Whirlpool GOLD W4GH6 Installation instructions

Add to my manuals
20 Pages

advertisement

Whirlpool GOLD W4GH6 Installation instructions | Manualzz

HEAT PUMP INSTALLATION INSTRUCTIONS

Table of Contents

HEAT PUMP SAFETY.....................................................................1

INSTALLATION REQUIREMENTS ................................................1

Tools and Parts ............................................................................2

System Requirements..................................................................2

Location Requirements ................................................................2

Electrical Requirements ...............................................................4

Inspect Shipment .........................................................................4

Flush Refrigerant Lines ................................................................4

Connect Refrigerant Lines ...........................................................6

Make Electrical Connections .......................................................9

Complete Installation .................................................................11

SEQUENCE OF OPERATION ......................................................12

Cooling Cycle .............................................................................12

Heating Cycle .............................................................................12

Defrost Cycle..............................................................................12

Adjust Defrost System ...............................................................13

Troubleshoot the Defrost System ..............................................14

TROUBLESHOOTING ..................................................................15

System Diagnostic Module ........................................................15

SYSTEM MAINTENANCE ............................................................17

ASSISTANCE OR SERVICE .........................................................17

Accessories ................................................................................17

WARRANTY ..................................................................................18

HEAT PUMP SAFETY

Your safety and the safety of others are very important.

We have provided many important safety messages in this manual and on your appliance. Always read and obey all safety messages.

This is the safety alert symbol.

This symbol alerts you to potential hazards that can kill or hurt you and others.

All safety messages will follow the safety alert symbol and either the word “DANGER” or “WARNING.”

These words mean:

DANGER

You can be killed or seriously injured if you don't immediately follow instructions.

WARNING

You can be killed or seriously injured if you don't follow instructions.

All safety messages will tell you what the potential hazard is, tell you how to reduce the chance of injury, and tell you what can happen if the instructions are not followed.

INSTALLATION REQUIREMENTS

These instructions are intended as a general guide only for use by qualified persons and do not supersede any national or local codes in any way. The installation must comply with all state and local codes as well as the National Electrical Code

The heat pump is designed and approved for outdoor use only.

The heat pump must be installed with no ductwork in the airstream. The outdoor fan is not designed to operate against any additional static pressure.

Whirlpool Gold ™ Model W4GH6

48488A006

Tools and Parts

Gather the required tools and parts before starting installation.

Read and follow the instructions provided with any tools listed here.

Tools Needed

Torch

¹⁄₄" nut driver

⁵⁄₁₆" nut driver

Adjustable wrench

Gauge set for R-410A refrigerant

Service wrench with hexhead extension

Torque wrench

Parts Needed

Check local codes and HVAC supplier. Check existing electrical supply, and read “Electrical Requirements,” “Location

Requirements,” “System Requirements” and “Connect

Refrigerant Lines.”

System Requirements

Heat pump system matches are derived from actual laboratory testing of matched systems. It is recommended that only matching equipment be used to ensure proper operation and efficient performance.

■ The designed system matches are listed in the heat pump unit specification sheets and on the heat pump refrigerant charging instructions located on the back of the service access panel.

■ Refrigerant charging instructions include a list of matching indoor equipment with the proper thermal expansion valve size and amount of refrigerant charge required.

This heat pump has been factory charged with a quantity of refrigerant (R-410A) sufficient for a matched indoor coil and a maximum 15 ft of refrigerant line.

In order to maintain the 16 SEER rating, this heat pump must be matched with an indoor section containing a variable speed blower.

Refer to the refrigerant charge label located on the inside of the heat pump access panel for the correct thermal expansion valve size required.

This product has been designed and manufactured to meet

ENERGY STAR ® criteria for energy efficiency when matched with appropriate coil components. However, proper refrigerant charge and proper airflow are critical to achieve rated capacity and efficiency. Installation of this product should follow the manufacturer’s refrigerant charging and airflow instructions. Failure to confirm proper charge and airflow may reduce energy efficiency and shorten equipment life.

A filter drier approved for use with R-410A refrigerant is installed in the heat pump.

If this condensing unit is equipped with a crankcase heater, it should be energized 24 hours before the condensing unit is started to prevent compressor damage as a result of slugging.

Use only polyol ester oils if oil must be added to the system.

Mineral oil is not compatible with refrigerant.

Indoor System Thermal Expansion Valve

■ W4GH6 units are designed for use with thermal expansion valve systems only. The thermal expansion valve must be ordered separately from the manufacturer.

Thermal Expansion Valve Kits

Model

W4GH624

W4GH636

W4GH648, 60

Part Number

H4TXV01

H4TXV02

H4TXV03

Location Requirements

This heat pump is designed to be located outdoors with sufficient clearance for free entrance to the inlet and discharge air openings. The location must also allow for adequate service access. See “Minimum Clearances.”

Where possible, select a location for the heat pump which is shaded from the direct rays of the sun most of the time. North or east locations are usually most desirable. Position the heat pump to avoid direct contact with water, snow or ice from a roofline overhead.

The heat pump must be installed on a solid, level mounting pad that will not settle or shift. Isolate the pad from the building structure to avoid possible transmission of sound or vibration from the heat pump into the conditioned space.

The heat pump foundation should be raised to a minimum of

3" above finish grade. In areas which have prolonged periods of temperatures below freezing, and/or snowfall, the heat pump should be elevated above the average snow line. If heat pump is to be installed on a flat roof, it should be on a platform or other support which will raise the inlet air opening

12" minimum above the surface of the flat roof.

Care should be taken to ensure free drainage of condensate from defrost cycles. This will prevent ice accumulation. The heat pump should be located away from walkways to prevent possible icing from defrost condensate.

Avoid placing the heat pump near areas such as sleeping quarters or study rooms. Normal operating sound levels may be objectionable if the heat pump is placed near certain rooms. A shift in sound type does occur during the defrost mode. The defrost mode generally lasts no longer than

10 minutes.

2

Minimum Clearances

A B C

To

Power

Supply

D

Transition from Horizontal to Vertical

This shows how to make a transition from horizontal to vertical.

Style 1

A

Style 2

G

48" Overhead

Clearance

(Discharge

Air)

12" Clearance

(Inlet Air)

To

Indoor

Unit

To

Indoor

Coil

E

36" Clearance

(Inlet Air)

30" Service

Access Clearance

A. Weatherproof disconnect switch

B. NEC class 1 wiring

C. NEC class 2 wiring

12" Clearance Between

Unit and Building

D. House thermostat

E. Seal openings

Line Set Isolation

The following illustrations demonstrate procedures which ensure proper refrigerant line set isolation.

Installing Horizontal Runs

This shows how to install line sets on horizontal runs.

NOTE: To hang line set from joist or rafter, use either metal strapping material or anchored heavy nylon wire ties.

B

B

C

C

F

E

A. Style 1—anchored heavy nylon wire tie

B. Strap liquid line to vapor line.

D

C. Liquid line

D. Vapor line— wrapped in armaflex

F

E D

E. Metal sleeve

F. Wall stud

G. Style 2—automotive muffler-type hanger

Installing Vertical Runs (new construction shown)

This shows how to install line sets on vertical runs.

NOTE: Similar installation practices should be used if line set is to be installed on exterior of outside wall.

IMPORTANT: Refrigerant lines must not contact structure.

B

A C

C

H

D

8'

C

B

D

8'

G

E

A

F

A. Metal strapping material

(around vapor line only)

B. Floor joist or roof rafter

C. Anchored heavy nylon wire tie

(around vapor line only)

D. Tape or wire tie

E. Metal sleeve

F. Tape or anchored heavy nylon wire tie

G. Strap the vapor line to the floor joist or roof rafter at 8" intervals, then strap the liquid line to the vapor line.

G

C

D

E

F

G

H

E

A

I

E

G

J

D

L K

H

A. Outside wall

B. Refrigerant lines must not contact wall.

C. Vapor line wrapped in armaflex

D. Liquid line

E. Anchored heavy nylon wire tie

F. Inside wall

G. Metal strapping material

H. Metal sleeve

I. Wood block between studs

J. Caulk

K. Fiberglass insulation

L. PVC pipe

3

4

Electrical Requirements

WARNING

Inspect Shipment

WARNING

Excessive Weight Hazard

Use two or more people to move and install condensing unit or heat pump.

Failure to do so can result in back or other injury.

Electrical Shock Hazard

Electrically ground condensing unit or heat pump.

Connect ground wire to ground lug.

Use copper wire for supply connection.

Correct wire gauge is shown in the chart below.

Failure to follow these instructions can result in death or electrical shock.

Rating Plate Ampacity

Less than 15

16 - 20

21 - 30

31 - 50

AWG

14

12

10

8

NOTE: All outdoor wiring must be suitable for outdoor use. Use copper conductors only.

All field wiring must be done in accordance with National

Electrical Code requirements, applicable requirements of UL, or local codes, where applicable.

Electrical wiring, disconnect means and over-current protection are to be supplied by the installer. Refer to the rating plate for the maximum over-current protection, minimum circuit ampacity, and operating voltage. See the wiring diagrams in “Make Electrical Connections.”

Flushing Connections

This heat pump is shipped in one package, completely assembled and wired. The thermostat is shipped in a separate carton when ordered.

1. Check the heat pump rating plate to confirm specifications are as ordered.

2. Upon receipt of equipment, carefully inspect it for possible shipping damage. Take special care to examine the heat pump inside the carton if the carton is damaged.

If damage is found, it should be noted on the carrier’s freight bill.

Damage claims should be filed with the carrier immediately.

Claims of shortages should be filed with the seller within 5 days.

NOTE: If any damages are discovered and reported to the carrier, do not install the heat pump because your claim may be denied.

Flush Refrigerant Lines

Refrigerant lines must be flushed by a licensed, EPA certified refrigerant technician in accordance with established procedures.

NOTES:

■ R-410A outdoor systems are not recommended for use with indoor systems that have used R-22 as the refrigerant.

However, if this unit is being matched with an approved line set or indoor coil which was previously charged with R-22 refrigerant, or if it is being matched with a coil which was manufactured before January of 1999, the R-22 coil and line set must be flushed prior to installation.

■ Check the refrigerant lines for size and length. See “Connect

Refrigerant Lines.”

Existing

Indoor Coil

Recovery Cylinder

Inverted R-22 Cylinder

(Contains clean R-22 to be used for flushing)

Existing Vapor Line

Existing Liquid Line

Vapor Line

Service Valve

Liquid Line

Service Valve

Outdoor

System

Low

Pressure

High

Pressure

Opened

Gauge Manifold

Closed

Tank Return

Inlet

Discharge

Recovery Machine

NOTE: The inverted R-22 cylinder must contain at least the same amount of refrigerant as was recovered from the existing system.

1. Disconnect power.

2. Remove the refrigerant from the existing system per the manufacturer’s instructions provided with the recovery system being used. Connect the R-22 gauge set is connected to both sides of the refrigerant system (as shown), and verify that the entire system is void of refrigerant in accordance with the manufacturer’s instructions provided with the recovery system being used.

3. Disconnect the liquid and vapor lines from the existing outdoor unit.

4. Remove the existing outdoor unit.

5. Set the new R-410A outdoor unit and connect the refrigerant lines. See “Connect Refrigerant Lines” steps 1 through 5. Do not evacuate the lines.

6. Remove the existing R-22 refrigerant flow control orifice or thermal expansion valve on the indoor coil, and use a field provided fitting to reconnect the lines.

Thermal Expansion Valve

8. Remove the valve cores.

Orifice

A

A. Thermal expansion valve

A

C

D

B

E

F

A. Distributor fitting

B. Mounting flange

C. Piston orifice

D. Ring seal (supplied)

G

E. Orifice extension stub

F. 0.812" brass hex nut

G. Brass hex fitting

7. Remove the caps from the suction and liquid pressure taps.

A

B

A. Suction pressure tap

B. Liquid pressure tap

9. Connect an R-22 cylinder with clean refrigerant to the suction pressure tap.

10. Connect the R-22 gauge set to the liquid line service valve and connect a recovery machine with an empty recovery tank to the gauge set.

11. Set the recovery machine for liquid recovery and start the recovery machine in accordance with the manufacturer’s instructions provided with the recovery system being used.

12. Open the gauge set valves to allow the recovery machine to run until a vacuum level less than 0" Hg (gauge pressure) is established in the existing system line set and indoor coil.

13. Invert the cylinder of clean R-22 and open its valve to allow liquid refrigerant to flow into the system through the vapor line valve.

14. After all of the liquid refrigerant has been recovered, switch the recovery machine to vapor recovery to allow the recovery machine to run until a vacuum level less than 0" Hg (gauge pressure) is established in the existing system line set and indoor coil in accordance with the manufacturer’s instructions provided with the recovery system being used.

NOTE: A single system flush should remove all of the mineral oil from the existing refrigerant lines and indoor coil. A second flushing may be done (using clean refrigerant) if insufficient amounts of mineral oil were removed during the first flush. A second flushing may be required to ensure that the maximum amount of oil is removed.

15. Close the valves on the inverted R-22 cylinder and gauge set.

16. Remove the recovery machine, gauges, R-22 cylinder and the field provided fitting installed in Step 6.

5

17. Install the valve cores.

A

B

18. Install the R-410A thermal expansion valve specified for this system in the indoor coil.

NOTE: R-410A systems use only thermal expansion valves.

19. Pressurize the lines and indoor coil with a pressure not to exceed 20 psig.

20. Leak test the lines with a pressure not to exceed 20 psig.

21. Open the suction and liquid service valves fully.

22. Insulate the suction line with refrigerant line insulation material of ¹⁄₄" or more wall thickness.

23. Pack insulating material around refrigerant lines where they penetrate the structure to protect the lines and to minimize vibration transmission.

A. Suction pressure tap

B. Liquid pressure tap

Connect Refrigerant Lines

Refrigerant lines must be connected by a licensed, EPA certified refrigerant technician in accordance with established procedures.

Thermal Expansion Valve Installation

A

IMPORTANT:

■ Connecting refrigerant lines must be clean, dehydrated, refrigerant-grade copper lines. Heat pumps should be installed only with specified line sizes for approved system combinations with elevation differences up to 15 ft and total length of up to 50 ft. See the Suction Line Sizes and Liquid

Line Sizes charts later in this section.

F

Avoid sharp bends or possible kinking in the refrigerant lines during installation as this may cause a reduction in performance.

Use care with the refrigerant lines during the installation process. Sharp bends or possible kinking in the lines will cause a reduction in performance.

A. Distributor

B. Teflon ® seal

C. Thermal expansion valve

E

■ To avoid contamination of the refrigerant system, do not remove the caps from the lines or system connection points until connections are ready to be completed.

To install the thermal expansion valve:

1. Separate the distributor assembly.

D

B

D. Liquid line stub

E. Strainer

F. Teflon ® seal

Install Thermal Expansion Valve

C

2. If a piston orifice is installed, remove the piston orifice and old

Teflon ® seal and discard.

W4GH6 heat pumps are designed for use with thermal expansion valve systems only. An R-410A system will not operate properly with an R-22 thermal expansion valve.

Thermal expansion valves equipped with Chatleff-type fittings are available from the manufacturer. See Thermal Expansion Valve

Kits chart in “System Requirements.”

3. Insert nozzle end of the thermal expansion valve along with a new Teflon ® seal into the distributor.

4. Tighten to 20 to 30 ft lbs. Use backup wrench on all wrench flats.

NOTE: Overtightening may crush the Teflon ® seal and cause a leak.

5. Attach liquid line portion of distributor assembly along with new Teflon ® seal to the inlet of the thermal expansion valve.

®Teflon is a registered trademark of E.I. Dupont de Nemours and

Company.

6

6. Tighten to 20 to 30 ft lbs. Use backup wrench on all wrench flats.

NOTE: Overtightening may crush the Teflon ® seal and cause a leak.

7. Connect the external equalizer line to the equalizer port on the suction line.

8. Tighten to 8 ft lbs.

9. Attach the superheat sensing bulb to the suction header with the strap provided with the thermal expansion valve.

A B

F

E

D

C

A. Equalizer port

B. Superheat sensing bulb

C. Thermal expansion valve

D. Liquid line

E. Suction line

F. Equalizer line

NOTE: If installing a thermal expansion valve on an indoor coil that previously used a fixed orifice, be sure to remove the existing fixed orifice. Failure to remove a fixed orifice when installing a thermal expansion valve to the indoor coil may result in improper operation and damage to the system.

Connect Liquid and Suction Lines

1. Route the suction and liquid lines from the fittings on the indoor coil to the fittings on the heat pump. Run the lines in as direct a path as possible, avoiding unnecessary turns and bends.

2. For product efficiency, be sure that the suction line is insulated over the entire exposed length and that both suction and liquid lines are not in direct contact with floors, walls, ductwork, floor joists, or other piping.

3. Remove valve cores.

4. Wrap the service valves with a wet rag.

5. Connect the suction and liquid lines, using a brazing compound. Braze with an alloy of silver or copper and phosphorus with a melting point above 1,100°F.

NOTE: Do not use soft solder.

6. Make sure indoor coil has been put in place according to the

Installation Instructions and is connected to the refrigerant lines.

7. Replace valve cores.

8. Pressurize the lines and indoor coil with a pressure not to exceed 20 psig.

9. Leak test the lines with a pressure not to exceed 20 psig.

10. Evacuate the indoor coil and lines to a minimum of

500 microns to remove contamination and moisture, then disconnect the vacuum pump.

11. Open the suction and liquid service valves fully.

12. Insulate the suction line with refrigerant line insulation material of ¹⁄₄" or more wall thickness.

13. Pack insulating material around refrigerant lines where they penetrate the structure to protect the lines and to minimize vibration transmission.

Refrigerant Charge

Refrigerant lines must be connected by a licensed, EPA certified refrigerant technician in accordance with established procedures.

IMPORTANT:

Refrigerant charge adjustment will be required for line set lengths greater than 15 ft and for evaporator coils not matched to the systems.

The heat pump is factory charged with the proper refrigerant charge amount for a matching evaporator and 15 ft of refrigerant line. Refer to the heat pump rating plate for the exact amount of this factory charge.

Adjustment of the refrigerant charge will be necessary based on the system combination and line length. To adjust the refrigerant size for increased line lengths, add the following amount of refrigerant.

For line set lengths greater than 15 ft, add refrigerant by weighing in 0.60 oz per ft of ³⁄₈" O.D. liquid line.

If necessary, adjust the refrigerant charge for compatibility with the evaporator coil.

In heat pump systems, horizontal suction lines should be slightly sloped toward the heat pump. Piping must avoid dips or low spots, which can collect oil.

Check Charge Using Normal Operating Pressures

Use Normal Operating Pressures chart to perform maintenance checks.

NOTES:

■ The Normal Operating Pressures chart is not a procedure for charging the system.

Minor variations in these pressures may be due to differences in installations.

Significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system.

7

Normal Operating Pressures

NOTE: Values provided in chart are typical pressures. Indoor unit matchup, indoor air quality and indoor load will cause pressures to vary.

Model

Temperature of the Air

Entering the Outdoor Coil

-24

Liquid

Cooling—1st Stage (Low Capacity)

Suction

-36

Liquid Suction

-48

Liquid Suction

-60

Liquid Suction

65ºF

75ºF

85ºF

95ºF

105ºF

232

264

307

353

403

115ºF 460

Cooling—2nd Stage (High Capacity)

146

148

149

151

153

155

225

261

302

349

397

461

144

147

149

151

153

157

235

268

310

356

407

466

144

145

147

148

150

152

225

264

305

352

405

459

138

141

142

146

148

150

65ºF

75ºF

85ºF

95ºF

105ºF

240

279

322

371

423

115ºF 485

Heating—1st Stage (Low Capacity)

40ºF 337

143

145

147

149

151

154

239

278

322

367

426

489

139

141

143

146

148

151

244

283

326

374

427

491

140

141

144

147

148

151

241

280

324

373

425

486

134

136

137

138

142

146

93

117

328

333

98

118

369

366

75

114

351

335

63

92 50ºF 322

Heating—2nd Stage (High Capacity)

20º

30ºF

40ºF

50ºF

279

288

302

306

62

76

93

112

296

309

322

336

62

75

92

113

311

334

354

381

58

72

89

108

308

323

318

329

59

70

69

82

8

Suction Line Sizes

Installations exceeding 100 ft are not recommended.

Btu/h

24,000

36,000

48,000

60,000

Line Set Length

Line Set Size (in. OD)

³⁄₄

⁷⁄₈

⁷⁄₈

1 ¹⁄₈

Less than

25 ft

³⁄₄

⁷⁄₈

⁷⁄₈

1 ¹⁄₈

25 ft

³⁄₄

⁷⁄₈

⁷⁄₈

1 ¹⁄₈

Over 25 ft and up to 50 ft

Liquid Line Sizes

Installations exceeding 100 ft are not recommended.

Btu/h

24,000

36,000

48,000

60,000

Line Set Size (in. OD)

³⁄₈

³⁄₈

³⁄₈

³⁄₈

Line Set Length Less than

25 ft

³⁄₈

³⁄₈

³⁄₈

³⁄₈

25 ft

³⁄₈

³⁄₈

³⁄₈

³⁄₈

Over 25 ft and up to 50 ft

WARNING

Make Electrical Connections

■ Install an adequately-sized branch circuit disconnect, according to the NEC, within sight of and readily accessible from heat pump.

■ The cable or conduit and fittings connected from the disconnect to the heat pump shall be rated for outdoor use.

Single Phase Electrical Connections

Refer to “Wiring Diagram—Single Phase 208/230 Volt.”

Electrical Shock Hazard

Electrically ground condensing unit or heat pump.

Connect ground wire to ground lug.

Use copper wire for supply connection.

Correct wire gauge is shown in the chart below.

Failure to follow these instructions can result in death or electrical shock.

WARNING

Rating Plate Ampacity

Less than 15

16 - 20

21 - 30

31 - 50

AWG

14

12

10

8

Electrical Shock Hazard

Disconnect power before servicing.

Replace all parts and panels before operating.

Failure to do so can result in death or electrical shock.

1. Disconnect power.

2. Remove control box cover.

3. Connect the field supply wires L1 and L2 to contactor terminals L1 and L2.

IMPORTANT:

■ Electrical wiring, disconnect means and over-current protection are to be supplied by the installer. Refer to the rating plate for the maximum over-current protection, minimum circuit ampacity, and operating voltage. See wiring diagrams later in this section.

9

4. Connect ground wire to ground lug.

T2 T1

L2 L1

A

B

L2 L1

C

A. Ground lug

B. Field supply ground wire

C. 208/230 volt field supply wires

5. Connect low voltage circuit.

Typical Wiring Connection (low voltage circuit)

A

NOTE: Some connections may not apply.

Refer to specific thermostat and indoor unit.

Thermostat

R

C

W1

G

Without Auxiliary Heat

Indoor Unit

Power Power

R

Common

C

Outdoor Unit

R

C

1st Stage

Aux. Heat

W1

W2

W3

1st Stage

Aux. Heat

W1

B

Indoor Blower

G If Applicable

Reversing Valve

O O

Y1 Y1

Y2

Compressor

Y2

Y1

Y2

A

Thermostat

R

C

With Auxiliary Heat

Indoor Unit

Power Power

R

Common

C

Outdoor Unit

R

C

B

Emergency

Heat Relay

E

Emergency Heat

G

O

Y1

W1

1st Stage

Aux. Heat

Indoor Blower

Reversing Valve

Outdoor

Thermostat

W1

W2

1st Stage Aux. Heat

W1

W3

G If Applicable

O

Y1

Y2

Compressor

Y1

Y2 Y2

A. Do not connect C (common) connection between indoor unit and thermostat except when required by the indoor thermostat. Refer to the thermostat installation instructions.

B. C (common) connection between indoor unit and outdoor unit required for proper operation.

6. Replace control box cover.

7. Reconnect power.

10

Outdoor Unit Typical Wiring Diagram

Outdoor

Fan

PR

BK

OR

Y

R S C

BK

Compressor

Crankcase Heater

Diagnostic

Module

LT BU

R

Dual Capacitor

F C H

BK

BU

Y

Ground

Lug

Thermostat

C R W1 O Y1 Y2 Fan

O-OUT

LO-PS

DF

Common

Y1 OUT

W1

L

24V

C

L

R

O

W1

C

L

R

O

Y1 Y1

HI-PS

Defrost

Control

L2

L1

Ground

208-230/60/1

L1

208-230/60/1

L2

Crankcaser

Heater

Equipment

Ground

Crankcase

Thermostat

Defrost

Thermostat

Reversing Valve

BK

Compressor

Contactor

Compressor

C

Y

R

S R

Diagnostic

Module

L Y2 Y1 R C

Low Pressure

Switch

L1

Defrost Switch

BU

Compressor

Contactor

High Pressure

Switch

R

Y

LT BU

OR

Fan

Defrost Control BK

Crankcase

Thermostat

H C

Dual

Capacitor

F

PR

Outdoor Fan

Motor

Defrost Control

Fan

O-OUT

LO-PS

DF

Common

Y1 OUT

L

24V

W1

C

L

R

O

Y1

HI-PS

LO-PS

Low Pressure

Switch

Thermostat

C R W1 O Y1 Y2

HI-PS

High Pressure

Switch

Line Voltage Factory Installed

Line Voltage Field Installed

24 Volt Factory Installed

Class II Voltage Field Installed

Complete Installation

1. Operate the heat pump for a period of at least 15 minutes to allow for pressures and temperatures to stabilize.

2. If heat pump does not appear to be functioning correctly, have heat pump checked by a person certified by the EPA to handle refrigerant.

11

Cooling Cycle

Upon cooling demand, the thermostat closes circuit R to O and Y.

Closing R to O and Y energizes the reversing valve for cooling operation and closes the heat pump contactor, starting the compressor and outdoor fan. The thermostat automatically closes R to G circuit, which also brings on the indoor fan at the same time. Upon satisfying cooling demand, the thermostat will open the above circuits and open the main contactor, stopping the compressor and outdoor fan. If the indoor unit is equipped with a delay timer, the blower will continue to operate for 60 to

90 seconds, which improves system efficiency.

Heating Cycle

Upon heating demand, the thermostat closes circuit R to Y, which closes the heat pump contactor, starting the compressor and outdoor fan. The reversing valve is not energized in the heating mode. The thermostat again automatically brings on the indoor fan at the same time. Upon satisfying heating demand, the thermostat opens the above circuits and stops heat pump operation.

Defrost Cycle

If the outdoor ambient conditions are such that frost forms on the outdoor coil, the defrost control monitors a defrost cycle. It then runs the defrost cycle as ambient temperatures require.

The defrost control is time/temperature initiated and temperature terminated with a maximum defrost time (time-out) of 10 minutes.

The time between defrost cycles is preset at 60-minute intervals at the factory, but can be field adjusted between 30, 60, or

90 minutes. To adjust the time period between defrost cycles, see “Adjust Time Between Defrost Cycles.”

The defrost control will initiate a defrost cycle when the selected time period has elapsed and the defrost sensor sees a temperature below freezing. At the start of a defrost cycle, the defrost control will energize the reversing valve solenoid, shifting the reversing valve and de-energizing the outdoor fan. The defrost relay will also close, energizing temporary heat for increased comfort during defrost (if the indoor unit is so equipped). The heat pump will remain in defrost until the defrost sensor has determined that the frost has been removed from the coil or a 10-minute period has elapsed, whichever comes first.

Defrost Thermostat

The defrost thermostat is located on the liquid line between the check/expansion valve and the distributor. When defrost thermostat senses 42ºF or cooler, the thermostat contacts close and send a signal to the defrost control board to start the defrost timing. It also terminates defrost when the liquid line warms up to

70ºF.

SEQUENCE OF OPERATION

Defrost Control

The defrost control board includes the combined functions of the time/temperature defrost control, defrost relay, diagnostic LEDs and terminal strip for field wiring connections. See “Defrost

Control Board” in the “Adjust Defrost System” section.

The control provides automatic switching from normal heating operation to defrost mode and back. During compressor cycle

(call for defrost), the control accumulates compressor run times at 30, 60 or 90 minute field-adjustable intervals. If the defrost thermostat is closed when the selected compressor run time interval ends, the defrost relay is energized and defrost begins.

Defrost Control Timing Pins

Each timing pin selection provides a different accumulated compressor run time period during one thermostat run cycle. This time period must occur before a defrost cycle is initiated. The defrost interval can be adjusted to 30 (T1), 60 (T2) or 90 (T3) minutes. See “Defrost Control Board” in the “Adjust Defrost

System” section. The defrost timing jumper is factory-installed to provide a 60-minute defrost interval. If the timing selector jumper is not in place, the control defaults to a 90-minute defrost interval. The maximum defrost period is 14 minutes and cannot be adjusted.

A test option is provided for troubleshooting. The test mode may be started any time the unit is in the heating mode and the defrost thermostat is closed or jumpered. If the jumper is in the test position at power-up, the control will ignore the test pins.

When the jumper is placed across the Test pins for 2 seconds, the control will enter the defrost mode. If the jumper is removed before an additional 5-second period has elapsed (7 seconds total), the unit will remain in defrost mode until the defrost thermostat opens or 14 minutes have passed. If the jumper is not removed until after the additional 5-second period has elapsed, the defrost will terminate and the test option will not function again until the jumper is removed and re-applied.

Compressor Delay

The defrost board has a field-selectable function to reduce occasional sounds that may occur while the heat pump is cycling in and out of the defrost mode. The compressor will be cycled off for 30 seconds while going in and out of the defrost mode when the compressor delay jumper is removed.

NOTE: The 30-second “off” cycle is not functional when jumpering the TEST pins.

12

Time Delay

The time delay is 5 minutes long. The delay helps to protect the compressor from short cycling in case the power to the heat pump is interrupted or a pressure switch opens. The delay is bypassed by placing the timer select jumper across the TEST pins for 0.5 seconds.

Pressure Switch Circuit

The defrost control includes LO-PS terminals to connect an optional low pressure (loss of charge pressure) switch. A high pressure switch (optional) can be connected to the HI PS terminals. See “Defrost Control Board” in the “Adjust Defrost

System” section.

During a single demand cycle, the defrost control will lock out the heat pump after the fifth time that the circuit is interrupted by any pressure switch wired to the control board. In addition, the diagnostic LEDs will indicate a locked-out pressure switch after the fifth occurrence of an open pressure switch. See

Defrost Control Board Diagnostic LEDs chart later in this section.

The heat pump will remain locked out until power to the board is interrupted, then re-established, or until the jumper is applied to the TEST pins for 0.5 seconds.

NOTE: The defrost control board ignores input from the low pressure switch terminals during:

TEST mode

Defrost cycle

90-second start-up period

First 90 seconds after the reversing valve switches heat/cool modes

NOTE: If the TEST pins are jumpered and the 5-minute delay is being bypassed, the LO PS terminal signal is not ignored during the 90-second start-up period.

Defrost Control Board Diagnostic LEDs

Mode

No Power to Board

Green

LED (DS2)

Off

Red LED

(DS1)

Off

Normal Operation/Power to Board Simultaneous Slow Flash

Short Cycle Lockout Alternating Slow Flash

Low Pressure Switch Fault

Low Pressure Switch Lockout

High Pressure Switch Fault

High Pressure Switch Lockout

Off

Off

Slow Flash

On

Slow Flash

On

Off

Off

Adjust Defrost System

Defrost Control Board

Optional high pressure switch connections

NOTE: To add the pressure switch, remove the factory-installed jumper.

A

B

P1

30

60

90

TEST

FAN

C2

K1 Relay

C

D

E

F

G

DS1

DS2

P5

O-OUT

LO-PS

DF

Y1-OUT

U1

U2

K2 Relay

C5

L

24V

P2

R

O

Y1

W1

C

L

HI-PS K3 Relay

TST PS DF C R O Y1

P6

A. Defrost time setting pins

B. Test pins

C. Compressor delay pins

D. Reversing valve

E. Low pressure switch (optional)

H

I

F. Defrost thermostat

G. High pressure switch (optional)

H. Diagnostic LEDs

I. Low voltage terminal strip connections

Adjust Time Between Defrost Cycles

WARNING

Electrical Shock Hazard

Disconnect power before servicing.

Replace all parts and panels before operating.

Failure to do so can result in death or electrical shock.

1. Disconnect power.

13

2. Remove the heater compartment access panel.

3. Adjust the time period between defrost cycles by placing the defrost time plug in the proper position. See “Defrost Control

Board.”

■ For 30-minute intervals between defrost cycles, connect the Defrost Time Setting Plug to the pins corresponding to 30.

For 60-minute intervals between defrost cycles, connect the Defrost Time Setting Plug to the pins corresponding to 60 (this setting is the factory preset setting).

For 90-minute intervals between defrost cycles, connect the Defrost Time Setting Plug to the pins corresponding to 90.

4. Replace the heater compartment access panel.

5. Reconnect power.

Troubleshoot the Defrost System

WARNING

Electrical Shock Hazard

Disconnect power before servicing.

Replace all parts and panels before operating.

Failure to do so can result in death or electrical shock.

The defrost control is equipped with a set of pins (labeled TEST on control circuit board) to aid in troubleshooting the defrost system. Connecting the test pins speeds up the defrost cycle time by a factor of 256.

1. Disconnect power.

2. Remove control box cover.

3. Connect the test pins on the defrost control using a test jumper wire.

NOTE: If the outdoor temperature is above 32°F, connect the defrost sensor terminals using a test jumper wire. See

“Defrost Control Board” in the “Adjust Defrost System” section.

4. Replace control box cover.

5. Reconnect power.

6. Start system in heating operation.

7. Time the defrost test cycle as determined by the chart. After the corresponding defrost cycle time from the chart below has elapsed, the reversing valve should shift to defrost mode and the outdoor fan should stop. After 2 seconds of defrost operation, the reversing valve should shift back to heating operation and the outdoor fan should start.

NOTE: If this procedure is not observed, check the reversing valve solenoid for correct operation by measuring temperatures and pressures under heating and cooling modes. If the reversing valve solenoid operates correctly then replace the defrost control board. See “Sequence of

Operation.”

Defrost Control Setting

T1 - 30 minutes

T2 - 60 minutes

Defrost Test Cycle Time

7 seconds

14 seconds

T3 - 90 minutes 21 seconds

8. If an adjustment is required, see “Adjust Time Between

Defrost Cycles” in the “Adjust Defrost System” section.

9. Disconnect power.

10. Remove control box cover.

11. Remove jumper from test pins and jumper from defrost sensor terminals, if used.

12. Replace control box cover.

13. Reconnect power.

14

TROUBLESHOOTING

Heat Pump Fails to Operate Properly

Review “Sequence of Operation” and visually inspect the heat pump before troubleshooting:

WARNING

Electrical Shock Hazard

Disconnect power before servicing.

Replace all parts and panels before operating.

Failure to do so can result in death or electrical shock.

System Diagnostic Module

W4GH6 heat pumps contain a diagnostic module for troubleshooting heat pump system failures. By monitoring and analyzing data from the compressor and thermostat demand, the module can accurately detect the cause of electrical and system related failure without any sensors. If a system problem occurs, a flashing LED indicator communicates the failure code.

LED Description

Power LED (Green) indicates voltage is present at the power connection of the module.

Alert LED (Yellow) communicates an abnormal system condition through a unique flash code. The Alert LED will flash a number of times consecutively, pause, and then repeat the process. The number of consecutive flashes correlates to a particular abnormal condition.

Trip LED (Red) indicates there is a demand signal from the thermostat but no current to the compressor is detected by the module. The Trip LED typically indicates the compressor protector is open or may indicate missing supply power to the compressor.

Diagnostic LEDs Interpretation

When an abnormal system condition occurs, the diagnostic module displays the appropriate Alert and/or Trip LED. The yellow Alert LED will flash a number of times consecutively, pause, and then repeat the process. To identify a flash code number, count the number of consecutive flashes. Refer to the

Flash Codes chart for information on the flash codes.

Every time the module powers up, the last Alert LED flash code that occurred prior to shutdown is displayed for 60 seconds. The module will continue to display the previous flash code until the condition returns to normal or 24 VAC is removed from the module. Trip and Alert LED’s flashing at the same time means control circuit voltage is too low for operation.

Flash Codes

LED Status

Power (Green)

Trip (Red)

Alert (Yellow) Flash Code 1

Alert (Yellow) Flash Code 2

Fault Description

Module has power.

Troubleshooting Information

■ Supply voltage is present at module terminals.

Thermostat demand signal Y1 is present, but the compressor is not running.

Compressor protector is open.

Outdoor unit power disconnect is open.

Compressor circuit breaker or fuse(s) is open.

Broken wire or connector is not making contact.

Low pressure switch is open, if present in system.

Compressor contactor has failed to open.

Long Run Time: Compressor is running extremely long run cycles.

NOTE: Not applicable on heat pump models.

System Pressure Trip:

Discharge or suction pressure out of limits or compressor is overloaded.

High head pressure.

Condenser coil has poor air circulation (dirty, blocked, damaged).

Condenser fan is not running.

Return air duct has substantial leakage.

If low pressure switch is present in the system, go to Flash Code

1 information.

15

Flash Codes

LED Status

Alert (Yellow) Flash Code 3

Alert (Yellow) Flash Code 4

Alert (Yellow) Flash Code 5

Alert (Yellow) Flash Code 6

Alert (Yellow) Flash Code 7

NOTE: This code will flash within 5 minutes of power interruption until the

5 minute short cycle timer has elapsed. Allow at least

5 minutes of run time before confirming this code.

Alert (Yellow) Flash Code 8

Open Run Circuit: Current only in start circuit

Welded Contactor:

Compressor always runs.

Alert (Yellow) Flash Code 9

Fault Description

Short Cycling: Compressor is running only briefly.

Locked Rotor

Open circuit

Open Start Circuit: Current only in run circuit.

Troubleshooting Information

Thermostat demand signal is intermittent.

Time delay relay or control board is defective.

If high pressure switch is present, go to Flash Code

2 information.

If low pressure switch is present, go to Flash Code

1 information.

Run capacitor has failed.

Low line voltage (contact utility if voltage at disconnect is low).

Excessive liquid refrigerant in the compressor.

Compressor bearings are seized.

Outdoor unit power disconnect is open.

Compressor circuit breaker or fuse(s) is open.

Compressor contactor has failed to open.

High pressure switch is open and requires manual reset.

Open circuit in the compressor supply wiring or connections.

Unusually long compressor protector reset time due to the extreme ambient temperature.

Compressor windings are damaged.

Run capacitor has failed.

Open circuit in the compressor start wiring or connections.

Compressor start winding is damaged.

Open circuit in the compressor run wiring or connections.

Compressor run winding is damaged.

Low Voltage: Control circuit less than 17 VAC

Compressor contactor has failed to close.

Thermostat demand signal not connected to the module.

Control circuit transformer is overloaded.

Low line voltage (contact utility if voltage at disconnect is low).

24 VAC Power Wiring

The diagnostic module requires a constant nominal 24 VAC power supply. The wiring to the module’s R and C terminals must be directly from the indoor unit or thermostat. The module cannot be powered by R and C terminals on the defrost board without experiencing nuisance alerts.

Thermostat Demand Wiring

The diagnostic module requires a thermostat demand signal to operate properly. The thermostat demand signal input, labeled Y on the module, should always be connected to the compressor contactor coil so that when the coil is energized, the demand signal input is 24 VAC. When the coil is not energized, the demand signal input should be less than 0.5 VAC.

16

Incorrectly Wired Module Codes

Depending on the system configuration, some Alert flash codes may not be active. The presence of safety switches affects how the system alerts are displayed by the module.

Incorrectly wiring the diagnostic module will cause false LED codes. The Incorrectly Wired Module Troubleshooting chart describes LED operation when the module is incorrectly wired and what troubleshooting action is required to correct the problem.

Incorrectly Wired Module Troubleshooting

Incorrectly Wired Module Indication

Green LED is not on, module does not power up.

Green LED intermittent, module powers up only when the compressor runs.

Trip LED is on but the system and the compressor check OK.

Trip LED and Alert LED are flashing together.

Alert Flash Code 3 (Compressor Short

Cycling) is displayed incorrectly.

Alert Flash Codes 5, 6 or 7 (Open Circuit,

Open Start Circuit or Open Run Circuit) are displayed incorrectly.

Alert Flash Code 6 (Open Start Circuit) is displayed for Code 7 (Open Run Circuit) or vice versa.

Alert Flash Code 8 (Welded Contactor) is displayed incorrectly.

Recommended Troubleshooting Action

Determine if both R and C module terminals are connected. See “24 VAC Power

Wiring” section for R and C wiring.

Determine if R and Y terminals are wired in reverse. See “24 VAC Power Wiring” earlier in this section for R and C wiring.

Verify that the Y terminal is connected to the 24 VAC at the contactor coil.

Verify that the R and C terminals are connected. See “24 VAC Power Wiring” earlier in this section for R and C wiring.

Verify that the Y terminal is connect to the 24 VAC at the contactor coil.

Check that the compressor run and start wires are through the module’s current sensing holes. Verify that the Y terminal is connected to the 24 VAC at the contactor coil.

Check that the compressor run and start wires are routed through the correct module sensing holes.

Determine if the module’s Y terminal is connected. Verify that the Y terminal is connected to the 24 VAC at the contactor coil.

SYSTEM MAINTENANCE

Leaves and other large obstructions should be removed from the heat pump surfaces without damaging the fin surface of the coil.

Routinely clean or change the indoor air filter. Should the indoor coil become dirty, thus restricting airflow, call a qualified service person to clean the coil surface.

An annual inspection by a qualified person should be performed to ensure continued quality performance.

ASSISTANCE OR SERVICE

If you need further assistance, you can write to the below address with any questions or concerns:

Whirlpool ® Home Cooling and Heating

14610 Breakers Drive

Jacksonville, FL 32258

Please include a daytime phone number in your correspondence.

Accessories

To order accessories contact your Whirlpool ® Home Cooling and

Heating dealer.

17

18

Keep this book and your sales slip together for future reference. You must provide proof of purchase or installation date for in-warranty service.

Write down the following information about your Split System

Heat Pump—Outdoor Section to better help you obtain assistance or service if you ever need it.

Dealer name____________________________________________________

Address ________________________________________________________

Phone number __________________________________________________

Model number __________________________________________________

Serial number __________________________________________________

Installation date ________________________________________________

19

48488A006

© 2006. All rights reserved.

®Registered Trademark/TM Trademark of Whirlpool, U.S.A.,

Manufactured under license by Tradewinds Distributing Company, LLC., Coconut Grove, Florida

6/06

Printed in U.S.A.

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals