Monitoring

Parameter

Up MEP responder

Down MEP responder

Delay Measurement (v0)

Delay Measurement (v1)

Bundle ICLs in Hub & Spoke topologies

Main interfaces, default, native

VLAN, Double Tagged EFPs

ASR901

Satellite

Host

Satellite

Frames are not processed

Host

Host

VLAN ID range

EFPs matching a single dot1q

VLAN ID

EFPs matching a single dot1ad

VLAN ID

EFPs configured with a dot1q

Tunneling Ethertype 0x9100 or

0x9200

Untagged EFPs

Host

Satellite

Host

Host

Satellite

Unprotected satellite access ports Satellite

Maximum number of MEPs per

Ethernet Flow Point (EFP)

1 - Satellite

More than 1 - Host

Maximum number of MEPs per

Satellite

Frames from MEPs that exceed the limit are not processed either on the satellite or host, and a warning is logged.

Up to 40 - Satellite

ASR9000v

Satellite

Host

Satellite

Satellite

Host

Host

Host

Satellite

Host

Host

Satellite

Satellite

1 - Satellite

More than 1 - Host

Up to 44 - Satellite

Note

If an unsupported configuration is committed, the CFM PM processing takes place on the host instead of the satellite. A warning is issued and it can be viewed in the output of the show ethernet cfm

configuration-errors command.

38

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Restrictions of the Satellite nV System

Related Commands

Refer to the Cisco ASR 9000 Series Aggregation Services Router Interface and Hardware Component

Command Reference guide for details of these related commands:

nv satellite sla processing disable

show ethernet cfm configuration-errors

show ethernet cfm interfaces statistics

show ethernet cfm local meps

Restrictions of the Satellite nV System

Software restrictions of the satellite system are:

• The inter-chassis link redundancy is supported only through the static EtherChannel, and not through

LACP based link bundles. Minimum and maximum link commands are not applicable when ICL is a bundle.

• Multi-chassis Link Aggregation is supported if there are two independent Cisco ASR 9000 Series Routers acting as the POA (Point of Attachment), each with its own satellite switch, and the DHD (Dual Homed

Device) connecting through each of the satellite switches. However, MC-LAG is not supported with a single satellite switch that connects two separate Cisco ASR 9000 Series Routers through an ICL LAG.

• Pseudowire Headend is not supported on the Satellite interfaces.

• When you convert from one satellite topology to another topology, such as hub and spoke to Layer 2

Fabric network topology, you must remove the existing ICL configurations from the interface in one commit followed by the new ICL configurations on the interface in a separate commit.

• Access bundles having both satellite and non-satellite interfaces is not supported.

• For hub and spoke topologies, irrespective of the line card variant, a maximum of up to 200 satellite access ports can be supported per NPU.

For all nV satellite topologies on the –TR (Packet Transport Optimized) line card variants, a maximum of up to 200 satellite access ports can be supported per NPU. With the buffer, memory and 8 queue per port restrictions, the use of –TR card variants has restrictions for advanced, large scale nV satellite deployments like simple ring and L2 fabric topologies. These deployments require 200 and more access ports on a single ICL fabric port. For such network mode nV satellite configuration, an – SE (Services

Edge Optimized) line card variant is strongly recommended for hosting the line cards on the ASR 9000 nV host

• On A9K-40GE-TR and A9K-40GE-SE line card variants, only the 1st 16 ports can be used as ICL or fabric ports to host nV satellites. Also, only a maximum of up to 170 satellite access ports can be supported per NPU on these line card variants.

• On a Powerglide LC, only one interface from each PHY can be configured as SyncE. This is for SyncE line interfaces.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

39

Configuring the Satellite Network Virtualization (nV) System

Restrictions of the Satellite nV System

Note

After RSP Failover, it is expected to see the satellite in Connecting state for about a min and OIR messages for satellite and sat-ether ports like below:

RP/0/RSP0/CPU0:Oct 24 05:19:43.278 : invmgr[252]: %PLATFORM-INV-6-OIRIN : OIR: Node 100/ inserted

RP/0/RSP0/CPU0:Oct 24 05:19:43.484 : invmgr[252]: %PLATFORM-INV-6-IF_OIRIN : xFP OIR:

SAT100/0/0 port_num: 0 is inserted, state: 1

However, the data plane forwarding is expected to be up throughout.

This table provides the release-wise support for CDP/LLDP, UDLD, and Ethernet OAM:

Single-Homed

Physical ICL Bundle ICL

Dual-Homed

Physical

ICL

Bundle ICL

Access Physical

CDP

LLDP

IOS XR

4.2.1

IOS XR

4.2.1

IOS XR 5.1.1

IOS XR

4.2.1

IOS XR 4.3.1

IOS XR

4.2.1

IOS XR 5.1.1

IOS XR 4.3.1

UDLD IOS XR 5.3.1

Access

LAG/Bundle

802.3ah

CDP

LLDP

UDLD

802.3ah

IOS XR

4.2.1

IOS XR

4.2.1

IOS XR

4.2.1

IOS XR

4.2.1

IOS XR

4.2.1

IOS XR

4.2.1

IOS XR 5.3.1

IOS XR

4.2.1

IOS XR 5.1.1

IOS XR

4.2.1

IOS XR 5.3.2

IOS XR

4.2.1

IOS XR 5.3.2

IOS XR

4.2.1

IOS XR 5.3.2

IOS XR

4.2.1

OAM - N.A

CFM - IOS

XR 5.3.2

IOS XR

4.2.1

IOS XR 5.1.1

IOS XR 5.3.2

IOS XR 5.3.2

IOS XR 5.3.2

OAM - N.A

CFM - IOS XR 5.3.2

Note

Refer to the Cisco ASR 9000 Series Aggregation Services Router Release Notes for additional software restrictions.

40

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Restrictions of the Cisco NCS 500x Series Satellite

Restrictions of the Cisco NCS 500x Series Satellite

These are the restrictions and limitations of the Cisco NCS 500x Series Satellite:

Hardware Limitations

• RSP2 is not qualified with Cisco NCS5001/NCS5002 as satellite.

• Satellite hosting line cards must be second or third generation Ethernet cards on Cisco ASR 9000 Series

Router. The line card can be –TR or –SE. If –TR, each satellite access gets 8 TM queues and overall nV and other scale limitations persist.

• The Cisco Enhanced Ethernet line card, SIP-700 line cards can co-exist in the system but cannot be used to connect directly to the satellite fabric ports. They can forward traffic to and from the satellite ports.

• Cisco ASR 9001 chassis has low disk space. Hence, memboot is preferred. RSP3 TR card has a low memory. Hence, nV pies for Cisco NCS 500x Series satellite cannot be loaded unless there is 2 GB of free space.

• 100G ICLs are only supported on the 8x100G or 4x100G Cisco ASR 9000 high density Ethernet line cards.

General Limitations

• Cisco NCS 500x Series Router is supported as a satellite on Layer 1 Hub and Spoke topology in both single and dual host connectivity. The other advanced topologies are not supported.

• Unlike Cisco ASR 9000v satellite, Cisco NCS 500x Satellite does not reboot on being disconnected from the Host for more than 30 minutes as there are internal mechanisms to auto correct/recover the driver issues without reloads on this device.

• Auto QoS on Cisco NCS 500x satellite follows a trusted CoS model and only differentiates incoming frames based on their CoS/DSCP values. No specific bandwidth reservation is done for any other protocol packets implicitly.

• Auto QoS on Cisco NCS 500x satellite cannot classify incoming frames on the access ports based on

MPLS exp. So, any tunneled high priority packet based on just MPLS exp may not get the right scheduling weights.

• Fan RPM thresholds are adaptive and driven using algorithms for optimum speed thresholds. Only fan tray online insertion and removal and fan failure alarms are reported.

• 1GigE ports are just 10GigE ports operating at restricted speeds with no auto negotiation or support for

10/100 M speeds. The interfaces continue to be named as 10GigE interfaces with 1G only reflecting in the operating speed, bandwidth, and route metrics.

• Due to the remote port configuration being mapped to a satellite id rather than a specific satellite type internally, 1G remote port configuration from legacy satellites may also be allowed for Cisco NCS 500x satellite id. However, this is a misconfiguration and the satellite ports must always be configured as 10G ports even when 1G optics are used. This is in line with the previous restriction on 10G ports being used for 1G optics but still being 10G ports operating at restricted speeds. 1G remote port configuration is rejected by the satellite otherwise.

• Existing caveats for the features – on loaded on the Host and offloaded, if any to the satellite remain.

The addition of this new satellite variant does not implicitly add enhanced capabilities. None of the

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

41

Configuring the Satellite Network Virtualization (nV) System

Satellite nV Usability Enhancements

offload features on Cisco ASR9000v are supported on Cisco NCS 500x Series satellites unless explicitly stated.

• When upgrading the Cisco NCS 500x satellite from an older image to Cisco IOS XR Software Release

6.1.x or later, the auto FPD upgrade feature has a caveat which requires a one time manual upgrade of

FPD images during this upgrade on each of the Cisco NCS 500x satellite. This upgrade procedure is similar to that of a standalone Cisco NCS 500x device where an upgrade hw-module fpd <> CLI is used in the admin mode of the satellite console. For more details on the standalone procedure, refer the

Upgrading FPD chapter in the System Management Configuration Guide for Cisco NCS 5000 Series

Routers.

Satellite nV Usability Enhancements

Satellite nV usability enhancements introduce the following functionalities:

nV Satellite Auto Image Upgrade

nV satellite auto image upgrade feature introduces support for automated upgrade of the satellite image in these two scenarios:

• Following the Cisco IOS XR software release upgrade

• Satellite is connected to a host and the image on the satellite is not matching the one packaged in Cisco

IOS XR software

To configure the nV satellite auto image upgrade feature, use the upgrade on-connect command in nV satellite configuration.

Note

For dual-head satellite systems, the auto upgrade configuration must only be applied on one host, that is, the host that the satellite will install from. There is currently no checking for this, and if the user applies the configuration on both hosts and the hosts have different satellite versions installed, then the satellite may go into a loop of installing, until either:

• the configuration is removed from one host OR

• the satellite version activated on both hosts is the same

Auto Upgrade Behavior

Auto upgrade on-connect variant means that a satellite is auto upgraded to the current version installed on the host the next time the TCP connection to the satellite is established. On establishing the TCP connection, the configuration is checked, and an upgrade is started if the version is not the latest and the user has configured auto upgrade on-connect.

on-connect does not trigger an auto upgrade at the time of applying the configuration (and so does not impact a satellite that is already connected). However, given that a satellite upgrade impacts traffic, a notification

syslog is generated any time the configuration is applied to a connected satellite that currently does not have the latest software version installed.

42

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Simplified Access to Satellites

Note

The auto upgrade feature stops a satellite from progressing further into the control state machine, until the operation is complete. Therefore, auto upgrade of satellites in a chain or a ring is done in series. So, for long chains or rings, it may be more time efficient to do the operation manually.

Note

Due to the above mentioned behavior of auto upgrade and because the Cisco ASR 9000v satellite does not support ROMMON downgrade, a downgrade to Cisco IOS XR Software Release 5.3.x based releases on the host will end up with the satellites being stopped until the downgrade completes, which would never happen because the ROMMON cannot be downgraded. This can result in the Cisco ASR 9000v satellites stuck in auto upgrade and not coming up. The recommendation is to turn off auto upgrade for any downgrade to Cisco IOS XR Software Release 5.3.x on the host from any other future release that has a higher ROMMON version for Cisco ASR 9000v.

Simplified Access to Satellites

The provision of new variants to the telnet command simplifies the process of accessing satellites. These new variants of the telnet command make it easier to the users with specific task groups to be able to telnet to the satellite.

There are two methods of using the command:

• If the satellite is connected, the user can specifically use the satellite ID to connect.

Example: telnet satellite 100 ----> telnet to satellite with ID 100.

An error message is generated if this method does not work.

• If the satellite is not connected, the user can use the VRF and IP address of the satellite to connect.

Example: telnet satellite vrf default 1.2.3.4 ----> telnet to a satellite in the default VRF with IP address

1.2.3.4

Note

The VRF must always be specified by the user. If the user has configured any IP address configuration, then the VRF is either default or the configured VRF name. Else, the

VRF is the hidden satellite VRF name (**nVSatellite). The VRF is visible in the status command when applicable.

MPP Check Skip for Satellite Image Download with Auto IP

The Management Plane Protection (MPP) feature in Cisco IOS XR software provides the capability to restrict the interfaces on which network management packets are allowed to enter a device.

User MPP configuration requiring to allow Trivial File Transfer Protocol (TFTP) if any other MPP configuration is present on the router, is complicated, especially when users do not know the protocol being used to download image for nV Satellites. The upgrade of the satellite image fails unless an entry is added to MPP configuration for the satellite VRF (if any) to allow TFTP through the Inter-Chassis Link (ICL) interface .

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

43

Configuring the Satellite Network Virtualization (nV) System

Implementing a Satellite nV System

The enhancement to skip MPP checks for nV satellites configured with auto IP, automatically allows TFTP over the satellite ICL interface (for satellite image download) by skipping MPP checks for authenticated satellites. TFTP is only allowed under the hidden satellite VRF name (**nVSatellite). So, any satellites configured with manual IP or VRF will still need MPP configuration to be modified to allow TFTP for the configured VRF on the ICL .

Implementing a Satellite nV System

The Interface Control Plane Extender (ICPE) infrastructure has a mechanism to provide the Control Plane of an interface physically located on the Satellite device in the local Cisco IOS XR software. After this infrastructure is established, the interfaces behave like other physical ethernet interfaces on the router.

The ICPE configuration covers these functional areas, which are each required to set up full connectivity with a Satellite device:

Defining the Satellite nV System

Each satellite that is to be attached to Cisco IOS XR Software must be configured on the host, and also be provided with a unique identifier. In order to provide suitable verification of configuration and functionality, the satellite type, and its capabilities must also be specified.

Further, in order to provide connectivity with the satellite, an IP address must be configured, which will be pushed down to the satellite through the Discovery protocol, and allows Control protocol connectivity.

This task explains how to define the satellite system by assigning an ID and basic identification information.

DETAILED STEPS

Step 1

Step 2

Step 3

Step 4

Command or Action configure

Purpose

Enters global configuration mode.

Example:

RP/0/RSP0/CPU0:router# configure

nv

Enters the nV configuration submode.

Example:

RP/0/RSP0/CPU0:router(config)# nv

satellite Sat ID Declares a new satellite that is to be attached to the host and enters the satellite configuration submode. .

Example:

RP/0/RSP0/CPU0:router(config-nV)# satellite <100-65534>

serial-number string

Example:

RP/0/RSP0/CPU0:router(config-satellite)# serial-number CAT1521B1BB

Serial number is used for satellite authentication.

44

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Defining the Satellite nV System

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Command or Action Purpose

description string (Optional) Specifies any description string that is associated with a satellite such as location and so on.

Example:

RP/0/RSP0/CPU0:router(config-satellite)# description Milpitas Building12

type type_name Defines the expected type of the attached satellite.

Example:

RP/0/RSP0/CPU0:router(config-satellite)# satellite 200 type ? asr9000v Satellite type

The satellite types are asr9000v, asr9000v2, Cisco NCS 5001, and Cisco

NCS 5002.. For other supported satellite types, see

Prerequisites for

Configuration

.

ipv4 address address Specifies the IP address to assign to the satellite. ICPE sets up a connected route to the specified IP address through all configured ICLs.

Example:

RP/0/RSP0/CPU0:router(config-satellite)# ipv4 address 10.22.1.2

secret password Specifies the secret password to access the satellite. In order to login you must use root as the user name and password as the secret password.

Example:

RP/0/RSP0/CPU0:router(config-satellite)# secret <password>

candidate-fabric-ports interface-type

slot/subslot/port-range

Example:

RP/0/RSP0/CPU0:router(config-satellite)# candidate-fabric-ports nVFabric-GigE

0/0/21-25

Specifies the additional ports on the satellite which can be used as dynamic ICLs/ fabric ports along with the default set of ports. The interface type can be nVFabric-GigE, nVFabric-TenGigE or nVFabric-HundredGigE. The value of slot and subslot can be in the range of 0-5. The port ranges are specified as a comma-separated list of sub-ranges. Each subrange consists of either a single number, or a low and high (both inclusive) hyphen-separated range. The sub-ranges must be in a non-overlapping, and strictly in an ascending order.

end or commit

Example:

RP/0/RSP0/CPU0:router(config)# end or commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?

[cancel]:

- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

45

Configuring the Satellite Network Virtualization (nV) System

Auto-IP

Command or Action Purpose

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Auto-IP

The Auto IP feature improves the plug-and-play set up of an nV satellite system. With the Auto IP feature,

IP connectivity to the satellite is automatically provisioned. As a result:

• The nV Satellite Loopback interface is created on the host

• Loopback interface is given an IP address from a private satellite VRF

• Satellite fabric links are unnumbered to the loopback interface

• The IP address assigned to satellite is auto-generated from the satellite VRF

In the case of Auto IP, you need not specify any IP addresses (including the IP address on the Satellite itself, under the satellite submode), and the nV Satellite infrastructure assigns suitable IP addresses, which are taken from the 10.0.0.0/8 range within a private VRF to both the satellites and the satellite fabric links. All such

Auto IP allocated satellites are in the same VRF, and you must manually configure IP addresses, if separate

VRFs are required.

Note

You cannot combine auto-configured Satellites with manually configured Satellites within the same satellite fabric.

The auto-IP feature assigns an IP address in the format 10.x.y.1 automatically, where:

• x is the top (most significant) 8 bits of the satellite ID

• y is the bottom 8 bits (the rest) of the satellite ID

Note

The Auto-IP configuration is the recommended mode of configuration over the manual Host IP address configuration. You can also override the Auto IP feature by using the standard IP configuration.

For examples on configuration using the Auto-IP feature, see

Configuration Examples for Satellite nV System .

Configuring the Host IP Address

This procedure gives you the steps to configure a host IP address on a loopback interface.

46

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring the Inter-Chassis Links and IP Connectivity

DETAILED STEPS

Step 1

Step 2

Step 3

Step 4

Command or Action configure

Purpose

Enters global configuration mode.

Example:

RP/0/0RSP0/CPU0:router# configure

interface loopback0 Specifies the loopback address for the interface.

Example:

RP/0/0RSP0/CPU0:router(config)# interface loopback0

ipv4 address

Configures the host IP address on a loopback interface.

Example:

RP/0/0RSP0/CPU0:router(config-int)# ipv4 address 8.8.8.8 255.255.255.255

end or commit

Saves configuration changes.

Example:

RP/0/0RSP0/CPU0:router(config)# end or RP/0/0RSP0/CPU0:router(config)# commit

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?

[cancel]:

- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring the Inter-Chassis Links and IP Connectivity

Inter-Chassis Links (ICLs) need to be explicitly configured, in order to indicate which satellite is expected to be connected. You must also specify the access port, that is down-stream 10GigE ports, which cross-link up to the Host through the configured ICL. In order to establish connectivity between the host and satellite, suitable IP addresses must be configured on both sides. The satellite IP address is forwarded through the

Discovery protocol. The configuration is described in the section,

Defining the Satellite nV System, on page

44 .

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

47

Configuring the Satellite Network Virtualization (nV) System

Configuring the Inter-Chassis Links and IP Connectivity

Note

This configuration shows the use of the global default VRF. The recommended option is to use a private

VRF for nV IP addresses as shown in the

Satellite Management Using Private VRF, on page 78

subsection under Configuration Examples for Satellite nV System.

DETAILED STEPS

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Command or Action configure

Purpose

Enters global configuration mode.

Example:

RP/0/RSP0/CPU0:router# configure

interface interface-name

Example:

RP/0/RSP0/CPU0:router(config)# interface

TenGigE0/2/1/0

The supported inter-chassis link interface types are limited by the connectivity provided on the supported satellites. GigabitEthernet,

TenGigE, and Bundle-Ether interfaces are the only support ICL types.

description

Specifies the description of the supported inter-chassis link interface type.

Example:

RP/0/RSP0/CPU0:router(config-interface)# description To Sat5 1/46

ipv4 point-to-point

(Optional) Configures the IPv4 point to point address.

Example:

RP/0/RSP0/CPU0:router(config-interface)# ipv4 point-to-point

ipv4 unnumbered loopback0

(Optional) Configures the IPv4 loopback address on the interface.

Example:

RP/0/RSP0/CPU0:router(config-interface)# interface unnumbered loopback0

nV

Enters the Network Virtualization configuration mode.

Example:

RP/0/RSP0/CPU0:router(config-if)# nv

satellite-fabric-link satellite <id>

Specifies that the interface is an ICPE inter-chassis link.

Example:

RP/0/0RSP0/CPU0:router(config-int-nv)# satellite-fabric-link satelite 200

remote-ports interface-type Configures the remote satellite ports 0 to 30.

Example:

RP/0/RSP0/CPU0:router(config-int-nv)# remote-ports GigabitEthernet 0/0/0-30

end or commit Saves configuration changes.

48

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring the Inter-Chassis Links and IP Connectivity

Command or Action

Example:

RP/0/RSP0/CPU0:router(config)# end or

RP/0/0RSP0/CPU0:router(config)# commit

Purpose

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?

[cancel]:

- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

For information on QoS configuration on ICLs , see Cisco ASR 9000

Series Aggregation Services Router Modular Quality of Service

Configuration Guide.

Configuring the Inter-Chassis Links in a Dual Home Network Topology

These are the steps for configuring Inter-chassis links in the case of a dual home topology.

Before You Begin

MPLS LDP needs to be up and running between the two hosts for the dual home configuration.

DETAILED STEPS

Step 1

Step 2

Command or Action configure

Example:

RP/0/RSP0/CPU0:router# configure

interface interface-name

Example:

RP/0/RSP0/CPU0:router(config)# interface

TenGigE0/2/1/0

Purpose

Enters global configuration mode.

The supported inter-chassis link interface types are limited by the connectivity provided on the supported satellites.

GigabitEthernet, TenGigE, and Bundle-Ether interfaces are the only support ICL types.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

49

Configuring the Satellite Network Virtualization (nV) System

Configuring the Inter-Chassis Links and IP Connectivity

Step 3

Step 4

Step 5

Step 6

Step 7

Command or Action

satellite-fabric-link satellite <id>

Purpose

Configures the ICPE inter-chassis link for the specified satellite.

Example:

RP/0/RSP0/CPU0:router(config-interface)# satellite-fabric-link satellite 100

ipv4 point-to-point

(Optional) Configures the IPv4 point to point address.

Example:

RP/0/RSP0/CPU0:router(config-interface)# ipv4 point-to-point

ipv4 unnumbered loopback0

(Optional) Configures the IPv4 loopback address on the interface.

Example:

RP/0/RSP0/CPU0:router(config-interface)# interface unnumbered loopback0

redundancy iccp-group

Example:

RP/0/RSP0/CPU0:router(config-interface)# redundancy iccp-group 1

Configures the ICCP redundancy group. In order to configure multiple ICCP redundancy groups, repeat steps

6 through 10 with a different redundancy group number.

minimum preferred links num

Example:

RP/0/RSP0/CPU0:router(config-satellite-fabric-link)# redundancy minimum preferred links 2

(or)

(Optional) Configures the minimum number of preferred satellite fabric bundle-ether links. To configure this parameter, the interface must be a bundle-ether interface.

If you do not enable this parameter on any host, then it is assumed as 0 by default on that host. Hence, the decision of failover is judged using that value. The range is 1 to

64.

RP/0/RSP0/CPU0:router(config-satellite-fabric-link)# redundancy

RP/0/RSP0/CPU0:router(config-nV-red)# minimum preferred links 2

Note

You can either go to the redundancy mode to configure minimum preferred links or you can specify redundancy keyword before configuring the minimum preferred links.

member neighbor 9.9.9.9

Configures the LDP neighbor.

Step 8

Step 9

Step 10

Example:

RP/0/RSP0/CPU0:router(config-interface)# member neighbor 9.9.9.9

backbone interface interface_type (Optional) Configures the backbone interface for the PE isolation.

Example:

RP/0/RSP0/CPU0:router(config-interface)# backbone interface TenGigE0/1/0/3

remote-ports interface-type

Configures the remote satellite ports 0 to 30.

Step 11

Example:

RP/0/RSP0/CPU0:router(config-int-nv)# remote-ports

GigabitEthernet 0/0/0-30

end or commit Saves configuration changes.

50

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring the Inter-Chassis Links and IP Connectivity

Command or Action

Example:

RP/0/RSP0/CPU0:router(config)# end or

RP/0/RSP0/CPU0:router(config)# commit

Purpose

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?

[cancel]:

- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring the Inter-Chassis Links for a Simple Ring Topology

These are the steps for configuring Inter-chassis links in the case of a simple ring topology.

DETAILED STEPS

Step 1

Step 2

Step 3

Command or Action configure

Purpose

Enters global configuration mode.

Example:

RP/0/RSP0/CPU0:router# configure

redundancy iccp-group

Configures the redundancy ICCP group between the hosts.

Example:

RP/0/RSP0/CPU0:router(config)# redundancy iccp group

2

member neighbor 9.9.9.9

Configures the LDP neighbor.

Example:

RP/0/RSP0/CPU0:router(config-redundancy-iccp-group)# member neighbor 9.9.9.9

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

51

Configuring the Satellite Network Virtualization (nV) System

Configuring the Inter-Chassis Links and IP Connectivity

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Command or Action Purpose host-priority <0-255>

Example:

RP/0/RSP0/CPU0:router(config-redundancy-iccp-group)# host-priority 128

(Optional) Specifies the priority for the satellite on each of the host. The host with the lower priority is preferred as the active host. The default priority is 128.

nv satellite system-mac <mac_address>

Example:

RP/0/RSP0/CPU0:router(config-redundancy-iccp-group)# nv satellite system-mac dcddc.dcdc.dcdc

(Optional) Specifies the MAC address. Two hosts in the same redundancy group will sync up the system MAC address and satellite priority information. The System

MAC must be the same. If it is different, then the Host with low chassis MAC gets priority. If the system MAC is not configured, then it uses low host chassis MAC as the system MAC.

interface interface-name

Example:

RP/0/RSP0/CPU0:router(config)# interface

TenGigE0/2/1/0

ipv4 point-to-point

The supported inter-chassis link interface types are limited by the connectivity provided on the supported satellites. GigabitEthernet, TenGigE, and Bundle-Ether interfaces are the only support ICL types.

(Optional) Configures the IPv4 point to point address.

Example:

RP/0/RSP0/CPU0:router(config-if)# ipv4 point-to-point

ipv4 unnumbered loopback0

(Optional) Configures the IPv4 loopback address on the interface.

Example:

RP/0/RSP0/CPU0:router(config-if)# interface unnumbered loopback0

nv

Enters the nV satellite mode.

Example:

RP/0/RSP0/CPU0:router(config-if)# nV

satellite-fabric-link network

Specifies the network type of ICPE inter-chassis link.

Example:

RP/0/RSP0/CPU0:router(config-if-nV)# satellite-fabric-link network

redundancy iccp-group

Configures the ICCP redundancy group.

Example:

RP/0/RSP0/CPU0:router(config-sfl-network)# redundancy iccp-group 2

satellite <satellite id> Specifies the satellite ID of the satellite.

Example:

RP/0/RSP0/CPU0:router(config-sfl-network)# satellite

500

52

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring the Satellite nV Access Interfaces

Step 13

Step 14

Step 15

Step 16

Command or Action

remote-ports interface-type

Purpose

Configures the remote satellite ports for the satellite 500.

Example:

RP/0/RSP0/CPU0:router(config-sfl-network)# remote-ports GigabitEthernet 0/0/9,5

satellite <satellite id> Specifies the satellite ID of the connected satellite in the simple ring..

Example:

RP/0/RSP0/CPU0:router(config-sfl-network)# satellite

600

remote-ports interface-type Configures the remote satellite ports for the satellite 600.

Example:

RP/0/RSP0/CPU0:router(config-sfl-network)# remote-ports GigabitEthernet 0/0/9,5

end or commit

Example:

RP/0/RSP0/CPU0:router(config)# end or

RP/0/RSP0/CPU0:router(config)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?

[cancel]:

- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring the Satellite nV Access Interfaces

The access 1Gigabit Ethernet/10GigE interfaces on the satellite are represented locally in Cisco IOS XR

Software using interfaces named Gigabit Ethernet similar to other non-satellite 1Gigabit Ethernet/10GigE interfaces. The only difference is that the rack ID used for a satellite access 1Gigabit Ethernet/10GigE interface is the configured satellite ID for that satellite.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

53

Configuring the Satellite Network Virtualization (nV) System

Configuring the Fabric CFM for L1 Physical ICL and L2 Fabric Network

These interfaces support all features that are normally configurable on 1Gigabit Ethernet/10GigE interfaces

(when running over a physical ICL), or Bundle-Ether interfaces (when running over a virtual ICL).

Note

With respect to the dual home topology, the satellite access port configuration needs to be done on both the active and standby hosts. The administrator needs to make sure that the same configuration is applied for a particular access port on both the active and standby hosts. In addition, any feature configurations on satellite-access ports needs to be configured identically on both the hosts. Also, the configuration synchronization between the hosts is not currently supported. See

Satellite Interface Configuration .

Configuring the Fabric CFM for L1 Physical ICL and L2 Fabric Network

This procedure gives you the steps to configure CFM on a Satellite nV Fabric link interface. CFM can be configured with L1 Physical ICL or L2 Fabric Network architecture. In both these cases, it can also be configured on Dual Home network topologies.

Note

While configuring Ethernet CFM, if no level or interval values are selected, then level 0 and interval of

1 second are selected by default.

SUMMARY STEPS

1. configure

2. interface interface-name

3. nv

4. satellite-fabric-link satellite <id>

5. ethernet cfm

6. level value

7. continuity-check interval time

8. end or commit

DETAILED STEPS

Step 1

Step 2

Command or Action configure

Purpose

Enters global configuration mode.

Example:

RP/0/RSP0/CPU0:router# configure

interface interface-name

Example:

(for L1 Physical ICL)

RP/0/RSP0/CPU0:router(config)# interface

Gigabit 0/1/0/0

Specifies the supported inter-chassis link interface types limited by the connectivity provided on the supported satellites.

54

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring the Fabric CFM for L1 Physical ICL and L2 Fabric Network

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Command or Action Purpose

Example:

(for L2 Fabric Network)

RP/0/RSP0/CPU0:router(config)# interface

Gigabit 0/1/0/0.1

nv

Enters the Network Virtualization configuration mode.

Example:

RP/0/RSP0/CPU0:router(config-if)# nV

satellite-fabric-link satellite <id>

Specifies that the interface is an ICPE inter-chassis link.

Example:

RP/0/RSP0/CPU0:router(config-int-nv)# satellite-fabric-link satelite 200

ethernet cfm

Enters Ethernet Connectivity Fault Management (CFM) configuration mode.

Example:

RP/0/RSP0/CPU0:router(config-int-nv)# ethernet cfm

level value Specifies the CFM level. It ranges from 0 to 7.

Example:

RP/0/RSP0/CPU0:router(config-int-nv-cfm)# leve 0

continuity-check interval time (Optional) Enables Continuity Check and specifies the time interval at which CCMs are transmitted.

Example:

RP/0/RSP0/CPU0:router(config-int-nv-cfm)# continuity-check interval 100ms

Note

Level values of 0 to 7 and interval values of 3.3 ms, 10 ms,

100 ms, 1 sec, 10 sec, 1 min and 10 min are allowed while configuring Ethernet CFM.

end or commit Saves configuration changes.

Example:

RP/0/RSP0/CPU0:router(config)# end or

RP/0/RSP0/CPU0:router(config)# commit

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?

[cancel]:

- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

55

Plug and Play Satellite nV Switch Turn up: (Rack, Plug, and Go installation)

Configuring the Satellite Network Virtualization (nV) System

Command or Action Purpose

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Plug and Play Satellite nV Switch Turn up: (Rack, Plug, and Go installation)

1

Unpack the satellite rack, stack, and connect to the power cord.

2

Plug in the qualified optics of correct type into any one or more of the SFP+ slots and appropriate qualified optics into SFP+ or XFP slots on the host. Connect through the SMF/MMF fiber.

When Cisco NCS 5000 Series is used as satellite, plug in the Cisco NCS 5002/NCS 5001 qualified 100G

LR4 optics into the first QSFP28 slot (100GigE 0/0/1/0) and a qualified CPAK LR4 optics on the host.

Connect through a regular SMF fiber. Only one time bootstrap requires the 1st port. Otherwise, any of the

100GigE ports on the satellite can be used. When 10G ICLs are supported, a similar bootstrap on fixed ports is needed for plug and play operation in case of first time boot up after a factory reset. The highest

10G port turns on for plug and play in factory reset mode.

Note

The Cisco NCS 5000 Series Satellite is shipped in a factory mode. When the satellite is discovered for the first time, it would automatically detect itself as a satellite on receiving probes from the host and would go for a reset and come up in satellite mode. This would be transparent to the user and happens only on a first time discovery of a Cisco NCS 5000 Series satellite. Subsequent reloads or image upgrades will not trigger or require an extra reload.

Note

Connect the 10GigE or 100GigE fibers (in any order) from the Host to any of the 10G SFP+ ports on the

Satellite device.

Note

The Satellite nV service can use Cisco ASR 9000 Series Router or Cisco ASR 9001 and Cisco ASR 9922

Series Routers as hosts. The Cisco ASR 9000v, Cisco NCS 5000 Series Routers can be used as satellite devices.

To configure wavelength on DWDM SFP+, use the following CLI command on satellite console:

test dwdm wavelength set ppmId wavelength_channel_number

Note

ppmId = port number -1

The following example shows how to configure wavelength channel 20 on port 45.

Satellite#

test dwdm wavelength set 44 20

56

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Overview of SyncE in Satellite nV System

To see the configured wavelength, use the following CLI command on satellite console:

show satellite dwdm-dump ppmId

show satellite inventory port 45

Note

It is mandatory to configure the same wavelength on both hosts and satellite, you can follow the same steps above on the hosts.

3

Configure the host for nV operations as described in the sections

Defining the Satellite nV

System

, Configuring the Host IP Address , and

Configuring the Inter-Chassis Links and IP Connectivity

.

4

Power up the chassis of the satellite device.

Note

For power supply considerations of ASR 9000v, refer to the Appendix C, Cisco ASR 9000 and Cisco CRS

Satellite Systems of the Cisco ASR 9000 Series Aggregation Services Router Hardware Installation Guide online.

5

You can check the status of the satellite chassis based on these chassis error LEDs on the front face plate.

• If the Critical Error LED turns ON, then it indicates a serious hardware failure.

• If the Major Error LED turns ON, then it indicates that the hardware is functioning well but unable to connect to the host.

• If the Critical and Major LEDs are OFF, then the satellite device is up and running and connected to the host.

• You can do satellite ethernet port packet loopback tests through the host, if needed, to check end to end data path.

Note

When the satellite software requires an upgrade, it notifies the host. You can do an inband software upgrade from the host, if needed. Use the show nv satellite status on the host to check the status of the satellite.

Note

For the satellite image upgrade to work, you must ensure that the management-plane CLI is not configured on the Cisco ASR 9000 Series Router. If it is configured, then you need to add this exception for each of the 10GigE interfaces, which are the satellite ICLs. This is not required for auto IP configurations from

Cisco IOS XR Software Release 5.3.2.

Overview of SyncE in Satellite nV System

Cisco IOS XR Software Release 5.2.0 supports Synchronous Ethernet (SyncE), a physical layer frequency protocol used to provide frequency synchronization in an nV satellite system both from the host to the satellites, and from the satellites to downstream devices.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

57

Configuring the Satellite Network Virtualization (nV) System

Restrictions of SyncE in Satellite nV System

Synchronous Ethernet (SyncE) is a physical layer frequency protocol used to provide frequency synchronization in an nV satellite system both from the host to the satellites, and from the satellites to downstream devices.

SyncE can be configured on hosts and the host's fabric interfaces and satellite-specific configuration is not required. SyncE is disabled on the satellite until Ethernet Synchronization Messaging Channel (ESMC) messages are received from the host; when an ESMC message is received, the satellite enables SyncE on fabric and access ports.

SyncE configuration is available to explicitly enable SyncE on a per-fabric basis.

Satellite Discovery And Control (SDAC) messages are sent from the host to the satellite to enable or disable

SyncE and to inform the satellite of the Quality Level (QL) level to use.

SyncE is enabled on receiving an Inter-Chassis Link (ICL) and all cross-linked access ports.

The show frequency synchronization interfaces and clear frequency synchronization esmc statistics commands on the host are extended to include satellite access ports.

Restrictions of SyncE in Satellite nV System

The following are some of the restrictions of Synchronous Ethernet within an nV satellite system:

• Only limited SyncE support is provided to customers in release 5.2.0.

• ASR9000v and NCS 5000 are the supported satellites.

• Hub-and-spoke (Dual-home) is the only supported topology.

• Physical and Bundle ICLs are supported.

• Host cannot synchronize to the satellite.

• Minimal configuration support.

• Minimum show command support.

• Only supported for directly connected satellites in hub-and-spoke topologies.

• Commands to configure the host's fabric interfaces as SyncE inputs are not permitted, as synchronizing the host to one of its sites is not supported.

• Application of Frequency Synchronization configuration commands on the satellite access ports is not permitted.

• SyncE features will not work on Copper SFPs and GLC-GE-100FX SFPs.

• SyncE is supported only on 10G ICL ports of ASR9000v1/v2 satellites operating in 10G mode.

• SyncE is not supported on 1G ICL ports and 10G ICL ports operating in 1G mode of ASR9000v1/v2 satellites.

Hub-and-Spoke Topology for Frequency Synchronization

A hub-and-spoke topology is the simplest topology where a centralized hub is connected to the peripherals called "spokes". The hub-and-spoke is the simplest topology used in Frequency Synchronization in an nV satellite system. In this topology, the satellites are directly connected to the host by using several links or a single link bundle. The methods are as follows:

58

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring SyncE on ASR 9000 Hosts

Satellite connected with several devices—The satellites are connected to the host through several links.

Satellites connected with a link bundle— The satellites are connected to the host through a single link bundle.

Note

The connection between host and satellite can be established and routed over an L2 access network.

The Inter-Chassis Links (ICLs) appear as point-to-point links for the host and the satellite. When you set up a dual-host satellite, ensure that you apply identical configuration on each host to avoid synchronizing the configuration between the two hosts.

Configuring SyncE on ASR 9000 Hosts

To implement satellite synchronization using SyncE:

• The host is configured to derive a frequency signal from the external clock source and to provide frequency synchronization to the satellites using the host's fabric interfaces.

• No satellite based configuration is required. The user must configure the frequency synchronization feature considering the host as a standalone or non-nV device. The user must configure SyncE on the fabric interfaces using the existing Frequency Synchronization configuration.

Note

In dual host system, the Frequency Synchronization configuration on both the hosts must be identical to ensure consistency if one of the hosts fail.

• After receiving the valid SyncE signal and the Quality Level (QL) that the associated Ethernet

Synchronization Message Channel Synchronization Status Messages (ESMC SSMs) over one or more of its fabric links, the satellite selects one of the fabric links to synchronize to, and uses this timing stream to drive SyncE output on its access interfaces.

Note

There is no configuration that controls the behavior of the satellite device and synchronization is enabled automatically on both its fabric interfaces and access interfaces after SyncE information is received.

• You can configure any downstream device to synchronize with this SyncE signal.

Basic Configuration:

• Configuration of Frequency Synchronization on the host(s) includes:

• Configuring external clock source as frequency input.

• Configuring fabric interfaces as SyncE outputs, with ESMC output.

• SyncE is disabled by default. It will be automatically enabled on the satellite after ESMC packet is received.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

59

Configuring the Satellite Network Virtualization (nV) System

Configuration Examples of SyncE on ASR9000 Hosts

• Frequency Synchronization show commands on the host to verify the state of the satellite. The show

frequency synchronization interfaces command is extended to show satellite access port information.

Configuration Examples of SyncE on ASR9000 Hosts

Dual-home Satellite Configuration:

The following are configuration examples for the dual-home satellite configuration.

Configuring the ASR 9000v as a satellite in Host A:

nv satellite 100 type asr9000v ipv4 address 100.0.0.3

!

!

description sat100 serial-number CAT1708U0NA

Configuring the ASR 9000v as a satellite in Host B:

nv satellite 100 type asr9000v ipv4 address 100.0.0.3

description sat100

!

!

serial-number CAT1708U0NA

Configuring the fabric interface for the satellite on Host A:

interface Loopback100 ipv4 address 100.0.0.1 255.255.255.0

!

interface Bundle-Ether100 ipv4 point-to-point ipv4 unnumbered Loopback100 nv satellite-fabric-link satellite 100 redundancy iccp-group 1

!

!

!

remote-ports GigabitEthernet 0/0/0-43

!

interface TenGigE0/0/0/0 bundle id 100 mode on

!

Configuring the fabric interface for the satellite on Host B:

interface Loopback100 ipv4 address 100.0.0.2 255.255.255.0

!

interface TenGigE0/0/0/0 ipv4 point-to-point ipv4 unnumbered Loopback100 nv satellite-fabric-link satellite 100 redundancy

!

iccp-group 1

!

remote-ports GigabitEthernet 0/0/0-43

60

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuration Examples of SyncE on ASR9000 Hosts

!

!

Configuring ICCP Redundancy and MPLS LDP on Host A:

redundancy iccp group 1 member

!

!

!

neighbor 70.0.0.2

!

mpls ldp router-id 70.0.0.1

address-family ipv4 discovery targeted-hello accept

!

interface TenGigE0/0/0/1

!

!

Configuring ICCP Redundancy and MPLS LDP on Host B:

redundancy iccp group 1 member neighbor 70.0.0.1

!

!

!

!

mpls ldp router-id 70.0.0.2

address-family ipv4

!

!

discovery targeted-hello accept interface TenGigE0/0/0/1

!

Configuring ICCP Interface IP Address on Host A:

interface TenGigE0/0/0/1

!

ipv4 address 70.0.0.1 255.255.255.0

Configuring ICCP Interface IP Address on Host B:

interface TenGigE0/0/0/1 ipv4 address 70.0.0.2 255.255.255.0

!

SyncE Configuration:

In general, the Frequency Synchronization is configured in global mode for Host A, Host B, and downSsream device (ASR 9000).

Configuring Frequency Synchronization in Global mode on Host A:

By default, QL option 1 is supported with the frequency synchronization configuration in global mode. In addition, you can also explicitly configure QL option 1 or 2 as: frequency synchronization quality itu-t option 2 generation 2

!

Configuring Frequency Synchronization in Global mode on Host B:

frequency synchronization quality itu-t option 2 generation 2

!

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

61

Configuring the Satellite Network Virtualization (nV) System

Configuration Examples of SyncE on ASR9000 Hosts

Configuring Frequency Synchronization in Global mode in downstream Device (ASR 9000):

frequency synchronization quality itu-t option 2 generation 2 clock-interface timing-mode system

!

Configuring Clock Interface on Host A:

clock-interface sync 0 loca 0/RSP0/CPU0 port-parameters

!

bits-input e1 crc-4 sa4 hdb3 frequency synchronization selection input priority 1 wait-to-restore 0 ssm disable

!

quality receive exact itu-t option 2 generation 2 PRS

!

Configuring Clock Interface on Host B:

clock-interface sync 0 loca 0/RSP0/CPU0 port-parameters bits-input e1 crc-4 sa4 hdb3

!

frequency synchronization selection input priority 1 wait-to-restore 0 ssm disable

!

!

quality receive exact itu-t option 2 generation 2 PRS

Configuring Clock Interface in Downstream Device (ASR 9000):

clock-interface sync 0 location 0/RSP0/CPU0 port-parameters

!

bits-output e1 crc-4 sa4 hdb3 frequency synchronization wait-to-restore 0

!

ssm disable

!

Configuring Frequency Synchronization in ICLs

SyncE is configured at the physical interface level for both physical and bundle ICLs.

Host A Configuration:

interface TenGigE0/0/0/0 bundle id 100 mode on frequency synchronization

!

!

wait-to-restore 0 quality transmit exact itu-t option 2 generation 2 PRS

Host B Configuration:

interface TenGigE0/0/0/0 ipv4 point-to-point ipv4 unnumbered Loopback100 frequency synchronization wait-to-restore 0

!

quality transmit exact itu-t option 2 generation 2 STU nv satellite-fabric-link satellite 100 redundancy iccp-group 1

!

remote-ports GigabitEthernet 0/0/0-20

62

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Upgrading and Managing Satellite nV Software

!

!

!

Configuring SyncE on the interface connected to Sat-Ether ports in downstream device (ASR 9000):

interface GigabitEthernet0/0/0/0 frequency synchronization

!

selection input

!

wait-to-restore 0

Configuring NCS 5000 as Satellite:

nv satellite 100 type ncs5002 frequency synchronization quality itu-t option 1 interface loopback0 ipv4 address 10.2.3.5

interface TenGigE 0/0/0/1 frequency synchronization ipv4 point-to-point ipv4 unnumbered loopback 0 nv satellite-fabric-link satellite 100 frequency synchronization remote-ports TenGigE 0/0/0 clock-interface sync 0 location 0/RSP0/CPU0 port-parameters bits-in 2m frequency synchronization selection input ssm disable quality-level receive exact itu-t option 1 PRC

Upgrading and Managing Satellite nV Software

Satellite software images are bundled inside a PIE and the PIE name is dependent on the type of satellite, such as asr9k-9000v-nV-px.pie within the Cisco ASR 9000 Series Router package. The Cisco IOS XR software production SMU tool can be used to generate patches for the satellite image in the field to deliver bug fixes or minor enhancements without requiring a formal software upgrade.

For more information on auto image upgrade supported from Cisco IOS XR Software Release 5.3.2 and later, see

nV Satellite Auto Image Upgrade, on page 42

.

Image Upgrade for Cisco ASR 9000v Satellite

The asr9k-asr9000v-nV-px.pie contains two sets of binaries, namely, the intermediate binaries and the final binaries. When a Satellite nV system running Cisco IOS XR Software prior to Cisco IOS XR Software Release

5.1.1 is upgraded to Cisco IOS XR Release 5.1.1, the satellite downloads the intermediate binaries and reloads as per the instructions of the operator. These intermediate binaries include the logic to request the file name from the host rather than hard coding the file name. Also, they automatically trigger the second download

(final binaries) without requiring manual intervention. When a Satellite nV system running Cisco IOS XR

Software Release 5.1.1 or later is upgraded to Cisco IOS XR Software Release 5.3.x, the satellite does not require intermediate image transfers and reloads once with the latest image.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

63

Configuring the Satellite Network Virtualization (nV) System

Prerequisites

Note

The show nv satellite status command does not display the intermediate version. However, it displays the final Cisco IOS XR Software Release 5.1.1 and prompts for any further upgrade. But, internally two reloads happen. On the other hand, when you upgrade from Cisco IOS XR Release 5.1.x to future releases, two reloads do not occur. When you downgrade, the system does not downgrade two releases. CFM needs to be disabled if image upgrade is done over Bundle ICL for Cisco ASR9000v satellite.

Note

An auto transfer internal message comes up when the second software reload happens, which requires no explicit user-intervention.

Note

For upgrading from a release prior to Cisco IOS XR Software Release 5.1.1, the Satellite nV System must be connected in the Hub and Spoke topology as the previous releases do not support the advanced Satellite system topologies such as dual head, simple ring, or Layer 2 Fabric network topologies.

Image Upgrade for Cisco NCS 5000 Series Satellite

The existing nV pie based satellite image packaging model is extended to Cisco NCS 5000 series satellites from Cisco IOS XR Software Release 6.0.1. The image binary including all device FPD upgrade is done through asr9k-ncs500x-nV-px.pie as in the case of Cisco ASR9000v. The upgrade image for Cisco NCS

5000 Series satellites including firmware is available as an nV pie on the Cisco ASR 9000, which once activated can be used to push images to the relevant satellites in the connected state.

Note

A message indicating a successful image upgrade is displayed in show nv satellite status command even if the image upgrade has failed on the satellite. However the show nv satellite status command will show that satellite does not have the latest image even after the upgrade.

Whereas, in Cisco IOS XR Software Release 5.3.0, in case of a failure, the host tries to transfer the image indefinitely; the upgrade will recover with subsequent retries if the failure is transient. A syslog message on the host indicates that retry is in progress.

On the other hand, for Cisco IOS XR Software Release 5.3.1 and later, in case of a failure, the host tries to transfer the image indefinitely. Additionally, install nv satellite <sat-id> abort command can be used to stop any active image upgrade operations on a particular satellite.

Prerequisites

• You must have installed the satellite installation procedure using the Plug and Play Satellite installation procedure. For more information, see

Plug and Play Satellite nV Switch Turn up: (Rack, Plug, and Go installation)

.

64

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Installing a Satellite

Installing a Satellite

To download and activate the software image on the satellite, use the install nv satellite satellite ID / all

transfer/activate commands. The transfer command downloads the image to the satellite. When the transfer command is followed by the activate command, the software is activated on the satellite.

Note

In the case of simple ring topology, the image must be transferred to all the satellites using install nv

satellite transfer <range of satellites> command followed by install nv satellite activate <range of

satellites> command. You cannot use only the install nv satellite activate command in the case of simple ring topology.

RP/0/RSP0/CPU0:sat-host#

install nv satellite 100 transfer

Install operation initiated successfully.

RP/0/RSP0/CPU0:sat-host#RP/0/RSP0/CPU0:May 3 20:12:46.732 : icpe_gco[1146]:

%PKT_INFRA-ICPE_GCO-6-TRANSFER_DONE : Image transfer completed on Satellite 100

RP/0/RSP0/CPU0:sat-host#

install nv satellite 100 activate

Install operation initiated successfully.

LC/0/2/CPU0:May 3 20:13:50.363 : ifmgr[201]: %PKT_INFRA-LINK-3-UPDOWN : Interface

GigabitEthernet100/0/0/28, changed state to Down

RP/0/RSP0/CPU0:May 3 20:13:50.811 : invmgr[254]: %PLATFORM-INV-6-OIROUT : OIR: Node 100 removed

Note

If the activate command is run directly, then the software image is transferred to the satellite and also activated.

RP/0/RSP0/CPU0:sat-host#

install nv satellite 101 activate

Install operation initiated successfully.

RP/0/RSP0/CPU0:sat-host#RP/0/RSP0/CPU0:May 3 20:06:33.276 : icpe_gco[1146]:

%PKT_INFRA-ICPE_GCO-6-TRANSFER_DONE : Image transfer completed on Satellite 101

RP/0/RSP0/CPU0:May 3 20:06:33.449 : icpe_gco[1146]: %PKT_INFRA-ICPE_GCO-6-INSTALL_DONE :

Image install completed on Satellite 101

RP/0/RSP0/CPU0:May 3 20:06:33.510 : invmgr[254]: %PLATFORM-INV-6-OIROUT : OIR: Node 101 removed

Note

For the satellite image upgrade to work, you must ensure that the management-plane CLI is not configured on the Cisco ASR 9000 Series Router . If it is configured, then you need to add this exception for each of the 10GigE interfaces, which are the satellite ICLs. This is not required for Auto IP configurations from

Cisco IOS XR Software Release 5.3.2.

Ensure that the tftp homedir, tftp vrf default ipv4 server homedir disk0 is not configured on the host when using manual IP default configuration, because this may cause the image transfer to fail.

You can include the exception using this CLI: control-plane management-plane inband

!

!

interface TenGigE0/0/0/5 <===

To enable TFTP on nV satellite ICL

allow TFTP

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

65

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Software

If you do not include this exception, then the image download and upgrade fails.

Monitoring the Satellite Software

Status Check

To perform a basic status check, use the show nv satellite status brief command.

RP/0/RSP0/CPU0:router#

show nv satellite status brief

Sat-ID Type IP Address MAC address State

--------------------------------------------------------------------

100

200

400 asr9000v 101.102.103.105

dc7b.9426.1594

Connected (Stable) asr9000v 101.102.103.106

0000.0000.0000

Halted; Conflict: no links configured

194.168.9.9

0000.0000.0000

Halted; Conflict: satellite has no type configured

These show commands display the status of Cisco NCS 5002 satellite:

RP/0/RSP0/CPU0:TARDIS#

show nv satellite status brief

Sat-ID Type IP Address MAC address State

--------------------------------------------------------------------

100 ncs5002 10.0.100.1

c472.95a6.2003

Connected

Check if Upgrade is Required

To check if an upgrade is required on satellite, run the show nv satellite status satellite satellite_id.

RP/0/RSP0/CPU0:router# show nv satellite status satellite 100

Satellite 100

-------------

State: Connected (Stable)

Type: asr9000v

Description: sat-test

MAC address: dc7b.9427.47e4

IPv4 address: 100.1.1.1

Configured Serial Number: CAT1521B1BB

Received Serial Number: CAT1521B1BB

Remote version: Compatible (latest version)

ROMMON: 125.0 (Latest)

FPGA: 1.13 (Latest)

IOS: 200.8 (Latest)

Configured satellite fabric links:

TenGigE0/2/0/6

--------------

State: Satellite Ready

Port range: GigabitEthernet0/0/0-9

TenGigE0/2/0/13

---------------

State: Satellite Ready

Port range: GigabitEthernet0/0/30-39

TenGigE0/2/0/9

--------------

State: Satellite Ready

Port range: GigabitEthernet0/0/10-19

RP/0/RSP0/CPU0:TARDIS#

show nv satellite status satellite 100

-------------

Satellite 100

-------------

Status: Connected (Installing new image)

Type: ncs5002

Displayed device name: Sat100

MAC address: c472.95a6.0f25

IPv4 address: 10.0.100.1 (auto, VRF: **nVSatellite)

Serial Number: FOC1919R0WA

66

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Software

Remote version: Compatible (older version)

IOFPGA: 0.16

MB_MIFPGA: 0.15

DB_MIFPGA: 0.15

BIOS: 1.07

XR: 6.1.1.08I (Available: 6.1.1.09I)

Received candidate fabric ports: nVFabric-TenGigE0/0/78-79 (permanent) nVFabric-HundredGigE0/1/0-3 (permanent)

Configured satellite fabric links:

TenGigE0/0/0/3

--------------

Status: Satellite Ready

No Port Ranges

Note

The software versions show up as N/A in Cisco IOS XR Software Release 6.0.0 because inband image upgrade and monitoring is supported only from Cisco IOS XR Software Release 6.0.1 for Cisco NCS

5000 series satellites.

Check if Upgrade is Required

To check if an upgrade is required on satellite, run the show nv satellite status satellite satellite_id.

RP/0/RSP0/CPU0:router# show nv satellite status satellite 100

Satellite 100

-------------

State: Connected (Stable)

Type: asr9000v

Description: sat-test

MAC address: dc7b.9427.47e4

IPv4 address: 100.1.1.1

Configured Serial Number: CAT1521B1BB

Received Serial Number: CAT1521B1BB

Remote version: Compatible (latest version)

ROMMON: 125.0 (Latest)

FPGA: 1.13 (Latest)

IOS: 200.8 (Latest)

Configured satellite fabric links:

TenGigE0/2/0/6

--------------

State: Satellite Ready

Port range: GigabitEthernet0/0/0-9

TenGigE0/2/0/13

---------------

State: Satellite Ready

Port range: GigabitEthernet0/0/30-39

TenGigE0/2/0/9

--------------

State: Satellite Ready

Port range: GigabitEthernet0/0/10-19

Output of Status Check

This example shows the output of show nv satellite status command for a Satellite configured in dual home network topology.

RP/0/RSP0/CPU0:router#

show nv satellite status

Satellite 100

-------------

Status: Connected (Stable)

Redundancy: Active (Group: 10)

Type: asr9000v

Description: sat100

MAC address: 4055.3958.61e4

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

67

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Software

IPv4 address: 100.100.1.2 (VRF: default)

Serial Number: CAT1604B1AN

Remote version: Compatible (not latest version)

ROMMON: 126.0 (Latest)

FPGA: 1.13 (Latest)

IOS: 322.5 (Available: 322.3)

Configured satellite fabric links:

TenGigE0/1/0/0

--------------

Status: Satellite Ready

Remote ports: GigabitEthernet0/0/30-43

TenGigE0/1/0/1

--------------

Status: Satellite Ready

Remote ports: GigabitEthernet0/0/0-29

This example shows the sample output of a satellite interfaces over redundant ICL.

RP/0/RSP0/CPU0:router#

show sits interface gig 300/0/0/0

Interface Name

Interface IFHandle

Base Interface

Base Interface IFHandle

LAG Hash Index

Published Base interface

Published Base ifh

Published LAG Hash

Sat Interface State in DB

: GigabitEthernet300/0/0/0

: 0x020058a0

: TenGigE0/0/0/0

: 0x000001c0

: 2

: TenGigE0/0/0/0

: 0x000001c0

: 2

: Republish Success

This command shows a sample output whether the bundle over bundle satellite interface is replicated.

RP/0/RSP1/CPU0:router#

show bundle infrastructure ea bundle-ether 101 detail

Bundle-Ether101

Node Platform Information

--------------------------------

0/0/CPU0 Ifhandle : 0x02004d60

Channel Map : 0x3

Node: 0/0/CPU0

Member Platform Information

---------------------------------

Gi300/0/0/3 Ifhandle : 0x020057e0

Channel Map : 0x3

UL Id : 0

Base Interfaces

Count : 2

Ifhandle : 0x000001c0 0x00000140 0x00000000 0x00000000

Note

In this example output, Remote version, ROMMON, FPGA, and IOS must show the latest version. If it does not, an upgrade is required on the satellite. The version numbers displayed are the installed version on the ASR 90000v. If a version number is displayed, instead of latest key word in the above output, that would correspond to the ASR9000v image bundles in the satellite pie.

Note

show tech from satellite devices can be pulled out remotely using show tech-support satellite remote

satellite [sat id] file disk0:/[filename] option for offline analysis of the states on the satellite device. This works for Cisco ASR 9000v2 and Cisco NCS 500x series satellites.

68

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Show Commands for Advanced Network Topologies

Show Commands for Advanced Network Topologies

The following examples show commands used for Dual Home Network Topology and Simple Ring Topology.

Dual Home Network Topology

RP/0/RSP1/CPU0:Router#

show iccp group 10

Redundancy Group 10 member ip:1.1.1.1 (vkg1), up (connected) monitor: route-watch (up)

No backbone interfaces.

enabled applications: SatelliteORBIT isolation recovery delay timer: 30 s, not running

RP/0/RSP1/CPU0:Router#

show nv satellite protocol redundancy

ICCP Group: 10

--------------

Status: Connected since 2014/01/22 15:47:35.845

Role: Primary (System MAC: 0000.0001.1234)

Channels:

Control (0)

-----------

Channel status: Open

Messages sent: 8 (4 control), received: 6 (3 control).

Topology (14)

-------------

Channel status: Open

Messages sent: 4 (3 control), received: 11 (0 control).

## active host:

RP/0/RSP1/CPU0:Router#

show nv satellite status satellite 200

Satellite 200

-------------

Status: Connected (Stable)

Redundancy: Active (Group: 10)

Type: asr9000v

MAC address: 8478.ac01.d2d8

IPv4 address: 192.1.1.200 (VRF: default)

Serial Number: CAT1708U0LV

Remote version: Compatible (latest version)

ROMMON: 126.0 (Latest)

FPGA: 1.13 (Latest)

IOS: 322.6 (Latest)

Configured satellite fabric links:

TenGigE0/0/0/1

--------------

Status: Satellite Ready

Remote ports: GigabitEthernet0/0/0-10

##Standby host:

RP/0/RSP1/CPU0:Router# show nv satellite status satellite 200

Satellite 200

-------------

Status: Connected (Stable)

Redundancy: Standby (Group: 10)

Type: asr9000v

MAC address: 8478.ac01.d2d8

IPv4 address: 192.1.1.200 (VRF: default)

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

69

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Protocol Status

Serial Number: CAT1708U0LV

Remote version: Compatible (latest version)

ROMMON: 126.0 (Latest)

FPGA: 1.13 (Latest)

IOS: 322.6 (Latest)

Configured satellite fabric links:

TenGigE0/3/0/6

--------------

Status: Satellite Ready

Remote ports: GigabitEthernet0/0/0-10

Simple Ring Topology

RP/0/RSP1/CPU0:Router# show nv satellite topology interface tenGigE 0/3/0/6

TenGigE0/3/0/6

--------------

Redundancy-Group: 10

Discovery status: Running

Satellites:

Satellite 100 (BVID 2002)

-------------------------

Received Serial Number: CAT1547B30S

MAC address: 4055.3957.5f50

Satellite fabric links:

TenGE/0/0/0 (Remote ID: 0x1):

Host (TenGigE0/3/0/6)

TenGE/0/0/3 (Remote ID: 0x4):

Sat 200 (TenGE/0/0/3 (Remote ID: 0x4))

Satellite 200 (BVID 2003)

-------------------------

Received Serial Number: CAT1708U0LV

MAC address: 8478.ac01.d2d8

Satellite fabric links:

TenGE/0/0/3 (Remote ID: 0x4):

Sat 100 (TenGE/0/0/3 (Remote ID: 0x4))

TenGE/0/0/0 (Remote ID: 0x1):

Remote port not yet identified

Monitoring the Satellite Protocol Status

To check the status of the satellite discovery protocol, use the show nv satellite protocol discovery command.

RP/0/RSP0/CPU0:router#

show nv satellite protocol discovery brief

Interface Sat-ID Status Discovered links

----------------------------------------------------------------------

Te0/1/0/0 100 Satellite Ready Te0/1/0/0

Te0/1/0/1 100 Satellite Ready Te0/1/0/1

(Or)

RP/0/RSP0/CPU0:router# show nv satellite protocol discovery interface TenGigE 0/1/0/0

Satellite ID: 100

Status: Satellite Ready

Remote ports: GigabitEthernet0/0/0-15

Host IPv4 Address: 101.102.103.104

Satellite IPv4 Address: 101.102.103.105

Vendor: cisco, ASR9000v-DC-E

Remote ID: 2

Remote MAC address: dc7b.9426.15c2

Chassis MAC address: dc7b.9426.1594

RP/0/RSP0/CPU0:TARDIS#

show nv satellite protocol discovery brief

Interface Sat-ID Status Discovered links

----------------------------------------------------------------------

Hu0/1/0/0 100 Satellite ready Hu0/1/0/0

70

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Inventory

To check the status of the satellite control protocol status, use the show nv satellite protocol control command.

RP/0/RSP0/CPU0:router#

show nv satellite protocol control brief

Sat-ID IP Address Protocol state Channels

----------------------------------------------------------------

101.102.103.105

EnvMon, Alarm

Connected Ctrl, If-Ext L1, If-Ext L2, X-link, Soft Reset, Inventory,

RP/0/RSP0/CPU0:shanghai# sh nv satellite protocol control

Satellite 100

-------------

IP address: 101.102.103.105

Status: Connected

Channels:

Control

-------

Channel status: Open

Messages sent: 24 (24 control), received: 23 (23 control).

Interface Extension Layer 1

---------------------------

Channel status: Open

Messages sent: 7 (3 control), received: 14 (2 control).

Interface Extension Layer 2

---------------------------

Channel status: Open

Messages sent: 11 (3 control), received: 10 (2 control).

Interface Extension Cross-link

------------------------------

Channel status: Open

Messages sent: 4 (3 control), received: 3 (2 control).

RP/0/RSP0/CPU0:TARDIS#

show nv satellite protocol control brief

Sat-ID IP Address Protocol state Channels

----------------------------------------------------------------------

100 10.0.100.1

Connected Ctrl, If-ExtL1, If-Ext L2, X-link,

VICL, DevMgmt, Inventory, EnvMon,

Alarm, Password, Topology,

To check the status of satellite protocol redundancy, use the show nv satellite protocol redundancy command.

RP/0/RSP0/CPU0:router#

show nv satellite protocol redundancy

ICCP Group: 10

--------------

Status: Connected since 2014/01/11 08:44:58.764

Role: Secondary (System MAC: 6c9c.ed23.c4e6)

Channels:

Control (0)

-----------

Channel status: Open

Messages sent: 18 (9 control), received: 24 (12 control).

Topology (14)

-------------

Channel status: Open

Messages sent: 88 (10 control), received: 60 (0 control).

Monitoring the Satellite Inventory

You can use the show inventory chassis, show inventory fans commands in the admin configuration mode to monitor the status of satellite inventory.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

71

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Inventory

Note

Along with a physical entity for the ASR-9000v/v2 satellite, logical entities are also created for the satellite and the power module. Both these entities (physical and logical) are seen in the inventory details command output and in SNMP MIBs. The logical entities can be identified by the lack of serial number (SN) and version identifier (VID).

RP/0/RSP0/CPU0:router(admin)#

show inventory chassis

NAME: "module 0/RSP0/CPU0", DESCR: "ASR9K Fabric, Controller, 4G memory"

PID: A9K-RSP-4G, VID: V02, SN: FOC143781GJ

...

NAME: "fantray SAT100/FT0/SP", DESCR: "ASR9000v"

PID: ASR-9000v-FTA, VID: V00 , SN: CAT1507B228

NAME: "module SAT100/0/CPU0", DESCR: "ASR-9000v GE-SFP Line Card"

PID: ASR-9000v, VID: N/A, SN: */Logical Entity of the Satellite/*

NAME: "module mau GigabitEthernet100/0/CPU0/8", DESCR: "CISCO-AVAGO

PID: SFP-GE-S, VID: V01, SN: AGM1424P08N

"

NAME: "module mau TenGigE100/0/CPU0/3", DESCR: "CISCO-FINISAR "

PID: SFP-10G-SR, VID: V02, SN: FNS144502Y3

NAME: "power-module SAT100/PM0/SP", DESCR: "ASR-9000v Power Module"

PID: ASR-9000v, VID: N/A, SN: */Logical Entity of the Power Module/*

NAME: "Satellite Chassis ASR-9000v ID 100", DESCR: "ASR9000v"

PID: ASR-9000v-AC-A, VID: V00 , SN: CAT12345678*/Physical Entity of the Satellite/*

RP/0/RSP0/CPU0:router(admin)#

show inventory fans

NAME: "fantray 0/FT0/SP", DESCR: "ASR-9006 Fan Tray"

PID: ASR-9006-FAN, VID: V02, SN: FOX1519XHU8

NAME: "fantray 0/FT1/SP", DESCR: "ASR-9006 Fan Tray"

PID: ASR-9006-FAN, VID: V02, SN: FOX1519XHTM

NAME: "fantray SAT100/FT0/SP", DESCR: "ASR9000v"

PID: ASR-9000v-FTA, VID: V01 , SN: CAT1531B4TC

NAME: "fantray SAT101/FT0/SP", DESCR: "ASR9000v"

PID: ASR-9000v-FTA, VID: V01 , SN: CAT1542B0LJ

NAME: "fantray SAT102/FT0/SP", DESCR: "ASR9000v"

PID: ASR-9000v-FTA, VID: V01 , SN: CAT1531B4T7

RP/0/RSP0/CPU0:sat-host(admin)#

show inventory | b GigabitEthernet100/

NAME: "module mau GigabitEthernet100/0/CPU0/0", DESCR: "CISCO-FINISAR "

PID: SFP-GE-S, VID: , SN: FNS11350L5E

NAME: "module mau GigabitEthernet100/0/CPU0/1", DESCR: "CISCO-FINISAR "

PID: SFP-GE-S, VID: V01, SN: FNS0934M290

NAME: "module mau GigabitEthernet100/0/CPU0/2", DESCR: "CISCO-FINISAR "

PID: SFP-GE-S, VID: , SN: FNS12280L59

RP/0/RSP0/CPU0:TARDIS(admin)#

show inventory

...

NAME: "fantray SAT100/FT0/SP", DESCR: "Cisco NCS 5002 Series Router Fan Back"

PID: NCS-5002-FN-BK, VID: N/A, SN: N/A

NAME: "fantray SAT100/FT1/SP", DESCR: "Cisco NCS 5002 Series Router Fan Back"

PID: NCS-5002-FN-BK, VID: N/A, SN: N/A

NAME: "power-module SAT100/PM0/SP", DESCR: "Cisco NCS 5000 Series Router power AC 650W Back"

PID: NC5K-PAC-650W-BK=, VID: V01, SN: LIT1919198Z

NAME: "power-module SAT100/PM1/SP", DESCR: "Cisco NCS 5000 Series Router power AC 650W Back"

72

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Monitoring the Satellite Environment

PID: NC5K-PAC-650W-BK=, VID: V01, SN: LIT1919199H

NAME: "Satellite Chassis NCS5002 ID 100", DESCR: "80-Port 10 GE + 4-Port 100GE NCS5002

Chassis"

PID: NCS-5002, VID: V00, SN: FOC1920R0V7

RP/0/RSP0/CPU0:TARDIS(admin)#

show inventory rack

Rack Chassis PID S/N

----

0

100

------------

ASR-9904-AC

NCS-5002

----------

FOX1739G94Y

FOC1920R0V7

Monitoring the Satellite Environment

You can use theshow environment temperatures and show environment fanscommands in the admin configuration mode to monitor the status of satellite environment.

RP/0/RSP0/CPU0:router(admin)#

show environment temperatures

(deg C) R/S/I Modules Sensor

0/RSP0/* host host

Inlet0

Hotspot0

0/RSP1/* host host

Inlet0

Hotspot0

33.1

46.9

32.1

45.9

0/0/* host host

0/1/* spa0 spa0

0/2/* host host

0/3/* host host

0/FT0/* host host spa1 spa1 spa1 spa1 spa1 host host

0/FT1/* host host

SAT100/FT0/* host

Inlet0

Hotspot0

InletTemp

Hotspot

LocalTemp

Chan1Temp

Chan2Temp

Chan3Temp

Chan4Temp

Inlet0

Hotspot0

Inlet0

Hotspot0

Inlet0

Hotspot0

Inlet0

Hotspot0

Inlet0

Hotspot0

Hotspot0

37.3

52.3

34.0

34.5

38.0

36.0

39.0

39.0

48.0

36.1

64.0

39.2

54.6

41.3

48.5

42.3

36.1

40.4

35.8

53.0

SAT101/FT0/* host Hotspot0

SAT102/FT0/* host Hotspot0

56.0

53.0

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

73

Configuring the Satellite Network Virtualization (nV) System

Reloading the Satellite and Monitoring DOM Parameters

RP/0/RSP0/CPU0:router(admin)#

show environment fans

Wed Apr 8 17:40:00.313 UTC

Fan speed (rpm) and run time (in hours) :

FAN9

FAN0 FAN1 FAN2 FAN3

FAN10 FAN11 FAN12 FAN13

FAN4

0/FT0/* (Speed)

7980

N/A

7980

7890

N/A

7830

8010

0/FT0/* (Run Time)

N/A N/A

N/A

7920

8010

N/A

8010

7950

N/A

N/A

SAT100/FT0/*

15000 14117 14117 0

7920

N/A

FAN5

7920

N/A

FAN6 FAN7

7920

N/A

7950

N/A

FAN8

7920

N/A

\

\

N/A \

Reloading the Satellite and Monitoring DOM Parameters

In order to reload the satellite device, use the hw-module satellite satellite id/all reload command.

RP/0/RSP0/CPU0:router#

hw-module satellite 101 reload

Reload operation completed successfully.

RP/0/RSP0/CPU0:May 3 20:26:51.883 : invmgr[254]: %PLATFORM-INV-6-OIROUT : OIR: Node 101 removed

In order to see the DOM parameters of the SFPs and XSPs or access ports and ICL ports of the satellite, use the show controllers gigabitEthernet interface phy command.

For access ports

RP/0/RSP0/CPU0:Saturn#show controllers gigabitEthernet 100/0/0/22 phy

Wed Apr 8 17:42:32.100 UTC

Port: 22

Xcvr Type: SFP

Vendor Name: CISCO-FINISAR

CLEI Code: IPUIALJRAA

Part Number: 10-2143-01V01

Product Id: SFP-GE-S

Thresholds:

Warning Low

-13C

Temperature:

Voltage:

Alarm High

Alarm Low

109C

-29C

3900uV

Warning High

103C

3700uV

2900uV

Bias:

2700uV

15mAmps 12mAmps

2mAmps 1mAmps

Transmit Power: 0.63100 mW (-1.99971 dBm) 0.63100 mW (-1.99971 dBm)

0.07900 mW (-11.02373 dBm) 0.06600 mW (-11.80456 dBm)

Receive Power: 1.25800 mW (0.99681 dBm) 0.79400 mW (-1.00179 dBm)

0.01500 mW (-18.23909 dBm) 0.01000 mW (-20.00000 dBm)

Temperature: 32 C

Voltage: 3327 uV

Bias: 5 mAmps

Tx Power: 0.28100 mW (-5.51294 dBm)

Rx Power: 0.000 mW (<-40.00 dBm)

For ICL port

RP/0/RSP0/CPU0:Saturn#show controllers nvFabric-TenGigE 100/0/0/46 phy

Wed Apr 8 17:46:57.045 UTC

Port: 46

Xcvr Type: SFP

Vendor Name: CISCO-FINISAR

CLEI Code: COUIA75CAA

Part Number: 10-2457-02V02

\

\

\

\

\

\

74

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Port Level Parameters Configured on a Satellite

Product Id: SFP-10G-LR

Thresholds:

Warning Low

Temperature:

0C

Voltage:

3135uV

Alarm High

Alarm Low

75C

-5C

3630uV

2970uV

Warning High

70C

3465uV

2mAmps

Bias: 70mAmps

1mAmps

68mAmps

Transmit Power: 2.23800 mW (3.49860 dBm) 1.12200 mW (0.49993 dBm)

0.15100 mW (-8.21023 dBm) 0.06000 mW (-12.21849 dBm)

Receive Power: 2.23800 mW (3.49860 dBm) 1.12200 mW (0.49993 dBm)

0.03600 mW (-14.43697 dBm) 0.01400 mW (-18.53872 dBm)

Temperature: 30 C

Voltage: 3366 uV

Bias: 34 mAmps

Tx Power: 0.86300 mW (-0.63989 dBm)

Rx Power: 1.01000 mW (0.04321 dBm)

Port Level Parameters Configured on a Satellite

These are the port-level parameters that can be configured on a satellite nV system:

• Admin state (shut and no shut)

• Ethernet MTU

\

\

\

\

\

\

Note

For Cisco ASR 9000v access ports, the maximum MTU is 9212 for a hub and spoke topology and 9194 for a ring or L2FAB topology. For Cisco NCS 5000 series satellite access ports, the maximum MTU is 9158.

• Ethernet MAC Address.

• Ethernet link auto-negotiation that includes,

◦Half and full duplex

◦Link speed

◦Flow control

• Static configuration of auto-negotiation parameters such as speed, duplex, and flow control

• Carrier delay

• Layer-1 packet loopback which includes,

◦Line loopback

◦Internal loopback

• All satellite access port features on Cisco ASR 9000 Series Router.

Loopback Types on Satellite Ports

There are two types of loopback interfaces that can be configured on satellite ports. They are,

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

75

Configuring the Satellite Network Virtualization (nV) System

Configuration Examples for Satellite nV System

• Line Loopback

• Internal Loopback

These illustrations show how the loopback interface types function on a satellite.

Figure 12: Line Loopback

Figure 13: Internal Loopback

You can specify the type of loopback to be used, as specified in this example:

Interface GigabitEthernet 100/0/0/0 loopback line | internal

Configuration Examples for Satellite nV System

This section contains configuration examples for the Satellite nV system:

Satellite System Configuration: Example

This example shows a sample configuration to configure connectivity for a Satellite System:

Satellite Global Configuration

The satellite ID, type, serial number, description, and satellite IP address are configured in the satellite global configuration sub-mode: nv satellite 100 type asr9000v serial-number CAT1521B1BB description milpitas bldg20

!

ipv4 address 10.0.0.100

!

ICL (satellite-fabric-link) Interface Configuration

On an interface connected to a Satellite (TenGigE or Bundle interface), the ports associated with the satellite-id must be specified. All fabric links connected to the same Satellite must use the same (Host) IPv4 address.

This Host IPv4 addresses can be used for the same Host to connect to different Satellites.

76

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Satellite System Configuration: Example

Note

Before you remove or change a configuration on an ICL interface, shut down the ICL port.

interface Loopback1000 vrf <vrf_name> ipv4 address 10.0.0.1 255.0.0.0

vrf <vrf_name> interface TenGigE0/2/1/0 description To Sat5 1/46 ipv4 point-to-point ipv4 unnumbered Loopback1000 nv

!

!

satellite-fabric-link satellite 200 remote-ports GigabitEthernet 0/0/0-30

!

Note

To manage satellite traffic, use the IP addresses from the global VRF of the router (shown in the examples).

As mentioned in

Satellite Discovery and Control Protocol IP Connectivity

section, you can use a private

VRF to prevent IP address conflict with global VRF. In such a case, the loopback interface and ICL interface (in the examples) must be assigned to the private VRF dedicated for satellite management traffic.

Satellite Interface Configuration

A Satellite interface can be used like any other regular Gigabit Ethernet interfaces: interface GigabitEthernet200/0/0/0 l2transport

!

!

interface GigabitEthernet200/0/0/0 ip address 99.0.0.1 255.255.255.0

!

!

interface GigabitEthernet200/0/0/2 bundle id 100 mode active

!

!

This is a sample satellite interface configuration in the case of a dual home topology on the active and standby hosts:

Active host: interface GigabitEthernet100/0/0/32

!

ipv4 address 1.1.1.1 255.255.255.0

Active Host

interface GigabitEthernet100/0/0/32 ipv4 address 1.1.1.1 255.255.255.0

!

Standby Host

interface GigabitEthernet100/0/0/32 ipv4 address 1.1.1.1 255.255.255.0

!

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

77

Configuring the Satellite Network Virtualization (nV) System

Configuration of Satellite using Auto-IP

For an L3 interface, the IPv4 protocol states in the output of show ipv4 interface brief command show as up; up on the active host and up; down on the standby host.

Active host:

Up GigabitEthernet100/0/0/32

Standby host:

1.1.1.1

Up

GigabitEthernet100/0/0/32 1.1.1.1

Up

For an L2 interface, the ports show as up on both the hosts.

Active host:

Down

GigabitEthernet100/0/0/33

Standby host:

GigabitEthernet100/0/0/33 unassigned unassigned

Up

Up

Up

Up

Note

You cannot add the satellite interface to the same bundle as the physical ICL link.

Satellite Management Using Private VRF

You can use a special private VRF instead of the global default routing table, to configure the loopback interface and ICLs used for satellite management traffic. IP addresses in this VRF will not conflict with any other addresses used on the router.

router(config)# vrf NV_MGMT_VRF router(config)# address ipv4 unicast router(config)# interface Loopback 1000 router(config)# vrf NV_MGMT_VRF router(config)# ipv4 address 10.0.0.1 / 24 router(config)# interface TenGige 0/1/0/3 router(config)# vrf NV_MGMT_VRF router(config)# ipv4 point-to-point router(config)# ipv4 unnumbered Loopback 1000 router(config)# nv router(config-nv)# satellite-fabric-link satellite 500 router(config-nv)# remote-ports GigabitEthernet 0/0/28-39 router(config)# nv satellite 500 router(config)# ipv4 address 10.0.0.2 / 24

Configuration of Satellite using Auto-IP

show run nv satellite 1200

nv satellite 1200 type asr9000v

!

interface GigabitEthernet0/1/0/5 transceiver permit pid all nv

!

satellite-fabric-link satellite 1200 remote-ports GigabitEthernet 0/0/0-7

!

!

show run nv satellite 100

nv satellite 100 type ncs5002

!

78

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Satellite Configuration with Dual-Homed Hosts

Interface HundredGigE0/1/0/0 nv satellite-fabric-link satellite 100 remote-ports TenGigE 0/0/0-79 interface TenGigE100/0/0/4 ipv4 address 192.100.1.1 255.255.255.0

ipv6 address 2000:100:1::1/64

Satellite Configuration with Dual-Homed Hosts

You can configure satellite with dual-homed hosts as shown in this example.

redundancy iccp group <group-id> member neighbor <ip-address>

!

backbone

!

interface <interface-id> isolation recovery-delay <value> nv satellite system-mac <macaddr>

!

!

!

interface TenGigE0/1/0/0 nv satellite-fabric-link {network | satellite <id>} redundancy

!

iccp-group <group-id>

!

remote-ports <interface-id>

!

nv satellite <id> type <type> device-name <name> redundancy host-priority <0-255>

!

serial-number <serial-number>

!

Dual-Home for Multiple Satellites with Single Physical ICLs on Both Hosts and Satellites

Dual Home Configuration for SAT1

Note

When you use either a manual IP address or an IPv4 unnumbered loopback address for the ICL, the IP address must be different on both the hosts.

Host 1:

interface TenGigE0/1/1/23.100

ipv4 point-to-point

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

79

Configuring the Satellite Network Virtualization (nV) System

Configuring a Satellite nV System in Simple Ring Topology

ipv4 address 100.100.1.101 255.255.255.0

encapsulation dot1q 100 nv satellite-fabric-link satellite 100 redundancy

!

!

!

iccp-group 1

!

remote-ports GigabitEthernet 0/0/0-35

Host 2:

interface TenGigE0/1/1/2.100

ipv4 point-to-point ipv4 address 100.100.1.102 255.255.255.0

encapsulation dot1q 120 nv satellite-fabric-link satellite 100 redundancy

!

iccp-group 1 remote-ports GigabitEthernet 0/0/0-35

Dual Home Configuration for SAT2

Host 1:

Host1: interface TenGigE0/1/1/23.200

ipv4 point-to-point ipv4 address 100.100.1.101 255.255.255.0

encapsulation dot1ad 100 nv satellite-fabric-link satellite 200 redundancy

!

!

!

iccp-group 1

!

remote-ports GigabitEthernet 0/0/0-35

Host 2:

interface TenGigE0/1/1/2.200

ipv4 point-to-point ipv4 address 100.100.1.102 255.255.255.0

encapsulation dot1ad 120 nv satellite-fabric-link satellite 200 redundancy

!

iccp-group 1

!

remote-ports GigabitEthernet 0/0/0-35

Configuring a Satellite nV System in Simple Ring Topology

On Host1

redundancy iccp group 2 member

80

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring a Satellite nV System in Simple Ring Topology

!

neighbor 9.9.9.9

nv satellite system-mac dcdc.dcdc.dcdc

!

!

!

nv satellite 500 type asr9000v ipv4 address 100.100.1.2

description sat500 redundancy host-priority 30

!

serial-number CAT1603U04Q

!

satellite 600 type asr9000v ipv4 address 100.100.1.3

description sat600 redundancy host-priority 30

!

serial-number CAT1603U035

!

satellite 700 type asr9000v ipv4 address 100.100.1.4

description sat700 redundancy host-priority 30

!

serial-number CAT1710U03C

!

satellite 800 type asr9000v

!

!

ipv4 address 100.100.1.5

description sat800 redundancy host-priority 30

!

serial-number CAT1651U09N

RP/0/RSP0/CPU0:HOST1# show runn | b mpls ldp mpls ldp router-id 8.8.8.8

address-family ipv4

!

neighbor 9.9.9.9 targeted interface GigabitEthernet0/1/0/3

!

!

End

RP/0/RSP0/CPU0:HOST1#show runn interface Gi0/1/0/0 interface GigabitEthernet0/1/0/0 ipv4 point-to-point ipv4 unnumbered Loopback10 nv satellite-fabric-link network redundancy iccp-group 2

!

satellite 500

!

remote-ports GigabitEthernet 0/0/0-9 satellite 600

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

81

Configuring a Satellite nV System in Simple Ring Topology

!

remote-ports GigabitEthernet 0/0/0-9 satellite 700 remote-ports GigabitEthernet 0/0/0-9

!

!

!

satellite 800 remote-ports GigabitEthernet 0/0/0-9

!

!

On Host2

nv satellite 500 type asr9000v ipv4 address 100.100.1.2

description sat500 redundancy

!

host-priority 101

!

serial-number CAT1603U04Q satellite 600 type asr9000v ipv4 address 100.100.1.3

description sat600 redundancy

!

host-priority 101

!

serial-number CAT1603U035 satellite 700 type asr9000v ipv4 address 100.100.1.4

description sat700 redundancy

!

host-priority 101

!

serial-number CAT1710U03C satellite 800

!

serial-number CAT1651U09N

!

interface Bundle-Ether10 bundle wait-while 0 load-interval 30 l2transport

!

!

type asr9000v ipv4 address 100.100.1.5

description sat800 redundancy

!

host-priority 101

RP/0/RSP0/CPU0:HOST2# show runn | b mpls ldp mpls ldp router-id 9.9.9.9

address-family ipv4 neighbor 8.8.8.8 targeted

!

interface GigabitEthernet0/0/0/2

!

!

End

Configuring the Satellite Network Virtualization (nV) System

82

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Configuring a Satellite nV System in Layer 2 Fabric Network Topology

RP/0/RSP0/CPU0:HOST2# show runn | b redundancy redundancy iccp group 2 member

!

neighbor 8.8.8.8

nv satellite system-mac dcdc.dcdc.dcdc

!

!

RP/0/RSP0/CPU0:HOST2# show runn interface Gi0/0/0/18 interface GigabitEthernet0/0/0/18 ipv4 point-to-point ipv4 unnumbered Loopback10 nv satellite-fabric-link network redundancy iccp-group 2

!

satellite 500

!

remote-ports GigabitEthernet 0/0/0-9 satellite 600

!

remote-ports GigabitEthernet 0/0/0-9 satellite 700 remote-ports GigabitEthernet 0/0/0-9

!

satellite 800

!

!

!

!

remote-ports GigabitEthernet 0/0/0-9

Configuring a Satellite nV System in Layer 2 Fabric Network Topology

interface TenGigE0/0/0/0.102

ipv4 point-to-point ipv4 unnumbered Loopback0 load-interval 30 encapsulation dot1q 102 nv satellite-fabric-link satellite 300 ethernet cfm continuity-check interval 10ms

!

redundancy

!

iccp-group 10 remote-ports GigabitEthernet 0/0/0-10

Configuring nV Satellite Auto Image Upgrade: Example

The following example shows how to configure nV satellite auto image upgrade: config nv satellite 100 upgrade on-connect

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

83

Configuring the Satellite Network Virtualization (nV) System

Additional References

!

Additional References

These sections provide references to related documents.

Image Upgrade for Cisco NCS 500x Satellite from Cisco IOS XR Software

Release 6.0.0

Prerequisites:

• Cisco NCS 500x satellite has 32GB internal memory and it is upgraded with the latest BIOS.

• Cisco ASR 9000 Host has a RSP3/RSP4 Route processor with at least 2 GB free memory on the disk.

Note

The existing nV pie based satellite image packaging model is extended to Cisco NCS 5000 series satellites from Cisco IOS XR Software Release 6.0.1. The upgrade image for Cisco NCS 5000 series satellites including firmware is available as an nV pie on the Cisco ASR 9000, which once activated can be used to push images to the relevant satellites in the connected state.

Follow these steps to upgrade the image for Cisco NCS 500x Satellite:

1

Copy the new NCS 500x image (ncs5k-mini-x-v2.iso) into the host disk0:.

Note

ncs5k-mini-x-v2.iso is a sample name for illustration purpose. Use the actual Cisco NCS 5000 image from

Cisco webpage for the updated software.

2

Once the satellite is connected and the satellite IP address can be pinged successfully, telnet into the satellite using the username/password combination of root/root.

3

On the satellite telnet console, execute install add source tftp://< HOST ICL IP address>/../../disk0

ncs5k-mini-x-v2.iso. The show install log command on the satellite Telnet console would indicate the install operation progress.

4

Once the install add operation completes and the console message indicates a success, the show install

inactive command displays the package that just got added. Now, execute install activate <package

name> to activate the new image.

5

Finally, the device reboots automatically and comes up with the new image. Once the image boots up completely, the satellite comes back in satellite mode and gets rediscovered.

84

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

Configuring the Satellite Network Virtualization (nV) System

Related Documents

Related Documents

Related Topic

Cisco IOS XR master command reference

Document Title

Cisco IOS XR Master Commands List

Satellite System software upgrade and downgrade on

Cisco IOS XR Software

Cisco ASR 9000 Series Aggregation Services Router

Getting Started Guide

Cisco IOS XR interface configuration commands

Cisco ASR 9000 Series Aggregation Services Router

Interface and Hardware Component Command

Reference

Satellite QoS configuration information for the Cisco

IOS XR software

Cisco ASR 9000 Series Aggregation Services Router

Modular Quality of Service Configuration Guide

Bidirectional Forwarding Detection features on the satellite system

Cisco ASR 9000 Series Aggregation Services Router

Routing Configuration Guide

Layer-2 and L2VPN features on the satellite system

Cisco ASR 9000 Series Aggregation Services Router

L2VPN and Ethernet Services Configuration Guide

Layer-3 and L3VPN features on the satellite system

Cisco ASR 9000 Series Aggregation Services Router

MPLS Layer 3 VPN Configuration Guide

Multicast features on the satellite system

Cisco ASR 9000 Series Aggregation Services Router

Multicast Configuration Guide

Broadband Network Gateway features on the satellite system

Cisco ASR 9000 Series Aggregation Services Router

Broadband Network Gateway Configuration Guide

AAA related information and configuration on the satellite system

Cisco ASR 9000 Series Aggregation Services Router

System Security Configuration Guide

Information about user groups and task IDs

Configuring AAA Services on Cisco IOS XR Software module of Cisco IOS XR System Security

Configuration Guide

Standards

Standards Title

No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

85

Configuring the Satellite Network Virtualization (nV) System

MIBs

MIBs

MIBs

There are no applicable MIBs for this module.

MIBs Link

To locate and download MIBs for selected platforms using Cisco IOS XR software, use the Cisco MIB

Locator found at the following URL:

http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

RFCs

RFCs

None

Title

N.A.

Technical Assistance

Description Link

The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.

http://www.cisco.com/support

86

Cisco ASR 9000 Series Aggregation Services Router nV System Configuration Guide, Release 6.0.x

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement