GPS Engine Board User Manual

Add to my manuals
23 Pages

advertisement

GPS Engine Board User Manual | Manualzz

GS-R085

GPS Engine Board

User Manual

Nov 15, 2004

8F, 158, 1 Sec. Hsin-Sheng South Rd., Taipei Taiwan.

Phone: +886-2-2395-1900 Fax: +886-2-2395-8780

All Right Reserved

1

TABLE OF CONTENTS

1.Introduction ...............................................................................................................3

2. Main Feature ...........................................................................................................4

3. Technical Specifications.........................................................................................5

3.1. Electrical Characteristics ................................................................................5

3.2. Environmental Characteristics ........................................................................6

3.3. Physical Characteristics ..................................................................................6

4. Software Interface...................................................................................................7

4.1 NMEA Transmitted Messages .........................................................................7

4.2 RTCM Received Data ....................................................................................13

4.3 . Manufacturing Default:................................................................................14

5. Mechanical Dimensions.......................................................................................15

5.1 . GS-R085-T0A outline:.................................................................................15

5.2 . GS-R085-T0B outline:.................................................................................16

5.3 . Pin assignment of connector : ......................................................................17

6. Operation and Test ...............................................................................................18

7. Ordering Information ............................................................................................21

7.1 Products Options............................................................................................21

7.2 Accessories.....................................................................................................21

7.3 Other Products ...............................................................................................21

Appendix A : Reference Design..............................................................................22

Appendix B : Connector ...........................................................................................22

2

1.Introduction

The GS-R085 series consists of SiRF star IIe/LP chipsets technology,

LNA and proprietary software. The system function block is described as follows.

GSPACE GS-R085 is a high performance, low power consumption, small size, very easy integrated GPS engine board designed for a broad spectrum of

OEM system applications. This product is based on the proven technology found in other GSPACE 12 channel GPS receivers and SiRFstar II/LP chipset solution. The GPS engine board will track up to 12 satellites at a time while providing fast time-to-first-fix and one-second navigation updates. Its far reaching capability meets the sensitivity requirements of car navigation as well as other location-based applications. Therefore, GSPACE GS-R085 engine board is very fit to the customers who devote themselves to AVL system integration and location-based service.

The GS-R085 design utilizes the latest surface mount technology(BGA) and high level circuit integration to achieve superior performance while minimizing space and power requirements. This hardware capability combined with software intelligence makes the board easy to be integrated and used in all kinds of navigation applications or products. The application system may communicate with the engine board set via two RS232 compatible bi-directional communication channels with CMOS/TTL voltage level.

3

2. Main Feature

z Build on high performance SiRFstar II/LP chipset. z Average Cold Start time and under 45 seconds. z Low power consumption z 12 channels “All-in-View” tracking. z Integrated ARM7TDMI CPU with software engineering services and available for embedded customer defined applications. z On chip 1Mb SRAM. z Dual TTL level serial ports with one for GPS receiver command message interface, another one for RTCM-104 DGPS input. z Compact Board Size 1”x1”x0.27”(25.4x25.4x7mm) for easy integration into hand-held device. z Reacquisition z Support Standard NMEA-0183 and SiRF Binary protocol z Support Accurate 1PPS Output Signal Aligned with GPS Timing z Multi-path Mitigation Hardware z On-board RTCM SC-104 DGPS and WAAS /EGNOSDemodulator z Built-in a lithium battery make GPS be fast positioning

4

3. Technical Specifications

3.1. Electrical Characteristics

3.1.1 General

1). Frequency:L1, 1575.42 MHz。

2). C/A code:1.023 MHz chip rate。

3). Channels:12。

3.1.2 Accuracy (Open Sky)

1). Position:10 meters, 2D RMS。

2). 7 meters 2D RMS, WAAS corrected。

3). 1-5 meters, DGPS corrected。

4). Altitude :< ± 35m Vertical in term of 95%。

5). Velocity:0.1 meters/second。

6). Time 1 microsecond synchronized to GPS time。

3.1.3 Datum

1). Default:WGS-84。

2). Other Support different datum by request。

3.1.4 Acquisition Rate (Open sky, stationary requirements)

1). Reacquisition:0.1 sec., average。

2). Snap start:2 sec., average。

3). Hot start:8 sec., average。

4). Warm start:38 sec., average。

5). Cold start:45 sec., average。

3.1.5 Dynamic Conditions

1). Altitude : 18,000 meters (60,000 feet)max。

2). Velocity:515 meters/second (1000 knots) max。

3). Acceleration:4g, max。

4). Jerk:20 meters/second, max。

3.1.6 Power

1). Input power input:3.3~5.5VDC input。

2). Input current: Less than 80mA (without antenna) 。

3). Backup power: 3V Rechargeable Lithium cell battery, up to 500 hours discharge。

5

3.1.7 RF interface

1). Antenna connector type: MMCX。

2). Minimum signal tracked: -175dBW。

3.1.8 Serial Port

1). Two full duplex serial communication, TTL interface, with user selectable baud rate (4800-Default, 9600, 19200, 38400)。

2). NMEA 0183 Version 2.2 ASCII output (GGA, GSA, GSV, RMC (VTG ,

GLL and ZDA for optional))。

3). DGPS protocol RTCM SC-104 message types 1, 2 and 9。

4). SiRF binary-position, velocity, altitude, status output。

3.1.9 TIMEMARK-1PPS Pulse

1). Level TTL。

2). Pulse duration 100ms。

3). Time reference At the pulse positive edge。

4). Measurements Aligned to GPS second, ± 1 microsecond。

3.2. Environmental Characteristics

1). Operating temperature range -40 ℃ to +85 ℃。

2). Storage temperature range -55 ℃ to +100 ℃。

.

3.3. Physical Characteristics

1) Active Size: 25.4(W) x 25.4(D) x 7(H) (mm) 。

2) Weight: <7 g。

3) Interface connector 6-pin straight male header, 1.25mm pitch 。

(Please refer to the appendix B)

6

4. Software Interface

The GS-R085 interface protocol is based on the National Marine

Electronics Association's NMEA 0183 ASC interface specifi cation, which is defined in NMEA 0183, Version 2.2 and the Radio Technical Commission for

Maritime Services (RTCM Recommended Standards For Differential Navstar

GPS Service, Version 2.1, RTCM Special Committee No.104).

As soon as the initial self-test is complete, the GS-R085 begins the process of satellite acquisition and tracking automatically. Under normal circumstances, it takes approximately 45 seconds to achieve a position fix, 38 seconds if ephemeris data is known. After a position fix has been calculated, information about valid position, velocity and time is transmitted over the output channel.

The GS-R085 utilizes initial data, such as last stored position, date, time and satellite orbital data, to achieve maximum acquisition performance. If significant inaccuracy exists in the initial data, or the orbital data is obsolete, it may take more time to achieve a navigation solution. The GS-R085

Auto-locate feature is capable of automatically determining a navigation solution without intervention from the host system. However, acquisition performance can be improved as the host system initializes the GS-R085 in the following situation: z Moving further than 500 kilometers. z Failure of Data storage due to the inactive internal memory battery.

4.1 NMEA Transmitted Messages

The default communication parameters for NMEA output are 4800 baud, 8 data bits, stop bit, and no parity.

7

Table 4-1 NMEA-0183 Output Messages

NMEA Record Description

GPGGA Global positioning system fixed data

GPGSA GNSS DOP and active satellites

GPGSV GNSS satellites in view

GPRMC Recommended minimum specific GNSS data

GPVTG Course over ground and ground speed

GPMSS

Radio-beacon Signal-to-noise ratio, signal strength, frequency, etc.

GPZDA PPS timing message (synchronized to PPS)

4.1.1 Global Positioning System Fix Data (GGA)

Table 4-2 contains the values for the following example:

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

Table 4-2 GGA Data Format

Name

Message ID

Example Units

$GPGGA

Description

GGA protocol header

UTC Time 161229.487

Latitude 3723.2475

N/S Indicator N

Longitude 12158.3416

hhmmss.sss ddmm.mmmm

N=north or S=south dddmm.mmmm

E/W Indicator

Position Fix Indicator

W

1

E=east or W=west

See Table 5-3

Satellites Used

HDOP

07

1.0

Range 0 to 12

Horizontal Dilution of Precision

MSL Altitude

(1)

9.0

Geoid Separation

(1)

Meters

Age of Diff. Corr.

Diff. Ref. Station ID 0000 second Null fields when DGPS is not used

Checksum *18

<CR> <LF> End of message termination

(1). SiRF Technology Inc. does not support geoid corrections. Values are WGS84 ellipsoid heights.

8

Table 4-3 Position Fix Indicator

Value Description

0

1

2

0 Fix not available or invalid

GPS SPS Mode, fix valid

Differential GPS, SPS Mode, fix valid

3 GPS PPS Mode, fix valid

4.1.2 Geographic Position with Latitude/Longitude(GLL)

Table 4-4 contains the values for the following example:

$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

Table 4-4 GLL Data Format

Name

Message ID

Example

$GPGLL

Units Description

GLL protocol header

Latitude

N/S Indicator

3723.2475

N ddmm.mmmm

N/S Indicator N N=north or S=south

E/W Indicator

UTC Position

Status

W

161229.487

A

E=east or W=west hhmmss.sss

A=data valid or V=data not valid

Checksum *2C

<CR> <LF> End of message termination

4.1.3 GNSS DOP and Active Satellites (GSA)

Table 4-5 contains the values for the following example:

$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5*33

Table 4-5 GSA Data Format

Name Example Units Description

Message ID

Mode 1

$GPGSA

A

GSA protocol header

See Table 5-6

Mode 2

Satellite Used

(1)

Satellite Used

(1)

3

07

02

See Table 5-7

Sv on Channel 1

Sv on Channel 2

9

Satellite Used

(1)

PDOP

HDOP

VDOP

Checksum

<CR> <LF>

1.8

1.0

1.5

*33

Sv on Channel 12

Position Dilution of Precision

Horizontal Dilution of Precision

Vertical Dilution of Precision

End of message termination

1. Satellite used in solution.

Table 4-6 Mode 1

Value Description

M Manual—forced to operate in 2D or 3D mode

A

Table 4-7 Mode 2

2DAutomatic—allowed to automatically switch 2D/3D

Value Description

2 2D

3 3D

4.1.4 GNSS Satellites in View (GSV)

Table 4-8 contains the values for the following example:

$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71

$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Table 4-8 GSV Data Format

Name

Message ID

Example

$GPGSV

Units Description

GSV protocol header

Number of Messages(1)

Message Number

(1)

Satellites in View

Satellite ID

2

1

07

07

Range 1 to 3

Range 1 to 3

Channel 1 (Range 1 to 32)

Elevation

Azimuth

79

048 degrees Channel 1 (Maximum 90) degrees Channel 1 (True, Range 0 to 359)

SNR (C/No) 42 dBHz Range 0 to 99, null when not tracking

.... ....

10

Satellite ID

Elevation

Azimuth

SNR (C/No)

27

27

138

42

Channel 4 (Range 1 to 32) degrees Channel 4 (Maximum 90) degrees Channel 4 (True, Range 0 to 359) dBHz Range 0 to 99, null when not tracking

Checksum *71

<CR> <LF> End of message termination

(1). Depending on the number of satellites tracked multiple messages of GSV data may be required.

4.1.5 Recommended Minimum Specific GNSS Data (RMC)

Table 4-9 contains the values for the following example:

$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

Table 4-9 RMC Data Format

Name

Message ID

Example Units

$GPRMC

Description

RMC protocol header

UTC Time

Status

161229.487

A hhmmss.sss

A=data valid or V=data not valid

N/S Indicator N

Longitude 12158.3416

E/W Indicator

Speed Over Ground

Course Over Ground

W

0.13

309.62

N=north or S=south dddmm.mmmm knots

E=east or W=west degrees True

Magnetic Variation

(1) degrees E=east or W=west

Checksum *10

<CR> <LF> End of message termination

(1). SiRF Technology Inc. does not support magnetic declination. All “course over ground” data are geodetic WGS84 directions.

4.1.6 Course Over Ground and Ground Speed (VTG)

Table 4-10 contains the values for the following example:

$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

11

Table 4-10 VTG Data Format

Name

Message ID

Example Units

$GPVTG

Description

VTG protocol header

Reference T True

Reference M Magnetic

(1)

Speed 0.13 knots Measured horizontal speed

Speed

Units

0.2

K km/hr Measured horizontal speed

Kilometers per hour

Checksum *6E

<CR> <LF> End of message termination

(1). SiRF Technology Inc. does not support magnetic declination. All “course over ground” data are geodetic WGS84 directions.

4.1.7 MSK Receiver Signal (MSS)

Table 4-11 contains the values for the following example:

$GPMSS,55,27,318.0,100,*66

Table 4-11 MSS Data Format

Name

Message ID

Signal Strength

Signal-to-Noise

Ratio

Example Units

$GPMSS

55

27

MSS protocol

Description dB dB SS of tracked frequency dB SNR of tracked frequency

Beacon Frequency 318.0

Beacon Bit Rate 100 kHz Currently tracked frequency

100 bits per second

Checksum 66

<CR> <LF> End of message termination

Note – The MSS NMEA message can only be polled or scheduled using the

MSK NMEA input message.

12

4.1.8 ZDA—SiRF Timing Message

Outputs the time associated with the current 1 PPS pulse. Each message will be output within a few hundred ms after the 1 PPS pulse is output and will tell the time of the pulse that just occurred.

Table 4-12 contains the values for the following example:

$GPZDA,181813,14,10,2003,00,00*4F

Table 4-12 ZDA Data Format

Name

Message ID

Example Units

$GPZDA

Description

ZDA protocol header

UTC Time

Day

Month

Year

Local zone hour

Local zone hour

181813

14

10

2003

00

00

Either using valid IONO/UTC or estimated from default leap seconds

01 TO 31

01 TO 12

1980 to 2079 knots Offset from UTC (set to 00)

Offset from UTC (set to 00)

Checksum 4F

<CR> <LF> End of message termination

4.2 RTCM Received Data

The default communication parameters for DGPS Input are 9600 baud, 8 data bits, stop bit, and no parity. Position accuracy of less than 5 meters can be achieved with the GPS-82 by using Differential GPS (DGPS) real-time pseudo-range correction data in RTCM SC-104 format, with message types

1,2, or 9. As using DGPS receiver with different communication parameters,

GPS-82 may decode the data correctly to generate accurate messages and save them in battery-back SRAM for later computing.

13

4.3 . Manufacturing Default:

Parameter Com A Com B

Input Protocol NMEA Binary RTCM SC-104

Output Protocol NMEA Binary None

Baud Rate 4800 9600

Parity None None

Stop Bits 1 1

Data Bits 8 8

Datum: WGS84.

Protocol GGA, GSA, GSV, RMC or by demand.

4.3.1 Setting Syntax

Datum change syntax:

>DOS\Sirfprog /Fdataxx.dat –Px –Bx –Csh1

-Px: x is com port, 1= COM1 2 = COM2

-Bx: Baud rate, 4800, 9600, 19200 or 38400

Example:

Change Datum to WGS84,

Sirfprog /Fdata58.dat –P1 –B4800 –Csh1 <Entry>

After change datum, the new datum will keep in SRAM. If long time (more than 7 days) no power supplied to GS-R085, user must resend datum to

GS-R085 when power on.

4.3.2 Addition Software

SiRFdemo is the Evaluation Receiver configuration and monitoring software provided with the GS-R085. This software can be used to monitor real-time operation of the GS-R085 Receiver, log data for analysis, upload new software to the Receiver, and configure the Receiver operation. See setup.pdf for more information on the use and operation of SiRFdemo software.

14

5. Mechanical Dimensions

5.1 . GS-R085-T0A outline:

z Picture

J1 Connector

Pin 1 z Design Layout Diagram: (unit mm) z

15

MMCX Active Ant connector

5.2 . GS-R085-T0B outline:

z Picture

J1 Connector

Pin 1 z Design Layout Diagram: (unit mm)

16

MMCX Active Ant connector

5.3 . Pin assignment of connector :

Table 5-1 is pin list of the 6-Pin Interface Connector. Connector is Male header 1.25mm pitch DIP R/A type. Actual pin size see appendix B.

Table 5-1 J1 connector pin definition:

Pin Pin Name Function description

1 VCC_5V +3.5~5.5Vdc power input

Serial Data output port A(TTL Level: ;Voh 2.4V

Vol 0.4V

; Ioh=Iol=2mA)

Serial Data input port A(TTL Level;Vih≧0.7*VCC;

3 RXA

Vil≦0.3*VCC)

Serial Data input port B(TTL Level;Vih≧0.7*VCC;

Vil≦0.3*VCC)

6

TIMEMARK/

RESET( option)

TIMEMARK: 1PPS Time mark output(Vil≦0.2V,Pulse

Width 10ms)。

RESET: Reset Input (Active Low)(option function)

5.3.1 VCC_5V

This is the main DC power supply for a +3.3~ 5.5 V engine board。

5.3.2 TXA

This is the main transmitting channel and is used to output navigation and measurement data for user written software。

5.3.3 RXA

This is the main receiving channel and is used to receive software commands to the board from user written software。

5.3.4 RXB

This is the auxiliary receiving channel and is used to input differential corrections to the board to enable DGPS navigation。

5.3.5 GND

GND provides the ground for the board. Connect all grounds。

5.3.6 TIMEMARK (default)/ RESET (option)

This pin default is provides 1 pulse per second output from the GS-R085

17

engine board, which is synchronized to within 1 microsecond of GPS time. The output is a TTL positive level signal. Only upon a situation of tracking or navigating will output once per second. This is not available in Trickle-Power mode。

The secondary option function is provides an active-low reset input to the engine board. It causes the engine board to reset and start searching for satellites. (This second function setting need contact factory)。

6. Operation and Test

The customers can use GSpace GPSView.exe to test the engine board.

GPSViewer.exe is compatible with Microsoft Pocket PC or other operation system alike.

1). Install Microsoft ActiveSync to your PC, refer to your Pocket PC manual for installation procedure, as Fig. 6.1.

2). Setup your Pocket PC cradle to Desktop PC UART port. The Microsoft

ActiveSync will detect your Pocket PC automatically.

Setup your Pocket PC cradle to Desktop PC UART port. The Microsoft

ActiveSync will detect your Pocket PC automatically, as Fig. 6.1.

(Fig. 6.1)

18

3). Double click the GPSViewer.exe on your PC, then GSPACE

GPSViewer.exe program will install automatically, as Fig. 6.2.

(Fig. 6.2)

4) Open “GPSViewer” on PC, as Fig. 6.3.

(Fig. 6.3)

5) The following window is show after executing

6) GPSViewer, as Fig. 6.4.

(Fig. 6.4)

19

7) Setup Baud rate: 4800, then push “Scan” bottom to scan your COM

Port . Select your COM Port (COM1 ~ COM10), then push “Open GPN” bottom, as Fig. 6.5, Fig. 6.6, and Fig. 6.7.

(Fig. 6.5) (Fig. 6.6) (Fig. 6.7)

8) Select “GPS Status” to show the satellite diagram like below, as Fig.

6.8.

(Fig. 6.8)

20

7. Ordering Information

7.1 Products Options

Model No.

Output Level

(TTL or RS-232)

Back-up battery

(Rechargeable

Lithium)

Power

Saving

RF Connector

Type

GS-R085-T

0A

GS-R085-T

0B

7.2 Accessories

Option Active antenna type.

Part No.

Cable length

2 M 5M

Connector type(MMCX)

90° 180°

68011-00 Y Y

68011-10 Y Y

68012-00 Y Y

68012-10 Y Y

7.3 Other Products

SiRF START II GPS Receiver: GM-210

Palm Vx GPS Receiver: GM-250.

Palm M500/505 GPS Receiver: GM-251/GM-251+

Handheld GPS: GM-100/GM-305/GM-101/GM-110/GM-110+/GM-310.

CF CARD Type GPS Receiver: GM-270/GM-270U/GM-271

Bluetooth GPS Receiver: GR-230/GR-231

Mini GPS Receiver: GR-211

21

Appendix A : Reference Design

Fig A-1 is GS-R085 connects to RS-232 transceiver solutions intended for portable or hand-held applications such as notebook and palmtop computers.

(Fig A-1)

Appendix B : Connector

z RF Connector . Type MMCX.

22

z Interface connector: Male header 1.25mm pitch DIP R/A type.

23

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement