S7-400 Aufbauen (2,1 MiB)

Add to my manuals
236 Pages

advertisement

S7-400 Aufbauen (2,1 MiB) | Manualzz

Vorwort, Inhaltsverzeichnis

Produktübersicht

SIMATIC

Montieren einer S7-400

Automatisierungssystem S7-400

Aufbauen

Adressieren einer S7-400

Verdrahten einer S7-400

Installationshandbuch

Vernetzung

Inbetriebnahme

Wartung

Anhänge

Aufbau von Anlagen

Richtlinie zur Handhabung elektrostatisch gefährdeter

Baugruppen (EGB)

Glossar, Index

A

B

5

6

7

3

4

1

2

Diese Dokumentation ist Bestandteil des

Dokumentationspaketes

6ES7498-8AA05-8AA0

11/2006

A5E00850740-01

!

!

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von

Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein

Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach

Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

Gefahr

bedeutet, dass Tod oder schwere Körperverletzung eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung

bedeutet, dass Tod oder schwere Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

!

Vorsicht

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden

Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

ohne Warndreieck bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Achtung

bedeutet, dass ein unerwünschtes Ergebnis oder Zustand eintreten kann, wenn der entsprechende Hinweis nicht beachtet wird.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zugehörige Gerät/System darf nur in Verbindung mit dieser Dokumentation eingerichtet und betrieben werden. Inbetriebsetzung und Betrieb eines Gerätes/Systems dürfen nur von qualifiziertem Personal vorgenommen werden. Qualifiziertes Personal im Sinne der sicherheitstechnischen Hinweise dieser Dokumentation sind Personen, die die Berechtigung haben, Geräte, Systeme und Stromkreise gemäß den

Standards der Sicherheitstechnik in Betrieb zu nehmen, zu erden und zu kennzeichnen.

Bestimmungsgemäßer Gebrauch

Beachten Sie folgendes:

!

Warnung

Das Gerät darf nur für die im Katalog und in der technischen Beschreibung vorgesehenen Einsatzfälle und nur in Verbindung mit von Siemens empfohlenen bzw. zugelassenen Fremdgeräten und –komponenten verwendet werden. Der einwandfreie und sichere Betrieb des Produktes setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der

Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch

Dritte für deren Zwecke die Rechte der Inhaber verletzen können.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard– und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige

Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig

überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Siemens AG

Automation and Drives

Postfach 4848

90437 NÜRNBERG

DEUTSCHLAND

A5E00850740-01

11/2006

Copyright E Siemens AG 2006

Änderungen vorbehalten

Vorwort

Zweck des Handbuchs

Die Informationen dieses Handbuchs ermöglichen es Ihnen eine Speicherprogrammierbare Steuerung S7-400 aufzubauen und zu verdrahten

Die Funktionsbeschreibungen und technischen Daten der Signalbaugruppen,

Stromversorgungsbaugruppen und Anschaltungsbaugruppen finden Sie im Referenzhandbuch Baugruppendaten.

Erforderliche Grundkenntnisse

Zum Verständnis des Handbuchs sind allgemeine Kenntnisse auf dem Gebiet der

Automatisierungstechnik erforderlich.

Außerdem werden Kenntnisse über die Verwendung von Computern oder PC--ähnlichen Arbeitsmitteln (z. B. Programmiergeräten) unter dem Betriebssystem Windows 2000 bzw. XP vorausgesetzt. Da die S7-400 mit der Basissoftware STEP 7 projektiert wird, müssen Sie auch Kenntnisse im Umgang mit der Basissoftware haben. Diese werden im Handbuch ”Programmieren mit STEP 7 ” vermittelt.

Beachten Sie – insbesondere beim Einsatz einer S7-400 in sicherheitsrelevanten

Bereichen – die Hinweise über die Sicherheit elektronischer Steuerungen im Anhang des Installationshandbuches.

Gültigkeitsbereich des Handbuchs

Das Handbuch ist gültig für das Automatisierungssystem S7-400.

Approbationen

Ausführliche Angaben zu den Zulassungen und Normen finden Sie im Referenzhandbuch “Baugruppendaten”.

Einordnung in die Informationslandschaft

Dieses Handbuch ist Bestandteil des Dokumentationspaketes zu S7-400.

System

S7-400

Dokumentationspakete

Automatisierungssystem S7-400; Aufbauen

Automatisierungssysteme S7-400; Baugruppendaten

Operationsliste S7-400

Automatisierungssystem S7-400; CPU-Daten

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01 iii

Vorwort

Wegweiser

Um Ihnen den schnellen Zugriff auf spezielle Informationen zu erleichtern, enthält das Handbuch folgende Zugriffshilfen:

• Am Anfang des Handbuches finden Sie ein vollständiges Gesamtinhaltsverzeichnis und jeweils eine Liste der Bilder und Tabellen, die im gesamten Handbuch enthalten sind.

• In den Kapiteln finden Sie auf jeder Seite in der linken Spalte Informationen, die

Ihnen einen Überblick über den Inhalt des Abschnitts geben.

• Im Anschluss an die Anhänge finden Sie ein Glossar, in welchem wichtige

Fachbegriffe definiert sind, die im Handbuch verwendet wurden.

• Am Ende des Handbuchs finden Sie ein ausführliches Stichwortverzeichnis, welches Ihnen den schnellen Zugriff auf die gewünschte Information ermöglicht.

Recycling und Entsorgung

Die S7-400 ist aufgrund ihrer schadstoffarmen Ausrüstung recyclingfähig. Für ein umweltverträgliches Recycling und die Entsorgung Ihres Altgerätes wenden Sie sich an einen zertifizierten Entsorgungsbetrieb für Elektronikschrott.

Weitere Unterstützung

Bei Fragen zur Nutzung der im Handbuch beschriebenen Produkte, die Sie hier nicht beantwortet finden, wenden Sie sich bitte an Ihren Siemens-Ansprechpartner in den für Sie zuständigen Vertretungen und Geschäftsstellen.

Ihren Ansprechpartner finden Sie unter: http://www.siemens.com/automation/partner

Den Wegweiser zum Angebot an technischen Dokumentationen für die einzelnen

SIMATIC Produkte und Systeme finden Sie unter: http://www.siemens.de/simatic-tech-doku-portal

Den Online-Katalog und das Online-Bestellsystem finden Sie unter: http://mall.automation.siemens.com

iv

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vorwort

Trainingscenter

Um Ihnen den Einstieg in das xxx und das Automatisierungssystem SIMATIC S7 zu erleichtern, bieten wir entsprechende Kurse an. Wenden Sie sich bitte an Ihr regionales Trainingscenter oder an das zentrale Trainingscenter in

D 90327 Nürnberg.

Telefon: +49 (911) 895-3200

Internet: http://www.sitrain.com

Technical Support

Sie erreichen den Technical Support für alle A&D-Produkte

• Über das Web-Formular für den Support Request http://www.siemens.de/automation/support-request

• Telefon: + 49 180 5050 222

• Fax:+ 49 180 5050 223

Weitere Informationen zu unserem Technical Support finden Sie im Internet unter http://www.siemens.com/automation/service.

Service & Support im Internet

Zusätzlich zu unserem Dokumentations-Angebot bieten wir Ihnen im Internet unser komplettes Wissen online an.

http://www.siemens.com/automation/service&support

Dort finden Sie:

• den Newsletter, der Sie ständig mit den aktuellsten Informationen zu Ihren Produkten versorgt.

• die für Sie richtigen Dokumente über unsere Suche in Service & Support.

• ein Forum, in welchem Anwender und Spezialisten weltweit Erfahrungen austauschen.

• Ihren Ansprechpartner für Automation & Drives vor Ort.

• Informationen über Vor-Ort Service, Reparaturen, Ersatzteile. Vieles mehr steht für Sie unter dem Begriff ”Leistungen” bereit.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01 v

Vorwort

vi

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inhaltsverzeichnis

1

2

3

4

4.2

4.3

4.4

4.5

4.6

2.6

2.7

2.8

2.9

2.2

2.3

2.4

2.5

Produktübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Montieren einer S7-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1

Aufbau einer S7-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aufbau von Zentralgerät (ZG) und Erweiterungsgerät (EG) . . . . . . . . . . . .

Segmentiertes ZG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Geteiltes ZG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baugruppenträger befestigen und erden . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Masseanschluss im potentialgebundenen Aufbau . . . . . . . . . . . . . . . . . . . .

Möglichkeiten der Luftführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Luftführung bei Kabelkanal bzw. Lüfterzeile verändern . . . . . . . . . . . . . . . .

Lüfterzeile einbauen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.10

2.11

2.12

2.13

2.14

2.15

2.16

Kabelkanal einbauen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auswahl und Aufbau von Schränken mit der S7-400

Regeln für die Anordnung von Baugruppen

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

Einbau von Baugruppen in einen Baugruppenträger . . . . . . . . . . . . . . . . . .

Kennzeichnen der Baugruppen mit Steckplatzschildern

Möglichkeiten der Erweiterung und Vernetzung

Zubehör

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adressieren einer S7-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1

3.2

3.3

Physikalische und logische Adressen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wie ermitteln Sie die Defaultadresse einer Baugruppe?

. . . . . . . . . . . . . . .

Wie ermitteln Sie die Defaultadresse eines Kanals?

. . . . . . . . . . . . . . . . . .

Verdrahten einer S7-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1

Stromversorgung von Baugruppen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.7

Auswahl der Stromversorgungsbaugruppe

Auswahl der Laststromversorgung

S7-400 mit Prozess-Peripherie aufbauen

(erdfreier Aufbau)

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

S7-400 aufbauen mit geerdetem Bezugspotenzial (M)

S7-400 aufbauen mit ungeerdetem Bezugspotenzial

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aufbau einer S7-400 mit potenzialgetrennten Baugruppen . . . . . . . . . . . .

4-8

4-10

2-16

2-18

2-20

2-22

2-24

2-25

2-29

2-30

2-33

2-34

2-35

1-1

2-1

2-2

2-6

2-8

2-9

2-10

4-3

4-4

4-5

4-7

3-1

3-2

3-4

3-6

4-1

4-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01 vii

Inhaltsverzeichnis

5

6

4.14

4.15

4.16

4.17

4.8

4.9

4.10

4.11

4.12

4.13

Parallelbeschaltung von digitalen S7-400-Ausgängen

Erdungsmaßnahmen

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Störsicherer Aufbau bei Kopplungen

Regeln für die Verdrahtung

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stromversorgungsbaugruppe verdrahten . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signalbaugruppen verdrahten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker verdrahten, Crimpanschluss . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker verdrahten, Schraubanschluss . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker verdrahten, Federkraftanschluss . . . . . . . . . . . . . . . . . . . . . . .

Zugentlastung anbringen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker beschriften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.18

4.19

4.20

4.21

Frontstecker montieren

ZG und EG verbinden

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lüfterzeile auf die Netzspannung einstellen und verdrahten . . . . . . . . . . .

4.22

4.23

Kabelführung bei Verwendung von Kabelkanal oder Lüfterzeile

Kabelführung bei Verwendung von Lichtwellenleitern

. . . . . . . .

. . . . . . . . . . . . . . . . .

Vernetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1

Aufbauen eines Netzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2

6.3

6.4

6.5

6.6

6.7

6.8

5.2

5.3

Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Regeln zum Aufbauen eines Netzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4

5.5

5.6

5.7

5.8

5.8.1

5.8.2

5.8.3

Leitungslängen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PROFIBUS-DP-Buskabel

Busanschluss-Stecker

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS 485-Repeater/Diagnose-Repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PROFIBUS-DP-Netz mit Lichtwellenleiter (LWL)

Lichtwellenleiter

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simplex-Stecker und Steckadapater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lichtwellenleiter an PROFIBUS-Gerät anschließen . . . . . . . . . . . . . . . . . .

Inbetriebnahme

6.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Empfohlene Vorgehensweise für die erste Inbetriebnahme . . . . . . . . . . . .

5-3

5-7

5-15

5-18

Überprüfung vor dem ersten Einschalten . . . . . . . . . . . . . . . . . . . . . . . . . . .

PG an eine S7-400 anschließen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erstes Einschalten einer S7-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CPU urlöschen mit Betriebsartenschalter . . . . . . . . . . . . . . . . . . . . . . . . . . .

6-3

6-5

6-6

6-7

Neustart (Warmstart) und Wiederanlauf mit dem Betriebsartenschalter

Memory Card stecken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

6-10

6-11

Pufferbatterie einlegen (Option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6-13

5-19

5-21

5-22

5-24

5-26

5-28

6-1

6-2

4-30

4-34

4-38

4-40

4-41

4-42

5-1

5-2

4-12

4-13

4-15

4-17

4-19

4-23

4-25

4-26

4-27

4-29

viii

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inhaltsverzeichnis

7

A

B

7.11

Schnittstellenmodul tauschen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aufbau von Anlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

7.6

7.7

7.8

7.9

7.10

6.9

6.10

Wartung

7.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wechseln der Pufferbatterie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2

7.3

Inbetriebnahme von PROFIBUS-DP

Schnittstellenmodule einbauen (CPU 414-3, 414-4H, 416-3, 417-4 und 417-4 H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stromversorgungsbaugruppe tauschen . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CPUs tauschen

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.4

7.5

Digital- oder Analogbaugruppen tauschen . . . . . . . . . . . . . . . . . . . . . . . . . .

Sicherungen der Digitalbaugruppen tauschen . . . . . . . . . . . . . . . . . . . . . . .

IMs tauschen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sicherung der Lüfterzeile tauschen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lüfter der Lüfterzeilen im Betrieb tauschen . . . . . . . . . . . . . . . . . . . . . . . . .

6-17

7-11

7-13

7-14

Filterrahmen der Lüfterzeile im Betrieb austauschen . . . . . . . . . . . . . . . . .

7-15

Stromversorgungsleiterplatte und Überwachungsleiterplatte der Lüfterzeile tauschen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7-17

6-18

7-1

7-2

7-4

7-5

7-7

7-9

Allgemeine Regeln und Vorschriften zum Betrieb einer S7-400 . . . . . . . .

Grundzüge für den EMV-gerechten Aufbau von Anlagen . . . . . . . . . . . . . .

EMV-gerechte Montage von Automatisierungssystemen

Beispiele zur EMV-gerechten Montage

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Schirmung von Leitungen

Potenzialausgleich

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leitungsführung innerhalb von Gebäuden . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leitungsführung außerhalb von Gebäuden . . . . . . . . . . . . . . . . . . . . . . . . . .

A.9

Blitzschutz und Überspannungsschutz

A.9.1

Blitz-Schutzzonen-Konzept

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.9.2

Regeln für die Schnittstelle zwischen den Blitz-Schutzzonen 0 und 1

A.9.3

Regeln für die Schnittstellen zwischen den Blitz-Schutzzonen 1 <--> 2

. . .

und größer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.9.4

Beispielbeschaltung für vernetzte S7-400 zum Schutz vor

Überspannungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.10

So schützen Sie Digitalausgabebaugruppen vor induktiven

Überspannungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.11

A.12

Sicherheit elektronischer Steuerungen

Störsicherer Anschluss von Monitoren

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Richtlinie zur Handhabung elektrostatisch gefährdeter Baugruppen (EGB) .

B.1

B.2

Was bedeutet EGB?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Elektrostatische Aufladung von Personen . . . . . . . . . . . . . . . . . . . . . . . . . . .

7-18

A-1

A-2

A-4

A-9

A-11

A-14

A-16

A-18

A-20

A-21

A-22

A-24

A-26

A-29

A-31

A-33

A-35

B-1

B-2

B-3

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01 ix

Inhaltsverzeichnis

B.3

Glossar

Grundsätzliche Schutzmaßnahmen gegen Entladungen statischer

Elektrizität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B-4

Glossar-1

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Index-1

Bilder

2-1

2-2

2-3

2-4

2-5

2-6

4-1

4-2

4-3

4-4

4-5

4-6

4-23

4-24

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

Bestückter Baugruppenträger im System S7-400 . . . . . . . . . . . . . . . . . . . .

Maximale Schrankumgebungstemperatur in Abhängigkeit von der

Verlustleistung der Geräte im Schrank

Abdeckhaube entfernen

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baugruppen einhängen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baugruppen festschrauben

Steckplatzschild anbringen

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S7-400 aus geerdeter Einspeisung betreiben . . . . . . . . . . . . . . . . . . . . . . . .

Aufbau einer S7-400 mit geerdetem Bezugspotenzial . . . . . . . . . . . . . . . .

Aufbau einer S7-400 mit ungeerdetem Bezugspotenzial . . . . . . . . . . . . . .

Vereinfachte Darstellung für den Aufbau mit potenzialgetrennten

Baugruppen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parallelbeschaltung eines Digitalausganges bei unterschiedlicher

Lastnennspannung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parallelbeschaltung eines Digitalausganges bei gleicher

Lastnennspannung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Anschluss der Masse der Lastspannung

Netzstecker ziehen

Netzstecker verdrahten

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Schirmung und Erdung der Steckleitung bei Fernkopplung . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Netzstecker aufstecken

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verdrahtung der Frontstecker vorbereiten . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker mit Crimpanschluss verdrahten . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker mit Schraubanschluss verdrahten . . . . . . . . . . . . . . . . . . . . . .

Frontstecker mit Federkraftanschluss verdrahten . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prinzip der Federkraftklemme

Zugentlastung anbringen (Ansicht von unten)

Schilder am Frontstecker anbringen

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Beschriftungsschild im Frontstecker anbringen . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frontstecker einhängen

Frontstecker festschrauben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verbindungskabel in eine Sende-IM stecken . . . . . . . . . . . . . . . . . . . . . . . .

Verbindung einer Sende-IM mit zwei Empfangs-IMs . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lüfterzeile verdrahten

Kommunikation zwischen PG/OP und einer Baugruppe ohne MPI

Datenaustausch

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abschlusswiderstand am Busanschluss-Stecker . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

Abschlusswiderstand am RS 485-Repeater

Abschlusswiderstand im MPI-Netz

Beispiel für ein MPI-Netz

Beispiel mit CPU 414-2

PG-Zugriff über Netzgrenzen hinweg

Aufbau eines MPI-Netzes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Beispiel für ein PROFIBUS-DP-Netz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-2

2-27

2-31

2-32

2-32

2-33

4-6

4-7

4-8

4-11

4-12

4-38

4-39

4-41

5-5

5-6

5-9

5-9

5-10

5-11

5-12

5-13

5-14

5-17

4-26

4-27

4-28

4-29

4-30

4-31

4-36

4-37

4-12

4-15

4-16

4-19

4-21

4-22

4-24

4-25

x

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inhaltsverzeichnis

Tabellen

2-1

2-2

2-3

4-1

4-2

4-3

4-4

4-5

5-1

5-2

6-1

6-2

A-1

A-2

A-3

A-4

A-5

A-6

5-3

5-4

5-5

5-6

5-7

5-11

5-12

5-13

5-14

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

6-1

6-2

6-3

6-4

7-1

A-1

A-2

A-3

B-1

Busanschluss-Stecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abschlusswiderstand zuschalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optisches PROFIBUS-DP-Netz mit Teilnehmern, die integrierte

LWL-Schnittstelle besitzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simplex-Stecker und spezieller Steckadapter für IM 153-2 FO und

IM 467 FO im montierten Zustand

PG an eine S7-400 anschließen

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stellungen des Betriebsartenschalters

Memory Card in eine CPU stecken

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Schnittstellenmodule in CPU stecken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Schnittstellenmodule aus CPU ausbauen . . . . . . . . . . . . . . . . . . . . . . . . . . .

Die möglichen Wege elektromagnetischer Störungen

Beispiel eines EMV-gerechten Schrankaufbaus

EMV-gerechte Wandmontage einer S7-400

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Befestigung von Leitungsschirmen

Verlegen von Potenzialausgleichsleitung und Signalleitung

Blitz-Schutzzonen eines Gebäudes

Beispiel für die Beschaltung von vernetzten S7-400

Relaiskontakt für NOT-AUS im Ausgabestromkreis

Beschaltung von gleichstrombetätigten Spulen

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Beschaltung von wechselstrombetätigten Spulen

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

Schirmung und Erdung bei größerer Entfernung zwischen Monitor und

Automatisierungssystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Elektrostatische Spannungen, auf die eine Bedienungsperson aufgeladen werden kann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-19

5-20

5-23

A-13

A-15

A-17

A-23

A-29

A-31

A-32

A-32

5-27

6-5

6-8

6-12

6-19

7-19

A-5

A-11

A-37

B-3

Schranktypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baugruppen in den unterschiedlichen Baugruppenträgern

Zubehör zu den Baugruppen und Baugruppenträgern

VDE-Vorschriften für den Aufbau einer Steuerung

Maßnahmen für Schutzerdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Anschluss der Lastspannungsmasse

Leitungen und Werkzeug

Frontsteckerkodierelemente

. . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zulässige Leitungslänge eines Segments im MPI-Netz . . . . . . . . . . . . . . .

Zulässige Leitungslänge eines Segments im PROFIBUS-DP-Netz in Abhängigkeit von der Baudrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Länge der Stichleitungen je Segment

Eigenschaften der Lichtwellenleiter

Bestellnummern -- Lichtwellenleiter

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bestellnummern -- Simplex-Stecker und Steckadapter . . . . . . . . . . . . . . .

Zulässige Leitungslängen am Optischen PROFIBUS-DP-Netz

(Linientopologie) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checkliste zur Überprüfung vor dem ersten Einschalten

Stellung des Batterieüberwachungsschalters

Legende zu Beispiel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leitungsführung innerhalb von Gebäuden

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

Grobschutz von Leitungen mit Überspannungsschutz--Komponenten

Überspannungsschutz--Komponenten für Blitz--Schutzzonen 1 <--> 2

Überspannungsschutz--Komponenten für Blitz--Schutzzonen 2 <--> 3

Beispiel für einen blitzschutzgerechtetn Aufbau (Legende zu Bild A-7)

. .

. . .

. .

. .

2-26

2-29

2-35

4-5

4-13

4-14

4-17

4-34

5-15

5-15

5-16

5-24

5-26

5-27

5-28

6-3

6-5

A-12

A-18

A-24

A-27

A-28

A-30

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01 xi

Inhaltsverzeichnis

xii

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Produktübersicht

Produktübersicht

1

Übersicht S7-400

Die S7-400 ist eine Speicherprogrammierbare Steuerung. Nahezu jede Automatisierungsaufgabe läßt sich durch eine geeignete Auswahl mit S7-400-Komponenten lösen.

S7-400-Baugruppen in einschwenkbarer Blockbauform werden in einem Baugruppenträger montiert. Zur Systemerweiterung stehen Erweiterungsgeräte zur Verfügung.

In diesem Kapitel zeigen wir Ihnen die wichtigsten Komponenten, aus denen Sie eine S7-400 aufbauen können.

Merkmale der S7-400

Das Automatisierungssystem S7-400 vereint alle Vorteile der Vorgängersysteme mit den Vorteilen eines neuen Systems und einer neuen Software.

Dies sind:

• abgestufte CPU-Landschaft

• aufwärtskompatible CPUs

• gekapselte Baugruppen in robuster Bauweise

• komfortable Anschlusstechnik bei den Signalbaugruppen

• kompakte Baugruppen mit hoher Packungsdichte

• optimale Kommunikations- und Vernetzungsmöglichkeiten

• komfortable Einbindung von Bedien- und Beobachtungssystemen

• softwaremäßige Parametrierung aller Baugruppen

• weitgehend freie Steckplatzwahl

• lüfterloser Betrieb

• Multicomputing im nichtsegmentierten Baugruppenträger

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

1-1

Produktübersicht

Komponenten einer S7-400

Die wichtigsten Komponenten einer S7-400 und deren Funktion sind in den nachfolgenden Tabellen aufgeführt:

Komponente

Baugruppenträger

(UR = Universal Rack)

(CR = Central Rack)

(ER = Extension Rack)

Funktion

... stellen die mechanischen und elektrischen Verbindungen zwischen den S7-400-Baugruppen her.

Abbildung

Stromversorgungsbaugruppen

(PS = Power Supply)

Zubehör: Pufferbatterie

Zentralbaugruppen

(CPU = Central Processing Unit)

... setzen die Netzspannung

(AC 120/230 V bzw. DC 24 V) in die für die Versorgung der

S7-400 benötigten Betriebsspannungen von DC 5 V und DC 24 V um.

... führen das Anwenderprogramm aus; kommunizieren über die MPI-Schnittstelle mit anderen

CPUs bzw. mit einem PG.

V4.0

Memory Cards

Schnittstellenmodul IF 964-DP

Signalbaugruppen

(SM = Signal Module)

(Digitaleingabebaugruppen,

Digitalausgabebaugruppen,

Analogeingabebaugruppen

Analogausgabebaugruppen)

Zubehör: Frontstecker mit drei verschiedenen Anschlusstechniken

Anschaltungsbaugruppen

(IM = Interface Module)

Zubehör: Verbindungskabel

Abschluss-Stecker

... speichern das Anwenderprogramm und Parameter.

...dient zum Anschluss dezentraler Peripherie über ”PROFIBUS-

DP

... passen unterschiedliche Prozess-Signalpegel an die S7-400 an.

... bilden die Schnittstelle zwischen SPS und Prozess.

... verbinden die einzelnen Baugruppenträger einer S7-400 miteinander.

Kabelkanal

PROFIBUS-Buskabel

...dient zur Kabelführung und zur

Luftführung.

... verbinden CPUs und PGs miteinander.

1-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Produktübersicht

PG-Kabel

Komponente

PROFIBUS-Komponenten z.B. PROFIBUS-Busterminal

RS 485-Repeater

Funktion

... verbindet eine CPU mit einem

PG.

... schalten die S7-400 an weitere S7-400 bzw. PG an.

...verstärkt Datensignale auf Busleitungen und koppelt Bussegmente.

Programmiergerät (PG) oder PC mit dem Softwarepaket STEP 7

... konfiguriert, parametriert, programmiert und testet die S7-400.

Abbildung

Lüfterzeile

(für besondere Einsatzbereiche)

...belüftet Baugruppen in Sonderfällen; kann mit oder ohne Filter betrieben werden.

Weitere Komponenten der S7-400 wie CPs, FMs, etc. werden in eigenen Handbüchern beschrieben.

Position von Bestellnummer und Erzeugnisstand

Die Bestellnummer und der Erzeugnisstand sind auf jeder Baugruppe der SIMATIC

S7-400 aufgedruckt. Bei den CPUs ist zusätzlich der Firmwarestand aufgedruckt.

Nachfolgendes Bild zeigt, an welchen Positionen Sie diese auf einer Baugruppe finden.

Beim Erzeugnisstand ist statt der gültigen Zahl ein X eingetragen. In nachfolgendem Bild ist eine Baugruppe mit Erzeugnisstand 1 abgebildet.

Baugruppenbezeichnung

CPU 412--1

X 2

3 4

412--1XF04--0AB0

V 4.0

Erzeugnisstand

Kurz-Bestellnummer

(6ES7 ...)

Firmware-Stand

(Bei CPUs)

Typenschild

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

1-3

Produktübersicht

Beispiel eines Typenschilds

Bestellnummer Baugruppenbezeichnung

Erzeugnisstand

Zulassungen und Kennzeichnungen

1-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Montieren einer S7-400

2

Kapitelübersicht

Im Kapitel

2.1

2.2

2.3

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

finden Sie

Aufbau einer S7-400

Aufbau von Zentralgerät (ZG) und Erweiterungsgerät (EG)

Segmentiertes ZG

Baugruppenträger befestigen und erden

Masseanschluss im potentialgebundenen Aufbau

Möglichkeiten der Luftführung

Luftführung bei Kabelkanal bzw. Lüfterzeile verändern

Lüfterzeile einbauen

Kabelkanal einbauen

Auswahl und Aufbau von Schränken mit der S7-400

Regeln für die Anordnung von Baugruppen

Einbau von Baugruppen in einen Baugruppenträger

Kennzeichnen der Baugruppen mit Steckplatzschildern

Möglichkeiten der Erweiterung und Vernetzung

Zubehör

auf Seite

2-2

2-6

2-8

2-10

2-16

2-18

2-20

2-22

2-24

2-25

2-29

2-30

2-33

2-34

2-35

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-1

Montieren einer S7-400

2.1

Aufbau einer S7-400

Einleitung

Eine speicherprogrammierbare Steuerung S7-400 besteht aus einem Zentralgerät

(ZG) und -- je nach Bedarf -- einem oder mehreren Erweiterungsgeräten (EG). EGs setzen Sie ein, wenn die Steckplätze im ZG für Ihren Anwendungsfall nicht ausreichen oder wenn Sie Signalbaugruppen räumlich getrennt vom ZG (z. B. in unmittelbarer Nähe Ihres Prozesses) einsetzen wollen.

Beim Einsatz von EGs brauchen Sie neben den zusätzlichen Baugruppenträgern noch Anschaltungsbaugruppen (IM) und gegebenenfalls noch weitere Stromversorgungsbaugruppen. Beim Einsatz von Anschaltungsbaugruppen müssen Sie immer die einander entsprechenden Partner verwenden: Im ZG stecken Sie eine

Sende-IM, in jedem angeschlossenen EG die dazu passende Empfangs-IM (siehe

Referenzhandbuch, Kapitel 6).

Zentralgerät (ZG) und Erweiterungsgerät (EG)

Der Baugruppenträger, der die CPU enthält, wird ”Zentralgerät (ZG)” genannt. Die an das ZG angeschlossenen mit Baugruppen bestückten Baugruppenträger im

System sind die ”Erweiterungsgeräte (EGs)”.

Bild 2-1 zeigt einen als ZG bestückten Baugruppenträger mit 18 Steckplätzen.

2-2

PS CPU SMs

Bild 2-1 Bestückter Baugruppenträger im System S7-400

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Kopplung von ZG und EG(s)

Wenn Sie an ein ZG ein oder mehrere EGs koppeln wollen, müssen Sie im ZG eine oder mehrere Sende-IMs stecken.

Die Sende-IMs haben zwei Schnittstellen. An jede der beiden Schnittstellen einer

Sende-IM im ZG können Sie einen Strang mit bis zu vier EGs anschließen.

Für die Kopplung im Nahbereich (Nahkopplung) und im Fernbereich (Fernkopplung) stehen unterschiedliche IMs zur Verfügung.

Kopplung mit 5-V-Übertragung

Bei Nahkopplung mit IM 460-1 und IM 461-1 wird die 5-V-Versorgungsspannung

über die Anschaltungsbaugruppen mit übertragen. In einem mit IM 460-1/IM 461-1 angekoppelten EG darf daher keine Stromversorgungsbaugruppe gesteckt werden.

Über jede der beiden Schnittstellen einer IM 460-1 können dabei bis zu 5 A fließen.

Das heißt, jedes über IM 460-1/461-1 angekoppelte EG kann mit maximal 5 A bei

5 V versorgt werden. Näheres hierzu siehe Referenzhandbuch, Kapitel 6.

Eigenschaften der Kopplungen im Überblick

Beachten Sie die Regeln für die Kopplung am Ende dieses Abschnitts.

Sende-IM

Empfangs-IM

Max. Zahl anschließbarer EGs pro Strang

Max. Entfernung

5-V-Übertragung

Max. Stromübertragung pro

Schnittstelle

K-Bus-Übertragung

Nahkopplung

460-0

461-0

460-1

461-1

4

5 m nein

-ja

1

1,5 m ja

5 A nein

Fernkopplung

460-3

461-3

460-4

461-4

4

102,25 m nein

-ja

4

605 m nein

-nein

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-3

Montieren einer S7-400

Möglichkeiten von Kopplungen von Zentral- und Erweiterungsgeräten

Zentralgerät ZG

IM 460-4

IM 460-3

IM 460-1

IM 460-0

Erweiterung ohne 5-V-Übertragung im Nahbereich

Erweiterungsgerät EG 1 Erweiterungsgerät EG 4

IM 461-0

Stranglänge max. 5 m

Erweiterung mit 5-V-Übertragung im Nahbereich

Erweiterungsgerät EG 1

IM 461-0

IM 461-1

Stranglänge max. 1,5 m

Erweiterungsgerät EG 1

Erweiterung im Fernbereich

Erweiterungsgerät EG 4

Erweiterungsgerät EG 1

IM 461-3

Stranglänge max. 102,25 m

Erweiterungsgerät EG 4

IM 461-3

IM 461-4

Stranglänge max. 605 m

IM 461-4

2-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Regeln für die Kopplung

Wenn Sie ein ZG mit EGs koppeln, müssen Sie folgende Regeln beachten:

• Sie dürfen maximal 21 EGs der S7-400 mit einem ZG koppeln.

• Zur Unterscheidung erhalten die EGs Nummern. Die Baugruppenträgernummer muss am Kodierschalter der Empfangs-IM eingestellt werden. Die Vergabe der

Baugruppenträgernummer zwischen 1 und 21 ist beliebig. Eine Doppelvergabe ist nicht zulässig.

• Sie dürfen maximal 6 Sende-IMs in ein ZG stecken. Es sind allerdings nur

2 Sende-IMs mit 5-V-Übertragung in einem ZG zulässig.

• Jeder an die Schnittstelle einer Sende-IM angeschlossene Strang kann bis zu

4 EGs (ohne 5-V-Übertragung) bzw. 1 EG (mit 5-V-Übertragung) umfassen.

• Der Datenaustausch über den K-Bus beschränkt sich auf 7 Baugruppenträger, und zwar auf das ZG und die EGs Nr. 1 bis Nr. 6.

• Die durch die jeweilige Kopplungsart vorgegebenen maximalen (Gesamt-) Leitungslängen dürfen nicht überschritten werden.

Kopplungsart

Nahkopplung mit 5-V-Übertragung

über IM 460-1 und IM 461-1

Nahkopplung ohne 5-V-Übertragung

über IM 460-0 und IM 461-0

Fernkopplung

über IM 460-3 und IM 461-3

Fernkopplung

über IM 460-4 und IM 461-4

Maximale (Gesamt-) Leitungslänge

1,5 m

5 m

102,25 m

605 m

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-5

Montieren einer S7-400

2.2

Aufbau von Zentralgerät (ZG) und Erweiterungsgerät

(EG)

Funktion der Baugruppenträger

Die Baugruppenträger des Systems S7-400 bilden das Grundgerüst, das die einzelnen Baugruppen aufnimmt. Über den Rückwandbus der Baugruppenträger tauschen die Baugruppen Daten und Signale aus und werden mit Strom versorgt. Die

Baugruppenträger sind für Wandmontage, für die Montage auf Holmen und für den

Einbau in Gestellen und Schränken ausgelegt.

Baugruppenträger im System S7-400

Baugruppenträger

UR1

UR2

Anzahl

Steckplätze

18

9

Vorhandene

Busse

K-Bus

ER1

ER2

CR3

UR2-H

18

9

4

2*9

Eingeschränkter

P-Bus

P-Bus segmentiert

K-Bus durchgehend

P-Bus

K-Bus

P-Bus segmentiert

K-Bus segmentiert

Einsatzbereich

Eigenschaften

ZG oder

EG

Segmentiertes

ZG

ZG in Standard-

Systemen

Geteiltes ZG oder EG für kompakten

Aufbau eines

H-Systems der S7-400.

Baugruppenträger für Signalbaugruppen (SMs),

Empfangs-IMs und alle Stromversorgungsbaugruppen

Der P-Bus hat folgende Einschränkungen:

• Alarme von Baugruppen haben keine Auswirkung, da keine Alarmleitungen vorhanden sind.

• Baugruppen werden nicht mit 24 V versorgt, d. h. Baugruppen, die 24 V benötigen, können nicht eingesetzt werden (siehe technische Daten der Baugruppen).

• Baugruppen werden weder von der Batterie in der Stromversorgungsbaugruppe noch von der extern in die CPU oder Empfangs-IM (Buchse EXT.-BATT.) eingespeisten Spannung gepuffert.

Baugruppenträger für alle Baugruppentypen der S7-400 außer Empfangs-IMs.

Der P-Bus ist in zwei P-Bussegmente mit 10 bzw. 8 Steckplätzen unterteilt.

Baugruppenträger für alle Baugruppentypen der S7-400 außer Empfangs-IMs. CPUs 41x-H nur im Einzelbetrieb.

Baugruppenträger für alle Baugruppentypen der S7-400

P-Bus und K-Bus sind in 2 Bussegmente von jeweils 9 Steckplätzen unterteilt

2-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Elektrische Versorgung

Die im Baugruppenträger gesteckten Baugruppen werden von der im äußersten linken Steckplatz des Baugruppenträgers eingebauten Stromversorgungsbaugruppe über Rückwandplatine und Basisstecker mit den erforderlichen Betriebsspannungen versorgt (5 V für Logik, 24 V für Schnittstellenversorgung).

Bei Nahkopplungen können EGs auch über die Anschaltungsbaugruppen

IM 460-1/IM 461-1 mit Strom versorgt werden.

Über jede der beiden Schnittstellen einer Sende-IM 460-1 können dabei 5 A flie-

ßen, d.h. jedes im Nahbereich angekoppelte EG kann mit maximal 5 A versorgt werden.

Peripheriebus (P-Bus)

Der Peripheriebus (P-Bus) ist ein paralleler Rückwandbus, der auf den schnellen

Austausch von E/A-Signalen ausgelegt ist. Jeder Baugruppenträger hat einen P-

Bus. Die zeitkritischen Zugriffe auf die Prozessdaten der Signalbaugruppen erfolgen über den P-Bus.

Kommunikationsbus (K-Bus)

Der Kommunikationsbus (K-Bus) ist ein serieller Rückwandbus, der auf den schnellen Austausch größerer Datenmengen parallel zu den E/A-Signalen ausgelegt ist. Mit Ausnahme der Baugruppenträger ER1 und ER2 besitzt jeder Baugruppenträger einen K-Bus.

Baugruppenträger mit P-Bus und K-Bus

Nachfolgendes Bild zeigt einen Baugruppenträger mit P-Bus und K-Bus. Sichtbar sind an jedem Steckplatz der P-Bus-Stecker und der K-Bus-Stecker. Bei Auslieferung des Baugruppenträgers sind diese Stecker durch eine Abdeckung geschützt.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P-Bus-Stecker

K-Bus-Stecker

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-7

Montieren einer S7-400

2.3

Segmentiertes ZG

Eigenschaften

Die Eigenschaft ”segmentiert” bezieht sich auf den Aufbau des ZG. Während beim

(nichtsegmentierten) ZG der P-Bus durchgehend ist und alle 18 bzw. 9 Steckplätze miteinander verbindet, besteht der P-Bus beim segmentierten ZG aus zwei P-Bussegmenten.

Ein segmentiertes ZG besitzt also folgende wichtige Eigenschaften:

• Der K-Bus ist durchgehend (global), während der P-Bus in zwei P-Bussegmente mit 10 bzw. 8 Steckplätzen unterteilt ist.

• Pro Lokalbussegment kann jeweils eine CPU gesteckt werden.

• Die beiden CPUs in einem segmentierten ZG können unterschiedliche Betriebszustände haben.

• Die beiden CPUs können über den K-Bus miteinander kommunizieren.

• Alle in einem segmentierten ZG gesteckten Baugruppen werden von der Stromversorgungsbaugruppe auf Steckplatz 1 versorgt.

• Beide Segmente haben eine gemeinsame Pufferung.

Nachfolgendes Bild zeigt ein segmentiertes ZG mit unterteiltem P-Bus und durchgehendem K-Bus.

1

SEG1

11

SEG2

1

SEG1

2

SEG1

3

SEG1

4

SEG1

5

SEG1

6

SEG1

7

SEG1

8

SEG1

9 10 11 12 13 14 15 16 17 18

SEG1 SEG1 SEG2 SEG2 SEG2 SEG2 SEG2 SEG2 SEG2 SEG2

P-Bus

Segment 1

K-Bus

P-Bus

Segment 2

2-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

2.4

Geteiltes ZG

Eigenschaften

Die Eigenschaft ”geteilt” bezieht sich auf den Aufbau des ZG. Während beim (nicht geteilten) ZG P-Bus und K-Bus durchgehend sind und alle Steckplätze miteinander verbinden, bestehen P-Bus und K-Bus beim geteiltenen ZG aus jeweils zwei Segmenten. Funktional stellt der hierfür eingesetzte Baugruppenträger UR2-H zwei elektrisch getrennte Baugruppenträger UR2 auf demselben Trägerprofil dar.

Ein geteiltes ZG besitzt also folgende wichtige Eigenschaften:

• K-Bus und P-Bus sind in zwei Segmente mit jeweils 9 Steckplätzen unterteilt.

• Jedes Segment stellt ein in sich geschlossenes ZG dar.

Nachfolgendes Bild zeigt ein geteiltes ZG mit geteiltem P-Bus und K-Bus.

Gerät I Gerät II

1 2 3 4 5

1 2 3 4 5

6 7 8 9 1

6 7 8 9 1

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9

P-Bus

Segment 1

K-Bus

Segment 1

P-Bus

Segment 2

K-Bus

Segment 2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-9

Montieren einer S7-400

2.5

Baugruppenträger befestigen und erden

Wichtige Einbauhinweise

Die Baugruppenträger der S7-400 sind für Wandmontage, Montage auf Holmen und für den Einbau in Gestellen und Schränken ausgelegt. Ihre Befestigungsmaße entsprechen der DIN 41 494.

Im Geltungsbereich der UL/CSA und der EG-Richtlinie 73/23/EWG (Niederspannungsrichtlinie) ist der Einbau in einen Schrank, ein Gehäuse oder einen geschlossenen Betriebsraum erforderlich, damit die Vorgaben für die elektrische Sicherheit erfüllt werden (siehe Referenzhandbuch, Kapitel 1).

Schritt 1: Abstände einhalten

Sie müssen bestimmte Mindestabstände zwischen einem Baugruppenträger und benachbarten Einrichtungen berücksichtigen. Diese Mindestabstände benötigen

Sie bei der Montage und im Betrieb

• zum Ein- und Ausbauen von Baugruppen,

• zum Aufstecken und Abziehen der Baugruppen-Frontstecker,

• zur Gewährleistung des für die Entwärmung der Baugruppen erforderlichen

Luftstroms während des Betriebs.

Nachfolgendes Bild zeigt, welchen Platz Sie mindestens für einen Baugruppenträger vorsehen müssen.

40 mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

20 mm

352 mm

20 mm

*

22 mm

*

523 mm (18 Steckplätze)

298 mm (9 Steckplätze)

173 mm (4 Steckplätze) beim Einbau einer Lüfterzeile erleichtern 40 mm die Montage

Einbautiefe bestückt : max. 237 mm

2-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Platzbedarf bei Einsatz von Kabelkanal bzw. Lüfterzeile

Kabelkanal bzw. Lüfterzeile müssen im 19-Zoll-Raster direkt unter dem Baugruppenträger montiert werden. Zusätzlich ist auf beiden Seiten Platz für die Kabelführung vorzusehen.

Nachfolgendes Bild zeigt, welchen Platz Sie einplanen müssen, wenn Sie einen

Kabelkanal oder eine Lüfterzeile verwenden.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

440 mm

Kabelkanal/Lüfterzeile

523 mm (mit Kabelkanal)

543 mm (mit Lüfterzeile)

Einbautiefe bestückt : max. 237 mm 19-Zoll-Referenzebene

Abmessungen der Baugruppenträger

Nachfolgendes Bild zeigt im Überblick die Abmessungen der Baugruppenträger mit

18, 9 bzw. 4 Steckplätzen sowie die Anordnung der Aussparungen für die

Schraubbefestigung.

Die Aussparungen sind passend zum 19-Zoll-Standard angeordnet.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-11

Montieren einer S7-400

60 mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

290 mm 190 mm

40 mm

1 2 3 4

1 2 3 4

290 mm 190 mm

40 mm

115 mm

133 mm

465 mm

483 mm

1 2 3 4 5 6 7 8 9

240 mm

258 mm

Tiefe = 28 mm ohne Baugruppen

Tiefe = 237 mm mit Baugruppen

Schritt 2: Baugruppenträger befestigen

Verschrauben Sie den Baugruppenträger mit dem Untergrund.

Wenn der Untergrund eine geerdete Metallplatte oder ein geerdetes Gerätetragblech ist, dann achten Sie auf eine niederimpedante Verbindung zwischen Baugruppenträger und Untergrund. Benutzen Sie z. B. bei lackierten und eloxierten

Metallen geeignete Kontaktierungsmittel oder spezielle Kontaktscheiben.

Bei einem anderen Untergrund sind keine besonderen Maßnahmen erforderlich.

2-12

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Befestigungsschrauben

Für die Befestigung eines Baugruppenträgers können Sie unter folgenden Schraubentypen wählen:

Schraubentyp

Zylinderschraube M6 nach ISO

1207/ISO 1580 (DIN 84/DIN 85)

Sechskantschraube M6 nach ISO 4017

(DIN 4017)

Erläuterung

Die Schraubenlänge müssen Sie entsprechend

Ihrem Aufbau auswählen.

S nach ISO 7092 (DIN 433).

Schritt 3: Baugruppenträger mit Ortserde verbinden.

Verbinden Sie den Baugruppenträger mit der Ortserde. Für diesen Zweck ist auf dem Baugruppenträger links unten ein Gewindebolzen vorgesehen.

Mindestquerschnitt der Leitung zur Ortserde: 10 mm

2

.

Wenn die S7-400 auf einem beweglichen Gestell montiert ist, müssen Sie eine flexible Leitung zur Ortserde vorsehen.

Hinweis

Sorgen Sie immer für eine niederimpedante Verbindung zur Ortserde (siehe nachfolgendes Bild). Dies erreichen Sie mit einer möglichst kurzen, niederohmigen

Leitung mit großer Oberfläche, die Sie großflächig kontaktieren.

Gewindebolzen

M6

Kontaktscheibe

Anschluß

Unterlegscheibe

Mutter M6 zur Ortserde

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-13

Montieren einer S7-400

Schritt 4: Weitere Baugruppenträger befestigen

Wenn Sie eine S7-400 mit mehreren Baugruppenträgern aufbauen, müssen Sie zwischen den einzelnen Baugruppenträgern zusätzliche Abstände einhalten bzw.

eine Lüfterzeile oder einen Kabelkanal montieren.

Nachfolgendes Bild zeigt, welchen Abstand Sie zwischen zwei Baugruppenträgern der S7-400 bei der Montage einhalten müssen.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

110 mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Nachfolgendes Bild zeigt, welchen Platzbedarf Sie einplanen müssen, wenn Sie eine S7-400 aus zwei Baugruppenträgern mit Kabelkanal bzw. Lüfterzeile aufbauen. Für jeden zusätzlichen Baugruppenträger mit Kabelkanal bzw. Lüfterzeile erhöht sich dieser Bedarf in der Höhe um 400 mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

840 mm

Kabelkanal/Lüfterzeile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Kabelkanal/Lüfterzeile

Einbautiefe bestückt : max. 237 mm

19-Zoll-Referenzebene

Hinweis

Ein Mindestabstand gemäß vorstehendem Bild zwischen Baugruppenträger und

Kabelkanal bzw. Lüfterzeile muss nicht eingehalten werden, jedoch immer zwischen zwei benachbarten Baugruppenträgern und zwischen Baugruppenträgern und anderen Einrichtungen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-15

Montieren einer S7-400

2.6

Masseanschluss im potentialgebundenen Aufbau

Bezugspunkt

Die Baugruppenträger bieten die Möglichkeit, die Masse der 24-V-Lastspannung im potentialgebundenen Aufbau mit der 5-V-Masse (Bezugspotential M, Logik-

Masse) zu verbinden.

Am Bezugspunkt für potentialgebundene Baugruppen schließen Sie die Masse an.

Der Bezugspunkt ist galvanisch mit dem Bezugspotential M verbunden.

Nachfolgendes Bild zeigt die Lage des Bezugspunktes auf einem Baugruppenträger.

1 2 3 4 5 6 7

Galvanische Verbindung, bei erdfreiem Aufbau oben lösen

Anschluss der Masse der

Lastspannung (Bezugspunkt)

Anschluss an Ortserde

2-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Anschluss am Bezugspunkt

Für den Anschluss am Bezugspunkt verwenden Sie einen Kabelschuh für M4, eine geeignete Federscheibe (z. B. Spannscheibe DIN 6796) und die vorhandene Zylinderkopfschraube.

Erdfreier Aufbau: Lösen Sie die Befestigungsschrauben der galvanischen Verbin-

dung am Baugruppenträger. Klappen Sie die Verbindung nach unten. Verwenden

Sie für den Anschluss am Bezugspunkt die vorhandene Originalschraube M4 x 8.

Die herunter geklappte galvanische Verbindung dient als Unterlegsscheibe.

Geerdeter Aufbau: Belassen Sie die galvanische Verbindung am Baugruppenträ-

ger. Verwenden Sie für den Anschluss am Bezugspunkt die Originalschraube

M4 x 8.

Erdfreier Aufbau

Baugruppenträger

Geerdeter Aufbau

Anschluss

Federscheibe

Galvanische Verbindung

Bezugspunkt

Anschluss

Federscheibe

Originalschraube mit Federscheib e

M4 x 8

Originalschraube mit Federscheib e

M4 x 8

Hinweis

Verwenden Sie für den Anschluss am Bezugspunkt keine Zylinderkopfschrauben, die länger sind als die im Bild angegebenen. Andernfalls könnte eine ungewollte

Verbindung des Bezugspunktes mit dem dahinter liegenden Trägerprofil und damit dem Anschluss für Ortserde entstehen. Belassen Sie aus diesem Grund auch im erdfreien Aufbau die galvanische Verbindung als “Unterlegsscheibe” am Baugruppenträger.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-17

Montieren einer S7-400

2.7

Möglichkeiten der Luftführung

Luftführung

Unter extremen Umgebungsbedingungen, insbesondere beim Einsatz der

S7-400-Baugruppen in Schränken, können Sie den Kabelkanal bzw. die Lüfterzeile einsetzen, um die Luftführung zu optimieren.

Es gibt zwei Möglichkeiten, den Baugruppen Luft zuzuführen. Entweder ziehen Sie

Luft aus dem Rückraum oder von unten an. Kabelkanal und Lüfterzeile lassen sich zu diesem Zweck umbauen.

Nachfolgendes Bild zeigt Ihnen die Luftführung, wenn Sie die Luft aus dem Rückraum anziehen.

Wand

Abluft

Baugruppen

Kabelkanal oder Lüfterzeile

Abluft

Baugruppen

Zuluft

2-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Nachfolgendes Bild zeigt Ihnen die Luftführung, wenn Sie die Luft von unten anziehen.

Abluft

Wand

Baugruppen

Kabelkanal oder Lüfterzeile

Baugruppen

Zuluft

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-19

Montieren einer S7-400

2.8

Luftführung bei Kabelkanal bzw. Lüfterzeile verändern

Luftführung verändern

Im Boden von Kabelkanal und Lüfterzeile befindet sich eine Abdeckung, die Sie umbauen können, um die Luftführung zu verändern. Gehen Sie dabei folgendermaßen vor:

1. Öffnen Sie mit einem Schraubendreher durch eine Vierteldrehung im Gegenuhrzeigersinn die zwei Schnellverschlüsse an der Frontseite von Kabelkanal bzw. Lüfterzeile.

2. Fassen Sie den Boden mit beiden Händen, drücken Sie ihn leicht nach unten und ziehen Sie ihn komplett aus dem Kabelkanal bzw. der Lüfterzeile.

3. Die Abdeckung ist im Boden mit Schnappverschlüssen gesichert. Drücken Sie von unten nahe bei den Schnappverschlüssen gegen die Abdeckung und entnehmen Sie die Abdeckung.

4. Stecken Sie die Abdeckung ungefähr im rechten Winkel zum Boden in die

Schnappscharniere an der Hinterkante des Bodens.

5. Schieben Sie den Boden wieder ein und drücken Sie ihn nach oben.

6. Schließen Sie mit einem Schraubendreher durch eine Vierteldrehung im Uhrzeigersinn die zwei Schnellverschlüsse.

Nachfolgendes Bild zeigt Ihnen die beiden Möglichkeiten, wie Sie durch entsprechende Montage der Abdeckung im Boden von Kabelkanal bzw. Lüfterzeile die

Luftführung beeinflussen können.

2-20

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Abdeckung

Lieferzustand:

Abdeckung unten angebracht

(Zuluft von hinten)

Boden

Schnappverschlüsse

Abdeckung

Abdeckung hinten angebracht

(Zuluft von unten)

Schnellverschlüsse

Boden

Schnappscharniere

Lieferform

Die Abdeckung ist im Boden von Kabelkanal bzw. Lüfterzeile angebracht. Die Zuluft strömt von hinten.

Filtermatte (optional)

Zur Filterung der Zuluft können Sie bei Kabelkanal und Lüfterzeile eine Filtermatte einbauen. Die Filtermatte ist optional und nicht Bestandteil von Kabelkanal bzw.

Lüfterzeile.

Die Filtermatte kann ebenso wie die Abdeckung unten im Boden oder an seiner

Hinterkante in die entsprechenden Schnappscharniere bzw. Schnappverschlüsse eingesteckt werden.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-21

Montieren einer S7-400

2.9

Lüfterzeile einbauen

Vorgehensweise

1. Entfernen Sie die linke Abdeckung der Lüfterzeile.

Lösen Sie den Schnellverschluss mit einem 17er Gabelschlüssel durch eine

Viertelumdrehung.

Ziehen Sie die linke Abdeckung von der Lüfterzeile nach außen ab. Bewegen

Sie dabei die linke Abdeckung parallel zur Lüfterzeile, um den Steckkontakt an der Rückseite nicht zu zerstören.

Nachfolgendes Bild zeigt Ihnen, wie Sie die linke Abdeckung entfernen.

Rastmechanismus der Blindabdeckungen

Steckkontakt

Hinterwand der

Kabelführung

Abziehrichtung linke Abdeckung

Schnellverschluss

Hinweis

Unterhalb freier Steckplätze müssen Sie die Lüfterzeile mit Blindabdeckungen versehen, dadurch erreichen Sie eine optimale Luftführung.

Die Lüfterzeile wird mit 18 Blindabdeckungen geliefert, die als zwei Einheiten zu je neun Einzelblindabdeckungen ausgeführt sind. Durch Abbrechen an einer Sollbruchstelle lassen sich die Blindabdeckungen beliebig stückeln.

2. Entfernen Sie die nicht benötigten Blindabdeckungen, indem Sie den Rastmechanismus der Abdeckungen lösen und sie nach vorne abziehen.

3. Brechen Sie sich so viele Blindabdeckungen ab, wie Sie benötigen.

2-22

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

4. Bringen Sie an den freien Steckplätzen die Blindabdeckungen an:

-- Legen Sie die Blindabdeckungen auf die Hinterwand der Kabelführung,

-- schieben Sie die Blindabdeckungen so nach hinten, daß die Nasen an den

Blindabdeckungen in die entsprechenden Aussparungen passen,

-- schieben Sie die Blindabdeckungen so weit ein, bis der Rastmechanismus in die Öffnungen an der Hinterwand der Kabelführung einschnappt.

5. Befestigen Sie anschließend die Lüfterzeile im 19-Zoll-Raster direkt unter dem

Baugruppenträger oder zwischen zwei Baugruppenträgern. Verwenden Sie zum

Befestigen Schrauben der Größe M6.

Nachfolgendes Bild zeigt Ihnen, wie Sie die Lüfterzeile zwischen zwei Baugruppenträgern befestigen.

9 10 11 12 13 14 15 16 17 18

Blindabdeckung

9 10 11 12 13 14 15 16 17 18

19-Zoll-

Referenzebene

6. Stecken Sie die linke Abdeckung wieder auf.

7. Befestigen Sie die linke Abdeckung mit dem Schnellverschluss.

Lüfterzeile überwachen

Wenn Sie die Funktion der Lüfterzeile durch Ihr Programm überwachen lassen wollen, dann verbinden Sie die Ausgänge mit einer Digitalbaugruppe.

Nähere Erläuterungen zum Überwachungskonzept finden Sie im Referenzhand-

buch, Kapitel 9.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-23

Montieren einer S7-400

2.10

Kabelkanal einbauen

Vorgehensweise

1. Befestigen Sie den Kabelkanal im 19-Zoll-Raster direkt unter dem Baugruppenträger oder zwischen zwei Baugruppenträgern. Verwenden Sie zum Befestigen

Schrauben der Größe M6.

Nachfolgendes Bild zeigt Ihnen, wie Sie den Kabelkanal zwischen zwei Baugruppenträgern befestigen.

9 10 11 12 13 14 15 16 17 18

9 10 11 12 13 14 15 16 17 18

19-Zoll-Referenzebene

2-24

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

2.11

Auswahl und Aufbau von Schränken mit der S7-400

Notwendigkeit von Schränken

Bei größeren Anlagen und in gestörter oder belasteter Umgebung können Sie die

S7-400 in Schränke einbauen. Die Anforderungen von UL/CSA werden z. B. durch den Aufbau in Schränken erfüllt.

Auswahl und Dimensionierung von Schränken

Beachten Sie bei der Auswahl und Dimensionierung von Schränken folgende Kriterien:

• Umgebungsbedingungen am Aufstellungsort des Schrankes

• Geforderte Aufbauabstände für die Baugruppenträger

• Gesamtverlustleistung der im Schrank enthaltenen Komponenten

Die Umgebungsbedingungen (Temperatur, Feuchtigkeit, Staub, chemische Einflüsse, Explosionsgefahr) am Aufstellungsort des Schrankes bestimmen die erforderliche Schutzart (IP xx) des Schrankes. Weitere Informationen zu den Schutzarten finden Sie in IEC 529 und in der DIN 40050.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-25

Montieren einer S7-400

Tabelle 2-1 gibt einen Überblick über die gebräuchlichsten Schranktypen. Sie finden darin das angewandt Prinzip der Wärmeabführung sowie überschlägig die maximal erreichbare Verlustleistungsabführung und die Schutzart.

Tabelle 2-1 Schranktypen

Nicht geschlossene Schränke

Durchzugsbelüftung durch Eigenkonvektion

Verstärkte Durchzugsbelüftung

Eigenkonvektion

Geschlossene Schränke

Zwangsumwälzung durch Etagenlüfter, Verbesserung der Eigenkonvektion

Zwangsumwälzung durch Wärmetauscher,

Fremdbelüftung innen und außen

Wärmeabführung vorwiegend durch

Eigenthermik, zum kleinen Teil über die Schrankwand.

Schutzart IP 20

Erhöhte Wärmeabführung durch verstärkte Luftbewegung.

Schutzart IP 20

Wärmeabführung nur über die

Schrankwand; nur geringe Verlustleistung zulässig.

Oben im Schrank entsteht meist ein

Wärmestau.

Schutzart IP 54

Wärmeabführung nur über die

Schrankwand.

Durch Zwangsumwälzung der Innenluft bessere Wärmeabführung und

Verhinderung von

Wärmestaus.

Schutzart IP 54

Wärmeabführung durch Wärmeaustausch von erwärmter Innenluft und kühler Außenluft. Die vergrö-

ßerte Oberfläche der Faltflächen-

Profilwand des

Wärmetauschers und die Zwangsumwälzung der Innen- und Außenluft ermöglichen eine gute Wärmeabgabe.

Schutzart IP 54

Typische abführbare Verlustleistung unter folgenden Randbedingungen:

• Schrankgröße 2200 x 600 x 600 mm

Differenz zwischen Außen- und Innentemperatur des Schrankes 20°C (bei anderen Temperaturdifferenzen müssen Sie auf die Temperaturkennlinien des Schrankherstellers zurückgreifen) bis 700 W bis 2700 W (mit

Feinstfilter bis

1400 W) bis 260 W bis 360 W bis 1700 W

2-26

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Aus Schränken abführbare Verlustleistung (Beispiel)

Die aus einem Schrank abführbare Verlustleistung richtet sich nach der Bauart des

Schrankes, dessen Umgebungstemperatur und nach der Anordnung der Geräte im

Schrank.

Bild 2-2 zeigt ein Diagramm mit Richtwerten für die zulässige Umgebungstemperatur eines Schrankes mit den Abmessungen 600 x 600 x 2000 mm in Abhängigkeit von der Verlustleistung. Diese Werte treffen nur dann zu, wenn Sie die vorgeschriebenen Einbau- und Abstandsmaße für Baugruppenträger einhalten. Nähere

Informationen finden Sie in den Siemens-Katalogen NV21 und ET1.

Umgebungstemperatur in C

60

!

50

1

40

2

30

3

20

200 400 600 800 1000 1200 1400 W

Verlustleistung

Bild 2-2 Maximale Schrankumgebungstemperatur in Abhängigkeit von der Verlustleistung der Geräte im Schrank

Legende zu Bild 2-2:

1. Geschlossener Schrank mit Wärmetauscher;

Wärmetauscherbaugröße 11/6 (920 x 460 x 111 mm)

2. Schrank mit Durchzugsbelüftung durch Eigenkonvektion

3. Geschlossener Schrank mit Eigenkonvektion und Zwangsumwälzung durch

Gerätelüfter

Warnung

Baugruppen können beschädigt werden.

Wenn Baugruppen einer unzulässigen Umgebungstemperatur ausgesetzt werden, können sie beschädigt werden.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-27

Montieren einer S7-400

Beispiel für die Ermittlung des Schranktyps

Das folgende Beispiel macht deutlich, welche maximale Umgebungstemperatur bei einer bestimmten Verlustleistung bei verschiedenen Bauarten des Schrankes zulässig ist.

Die folgende Gerätekonfiguration soll in einen Schrank eingebaut werden:

1 Zentralgerät

2 Erweiterungsgeräte mit je 150 W Verlustleistung

1 Laststromversorgung unter Vollast

Gesamtverlustleistung

150 W

300 W

200 W

650 W

Aus Bild 2-2 ergeben sich bei einer Gesamtverlustleistung von 650 W die in nachstehender Aufstellung aufgeführten Umgebungstemperaturen:

Bauart des Schrankes

Geschlossen, mit Eigenkonvektion und Zwangsumwälzung

(Kurve 3)

Offen mit Durchzugsbelüftung (Kurve 2)

Geschlossen, mit Wärmetauscher (Kurve 1)

Maximal zulässige Umgebungstemperatur

(Betrieb nicht möglich) etwa 38°C etwa 45°C

Abmessung von Schränken

Um die Abmessung eines Schrankes zu bestimmen, der für den Aufbau einer

S7-400 geeignet ist, müssen Sie die folgenden Vorgaben berücksichtigen:

• Platzbedarf der Baugruppenträger

• Mindestabstände der Baugruppenträger zu den Schrankwänden

• Mindestabstände zwischen den Baugruppenträgern

• Platzbedarf von Kabelkanälen oder Lüfterzeilen

• Lage der Holme

2-28

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

2.12

Regeln für die Anordnung von Baugruppen

Anordnung von Baugruppen

Für die Anordnung von Baugruppen in einem Baugruppenträger müssen Sie nur zwei Regeln beachten:

• Stromversorgungsbaugruppen müssen in allen Baugruppenträgern immer ganz links beginnend (ab Steckplatz 1) gesteckt werden. Im UR2-H ab Steckplatz 1 in beiden Segmenten)

• Die Empfangs-IM im EG muß immer ganz rechts gesteckt werden. Im UR2-H auf Steckplatz 9 einmal pro Segment.

Hinweis

Vergewissern Sie sich bei allen Baugruppen, die nicht in diesem Handbuch beschrieben sind, ob es für diese zusätzliche Vorschriften gibt.

Nachfolgende Tabelle zeigt, welche Baugruppen in den unterschiedlichen Baugruppenträgern eingesetzt werden können.

Tabelle 2-2 Baugruppen in den unterschiedlichen Baugruppenträgern

Baugruppen

UR1, UR2,

UR2-H als ZG

Baugruppenträger

UR1, UR2 als EG

UR2-H als

EG *

CR2, CR3 ER1, ER2

Stromversorgungsbaugruppen

CPUs

Sende-IMs

Empfangs-IMs

Signalbaugruppen

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

*

Keine IM 463-2, keine Adaptionskapsel, keine Stromversorgungsbaugruppe gemeinsam mit der IM 461-1

Platzbedarf der Baugruppen

Im System S7-400 gibt es Baugruppen, die 1, 2, oder 3 Steckplätze belegen (25,

50 oder 75 mm Breite). Wieviele Steckplätze eine Baugruppe belegt entnehmen

Sie den technischen Daten der Baugruppe beim Stichwort “Abmessungen”. Die

Einbautiefe eines bestückten Baugruppenträgers beträgt maximal 237 mm.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-29

Montieren einer S7-400

2.13

Einbau von Baugruppen in einen Baugruppenträger

Einleitung

Der Einbau von Baugruppen in einen Baugruppenträger erfolgt für alle Baugruppen nach demselben Verfahren.

!

Vorsicht

Baugruppen und Baugruppenträger können beschädigt werden.

Wenn Sie beim Einbau von Baugruppen in Baugruppenträger Gewalt anwenden, können diese Komponenten beschädigt werden.

Führen Sie sorgfältig die unten beschriebenen Schritte für die Reihenfolge des

Einbaus durch.

Werkzeug

Für den Einbau der Baugruppen benötigen Sie als Werkzeug einen Schraubendreher zylindrischer Bauform mit 3,5 mm Klingenbreite.

Reihenfolge des Einbaus

Um Baugruppen in einen Baugruppenträger einzubauen, gehen Sie folgenderma-

ßen vor:

1. Entfernen Sie die Blindabdeckungen von den Steckplätzen, auf die Sie Baugruppen stecken wollen. Fassen Sie hierzu die Blindabdeckung an den markierten Stellen und ziehen Sie sie nach vorne ab.

Bei doppelt- und dreifachbreiten Baugruppen müssen Sie die Blindabdeckungen von allen Steckplätzen entfernen, die von der jeweiligen Baugruppe überdeckt werden.

2. Entfernen Sie ggf. die Abdeckhaube der Baugruppe (siehe Bild 2-3).

3. Ziehen Sie bei der Stromversorgungsbaugruppe den Netzstecker.

4. Hängen Sie die erste Baugruppe ein und schwenken Sie sie nach unten (siehe

Bild 2-4).

Sollten Sie beim Einschwenken der Baugruppe einen Widerstand spüren, heben Sie die Baugruppe etwas an und setzen Sie das Einschwenken fort.

5. Schrauben Sie die Baugruppe oben und unten mit einem Drehmoment von 0,8 bis 1,1 Nm fest (siehe Bild 2-5). Dreifachbreite Baugruppen befestigen Sie oben und unten mit je 2 Schrauben.

6. Stecken Sie ggf. die Abdeckhaube der Baugruppe wieder auf.

7. Montieren Sie die weiteren Baugruppen entsprechend.

2-30

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

Im Folgenden sind die einzelnen Schritte des Einbaus erläutert. Wie Sie Baugruppen ausbauen, finden Sie in Kapitel 7 beschrieben.

Abdeckhaube entfernen

Bei Baugruppen mit Abdeckhaube (z. B. Stromversorgungsbaugruppen und CPUs) entfernen Sie diese vor dem Einbau. Gehen Sie hierzu folgendermaßen vor:

1. Drücken Sie den Verschlußhebel nach unten (1).

2. Schwenken Sie die Abdeckhaube nach vorne ab (2).

(2)

(1)

Bild 2-3 Abdeckhaube entfernen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-31

Montieren einer S7-400

Baugruppen einhängen

Hängen Sie die Baugruppen der Reihe nach ein (1) und schwenken Sie sie vorsichtig nach unten (2). Sollten Sie beim Einschwenken der Baugruppe einen Widerstand spüren, heben Sie die Baugruppe etwas an und setzen Sie das Einschwenken fort.

(1)

(2)

Bild 2-4 Baugruppen einhängen

Baugruppen festschrauben

2-32

Anzugsdrehmoment

0,8 bis 1,1 Nm

Bild 2-5 Baugruppen festschrauben

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

2.14

Kennzeichnen der Baugruppen mit Steckplatzschildern

Steckplatznummer

Nachdem die Baugruppen montiert sind, sollten Sie jede mit ihrer Steckplatznummer kennzeichnen, damit das Risiko, im Betrieb Baugruppen zu vertauschen, ausgeschlossen wird. Bei vertauschten Baugruppen müssen Sie u. U. die Anlage neu konfigurieren.

Die Steckplatznummer ist auf dem Baugruppenträger aufgedruckt.

Doppeltbreite Baugruppen belegen zwei Steckplätze und erhalten die fortlaufende

Steckplatznummern beider Plätze.

Dreifachbreite Baugruppen belegen drei Steckplätze und erhalten die fortlaufende

Steckplatznummern dieser drei Plätze.

Steckplatzschilder anbringen

Um eine Baugruppe mit ihrer Steckplatznummer zu kennzeichnen, verwenden Sie

Steckplatzschilder. Die Steckplatzschilder sind als ”Nummernrad” dem Baugruppenträger beigefügt.

Um die Steckplatzschilder anzubringen, gehen Sie folgendermaßen vor:

1. Halten Sie das ”Nummernrad” an die Baugruppe und drehen Sie die entsprechende Steckplatznummer vor die Baugruppe, die auf diesem Steckplatz steckt.

2. Drücken Sie mit dem Finger das Steckplatzschild in die Baugruppe. Dabei bricht das Steckplatzschild vom ”Nummernrad” ab.

Bild 2-6 Steckplatzschild anbringen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-33

Montieren einer S7-400

2.15

Möglichkeiten der Erweiterung und Vernetzung

Einleitung

Neben den in diesem Kapitel genannten Strukturen sind noch Erweiterungen möglich, z. B. durch Anschluss von dezentraler Peripherie bzw. durch Vernetzung.

Dezentrale Peripherie

Beim Aufbau einer S7-400 mit einem dezentralen Peripheriesystem arbeiten die

Ein-/Ausgaben dezentral vor Ort und sind über PROFIBUS-DP direkt mit einer

CPU verbunden.

Hierbei kommt eine der masterfähigen CPUs der S7-400 zum Einsatz.

Als Slaves, d. h. als Ein-/Ausgaben vor Ort können Sie z. B. folgende Geräte einsetzen:

• ET 200 M

• ET 200 S

• ET 200 X

• ET 200 eco

• alle DP-Normslaves

Vernetzung

Sie können eine S7-400 an verschiedene Subnetze anschließen:

• über einen Simatic Net CP Ethernet an ein Industrial Ethernet Subnetz

• über einen Simatic Net CP Profibus an ein Profibus-DP Subnetz

• über die integrierte MPI-Schnittstelle an ein MPI Subnetz

• über die integrierte Profibus-DP-Schnittstelle an ein PROFIBUS-DP-Subnetz

Näheres hierzu siehe Kapitel 5.

2-34

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Montieren einer S7-400

2.16

Zubehör

Zubehör

In der Verpackung der Baugruppen und der Baugruppenträger ist ein Teil des Zubehörs enthalten, das Sie für die Montage der Baugruppen auf die Baugruppenträger benötigen. Die Frontstecker der SMs müssen Sie immer separat bestellen.

Außerdem gibt es zu einigen Baugruppen optionales Zubehör.

In Tabelle 2-3 ist das Zubehör zu den Baugruppen und Baugruppenträgern aufgeführt und kurz erläutert. Eine Liste der Ersatzteile für die SIMATIC S7 finden Sie im

Referenzhandbuch, Anhang C, ebenso im aktuellen Katalog CA 01.

Tabelle 2-3 Zubehör zu den Baugruppen und Baugruppenträgern

Baugruppe

Baugruppenträger

(UR, CR, ER)

Stromversorgungsbaugruppe

(PS)

Zentralbaugruppe

mitgeliefertes Zubehör

Nummernrad mit

Steckplatzschildern

--

--

nicht mitgeliefertes

Zubehör

--

1 oder 2 Pufferbatterien

Memory Cards

Signalbaugruppe

(SM)

2 Beschriftungsstreifen

Schild mit der Anschlussbelegung

--

--

--

--

--

--

Zweck des Zubehörs

Für die Kennzeichnung der Baugruppen mit Steckplatzschildern

Für die zentrale Pufferung der

RAM-Bereiche in der CPU

Erweiterung des Ladespeichers der CPU

Für die Beschriftung von Einund Ausgängen auf dem Frontstecker

Frontstecker mit Zugentlastungsband für

Schraub-, Crimp- oder

Federkraftanschluss

Entriegler (für Crimpanschlüsse)

Für die Kennzeichnung der

Frontstecker

Für die Verdrahtung der SMs

Für die Umverdrahtung von SMs mit einem Frontstecker mit

Crimpanschluss

Crimpkontakte

Crimpzange

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

2-35

Montieren einer S7-400

2-36

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Adressieren einer S7-400

Adressieren einer S7-400

Kapitelübersicht

Im Kapitel

3.1

3.2

3.3

finden Sie

Physikalische und logische Adressen

Wie ermitteln Sie die Defaultadresse einer Baugruppe?

Wie ermitteln Sie die Defaultadresse eines Kanals?

3 auf Seite

3-2

3-4

3-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

3-1

Adressieren einer S7-400

3.1

Physikalische und logische Adressen

Adressen

Um einen Prozess zu steuern, müssen Sie die Kanäle (Eingänge und Ausgänge) der Signalbaugruppen aus dem Anwenderprogramm ansprechen. Hierzu müssen

Sie eine eindeutige Zuordnung bilden zwischen der Lage eines Kanals und einer

Adresse, die Sie im Anwenderprogramm verwenden.

Physikalische Adressen

Die physikalische Adresse eines bestimmten Kanals ist fest vorgegeben. Sie richtet sich danach, wo der Ein- oder Ausgang physikalisch zu finden ist.

Im Einzelnen hängt dies von folgenden Randbedingungen ab:

• In welchem Baugruppenträger (0 bis 21) steckt die Signalbaugruppe?

• Auf welchem Steckplatz (1 bis 18 bzw. 1 bis 9) in diesem Baugruppenträger steckt die Signalbaugruppe?

• Welcher Kanal (0 bis 31) dieser Signalbaugruppe wird adressiert?

Abschnitt 3.2 beschreibt, wie Sie die physikalische Adresse eines Kanals bestimmen können.

Logische Adressen

Die logische Adresse einer Baugruppe und damit auch eines Kanals ist frei wählbar. Sie wird im Programm dazu verwendet, einen bestimmten Ein- oder Ausgang anzusprechen (lesen bzw. schreiben). Der physikalische Einbauort der zugehörigen Baugruppe braucht bei der Programmierung nicht bekannt zu sein. Die Zuordnung zwischen logischer und physikalischer Adresse stellen Sie mit STEP 7 her.

Die zwei Schritte der Adressierung

Die Adressierung eines Kanals, d.h. die Zuordnung zwischen seiner Lage und seiner Adresse, nehmen Sie in zwei Schritten vor:

1. Bestimmen Sie die physikalische Adresse des Kanals aus seiner Lage im Gesamtaufbau.

2. Weisen Sie der physikalischen Adresse unter STEP 7 eine logische Adresse zu. Unter dieser logischen Adresse sprechen Sie den Kanal im Anwenderprogramm an.

Hinweis

Besteht Ihre S7-400 nur aus einem ZG ohne EG, können Sie auch die Defaultadressierung verwenden.

3-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Adressieren einer S7-400

Defaultadressierung

Unter bestimmten Voraussetzungen kann die CPU die Zuordnung der logischen

Adresse und der physikalischen Adresse für Sie übernehmen (Defaultadressierung). Die logischen Adressen sind dann fest den Steckplätzen zugeordnet (Defaultadresse). Dezentrale Peripherie wird dabei nicht berücksichtigt.

Voraussetzungen für Defaultadressierung

Unter folgenden Voraussetzungen erstellt die CPU eine Defaultadressierung:

• kein Multicomputing

• nur Signalbaugruppen sind gesteckt

(keine IM, CP, FM gesteckt; keine Erweiterungsgeräte angeschlossen)

• Signalbaugruppen werden mit ihren Defaulteinstellungen (Messbereiche, Alarmverarbeitung, etc.) verwendet

• Baugruppen werden im Betriebszustand STOP oder bei ”Netz Aus” gesteckt

(im Betriebszustand RUN gesteckte Baugruppen werden nicht berücksichtigt, auch nicht beim Wechsel RUN → STOP → RUN)

Hinweis

Eine Defaultadressierung ist bei einer CPU 41x-H nicht möglich.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

3-3

Adressieren einer S7-400

3.2

Wie ermitteln Sie die Defaultadresse einer Baugruppe?

Defaultadresse

Die Defaultadresse einer Baugruppe errnitteln Sie aus der Nummer des Steckplatzes der Baugruppe im ZG.

Die für die Berechnung der Defaultadresse verwendeten Algorithmen sind für Analog- und Digitalbaugruppen unterschiedlich.

Nachfolgendes Bild zeigt die Nummerierung der Steckplätze in einem Baugruppenträger mit 18 Steckplätzen. Die Nummern der Steckplätze können Sie auch am

Baugruppenträger direkt ablesen.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Defaultadressen von Digitalbaugruppen

Bei der S7-400 laufen die Defaultadressen für Digitalbaugruppen von 0 (1. Steckplatz im ZG, der jedoch im Normalfall von der Stromversorgungsbaugruppe belegt ist) bis maximal 68 (18. Steckplatz).

Der für die Berechnung der Defaultadresse einer Digitalbaugruppe verwendete Algorithmus lautet:

Defaultadresse = (Steckplatznummer - 1) x 4

Beispiel

Die Defaultadresse einer Digitalbaugruppe im 12. Steckplatz lautet:

Defaultadresse = (12 - 1) x 4 = 44

3-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Adressieren einer S7-400

Defaultadressen von Analogbaugruppen

Bei der S7-400 laufen die Defaultadressen für Analogbaugruppen von 512

(1. Steckplatz im ZG, der jedoch im Normalfall von der Stromversorgungsbaugruppe belegt ist) bis maximal 1600.

Der für die Berechnung der Defaultadresse einer Analogbaugruppe verwendete

Algorithmus lautet:

Defaultadresse = (Steckplatznummer - 1) x 64 + 512

Beispiel

Die Defaultadresse einer Analogbaugruppe im 6. Steckplatz lautet:

Defaultadresse = (6 - 1) x 64 + 512 = 832

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

3-5

Adressieren einer S7-400

3.3

Wie ermitteln Sie die Defaultadresse eines Kanals?

Kanal auf einer Digitalbaugruppe

Ein Kanal auf einer Digitalbaugruppe wird bitweise adressiert. Bei einer Digitaleingabebaugruppe mit 32 Eingängen werden 4 Bytes (beginnend mit der Defaultadresse der Baugruppe) zur Adressierung der Eingänge verwendet, bei einer Digitaleingabebaugruppe mit 16 Eingängen werden 2 Bytes verwendet. Die einzelnen

Eingänge (von oben nach unten) belegen dann jeweils die Bits 0 bis 7 in diesen

Bytes.

Nachfolgendes Bild veranschaulicht diese Zusammenhänge am Beispiel einer Digitaleingabebaugruppe mit 32 Kanälen auf Steckplatz 12 (Defaultadresse 44). Bei einer Digitalausgabebaugruppe steht an erster Stelle ein ”A” anstelle des ”E”.

Adressen der Kanäle

E 44.0

E 44.1

E 44.2

E 44.3

E 44.4

E 44.5

E 44.6

E 44.7

E 45.0

E 45.1

E 45.2

E 45.3

E 45.4

E 45.5

E 45.6

E 45.7

E 46.0

E 46.1

E 46.2

E 46.3

E 46.4

E 46.5

E 46.6

E 46.7

E 47.0

E 47.1

E 47.2

E 47.3

E 47.4

E 47.5

E 47.6

E 47.7

3-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Adressieren einer S7-400

Kanal auf einer Analogbaugruppe

Kanäle auf Analogbaugruppen werden wortweise adressiert.

Beginnend mit der Defaultadresse der Baugruppe, die gleichzeitig die Adresse des obersten Kanals der Baugruppe darstellt, wachsen die Adressen der einzelnen Kanäle (von oben nach unten) jeweils um 2 Bytes (= 1 Wort).

Nachfolgendes Bild veranschaulicht diese Zusammenhänge am Beispiel einer

Analogausgabebaugruppe mit 8 Kanälen auf Steckplatz 6 (Defaultadresse = 832).

Bei einer Analogeingabebaugruppe steht an erster Stelle ein ’EW’ anstelle des

’AW’.

Adressen der Kanäle

AW 832

AW 834

AW 836

AW 838

AW 840

AW 842

AW 844

AW 846

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

3-7

Adressieren einer S7-400

3-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

Verdrahten einer S7-400

4

Kapitelübersicht

Im Kapitel

4.1

4.2

4.3

4.4

4.5

4.6

4.16

4.17

4.18

4.19

4.12

4.13

4.14

4.15

4.20

4.21

4.22

4.23

4.7

4.8

4.9

4.10

4.11

finden Sie

Stromversorgung von Baugruppen

Auswahl der Stromversorgungsbaugruppe

Auswahl der Laststromversorgung

S7-400 mit Prozess-Peripherie aufbauen

S7-400 aufbauen mit geerdetem Bezugspotenzial (M)

S7-400 aufbauen mit ungeerdetem Bezugspotenzial (erdfreier

Aufbau)

Aufbau einer S7-400 mit potenzialgetrennten Baugruppen

Parallelbeschaltung von digitalen S7-400-Ausgängen

Erdungsmaßnahmen

Störsicherer Aufbau bei Kopplungen

Regeln für die Verdrahtung

Stromversorgungsbaugruppe verdrahten

Signalbaugruppen verdrahten

Frontstecker verdrahten, Crimpanschluss

Frontstecker verdrahten, Schraubanschluss

Frontstecker verdrahten, Federkraftanschluss

Zugentlastung anbringen

Frontstecker beschriften

Montieren des Frontsteckers

ZG und EG verbinden

Lüfterzeile auf die Netzspannung einstellen und verdrahten

Kabelführung bei Verwendung von Kabelkanal oder Lüfterzeile

Kabelführung bei Verwendung von Lichtwellenleitern

4-19

4-23

4-25

4-26

4-27

4-29

4-30

4-34

4-10

4-12

4-13

4-15

4-17

4-38

4-40

4-41

4-42

auf Seite

4-2

4-3

4-4

4-5

4-7

4-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-1

Verdrahten einer S7-400

4.1

Stromversorgung von Baugruppen

Stromversorgungsbaugruppen und Laststromversorgung

Die Baugruppen des Systems S7-400 werden von einer Stromversorgungsbaugruppe über den Rückwandbus des Baugruppenträgers mit allen erforderlichen

Betriebsspannungen versorgt. Welche Stromversorgungsbaugruppe Sie in einem

Baugruppenträger verwenden, hängt von Ihren Systemerfordernissen (Netzspannung, Strombedarf der eingesetzten Baugruppen) ab.

Lastspannungen bzw. Lastströme müssen Sie über externe Laststromversorgungen bereitstellen.

Nachfolgendes Bild zeigt, wie die einzelnen Baugruppen der S7-400 mit Strom und

Spannung versorgt werden.

S7-400

Stromversorgungs-

Baugruppe

Betriebsspannungen

DC 5 V und DC 24 V

über Rückwandbus

S7-400

Baugruppen

(DC oder AC)

Netzspannung:

AC 120/230 V mit Netztrenneinrichtung oder DC 24 V

Laststrom

über

Frontstecker

Laststromversorgung

Hinweis

Die Stromversorgungsbaugruppen dürfen sekundärseitig nicht parallelgeschaltet werden.

4-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.2

Auswahl der Stromversorgungsbaugruppe

Abschätzung des Strombedarfs

Eine Abschätzung des Strombedarfs sollten Sie für jeden Baugruppenträger Ihrer

S7-400 vornehmen, um die passende Stromversorgungsbaugruppe für den jeweiligen Baugruppenträger auszuwählen. Stromaufnahme und Verlustleistungen der einzelnen Baugruppen finden Sie in den jeweiligen Datenblättern.

Berechnungsbeispiel

In einem ZG mit 18 Steckplätzen sollen folgende Baugruppen eingebaut werden:

• 1 CPU 417-4

• 3 Analogeingabebaugruppen SM 431;AI 16 x 16 Bit

• 5 Digitaleingabebaugrupppen SM 421;DI 32 x DC 24 V

• 6 Digitalausgabebaugrupppen SM 422;DO 32 x DC 24 V/0.5A

• 1 Sende-IM IM 460-0

Mit den Angaben aus den einzelnen Datenblättern können Sie den Strombedarf I in diesem Baugruppenträger wie folgt berechnen:

Baugruppe

CPU 417-4

SM 431;AI 16 x 16 Bit

SM 421;DI 32 x DC 24 V

SM 422;DO 32 x DC 24 V/0.5A

IM 460-0

Summe

Anzahl DC +5 V (maximale Strombedarfswerte)

I / Baugruppe I gesamt

1

3

5

6

1

2600 mA

700 mA

30 mA

200 mA

140 mA

2600 mA

2100 mA

150 mA

1200 mA

140 mA

6190 mA

Aus den Angaben in der Tabelle erkennen Sie, dass Sie zur Abdeckung des hier berechneten Strombedarfs eine Stromversorgungsbaugruppe PS 407 10A (bei Anschluss an AC 120/230 V) bzw. PS 405 10A (bei Anschluss an DC 24 V) in den

Baugruppenträger einbauen müssen.

Hinweis

Falls Sie an das ZG ein EG über eine Sende-IM mit Stromübertragung anschließen wollen, müssen Sie bei der Auswahl der Stromversorgungsbaugruppe den Strombedarf dieses EG mit berücksichtigen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-3

Verdrahten einer S7-400

4.3

Auswahl der Laststromversorgung

Auswahl der Laststromversorgung

Die Laststromversorgung speist Ein- und Ausgabestromkreise (Laststromkreise) sowie Sensoren und Aktoren. Nachfolgend sind die Eigenschaften von Laststromversorgungen aufgeführt, die im speziellen Einsatzfall für die Auswahl von Laststromversorgungen erforderlich sind.

Eigenschaft der Laststromversorgung

Sichere Trennung

erforderlich für ...

Baugruppen, die mit

Spannungen ≤DC 60 V bzw. ≤AC 25 V versorgt werden müssen.

DC-24 V-Laststromkreise

Toleranzen der Ausgangsspannung:

20,4 V bis 28,8 V DC 24-V-Laststromkreise

40,8 V bis 57,6 V

51 V bis 72 V

DC 48-V-Laststromkreise

DC 60-V-Laststromkreise

Bemerkungen

Die Siemens Laststromversorgungen der Reihe SITOP power haben diese

Eigenschaft.

Falls die Toleranzen der Ausgangsspannung überschritten werden, sollten Sie einen Stützkondensator vorsehen. Bemessung: 200 μF pro 1A

Laststrom (bei Brückengleichrichtung).

Laststromversorgungen

Die DC-Laststromversorgung muss folgender Anforderung genügen:

Als Laststromversorgung darf nur vom Netz sicher getrennte Kleinspannung DC ≤

60 V verwendet werden. Die sichere Trennung kann realisiert sein nach den Anforderungen u. a. in

VDE 0100-410 / HD 384-4-41 S2 / IEC 60364-4-41

(als Funktionskleinspannung mit sicherer Trennung) bzw.

VDE 0805 / EN 60950 / IEC 60950

(als Sicherheitskleinspannung SELV) bzw. VDE 0106 Teil 101.

Laststrom ermitteln

Der erforderliche Laststrom wird bestimmt durch den Summenstrom aller an den

Ausgängen angeschlossenen Sensoren und Aktoren.

Im Kurzschlussfall fließt an DC-Ausgängen kurzzeitig der 2- bis 3fache Ausgangsnennstrom, bevor der getaktete elektronische Kurzschluss-Schutz wirksam wird.

Bei der Auswahl der Laststromversorgung müssen Sie deshalb beachten, dass der erhöhte Kurzschluss-Strom zur Verfügung steht. Bei ungeregelten Laststromversorgungen ist dieser Stromüberschuss im allgemeinen gewährleistet. Bei geregelten Laststromversorgungen --besonders bei kleinen Ausgangsleistungen (bis

20 A)-- müssen Sie einen entsprechenden Stromüberschuss gewährleisten.

4-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.4

S7-400 mit Prozess-Peripherie aufbauen

Definition: Geerdete Einspeisung (TN-S-Netz)

Bei geerdeten Einspeisungen ist der Neutralleiter des Netzes geerdet. Ein einfacher Erdschluss zwischen einem spannungsführenden Leiter und Erde bzw. einem geerdeten Teil der Anlage führt zum Ansprechen der Schutzorgane.

Komponenten und Schutzmaßnahmen

Für die Errichtung einer Gesamtanlage sind verschiedene Komponenten und

Schutzmaßnahmen vorgeschrieben. Die Art der Komponenten und der Verbindlichkeitsgrad der Schutzmaßnahmen ist abhängig davon, welche VDE-Vorschrift, VDE

0100 oder VDE 0113, für Ihren Anlagenaufbau gilt. Die folgende Tabelle bezieht sich auf Bild 4-1.

Tabelle 4-1 VDE-Vorschriften für den Aufbau einer Steuerung

Vergleiche ...

Bezug zu Bild

4-1,

Seite

4-6

¡

VDE 0100

Abschaltorgan für Steuerung, Signalgeber und Stellglieder

Kurzschluss- und Überlast-Schutz: gruppenweise für Signalgeber und Stellglieder

©

... Teil 460:

Hauptschalter

... Teil 725:

Stromkreise einpolig absichern

Laststromversorgung für AC-Laststromkreise mit mehr als fünf elektromagnetischen Betriebsmitteln

¢ galvanische

Trennung durch

Transformator

empfohlen

VDE 0113

... Teil 1:

Trenner

... Teil 1:

• bei geerdetem Sekundärstromkreis:

einpolig absichern

• sonst: allpo-

lig absichern galvanische

Trennung durch

Transformator er-

forderlich

Regel: Laststromkreise erden

Erden Sie Laststromkreise.

Durch das gemeinsame Bezugspotenzial (Erde) ist eine einwandfreie Funktionssicherheit gegeben. Sehen Sie am Lastnetzgerät (Klemme L- bzw. M) oder am

Trenntransformator eine lösbare Verbindung zum Schutzleiter vor (Bild 4-1, £).

Diese Maßnahme erleichtert Ihnen bei Fehlern in der Energieverteilung die Lokalisierung von Erdschlüssen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-5

Verdrahten einer S7-400

S7-400 im Gesamtaufbau

Bild 4-1 zeigt die Stellung der S7-400 im Gesamtaufbau (Laststromversorgung und

Erdungskonzept) bei Einspeisung aus einem TN-S-Netz.

Anmerkung: Die dargestellte Anordnung der Versorgungsanschlüsse entspricht nicht der tatsächlichen Anordnung; sie wurde aus Gründen der Übersichtlichkeit gewählt.

L1

L2

L3

PE

¡

Niederspannungsverteilung z. B. TN-S-System

(3 × 400 V)

Baugruppenträger

PS CPU

Schrank

SM

L +

Data

M

L1

N

Bild 4-1

P

E

Signalbaugruppen

AC

¢

AC

Erdungssammelleitung

Schrank

© im

£

Laststromkreis

AC 24 bis 230V für AC-Baugruppen

©

AC

DC

S7-400 aus geerdeter Einspeisung betreiben

Laststromkreis DC 5 bis 60V für potenzialgetrennte DC-Baugruppen

4-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.5

S7-400 aufbauen mit geerdetem Bezugspotenzial (M)

Anwendung

Eine S7-400 mit geerdetem Bezugspotenzial setzen Sie in Maschinen oder Industrieanlagen ein.

Ableitung von Störströmen

Beim Aufbau der S7-400 mit geerdetem Bezugspotenzial werden auftretende Störströme zur Ortserde abgeleitet.

Anschluss-Schema

Ausgeliefert werden die Baugruppenträger mit einer lösbaren galvanischen Verbindung zwischen dem internen Bezugspotenzial M der Baugruppen und dem Trägerprofil der Baugruppenträger. Hinter dieser Verbindung befindet sich ein RC-Netzwerk zur Beschaltung für den erdfreien Aufbau. Diese Verbindung ist am linken

Rand der Baugruppenträger eingesetzt. Der Anschluss an Ortserde ist ebenfalls mit dem Trägerprofil leitend verbunden.

Bild 4-2 zeigt den Aufbau einer S7-400 mit geerdetem Bezugspotenzial. Wenn Sie das Bezugspotenzial M erden wollen, dann müssen Sie den Anschluss an Ortserde mit der Ortserde verbinden und dürfen auf dem Baugruppenträger die

Brücke zwischen dem Bezugspotenzial M und dem Anschluss an das Trägerprofil nicht entfernen.

RC-Netzwerk lösbare

Brücke

M

6,8 nF 10 MΩ

Anschluss an Trägerprofil

Galvanische Verbindung

Bezugspotenzial M

Anschluss an Ortserde

Bild 4-2 Aufbau einer S7-400 mit geerdetem Bezugspotenzial

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-7

Verdrahten einer S7-400

4.6

S7-400 aufbauen mit ungeerdetem Bezugspotenzial

(erdfreier Aufbau)

Anwendung

In ausgedehnten Anlagen kann die Anforderung auftreten, die S7-400 z. B. wegen

Erdschlussüberwachung mit ungeerdetem Bezugspotenzial aufzubauen. Dies ist z. B. in der chemischen Industrie oder in Kraftwerken der Fall.

Ableitung von Störströmen

Beim erdfreien Aufbau der S7-400 werden auftretende Störströme über ein im

Baugruppenträger integriertes RC-Netzwerk zur Ortserde abgeleitet.

Anschluss-Schema

Bild 4-3 zeigt den Aufbau einer S7-400 mit ungeerdetem Bezugspotenzial. Hierzu müssen Sie auf dem Baugruppenträger die Brücke zwischen dem Bezugspotenzial M und dem Anschluss an das Trägerprofil entfernen. Das Bezugspotenzial M der S7-400 ist dann über das RC-Netzwerk mit dem Anschluss an Ortserde verbunden. Wenn Sie diesen Anschluss mit der Ortserde verbinden, werden hochfrequente Störströme abgeleitet und statische Aufladungen vermieden.

Brücke entfernt

RC-Netzwerk

M

6,8 nF 10 MΩ

Anschluss an Trägerprofil

Bezugspotenzial M

Anschluss an Ortserde

Bild 4-3 Aufbau einer S7-400 mit ungeerdetem Bezugspotenzial

4-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

Netzgeräte

Achten Sie beim Einsatz von Netzgeräten darauf, dass die Sekundärwicklung nicht mit dem Schutzleiter verbunden sein darf.

DC 24-V-Versorgung filtern

Wenn Sie beim erdfreien Aufbau die S7-400 aus einer Batterie versorgen, müssen

Sie die Versorgung DC 24 V entstören. Verwenden Sie dazu ein Siemens-Netzleitungsfilter, z. B. B84102-K40.

Isolationsüberwachung

Wenn durch Doppelfehler gefährliche Anlagenzustände auftreten können, dann müssen Sie eine Isolationsüberwachung vorsehen.

Beispiel für erdfreien Betrieb

Wenn Sie eine S7-400 mit Nahkopplung aufgebaut haben und den Gesamtaufbau nur am ZG erden wollen, dann können Sie hierzu die EGs erdfrei betreiben.

Hinweis

Wenn Sie ein EG über Nahkopplung mit 5-V-Übertragung anschließen, ist für das

EG der erdfreie Betrieb vorgeschrieben.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-9

Verdrahten einer S7-400

4.7

Aufbau einer S7-400 mit potenzialgetrennten Baugruppen

Definition

Beim Aufbau mit potenzialgetrennten Baugruppen sind die Bezugspotenziale von

Steuerstromkreis (M auch Bild 4-4).

intern

) und Laststromkreis (M extern

) galvanisch getrennt (siehe

Anwendungsbereich

Potenzialgetrennte Baugruppen verwenden Sie für:

• alle AC-Laststromkreise

• DC-Laststromkreise mit separatem Bezugspotenzial

Beispiele für Laststromkreise mit separatem Bezugspotenzial:

-- DC-Laststromkreise, deren Geber unterschiedliche Bezugspotenziale haben

(z. B. wenn geerdete Geber weit entfernt von der Steuerung eingesetzt werden und Potenzialausgleich nicht möglich ist).

-- DC-Laststromkreise, deren Plus-Pol (L +) geerdet ist (Batteriestromkreise).

Potenzialgetrennte Baugruppen und Erdungskonzept

Sie können potenzialgetrennte Baugruppen verwenden unabhängig davon, ob das

Bezugspotenzial der Steuerung geerdet ist oder nicht.

4-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

Aufbau mit potenzialgetrennten Baugruppen

Bild 4-4 zeigt die Potenzialverhältnisse eines S7-400-Aufbaus mit potenzialgetrennten Ein- und Ausgabebaugruppen.

PS

Baugruppenträger

CPU

DE DA

U intern

Data

Bezugspotenzial

M intern

L1

N

PE

Erdungssammelleitung im Schrank

L +

M extern

DC 24 V Laststromversorgung

Bild 4-4

L1

N

AC 230 V Laststromversorgung

Vereinfachte Darstellung für den Aufbau mit potenzialgetrennten Baugruppen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-11

Verdrahten einer S7-400

4.8

Parallelbeschaltung von digitalen S7-400-Ausgängen

Parallelbeschaltung eines Digitalausganges bei unterschiedlicher Lastnennspannung

Die parallele Beschaltung eines Digitalausganges (Lastnennspannung 1L+) mit einem anderen Digitalausgang (Lastnennspannung 2L+) oder einer Lastnennspannung 3L+ darf nur unter Verwendung von Seriendioden erfolgen.

1 L+ 2 L+ 3 L+

Bild 4-5 Parallelbeschaltung eines Digitalausganges bei unterschiedlicher Lastnennspannung

Parallelbeschaltung eines Digitalausganges bei gleicher Lastnennspannung

Wenn sichergestellt ist, dass die L+-Versorgungen der Digitalausgabebaugruppen und die zum Ausgang pallallelgeschaltete L+-Spannung immer dieselbe Größe

(Unterschied < 0,5 V) aufweisen, kann auf die Verwendung von Dioden verzichtet

werden, siehe Bild 4-6.

L+

4-12

Bild 4-6 Parallelbeschaltung eines Digitalausganges bei gleicher Lastnennspannung

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.9

Erdungsmaßnahmen

Einleitung

Vorschriftsmäßig und sorgfältig durchgeführte Erdungsmaßnahmen sind die

Grundvoraussetzung für einwandfreies Funktionieren einer programmierbaren

Steuerung.

Jede einzelne Komponente der S7-400 sowie des gesteuerten Systems muss ordnungsgemäß geerdet werden.

Erdverbindungen

Niederohmige Erdverbindungen vermindern die Gefahr eines elektrischen Schlages bei Kurzschluss oder Defekten im System. Darüber hinaus verringert eine ordnungsgemäße Erdung (niederimpedante Verbindungen: große Oberfläche, großflächig kontaktiert) zusammen mit einer wirkungsvollen Abschirmung der Leitungen und Geräte die Auswirkung von Störeinstrahlungen auf das System bzw. die Abstrahlung von Störsignalen.

Hinweis

Achten Sie immer darauf, dass Betriebsströme nicht über Erde fließen.

Schutzerde

Alle Geräte mit Schutzklasse I sowie alle größeren Metallteile müssen an Schutzerde angeschlossen werden. Nur so ist gewährleistet, dass der Benutzer der Anlage sicher gegen elektrische Stromschläge geschützt ist.

Darüberhinaus werden hierdurch Störungen abgeleitet, die über externe Stromversorgungskabel, Signalkabel oder Kabel zu Peripheriegeräten übertragen werden.

Tabelle 4-2 nennt die für die einzelnen Komponenten hierfür erforderlichen Erdungsmaßnahmen.

Tabelle 4-2 Maßnahmen für Schutzerdung

Gerät

Schrank/Traggestell

Baugruppenträger

Baugruppe

Maßnahme

Anschluss an zentralen Erdungspunkt (z. B. Erdungssammelleitung) über Kabel mit Schutzleiterqualität

Anschluss an zentralen Erdungspunkt über Kabel mit 10 mm

2

Mindestquerschnitt , wenn Baugruppenträger nicht im Schrank eingebaut und nicht durch größere metallische Teile miteinander verbunden sind

Keine; Erdung erfolgt automatisch beim Einbau über die Rückwandplatine

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-13

Verdrahten einer S7-400

Tabelle 4-2 Maßnahmen für Schutzerdung

Gerät

Peripheriegerät

Schirme von Verbindungskabeln

Sensoren und Stellglieder

Maßnahme

Erdung über Schukostecker

Verbindung mit Baugruppenträger oder zentralem Erdungspunkt

(Erdschleifen vermeiden)

Erdung entsprechend den für das System geltenden Vorschriften

Anschluss der Lastspannungsmasse

Zahlreiche Ausgabebaugruppen benötigen zum Schalten der Stellglieder eine zusätzliche Lastspannung. Für diese Lastspannung sind zwei unterschiedliche Betriebsarten möglich:

• Potenzialgebundener Betrieb

• Potenzialgetrennter Betrieb

Nachfolgende Tabelle zeigt, wie die Lastspannungsmasse in den einzelnen Betriebsarten angeschlossen wird.

Tabelle 4-3 Anschluss der Lastspannungsmasse

Betriebsart

Potenzialgebundener Betrieb

• Geerdeter Aufbau

Anschluss der Lastspannung

• Erdfreier Aufbau an den Bezugspunkt des Baugruppenträgers, galvanische Verbindung zwischen Trägerprofil und Ortserde muss eingelegt sein an den Bezugspunkt des Baugruppenträgers, galvanische Verbindung zwischen Trägerprofil und Ortserde muss entfernt sein

Potenzialgetrennter Betrieb

• Geerdeter und erdfreier Aufbau offen oder an beliebigem Punkt, jedoch nicht an

Schutzerde oder Bezugspotenzial M der Betriebsspannungen

4-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

Nachfolgendes Bild zeigt, wo die Masse der Lastspannung bei potenzialgebundenem Betrieb angeschlossen wird.

Galvanische Verbindung, bei erdfreiem Aufbau entfernen

Anschluss der Masse der

Lastspannung

Bild 4-7 Anschluss der Masse der Lastspannung

4.10

Störsicherer Aufbau bei Kopplungen

Nur freigegebene Komponenten verwenden

Hinweis

Wenn Sie Komponenten verwenden, die für den Aufbau von Nah- und Fernkopplung nicht freigegeben sind, kann die Störsicherheit beeinträchtigt werden.

Störsicherer Aufbau von Nahkopplungen

Wenn Sie ZG und EG über geeignete Anschaltungsbaugruppen (Sende-IM und

Empfangs-IM) koppeln, sind keine besonderen Schirmungs- und Erdungsmaßnahmen durchzuführen. Beachten Sie aber die folgenden Punkte:

• Alle Baugruppenträger müssen niederimpedant miteinander verbunden sein.

• Die Baugruppenträger müssen bei geerdetem Aufbau sternförmig geerdet sein.

• Die Kontaktfedern der Baugruppenträger müssen sauber und nicht verbogen sein damit die Ableitung von Störströmen gewährleistet ist.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-15

Verdrahten einer S7-400

Störsicherer Aufbau von Fernkopplungen

Wenn Sie ZG und EG über geeignete Anschaltungsbaugruppen (Sende-IM und

Empfangs-IM) koppeln, sind in der Regel keine besonderen Schirmungs- und Erdungsmaßnahmen durchzuführen.

Besondere Schirmungs- und Erdungsmaßnahmen können erforderlich werden, wenn Sie Ihr System in einer extrem gestörten Umgebung betreiben. Beachten Sie in einem solchen Fall die folgenden Punkte:

• Legen Sie die Leitungsschirme im Schrank unmittelbar nach Eintritt auf die

Schirmschiene auf.

-- Entfernen Sie dazu die äußere Leitungsisolierung im Bereich der Schirmschiene, ohne das Schirmgeflecht zu beschädigen.

-- Kontaktieren Sie das Schirmgeflecht möglichst großflächig an der Schirmschiene (z.B. mit metallischen Schlauchbindern, die den Schirm großflächig umfassen).

• Verbinden Sie die Schirmschiene(n) großflächig mit dem Traggestell oder der

Schrankwand.

• Verbinden Sie die Schirmschiene(n) mit Ortserde.

Bei Fernkopplung muss sichergestellt werden, dass die VDE-Bestimmungen für die Verlegung der Schutzerde nicht verletzt werden.

Bild 4-8 zeigt die hier beschriebenen Maßnahmen. Wird die zulässige Potenzialdifferenz zwischen den Erdungspunkten überschritten, müssen Sie eine Potenzialausgleichsleitung verlegen (Kupferleitung mit Querschnitt ≥ 16 mm

2

).

ZG EG

Sende-IM

Schirm-/

Schutzleiterschiene

Empfangs-IM

< 7 V

Bild 4-8 Schirmung und Erdung der Steckleitung bei Fernkopplung

Besonderheiten

Bei Fernkopplung müssen Sie vorkonfektionierte Steckleitungen fester Länge verwenden. Bei der Verlegung der Steckleitungen können daher Überlängen auftreten, die Sie bifilar aufgewickelt deponieren müssen.

4-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.11

Regeln für die Verdrahtung

Leitungen und Werkzeug

Für die Verdrahtung der S7-400-Baugruppen gibt es einige Regeln für die Leitungen und für das Werkzeug, das Sie verwenden.

Tabelle 4-4 Leitungen und Werkzeug

Regeln für ... Stromversorgung

Crimp-

Anschluss

... Frontstecker

Schraub-

Anschluss

Federkraft-

Anschluss

Leitungsquerschnitte:

Außendurchmesser: 3 bis 9 mm nein flexibler Leiter ohne

Aderendhülse flexibler Leiter mit

Aderendhülse

AC230V: Schlauchleitung 3x1,5 mm

2

DC24V: Schlauchleitung 3x1,5 mm

2 oder

Einzeldrähte

1,5 mm

2

1 Anzahl der Leiter pro

Anschluss

Abisolierlänge der

Einzelleiter

7 mm

0,5 bis 1,5 mm

2 nein

1

0,25 bis 2,5 mm

2

0,25 bis 1,5 mm

2

1

*

0,08 bis 2,5 mm

2

0,25 bis 1,5 mm

2

1

*

Aderendhülsen

AC 230 V: mit Isolierkragen nach

DIN 46228 E1,5--8

DC 24 V: ohne

Isolierkragen nach

DIN 46228, Form A,

Ausführung kurz

5 mm

--

8 bis 10 mm ohne Aderendhülse

10 mm mit

Aderendhülse mit oder ohne

Isolierkragen nach DIN 46228

T.1 oder T.4,

Form A, Ausführung normal

8 bis 10 mm ohne Aderendhülse

10 mm mit

Aderendhülse mit oder ohne

Isolierkragen nach DIN 46228

T.1 oder T.4,

Form A, Ausführung normal

Klingenbreite und

Klingenform des

Schraubendrehers

Anzugsdrehmoment:

Leitungen anschließen

3,5 mm (zylindrische

Bauform)

0,6 bis 0,8 Nm

--

--

3,5 mm (zylindrische Bauform)

0,6 bis 0,8 Nm

0,5 mm x 3,5 mm

DIN 5264

--

*

Sie können auch eine Kombination von 2 Leitern bis jeweils 1,0 mm zwei Typen und Hersteller solcher Aderendhülsen aufgeführt.

2 an einen Schraub- oder Federkraftanschluss anschließen. Hierzu müssen Sie spezielle Aderendhülsen einsetzen. Nachfolgend sind

• Phoenix TWIN Art.-Nr. 32 00 81 0, für 2 x 1 mm

2

• AMP Best.-Nr. 966 144-4, für 2 x 1 mm

2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-17

Verdrahten einer S7-400

Hinweis

Bei den Analogbaugruppen müssen Sie geschirmte Leitungen verwenden (siehe

Abschnitt A.5).

4-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.12

Stromversorgungsbaugruppe verdrahten

Netzstecker

Für den Anschluss einer Stromversorgungsbaugruppe an Ihr Netz benutzen Sie den Netzstecker. Der Netzstecker steckt bei Auslieferung in der Stromversorgungsbaugruppe. Es gibt zwei Varianten (AC und DC) von Netzsteckern. Die beiden Varianten sind kodiert, d. h. ein AC-Netzstecker läßt sich nur auf eine AC-

Stromversorgungsbaugruppe stecken, ein DC-Netzstecker läßt sich nur auf eine

DC-Stromversorgungsbaugruppe stecken.

Netzstecker ziehen

Vor dem Verdrahten müssen Sie den Netzstecker aus der Stromversorgungsbaugruppe ziehen.

1. Öffnen Sie die Abdeckhaube der Stromversorgungsbaugruppe.

2. Lösen Sie den Netzstecker durch Hebeln mit einem geeigneten Werkzeug

(z. B. Schraubendreher) an dem dafür vorgesehenen Ausschnitt (1).

3. Ziehen Sie den Netzstecker nach vorne aus der Stromversorgungsbaugruppe

(2).

Bild 4-9 Netzstecker ziehen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

(1)

(2)

4-19

Verdrahten einer S7-400

Netzstecker verdrahten

Um den Netzstecker zu verdrahten, gehen Sie folgendermaßen vor:

!

Warnung

Es kann zu Personenschäden kommen.

Wenn Sie den Netzstecker unter Spannung verdrahten, können Sie einen körperlichen Schaden durch einen Stromschlag erleiden.

Verdrahten Sie einen Netzstecker nur im spannungslosen Zustand!

1. Schalten Sie die Netzspannung an Ihrer Netztrenneinrichtung ab.

Hinweis

Der Standby-Schalter der Stromversorgungsbaugruppe trennt die Stromversorgungsbaugruppe nicht vom Netz!

2. Verwenden Sie eine Schlauchleitung mit Außenisolierung? (bei AC 230 V vorgeschrieben!)

Wenn ja: Entfernen Sie die Außenisolierung auf eine Länge von 70 mm. Beachten Sie, dass nach dem Anschluss unter der Zugentlastung ein Gesamtdurchmesser der Leitung zwischen 3 mm und 9 mm aufliegen muss.

Wenn nein: Umwickeln Sie die Adern so mit Isolierband, dass nach dem Anschluss unter der Zugentlastung ein Gesamtdurchmesser der Leitung zwischen

3 mm und 9 mm aufliegt. Alternativ zu Isolierband können Sie auch einen

Schrumpfschlauch verwenden.

3. Kürzen Sie die beiden Adern, die nicht für den Anschluss an PE bestimmt sind, um 10 mm.

4. Isolieren Sie die Adern auf einer Länge von 7 mm ab.

5. Lösen Sie die Schraube im Deckel des Netzsteckers und öffnen Sie den Netzstecker.

4-20

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

6. Lösen Sie die Schraube der Zugentlastung und führen Sie das Kabel ein.

7. Schließen Sie die Adern entsprechend der Darstellung auf dem Deckel des

Netzsteckers an die Klemmen an. Schließen Sie die längere Ader an PE an.

Schrauben Sie die Adern mit einem Drehmoment von 0,6 bis 0,8 Nm fest.

Klemmen

AC

L1

N

DC

L+

L--

PE PE

!

Kabel Zugentlastung

Schraube der

Zugentlastung

Bild 4-10 Netzstecker verdrahten

8. Ziehen Sie die Schraube der Zugentlastung so an, dass das Kabel sicher fixiert ist.

9. Schließen Sie den Netzstecker und schrauben Sie den Deckel fest.

Vorsicht

Stromversorgungsbaugruppe oder Netzstecker können beschädigt werden.

Wenn Sie den Netzstecker unter Spannung stecken oder ziehen, können die

Stromversorgungsbaugruppe oder der Netzstecker beschädigt werden.

Stecken oder ziehen Sie den Netzstecker nur im spannungslosen Zustand.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-21

Verdrahten einer S7-400

Netzstecker aufstecken

Den Netzstecker können Sie nur aufstecken, wenn die Stromversorgungsbaugruppe eingebaut ist (untere Befestigungsschraube angezogen).

Um den verdrahteten Netzstecker in die Stromversorgungsbaugruppe zu stecken, gehen Sie folgendermaßen vor:

1. Öffnen Sie die Abdeckhaube der Stromversorgungsbaugruppe.

2. Schieben Sie den Netzstecker in die Führungsnut am Baugruppengehäuse.

3. Schieben Sie den Netzstecker bis zum Anschlag in die Stromversorgungsbaugruppe.

4. Schließen Sie die Abdeckhaube der Stromversorgungsbaugruppe.

Nachfolgendes Bild zeigt, wie Sie den Netzstecker in die Stromversorgungsbaugruppe stecken.

Bild 4-11 Netzstecker aufstecken

4-22

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.13

Signalbaugruppen verdrahten

Vorgehensweise

Die Verbindung zwischen den Signalbaugruppen Ihrer S7-400 und den Sensoren und Aktoren Ihrer Anlage stellen Sie in zwei Schritten her:

1. Frontstecker verdrahten.

Dabei schließen Sie die Leitungen zu und von den Sensoren/Aktoren an den

Frontstecker an.

2. Frontstecker montieren

Die 3 Typen von Frontsteckern

Für Signalbaugruppen der S7-400 gibt es 3 Typen von Frontsteckern:

• Frontstecker mit Crimpanschluss

• Frontstecker mit Schraubanschluss

• Frontstecker mit Federkraftanschluss

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-23

Verdrahten einer S7-400

Verdrahtung der Frontstecker vorbereiten

1. Setzen Sie einen Schraubendreher an der markierten Stelle unten links am

Frontstecker ein und hebeln Sie die untere Ecke des Deckels des Frontsteckers auf.

2. Klappen Sie den Deckel komplett auf.

3. Ziehen Sie den geöffneten Deckel am unteren Ende nach vorne und klappen

Sie ihn nach oben ab.

Deckel aufhebeln Deckel aufklappen

Bild 4-12 Verdrahtung der Frontstecker vorbereiten

Deckel abziehen

4. Längen Sie die Drähte so ab, dass nach dem Verdrahten keine Schleifen im

Frontstecker überstehen.

5. Isolieren Sie die Drähte entsprechend Tabelle in Kapitel 4.11 ab.

Hinweis

Die Fronststecker enthalten eine Brücke, die bei einigen Signalbaugruppen funktionell notwendig ist. Entfernen Sie diese Brücke nicht.

4-24

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.14

Frontstecker verdrahten, Crimpanschluss

Vorgehensweise

Um den vorbereiteten Frontstecker zu verdrahten, gehen Sie folgendermaßen vor:

1. Isolieren Sie die Drähte auf ca. 5 mm ab.

2. Verpressen Sie die Crimpkontakte mit den Leitungen. Hierzu können Sie eine

Crimpzange verwenden, die Sie als Zubehör zu Ihren Signalbaugruppen bestellen können.

3. Stecken Sie die Crimpkontakte in die Aussparungen im Frontstecker. Beginnen

Sie unten am Frontstecker.

Die Bestellnummer der Crimpkontakte und des zughörigen Werkzeugs finden

Sie im Referenzhandbuch “Baugruppendaten”, Anhang C.

Bild 4-13 Frontstecker mit Crimpanschluss verdrahten

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-25

Verdrahten einer S7-400

4.15

Frontstecker verdrahten, Schraubanschluss

Vorgehensweise

Um den vorbereiteten Frontstecker zu verdrahten, gehen Sie folgendermaßen vor:

1. Verwenden Sie Aderendhülsen?

Wenn ja: Isolieren Sie die Drähte auf 10 mm ab.

Verpressen Sie die Aderendhülsen mit den Leitungen.

Wenn nein: Isolieren Sie die Drähte auf 8 bis 10 mm ab.

2. Legen Sie die Adern auf. Beginnen Sie unten am Frontstecker.

3. Verschrauben Sie die Enden der Leitungen mit dem Frontstecker, Anzugsdrehmoment: 0,6 bis 0,8 Nm. Schrauben Sie nicht verdrahtete Klemmen ebenfalls fest.

0,6 bis 0,8 Nm

Bild 4-14 Frontstecker mit Schraubanschluss verdrahten

4-26

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.16

Frontstecker verdrahten, Federkraftanschluss

Vorgehensweise

Um den vorbereiteten Frontstecker zu verdrahten, gehen Sie folgendermaßen vor:

1. Verwenden Sie Aderendhülsen?

Wenn ja: Isolieren Sie die Drähte auf 10 mm ab.

Verpressen Sie die Aderendhülsen mit den Leitungen.

Wenn nein: Isolieren Sie die Drähte auf 8 bis 10 mm ab.

2. Entriegeln Sie mit einem Schraubendreher (0,5x3,5 mm DIN 5264) die Federkraftklemme des ersten Anschlusses. Beginnen Sie unten am Frontstecker.

Sie können die einzelnen Federkraftklemmen an drei Punkten entriegeln, von vorne, von der Seite oder von hinten (siehe Bild 4-15 ).

3. Schieben Sie die erste Ader in die entriegelte Federkraftklemme und ziehen Sie den Schraubendreher wieder zurück.

4. Wiederholen Sie die Schritte 3 und 4 für alle weiteren Adern.

Federkraftklemme von hinten entriegeln

Federkraftklemme von vorne entriegeln

Federkraftklemme von der Seite entriegeln

Bild 4-15 Frontstecker mit Federkraftanschluss verdrahten

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-27

Verdrahten einer S7-400

Prinzip der Federkraftklemme

In nachfogendem Bild erkennen Sie das Prinzip der Federkraftklemme. Dargestellt ist die Entriegelung und Verriegelung von vorne.

1. Schraubendreher stecken

Bild 4-16 Prinzip der Federkraftklemme

2. Leitung bis zum Anschlag in die

Federklemme stecken

3. Schraubendreher ziehen: Leitung klemmt am Kontakt

4-28

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

4.17

Zugentlastung anbringen

Kabelbinder als Zugentlastung

Nachdem Sie den Frontstecker verdrahtet haben, bringen Sie unten am Frontstecker den beiliegenden Kabelbinder als Zugentlastung für die angeschlossene

Leitung an.

Sie können die Zugentlastung in drei Varianten anbringen, entsprechend der Dicke der Leitung. Hierzu gibt es drei Öffnungen an der Unterseite des Frontsteckers.

Bild 4-17 Zugentlastung anbringen (Ansicht von unten)

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-29

Verdrahten einer S7-400

4.18

Frontstecker beschriften

Beschriftungsschilder und Anschlussbild

Jeder Signalbaugruppe liegen 3 Schilder bei, 2 Beschriftungsschilder und ein bedrucktes Schild mit dem Anschlussbild der Ein- bzw Ausgänge.

Bild 4-18 zeigt, wo am Frontstecker Sie die einzelnen Schilder anbringen.

Beschriftungsschild in Frontstecker

Anschlussbild innen

Beschriftungsschild außen

Bild 4-18 Schilder am Frontstecker anbringen

Um einen Frontstecker zu beschriften, gehen Sie folgendermaßen vor:

1. Tragen Sie in die beiden Beschriftungsschilder die Adressen der einzelnen Kanäle ein. Notieren Sie die Steckplatznummern auf den Beschriftungsschildern, um die Zuordnung von Frontstecker zu Baugruppe festzuhalten.

2. Bringen Sie ein Beschriftungsschild links im geöffneten Frontstecker an. Das

Beschriftungsschild hat in der Mitte eine T-förmige Ausstanzung, mit deren Hilfe

Sie das Schild am Frontsteckergehäuse fixieren können. Spreizen Sie die Ausstanzung leicht zur Seite und und führen Sie sie beim Einschieben des Schildes hinter die entsprechende Aussparung am Frontstecker (siehe Bild 4-19).

3. Bringen Sie den Deckel wieder am Frontstecker an.

4. Schieben Sie das Schild mit dem Anschlussbild der Ein- oder Ausgänge innen in den Deckel des Frontsteckers.

5. Schieben Sie ein Beschriftungsschild außen in den Deckel des Frontsteckers.

4-30

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

Bild 4-19 zeigt im Detail, wie Sie ein Beschriftungsschild innen im Frontstecker anbringen.

Beschriftungsschild mit Ausstanzung

Aussparung im

Frontstecker

Bild 4-19 Beschriftungsschild im Frontstecker anbringen

Beschriftungsbögen

• Maschinell bedruckbare Beschriftungsbögen für Signalbaugruppen der

SIMATIC S7-400, einschließlich FMs, schaffen die Voraussetzung für eine professionelle und komfortable Beschriftung von SIMATIC-Baugruppen.

• Die Beschriftungsstreifen sind auf DIN A4-Seiten bereits vorperforiert und lassen sich leicht von einander lösen, ohne dass ein Werkzeug benötigt wird. Eine einfache Handhabung und ein sauberes Erscheinungsbild sind gegeben.

• Bei den Beschriftungsbögen handelt es sich um unifarbene Folien, die reißbeständig und schmutzabweisend sind. Die Beschriftungsbögen sind in den Farben petrol, hell-beige, rot und gelb lieferbar.

• Eine applikationsspezifische, maschinelle Beschriftung von I/O--Baugruppen der

SIMATIC S7-400 ist ohne großen Aufwand unter Einsatz von handelsüblichen

Laserdruckern über zwei Varianten durchführbar:

-- Bedruckung mit Hilfe von Druckvorlagen, kostenloser Download aus dem

Internet

-- Bedruckung unter Einsatz des AddOn-Tool für SIMATIC STEP7 mit dem

Namen “S7-SmartLabel”

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-31

Verdrahten einer S7-400

Hinweise zur Bestellung von Beschriftungsbögen für S7--400

Bestellnummer

6ES7492-2AX00-0AA0

6ES7492-2BX00-0AA0

6ES7492-2CX00-0AA0

6ES7492-2DX00-0AA0

Beschreibung

SIMATIC S7-400, Beschriftungsbögen DIN A4, 4 Beschriftungsstreifen pro Bogen für Signalmodule, Material: Folie, vorperforiert zur Bedruckung mit Laserdrucker, 10 Blatt pro

Verpackungseinheit

Farbe Petrol

Farbe Hell-Beige

Farbe Gelb

Farbe Rot

4-32

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

Beschreibung zur Beschriftung von Baugruppen der S7-400

Szenario 1: Verwendung von Druckvorlagen

1. Auffinden der Druckvorlagen im Internet

Die Druckvorlagen werden im Internet kostenlos zum Download zur Verfügung gestellt. Sie können die Vorlagen z. B. über die Einstiegsseite zum Customer

Support unter der Beitrags-ID 11765788.

2. Download

Der Download enthält Vorlagen für die Beschriftung von Baugruppen der

S7-400.

Die Druckvorlagen für S7-400 stellen die Beschriftungsschilder für die Außenseite der Frontsteckerdeckel und die Anschlussbilder für die Innenseite der

Frontsteckerdeckel zur Verfügung.

3. Anleitung zum Bedrucken von Beschriftungsbögen mit Druckvorlagen

Die Druckvorlagen sind dafür gedacht, die bedruckbaren Folienbögen direkt zu bedrucken. Das Beschriften der Folienbögen wird mit einem Laserdrucker vorgenommen. Im folgenden werden die einzelnen Schritte zur Vorgehensweise beschrieben: a) Stellen Sie für die Eingabe in die Formularvorlagen in WORD die Ansicht

“Seitenlayout” ein.

b) Beschriften Sie die Baugruppe, indem Sie die Textfelder mit der Maus anklicken und Ihre applikationsspezifische Bezeichnung eintragen.

c) Erstellen Sie immer einen Probedruck auf weißem Papier und vergleichen

Sie den Papierausdruck mit den Abmessungen der originalen Beschriftungsbögen. Aufgrund der unterschiedlichen Drucker und Druckertreiber und deren Genauigkeit können die Abmessungen schwanken und eine Anpassung erforderlich machen. Sind die Zeilen- und Spaltenabstände nicht korrekt eingestellt, können Sie die Position der gesamten Vorlage unter “Kopfzeile>Grafik>Position” und “Datei>Seite einrichten>Seitenränder” einstellen.

d) Beim Druck erscheint bei einigen Vorlagen die Meldung: ”Die Seitenränder liegen außerhalb des druckbaren Bereiches.” Diese Meldung können Sie ignorieren.

e) Achten Sie darauf, dass Sie nach dem Bedrucken der Folienbögen die Beschriftungsstreifen an ihrer Vorperforierung erst knicken und dann voneinander ablösen. Die Kanten der gelösten Streifen liefern dann ein sauberes Erscheinungsbild. Die Beschriftungsstreifen können anschließend in die entsprechende Baugruppe gesteckt werden.

Szenario 2: Einsatz des AddOn-Tool für SIMATIC STEP 7 “S7-SmartLabel”

Die Beschriftung kann direkt aus dem STEP 7-Projekt abgeleitet und daraus direkt das Bedrucken der Beschriftungsstreifen angestoßen werden. Grundlage für die applikationsspezifische Beschriftung stellt die Symboltabelle in STEP 7 dar. Detailliertere Informationen finden Sie unter http://www.s7--smartlabel.de/

.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-33

Verdrahten einer S7-400

4.19

Frontstecker montieren

Funktionsweise des Kodierelements

Um das Risiko zu verringern, dass ein verdrahteter Frontstecker bei einer Umverdrahtung oder bei einem Baugruppentausch auf einen falschen Baugruppentyp gesteckt wird, haben die Signalbaugruppen ein Kodierelement für Frontstecker.

Ein Kodierelement besteht aus zwei Teilen, ein Teil ist fest mit der Baugruppe verbunden, das zweite Teil ist bei Auslieferung noch mit dem ersten Teil verbunden

(siehe Bild 4-20).

Wenn Sie einen Frontstecker aufstecken, rastet das zweite Teil des Kodierelements in den Stecker ein und löst sich von dem Teil, welches mit der Signalbaugruppe verbunden ist. Beide Teile des Kodierelements bilden Gegenstücke zueinander, einen Frontstecker mit einem falschen Gegenstück können Sie nicht auf diese Signalbaugruppe aufstecken.

Frontsteckerkodierung der Signalbaugruppen

Nachfolgende Tabelle zeigt die Zuordnung der unterschiedlichen Frontsteckerkodierelemente zu den einzelnen Signalbaugruppen.

Tabelle 4-5 Frontsteckerkodierelemente

Digitaleingaben, -ausgaben

> DC 60 V bzw.> AC 50 V

Digitaleingaben, -ausgaben

≤ DC 60 V bzw. ≤ AC 50 V

Analogeingaben, -ausgaben

Farbe des Frontsteckerkodierelements rot gelb grün

D

D

D

Frontstecker aufstecken

Den Frontstecker können Sie nur aufstecken, wenn die Baugruppe eingebaut ist

(Sie müssen die obere und untere Befestigungsschraube angezogen haben).

4-34

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

!

Vorsicht

Baugruppen können beschädigt werden.

Wenn Sie z. B. einen Frontstecker einer Digitaleingabebaugruppe auf eine Digitalausgabebaugruppe stecken, kann die Baugruppe beschädigt werden. Wenn Sie z.B. einen Frontstecker einer Analogeingabebaugruppe auf eine Analogausgabebaugruppe stecken, kann die Baugruppe beschädigt werden.

Beachten Sie beim Aufstecken des Frontsteckers, dass Baugruppe und Frontstecker zusammenpassen.

Um den Frontstecker aufzustecken, gehen Sie folgendermaßen vor:

1. Halten Sie den Frontstecker waagerecht und rasten Sie den Frontstecker in das

Kodierelement ein. Nach einem hörbaren Klick rastet der Frontstecker in den

Lagerpunkt ein und kann nach oben geschwenkt werden.

2. Klappen Sie den Frontstecker nach oben. Die beiden Teile des Kodierelements werden dabei voneinander getrennt.

3. Schrauben Sie den Frontstecker fest.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-35

Verdrahten einer S7-400

Kodierelement

2

Bild 4-20 Frontstecker einhängen

1

4-36

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Bild 4-21 Frontstecker festschrauben

Verdrahten einer S7-400

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-37

Verdrahten einer S7-400

4.20

ZG und EG verbinden

Anschaltungsbaugruppen verbinden

Wenn Sie ein Automatisierungssystem aus einem ZG und einem oder mehreren

EGs aufbauen, so verbinden Sie die Baugruppenträger über die Verbindungsleitungen der Anschaltungsbaugruppen.

Um Anschaltungsbaugruppen miteinander zu verbinden, gehen Sie folgendermaßen vor:

1. Legen Sie sich alle Verbindungskabel bereit, die Sie für das Automatisierungssystem benötigen. Berücksichtigen Sie die für Ihren Aufbau zugelassenen maximalen Leitungslängen (siehe Kapitel 2) und überprüfen Sie, ob Sie die korrekten Leitungen haben (siehe Referenzhandbuch “Baugruppendaten”, Kapitel 6).

2. Beginnen Sie mit der Sende-IM (die Anschaltungsbaugruppe im Zentralgerät).

3. Öffnen Sie die Abdeckhaube der Sende-IM.

4. Stecken Sie den Stiftstecker des ersten Verbindungskabels in eine der Buchsenleisten der Sende-IM und schrauben Sie den Stecker fest.

4-38

Bild 4-22 Verbindungskabel in eine Sende-IM stecken

5. Wenn Sie an diese Sende-IM zwei Stränge mit EGs anschließen wollen, dann stecken Sie den Stecker des zweiten Verbindungskabels in den anderen Anschluss der Sende-IM.

6. Schließen Sie die Abdeckhaube der Sende-IM.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

7. Öffnen Sie die Abdeckhaube der ersten Empfangs-IM (Anschaltungsbaugruppe im Erweiterungsgerät).

8. Stecken Sie das freie Ende des Verbindungskabels in die obere Stiftleiste

(Empfangs-Schnittstelle) der Empfangs-IM und schrauben Sie den Stecker fest.

9. Verbinden Sie die weiteren Empfangs-IMs, indem Sie jeweils eine Sende-

Schnittstelle (untere Buchsenleiste X2) mit einer Empfangs-Schnittstelle (obere

Stiftleiste X1) verbinden.

Sende-IM Empfangs-IM Empfangs-IM

Abschluss-Stecker

Bild 4-23 Verbindung einer Sende-IM mit zwei Empfangs-IMs

10.Stecken Sie den Abschluss-Stecker in die untere Buchsenleiste der Empfangs-IM im letzten EG des Stranges (siehe Referenzhandbuch “Baugruppendaten”, Kapitel 6).

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-39

Verdrahten einer S7-400

4.21

Lüfterzeile auf die Netzspannung einstellen und verdrahten

Lüfterzeile auf die Netzspannung einstellen

Kontrollieren Sie, ob der Spannungswahlschalter an der Lüfterzeile entsprechend

Ihrer Netzspannung eingestellt ist (siehe Bild 4-24).

Sicherung

Zur Lüfterzeile gehören zwei handelsübliche Sicherungen

• Sicherung 250 mA T für den Bereich 120 V

• Sicherung 160 mA T für den Bereich 230 V

Die Sicherung für den Bereich 230 V ist bei der Auslieferung eingebaut.

Hinweis

Wenn Sie den Spannungsbereich wechseln, müssen Sie auch die Sicherung für diesen Spannungsbereich in die Lüfterzeile einsetzen. Wie Sie die Sicherung tauschen, finden Sie im Kapitel 7 beschrieben.

Lüfterzeile verdrahten

1. Isolieren Sie die Adern des Netzkabels ab und verpressen Sie die Adern mit geeigneten Aderendhülsen.

2. Stecken Sie die Adern in die Netzanschlüsse der Lüfterzeile. Entriegeln Sie dazu die Federkraftklemmen der Netzanschlüsse mit einem geeigneten Schraubendreher.

3. Die kleine Abdeckung dient als Zugentlastung für das Netzkabel. Wählen Sie eine aus den drei mitgelieferten Größen entsprechend Ihrem Kabelquerschnitt aus.

4. Schrauben Sie die Zugentlastung fest.

4-40

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Verdrahten einer S7-400

kleine Abdeckung als Zugentlastung anbringen

Netzanschlüsse

(Federkraftklemmen)

Spannungswahlschalter

Sicherungskappe

Bild 4-24 Lüfterzeile verdrahten

4.22

Kabelführung bei Verwendung von Kabelkanal oder Lüfterzeile

Kabelführung

Je nach Menge der an dem jeweiligen Baugruppenträger mündenden Kabel und

Steckleitungen reicht der Querschnitt des Kabelkanals bzw. der Lüfterzeile nicht aus, um alle Kabel aufzunehmen.

Führen Sie deshalb die Kabel je zur Hälfte nach beiden Seiten über den Kabelkanal bzw. die Lüfterzeile ab.

Kabelabfangung

An beiden Seiten des Kabelkanals bzw. der Lüfterzeile befinden sich Ösen für die

Kabelabfangung (siehe Referenzhandbuch “Baugruppendaten”, Kapitel 6). An diesen Ösen können Sie die Kabel z. B. mit Kabelbindern befestigen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

4-41

Verdrahten einer S7-400

Schirmkontaktierung

Kabelkanal und Lüfterzeile bieten die Möglichkeit, Kabelschirme zu kontaktieren.

Hierzu können Sie die im Lieferumfang enthaltenen Schirmklemmen verwenden

(siehe Referenzhandbuch “Baugruppendaten”, Kapitel 9).

Zum Kontaktieren der Kabelschirme entfernen Sie die äußere Kabelisolierung im

Bereich der jeweiligen Schirmklemme und klemmen Sie den Kabelschirm unter die

Schirmklemme.

4.23

Kabelführung bei Verwendung von Lichtwellenleitern

Kabelführung

Lichtwellenleiter Innenkabel (z.B. zur Verbindung von Synchronisationsmodulen) sind zur Verlegung in Gebäuden, Kabelkanälen und Kanalschächten zugelassen.

Die maximale Zuglast bei der Montage beträgt 1000 N, im Betrieb 150 N.

Biegeradien

Bei der Verlegung dürfen folgende Biegeradien nicht unterschritten werden:

• Steckernah: 55 mm

• Sonst: 30 mm

4-42

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Kapitelübersicht

Im Kapitel

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

finden Sie

Aufbauen eines Netzes

Grundlagen

Regeln zum Aufbauen eines Netzes

Leitungslängen

PROFIBUS-DP-Buskabel

Busanschluss-Stecker

RS 485-Repeater

PROFIBUS-DP-Netz mit Lichtwellenleiter (LWL)

Vernetzung

5 auf Seite

5-2

5-3

5-7

5-15

5-18

5-19

5-21

5-22

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-1

Vernetzung

5.1

Aufbauen eines Netzes

Subnetze

Sie können eine S7-400 an verschiedene Subnetze anschließen:

• über einen Simatic Net CP Ethernet an ein Industrial Ethernet Subnetz

• über einen Simatic Net CP Profibus an ein Profibus-DP Subnetz

• über die integrierte MPI-Schnittstelle an ein MPI Subnetz

• über die integrierte Profibus-DP-Schnittstelle an ein PROFIBUS-DP-Subnetz

Gleicher Aufbau

Für den Aufbau eines MPI-Netzes wird empfohlen, die gleichen Buskomponenten zu verwenden wie für den Aufbau eines PROFIBUS-DP-Netzes. Es gelten dieselben Regeln zum Aufbau.

Mehrpunktfähige Schnittstelle MPI

Diese Schnittstelle der CPU benutzt ein Simatic S7-spezifisches Protokoll zum Datenaustausch mit PGs (über STEP 7), OPs und weiteren S7-CPUs. Die Busphysik entspricht der des Profibus.

Projektierung der Kommunikation

Damit die einzelnen Teilnehmer eines MPI- bzw. PROFIBUS-DP-Netzes miteinander kommunizieren können, müssen Sie ihnen MPI- bzw. PROFIBUS-DP-Adressen zuweisen. Wie Sie diese Adressen zuweisen und was Sie dabei beachten müssen, ist beschrieben im Handbuch Hardware konfigurieren und Verbindungen

projektieren mit STEP 7.

Im Referenzhandbuch “CPU-Daten” finden Sie alle CPU-spezifischen Daten, die

Sie für die Projektierung der Kommunikation wissen müssen.

5-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

5.2

Grundlagen

Gerät = Teilnehmer

Vereinbarung: Im folgenden werden alle Geräte, die Sie in einem Netz verbinden, als Teilnehmer bezeichnet.

Segment

Ein Segment ist eine Busleitung zwischen zwei Abschlusswiderständen. Ein Segment kann bis zu 32 Teilnehmer enthalten. Ein Segment wird außerdem begrenzt durch die zulässige Leitungslänge in Abhängigkeit von der Baudrate.

Baudrate

Die Baudrate (Übertragungsgeschwindigkeit) ist die Geschwindigkeit bei der Datenübertragung und gibt die Anzahl der übertragenen Bits pro Sekunde an.

• Für die Schnittstellen vom Typ MPI/DP sind Baudraten von 19,2 kBaud bis

12 MBaud möglich.

• Für die Schnittstellen vom Typ PROFIBUS-DP sind Übertragungsgschwindigkeiten von 9,6 kBaud bis 12 MBaud möglich.

Hinweis

Wenn Sie die Baudrate der MPI/DP-Schnittstelle umparametrieren, so bleibt die neue Baudrate auch nach Urlöschen, Spannungsausfall oder Ziehen/Stecken der

CPU erhalten.

Anschließbare Teilnehmer

MPI

Programmiergeräte (PG)

Bedien- und Beobachtungsgeräte (SI-

MATIC-OP), WinCC

S7-400

S7-300

* Im DP-Betrieb nicht empfohlen

Profibus-DP

Programmiergeräte (PG) *

Bedien- und Beobachtungsgeräte (OP) *

PROFIBUS-DP-Master, PROFIBUS-DP-Slave

PROFIBUS-DP-Slaves

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-3

Vernetzung

Teilnehmeranzahl

127

(Default: 32)

MPI

1 PG-Anschluss (reserviert)

127 * davon:

Profibus-DP

1 Master (reserviert)

1 PG-Anschluss (reserviert)

125 Slaves oder andere Master

* Beachten Sie die CPU-spezifischen Maximalanzahlen im Referenzhandbuch CPU-Daten.

MPI-/PROFIBUS-DP-Adressen

Damit alle Teilnehmer miteinander kommunizieren können, müssen Sie ihnen eine

Adresse zuweisen:

• im MPI-Netz eine ”MPI-Adresse”

• im PROFIBUS-DP-Netz eine ”PROFIBUS-DP-Adresse”

Voreingestellte MPI-Adressen

Die folgende Tabelle zeigt, mit welchen voreingestellten MPI-Adressen und mit welcher höchsten MPI-Adresse die Geräte ausgeliefert werden.

Teilnehmer (Gerät)

PG

OP

CPU

voreingestellte

MPI-Adresse

0

1

2

voreingestellte höchste

MPI-Adresse

31

31

31

Hinweis

Wenn Sie die höchste MPI-Adresse der MPI/DP-Schnittstelle umparametrieren, so bleibt die neue Adresse auch nach Urlöschen, Spannungsausfall oder Ziehen/

Stecken der CPU erhalten.

5-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Regeln für die MPI-Adressen

Beachten Sie vor der Vergabe von MPI-Adressen folgende Regeln:

• Alle MPI-Adressen in einem MPI-Netz müssen unterschiedlich sein.

• Die höchste mögliche MPI-Adresse muss größer oder gleich der größten tatsächlichen MPI-Adresse sein und bei allen Teilnehmern gleich eingestellt sein.

(Ausnahme: PG anschließen an mehrere Teilnehmer)

Kommunikation PG/OP - Baugruppe ohne MPI

Soll ein an der MPI angeschlossenes PG oder OP mit einer S7-400-Baugruppe kommunizieren, die keinen MPI-Anschluss besitzt (z. B. SIMATIC NET-CPs,

FM 456 etc.), so kann diese Baugruppe über die CPU erreicht werden, an deren

MPI das PG bzw. OP angeschlossen ist. Die CPU ist dabei lediglich als Übergang dazwischengeschaltet. Eine solche Verbindung zwischen einem PG bzw. OP und einer nur über den K-Bus kommunizierenden Baugruppe belegt in der CPU zwei

Verbindungsressourcen.

CPU CP bzw. FM

PG bzw. OP

MPI

K-Bus

S7-400-

Station

Eine Verbindungsressource belegt

Zwei Verbindungsressourcen in der

CPU belegt

Eine Verbindungsressource belegt

Bild 5-1 Kommunikation zwischen PG/OP und einer Baugruppe ohne MPI

Maximale Anzahl Verbindungen über MPI

Berücksichtigen Sie bei der Projektierung der Verbindungen einer CPU 41x über die MPI bei der Anzahl der maximal möglichen Verbindungen die PG-Verbindung.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-5

Vernetzung

PG-Zugriff

Eine CPU tauscht Daten mit anderen Systemen über Kommunikationsmechanismen aus. Zum Beispiel mit anderen Automatisierungsgeräten, mit Bedien- und Beobachtungsstationen (OP, OS) oder mit Programmiergeräten (siehe Bild 5-2).

PG

OS

AS

SIMATIC-NET

CPU

MPI

PG

OS

DP-Netz

Slave

OS

AS

PG

Bild 5-2 Datenaustausch

Die Prozesskommunikation, hierzu zählen Kommunikationsdienste zum Datenaustausch zwischen Automatisierungsgeräten (AS - AS) und zwischen Automatisierungsgeräten und Bedien- und Beobachtungsstationen (AS - OS/OP) werden in

CPUs vorrangig vor Kommunikation zwischen PG und CPUs behandelt.

Die CPUs haben unterschiedliche Leistungsmerkmale. Eines dieser Merkmale ist die Leistungsfähigkeit der Kommunikation. Wird die Leistungsfähigkeit der Kommunikation einer CPU durch Prozesskommunikation vollständig ausgenutzt, kann dies dazu führen, dass der Zugriff des Programmiergerätes auf die CPU verlangsamt wird.

5-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

5.3

Regeln zum Aufbauen eines Netzes

Regeln

Halten Sie folgende Regeln für das Verbinden der Teilnehmer eines Netzes ein:

Bevor Sie die einzelnen Teilnehmer des Netzes miteinander verbinden, müssen

Sie jedem Teilnehmer die ”MPI-Adresse” und die ”Höchste MPI-Adresse” bzw.

die ”PROFIBUS-DP-Adresse” vergeben.

Tipp: Markieren Sie alle Teilnehmer in einem Netz auf dem Gehäuse mit der

Adresse. Verwenden Sie hierfür die der CPU beigelegten Klebeschilder. So sehen Sie in ihrer Anlage immer, welchem Teilnehmer welche Adresse zugeordnet wurde.

Bevor Sie einen neuen Teilnehmer in das Netz einfügen, müssen Sie für diesen die Versorgungsspannung abschalten.

• Verbinden Sie alle Teilnehmer im Netz ”in einer Linie”. D.h., binden Sie auch die festplatzierten PGs und OPs direkt in das Netz ein.

Schließen Sie also nur die für die Inbetriebnahme bzw. für Wartungsarbeiten nötigen PGs/OPs über Stichleitungen an das Netz an.

• Wenn Sie mehr als 32 Teilnehmer in einem PROFIBUS-DP-Netz betreiben, dann müssen Sie die Bussegmente über RS 485-Repeater koppeln.

In einem PROFIBUS-DP-Netz müssen alle Bussegmente zusammen mindestens einen DP-Master und einen DP-Slave haben.

• Erdfrei aufgebaute Bussegmente und erdgebunden aufgebaute Bussegmente koppeln Sie über RS 485-Repeater (siehe Referenzhandbuch “Baugruppenda-

ten, Kapitel 10).

• Je eingesetztem RS 485-Repeater reduziert sich die Anzahl der maximalen

Zahl der Teilnehmer je Bussegment. Das heißt, wenn sich in einem Bussegment ein RS 485-Repeater befindet, dann dürfen sich nur noch maximal 31 weitere Teilnehmer in einem Bussegment befinden. Die Zahl der RS 485-Repeater hat aber keine Auswirkung auf die maximale Zahl der Teilnehmer am Bus.

Es können bis zu 10 Segmente in einer Reihe liegen.

• Schalten Sie am ersten und letzten Teilnehmer eines Segments den Abschlusswiderstand ein.

Um einen störungsfreien Betrieb des Busses zu gewährleisten, dürfen Sie diese

Teilnehmer nicht ausschalten.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-7

Vernetzung

Datenpakete im MPI-Netz

Beachten Sie die folgende Besonderheit im MPI-Netz:

Achtung

Wenn Sie eine zusätzliche CPU während des laufenden Betriebs mit dem MPI-

Netz verbinden, kann es zum Verlust von Daten kommen.

Abhilfe:

1. Anzuschließenden Teilnehmer spannungslos schalten.

2. Teilnehmer an das MPI-Netz anschließen.

3. Teilnehmer einschalten.

Empfehlung für MPI-Adressen

Reservieren Sie die MPI-Adresse ”0” für ein Service-PG bzw ”1” für ein Service-OP, die später bei Bedarf kurzzeitig an das MPI-Netz angeschlossen werden.

Vergeben Sie also an die in das MPI-Netz eingebundenen PGs/OPs andere MPI-

Adressen.

Reservieren Sie die MPI-Adresse ”2” für eine neue CPU. So vermeiden Sie das

Auftreten von doppelten MPI-Adressen nach Einbau einer CPU mit Defaulteinstellung in das MPI-Netz (zum Beispiel beim Austausch einer CPU). Vergeben Sie also eine MPI-Adresse größer ”2” an alle CPUs im MPI-Netz.

Empfehlung für PROFIBUS-DP-Adressen

Reservieren Sie die PROFIBUS-DP-Adresse ”0” für ein Service-PG, das später bei

Bedarf kurzzeitig an das PROFIBUS-DP-Netz angeschlossen wird. Vergeben Sie also an alle in das PROFIBUS-DP-Netz eingebundenen PGs andere PROFIBUS-

DP-Adressen.

Komponenten

Sie verbinden die einzelnen Teilnehmer über Busanschluss-Stecker und das

PROFIBUS-DP-Buskabel. Denken Sie daran, dass Sie für die Teilnehmer, an denen bei Bedarf ein PG gesteckt werden soll, einen Busanschluss-Stecker mit PG-

Buchse vorsehen.

Für die Verbindung zwischen Segmenten bzw. zur Leitungsverlängerung verwenden Sie RS 485-Repeater.

5-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Abschlusswiderstand am Busanschluss-Stecker

Abschlusswiderstand zugeschaltet on off

Abschlusswiderstand nicht zugeschaltet on off

Bild 5-3 Abschlusswiderstand am Busanschluss-Stecker

Abschlusswiderstand am RS 485-Repeater

DC

24 V

L+ M PE M 5.2

A1 B1 A1 B1

ON

ON

SIEMENS

RS 485-REPEATER

A2 B2A2 B2

Abschlusswiderstand

Bussegment 1

Abschlusswiderstand

Bussegment 2

Vernetzung

Bild 5-4 Abschlusswiderstand am RS 485-Repeater

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-9

Vernetzung

Beispiel: Abschlusswiderstand im MPI-Netz

In nachfolgendem Bild sehen Sie an einem möglichen Aufbau eines MPI-Netzes, wo Sie den Abschlusswiderstand zuschalten müssen.

S7-400

PG

S7-400

OP

S7-400

Stichleitung

PG

Abschlusswiderstand eingeschaltet

Bild 5-5 Abschlusswiderstand im MPI-Netz

RS 485-

Repeater

OP

S7-300

5-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Beispiel für ein MPI-Netz

2

S7-400**

OP**

S7-400

1 3

S7-400

4

PG

5

S7-400

6

S7-400 S7-400

OP

10

S7-300

9

OP

8

11

7

0

PG*

* nur bei Inbetriebnahme/Wartungsarbeiten über Stichleitung angeschlossen (mit Default-MPI-Adresse)

** nachträglich an das MPI-Netz angeschlossen (mit Default-MPI-Adresse)

0 ... x MPI-Adressen der Teilnehmer

Abschlusswiderstand eingeschaltet

Bild 5-6 Beispiel für ein MPI-Netz

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-11

Vernetzung

Beispiel für ein PROFIBUS-DP-Netz

S7-400 mit

CPU 414-2-DP als DP-Master

ET 200M

1 2

ET 200M

PG

3 4

S5-95U

5

PG*

0

8

OP

ET 200B

7

ET 200B

6

* nur bei Inbetriebnahme/Wartungsarbeiten über Stichleitung angeschlossen (mit PROFIBUS-DP-

Adresse = 0)

0 ... x PROFIBUS-DP-Adressen der Teilnehmer

Abschlusswiderstand eingeschaltet

Bild 5-7 Beispiel für ein PROFIBUS-DP-Netz

5-12

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Beispiel mit CPU 414-2

Nachfolgendes Bild zeigt ein Beispiel eines Aufbaus mit der CPU 414-2, die in ein

MPI-Netz integriert ist und gleichzeitig als DP-Master in einem PROFIBUS-DP-

Netz eingesetzt wird.

In beiden Netzen können dabei die Teilnehmernummern getrennt vergeben werden, ohne dass es zu Kollisionen kommt.

S7-400

PG*

OP

S7-300

S7-400

S7-400

OP

OP

S7-300

S7-400 mit

CPU 414-2 als

DP-Master

ET 200M ET 200M

RS 485-

Repeater

S7-200

ET 200B

ET 200B

MPI-Netz PROFIBUS-DP-Netz

* nur bei Inbetriebnahme/Wartungsarbeiten über Stichleitung angeschlossen

Abschlusswiderstand eingeschaltet

Bild 5-8 Beispiel mit CPU 414-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-13

Vernetzung

PG-Zugriff über Netzgrenzen hinweg (Routing)

Sie können mit einem PG über Netzgrenzen hinweg auf alle Baugruppen zugreifen.

S7-400 mit

CPU 416

S7-400 mit

CPU 417

PG / PC

3

MPI-Netz 3

MPI-Netz 1

S7-300 mit

CPU 318

S7-300 mit

CPU 318

PG / PC

1

PROFIBUS-DP-Netz 2

Bild 5-9

ET 200

PG-Zugriff über Netzgrenzen hinweg

PG / PC

2

Voraussetzungen

• Sie setzen STEP 7 ab Version 5.0 ein

• Sie ordnen STEP 7 einem am Netz befindlichen PG/PC zu. (SIMATIC-Manager

PG/PC zuordnen)

• Die Netzgrenzen werden durch routingfähige Baugruppen überbrückt.

5-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

5.4

Leitungslängen

Segment im MPI-Netz

In einem Segment eines MPI-Netzes können Sie Leitungslängen bis zu 50 m realisieren. Diese 50 m gelten vom 1. Teilnehmer bis zum letzten Teilnehmer des Segments.

Tabelle 5-1 Zulässige Leitungslänge eines Segments im MPI-Netz

Baudrate

187,5 kBaud

19,2 kBaud

12 MBaud

Maximale Leitungslänge eines Segments (in m)

50

50

50

Segment im PROFIBUS-DP-Netz

In einem Segment eines PROFIBUS-DP-Netzes hängt die Leitungslänge ab von der Baudrate (siehe Tabelle 5-2). Diese Längen gelten auch dann, wenn Sie eine

CPU über eine als DP-Schnittstelle parametrierten MPI-Schnittstelle an ein PRO-

FIBUS-DP-Netz anschließen.

Tabelle 5-2 Zulässige Leitungslänge eines Segments im PROFIBUS-DP-Netz in Abhängigkeit von der Baudrate

Baudrate

9,6 bis 187,5 kBaud

500 kBaud

1,5 MBaud

3 bis 12 MBaud

Maximale Leitungslänge eines Segments (in m)

1000

400

200

100

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-15

Vernetzung

Größere Leitungslängen

Für Leitungslängen die größer sind als die in einem Segment zulässigen, müssen

Sie RS 485-Repeater einsetzen. Die möglichen maximalen Leitungslängen zwischen zwei RS 485-Repeatern entsprechen der Leitungslänge eines Segments

(siehe Tabellen 5-1 und 5-2). Beachten Sie aber bei diesen maximalen Leitungslängen, dass sich kein weiterer Teilnehmer zwischen den beiden RS 485-Repeatern befinden darf. Sie können bis zu 10 RS 485-Repeater in Reihe schalten.

Beachten Sie, dass Sie einen RS 485-Repeater bei der Gesamtzahl aller zu verbindenden Teilnehmer als Teilnehmer des MPI-Netzes zählen müssen, auch wenn dieser keine eigene MPI-Nummer erhält. Die Verwendung von RS 485-Repeatern reduziert die Anzahl von Teilnehmern.

Länge der Stichleitungen

Wenn Sie das Buskabel nicht direkt an den Busanschluss-Stecker montieren (z. B.

bei Verwendung eines PROFIBUS-DP-Busterminals), dann müssen Sie die maximal mögliche Stichleitungslänge mitberücksichtigen!

Die folgende Tabelle zeigt Ihnen, welche maximalen Längen von Stichleitungen je

Bussegment erlaubt sind:

Tabelle 5-3 Länge der Stichleitungen je Segment

Baudrate

9,6 bis 93,75 kBaud

187,5 kBaud

500 kBaud

1,5 MBaud

Maximale

Länge einer

3 m

3 m

3 m

3 m

Zahl der Teilnehmer mit

Stichleitungslänge von ...

1,5 m bzw. 1,6 m

32

32

20

6

3 m

32

25

10

3

Maximale Gesamtlänge aller Stichleitungen je Segment

96 m

75 m

30 m

10 m

Bei Baudraten größer als 1,5 MBaud ist keine Stichleitung zulässig.

Zum Anschluss eines PGs oder PCs verwenden Sie die PG-Steckleitung mit der

Bestellnummer 6ES7 901-4BD00-0XA0. Sie können in einem Busaufbau mehrere

PG-Steckleitungen mit dieser Bestellnummer einsetzen.

5-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Beispiel

S7-400

3

In nachfolgendem Bild sehen Sie einen möglichen Aufbau eines MPI-Netzes. An diesem Beispiel verdeutlichen wir die möglichen maximalen Entfernungen in einem

MPI-Netz.

S7-400 S7-400

PG*

OP

RS 485-

Repeater

OP

4 5

PG*

Stichleitung

0

max. 50m

6

S7-400

OP

S7-400

7

RS 485-

Repeater max.

1000m

11 10 9 8

max. 50m

Abschlusswiderstand eingeschaltet

PG zu Wartungszwecken über Stichleitung angeschlossen

0 ... x MPI-Adressen der Teilnehmer

Bild 5-10 Aufbau eines MPI-Netzes

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-17

Vernetzung

5.5

PROFIBUS-DP-Buskabel

PROFIBUS-DP-Buskabel

Wir bieten Ihnen folgende PROFIBUS-DP-Buskabel an (siehe Katalog ST 70):

PROFIBUS-DP-Busleitung

PROFIBUS-DP Erdverlegungskabel

PROFIBUS-DP Schleppkabel

PROFIBUS-DP-Busleitung mit PE-Mantel (Für Nahrungs- und

Genussmittelindustrie)

PROFIBUS-DP-Busleitung für Girlandenaufhängung

6XV1830-0AH10

6XV1830-3AH10

6XV1830-3BH10

6XV1830-0BH10

6XV1830-3CH10

Eigenschaften des PROFIBUS-DP-Buskabels

Das PROFIBUS-DP-Buskabel ist ein zweiadriges, verdrilltes und geschirmtes Kabel mit folgenden Eigenschaften:

Eigenschaften

Wellenwiderstand

Schleifenwiderstand

Betriebskapazität

Dämpfung zulässiger Adernquerschnitt zulässiger Kabeldurchmesser

Werte

ca. 135 bis 160 Ω (f = 3 bis 20 MHz)

≦ 115 Ω/km

30 nF/km

0,9 dB/100 m (f = 200 kHz)

0,3 mm

2 bis 0,5 mm

2

8 mm  0,5 mm

Regeln für die Verlegung

Wenn Sie das PROFIBUS-DP-Buskabel verlegen, dann beachten Sie folgendes:

• Buskabel nicht verdrehen

• Buskabel nicht strecken

• Buskabel nicht pressen

Außerdem müssen Sie bei der Verlegung des Innenraum-Buskabels auf folgende

Randbedingungen achten (d

A

= Außendurchmesser des Kabels):

Merkmale

Biegeradius bei einmaligem Biegen

Biegeradius bei mehrmaligem Biegen

Zulässiger Temperaturbereich beim Verlegen

Lager- und stationärer Betriebstemperaturbereich

Randbedingungen

≥ 80 mm (10×d

A

)

≥ 160 mm (20×d

A

)

-- 5 _C bis + 50 _C

-- 30 _C bis + 65 _C

5-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

5.6

Busanschluss-Stecker

Zweck des Busanschluss-Steckers

Der Busanschluss-Stecker dient zum Anschluss des PROFIBUS-DP-Buskabels an die MPI bzw. PROFIBUS-DP-Schnittstelle. So stellen Sie die Verbindung zu weiteren Teilnehmern her.

Es gibt zwei verschiedene Arten von Busanschluss-Steckern

• Busanschluss-Stecker ohne PG-Buchse:

6ES7 972-0BA12-0XA06

6ES7 972-0BA41-0XA0

6ES7 972-0BA50-0XA0

6ES7 972-0BA60-0XA0

6ES/ 972-0BA30-0XA0

• Busanschluss-Stecker mit PG-Buchse

6ES7 972-0BB12-0XA0

6ES7 972-0BB41-0XA0

6ES7 972-0BB50-0XA0

6ES7 972-0BB60-0XA0

Aussehen (6ES7 972-0B.20 ...)

Schrauben zur

Befestigung an der Station

Schalter für

Abschlusswiderstand

PG-Buchse (nur bei

6ES7 972-0BB20-0XA0)

9poliger D-Sub-Stecker für Anschluss an die

MPI bzw. PROFIBUS-

DP-Schnittstelle

Gehäuseschraube

Klemmscharnier für senkrechten oder

30°-Kabelabgang

Bild 5-11 Busanschluss-Stecker

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-19

Vernetzung

Buskabel an Busanschluss-Stecker anschließen

Wie Sie Buskabel an Busanschluss-Stecker anschließen finden Sie im Handbuch

SIMATIC NET Profibus Netze ausführlich beschrieben.

Busanschluss-Stecker anschließen

Um den Busanschluss-Stecker anzuschließen, gehen Sie folgendermaßen vor:

1. Stecken Sie den Busanschluss-Stecker auf die Baugruppe.

2. Schrauben Sie den Busanschluss-Stecker an der Baugruppe fest.

3. Wenn sich der Busanschluss-Stecker am Anfang oder Ende eines Segments befindet, müssen Sie den Abschlusswiderstand zuschalten (Schalterstellung

”ON”)

Abschlusswiderstand zugeschaltet on off

Abschlusswiderstand nicht zugeschaltet on off

Bild 5-12 Abschlusswiderstand zuschalten

Achten Sie darauf, dass die Stationen, an denen sich der Abschlusswiderstand befindet, während des Hochlaufs und des Betriebs immer mit Spannung versorgt sind.

Busanschluss-Stecker abziehen

Sie können den Busanschluss-Stecker mit durchgeschleiftem Buskabel jederzeit von der Schnittstelle PROFIBUS-DP abziehen, ohne den Datenverkehr auf dem

Bus zu unterbrechen.

!

Warnung

Störung des Datenverkehrs auf dem Bus möglich!

Ein Bussegment muss an beiden Enden immer mit dem Abschlusswiderstand abgeschlossen sein. Das ist z. B. nicht der Fall, wenn der letzte Slave mit Busanschluss-Stecker spannungslos ist. Da der Busanschluss-Stecker seine Spannung aus der Station bezieht, ist damit der Abschlusswiderstand wirkungslos.

Achten Sie darauf, dass die Stationen, an denen der Abschlusswiderstand eingeschaltet ist, immer mit Spannung versorgt sind.

5-20

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

5.7

RS 485-Repeater/Diagnose-Repeater

Zweck des Repeaters

Der RS 485-Repeater/Diagnose-Repeater verstärkt Datensignale auf Busleitungen und koppelt Bussegmente.

In folgenden Fällen benötigen Sie einen Repeater:

• wenn mehr als 32 Teilnehmer im Netz angeschlossen sind

• wenn ein erdgebundenes Segment mit einem erdfreien Segment gekoppelt werden soll

• wenn die maximale Leitungslänge eines Segments überschritten wird

Beschreibung des RS 485-Repeaters

Eine detaillierte Beschreibung sowie die technischen Daten des RS 485-Repeaters finden Sie im Referenzhandbuch “Baugruppendaten”, Kapitel 16.

Die Beschreibung des Diagnose-Repeaters finden Sie im Handbuch Diagnose-Re-

peater für PROFIBUS-DP, Bestellnummer 6ES7972-0AB00-8AA0

Montage

Den Repeater können Sie auf einer 35 mm-Normprofilschiene montieren.

Stromversorgung verdrahten

Um die Stromversorgung des Repeaters zu verdrahten, gehen Sie folgenderma-

ßen vor:

1. Lockern Sie die Schraube ”M” und ”PE”.

2. Isolieren Sie die Leitung für die DC 24-V-Versorgungsspannung ab.

3. Schließen Sie die Leitung an die Klemmen ”L +” und ”M” bzw. ”PE” an.

Klemme ”M5.2”

Die KLemme ”M5.2” ist eine Anschlussklemme, die Sie nicht verdrahten, da sie nur im Servicefall benötigt wird. Die Klemme ”M5.2” stellt die Bezugsmasse zur Verfügung, die Sie zur Messung des Spannungsverlaufs zwischen den Anschlüssen

”A1” und ”B1” benötigen.

PROFIBUS-DP-Buskabel anschließen

Wie Sie ein PROFIBUS-DP-Buskabel an den RS 485-Repeater anschließen finden

Sie im Handbuch SIMATIC NET Profibus Netze ausführlich beschrieben.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-21

Vernetzung

5.8

PROFIBUS-DP-Netz mit Lichtwellenleiter (LWL)

Umsetzung elektrisch -- optisch

Wenn Sie mit dem Feldbus größere Entfernungen unabhängig von der Baudrate

überbrücken wollen oder der Datenverkehr auf dem Bus nicht durch äußere Störfelder beeinträchtigt werden soll, dann verwenden Sie Lichtwellenleiter statt

Kupferkabel.

Zur Umsetzung von elektrischen Leitern auf Lichtwellenleiter haben Sie zwei Möglichkeiten:

• An das optische Netz werden die PROFIBUS-Teilnehmer mit PROFIBUS-DP-

Schnittstelle (RS 485) über ein optisches Busterminal (OBT) oder über das Optical Link Module (OLM) angeschlossen.

• PROFIBUS-Teilnehmer mit integrierter LWL-Schnittstelle (z. B. ET 200M

(IM 153-2 FO), S7-400 (IM 467 FO)) können direkt in das optische Netz eingebunden werden.

Der Aufbau von optischen Netzen mit Optical Link Module (OLM) ist ausführlich im

Handbuch SIMATIC NET PROFIBUS-Netze beschrieben. Nachfolgend finden Sie die wichtigsten Informationen zum Aufbau eines Optischen PROFIBUS-DP-Netzes mit PROFIBUS-Teilnehmern, die eine integrierte LWL-Schnittstelle haben.

Vorteile und Einsatzbereiche

Gegenüber elektrischen Leitern haben Lichtwellenleiter folgende Vorteile:

• galvanische Trennung der PROFIBUS-DP-Komponenten

• Unempfindlichkeit gegenüber elektromagnetischen Störungen (EMV)

• keine elektromagnetischen Abstrahlung an die Umgebung

• damit Verzicht auf zusätzliche Erdungs- und Schirmungsmaßnahmen

• keine Einhaltung von Mindestabständen zu anderen Leitungen in Verbindung mit EMV notwendig

• Wegfall von Potentialausgleichsleitungen

• Wegfall von Blitzschutzelementen

• keine Abhängigkeit der maximal zulässigen Leitungslängen von der Baudrate

• einfache Montage des LWL-Anschlusses der PROFIBUS-DP-Komponenten

über Standard-LWL-Stecker (Simplex-Stecker)

5-22

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Optisches PROFIBUS-DP-Netz in Linientopologie

Das Optische PROFIBUS-DP-Netz mit Teilnehmern, die eine integrierte LWL-

Schnittstelle besitzen, wird in Linientopologie aufgebaut. Die PROFIBUS-Teilnehmer sind paarweise durch Duplex-Lichtwellenleiter miteinander verbunden.

In einem Optischen PROFIBUS-DP-Netz können bis zu 32 PROFIBUS-Teilnehmer mit integrierter LWL-Schnittstelle in Reihe geschaltet werden. Fällt ein PROFIBUS-

Teilnehmer aus, sind durch die Linientopologie alle nachfolgenden DP-Slaves für den DP-Master nicht mehr erreichbar.

PG/PC/OP

S7-400 mit IM 467 FO

ET 200M mit

IM 153-2 FO weitere Feldgeräte ohne

LWL-Schnittstelle

PROFIBUS-

Kabel

OBT

Streckenlängen zwischen

2 Teilnehmern:

Plastik-LWL bis 50 m

PCF-LWL bis 300 m

OBT weitere

Teilnehmer

Optischer PROFIBUS-DP

Bild 5-13 Optisches PROFIBUS-DP-Netz mit Teilnehmern, die integrierte LWL-Schnittstelle besitzen

Baudrate

Für den Betrieb des Optischen PROFIBUS-DP-Netzes in Linientopologie sind folgende Baudraten möglich:

• 9,6 kBaud

• 19,2 kBaud

• 45,45 kBaud

• 93,75 kBaud

• 187,5 kBaud

• 500 kBaud

• 1,5 MBaud

• 12 MBaud

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-23

Vernetzung

PROFIBUS Optical Bus Terminal (OBT)

Über ein PROFIBUS Optical Bus Terminal (OBT) (6GK1 500-3AA00) kann jeweils ein PROFIBUS-Teilnehmer ohne integrierte LWL-Schnittstelle an das Optische

PROFIBUS-DP-Netz angeschlossen werden (z. B. Programmiergeräte (PGs) oder

Bedien- und Beobachtungsgeräte (OPs), siehe Bild 5-13 ).

Das PG/PC wird über das PROFIBUS-Kabel an die RS 485-Schnittstelle des OBT angeschlossen. Über die LWL-Schnittstelle des OBT wird das OBT in die optische

PROFIBUS-DP-Linie eingebunden.

5.8.1

Lichtwellenleiter

Eigenschaften der Lichtwellenleiter

Verwenden Sie als Lichtwellenleiter die Plastik- und PCF-Lichtwellenleiter von Siemens mit folgenden Eigenschaften.

Tabelle 5-4 Eigenschaften der Lichtwellenleiter

Bezeichnung

Normbezeichnung

Einsatzbereich

Fasertyp

Kerndurchmesser

Kernmaterial

Cladding Außendurchmesser

Cladding-Material

Innenmantel

Material

• Farbe

Durchmesser

Plastic Fiber Optic

Standardleitung

I--VY2P 980/1000

150A

Anwendung im

Innenbereich mit geringer mechanischen Belastung wie z.B. Laboraufbauten oder innerhalb von

Schränken:

Leitungslängen bis

50 m

PVC grau

2,2  0,01 mm

SIMATIC NET PROFIBUS

Plastic Fiber Optic

Duplex Ader

I--VY4Y2P

980/1000 60A

PCF Fiber Optic

Standardleitung

I--VY2K 200/230

10A17+8B20

Anwendung im

Innenbereich:

Leitungslängen bis

50 m

PA schwarz und orange

2,2  0,01 mm

Anwendung im

Innenbereich:

Leitungslängen bis

300 m

Stufenindex-Faser

980 μm

Polymethylmethacrylat (PMMA)

1000 μm fluoriertes Spezialpolymer

200 μm

Quarzglas

230 μm

--

(ohne Innenmantel)

5-24

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Tabelle 5-4 Eigenschaften der Lichtwellenleiter, Fortsetzung

Bezeichnung

Plastic Fiber Optic

Duplex Ader

SIMATIC NET PROFIBUS

Plastic Fiber Optic

Standardleitung

PCF Fiber Optic

Standardleitung

Außenmantel

• Material

• Farbe

Faseranzahl

-PVC lila

2

PVC lila

Dämpfung bei

Wellenlänge

Zugentlastung

Maximal zulässige Zugkraft

• kurzzeitig

• dauernd

--

≤ 230 dB/km

660 nm

Kevlarfäden

≤ 10 dB/km

660 nm

Kevlarfäden

≤ 50 N für dauerhafte Zugbelastung nicht geeignet

≤ 100 N für dauerhafte Zugbelastung nicht geeignet

≤ 500 N

≤ 100 N

(nur an Zugentlastung,

≤50 N an Stecker bzw.

Einzelader)

≤ 750 N/ 10 cm

Querdruckfestigkeit pro 10 cm

Leitungslänge (kurzzeitig)

Biegeradien

• einmaliges Biegen

(ohne Zugkraft)

• mehrmaliges Biegen

(mit Zugkraft)

≤ 35 N/ 10 cm

≥ 30 mm

≤ 100 N/ 10 cm

≥ 100 mm ≥ 75 mm

≥ 50 mm

(nur über flache

Seite)

≥ 150 mm ≥ 75 mm

Zulässige Umgebungsbedingungen

Transport-/ Lagertemperatur

Verlegungstemperatur

• Betriebstemperatur

Beständigkeit gegen

• Mineralöl ASTM Nr. 2,

Mineralfett oder Wasser

UV-Strahlung

Brandverhalten

--30 _C bis +70 _C

0 _C bis +50 _C

--30 _C bis +70 _C bedingt

1

--30 _C bis +70 _C

0 _C bis +50 _C

--30 _C bis +70 _C bedingt

1

--30 _C bis +70 _C

--5 _C bis +50 _C

--20 _C bis +70 _C bedingt

1 nicht UV-beständig bedingt

1 bedingt

1 flammwidrig gemäß Flame-Test VW-1 nach UL 1581

1

Außenabmessungen

Gewicht

2,2 × 4,4 mm

 0,01 mm

7,8 kg/km

Durchmesser:

7,8  0,3 mm

65 kg/km

Fragen Sie zum speziellen Einsatzfall bitte Ihren Siemens-Ansprechpartner.

Durchmesser:

4,7  0,3 mm

22 kg/km

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-25

Vernetzung

Bestellnummern

Die in Tabelle 5-4 angegebenen Lichtwellenleiter können Sie unter folgenden Bestellnummern bestellen.

Tabelle 5-5 Bestellnummern -- Lichtwellenleiter

Lichtwellenleiter

SIMATIC NET PROFIBUS Plastic Fiber Optic, Duplex-Ader

I--VY2P 980/1000 150A

Plastik-LWL mit 2 Adern, PVC-Mantel, ohne Stecker, für den Einsatz in Umgebungen mit geringen mechanischen

Belastungen (z.B. innerhalb eines Schranks oder für Testaufbauten im Labor)

SIMATIC NET PROFIBUS Plastic Fiber Optic, Standardleitung

I--VY4Y2P 980/1000 160A

Robuste Rundleitung mit 2 Plastik-LWL-Adern, PVC-Außenmantel und PA-Innenmantel, ohne Stecker, für den Einsatz im Innenbereich

SIMATIC NET PROFIBUS PCF Fiber Optic, Standardleitung

I--VY2K 200/230 10A17 + 8B20

PCF-LWL mit 2 Adern, PVC-Außenmantel, konfektioniert mit

4 Simplex-Steckern, Peitschenlänge je 30 cm, zur Überbrückung großer Entfernungen bis 300 m

(Weitere Längen auf Anfrage)

Ausführung

50 m Ring

Meterware

50 m Ring

100 m Ring

50 m

75 m

100 m

150 m

200 m

250 m

300 m

Bestellnummer

6XV1821-2AN50

6XV1821-0AH10

6XV1821-0AN50

6XV1821-0AT10

6XV1821-1CN50

6XV1821-1CN75

6XV1821-1CT10

6XV1821-1CT15

6XV1821-1CT20

6XV1821-1CT25

6XV1821-1CT30

5.8.2

Simplex-Stecker und Steckadapater

Definition

Simplex-Stecker dienen zum Anschluss des Lichtwellenleiters an die integrierte

LWL-Schnittstelle des PROFIBUS-Gerätes. Bei bestimmten Baugruppen (z. B.

IM 153-2 FO, IM 467 FO) werden jeweils zwei Simplex-Stecker (einen für den

Sender und einen für den Empfänger) über einen speziellen Steckadapter auf die

Baugruppe gesteckt.

Voraussetzung

Das PROFIBUS-Gerät muss mit einer LWL-Schnittstelle ausgestattet sein, wie z. B. die ET 200M (IM153-2 FO) oder die IM 467 FO für S7-400.

5-26

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Aufbau

Für einen LWL-Anschluss werden zwei Simplex-Stecker (Sender und Empfänger) und ein Steckadapter mit folgenden Eigenschaften benötigt:

• Schutzart IP20

• Baudraten von 9,6 kBaud bis 12 MBaud

Steckadapter

Empfänger

Sender

Simplex-

Stecker

Lichtwellenleiter

Bild 5-14 Simplex-Stecker und spezieller Steckadapter für IM 153-2 FO und IM 467 FO im montierten Zustand

Bestellnummern

Simplex-Stecker und Steckadapter können Sie unter folgenden Bestellnummern bestellen.

Tabelle 5-6 Bestellnummern -- Simplex-Stecker und Steckadapter

Zubehör

SIMATIC NET PROFIBUS Plastic Fiber Optic,

Simplex-Stecker-/Poliersatz

100 Simplex-Stecker und 5 Poliersets zur Konfektionierung von SIMATIC NET PROFIBUS Plastic Fiber Optic

Leitungen

Steckadapter

50er Pack zur Montage der Plastik-Simplex-Stecker in

Verbindung mit der IM 467 FO und der

IM 153-2 FO

Bestellnummer

6GK1901-0FB00-0AA0

6ES7195-1BE00-0XA0

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-27

Vernetzung

5.8.3

Lichtwellenleiter an PROFIBUS-Gerät anschließen

Leitungslängen

Die Länge der Übertragungsstrecke ist bei Lichtwellenleitern von der

Baudrate unabhängig.

Jeder Busteilnehmer am Optischen PROFIBUS-DP-Netz hat eine Repeaterfunktionalität, so dass sich die nachfolgenden Entfernungsangaben auf den Abstand zwischen zwei benachbarten PROFIBUS-Teilnehmern der Linientopologie beziehen.

Die maximale Leitungslänge zwischen zwei PROFIBUS-Teilnehmern hängt vom

Typ des eingesetzten Lichtwellenleiters ab.

Tabelle 5-7 Zulässige Leitungslängen am Optischen PROFIBUS-DP-Netz

(Linientopologie)

Lichtwellenleiter

SIMATIC NET

PROFIBUS

Plastic Fiber Optic,

Duplex-Ader

Plastic Fiber Optic,

Standardleitung

PCF Fiber Optic,

Standardleitung

Maximale Leitungslängen zwischen zwei Teilnehmern (in m)

50

50

300

hochgerechnet auf 1 Netz

(= 32 Teilnehmer) (in m)

1550

1550

9300

Mischbetrieb Plastic Fiber Optic und PCF Fiber Optic

Zur optimalen Ausnutzung der unterschiedlichen Leitungslängen können Sie die

Lichtwellenleiter Plastic Fiber Optic und PCF Fiber Optic gemischt verwenden.

Z. B. Verbindung zwischen DP-Slaves dezentral vor Ort mit Plastic Fiber Optic

(Entfernungen < 50 m) und Verbindung zwischen DP-Master zum ersten DP-

Slave der Linientopologie mit PCF Fiber Optic (Entfernung > 50 m).

Verlegen von PCF Fiber Optic

PCF-Lichtwellenleiter können Sie vorkonfektioniert mit 2x2 Simplex-Steckern in einem bestimmten Längenraster von Siemens beziehen.

Längen und Bestellnummern: siehe Tabelle 5-5

Verlegen von Plastic Fiber Optic

Plastik-Lichtwellenleiter können Sie selbst einfach konfektionieren und montieren.

Lesen Sie dazu bitte die nachfolgenden Informationen zur Montageanleitung und zu den Verlegungsregeln.

5-28

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Vernetzung

Montageanleitung für Plastic Fiber Optic (mit Photoserie)

Eine ausführliche Montageanleitung mit Photoserie für die Konfektionierung von

Plastik-Lichtwellenleitern mit Simplex-Stecker finden Sie an folgenden Stellen:

• im Anhang des Handbuchs SIMATIC NET PROFIBUS-Netze

• im Internet

-- deutsch: http://www.ad.siemens.de/csi/net

-- englisch: http://www.ad.siemens.de/csi_e/net

Wählen Sie auf dieser Internetseite SEARCH (Suchfunktion), geben Sie unter

“Beitrag-ID” die Nummer “574203” ein und starten Sie den Suchvorgang.

• als Beilage des Simplex-Stecker-/Poliersatzes (siehe Tabelle 5-6)

Titel: Montageanleitung für SIMATIC NET PROFIBUS Plastic Fiber Optic mit Sim-

plex-Steckern

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

5-29

Vernetzung

Regeln für die Verlegung

Wenn Sie Plastik-Lichtwellenleiter verlegen, dann beachten Sie die folgenden Hinweise:

• Verwenden Sie nur die in Kapitel 5.8.1 angegebenen Lichtwellenleiter von Siemens.

• Überschreiten Sie niemals die in Tabelle 5-4 der verwendeten Leitung angegebenen maximal zulässigen Kräfte (Zugbelastung, Querdruck usw.). Ein unzulässiger Querdruck kann z. B. durch die Verwendung von Schraubschellen zur Befestigung der Leitung entstehen.

• Befolgen Sie die in der Montageanleitung beschriebenen Arbeitschritte und setzen Sie nur die dort angegebenen Werkzeuge ein. Führen Sie sorgfältig das

Schleifen und Polieren der Faserenden durch.

Hinweis

Der Arbeitsschritt “Polieren der Faserenden des LWLs” in der Montageanleitung bewirkt eine Reduzierung der Dämpfung um 2 dB.

• Führen Sie den Schleif- und Poliervorgang nur unter leichtem Druck des

Steckers auf Schleifpapier bzw. Polierfolie durch, um ein Verschmelzen von

Stecker und Faserkunststoff zu vermeiden.

• Stellen Sie sicher, dass beim Schleif- und Poliervorgang die in Tabelle 5-4 angegebenen Biegeradien eingehalten werden, insbesondere, wenn Leitungen zur mechanischen Zugentlastung abgefangen werden. Sorgen Sie in diesem Fall für eine ausreichend große Peitschenlänge.

• Stellen Sie sicher, dass beim Ablängen von Leitungsstücken keine Schlaufen entstehen. Schlaufen können unter Zugbelastung zu Knicken und damit zur Beschädigung der Leitung führen.

• Achten Sie darauf, dass Außen- und Adernmäntel der Leitung und die Fasern keine Beschädigungen aufweisen. Kerben oder Kratzer können zu Lichtaustritt und damit zu erhöhten Dämpfungswerten und Streckenausfall führen.

• Stecken Sie niemals verschmutzte Stecker oder Stecker, aus deren Stirnfläche

Fasern hervorstehen, in die Gerätebuchsen. Die optischen Sende- und Empfangselemente können hierdurch zerstört werden.

Montage des Steckadapters

Die Montage des konfektionierten Lichtwellenleiters am PROFIBUS-Gerät ist baugruppenspezifisch und deshalb im Handbuch zum PROFIBUS-Gerät mit integrierter LWL-Schnittstelle beschrieben.

5-30

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

Inbetriebnahme

6

Kapitelübersicht

Im Kapitel

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

finden Sie

Empfohlene Vorgehensweise für die erste Inbetriebnahme

Überprüfung vor dem ersten Einschalten

PG an eine S7-400 anschließen

Erstes Einschalten einer S7-400

CPU urlöschen mit Betriebsartenschalter

Kaltstart und Warmstart mit Betriebsartenschalter

Memory Card stecken

Pufferbatterie einlegen (Option)

Inbetriebnahme von PROFIBUS-DP

Schnittstellenmodule einbauen (CPU 414-3, 414-4H, 416-3,

417-4 und 417-4 H)

auf Seite

6-2

6-3

6-5

6-6

6-7

6-10

6-11

6-13

6-17

6-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-1

Inbetriebnahme

6.1

Empfohlene Vorgehensweise für die erste Inbetriebnahme

Empfohlene Vorgehensweise

Wegen des modularen Aufbaus und der vielfältigen Erweiterungsmöglichkeiten kann eine S7-400 sehr umfangreich und komplex sein. Ein erstes Einschalten einer S7-400 mit mehreren Baugruppenträgern und allen gesteckten Baugruppen ist daher nicht sinnvoll. Stattdessen empfiehlt sich eine stufenweise Inbetriebnahme.

Bei der Inbetriebnahme eines H-Systems sollten Sie zuerst jedes Teilsystem für sich so in Betrieb nehmen, wie es in diesem Kapitel beschrieben ist, bevor Sie die

Teilsysteme zu einem Gesamtsystem zusammenschalten.

Für die erste Inbetriebnahme einer S7-400 ist folgende Vorgehensweise empfehlenswert:

1. Nehmen Sie die in Tabelle 6-1 aufgeführten Überprüfungen vor.

2. Nehmen Sie zuerst das ZG mit gesteckter Stromversorgungsbaugruppe und mit gesteckter CPU in Betrieb (siehe Abschnitt 6.4). Wenn Sie eine S7-400 in einem segmentierten Baugruppenträger aufbauen, müssen Sie für die erste

Inbetriebnahme von Anfang an beide CPUs stecken.

Kontrollieren Sie die LED-Anzeigen der beiden Baugruppen. Hinweise auf die

Bedeutung dieser LED-Anzeigen finden Sie im Referenzhandbuch “Baugrup-

pendaten”, Kapitel 3 und im Referenzhandbuch “CPU-Daten”.

3. Stecken Sie nach und nach weitere Baugruppen in das ZG und nehmen Sie diese sukzessive in Betrieb.

4. Koppeln Sie bei Bedarf das ZG mit EGs, indem Sie im ZG eine oder mehrere

Sende-IM stecken und im jeweiligen EG die dazu passende Empfangs-IM.

Bei EGs mit eigener Stromversorgungsbaugruppe schalten Sie zuerst diese ein und danach die Stromversorgungsbaugruppe des ZG.

5. Stecken Sie nach und nach weitere Baugruppen in die EGs und nehmen Sie diese sukzessive in Betrieb.

Verhalten im Fehlerfall

Im Fehlerfall können Sie folgendermaßen vorgehen:

• Überprüfen Sie Ihre Anlage mit Hilfe der Checkliste aus Abschnitt 6.2.

• Kontrollieren Sie die LED-Anzeigen der Baugruppen. Hinweise über deren Bedeutung finden Sie in den Kapiteln, in denen die entsprechenden Baugruppen beschrieben sind.

• Entfernen Sie unter Umständen einzelne Baugruppen wieder, um auf diese

Weise eventuell aufgetretene Fehler einzukreisen.

6-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

6.2

Überprüfung vor dem ersten Einschalten

Überprüfung vor dem ersten Einschalten

Nach dem Montieren und Verdrahten Ihrer S7-400 ist es empfehlenswert, vor dem ersten Einschalten eine Überprüfung der bisher durchgeführten Schritte vorzunehmen.

Tabelle 6-1 gibt für die Überprüfung Ihrer S7-400 eine Anleitung in Form einer

Checkliste und verweist auf die Kapitel, in denen Sie weitere Informationen zum entsprechenden Thema finden.

Tabelle 6-1 Checkliste zur Überprüfung vor dem ersten Einschalten

Zu überprüfende Punkte

Baugruppenträger

Sind die Baugruppenträger fest an der

Wand, im Gestell oder im Schrank montiert?

Sind die nötigen Freiräume eingehalten?

Sind Kabelkanäle bzw. Lüfterzeilen richtig eingebaut?

Ist die Luftführung in Ordnung?

Erdungs- und Massekonzept

Ist eine niederimpedante Verbindung

(große Oberfläche, großflächig kontaktiert) zur Ortserde hergestellt?

Ist bei allen Baugruppenträgern die

Verbindung zwischen Bezugsmasse und Ortserde richtig eingestellt (galvanische Verbindung oder erdfreier Betrieb)?

Sind alle Massen der potentialgebundenen Baugruppen und die Massen der Laststromversorgungen mit den

Bezugspunkten verbunden?

Baugruppenmontage und -verdrahtung

Sind alle Baugruppen richtig gesteckt und verschraubt?

Sind alle Frontstecker richtig verdrahtet, auf der richtigen Baugruppe aufgesteckt und verschraubt?

siehe

Installationshandbuch

Kapitel siehe

Referenzhandbuch “Baugruppendaten”

Kapitel siehe

Referenzhandbuch “CPU-

Daten”

Kapitel

2

2

2

2

2

4

2

2

4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-3

Inbetriebnahme

Tabelle 6-1 Checkliste zur Überprüfung vor dem ersten Einschalten, Fortsetzung

Zu überprüfende Punkte siehe

Installationshandbuch

Kapitel

2

siehe

Referenzhandbuch “Baugruppendaten”

Kapitel siehe

Referenzhandbuch “CPU-

Daten”

Kapitel

Sind evtl. nötige Kabelkanäle bzw.

Lüfterzeilen richtig montiert?

Baugruppeneinstellungen

Ist bei der CPU der Betriebsartenschalter in Stellung STOP?

Sind an den Kodierschaltern der Empfangs-IMs die Nummern der Baugruppenträger richtig eingestellt und keine

Nummer doppelt vergeben?

Sind evtl. vorhandene Messbereichsmodule auf den Analogeingabebaugruppen richtig eingestellt?

Sind die Regeln für die Kopplung eingehalten?

Sind die Verbindungen zu vorhandenen EGs mit den richtigen Leitungen hergestellt?

Ist die letzte Empfangs-IM jedes Kopplungsstranges mit dem richtigen Abschluss-Stecker abgeschlossen?

Stromversorgungsbaugruppe

Ist der Netzstecker korrekt verdrahtet?

Ist bei AC-Stromversorgungsbaugruppen der Spannungswahlschalter auf die vorhandene Netzspannung eingestellt?

Ist bei Lüfterzeilen der Spannungswahlschalter auf die vorhandene Netzspannung eingestellt?

Sind alle Stromversorgungsbaugruppen ausgeschaltet (Standby-Schalter in Stellung )?

Ist der Schalter BATT INDIC für die

Batterieüberwachung in der richtigen

Stellung (siehe Tabelle 6-2)?

Ist der Anschluss an die Netzspannung hergestellt?

Netzspannung

Hat die vorhandene Netzspannung den richtigen Wert?

6

2

2, 4

4

4

4

7

5, 6

7

7

3

9

3

3

3

1

6-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

Tabelle 6-2 zeigt, wie Sie je nach Pufferkonzept bei den unterschiedlichen Stromversorgungsbaugruppen den Batterieüberwachungsschalter einstellen müssen.

Tabelle 6-2 Stellung des Batterieüberwachungsschalters

Wenn Sie ...

keine Batterieüberwachung nutzen,

dann ...

bringen Sie den Schalter BATT INDIC in die Stellung OFF bringen Sie den Schalter BATT INDIC in die Stellung BATT bei einer einfachbreiten Stromversorgungsbaugruppe die Batterieüberwachung nutzen, bei einer doppelt- oder dreifachbreiten

Stromversorgungsbaugruppe eine Pufferbatterie überwachen wollen, bei einer doppelt- oder dreifachbreiten

Stromversorgungsbaugruppe zwei Pufferbatterien überwachen wollen, bringen Sie den Schalter BATT INDIC in die Stellung 1BATT bringen Sie den Schalter BATT INDIC in die Stellung 2BATT

6.3

PG an eine S7-400 anschließen

PG an eine S7-400 anschließen

Sie müssen das PG über ein Verbindungskabel mit der MPI-Schnittstelle der CPU verbinden. Damit sind über den K-Bus alle CPUs und programmierbaren Baugruppen erreichbar.

S7-400

PG-Kabel

Bild 6-1 PG an eine S7-400 anschließen

PG

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-5

Inbetriebnahme

Kommunikation zwischen PG und CPU

Für eine Kommunikation zwischen einem PG und einer CPU gelten folgende Bedingungen:

• Sie benötigen ein PG mit STEP 7.

• Die CPU kann in folgenden Betriebsarten mit dem PG kommunizieren: RUN,

STOP, ANLAUF und HALT

Bedienung

Die Beschreibung der Bedienungsmöglichkeiten der Kommunikation zwischen

CPU und PG finden Sie in den Handbüchern zu STEP 7.

6.4

Erstes Einschalten einer S7-400

Erstes Einschalten einer S7-400

Schalten Sie zuerst die Netztrenneinrichtung ein.

Schalten Sie danach den Standby-Schalter der Stromversorgungsbaugruppe von der Standby-Stellung in die Stellung I (Ausgangsspannungen auf Nennwert).

Ergebnis:

• Bei der Stromversorgungsbaugruppe leuchten die grünen LEDs

DC 5V und DC 24V.

• Bei der CPU

-- leuchtet die gelbe LED CRST.

-- blinkt für drei Sekunden die gelbe LED STOP mit 2 Hz. Während dieser Zeit führt die CPU automatisches Urlöschen durch.

-- leuchtet die gelbe LED STOP nach dem automatischen Urlöschen.

Falls bei der Stromversorgungsbaugruppe die rote LED BAF und eine der gelben

LEDs (BATTF bzw. BATT1F oder BATT2F) leuchtet, überprüfen Sie die Pufferbatterie(n), die Stellung des Schalters BATT INDIC oder lesen Sie im Referenzhand-

buch “Baugruppendaten”, Kapitel 3 den Abschnitt Bedien- und Anzeigeelemente der Stromversorgungsbaugruppen.

Erstes Einschalten eines H-Systems

Schalten Sie zuerst das Mastergerät ein, danach das Reservegerät. Gehen Sie bei beiden so vor, wie oben beschrieben.

6-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

6.5

CPU urlöschen mit Betriebsartenschalter

Vorgang beim Urlöschen

Wenn Sie eine CPU urlöschen, bringen Sie die Speicher der CPU in einen definierten Grundzustand. Weiterhin initialisiert die CPU ihre Hardwareparameter und einen Teil der Systemprogramm-Parameter. Wenn Sie eine FLASH Card mit einem

Anwenderprogramm in die CPU gesteckt haben, dann überträgt die CPU nach dem Urlöschen das Anwenderprogramm und die auf der FLASH Card gespeicherten Systemparameter in den Arbeitsspeicher.

Wann CPU urlöschen?

Sie müssen die CPU urlöschen:

• Bevor Sie ein neues komplettes Anwenderprogramm in die CPU übertragen.

• Wenn die CPU Urlöschen anfordert. Diese Anforderung erkennen Sie am langsamen Blinken der STOP-LED mit 0,5 Hz.

Wie urlöschen?

Es gibt zwei Möglichkeiten, die CPU urzulöschen:

• Urlöschen mit dem Betriebsartenschalter

• Urlöschen vom PG aus (siehe Handbuch Programmieren mit STEP 7)

Im folgenden ist beschrieben, wie Sie die CPU mit dem Betriebsartenschalter urlöschen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-7

Inbetriebnahme

CPU urlöschen mit dem Betriebsartenschalter

Der Betriebsartenschalter ist als Kippschalter ausgeführt. Bild 6-2 zeigt die möglichen Stellungen des Betriebsartenschalters.

RUN

STOP

MRES

Bild 6-2 Stellungen des Betriebsartenschalters

Wenn Sie die CPU mit dem Betriebsartenschalter urlöschen, gehen Sie folgendermaßen vor:

Fall A: Sie wollen ein neues komplettes Anwenderprogramm in die CPU

übertragen.

1. Bringen Sie den Schalter in Stellung STOP.

Ergebnis: Die STOP-LED leuchtet.

2. Bringen Sie den Schalter in Stellung MRES und halten Sie ihn in dieser Stellung.

Ergebnis: Die STOP-LED ist eine Sekunde lang dunkel, eine Sekunde lang

hell, eine Sekunde lang dunkel und geht dann in Dauerlicht.

3. Bringen Sie den Schalter zurück in Stellung STOP und dann innerhalb der nächsten 3 Sekunden erneut in Stellung MRES und wieder zurück nach STOP.

Ergebnis: Die STOP-LED blinkt für mindestens 3 Sekunden mit 2 Hz (Urlö-

schen wird durchgeführt) und geht danach in Dauerlicht.

Fall B: Die CPU fordert durch langsames Blinken der STOP-LED mit 0,5 Hz

Urlöschen an (systemseitige Urlöschanforderung, z. B. nach Ziehen oder Stecken

einer Memory Card).

Bringen Sie den Schalter in Stellung MRES und wieder zurück in Stellung

STOP.

Ergebnis: Die STOP-LED blinkt für mindestens 3 Sekunden mit 2 Hz (Urlö-

schen wird durchgeführt) und geht danach in Dauerlicht.

6-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

Ablauf in der CPU beim Urlöschen

Beim Urlöschen läuft in der CPU folgender Prozess ab:

• Die CPU löscht das gesamte Anwenderprogramm im Arbeitsspeicher und im

Ladespeicher (integrierter RAM-Speicher und ggf. RAM Card).

• Die CPU löscht alle Zähler, Merker und Zeiten (außer der Uhrzeit).

• Die CPU testet ihre Hardware.

• Die CPU initialisiert ihre Hardware- und Systemprogramm-Parameter, d.h.

CPU-interne (Default-) Voreinstellungen. Einige parametrierte Voreinstellungen werden berücksichtigt.

• Wenn keine FLASH Card gesteckt ist, hat eine urgelöschte CPU den Speicherfüllstand ”0”. Den Speicherfüllstand können Sie mit STEP 7 auslesen.

• Wenn eine FLASH Card gesteckt ist, kopiert die CPU im Anschluss an das Urlöschen das Anwenderprogramm und die auf der FLASH Card gespeicherten

Systemparameter in den Arbeitsspeicher.

Was nach dem Urlöschen erhalten bleibt...

Nachdem die CPU urgelöscht wurde, bleiben erhalten:

• der Inhalt des Diagnosepuffers

Der Inhalt kann mit dem PG mit STEP 7 ausgelesen werden.

• die Parameter der MPI-Schnittstelle (MPI-Adresse und höchste MPI-Adresse).

Beachten Sie die Besonderheiten in nachfolgendem Absatz.

• die Uhrzeit

• Zustand und Wert des Betriebsstundenzählers

Besonderheit: MPI-Parameter

Folgende Sonderstellung beim Urlöschen haben die MPI-Parameter:

Wenn Sie beim Urlöschen eine FLASH-Card gesteckt haben, auf der MPI-Parameter sind, so werden diese automatisch in die CPU geladen und sind dann gültig.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-9

Inbetriebnahme

6.6

Neustart (Warmstart) und Wiederanlauf mit dem Betriebsartenschalter

Neustart (Warmstart)

• Beim Neustart werden das Prozessabbild und die nicht remanenten Merker,

Zeiten und Zähler zurückgesetzt.

Remanente Merker, Zeiten und Zähler behalten ihren zuletzt gültigen Wert.

Alle Datenbausteine, die mit der Eigenschaft “Non Retain” parametriert wurden, werden auf die Ladewerte zurückgesetzt. Die anderen Datenbausteine behalten ihren zuletzt gültigen Wert.

• Die Programmbearbeitung wird wieder am Anfang (Anlauf-OB oder OB 1) begonnen.

• Bei Unterbrechung der Stromversorgung steht der Warmstart nur bei gepuffertem Betrieb zur Verfügung.

Wiederanlauf

• Beim Wiederanlauf behalten alle Daten inklusive des Prozessabbildes ihren zuletzt gültigen Wert.

• Die Programmbearbeitung wird genau mit dem Befehl fortgesetzt, bei dem die

Unterbrechung eingetreten ist.

• Bis zum Ende des aktuellen Zyklusses werden die Ausgänge nicht verändert.

• Bei Unterbrechung der Stromversorgung steht der Wiederanlauf nur bei gepuffertem Betrieb zur Verfügung.

Bedienfolge beim Neustart (Warmstart)/Wiederanlauf

1. Bringen Sie den Schalter in Stellung STOP.

Ergebnis: Die STOP-LED leuchtet.

2. Bringen Sie den Schalter in Stellung RUN.

Ob die CPU einen Neustart oder einen Wiederanlauf durchführt, hängt von der Parametrierung der CPU ab.

6-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

6.7

Memory Card stecken

Memory Card als Erweiterung des Ladespeichers

Bei allen CPUs der S7-400 können Sie eine Memory Card stecken. Sie stellt die

Ladespeichererweiterung der CPU dar. Je nach Art der verwendeten Memory Card bleibt das Anwenderprogramm auch im spannungslosen Zustand auf der Memory

Card erhalten.

Welche Art von Memory Card verwenden?

Es gibt zwei Arten von Memory Cards: RAM Cards und FLASH Cards.

Ob Sie eine RAM Card oder eine FLASH Card verwenden, hängt davon ab, wie

Sie die Memory Card einsetzen wollen.

Wenn Sie ...

ausschließlich den integrierten Ladespeicher der CPU erweitern wollen, auch im spannungslosen Zustand (ohne

Pufferung oder außerhalb der CPU) Ihr Anwenderprogramm dauerhaft auf der Memory

Card speichern wollen,

dann ...

verwenden Sie eine RAM Card verwenden Sie eine FLASH Card

Weitere Informationen über die Memory Cards finden Sie im CPU-Handbuch, Kapitel 1.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-11

Inbetriebnahme

Memory Card stecken

Zum Stecken einer Memory Card gehen Sie folgendermaßen vor:

1. Schalten Sie den Betriebsartenschalter der CPU auf STOP.

2. Führen Sie die Memory Card in den Modulschacht der CPU ein und schieben

Sie die Memory Card bis zum Anschlag in den Schacht.

Beachten Sie dabei die Lage des Markierungspunktes. Sie können die Memory

Card nur in der in Bild 6-3 gezeichneten Lage in den Modulschacht stecken.

Ergebnis: Die CPU fordert durch langsames Blinken der STOP-Anzeige mit

0,5 Hz Urlöschen an.

3. Führen Sie an der CPU mit Drücken des Betriebsartenschalters in Stellung

MRES und wieder zurück nach STOP Urlöschen durch.

Ergebnis: Die STOP-LED blinkt für mindestens 3 Sekunden mit 2 Hz (Urlö-

schen wird durchgeführt) und geht danach in Dauerlicht.

Markierungspunkt

6-12

Bild 6-3 Memory Card in eine CPU stecken

Hinweis

Wenn Sie die Memory Card bei eingeschalteter Steuerung stecken oder ziehen, fordert die CPU durch langsames Blinken der STOP-Anzeige mit 0,5 Hz Urlöschen an.

Wenn Sie die Memory Card bei ausgeschalteter Steuerung stecken oder ziehen, führt die CPU nach Wiedereinschalten selbständig Urlöschen durch.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

6.8

Pufferbatterie einlegen (Option)

Pufferung

Sie können, je nach Stromversorgungsbaugruppe, eine oder zwei Pufferbatterien verwenden:

• Zur Pufferung eines Anwenderprogramms, das Sie in einem RAM netzausfallsicher hinterlegen wollen.

• Wenn Sie Merker, Zeiten, Zähler und Systemdaten sowie Daten in variablen

Datenbausteinen remanent halten wollen.

Sie können diese Pufferung auch mit einer externen Batterie (DC 5 bis 15 V) herstellen. Schließen Sie hierzu die externe Batterie an die Buchse ”EXT.- BATT.” an der CPU an (siehe Referenzhandbuch “CPU-Daten”, Abschnitt 1.2). Baugruppen in einem Erweiterungsbaugruppenträger können Sie auch über die Buchse

”EXT.- BATT.” an der Empfangs-IM puffern.

Pufferbatterie(n) einlegen

Um die Pufferbatterie(n) in die Stromversorgungsbaugruppe einzulegen, gehen Sie folgendermaßen vor:

1. Bauen Sie zuerst evtl. vorhandene statische Ladung ab, indem Sie ein geerdetes metallisches Teil der S7-400 berühren.

2. Öffnen Sie die Abdeckhaube der Stromversorgungsbaugruppe.

3. Legen Sie die Pufferbatterie(n) in das Batteriefach ein.

Beachten Sie die Polung der Batterie.

4. Stellen Sie, wie in nachfolgender Tabelle gezeigt, mit dem Schiebeschalter

BATT INDIC die Batterieüberwachung ein:

Wenn Sie ...

eine einfachbreite Stromversorgungsbaugruppe haben, eine doppelt- oder dreifachbreite Stromversorgungsbaugruppe haben und eine Pufferbatterie überwachen wollen, eine doppelt- oder dreifachbreite Stromversorgungsbaugruppe haben und beide Pufferbatterien überwachen wollen,

dann ...

bringen Sie den Schalter BATT INDIC in die Stellung BATT bringen Sie den Schalter BATT INDIC in die Stellung 1BATT bringen Sie den Schalter BATT INDIC in die Stellung 2BATT

5. Schließen Sie die Abdeckhaube.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-13

Inbetriebnahme

Nachfolgendes Bild zeigt, wie Sie eine Pufferbatterie in eine einfachbreite Stromversorgungsbaugruppe einlegen.

6-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

Nachfolgendes

Bild zeigt, wie Sie zwei Pufferbatterien in eine doppeltbreite Stromversorgungsbaugruppe einlegen.

!

Warnung

Gefahr von Personen- und Sachschaden, Gefahr von Schadstofffreisetzung.

Bei falscher Handhabung kann eine Lithium-Batterie explodieren, bei falscher Entsorgung alter Lithium-Batterien können Schadstoffe freigesetzt werden. Beachten

Sie deshalb unbedingt die folgenden Hinweise:

• Neue oder entladene Batterien nicht ins Feuer werfen und nicht am Zellenkörper löten (max. Temperatur 100 °C), auch nicht wieder aufladen - es besteht

Explosionsgefahr! Batterie nicht öffnen, nur gegen gleiche Type austauschen.

Ersatz nur über Siemens beziehen (Bestellnummer siehe Referenzhandbuch

“Baugruppendaten”, Anhang C). Damit ist sichergestellt, dass Sie eine kurzschlussfeste Type besitzen.

• Alte Batterien sind möglichst an Batteriehersteller/Recycler abzugeben oder als

Sondermüll zu entsorgen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-15

Inbetriebnahme

Abbau der Passivierungsschicht

Bei der S7-400 werden als Pufferbatterien Lithium-Batterien (Lithium/Thionylchlorid) verwendet. Bei Lithium-Batterien mit dieser Technologie kann sich bei sehr langer Lagerung eine Passivierungsschicht entwickeln, die die sofortige Funktionsfähigkeit der Batterie in Frage stellt. Dies führt u. U. nach dem Einschalten der

Stromversorgungsbaugruppe zu einer Fehlermeldung.

Die Stromversorgungsbaugruppen der S7-400 sind in der Lage, die Passivierungsschicht der Lithium-Batterie durch definierte Belastung der Batterie abzubauen.

Dieser Vorgang kann einigen Minuten dauern. Wenn die Passivierungsschicht abgebaut ist und die Lithium-Batterie ihre Nennspannung erreicht hat, können Sie die Fehlermeldung der Stromversorgungsbaugruppe mit dem Taster FMR quittieren.

Da die Lagerzeit der Lithium-Batterie in der Regel nicht bekannt ist, empfehlen wir folgende Vorgehensweise:

1. Legen Sie die Pufferbatterie(n) in das Batteriefach ein.

2. Eine eventuelle Batteriefehlermeldung der Stromversorgungsbaugruppe quittieren Sie mit dem Taster FMR.

3. Falls sich der Batteriefehler nicht quittieren lässt, versuchen Sie es nach einigen Minuten erneut.

4. Falls sich der Batteriefehler immer noch nicht quittieren lässt, entnehmen Sie die Batterie(n) und schließen die Batterie(n) 1 bis max. 3 Sekunden lang kurz.

5. Setzen Sie die Batterie(n) wieder ein und versuchen Sie erneut, mit dem Taster

FMR zu quittieren.

Wenn die Anzeige für die Batteriefehlermeldung erlischt, ist (sind) die Batterie(n) funktionsfähig.

Wenn die Anzeige für die Batteriefehlermeldung nicht erlischt, ist (sind) die Batterie(n) leer.

Pufferbatterie(n) entfernen

Wie Sie die Pufferbatterie(n) entfernen, finden Sie im Kapitel 7 beschrieben.

6-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

6.9

Inbetriebnahme von PROFIBUS-DP

Einleitung

In diesem Abschnitt ist beschrieben, wie Sie vorgehen, wenn Sie ein PROFIBUS-

DP-Netz mit einer S7 400-CPU als DP-Master in Betrieb nehmen.

Voraussetzungen

Bevor Sie das PROFIBUS-DP-Netz in Betrieb nehmen können, müssen folgende

Voraussetzungen erfüllt sein:

• Das PROFIBUS-DP-Netz ist aufgebaut (siehe Kapitel 5).

• Mit STEP 7 haben Sie das PROFIBUS-DP-Netz konfiguriert und allen Teilnehmern eine PROFIBUS-DP-Adresse und den Adressraum zugewiesen (siehe

Handbuch Hardware konfigurieren und Verbindungen projektieren mit STEP 7 ).

Beachten Sie, dass bei einigen DP-Slaves auch Adress-Schalter eingestellt werden müssen (siehe Beschreibung der jeweiligen DP-Slaves).

Inbetriebnahme

1. Laden Sie die unter STEP 7 erstellte Konfiguration des PROFIBUS-DP-Netzes

(Sollausbau) mit dem PG in die CPU. Wie Sie dabei vorgehen müssen, ist im

Handbuch Hardware konfigurieren und Verbindungen projektieren mit STEP 7 beschrieben.

2. Schalten Sie alle DP-Slaves ein.

3. Schalten Sie die CPU von STOP in RUN.

Verhalten der CPU im Anlauf

Im Anlauf vergleicht die CPU den Sollausbau mit dem Istausbau. Die Dauer der

Prüfung stellen Sie mit STEP 7 mit den in den H-Parametern definierten Überwachungszeiten ein.(Siehe auch Referenzhandbuch “CPU-Daten”,

Kapitel 1, das Handbuch Hardware konfigurieren und Verbindungen projektieren

mit STEP 7 und auch die Online-Hilfe von STEP 7).

Ist der Sollausbau = dem Istausbau, geht die CPU in RUN.

Ist der Sollausbau ≠ dem Istausbau, hängt das Verhalten der CPU von der Einstellung des Parameters ”Anlauf bei Soll- ≠ Istausbau” ab:

Anlauf bei Soll- Istausbau

= ja (Defaulteinstellung)

Die CPU geht in RUN

Anlauf bei Soll- Istausbau = nein

Die CPU bleibt in STOP und nach der im Parameter ”Baugruppenzeitgrenzen” eingestellten Zeit blinkt die LED BUSF.

Das Blinken der LED BUSF zeigt an, dass mindestens ein Slave nicht ansprechbar ist. Prüfen Sie in diesem Fall, ob alle Slaves eingeschaltet sind oder lesen Sie den Diagnosepuffer aus (siehe Handbuch Hard-

ware konfigurieren und Verbindungen projektieren mit STEP 7).

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-17

Inbetriebnahme

6.10

Schnittstellenmodule einbauen

(

CPU 414-3, 414-4H,

416-3, 417-4 und 417-4 H)

Freigegebene Schnittstellenmodule

Hinweis

Setzen Sie nur Schnittstellenmodule ein, die explizit für den Einsatz in S7-400 freigegeben wurden.

Schnittstellenmodule einbauen

!

Warnung

Die Baugruppen können beschädigt werden.

Beim Stecken oder Ziehen eines Schnittstellenmoduls unter Spannung können sowohl die CPU als auch das Schnittstellenmodul beschädigt werden. (Ausnahme: Der Einsatz von Synchronisationsmodulen in einem H-System)

Stecken oder ziehen Sie Schnittstellenmodule mit Ausnahme des Synchronisationsmoduls niemals unter Spannung. Schalten Sie vor dem Stecken oder Ziehen der Schnittstellenmodule immer die Stromversorgung (PS) ab.

!

Vorsicht

Es kann zu Personen- und Sachschaden kommen.

Schnittstellenmodule enthalten elektronisch gefährdete Bauteile, die durch Berührung zerstört werden können.

Die Oberflächentemperaturen an den Bauteilen können bis zu 70 o

C betragen und es besteht Verbrennungsgefahr.

Deshalb müssen Sie Schnittstellenmodule immer an den Längsseiten der Frontplatte festhalten.

Beachten Sie beim Einbau der Schnittstellenmodule die EGB-Vorschriften.

Um ein Schnittstellenmodul in einen Modulschacht einzubauen, gehen Sie wie folgt vor:

1. Halten Sie das Schnittstellenmodul an den Längsseiten der Frontplatte fest.

2. Führen Sie das Leiterplattenende des Schnittstellenmoduls, wie in Bild 6-4 dargestellt, in die untere und obere Führungsschiene des Modulschachtes ein.

3. Schieben Sie das Schnittstellenmodul langsam in den Schacht, bis die Frontplatte auf dem Rahmen des Modulschachts aufliegt.

6-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Inbetriebnahme

4. Wichtig! Befestigen Sie unbedingt die Frontplatte mit den beiden vormontierten, unverlierbaren M2,5 x 10- Schlitzschrauben an den linken Rahmen des Modulschachts.

Führungsschienen

Bild 6-4 Schnittstellenmodule in CPU stecken

Abdeckung der ungenutzen Modulschächte

Bei Auslieferung sind alle Modulschächte mit einer Modulabdeckung verschlossen.

Die Modulabdeckung ist mit Schrauben an dem Rahmen des Modulschachts befestigt.

Lassen Sie unbenutzte Modulschächte verschlossen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

6-19

Inbetriebnahme

6-20

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

Wartung

7

Kapitelübersicht

Im Kapitel

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

finden Sie

Wechseln der Pufferbatterie

Stromversorgungsbaugruppe tauschen

CPUs tauschen

Digital- oder Analogbaugruppen tauschen

Sicherungen der Digital- oder Analogbaugruppen tauschen

IMs tauschen

Sicherung der Lüfterzeile tauschen

Lüfter der Lüfterzeilen im Betrieb tauschen

Filterrahmen der Lüfterzeile im Betrieb tauschen

Stromversorgungsleiterplatte und Überwachungsleiterplatte der

Lüfterzeile tauschen

Schnittstellenmodule tauschen

auf Seite

7-2

7-4

7-5

7-7

7-9

7-11

7-13

7-14

7-15

7-17

7-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-1

Wartung

7.1

Wechseln der Pufferbatterie

Pufferbatterie wechseln

1. Bauen Sie zuerst evtl. vorhandene statische Ladung ab, indem Sie ein geerdetes metallisches Teil der S7-400 berühren.

2. Öffnen Sie die Abdeckhaube der Stromversorgungsbaugruppe.

3. Ziehen Sie mit Hilfe der Schlaufe(n) die Pufferbatterie(n) aus dem Batteriefach.

7-2

4. Stecken Sie die neuen Pufferbatterie(n) in das Batteriefach der Stromversorgungsbaugruppe.

Beachten Sie die Polung der Batterie(n).

5. Stellen Sie mit dem Schiebeschalter BATT INDIC die Batterieüberwachung ein.

Wenn Sie ...

eine einfachbreite Stromversorgungsbaugruppe haben, eine doppelt- oder dreifachbreite Stromversorgungsbaugruppe haben und eine Pufferbatterie überwachen wollen, eine doppelt- oder dreifachbreite Stromversorgungsbaugruppe haben und beide Pufferbatterien überwachen wollen,

dann ...

bringen Sie den Schalter

BATT INDIC in die Stellung BATT bringen Sie den Schalter

BATT INDIC in die Stellung

1BATT bringen Sie den Schalter

BATT INDIC in die Stellung

2BATT

6. Betätigen Sie den Taster FMR.

7. Schließen Sie die Abdeckhaube der Stromversorgungsbaugruppe.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

Hinweis

Wenn Sie Batterien über längere Zeit gelagert haben, kann sich eine Passivierungsschicht gebildet haben. Lesen Sie dazu bitte Abschnitt 6.8 Pufferbatterie einlegen.

Umgang mit Pufferbatterien

Sie sollten die Pufferbatterie nach einem Jahr wechseln.

Beachten Sie die in Ihrem Land üblichen Vorschriften/Richtlinien zur Entsorgung von Lithiumbatterien.

Pufferbatterien kühl und trocken lagern.

Pufferbatterien können 10 Jahre gelagert werden. Bei langer Lagerung kann sich allerdings eine Passivierungsschicht bilden.

Regeln für den Umgang mit Pufferbatterien

Um eine Gefährdung durch den Umgang mit Pufferbatterien zu vermeiden, müssen Sie folgende Regeln beachten:

!

Warnung

Gefahr von Personen- und Sachschaden, Gefahr von Schadstofffreisetzung.

Bei falscher Handhabung kann eine Lithium-Batterie explodieren, bei falscher Entsorgung alter Lithium-Batterien können Schadstoffe freigesetzt werden. Beachten

Sie deshalb unbedingt die folgenden Hinweise:

• Neue oder entladene Batterien nicht ins Feuer werfen und nicht am Zellenkörper löten (max. Temperatur 100 °C), auch nicht wieder aufladen - es besteht

Explosionsgefahr! Batterie nicht öffnen, nur gegen gleiche Type austauschen.

Ersatz nur über Siemens beziehen (Bestellnummer siehe Referenzhandbuch

“Baugruppendaten”, Anhang C). Damit ist sichergestellt, dass Sie eine kurzschlussfeste Type besitzen.

• Alte Batterien sind möglichst an Batteriehersteller/Recycler abzugeben oder als

Sondermüll zu entsorgen.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-3

Wartung

7.2

Stromversorgungsbaugruppe tauschen

Steckplatznummerierung

Wenn Sie in Ihrer Anlage die Baugruppen mit Steckplatznummerierung versehen haben, müssen Sie beim Baugruppentausch die Nummerierung aus der alten Baugruppe entfernen und anschießend in der neuen Baugruppe wieder einsetzen.

Baugruppe ausbauen (bei redundanter Stromversorgung entfallen Schritt 1 und 2)

1. Bringen Sie den Betriebsartenschalter der CPU in Stellung STOP.

Wenn Sie die Stromversorgungsbaugruppe in einem EG tauschen, kann je nach Programmierung die CPU des ZG im Betriebszustand RUN bleiben. Sie können die Daten im EG über die Buchse ”EXT.-BATT.” der Empfangs-IM puffern.

2. Falls Sie die Daten in der CPU puffern möchten, können Sie dies über die

Buchse ”EXT.-BATT.” der CPU tun (siehe Referenzhandbuch CPU-Daten, Kapitel 1).

3. Bringen Sie den Standby-Schalter der Stromversorgungsbaugruppe in Stellung (Ausgangsspannungen 0 V).

4. Bringen Sie den Netztrennschalter in Stellung Aus.

5. Entfernen Sie die Abdeckhaube.

6. Entnehmen Sie ggf. die Pufferbatterie(n).

7. Ziehen Sie den Netzstecker aus der Stromversorgungsbaugruppe.

8. Lösen Sie die Befestigungsschrauben der Baugruppe.

9. Schwenken Sie die Baugruppe heraus.

Neue Baugruppe einbauen

1. Überprüfen Sie ggf. den Spannungswahlschalter.

2. Hängen Sie die neue Baugruppe desselben Typs ein und schwenken Sie sie nach unten.

3. Schrauben Sie die Baugruppe fest.

4. Überprüfen Sie, ob der Netztrennschalter in Stellung Aus und der Standby-

Schalter in Stellung sind.

5. Stecken Sie den Netzstecker auf die Stromversorgungsbaugruppe.

6. Setzen Sie ggf. die Pufferbatterie(n) ein.

7. Schließen Sie die Abdeckhaube.

8. Bringen Sie den Netztrennschalter in Stellung Ein.

9. Bringen Sie den Standby-Schalter der Stromversorgungsbaugruppe in Stellung

I (Ausgangsspannungen auf Nennwert).

10.Bringen Sie ggf. den Betriebsartenschalter der CPU in Stellung RUN.

7-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

Verhalten der S7-400 nach Baugruppentausch

Wenn nach Baugruppentausch ein Fehler vorliegt, können Sie die Fehlerursache aus dem Diagnosepuffer auslesen.

7.3

CPUs tauschen

Steckplatznummerierung

Wenn Sie in Ihrer Anlage die Baugruppen mit Steckplatznummerierung versehen haben, müssen Sie beim Baugruppentausch die Nummerierung aus der alten Baugruppe entfernen und anschießend in der neuen Baugruppe wieder einsetzen.

Daten sichern

Sichern Sie das Anwenderprogramm einschließlich der Konfigurationsdaten.

Baugruppe ausbauen

1. Bringen Sie den Betriebsartenschalter der CPU in Stellung STOP.

2. Bringen Sie den Standby-Schalter der Stromversorgungsbaugruppe in Stellung (Ausgangsspannungen 0 Volt).

3. Entfernen Sie die Abdeckhaube der CPU.

4. Ziehen Sie ggf. den MPI-Stecker.

5. Ziehen Sie ggf. den Stecker an der Buchse ”EXT.-BATT.”

6. Nehmen Sie die Memory Card heraus.

7. Lösen Sie die Befestigungsschrauben der Baugruppe.

8. Schwenken Sie die Baugruppe heraus.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-5

Wartung

Neue Baugruppe einbauen

1. Hängen Sie die neue Baugruppe desselben Typs ein und schwenken Sie sie nach unten.

2. Schrauben Sie die Baugruppe fest.

3. Stecken Sie ggf. den Stecker für externe Batterieeinspeisung in die Buchse.

4. Bringen Sie den Betriebsartenschalter der CPU in Stellung STOP.

5. Stecken Sie die Memory Card.

6. Bringen Sie den Standby-Schalter der Stromversorgungsbaugruppe in Stellung

I (Ausgangsspannungen auf Nennwert).

Ihre weitere Vorgehensweise hängt davon ab, ob Sie eine FLASH-Card einsetzen und ob Sie einen vernetzten oder einen nicht vernetzten Aufbau der Anlage haben.

7. Wenn Sie mit FLASH-Card arbeiten, fahren Sie so fort:

Übertragen Sie Anwender- und Konfigurationsdaten.

Bringen Sie den Betriebsartenschalter der CPU in Stellung RUN.

Schließen Sie die Abdeckhaube.

8. Wenn Sie einen nicht vernetzten Aufbau der Anlage haben, fahren Sie so fort:

Übertragen Sie Anwender- und Konfigurationsdaten mittels PG über das PG-

Kabel (siehe Abschnitt 6.3).

Bringen Sie den Betriebsartenschalter der CPU in Stellung RUN.

Schließen Sie die Abdeckhaube.

9. Wenn Sie einen vernetzten Aufbau der Anlage haben, fahren Sie so fort:

Übertragen Sie Anwender- und Konfigurationsdaten mittels PG über das PG-

Kabel (siehe Abschnitt 6.3).

Bauen Sie Ihre Vernetzung auf, indem Sie den MPI-Stecker stecken.

Bringen Sie den Betriebsartenschalter der CPU in Stellung RUN.

Schließen Sie die Abdeckhaube.

Verhalten der S7-400 nach Baugruppentausch

Wenn nach Baugruppentausch ein Fehler vorliegt, können Sie die Fehlerursache aus dem Diagnosepuffer auslesen.

7-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

7.4

Digital- oder Analogbaugruppen tauschen

Steckplatznummerierung

Wenn Sie in Ihrer Anlage die Baugruppen mit Steckplatznummerierung versehen haben, müssen Sie beim Baugruppentausch die Nummerierung aus der alten Baugruppe entfernen und anschießend in der neuen Baugruppe wieder einsetzen.

Baugruppe einbauen

1. Grundsätzlich können Sie in der Betriebsart RUN Analog- und Digitalbaugruppen tauschen. Um ein korrektes Verhalten Ihrer Anlage zu erreichen, müssen

Sie Ihr Programm in STEP 7 entsprechend angelegt haben.

Falls Sie nicht sicher sind, ob Ihr Programm richtig reagiert, bringen Sie den

Betriebsartenschalter der CPU in den Betriebszustand STOP.

!

Warnung

Beim unsachgemäßen Umgang mit den Frontsteckern kann es zu Verletzungen und Sachschäden kommen.

Beim Ziehen und Stecken des Frontsteckers während des Betriebs können an den Stiften der Baugruppe gefährliche Spannungen > AC 25 V bzw. > DC 60 V anliegen.

Wenn am Frontstecker solche Spannungen aufgelegt sind, darf das Auswechseln von Baugruppen unter Spannung nur von Elektrofachkräften oder unterwiesenem

Personal so vorgenommen werden, dass ein Berühren der Stifte der Baugruppe vermieden wird.

2. Lösen Sie die Befestigungsschraube des Frontsteckers und ziehen Sie ihn ab.

3. Lösen Sie die Befestigungsschrauben der Baugruppe.

4. Schwenken Sie die Baugruppe heraus.

Hinweis

Damit das Ziehen und Stecken der Digital- oder Analogbaugruppen von der CPU erkannt wird, muss zwischen dem Ziehen und dem Stecken eine Mindestzeit von

2 Sekunden liegen!

Frontsteckerkodierelement entfernen

Vor der Montage des Frontsteckers müssen Sie den vorderen Teil des Kodierelements entfernen (abbrechen), weil dieser Teil schon im verdrahteten Frontstecker steckt.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-7

Wartung

!

Vorsicht

Die Baugruppe kann beschädigt werden.

Wenn Sie z. B. einen Frontstecker einer Digitalbaugruppe auf eine Analogbaugruppe stecken, kann die Baugruppe beschädigt werden.

Betreiben Sie Baugruppen nur mit komplettem Frontsteckerkodierelement.

Neue Baugruppe einbauen

1. Hängen Sie die neue Baugruppe desselben Typs in den entsprechenden Steckplatz ein und schwenken Sie sie nach unten.

2. Schrauben Sie die Baugruppe mit beiden Befestigungsschrauben an.

3. Montieren Sie den Frontstecker.

4. Falls Sie die CPU in den Betriebszustand STOP gebracht hatten, müssen Sie diese jetzt wieder in RUN bringen.

5. Nach dem Stecken wird jede parametrierbare Baugruppe von der CPU neu mit

Parametern versorgt.

Verhalten der S7-400 nach Baugruppentausch

Wenn nach Baugruppentausch ein Fehler vorliegt, können Sie die Fehlerursache aus dem Diagnosepuffer auslesen.

Frontstecker tauschen

1. Schalten Sie alle Lastspannungsversorgungen für die Baugruppe ab.

2. Lösen Sie die Schraube des Frontsteckers und ziehen Sie ihn ab.

3. Ziehen Sie die Beschriftungsstreifen aus dem Frontstecker und schieben Sie diese in den neuen Frontstecker.

4. Verdrahten Sie den neuen Frontstecker.

5. Stecken Sie den Frontstecker in die Baugruppe.

6. Schrauben Sie den Frontstecker fest.

7. Schalten Sie die Lastspannung ein.

7-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

7.5

Sicherungen der Digitalbaugruppen tauschen

Baugruppen mit Sicherungen

Folgende Baugruppen enthalten Sicherungen, die Sie selbst tauschen können, wenn die Sicherungen defekt sind.

• Digitalausgabebaugruppe SM 422; DO 16 x DC 20--125 V/1,5A

(6ES7422-5EH10-0AB0)

• Digitalausgabebaugruppe SM 422; DO 16 x AC 20--120 V/2A

(6ES7422-5EH00-0AB0)

• Digitalausgabebaugruppe SM 422;DO 8 x AC 120/230 V/5A

(6ES7422-1FF00-0AA0)

• Digitalausgabebaugruppe SM 422;DO 16 x AC 120/230 V/2A

(6ES7422-1FH00-0AA0)

Anlage überprüfen

Beseitigen Sie die Ursachen, die zum Ausfall der Sicherungen geführt haben.

Sicherungen tauschen

Um Sicherungen auf einer Digitalbaugruppe zu tauschen, müssen Sie den Frontstecker der Digitalbaugruppe entfernen und die Digitalbaugruppe demontieren.

!

Warnung

Beim unsachgemäßen Umgang mit den Digitalbaugruppen kann es zu Verletzungen und Sachschäden kommen.

Unter den Abdeckungen an der rechten Seite der Baugruppe sind gefährliche

Spannungen > AC 25 V bzw. > DC 60 V.

Sorgen Sie vor dem Öffnen dieser Abdeckungen dafür, dass entweder der Frontstecker der Baugruppe abgezogen ist oder die Baugruppe von der Versorgungsspannung getrennt ist.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-9

Wartung

!

Warnung

Beim unsachgemäßen Umgang mit den Frontsteckern kann es zu Verletzungen und Sachschäden kommen.

Beim Ziehen und Stecken des Frontsteckers während des Betriebs können an den Stiften der Baugruppe gefährliche Spannungen > AC 25 V bzw. > DC 60 V anliegen.

Wenn am Frontstecker solche Spannungen aufgelegt sind, darf das Auswechseln von Baugruppen unter Spannung nur von Elektrofachkräften oder unterwiesenem

Personal so vorgenommen werden, dass ein Berühren der Stifte der Baugruppe vermieden wird.

Gehen Sie beim Tausch der Sicherungen folgendermaßen vor:

1. Um ein korrektes Verhalten Ihrer Anlage zu erreichen, müssen Sie Ihr Programm in STEP 7 entsprechend angelegt haben. Falls Sie nicht sicher sind, ob

Ihr Programm richtig reagiert, bringen Sie den Betriebsartenschalter der CPU in den Betriebszustand STOP.

2. Lösen Sie die Befestigungsschraube des Frontsteckers und ziehen Sie ihn ab.

3. Lösen Sie die Befestigungsschrauben der Baugruppe.

4. Schwenken Sie die Baugruppe heraus.

Hinweis

Damit das Ziehen und Stecken der Digitalbaugruppen von der CPU erkannt wird, muss zwischen dem Ziehen und dem Stecken eine Mindestzeit von 2 Sekunden liegen!

5. Entfernen Sie die Abdeckungen an der rechten Seite der Baugruppe durch Aufhebeln mit einem Schraubendreher.

6. Ersetzen Sie die defekten Sicherung durch gleichartige neue Sicherungen.

7. Führen Sie die Nasen der Abdeckungen in die entsprechenden Aussparungen am Baugruppengehäuse und klappen Sie die Abdeckungen zu, bis sie vollständig einrasten.

8. Hängen Sie die Baugruppe in ihren Steckplatz ein und schwenken Sie sie nach unten.

9. Schrauben Sie die Baugruppe mit beiden Befestigungsschrauben an.

10.Montieren Sie den Frontstecker.

11.Falls Sie die CPU in den Betriebszustand STOP gebracht hatten, müssen Sie diese jetzt wieder in RUN bringen.

Nach dem Stecken wird jede parametrierbare Baugruppe von der CPU neu mit

Parametern versorgt.

7-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

Verhalten der S7-400 nach Sicherungstausch

Wenn nach Sicherungstausch ein Fehler vorliegt, können Sie die Fehlerursache aus dem Diagnosepuffer auslesen.

7.6

IMs tauschen

Steckplatznummerierung

Wenn Sie in Ihrer Anlage die Baugruppen mit Steckplatznummerierung versehen haben, müssen Sie beim Baugruppentausch die Nummerierung aus der alten Baugruppe entfernen und anschießend in der neuen Baugruppe wieder einsetzen.

Ein- und Ausbau der Baugruppen im Betrieb

Beachten Sie die nachstehende Warnung beim Ein- und Ausbau der Anschaltungsbaugruppen und zugehörigen Steckleitungen.

!

Vorsicht

Es kann zu Datenverlust oder -verfälschung kommen.

Wenn Sie die Anschaltungsbaugruppen und/oder die zugehörigen Steckleitungen unter Spannung ziehen oder stecken, kann es zu Datenverlust oder -verfälschung kommen.

Schalten Sie die Stromversorgungsbaugruppen des ZG und der EGs, an denen

Sie arbeiten, ab ehe Sie Eingriffe vornehmen.

Baugruppen ausbauen/ Kabel tauschen

1. Falls Sie Ihre Daten in der CPU puffern möchten, können Sie dies mit einer

Pufferbatterie oder über externe Batterieeinspeisung auf der CPUu tun, (siehe

Referenzhandbuch CPU-Daten Kapitel 1

2. Bringen Sie die CPU mit dem Betriebsartenschalter in den Betriebszustand

STOP.

3. Bringen Sie an beiden Stromversorgungsbaugruppen (also im ZG und im EG) den Standby-Schalter in Stellung (Ausgangsspannungen 0 V).

4. Entfernen Sie die Abdeckhaube.

5. Lösen Sie die Verbindungskabel.

6. Ziehen Sie ggf. den Abschluss-Stecker.

7. Lösen Sie die Befestigungsschrauben der Baugruppe.

8. Schwenken Sie die Baugruppe heraus.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-11

Wartung

Neue Baugruppe einbauen

1. Stellen Sie bei Empfangs-IMs die Nummer des Baugruppenträgers ein.

2. Hängen Sie die neue Baugruppe desselben Typs ein und schwenken Sie sie nach unten.

3. Schrauben Sie die Baugruppe fest.

4. Befestigen Sie die Verbindungskabel.

5. Stecken Sie ggf. den Abschluss-Stecker.

6. Befestigen Sie die Abdeckhaube.

7. Schalten Sie zuerst die Stromversorgungsbaugruppe im EG wieder ein.

8. Schalten Sie anschließend die Stromversorgungsbaugruppe im ZG ein.

9. Bringen Sie die CPU mit dem Betriebsartenschalter in den Betriebszustand

RUN.

Verhalten der S7-400 nach Baugruppentausch

Wenn nach Baugruppentausch ein Fehler vorliegt, können Sie die Fehlerursache aus dem Diagnosepuffer auslesen.

7-12

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

7.7

Sicherung der Lüfterzeile tauschen

Sicherungstyp

Die Sicherung der Lüfterzeile ist ein handelsüblicher G-Sicherungseinsatz

5 x 20 mm nach DIN und kein Ersatzteil.

Verwenden Sie als Sicherung

• 160 mA T bei Stellung des Spannungswahlschalters auf 230 V

• 250 mA T bei Stellung des Spannungswahlschalters auf 120 V

Sicherung tauschen

Um die Sicherung der Baugruppe zu tauschen, gehen Sie folgendermaßen vor:

1. Trennen Sie die Netzleitung der Lüfterzeile von der Netzspannung.

2. Drehen Sie mit einem Schraubendreher die Sicherungskappe heraus

Spannungswahlschalter

Sicherungskappe

3. Entfernen Sie die defekte Sicherung aus der Sicherungskappe.

4. Setzen Sie die neue Sicherung in die Sicherungskappe ein und drehen Sie diese wieder in die Lüfterzeile.

5. Schließen Sie die Netzleitung der Lüfterzeile an die Netzspannung an.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-13

Wartung

7.8

Lüfter der Lüfterzeilen im Betrieb tauschen

Lüfter tauschen

1. Öffnen Sie mit einem Schraubendreher durch eine Vierteldrehung im Gegenuhrzeigersinn die zwei Schnellverschlüsse an der Frontseite der Lüfterzeile.

Lüfter 1 Lüfter 2 Lüfter 3

Schnellverschlüsse

Boden

Reset-Taste

Zuordnung: F 1 = Lüfter 1

F 2 = Lüfter 2

F 3 = Lüfter 3

2. Fassen Sie den Boden mit beiden Händen, drücken Sie ihn leicht nach unten und ziehen Sie ihn komplett aus der Lüfterzeile.

3. Entriegeln Sie den zu tauschenden Lüfter, indem Sie den Lüftergriff mit dem

Daumen vom Gehäuse wegdrücken.

Lüfter

Lüftergriff

Boden

4. Ziehen Sie den zu tauschenden Lüfter heraus.

7-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

5. Schieben Sie den neuen Lüfter ein, bis er einrastet.

6. Schieben Sie den Boden wieder ein und drücken Sie ihn nach oben.

7. Schließen Sie mit einem Schraubendreher durch eine Vierteldrehung im Uhrzeigersinn die zwei Schnellverschlüsse.

8. Betätigen Sie mit einem spitzen Gegenstand die RESET-Taste. Die Fehler-LED erlischt und der Lüfter beginnt zu laufen.

7.9

Filterrahmen der Lüfterzeile im Betrieb austauschen

Filterrahmen austauschen

1. Öffnen Sie mit einem Schraubendreher durch eine Vierteldrehung im Gegenuhrzeigersinn die zwei Schnellverschlüsse an der Frontseite der Lüfterzeile.

2. Fassen Sie den Boden mit beiden Händen, drücken Sie ihn leicht nach unten und ziehen Sie ihn komplett zuerst nach vorne, dann nach oben abgewinkelt aus der Lüfterzeile.

3. Der Filterrahmen ist entweder unten im Boden oder an der Hinterkante des Bodens mit Schnappscharnieren und Schnappverschlüssen befestigt. Die einzelnen Filtermatten sind mit dem Filterrahmen verbunden.

Nehmen Sie den Filterrahmen wie folgt heraus:

-- Der Filterrahmen ist unten im Boden befestigt:

Drücken Sie von unten nahe bei den Schnappverschlüssen gegen den Filterrahmen und entnehmen Sie den Filterrahmen.

-- Der Filterrahmen ist an der Hinterkante des Bodens befestigt:

Drücken Sie mit der flachen Hand den Filterrahmen vom Boden der Lüfterzeile weg. Der Filterrahmen löst sich aus den Schnappscharnieren.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-15

Wartung

Filtermatte

Filterrahmen

Abdeckung

Schnappverschlüsse

Schnappscharniere

Boden mit Abdeckung und

Filterrahmen

(wahlweise unten oder an der Rückseite eingebaut)

Schnellverschlüsse

4. Bauen Sie den neuen Filterrahmen ein:

-- Einbau des Filterrahmens unten im Boden:

Stecken Sie den Filterrahmen in die Schnappscharniere am Bodenausschnitt und rasten Sie ihn in die Schnappverschlüsse ein.

-- Einbau des Filterrahmens an der Hinterkante des Bodens:

Stecken Sie den Filterrahmen ungefähr im rechten Winkel zum Boden in die

Schnappscharniere an der Hinterkante des Bodens.

5. Schieben Sie den Boden wieder ein und drücken Sie ihn nach oben.

6. Schließen Sie mit einem Schraubendreher durch eine Vierteldrehung im Uhrzeigersinn die zwei Schnellverschlüsse.

7. Das Tauschen des Filterrahmens löst keinen Alarm aus. Deshalb müssen Sie nicht die RESET-Taste drücken.

7-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

7.10

Stromversorgungsleiterplatte und Überwachungsleiterplatte der Lüfterzeile tauschen

Leiterplatte tauschen

1. Trennen Sie die Netzleitung der Lüfterzeile von der Netzspannung.

2. Öffnen Sie mit einem Schraubendreher durch eine Vierteldrehung im Gegenuhrzeigersinn die zwei Schnellverschlüsse an der Frontseite der Lüfterzeile.

3. Entfernen Sie den Boden der Lüfterzeile (siehe Kapitel 7.9).

Das folgende Bild zeigt Ihnen die Frontansicht der Lüfterzeile. Darauf sehen Sie auch, wo die Leiterplatten gesteckt sind.

Lüfter 1 Lüfter 2 Lüfter 3

!

Schnellverschluss

Stromversorgungsleiterplatte

Überwachungsleiterplatte

Schnellverschluss

Reset-Taste

4. Ziehen Sie die defekte Leiterplatte nach vorne aus der Lüfterzeile heraus.

5. Schieben Sie die neue Leiterplatte ein, bis diese einrastet.

6. Schieben Sie den Boden wieder ein und drücken Sie ihn nach oben.

7. Schließen Sie mit einem Schraubendreher durch eine Vierteldrehung im Uhrzeigersinn die zwei Schnellverschlüsse.

8. Schließen Sie die Netzleitung der Lüfterzeile an die Netzspannung an.

9. Betätigen Sie mit einem spitzen Gegenstand die RESET-Taste. Die Lüfter beginnen zu laufen.

Vorsicht

Elektronische Bauteile können zerstört werden.

Wenn Sie beim Hantieren von Leiterplatten mit elektronischen Bauteilen die EGB-

Richtlinien nicht beachten, können elektronische Bauteile aufgrund statischer Entladung zerstört werden.

Beachten Sie die EGB-Richtlinien (siehe Anhang)

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-17

Wartung

7.11

Schnittstellenmodul tauschen

Freigegebene Schnittstellenmodule

Hinweis

Setzen Sie nur Schnittstellenmodule ein, die explizit für den Einsatz in S7-400 freigegeben wurden.

Schnittstellenmodul ausbauen

!

Warnung

Die Baugruppen können beschädigt werden.

Beim Stecken oder Ziehen eines Schnittstellenmoduls unter Spannung können sowohl die CPU als auch das Schnittstellenmodul beschädigt werden. (Ausnahme: Der Einsatz von Synchronisationsmodulen in einem H-System)

Stecken oder ziehen Sie Schnittstellenmodule mit Ausnahme des Synchronisationsmoduls niemals unter Spannung. Schalten Sie vor dem Stecken oder Ziehen der Schnittstellenmodule immer die Stromversorgung (PS) ab.

!

Vorsicht

Es kann zu Personen- und Sachschaden kommen.

Schnittstellenmodule enthalten elektronisch gefährdete Bauteile, die durch Berührung zerstört werden können.

Es besteht Verbrennungsgefahr, da die Oberflächentemperaturen an den Bauteilen bis zu 70 o

C betragen können.

Deshalb müssen Sie Schnittstellenmodule immer an den Längsseiten der Frontplatte festhalten.

Beachten Sie beim Einbau der Schnittstellenmodule die EGB-Vorschriften.

7-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Wartung

Ein Schnittstellenmodul können Sie durch ein anderes ersetzen, ohne dass Sie die zugehörige Zentralbaugruppe aus dem Baugruppenträger ausbauen müssen. Gehen Sie dazu folgendermaßen vor:

1. Schalten Sie die CPU auf STOP (Nicht beim Synchronisationsmodul in einem

H-System).

2. Schalten Sie die Stromversorgung (PS) ab (Nicht beim Synchronisationsmodul in einem H-System)..

3. Lösen Sie die Schrauben der Sub-D-Steckverbindungen und ziehen Sie alle

Stecker.

4. Lösen Sie die zwei unverlierbaren Schlitzschrauben, mit welchen die Frontplatte des Schnittstellenmoduls an den linken Rahmen des Modulschachts befestigt ist soweit, dass diese ca. 6 mm weit herausgezogen werden können.

5. Ziehen Sie das Schnittstellenmodul vorsichtig aus der Führungsschiene des

Modulschachts (siehe Bild 7-1). Halten Sie dabei das Schnittstellenmodul an den Längsseiten der Frontplatte fest.

Führungsschienen

Bild 7-1 Schnittstellenmodule aus CPU ausbauen

Schnittstellenmodul einbauen

Bauen Sie das neue Schnittstellenmodul in umgekehrter Reihenfolge ein. Weitere

Hinweise finden Sie in Abschnitt 6.10, ”Schnittstellenmodule einbauen” .

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

7-19

Wartung

7-20

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A

Kapitelübersicht

Im Kapitel

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.11

A.12

finden Sie

Allgemeine Regeln und Vorschriften zum Betrieb einer S7-400

Grundzüge für den EMV-gerechten Aufbau von Anlagen

EMV-gerechte Montage von Automatisierungssystemen

Beispiele zur EMV-gerechten Montage

Schirmung von Leitungen

Potenzialausgleich

Leitungsführung innerhalb von Gebäuden

Leitungsführung außerhalb von Gebäuden

Blitzschutz und Überspannungsschutz

So schützen Sie Digitalausgabebaugruppen vor induktiven Überspannungen

Sicherheit elektronischer Steuerungen

Störsicherer Anschluss von Monitoren

auf Seite

A-2

A-4

A-9

A-11

A-14

A-16

A-18

A-20

A-21

A-31

A-33

A-35

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-1

Aufbau von Anlagen

A.1

Allgemeine Regeln und Vorschriften zum Betrieb einer

S7-400

Allgemeine Grundregeln

Wegen der vielfältigen Einsatzmöglichkeiten einer S7-400 können in diesem Kapitel nur die Grundregeln für den elektrischen Aufbau genannt werden. Diese Grundregeln müssen Sie mindestens einhalten, um einen störungsfreien Betrieb der

S7-400 zu gewährleisten.

Spezifischer Einsatzfall

Beachten Sie die für spezifische Einsatzfälle geltenden Sicherheits- und Unfallverhütungsvorschriften, z.B. die Maschinenschutzrichtlinien.

NOT-AUS-Einrichtungen

NOT-AUS-Einrichtungen gemäß IEC 60204-1 (entspricht VDE 0113-1) müssen in allen Betriebsarten der Anlage bzw. des Systems wirksam bleiben.

Verhalten der Anlage nach bestimmten Ereignissen

Die folgende Tabelle zeigt, worauf Sie beim Verhalten einer Anlage bei bestimmten

Ereignissen achten müssen.

Ereignis

Ausfall der Betriebs- oder Versorgungsspannung der S7-400

Ansprechen der ”Not-Aus”-Einrichtung

Rückkehr der Betriebs- oder Versorgungsspannung der S7-400

Anlauf nach Entriegeln der ”Not-

Aus”-Einrichtung

Forderung

Es dürfen keine gefährlichen Betriebszustände auftreten.

Es dürfen keine gefährlichen Betriebszustände auftreten.

Es dürfen keine gefährlichen Betriebszustände auftreten. Es darf nicht zu einem unkontrollierten oder undefinierten Anlauf des Systems kommen.

Es dürfen keine gefährlichen Betriebszustände auftreten. Es darf nicht zu einem unkontrollierten oder undefinierten Anlauf des Systems kommen.

AC 120/230-V-Versorgung

Die folgende Tabelle zeigt, welche Punkte Sie beim Anschluss der S7-400 an ein

120/230-V-Wechselspannungsnetz beachten müssen.

A-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Bei ...

... müssen Sie darauf achten, ...

Gebäuden

Versorgungsleitungen und

Signalleitungen ortsfesten Anlagen bzw. Systemen ohne allpolige Netztrennschalter

Laststromversorgungen und

Stromversorgungsbaugruppen dass geeignete äußere Blitzschutzmaßnahmen vorhanden sind.

dass geeignete innere und äußere Blitzschutzmaßnahmen vorhanden sind.

dass eine Netztrenneinrichtung (Schalter) in der Gebäude-Installation vorhanden ist.

dass der eingestellte Nennspannungsbereich der örtlichen Netzspannung entspricht.

allen Stromkreisen der S7-400 dass Schwankungen/Abweichungen der Netzspannung vom Nennwert innerhalb der zulässigen Toleranz liegen

(siehe Technische Daten der Baugruppen).

Fehlerstromschutzeinrichtungen (FI-Schutzschalter) dass der FI-Schutzschalter an die Summe der Ableitströme der Stromversorgungsbaugruppen angepasst ist.

DC 24-V-Versorgung

Die folgende Tabelle zeigt, was Sie beim Anschluss einer S7-400 an eine DC 24-V-

Versorgung beachten müssen.

Gebäuden

Einsatz von Laststromversorgungen

Bei ...

DC 24-V-Versorgungsleitungen und Signalleitungen

24-V-Versorgung

... müssen Sie darauf achten, ...

dass geeignete äußere Blitzschutzmaßnahmen vorhanden sind.

dass geeignete innere und äußere Blitzschutzmaßnahmen vorhanden sind.

dass die Versorgungsspannung als sicher elektrisch getrennte Kleinspannung erzeugt wird.

dass nur sicher getrennte Lastromversorgungen verwendet werden dürfen.

Schutz vor äußeren elektrischen Einwirkungen

Die folgende Tabelle zeigt, was Sie zum Schutz vor äußeren elektrischen Einwirkungen bzw. Fehlern beachten müssen.

Bei ...

... müssen Sie darauf achten, ...

allen Anlagen bzw. Systemen, in denen die S7-400 eingebaut ist dass die Anlage und alle Systemteile zur Ableitung von elektromagnetischen Störungen ordnungsgemäß an

Schutzerde angeschlossen sind.

Anschluss- und Signalleitungen dass alle Leitungen korrekt geführt und angeschlossen sind.

Signalleitungen dass der Bruch einer Signalleitung die Anlage nicht in einen undefinierten Zustand versetzt.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-3

Aufbau von Anlagen

Schutz vor weiteren äußeren Einwirkungen

Die folgende Tabelle zeigt, vor welchen weiteren äußeren Einwirkungen Sie Ihre

S7-400 schützen müssen.

Schutz gegen ...

unbeabsichtigtes Betätigen der

Bedienelemente

Spritz- und Schwallwasser direkte Sonneneinstrahlung mechanische Beschädigung

... durch ...

geeignete Anordnung bzw. Abdeckung von Tastaturen und Bedienelementen oder vertiefte Anordnung der Bedienelemente.

geeignete Schutzelemente oder Einbau in wasserdichte

Gehäuse.

geeignete Abschattung oder Installation an entsprechend geschützten Orten.

geeignete Abgrenzungen, Schutzelemente oder Einbau in mechanisch stabile Gehäuse.

A.2

Grundzüge für den EMV-gerechten Aufbau von Anlagen

Definition: EMV

EMV (elektromagnetische Verträglichkeit) beschreibt die Fähigkeit eines elektrischen Geräts, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden und ohne das Umfeld in unzulässiger Weise zu beeinflussen.

Einleitung

Obwohl die S7-400 und ihre Komponenten für den Einsatz in industrieller Umgebung entwickelt wurden und hohe EMV-Anforderungen erfüllen, sollten Sie vor der

Installation Ihrer Steuerung eine EMV-Planung durchführen und mögliche Störquellen erfassen und in Ihre Betrachtungen einbeziehen.

A-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Mögliche Störeinwirkungen

Elektromagnetische Störungen können auf unterschiedlichen Wegen in das Automatisierungssystem einwirken:

• Elektromagnetische Felder, die direkt auf das System einwirken

• Störungen, die über Bussignale (PROFIBUS-DP etc.) eingeschleust werden

• Störungen, die über die Prozessverdrahtung einwirken

• Störungen, die über Stromversorgung und/oder Schutzerde in das System gelangen

Bild A-1 zeigt die möglichen Wege elektromagnetischer Störungen.

elektromagnetische

Felder

Bussignal

Prozessverdrahtung

Schutzerde Stromversorgungsbaugruppe

Bild A-1 Die möglichen Wege elektromagnetischer Störungen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-5

Aufbau von Anlagen

Kopplungsmechanismen

Je nach Ausbreitungsmedium (leitungsgebunden oder nicht leitungsgebunden) und

Entfernung zwischen Störquelle und Gerät gelangen Störungen über vier verschiedene Kopplungsmechanismen in das Automatisierungssystem.

Kopplungsmechanismus

Galvanische Kopplung

Ursache

Galvanische oder metallische Kopplung tritt immer dannn auf, wenn zwei

Stromkreise eine gemeinsame Leitung besitzen.

Kapazitive Kopplung

Kapazitive oder elektrische Kopplung tritt auf zwischen Leitern, die sich auf unterschiedlichem Potenzial befinden.

Die Verkopplung ist proportional zur zeitlichen Änderung der Spannung.

Induktive Kopplung

Induktive oder magnetische Kopplung tritt auf zwischen zwei stromdurchflossenen Leiterschleifen. Die mit den

Strömen verknüpften magnetischen

Felder induzieren Störspannungen.

Die Verkopplung ist proportional zur zeitlichen Änderung des Stromes.

Strahlungskopplung

Strahlungskopplung liegt vor, wenn eine elektromagnetische Welle auf ein

Leitungsgebilde trifft. Das Auftreffen dieser Welle induziert Ströme und

Spannungen.

Typische Störquellen

Getaktete Geräte (Netzbeeinflussung durch Umrichter und Fremdnetzgeräte)

Anlaufende Motoren

Unterschiedliches Potenzial von

Komponentengehäusen mit gemeinsamer Stromversorgung

• Statische Entladungen

• Störeinkopplung durch parallelverlaufende Signalkabel

Statische Entladung des Bedieners

Schütze

• Transformatoren, Motoren, Elektroschweißgeräte

• Parallel verlaufende Netzkabel

• Kabel, deren Ströme geschaltet werden

Signalkabel mit hoher Frequenz

• Unbeschaltete Spulen

• Benachbarte Sender (z.B. Sprechfunkgeräte)

• Funkenstrecken (Zündkerzen, Kollektoren von Elektromotoren,

Schweißgeräte)

A-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Fünf Grundregeln zur Sicherstellung der EMV

In vielen Fällen können Sie die EMV sicherstellen, wenn Sie die folgenden fünf

Grundregeln beachten.

Regel 1: Flächenhafte Masseverbindung

Achten Sie bei der Montage der Automatisierungsgeräte auf eine gut ausgeführte flächenhafte Masseverbindung der inaktiven Metallteile (siehe Abschnitt A.3).

• Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm mit

Masse.

• Führen Sie Schraubverbindungen an lackierten oder eloxierten Metallteilen entweder mit speziellen Kontaktscheiben aus oder entfernen Sie die isolierenden

Schutzschichten an den Kontaktpunkten.

• Verwenden Sie für Masseverbindungen möglichst keine Aluminiumteile. Aluminium oxidiert leicht und ist daher für Masseverbindungen weniger gut geeignet.

• Stellen Sie eine zentrale Verbindung zwischen der Masse und dem Erder/

Schutzleitersystem her.

Regel 2: Ordnungsgemäße Leitungsführung

Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung (siehe

Abschnitt A.7 und A.8).

• Teilen Sie die Verkabelung in Leitungsgruppen ein (Starkstromleitungen, Stromversorgungsleitungen, Signalleitungen, Datenleitungen).

• Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.

• Führen Sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B.

Tragholmen, Metallschienen, Schrankblechen).

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-7

Aufbau von Anlagen

Regel 3: Befestigung der Leitungsschirme

Achten Sie auf eine einwandfreie Befestigung der Leitungsschirme (siehe Abschnitt 4.9).

• Verwenden Sie nur geschirmte Datenleitungen. Der Schirm muss auf beiden

Seiten großflächig mit Masse verbunden werden.

• Analogleitungen müssen immer geschirmt sein. Bei der Übertragung von Signalen mit kleinen Amplituden kann es vorteilhaft sein, wenn der Schirm nur auf einer Seite mit Masse verbunden ist.

• Legen Sie den Leitungsschirm direkt nach dem Eintritt in den Schrank bzw. das

Gehäuse großflächig auf einer Schirm-/Schutzleiterschiene auf und befestigen

Sie ihn mit einer Kabelschelle. Führen Sie den Schirm ohne Unterbrechung bis zur Baugruppe weiter; verbinden Sie ihn aber dort nicht nochmals mit Masse.

• Die Verbindung zwischen Schirm-/Schutzleiterschiene und Schrank/Gehäuse muss impedanzarm sein.

• Verwenden Sie für geschirmte Datenleitungen nur metallische oder metallisierte

Steckergehäuse.

Regel 4: Speziell EMV-Maßnahmen

Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein

(siehe Abschnitt 4.11).

• Beschalten Sie alle Induktivitäten, die nicht von S7-400-Baugruppen angesteuert werden, mit Löschgliedern.

• Benutzen Sie zur Beleuchtung von Schränken oder Gehäusen Glühlampen oder entstörte Leuchtstofflampen in unmittelbarer Umgebung Ihrer Steuerung.

Regel 5: Einheitliches Bezugspotenzial

Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel (siehe Abschnitt 4.10 und 4.12).

• Verlegen Sie ausreichend dimensionierte Potenzialausgleichsleitungen, wenn in

Ihrem System Potenzialdifferenzen zwischen Anlagenteilen bestehen oder zu erwarten sind.

• Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Die Erdung der

Steuerung dient als Schutz- und Funktionsmaßnahme.

• Verbinden Sie Anlagenteile und Schränke mit Zentral- und Erweiterungsgeräten sternförmig mit dem Erdungs-/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.

Siehe auch

Schirmung von Leitungen, Seite A-14

Leitungsführung außerhalb von Gebäuden, Seite A-20

Leitungsführung innerhalb von Gebäuden, Seite A-18

EMV-gerechte Montage von Automatisierungssystemen, Seite A-9

A-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A.3

EMV-gerechte Montage von Automatisierungssystemen

Einleitung

Häufig werden Maßnahmen zur Unterdrückung von Störungen erst dann vorgenommen, wenn die Steuerung schon in Betrieb ist und festgestellt wurde, dass der einwandfreie Empfang eines Nutzsignals beeinträchtigt ist.

Die Ursache solcher Störungen liegt meist in unzureichenden Bezugspotenzialen, die auf Fehler bei der Montage zurückzuführen sind. Dieser Abschnitt gibt Ihnen

Hinweise, wie Sie solche Fehler vermeiden können.

Inaktive Metallteile

Inaktive Teile sind alle elektrisch leitfähigen Teile, die durch eine Basisisolierung von aktiven Teilen elektrisch getrennt sind und nur im Fehlerfall ein elektrisches

Potenzial annehmen können.

Montage und Masseverbindung inaktiver Metallteile

Verbinden Sie bei der Montage der S7-400 alle inaktiven Metallteile großflächig mit

Masse. Eine richtig durchgeführte Masseverbindung schafft ein einheitliches Bezugspotenzial für die Steuerung und reduziert die Auswirkung von eingekoppelten

Störungen.

Die Masseverbindung stellt die elektrisch leitende Verbindung aller inaktiven Teile untereinander her. Die Gesamtheit aller untereinander verbundenen inaktiven Teile wird als Masse bezeichnet.

Selbst im Fehlerfall darf die Masse kein gefährliches Berührungspotenzial annehmen. Die Masse muss daher über ausreichende Leiterquerschnitte mit dem

Schutzleiter verbunden werden. Zur Vermeidung von Erdschleifen müssen örtlich voneinander entfernte Massegebilde (Schränke, Konstruktions- und Maschinenteile) immer sternförmig mit dem Schutzleitersystem verbunden werden.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-9

Aufbau von Anlagen

Beachten Sie bei der Masseverbindung folgendes:

• Verbinden Sie die inaktiven Metallteile ebenso sorgfältig wie die aktiven Metallteile.

• Achten Sie darauf, dass die Verbindungen zwischen Metallteilen impedanzarm sind (z.B. durch großflächige und gut leitende Kontaktierung).

• Bei lackierten oder eloxierten Metallteilen muss die isolierende Schutzschicht an dem Kontaktpunkt durchdrungen oder entfernt werden.

Verwenden Sie hierzu spezielle Kontaktscheiben oder kratzen Sie die Schicht an der Kontaktstelle vollständig ab.

• Schützen Sie die Verbindungsteile vor Korrosion (z.B. durch geeignetes Fett)

• Verbinden Sie bewegliche Masseteile (z.B. Schranktüren) über flexible Massebänder. Die Massebänder müssen kurz sein und eine große Oberfläche besitzen (für die Ableitung hochfrequenter Ströme ist die Oberfläche entscheidend).

A-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A.4

Beispiele zur EMV-gerechten Montage

Einleitung

Im Folgenden finden Sie zwei Beispiele für einen EMV-gerechten Aufbau von Automatisierungssystemen.

Beispiel 1: EMV--gerechter Schrankaufbau

Bild A-2 zeigt einen Schrankaufbau, bei dem die oben beschriebenen Maßnahmen

(Masseverbindung der inaktiven Metallteile und Anschluss der Kabelschirme) durchgeführt wurden. Dieses Beispiel gilt jedoch nur für geerdeten Betrieb. Achten

Sie bei der Montage Ihrer Anlage auf die im Bild aufgeführten Punkte.

2

1

3

8

Bild A-2 Beispiel eines EMV-gerechten Schrankaufbaus

6

7

4

5

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-11

Aufbau von Anlagen

Legende zu Beispiel 1

Die Nummern der folgenden Liste beziehen sich auf die Nummern in Bild A-2.

Tabelle A-1 Legende zu Beispiel 1

Nr.

1

2

3

4

5

6

7

8

Bedeutung

Massebänder

Tragholme

Befestigung des Baugruppenträgers

Signalleitungen

Kabelschelle

Schirmschiene

Schutzleiterschiene

Leitung zum Schutzleitersystem (Erdungspunkt)

Erklärung

Sind keine großflächigen Metall-Metall-Verbindungen vorhanden, müssen Sie inaktive Metallteile (z.B. Schranktüren oder Tragbleche) über Massebänder miteinander bzw. mit

Masse verbinden. Verwenden Sie kurze Massebänder mit einer großen Oberfläche.

Verbinden Sie die Tragholme großflächig mit dem Schrankgehäuse (Metall-Metall-Verbindung).

Zwischen Tragholm und Baugruppenträger muss eine großflächige Metall-Metall-Verbindung bestehen.

Legen Sie den Schirm von Signalleitungen großflächig mit

Kabelschellen auf der Schutzleiterschiene oder einer zusätzlichen Schirmschiene auf.

Die Kabelschelle muss das Schirmgeflecht großflächig umfassen und einen guten Kontakt gewährleisten.

Verbinden Sie die Schirmschiene großflächig mit den Tragholmen (Metall-Metall-Verbindung). An die Schirmschiene werden die Leitungsschirme angeschlossen.

Verbinden Sie die Schutzleiterschiene großflächig mit den

Tragholmen (Metall-Metall-Verbindung). Verbinden Sie die

Schutzleiterschiene über eine separate Leitung (Mindestquerschnitt 10 mm

2

) mit dem Schutzleitersystem.

Verbinden Sie die Leitung großflächig mit dem Schutzleitersystem (Erdungspunkt).

Beispiel 2: EMV-gerechte Wandmontage

Wenn Sie Ihre S7-400 in einer störungsarmen Umgebung betreiben, in der auch die zulässigen Umgebungsbedingungen (siehe Referenzhandbuch “Baugruppen-

daten”, Kapitel 1) eingehalten werden, können Sie Ihre S7-400 auch in Gestellen oder an der Wand montieren.

Eingekoppelte Störungen müssen auf große Metalloberflächen abgeleitet werden.

Befestigen Sie deshalb Normprofil-, Schirm- und Schutzleiterschienen auf metallischen Konstruktionsteilen. Besonders bei der Wandmontage hat sich der Aufbau auf Bezugspotenzialflächen aus Stahlblech bewährt.

Sehen Sie eine Schirmschiene für den Anschluss der Leitungsschirme vor, wenn

Sie geschirmte Leitungen verlegen. Die Schirmschiene kann gleichzeitig als

Schutzleiterschiene verwendet werden.

A-12

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Beachten Sie die folgenden Punkte bei der Gestell- und Wandmontage:

• Benutzen Sie bei lackierten und eloxierten Metallteilen spezielle Kontaktscheiben oder entfernen Sie die isolierenden Schutzschichten.

• Schaffen Sie großflächige und impedanzarme Metall-Metall-Verbindungen bei der Befestigung der Schirm-/Schutzleiterschiene.

• Decken Sie Netzadern immer berührungssicher ab.

Bild A-3 zeigt ein Beispiel einer EMV-gerechten Wandmontage.

Bild A-3 EMV-gerechte Wandmontage einer S7-400

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-13

Aufbau von Anlagen

A.5

Schirmung von Leitungen

Zweck der Schirmung

Eine Leitung wird geschirmt, um die Wirkung magnetischer, elektrischer und elektromagnetischer Störungen auf diese Leitung abzuschwächen.

Wirkungsweise

Störströme auf Kabelschirmen werden über die mit dem Gehäuse leitend verbundene Schirmschiene zur Erde abgeleitet. Damit diese Störströme nicht selbst zu einer Störquelle werden, ist eine impedanzarme Verbindung zum Schutzleiter besonders wichtig.

Geeignete Leitungen

Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht. Die Deckungsdichte des Schirms sollte mindestens 80% betragen. Vermeiden Sie Leitungen mit Folienschirm, da die Folie durch Zug- und Druckbelastung bei der Befestigung leicht beschädigt werden kann, wodurch die Schirmwirkung vermindert wird.

Leitungsschirme erden

In der Regel sollten Sie die Leitungsschirme immer beidseitig (d.h. am Anfang und am Ende der Leitung) mit Masse verbinden. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich.

In Ausnahmefällen können Sie den Schirm auch einseitig (d.h. am Anfang oder am

Ende der Leitung) mit Masse verbinden. Sie erreichen dann jedoch nur eine Dämpfung der niedrigeren Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn

• keine Potenzialausgleichsleitung verlegt werden kann,

• Analogsignale (einige mA bzw. μA) übertragen werden,

• Folienschirme (statische Schirme) verwendet werden.

Benutzen Sie für Datenleitungen bei serieller Kopplung ausschließlich metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Stekkergehäuse. Schließen Sie den Schirm nicht an Stift 1 der Steckerleiste an.

Bei stationärem Betrieb sollten Sie das geschirmte Kabel unterbrechungsfrei abisolieren und auf die Schirm-/Schutzleiterschiene auflegen.

A-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Hinweis

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen. Verlegen Sie in diesem Fall eine zusätzliche Potenzialausgleichsleitung (siehe Abschnitt A.6).

Handhabung der Schirme

Beachten Sie bei der Schirmbehandlung folgende Punkte:

• Benutzen Sie zur Befestigung der Schirmgeflechte nur Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.

• Legen Sie den Schirm direkt nach dem Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm dann bis zur Baugruppe weiter, verbinden ihn aber dort nicht nochmals mit Masse bzw. der Schirmschiene.

• Bei Montage außerhalb von Schränken (z. B. bei Wandmontage) können Sie die Leitungsschirme auch am Kabelkanal kontaktieren

Bild A-4 zeigt einige Möglichkeiten, wie Sie geschirmte Leitungen mit Kabelschellen befestigen können.

Bild A-4 Befestigung von Leitungsschirmen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-15

Aufbau von Anlagen

A.6

Potenzialausgleich

Potenzialunterschiede

Zwischen getrennten Anlagenteilen können Potenzialunterschiede auftreten, die zu hohen Ausgleichsströmen führen, z. B. wenn Leitungsschirme beidseitig aufgelegt und an unterschiedlichen Anlagenteilen geerdet werden.

Ursache für Potenzialunterschiede können unterschiedliche Netzeinspeisungen sein.

!

Vorsicht

Es kann zu einem Sachschaden kommen.

Leitungsschirme sind nicht zum Potenzialausgleich geeignet.

Verwenden Sie ausschließlich die dafür vorgeschriebenen Leitungen (z. B. mit

16mm

2

Querschnitt). Achten Sie auch beim Aufbau von MPI--/ DP--Netzen auf ausreichenden Leitungsquerschnitt, da sonst die Schnittstellen--Hardware beschädigt oder sogar zerstört werden kann.

Potenzialausgleichsleitung

Die Potenzialunterschiede müssen Sie durch Verlegen von Potenzialausgleichsleitungen so reduzieren, dass ein einwandfreies Funktionieren der eingesetzten elektronischen Komponenten gewährleistet ist.

Wenn Sie eine Potenzialausgleichsleitung einsetzen, müssen Sie folgende Punkte beachten:

• Die Wirksamkeit eines Potenzialausgleichs ist umso größer, je kleiner die Impedanz der Potenzialausgleichsleitung ist.

• Sind zwei Anlagenteile über geschirmte Signalleitungen miteinander verbunden, deren Schirme beidseitig mit dem Erder/Schutzleiter verbunden sind, darf die

Impedanz der zusätzlich verlegten Potenzialausgleichsleitung höchstens 10% der Schirmimpedanz betragen.

• Der Querschnitt einer Potenzialausgleichsleitung muss für den maximal fließenden Ausgleichstrom dimensioniert sein. In der Praxis haben sich Potenzialausgleichsleitungen mit einem Querschnitt von 16 mm

2 bewährt.

• Verwenden Sie Potenzialausgleichsleitungen aus Kupfer oder verzinktem Stahl.

Verbinden Sie die Leitungen großflächig mit dem Erder/Schutzleiter und schützen Sie sie vor Korrosion.

• Verlegen Sie die Potenzialausgleichsleitung so, dass die Fläche zwischen Potenzialausgleichsleitung und Signalleitungen möglichst klein ist (siehe Bild A-5).

A-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Bild A-5 Verlegen von Potenzialausgleichsleitung und Signalleitung

Aufbau von Anlagen

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-17

Aufbau von Anlagen

A.7

Leitungsführung innerhalb von Gebäuden

Einleitung

Für eine EMV-gerechte Führung von Leitungen innerhalb von Gebäuden (innerhalb und außerhalb von Schränken) müssen Abstände zwischen unterschiedlichen Leitungsgruppen eingehalten werden. Die Tabelle A-2 gibt Auskunft über allgemeingültige Abstandsregeln für eine Auswahl von Leitungen.

Wie Sie die Tabelle lesen müssen

1. Suchen Sie denLeitungstyp der ersten Leitung in Spalte 1 (Leitungen für ...).

2. Suchen Sie den Leitungstyp der zweiten Leitung im zugehörigen Abschnitt der

Spalte 2 (und Leitungen für ...).

3. Lesen Sie in Spalte 3 (verlegen ...) die einzuhaltenden Verlegerichtlinien ab.

Tabelle A-2 Leitungsführung innerhalb von Gebäuden

Leitungen für ...

Bussignale, geschirmt

(SINEC L1, PROFIBUS)

Datensignale, geschirmt

(PG, OP, Drucker, Zähleingänge usw.)

Analogsignale, geschirmt

Gleichspannung

(≤ 60 V), ungeschirmt

Prozess-Signale

(≤ 25 V), geschirmt

Wechselspannung

(≤ 25 V), ungeschirmt

Monitore (Koaxialleitung)

und Leitungen für ...

Bussignale, geschirmt

(SINEC L1, PROFIBUS)

Datensignale, geschirmt

(PG, OP, Drucker, Zähleingänge usw.)

Analogsignale, geschirmt

Gleichspannung

(≤ 60 V), ungeschirmt

Prozess-Signale

(≤ 25 V), geschirmt

Wechselspannung

(≤ 25 V), ungeschirmt

Monitore (Koaxialleitung)

Gleichspannung

(> 60 V und ≤ 400 V), ungeschirmt

Wechselspannung

(> 25 V und ≤ 400 V), ungeschirmt

Gleich- und Wechselspannung

(> 400 V), ungeschirmt

verlegen ...

in gemeinsamen Bündeln oder Kabelkanälen in getrennten Bündeln oder

Kabelkanälen (kein Mindestabstand erforderlich)

innerhalb von Schränken:

in getrennten Bündeln oder

Kabelkanälen (kein Mindestabstand erforderlich)

außerhalb von Schränken:

auf getrennten Kabelbahnen mit mindestens 10 cm Abstand

Fortsetzung der Tabelle auf der nächsten Seite

A-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Tabelle 4-4 Leitungsführung innerhalb von Gebäuden, Fortsetzung

Leitungen für ...

Gleichspannung

(> 60 V und ≤ 400 V), ungeschirmt

Wechselspannung

(> 25 V und ≤ 400 V), ungeschirmt

und Leitungen für ...

Bussignale, geschirmt

(SINEC L1, PROFIBUS)

Datensignale, geschirmt

(PG, OP, Drucker, Zählsignale usw.)

Analogsignale, geschirmt

Gleichspannung

(≤ 60 V), ungeschirmt

Prozess-Signale

(≤ 25 V), geschirmt

Wechselspannung

(≤ 25 V), ungeschirmt

Monitore (Koaxialleitung)

Gleichspannung

(> 60 V und ≤ 400 V), ungeschirmt

Wechselspannung

(> 25 V und ≤ 400 V), ungeschirmt

Gleich- und Wechselspannung

(> 400 V), ungeschirmt

Gleich- und Wechselspannung

(> 400 V), ungeschirmt

Gleich- und Wechselspannung

(> 400 V), ungeschirmt

ETHERNET

verlegen ...

in getrennten Bündeln oder Kabelkanälen (kein Mindestabstand erforderlich) in gemeinsamen Bündeln oder

Kabelkanälen

Bussignale, geschirmt

(SINEC L1, PROFIBUS)

Datensignale, geschirmt

(PG, OP, Drucker, Zählsignale usw.)

Analogsignale, geschirmt

Gleichspannung

(≤ 60 V), ungeschirmt

Proze--Ssignale

(≤ 25 V), geschirmt

Wechselspannung

(≤ 25 V), ungeschirmt

Monitore (Koaxialleitung)

Gleichspannung

(> 60 V und ≤ 400 V), ungeschirmt

Wechselspannung

(> 25 V und ≤ 400 V), ungeschirmt

Gleich- und Wechselspannung

(> 400 V), ungeschirmt

ETHERNET sonstige

innerhalb von Schränken:

in getrennten Bündeln oder Kabelkanälen (kein Mindestabstand erforderlich)

außerhalb von Schränken:

auf getrennten Kabelbahnen mit mindestens 10 cm Abstand

innerhalb von Schränken:

in getrennten Bündeln oder Kabelkanälen (kein Mindestabstand erforderlich)

außerhalb von Schränken:

auf getrennten Kabelbahnen mit mindestens 10 cm Abstand in gemeinsamen Bündeln oder

Kabelkanälen in gemeinsamen Bündeln oder

Kabelkanälen in getrennten Bündeln oder Kabelkanälen mit mindestens

50 cm Abstand

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-19

Aufbau von Anlagen

A.8

Leitungsführung außerhalb von Gebäuden

Regeln für EMV-gerechte Leitungsführung

Für eine EMV-gerechte Führung von Leitungen außerhalb von Gebäuden sind dieselben Regeln einzuhalten wie bei der Leitungsführung innerhalb von Gebäuden.

Zusätzlich gilt:

• Leitungen auf metallischen Kabelträgern verlegen

• Stoßstellen der Kabelträger galvanisch miteinander verbinden

• Kabelträger erden

• Gegebenenfalls für ausreichenden Potenzialausgleich zwischen den angeschlossenen Geräten sorgen

• Blitzschutz- (innerer und äußerer Blitzschutz) und Erdungsmaßnahmen vorsehen, soweit sie für Ihren Anwendungsfall gelten.

Regeln für den Blitzschutz außerhalb von Gebäuden

Verlegen Sie Ihre Leitungen entweder

• in beidseitig geerdeten Metallrohren oder

• in betonierten Kabelkanälen mit durchverbundener Bewehrung.

Überspannungs-Schutzgeräte

Blitzschutzmaßnahmen erfordern immer eine individuelle Betrachtung der gesamten Anlage (siehe Abschnitt A.9).

Weitere Informationen zum Blitzschutz ...

erhalten Sie in den folgenden Abschnitten.

A-20

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A.9

Blitzschutz und Überspannungsschutz

Überblick

Zu den häufigsten Ausfallursachen gehören Überspannungen, verursacht von:

• atmosphärischen Entladungen oder

• elektrostatischen Entladungen.

Wir zeigen Ihnen zuerst, worauf die Theorie des Schutzes vor Überspannung basiert: dem Blitz-Schutzzonen-Konzept.

Anschließend finden Sie Regeln für die Übergänge zwischen den einzelnen Blitz-

Schutzzonen.

Hinweis

Dieses Kapitel kann Ihnen nur Hinweise zum Schutz eines Automatisierungssy-

stems vor Überspannungen geben.

Ein vollständiger Schutz vor Überspannungen ist aber nur gewährleistet, wenn das ganze umgebende Gebäude auf den Schutz vor Überspannungen ausgelegt ist. Das betrifft vor allem bauliche Maßnahmen am Gebäude bereits in der Bauplanung.

Wie empfehlen Ihnen deshalb, wenn Sie sich umfassend über Schutz vor Überspannungen informieren wollen, sich an Ihren Siemens-Ansprechpartner oder an eine Firma, die sich auf den Blitzschutz spezialisiert hat, zu wenden.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-21

Aufbau von Anlagen

A.9.1

Blitz-Schutzzonen-Konzept

Prinzip des Blitz-Schutzzonen-Konzepts nach IEC 61312-1/DIN VDE 0185 T103

Das Prinzip des Blitz-Schutzzonen-Konzepts sagt aus, dass das vor Überspannungen zu schützende Volumen, z.B. eine Fertigungshalle, unter EMV-Gesichtspunkten in Blitz-Schutzzonen unterteilt wird (siehe Bild A-6).

Die einzelnen Blitz-Schutzzonen werden gebildet durch folgende Maßnahmen:

Der äußere Blitzschutz des Gebäudes (Feldseite)

Die Abschirmung von Gebäuden

Die Abschirmung von Räumen

Die Abschirmung von Geräten

Blitz-Schutzzone 0

Blitz-Schutzzone 1

Blitz-Schutzzone 2

Blitz-Schutzzone 3

Auswirkungen des Blitzeinschlags

Direkte Blitzeinschläge treten in Blitz-Schutzzone 0 auf. Auswirkungen des Blitzeinschlags sind energiereiche elektromagnetische Felder, die von einer Blitz-

Schutzzone zur nächsten durch geeignete Blitzschutzelemente/-maßnahmen reduziert bzw. abgebaut werden müssen.

Überspannungen

In den Blitz-Schutzzonen 1 und größer können Überspannungen durch Schalthandlungen, Einkopplungen usw. auftreten.

A-22

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Schema der Blitz-Schutzzonen

Nachfolgendes Bild zeigt ein Schema des Blitz--Schutzzonen--Konzepts für ein freistehendes Gebäude.

Blitz--Schutzzone 0 (Feldseite)

äußerer

Blitzschutz energie-technische

Leitung

Blitz--Schutzzone 1

Blitz--Schutzzone 2

Blitz--

Schutz--

Zone 3

Gerät

Metall-teil

Gebäude-schirm

(Stahlarmie-rung)

Raumschirm

(Stahlarmie-rung)

Geräteschirm

(Metallgehäuse) nicht elektrische

Leitung

(metallisch) interne

Leitung informationstechnische Leitung

Blitzschutz--

Potentialausgleich

örtlicher

Potentialausgleich galvanische

Verbindung

Bild A-6 Blitz-Schutzzonen eines Gebäudes

Prinzip der Schnittstellen zwischen den Blitz-Schutzzonen

An den Schnittstellen zwischen den Blitz-Schutzzonen müssen Sie Maßnahmen vornehmen, die die Weiterleitung von Überspannungen verhindern.

Das Prinzip des Blitz-Schutzzonen-Konzepts sagt weiterhin aus, dass an den

Schnittstellen zwischen den Blitz-Schutzzonen alle blitzstromtragfähigen (!) Leitungen in den Potenzialausgleich miteinbezogen werden müssen.

Blitzstromtragfähig sind folgende Leitungen und Kabel:

• Metallene Rohrleitungen (z. B. Wasser, Gas und Wärme)

• Energietechnische Kabel (z. B. Netzspannung, 24 V-Versorgung)

• Informationstechnische Kabel (z. B. Busleitung).

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-23

Aufbau von Anlagen

A.9.2

Regeln für die Schnittstelle zwischen den Blitz-Schutzzonen 0 und 1

Regel für die Schnittstelle 0 <--> 1 (Blitzschutz-Potenzialausgleich)

Für den Blitzschutz-Potenzialausgleich an der Schnittstelle Blitz-Schutzzone

0 <--> 1 eignen sich folgende Maßnahmen:

• Verwenden Sie am Anfang und Ende geerdete, gewendelte, stromtragfähige

Metallbänder oder Metallgeflechte als Kabelschirm, z.B. NYCY oder A2Y(K)Y.

• Verlegen Sie Kabel auf einem der folgenden Wege:

-- In durchgehend verbundenen und am Anfang und Ende geerdeten Rohren aus Metall

-- In Kanälen aus Stahlbeton mit durchverbundener Bewehrung

-- Auf geschlossenen Kabelpritschen aus Metall, die am Anfang und Ende geerdet sind

• Verwenden Sie Lichtwellenleiter anstatt metallischer Leitungen.

Zusätzliche Maßnahmen

Wenn Sie die oben aufgeführten Maßnahmen nicht durchführen können, dann müssen Sie einen Grobschutz an der Schnittstelle 0 <--> 1 mit einem entsprechenden Blitzstromableiter vornehmen. Tabelle A-3 enthält die Komponenten, die Sie für den Grobschutz Ihrer Anlage verwenden können.

Tabelle A-3 Grobschutz von Leitungen mit Überspannungsschutz--Komponenten

1

Lfd.

Nr.

Leitungen für ...

Drehstrom TN--C--System

Drehstrom TN--S--System

Drehstrom TT--System

Wechselstrom TN--S--System

... beschalten Sie an der Schnittstelle 0 <--> 1 mit:

1 Stück Blitzstromableiter DEHNbloc/3

Phase L1/L2/L3 gegen PEN

1 Stück Blitzstromableiter DEHNbloc/3

Phase L1/L2/L3 gegen PE

1 Stück Blitzstromableiter DEHNbloc/1

N gegen PE

1 Stück Blitzstromableiter DEHNbloc/3

Phase L1/L2/L3 gegen N

1 Stück N--PE Blitzstromableiter

DEHNgap B/n

N gegen PE

2 Stück Blitzstromableiter DEHNbloc/1

Phase L1 + N gegen PE

Bestellnummer

900 110*

5SD7 031

900 110*

5SD7 031

900 111*

5SD7 032

900 110*

5SD7 031

900 130*

900 111*

5SD7 032

A-24

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Tabelle A-3 Grobschutz von Leitungen mit Überspannungsschutz--Komponenten, Fortsetzung

2

3

4

5

6

7

Lfd.

Nr.

Leitungen für ...

Wechselstrom TN--C--System

Wechselstrom TT--System

DC 24 V--Versorgung

Busleitung MPI, RS 485, RS 232

(V.24)

Ein--/Ausgänge von Digitalbaugruppen 24 V

Stromversorgung DC 24 V

Ein--/Ausgänge von Digitalbaugruppen und Stromversorgung

AC 120/230 V

Ein--/Ausgänge von Analogbaugruppen bis 12 V +/--

... beschalten Sie an der Schnittstelle 0 <--> 1 mit:

1 Stück Blitzstromableiter DEHNbloc/1

Phase L gegen PEN

1 Stück Blitzstromableiter DEHNbloc/1

Phase gegen N

1 Stück N--PE Blitzstromableiter

DEHNgap B/n

N gegen PE

1 Stück Blitzductor VT,

Typ A D 24 V --

1 Stück Blitzstromableiter Blitzductor

CT Typ B

DEHNrail 24 FML

1 Stück

2 Stück

1 Stück

Blitzductor VT

Typ AD 24 V --

Blitzstromableiter DEHNbloc/1

Blitzstromableiter

Blitzductor CT Typ B

Bestellnummer

900 111*

5SD7 032

900 111*

5SD7 032

900 130*

918 402*

919 506* und

919 510*

901 104*

918 402*

900 111*

5SD7 032

900 111*

5SD7 032

919 506* und

919 510*

* Diese Bauteile können Sie direkt bestellen bei DEHN + SÖHNE

GmbH + Co. KG

Elektrotechnische Fabrik

Hans-Dehn-Str. 1

D-92318 Neumarkt

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-25

Aufbau von Anlagen

A.9.3

Regeln für die Schnittstellen zwischen den Blitz-Schutzzonen

1 <--> 2 und größer

Regeln für Schnittstellen 1

<-->

2 undgrößer (örtlicher Potenzialausgleich)

Für alle Blitz-Schutzzonen-Schnittstellen 1 <-->2 und größer gilt:

• Richten Sie an jeder weiteren Blitz-Schutzzonen-Schnittstelle einen örtlichen

Potenzialausgleich ein.

• Beziehen Sie bei allen weiteren Blitz-Schutzzonen-Schnittstellen alle Leitungen

(z.B. auch Metallrohre) in den örtlichen Potenzialausgleich mit ein.

• Beziehen Sie alle metallenen Installationen, die sich innerhalb der Blitz-Schutzzone befinden, in den örtlichen Potenzialausgleich mit ein (z. B. Metallteil innerhalb Blitz-Schutzzone 2 an Schnittstelle 1 <--> 2)

Zusätzliche Maßnahmen

Wir empfehlen einen Feinschutz für folgende Elemente

• Alle Blitz-Schutzzonen-Schnittstellen 1 <--> 2 und größer

• Alle Leitungen, die innerhalb einer Blitz-Schutzzone verlaufen und länger als

100 m sind

Blitzschutzelement für die DC 24 V-Versorgung

Für die DC 24 V-Spannungsversorgung der S7-400 dürfen Sie nur den Blitzductor

VT, Typ AD 24 V SIMATIC verwenden. Alle anderen Überspannungsschutzkomponenten erfüllen nicht den Toleranzbereich von 20,4 V bis 28,8 V der Spannungsversorgung der S7-400.

Blitzschutzelement für Signalbaugruppen

Für die Digitalein-/-ausgabebaugruppen können Sie Standard-Überspannungsschutzkomponenten einsetzen. Beachten Sie aber, dass diese für DC 24 V Nennspannung nur maximal 1,15 × U

Nenn

= 27,6 V zulassen. Wenn die Toleranz Ihrer

DC 24 V-Spannungsversorgung höher liegen sollte, dann verwenden Sie Überspannungsschutzkomponenten für DC 30 V Nennspannung.

Sie können auch den Blitzductor VT, Typ AD 24 V SIMATIC einsetzen. Dann kann es aber zu folgenden Einschränkungen kommen:

• Digitaleingänge: Bei negativen Eingangsspannungen kann ein erhöhter Eingangsstrom fließen.

• Digitalausgänge: Die Abfallzeit von Schützen kann sich erheblich verlängern.

A-26

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Feinschutzelemente für 1 <--> 2

Für die Schnittstellen zwischen den Blitz-Schutzzonen 1

<-->

2 und größer empfehlen wir die in Tabelle A-4 aufgeführten Überspannungsschutz-Komponenten.

Tabelle A-4 Überspannungsschutz--Komponenten für Blitz--Schutzzonen 1 <--> 2

1

Lfd.

Nr.

2

3

4

5

6

7

Leitungen für ...

Drehstrom TN--C--System

Drehstrom TN--S--System

Drehstrom TT--System

3 Stück Überspannungsableiter DEHNguard

275

4 Stück Überspannungsableiter DEHNguard

275

3 Stück Überspannungsableiter DEHNguard

275 Phase L1/L2/L3 gegen N

1 Stück N--PE--Überspannungsableiter

DEHNgap C N gegen PE

Wechselstrom TN--S--System 2 Stück Überspannungsableiter DEHNguard

275

Wechselstrom TN--C--System 1 Stück Überspannungsableiter DEHNguard

275

Wechselstrom TT--Sytem 1 Stück Überspannungsableiter

DEHNguard 275

Phase L gegen N

1 Stück N--PE--Überspannungsableiter

DEHNgap C

N gegen PE

1 Stück Blitzductor VT Typ AD 24 V DC 24 V--Versorgung

Busleitung

MPI RS 485

RS 232 (V.24)

Überspannungsableiter Blitzductor CT Typ MD/HF

1 Stück • pro Adernpaar

Überspannungsableiter Blitzductor CT Typ ME 15 V

Eingänge von Digitalbaugruppen DC 24 V

Ausgänge von Digitalbaugruppen DC 24 V

Ein--/Ausgänge von Digitalbaugruppen

AC 120 V

AC 230 V

Eingänge von Analogbaugruppen bis 12 V +/--

... beschalten Sie an der Schnittstelle 1 <-->

2 mit:

1 Stück Überspannungsfeinschutz

Typ FDK 2 60 V

1 Stück Überspannungsfeinschutz

FDK 2D5 24

2 Stück Überspannungsableiter

DEHNguard 150

DEHNguard 275

1 Stück Überspannungsableiter

Blitzductor CT Typ MD 12 V

Bestellnummer

900 600*

5SD7 030

900 600*

5SD7 030

900 600*

5SD7 030

900 131*

900 600*

5SD7 030

900 600*

5SD7 030

900 600*

5SD7 030

900 131*

918 402*

919 506* und

919 570*

919 506* und

919 522*

919 993*

919 991*

900 603*

900 600*

919 506* und

919 541*

* Diese Bauteile können Sie direkt bestellen bei DEHN + SÖHNE

GmbH + Co. KG

Elektrotechnische Fabrik

Hans-Dehn-Str. 1

D-92318 Neumarkt

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-27

Aufbau von Anlagen

Feinschutzelemente für 2 <--> 3

Für die Schnittstellen zwischen den Blitz--Schutzzonen 2 <--> 3 empfehlen wir die in nachfolgender Tabelle aufgeführten Überspannungsschutz-Komponenten. Diese

Feinschutzelemente müssen Sie für die S7-400 einsetzen, um die Bedingungen für die CE-Kennzeichnung einzuhalten.

Tabelle A-5 Überspannungsschutz--Komponenten für Blitz--Schutzzonen 2 <--> 3

2

3

1

Lfd.

Nr.

4

5

6

Leitungen für ...

... beschalten Sie an der Schnittstelle

2 <--> 3 mit:

Bestellnummer

Drehstrom TN-C-System 3 Stück Überspannungsableiter DEHNguard 275 900 600*

5SD7 030

Drehstrom TN-S-System 4 Stück Überspannungsableiter DEHNguard 275 900 600*

5SD7 030

Drehstrom TT-System 3 Stück Überspannungsableiter DEHNguard 275

Phase L1/L2/L3 gegen N

900 600*

5SD7 030

Wechselstrom

TN-S-System

Wechselstrom

TN-C-System

1 Stück N--PE--Überspannungsableiter DEHNgap

C N gegen PE

2 Stück Überspannungsableiter DEHNguard 275

1 Stück Überspannungsableiter DEHNguard 275

Wechselstrom TT-Sytem 1 Stück Überspannungsableiter DEHNguard 275

Phase L gegen N

1 Stück N--PE--Überspannungsableiter DEHNgap

C N gegen PE

900 131*

900 600*

5SD7 030

900 600*

5SD7 030

900 600*

5SD7 030

900 131*

DC 24 V-Versorgung 1 Stück Blitzductor VT Typ AD 24 V 918 402*

Busleitung

MPI RS 485

RS 232 (V.24)

Überspannungsableiter Blitzductor CT

Typ MD/HF

1 Stück • pro Adernpaar Überspannungsfeinschutz FDK 2 12 V

919 506* und

919 570*

919 995*

Eingänge von Digitalbaugruppen

DC 24 V

AC 120 V

AC 230 V

Ausgänge von Digitalbaugruppen DC 24 V

Ausgänge von Analogbaugruppen bis 12 V +/--

1 Stück Überspannungsfeinschutz

Typ FDK 2 60 V auf isolierter Profilschiene

2 Stück Überspannungsableiter

919 993*

DEHNrail 120 FML

DEHNrail 230 FML

901 101*

901 100*

1 Stück Überspannungsfeinschutz FDK 2 D 5 24 919 991*

1 Stück Überspannungsfeinschutz

Typ FDK 2 12 V auf isolierter Schiene, die mit M-- der Baugruppenversorgung verbunden ist.

919 995*

* Diese Bauteile können Sie direkt bestellen bei DEHN + SÖHNE

GmbH + Co. KG

Elektrotechnische Fabrik

Hans-Dehn-Str. 1

D-92318 Neumarkt

A-28

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A.9.4

Beispielbeschaltung für vernetzte S7-400 zum Schutz vor Überspannungen

Beispielbeschaltung

Das Bild A-7 zeigt in einem Beispiel, wie Sie 2 vernetzte S7-400 beschalten müssen, um einen wirksamen Schutz vor Überspannungen zu haben:

L1L2L3NPE

Blitz-Schutzzone 0, Feldseite

Blitz-Schutzzone 1

SV

Schaltschrank 1

Blitz-Schutzzone 2

CPU

MPI

SM

SV

Schaltschrank 2

Blitz-Schutzzone 2

CPU

MPI

SM

PE

10 mm

2

PE

10 mm

2

Bild A-7 Beispiel für die Beschaltung von vernetzten S7-400

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-29

Aufbau von Anlagen

Komponenten in Bild A-7

Die Tabelle A-6 bezieht sich auf das Bild A-7 und erläutert die laufenden Nummern:

Tabelle A-6 Beispiel für einen blitzschutzgerechtetn Aufbau (Legende zu Bild A-7)

1

2

3

4

5

6

7

Lfd. Nr.

aus Bild

A-7

Komponente

Blitzstromableiter, je nach Netzsystem, z. B. TN--S--System:

1 Stück DEHNbloc/3

Bestellnummer: 900 110* und

1 Stück DEHNbloc/1

Bestellnummer: 900 111*

Überspannungsableiter,

2 Stück DEHNguard 275;

Bestellnummer: 900 600*

Überspannungsableiter,

Blitzductor CT Typ MD/HF

Bestellnummer: 919 506* und

919 570*

Digitaleingabebaugruppen:

FDK 2 D 60 V Bestellnummer:

919 993*

Digitalausgabebaugruppen:

FDK 2 D 5 24 V Bestellnummer:

919 991*

Analogbaugruppen:

MD 12 V Blitzductor CT,

Bestellnummer: 919 506 und

919 541

Schirmbefestigung für Busleitung

über EMV--Federklemme am Basisteil des Blitzductor CT Bestellnummer: 919 508*

Potenzialausgleichsleitung 16 mm

Blitzductor CT, Typ B für Gebäudeübertritt;

Bestellnummer: 919 506* und

919 510*

Feinschutz vor Überspannungen für

RS 485--Schnittstelle an der Schnittstelle

1 <> 2

Feinschutz vor Überspannungen an Ein-und Ausgängen der Signalbaugruppen an der Schnittstelle 1 <--> 2

Grobschutz vor Überspannungen für

RS 485--Schnittstellen an der Schnittstelle 0 <--> 1

Bedeutung

Grobschutz vor direkten Blitzeinschlägen und Überspannungen ab Schnittstelle

0 <--> 1

Grobschutz vor Überspannungen an der

Schnittstelle 1 <--> 2

Ableitung von Störströmen

Vereinheitlichung der Bezugspotenziale

* Diese Bauteile können Sie direkt bestellen bei DEHN + SÖHNE

GmbH + Co. KG

Elektrotechnische Fabrik

Hans-Dehn-Str. 1

D-92318 Neumarkt

A-30

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A.10

So schützen Sie Digitalausgabebaugruppen vor induktiven Überspannungen

Induktive Überspannungen

Überspannungen entstehen beim Abschalten von Induktivitäten. Beispiele hierfür sind Relaisspulen und Schütze.

Integrierter Überspannungsschutz

Die Digitalausgabebaugruppen der S7-400 haben eine integrierte Überspannungsschutz-Einrichtung.

Zusätzlicher Überspannungsschutz

Induktivitäten sind nur in folgenden Fällen mit zusätzlichen Überspannungsschutz-

Einrichtungen zu beschalten:

• Wenn SIMATIC-Ausgabestromkreise durch zusätzlich eingebaute Kontakte

(z. B. Relaiskontakte) abgeschaltet werden können.

• Wenn die Induktivitäten nicht von SIMATIC-Baugruppen angesteuert werden.

Anmerkung: Erkundigen Sie sich beim Lieferanten der Induktivitäten, wie die jeweiligen Überspannungsschutz-Einrichtungen zu dimensionieren sind.

Beispiel

Bild A-8 zeigt einen Ausgabestromkreis, der zusätzliche Überspannungsschutz-

Einrichtungen notwendig macht.

Kontakt im Ausgabestromkreis

Induktivität benötigt eine

Beschaltung (siehe Bild A-9 und A-10)

Bild A-8 Relaiskontakt für NOT-AUS im Ausgabestromkreis

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-31

Aufbau von Anlagen

Beschaltung von gleichstrombetätigten Spulen

Gleichstrombetätigte Spulen werden mit Dioden oder Z-Dioden beschaltet.

+ mit Diode

+ mit Z-Diode

Bild A-9

-

-

Beschaltung von gleichstrombetätigten Spulen

Beschaltung mit Dioden/Z-Dioden

Die Beschaltung mit Dioden/Z-Dioden hat folgende Eigenschaften:

• Abschaltüberspannungen lassen sich völlig vermeiden.

Z-Diode hat höhere Abschaltspannung.

• Hohe Abschaltverzögerung (6-9fach höher als ohne Schutzbeschaltung)

Z-Diode schaltet schneller ab als Diodenbeschaltung.

Beschaltung von wechselstrombetätigten Spulen

Wechselstrombetätigte Spulen werden mit Varistor oder RC-Glied beschaltet.

~

mit Varistor

~

mit RC-Glied

~

~

Bild A-10 Beschaltung von wechselstrombetätigten Spulen

Die Beschaltung mit Varistor hat folgende Eigenschaften:

• Die Amplitude der Abschaltüberspannung wird begrenzt, aber nicht gedämpft.

• Die Steilheit der Überspannung bleibt gleich.

• Die Abschaltverzögerung ist gering.

Die Beschaltung mit RC-Glied hat folgende Eigenschaften:

• die Amplitude und die Steilheit der Abschaltüberspannung werden verringert

• Die Abschaltverzögerung ist gering.

A-32

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

A.11

Sicherheit elektronischer Steuerungen

Einleitung

Die nachfolgenden Ausführungen gelten unabhängig von der Art der elektronischen Steuerung und deren Hersteller.

Zuverlässigkeit

Die Zuverlässigkeit der SIMATIC-Geräte und -Komponenten wird durch umfangreiche und kostenwirksame Maßnahmen in Entwicklung und Fertigung so hoch wie möglich getrieben.

Hierzu gehören folgende Maßnahmen:

• die Auswahl qualitativ hochwertiger Bauelemente;

• die worst-case-Dimensionierung aller Schaltungen;

• systematische und rechnergesteuerte Prüfung aller angelieferten Komponenten;

• Burn-in (Einbrennen) aller hochintegrierten Schaltungen (z. B. Prozessoren,

Speicher, usw.);

• Maßnahmen zur Verhinderung von statischen Aufladungen beim Hantieren an oder mit MOS-Schaltungen;

• Sichtkontrollen in verschiedenen Stufen der Fertigung;

• Wärmedauerlauf bei erhöhter Umgebungstemperatur über mehrere Tage;

• sorgfältige rechnergesteuerte Endprüfung;

• statistische Auswertung aller Rückwaren zur sofortigen Einleitung korrigierender

Maßnahmen;

• Überwachung der wichtigsten Steuerungsteile durch online-Tests (watch-dog für die CPU usw.).

Diese Maßnahmen werden in der Sicherheitstechnik als Basismaßnahmen bezeichnet. Sie vermeiden oder beherrschen den größten Teil der möglichen Fehler.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-33

Aufbau von Anlagen

Das Risiko

Überall dort, wo auftretende Fehler Personen-- oder Materialschäden verursachen können, müssen besondere Maßstäbe an die Sicherheit der Anlage – und damit auch an die Situation – angelegt werden. Für diese Anwendungen existieren spezielle, anlagenspezifische Vorschriften, die beim Aufbau der Steuerung berücksichtigt werden müssen (z. B. VDE 0116 für Feuerungsanlagen).

Für elektronische Steuerungen mit Sicherheitsverantwortung richten sich die Maßnahmen, die man zur Vermeidung bzw. zur Beherrschung von Fehlern ergreifen muss, nach dem Risiko, das von der Anlage ausgeht. Hierbei reichen die oben aufgeführten Basismaßnahmen ab einem bestimmten Gefährdungspotenzial nicht mehr aus. Es müssen zusätzliche Maßnahmen (z. B. Zweikanaligkeit, Tests, Prüfsummen, usw.) für die Steuerung realisiert und bescheinigt werden

(DIN VDE 0801). Die fehlersicheren speicherprogrammierbaren Steuerungen

S7-400F und S7-400FH wurden von TÜV, BIA und G EM III baumustergeprüft und besitzen mehrere Zertifikate. Sie sind somit geeignet, sicherheitsrelevante Bereiche zu steuern und zu überwachen.

Aufteilung in einen sicheren und einen nicht sicheren Bereich

In nahezu allen Anlagen findet man Teile, die sicherheitstechnische Aufgaben

übernehmen (z. B. Not-Aus-Schalter, Schutzgitter, Zweihandschaltungen). Um nicht die komplette Steuerung unter dem sicherheitstechnischen Aspekt betrachten zu müssen, teilt man üblicherweise die Steuerung in einen sicheren und einen

nicht sicheren Bereich auf. Im nicht sicheren Bereich werden an die Sicherheit

der Steuerung keine besonderen Ansprüche gestellt, da ein Ausfall der Elektronik keine Auswirkungen auf die Sicherheit der Anlage hat. Im sicheren Bereich jedoch dürfen nur Steuerungen bzw. Schaltungen eingesetzt werden, die den entsprechenden Vorschriften genügen.

Folgende Aufteilungen der Bereiche sind in der Praxis üblich:

• Für Steuerungen mit wenig Sicherheitstechnik (z. B. Maschinensteuerungen)

Die konventionelle speicherprogrammierbare Steuerung übernimmt den Teil der

Maschinensteuerung. Die Sicherheitstechnik wird durch eine fehlersichere

Steuerung realisiert.

• Für Steuerungen mit ausgewogenen Bereichen (z. B. Chemieanlagen, Seilbahnen)

Der nicht sichere Bereich wird auch hier durch eine konventionelle SPS realisiert, der sichere Bereich durch eine geprüfte fehlersichere Steuerung (S7-400F oder S7-400FH).

Die gesamte Anlage wird durch eine fehlersichere Steuerung realisiert.

• Für Steuerungen mit überwiegend Sicherheitstechnik (z. B. Feuerungsanlagen)

Die komplette Steuerung wird in der fehlersicheren Technik realisiert.

A-34

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

Wichtiger Hinweis

Selbst wenn bei der Projektierung einer elektronischen Steuerung – z. B. durch mehrkanaligen Aufbau – ein Höchstmaß an konzeptioneller Sicherheit erreicht wurde, ist es dennoch unerlässlich, die in den Betriebsanleitungen enthaltenen Anweisungen genau zu befolgen, da durch falsche Hantierung möglicherweise Vorkehrungen zur Verhinderung gefährlicher Fehler außer Kraft gesetzt oder zusätzliche Gefahrenquellen geschaffen werden.

A.12

Störsicherer Anschluss von Monitoren

Einleitung

Aus der Produktfamilie WinCC können Sie Bedien-und Beobachtungsgeräte mit

Monitoranschlüssen einsetzen. Für den störsicheren Anschluss von Monitoren an ein Automatisierungssystem ist die räumliche Anordnung der Betriebsmittel und der Störungsgehalt der Umgebung von Bedeutung. Für die Auswahl von Monitor und Videoleitungen ist entscheidend, ob Monitor und Automatisierungssystem unter störungsarmen Bedingungen oder unter Industriebedingungen betrieben werden.

Einsatz unter störungsarmen Bedingungen

Werden Monitor und Automatisierungssystem in einer störungsarmen Umgebung eingesetzt und liegen zwischen Monitor und Automatisierungssystem nur kurze

Entfernungen, dann befinden sich Monitor und Automatisierungssystem auf nahezu gleichen Erdpotenzialen. Störungen und Beeinflussungen durch Erdschleifen sind daher nicht zu erwarten.

In diesen Fällen können Sie den Monitor sowohl über TTL-Signale als auch über

Analogsignale ansteuern. Zur Übertragung der Videosignale können Digitalleitungen oder einfach geschirmte Koaxialleitungen verwendet werden. Beachten Sie, dass das Schirmgeflecht der Koaxialleitung als Rückleiter dient und nicht an die

Schirmschiene angeschlossen werden darf. Monitor und Kommunkationsprozessor

(CP) werden ohne zusätzliche Schirm- und Erdungsmaßnahmen miteinander verbunden.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-35

Aufbau von Anlagen

Einsatz unter Industriebedingungen

Werden Monitor und Automatisierungssystem unter rauhen Industriebedingungen eingesetzt oder liegen zwischen Monitor und Automatisierungssystem größere

Entfernungen, dann können sich die Betriebsmittel auf unterschiedlichen Erdpotenzialen befinden, die wiederum die Ursache von Störungen und Beeinflussungen durch Erdschleifen sein können.

In diesen Fällen muss zur Übertragung der Videosignale ein doppelt geschirmtes

Koaxialleitung (Triaxialkabel) verwendet werden. Das innere Schirmgeflecht dieser

Leitung dient als Rückleiter und darf nicht mit der Schirmschiene verbunden werden. Das äußere Schirmgeflecht dient zur Ableitung von Störströmen und muss in die Schirmungs- und Erdungsmaßnahmen einbezogen werden.

Zur Vermeidung von Erdschleifen müssen Elektronikmasse und Gehäusemasse des Monitors voneinander unabhängig sein. Diese Forderung gilt als erfüllt, wenn eine der folgenden Bedingungen erfüllt ist:

• Elektronik- und Gehäusemasse des Monitors sind galvanisch voneinander getrennt

• Elektronik- und Gehäusemasse des Monitors sind über einen vom Hersteller des Monitors eingebauten spannungsabhängigen Widerstand (VDR) miteinander verbunden.

Schirmung und Erdung unter Industriebedingungen

Werden Monitor und Automatisierungssystem unter rauhen Industriebedingungen eingesetzt, müssen Sie folgendes beachten:

Auf der Seite des Automatisierungssystems:

• Legen Sie die Kabelschirme im Schrank unmittelbar nach dem Schrankeintritt auf die Schirmschiene auf. Beachten Sie dabei folgende Punkte:

-- Isolieren Sie die Videoleitungen unterbrechungsfrei ab.

-- Befestigen Sie das äußere Schirmgeflecht möglichst großflächig an der

Schirmschiene des Automatisierungssystems (z.B. mit metallischen

Schlauchbindern, die den Schirm umfassen, oder mit PUK-Kabelschellen).

• Verbinden Sie die Schirmschienen großflächig mit dem Traggestell oder der

Schrankwand.

• Verbinden Sie die Schirmschiene mit dem Erdungspunkt des Schrankes.

Auf der Seite des Monitors:

• Trennen Sie Elektronikmasse und Gehäusemasse voneinander. Gehen Sie dabei wie folgt vor:

-- Entfernen Sie die Brücke am Monitor zur Trennung der beiden Massen.

-- Bringen Sie einen Berührungsschutz an den Videobuchsen an, da nach dem

Auftrennen der Massen an den Buchsen eine gefährliche Berührungsspannung von mehr als 40 V anliegen kann.

A-36

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Aufbau von Anlagen

!

Vorsicht

Es kann zu Personenschäden kommen.

An den Videobuchsen des Monitors können gefährliche Berührungsspannungen anliegen.

Versehen Sie die Buchsen mit einem geeigneten Berührungsschutz.

• Verbinden Sie die Erdungsschelle des Monitors mit Ortserde.

• Legen Sie die Kabelschirme auf die Erdungsschelle des Monitors auf. Gehen

Sie dabei wie folgt vor:

-- Entfernen Sie dazu die äußere Leitungsisolierung der Videoleitungen im Bereich der Erdungsschelle des Monitors, ohne das Schirmgeflecht zu beschädigen.

-- Befestigen Sie das äußere Schirmgeflecht großflächig an der Erdungsschelle des Monitors.

Bild A-11 zeigt eine vereinfachte Darstellung der Schirmungs- und Erdungsmaßnahmen für Monitor und S7-400.

ZG

Monitor mit getrennter Elektronik- und Gehäusemasse

CP

Schirmschiene

Äußeren

Schirm auf die

Erdungsschelle auflegen

Bild A-11 Schirmung und Erdung bei größerer Entfernung zwischen Monitor und Automatisierungssystem

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

A-37

Aufbau von Anlagen

A-38

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Richtlinie zur Handhabung elektrostatisch gefährdeter Baugruppen (EGB)

B

Kapitelübersicht

Im Kapitel

B.1

B.2

B.3

finden Sie

Was bedeutet EGB?

Elektrostatische Aufladung von Personen

Grundsätzliche Schutzmaßnahmen gegen Entladungen statischer Elektrizität

auf Seite

B-2

B-3

B-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

B-1

Richtlinie zur Handhabung elektrostatisch gefährdeter Baugruppen (EGB)

B.1

Was bedeutet EGB?

Definition

Alle elektronischen Baugruppen sind mit hochintegrierten Bausteinen oder Bauelementen bestückt. Diese elektronischen Bauteile sind technologisch bedingt sehr empfindlich gegen Überspannungen und damit auch gegen Entladungen statischer

Elektrizität.

Für diese Elektrostatisch Gefährdeten Bauteile/Baugruppen hat sich die Kurzbezeichnung EGB eingebürgert. Daneben finden Sie die international gebräuchliche

Bezeichnung ESD für electrostatic sensitive device.

Elektrostatisch gefährdete Baugruppen werden mit dem folgenden Symbol gekennzeichnet:

!

Vorsicht

Elektrostatisch gefährdete Baugruppen können durch Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Diese

Spannungen treten bereits auf, wenn Sie ein Bauelement oder elektrische Anschlüsse einer Baugruppe berühren, ohne elektrostatisch entladen zu sein. Der

Schaden, der an einer Baugruppe aufgrund einer Überspannung eintritt, kann meist nicht sofort erkannt werden, sondern macht sich erst nach längerer Betriebszeit bemerkbar.

B-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Richtlinie zur Handhabung elektrostatisch gefährdeter Baugruppen (EGB)

B.2

Elektrostatische Aufladung von Personen

Aufladung

Jede Person, die nicht leitend mit dem elektrischen Potenzial ihrer Umgebung verbunden ist, kann elektrostatisch aufgeladen sein.

Im Bild B-1 sehen Sie die Maximalwerte der elektrostatischen Spannungen, auf die eine Bedienungsperson aufgeladen werden kann, wenn Sie mit den im Bild angegebenen Materialien in Kontakt kommt. Diese Werte entsprechen den Angaben der IEC 61000-4-2.

Spannung in kV

(kV)

5

4

3

7

6

11

10

9

8

2

1

16

15

14

13

12

3

1

2

1 synthetisches Material

2 Wolle

3 antistatisches Material, zum Beispiel Holz oder Beton

5 10 20 30 40 50 60 70 80 90 100 relative Luftfeuchte in %

Bild B-1 Elektrostatische Spannungen, auf die eine Bedienungsperson aufgeladen werden kann

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

B-3

Richtlinie zur Handhabung elektrostatisch gefährdeter Baugruppen (EGB)

B.3

Grundsätzliche Schutzmaßnahmen gegen Entladungen statischer Elektrizität

Auf gute Erdung achten

Achten Sie beim Umgang mit elektrostatisch gefährdeten Baugruppen auf gute

Erdung von Mensch, Arbeitsplatz und Verpackung. Auf diese Weise vermeiden Sie statische Aufladung.

Direkte Berührung vermeiden

Berühren Sie elektrostatisch gefährdete Baugruppen grundsätzlich nur dann, wenn dies unvermeidbar ist (z. B. bei Wartungsarbeiten). Fassen Sie die Baugruppen so an, dass Sie weder Baustein-Pins noch Leiterbahnen berühren. Auf diese Weise kann die Energie der Entladungen empfindliche Bauteile nicht erreichen und schädigen.

Wenn Sie an einer Baugruppe Messungen durchführen müssen, dann entladen Sie

Ihren Körper vor den durchzuführenden Tätigkeiten. Berühren Sie dazu geerdete metallische Gegenstände. Verwenden Sie nur geerdete Messgeräte.

B-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

A

Abschlusswiderstand

Ein Abschlusswiderstand ist ein Widerstand zum Abschluss einer

Datenübertragungsleitung zur Vermeidung von Reflexionen auf dem Bus.

Adresse

Eine Adresse ist die Kennzeichnung für einen bestimmten Operanden oder Operandenbereich, Beispiele: Eingang E 12.1; Merkerwort MW 25; Datenbaustein

DB 3.

Alarm

Das → Betriebssystem der S7-400-CPU kennt 10 verschiedene Prioritätsklassen, die die Bearbeitung des Anwenderprogramms regeln. Zu diesen Prioritätsklassen gehören u.a. Alarme, z. B. Prozessalarme. Bei Auftreten eines

Alarms wird vom Betriebssystem automatisch ein zugeordneter Organisationsbaustein aufgerufen, in dem der Anwender die gewünschte Reaktion programmieren kann (z. B. in einem FB).

Analogbaugruppe

Analogbaugruppen setzen analoge Prozesswerte (z.B.Temperatur) in digitale

Werte um, die von der Zentralbaugruppe weiterverarbeitet werden können oder wandeln digitale Werte in analoge Stellgrößen um.

ANLAUF

Der Betriebszustand ANLAUF wird beim Übergang vom Betriebszustand STOP in den Betriebszustand RUN durchlaufen.

Kann ausgelöst werden durch den Betriebsartenschalter oder nach Netz-Ein oder durch Bedienung am Programmiergerät.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-1

Glossar

Anwenderprogramm

Bei SIMATIC wird unterschieden zwischen → Betriebssystem der CPU und Anwenderprogrammen. Letztere werden mit der Programmiersoftware STEP 7 in den möglichen Programmiersprachen erstellt und sind in Codebausteinen gespeichert.

Daten sind in Datenbausteinen gespeichert.

Anwenderspeicher

Der Anwenderspeicher enthält → Code- und → Datenbausteine des Anwenderprogramms. Der Anwenderspeicher kann in der CPU integriert sein oder auf zusteckbaren Memory Cards bzw. Speichermodulen. Das Anwenderprogramm wird jedoch grundsätzlich aus dem → Arbeitsspeicher der CPU abgearbeitet.

Arbeitsspeicher

Der Arbeitsspeicher ist ein RAM-Speicher in der → CPU, in den das STEP 7 →

Anwenderprogramm automatisch aus dem → Ladespeicher umgeladen wird. Der

Prozessor bearbeitet im Betriebszustand RUN das Programm im Arbeitsspeicher.

B

Baugruppenparameter

Baugruppenparameter sind Werte, mit denen das Verhalten der Baugruppe eingestellt werden kann. Man unterscheidet zwischen statischen und dynamischen Baugruppenparametern.

Betriebssystem der CPU

Das Betriebssystem der CPU organisiert alle Funktionen und Abläufe der CPU, die nicht mit einer speziellen Steuerungsaufgabe verbunden sind.

Betriebszustand

Die Automatisierungssysteme von SIMATIC S7 kennen z. B. folgende Betriebszustände: STOP, → ANLAUF, RUN.

Bezugserde

→ Erde

Bezugspotential

Potential, von dem aus die Spannungen der beteiligten Stromkreise betrachtet und/oder gemessen werden.

Glossar-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

Bussegment

Ein Bussegment ist ein abgeschlossener Teil eines seriellen Bussystems. Bussegmente werden über Repeater miteinander gekoppelt.

C

Codebaustein

Ein Codebaustein ist bei SIMATIC S7 ein Baustein, der einen Teil des STEP 7-Anwenderprogramms enthält. (Im Gegensatz zu einem → Datenbaustein: Dieser enthält nur Daten.)

CP

Kommunikationsprozessor

CPU

Central Processing Unit = Zentralbaugruppe des S7-Automatisierungssystems mit

Prozessor, Rechenwerk, Speicher, Betriebssystem und Schnittstelle für Programmiergerät.

D

Datenbaustein

Datenbausteine (DB) sind Teile des Anwenderprogramms, die Anwenderdaten enthalten. Es gibt globale Datenbausteine, auf die von allen Codebausteinen zugegriffen werden kann und es gibt Instanzdatenbausteine, die einem bestimmten FB-

Aufruf zugeordnet sind.

Daten, statische

Statische Daten sind Daten, die nur innerhalb eines Funktionsbausteins genutzt werden. Diese Daten werden in einem zum Funktionsbaustein gehörenden Instanzdatenbaustein gespeichert. Die im Instanzdatenbaustein gespeicherten Daten bleiben bis zum nächsten Aufruf dieses Funktionsbausteins erhalten.

Daten, temporäre

Temporäre Daten sind Lokaldaten eines Bausteins, die während der Bearbeitung eines Bausteins im L-Stack abgelegt werden und nach der Bearbeitung dieses

Bausteins nicht mehr verfügbar sind.

Default-Einstellung

Die Default-Einstellung ist eine sinnvolle Grundeinstellung, die immer dann verwendet wird, wenn kein anderer Wert vorgegeben (parametriert) wird.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-3

Glossar

Diagnosealarm

Diagnosefähige Baugruppen melden erkannte Systemfehler über Diagnosealarme an die S7-400-CPU.

Diagnosepuffer

Der Diagnosepuffer ist ein gepufferter Speicherbereich in der S7-400-CPU, in dem

Diagnoseereignisse in der Reihenfolge ihres Auftretens abgelegt sind.

DP-Master

Ein Master, der sich nach der Norm EN 50170, Teil 3, verhält, wird als DP-

Master bezeichnet.

Er verbindet die CPU und das Dezentrale Peripheriesystem. Er tauscht die Daten

über PROFIBUS-DP mit den Dezentralen Peripheriesystemen aus und überwacht den PROFIBUS-DP.

DP-Slave

Ein Slave, der am PROFIBUS mit dem Protokoll PROFIBUS-DP betrieben wird und sich nach der Norm EN 50170, Teil 3, verhält, heißt DP-Slave.

Er bereitet die Daten der Geber und Stellglieder vor Ort so auf, dass Sie über

PROFIBUS-DP zur CPU übertragen werden können.

DPV1

Die Norm zur Dezentralen Peripherie EN 50170 wurde weiterentwickelt. Die Ergebnisse der Weiterentwicklung sind in die IEC 61158 / IEC 61784-1:2002 Ed1 CP 3/1 eingeflossen. In der SIMATIC-Dokumentation wird hierfür die Bezeichnung DPV1 verwendet. Die neue Version weist einige Erweiterungen und Vereinfachungen auf, z.B. die funktionale Erweiterung der azyklischen Dienste um neue Alarme.

Die Funktionalität DPV1 ist in der IEC 61158/EN 50170, Volume 2, PROFIBUS integriert.

E

Elektromagnetische Verträglichkeit

Unter Elektromagnetischer Verträglichkeit versteht man die Fähigkeit eines elektrischen Betriebsmittels, in einer vorgegeben Umgebung fehlerfrei zu funktionieren, ohne dabei das Umfeld in unzulässiger Weise zu beeinflussen.

Glossar-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

Erde

Das leitfähige Erdreich, dessen elektrisches Potential an jedem Punkt gleich Null gesetzt werden kann.

Im Bereich von Erdern kann das Erdreich ein von Null verschiedenes Potential haben. Für diesen Sachverhalt wird häufig der Begriff ”Bezugserde” verwendet.

erden

Erden heißt, einen elektrisch leitfähigen Teil über eine Erdungsanlage mit dem Erder (ein oder mehrere leitfähige Teile, die mit dem Erdreich sehr guten Kontakt haben) zu verbinden.

erdfrei

ohne galvanische Verbindung zur Erde

Ersatzwert

Ersatzwerte sind Werte, die bei fehlerhaften Signalausgabebaugruppen an den

Prozess ausgegeben werden, bzw. bei fehlerhaften Signaleingabebaugruppen im

Anwenderprogramm anstelle eines Prozesswertes verwendet werden. Die Ersatzwerte sind vom Anwender vorgebbar (z. B. alten Wert beibehalten)

Erzeugnisstand

Am Erzeugnisstand werden Produkte gleicher Bestellnummer unterschieden. Der

Erzeugnisstand wird erhöht bei aufwärtskompatiblen Funktionserweiterungen, bei fertigungsbedingten Änderungen (Einsatz neuer Bauteile/Komponenten) sowie bei

Fehlerbehebungen.

F

FB

→ Funktionsbaustein

FC

→ Funktion

Fehleranzeige

Die Fehleranzeige ist eine der möglichen Reaktionen des Betriebssystems auf einen → Laufzeitfehler. Die anderen Reaktionsmöglichkeiten sind: → Fehlerreaktion im Anwenderprogramm, STOP-Zustand der CPU.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-5

Glossar

Fehlerbehandlung über OB

Erkennt das Betriebssystem einen bestimmten Fehler (z.B. Zugriffsfehler bei

STEP 7), so ruft es den für diesen Fall vorgesehenen Organisationsbaustein (Fehler-OB) auf, in dem das weitere Verhalten der CPU festgelegt werden kann.

Fehlerreaktion

Reaktion auf einen → Laufzeitfehler. Das Betriebssystem kann auf folgende Arten reagieren: Überführen des Automatisierungssytems in den STOP-Zustand,

Aufruf eines Organisationsbausteins, in dem der Anwender eine Reaktion programmieren kann oder Anzeigen des Fehlers.

FORCEN

Mit der Funktion Forcen können Sie einzelnen Variablen eines Anwenderprogramms bzw. einer CPU (auch: Ein- und Ausgängen) feste Werte zuweisen, so dass sie auch vom Anwenderprogramm, das in der CPU abläuft, nicht verändert oder überschrieben werden können. Durch das feste Vorbelegen von Variablen mit

Werten können Sie für Ihr Anwenderprogramm bestimmte Situationen einstellen und damit die programmierten Funktionen testen.

Funktion

Eine Funktion (FC) ist gemäß IEC 61131-3 ein Codebaustein ohne statische Daten (ohne Gedächtnis). Temporäre Variablen der Funktion werden im Lokaldaten-

Stack gespeichert. Diese Daten gehen nach der Bearbeitung der FC verloren.

Funktionen können zum Speichern von Daten globale Datenbausteine nutzen. Weil eine FC keinen zugeordneten Speicher hat, müssen Sie immer Aktualparameter für eine FC angeben. Sie können den Lokaldaten einer FC keine Anfangswerte zuordnen.

Funktionsbaugruppe

Programmierbare Baugruppe, die im Gegensatz zur Zentralbaugruppe über keine

Mehrpunktfähige Schnittstelle MPI verfügt und nur als Slave betrieben werden kann.

Glossar-6

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

Funktionsbaustein

Ein Funktionsbaustein (FB) ist gemäß IEC 61131-3 ein Codebaustein mit statischen Daten (mit Gedächtnis). Er verfügt über einen zugeordneten Datenbaustein als Speicher (Instanz-Datenbaustein). Die Parameter, die an den FB übergeben werden, sowie die statischen Variablen werden im Instanz-DB gespeichert. Die temporären Variablen werden im Lokaldaten-Stack gespeichert.

Daten, die im Instanz-DB gespeichert werden, gehen nicht verloren, wenn die Bearbeitung des FB beendet ist. Daten, die im Lokaldaten--Stack gespeichert werden, gehen nach der Bearbeitung des FB verloren.

Funktionserdung

Erdung, die nur den Zweck hat, die beabsichtigte Funktion des elektrischen Betriebsmittels sicherzustellen. Durch die Funktionserdung werden Störspannungen kurzgeschlossen, die sonst zu unzulässigen Beeinflussungen des Betriebsmittels führen.

G

Globaldaten

Globaldaten sind Daten, die von jedem → Codebaustein (FC, FB, OB) aus ansprechbar sind. Im einzelnen sind das Merker M, Eingänge E, Ausgänge A, Zeiten,

Zähler und Datenbausteine DB. Auf Globaldaten kann entweder absolut oder symbolisch zugegriffen werden.

Globaldaten-Kommunikation

Globaldaten-Kommunikation ist ein Verfahren mit dem → Globaldaten zwischen

CPUs übertragen werden.

GSD-Datei

In einer Geräte-Stammdaten-Datei (GSD-Datei) sind alle slavespezifischen

Eigenschaften hinterlegt. Das Format der GSD-Datei ist in der Norm EN 50170,Volume 2, PROFIBUS, hinterlegt.

H

Herstellerspezifischer Alarm,

Einen herstellerspezifischer Alarm kann von einem DPV1-Slave erzeugt werden und bewirkt beim DPV1-Master den Aufruf des OB 57

Detaillierte Informationen zum OB 57 erhalten Sie im Referenzhandbuch

”Systemsoftware für S7-300/400: System- und Standardfunktionen”.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-7

Glossar

I

Instanzdatenbaustein

Bei der S7-400 ist jedem Aufruf eines Funktionsbausteins im STEP 7-Anwenderprogramm ein Datenbaustein zugeordnet, der automatisch generiert wird. Im Instanzdatenbaustein sind die Werte der Eingangs-, Ausgangs- und Durchgangsparameter sowie die bausteinlokalen Daten abgelegt.

K

Kaltstart

→ Wiederanlauf des Automatisierungssystems und seines Anwenderprogramms, nachdem alle dynamischen Daten (Variablen des Ein-/Ausgabe-Abbildes, interne

Register, Zeitglieder, Zähler, usw. und zugehörige Programmteile) auf einen vorbestimmten Wert zurückgesetzt wurden. Ein Kaltstart kann automatisch ausgelöst werden (z. B. nach einem Netzausfall, einem Informationsverlust in dynamischen Speicherteilen usw.).oder vom PG aus.

Kippschalter

Der Betriebsartenschalter ist als Kippschalter ausgeführt. Mit dem Betriebsartenschalter können Sie die CPU in den Betriebszustand RUN und den Betriebszustand STOP versetzen oder die CPU urlöschen.

Kommunikationsprozessor

Kommunikationsprozessoren sind Baugruppen für Punkt-zu-Punkt- und für Buskopplungen.

Kommunikationsprozessoren für Punkt-zu-Punkt-Kopplung ermöglichen den

Datenaustausch zwischen Automatisierungsgeräten oder zwischen Automatisierungsgeräten und Rechnern.

Kommunikationsprozessoren für Buskopplungen ermöglichen den Anschluss einer

SIMATIC S7 an PROFIBUS DP.

komprimieren

Mit der PG-Online-Funktion ”Komprimieren” werden alle gültigen Bausteine im

RAM der CPU bündig und lückenlos an den Anfang des Anwenderspeichers geschoben. Dadurch verschwinden alle Lücken, die beim Löschen oder Korrigieren von Bausteinen entstanden sind.

Konfiguration

Zuweisung von Baugruppen zu Baugruppenträgern/Steckplätzen und (z.B. bei Signalmodulen) Adressen.

Glossar-8

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

Konfigurierung

Unter Konfigurierung versteht man die Zusammenstellung einzelner Baugruppen eines Automatisierungssystems.

Konsistente Daten

Daten, die inhaltlich zusammengehören und nicht getrennt werden dürfen, bezeichnet man als konsistente Daten.

Zum Beispiel müssen die Werte von Analogbaugruppen immer konsistent behandelt werden, d. h., der Wert einer Analogbaugruppe darf durch das Auslesen zu zwei verschiedenen Zeitpunkten nicht verfälscht werden.

L

Ladespeicher

Der Ladespeicher ist Bestandteil der S7-400-CPU. Er beinhaltet die vom Programmiergerät erzeugten Objekte. Er ist entweder als zusteckbare Memory Card oder als fest integrierter Speicher realisiert.

Im Betrieb enthält der Ladespeicher das komplette Anwenderprogramm einschließlich der Kommentare, der Symbolik und spezieller Zusatzinformation, die das

Rückübersetzen des Anwenderprogramms erlaubt, sowie alle Baugruppenparameter.

Laufzeitfehler

Fehler, die während der Bearbeitung des Anwenderprogramms im Automatisierungssystem (also nicht im Prozess) auftreten.

Lokaldaten

→ Daten, temporäre

M

Masse

Als Masse gilt die Gesamtheit aller untereinander verbundenen inaktiven Teile eines Betriebsmittels, die auch im Fehlerfall keine gefährliche Berührungsspannung annehmen können.

Memory Card

Memory Cards sind Speichermedien im Scheckkarten-Format für CPUs und CPs.

Sie sind als → RAM oder FEPROM realisiert.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-9

Glossar

Merker

Merker sind Bestandteil des → Systemspeichers der CPU zum Speichern von Zwischenergebnissen. Auf sie kann bit-, byte-, wort- oder doppelwortweise zugegriffen werden.

Messbereichsmodul

Messbereichsmodule werden auf die Analogeingabebaugruppen gesteckt zur Anpassung an verschiedene Messbereiche.

MPI

Die Mehrpunktfähige Schnittstelle (MPI) ist die Programmiergeräte-Schnittstelle von SIMATIC S7. Sie ermöglicht den gleichzeitigen Betrieb von mehreren Teilnehmern (Programmiergeräten, Text Displays, Operator Panels) an einer oder auch mehreren Zentralbaugruppen. Jeder Teilnehmer wird durch eine eindeutige

Adresse (MPI-Adresse) identifiziert.

MPI-Adresse

→ MPI

N

Neustart

Beim Anlauf einer S7-400-CPU (z. B. nach Betätigung des Betriebsartenschalters von STOP auf RUN oder bei Netzspannung EIN) wird vor der zyklischen Programmbearbeitung (OB 1) zunächst der Organisationsbaustein OB 100 (Neustart) bearbeitet. Bei Neustart wird das Prozessabbild der Eingänge eingelesen und das

STEP 7- Anwenderprogramm beginnend beim ersten Befehl im OB 1 bearbeitet.

Netz

Bezüglich der Kommunikation ist ein Netz die Verbindung von mehreren S7-400 und weiteren Endgeräten, z.B. einem PG, über Verbindungskabel. Über das Netz erfolgt ein Datenaustausch zwischen den angeschlossenen Geräten.

O

OB

→ Organisationsbaustein

Glossar-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

OB-Priorität

Das → Betriebssystem der S7-400-CPU unterscheidet zwischen verschiedenen

Prioritätsklassen, z.B. zyklische Programmbearbeitung, prozessalarmgesteuerte

Programmbearbeitung. Jeder Prioritätsklasse sind → Organisationsbausteine (OB) zugeordnet, in denen der S7-Anwender eine Reaktion programmieren kann. Die

OBs haben standardmäßig verschiedene Prioritäten, in deren Reihenfolge sie im

Falle eines gleichzeitigen Auftretens bearbeitet werden bzw. sich gegenseitig unterbrechen.

Organisationsbaustein

Organisationsbausteine (OBs) bilden die Schnittstelle zwischen dem Betriebssystem der S7-400-CPU und dem Anwenderprogramm. In den Organisationsbausteinen wird die Reihenfolge der Bearbeitung des Anwenderprogrammes festgelegt.

Ortserde

Verbindung von Einrichtungen der Informationstechnik mit Erde, bei der durch externe Einflüsse, die beispielsweise von Starkstromanlagen ausgehen, keine unzulässigen Funktionsstörungen an Betriebsmitteln der Informationstechnik verursacht werden. Die Verbindung muss als fremdspannungsarme Erde ausgeführt sein.

P

Parameter

1. Variable eines STEP 7-Codebausteins

2. Variable zur Einstellung des Verhaltens einer Baugruppe (eine oder mehrere pro

Baugruppe).

Es gibt → statische Parameter und → dynamische Parameter

Parameter, dynamische

Dynamische Parameter von Baugruppen können, im Gegensatz zu statischen Parametern, im laufenden Betrieb durch den Aufruf eines SFC im Anwenderprogramm verändert werden, z. B. Grenzwerte einer analogen Signaleingabebaugruppe.

Parameter, statische

Statische Parameter von Baugruppen können, im Gegensatz zu den dynamischen

Parametern, nicht durch das Anwenderprogramm, sondern nur über STEP 7 geändert werden (nicht im Betriebszustand RUN), z. B. Eingangsverzögerung einer digitalen Signaleingabebaugruppe.

PG

→ Programmiergerät

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-11

Glossar

Potentialausgleich

Elektrische Verbindung (Potentialausgleichsleiter), die die Körper elektrischer Betriebsmittel und fremde leitfähige Körper auf gleiches oder annähernd gleiches Potential bringt, um störende oder gefährliche Spannungen zwischen diesen Körpern zu verhindern.

potentialgebunden

Bei potentialgebundenen Ein-/Ausgabebaugruppen sind die Bezugspotentiale von

Steuer- und Laststromkreis elektrisch verbunden.

potentialgetrennt

Bei potentialgetrennten Ein-/Ausgabebaugruppen sind die Bezugspotentiale von

Steuer- und Laststromkreis galvanisch getrennt; z.B. durch Optokoppler, Relaiskontakt oder Übertrager. Ein-/Ausgabestromkreise können gewurzelt sein.

Prioritätsklasse

Das Betriebssystem einer S7-CPU bietet maximal 26 Prioritätsklassen (bzw.

”Programmbearbeitungsebenen”), denen verschiedene Organisationsbausteine zugeordnet sind. Die Prioritätsklassen bestimmen, welche OBs andere OBs unterbrechen. Umfaßt eine Prioritätsklasse mehrere OBs, so unterbrechen sie sich nicht gegenseitig, sondern werden sequentiell bearbeitet.

PROFIBUS-DP

Digitale, analoge und intelligente Baugruppen sowie ein breites Spektrum von

Feldgeräten nach EN 50170, Teil 3 wie zum Beispiel Antriebe oder Ventilinseln werden vom Automatisierungsystem an den Prozess vor Ort verlagert -- und dies

über eine Entfernung von bis zu 23 km.

Die Baugruppen und Feldgeräte werden dabei über den Feldbus PROFIBUS-DP mit dem Automatisierungssystem verbunden und wie zentrale Peripherie angesprochen.

Programmiergerät

Programmiergeräte sind im Kern Personal Computer, die industrietauglich, kompakt und transportabel sind. Sie sind gekennzeichnet durch eine spezielle Hardware- und Software-Ausstattung für speicherprogrammierbare Steuerungen SIMA-

TIC.

Glossar-12

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar

Prozessabbild

Das Prozessabbild ist Bestandteil des → Systemspeichers der S7-400-CPU. Am

Anfang des zyklischen Programmes werden die Signalzustände der Eingabebaugruppen zum Prozessabbild der Eingänge übertragen. Am Ende des zyklischen

Programmes wird das Prozessabbild der Ausgänge als Signalzustand zu den Ausgabebaugruppen übertragen.

Prozessalarm

Ein Prozessalarm wird ausgelöst von alarmauslösenden Baugruppen aufgrund eines bestimmten Ereignisses im Prozess. Der Prozessalarm wird der CPU gemeldet. Entsprechend der Priorität dieses Alarms wird dann der zugeordnete → Organisationsbaustein bearbeitet.

Pufferbatterie

Die Pufferbatterie gewährleistet, dass das → Anwenderprogramm in der → CPU netzausfallsicher hinterlegt ist und festgelegte Datenbereiche und Merker, Zeiten und Zähler remanent gehalten werden.

R

RAM

Ein RAM (Random Access Memory) ist ein Halbleiterspeicher mit wahlfreiem Zugriff (Schreib-/Lesespeicher). Er eignet sich als Arbeitsspeicher, in dem

Zwischenergebnisse abgelegt und zu gegebener Zeit wieder ausgelesen werden können. Die in einem RAM gespeicherte Information geht verloren, wenn die

Spannungsversorgung ausfällt.

Remanente Daten

Remanente Daten gehen bei Ausfall der Netzspannung nicht verloren, falls eine

Pufferbatterie vorhanden ist.

S

Schachtelungstiefe

Mit Bausteinaufrufen kann ein Baustein aus einem anderen heraus aufgerufen werden. Unter Schachtelungstiefe versteht man die Anzahl der gleichzeitig aufgerufenen → Codebausteine.

Schnittstelle, mehrpunktfähig

→ MPI

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-13

Statusalarm

Segment

→ Bussegment

Schutzerde

Anschluss über Schutzleiter an einen gemeinsamen Erder für die berührbaren, leitfähigen Teile der elektrischen Betriebsmittel, die normalerweise nicht unter Spannung stehen, die aber im Fehlerfall Spannung annehmen können und die über eine

Schutzeinrichtung gemeinsam geschützt werden.

SFB

→ Systemfunktionsbaustein

SFC

→ Systemfunktion

Signalbaugruppe

Signalbaugruppen (SM) bilden die Schnittstelle zwischen dem Prozess und dem

Automatisierungssystem. Es gibt digitale Eingabe- und Ausgabebaugruppen

(Ein-/Ausgabebaugruppe, digital) sowie analoge Eingabe-und Ausgabebaugruppen. (Ein-/Ausgabebaugruppe, analog)

Statusalarm

Ein Statusalarm kann von einem DPV1-Slave erzeugt werden und bewirkt beim

DPV1-Master den Aufruf des OB 55. Detaillierte Informationen zum OB 55 erhalten Sie im Referenzhandbuch “Systemsoftware für S7-300/400: System- und Stan-

dardfunktionen”.

STEP 7

Parametrier- und Programmiersoftware zur Parametrierung und Erstellung von Anwenderprogrammen für SIMATIC S7-Steuerungen.

Summenstrom

Summe der Ströme aller Ausgangskanäle einer Digital-Ausgabebaugruppe.

Systemdiagnose

Systemdiagnose ist die Erkennung, Auswertung und die Meldung von Fehlern, die innerhalb des Automatisierungssystems auftreten. Beispiele für solche Fehler sind:

Programmfehler oder Ausfälle auf Baugruppen. Systemfehler können mit LED-Anzeigen oder durch STEP 7 angezeigt werden.

Glossar-14

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Statusalarm

Systemfunktion

Eine Systemfunktion (SFC) ist eine vorprogrammierte → Funktion, die im Betriebssystem der S7-CPU integriert ist. Sie können die SFC aus Ihrem Programm aufrufen. Weil SFCs Teile des Betriebssystems sind, werden sie nicht als Teil des Programms geladen. Wie FCs sind SFCs Bausteine ohne Gedächtnis.

Systemfunktionsbaustein

Ein Systemfunktionsbaustein (SFB) ist ein → Funktionsbaustein, derin das Betriebssystem der S7-CPU integriert ist. Weil SFBs Teil des Betriebssystems sind, werden sie nicht als Teil des Programms geladen. Wie FBs sind SFBs Bausteine mit Gedächtnis. Sie müssen auch für SFBs Instanz-Datenbausteine erstellen und als Teil des Programms in die CPU laden.

Systemspeicher

Der Systemspeicher ist auf der Zentralbaugruppe integriert und als RAM-Speicher ausgeführt. Im Systemspeicher sind die Operandenbereiche (z. B. Zeiten, Zähler,

Merker) sowie vom → Betriebssystem intern benötigte Datenbereiche (z. B.

Puffer für Kommunikation) abgelegt.

T

Teilnehmernummer

Die Teilnehmernummer stellt die ”Ansprechadresse” einer Zentralbaugruppe bzw.

des PGs oder einer anderen intelligenten Peripheriebaugruppe dar, wenn diese

über ein ! Netz miteinander kommunizieren. Die Teilnehmernummer wird der

Zentralbaugruppe bzw. dem PG mit der STEP 7-Software zugewiesen.

Timer

U

→ Zeiten

Uhrzeitalarm,

Der Uhrzeitalarm gehört zu einer der Prioritätsklassen bei der Programmbearbeitung der S7-400. Er wird abhängig von einem bestimmten Datum (oder täglich) und Uhrzeit (z. B. 9:50 oder stündlich, minütlich) generiert. Es wird dann ein entsprechender Organisationsbaustein bearbeitet.

Updatealarm

Ein Updatealarm kann von einem DPV1-Slave erzeugt werden und bewirkt beim

DPV1-Master den Aufruf des OB 56. Detaillierte Informationen zum OB 56 erhalten Sie im Referenzhandbuch “Systemsoftware für S7-300/400: System- und

Standardfunktionen”.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-15

Statusalarm

V

Varistor

spannungsabhängiger Widerstand

Verzögerungsalarm

Der Verzögerungsalarm gehört zu einer der Prioritätsklassen bei der Programmbearbeitung der S7-400. Er wird bei Ablauf einer im Anwenderprogramm gestarteten Zeit generiert. Es wird dann ein entsprechender Organisationsbaustein bearbeitet.

W

Weckalarm

Ein Weckalarm wird periodisch in einem parametrierbaren Zeitraster von der

S7-400-CPU generiert. Es wird dann ein entsprechender → Organisationsbaustein bearbeitet.Startzeitpunkt des Zeittaktes ist der Betriebszustandswechsel von

STOP in RUN.

Wiederanlauf

Beim Anlauf einer CPU wird vor der zyklischen Programmbearbeitung (OB 1) zunächst alternativ OB 101 (Wiederanlauf), OB 100 (Neustart/ Warmstart) oder OB

102 (Kaltstart) bearbeitet. Für den ”Wiederanlauf” ist eine Pufferung der CPU zwingend erforderlich.

Es gilt: Alle Datenbereiche (Zeiten, Zähler, Merker, Datenbausteine) und deren

Inhalte bleiben erhalten. Das → Prozessabbild der Eingänge wird eingelesen und die Bearbeitung des STEP 7-Anwenderprogramms an der Stelle fortgesetzt, an der es beim letzten Abbruch (STOP, Netz-Aus) beendet wurde.

Als weitere Anlaufarten stehen der → Kaltstart und der → Neustart ( Warmstart) zur Verfügung. Einen Kaltstart können Sie nicht mit dem Betriebsartenschalter auslösen.

Z

Zähler

Zähler sind Bestandteile des → Systemspeichers der CPU. Der Inhalt der ”Zählerzellen” kann durch STEP 7-Anweisungen verändert werden (z. B. vorwärts/rückwärts zählen).

Glossar-16

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Statusalarm

Zeiten

Zeiten sind Bestandteile des → Systemspeichers der CPU. Asynchron zum Anwenderprogramm wird der Inhalt der ”Zeitzellen” automatisch vom Betriebssystem aktualisiert. Mit STEP 7-Anweisungen wird die genaue Funktion der Zeitzelle (z. B.

Einschaltverzögerung) festgelegt und ihre Bearbeitung (z. B. Starten) angestoßen.

Zentralbaugruppe

Programmierbare Baugruppe der S7-400 mit Mehrpunktfähiger Schnittstelle MPI, steuert die Automatisierungsaufgaben.

Zykluszeit

Die Zykluszeit ist die Zeit, die die → CPU für die Bearbeitung des → Anwenderprogramms benötigt.

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Glossar-17

Statusalarm

Glossar-18

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Index

A

Abmessungen

der Baugruppen, 2-29

von Schränken, 2-28

Abschlusswiderstand, 5-7

am Busanschluss--Stecker, 5-9

am Busanschluss--Stecker einstellen, 5-20

am RS 485-Repeater, 5-9

Beispiel, 5-10

Adressen

logische, 3-2 physikalische, 3-2

Analogbaugruppen, tauschen, 7-7

Anfangsadresse

von Analogbaugruppen, 3-5

von Digitalbaugruppen, 3-4

Anschaltungsbaugruppe, tauschen, 7-11

Aufbau

dezentral, 2-2

elektrischer, A-2

EMV-gerechter, A-4

störsicher, 4-15

von Schränken, 2-25

zentral, 2-2

Aufdruck, M7-400

Ausgabestand, 1-3

Baugruppenbezeichnung, 1-3

Bestellnummer, 1-3

Baugruppenträger, 1-2

Abstandsmaße, 2-10 befestigen, 2-10

Einbaumaße, 2-10 erden, 2-10

geteilter, 2-9

im System S7-400, 2-6

mit P-Bus und K-Bus, 2-7

segmentierter, 2-8, 2-9

Betriebsartenschalter, Glossar-8

Bezugspotenzial

geerdet, 4-7

ungeerdet, 4-8

Blitz-Schutzzonen, A-22

Blitzeinschlag, A-22

Blitzschutz, A-20, A-21

Feinschutz, A-27

für DC 24 V-Versorgung, A-26 für Signalbaugruppen, A-26

Grobschutz, A-24

Busanschluss--Stecker

Abschlusswiderstand, 5-9

Abschlusswiderstand einstellen, 5-20 abziehen, 5-20 an Baugruppe anschließen, 5-20

Buskabel montieren, 5-20

Zweck, 5-19

Buskabel, Länge der Stichleitungen, 5-16

Buskabel montieren, an Busanschluss--Stecker

mit Bestellnummer 6ES7 ..., 5-20

Bussegment. Siehe Segment

B

Baudrate, 5-3

Baugruppen

einbauen, 2-30

potenzialgetrennte, 4-10

Signalfluss der, 2-7

Steckplatznummern der, 2-33

C

CPU, 1-2

tauschen, 7-5

urlöschen, 6-7, 6-10

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Index-1

Index

D

dezentrale Peripherie, 2-34

Digitalbaugruppen

Sicherungen tauschen, 7-9

tauschen, 7-7

E

Einschalten

erstes, 6-6

Überprüfung vor Einschalten, 6-3

Einspeisung, geerdete, 4-5

EMV--gerechte Montage -- Beispiele, A-11

Erstes Einschalten, 6-6

F

Fehlerfall, Verhalten im, 6-2

Firmwarestand, 1-3

Frontstecker

aufstecken, 4-34

beschriften, 4-30

Kodierelement für, 4-34

mit Crimpanschluss, 4-23 mit Federkraftanschluss, 4-23 mit Schraubanschluss, 4-23

verdrahten, 4-25

Frontsteckerkodierung, 4-34

G

Gerät. Siehe Teilnehmer

Gesamtaufbau, im TN-S-Netz, 4-6

H

Höchste MPI-Adresse, 5-4

I

Inbetriebnahme, Vorgehensweise, 6-2

Isolationsüberwachung, 4-9

K

K-Bus, 2-7

Kanal

auf einer Analogbaugruppe, 3-7

auf einer Digitalbaugruppe, 3-6

Kippschalter, Glossar-8

Kommunikation, PG -- CPU, 6-6

Kommunikationsbus (K-Bus), 2-7

Komponenten

der S7-400, 1-1

für MPI-Netz, 5-8

PROFIBUS-DP-Netz, 5-8

Kopplung

galvanische, A-6 induktive, A-6 kapazitive, A-6

Regeln für die, 2-5

Strahlungs-, A-6

L

Laststromkreis, 4-5

Laststromversorgung, 4-4

Leitungsführung

außerhalb von Gebäuden, A-20

innerhalb von Gebäuden, A-18

Leitungslängen, maximale, 5-16

Lüfterzeile

Filterrahmen tauschen, 7-15

Lüfter tauschen, 7-14

Sicherung tauschen, 7-13

Stromversorgungsleiterplatte tauschen,

7-17

Überwachungsleiterplatte tauschen, 7-17

Luftführung, 2-18

M

Memory Card, stecken, 6-11, 6-12

Montage, M7-400, Schnittstellenmodule, 6-18

MPI, Definition, 5-2

MPI-Netz

Beispiel für Aufbau, 5-11, 5-13

Datenpakete im, 5-8

Komponenten, 5-8

Regeln zum Aufbau, 5-7

Segment, 5-15

MPI-Parameter, 6-9

MPI-Adresse, 5-4

Empfehlung, 5-8

Höchste, 5-4

Regeln, 5-5

N

Netzanschluss, A-2

Index-2

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Index

Netzstecker

aufstecken, 4-22

verdrahten, 4-20

ziehen, 4-19

Neustart, 6-10

Bedienfolge, 6-10

NOT-AUS-Einrichtungen, A-2

P

P-Bus, 2-7

Peripheriebus (P-Bus), 2-7

PG, anschließen, 6-5

PG anschließen, 6-5

Platzbedarf, mit Lüfterzeile, 2-11

Potenzialausgleich, A-23

PROFIBUS-DP, Inbetriebnahme, 6-17

PROFIBUS-DP-Adresse, 5-4

Empfehlung, 5-8

PROFIBUS-DP-Buskabel, 5-18

Eigenschaften, 5-18

Regeln für die Verlegung, 5-18

PROFIBUS-DP-Netz

Beispiel für Aufbau, 5-12, 5-13

Komponenten, 5-8

Regeln zum Aufbau, 5-7

Segment, 5-15

Pufferbatterie

einlegen, 6-13

Entsorgung, 7-3

tauschen, 7-2

Umgang mit, 7-3

wechseln, 7-2

R

Regeln

allgemeine, A-2

für die Verdrahtung, 4-17

zum Aufbau eines Netzes, 5-7

zur Sicherstellung der EMV, A-7

RS 485-Repeater, 5-7, 5-21

Abschlusswiderstand, 5-9

Montage, 5-21

PROFIBUS-DP-Buskabel anschließen,

5-21

Stromversorgung verdrahten, 5-21

S

Schnittstellenmodul, M7-400, tauschen, 7-18

Schnittstellenmodule, M7-400, einbauen, 6-18,

7-18

Schranktypen, 2-27

Schutzmaßnahmen, 4-5

Segment, 5-3

MPI-Netz, 5-15

PROFIBUS-DP-Netz, 5-15

Sicherung der Lüfterzeile, tauschen, 7-13

Sicherungen tauschen, bei Digitalbaugruppen,

7-9

Signalbaugruppen (SM), 1-2

Stichleitung, 5-7

Stichleitungen, Länge, 5-16

Stromversorgung, 1-2

auswählen, 4-3

tauschen, 7-4

T

Teilnehmer, 5-3

Anzahl, 5-4

Typenschild, M7-400, 1-3

U

Überspannungen, A-21, A-22

Überspannungsschutz, A-21, A-31

Komponenten, A-27

Übertragungsgeschwindigkeit, 5-3

V

Vernetzung, Möglichkeiten der, 2-34

Vorschriften, zum Betrieb, A-2

W

Warmstart, 6-10

Wiederanlauf, 6-10

Bedienfolge, 6-10

Z

Zentralbaugruppen, Abdeckung ungenutzter

Modulschächte, 6-19

Zubehör, 2-35

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

Index-3

Index

Index-4

Automatisierungssystem S7-400 Installationshandbuch

A5E00850740-01

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement