Cabling: The Complete Guide to Network Wiring, Third Edition

Cabling:
The Complete Guide
to Network Wiring,
Third Edition
David Barnett
David Groth
Jim McBee
San Francisco • London
Associate Publisher: Joel Fugazzotto
Acquisitions Editor: Maureen Adams
Developmental Editor: Brianne Hope Agatep
Production Editor: Erica Yee
Technical Editor: Toby Skandier
Copy Editor: Sally Engelfried
Compositor: Happenstance Type-O-Rama
Color Insert Compositor: Judy Fung, Sybex, Inc.
Proofreaders: Laurie O’Connell, Nancy Riddiough
Indexer: Ted Laux
Book Designer: Maureen Forys, Happenstance Type-O-Rama
Cover Designer/Illustrator: Richard Miller, Calyx Design
Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of the publisher.
An earlier version of this book was published under the title Cabling: The Complete Guide to Network Wiring © 2000 SYBEX Inc, Cabling: The
Complete Guide to Network Wiring, Second Edition © 2001 SYBEX Inc.
Second edition copyright © 2001, First edition copyright © 2000 SYBEX Inc.
Library of Congress Card Number: 2003115682
ISBN: 0-7821-4331-8
SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.
TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1
For Jordan and Cameron
—D.B.
For my wife, my daughter, my family,
and my friends.
—D.G.
This book is dedicated to my family (Mom, Dad,
sisters, cousins, and aunts). Over a distance of
thousands of miles and many years, you still
influence my actions every day. We are all
products of our environment; mine was great!
—J.M.
Acknowledgments
originally got involved with this book by assisting Jim McBee with the initial writing of the
first edition. Sybex subsequently asked me to revise the book for both the second and third
editions. I’m grateful to Jim and everyone at Sybex for providing me with this opportunity.
Thanks to all.
I
Much of my cable knowledge was accumulated under the supervision of Dr. James S. Tyler,
and I would be remiss if I didn’t acknowledge his significant contribution to my experience.
Also, I would like to thank Jeanie Baer, RCDD, for her help and advice over the years and for
keeping me up to date on what’s happening in the TIA Standards’ workgroups. Ron Hayes,
practitioner of the black art of transmission engineering, deserves thanks and credit for suffering me as his occasional sorcerer’s apprentice. I would like to thank Rob Jewson, RCDD, friend
and business partner, for his advice and assistance.
—David Barnett
This book has been a long time in the making. First and foremost, I would like to acknowledge my co-author, Jim McBee, for his excellent work on this project. He should be proud of
his efforts, and it shows in the quality of this book. Also, we would like to acknowledge the
other behind-the-scenes people that helped to make this book, starting with Dan Whiting of
Border States Electric Supply in Fargo, ND, for all the reference material and pictures he and
his company provided.
His expertise was invaluable in the making of this book. Thanks, Dan! We would also like to
thank photographer Steve Sillers for taking many of the pictures throughout this book.
This book would not exist without Sybex Acquisitions Editor Maureen Adams. Thanks for
bringing Jim and me together and for managing this project. Additionally, I would like to thank
Developmental Editor Brianne Hope Agatep, Editor Sally Engelfried for editing this book,
and Production Editor Erica Yee for managing its production. Also, I would like to recognize
the rest of the Sybex staff for all their hard work on this book, including (but not limited to)
Judy Fung for her work on the color insert; the proofreaders, Laurie O’Connell and Nancy
Riddiough; the indexer Ted Laux; and the electronic publishing specialists at Happenstance
Type-O-Rama, who spent time and effort making the book look good. Finally, I would like to
recognize my wife, daughter, family, and friends, without whom I couldn’t do any of this and
for whom I do this.
—David Groth
Acknowledgments
v
At the Spring 1999 Networld+InterOp, David Groth, Maureen Adams from Sybex, and I
talked about the need for a book about network cabling that was targeted toward IT professionals and people just starting out with cabling. The first edition was a resounding success, and
now you hold a brand-new third edition in your hands!
Special thanks also goes to Janice Boothe, RCDD (and her awesome www.wiring.com Web
site) and Mike Holt for their knowledge of codes. Paul Lucas, RCDD, of Paul’s Cabling tolerated my nonstop questions and provided many great stories and experiences. Kudos to Matt
Bridges for his assistance with components. Jeff Deckman gave his vital insight and input to the
Request for Proposal (RFP) chapter; his cooperative approach to working with vendors will
help many people successfully deploy telecommunications infrastructures. Charles Perkins
drew from his years of field experience to help with the case studies. Others who reviewed portions of the book and provided feedback include Maureen McFerrin, Randy Williams, RD
Clyde, John Poehler, and David Trachsel. Jeff Bloom and the folks at Computer Training
Academy (where I teach Windows NT, TCP/IP, and Exchange courses) are always outstandingly patient when I take on a project like this. Finally, the consummate professionals at Sybex
always leave me in awe of their skills, patience, and insight.
—Jim McBee
Contents at a Glance
Introduction
Part I
Part II
Part III
xxv
Technology and Components
Chapter 1:
Introduction to Data Cabling
Chapter 2:
Cabling Specifications and Standards
Chapter 3:
Choosing the Correct Cabling
115
Chapter 4:
Cable System and Infrastructure Constraints
151
Chapter 5:
Cabling System Components
177
Chapter 6:
Tools of the Trade
203
3
61
Network Media and Connectors
Chapter 7:
Copper Cable Media
237
Chapter 8:
Wall Plates
279
Chapter 9:
Connectors
299
Chapter 10:
Fiber-Optic Media
325
Chapter 11:
Unbounded (Wireless) Media
349
Cabling Design and Installation
Chapter 12:
Cabling-System Design and Installation
375
Chapter 13:
Cable-Connector Installation
411
Chapter 14:
Cable-System Testing and Troubleshooting
445
Chapter 15:
Creating a Request for Proposal (RFP)
481
Chapter 16:
Cabling @ Work: Experience from the Field
509
Glossary
527
Part IV
Appendices
Appendix A:
Cabling Resources
607
Appendix B:
Registered Communications Distribution Designer (RCDD)
Certification
615
Appendix C:
Home Cabling: Wiring Your Home for Now and the Future
623
Appendix D:
Overview of IEEE 1394 and USB Networking
631
Appendix E:
The Electronics Technicians Association, International (ETA)
Certifications
639
Index
659
Contents
Introduction
Part I
Chapter 1
xxv
Technology and Components
1
Introduction to Data Cabling
3
The Golden Rules of Data Cabling
The Importance of Reliable Cabling
The Cost of Poor Cabling
Is the Cabling to Blame?
You’ve Come a Long Way, Baby: The Legacy of
Proprietary Cabling Systems
Proprietary Cabling Is a Thing of the Past
Cabling and the Need for Speed
Types of Communications Media
Cable Design
Plenum
Riser
General Purpose
Limited Use
Cable Jackets
Wire Insulation
Twists
Solid Conductors versus Stranded Conductors
Data Communications 101
Bandwidth, Frequency, and Data Rate
What a Difference a dB Makes!
Speed Bumps: What Slows Down Your Data
Hindrances to High-Speed Data Transfer
Attenuation (Loss of Signal)
Noise (Signal Interference)
Near-End Crosstalk (NEXT)
5
5
6
6
7
8
9
11
22
24
26
27
27
27
30
34
36
38
38
42
46
47
48
50
52
Contents
Chapter 2
Chapter 3
ix
Far End Crosstalk (FEXT)
Equal-Level Far-End Crosstalk (ELFEXT)
Pair-to-Pair Crosstalk
Power-Sum Crosstalk
External Interference
Attenuation-to-Crosstalk Ratio (ACR)
Propagation Delay
Delay Skew
The Future of Cabling Performance
53
53
54
54
56
57
58
58
59
Cabling Specifications and Standards
61
Structured Cabling and Standardization
Standards and Specifying Organizations
ANSI/TIA/EIA-568-B Cabling Standard
ANSI/TIA/EIA-568-B Purpose and Scope
Subsystems of a Structured Cabling System
Media and Connecting Hardware Performance
ANSI/TIA/EIA-569-A
ANSI/TIA/EIA-607
ANSI/TIA/EIA-570-A
Other TIA/EIA Standards and Bulletins
ISO/IEC 11801
Classification of Applications and Links
Anixter Cable Performance Levels Program
Anixter Levels: Looking Forward
What About Components?
Other Cabling Technologies
The IBM Cabling System
Avaya SYSTIMAX SCS Cabling System
Digital Equipment Corporation DECconnect
NORDX/CDT Integrated Building Distribution System
62
64
73
75
76
92
95
102
103
104
105
106
106
108
108
109
109
112
112
113
Choosing the Correct Cabling
115
Topologies
Star Topology
Bus Topology
Ring Topology
116
117
118
119
x
Contents
Chapter 4
Chapter 5
UTP, Optical Fiber, and Future-Proofing
Network Architectures
Ethernet
Token Ring
Fiber Distributed Data Interface (FDDI)
Asynchronous Transfer Mode (ATM)
100VG-AnyLAN
Network-Connectivity Devices
Repeaters
Hubs
Bridges
Switches
Routers
120
121
121
133
136
137
139
140
140
141
144
147
147
Cable System and Infrastructure Constraints
151
Where Do Codes Come From?
The United States Federal Communications Commission
The National Fire Protection Association
Underwriters Laboratories
Codes and the Law
The National Electrical Code
NEC Chapter 1 General Requirements
NEC Chapter 2 Wiring and Protection
NEC Chapter 3 Wiring Methods and Materials
NEC Chapter 5 Special Occupancy
NEC Chapter 7 Special Conditions
NEC Chapter 8 Communications Systems
Knowing and Following the Codes
152
152
153
155
157
159
159
160
164
166
166
169
176
Cabling System Components
177
The Cable
Horizontal and Backbone Cables
Modular Patch Cables
Pick the Right Cable for the Job
Wall Plates and Connectors
Cabling Pathways
178
178
180
180
181
183
Contents
Chapter 6
Part II
Chapter 7
xi
Conduit
Cable Trays
Raceways
Fiber-Protection Systems
Wiring Closets
TIA/EIA Recommendations for Wiring Closets
Cabling Racks and Enclosures
Cross-Connect Devices
Administration Standards
183
183
185
186
187
188
190
196
200
Tools of the Trade
203
Building a Cabling Tool Kit
Common Cabling Tools
Wire Strippers
Wire Cutters
Cable Crimpers
Punch-Down Tools
Fish Tapes
Voltage Meter
Cable Testing
A Cable-Toning Tool
Twisted-Pair Continuity Tester
Coaxial Tester
Optical-Fiber Testers
Cabling Supplies and Tools
Cable-Pulling Tools
Wire-Pulling Lubricant
Cable-Marking Supplies
Tools That a Smart Data-Cable Technician Carries
A Preassembled Kit Could Be It
204
205
206
209
210
213
216
218
218
218
219
220
221
223
223
228
229
231
232
Network Media and Connectors
235
Copper Cable Media
237
Types of Copper Cabling
Major Cable Types Found Today
238
238
xii
Contents
Chapter 8
Picking the Right Patch Cables
Why Pick Copper Cabling?
Best Practices for Copper Installation
Following Standards
Planning
Installing Copper Cable
Copper Cable for Data Applications
110-Blocks
Sample Data Installations
Copper Cable for Voice Applications
66-Blocks
Sample Voice Installations
Testing
Tone Generators and Amplifier Probes
Continuity Testing
Wire-Map Testers
Cable Certification
Common Problems with Copper Cabling
247
249
250
250
253
255
260
260
263
266
266
270
274
275
275
276
276
276
Wall Plates
279
Wall-Plate Design and Installation Issues
Manufacturer System
Wall-Plate Location
Wall-Plate Mounting System
Fixed-Design or Modular Plate
Fixed-Design Wall Plates
Number of Jacks
Types of Jacks
Labeling
Modular Wall Plates
Number of Jacks
Wall-Plate Jack Considerations
Labeling
Biscuit Jacks
Types of Biscuit Jacks
Advantages of Biscuit Jacks
Disadvantages of Biscuit Jacks
280
280
281
283
287
289
289
290
291
291
292
292
296
296
297
297
298
Contents
Chapter 9
Chapter 10
Chapter 11
xiii
Connectors
299
Twisted-Pair Cable Connectors
Patch-Panel Terminations
Modular Jacks and Plugs
Shielded Twisted-Pair Connectors
Coaxial Cable Connectors
F-Series Coaxial Connectors
N-Series Coaxial Connectors
The BNC Connector
Fiber-Optic Cable Connectors
Fiber-Optic Connector Types
Installing Fiber-Optic Connectors
300
300
302
316
317
318
318
319
320
320
323
Fiber-Optic Media
325
Introduction to Fiber-Optic Transmission
Advantages of Fiber-Optic Cabling
Immunity to Electromagnetic Interference (EMI)
Higher Possible Data Rates
Longer Maximum Distances
Better Security
Disadvantages of Fiber-Optic Cabling
Higher Cost
Difficult to Install
Types of Fiber-Optic Cables
Composition of a Fiber-Optic Cable
Additional Designations of Fiber-Optic Cables
Fiber Installation Issues
Components of a Typical Installation
Fiber-Optic Performance Factors
326
327
328
328
328
329
329
329
330
331
331
337
342
343
345
Unbounded (Wireless) Media
349
Infrared Transmissions
How Infrared Transmissions Work
Advantages of Infrared
Disadvantages of Infrared
Examples of Infrared Transmissions
350
350
354
355
356
xiv
Contents
Part III
Chapter 12
Radio-Frequency (RF) Systems
How RF Works
Advantages of RF
Disadvantages of RF
Examples of RF
Microwave Communications
How Microwave Communication Works
Advantages of Microwave Communications
Disadvantages of Microwave Communications
Examples of Microwave Communications
357
358
363
363
364
366
367
370
371
371
Cabling Design and Installation
373
Cabling-System Design and Installation
375
Elements of a Successful Cabling Installation
Proper Design
Quality Materials
Good Workmanship
Cabling Topologies
Bus Topology
Star Topology
Ring Topology
Mesh Topology
Backbones and Segments
Selecting the Right Topology
Cabling Plant Uses
Telephone
Television
Fire-Detection and Security Cabling
Choice of Media
Telecommunications Rooms
LAN Wiring
Telephone Wiring
Power Requirements
HVAC Considerations
376
376
378
379
379
379
380
380
381
381
383
383
384
385
385
386
386
387
388
391
391
Contents
Chapter 13
Chapter 14
xv
Cabling Management
Physical Protection
Electrical Protection (Spike Protection)
Fire Protection
Data and Cabling Security
EM (Electromagnetic) Transmission Regulation
Tapping Prevention
Cabling Installation Procedures
Design the Cabling System
Schedule the Installation
Install the Cabling
Terminate the Cable
Test the Installation
392
392
394
396
397
397
398
398
398
399
399
406
409
Cable-Connector Installation
411
Twisted-Pair Cable-Connector Installation
Types of Connectors
Conductor Arrangement
Connector Crimping Procedures
Coaxial Cable-Connector Installation
Types of Connectors
Connector Crimping Procedures
Fiber-Optic Cable-Connector Installation
Connector Types
Connectorizing Methods
Connector Installation Procedures
412
412
414
415
421
421
422
426
426
426
427
Cable-System Testing and Troubleshooting
445
Installation Testing
Copper-Cable Tests
Fiber-Optic Tests
Cable-Plant Certification
Creating a Testing Regimen
Copper-Cable Certification
446
446
455
458
459
460
xvi
Contents
Chapter 15
Fiber-Optic Certification
Third-Party Certification
Cable-Testing Tools
Wire-Map Testers
Continuity Testers
Tone Generators
Time Domain Reflectometers (TDR)
Fiber-Optic Power Meters
Fiber-Optic Test Sources
Optical Loss Test Sets and Test Kits
Optical Time Domain Reflectometers (OTDRs)
Fiber-Optic Inspection Microscopes
Visual Fault Locators
Multifunction Cable Scanners
Troubleshooting Cabling Problems
Establishing a Baseline
Locating the Problem
Resolving Specific Problems
462
463
464
464
465
465
466
468
469
469
470
471
472
472
474
474
475
476
Creating a Request for Proposal (RFP)
481
What Is a Request for Proposal?
What Do We Want in Life?
Developing a Request for Proposal
The Needs Analysis
Designing the Project for the RFP
Writing the RFP
Distributing the RFP and Managing the Vendor-Selection Process
Distributing RFPs to Prospective Vendors
Vendor Selection
Project Administration
Cutover
Technology Network Infrastructure Request for Proposal
(A Sample RFP)
General
Purpose of This RFP
Cable Plant
482
483
484
484
488
496
498
498
499
500
500
501
502
502
504
Contents
Chapter 16
xvii
Cabling @ Work: Experience from the Field
509
Hints and Guidelines
Know What You Are Doing
Plan the Installation
Have the Right Equipment
Test and Document
Train Your Crew
Work Safely
Make It Pretty
Look Good Yourself
Plan for Contingencies
Match Your Work to the Job
Waste Not, Want Not
Case Studies
A Small Job
A Large Job
A Peculiar Job
An Inside Job
510
510
511
512
513
513
514
514
515
515
517
518
518
519
521
523
524
Glossary
527
Part IV
605
Appendix A
Cabling Resources
607
Informational Internet Resources
wiring.com
comp.dcom.cabling
The Cabling News Group FAQ
Whatis
TIA Online
TechFest
TechEncyclopedia
Global Technologies, Inc.
cabletesting.com
608
608
608
608
609
609
609
609
609
609
xviii
Contents
National Electrical Code Internet Connection
Charles Spurgeon’s Ethernet Website
American National Standard T1.523-2001:
Glossary of Telecommunications Terms
Protocols.com
Webopedia: Online Computer Dictionary for Internet Terms and
Technical Support
Books, Publications, and Videos
Cabling Business Magazine
Cabling Installation and Maintenance
Cabling Installation and Maintenance Tips and Videos
Newton’s Telecom Dictionary by Harry Newton
Premises Network Online
Building Your Own High-Tech Small Office by Robert Richardson
BICSI’s Telecommunications Distribution Methods and
Cabling Installation Manuals
Understanding the National Electrical Code (3rd Edition) by
Mike Holt and Charles Michael Holt
ANSI/TIA/EIA-568-B Commercial Building Telecommunication
Cabling Standard
Vendors and Manufacturers
The Siemon Company
MilesTek, Inc.
IDEAL DataComm
Ortronics
Superior Essex
Jensen Tools
Labor Saving Devices, Inc.
Erico
Berk-Tek
Microtest
Fluke
Panduit
Anixter
609
610
610
610
610
610
610
611
611
611
611
611
612
612
612
612
612
613
613
613
613
613
613
614
614
614
614
614
614
Contents
Appendix B
Appendix C
Appendix D
Appendix E
xix
Registered Communications Distribution Designer (RCDD) Certification
615
Apply and Be Accepted as a Candidate for the Designation of RCDD
Successfully Pass the Stringent RCDD Exam
Maintain Your Accreditation through Continuing Membership and
Education
Check Out BICSI and the RCDD Program for Yourself
617
617
620
621
Home Cabling: Wiring Your Home for Now and the Future
623
Home-Cabling Facts and Trends
Structured Residential Cabling
Picking Cabling Equipment for Home Cabling
Thinking Forward
624
626
628
630
Overview of IEEE 1394 and USB Networking
631
IEEE 1394
USB
References
633
635
637
The Electronics Technicians Association, International (ETA) Certifications
639
Data Cabling Installer Certification (DCIC) 2004 Competency
Requirements
1.0 BASIC ELECTRICITY
2.0 DATA COMMUNICATIONS BASICS
3.0 DEFINITIONS, SYMBOLS, AND ABBREVIATIONS
4.0 CABLE CONSTRUCTION
5.0 CABLE PERFORMANCE CHARACTERISTICS
6.0 CABLING STANDARDS
7.0 BASIC NETWORK TOPOLOGIES
8.0 BASIC NETWORK ARCHITECTURES
9.0 NATIONAL ELECTRIC CODE - NEC and UL requirements
10.0 CABLING SYSTEM COMPONENTS
11.0 DCIC INSTALLATION TOOLS
12.0 CONNNECTORS AND OUTLETS
13.0 CABLING SYSTEM DESIGN
14.0 CABLING INSTALLATION
15.0 CONNECTOR INSTALLATION
640
640
641
641
641
642
642
642
642
642
643
643
643
644
644
644
xx
Contents
16.0 CABLING TESTING AND CERTIFICATION
17.0 CABLING TROUBLESHOOTING
18.0 DOCUMENTATION
Certified Fiber Optics Installer (CFOI) 2004 Competency Requirements
1.0 HISTORY OF FIBER OPTIC CABLING
2.0 PRINCIPLES OF FIBER OPTIC TRANSMISSION
3.0 FIBER OPTIC CABLING SAFETY
4.0 BASIC PRINCIPLES OF LIGHT
5.0 OPTICAL FIBER CONSTRUCTION AND THEORY
6.0 OPTICAL FIBER CHARACTERISTICS
7.0 ADVANTAGES OF FIBER OVER COPPER
8.0 OPTICAL CABLES
9.0 LIGHT SOURCES
10.0 DETECTORS
11.0 CONNECTORS
12.0 PASSIVE COMPONENTS
13.0 TYPES OF SPLICING
13.1 Mechanical Splicing
13.2 Fusion Splicing
14.0 CABLE INSTALLATION AND HARDWARE
15.0 FIBER OPTIC LINK
16.0 OPTICAL FIBER TEST EQUIPMENT
17.0 OPTICAL FIBER MEASUREMENT AND TESTING
Fiber Optic Technician (FOT) 2004 Competency Requirements
1.0 PRINCIPLES OF FIBER OPTIC TRANSMISSION
2.0 BASIC PRINCIPLES OF LIGHT
3.0 OPTICAL FIBER CONSTRUCTION AND THEORY
4.0 OPTICAL FIBER CHARACTERISTICS
5.0 ADVANTAGES OF FIBER OVER COPPER
6.0 FIBER OPTIC CABLES
7.0 SOURCES
8.0 DETECTORS
9.0 CONNECTORS
10.0 PASSIVE COMPONENTS
11.0 TYPES OF SPLICING
11.1 Mechanical Splicing
645
645
645
645
645
646
646
646
646
647
647
647
648
648
648
649
649
649
649
649
650
650
650
651
651
651
652
652
652
652
653
654
654
655
655
655
Contents
11.2 Fusion Splicing
12.0 CABLE INSTALLATION AND HARDWARE
13.0 FIBER OPTIC LINK
14.0 OPTICAL FIBER MEASUREMENT AND TESTING
15.0 LINK AND CABLE TESTING
Index
xxi
655
655
656
656
656
659
Introduction
Welcome to the incredibly complex world of premises data-communications cabling. This
introduction will tell you a little about how this book came about and how you can use it to your
best advantage.
Not only does cabling carry the data across your network, it can also carry voice, serial communications, alarm signals, video, and audio transmissions. In the past, people took their cabling
systems for granted. However, over the last decade, the information technology world began to
understand the importance of a reliable and well-designed structured cabling system. This period
also resulted in an explosion in the number of registered structured-cabling installers. The number of people who need to know the basics of cabling has increased dramatically.
We had a great time writing this book. In the year-long process of researching, writing, and editing it, we met many consummate professionals in the cabling business. Many distributors, manufacturers, and cabling contractors provided us with feedback, tips, and in-the-field experiences.
During the research phase of the book, we continually reviewed newsgroups, cabling FAQs,
and other Internet resources, besides polling information technology managers, help-desk
staff, network designers, cable installers, and system managers to find out what people want to
know about their cabling system. The answers we received helped us write this book.
About This Book
This book’s topics run the gamut of cabling; they include the following:
●
An introduction to data cabling
●
Information on cabling standards and how to choose the correct ones
●
Cable system and infrastructure constraints
●
Cabling-System Components
●
Tools of the trade
●
Copper, fiber-optic, and unbounded media
●
Wall plates and cable connectors
●
Cabling-system design and installation
●
Cable-connector installation
Introduction
●
Cabling-system testing and troubleshooting
●
Creating Request for Proposals (RFPs)
●
Cabling case studies
xxiii
A cabling dictionary is included at the end of the book so you can look up unfamiliar terms.
Five other appendixes include resources for cabling information, tips on how to get your Registered Communications and Distribution Designer (RCDD) certification, information for the
home cabler, a discussion of USB/1394 cabling, and information about ETA’s line of cabling
certifications. Finally, a multipage color insert shows you what various cabling products look
like in their “natural environment.”
Who Is This Book For?
If you are standing in your neighborhood bookstore browsing through this book, you may be
asking yourself if you should buy it. The procedures in this book are illustrated and written in
English rather than “technospeak.” That’s because we, the authors, designed this book specifically to help unlock the mysteries of the wiring closet, cable in the ceiling, wall jacks, and other
components of a cabling system. Cabling can be a confusing topic; it has its own language,
acronyms, and standards. We designed this book with the following types of people in mind:
●
Information technology (IT) professionals who can use this book to gain a better understanding and appreciation of a structured cabling system
●
IT managers who are preparing to install a new computer system
●
Do-it-yourselfers who need to install a few new cabling runs in their facility and want to get
it right the first time
●
New cable installers who want to learn more than just what it takes to pull a cable through
the ceiling and terminate it to the patch panel
How to Use This Book
To understand the way this book is put together, you must learn about a few of the special conventions we used. Following are some of the items you will commonly see.
Italicized words indicate new terms. After each italicized term, you will find a definition.
TIP
Tips will be formatted like this. A tip is a special bit of information that can make your work
easier or make an installation go more smoothly.
xxiv
Introduction
NOTE
Notes are formatted like this. When you see a note, it usually indicates some special circumstance to make note of. Notes often include out-of-the-ordinary information about working with a telecommunications infrastructure.
WARNING
Warnings are found within the text whenever a technical situation arises that may cause
damage to a component or cause a system failure of some kind. Additionally, warnings are
placed in the text to call particular attention to a potentially dangerous situation.
KEY TERM Key terms are used to introduce a new word or term that you should be aware of. Just as
in the worlds of networking, software, and programming, the world of cabling and telecommunications has its own language.
Sidebars
This special formatting indicates a sidebar. Sidebars are entire paragraphs of information
that, although related to the topic being discussed, fit better into a standalone discussion.
They are just what their name suggests: a sidebar discussion.
Cabling @ Work Sidebars
These special sidebars are used to give real-life examples of situations that actually occurred
in the cabling world.
Enjoy!
Have fun reading this book—we’ve had fun writing it. We hope that it will be a valuable
resource to you and will answer at least some of your questions on LAN cabling. As always, we
love to hear from our readers; you can reach David Groth at dgroth@cableone.net. Jim McBee
can be reached at JMcBee@cta.net. David Barnett can be contacted at barnettdh@comcast.net.
Part I
TECHNOLOGY
AND COMPONENTS
Chapter 1: Introduction to Data Cabling
Chapter 2: Cabling Specifications and Standards
Chapter 3: Choosing the Correct Cabling
Chapter 4: Cable System and Infrastructure Constraints
Chapter 5: Cabling System Components
Chapter 6: Tools of the Trade
Chapter 1
Introduction to Data Cabling
• The Golden Rules of Data Cabling
• The Importance of Reliable Cabling
• The Legacy of Proprietary Cabling Systems
• Cabling and the Need for Speed
• Cable Design
• Data Communications 101
• Speed Bumps: What Slows Down Your Data
• The Future of Cabling Performance
4
Chapter 1 • Introduction to Data Cabling
“D
ata cabling! It’s just wire. What is there to plan?” the newly promoted programmerturned-MIS-director commented to Jim. The MIS director had been contracted to help
the company move its 750-node network to a new location. During the initial conversation, the
director had a couple of other “insights”:
●
He said that the walls were not even up in the new location, so it was too early to be talking
about data cabling.
●
To save money, he wanted to pull the old Category 3 cabling and move it to the new location. (“We can run 100Base-TX on the old cable.”)
●
He said not to worry about the voice cabling and the cabling for the photocopier tracking
system; someone else would coordinate that.
Jim shouldn’t have been too surprised by the ridiculous nature of these comments. Too few
people understand the importance of a reliable, standards-based, flexible cabling system. Fewer
still understand the challenges of building a high-speed network. Some of the technical problems associated with building a cabling system to support a high-speed network are comprehended only by electrical engineers. And many believe that a separate type of cable should be
in the wall for each application (PCs, printers, terminals, copiers, etc.).
Data cabling has come a long way in the past 20 years. This chapter discusses some of the
basics of data cabling, including topics such as:
●
The golden rules of data cabling
●
The importance of reliable cabling
●
The legacy of proprietary cabling systems
●
The increasing demands on data cabling to support higher speeds
●
Cable design and materials used to make cables
●
Types of communications media
●
Limitations that cabling imposes on higher-speed communications
●
The future of cabling performance
You are probably thinking right now that all you really want to know is how to install cable
to support a few 10Base-T workstations. Words and phrases such as attenuation, crosstalk,
twisted pair, modular connectors, and multimode optical-fiber cable may be completely foreign to
you. Just as the world of PC LANs and WANs has its own industry buzzwords, so does the
cabling business. In fact, you may hear such an endless stream of buzzwords and foreign terminology that you’ll wish you had majored in electrical engineering in college. But it’s not
really that mysterious and, armed with the background and information we’ll provide, you’ll
soon be using cablespeak like a cabling professional.
The Importance of Reliable Cabling
5
The Golden Rules of Data Cabling
Listing our own golden rules of data cabling is a great way to start this chapter and the book.
If your cabling is not designed and installed properly, you will have problems that you can’t
even imagine. From our experience, we’ve become cabling evangelists, spreading the good
news of proper cabling. What follows is our list of rules to consider when planning structuredcabling systems:
●
Networks never get smaller or less complicated.
●
Build one cabling system that will accommodate voice and data.
●
Always install more cabling than you currently require. Those extra outlets will come in
handy someday.
●
Use structured-cabling standards when building a new cabling system. Avoid anything
proprietary!
●
Quality counts! Use high-quality cabling and cabling components. Cabling is the foundation of
your network; if the cabling fails, nothing else will matter. For a given grade or category of
cabling, you’ll see a range of pricing, but the highest prices don’t necessarily mean the highest
quality. Buy based on the manufacturer’s reputation and proven performance, not the price.
●
Don’t scrimp on installation costs. Even quality components and cable must be installed
correctly; poor workmanship has trashed more than one cabling installation.
●
Plan for higher speed technologies than are commonly available today. Just because
1000Base-T Ethernet seems unnecessary today does not mean it won’t be a requirement in
five years.
●
Documentation, although dull, is a necessary evil that should be taken care of while you’re
setting up the cabling system. If you wait, more pressing concerns may cause you to ignore it.
The Importance of Reliable Cabling
We cannot stress enough the importance of reliable cabling. Two recent studies vindicated our
evangelical approach to data cabling. The studies showed:
●
Data cabling typically accounts for less than 10 percent of the total cost of the network
infrastructure.
●
The life span of the typical cabling system is upwards of 16 years. Cabling is likely the second most long-lived asset you have (the first being the shell of the building).
●
Nearly 70 percent of all network-related problems are due to poor cabling techniques and
cable-component problems.
6
TIP
Chapter 1 • Introduction to Data Cabling
If you have installed the proper Category or grade of cable, the majority of cabling problems
will usually be related to patch cables, connectors, and termination techniques. The permanent portion of the cable (the part in the wall) will not likely be a problem unless it was
damaged during installation.
Of course, these were facts that we already knew from our own experiences. We have spent
countless hours troubleshooting cabling systems that were nonstandard, badly designed,
poorly documented, and shoddily installed. We have seen many dollars wasted on the installation of additional cabling and cabling infrastructure support that should have been part of the
original installation.
Regardless of how you look at it, cabling is the foundation of your network. It must be
reliable!
The Cost of Poor Cabling
The costs that result from poorly planned and poorly implemented cabling systems can be
staggering. One company that had recently moved into a new office space used the existing
cabling, which was supposed to be Category 5 cable. Almost immediately, 100Mbps Ethernet
network users reported intermittent problems.
These problems included exceptionally slow access times when reading e–mail, saving documents, and using the sales database. Other users reported that applications running under
Windows 98 and Windows NT were locking up, which often caused them to have to reboot
their PC.
After many months of network annoyances, the company finally had the cable runs tested.
Many cables did not even meet the minimum requirements of a Category 5 installation, and
other cabling runs were installed and terminated poorly.
WARNING
Often, network managers mistakenly assume that data cabling either works or it does not,
with no in-between. Cabling can cause intermittent problems.
Is the Cabling to Blame?
Can faulty cabling cause the type of intermittent problems that the aforementioned company
experienced? Contrary to popular opinion, it certainly can. In addition to being vulnerable to
outside interference from electric motors, fluorescent lighting, elevators, cellular phones, copiers, and microwave ovens, faulty cabling can lead to intermittent problems for other reasons.
These reasons usually pertain to substandard components (patch panels, connectors, and
cable) and poor installation techniques, and they can subtly cause dropped or incomplete packets. These lost packets cause the network adapters to have to time out and retransmit the data.
You’ve Come a Long Way, Baby: The Legacy of Proprietary Cabling Systems
7
Robert Metcalfe (inventor of Ethernet, founder of 3Com, columnist for InfoWorld, industry
pundit, and Jim’s hero) helped coin the term drop-rate magnification. Drop-rate magnification
describes the high degree of network problems caused by dropping a few packets. Metcalfe
estimates that a 1 percent drop in Ethernet packets can correlate to an 80 percent drop in
throughput. Modern network protocols that send multiple packets and expect only a single
acknowledgement (such as TCP/IP and Novell’s IPX/SPX) are especially susceptible to droprate magnification, as a single dropped packet may cause an entire stream of packets to be
retransmitted.
Dropped packets (as opposed to packet collisions) are more difficult to detect because they
are “lost” on the wire. When data is lost on the wire, the data is transmitted properly but, due
to problems with the cabling, the data never arrives at the destination or it arrives in an incomplete format.
You’ve Come a Long Way, Baby:
The Legacy of Proprietary Cabling Systems
Early cabling systems were unstructured, proprietary, and often worked only with a specific
vendor’s equipment. They were designed and installed for mainframes and were a combination
of thicknet cable, twinax cable, and terminal cable (RS-232). Because no cabling standards
existed, an MIS director simply had to ask the vendor which cable type should be run for a specific type of host or terminal. Frequently, though, vendor-specific cabling caused problems due
to lack of flexibility. Unfortunately, the legacy of early cabling still lingers in many places.
PC LANs came on the scene in the mid-1980s; these systems usually consisted of thicknet
cable, thinnet cable, or some combination of the two. These cabling systems were also limited
to only certain types of hosts and network nodes.
As PC LANs became popular, some companies demonstrated the very extremes of data
cabling. Looking back, it’s surprising to think that the ceilings, walls, and floor trenches could
hold all the cable necessary to provide connectivity to each system. As one company prepared
to install a 1,000-node PC LAN, they were shocked to find all the different types of cabling systems needed. Each system was wired to a different wiring closet or computer room and
included the following:
●
Wang dual coaxial cable for Wang word-processing terminals
●
IBM twinax cable for IBM 5250 terminals
●
Twisted-pair cable containing one or two pairs, used by the digital phone system
●
Thick Ethernet from the DEC VAX to terminal servers
8
Chapter 1 • Introduction to Data Cabling
●
RS-232 cable to wiring closets connecting to DEC VAX terminal servers
●
RS-232 cable from certain secretarial workstations to a proprietary NBI word-processing
system
●
Coaxial cables connecting a handful of PCs to a single NetWare server
Some users had two or three different types of terminals sitting on their desks and, consequently,
two or three different types of wall plates in their offices or cubicles. Due to the cost of cabling each
location, the locations that needed certain terminal types were the only ones that had cables that supported those terminals. If users moved—and they frequently did—new cables often had to be pulled.
The new LAN was based on a twisted-pair Ethernet system that used unshielded twisted-pair
cabling called Synoptics Lattisnet, which was a precursor to the 10Base-T standards. Due to budget considerations, when the LAN cabling was installed, this company often used spare pairs in the
existing phone cables. When extra pairs were not available, additional cable was installed. Networking standards such as 10Base-T were but a twinkle in the IEEE’s (Institute of Electrical and
Electronics Engineers) eye, and guidelines such as the ANSI/TIA/EIA-568 series of cabling Standards were not yet formulated (see the next section for more information on TIA/EIA-568-B).
Companies deploying twisted-pair LANs had little guidance, to say the least.
Much of the cable that was used at this company was sub–Category 3, meaning that it did not
meet minimum Category 3 performance requirements. Unfortunately, because the cabling
was not even Category 3, once the 10Base-T specification was approved, many of the installed
cables would not support 10Base-T cards on most of the network. So three years into this company’s network deployments, it had to rewire much of its building.
KEY TERM application Often you will see the term application used when referring to cabling. If you
are like me, you think of an application as a software program that runs on your computer.
However, when discussing cabling infrastructures, an application is the technology that will
take advantage of the cabling system. Applications include telephone systems (analog
voice and digital voice), Ethernet, Token Ring, ATM, ISDN, and RS-232.
Proprietary Cabling Is a Thing of the Past
The company discussed in the last section had at least seven different types of cables running
through the walls, floors, and ceilings. Each cable met only the standards dictated by the vendor that required that particular cable type.
As early as 1988, the computer and telecommunications industry yearned for a versatile standard
that would define cabling systems and make the practices used to build these cable systems consistent. Many vendors defined their own standards for various components of a cabling system.
Communications product distributor Anixter (www.anixter.com) codeveloped and published a
document called Cable Performance Levels in 1990, which provided a purchasing specification for
Cabling and the Need for Speed
9
communication cables. It was an attempt to create a standard by which cabling performance could
be measured. Veterans in the networking industry will remember cables often being referred to as
Level 1, Level 2, or Level 3 cables. Anixter continues to maintain the Anixter levels program; it is
currently called Anixter Levels XP.
The Need for a Comprehensive Standard
Twisted-pair cabling in the late 1980s and early 1990s was often installed to support digital or
analog telephone systems. Early twisted-pair cabling (Level 1 or Level 2) often proved marginal or insufficient for supporting the higher frequencies and data rates required for network
applications such as Ethernet and Token Ring. Even when the cabling did marginally support
higher speeds of data transfer (10Mbps), the connecting hardware and installation methods
were often still stuck in the “voice” age, which meant that connectors, wall plates, and patch
panels were designed to support voice applications only.
The original Anixter Cables Performance Levels document only described performance
standards for cables. A more comprehensive standard had to be developed to outline not only
the types of cables that should be used but also the standards for deployment, connectors, patch
panels, and more.
A consortium of telecommunications vendors and consultants worked in conjunction with
the American National Standards Institute (ANSI), Electronic Industries Alliance (EIA), and the
Telecommunications Industry Association (TIA) to create a Standard originally known as the
Commercial Building Telecommunications Cabling Standard or ANSI/TIA/EIA-568-1991.
This Standard has been revised and updated several times. In 1995, it was published as ANSI/
TIA/EIA-568-A or just TIA/EIA-568-A. In subsequent years, TIA/EIA-568-A was updated
with a series of addenda. For example, TIA/EIA-568-A-5, covered requirements for enhanced
Category 5 (Category 5e), which had evolved in the marketplace before a full revision of the
Standard could be published. A completely updated version of this Standard was released as
ANSI/TIA/EIA-568-B in May 2001; it is discussed at length in Chapter 2.
The structured cabling market is estimated to be worth $4 billion worldwide, due in part to
the effective implementation of nationally recognized standards.
Cabling and the Need for Speed
The past few years have seen some tremendous advances not only in networking technologies
but also in the demands placed on them. In the past 20 years, we have seen the emergence of
standards for 10Mb Ethernet, 16Mb Token Ring, 100Mb FDDI, 100Mb Ethernet, 155Mb
ATM (Asynchronous Transfer Mode), 655Mb ATM, 1Gb Ethernet, 2.5Gb ATM., and 10Gb
Ethernet (over optical fiber only as of this writing). Network technology designers are already
planning technologies to support data rates of up to 100Gbps.
10
Chapter 1 • Introduction to Data Cabling
Cabling @ Work: The Increasing Demands of Modern Applications
A perfect example of the increasing demands put on networks by applications is a law firm
that 10 years ago was running typical office-automation software applications on its LAN. The
average document worked on was about four pages in length and 12KB in size. This firm also
used electronic mail; a typical e–mail size was no more than 500 bytes. Other applications
included dBase III and a couple small corresponding databases, a terminal-emulation application that connected to the firm’s IBM minicomputer, and a few Lotus 1-2-3 programs. The
size of transferred data files was relatively small, and the average 10Base-T network-segment
size was about 100 nodes per segment.
Today, the same law firm is still using its 10Base-T and finding it increasingly insufficient for
their ever-growing data processing and office-automation needs. The average document
length is still around four pages but, thanks to the increasing complexity of modern wordprocessing software and templates, the average document is nearly 50KB in size!
Even simple e–mail messages have grown in size and complexity. An average simple e–mail
message size is now about 1.5KB, and, with the new message technologies that allow the
integration of inbound/outbound faxing, an e–mail message with a six-page fax attached has
an average size of 550KB. Further, the firm integrated the voice mail system with the e–mail
system so that inbound voice mail is automatically routed to the user’s mailbox. The average
30-second voice mail message is about 150KB.
The firm also implemented an imaging system that scans and stores many documents that
previously would have taken up physical file space. Included in this imaging system are litigation support documents, accounting information, and older client documentation. A singlepage TIF file can vary in size (depending on the complexity of the image) from 40 to 125KB.
Additional software applications include a client/server document-management system, a client/server accounting system, and several other networked programs that the firm only
dreamed about 10 years before. Most of the firm’s attorneys make heavy use of the Internet,
often visiting sites that provide streaming audio and video.
Today, the firm’s average switched segment size is less than 36 nodes per segment, and
the segments are switched to a 100Mbps backbone. Even with these small segment sizes,
many segments are congested. Although the firm would like to begin running 100Base-TX
Ethernet to the desktop, it is finding that its Category 3 cabling does not support 100BaseTX networking.
When this firm installs its new cabling system to support the next-generation network applications, you can be sure that it will want to choose the cabling infrastructure and network application carefully to ensure that its needs for the next 10 to 15 years will be accommodated.
Cabling and the Need for Speed
11
The average number of nodes on a network segment has decreased dramatically, while the
number of applications and the size of the data transferred has increased dramatically. Applications are becoming more complex, and the amount of network bandwidth required by the typical
user is increasing. Is the bandwidth provided by some of the new ultra-high-speed network applications (such as 1Gb Ethernet) required today? Maybe not to the desktop, but network backbones already take advantage of them.
Does the fact that software applications and data are putting more and more of a demand on
the network have anything to do with data cabling? You might think that the issue is more
related to network-interface cards, hubs, switches, and routers but, as data rates increase, the
need for higher levels of performance on the cable also increases.
Types of Communications Media
Four major types of communications media (cabling) are available for data networking today:
unshielded twisted pair (UTP), shielded or screened twisted pair (STP or ScTP), coaxial, and
fiber optic (FO). It is important to distinguish between backbone cables and horizontal cables.
Backbone cables connect network equipment such as servers, switches, and routers and connect equipment rooms and communication closets. Horizontal cables run from the communication closets to the wall outlets. For new installations, multistrand fiber-optic cable is
essentially universal as backbone cable. For the horizontal, UTP reigns supreme. Much of the
focus of this book is on UTP cable.
Twisted-Pair Cable
By far the most economical and widely installed cabling today is twisted-pair wiring. Not only
is twisted-pair wiring less expensive than other media, installation is also simpler, and the tools
required to install it are not as costly. Unshielded twisted pair (UTP) and shielded twisted pair
(STP) are the two primary varieties of twisted pair on the market today. Screened twisted pair
(ScTP) is a variant of STP.
Unshielded Twisted Pair (UTP)
Though it has been used for many years for telephone systems, unshielded twisted pair (UTP)
for LANs first became common in the late 1980s with the advent of Ethernet over twisted-pair
wiring and the 10Base-T standard. UTP is cost effective and simple to install, and its bandwidth capabilities are continually being improved.
NOTE
An interesting historical note: Alexander Graham Bell invented and patented twisted-pair
cabling and an optical telephone in the 1880s. During that time, Bell offered to sell his
company to Western Union for $100,000, but it refused to buy.
12
Chapter 1 • Introduction to Data Cabling
UTP cabling typically has only an outer covering (jacket) consisting of some type of nonconducting material. This jacket covers one or more pairs of wire that are twisted together. In
this chapter, as well as throughout much of the rest of the book, assume unless specified otherwise that UTP cable is a four-pair cable. Four-pair cable is the most commonly used horizontal cable in network installations today. The characteristic impedance of UTP cable is 100
ohms plus or minus 15 percent, though 120-ohm UTP cable is sometimes used in Europe and
is allowed by the ISO/IEC 11801 cabling Standard.
A typical UTP cable is shown in Figure 1.1. This simple cable consists of a jacket that surrounds four twisted pairs. Each wire is covered by an insulation material with good dielectric
properties. For data cables, this means that in addition to being electrically nonconductive, it
must also have certain properties that allow good signal propagation.
UTP cabling seems to generate the lowest expectations of twisted-pair cable. Its great popularity is mostly due to the cost and ease of installation. With every new generation of UTP
cable, network engineers think they have reached the limits of the UTP cable’s bandwidth and
capabilities. However, cable manufacturers continue to extend its capabilities. During the
development of 10Base-T and a number of pre-10Base-T proprietary UTP Ethernet systems,
critics said that UTP would never support data speeds of 10Mbps. Later, the skeptics said that
UTP would never support data rates at 100Mbps. In July 1999, the IEEE approved the
1000Base-T standard, which allows Gigabit Ethernet to run over Category 5 cable!
FIGURE 1.1
UTP cable
UTP
Cabling and the Need for Speed
13
Shielded Twisted Pair (STP)
Shielded twisted-pair (STP) cabling was first made popular by IBM when it introduced Type
classification for data cabling. Though more expensive to purchase and install than UTP, STP
offers some distinct advantages. The current ANSI/TIA/EIA-568-B Cabling Standard recognizes IBM Type 1A horizontal cable, which supports frequency rates of up to 300MHz, but
does not recommend it for new installations. STP cable is less susceptible to outside electromagnetic interference (EMI) than UTP cabling because all cable pairs are well shielded.
Not All UTP Is Created Equal!
Though two cables may look identical, their supported data rates can be dramatically different.
Older UTP cables that were installed to support telephone systems may not even support
10Base-T Ethernet. The ANSI/TIA/EIA-568-B Standard helps consumers choose the right cable
(and components) for the right application. The Standard has been updated over the years and
currently defines four categories of UTP cable: Categories 3, 5, 5e, and 6. Note that Category
5 requirements have been moved to an addendum and are not officially recognized as an
approved cable for new installations. Here is a brief rundown of Categories past and present:
Category 1 (not defined by ANSI/TIA/EIA-568-B) This type of cable usually supports frequencies
of less than 1MHz. Common applications include analog voice telephone systems. It
never existed in any version of the 568 Standard.
Category 2 (not defined by ANSI/TIA/EIA-568-B) This cable type supports frequencies of up to
4MHz. It’s not commonly installed, except in installations that use twisted-pair ArcNet
and Apple LocalTalk networks. Its requirements are based on the original, proprietary
IBM Cabling System. It never existed in any version of the 568 Standard.
Category 3 (recognized cable type in ANSI/TIA/EIA-568-B) This type of cable supports data rates
up to 16MHz. This cable was the most common variety of UTP for a number of years starting in the late 1980s. Common applications include 4Mbps UTP Token Ring, 10Base-T
Ethernet, 100Base-T4, and digital and analog telephone systems. Its inclusion in the
568-B Standard is for voice applications.
Category 4 (not defined by ANSI/TIA/EIA-568-B) Cable belonging to Category 4 was designed to
support frequencies of up to 20MHz, specifically in response to a need for a UTP solution
for 16Mbps Token Ring LANs. It was quickly replaced in the market when Category 5 was
developed, as Category 5 gives five times the bandwidth with only a small increment in
price. Category 4 was a recognized cable in the 568-A Standard, but it has been dropped
from ANSI/TIA/EIA-568-B.
Continued on next page
14
Chapter 1 • Introduction to Data Cabling
Category 5 (included in ANSI/TIA/EIA-568-B for informative purposes only) Category 5 was the most
common cable installed, until new installations began to use an enhanced version. It
may still be the cable type most in use because it was the cable of choice during the huge
infrastructure boom of the 1990s. It was designed to support frequencies of up to
100MHz. Applications include 100Base-TX, PMD (FDDI over copper), 155Mbps ATM over
UTP, and thanks to sophisticated encoding techniques, 1000Base-T Ethernet. To support 1000Base-T applications, the installed cabling system had to pass performance
tests specified by TSB-95 (TSB-95 was a Technical Service Bulletin issued in support of
ANSI/TIA/EIA-568-A, which defines additional test parameters. It is no longer a recognized cable type per the ANSI/TIA/EIA-568-B Standard, but for historical reference purposes, Category 5 requirements, including those taken from TSB-95, are specified in
Appendix D of 568-B.1 and Appendix N of 568-B.2.
Category 5e (recognized cable type in ANSI/TIA/EIA-568-B) Category 5e (enhanced Category 5)
was introduced with the TIA/EIA-568-A-5 addendum of the cabling Standard. Even though
it has the same rated bandwidth as Category 5, i.e., 100MHz, additional performance criteria and a tighter transmission test requirement make it more suitable for high-speed
applications such as Gigabit Ethernet. Applications are the same as those for Category
5 cabling. It is now the minimum recognized cable category for data transmission in
ANSI/TIA/EIA-568-B.
Category 6 (recognized cable type in ANSI/TIA/EIA-568-B) Category 6 cabling was officially recognized with the publication of an addition to ANSI/TIA/EIA-568-B in June 2002. In addition
to more stringent performance requirements as compared to Category 5e, it extends the
usable bandwidth to 200MHz. Its intended use is for Gigabit Ethernet and other future
high-speed transmission rates. Successful application of Category 6 cabling requires
closely matched components in all parts of the transmission channel, i.e., patch cords,
connectors, and cable. The cabling Standards are discussed in more detail in Chapter 2.
Additional information on copper media can be found in Chapters 7 and 9.
Some STP cabling, such as IBM Types 1 and 1A cable, uses a woven copper-braided shield,
which provides considerable protection against electromagnetic interference (EMI.) Inside the
woven copper shield, STP consists of twisted pairs of wire (usually two pairs) wrapped in a foil
shield. Some STP cables have only the foil shield around the wire pairs. Figure 1.2 shows a typical STP cable. In the IBM design, the wire used in STP cable is 22 AWG (just a little larger
than the 24 AWG wire used by typical UTP LAN cables) and has a nominal impedance of
150 ohms.
Constructions of STP in 24 AWG, identical in copper conductor size to UTP cables, are
more commonly used today.
Cabling and the Need for Speed
FIGURE 1.2
15
Overall shield
STP cable
Cable jacket
Individual pair
Pair shield
Simply installing STP cabling does not guarantee you will improve a cable’s immunity to
EMI or reduce the emissions from the cable. Several critical conditions must be met to achieve
good shield performance:
●
The shield must be electrically continuous along the whole link.
●
All components in the link must be shielded. No UTP patch cords can be used.
●
The shield must fully enclose the pair, and the overall shield must fully enclose the core.
Any gap in the shield covering is a source of EMI leakage.
●
The shield must be grounded at both ends of the link, and the building grounding system
must conform to grounding standards (such as TIA/EIA-607).
If one of these conditions is not satisfied, shield performance will be badly degraded. For
example, tests have shown that if the shield continuity is broken, the emissions from a shielded
cabling system increase by 20dB on the average.
STP is something of a dinosaur and is rarely installed in the U.S.
Screened Twisted Pair (ScTP)
A recognized cable type in the ANSI/TIA/EIA-568-B Standard is screened twisted-pair
(ScTP) cabling, a hybrid of STP and UTP cable. ScTP cable contains four pairs of 24 AWG,
100-ohm wire (see Figure 1.3) surrounded by a foil shield or wrapper and a drain wire for
bonding purposes. ScTP is also sometimes called foil twisted-pair (FTP) cable because the foil
shield surrounds all four conductors. This foil shield is not as large as the woven copperbraided jacket used by some STP cabling systems, such as IBM Types 1 and 1A. ScTP cable
is essentially STP cabling that does not shield the individual pairs; the shield may also be
smaller than some varieties of STP cabling.
16
Chapter 1 • Introduction to Data Cabling
FIGURE 1.3
ScTP cable
Foil shield
or screen
Cable jacket
Wire pairs
The foil shield is the reason ScTP is less susceptible to noise. In order to implement a completely effective ScTP system, however, the shield continuity must be maintained throughout
the entire channel—including patch panels, wall plates, and patch cords. Yes, you read this correctly; the continuity of not only the wires but also the shield must be maintained through connections. Like STP cabling, the entire system must be bonded to ground at both ends of each
cable run, or you will have created a massive antenna.
Standard eight-position modular jacks (commonly called RJ-45s) do not have the ability to
ensure a proper ground through the cable shield. So special mating hardware, jacks, patch panels, and even tools must be used to install an ScTP cabling system. Many manufacturers of
ScTP cable and components exist—just make sure to follow all installation guidelines.
ScTP is recommended for use in environments that have abnormally high ambient electromagnetic interference, such as hospitals, airports, or government/military communications
centers. The value of an ScTP system in relation to its additional cost is sometimes questioned,
as some tests indicate that UTP noise immunity and emissions characteristics are comparable
with ScTP cabling systems. Often, the decision to use ScTP simply boils down to whether you
want the warm and fuzzy feeling of knowing an extra shield is in place.
Optical-Fiber Cable
As late as 1993, it seemed that in order to move toward the future of desktop computing, businesses would have to install fiber-optic cabling directly to the desktop. Copper cable (UTP)
Cabling and the Need for Speed
17
Should You Choose Unshielded, Shielded, Screened, or Optical-Fiber
Cable for Your Horizontal Wiring?
Many network managers and cabling-infrastructure systems designers face the question of
which cabling to choose. Often the decision is very cut and dried, but sometimes it is not.
For typical office environments, UTP cable will be always be the best choice (at least until
fiber-network components drop in price). Most offices don’t experience anywhere near the
amount of electromagnetic interference necessary to justify the additional expense of installing shielded twisted-pair cabling.
Environments such as hospitals and airports may benefit from a shielded or screened cabling
system. The deciding factor seems to be the external field strength. If the external field
strength does not exceed three volts per meter (V/m), good-quality UTP cabling should work
fine. If the field strength exceeds three V/m, shielded cable will be a better choice.
However, many cabling designers think that if the field strength exceeds three V/m, fiber-optic
cable is a better choice. Further, these designers will point out the additional bandwidth and security of fiber-optic cable.
Although everyone has an opinion on the type of cable you should install, it is true that the only
cable type that won’t be outgrown quickly is optical fiber. Fiber-optic cables are already the media
of choice for the backbone. As hubs, routers, and workstation network-interface cards for fiberoptic cables come down in price, fiber will move more quickly into the horizontal cabling space.
performance continues to be surprising, however. Fiber-optic cable is discussed in more detail
in Chapter 10.
NOTE
Fiber versus fibre: Are these the same? Yes, just as color (U.S. spelling) and colour (British
spelling) are the same. Your spell checker will probably question your use of fibre, however.
Although for most of us fiber to the desktop is not yet a practical reality, fiber-optic cable is
touted as the ultimate answer to all our voice, video, and data transmission needs and continues
to make inroads in the LAN market. Some distinct advantages of fiber-optic cable include:
●
Transmission distances can be much greater than with copper cable.
●
Potential bandwidth is dramatically higher than with copper.
●
Fiber optic is not susceptible to outside EMI or crosstalk interference, nor does it generate
EMI or crosstalk.
●
Fiber-optic cable is much more secure than copper cable because it is extremely difficult to
monitor, “eavesdrop,” or tap a fiber cable.
18
NOTE
Chapter 1 • Introduction to Data Cabling
Fiber-optic cable can easily handle data at speeds above 1Gbps; in fact, it has been demonstrated to handle data rates exceeding 200Gbps!
Since the late 1980s, LAN solutions have used fiber-optic cable in some capacity. Recently,
a number of ingenious solutions that allow both voice and data to use the same fiber-optic cable
have emerged.
Fiber-optic cable uses a strand of glass or plastic to transmit data signals using light; the data
is carried in light pulses. Unlike the transmission techniques used by its copper cousins, optical
fibers are not electrical in nature.
Plastic-core cable is easier to install and slightly cheaper than glass core, but plastic cannot
carry data as far as glass. In addition, graded-index plastic optical fiber (POF) has yet to make
a widespread appearance on the market, and the cost-to-bandwidth value proposition for POF
is poor and may doom it to obscurity.
Light is transmitted through a fiber-optic cable by light-emitting diodes (LEDs) or lasers.
With newer LAN equipment designed to operate over longer distances, such as with
1000Base-LX, lasers are commonly being used.
A fiber-optic cable (shown in Figure 1.4) consists of a jacket (sheath), protective material, and
the optical-fiber portion of the cable. The optical fiber consists of a core (8.3, 50, or 62.5 microns
in diameter, depending on the type) that is smaller than a human hair, which is surrounded by a
cladding. The cladding (typically 125 micrometers in diameter) is surrounded by a coating, buffering material, and, finally, a jacket. The cladding provides a lower refractive index to cause
reflection within the core so that light waves can be transmitted through the fiber.
Fiber Optic Cabling Comes of Age Affordably
Fiber-optic cable used to be much harder to install than copper cable, requiring precise installation practices. However, in the past few years, the cost of an installed fiber-optic link (just the
cable and connectors) has dropped and is now often only 10 to 15 percent more than the cost
of a UTP link. Better fiber-optic connectors and installation techniques have made fiber-optic
systems easier to install. In fact, some installers who are experienced with both fiber-optic systems and copper systems will tell you that with the newest fiber-optic connectors and installation techniques, fiber-optic cable is easier to install than UTP.
The main hindrance to using fiber optics all the way to the desktop in lieu of UTP or ScTP is
that the electronics (workstation network-interface cards and hubs) are still significantly more
expensive, and the total cost of a full to-the-desktop FO installation is estimated at 50 percent
greater than UTP.
Cabling and the Need for Speed
FIGURE 1.4
Dielectric
strengthening
material
A dual fiber-optic cable
19
Outer jacket
Cladding
Fiber core
Protective buffer
or coating
Two varieties of fiber-optic cable are commonly used in LANs and WANs today: singlemode and multimode. The mode can be thought of as bundles of light rays entering the fiber;
these light rays enter at certain angles.
KEY TERM dark fiber No, dark fiber is not a special, new type of fiber cable. When telecommunications companies and private businesses run fiber-optic cable, they never run the exact
number of strands of fiber they need. That would be foolish. Instead, they run two or three
times the amount of fiber they require. The spare strands of fiber are often called dark fiber
because they are not then in use, i.e., they don’t have light passing through them. Telecommunications companies often lease out these extra strands to other companies.
Single-Mode Fiber-Optic Cable
Single-mode fiber (SMF, sometimes called monomode) optic cable is most commonly used by
telephone companies and in data installations as backbone cable. Single-mode fiber-optic cable
is not used as horizontal cable to connect computers to hubs. The light in a single-mode cable
travels straight down the fiber (as shown in Figure 1.5) and does not bounce off the surrounding cladding as it travels. Typical single-mode wavelengths are 1,310 and 1,550 nanometers.
Before you install single-mode fiber-optic cable, make sure the equipment you are using supports it. The equipment that uses single-mode fiber typically uses lasers to transmit light
through the cable because a laser is the only light source capable of inserting light into the very
small (8- to 10-micron) core of a single-mode fiber.
20
Chapter 1 • Introduction to Data Cabling
FIGURE 1.5
Single-mode fiber-optic
cable
Core
Light source
Light ray
Cladding
Multimode Fiber-Optic Cable
Multimode fiber (MMF) optic cable is usually the fiber-optic cable used with networking applications such as 10Base-FL, 100Base-F, FDDI, ATM, and others that require fiber optics for
both horizontal and backbone cable. Multimode cable allows more than one mode of light to
propagate through the cable. Typical wavelengths of light used in multimode cable are 850 and
1,300 nanometers.
There are two types of multimode fiber-optic cable: step index or graded index. Step-index
multimode fiber-optic cable indicates that the refractive index between the core and the cladding is very distinctive. The graded-index fiber-optic cable is the most common type of multimode fiber. The core of a graded-index fiber contains many layers of glass; each has a lower
index of refraction going outward from the core of the fiber. Both types of multimode fiber
permit multiple modes of light to travel through the fiber simultaneously (see Figure 1.6).
Graded-index fiber is preferred because less light is lost as the signal travels around bends in
the cable.
The typical multimode fiber-optic cable used for horizontal cabling consists of two strands
of fiber (duplex); the core is either 50 or 62.5 microns (micrometers) in diameter, and the cladding is 125 microns in diameter (the measurement is often simply referred to as 50/125-micron
or 62.5/125-micron).
Cabling and the Need for Speed
21
FIGURE 1.6
Multimode fiber-optic
cable (graded-index
multimode)
Core
Light source
Different modes
of light exiting
Cladding
Coaxial Cable
At one time, coaxial cable was the most widely used cable type in the networking business. It is still
widely used for closed-circuit TV and other video distribution. However, it is falling by the wayside in the data-networking arena. Coaxial (or just coax) cable is difficult to run and is generally
more expensive than twisted-pair cable. In defense of coaxial cable, however, it provides a tremendous amount of bandwidth and is not as susceptible to outside interference as is UTP. Overall installation costs might also be lower than for other cable types because the connectors take
less time to apply. Although we commonly use coaxial cable to connect our televisions to our
VCRs, we will probably soon see fiber-optic or twisted-pair interfaces to televisions and VCRs.
Coaxial cable comes in many different flavors, but the basic design is the same for all types.
Figure 1.7 shows a typical coaxial cable; at the center is a solid (or sometimes stranded) copper
core. Some type of insulation material, such as PVC (polyvinyl chloride), surrounds the core.
Either a sleeve or braided-wire mesh shields the insulation, and a jacket covers the entire cable.
The shielding shown in Figure 1.7 protects the data transmitted through the core from outside electrical noise and keeps the data from generating significant amounts of interference.
Coaxial cable works well in environments where high amounts of interference are common.
A number of varieties of coaxial cable are available on the market. You pick the coaxial cable
required for the application; unfortunately, coaxial cable installed for Ethernet cannot be used
for an application such an ArcNet. Some common types of coaxial cable are listed in Table 1.1.
22
Chapter 1 • Introduction to Data Cabling
FIGURE 1.7
Cable jacket
Insulation
(PVC or teflon)
Typical coaxial cable
Conducting core
Shielding
(copper wire mesh
or aluminum sleeve)
T A B L E 1 . 1 Common Coaxial-Cable Types
Cable
Description
RG-58 /U
A 50-ohm coaxial cable with a solid core. Commonly called thinnet and used with
10Base-2 Ethernet and some cable TV applications.
RG-58 A/U
A 50-ohm coaxial cable with a stranded core. Also known as thinnet. Used by
10Base-2 Ethernet and some cable TV applications.
RG-58 C/U
A military-specification version of RG-58 A/U.
RG-59U
A 75-ohm coaxial cable. Used with Wang systems and some cable TV applications.
RG-6U
A 75-ohm coaxial cable. The current minimum grade to install in residences
because it will handle the full frequency range of satellite service, plus highdefinition TV and cable-modem service.
RG-6 Quad Shield
Same as RG-6U, but with additional shielding for enhanced noise immunity.
Currently the recommended cable to use in residences.
RG-62U
A 93-ohm coaxial cable. Used with IBM cabling systems and ArcNet.
Cable Design
Whether you are a network engineer, cable installer, or network manager, a good understanding
of the design and components of data cabling is important. Do you know what types of cable can
be run above the ceiling? What do all those markings on the cable mean? Can you safely untwist
a twisted-pair cable? What is the difference between shielded and unshielded twisted-pair cable?
What is the difference between single-mode and multimode fiber-optic cable?
You need to know the answer to these questions—not only when designing or installing a
cabling system but also when working with an existing cabling system. All cable types must satisfy
Cable Design
23
some fundamental fire safety requirements before any other design elements are considered. The
U.S. National Electrical Code (NEC) defines five levels of cable for use with LAN cabling and
telecommunications, shown in Table 1.2. Cables are rated on their flammability, heat resistance,
and how much visible smoke (in the case of plenum cable) they generate when exposed to a flame.
The ratings are a hierarchy, with plenum-rated cables at the top. In other words, a cable with a
higher rating can be used instead of any lesser-rated (lower down in the table) cable. For example,
a riser cable can be used in place of general purpose and limited use cables but cannot be used in
place of a plenum cable. A plenum cable can substitute for all those below it.
T A B L E 1 . 2 Table 1.2: NEC Flame Ratings
Optical Fiber Twisted Pair Coaxial Cable ArtiArticle 770
Article 800 cle 820
Common Term Notes
OFNP1
OFCP2
CMP3
MPP4
CAVTP
Plenum
Most stringent rating. Must limit the
spread of flame and the generation of
visible smoke. Intended for use in HVAC
(heating ventilation and air conditioning)
plenum areas; can be substituted for all
subsequent lesser ratings.
OFNR
CMR
MPR
CATVR
Riser
When placed vertically in a building riser
shaft going from floor to floor, cable
must not transmit flame between floors.
OFCR
OFC
OFNG
OFCG
CMG
MPG
CATVG
General
PurposeFlame spread limited to 4 ft.,
11 in. during test. Cable may not
penetrate floors or ceilings, i.e., may
only be used within a single floor. This
designation was added as a part of the
harmonization efforts between U.S. and
Canadian standards.
OFN
OFC
CM
CATV
General
PurposeFlame spread limited to 4 ft, 11
in during test. Cable may not penetrate
floors or ceilings, i.e., may only be used
within a single floor.
Not
applicable
CMX
CATVX
Limited
Use
For residential use but can only be
installed in one- and two-family (duplex)
housing units. Often co-rated with
optional UL requirements for limited
outdoor use.
OFN = Optical fiber, nonconductive (no metallic elements in the cable)
OFC = Optical fiber, conductive (contains a metallic shield for mechanical protection)
3 CM = Communications cable
4 MP = Multipurpose cable (can be used as a communication cable or a low-voltage signaling cable per NEC Article 725)
1
2
24
Chapter 1 • Introduction to Data Cabling
WARNING
The 2002 edition of the NEC requires that the accessible portion of all abandoned communications cables in plenums and risers be removed when installing new cabling. The
cost of doing so could be significant, and your cabling RFQ should clearly state both the
requirement and who is responsible for the cost of removal.
NOTE
More details on the National Electrical Code are given in Chapter 4.
Plenum
According to building engineers, construction contractors, and air-conditioning people, the
plenum (shown in Figure 1.8) is the space between the false ceiling (a.k.a. drop-down ceiling)
and the structural ceiling, when that space is used for air circulation, heating ventilation, and air conditioning (HVAC). Occasionally, the space between a false floor (such as a raised computerroom floor) and the structural floor is referred to as the plenum. Typically, the plenum is used
for returning air to the HVAC equipment.
Raised ceilings and floors are convenient spaces in which to run data and voice cable, but
national code requires that plenum cable be used in plenum spaces. Be aware that some people
use the word plenum too casually, referring to all ceiling and floor spaces, whether or not they
are plenums. This can be expensive because plenum cables can cost more than twice their nonplenum equivalent. (See the sidebar “Plenum Cables: Debunking the Myths.”)
Cable-design engineers refer to plenum as a type of cable that is rated for use in the plenum spaces
of a building. Those of us who have to work with building engineers, cabling professionals, and contractors must be aware of when the term applies to the air space and when it applies to cable.
Some local authorities and building management may also require plenum-rated cable in
nonplenum spaces. Know the requirements in your locale.
FIGURE 1.8
The ceiling space and
a riser
False ceiling
Wiring
closet
Second floor
Structural ceiling
Plenum
False ceiling
Riser
Wiring
closet
First floor
Cable Design
REAL WORLD SCENARIO
Plenum Cables: Debunking the Myths
It’s time to set the record straight about several commonly held, but incorrect, beliefs about
plenum-rated cable. These misconceptions get in the way of most discussions about LAN
cabling but are especially bothersome in relation to UTP.
Myth #1: Any false or drop-ceiling area or space beneath a raised floor is a plenum, and I must use plenum-rated
cables there. Not true. Although many people call all such spaces the plenum, they aren’t
necessarily. A plenum has a very specific definition. It is a duct, raceway, or air space
that is part of the HVAC air-handling system. Sometimes, or even often, the drop-ceiling
or raised-floor spaces are used as return air passageways in commercial buildings, but
not always. Your building-maintenance folks should know for sure, as will the company
that installed the HVAC. If it isn’t a plenum space, then you don’t have to spend the extra
for plenum-rated cable.
Myth #2: There are plenum cables and PVC cables. The wording here is nothing but sloppy use of
terminology, but it results in the widespread notion that plenum cables don’t use PVC in their
construction and that nonplenum cables are all PVC. In fact, virtually all four-pair UTP cables
in the United States use a PVC jacket, plenum cables included. And guess what? Virtually
none of the Category 5 or better cables on the market use any PVC as an insulation material
for the conductors, no matter what the flame rating. So a plenum-rated cable actually has just
as much PVC in it as does a so-called PVC nonplenum cable. Unless you have to be specific
about one of the lesser flame ratings, you are more accurate when you generalize about
cable flame ratings if you say plenum and nonplenum instead of plenum and PVC.
Myth #3: Plenum cables don’t produce toxic or corrosive gasses when they burn. In Europe and in the
United States (regarding specialized installations), much emphasis is placed on “clean”
smoke. Many tests, therefore, measure the levels of toxic or corrosive elements in the
smoke. But for general commercial and residential use, the U.S. philosophy toward fire
safety as it relates to cables is based on two fundamentals: First, give people time to evacuate a building and, second, don’t obscure exits and signs that direct people to exits. NEC
flame-test requirements relate to tests that measure resistance to spreading a fire, to varying degrees and under varying conditions based on intended use of the cable. The requirements satisfy part one of the philosophy—it delays the spread of the fire. Because all but
plenum cables are intended for installation behind walls or in areas inaccessible to the
public, the second part doesn’t apply. However, because a plenum cable is installed in an
air-handling space where smoke from the burning cable could spread via HVAC fans to the
populated part of the building, the plenum test measures the generation of visible smoke.
Visible smoke can keep people from recognizing exits or suffocate them (which actually
happened in some major hotel fires before plenum cables were defined in the code).
Continued on next page
25
26
Chapter 1 • Introduction to Data Cabling
Myth #4: I should buy plenum cable if I want good transmission performance. If you’ve got money to
burn (ha!), believe this. Although FEP (fluorinated ethylene-propylene, the conductor insulation material used in plenum-rated Category 5 and higher cables) has excellent transmission properties, its use in plenum cables is due more to its equally superb resistance
to flame propagation and relatively low level of visible-smoke generation. In Category 5
and higher nonplenum cables, HDPE (high-density polyethylene) is commonly used as
conductor insulation. It has almost as good transmission properties as FEP and has the
added benefit of being several times lower in cost than FEP (and thus explains the primary difference in price between plenum and nonplenum UTP cables). HDPE does, however, burn like a candle and generate copious visible smoke. Cable manufacturers can
adjust the PVC jacket of a four-pair construction to allow an HDPE-insulated cable to pass
all flame tests except the plenum test. They also compensate for differences in transmission properties between FEP and HDPE (or whatever materials they select) by altering
the dimensions of the insulated conductor. End result: No matter what the flame rating,
if the cable jacket says Category 5 or better, you get Category 5 or better.
Myth #5: To really protect my family, I should specify plenum cable be installed in my home. The lack of
logic and understanding here stuns us. First, communication cables are almost never the
source of ignition or flame spread in a residential fire. It’s not impossible, but it’s
extremely rare. Secondly, to what should the “fireproof” cable be attached? It is going to
be fastened to wooden studs, most likely—wooden studs that burn fast, hot, and with
much black, poisonous smoke. While the studs are burning, the flooring, roofing, electrical wiring, plastic water pipes, carpets, curtains, furniture, cabinets, and woodwork are
also blazing away merrily, also generating much smoke. A plenum cable’s potential to
mitigate such a conflagration is essentially nil. Install a CMX-rated cable, and you’ll comply with the National Electric Code. Install CM, CMG, or CMR, and you’ll be exceeding
NEC requirements. Leave the CMP cable to the commercial environments for which it’s
intended and don’t worry about needing it at home.
Riser
The riser is a vertical shaft used to route cable between two floors. Often, it is nothing more
complicated than a hole (core) that is drilled in the floor and allows cables to pass through.
However, a hole between two floors with cable in it introduces a new problem. Remember the
fire-disaster movie The Towering Inferno? In it, the fire spread from floor to floor through the
building cabling. That should not happen nowadays because building codes require that riser
cable be rated properly. So the riser cable must have certain fire-resistant qualities.
TIP
The National Electrical Code permits plenum cable to be used in the riser, but it does not
allow riser cable to be used in the plenum.
Cable Design
27
The Towering Inferno had a basis in reality, not only because cables at the time burned relatively easily but also because of the chimney effect. A chimney works by drawing air upward,
through the fire, invigorating the flames with oxygen flow. In a multistory building, the riser
shafts can act as chimneys, accelerating the spread and intensity of the fire. Therefore, building
codes usually require that the riser be firestopped in some way. That’s accomplished by placing
special blocking material in the riser at each penetration of walls or ceilings after the cables
have been put in place. Techniques for firestopping are discussed in Chapter 12.
General Purpose
The general-purpose rating is for the classic horizontal cable for runs from the wiring closet
to the wall outlet. It is rated for use within a floor and cannot penetrate a structural floor or ceiling. It is also the rating most commonly used for patch cords because, in theory, a patch cord
will never go through a floor or ceiling. You should be aware that riser-rated cable is most commonly used for horizontal runs, simply because the price difference between riser and generalpurpose cables is typically small and contractors don’t want to haul more cable types than they
have to.
Limited Use
The limited-use rating is for single and duplex (two-family) residences only. Some exceptions
in the code allow its use in other environments, as in multitenant spaces such as apartments.
However, the exceptions impose requirements that are typically either impractical or aesthetically unpleasant, and so it is better to consider limited-use cables as just for single and twofamily residences.
Cable Jackets
Because UTP is virtually ubiquitous in the LAN environment, the rest of this chapter will
focus on design criteria and transmission-performance characteristics related to UTP cable.
The best place to start looking at cable design is on the outside. Each type of cable (twisted
pair, fiber optic, or coaxial) will have different designs with respect to the cable covering or the
jacket.
KEY TERM jacket and sheath The cable’s jacket is the plastic outer covering of the cable. Sheath
is sometimes synonymous with jacket but not always. The sheath includes not only the
jacket of the cable but also any outside shielding (such as braided copper or foil) that may
surround the inner wire pairs. With UTP and most fiber-optic cables, the sheath and the
jacket are the same. With ScTP and STP cables, the sheath includes the outer layer of
shielding on the inner wires.
28
Chapter 1 • Introduction to Data Cabling
One of the most common materials used for the cable jacket is polyvinyl chloride (PVC); UTP
cables in the United States are almost exclusively jacketed with PVC, regardless of the flame
rating of the cable. PVC was commonly used in early LAN cables (Category 3 and lower) as an
insulation and as material for jackets, but the dielectric properties of PVC are not as desirable
as that of other substances, such as FEP or PP (polypropylene), that can be used for higherfrequency transmission. Figure 1.9 shows a cutaway drawing of a UTP cable.
Other substances commonly used in cable jackets of indoor cables include ECTFE (HALAR),
PVDF (KYNAR), and FEP (Teflon or NeoFlon). These materials have enhanced flame-retardant
qualities as compared to PVC but are much more costly. Where PVC can do the job, it’s the jacket
material of choice.
KEY TERM slitting cord Inside some UTP cable jackets is a polyester or nylon string called the slitting cord or slitting string. The purpose of this cord is to assist with slicing the jacket open
when more than an inch or two of jacket needs to be removed. Some cable installers love
them; many find them a nuisance, as they get in the way during termination.
NOTE
No standard exists for the jacket color, so manufacturers can make the jacket any color
they care to. You can order Category 5e or 6 cables in at least a dozen different colors,
including hot pink. Colors like hot pink and bright yellow don’t function any differently than
plain gray cables, but they sure are easier to spot when you are in the ceiling! Many cable
installers will pick a different color cable based on which jack position or patch panel the
cable is going to so that it is easier to identify quickly.
FIGURE 1.9
Cutaway drawing of a
UTP cable showing insulated wire pairs, slitting cord, and jacket
Slitting cord made of nylon
or other polymer
Jacket
Twisted pairs—
each wire’s insulation
is color coded.
Cable Design
29
Cable Markings
Have you examined the outside jacket of a twisted-pair or fiber-optic cable? If so, you noticed
many markings on the cable that may have made sense. Unfortunately, no standard exists for
cable markings, so understanding them is hit or miss. For cables manufactured for use in the
United States and Canada, these markings may identify the following:
●
Cable manufacturer and manufacturer part number.
●
Category of cable (e.g., UTP).
●
NEC/UL flame tests and ratings.
●
CSA (Canadian Standards Association) flame tests.
●
Footage indicators. Sometimes these are “length-remaining markers” that count down
from the package length to zero so you can see how many feet of cable remains on a spool
or in a box. Superior Essex (www.superioressex.com) is one cable manufacturer that
imprints length-remaining footage indicators.
For a list of definitions of some marking acronyms, see the section “Common Abbreviations.”
Here is an example of one cable’s markings:
000750 FT 4/24 (UL) c(UL) CMP/MPP VERIFIED (UL) CAT 5e
SUPERIOR ESSEX COBRA 2313H
These markings identify the following information about the cable:
●
The 000750 FT is the footage indicator.
●
The 4/24 identifies the cable as having four pairs of 24 AWG wire.
●
The (UL) symbol indicates that the cable is UL listed. Listing is a legal requirement of
the NEC.
●
The symbol c(UL) indicates that the cable is UL listed to Canadian requirements in addition to U.S. requirements. Listing is a legal requirement of the CSA.
●
The CMP/MPP code stands for communications plenum (CMP) and multipurpose plenum
(MPP) and indicates that the cable can be used in plenum spaces. This is the NEC flame/
smoke rating.
●
The term VERIFIED (UL) CAT 5e means that the cable has been verified by the UL as being
Category 5e compliant (and TIA/EIA-568-B compliant). Verification to transmission
properties is optional.
●
SUPERIOR ESSEX is the manufacturer of the cable.
●
COBRA is the cable brand (in this case, a Category 5e–plus cable, which means it exceeds the
requirements for Category 5e).
30
Chapter 1 • Introduction to Data Cabling
●
The numbers 2313 indicate the date of manufacture in Julian format. In this case, it is the
231st day of 2003.
●
H indicates the Superior Essex manufacturing plant.
Some manufacturers may also include their “E-file” number instead of the company name.
This number can be used when calling the listing agency (such as the UL) to trace the manufacturer of a cable. In the case of UL, you can look up the E-file numbers online at www.ul.com.
WARNING
Note that cables marked with CMR (communications riser) and CMG (communications general) must not be used in the plenum spaces.
Common Abbreviations
So that you can better decipher the markings on cables, here is a list of common acronyms and
what they mean:
NFPA The National Fire Protection Association
NEC The National Electrical Code that is published by the NFPA once every three years
UL The Underwriters Laboratories
CSA The Canadian Standards Association
PCC The Premises Communications Cord standards for physical wire tests defined by
the CSA
Often, you will see cables marked with UL-910, FT-4, or FT-6. The UL-910 is a specific UL
flame test, and the FT-4 and FT-6 are CSA flame tests.
Wire Insulation
Inside the cable jacket are the wire pairs. The material used to insulate these wires must have
excellent dielectric and transmission properties. Refer back to Figure 1.9 for a diagram of the
wire insulation.
KEY TERM dielectric A material that has good dielectric properties is a poor conductor of electricity.
Dielectric materials are insulators. In the case of LAN cables, a good dielectric material
also has characteristics conducive to the transmission of high-frequency signals along the
conductors.
A variety of insulating materials exists, including polyolefin (polyethylene and polypropylene), fluorocarbon polymers, and PVC.
Cable Design
31
The manufacturer chooses the materials based on the material cost, flame-test ratings, and
desired transmission properties. Materials such as polyolefin are inexpensive and have great
transmission properties, but they burn like crazy, so they must be used in combination with
material that has better flame ratings. That’s an important point to keep in mind: Don’t focus
on a particular material. It is the material system selected by the manufacturer that counts. A
manufacturer will choose insulating and jacketing materials that work together according to
the delicate balance of fire resistance, transmission performance, and economics.
The most common materials used to insulate the wire pairs in Category 5 and greater plenumrated cables are fluorocarbon polymers. The two varieties of fluorocarbon polymers are fluorinated ethylene-propylene (FEP) and polytetrafluoroethylene (PTFE or TFE).
These polymers were developed by DuPont and are also sometimes called by their trademark,
Teflon. The most commonly used and most desirable of these materials is FEP. Over the past few
years, the demand for plenum-grade cables exceeded the supply of available FEP. During periods
of FEP shortage, Category 5 plenum designs emerged that substituted another material for one
or more of the pairs of wire. The substitution raised concerns about the transmission capabilities
of such designs, specifically related to a property called delay skew. In addition, some instances of
marginal performance occurred in the UL-910 burn test for plenum cables. These concerns,
coupled with increases in the supply of FEP, have driven these designs away.
TIP
When purchasing Category 5e and higher plenum cables, ask whether other insulation
material has been used in combination with FEP for wire insulation.
In nonplenum Category 5e and higher and in the lower categories of cable, much less expensive and
more readily available materials, such as HDPE (high-density polyethylene), are used. You won’t sacrifice transmission performance; the less stringent flame tests just allow less expensive materials.
Insulation Colors
The insulation around each wire in a UTP cable is color-coded. The standardized color codes help
the cable installer make sure each wire is connected correctly with the hardware. In the United
States, the color code is based on 10 colors. Five of these are used on the tip conductors, and five are
used on the ring conductors. Combining the tip colors with the ring colors results in 25 possible
unique pair combinations. Thus, 25 pair groups have been used for telephone cables for decades.
NOTE
The words tip and ring hark back to the days of manual switchboards. Phono-type plugs (like
the ones on your stereo headset cord) were plugged into a socket to connect one extension
or number to another. The plug had a tip, then an insulating disk, and then the shaft of the
plug. One conductor of a pair was soldered into the tip and the other soldered to the shaft,
or ring. Remnants of this 100-year-old technology are still with us today.
32
Chapter 1 • Introduction to Data Cabling
Table 1.3 lists the color codes found in a binder group (a group of 25 pairs of wires) in largercapacity cables. The 25-pair cable is not often used in data cabling, but it is frequently used for
voice cabling for backbone and cross-connect cable.
T A B L E 1 . 3 Color Codes for 25-Pair UTP Binder Groups
Pair Number
Tip Color
Ring Color
1
White
Blue
2
White
Orange
3
White
Green
4
White
Brown
5
White
Slate
6
Red
Blue
7
Red
Orange
8
Red
Green
9
Red
Brown
10
Red
Slate
11
Black
Blue
12
Black
Orange
13
Black
Green
14
Black
Brown
15
Black
Slate
16
Yellow
Blue
17
Yellow
Orange
18
Yellow
Green
19
Yellow
Brown
20
Yellow
Slate
21
Violet
Blue
22
Violet
Orange
23
Violet
Green
24
Violet
Brown
25
Violet
Slate
Cable Design
33
With LAN cables, it is common to use a modification to this system known as positive identification. PI, as it is sometimes called, involves putting either a longitudinal stripe or circumferential band on the conductor in the color of its pair mate. In the case of most four-pair UTP
cables, this is usually done only to the tip conductor because each tip conductor is white,
whereas the ring conductors are each a unique color.
Table 1.4 lists the color codes for a four-pair UTP cable. The PI color is indicated after the
tip color.
T A B L E 1 . 4 Color Codes for Four-Pair UTP Cable
Pair Number
Tip Color
Ring Color
1
White/Blue
Blue
2
White/Orange
Orange
3
White/Green
Green
4
White/Brown
Brown
Waiter! There’s Halogen in My Cable!
Much of the cable currently in use in the United States and elsewhere in the world contains
halogens. A halogen is a nonmetallic element, such as fluorine, chlorine, iodine, or bromine.
When exposed to flames, substances made with halogens give off toxic fumes that quickly
harm the eyes, nose, lungs, and throat. Did you notice that fluorine and chlorine are commonly found in cable insulation and jackets? Even when cables are designed to be flameresistant, any cable when exposed to high enough temperatures will melt and burn. PVC
cables contain chlorine, which emits toxic fumes when burned.
Many different manufacturers are now making low-smoke, zero-halogen (LSZH or LS0H) cables.
These cables are designed to emit no toxic fumes and produce little or no smoke when exposed
to flames. Tunnels, enclosed rooms, aircraft, and other minimum-ventilation areas are prime
spots for the use of LS0H cables because those areas are more difficult to escape from quickly.
LS0H cables are popular outside the United States. Some safety advocates are calling for the
use of LS0H cables in the United States, specifically for the plenum space. Review your local
building codes to determine if you must use LS0H cable. Non-LS0H cables will produce corrosive acids if they are exposed to water (such as from a sprinkler system) when burned; such
acids may theoretically further endanger equipment. But many opponents of LS0H cable reason that if an area of the building is on fire, the equipment will be damaged by flames before
it is damaged by corrosives from a burning cable.
Continued on next page
34
Chapter 1 • Introduction to Data Cabling
Why, you might ask, would anyone in his or her right mind argue against the installation of LS0H
cables everywhere? First, reducing toxic fumes doesn’t necessarily mean the cable is more fireproof. The flame-spread properties may even be worse than for cables in use today. Second,
consider practicality. LS0H is an expensive solution to a problem that doesn’t seem to really
exist in the United States. When was the last time you heard of a major commercial fire where
inhalation of the fumes from burning cables was a cause of death? If it ain’t broke…
We don’t expect that LS0H cables will take over any time soon, but a movement is underway
to define a smoke-limited cable in the next version of the NEC (Article 800).
Twists
When you slice open a UTP communications cable, you will notice that the individual conductors of a pair of wire are twisted around one another. At first, you may not realize how
important these twists are.
TIP
Did you know that in Category 5e cables a wire pair untwisted more than half of an inch can
adversely affect the performance of the entire cable?
Twisted-pair cable is any cable that contains a pair of wires that are wrapped or twisted around
one another between 2 and 12 times per foot—and sometimes even greater than 12 times per
foot (as with Category 5 and higher). The twists help to cancel out the electromagnetic interference (EMI) generated by voltage used to send a signal over the wire. The interference can
cause problems, called crosstalk, for adjacent wire pairs. Crosstalk and its effects are discussed
in the “Speed Bumps” section later in this chapter.
Cables commonly used for patch cables and for horizontal cabling (patch panel to wall plate)
typically contain four pairs of wire. The order in which the wires are crimped or punched down
can be very important.
TIP
Companies such as Panduit (www.panduit.com) have developed termination tools and
patch cables that all but eliminate the need to untwist cables more than a tiny amount.
Wire Gauge
Copper-wire diameter is most often measured by a unit called AWG (American Wire Gauge).
Contrary to what logic may tell you, as the AWG number gets smaller, the wire diameter actually gets larger; thus, AWG 24 wire is smaller than AWG 22 wire. Larger wires are useful
because they have more physical strength and lower resistance. However, the larger the wire
diameter, the more copper is required to make the cable. This makes the cable heavier, harder
to install, and more expensive.
Cable Design
NOTE
35
The reason the AWG number increases as the wire diameter decreases has to do with how
wire is made. You don’t dump copper ore into a machine at one end and get 24 AWG wire
out the other end. A multistep process is involved—converting the ore to metal, the metal
to ingots, the ingots to large bars or rods. Rods are then fed into a machine that makes
them into smaller-diameter rods. To reach a final diameter, the rod is pulled through a
series of holes, or dies, of decreasing size. Going through each die causes the wire to
stretch out a little bit, reducing its diameter. Historically, the AWG number represented the
exact number of dies the wire had to go through to get to its finished size. So, the smaller
the wire, the more dies involved and the higher the AWG number.
The cable designer’s challenge is to use the lowest possible diameter wire (reducing costs and
installation complexity) while at the same time maximizing the wire’s capabilities to support
the necessary power levels and frequencies.
Category 5 UTP is always 24 AWG; IBM Type 1A is typically 22 AWG. Patch cords may
be 26 AWG, especially Category 3 patch cords. The evolution of higher-performance cables
such as Category 5e and Category 6 has resulted in 23 AWG often being substituted for 24
AWG. Table 1.5 shows 22, 23, 24, and 26 AWG sizes along with the corresponding diameter,
area, and weight per kilometer.
T A B L E 1 . 5 Table 1.5: American Wire Gauge Diameter, Area, and Weight Values
AWG
Nominal Diameter Nominal Diameter Circular-Mil Area1 Area sq. mm
Weight kg/km
Inches
Mm
22
0.0253
0.643
640.4
0.3256
2.895
23
0.0226
0.574
511.5
0.2581
2.295
24
0.0201
0.511
404.0
0.2047
1.820
26
0.0159
0.404
253.0
0.1288
1.145
The dimensions in Table 1.5 were developed more than 100 years ago. Since then, the
purity and, therefore, the conductive properties of copper have improved due to better
copper-processing techniques. Specifications that cover the design of communications
cables have a waiver on the actual dimensions of a wire. The real concern is not the dimensions of the wire, but how it performs, specifically with regard to resistance in ohms. The
AWG standard indicates that a 24 AWG wire will have a diameter of 0.0201 inches, but
based on the performance of the material, the actual diameter of the wire may be slightly less
or slightly more (but usually less).
36
Chapter 1 • Introduction to Data Cabling
Solid Conductors versus Stranded Conductors
UTP cable used as horizontal cable (permanent cable or cable in the walls) has a solid conductor, as opposed to patch cable and cable that is run over short distances, which usually have
stranded conductors. Stranded-conductor wire consists of many smaller wires interwoven
together to form a single conductor.
TIP
Connector types (such as patch panels and modular jacks) for solid-conductor cable are different than those for stranded-conductor cable. Stranded-conductor cables will not work
with IDC-style connectors found on patch panels and 66-style punch-down blocks.
Though stranded-conductor wire is more flexible, solid-conductor cable has much better
electrical properties than stranded-conductor cable because stranded-conductor wire is subject
to as much as 20 percent more attenuation (loss of signal) due to a phenomenon called skin
effect. At higher frequencies (the frequencies used in LAN cables), the signal current concentrates on the outer circumference of the overall conductor. Since stranded-conductor wire has
a less-defined overall circumference (due to the multiple strands involved), attenuation is
increased.
KEY TERM core The core of the cable is anything found inside the sheath. The core is usually just
the insulated twisted pairs, but it may also include a slitting cord and the shielding over
individual twisted pairs in an STP cable. People incorrectly refer to the core of the cable
when they mean the conductor.
Most cabling standards recommend using solid-conductor wire in the horizontal or permanent portion of the link, but the standards allow for stranded-conductor wire in patch cables
where flexibility is more important. We know of several UTP installations that have used
stranded-conductor wires for their horizontal links. Although we consider this a poor practice,
here are some important points to keep in mind if you choose to use a mixture of these cables:
●
Stranded-conductor wire requires different connectors.
●
Stranded-conductor wires don’t work as well in punch-down blocks designed for solidconductor cables.
●
You must account for reduced horizontal-link distances.
Cable Length
The longer the cable, the less likely the signal will be carried completely to the end of the cable,
because of noise and signal attenuation. Realize, though, that for LAN systems the time it takes
for a signal to get to the end is also critical. Cable design engineers are now measuring two
additional performance parameters of cable: the propagation delay and the delay skew. Both
Cable Design
37
parameters are related to the speed at which the electrons can pass through the cable and the
length of the wire pairs in cable. The variables are discussed in the “Speed Bumps” section later
in this chapter.
Cable Length versus Conductor Length
A Category 5, 5e, or 6 cable has four pairs of conductors. By design, each of the four pairs is
twisted in such a fashion so that the pairs are slightly different lengths. (Varying twist lengths
from pair to pair improves crosstalk performance.) Therefore, signals transmitted simultaneously on two different pairs of wire will arrive at slightly different times. The conductor length
is the length of the individual pair of conductors, whereas the cable length is the length of the
cable jacket.
Part of a modern cable tester’s feature set is the ability to perform conductor-length tests.
Here is a list of the conductor lengths of a cable whose cable length is 139 feet from the wall
plate to the patch panel. As you can see, the actual conductor length is longer due to the twists
in the wire.
Pair
Distance
1-2
145 ft
3-6
143 ft
4-5
141 ft
7-8
142 ft
Warp Factor One, Please
Light travels almost 300,000,000 meters per second in a perfect vacuum, faster than nonphysicists can imagine. In a fiber-optic cable one kilometer long, data can travel from start to
finish in about 3.3 microseconds (0.0000033 seconds).
Data does not travel through copper cabling quite as fast. One of the ways that the speed of
data through a copper cable is measured is by how fast electricity can travel through the
cable. This value is called the Nominal Velocity of Propagation (NVP) and is expressed as a
percentage of the speed of light. The value for most cables is between 60 and 90 percent.
The cable manufacturer specifies NVP as part of the cable’s design.
Take, for example, a cable that Jim recently measured using a handheld cable tester. The NVP
for this cable was 67 percent, and the cable was 90 meters long. Electricity will travel through
this cable at a speed of about 200,000,000 meters per second; it travels from one end of
the cable to another in 450 nanoseconds (0.00000045 seconds).
38
Chapter 1 • Introduction to Data Cabling
Data Communications 101
Before we discuss more of the limitations involved with data communications and network
cabling, some basic terms must be defined. Unfortunately, vendors, engineers, and network
managers serve up high-tech and communications terms like balls in a tennis match. Worse,
they often misuse the terms or don’t even fully understand what they mean.
One common term is bandwidth. Does it mean maximum frequency or maximum data rate?
Other terms are thrown at you as if you have a Ph.D. in Electrical Engineering, including
impedance, resistance, and capacitance.
Our favorite misunderstood term is decibels. We always thought decibels were used to measure sound, but that’s not necessarily true when it comes to data communications. Over the
next few pages, we will take you through a crash course in Data Communications 101 and get
you up to speed on certain terms pertaining to cabling.
Bandwidth, Frequency, and Data Rate
One initially confusing aspect about cabling is that cables are rated in hertz rather than bits per
second. Network engineers (and you, presumably) are more concerned with how much data
can be pushed through the cable than with the frequency at which that data is traveling.
Frequency is the number of cycles completed per unit of time and is generally expressed in
hertz (cycles per second). Figure 1.10 shows a cycle that took one second to complete; this is
one hertz. Data cabling is typically rated in kilohertz (kHz) or megahertz (MHz). For a cable
rated at 100MHz, the cycle would have to complete 100,000,000 times in a single second! The
more cycles per second, the more noise the cable generates and the more susceptible the cable
is to signal-level loss.
The bandwidth of a cable is the maximum frequency at which data can be effectively transmitted and received. The bit rate is dependent upon the network electronics, not the cable,
provided the operating frequency of the network is within the cable’s usable bandwidth. Put
another way, the cable is just a pipe. Think of the bandwidth as the pipe’s diameter. Network
electronics provide the water pressure. Either a trickle comes through or a gusher, but the pipe
diameter doesn’t change.
Cable bandwidth is a difficult animal to corral. It is a function of three interrelated, major elements: distance, frequency, and signal-level-to-noise-level ratio (SNR). Changing any one element alters the maximum bandwidth available. As you increase the frequency, SNR gets worse,
and the maximum bandwidth is decreased. As you increase distance, SNR worsens, thereby
decreasing the maximum bandwidth. Conversely, reducing frequency or distance increases the
maximum bandwidth because SNR improves.
Data Communications 101
FIGURE 1.10
39
+
Voltage
One cycle every second or one hertz
0
1 second
–
One complete cycle
To keep the same maximum bandwidth, increasing the frequency means you must either
decrease distance or improve the signal level at the receiver. If you increase the distance, either
the frequency must decrease, or, again, the signal level at the receiver must improve. If you
improve signal level at the receiving end, you can either increase frequency or leave the frequency alone and increase distance. It’s a tough bronc to ride.
With all this variability, how do you get anywhere with cable and network design? It helps
to lasso one or more of the variables.
This is done for you via the IEEE network specifications and implemented through ANSI/
TIA/EIA 568-B. A maximum horizontal-run length of 100 meters (308 feet), including workstation and communication closet patch cords, is specified. This figure arises from some timing
limitations of some Ethernet implementations. So distance is fixed.
The Standards also define the maximum operating frequency. In the case of Category 3
cables, it is 16MHz. In the case of Category 5 and 5e, it is 100MHz; for Category 6, 200 MHz.
Now that two of the three elements are firmly tied to the fence, you can rope in the last.
Cable design focuses on improving the signal level and reducing the noise in the cable to
achieve optimum transmission performance for given frequencies at a fixed length.
“Huh?” you may be saying to yourself. “That implies I could have horizontal run lengths
greater than 100 meters if I’m willing to lower my bandwidth expectations or put up with a
lower signal level. I thought 100 meters was the most a Category 5 (or better) cable could run.”
According to the Standard, 100 meters is the maximum. But technically, the cabling might be
able to run longer. Figure 1.11 unhitches length and instead ties down frequency and SNR. In
the graph, the frequency at which the signal and noise level coincides (the “ACR=0” point) is
plotted against distance. You can see that if the signal frequency is 10MHz, a Category 5 cable
is capable of carrying that signal almost 2,500 feet, well beyond the 100-meter (308-foot)
length specified.
40
Chapter 1 • Introduction to Data Cabling
FIGURE 1.11
ACR = 0 Limited Bandwidth
ACR=0
Frequency, Mhz
1000
100
10
1
0
500
1000
1500
2000
2500
3000
3500
Length, Feet
Category 3
Category 5
So why not do so? Because you’d be undermining the principal of structured wiring, which
requires parameters that will work with many LAN technologies, not just the one you’ve got
in mind for today. Some network architectures wouldn’t tolerate it, and future upgrades might
be impossible. Stick to the 100-meter maximum length specified.
The data rate (throughput or information capacity) is defined as the number of bits per second that move through a transmission medium. With some older LAN technologies, the data
rate has a one-to-one relationship with the transmission frequency. For example, 4Mbps
Token Ring operates at 4MHz.
It’s tough to keep pushing the bandwidth of copper cables higher and higher. There are the
laws of physics to consider, after all. So techniques have been developed to allow more than 1
bit per hertz to move through the cable. Table 1.6 compares the operating frequency of transmission with the throughput rate of various LAN technologies available today.
T A B L E 1 . 6 LAN Throughput versus Operating Frequency
LAN System
Data Rate
Operating Frequency
Token Ring
4Mbps
4MHz
10BaseT Ethernet
10Mbps
10MHz
Data Communications 101
41
T A B L E 1 . 6 C O N T I N U E D LAN Throughput versus Operating Frequency
LAN System
Data Rate
Operating Frequency
Token Ring
16Mbps
16MHz
100BaseT Ethernet
100Mbps
31.25MHz
ATM 155
155Mbps
38.75MHz
1000BaseT (Gigabit) Ethernet
1,000Mbps
Approximately 65MHz
All the systems listed in the table will work with Category 5 or higher cable. So how do techniques manage to deliver data at 1Gbps across a Category 5 cable whose maximum bandwidth
is 100MHz? The next section gives you the answer.
The Secret Ingredient: Encoding and Multipair Simultaneous Send and Receive
Consider the example illustrated in Figure 1.12. A street permits one car to pass a certain
stretch of road each second. The cars are spaced a certain distance apart, and their speeds are
limited so that only one is on the stretch of road at a time.
But suppose as in Figure 1.13 that the desired capacity for this particular part of the street is
three cars per second. The cars can drive faster, and they can be spaced so that three at a time
fit on the stretch of road. This is bit encoding. It is a technology for packing multiple data bits
in each hertz to increase throughput.
FIGURE 1.12
A street that allows
one car to pass each
second
1 second
Only a single car can pass through each second.
FIGURE 1.13
A street that allows
multiple cars through
during each cycle
Car 1
Car 2
Car 3
1 second
Allows three cars to pass through each second. That’s encoding!
42
Chapter 1 • Introduction to Data Cabling
Add a lane in each direction, and you can see how most LAN technologies work today. They
use two of the four pairs of cable, one to transmit and one to receive—effectively, a two-lane
highway.
At some point, though, a limit will be reached as to how fast the cars can travel. Plus, eventually the cars will be packed end-to-end in a lane and we just won’t be able to fit any more cars
(data bits) through that stretch in the available time.
What to do? How about building multiple lanes? Instead of using two lanes, one in each
direction, four lanes (four pairs of cable) would ease the congestion.
Four lanes still might not be enough capacity to get all the cars needed down the highway.
So all four lanes will be used, but instead of two being dedicated to send and two to receive, the
cars will drive both directions in every lane. It takes accurate timing and nerves of steel, but it
can be done. This is, in fact, how Gigabit Ethernet is implemented on Category 5 and higher
cabling. Transmitting at an operating frequency of about 65MHz, data is simultaneously sent
and received on all four pairs at a rate of 250Mbps each. Voila! That’s 1,000Mbps in less than
100MHz of bandwidth!
TIP
For Gigabit Ethernet to work over Category 5, 5e, and 6 cabling, all four pairs must be used.
What a Difference a dB Makes!
Suppose you are comparing cable performance. A manufacturer states that the attenuation
(power loss) for a cable with a length of 90 meters, operating at 100MHz, is 20dB. What does
the measurement mean? Would you be surprised to learn that the signal strength has dropped
by a factor of 100? That’s right, if you apply an input power level of 5 watts, the output level
will be 0.05 watts! For every 3dB of attenuation, it’s a 50 percent loss of power!
To summarize: Low decibel values of attenuation are desirable because then less of the signal
is lost on its way to the receiver. Higher decibel values of crosstalk (NEXT, ELFEXT, etc.) and
return loss are actually desirable because that means less signal has been measured on adjacent
wires. (For more on NEXT and ELFEXT, see “Noise” later in this chapter.)
This section may be all you ever wanted to know about decibels. If you want to know more
and get the technical details, read on!
Digging a Little Deeper into Decibels
You may think of a decibel in terms of audible noise. When referring to the domain of sound,
a decibel is not actually a specific unit of measurement but rather is used to express a ratio of
sound pressure.
However, the decibel is also commonly used when defining attenuation, crosstalk, and
return loss. Just as with sound, when referring to communications and electrical transmission
Data Communications 101
43
performance, the decibel is a ratio rather than a specific measurement. Because analog and
digital communication signals are just electrical energy instead of sound pressure, the dB
unit is a ratio of input power to output power. The decibel value is independent of the actual
input and output voltage or power and is thus considered a generic performance specification. Understanding what the decibel numbers mean is important when comparing one
cabling media or performance measurement with another.
Decibels 101
The bel part of decibel was named after Alexander Graham Bell, the inventor of the telephone.
A decibel is a tenfold logarithmic ratio of power (or voltage) output to power (or voltage) input.
Keep in mind that the decibel is indicating a power ratio, not a specific measurement. The decibel is a convenient way to reflect the power loss or gain, regardless of the actual values.
NOTE
For measurements such as attenuation, NEXT, ELFEXT, ACR, and return loss, the decibel
value is always negative because it represents a loss, but often the negative sign is ignored
when the measurement is written. The fact that the number represents a loss is assumed.
Cable testers as well as performance specifications describe attenuation in decibels. Let’s say,
for example, that you measure two cables of identical length and determine that the attenuation
is 15dB for one cable and 21dB for the other. Naturally, you know that because lower attenuation is better, the cable with an attenuation of 15dB is better than the one with a 21dB value.
But how much better? Would you be surprised to learn that even though the difference
between the two cables is only 6dB, there is 50 percent more attenuation of voltage or amperage (power is calculated differently) on the cable whose attenuation was measured at 21dB?
Knowing how a decibel is calculated is vital to appreciating the performance specifications
that the decibel measures.
Decibels and Power
When referring to power (watts), decibels are calculated in this fashion:
dB = 10*log10(P1/P2)
P1 indicates the measured power, and P2 is the reference power (or input power).
To expand on this formula, consider this example. The reference power level (P2) is 1.0
watts. The measured power level (P1) on the opposite side of the cable is 0.5 watts. Therefore,
through this cable, 50 percent of the signal was lost due to attenuation. Now, plug these values
into the power formula for decibels. Doing so yields a value of 3dB. What does the calculation
mean? It means that:
●
Every 3dB of attenuation translates into 50 percent of the signal power being lost through the
cable. Lower attenuation values are desirable, as a higher power level will then arrive at the
destination.
44
Chapter 1 • Introduction to Data Cabling
●
Every 3dB of return loss translates into 50 percent of the signal power being reflected back
to the source. Higher decibel values for return loss are desirable, as less power will then be
returned to the sender.
●
Every 3dB of NEXT translates into 50 percent of the signal power being allowed to couple
to adjacent pairs. Higher decibel values for NEXT (and other crosstalk values) are desirable, as higher values indicate that less power will then couple with adjacent pairs.
An increase of 10dB means a tenfold increase in the actual measured parameter. Table 1.7
shows the logarithmic progression of decibels with respect to power measurements.
T A B L E 1 . 7 Logarithmic Progression of Decibels
Decibel Value
Actual Increase in Measured Parameter
3dB
2
10dB
10
20dB
100
30dB
1,000
40dB
10,000
50dB
100,000
60dB
1,000,000
Decibels and Voltage
Most performance specifications and cable testers typically reference voltage ratios, not power
ratios. When referring to voltage (or amperage), decibels are calculated slightly differently
than for power. The formula is as follows:
dB = 20*log10(P1/P2)
P1 indicates the measured voltage or amperage, and P2 is the reference (or output) voltage
(amperage). Substituting a reference value of 1.0 volt for P2 and 0.5 volts for P1 (the measured
output), you get a value of –6dB. What does the calculation mean? It means that:
●
Every 6dB of attenuation translates into 50 percent of the voltage being lost to attenuation.
Lower decibel attenuation values are desirable, as a higher voltage level will then arrive at
the destination.
Data Communications 101
45
●
Every 6dB of return loss translates into 50 percent of the voltage being reflected back to the
source. Higher decibel values for return loss are desirable, as less voltage will then be
returned to the sender.
●
Every 6dB of NEXT translates into 50 percent of the voltage coupling to adjacent wire
pairs. Higher decibel values for NEXT (and other crosstalk values) are desirable, as higher
values indicate that less power will then couple with adjacent pairs.
Table 1.8 shows various decibel levels and the corresponding voltage and power ratios.
Notice that (for the power ratio) if a cable’s attenuation is measured at 10dB, only one-tenth
of the signal transmitted will be received on the other side.
T A B L E 1 . 8 Decibel Levels and Corresponding Power and Voltage Ratios
dB
Voltage Ratio
Power Ratio
1
1
1
–1
0.891
0.794
–2
0.794
0.631
–3
0.707
0.500
–4
0.631
0.398
–5
0.562
0.316
–6
0.500
0.250
–7
0.447
0.224
–8
0.398
0.158
–9
0.355
0.125
–10
0.316
0.100
–12
0.250
0.063
–15
0.178
0.031
–20
0.100
0.010
–25
0.056
0.003
–30
0.032
0.001
–40
0.010
0.000
–50
0.003
0.000
46
Chapter 1 • Introduction to Data Cabling
Applying Knowledge of Decibels
Now that you have a background on decibels, look at the specified channel performance for
Category 5e versus the channel performance for Category 6 cable at 100Mhz.
Media Type
Attenuation
NEXT
Return Loss
Category 5e
24
30.1
10.0
Category 6
21.3
39.9
12.0
For the values to be meaningful, you need to look at them with respect to the actual percentage
of loss. For this example, use voltage. If you take each decibel value and solve for the P1/P2
ratio using this formula, you would arrive at the following values:
Ratio = 1 / (Inverse log10(dB/20))
Media
Remaining Signal
Due to Attenuation
Allowed to
Couple (NEXT)
Signal Returned
(NEXT)
Category 5e
6.3%
3.1%
39.8%
Category 6
8.6%
1%
31.6%
Existing standards allow a transmission to lose 99 percent of its signal to attenuation and still
be received properly. For an Ethernet application operating at 2.5 volts of output voltage, the
measured voltage at the receiver must be greater than 0.025 volts. In the Category 5e cable
example, only 6.3 percent of the voltage is received at the destination, which calculates to about
0.16. For Category 6 cable it calculates to 0.22 volts, almost 10 times the minimum required
voltage for the signal to be received.
Using such techniques for reversing the decibel calculation, you can better compare the performance of any media.
Speed Bumps: What Slows Down Your Data
The amount of data that even simple unshielded twisted-pair cabling can transfer has come a
long way over the past dozen or so years. In the late 1980s, many experts felt that UTP cabling
would never support data rates greater than 10Mbps. Today, data rates of 1.2Gbps and higher
are supported over cable lengths approaching 100 meters! And UTP may be able to support
even greater data rates in the future.
Think back to the MIS director who mistakenly assumed that “it is just wire.” Could he be
right? What is the big deal? Shouldn’t data cabling be able to support even higher data rates?
Speed Bumps: What Slows Down Your Data
47
Have you tried to purchase data-grade cable recently? Have you ever tested a cable run with
an even mildly sophisticated cable tester? A typical cabling catalog can have over 2,000 different types of cables! You may have come away from the experience wondering if you needed a
degree in electrical engineering in order to understand all the terms and acronyms. The world
of modern cabling has become a mind-boggling array of communications buzzwords and engineering terms.
As the requirements for faster data rates emerges, the complexity of the cable design
increases. As the data rates increase, the magic that happens inside a cable becomes increasingly
mysterious, and the likelihood that data signals will become corrupt while traveling at those
speeds also increases.
Ah! So it is not that simple after all! As data rates increase, electrical properties of the cable
change, signals become more distorted, and the distance that a signal can travel decreases.
Designers of both 1000Base-T (Gigabit Ethernet) and the cables that can support frequencies
greater than 100Mhz found electrical problems that they did not have to contend with at lower
frequencies and data rates. These additional electrical problems are different types of crosstalk
and arrival delay of electrons on different pairs of wires.
Hindrances to High-Speed Data Transfer
Electricity flowing through a cable is nothing more than electrons moving inside the cable and
bumping into each other—sort of like dominoes falling. For a signal to be received properly by
the receiver, enough electrons must make contact all the way through the cable from the
sender to the receiver. As the frequency on a cable (and consequently the potential data rate)
increases, a number of phenomena hinder the signal’s travel through the cable (and consequently the transfer of data). These phenomena are important not only to the person who has
to authorize cable purchase but also to the person who tests and certifies the cable.
The current specifications for Category 5e and 6 cabling outline a number of these phenomena and the maximum (or minimum) acceptable values that a cable can meet and still be certified as compliant.
Due to the complex modulation technology used by 1000Base-T Ethernet, the TIA has specified cabling performance specifications beyond what was included in the original testing specification. These performance characteristics include power-sum and pair-to-pair crosstalk
measurements, delay skew, return loss, and ELFEXT. Some of these newer performance characteristics are important as they relate to crosstalk. Although crosstalk is important in all technologies, faster technologies such as 1000Base-T are more sensitive to it because they use all
four pairs in parallel for transmission.
All these requirements are built into the current version of the Standard, ANSI/TIA/EIA-568-B.
48
Chapter 1 • Introduction to Data Cabling
Many transmission requirements are expressed as mathematical formulae. For the convenience of humans who can’t do complex log functions in their heads (virtually everyone!),
values are precomputed and listed in the specification according to selected frequencies. But
the actual requirement is that the characteristic must pass the “sweep test” across the full
bandwidth specified for the cable category. So performance must be consistent and in accordance with the formula, at any given frequency level, from the lowest to the highest frequency specified.
The major test parameters for communication cables, and the general groupings they fall
into, are as follows:
●
●
●
Attenuation (signal-loss) related
●
Conductor resistance
●
Mutual capacitance
●
Return loss
●
Impedance
Noise related
●
Resistance unbalance
●
Capacitance unbalance
●
Near-end crosstalk (NEXT)
●
Far-end crosstalk (FEXT)
●
Power-sum NEXT
●
Power-sum FEXT
Other
●
Attenuation-to-crosstalk ratio (ACR)
●
Propagation delay
●
Delay skew
Attenuation (Loss of Signal)
As noted earlier, attenuation is loss of signal. That loss happens because as a signal travels
through a cable, some of it doesn’t make it all the way to the end of the cable. The longer the
cable, the more signal loss there will be. In fact, past a certain point, the data will no longer be
transmitted properly because the signal loss will be too great.
Attenuation is measured in decibels (dB), and the measurement is taken on the receiver end
of the conductor. So if 10dB of signal were inserted on the transmitter end and 3dB of signal
Speed Bumps: What Slows Down Your Data
49
were measured at the receiver end, the attenuation would be calculated as 3 – 10 = –7dB. The
negative sign is usually ignored, so the attenuation is stated as 7dB of signal loss. If 10dB were
inserted at the transmitter and 6dB measured at the receiver, then the attenuation would be
only 4dB of signal loss. So, the lower the attenuation value, the more of the original signal is
received (in other words, the lower the better).
Figure 1.14 illustrates the problem that attenuation causes in LAN cabling.
FIGURE 1.14
The signal deteriorates as it travels between a node on a
LAN and the hub.
UTP cable
PC
Hub
Transmitted signal
Signal is weaker on
the receiving side due
to attenuation.
Attenuation on a cable will increase as the frequency used increases. A 100-meter cable may
have a measured attenuation of less than 2dB at 1MHz but greater than 20dB at 100MHz!
Higher temperatures increase the effect of attenuation. For each higher degree Celsius,
attenuation is typically increased 1.5 percent for Category 3 cables and 0.4 percent for Category 5e cables. Attenuation values can also increase by 2 to 3 percent if the cable is installed in
metal conduit.
When the signal arrives at the receiver, it must still be recognizable to the receiver. Attenuation values for cables are very important.
Attenuation values are different for the categories of cables and the frequencies employed. As
the bandwidth of the cable increases, the allowed attenuation values get lower (less loss),
although the differences between Category 5, 5e, and 6 are negligible at the common frequency of 100MHz.
Characteristics that contribute to attenuation are detailed as follows:
Conductor resistance Conductor resistance acts as a hindrance to the signal because it
restricts the flow of electricity through the cable conductors. This causes some of the signal
50
Chapter 1 • Introduction to Data Cabling
energy to be dissipated as heat, but the amount of heat generated by LAN cabling is negligible due to the low current and voltage levels. The longer the cable or the smaller the conductor diameters (actually, the cross-sectional area), the more resistance. After allowing for
dimensional factors, resistance is more or less a fixed property of the conductor material.
Copper, gold, and silver offer low resistance and are used as conductors.
Mutual capacitance This characteristic is an electrical occurrence experienced when a
cable has more than one wire and the wires are placed close together. The insulation material
will steal and store some of the signal energy, acting as a capacitor between two conductors
in the cable. A property of the insulating material called dielectric constant has a great influence
over the mutual capacitance. Different materials have different dielectric constants. The
lower the dielectric constant, the less signal loss. FEP and HDPE have low dielectric constants, along with other properties, that make them well suited for use in high-frequency
cables.
Impedance Impedance is a combination of resistance, capacitance, and inductance and is
expressed in ohms; a typical UTP cable is rated at between 85 and 115 ohms. All UTP Category 3, 5, 5e, and 6 cables used in the United States are rated at 100 + 15 ohms. Impedance
values are useful when testing the cable for problems, shorts, and mismatches. A cable tester
could show three possible impedance readings that indicate a problem:
●
An impedance value not between 85 and 115 ohms indicates a mismatch in the type of
cables or components. This might mean that an incorrect connector type has been
installed or an incorrect cable type has been cross-connected into the circuit.
●
An impedance value of infinity indicates that the cable is open or cut.
●
An impedance value of zero indicates that the cable has been short-circuited.
Some electrons sent through a cable may hit an impedance mismatch or imperfection in the
wire and be reflected back to the sender. Such an occurrence is known as return loss. If the electrons travel a great distance through the wire before being bounced back to the sender, the
return loss may not be noticeable because the returning signal may have dissipated (due to
attenuation) before reaching the sender. If the signal echo from the bounced signal is strong
enough, it can interfere with ultra-high-speed technologies such as 1000Base-T.
Noise (Signal Interference)
Everything electrical in the cable that isn’t the signal itself is noise and constitutes a threat to
the integrity of the signal. Many sources of noise exist, from within and outside the cable. Controlling noise is of major importance to cable and connector designers because uncontrolled
noise will overwhelm the data signal and bring a network to its knees.
Speed Bumps: What Slows Down Your Data
51
Twisted-pair cables utilize balanced signal transmission. The signal traveling on one conductor of a pair should have essentially the same path as the signal traveling the opposite direction on the other conductor. (That’s as opposed to coaxial cable, in which the center conductor
provides a very easy path for the signal but the braid and foil shield that make up the other conductor is less efficient and therefore a more difficult pathway for the signal.)
As signals travel along a pair, an electrical field is created. When the two conductors are perfectly symmetrical, everything flows smoothly. However, minute changes in the diameter of
the copper, the thickness of the insulating layer, or the centering of conductors within that
insulation cause disturbances in the electrical field called unbalances. Electrical unbalance
means noise.
Resistance unbalance occurs when the dimensions of the two conductors of the pair are not
identical. Mismatched conductors, poorly manufactured conductors, or one conductor that
got stretched during installation will result in resistance unbalance.
Capacitance unbalance is also related to dimensions, but to the insulation surrounding the conductor. If the insulation is thicker on one conductor than on the other, then capacitance unbalance occurs. Or, if the manufacturing process is not well controlled and the conductor is not
perfectly centered (like a bull’s-eye) in the insulation, then capacitance unbalance will exist.
Both these noise sources are usually kept well under control by the manufacturer and are relatively minor compared to crosstalk.
You’ve likely experienced crosstalk on a telephone. When you hear another’s conversation
through the telephone, that is crosstalk. Crosstalk occurs when some of the signal being transmitted on one pair leaks over to another pair.
When a pair is in use, an electrical field is created. This electrical field induces voltage in adjacent pairs, with an accompanying transfer of signal. The more the conductors are parallel, the
worse this phenomena is, and the higher the frequency, the more likely crosstalk will happen.
Twisting the two conductors of a pair around each other couples the energy out of phase (that’s
electrical-engineer talk) and cancels the electrical field. The result is reduced transfer of signal.
But the twists must be symmetrical; i.e., both conductors must twist around each other, not one
wrapping around another that’s straight, and two adjacent pairs shouldn’t have the same interval of
twists. Why? Because those twist points become convenient signal-transfer points, sort of like
stepping stones in a stream. In general, the shorter the twist intervals, the better the cancellation and the less crosstalk. That’s why Category 5 and higher cables are characterized by their
very short twist intervals.
Crosstalk is measured in decibels; the higher the crosstalk value, the less crosstalk noise in the
cabling. See Figure 1.15.
52
Chapter 1 • Introduction to Data Cabling
FIGURE 1.15
Signal leaving the transmit wire and
interfering with the other wire pair
Crosstalk
e
e
e
PC
Transmitting
system
Transmitted signal
Hub
Receiving
system
Near-End Crosstalk (NEXT)
When the crosstalk is detected on the same end of the cable that generated the signal, then
near-end crosstalk has occurred. NEXT is most common within 20 to 30 meters (60 to 90 feet)
of the transmitter. Figure 1.16 illustrates near-end crosstalk.
Crosstalk on poorly designed or poorly installed cables is a major problem with technologies
such as 10Base-T and 100Base-TX. However, as long as the cable is installed correctly, NEXT
is less of an issue when using 1000Base-T because the designers implemented technologies to
facilitate NEXT cancellation. NEXT-cancellation techniques with 1000Base-T are necessary
because all four pairs are employed for both transmitting and receiving data.
Wait a Minute! Higher Crosstalk Values Are Better?
Yep, illogical as it seems at first, higher crosstalk values are better. Unlike attenuation, where
you measure output signal at the receiving end of a single pair, crosstalk coupling is measured between two separate pairs. The way the testing is done, you measure how much signal
energy did not transfer to the other pair. A pair (or pairs, in the case of power-sum measurements) is energized with a signal. This is the disturber. You “listen” on another pair called the
disturbed pair. Subtracting what you inserted on the disturber from what measure on the disturbed tells you how much signal stayed with the disturber. For example, a 10dB signal is
placed on the disturber, but 6dB is detected on the disturbed pair. So –4dB of signal did not
transfer (6 – 10). The sign is ignored, so the crosstalk is recorded as 4dB. If 2dB were measured on the disturbed pair, then 2 – 10 = –8dB of signal did not transfer, and the crosstalk
value is recorded as 8dB. Higher crosstalk numbers represent less loss to adjacent pairs.
Equal-Level Far-End Crosstalk (ELFEXT)
FIGURE 1.16
Near-end crosstalk
(NEXT)
53
Crosstalk causes weak signal that returns back to
sending system. This signal might be incorrectly
interpreted as a signal from the hub.
Receive
wires
e
e
Crosstalk
Hub
PC
Transmitted signal
Transmit
wires
NOTE
Cables that have had their twists undone (untwisted) can be problematic because the
twists help cancel crosstalk. Twists are normally untwisted at the ends near the patch panels or connectors when the cable is connected. On the receiving pair of wires in a cable,
the signal received at the end of the cable will be the weakest, so the signal there can be
more easily interfered with. If the wires on adjacent transmit pairs are untwisted, this will
cause a greater amount of crosstalk than normal. A cable should never have the wire pairs
untwisted more than 0.5 inches for Category 5 and 5e, and 0.375 inches maximum for Category 6 cables.
Far End Crosstalk (FEXT)
Far-end crosstalk (FEXT) is similar to NEXT except that it is detected at the opposite end of the
cable from where the signal was sent. Due to attenuation, the signals at the far end of the transmitting wire pair are much weaker than the signals at the near end.
The measure of FEXT is used to calculate equal-level far-end crosstalk (ELFEXT) (discussed in the next section). More FEXT will be seen on a shorter cable than a longer one
because the signal at the receiving side will have less distance over which to attenuate.
Equal-Level Far-End Crosstalk (ELFEXT)
Equal-level far-end crosstalk (ELFEXT) is the crosstalk coupling between cabling pairs measured at
the end of the cable opposite to the end of the signal source, taking into account signal loss. ELFEXT is calculated, not measured, by subtracting the attenuation of the disturber pair from the
54
Chapter 1 • Introduction to Data Cabling
far-end crosstalk (FEXT) on the disturbed pair. The calculation describes the ratio of disturbance
to the level of the desired signal; it is another indication of signal-to-noise ratio. Another way of
looking at it is that the value represents the ratio between the strength of the noise due to crosstalk
from end signals compared to the strength of the received data signal. You could also think of ELFEXT as far-end ACR (attenuation-to-crosstalk ratio, described later in this chapter).
Each pair-to-pair combination is measured, as the attenuation on each pair will be slightly
different. If the ELFEXT value is very high, it may indicate that either excessive attenuation
has occurred or that the far-end crosstalk is higher than expected.
Pair-to-Pair Crosstalk
For both near-end crosstalk and far-end crosstalk, one way of measuring crosstalk is the pairto-pair method. In pair-to-pair measurement, one pair, the disturber, is energized with a signal,
and another pair, the disturbed, is measured to see how much signal transfer occurs. The following six combinations are tested in a four-pair cable:
●
Pair 1 to pair 2
●
Pair 1 to pair 3
●
Pair 1 to pair 4
●
Pair 2 to pair 3
●
Pair 2 to pair 4
●
Pair 3 to pair 4
The test is repeated from the opposite end of the cable, resulting in 12 pair-to-pair combinations
tested. The worst combination is what is recorded as the cable’s crosstalk value. See Figure 1.17.
Power-Sum Crosstalk
Power-sum crosstalk also applies to both NEXT and FEXT and must be taken into consideration for cables that will support technologies using more than one wire pair at the same time.
When testing power-sum crosstalk, all pairs except one are energized as disturbing pairs, and
the remaining pair, the disturbed pair, is measured for transferred signal energy. Figure 1.18
shows a cutaway of a four-pair cable. Notice that the energy from pairs 2, 3, and 4 can all affect
pair 1. The sum of this crosstalk must be within specified limits. Because each pair affects each
other pair, this measurement will have to be made four separate times, once for each wire pair
against the others. Again, testing is done from both ends, raising the number of tested combinations to eight. The worst combination is recorded as the cable’s power-sum crosstalk.
Power-Sum Crosstalk
FIGURE 1.17
Wire pair 1
Cutaway of a UTP cable, showing pair-topair crosstalk
UTP cable
Wire pair 4
Wire pair 2
Wire pair 3
Wire pair 4 will generate crosstalk that will
affect the other three pairs of wire in the cable.
FIGURE 1.18
Wire pair 1
Power-sum crosstalk
Crosstalk
UTP cable
Wire pair 4
Wire pair 2
Wire pair 3
Crosstalk from pairs 2, 3, and 4 will affect pair 1.
55
56
Chapter 1 • Introduction to Data Cabling
External Interference
One hindrance to transmitting data at high speed is the possibility that the signals traveling
through the cable will be acted upon by some outside force. Though the designer of any cable,
whether it’s twisted pair or coaxial, attempts to compensate for this, external forces are beyond
the cable designer’s control. All electrical devices, including cables with data flowing through
them, generate electromagnetic interference (EMI). Low-power devices and cables supporting
low-bandwidth applications do not generate enough of an electromagnetic field to make a difference. Some equipment generates radio-frequency interference; you may notice this if you
live near a TV or radio antenna and you own a cordless phone.
Devices and cables that use much electricity can generate EMI that can interfere with data
transmission. Consequently, cables should be placed in areas away from these devices. Some
common sources of EMI in a typical office environment include the following:
NOTE
●
Motors
●
Heating and air-conditioning equipment
●
Fluorescent lights
●
Laser printers
●
Elevators
●
Electrical wiring
●
Televisions
●
Some medical equipment
Talk about electromagnetic interference! An MRI (magnetic-resonance-imaging) machine,
which is used to look inside the body without surgery or x-rays, can erase a credit card from
10 feet away.
When running cabling in a building, do so a few feet away from these devices. Never install
data cabling in the same conduit as electrical wiring.
In some cases, even certain types of businesses and environments have high levels of interference, including airports, hospitals, military installations, and power plants. If you install
cabling in such an environment, consider using cables that are properly shielded, or use fiberoptic cable.
Attenuation-to-Crosstalk Ratio (ACR)
57
Cabling and Standards
Maximum acceptable values of attenuation, minimum acceptable values of crosstalk, and
even cabling-design issues—who is responsible for making sure standards are published?
The group varies from country to country; in the United States, the predominant standards
organization supervising data cabling standards is the TIA/EIA (Telecommunications Industries Association/Electronic Industries Alliance). The Standard that covers Category 3, 5e and
6 cabling, for example, is ANSI/TIA/EIA-568-B, which is part of the guideline for building structured cabling systems. These standards are not rigid like an Internet RFC but are refined as
needed via addenda. The ANSI/TIA/EIA-568-B document dictates the performance specifications for cables and connecting hardware. Chapter 2 discusses common cabling standards
in more detail.
Attenuation-to-Crosstalk Ratio (ACR)
Attenuation-to-crosstalk ratio (ACR) is an indication of how much larger the received signal is
when compared to the NEXT (crosstalk or noise) on the same pair. ACR is also sometimes
referred to as the signal-to-noise ratio (SNR). It is a calculated value; you can’t “measure” ACR.
Also, as specified, it’s not really a ratio. It is the mathematical difference you get when you subtract the crosstalk value from the attenuation value at a given frequency. Technically, SNR also
incorporates not only noise generated by the data transmission but also outside interference.
For practical purposes, the ACR and true SNR are functionally identical, except in environments with high levels of EMI.
KEY TERM headroom Because ACR represents the minimum gap between attenuation and crosstalk,
the headroom represents the difference between the minimum ACR and the actual ACR performance values. Greater headroom is desirable because it provides additional performance
margin that can compensate for the sins of cheap connectors or sloppy termination practices. It also results in a slight increase in the maximum bandwidth of the cable.
The differential between the crosstalk (noise) and the attenuation (loss of signal) is important
because it assures that the signal being sent down a wire is stronger at the receiving end than
any interference that may be imposed by crosstalk or other noise.
Figure 1.19 shows the relationship between attenuation and NEXT and graphically illustrates ACR for Category 5. (Category 5e and 6 would produce similar graphs.) Notice that as
the frequency increases, the NEXT values get lower while the attenuation values get higher.
The difference between the attenuation and NEXT lines is the ACR. Note that for all cables,
a theoretical maximum bandwidth exists greater than the specified maximum in the standards.
This is appropriate conservative engineering.
58
Chapter 1 • Introduction to Data Cabling
FIGURE 1.19
70
Attenuation-tocrosstalk ratio for a
Category 5 channel
link
60
50
40
dB
30
ACR
20
10
Bandwidth
0
0
50
100
150
200
MHz
Cat 5 Next
Cat 5 Attenuation
Solving problems relating to ACR usually means troubleshooting NEXT because, short of
replacing the cable, the only way to reduce attenuation is to use shorter cables.
Propagation Delay
Electricity travels through a cable at a constant speed, expressed as a percentage-of-light speed
called NVP (Nominal Velocity of Propagation). For UTP cables, NVP is usually between 60
and 90 percent. The manufacturer of the cable controls the NVP value because it is largely a
function of the dielectric constant of the insulation material. The difference between the time
at which a signal starts down a pair and the time at which it arrives on the other end is the propagation delay.
Delay Skew
Delay skew is a phenomenon that occurs as a result of each set of wires being different lengths
(as shown in Figure 1.20). Twisting the conductors of a pair around each other to aid in canceling crosstalk increases the actual length of the conductors relative to the cable length.
Because the pairs each have a unique twist interval, the conductor lengths from pair to pair are
The Future of Cabling Performance
59
unique as well. Signals transmitted on two or more separate pairs of wire will arrive at slightly
different times, as the wire pairs are slightly different lengths. Cables that are part of a Category
5, 5e, or 6 installation cannot have more than a 50ns delay skew.
Excessive delay or delay skew may cause timing problems with network transceivers. These
timing issues can either slow a link dramatically because the electronics are constantly requesting that the data be resent, or choke it off completely.
The Future of Cabling Performance
Category 6 was recently ratified, and work on “augmented Category 6” standards to support
10 Gbps Ethernet over 100 meters of UTP is in progress. It is conceivable that 10Gbps Ethernet will soon run to the desktop over twisted-pair cable. Some pundits claim it will never happen, but some of them were the ones who claimed that 10Mbps Ethernet would never operate
over twisted pair. As materials and manufacturing techniques improve, who knows what types
of performance future twisted-pair cabling may offer?
FIGURE 1.20
Delay skew for fourpair operation
Transmitting
system
Wire
pair
Receiving
system
1
2
3
4
Signal transmitted
at time 0
Signal arrives
pair 1 = 320ns
pair 2 = 328ns
pair 3 = 317ns
pair 4 = 314ns
Maximum difference
between arrival
times must not
exceed 50ns.
Chapter 2
Cabling Specifications
and Standards
• Structured Cabling and Standardization
• The ANSI/TIA/EIA-568-B Commercial Building
Telecommunications Cabling Standard
• The ISO/IEC 11801 Generic Cabling for Customer
Premises Standard
• The Anixter Cable Performance Levels Program
• Other Cabling Technologies
62
Chapter 2 • Cabling Specifications and Standards
n the past, companies often had several cabling infrastructures because no single cabling
system would support all of a company’s applications. A standardized cabling system is
important not only for consumers but also for vendors and cabling installers. Vendors must
clearly understand how to design and build products that will operate on a universal cabling
system. Cable installers need to understand what products can be used, proper installation
techniques and practices, and how to test installed systems.
I
This chapter covers some of the important topics related to cabling standards.
Structured Cabling and Standardization
Typical business environments and requirements change quickly. Companies restructure and
reorganize at alarming rates. In some companies, the average employee changes work locations
once every two years. During a two-year tenure, Jim changed offices at a particular company
five times. Each time, his telephone, both networked computers, a VAX VT-100 terminal, and
a networked printer had to be moved. The data and voice cabling system had to support these
reconfigurations quickly and easily. Earlier cabling designs would not have easily supported
this business environment.
Until the early 1990s, cabling systems were proprietary, vendor-specific, and lacked flexibility. Some of the downsides of pre-1990 cabling systems included the following:
●
Vendor-specific cabling locked the customer into a proprietary system.
●
Upgrades or new systems often required a completely new cabling infrastructure.
●
Moves and changes often necessitated major cabling plant reconfigurations. Some coaxial
and twinax cabling systems required that entire areas (or the entire system) be brought
down in order to make changes.
●
Companies often had several cabling infrastructures that had to be maintained for their various applications.
●
Troubleshooting proprietary systems was time consuming and difficult unless you were
intimately familiar with a system.
Cabling has changed quite a bit over the years. Cabling installations have evolved from proprietary systems to flexible, open solutions that can be used by many vendors and applications.
This change is the result of the adaptation of standards-based, structured cabling systems. The
driving force behind this acceptance is due not only to customers but also to the cooperation
between many telecommunications vendors and international standards organizations.
A properly designed structured cabling system is based around components or wiring units.
An example of a wiring unit is a story of an office building, as shown in Figure 2.1. All the
Structured Cabling and Standardization
63
work locations on that floor are connected to a single wiring closet. Each of the wiring units
(stories of the office building) can be combined together using backbone cables as part of a
larger system.
TIP
This point bears repeating: A structured cabling system is not designed around any specific
application but rather is designed to be generic. This permits many applications to take
advantage of the cabling system.
The components used to design a structured cabling system should be based on a widely
accepted specification and should allow many applications (analog voice, digital voice, 10Base-T,
100Base-TX, 16Mbps Token Ring, RS-232, etc.) to use the cabling system. The components
should also adhere to certain performance specifications so that the installer or customer will
know exactly what types of applications will be supported.
A number of documents are related to data cabling. In the United States, the Standard is
ANSI/TIA/EIA-568-B, also known as the Commercial Building Telecommunications
Cabling Standard. The ANSI/TIA/EIA-568-B Standard is a specification adopted by ANSI
(American National Standards Institute), but the ANSI portion of the document name is commonly left out. In Europe, the predominant Standard is the ISO/IEC 11801 Standard, also
known as the International Standard on Information Technology Generic Cabling for Customer Premises.
FIGURE 2.1
A typical small office
with horizontal cabling
running to a single wiring closet
Workstation outlets
(phone and data)
Horizontal cabling
to wiring closet
Telecommunications
(wiring) closet
64
NOTE
Chapter 2 • Cabling Specifications and Standards
When is a standard not a Standard? In the United States, a document is not officially a national
Standard until it is sanctioned by ANSI. In Canada, the CSA is the sanctioning body, and in
Europe, it is the ISO. Until sanctioned by these organizations, a requirements document is
merely a specification. However, many people use the words specification and standard interchangeably. (In Europe, the word norm also comes into play.) Just be aware that a “standard”
can be created by anyone with a word processor, whereas a Standard carries the weight of governmental recognition as a comprehensive, fair, and objective document.
These two documents are quite similar, although their terminology is different, and the ISO/
IEC 11801 Standard permits an additional type of UTP cabling. Throughout much of the rest
of the world, countries and specifications organizations have adopted one of these Standards as
their own. Both of these documents are discussed in more detail later in this chapter.
Cabling Standards: A Moving Target
This chapter briefly introduces the ANSI/TIA/EIA-568-B and the ISO/IEC 11801 Standards,
but it is not intended to be a comprehensive guide to either. Even as you read this book, networking vendors and specifications committees are figuring out ways to transmit larger quantities of data, voice, and video over copper and fiber-optic cable. Therefore, the requirements
and performance specifications for the Standards are continually being updated. If you are
responsible for large cabling-systems design and implementation, you should own a copy of
the relevant documents.
Most of the TIA/EIA documents mentioned in this chapter are available for purchase through
Global Engineering Documents at (800) 854-7179 or on the Web at http://global.ihs.com.
Global Engineering Documents sells printed versions of the TIA, EIA, and ETSI specifications, as
well as others. The ISO/EIC Standards and ITU recommendations are available for purchase
from the ITU’s website at www.itu.int/publications/bookshop/index.html.
CSA International Standards documents are available from the CSA at (416) 747-4000 or on
the Web at www.csa.ca.
Standards and Specifying Organizations
If you pick up any document or catalog on data cabling, you will see acronyms and abbreviations for the names of specification organizations. If you want to know more about a particular
specification, you should be familiar with the organization that publishes that particular document. These U.S.-based and international organizations publish hardware, software, and
physical-infrastructure specifications to ensure interoperability between electrical, communications, and other technology systems. Your customers and coworkers may laugh at the elation
Structured Cabling and Standardization
65
you express when you get even simple networked devices to work, but you are not alone. In
fact, the simple act of getting two stations communicating with one another on a 10Base-T network, for example, is a monumental achievement considering the number of components and
vendors involved. Just think: Computers from two different vendors may use Ethernet adapters
that also may be from different manufacturers. These Ethernet adapters may also be connected
by cable and connectors provided by another manufacturer, which in turn may be connected
to a hub built by still another manufacturer. Even the software that the two computers are running may come from different companies. Dozens of other components must work together.
That anything is interoperable at all is amazing. Thankfully, a number of organizations
around the world are devoted to the development of specifications that encourage interoperability. These organizations are often nonprofit, and the people that devote much of their time
to the development of these specifications are usually volunteers. These specifications include
not only cabling specifications and performance and installation practices but also the development of networking equipment like Ethernet cards. As long as the manufacturer follows the
appropriate specifications, their devices should be interoperable with other networking
devices.
The number of organizations that provide specifications is still more amazing. It might be
simpler if a single international organization were responsible for all Standards. However, if
that were the case, probably nothing would ever get accomplished. Hence the number of specifications organizations. The following sections describe these organizations, but the list is by
no means exhaustive.
American National Standards Institute (ANSI)
Five engineering societies and three U.S. government agencies founded the American
National Standards Institute (ANSI) in 1918 as a private, nonprofit membership organization
sustained by its membership. ANSI’s mission is to encourage voluntary compliance with Standards and methods. ANSI’s membership includes almost 1,400 private companies and government organizations in the United States as well as international members.
ANSI does not develop the American National Standards (ANS) documents, but it facilitates
their development by establishing a consensus between the members interested in developing
a particular Standard.
To gain ANSI approval, a document must be developed by a representative cross section of
interested industry participants. The cross section must include both manufacturers and end
users. In addition, a rigorous balloting and revision process must be adhered to so that a single
powerful member does not drive proprietary requirements through and establish a particular
market advantage.
66
Chapter 2 • Cabling Specifications and Standards
Through membership in various international organizations such as the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC),
ANSI promotes standards developed in the United States. ANSI was a founding member of the
ISO and is one of the five permanent members of the ISO governing council and one of four
permanent members on the ISO’s Technical Management Board.
ANSI Standards include a wide range of information-technology specifications, such as SCSI
interface specifications, programming-language specifications, and specifications for character
sets. ANSI helped to coordinate the efforts of the Electronic Industries Alliance (EIA) and the
Telecommunications Industry Association (TIA) to develop ANSI/TIA/EIA-568, the cabling
specification in the United States. TIA/EIA-568-B is discussed in more detail later in this
chapter. You can find information on it and links to purchase the documents on ANSI’s website
at www.ansi.org.
Electronic Industries Alliance (EIA)
The Electronic Industries Alliance (EIA) was established in 1924 and was originally known as
the Radio Manufacturers Association. Since then, the EIA has evolved into an organization
that represents a wide variety of electronics manufacturers in the United States and abroad;
these manufacturers make products for a wide range of markets. The EIA is organized along
specific product and market lines that allow each EIA sector to be responsive to its specific
needs. These sectors include components, consumer electronics, electronic information,
industrial electronics, government, and telecommunications.
The EIA (along with the TIA) was the driving force behind the ANSI/TIA/EIA-568 Commercial Building Telecommunications Cabling Standard. More information is available on the
Web at www.eia.org.
Telecommunications Industry Association (TIA)
The Telecommunications Industry Association (TIA) is a trade organization that consists of a
membership of over 1,100 telecommunications and electronics companies that provide services, materials, and products throughout the world. The TIA membership manufactures and
distributes virtually all the telecommunication products used in the world today. TIA’s mission
is to represent its membership on issues relating to Standards, public policy, and market development. The 1988 merger of the United States Telecommunications Suppliers Association
(USTSA) and the EIA’s Information and Telecommunications Technologies Group formed
the TIA.
The TIA (along with the EIA) was instrumental in the development of the ANSI/TIA/
EIA-568 Commercial Building Telecommunications Cabling Standard. TIA can be found on
the Web at www.tiaonline.org.
Structured Cabling and Standardization
TIA Committees
In the United States (and much of the world), the TIA is ultimately responsible for the Standards
related to structured cabling as well as many other technological devices used every day. If you
visit the TIA website (www.tiaonline.org), you will find that committees develop the specifications. Often, a number of committees will contribute to a single specification. You may find
a number of abbreviations that you are not familiar with. These include the following:
SFG. Standards Formulation Group is a committee responsible for developing specifications.
FO. Fiber Optics is a committee dedicated to fiber-optic technology.
TR. Technical Review is an engineering committee.
WG. Working Group is a general title for a subcommittee.
UPED. The User Premises Equipment Division centers its activities on FCC (Federal Communications Commission) regulatory changes.
Some of the TIA committees and their responsibilities are as follows:
FO-2. Optical Communications is responsible for developing specifications related to
fiber-optic communications and fiber-optic devices.
FO-6. Fiber Optics is responsible for developing specifications for fiber-optic tooling and
testing, connecting devices, and reliability of fiber-optic connectors.
TR-29. Facsimile Systems and Equipment is responsible for the development of specifications relating to faxing.
TR-30. Data Transmission Systems and Equipment develops specifications related to
data transmission as well as faxing.
TR-32. Personal Radio Equipment is responsible for the development of consumer-oriented products such as cordless telephones.
TR-41. User Premises Telecommunications Requirements is responsible for the specifications
relating to technologies such as IP (Internet Protocol), telephony (VoIP or Voiceover IP), wireless
telephones, caller ID, multimedia building distribution, and wireless user-premises equipment.
TR-42. User Premises Telecommunications Infrastructure is responsible for specifications
such as the Commercial Building Telecommunications Cabling (TIA/EIA-568-B.1 or subcommittee TR-42.1), Residential Telecommunications Infrastructure (TIA/EIA-570-A or
subcommittee TR-42.2), Commercial Building Telecommunications Pathways and
Spaces (TIA/EIA-569-A or subcommittee TR-42.3), Telecommunications Copper Cabling
Systems (TIA/EIA-568-B.2 and B.4 or subcommittee TR-42.7), Workgroup on Copper
Connecting Hardware (subcommittee TR 42.2.1), and Telecommunications Optical Fiber
Cabling Systems (TIA/EIA-568-B.3 or subcommittee TR-42.8). The subcommittees of TR42 formed the TIA/EIA-568-B specification ratified in 2001.
67
68
Chapter 2 • Cabling Specifications and Standards
Insulated Cable Engineers Association (ICEA)
The ICEA is a nonprofit professional organization sponsored by leading cable manufacturers
in the United States. It was established in 1925 with the goal of producing cable specifications
for telecommunication, electrical power, and control cables. The organization draws from the
technical expertise of the representative engineer members to create documents that reflect the
most current cable-design, material-content, and performance criteria. The group is organized
in four sections: Power Cable, Control & Instrumentation Cable, Portable Cable, and Communications Cable.
The ICEA has an important role in relation to the ANSI/TIA/EIA Standards for networkcabling infrastructure. ICEA cable specifications for both indoor and outdoor cables, copper
and fiber optic, are referenced by the TIA documents to specify the design, construction, and
physical performance requirements for cables.
ICEA specifications are issued as national Standards. In the Communications section, ANSI
requirements for participation by an appropriate cross section of industry representatives in a
document’s development is accomplished through TWCSTAC (pronounced twix-tak), the
Telecommunications Wire and Cable Standards Technical Advisory Committee. The TWCSTAC consists of ICEA members, along with other manufacturers, material suppliers, and end
users. The ICEA maintains a website at www.icea.net.
National Fire Protection Association (NFPA)
The National Fire Protection Association (NFPA) was founded in 1896 as a nonprofit organization to help protect people, property, and the environment from fire damage. NFPA is
now an international organization with more than 65,000 members representing over 100
countries. The organization is a world leader on fire prevention and safety. The NFPA’s mission is to help reduce the risk of fire through codes, safety requirements, research, and firerelated education. The Internet home for NFPA is at www.nfpa.org.
Though not directly related to data cabling, the NFPA is responsible for the development
and publication of the National Electrical Code (NEC). The NEC is published every three
years (the next NEC will be published in 2005) and covers issues related to electrical safety
requirements; it is not used as a design specification or an instruction manual.
Two sections of the NEC are relevant to data cabling, Articles 725 and 800. Many municipalities have adopted the NEC as part of their building codes and, consequently, electrical construction and wiring must meet the specifications in the NEC. Although the NEC is not a legal
document, portions of the NEC become laws if municipalities adopt them as part of their local
building codes. In Chapter 4, we will discuss the use of the NEC when considering the restrictions that may be placed on cabling design.
Structured Cabling and Standardization
69
National Electrical Manufacturers Association (NEMA)
The National Electrical Manufacturers Association (NEMA) is a U.S.-based industry association that helps promote standardization of electrical components, power wires, and cables.
The specifications put out by NEMA help to encourage interoperability between products
built by different manufacturers. The specifications often form the basis for ANSI Standards.
NEMA can be found on the Internet at www.nema.org.
Federal Communications Commission
The Federal Communications Commission (FCC) was founded in 1934 as part of the U.S.
government. The FCC consists of a board of seven commissioners appointed by the President;
this board has the power to regulate electrical-communications systems originating in the
United States. These communications systems include television, radio, telegraph, telephone,
and cable TV systems. Regulations relating to premises cabling and equipment are covered in
FCC Part 68 rules. The FCC website is at www.fcc.gov.
Underwriters Laboratories (UL)
Founded in 1894, Underwriters Laboratories, Inc. (UL) is a nonprofit, independent organization dedicated to product safety testing and certification. Although not involved directly with
cabling specifications, UL works with cabling and other manufacturers to ensure that electrical
devices are safe. UL tests products for paying customers; if the product passes the specification
for which the product is submitted, the UL listing or verification is granted. The UL mark of
approval is applied to cabling and electrical devices worldwide. UL can be found on the Web
at www.ul.com.
International Organization for Standardization (ISO)
The International Organization for Standardization (ISO) is an international organization of
national specifications bodies and is based in Geneva, Switzerland. The specifications bodies
that are members of the ISO represent over 130 countries from around the world; the United
States representative to the ISO is the American National Standards Institute (ANSI). The
ISO was established in 1947 as a nongovernmental organization to promote the development
of standardization in intellectual, scientific, technological, and economic activities. You can
find the ISO website at www.iso.org.
NOTE
If the name is the International Organization for Standardization, shouldn’t the acronym be
IOS instead of ISO? It should be, if ISO were an acronym—but ISO is taken from the Greek
word isos, meaning equal.
70
Chapter 2 • Cabling Specifications and Standards
ISO Standards include specifications for film-speed codes, telephone and banking-card formats, standardized freight containers, the universal system of measurements known as SI,
paper sizes, and metric screw threads, just to name a few. One of the common Standards that
you may hear about is the ISO 9000 Standard, which provides a framework for quality management and quality assurance.
ISO frequently collaborates with the IEC (International Electrotechnical Commission) and
the ITU (International Telecommunications Union). One result of such collaboration is the
ISO/IEC 11801:1995 Standard titled Generic Cabling for Customer Premises. ISO/IEC
11801 is the ISO/IEC equivalent of the ANSI/TIA/EIA-568-B Standard.
International Electrotechnical Commission (IEC)
The International Electrotechnical Commission (IEC) is an international specifications and
conformity-assessment body founded in 1906 to publish international specifications relating to
electrical, electronic, and related technologies. Membership in the IEC includes more than 50
countries.
A full member has voting rights in the international Standards process. The second type of
member, an associate member, has observer status and can attend all IEC meetings.
The mission of the IEC is to promote international Standards and cooperation on all matters
relating to electricity, electronics, and related technologies. The IEC and the ISO cooperate
on the creation of Standards such as the Generic Cabling for Customer Premises (ISO/IEC
11801:1995). The IEC website is www.iec.ch.
Institute of Electrical and Electronic Engineers (IEEE)
The Institute of Electrical and Electronic Engineers (IEEE, pronounced I triple-E) is an international, nonprofit association consisting of more than 330,000 members in 150 countries. The IEEE
was formed in 1963 when the American Institute of Electrical Engineers (AIEE, founded in 1884)
merged with the Institute of Radio Engineers (IRE, founded in 1912). The IEEE is responsible for
30 percent of the electrical-engineering, computer, and control-technology literature published in
the world today. They are also responsible for the development of over 800 active specifications and
have many more under development. These specifications include the 10Base-x specifications
(such as 10Base-T, 100Base-TX, etc.) and the 802.x specifications (such as 802.2, 802.3, etc.). You
can get more information about the IEEE on the Web at www.ieee.org.
National Institute of Standards and Technology (NIST)
The United States Congress established the National Institute of Standards and Technology
(NIST) with several major goals in mind, including assisting in the improvement and development of manufacturing technology, improving product quality and reliability, and encouraging
Structured Cabling and Standardization
71
scientific discovery. NIST is an agency of the United States Department of Commerce and
works with major industries to achieve its goals.
NIST has four major programs through which it carries out its mission:
●
Measurement and Standards Laboratories
●
Advanced Technology Program
●
Manufacturing Extension Partnership
●
A quality outreach program associated with the Malcolm Baldrige National Quality Award
called the Baldrige National Quality Program
Though not directly related to most cabling and data specifications, NIST’s efforts contribute to the specifications and the development of the technology based on them. You can locate
NIST on the Internet at www.nist.gov.
International Telecommunications Union (ITU)
The International Telecommunications Union (ITU), based in Geneva, Switzerland, is the
specifications organization formerly known as the International Telephone and Telegraph
Consultative Committee (CCITT). The origins of the CCITT can be traced back over 100
years; the ITU was formed to replace it in 1993. The ITU does not publish specifications per
se, but it does publish recommendations. These recommendations are nonbinding specifications agreed to by consensus of 1 of 14 technical study groups. The mission of the ITU is to
study the technical and operations issues relating to telecommunications and to make recommendations on implementing standardized approaches to telecommunications.
The ITU currently publishes more than 2,500 recommendations, including specifications
relating to telecommunications, electronic messaging, television transmission, and data communications. The ITU’s web address is www.itu.int.
CSA International (CSA)
CSA International originated as the Canadian Standards Association but changed its name to
reflect its growing work and influence on international Standards. Founded in 1919, CSA
International is a nonprofit, independent organization with more than 8,000 members worldwide; it is the functional equivalent of the UL. CSA International’s mission is to develop Standards, represent Canada on various ISO committees, and work with the IEC when developing
the Standards. Some of the common Standards published by CSA International include:
●
CAN/CSA-T524 Residential Wiring
●
CAN/CSA-T527 Bonding and Grounding for Telecommunications
●
CAN/CSA-T528 Telecommunications Administration Standard for Commercial Buildings
72
Chapter 2 • Cabling Specifications and Standards
●
CAN/CSA-T529 Design Guidelines for Telecommunications Wiring Systems in Commercial Buildings
●
CAN/CSA-T530 Building Facilities Design Guidelines for Telecommunications
Many cabling and data products certified by the United States National Electrical Code (NEC)
and Underwriters Laboratories (UL) are also certified by the CSA. Cables manufactured for use
in the United States are often marked with the CSA electrical and flame-test ratings as well as the
U.S. ratings, if they can be used in Canada. CSA International is on the Internet at www.csa.ca.
ATM Forum
Started in 1991, the ATM Forum (Asynchronous Transfer Mode) is an international, nonprofit organization whose mission is to promote the use of ATM products and services.
Specifications developed and published by the ATM Forum include LAN Emulation
(LANE) over ATM (af-lane-0021.000) and ATM Physical Medium Dependent Interface
Specification for 155Mbps over Twisted-Pair Cable (af-phy-0015.000). These documents are
available free of charge on the ATM Forum’s website at www.atmforum.org.
European Telecommunications Standards Institute (ETSI)
The European Telecommunications Standards Institute (ETSI) is a nonprofit organization
based in Sophia Antipolis, France. The ETSI currently consists of almost 696 members from
50 countries and represents manufacturers, service providers, and consumers. The ETSI’s mission is to determine and produce telecommunications specifications and to encourage worldwide standardization. The ETSI coordinates its activities with international Standards bodies
such as the ITU. You can find the organization at www.etsi.org.
Building Industry Consulting Services International (BICSI)
Though not specifically a specifications organization, the Building Industry Consulting Services International (BICSI) deserves a special mention. BICSI is a nonprofit, professional organization founded in 1974 to support telephone-company building-industry consultants (BICs)
who are responsible for design and implementation of communications-distribution systems in
commercial and multifamily buildings. Currently, the BICSI serves 20,000 members from 90
countries around the world.
BICSI supports a professional certification program called the RCDD (Registered Communications Distribution Designer). Over 6,400 people with the RCDD certification have
demonstrated competence and expertise in the design, implementation, and integration of
telecommunications systems and infrastructure. For more information on the RCDD program or becoming a member of the BICSI, check out its website at www.bicsi.org. Information on becoming a BICSI-accredited RCDD is detailed in Appendix B.
ANSI/TIA/EIA-568-B Cabling Standard
73
Occupational Safety and Health Administration (OSHA)
A division of the United States Department of Labor, the Occupational Safety and Health
Administration (OSHA) was formed in 1970 with the goal of making workplaces in the United
States the safest in the world. To this end, it passes laws designed to protect employees from
many types of job hazards. OSHA adopted many parts of the National Electrical Code (NEC),
which was not a law unto itself, giving those adopted portions of the NEC legal status. For
more information on OSHA, look on the Web at www.osha.gov.
ANSI/TIA/EIA-568-B Cabling Standard
In the mid-1980s, consumers, contractors, vendors, and manufacturers became concerned
about the lack of specifications relating to telecommunications cabling. Before then, all communications cabling was proprietary and often suited only to a single-purpose use. The Computer Communications Industry Association (CCIA) asked the EIA to develop a specification
that would encourage structured, standardized cabling.
Under the guidance of the TIA TR-41 committee and associated subcommittees, the TIA and
EIA in 1991 published the first version of the Commercial Building Telecommunications
Cabling Standard, better known as ANSI/TIA/EIA-568 or sometimes simply as TIA/EIA-568.
NOTE
The Canadian equivalent of TIA/EIA-568-B is CSA T529.
REAL WORLD SCENARIO
A Little History Lesson
Sometimes you will see the Commercial Building Telecommunications Cabling Standard
referred to as ANSI/TIA/EIA-568 and sometimes just as TIA/EIA-568. You will also sometimes see the EIA and TIA transposed. The original name of the specification was ANSI/EIA/
TIA-568-1991.
Over the next few years, the EIA released a number of Telecommunications Systems Bulletins
(TSBs) covering specifications for higher grades of cabling (TSB-36), connecting hardware
(TSB-40), patch cables (TSB-40A), testing requirements for modular jacks (TSB-40A), and
additional specifications for shielded twisted-pair cabling (TSB-53). The contents of these
TSBs, along with other improvements, were used to revise TIA/EIA-568; this revision was
released in 1995 and was called ANSI/TIA/EIA-568-A.
Continued on next page
74
Chapter 2 • Cabling Specifications and Standards
Progress marched on, and communication technologies advanced faster than the entire
specification could be revised, balloted, and published as a Standard. But it is relatively
easy to create ad hoc addenda to a Standard as the need arises. Consequently, five official
additions to the ANSI/TIA/EIA-568-A base Standard were written after its publication
in 1995:
ANSI/TIA/EIA-568-A-1, the Propagation Delay and Delay Skew Specifications for 100-Ohm Four-Pair Cable
Approved in August and published in September 1997, this addendum was created to add
additional requirements to those in the base Standard in support of high-performance networking, such as 100Base-T (100Mbps Ethernet).
ANSI/TIA/EIA-568-A-2, Corrections and Addition to ANSI/TIA/EIA-568-A Approved in July and published in August 1998, this document contains corrections to the base document.
ANSI/TIA/EIA-568-A-3, Addendum 3 to TIA/EIA-568-A Approved and published in December
1998, the third addendum defines bundled, hybrid, and composite cables and clarifies
their requirements.
ANSI/TIA/EIA-568-A-4, Production Modular Cord NEXT Loss Test Method for Unshielded Twisted-Pair Cabling
Approved in November and published in December 1999, this addendum provides a nondestructive methodology for NEXT loss testing of modular-plug (patch) cords.
ANSI/TIA/EIA-568-A-5, Transmission Performance Specifications for Four-Pair 100-Ohm Category 5e Cabling
Approved in January and published in February 2000, the latest addendum specifies additional performance requirements for the cabling (not just the cable) for Enhanced Category
5 installations. Additional requirements include minimum-return-loss, propagation-delay,
delay-skew, NEXT, PSNEXT, FEXT, ELFEXT, and PSELFEXT parameters. Also included are
laboratory measurement methods, component and field-test methods, and computation
algorithms over the specified frequency range. In ANSI/TIA/EIA-568-A-5, performance
requirements for Category 5e cabling do not exceed 100MHz, even though some testing
is done beyond this frequency limit.
The official name of the specification today is ANSI/TIA/EIA-568-B. This new revision of the
entire specification was published in 2001 and incorporates all five of the addenda to the
568-A version. Among other changes, Category 4 and Category 5 cable are no longer recognized. In fact, Category 4 ceased to exist altogether, and Category 5 requirements were
moved to a “for reference only” appendix. Category 5e and Category 6 replace Categories 4
and 5 as recognized Categories of cable.
ANSI/TIA/EIA-568-B Cabling Standard
75
Should I Use ANSI/TIA/EIA-568-B or ISO/IEC 11801?
This chapter describes both the ANSI/TIA/EIA-568-B and ISO/IEC 11801 cabling Standards. You may wonder which Standard you should follow. Though these two Standards are
quite similar (ISO/IEC 11801 was based on ANSI/TIA/EIA-568), the ISO/IEC 11801 Standard was developed with cable commonly used in Europe and consequently contains some
references more specific to European applications. Also, some terminology in the two documents is different.
If you are designing a cabling system to be used in the United States or Canada, you should
follow the ANSI/TIA/EIA-568-B Standard. You should know, however, that the ISO is taking
the lead (with assistance from TIA, EIA, CSA, and others) in developing new international
cabling specifications, so maybe in the future you will see only a single Standard implemented
worldwide that will be a combination of both specifications.
ANSI/TIA/EIA-568-B Purpose and Scope
The ANSI/TIA/EIA-568 Standard was developed and has evolved into its current form for
several reasons:
●
To establish a cabling specification that would support more than a single vendor application
●
To provide direction of the design of telecommunications equipment and cabling products
that are intended to serve commercial organizations
●
To specify a cabling system generic enough to support both voice and data
●
To establish technical and performance guidelines and provide guidelines for the planning
and installation of structured cabling systems
The Standard addresses the following:
●
Subsystems of structured cabling
●
Minimum requirements for telecommunications cabling
●
Installation methods and practices
●
Connector and pin assignments
●
The life span of a telecommunications cabling system (which should exceed 10 years)
●
Media types and performance specifications for horizontal and backbone cabling
●
Connecting hardware performance specifications
●
Recommended topology and distances
76
Chapter 2 • Cabling Specifications and Standards
●
The definitions of cabling elements (horizontal cable, cross-connects, telecommunication
outlets, etc.)
The current configuration of ANSI/TIA/EIA-568-B subdivides the standard as follows:
●
ANSI/TIA/EIA-568-B.1: General Requirements
●
ANSI/TIA/EIA-568-B.2: Balanced Twisted-Pair Cabling Components
●
●
ANSI/TIA/EIA-568-B.2-1: Addendum 1—Transmission Performance Specifications
for 4-pair 100-Ohm Category 6 Cabling
ANSI/TIA/EIA-568-B.3: Optical Fiber Cabling Components
In this chapter, we’ll discuss the Standard as a whole, without focusing too much on specific
sections.
WARNING
Welcome to the Nomenclature Twilight Zone. The ANSI/TIA/EIA-568-B Standard contains
two wiring patterns for use with UTP jacks and plugs. They indicate the order in which the
wire conductors should be connected to the pins in modular jacks and plugs and are known
as T568A and T568B. Do not confuse these with the documents TIA/EIA-568-B and the previous version, TIA/EIA-568-A. The wiring schemes are both covered in TIA/EIA-568 To learn
more about the wiring patterns, see Chapter 9.
Subsystems of a Structured Cabling System
The ANSI/TIA/EIA-568-B Standard breaks structured cabling into seven areas. They are the
horizontal cabling, backbone cabling, the work area, telecommunications rooms, equipment
rooms, entrance facility (building entrance), and Administration.
Interpreting Standards and Specifications
Standards and specification documents are worded with precise language designed to spell
out exactly what is expected of an implementation using that specification. If you read carefully, you may notice that slightly different words are used when stating requirements.
If you see the word shall or must used when stating a requirement, it signifies a mandatory
requirement. Words such as should, may, and desirable are advisory in nature and indicate
recommended requirements.
In ANSI/TIA/EIA-568-B, some sections, specifically some of the Annexes, are noted as being
normative or informative. Normative means the content is a requirement of the Standard.
Informative means the content is for reference purposes only. For example, Category 5 cable
is no longer a recognized media and Category 5 requirements have been placed in informative
Annex D of 568-B.1 and informative Annex N of 568-B.2 in support of “legacy” installations.
ANSI/TIA/EIA-568-B Cabling Standard
TIP
77
This chapter provides an overview of the ANSI/TIA/EIA-568-B Standard and is not meant as a
substitute for the official document. Cabling professionals should purchase a full copy; you can
do so at the Global Engineering Documents website (http://global.ihs.com).
Horizontal Cabling
Horizontal cabling, as specified by ANSI/TIA/EIA-568-B, is the cabling that extends from telecommunications rooms to the work area and terminates in telecommunications outlets (information outlets or wall plates). Horizontal cabling includes the following:
●
Cable from the patch panel to the work area
●
Telecommunications outlets
●
Cable terminations
●
Cross-connections (where permitted)
●
A maximum of one transition point
Figure 2.2 shows a typical horizontal-cabling infrastructure spanning out in a star topology
from a telecommunications room. The star topology is required.
FIGURE 2.2
Horizontal cabling in a
star topology from the
telecommunications
room
Telecommunications
outlets
Horizontal
cabling
Telecommunications
closet
Backbone cabling
to equipment room
Transition point
(such as for modular furniture)
Patch panels and
LAN equipment
78
Chapter 2 • Cabling Specifications and Standards
Application-specific components (baluns, repeaters) should not be installed as part of the
horizontal-cabling system (inside the walls). These should be installed in the telecommunication rooms or work areas.
Transition Point ANSI/TIA/EIA-568-B allows for one transition point in horizontal
cabling. The transition point is where one type of cable connects to another, such as where
round cable connects to under-carpet cable. A transition point can also be a point where cabling
is distributed out to modular furniture. Two types of transition points are recognized:
MUTOA This acronym stands for multiuser telecommunications outlet assembly,
which is an outlet that consolidates telecommunications jacks for many users into one
area. Think of it as a patch panel located out in the office area instead of in a telecommunications room.
CP CP stands for consolidation point, which is an intermediate interconnection
scheme that allows horizontal cables that are part of the building pathways to extend to
telecommunication outlets in open-office pathways such as those in modular furniture.
The ISO/IEC 11801 refers to the CP as a transition point (TP).
If you plan to use modular furniture or movable partitions, check with the vendor of the furniture or partitions to see if it provides data-cabling pathways within its furniture. Then ask
what type of interface it may provide or require for your existing cabling system. You will have
to plan for connectivity to the furniture in your wiring scheme.
Cabling vendor The Siemon Company and modular-furniture manufacturer DRG have
teamed up to build innovative modular furniture with built-in cable management compliant
with TSB-75 and the TIA/EIA-568 specifications. The furniture system is called MACsys;
you can find more information about the MACsys family of products on the Web at www
.siemon.com/macsys/.
Is There a Minimum Distance for UTP Horizontal Cable?
The ANSI/TIA/EIA-568-B does not specify a minimum length for UTP cabling, except when
using a multiuser telecommunications outlet assembly (MUTOA). A short-link phenomenon
occurs in cabling links usually less than 20 meters (60 feet) long that usually support
100Base-TX applications. The first 20 to 30 meters of a cable is where near-end crosstalk
(NEXT) has the most effect. In higher-speed networks such as 100Base-TX, short cables may
cause the signal generated by crosstalk or return loss reflections to be returned back to the
transmitter. The transmitter may interpret these returns as collisions and cause the network
not to function correctly at high speeds. To correct this problem, try extending problematic
cable runs with extra-long patch cords.
ANSI/TIA/EIA-568-B Cabling Standard
79
Recognized Media
ANSI/TIA/EIA-568-B recognizes two types of media (cables) that can be used as horizontal
cabling. More than one media type may be run to a single work-area telecommunications outlet; for example, a UTP cable can be used for voice, and a fiber-optic cable can be used for data.
The maximum distance for horizontal cable from the telecommunications room to the telecommunications outlet is 90 meters (295 feet) regardless of the cable media used. Horizontal
cables recognized by the ANSI/TIA/EIA-568-B Standard are limited to the following:
●
Four-pair, 100-ohm, 24 AWG, solid-conductor twisted-pair (UTP or ScTP) cable
●
Two-fiber, 62.5/125-micron or 50/125-micron optical fiber
Cabling @ Work: Maximum Horizontal Cabling Distance
If you ask someone what the maximum distance of cable is between a network hub (such as
10Base-T) and the computer, you are likely to hear “100 meters.” But many people ignore the
fact that patch cords are required and assume the distance is from the patch panel to the
telecommunication outlet (wall plate). Such is not the case.
The ANSI/TIA/EIA-568-B Standard states that the maximum distance between the telecommunications outlet and the patch panel is 90 meters. The Standard further allows for a patch
cord in the workstation area that is up to 5 meters in length and a patch cord in the telecommunications room that is up to 5 meters in length. (If you did the math, you figured out that
the actual maximum length is 99 meters, but what’s one meter between friends?) The total
distance is the maximum distance for a structured cabling system, based on ANSI/TIA/EIA568-B, regardless of the media type (twisted-pair copper or optical fiber).
The 100-meter maximum distance is not a random number; it was chosen for a number of reasons, including the following:
●
The number defines transmissions distances for communications-equipment designers.
This distance limitation assures them that they can base their equipment designs on the
maximum distance of 100 meters between the terminal and the hub in the closet.
●
It provides building architects a specification that states they should place telecommunications rooms so that no telecommunications outlet will be farther than 90 meters from
the nearest wall outlet (that’s in cable distance, which is not necessarily a straight line).
●
The maximum ensures that common technologies (such as 10Base-T Ethernet) will be
able to achieve reasonable signal quality and maintain data integrity. Much of the reasoning for the maximum was based on the timing required for a 10Base-T Ethernet workstation to transmit a minimum packet (64 bytes) to the farthest station on an Ethernet
segment. The propagation of that signal through the cable had to be taken into account.
Continued on next page
80
Chapter 2 • Cabling Specifications and Standards
Can a structured cabling system exceed the 100-meter distance? Sure. Good-quality Category
5, 5e, or 6 cable will allow 10Base-T Ethernet to be transmitted farther than Category 3. When
using 10Base-FL (10Mbps Ethernet over fiber-optic cable), multimode optical-fiber cable has
a maximum distance of 2,000 meters; so a structured cabling system that will support exclusively 10Base-FL applications could have much longer horizontal cabling runs.
But (you knew there was a but, didn’t you?) your cabling infrastructure will no longer be based
on a Standard. It will support the application it was designed to support, but it may not support others.
Further, for unshielded twisted-pair cabling, the combined effects of attenuation, crosstalk,
and other noise elements increase as the length of the cable increases. Although attenuation
and crosstalk do not drastically worsen immediately above the 100-meter mark, the signalto-noise ratio (SNR) begins to approach zero. When the SNR equals zero, the signal is indistinguishable from the noise in the cabling. (That’s analogous to a screen full of snow on a TV.)
Then your cabling system will exceed the limits that your application hardware was designed
to expect. Your results will be inconsistent, if the system works at all.
The moral of this story is not to exceed the specifications for a structured cabling system and
still expect the system to meet the needs of specifications-based applications.
Telecommunications Outlets
ANSI/TIA/EIA-568-B specifies that each work area shall have a minimum of two information-outlet ports. Typically, one is used for voice and another for data. Figure 2.3 shows a possible telecommunications outlet configuration. The outlets go by a number of names, including information outlets,
wall jacks, and wall plates. However, an information outlet is officially considered to be one jack on a
telecommunications outlet; the telecommunications outlet is considered to be part of the horizontalcabling system. Chapters 9 and 10 have additional information on telecommunications outlets.
The information outlets wired for UTP should follow one of two conventions for wire-pair assignments or wiring patterns: T568A or T568B. They are nearly identical, except that pairs 2 and 3 are
interchanged. Neither of the two is the correct choice, as long as the same convention is used at each
end of a permanent link. It is best, of course, to always use the same convention throughout the
cabling system. T568B used to be much more common in commercial installations, but T568A is
now the recommended configuration. (T568A is the required configuration for residential installations, in accordance with ANSI/TIA/EIA-570-A.) The T568A configuration is partially compatible
with an older wiring scheme called USOC, which was commonly used for voice systems.
Be consistent at both ends of the horizontal cable. When you purchase patch panels and
jacks, you may be required to specify which pattern you are using, as the equipment may be
color-coded to make installation of the wire pairs easier. However, most manufacturers now
include options that allow either configuration to be punched down on the patch panel or jack.
ANSI/TIA/EIA-568-B Cabling Standard
FIGURE 2.3
A telecommunications
outlet with a UTP for
voice and a UTP/
ScTP/fiber for data
81
Voice
backbone
Voice
Horizontal
cabling
Cross-connects
Telecommunications
outlet wall plate
Data patch
panel
Voice
Data
LAN hub
LAN
backbone
Telecommunications
rack in closet
Figure 2.4 shows the T568A and T568B pinout assignments. For more information on wiring patterns, modular plugs, and modular jacks, see Chapter 9.
The wire/pin assignments in Figure 2.4 are designated by wire color. The standard wire colors are shown in Table 2.1.
T A B L E 2 . 1 Wire-Color Abbreviations
Wire Abbreviation
Wire Color
W/G
White/Green
G
Green
W/O
White/Orange
82
Chapter 2 • Cabling Specifications and Standards
T A B L E 2 . 1 C O N T I N U E D Wire-Color Abbreviations
Wire Abbreviation
Wire Color
O
Orange
W/Bl
White/Blue
Bl
Blue
W/Br
White/Brown
Br
Brown
Though your application may not require all the pins in the information outlet, you should
make sure that all wires are terminated to the appropriate pins if for no other reason than to
ensure interoperability with future applications on the same media. Table 2.2 shows some
common applications and the pins that they use and clearly illustrates why all pairs should be
terminated in order to make the structured-wiring installation application-generic.
Pair 2
Pair 3
Pair 3 Pair 1 Pair 4
Pair 2 Pair 1 Pair 4
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
W-O
O
W-G
BL
W-BL
G
W-BR
BR
Modular jack wire pattern assignments for
T568A and T568B
W-G
G
W-O
BL
W-BL
O
W-BR
BR
FIGURE 2.4
T568A wiring pattern
T568B wiring pattern
ANSI/TIA/EIA-568-B Cabling Standard
83
T A B L E 2 . 2 Application-Specific Pair Assignments for UTP Cabling*
Application
Pins 1–2
Pins 3–6
Pins 4–5
Pins 7–8
Analog voice
-
-
Tx/Rx
-
ISDN
Power
Tx
Rx
Power
10Base-T (802.3)
Tx
Rx
-
-
Token Ring (802.5)
-
Tx
Rx
-
100Base-TX (802.3u)
Tx
Rx
-
-
100Base-T4 (802.3u)
Tx
Rx
Bi
Bi
100Base-VG (802.12)
Bi
Bi
Bi
Bi
FDDI (TP-PMD)
Tx
Optional
Optional
Rx
ATM User Device
Tx
Optional
Optional
Rx
ATM Network Equipment
Rx
Optional
Optional
Tx
1000Base-T (802.3ab)
Bi
Bi
Bi
Bi
Bi = bidirectional, Optional = may be required by some vendors
*Table courtesy of The Siemon Company (www.siemon.com)
TIP
A good structured-wiring system will include documentation printed and placed on each of
the telecommunications outlets.
Pair Numbers and Color Coding
The conductors in a UTP cable are twisted in pairs and color coded so that each pair of wires
can be easily identified and quickly terminated to the appropriate pin on the connecting hardware (patch panels or telecommunication outlets). With four-pair UTP cables, each pair of
wire is coded with two colors, the tip color and the ring color (see also “Insulation Colors” in
Chapter 1). In a four-pair cable, the tip color of every pair is white. To keep the tip conductors
associated with the correct ring conductors, often the tip conductor has bands in the color of
the ring conductor. Such positive identification (PI) color coding is not necessary in some
cases, such as with Category 5 and higher cables, because the intervals between twists in the
pair are very close together, making separation unlikely.
You identify the conductors by their color codes, such as white-blue and blue. With premises (indoor) cables, it is common to read the tip color first (including its PI color), then
the ring color. Table 2.3 lists the pair numbers, color codes, and pin assignments for T568A
and T568B.
84
Chapter 2 • Cabling Specifications and Standards
T A B L E 2 . 3 Four-Pair UTP Color Codes, Pair Numbers, and Pin Assignments for T568A and T568B
Pair Number
Color Code
T568A Pins
T568B Pins
1
White-Blue (W-Bl)/Blue (Bl)
W-Bl=5/Bl=4
W-Bl=5/ Bl=4
2
White-Orange (W-O)/Orange (O)
W-O=3/O=6
W-O=1/O=2
3
White-Green (W-G)/Green (G)
W-G=1/G=2
W-G=3/G=6
4
White-Brown (W-Br)/Brown (Br)
W-Br=7/Br=8
W-Br=7/Br=8
Backbone Cabling
The next subsystem of structured cabling is called backbone cabling. (Backbone cabling is also
sometimes called vertical cabling, cross-connect cabling, riser cabling, or intercloset cabling.)
Backbone cabling is necessary to connect entrance facilities, equipment rooms, and telecommunications rooms. Refer to Figure 2.7 later in the chapter to see backbone cabling that connects an equipment room with telecommunications rooms. Backbone cabling consists of not
only the cables that connect the telecommunication rooms, equipment rooms, and building
entrance but also the cross-connect cables, mechanical terminations, or patch cords used for
backbone-to-backbone cross-connection.
Permanent Link versus Channel Link
TIA/EIA-568-B defines two basic link types commonly used in the cabling industry with respect
to testing: the permanent link and the channel link.
The permanent link contains only the cabling found in the walls (horizontal cabling), one transition point, the telecommunications outlet, and one cross-connect or patch panel. It is assumed
to be the permanent portion of the cabling infrastructure. The permanent link is illustrated here.
Transition point
(if used)
Cross-connect
or patch panel
Horizontal
cable
Telecommunications
outlet
Basic link
Continued on next page
ANSI/TIA/EIA-568-B Cabling Standard
85
The channel link includes the basic link, as well as installed equipment, patch cords, and the
cross-connect jumper cable; however, the channel does not include phones, PBX equipment,
hubs, or network-interface cards. Two possible channel link configurations are shown here;
one is the channel link for a 10Base-T Ethernet workstation, and one is for a telephone.
Voice
system PBX
Transition
point
Patch cord
to voice
Telecommunications
outlet
Patch cord
Cross-connect
Channel
link
Patch panel
Data
system Hub
Patch cord
to hub
Telecommunications
outlet
Transition
point
Patch cord
Permanent and channel link performance requirements are provided in Chapter 14.
KEY TERM cross-connect A cross-connect is a facility or location within the cabling system that permits the termination of cable elements and the reconnection of those elements by jumpers,
termination blocks, and/or cables to another cabling element (another cable or patch panel).
Backbone cabling includes:
●
Cabling between equipment rooms and building-entrance facilities
●
In a campus environment, cabling between buildings’ entrance facilities
●
Vertical connections between floors
ANSI/TIA/EIA-568-B specifies additional design requirements for backbone cabling, some
of which carry specific stipulations, as follows:
●
Grounding should meet the requirements as defined in ANSI/TIA/EIA-607, the Commercial Building Grounding and Bonding Requirements for Telecommunications.
●
Care must be taken when running backbone cables to avoid sources of electromagnetic
interference or radio-frequency interference.
86
Chapter 2 • Cabling Specifications and Standards
●
No more than two hierarchical levels of cross-connects are allowed, and the topology of backbone cable will be a star topology. (A star topology is one in which all cables lead from their termination points back to a central location. Star topology is explained in more detail in Chapter
3.) Each horizontal cross-connect should be connected directly to a main cross-connect or to an
intermediate cross-connect that then connects to a main cross-connect. No more than one
cross-connect can exist between a main cross-connect and a horizontal cross-connect. Figure
2.5 shows multiple levels of equipment rooms and telecommunications rooms.
●
Equipment connections to the backbone should be made with cable lengths of less than 30
meters (98 feet).
●
For high-speed data applications, the total maximum backbone distance should not exceed
90 meters (295 feet) over copper wiring. This distance is for uninterrupted lengths of cable
(cross-connects are not allowed).
●
Bridge taps or splices are not allowed.
●
Multi-pair (greater than four-pair) cable may be used as long as it meets additional performance requirements such as for power-sum crosstalk. These requirements are specified in
the Standard.
FIGURE 2.5
Star topology of equipment room and telecommunication rooms
connected via backbone cabling
Telecommunications
closet
4th floor
Telecommunications
closet
3rd floor
Telecommunications
closet
Backbone cabling
to 2nd, 3rd, and 4th floor
telecommunications
closets
2nd floor
Equipment room
and 1st floor
telecommunications
closet
1st floor
ANSI/TIA/EIA-568-B Cabling Standard
87
KEY TERM shared sheath Shared sheath—a single cable that supports more than one application—
is permitted in ANSI/TIA/EIA-568-B.1, with guidelines specified in Annex B of the Standard.
A shared sheath may occur, for example, when Ethernet data transmission and voice transmission are both placed in a cable with more than four pairs. However, a shared sheath is
not advisable, as separate applications often have incompatible signal levels, and the signal
of one application will interfere as noise with the signal of the other application(s).
Recognized Backbone Media
ANSI/TIA/EIA-568-B recognizes several types of media (cable) for backbone cabling. These
media types can be used in combination as required by the installation. The application and the
area being served will determine the quantity and number of pairs required. Table 2.4 lists the
media types, applications, and maximum distances permitted.
NOTE
media The term media is used in the cabling business to denote the type of cabling used.
Media can include fiber-optic cable, twisted-pair cable, or coaxial cable. The definition of
media can also be broadened to include wireless networking.
T A B L E 2 . 4 Media Types, Applications, and Maximum Distances Permitted
Media
Application
Distance
100-ohm UTP or ScTP
Data
90 meters (295 feet)
100-ohm UTP or ScTP
Voice
800 meters (2,624 feet)
Single-mode 8.3/125-micron optical fiber
Data
3,000 meters (9,840 feet)
Multimode 62.5/125-micron or 50/125-micron
optical fiber
Data
2,000 meters (6,560 feet)
The distances in Table 2.4 are the total cable length allowed between the main cross-connect
and the horizontal cross-connect, allowing for one intermediate cross-connect.
WARNING
Coaxial cabling is not recognized by the ANSI/TIA/EIA-568-B version of the Standard.
Work Area
The work area is where the horizontal cable terminates at the wall outlet (telecommunications outlet). In the work area, the users and telecommunications equipment connect to the
structured-cabling infrastructure. The work area begins at the telecommunications area and
includes components such as the following:
●
Patch cables, modular cords, fiber jumpers, and adapter cables
88
Chapter 2 • Cabling Specifications and Standards
●
Adapters such as baluns and other devices that modify the signal or impedance of the cable
(these devices must be external to the information outlet)
●
Station equipment such as computers, telephones, fax machines, data terminals, and
modems
The work-area wiring should be simple and easy to manipulate. In today’s business environments, moves, additions, and removal of equipment are frequent. Consequently, the cabling
system needs to be easily adaptable to these changes.
Cabling @ Work: Planning for Sufficient Outlets and Horizontal Cable
Do you have enough horizontal cabling? Company XYZ (name changed to protect the innocent)
recently moved to a new location. In its old location, the company continually suffered from
a lack of data and voice outlets. Users wanted phones, modems, and fax machines located
in areas that no one ever imagined would have that equipment. The explosion of users with
multiple computers in their offices and networked printers only compounded the problem.
XYZ’s director of information services vowed that the situation would never happen to her
again. Each work area was wired with a four-port telecommunications outlet. Each of these
outlets could be used for either voice or data. In the larger offices, she had telecommunications outlets located on opposite walls. Even the lunchrooms and photocopier rooms had telecommunications outlets. This foresight gave Company XYZ the ability to add many more
workstations, printers, phones, and other devices that require cabling without the additional
cost of running new cables. The per-cable cost to install additional cables later is far higher
than installing additional cables during the initial installation.
Telecommunications Rooms
The telecommunications room (along with equipment rooms, generically referred to as wiring
closets) is the location within a building where cabling components such as cross-connects and
patch panels are located. These rooms are where the horizontal structured cabling originates.
Horizontal cabling is terminated in patch panels or termination blocks and then uses horizontal pathways to reach work areas. The telecommunications room may also contain networking
equipment such as LAN hubs, switches, routers, and repeaters. Backbone-cabling equipment
rooms terminate in the telecommunications room. Figures 2.5 and 2.7 illustrate the relationship of a telecommunications room to the backbone cabling and equipment rooms.
ANSI/TIA/EIA-569-A discusses telecommunications-room design and specifications, and a
further discussion of this subsystem can be found in Chapter 5, “Cabling System Components.” ANSI/TIA/EIA 569-A recommends that telecommunications rooms be stacked
ANSI/TIA/EIA-568-B Cabling Standard
89
vertically between one floor and another. ANSI/TIA/EIA-568-B further dictates the following
specifications relating to telecommunications rooms:
●
Care must be taken to avoid cable stress, tight bends, staples, wrapping the cable too
tightly, and excessive tension. You can avoid these pitfalls with good cable-management
techniques.
●
Use only connecting hardware that is in compliance with the specifications you want to
achieve.
●
Horizontal cabling should terminate directly not to an application-specific device but
rather to a telecommunications outlet. Patch cables or equipment cords should be used to
connect the device to the cabling. For example, horizontal cabling should never come
directly out of the wall and plug in to a phone or network adapter.
Entrance Facility The entrance facility (building entrance) defined by ANSI/TIA/EIA568-B specifies the point in the building where cabling interfaces with the outside world. All
external cabling (campus backbone, interbuilding, antennae pathways, and telecommunications provider) should enter the building and terminate in a single point. Telecommunications carriers are usually required to terminate within 50 feet of a building entrance. The
physical requirements of the interface equipment are defined in ANSI/TIA/EIA-569-A, the
Commercial Building Standard for Telecommunications Pathways and Spaces. The specification covers telecommunications-room design and cable pathways.
ANSI/TIA/EIA-569-A recommends a dedicated entrance facility for buildings with more
than 20,000 usable square feet. If the building has more than 70,000 usable square feet,
ANSI/TIA/EIA-569-A requires a dedicated, locked room with plywood termination fields
on two walls. The ANSI/TIA/EIA-569-A Standard also specifies recommendations for the
amount of plywood termination fields, based on the building’s square footage.
KEY TERM demarcation point The demarcation point (also called the demarc, pronounced deemark) is the point within a facility, property, or campus where a circuit provided by an outside vendor, such as the phone company, terminates. Past this point, the customer provides the equipment and cabling. Maintenance and operation of equipment past the
demarc is the customer’s responsibility.
The entrance facility may share space with the equipment room, if necessary or possible. Telephone companies often refer to the entrance facility as the demarcation point. Some entrance
facilities also house telephone or PBX (private branch exchange) equipment. Figure 2.6 shows
an example of an entrance facility.
90
Chapter 2 • Cabling Specifications and Standards
FIGURE 2.6
Entrance facility for
campus and telecommunications wiring
Antenna
Other buildings
Phone
company
lines
LAN and voice equipment
Lines to
equipment
room
Telephone
company
demarc
Entrance
facility
Building
TIP
To improve data and voice security, the entrance facility should be located in an area that
can be physically secured, e.g., a locked room.
Equipment Room
The next subsystem of structured cabling defined by ANSI/TIA/EIA-568-B is the equipment room, which is a centralized space specified to house more sophisticated equipment
than the entrance facility or the telecommunications rooms. Often, telephone equipment or
data-networking equipment such as routers, switches, and hubs are located there. Computer equipment may possibly be stored there. Backbone cabling is specified to terminate
in the equipment room.
In smaller organizations, it is desirable to have the equipment room located in the same area as
the computer room, which houses network servers and possibly phone equipment. Figure 2.7
shows the equipment room.
ANSI/TIA/EIA-568-B Cabling Standard
FIGURE 2.7
Equipment room, backbone cabling, and telecommunications
rooms
Cabling from entrance facility
LAN racks
Patch panels
Equipment
room
Backbone cabling
(copper or fiber)
PBX
Telecommunications
closet
Telecommunications
closet
TIP
For information on the proper design of an equipment room, refer to ANSI/TIA/EIA-569-A.
TIP
Any room that houses telecommunications equipment, whether it’s a telecommunications
room or equipment room, should be physically secured. Many data and voice systems have
had security breaches because anyone could walk in off the street and gain physical access
to the voice/data network cabling and equipment. Some companies go so far as to put
alarm and electronic access systems on their telecommunication rooms and equipment
rooms.
NOTE
The entrance facility, equipment room, and telecommunications room may be located in
the same room. That room may also house telephone or data equipment.
91
92
Chapter 2 • Cabling Specifications and Standards
Media and Connecting Hardware Performance
ANSI/TIA/EIA-568-B specifies performance requirements for twisted-pair cabling and fiberoptic cabling. Further, specifications are laid out for length of cable and conductor types for
horizontal, backbone, and patch cables.
100-Ohm Unshielded Twisted-Pair Cabling
ANSI/TIA/EIA-568-B recognizes three categories of UTP cable to be used with structured
cabling systems. These UTP cables are specified to have a characteristic impedance of 100
ohms, plus or minus 15 percent, from 1MHz up to the maximum bandwidth supported by the
cable. They are commonly referred to by their category number and are rated based on the
maximum frequency bandwidth. The categories are found in Table 2.5, along with the ISO/
IEC application class that each category of cable will support.
T A B L E 2 . 5 ANSI/TIA/EIA-568-B to ISO/IEC 11801Category Comparison
568-B Category
Maximum Bandwidth ISO/IEC Class Maximum Bandwidth
Not defined
100KHz
Class A
100KHz
Not defined
4MHz
Class B
4MHz
Category 3
16MHz
Class C
16MHz
Category 5 (not recognized, but defined)
100MHz
Class D
100MHz
Category 5e
100MHz
Class E
250MHz
Category 6
200MHz
Class F
600MHz
Ensuring a Specific Level of Cabling Performance
UTP cabling systems cannot be considered Category 3–,5e–, or 6-compliant (and consequently
certified) unless all components of the cabling system satisfy the specific performance requirements of the particular category. The components include the following:
●
All backbone and horizontal cabling
●
Telecommunications outlets
●
Patch panels
●
Cross-connect wires and cross-connect blocks
All patch panel terminations, wall-plate terminations, crimping, and cross-connect punch-downs
also must follow the specific recommendations for the respective Category.
In other words, a network link will perform only as well as the lowest Category-compliant component in the link.
ANSI/TIA/EIA-568-B Cabling Standard
93
Connecting Hardware: Performance Loss
Part of the ANSI/TIA/EIA-568-B Standard is intended to ensure that connecting hardware
(cross-connects, patch panels, patch cables, telecommunications outlets, and connectors) does
not have an adverse effect on attenuation and NEXT. To this end, the Standard specifies
requirements for connecting hardware to insure compatibility with cables.
Patch Cables and Cross-Connect Jumpers
ANSI/TIA/EIA-568-B also specifies requirements that apply to cables used for patch cables
and cross-connect jumpers. The requirements include recommendations for maximumdistance limitations for patch cables and cross-connects, as shown here:
Cable Type
Maximum Distance
Main cross-connect*
20 meters (66 feet)
Intermediate cross-connect*
20 meters (66 feet)
Telecommunications room
6 meters (20 feet)
Work area
3 meters (10 feet)
*Main and intermediate cross-connects will only be used with voice and other lowbandwidth applications.
The total maximum distance of the channel should not exceed the maximum distance recommended for the application being used. For example, the channel distance for 100Base-TX
Ethernet should not exceed 100 meters.
TIP
Patch cables should use stranded conductors rather than solid conductors so that the
cable is more flexible. Solid-conductor cables are easily damaged if they are bent too tightly
or too often.
Patch cables usually have a slightly higher attenuation than horizontal cables because they
are stranded rather than solid conductors. Though stranded conductors increase patch-cable
flexibility, they also increase attenuation.
TIP
Detailed requirements for copper cabling and connectivity components are detailed in
ANSI/TIA/EIA 568-B.2 and B.2-1. Fiber-optic cabling and connectivity components are contained in ANSI/TIA/EIA 568-B.3. It is highly recommended that you familiarize yourself with
cabling requirements to specify performance to a cabling contractor. You should only have
to reference the Standard for purposes of the Request for Quotation, but your knowledge
will help in your discussions with the contractor.
94
Chapter 2 • Cabling Specifications and Standards
Optical-Fiber Cabling
The ANSI/TIA/EIA-568-B Standard permits both single-mode and multimode fiber-optic
cables. Horizontal cabling systems are specified to use 62.5/125-micron multimode cable,
whereas backbone cabling may use either multimode or single-mode optical-fiber cable.
Two connectors were formerly widely used with fiber-optic cabling systems, the ST and SC
connectors. Many installations have employed the ST connector type, but the standard now
recognizes only the 568SC-type connector. This was changed so that the fiber-optic specifications in ANSI/TIA/EIA-568-B could agree with the IEC 11801 Standard used in Europe.
Also, the ANSI/TIA/EIA-568-B Standard now recognizes small-form factor connectors such
as the MT-RJ connector.
KEY TERM fiber modes Fiber-optic cable is referred to as either single-mode or multimode fiber. The
term mode refers to the bundles of light that enter the fiber-optic cable. Single-mode fiberoptic cable uses only a single mode of light to propagate through the fiber cable, whereas
multimode fiber allows multiple modes of light to propagate. In multimode fiber-optic cable,
the light bounces off the core “walls” formed by the cladding as it travels through the fiber,
which causes the signal to weaken more quickly.
NOTE
What do those numbers mean: 62.5/125, 8.7/125, 50/125? Is this Math class? Fiberoptic strands consist of two primary layers. In the center is the core, where the light is actually transmitted. Surrounding the core is a layer known as the cladding. The cladding material has a different optical index than the core, acting as a reflective barrier so the light
stays in the center. The numbers are the diameters of the layers, measured in microns, or
one-thousandth of a millimeter. So, a 62.5/125 fiber-optic strand has a core diameter of
62.5 microns with a cladding layer 125 microns in diameter. Why are all the cladding diameters the same when the core diameters are different? That’s so stripping and termination
devices can be used with all types of fiber strands. Genius, huh?
Multimode Optical-Fiber Cable
Multimode fiber optic is most often used as horizontal cable. Multimode cable permits multiple modes of light to propagate through the cable and thus lowers cable distances and has a
lower available bandwidth. Devices that use multimode fiber-optic cable typically use lightemitting diodes (LEDs) to generate the light that travels through the cable; however, higherbandwidth network devices such as Gigabit Ethernet are now using lasers with multimode
fiber-optic cable. ANSI/TIA/EIA-568-B recognizes two-fiber (duplex) 62.5/125-micron and
50/125-micron multimode fiber-optic cable.
ANSI/TIA/EIA-568-B Cabling Standard
95
Single-Mode Optical-Fiber Cable
Single-mode optical-fiber cable is commonly used as backbone cabling and is also usually the
cable type for long-distance phone systems. Light travels through single-mode fiber-optic
cable using only a single mode, meaning it travels straight down the fiber and does not
“bounce” off the cable walls. Because only a single mode of light travels through the cable,
single-mode fiber-optic cable supports higher bandwidth and longer distances than multimode
fiber-optic cable. Devices that use single-mode fiber-optic cable typically use lasers to generate
the light that travels through the cable.
ANSI/TIA/EIA-568-B recognizes 8.7/125-micron single-mode optical fiber cables. It states
that the maximum backbone distance using single-mode fiber-optic cable is 3,000 meters (9,840
feet), and the maximum backbone distance using multimode fiber is 2,000 meters (6,560 feet).
Optical Fiber and Telecommunications Rooms
The ANSI/TIA/EIA-568-B Standard specifies that certain features of telecommunications
must be adhered to in order for the installation to be specifications-compliant:
●
The telecommunications outlet(s) must have the ability to terminate a minimum of two
fibers into 568SC couplings.
●
To prevent damage to the fiber, the telecommunications outlet(s) must provide a means of
securing fiber and maintaining a minimum bend radius of 30 millimeters.
●
The telecommunications outlet(s) must be able to store at least one meter of two-fiber
(duplex) cable.
●
The telecommunications outlet(s) supporting fiber cable must be a surface-mount box that
attaches on top of a standard 4˝ × 4˝ electrical box.
ANSI/TIA/EIA-569-A
Though the ANSI/TIA/EIA-568-B Standard describes the subsystems of a structured cabling
system, the TIA has published a more thorough document called ANSI/TIA/EIA-569-A
Commercial Building Standard for Telecommunications Pathways and Spaces. The purpose
of the ANSI/TIA/EIA-569-A Standard is to provide a flexible and standardized support system
for a structured cabling system, along with the detail necessary to design and build these facilities. The detail pertains to both single and multitenant buildings.
NOTE
This 569-A document is especially important because network managers, architects, and
even cable installers often don’t give enough forethought to the spaces and infrastructure
that will support structured-cabling systems or data-communications equipment.
96
Chapter 2 • Cabling Specifications and Standards
Though repetitive to large degree with respect to ANSI/TIA/EIA-568-B, ANSI/TIA/EIA569-A does define and detail pathways and spaces used by a commercial cabling system. The
elements defined include:
●
Entrance facility
●
Equipment room
●
Main terminal space
●
Telecommunications rooms
●
Horizontal pathways
●
Backbone pathways
●
Work areas
WARNING
When planning telecommunications pathways and spaces, make sure you allow for future
growth.
ANSI/TIA/EIA-569-A provides some common design considerations for the entrance facility, equipment room, and telecommunications rooms with respect to construction, environmental considerations, and environmental controls:
●
The door (without sill) should open outward, slide sideways, or be removable. It should be
fitted with a lock and be a minimum of 36 inches (.91 meters) wide by 80 inches (2 meters)
high.
●
Electrical power should be supplied by a minimum of two dedicated 120V-20A nominal,
nonswitched, AC-duplex electrical outlets. Each outlet should be on separate branch circuits. The equipment room may have additional electrical requirements based on the telecommunications equipment that will be supported there (such as LAN servers, hubs, PBXs,
or UPS systems).
●
Sufficient lighting should be provided (500 lx or 50-foot candles). The light switches
should be located near the entrance door.
●
Grounding should be provided and used per ANSI/TIA/EIA-607 (the Commercial Building Grounding and Bonding Requirements for Telecommunications Standard) and either
the NEC or local code, whichever takes precedence.
●
These areas should not have false (drop) ceilings.
●
Slots and sleeves that penetrate firewalls or that are used for riser cables should be firestopped per the applicable codes.
ANSI/TIA/EIA-568-B Cabling Standard
97
●
Separation of horizontal and backbone pathways from sources of electromagnetic interference (EMI) must be maintained per NEC Article 800.52.
●
Metallic raceways and conduits should be grounded.
Based on our own experiences, we recommend the following:
●
Equip all telecommunications rooms, the entrance facility, and the equipment room
with electrical surge suppression and a UPS (uninterruptible power supply) that will
supply that area with at least 15 minutes of standby AC power in the event of a commercial power failure.
●
Equip these areas with standby lighting that will last for at least an hour if the commercial
power fails.
●
Make sure that these areas are sufficiently separated from sources of EMI such as antennas,
medical equipment, elevators, motors, and generators.
●
Keep a flashlight or chargeable light in an easy-to-find place in each of these areas in case
the commercial power fails and the battery-operated lights run down.
NOTE
For full information, consult the ANSI/TIA/EIA-569-A Standard, which may be purchased
through Global Engineering Documents on the Web at http://global.ihs.com.
Entrance Facility
The location of the entrance facility is usually either on the first floor or in the basement of a
building and must take into consideration the requirements of the telecommunications services required and other utilities (such as CATV, water, and electrical power).
ANSI/TIA/EIA-569-A specifies the following design considerations for an entrance facility:
WARNING
●
When security, continuity, or other needs dictate, an alternate entrance facility may need
to be provided.
●
One wall at a minimum should have 3/4-inch (20 mm) A-C plywood.
●
It should be a dry area not subject to flooding.
●
It should be as close to the actual entrance pathways (where the cables enter the building)
as possible.
●
Equipment not relating to the support of the entrance facility should not be installed there.
The entrance facility should not double as a storage room or janitor’s closet.
98
Chapter 2 • Cabling Specifications and Standards
Cabling @ Work: Bad Equipment-Room Design
One company we are familiar with spent nearly a million dollars designing and building a hightech equipment room, complete with raised floors, cabling facilities, power conditioning,
backup power, and HVAC. The room was designed to be a showcase for its voice and computer systems. On the delivery day, much of the HVAC equipment could not be moved into the
room because of lack of clearance in the outside hallway. Several walls had to be torn out
(including the wall of an adjacent tenant) to move the equipment into the room.
Another company located its equipment room in a space that used to be part of a telecommunications room. The space had core holes drilled to the floor above, but the holes had not
been filled in after the previous tenant vacated. The company installed its computer equipment but did not have the core holes filled. A few months later, a new tenant on the second
floor had a contractor fill the holes. The contractor’s workers poured nearly a ton of concrete
down the core and on top of the computer equipment in the room below before someone realized the hole was not filling up.
Many organizations have experienced the pain of flooding from above. One company’s computer room was directly below bathrooms. An overflowing toilet caused hundreds of gallons
of water to spill down into the computer room. Don’t let this kind of disaster occur in your
equipment rooms!
Main-Terminal Space
The main-terminal space is a facility that is commonly a shared space in a multitenant building.
The main cross-connects are in this room. This room is generally a combination of an equipment room and a telecommunications room, though the TIA/EIA specifies that the design for
a main-terminal space should follow the design considerations laid out for an equipment room.
Customer equipment may or may not be located here. However, our opinion is that it is not
desirable to locate your own equipment in a room shared with other tenants. One reason is that
you may have to get permission from the building manager to gain access to this facility.
Equipment Room
Considerations to think about when designing an equipment room include the following:
●
Environmental controls must be present to provide HVAC at all times. A temperature
range of 64–75 degrees Fahrenheit (or 18–24 degrees Celsius) should be maintained, along
with 30–55 percent relative humidity. An air-filtering system should be installed to protect
against pollution and contaminants such as dust.
●
Seismic and vibration precautions should be taken.
●
The ceiling should be at least 8.0 feet (2.4 meters) high.
ANSI/TIA/EIA-568-B Cabling Standard
99
●
A double door is recommended. (See also door design considerations at the beginning of
section “ANSI/TIA/EIA-569-A.”)
●
The entrance area to the equipment room should be large enough to allow delivery of large
equipment.
●
The room should be above water level to minimize danger of flooding.
●
The backbone pathways should terminate in the equipment room.
●
In a smaller building, the entrance facility and equipment room may be combined into a
single room.
Telecommunications Rooms
Here are some design considerations for telecommunications rooms, suggested by the ANSI/
TIA/EIA-569-A:
●
Each floor of a building should have at least one telecommunications room, depending on
the distance to the work areas. The rooms should be close enough to the areas being served
so that the horizontal cable does not exceed a maximum of 90 meters (as specified by the
ANSI/TIA/EIA-568-B Standard).
●
Environmental controls are required to maintain a temperature that is the same as adjacent
office areas. Positive pressure should be maintained in the telecommunications rooms, with
a minimum of one air change per hour (or per local code).
●
Ideally, closets should “stack” on top of one another in a multifloor building. Then, backbone cabling (sometimes called vertical or riser cable) between the closets merely goes
straight up or down.
●
Two walls of the telecommunications room must have 3/4-inch (20 mm) A-C plywood
mounted on the walls, and the plywood should be 8.0 feet (2.4 meters) high.
●
Vibration and seismic requirements should be taken into consideration for the room and
equipment installed there.
●
Two closets on the same floor must be interconnected with a minimum of one 78(3) tradesize conduit or equivalent pathway. The 78(3) trade-size conduit has a sleeve size of 78 mm
or 3 inches.
Horizontal Pathways
The horizontal pathways are the paths that horizontal cable takes between the wiring closet
and the work area. The most common place in which horizontal cable is routed is in the space
between the structural ceiling and the false (or drop) ceiling. Hanging devices such as J hooks
should be secured to the structural ceiling to hold the cable. The cable should be supported at
100
Chapter 2 • Cabling Specifications and Standards
intervals not greater than 60 inches. For long runs, this interval should be varied slightly so that
structural harmonics (regular physical anomalies that may coincide with transmission frequency intervals) are not created in the cable, which could affect transmission performance.
Shake, Rattle, and Roll
A company that Jim worked for was using metal racks and shelving in the equipment rooms
and telecommunications rooms. The metal racks were not bolted to the floors or supported
from the ceiling. During the 1989 San Francisco earthquake, these racks all collapsed forward, taking with them hubs, LAN servers, tape units, UPSes, and disk subsystems. Had the
racks been secured to the wall and ceilings, some or all of the equipment would have been
saved. If you live in an area prone to earthquakes, be sure to take seismic precautions.
NOTE
Cable installers often install cable directly on the upper portion of false ceiling. This is a
poor installation practice because cable could then also be draped across fluorescent
lights, power conduits, and air-conditioning ducts. In addition, the weight of cables could
collapse the false ceiling. Some local codes may not permit communications cable to be
installed without conduit, hangers, trays, or some other type of pathway.
WARNING
In buildings where the ceiling space is also used as part of the environmental air-handling
system (i.e., as an air return), plenum-rated cable must be installed in accordance with Article 800 of the NEC.
Other common types of horizontal pathways include conduit and trays (or wireways). Trays
are metal or plastic structures that the cable is laid into when it is installed. The trays can be
rigid or flexible. Conduit can be metal or plastic tubing and is usually rigid but can also be flexible (in the case of fiber-optic cable, the flexible tubing is sometimes called inner duct). Both
conduit and trays are designed to keep the cable from resting on top of the false ceiling or being
exposed if the ceiling is open.
Other types of horizontal pathways include the following:
●
Access floor, which is found in raised-floor computer rooms. The floor tile rests on pedestals, and each tile can be removed with a special tool. Some manufacturers make cablemanagement systems that can be used in conjunction with access floors.
●
Under floor or trenches, which are in concrete floors. They are usually covered with metal
and can be accessed by pulling the metal covers off.
ANSI/TIA/EIA-568-B Cabling Standard
●
101
Perimeter pathways, which are usually made of plastic or metal and are designed to mount
on walls, floors, or ceilings. A pathway contains one or more cables. Many vendors make
pathway equipment (see Chapter 5 for more information).
When designing or installing horizontal pathways, keep the following considerations in mind:
●
Horizontal pathways are not allowed in elevator shafts.
●
Make sure that the pathways will support the weight of the cable you plan to run and that
they meet seismic requirements.
●
Horizontal pathways should be grounded.
●
Horizontal pathways should not be routed through areas that may collect moisture.
KEY TERM drawstring A drawstring is a small nylon cord inserted into a conduit when the conduit
is installed; it assists with pulling cable through. Larger conduits will have multiple drawstrings.
Backbone Pathways
Backbone pathways provide paths for backbone cabling between the equipment room, telecommunications rooms, main-terminal space, and entrance facility. The TIA suggests in
ANSI/TIA/EIA-569-A that the telecommunications rooms be stacked on top of one another
from floor to floor so that cables can be routed straight up through a riser. ANSI/TIA/EIA568-B defines a few types of backbone pathways:
Ceiling pathways These pathways allow the cable to be run loosely though the ceiling
space.
Conduit pathways Conduit pathways have the cable installed in a metallic or plastic
conduit.
Tray pathways These are the same types of trays used for horizontal cabling.
KEY TERM sleeves, slots, and cores Sleeves are circular openings that are cut in walls, ceilings,
and floors; a slot is the same but rectangular in shape. A core is a circular hole that is cut
in a floor or ceiling and is used to access the floor above or below. Cores, slots, and
sleeves cut through a floor, ceiling, or wall designed as a firestopping wall must have firestopping material inserted in the hole after the cable is installed through it.
Some points to consider when designing backbone pathways include the following:
●
Intercloset conduit must be 78(3) trade size (3-inch or 78 mm sleeve).
●
Backbone conduit must be 103(4) trade size (4-inch or 103 mm sleeve).
102
Chapter 2 • Cabling Specifications and Standards
●
Firestopping material must be installed where a backbone cable penetrates a firewall (a wall
designed to stop or hinder fire).
●
Trays, conduits, sleeves, and slots need to penetrate at least 1 inch (25 mm) into telecommunication rooms and equipment rooms.
●
Backbone cables should be grounded per local code, the NEC, and ANSI/TIA/EIA-607.
●
Backbone pathways should be dry and not susceptible to water penetration.
WARNING
Devices such as cable trays, conduit, and hangers must meet requirements of the NEC with
regard to their placement. For example, flexible-metal conduit is not allowed in plenum
spaces except under restricted circumstances.
Work Areas
ANSI/TIA/EIA-569-A recommendations for work areas include the following:
●
A power outlet should be nearby but should maintain minimum power/telecommunications separation requirements (see NEC Article 800-52 for specific information).
●
Each work area should have at least one telecommunications outlet box. ANSI/TIA/EIA568-B recommends that each telecommunications outlet box should have a minimum of
two outlets (one for voice and one for data).
●
For voice applications, the PBX control-center, attendant, and reception areas should have
independent pathways to the appropriate telecommunications rooms.
●
The minimum bend radius of cable should not be compromised at the opening in the wall.
ANSI/TIA/EIA-569-A also makes recommendations for wall openings for furniture
pathways.
ANSI/TIA/EIA-607
The ANSI/TIA/EIA-607 Commercial Building Grounding and Bonding Requirements for
Telecommunications Standard covers grounding and bonding to support a telecommunications system. This document should be used in concert with Article 250 and Article 800 of the
NEC. ANSI/TIA/EIA-607 does not cover building grounding; it only covers the grounding of
telecommunications systems.
ANSI/TIA/EIA-607 specifies that the telecommunications ground must tie in with the
building ground. Each telecommunications room must have a telecommunications grounding
system, which commonly consists of a telecommunications bus bar tied back to the building
grounding system. All shielded cables, racks, and other metallic components should be tied
into this bus bar.
ANSI/TIA/EIA-568-B Cabling Standard
103
ANSI/TIA/EIA-607 specifies that the minimum ground-wire size must 6 AWG, but,
depending on the distance that the ground wire must cover, it may be up to 3/0 AWG (a pretty
large copper wire!). Ground-wire sizing is based on the distance that the ground wire must
travel; the farther the distance, the larger the wire must be. ANSI/TIA/EIA-607-A supplements (and is supplemented by) the NEC. For example, Article 800-33 specifies that telecommunications cables entering a building must be grounded as near as possible to the point at
which it enters the building.
WARNING
When protecting a system with building ground, don’t overlook the need for lightning protection. Network and telephone components are often destroyed by a lightning strike. Make
sure your grounding system is compliant with the NEC.
Grounding is one of the most commonly overlooked components during the installation of
a structured cabling system. An improperly grounded communications system, although supporting low-voltage applications, can result in, well, a shocking experience. Time after time we
have heard stories of improperly grounded (or ungrounded) telecommunications-cabling systems that have generated mild electrical or throw-you-off-your-feet shocks; they have even
resulted in some deaths.
Grounding is not to be undertaken by the do-it-yourselfer or an occasional cable installer. A
professional electrician must be involved. He or she will know the best practices to follow,
where to ground components, which components to ground, and the correct equipment to be
used. Further, electricians must be involved when a telecommunications bus bar is tied into the
main building-ground system.
WARNING
Grounding to a water pipe may not provide you with sufficient grounding, as many water systems
now tie in to PVC-based (plastic) pipes. It may also violate NEC and local-code requirements.
ANSI/TIA/EIA-570-A
ANSI, EIA, and TIA published ANSI/TIA/EIA-570-A, or the Residential and Light Commercial Telecommunications Cabling Standard, to address the growing need for “data-ready”
homes. Just a few years ago, only the most serious geeks would have admitted to having a network in their homes. Today, more and more homes have small networks consisting of two or
more home computers, a cable modem, and a shared printer. Even apartment buildings and
condominiums are being built or remodeled to include data outlets; some apartment buildings
and condos even provide direct Internet access.
The ANSI/TIA/EIA-570-A Standard provides standardized requirements for residential
telecommunications cabling for two grades of information outlets: basic and multimedia
104
Chapter 2 • Cabling Specifications and Standards
Cabling @ Work: An Example of Poor Grounding
One of the best examples we can think of that illustrates poor grounding practices was a very
large building that accidentally had two main grounds installed. A building should only have
one main ground, yet in this building each side had a ground. A telecommunications backbone
cable was then grounded to each main ground.
Under some circumstances, a ground loop formed that caused this cable to emit electromagnetic interference at specific frequencies. This frequency just so happened to be used by airtraffic-control beacons. When the building cable emitted signals on this frequency, it caused
pilots to think they were closer to the airport than they really were. One plane almost crashed
as a result of this poorly grounded building. The FAA (Federal Aviation Administration) and the
FCC (Federal Communications Commission) closed the building and shut down all electrical
systems for weeks until the problem was eventually found.
cabling. This cabling is intended to support applications such as voice, data, video, home automation, alarm systems, environmental controls, and intercoms. The two grades are as follows:
Grade 1 This grade supports basic telephone and video services. The Standard recommends using one four-pair Category 3 or Category 5 UTP cable (Category 5 preferred) and
one RG-6 coaxial cable.
Grade 2 Grade 2 supports enhanced voice, video, and data service. The Standard recommends using two four-pair Category 5 cables and two RG-6 coaxial cables. One Category 5
cable is used for voice and the other for data. One RG-6 cable is for satellite service, and the
other is for a local antenna or cable-TV connection.
NOTE
Category 5e and 6 both are acceptable substitutes for either Category 3 or 5.
The Standard further dictates that a central location within a home or multitenant building
be chosen at which to install a central cabinet or wall-mounted rack to support the wiring. This
location should be close to the telephone-company demarcation point and near the entry point
of cable-TV connections. Once the cabling system is installed, you can use it to connect
phones, televisions, computers, cable modems, and EIA-6000-compliant home-automation
devices.
Other TIA/EIA Standards and Bulletins
The TIA/EIA alliance published additional specifications and bulletins relating to data and
voice cabling as well as performance testing.
ISO/IEC 11801
105
If you want to keep up on the latest TIA/EIA specifications and the work of the various committees, visit the TIA website at www.tiaonline.org/standard/sfg and go to the TR-42 page.
ISO/IEC 11801
The International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) publish the ISO/IEC 11801 Standard predominantly used in Europe.
This Standard was released in 1995 and is similar in many ways to the ANSI/TIA/EIA-568-A
Standard upon which it is based. The second edition was released on 2002 and is largely in harmony with TIA/EIA-568-B. However, the ISO/IEC 11801 Standard has a number of differences in terminology. Table 2.6 shows the common codes and elements of an ISO/IEC 11801
structured cabling system.
T A B L E 2 . 6 Common Codes and Elements Defined by ISO/IEC 11801
Element
Code
Description
Building distributor
BD
A distributor in which building-to-building backbone cabling
terminates and where connections to interbuilding or campus
backbone cables are made.
Building entrance facilities
BEF
Location provided for the electrical and mechanical services
necessary to support telecommunications cabling entering a
building.
Campus distributor
CD
Distributor location from which campus backbone cabling
originates.
Equipment room
ER
Location within a building dedicated to housing distributors
and specific equipment.
Floor distributor
FD
A distributor used to connect horizontal cable to other cabling
subsystems or equipment.
Horizontal cable
HC
Cable from the floor distributor to the telecommunications outlet.
Telecommunications closet
TC
Cross-connection point between backbone cabling and
horizontal cabling. May house telecommunications
equipment, cable terminations, cross-connect cabling, and
data-networking equipment.
Telecommunications outlet
TO
The point where the horizontal cabling terminates on a wall
plate or other permanent fixture. The point is an interface to
the work-area cabling.
Transition point
TP
The location in horizontal cabling of a change of cable form,
such as from round to under-carpet cable.
Work-area cable
Connects equipment in the work area (phones, computers,
etc.) to the telecommunications outlet.
106
Chapter 2 • Cabling Specifications and Standards
Differences between ANSI/TIA/EIA-568-B and ISO/IEC 11801 include the following:
●
ISO/IEC 11801 allows for an additional media type for use with backbone and horizontal
cabling and 120-Ohm UTP.
●
The term transition point is much broader in ISO/IEC 11801; it includes not only transition
points for under-carpet cable to round cable (as defined by ANSI/TIA/EIA-568-B), but
also consolidation-point connections.
ISO/IEC 11801 specifies a maximum permanent link length of 90 meters and a maximum
channel link of 100 meters. Patch and equipment cord maximum lengths may be adjusted by
formulae depending on the actual link lengths. Terminology differences between ANSI/TIA/
EIA-568-B and ISO/IEC 11801 include the following:
●
The ISO/IEC 11801 definition of the campus distributor (CD) is similar to the ANSI/TIA/
EIA-568-B definition of a main cross-connect (MC).
●
The ISO/IEC 11801 definition of a building distributor (BD) is equal to the ANSI/TIA/
EIA-568-B definition of an intermediate cross-connect (IC).
●
The ISO/IEC 11801 definition of a floor distributor (FD) is defined by ANSI/TIA/EIA568-B as the horizontal cross-connect (HC).
Classification of Applications and Links
ISO/IEC 11801 defines classes of applications and links based on the type of media used and
the frequency requirements. The ISO/IEC 11801 specifies the following classes of applications and links:
Class A For voice and low-frequency applications up to 100kHz.
Class B For low-speed data applications operating at frequencies up to 1MHz.
Class C For medium-speed data applications operating at frequencies up to 16MHz.
Class D Concerns high-speed applications operating at frequencies up to 100MHz.
Class E Concerns high-speed applications operating at frequencies up to 250MHz.
Class F Concerns high-speed applications operating at frequencies up to 600MHz.
Optical Class An optional class for applications where bandwidth is not a limiting factor.
Anixter Cable Performance Levels Program
The networking industry is rapidly changing; new technologies are released every few months,
and updates to existing technologies occur almost constantly. Such rapid change in the industry
Anixter Cable Performance Levels Program
107
is not conducive to clear, sweeping standards. Standards can take years to ratify; often by the time
a Standard can be agreed upon and published, it is dated for those who are already deploying
leading-edge technologies.
If you have picked up a cabling-component catalog recently, you probably saw twisted-pair
cabling products promising performance (lower attenuation values and higher crosstalk and
return-loss values) better than Category 5e cabling. Some of these cable products call themselves category 5e-plus, category 6, category 7, or other such names—note that category is in
lowercase. The TIA has working groups continually revising the TIA/EIA specifications, and
many of these “better-than-Category 5e” cable types eventually become Standards, as recently
occurred with the publication of ANSI/TIA/EIA-568-B.2-1 for Category 6.
The problem is that vendor-designed specifications are not Standards. A vendor that advertises category 6 or category 7 performance specifications without the existence of a National
Standard is really not giving you any further data to compare other types of cables from other
vendors. Differentiating these products becomes nearly impossible.
NOTE
Don’t confuse the TIA/EIA Categories (with a capital C) with Anixter Cable Performance Levels. Though they are quite similar, cabling products that are classified for a specified Anixter Level may either meet or exceed requirements put forth by specification organizations.
For this reason, Anixter (www.anixter.com), a worldwide distributor of communications
products and cable, developed the Anixter Cable Performance Levels program (now called
Anixter Levels XP). The initial document was published in 1989 and defined three levels of
cable performance for twisted-pair cabling. Anixter tested and categorized the products that
they sold, regardless of the manufacturer, so that customers could properly choose products
and compare products between vendors. The requirements for the three levels were as
follows:
Level 1 Minimum-quality cable in Level 1 was that which could support telephone voicegrade applications.
Level 2 Minimum-quality cable here had to support low-speed (less than 1.2Mbps) data
communications, such as to mainframe and minicomputer terminals.
Level 3 Minimum-quality cable in this level had to support 10Mbps Ethernet and 4/
16Mbps Token Ring.
These cable types were defined three years prior to the first ANSI/TIA/EIA-568 Standard,
which defined Category 1, 2, and 3 cabling. When the first iteration of TIA/EIA-568 was
released in 1991, vendors were already making promises of higher performance and better
cabling. To meet these needs, Anixter added two new levels:
108
Chapter 2 • Cabling Specifications and Standards
Level 4 Minimum-quality cable in this level was required to support applications operating at a frequency of up to 20MHz, which would include passive 16Mbps Token Ring.
Level 5 Minimum-quality cable in this level was required to support applications operating at frequencies up to 100MHz. The original intent of Level 5 was to provide a copper version of Fiber Distributed Data Interface (FDDI).
Anixter no longer maintains Levels 1 through 4, as the performance requirements for those
levels are either considered obsolete or are specified by the ANSI/TIA/EIA-568-B Categories
and ISO/IEC 11801 Standards. Anixter’s Level 5 specification exceeds the Category 5e performance specifications.
Anixter Levels: Looking Forward
By 1997, newer networking technologies were on the horizon. At that time, the need for better
twisted-pair cable performance was becoming evident. To complicate matters even further,
over 150 different constructions of Category 5 cabling existed. Some of these Category 5 cables
performed half as well as others.
To further help customers compare cable technologies that would exceed Category 5
requirements, two additional levels of performance were specified in the Anixter Levels 97 program. The Level 5 specification was also updated. The performance levels specified by the
ALC 97 program included the following:
Level 5 Minimum cable performance in this level had to be acceptable for handling frequencies up to 200MHz.
Level 6 Minimum cable performance in this level had to be acceptable for handling frequencies up to 350MHz.
Level 7 Minimum cable performance in this level had to be acceptable for handling frequencies up to 400MHz.
NOTE
For a vendor’s cables or components to be categorized as part of the Anixter Levels Program, Anixter must test the components in its own lab, the manufacturer must use only virgin materials, and the manufacturer must be ISO 9000 registered.
What About Components?
We would like to put forth a word of caution here that will be reiterated throughout this book.
If you require Level 5, 6, or 7 performance from your cabling infrastructure, choosing the correct level of cable is only a small part of the decision. Anixter further tests and certifies components (patch panels, wall plates, patch cables, connectors, etc.) to be used with the cabling.
Other Cabling Technologies
109
The components used must be certified to the same level as the cable. Further, we recommend that you use components from the same manufacturer as the cable you are purchasing,
or from a combination of manufacturers whose cable and connecting components are proven
to work well together. Finally, solid installation practices must be followed to get the performance you expect.
Other Cabling Technologies
Over the years, a number of vendor-specific systems were widely adopted and came to be considered de facto standards. Some of these are still widely used today. One attractive feature of
proprietary systems is that only one company need be named in the lawsuit. (That was a poor
attempt at humor.) Seriously, when a single company is responsible for the components and
installation as well as the cable, you can be assured that the cabling infrastructure should function as promised. Complications arise when vendors and competing technologies need to be
integrated together.
Though some of these systems may lock the customer into a single-vendor solution, the
advantages of that single vendor solution may be attractive. Some of the more popular vendor
solutions include:
●
The IBM Cabling System
●
Avaya SYSTIMAX
●
Digital Equipment Corporation’s DECconnect
●
NORDX/CDT Integrated Building Distribution System
The focus of this book is centered on the ANSI/TIA/EIA-568-B Standards, but the foregoing specifications deserve mentioning and are briefly discussed in the following pages.
The IBM Cabling System
In the early 1980s, specifications for cabling and structure were even more rare than they were
in the late 1980s. In an attempt to encourage a single specification for cabling, IBM in 1984
developed its own cabling system called the IBM Cabling System. Though we personally disliked working with the IBM Cabling System, we do respect that IBM was way ahead of the rest
of the industry in promoting a standard cabling system. IBM cabling is still in wide enough use
to deserve a mention.
The original IBM Cabling System defined a number of different components, including:
●
Cable types
●
Data connectors
110
Chapter 2 • Cabling Specifications and Standards
●
Face plates
●
Distribution panels
IBM Cable Types
The IBM Cabling System defines cables as Types rather than Categories or Levels. Seven
types of cable are defined by the IBM Cabling System:
Type 1A Type 1A cabling (originally known simply as Type 1) is the only cable type
adopted as part of the ANSI/TIA/EIA-568-A Standard. Type 1A cable was designed to support 4- and 16Mbps Token Ring but has been improved to support FDDI over copper and
video applications operating at frequency rates of up to 300MHz. The ISO is currently working on a specification that will allow STP cable to operate at frequencies up to 600MHz.
Type 1A (shown in Figure 2.8) cabling consists of two pairs of twisted-pair wire (22 AWG).
The wire impedance is 150 ohms, plus or minus 10 percent. Each wire is insulated, and the
wire pair is twisted; each pair is then encased in additional shielding. Both pairs are then
encased in a jacket. This design results in less attenuation and significantly better NEXT performance. The same type of cable can be used for horizontal cabling as well as patch cabling.
Type 2A Type 2A cabling (originally known simply as Type 2) is essentially the same cable
as IBM Type 1A. Type 2A is also shown in Figure 2.8; the difference is that in addition to the
shielded twisted pair of Type 1A, four pairs of unshielded twisted-pair cable are outside the
main shield. These additional pairs are Category 3–compliant and can be used for applications that do not require shielded twisted cable, such as voice applications.
FIGURE 2.8
IBM Cabling System
Type 1A and Type 2A
cabling
Jacket
Overall
shield
Type 1A
Shielded
pairs (2)
Jacket
Overall
shield
Shielded
pairs (2)
Type 2A
Unshielded
twisted
pairs (4)
Other Cabling Technologies
111
Type 3 Type 3 cable is voice grade, unshielded twisted-pair cable. It consists of four solid,
unshielded twisted-pair 22 AWG or 24 AWG pairs. The twisted pairs have a minimum of
two twists per foot and impedance of 100 ohms through a frequency range of 256KHz to
2.3MHz. Do not confuse Type 3 with Category 3, because the performance specifications
are different.
Type 5 Type 5 cable consists of two 62.5/125-micron multimode fibers in an optical cable.
IBM has also used 50/125- and 100/140-micron fiber-optic cable, but because 62.5/125micron is the de facto standard for FDDI and is included in both the ANSI/TIA/EIA-568B and ISO/IEC 11801 Standards, it is more desirable. Three connector types are specified:
SMA, ST, and SC connectors.
Type 6 Type 6 cable consists of two twisted-pair cables with one shield. The wires are 26
AWG stranded cable with an impedance of 150 ohms, plus or minus 10 percent. They are
designed to be used as station or patch cable up to a 30-meter maximum.
Type 8 Type 8 cable is designed for use under carpeting. The cable is housed in a flat jacket
and consists of two shielded twisted-pair 22 AWG cables with an impedance of 100 ohms.
Type 8 cable is limited to 50 percent of the distance that can be used with Type 1A cable.
Type 9 Type 9 cable is similar to Type 6. It consists of two 26 AWG wire pairs twisted
together and then shielded. The wire core can be either stranded or solid, and the impedance
is 150 ohms, plus or minus 10 percent. Type 9 offers the advantage of having a smaller diameter and accepting eight-position modular-jack connectors (a.k.a. RJ-45). Though Type 9
was designed to connect from the wall plate to the station adapter, it can be used as horizontal
cabling as well.
IBM Data Connector
The most unique component of the IBM Cabling System is the IBM connector. The IBM connector (or simply data connector) is neither a male connector nor a female connector but is hermaphroditic. Two identical connectors can be connected to each other.
This data connector is used in patch panels, hubs, and wall plates. The beauty of this connector is that it eliminated the need for complementary male and female connectors. Its downfall is that it is complicated and expensive to apply to the cable. The data connector (shown in
Figure 2.9) is commonly used with IBM Token Ring MAUs (multistation access units).
112
Chapter 2 • Cabling Specifications and Standards
FIGURE 2.9
IBM data connector
Four-position data
connectors used
for IBM Type 1
cabling system
Avaya SYSTIMAX SCS Cabling System
The Bell Labs spawn now called Avaya (formerly AT&T, then Lucent Technologies) developed the SYSTIMAX SCS (Structured Connectivity Solutions) Cabling System. Calling SYSTIMAX SCS Cabling System a proprietary solution would be a stretch because the
SYSTIMAX is based on the ANSI/TIA/EIA-568 Standards.
Avaya has a number of structured connectivity solutions that include copper and fiber media.
These modular solutions incorporate cabling and components as well as cable management
and patch panels. Avaya has solutions that are marketed as exceeding Category 6 performance.
Because Avaya is providing a single-vendor solution for all components, it is much easier for
them to take a holistic approach to cable performance and reliability. Rather than looking at
the performance of individual components, the SYSTIMAX designers look at performance
optimization for the entire channel.
For further information about the SYSTIMAX SCS Cabling System, check it out on the
Web at www.avaya.com.
Digital Equipment Corporation DECconnect
Digital Equipment Corporation designed the DECconnect system to provide a structured
cabling system for its customers. DECconnect consists of four different types of technologies
and five different cable types (listed in Table 2.7). DECconnect never caught on as a widely
used cabling system for Local Area Networking and voice applications, though we still see it at
customers with VAXes.
Other Cabling Technologies
113
T A B L E 2 . 7 DECconnect Applications and Cable Types
Application
Cable Type
Connector Type
Voice
Four-pair UTP
RJ-45
Low-speed data (terminals)
Two-pair UTP
Modified, keyed RJ-45
Network
50-ohm coax
BNC
Network
62.5/125-micron fiber
ST or SMA
Video
75-ohm coax
F-Type
One of the downsides of the DECconnect system was the variety of cable types that had to
be run. If you had locations that required a terminal, a PC with Ethernet, and a PBX telephone,
you would possibly have to run three different types of horizontal cable to a single wall plate.
With modern structured cabling systems such as those specified in the ANSI/TIA/EIA-568-B
Standard, a single cable type could be used, though three cables would still be run.
NORDX/CDT Integrated Building Distribution System
The Integrated Building Distribution System (IBDN) originated with Northern Telecom
(Nortel) and is now sold by NORDX/CDT. The IBDN system is similar to the Avaya SYSTIMAX SCS system and the structured systems of ANSI/TIA/EIA-568-B. When used within
the guidelines of the ANSI/TIA/EIA-568-B, IBDN is Standards compliant. For more information on IBDN, see the NORDX/CDT website at www.nordx.com.
Chapter 3
Choosing the Correct Cabling
• Network Topologies
• UTP, Optical Fiber, and Future-Proofing
• Network Architectures
• Network-Connectivity Devices
116
Chapter 3 • Choosing the Correct Cabling
echnically, when you begin the planning stages of a new cabling installation, you should not
have to worry about the types of applications used. The whole point of structured cabling
Standards such as ANSI/TIA/EIA-568-B and ISO/IEC 11801 is that they will support almost
any networking or voice application in use today.
T
Still, it is a good idea to have an understanding of the networking application you are cabling
for and how that can affect the use of the cabling system. Further, because cabling that’s related
to data also connects to various types of network devices, it is a good idea to have an understanding of the networking hardware used in common installations.
Topologies
The network’s topology refers to the physical layout of the nodes and hubs that make up the network. Choosing the right topology is important because the topology affects the type of networking equipment, cabling, growth path, and network management.
Today’s networking architectures fall into one of three categories:
●
Star
●
Bus
●
Ring
Topologies are tricky because some networking architectures appear to be one type of technology but are in reality another. Token Ring is a good example of this because Token Ring
uses hubs (MAUs). All stations are connected to a central hub, so physically it is a star topology;
logically, though, it is a ring topology. Often two topology types will be used together to
expand a network.
NOTE
Whereas topology refers to the physical layout of the wiring and nodes of a network, it also
refers to its method of transmitting data and to its logical, or virtual, layout of the nodes.
Before the advent of structured wiring, physical and logical topology were often the same.
For example, a network that had a ring topology actually had the wiring running from node
to node in a ring. This can be confusing these days. The implementation of structured wiring
standardized a star configuration as the physical topology for modern networks, and network electronics takes care of the logical topologies.
NOTE
Topology and architecture are often used interchangeably. They are not exactly synonymous
but are close enough for purposes of this book.
Topologies
117
Star Topology
When implementing a star topology, all computers are connected to a single, centrally located
point. This central point is usually a hub. All cabling used in a star topology is run from the point
where the network nodes are located back to a central location. Figure 3.1 shows a simple star
topology.
NOTE
A hub by any other name would still be a hub. In the early days of UTP Ethernet, the Ethernet
equipment manufacturer Synoptics called their hubs concentrators. IBM still sometimes
refers to their STP hubs as MAUs or MSAUs (multistation access units) and their UTP hubs
as CAUs (controlled access units). Still other manufacturers and users refer to a hub as a
repeater because it repeats the signal it receives to all nodes.
From the perspective of cabling, the star topology is now almost universal. It is also the easiest to cable. The ANSI/TIA/EIA-568-B and ISO/IEC 11801 Standards assume that the network architecture uses a star topology as its physical configuration. If a single node on the star
fails or the cable to that node fails, then only that single node fails. However, if the hub fails,
then the entire star fails. Regardless, identifying and troubleshooting the failed component is
much easier than with other configurations because every node can be isolated and checked
from the central distribution point.
From this point on in the chapter, we will assume you understand that the physical layout of
a modern network is a star topology and that when we discuss bus and ring topologies we’re
referring to the logical layout of the network.
FIGURE 3.1
Hub
Star topology with a
central hub
PC
PC
Printer
PC
Server
118
Chapter 3 • Choosing the Correct Cabling
Killing an Entire Star Topology
Although a single node failure cannot usually take down an entire star topology, sometimes
it can. In some circumstances, a node fails and causes interference for the entire star. In
other cases, shorts in a single cable can send disruptive electrical signals back to the hub and
cause the entire star to cease functioning. Of course, failure of the hub will also affect all
nodes in a star topology.
Bus Topology
The bus topology is the simplest network topology. Also known as a linear bus, all computers are
connected to a contiguous cable or a cable joined together to make it contiguous. Figure 3.2
illustrates a bus topology.
Ethernet is a common example of a bus topology. Each computer determines when the network is not busy and transmits data as needed. Computers in a bus topology listen only for
transmissions from other computers; they do not repeat or forward the transmission on to
other computers.
The signal in a bus topology travels to both ends of the cable. To keep the signal from bouncing back and forth along the cable, both ends of the cable in a bus topology must be terminated.
A component called a terminator, essentially nothing more than a resistor, is placed on both
ends of the cable. The terminator absorbs the signal and keeps it from ringing, which is also
known as overshoot or resonance; this is referred to as maximum impedance. If either terminator
is removed or if the cable is cut anywhere along its length, all computers on the bus will fail to
communicate.
FIGURE 3.2
Server
Bus topology
PC
PC
Transmitted
signal
Terminator
Terminator
Network printer
PC
Topologies
119
Coaxial cabling was most commonly used in true bus-topology networks such as thin/thick
Ethernet. However, 10Base-T Ethernet still functions as if it were a bus topology even though
it is wired as a star topology.
Ring Topology
A ring topology requires that all computers be connected in a contiguous circle, as shown in
Figure 3.3. The ring has no ends or hub. Each computer in the ring receives signals (data)
from its neighbor, repeats the signal, and passes it along to the next node in the ring. Because
the signal has to pass through each computer on the ring, a single node or cable failure can
take the entire ring down.
A true ring topology is a pain in the neck to install cable for because the circular nature of the
ring makes it difficult to expand a ring over a large physical area. Token Ring is a ring topology.
Even though Token Ring stations may be connected to a central MAU (and thus appear to be
a star topology), the data on the Token Ring travels from one node to another. It passes though
the MAU each time.
FIGURE 3.3
PC
Ring topology
Signals are reported
between nodes.
PC
Server
Network printer
120
Chapter 3 • Choosing the Correct Cabling
UTP, Optical Fiber, and Future-Proofing
The common networking technologies today (Ethernet, Token Ring, FDDI, and ATM) can all use
either UTP or optical-fiber cabling, and IT professionals are faced with the choice. MIS managers
and network administrators hear much about “future-proofing” their cabling infrastructures. If you
believe the hype from some cabling vendors, installing their particular cable and components will
guarantee that you won’t have to ever update your cabling system again. However, you should keep
in mind that in the early 1990s network managers thought they were future-proofing their cabling
system when they installed Category 4 rather than Category 3 cabling.
Today, decision-makers who must choose between Category 5e and 6 cabling components are
thinking about future-proofing. Each category is an improvement in potential data throughput
and therefore a measure of future-proofing. Deciding whether to use optical fiber adds to the
complexity. Here are some of the advantages of using optical fiber:
●
It has higher potential bandwidth, which means that the data throughput is much greater
than with copper cable.
●
It’s not susceptible to electromagnetic interference.
●
It can transmit over longer distance (although distance is set at 100 meters for horizontal
cabling, regardless of media, according to ANSI/TIA/EIA-568-B).
●
Improved termination techniques and equipment make it easier to install and implement.
●
Cable, connectors, and patch panels are now cheaper than before.
●
It’s valuable in situations where EMI is especially high.
●
It offers better security (because the cable cannot be easily tapped or monitored).
Though optical fiber cable has come of age, UTP cabling still reigns, and you may want to
consider remaining with UTP cabling for the following reasons:
●
Fiber-optic cable installation is 10 to 15 percent more expensive than an equivalent
Category 5e installation.
●
Networking hardware (network-interface cards and hubs) is two to three times more
expensive than UTP-based hardware.
●
The TIA estimates that the combined installation and hardware costs result in a finished fiber
optic network that is 50 percent more expensive than a Category 5e or 6 copper cable network.
●
If higher bandwidth (more than a gigabit per second) requirements are not an issue for you,
you may not need optical fiber.
●
Fiber optics is the medium of choice for security only if security concerns are unusually critical.
●
EMI interference is only an issue if it is extreme.
Network Architectures
121
When considering optical-fiber cable, remember that you are trying to guarantee that the
cabling system will not have to be replaced for a very long time, regardless of future networking
technologies. Some questions you should ask yourself when deciding if fiber optic is right for
you include the following:
●
Do you rent or own your current location?
●
If you rent, how long is your lease, and will you be renewing your lease when it is up?
●
Are there major renovations planned that would cause walls to be torn out and rebuilt?
If you will occupy your present space for longer than five years and you want to future-proof
your cabling infrastructure, optical fiber may be the right choice for your horizontal cabling.
(Don’t forget to take into consideration the higher cost of networking hardware.)
Network Architectures
The ANSI/TIA/EIA-568-B cabling Standard covers almost any possible combination of cable necessary to take advantage of the current network architectures found in the business environment.
These network architectures include Ethernet, Token Ring, Fiber Distributed Data Interface
(FDDI), Asynchronous Transfer Mode (ATM), and 100VG-AnyLAN. Although the predominant
cabling infrastructure is UTP, many of these architectures are capable of operating on other media
as well. Understanding the different types of cable that these architectures utilize is important.
Ethernet
Ethernet is the most mature and common of the network architectures. According to technology analysts IDC (International Data Corporation), Ethernet is used in over 80 percent of all
network installations.
In some form, Ethernet has been around for over 30 years. A predecessor to Ethernet was developed by the University of Hawaii (called, appropriately, the Alohanet) to connect geographically
dispersed computers. This radio-based network operated at 9,600Kbps and used an access method
called CSMA/CD (Carrier Sense Multiple Access/Collision Detection), in which computers “listened” to the cable and transmitted data if there was no traffic. If two computers transmitted data
at exactly the same time, the nodes needed to detect a collision and retransmit the data. Extremely
busy CSMA/CD-based networks became very slow when collisions were excessive.
In the early 1970s, Robert Metcalfe and David Boggs, scientists at Xerox’s Palo Alto Research
Center (PARC), developed a cabling and signaling scheme that used CSMA/CD and was loosely
based on the Alohanet. This early version of Ethernet used coaxial cable and operated at 2.94Mbps.
Even early on, Ethernet was so successful that Xerox (along with Digital Equipment Corporation
and Intel) updated it to support 10Mbps. Ethernet was the basis for the IEEE 802.3 specification
for CSMA/CD networks.
122
NOTE
Chapter 3 • Choosing the Correct Cabling
Ever seen the term DIX? Or DIX connector? DIX is an abbreviation for Digital, Intel, and
Xerox. The DIX connector is also known as the AUI (attachment unit interface), which is the
15-pin connector that you see on older Ethernet cards and transceivers.
Over the past 25 years, despite stiff competition from more modern network architectures,
Ethernet has flourished. In the past 10 years alone, Ethernet has been updated to support
speeds of 100Mbps and 1000Mbps; currently 10 Gigabit Ethernet is being deployed over optical fiber and research is progressing to make it available over UTP.
Ethernet has evolved to the point that it can be used on a number of different cabling systems.
Table 3.1 lists some of the Ethernet technologies. The first number in an Ethernet designator
indicates the speed of the network, the second portion (the base portion) indicates baseband,
and the third indicates the maximum distance or the media type.
T A B L E 3 . 1 Cracking the Ethernet Designation Codes
Designation
Description
10Base-2
10Mbps Ethernet over thinnet (50-ohm) coaxial cable (RG-58) with a maximum
segment distance of 185 meters (it was rounded up to 10Base-2 instead of
10Base185).
10Base-5
10Mbps Ethernet over thick (50-ohm) coaxial cable with a maximum segment
distance of 500 meters.
10Broad-36
A 10Mbps broadband implementation of Ethernet with a maximum segment length
of 3,600 meters.
10Base-T
10Mbps Ethernet over unshielded twisted-pair cable. Maximum cable length
(network device to network card) is 100 meters.
10Base-FL
10Mbps Ethernet over multimode optical-fiber cable. Designed for connectivity
between network-interface cards on the desktop and a fiber-optic Ethernet hub.
Maximum cable length (hub to network card) is 2,000 meters.
10Base-FB
10Mbps Ethernet over multimode optical-fiber cable. Designed to use a signaling
technique that allows a 10Base-FB backbone to exceed the maximum number of
repeaters permitted by Ethernet. Maximum cable length is 2,000 meters.
10Base-FP
10Mbps Ethernet over multimode optical-fiber cable designed to allow linking
multiple computers without a repeater. Not commonly used. Maximum of 33
computers per segment, and the maximum cable length is 500 meters.
100Base-TX
100Mbps Ethernet over Category 5 or better UTP cabling using two wire pairs.
Maximum cable distance is 100 meters.
100 Base-T2
100Base-T4
100Mbps Ethernet over Category 3 or better UTP. T2 uses two cable pairs, T4
uses four cable pairs. Maximum distance using Category 3 cable is 100 meters.
100Base-FX
100Mbps Ethernet over multimode optical-fiber cable. Maximum cable distance is
400 meters.
Network Architectures
123
T A B L E 3 . 1 C O N T I N U E D Cracking the Ethernet Designation Codes
Designation
Description
100Base-VG
More of a first cousin of Ethernet. This is actually 100VG-AnyLAN, which is
described later in this chapter.
1000Base-SX
Gigabit Ethernet over multimode optical-fiber cable, designed for workstation-tohub implementations using short-wavelength light sources.
1000Base-LX
Gigabit Ethernet over single-mode optical-fiber cable, designed for backbone
implementations using long-wavelength light sources.
1000Base-CX
Gigabit Ethernet over STP Type 1 cabling designed for equipment interconnection
such as clusters. Maximum distance is 25 meters.
1000Base-T
Gigabit Ethernet over Category 5 or better UTP cable where the installation has
passed performance tests specified by ANSI/TIA/EIA-568-B. Maximum distance
is 100 meters from network-interface card to hub.
1000Base-TX
Gigabit Ethernet over Category 6 cable. Maximum distance is 100 meters from
network-interface card to hub.
10Gbase
10 Gigabit Ethernet over optical-fiber cable. Several implementations exist,
designated as -SR, -LR, -ER, -SW, -LW, or -EW, depending on the light wavelength
and transmission technology employed.
10Gbase-T
10 Gigabit Ethernet over copper cable. Not yet deployed over UTP.
KEY TERM baseband and broadband Baseband network equipment transmits digital information
(bits) using a single analog signal frequency. Broadband networks transmit the bits over
multiple signal frequencies. Think of a baseband network as a single-channel TV set. The
complete picture is presented to you on one channel. Think of a broadband network as one
of those big matrix TV displays, where parts of the picture are each displayed on different
sets within a rectangular grid. The picture is being split into pieces and, in effect, transmitted over different channels where it is reassembled for you to see. The advantage of a
broadband network is much more data throughput can be achieved, just as the advantage
of the matrix TV display is that a much larger total picture can be presented.
10Mbps Ethernet Systems
Why is Ethernet so popular? Because on a properly designed and cabled network, Ethernet is
fast, easy to install, reliable, and inexpensive. Ethernet can be installed on almost any type of
structured cabling system, including unshielded twisted-pair and fiber-optic cable.
10Base-T Ethernet
For over 10 years, 10Base-T (the T stands for twisted pair) Ethernet reigned as king of the network architectures. There is a good reason for this: 10Base-T Ethernet will work over any regular Category 3 or better UTP cabling, and UTP cabling is cheap to install, reliable, and easy
to manage.
124
Chapter 3 • Choosing the Correct Cabling
10Base-5: “Standard Ethernet Cable”
The earliest version of Ethernet ran on a rigid coaxial cable that was called Standard Ethernet
cable but was more commonly referred to as thicknet. To connect a node to the thicknet cable,
a specially designed connector was attached to the cable (called a vampire tap or piercing tap).
When the connector was tightened down onto the cable, the tap pierced the jacket, shielding,
and insulation to make contact with the inner core of the cable. This connector had a transceiver attached, to which a transceiver cable (or drop cable) was linked. The transceiver cable
connected to the network node.
Though thicknet was difficult to work with (because it was not very flexible and was hard to
install and connect nodes to), it was reliable and had a usable cable length of 500 meters
(about 1,640 feet). That is where the 10 and 5 in 10Base-5 come from: 10Mbps, baseband,
500 meters.
Though you never see new installations of 10Base-5 systems anymore, it can still be found
in older installations, typically used as backbone cable. The 10Base-T hubs and coaxial (thinnet) cabling are attached at various places along the length of the cable. Given the wide availability of fiber-optic equipment and inexpensive hubs and UTP cabling, virtually no reason
exists for you to install a new 10Base-5 system today.
TIP
If you are cabling a facility for 10Base-T, plan to use, at a minimum, Category 5e cable and components. The incremental price is only slightly higher than Category 3, and you will provide a
growth path to faster network technologies. In the last few years, 100Base-T has begun to overtake 10Base-T in popularity due to the widespread deployment of Category 5 and better installations, coupled with falling prices of 100Base-T network components. If you’ve got the cabling
in place to handle it, it’s hard to say no to 10 times your current bandwidth when the only obstacles in the way are inexpensive hubs and NICs (network-interface cards).
Here are some important facts about 10Base-T:
●
The maximum cable length of a 10Base-T segment is 100 meters (328 feet) when using
Category 3 cabling. Somewhat longer distances may be achieved with higher grades of
equipment, but remember that you are no longer following the Standard if you attempt to
stretch the distance.
●
The minimum length of a 10Base-T cable (node to hub) is 2.5 meters (about 8 feet).
●
A 10Base-T network can have a maximum of 1,024 computers on it; however, performance
may be extremely poor on large networks.
●
For older network devices that have only AUI-type connectors, transceivers can be purchased to convert to 10Base-T.
Network Architectures
TIP
125
●
Though a 10Base-T network appears to operate like a star topology, internally it is a bus
architecture. Unless a technology like switching or bridging is employed, a signal on a single network segment will be repeated to all nodes on the network.
●
10Base-T requires only two wire pairs of an eight-pin modular jack. Figure 3.4 shows the
pin layout and usage.
Even though 10Base-T uses only two pairs of a four-pair cable, all eight pins should be connected properly in anticipation of future upgrades or other network architectures.
10Base-F Ethernet
Specifications for using Ethernet over fiber-optic cable existed back in the early 1980s. Originally, fiber-optic cable was simply used to connect repeaters whose separation exceeded the
distance limitations of thicknet cable. The original specification was called Fiber Optic Inter
Repeater Link (FOIRL), which described linking two repeaters together with fiber-optic cable
up to 1,000 meters (3,280 feet) in length.
NOTE
Unless stated otherwise, all fiber-optic devices are assumed here to use multimode opticalfiber cable.
The cost of fiber-optic repeaters and fiber-optic cabling dropped greatly during the 1980s,
and connecting individual computers directly to the hub via fiber-optic cable became more
common. Originally, the FOIRL specification was not designed with individual computers in
mind, so the IEEE developed a series of fiber-optic media specifications. These specifications
are collectively known as 10Base-F. The individual specifications for (and methods for implementing) 10Base-F Ethernet include the following:
10Base-FL This specification is an updated version of the FOIRL specification and is
designed to interoperate with existing FOIRL equipment. Maximum distance used between
10Base-FL and an FOIRL device is 1,000 meters, but it is 2,000 meters (6,561 feet) between
two 10Base-FL devices. The 10Base-FL is most commonly used to connect network nodes
to hubs and to interconnect hubs. Most modern Ethernet equipment supports 10Base-FL; it
is the most common of the 10Base-F specifications.
10Base-FB The 10Base-FB specification describes a synchronous signaling backbone segment.
This specification allows the development of a backbone segment that exceeds the maximum number of repeaters that may be used in a 10Mbps Ethernet system. The 10Base-FB is available only
from a limited number of manufacturers and supports distances of up to 2,000 meters.
10Base-FP This specification provides the capability for a fiber-optic mixing segment
that links multiple computers on a fiber-optic system without repeaters. The 10Base-FP
126
Chapter 3 • Choosing the Correct Cabling
segments may be up to 500 meters (1,640 feet), and a single 10Base-FP segment (passive
star coupler) can link up to 33 computers. This specification has not been adopted by many
vendors and is not widely available.
Why Use 10Base-FL?
In the past, fiber-optic cable was considered expensive, but it is becoming more and more
affordable. In fact, fiber-optic installations are becoming nearly as inexpensive as UTP copper
installations. The major point that causes some network managers to cringe is that the network
equipment is more expensive. A recent price comparison found one popular 10Base-F networkinterface card was more than 2.5 times more expensive than the 10Base-T equivalent.
However, fiber-optic cable, regardless of the network architecture, has key benefits for many
businesses:
●
Fiber-optic cable makes it easy to incorporate newer and faster technologies in the future.
●
Fiber-optic cable is not subject to electromagnetic interference, nor does it generate
interference.
●
Fiber-optic cable is difficult to tap or monitor for signal leakage, so it is more secure.
●
Potential data throughput of fiber-optic cable is greater than any current or forecast copper technologies.
An eight-pin modular
jack used with
10Base-T
Receive –
FIGURE 3.4
Transmit +
Transmit –
Receive +
So fiber-optic cable is more desirable for customers who are concerned about security, growth, or
electromagnetic interference. Fiber is commonly used in hospitals and military environments.
1 2 3 4 5 6 7 8
Network Architectures
127
Getting the Fiber-Optic Cable Right
A number of manufacturers make equipment that supports Ethernet over fiber-optic cabling.
One of the most important elements of the planning of a 10Base-F installation is to pick the
right cable and connecting hardware. Here are some pointers:
●
Use 62.5/125-micron or 50/125-micron multimode fiber-optic cable.
●
Each horizontal run should have at least two strands of multimode fiber.
●
Make sure that the connector type for your patch panels and patch cables matches the hardware you choose. Some older equipment uses exclusively the ST connector, whereas newer
equipment uses the more common SC connector. Connections between equipment with
different types of connectors can be made using a patch cable with an ST connector at one
end and an SC connector at the other. Follow the current Standard requirements when
selecting a connector type for new installations.
10Base-2 Ethernet
Though not as common as it once was, 10Base-2 is still an excellent way to connect a small
number of computers together in a small physical area such as a home office, classroom, or lab.
The 10Base-2 Ethernet uses thin coaxial (RG-58/U or RG-58 A/U) to connect computers
together. This thin coaxial cable is also called thinnet.
Coaxial cable and network-interface cards use a special connector called a BNC connector. On this
type of connector, the male is inserted into the female, and then the male connector is twisted 90
degrees to lock it into place. A BNC T-connector allows two cables to be connected on each side
of it, and the middle of the T-connector plugs into the network-interface card. The thinnet cable
never connects directly to the network-interface card. This arrangement is shown in Figure 3.5.
FIGURE 3.5
The 10Base-2 network
PC
Thin coaxial cable
BNC connector
BNC T-connector
50-ohm
BNC terminator
Network
interface card
BNC
128
Chapter 3 • Choosing the Correct Cabling
NOTE
BNC is an abbreviation for Bayonet-Neill-Concelman. The B indicates that the connector is
a bayonet-type connection, and Neill and Concelman are the inventors of the connector.
You may also hear this connector called a British Naval Connector.
The ANSI/TIAEIA-568-B Standard does not recognize the use of coaxial cabling. From our
own experience, here are some reasons not to use coax-based 10Base-2:
●
The 10Base-2 network isn’t suited for connecting more than 10 computers on a single segment.
●
Ethernet cards with thinnet (BNC) connections are not as common as they once were.
Usually you have to pay extra for network-interface cards with thinnet connectors.
●
The network may not be the best choice if you want to use Ethernet switching technologies.
●
If your network spans more than one or two rooms or building floors, 10Base-2 isn’t for you.
●
If you are building a home network and plan to connect to the Internet using a cable
modem or DSL, investing in a simple UTP or wireless Ethernet router is a better choice.
●
UTP cabling, 10Base-T routers, and 10Base-T network-interface cards are plentiful and
inexpensive.
Though 10Base-2 is simple to install, you should keep a number of points in mind if you
choose to implement it:
WARNING
●
Both ends of the cable must be terminated.
●
A cable break anywhere along the length of the cable will cause the entire segment to fail.
●
The maximum cable length is 185 meters and the minimum is 0.5 meters.
●
T-connectors must always be used for any network node; cables should never be connected
directly to a network-interface card.
●
A thinnet network can have as many as five segments connected by four repeaters. However, only three of these segments can have network nodes attached. This is sometimes
known as the 5-4-3 rule. The other two segments will only connect to repeaters; these segments are sometimes called interrepeater links.
Coaxial cables must be grounded properly (the shield on one end of the cable should be
grounded, but not both ends). If they aren’t, possibly lethal electrical shocks can be generated. Refer to ANSI/TIAEIA-607 for more information on building grounding or talk to your
electrical contractor. We know of one network manager who was thrown flat on his back
when he touched a rack because the cable and its associated racks had not been properly
grounded.
Network Architectures
129
100Mbps Ethernet Systems
Though some critics said that Ethernet would never achieve speeds of 100Mbps, designers of
Fast Ethernet proved them wrong. Two approaches were presented to the IEEE 802.3 committee. The first approach was to simply speed up current Ethernet and use the existing CSMA/CD
access-control mechanism. The second was to implement an entirely new access-control mechanism called demand priority. In the end, the IEEE decided to create specifications for both
approaches. The 100Mbps version of 802.3 Ethernet specifies a number of different methods
of cabling a Fast Ethernet system, including 100Base-TX, 100Base-T4, and 100Base-FX. Fast
Ethernet and the demand-priority approach is called 100VG-AnyLAN.
100Base-TX Ethernet
The 100Base-TX specification uses physical-media specifications developed by ANSI that were
originally defined for FDDI (ANSI specification X3T9.5) and adapted for twisted-pair cabling.
The 100Base-TX requires Category 5 or better cabling but uses only two of the four pairs. The
eight-position modular jack (RJ-45) uses the same pin numbers as 10Base-T Ethernet.
Though a typical installation requires hubs or switches, two 100Base-TX nodes can be connected together “back-to-back” with a crossover cable made exactly the same way as a 10Base-T
crossover cable. (See Chapter 9, “Connectors,” for more information on making a 10Base-T or
100Base-TX crossover cable.) Understand the following when planning a 100Base-TX Fast
Ethernet network:
●
All components must be Category 5 or better certified, including cables, patch panels, and
connectors. Proper installation practices must be followed.
●
If you have a Category 5 “legacy” installation, the cabling system must be able to pass tests
specified by Annex N of ANSI/TIA/EIA-568-B.2.
●
The maximum segment cable length is 100 meters. With higher-grade cables, longer
lengths of cable may work, but proper signal timing cannot be guaranteed.
●
The network uses the same pins as 10Base-T, as shown previously in Figure 3.4.
100Base-T4 Ethernet
The 100Base-T4 specification was developed as part of the 100Base-T specification so that
existing Category 3–compliant systems could also support Fast Ethernet. The designers
accomplish 100Mbps throughput on Category 3 cabling by using all four pairs of wire;
100Base-T4 requires a minimum of Category 3 cable. The requirement can ease the migration path to 100Mbps technology.
The 100Base-T4 is not used as frequently as 100Base-TX, partially due to the cost of the network-interface cards and network equipment. The 100Base-T4 network-interface cards are
generally 50 to 70 percent more expensive than 100Base-TX cards. Also, 100Base-T4 cards do
not automatically negotiate and connect to 10Base-T hubs, as most 100Base-TX cards do.
130
Chapter 3 • Choosing the Correct Cabling
Therefore, 100Base-TX cards are more popular. However, 100Base-TX does require Category 5 or better cabling.
If you plan to use 100Base-T4, understand the following:
●
Maximum cable distance is 100 meters using Category 3, although distances of up to
150 meters can be achieved if Category 5 or better cable is used. Distances greater than
100 meters are not recommended, however, because round-trip signal timing cannot
be ensured even on Category 5 cables.
●
All eight pins of an eight-pin modular jack must be wired. Older Category 3 systems often wired
only the exact number of pairs (two) necessary for 10Base-T Ethernet. Figure 3.6 shows the
pins used, and Table 3.2 shows the usage of each of the pins in a 100Base-T4 connector. Either
the T568A or T568B pinout configurations can be used, but you must be consistent.
●
The 100Base-T4 specification recommends using Category 5 or better patch cables, panels, and connecting hardware wherever possible.
T A B L E 3 . 2 Pin Usage in an Eight-Pin Modular Jack Used by 100Base-T4
Name
Usage
Abbreviation
1
2
Data 1 +
Transmit +
Tx_D1+
Data 1 –
Transmit –
Tx_D1–
3
Data 2 +
Receive +
Rx_D2+
4
Data 3 +
Bidirectional Data 3 +
Bi_D3+
5
Data 3 –
Bidirectional Data 3 –
Bi_D3–
6
Data 2 –
Receive –
Rx_D2–
7
Data 4 +
Bidirectional Data 4 +
Bi_D4+
8
Data 4 –
Bidirectional Data 4 –
Bi_D4–
FIGURE 3.6
The eight-pin modularjack wiring pattern for
100Base-T4
Data 1+
Data 1–
Data 2+
Data 3+
Data 3–
Data 2–
Data 4+
Data 4–
Pin
1 2 3 4 5 6 7 8
Network Architectures
131
100Base-FX Ethernet
Like its 100Base-TX copper cousin, 100Base-FX uses a physical-media specification developed by ANSI for FDDI. The 100Base-FX specification was developed to allow 100Mbps
Ethernet to be used over fiber-optic cable. Though the cabling plant is wired in a star topology,
100Base-FX is a bus architecture.
If you choose to use 100Base-FX Ethernet, consider the following:
●
Cabling-plant topology should be a star topology and should follow ANSI/TIA/EIA-568-B
or ISO 11801 recommendations.
●
Each network node location should have a minimum of two strands of multimode fiber (MMF).
●
Maximum link distance is 400 meters; though fiber-optic cable can transmit over much farther
distances, proper signal timing cannot be guaranteed. If you follow ANSI/TIA/EIA-568-B
or ISO 11801 recommendations, the maximum horizontal-cable distance should not exceed
100 meters.
●
The most common fiber connector type used for 100Base-FX is the SC connector, but the
ST connector and the FDDI MIC connector may also be used. Make sure you know which
type of connector(s) your hardware vendor will require.
Gigabit Ethernet (1000Mbps)
The IEEE approved the first Gigabit Ethernet specification in June 1998—IEEE 802.3z. The
purpose of IEEE 802.3z was to enhance the existing 802.3 specification to include 1000Mbps
operation (802.3 supported 10Mbps and 100Mbps). The new specification covers media access
control, topology rules, and the gigabit media-independent interface. IEEE 802.3z specifies
three physical layer interfaces: 1000Base-SX, 1000Base-LX, and 1000Base-CX.
In July 1999, the IEEE approved an additional specification known as IEEE 802.3ab, which
adds an additional Gigabit Ethernet physical layer for 1000Mbps over UTP cabling. The UTP
cabling, all components, and installation practices must be Category 5 or greater. The only
caveat is that legacy (or new) Category 5 installations must meet the performance requirements
outlined in ANSI/TIA/EIA-568-B.
Gigabit Ethernet deployment is still in the early stages, and we don’t expect to see it extended
directly to the desktop in most organizations. The cost of Gigabit Ethernet hubs and networkinterface cards is too high to permit this in most environments. Only applications that demand
the highest performance will actually see Gigabit Ethernet to the desktop in the next few years.
Initially, the most common uses for Gigabit Ethernet will be for intrabuilding or campus
backbones. Figure 3.7 shows a before-and-after illustration of a simple network with Gigabit
Ethernet deployed. Prior to deployment, the network had a single 100Mbps switch as a backbone for several 10Mbps and 100Mbps segments. All servers were connected to the 100Mbps
backbone switch, which was sometimes a bottleneck.
132
Chapter 3 • Choosing the Correct Cabling
FIGURE 3.7
Before
Moving to a Gigabit
Ethernet backbone
PC
10Mbps
hub
PC
After
PC
10Mbps
hub
PC
100Mbps
hub
10Mbps
hub
PC
PC
10Mbps
hub
PC
100Mbps
hub
Gigabit
Ethernet switch
with 10/100
uplink ports
100Mbps
Ethernet
switch
Server
PC
Server
Server
Server
Server
Server
During deployment of Gigabit Ethernet, the 100Mbps backbone switch is replaced with a
Gigabit Ethernet switch. The network-interface cards in the servers are replaced with Gigabit
network-interface cards. The 10Mbps and 100Mbps hubs connect to ports on the Gigabit switch
that will accommodate 10- or 100Mbps segments. In this simple example, the bottleneck on the
backbone has been relieved. The hubs and the computers did not have to be disturbed.
TIP
To take full advantage of Gigabit Ethernet, computers that have Gigabit Ethernet cards
installed should have a 64-bit PCI bus. The 32-bit PCI bus will work with Gigabit Ethernet,
but it is not nearly as fast as the 64-bit bus.
Gigabit Ethernet and Fiber-Optic Cables
Initially, 1000Mbps Ethernet was supported only on fiber-optic cable. The IEEE 802.3z specification included support for three physical-media options (PHYs), each designed to support
different distances and types of communications:
1000Base-SX Targeted to horizontal cabling applications such as to workstations and
other network nodes, 1000Base-SX is designed to work with multimode fiber-optic cable.
1000Base-LX Designed to support backbone-type cabling such as intrabuilding and campus backbones, 1000Base-LX is for single-mode fiber-optic cable, though in some cases multimode fiber can be used. Check with the equipment vendor.
Network Architectures
133
1000Base-CX Designed to support interconnection of equipment clusters, this specification
uses 150-ohm STP cabling similar to IBM Type 1 cabling over distances no greater than 25 meters.
When cabling for Gigabit Ethernet using fiber, you should follow the ANSI/TIAEIA-568-B
Standards for 62.5/125-micron or 50/125-micron multimode fiber for horizontal cabling and
8.3/125-micron single-mode fiber for backbone cabling.
1000Base-T Ethernet
The IEEE designed 1000Base-T with the intention of supporting Gigabit Ethernet to the
desktop. One of the primary design goals was to support the existing base of Category 5
cabling. Except for a few early adopters, most organizations have not quickly adopted
1000Base-T to the desktop. However, as 1000Base-T network equipment becomes more cost
effective, this will change.
In July 1999, the IEEE 802.3ab task force approved IEEE specification 802.3ab, which
defines using 1000Mbps Ethernet over Category 5 unshielded twisted-pair cable. Unlike
10Base-T and 100Base-TX, all four pairs must be used with 1000Base-T. Network electronics
simultaneously send and receive 250Mbps over each pair using a transmission frequency of
about 65MHz. These special modulation techniques are employed to “stuff” 1000Mbps
through a cable that is only rated to 100MHz.
In 1999, the TIA issued TSB-95 to define additional performance parameters (above and
beyond those specified in TSB-67) that should be performed in order to certify an existing Category 5 cabling installation for use with 1000Base-T. The additional criteria cover far-end
crosstalk, delay skew, and return loss and have been incorporated into ANSI/TIA/EIA-568-B.
If you plan to deploy 1000Base-T, make sure that you use a minimum of Category 5e or better cable, that solid installation practices are used, and that all links are tested and certified
using ANSI/TIA/EIA-568-B performance criteria.
Token Ring
Developed by IBM, Token Ring uses a ring architecture to pass data from one computer to another.
A former teacher of Jim’s referred to Token Ring as the Fahrenheit network architecture because
more people with Ph.D. degrees worked on it than there are degrees in the Fahrenheit scale.
Token Ring employs a sophisticated scheme to control the flow of data. If no network node needs
to transmit data, a small packet, called the free token, continually circles the ring. If a node needs to
transmit data, it must have possession of the free token before it can create a new Token Ring data
frame. The token, along with the data frame, is sent along as a busy token. Once the data arrives at
its destination, it is modified to acknowledge receipt and sent along again until it arrives back at the
original sending node. If there are no problems with the correct receipt of the packet, the original
sending node releases the free token to circle the network again. Then another node on the ring can
transmit data if necessary.
134
NOTE
Chapter 3 • Choosing the Correct Cabling
Token Ring is perhaps a superior technology compared to Ethernet, but Token Ring has not
enjoyed widespread success since the early 1990s. IBM was slow to embrace structured
wiring using UTP and eight-position (RJ-45 type) plugs and jacks, so cabling and components were relatively expensive and difficult to implement. When IBM finally acknowledged
UTP as a valid media, 4Mbps Token Ring ran on Category 3 UTP, but 16Mbps Token Ring
required a minimum of Category 4. In the meantime, a pretty quick and robust 10Mbps
Ethernet network could be put in place over Category 3 cables that many offices already
had installed. So, while Token Ring was lumbering, Ethernet zoomed by, capturing market
share with the ease and economy of its deployment.
This scheme, called token passing, guarantees equal access to the ring and that no two computers
will transmit at the same time. Token passing is the basis for IEEE specification 802.5. This
scheme might seem pretty slow since the free token must circle the ring continually, but keep in
mind that the free token is circling at speeds approaching 70 percent of the speed of light. A
smaller Token Ring network may see a free token circle the ring up to 10,000 times per second!
Because a ring topology is difficult to cable, IBM employs a hybrid star/ring topology. All
nodes in the network are connected centrally to a hub (MAU or MSAU, in IBM jargon), as
shown in Figure 3.8. The transmitted data still behaves like a ring topology, traveling down
each cable (called a lobe) to the node and then returning to the hub, where it starts down the
next cable on the MAU.
Even a single node failure or lobe cable can take down a Token Ring. The designers of Token
Ring realized this and designed the MAU with a simple electromechanical switch (a relay switch)
that adds a new node to the ring when it is powered on. If the node is powered off or if the lobe
cable fails, the electromechanical switch disengages, and the node is removed from the ring. The
ring continues to operate as if the node were not there.
Token Ring operates at either 4Mbps or 16Mbps; however, a ring only operates at a single
speed. (That’s unlike Ethernet, where 10Mbps and 100Mbps nodes can coexist on the same network.) Care must be taken on older Token Ring hardware that a network adapter operating at the
wrong speed is not inserted into a ring because doing so can shut down the entire network.
Token Ring and Shielded Twisted Pair (STP)
Token Ring originally operated on shielded twisted-pair (STP) cabling. IBM designed a cabling
system that included a couple of types of shielded twisted-pair cables; the most common of these
was IBM Type 1 cabling (later called IBM Type 1A). STP cabling is a recognized cable type in
the ANSI/TIAEIA-568-B specification, but is not recommended for new installations.
The IBM cabling system used a unique, hermaphroditic connector that is commonly called
an IBM data connector. The IBM data connector has no male and female components, so two
IBM patch cables can be connected together to form one long patch cable.
Network Architectures
FIGURE 3.8
A Token Ring hybrid
star/ring topology
Lobe (horizontal cable)
135
Hub (MAU)
Data
flows in
a ring, but
the topology
looks like a
star topology.
Network printer
Server
PC
PC
Unless your cabling needs specifically require an STP cabling solution for Token Ring, we
recommend against STP cabling. Excellent throughput is available today over UTP cabling;
the only reason to implement STP is if electromagnetic interference is too great to use UTP,
in which case, fiber optic cable might be your best bet anyway.
Token Ring and Unshielded Twisted Pair (UTP)
Around 1990, vendors started releasing unshielded twisted-pair solutions for Token Ring. The
first of these solutions was simply to use media filters or baluns on the Token Ring networkinterface cards, which connected to the card’s nine-pin interface and allowed a UTP cable to
connect to the media filter. The balun matches the impedance between the 100-ohm UTP and
the network device, which is expecting 150 ohms.
KEY TERM baluns and media filters Baluns and media filters are designed to match impedance
between two differing types of cabling, usually unbalanced coaxial cable and balanced twowire twisted pair. Although baluns can come in handy, they can also be problematic and
should be avoided if possible.
The second UTP solution for Token Ring was network-interface cards equipped with eightpin modular jacks (RJ-45) that supported 100-ohm cables, rather than a DB9 connector.
Any cabling plant certified Category 3 or better should support 4Mbps Token Ring.
NOTE
A number of vendors make Token Ring network-interface cards that support fiber-optic
cable. Although using Token Ring over fiber-optic cables is uncommon, it is possible.
136
Chapter 3 • Choosing the Correct Cabling
Fiber Distributed Data Interface (FDDI)
Fiber Distributed Data Interface (FDDI) is a networking specification that was produced by the
ANSI X3T9.5 committee in 1986. It defines a high-speed (100Mbps), token-passing network
using fiber-optic cable. In 1994, the specification was updated to include copper cable. The copper cable implementation was designated TP-PMD, which stands for Twisted Pair-Physical
Media Dependent. FDDI was slow to be widely adopted, but for awhile it found a niche as a reliable, high-speed technology for backbones and applications that demanded reliable connectivity.
Though at first glance FDDI appears to be similar to Token Ring, it is different from both
Token Ring and Ethernet. A Token Ring node can transmit only a single frame when it gets the
free token; it must wait for the token to transmit again. An FDDI node, once it possesses the free
token, can transmit as many frames as it can generate within a predetermined time before it has
to give up the free token.
FDDI can operate as a true ring topology, or it can be physically wired like a star topology. Figure 3.9 shows an FDDI ring that consists of dual-attached stations (DAS); this is a true ring topology. A dual-attached station has two FDDI interfaces, designated as an A port and a B port. The
A port is used as a receiver for the primary ring and as a transmitter for the secondary ring. The
B port does the opposite: it is a transmitter for the primary ring and a receiver for the secondary
ring. Each node on the network in Figure 3.9 has an FDDI network-interface card that has two
FDDI attachments. The card creates both the primary and secondary rings. Cabling for such a
network is a royal pain because the cables have to form a complete circle.
FIGURE 3.9
An FDDI ring
A B
B
A
A
B
B A
Direction of data on
the outer ring
Primary ring
Secondary ring
Network Architectures
137
FDDI networks can also be cabled as a star topology, though they would still behave like a
ring topology. FDDI network-interface cards may be purchased with either a single FDDI
interface (single-attached station or SAS) or with two FDDI interfaces (DAS). Single-attached
stations must connect to an FDDI concentrator or hub. A network can also be mixed and
matched, with network nodes such as workstations using only a single-attached station connection and servers or other critical devices having dual-attached station connections. That
configuration would allow the critical devices to have a primary and secondary ring.
FDDI has specific terminology and acronyms, including the following:
MAC The media access control is responsible for addressing, scheduling, and routing data.
PHY The physical protocol layer is responsible for coding and timing of signals, such as
clock synchronization of the ring. The actual data speed on an FDDI ring is 125Mbps; an
additional control bit is added for every four bits.
PMD The physical layer medium is responsible for the transmission between nodes. FDDI
includes two PMDs: Fiber-PMD for fiber-optic networks and TP-PMD for twisted-pair networks.
SMT The station management is responsible for handling FDDI management, including
ring management (RMT), configuration management (CFM), connection management
(CMT), physical-connection management (PCM), and entity-coordination management
(ECM). SMT coordinates neighbor identification, insertion to and removal from the ring,
traffic monitoring, and fault detection.
Cabling and FDDI
When planning cabling for an FDDI network, practices recommended in ANSI/TIAEIA-568B or ISO 11801 should be followed. FDDI using fiber-optic cable for the horizontal links uses
FDDI MIC connectors. Care must be taken to ensure that the connectors are keyed properly
for the device they will connect to.
FDDI using copper cabling (CDDI) requires Category 5 or better cable and associated
devices. Horizontal links should at a minimum pass performance tests specified in ANSI/TIA/
EIA-568-B. Of course, a Category 5e or better installation is a better way to go.
Asynchronous Transfer Mode (ATM)
ATM (asynchronous transfer mode, not to be confused with automated teller machines) first
emerged in the early 1990s. If networking has an equivalent to rocket science, then ATM is it.
ATM was designed to be a high-speed communications protocol that does not depend on any
specific LAN topology. It uses a high-speed cell-switching technology that can handle data as
well as real-time voice and video. The ATM protocol breaks up transmitted data into 48- byte
cells that are combined with a 5-byte header. A cell is analogous to a data packet or frame.
138
Chapter 3 • Choosing the Correct Cabling
ATM is designed to “switch” these small, fixed-size cells through an ATM network very
quickly. It does this by setting up a virtual connection between the source and destination nodes;
the cells may go through multiple switching points before ultimately arriving at their final destination. If the cells arrive out of order, and if the implementation of the receiving system is set
up to do so, the receiving system may have to correctly order the arriving cells. ATM is a connection-oriented service, in contrast to many network architectures, which are broadcast based.
Connection orientation simply means that the existence of the opposite end is established
through manual setup or automated control information before user data is transmitted.
Data rates are scalable and start as low as 1.5Mbps, with other speeds of 25-, 51-, 100-, and
155Mbps and higher. The most common speeds of ATM networks today are 51.84Mbps
and 155.52Mbps. Both of these speeds can be used over either copper or fiber-optic cabling.
A 622.08Mbps ATM is also becoming common but is currently used exclusively over fiberoptic cable, mostly as a network backbone architecture.
ATM supports very high speeds because it is designed to be implemented by hardware rather
than software and is in use at speeds as high as 10Gbps.
In the United States, the specification for synchronous data transmission on optical media is
SONET (Synchronous Optical Network); the international equivalent of SONET is SDH
(Synchronous Digital Hierarchy). SONET defines a base data rate of 51.84Mbps; multiples of
this rate are known as optical carrier (OC) levels, such as OC-3, OC-12, etc. Table 3.3 shows
common OC levels and their associated data rate.
T A B L E 3 . 3 Common Optical Carrier Levels (OC-X)
Level
Data Rate
OC-1
51.84Mbps
OC-3
155.52Mbps
OC-12
622.08Mbps
OC-48
2.488Gbps
ATM was designed as a WAN protocol. However, due to the high speeds it can support,
many organizations are using it to attach servers (and often workstations) directly to the ATM
network. To do this, a set of services, functional groups, and protocols was developed to provide LAN emulation via MPoA (MultiProtocol over ATM). MPoA also provides communication between network nodes attached to a LAN (such as Ethernet) and ATM-attached nodes.
Figure 3.10 shows an ATM network connecting to LANs using MPoA. Note that the ATM
network does not have to be in a single physical location and can span geographic areas.
Network Architectures
139
FIGURE 3.10
An ATM network
PC
Ethernet
switch
with ATM
LANE
Ethernet
switch
with ATM
LANE
ATM
switch
ATM
switch
PC
ATM
network
PC
ATM
switch
PC
PC
Ethernet
switch
with ATM
LANE
PC
Server
w/ATM
NIC
Server
w/ATM
NIC
Server
w/ATM
NIC
PC
NOTE
For more information on ATM, check out the ATM Forum’s website at www.atmforum.org.
Cabling and ATM
What sort of cabling should you consider for ATM networks? Fiber-optic cabling is still the
medium of choice for most ATM installations. Although ATM to the desktop is still not terribly common, we know of at least a few organizations that have deployed 155Mbps ATM
directly to the desktop.
For fiber-optic cable, as long as you follow the ANSI/TIAEIA-568-B Standard or the ISO
11801 Standard, you should not have problems. ATM equipment and ATM network-interface
cards use 62.5/125-micron multimode optical fiber.
If you plan on using 155Mbps ATM over copper, plan to use Category 5e cabling at minimum.
100VG-AnyLAN
What does the VG stand for? Voice grade. The 100VG-AnyLAN was designed to operate over a
minimum of Category 3 cable using all pairs in a four-pair UTP cable. Initially developed by Hewlett
Packard, AT&T, and IBM as an alternative to other 100BaseT technologies (100Base-TX and
100Base-T4), 100VG-AnyLAN was refined and ratified by the IEEE as IEEE specification 802.12.
140
Chapter 3 • Choosing the Correct Cabling
It could also be implemented over fiber-optic and STP cabling. But, because it was rapidly overtaken
by inexpensive 100Base-T solutions, it was never implemented widely and is effectively extinct.
Network-Connectivity Devices
Thus far, we’ve talked about many of the common network architectures that you may encounter and some points you may need to know relating to providing a cabling infrastructure to support them. We’ve looked at the products you can use to bring your communication endpoints
to a central location. But is there any communication taking place over your infrastructure?
What you need now is a way to tie everything together.
This section focuses on the rest of the pieces you need to establish seamless communication
across your internetwork.
Repeaters
Nowadays, the terms repeater and hub are used synonymously, but they are actually not the
same. Prior to the days of twisted-pair networking, network backbones carried data across
coaxial cable, similar to what is used for cable television.
Computers would connect into these either by BNC connectors, in the case of thinnet, or by
vampire taps, in the case of thicknet. Everyone would be connected to the same coaxial backbone. Unfortunately, when it comes to electrical current flowing through a solid medium, you
have to contend with the laws of physics. A finite distance exists in which electrical signals can
travel across a wire before they become too distorted. Repeaters were used with coaxial cable
to overcome this challenge.
Repeaters work at the physical layer of the OSI reference model. Digital signals decay due to
attenuation and noise. A repeater’s job is to regenerate the digital signal and send it along in its
original state so that it can travel farther across a wire. Figure 3.11 illustrates a repeater in
action.
FIGURE 3.11
Repeaters are used to
boost signal strength.
Incoming
signal
Boosted
outgoing
signal
Repeater
Network-Connectivity Devices
141
Theoretically, repeaters could be used to extend cables infinitely, but due to the underlying
limitations of communication architectures like Ethernet’s collision domains, repeaters were
originally used to tie together a maximum of five coaxial-cable segments.
Hubs
Because repetition of signals is a function of repeating hubs, hub and repeater are used interchangeably
when referring to twisted-pair networking. The semantic distinction between the two terms is that a
repeater joins two backbone coaxial cables, whereas a hub joins two or more twisted-pair cables.
In twisted-pair networking, each network device is connected to an individual network cable.
In coaxial networking, all network devices are connected to the same coaxial backbone. A hub
eliminates the need for BNC connectors and vampire taps. Figure 3.12 illustrates how network
devices connect to a hub versus to coaxial backbones.
Hubs work the same way as repeaters in that incoming signals are regenerated before they are
retransmitted across its ports. Like repeaters, hubs operate at the OSI physical layer, which means
they do not alter or look at the contents of a frame traveling across the wire. When a hub receives an
incoming signal, it regenerates it and sends it out over all its ports. Figure 3.13 shows a hub at work.
FIGURE 3.12
Twisted-pair networking versus coaxial
networking
FIGURE 3.13
Hubs at work
Coaxial
backbone
Hub
Hub
Outgoing signals
Incoming signals
142
Chapter 3 • Choosing the Correct Cabling
Hubs typically provide from 8 to 24 twisted-pair connections, depending on the manufacturer and model of the hub (although some hubs support several dozen ports). Hubs can also
be connected to each other (cascaded) by means of BNC, AUI ports, or crossover cables to provide flexibility as networks grow. The cost of this flexibility is paid for in performance.
As a media-access architecture, Ethernet is built on carrier-sensing and collision-detection
mechanisms (CSMA/CD). Prior to transmitting a signal, an Ethernet host listens to the wire
to determine if any other hosts are transmitting. If the wire is clear, the host transmits. On
occasion, two or more hosts will sense that the wire is free and try to transmit simultaneously
or nearly simultaneously. Only one signal is free to fly across the wire at a time, and when multiple signals meet on the wire, they become corrupted by the collision. When a collision is
detected, the transmitting hosts wait a random amount of time before retransmitting, in the
hopes of avoiding another data collision. Figure 3.14 shows a situation where a data collision
is produced, and Figure 3.15 shows how Ethernet handles these situations.
So what are the implications of collision handling on performance? If you recall from our
earlier explanation of how a hub works, a hub, after it receives an incoming signal, simply
passes it across all its ports. For example, with an eight-port hub, if a host attached to port 1
transmits, the hosts connected to ports 2 through 8 will all receive the signal. Consider the following: If a host attached to port 8 wants to communicate with a host attached to port 7, the
hosts attached to ports 1 through 6 will be barred from transmitting when they will sense signals traveling across the wire.
FIGURE 3.14
Hub
An Ethernet data
collision
2. The data collides.
t=0
t=0
Two stations transmit
at exactly the same time.
Network-Connectivity Devices
FIGURE 3.15
143
Hub
How Ethernet
responds to data
collisions
S2
S1
S1
t = 0 + n1
S2
t = 0 + n2
Both stations wait a random
amount of time and retransmit.
NOTE
Hubs pass incoming signals across all their ports, preventing two hosts from transmitting
simultaneously. All the hosts connected to a hub are therefore said to share the same
amount of bandwidth.
On a small scale, such as our eight-port example, the shared-bandwidth performance implications may not be that significant. However, consider the cascading of four 24-port hubs,
where 90 nodes (six ports are lost to cascade and backbone links) share the same bandwidth.
The bandwidth that the network provides is finite (limited by the cable plant and network
devices). Therefore, in shared-bandwidth configurations, the amount of bandwidth available
to a connected node is inversely proportional to the number of actively transmitting nodes
sharing that bandwidth. For example, if 90 nodes are connected to the same set of Fast Ethernet (100Mbps) hubs and are all actively transmitting at the same time, they potentially have
only 1.1Mbps available each. For Ethernet (10Mbps), the situation is even worse, with potentially only 0.1Mbps available each. These 100 percent utilization examples are worst-case scenarios, of course. Your network would have given up and collapsed before it reached full
saturation, probably at around 80 percent utilization, and your users would have been loudly
complaining long before that.
All hope is not lost, however. We’ll look at ways of overcoming these performance barriers
through the use of switches and routers.
As a selling point, hubs are relatively inexpensive to implement.
144
Chapter 3 • Choosing the Correct Cabling
Bridges
When we use the terms bridge and bridging, we are generally describing functionality provided
by modern switches. Just like a repeater, a bridge is a network device used to connect two network segments. The main difference between them is that bridges operate at the link layer of
the OSI reference model and can therefore provide translation services required to connect
dissimilar media access architectures such as Ethernet and Token Ring. Therefore, bridging is
an important internetworking technology.
In general, there are four types of bridging:
Transparent bridging Typically found in Ethernet environments, the transparent bridge
analyzes the incoming frames and forwards them to the appropriate segments one hop at a
time (see Figure 3.16).
Source-route bridging Typically found in Token Ring environments, source-route
bridging provides an alternative to transparent bridging for NetBIOS and SNA protocols. In
source-route bridging, each ring is assigned a unique number on a source-route bridge port.
Token Ring frames contain address information, including a ring and bridge numbers, which
each bridge analyzes to forward the frame to the appropriate ring (see Figure 3.17).
FIGURE 3.16
Segment 2
Transparent bridging
Segment 2 MAC
00BB00123456
00BB00234567
00BB00345678
00BB00456789
00BB00123456
is on Segment 2
Bridge
Segment 1 MAC
00AA00123456
00AA00234567
00AA00345678
00AA00456789
Segment 1
Send to
00BB00123456
Network-Connectivity Devices
145
Source-route transparent bridging Source-route transparent bridging is an extension of
source-route bridging, whereby nonroutable protocols such as NetBIOS and SNA receive
the routing benefits of source-route bridging and a performance increase associated with
transparent bridging.
Source-route translation bridging Source route translation bridging is used to connect
network segments with different underlying media-access technologies such as Ethernet to
Token Ring or Ethernet to FDDI, etc. (see Figure 3.18).
Compared to modern routers, bridges are not complicated devices; they consist of networkinterface cards and the software required to forward packets from one interface to another. As
previously mentioned, bridges operate at the link layers of the OSI reference model, so to
understand how bridges work, a brief discussion of link-layer communication is in order.
FIGURE 3.17
Source-route bridging
Source
routing
bridge
PC
Ring 1
Ring 2
PC
FIGURE 3.18
Translation bridging
Token Ring to Ethernet
Ring 1
Bridge
Segment 1
146
Chapter 3 • Choosing the Correct Cabling
How are network nodes uniquely identified? In general, OSI network-layer protocols, such as the
Internet Protocol (IP), are assumed. When you assign an IP address to a network node, one of the
requirements is that it must be unique on the network. At first, you might think every computer in
the world must have a unique IP address in order to communicate, but such is not the case. This is
because of the Internet Assigned Numbers Authority’s (IANA) specification for the allocation of
private address spaces, in RFC 1918. For example, Company XYZ and Company WXY could both
use IP network 192.168.0.0/24 to identify network devices on their private networks. However,
networks that use a private IP address specified in RFC 1918 cannot communicate over the Internet
without network-address translation or proxy-server software and hardware.
IP as a protocol merely provides for the logical grouping of computers as networks. Because IP
addresses are logical representations of groups of computers, how does communication between
two endpoints occur? IP as a protocol provides the rules governing addressing and routing. IP
requires the services of the data-link layer of the OSI reference model to communicate.
Every network-interface card has a unique 48-bit address, known as its MAC address, assigned
to the adapter. For two nodes to converse, one computer must first resolve the MAC address of
its destination. In IP, this is handled by a protocol known as the Address Resolution Protocol (ARP).
Once a MAC address is resolved, the frame gets built and is transmitted on the wire as a unicast
frame. (Both a source and a destination MAC address exist.) Each network adapter on that segment hears the frame and examines the destination MAC address to determine if the frame is destined for them. If the frame’s destination MAC address matches the receiving system’s MAC
address, the frame gets passed up to the network layer; otherwise, the frame is simply discarded.
So how does the communication relate to bridging, you may ask? In transparent bridging,
the bridge listens to all traffic coming across the lines and analyzes the source MAC addresses
to build tables that associate a MAC address with a particular network segment. When a bridge
receives a frame destined for a remote segment, it then forwards that frame to the appropriate
segment so that the clients can communicate seamlessly.
Bridging is one technique that can solve the shared-bandwidth problem that exists with hubs.
Consider the hub example where we cascaded four 24-port hubs. Through the use of bridges,
we can physically isolate each segment so that only 24 hosts compete for bandwidth; throughput is therefore increased. Similarly, with the implementation of bridges, you can also increase
the number of nodes that can transmit simultaneously from one (in the case of cascading hubs)
to four. Another benefit is that collision domains can be extended; that is, the physical distance
between two nodes can exceed the physical limits imposed if the two nodes exist on the same
segment. Logically, all of these nodes will appear to be on the same network segment.
Bridging does much for meeting the challenges of internetworking, but its implementation
is limited. For instance, Source-route bridges will accommodate a maximum of seven physical
segments. And although you will have made more efficient use of available bandwidth through
segmentation, you can still do better with switching technologies.
Network-Connectivity Devices
147
Switches
A switch is the next rung up the evolutionary ladder from bridges. In modern star-topology networking, when you need bridging functionality you often buy a switch. But bridging is not the
only benefit of switch implementation. Switches also provide the benefit of micro-LAN segmentation, which means that every node connected to a switched port receives its own dedicated bandwidth. And with switching, you can further segment the network into virtual LANs.
Like bridges, switches also operate at the link layers of the OSI reference model and, in the
case of Layer-3 switches, extend into the network layer. The same mechanisms are used to
build dynamic tables that associate MAC addresses with switched ports. However, whereas
bridges implement store-and-forward bridging via software, switches implement either storeand-forward or cut-through switching via hardware, with a marked improvement of speed.
Micro-LAN segmentation is the key benefit of switches, and most organizations have either
completely phased out hubs or are in the process of doing so to accommodate the throughput
requirements for multimedia applications. Although switches are becoming more affordable,
ranging in price from $10 to slightly over $20 per port, their price may still prevent organizations from migrating to completely switched infrastructures. At a minimum, however, servers
and workgroups should be linked through switched ports.
Routers
Routers are packet-forwarding devices just like switches and bridges; however, routers allow
transmission of data between network segments. Unlike switches, which forward packets based
on physical node addresses, routers operate at the network layer of the OSI reference model,
forwarding packets based on a network ID.
If you recall from our communication digression in the discussion on bridging, we defined
a network as a logical grouping of computers and network devices. A collection of interconnected networks is referred to as an internetwork. Routers provide the connectivity within an
internetwork.
So how do routers work? In the case of the IP protocol, an IP address is 32 bits long. Those 32
bits contain both the network ID and the host ID of a network device. IP distinguishes between
network and host bits by using a subnet mask. The subnet mask is a set of contiguous bits with values of one from left to right, which IP considers to be the address of a network. Bits used to
describe a host are masked out by a value of 0, through a binary calculation process called ANDing. Figure 3.19 shows two examples of network IDs calculated from an ANDing process.
We use IP as the basis of our examples because it is the industry standard for enterprise networking; however, TCP/IP is not the only routable protocol suite. Novell’s IPX/SPX and
Apple Computer’s AppleTalk protocols are also routable.
148
Chapter 3 • Choosing the Correct Cabling
FIGURE 3.19
Calculation of IP
network IDs
192.168.145.27 / 24
192.168.136.147 / 29
Address:
11000000 10101000 10010001 00011011
Address:
11000000 10101000 10001000 10010011
Mask:
11111111 11111111 11111111 00000000
Mask:
11111111 11111111 11111111 11111000
Network ID:
11000000 10101000 10010001 00000000
Network ID:
11000000 10101000 10001000 10010000
192.168.145.0
192.168.136.144
Routers are simply specialized computers concerned with getting packets from point A to point
B. When a router receives a packet destined for its network interface, it examines the destination
address to determine the best way to get it there. It makes the decision based on information contained within its own routing tables. Routing tables are associations of network IDs and interfaces
that know how to get to that network. If a router can resolve a means to get the packet from point
A to point B, it forwards it to either the intended recipient or to the next router in the chain. Otherwise, the router informs the sender that it doesn’t know how to reach the destination network.
Figure 3.20 illustrates communication between two hosts on different networks.
FIGURE 3.20
Host communication
between internetworked segments
Routing Table
192.168.1.0 255.255.255.0 eth0
192.168.2.0 255.255.255.0 eth1
eth0
eth1
192.168.1.107
192.168.2.131
Send to host
192.168.2.131,
which is not on
my network.
To get to host
192.168.2.131,
use interface eth1.
Network-Connectivity Devices
149
Routers enabled with the TCP/IP protocol and all networking devices configured to use
TCP/IP make some sort of routing decision. All decisions occur within the IP-protocol framework. IP has other responsibilities that are beyond the scope of this book, but ultimately IP is
responsible for forwarding or delivering packets. Once a destination IP address has been
resolved, IP will perform an AND calculation on the IP address and subnet mask, as well as on
the destination IP address to the subnet mask. IP then compares the results. If they are the
same, then both devices exist on the same network segment, and no routing has to take place.
If the results are different, then IP checks the devices routing table for explicit instructions on
how to get to the destination network and forwards the frame to that address or sends the
packet along to a default gateway (router).
A detailed discussion on the inner workings of routers is well beyond the scope of this book.
Internetworking product vendors such as Cisco Systems offer certifications in the configuration and deployment of their products. If you are interested in becoming certified in Cisco
products, Sybex also publishes excellent study guides for the CCNA and CCNP certification
exams. For a more intimate look at the inner workings of the TCP/IP protocol suite, check
TCP/IP: 24seven by Gary Govanus (Sybex 1999).
Chapter 4
Cable System and
Infrastructure Constraints
• What Are Codes, and Where Did They Come From?
• The National Electrical Code
• Knowing and Following the Codes
152
Chapter 4 • Cable System and Infrastructure Constraints
hat constrains you when building a structured cabling system? Can you install cable
anywhere you please? You probably already realize some of the restrictions of your
cabling activities, including installing cable too close to electrical lines and over fluorescent
lights. However, many people don’t realize that documents and codes help dictate how cabling
systems (both electrical as well as communications) must be designed and installed to conform
to your local laws.
W
In the United States, governing bodies issue codes for minimum safety requirements to protect life, health, and property. Once adopted by the local regulating authority, codes have the
force of law. Standards, which are guidelines to ensure system functionality after installation,
are issued to ensure construction quality.
The governing body with local jurisdiction will issue codes for that locality. The codes for an
area are written or adopted by and under control of the jurisdiction having authority (JHA).
Sometimes these codes are called building codes or simply codes. This chapter discusses codes and
how they affect the installation of communications cabling.
Where Do Codes Come From?
Building, construction, and communications codes originate from a number of different
sources. Usually, these codes originate nationally rather than at the local city or county level.
Local municipalities usually adopt these national codes as local laws. Other national codes are
issued that affect the construction of electrical and communications equipment.
Two of the predominant national code players in the United States are the Federal Communications Commission (FCC) and the National Fire Protection Association (NFPA). The Americans with Disabilities Act (ADA) also affects the construction of cabling and communications
facilities because it requires that facilities must be constructed to provide universal access.
The United States Federal Communications Commission
The United States Federal Communications Commission (FCC) issues guidelines that govern
the installation of telecommunications cabling and the design of communications devices built
or used in the United States. The guidelines help to prevent problems relating to communications equipment, including interference with the operation of other communications equipment. The FCC Part 68 Rule provides regulations that specifically address connecting
premises cabling and customer-provided equipment to the regulated networks.
The FCC also publishes numerous reports and orders that deal with specific issues regarding
communications cabling, electromagnetic emissions, and frequency bandwidths. The following is a list of some of the more important documents issued by the FCC:
Part 68 Rule (FCC Rules) Governs the connection of premise equipment and wiring to
the national network.
Where Do Codes Come From?
153
Telecommunications Act 1996 Establishes new rules for provisioning and additional
competition in telecommunications services.
CC Docket 81-216 Establishes rules for providing customer-owned premise wiring.
CC Docket 85-229 Includes the Computer Inquiry III review of the regulatory framework for competition in telecommunications.
CC Docket 86-9 Governs shared-tenant services in commercial buildings.
Part 15 (FCC Rules) Addresses electromagnetic radiation of equipment and cables.
CC Docket 87-124 Addresses implementing the ADA (Americans with Disabilities Act).
CC Docket 88-57 Defines the location of the demarcation point on a customer premise.
Fact Sheet ICB-FC-011 Deals with connection of one- and two-line terminal equipment
to the telephone network and the installation of premises wiring.
Memorandum Opinion and Order FCC 85-343 Covers the rights of users to access
embedded complex wire on customer premises.
TIP
Most of the FCC rules, orders, and reports can be viewed on the FCC website at
www.fcc.gov.
The National Fire Protection Association
In 1897, a group of industry professionals (insurance, electrical, architectural, and other allied
interests) formed the National Association of Fire Engineers with the purpose of writing and
publishing the first guidelines for the safe installation of electrical systems and providing guidance to protect people, property, and the environment from fire. The guidelines are called the
National Electrical Code (NEC). Until 1911, the group continued to meet and update the NEC.
The National Fire Protection Association (NFPA), an international, nonprofit, membership
organization representing over 65,000 members and 100 countries, now sponsors the National
Electrical Code. The NFPA continues to publish the NEC as well as other recommendations
for a variety of safety concerns.
The National Electrical Code is updated by various committees and code-making panels,
each responsible for specific articles in the NEC.
TIP
You can find information about the NFPA and many of its codes and standards at
www.nfpa.org. You can purchase NFPA codes through Global Engineering Documents
(http://global.ihs.com); major codes, such as the National Electrical Code, can be purchased through almost any bookstore.
154
Chapter 4 • Cable System and Infrastructure Constraints
The NEC is called NFPA 70 by the National Fire Protection Association (NFPA), which
also sponsors more than 600 other fire codes and standards that are used in the United States
and throughout the world. The following are some examples of these documents:
NFPA 1 (Fire Prevention Code) Addresses basic fire-prevention requirements to protect buildings from hazards created by fire and explosion.
NFPA 13 (Installation of Sprinkler Systems) Addresses proper design and installation
of sprinkler systems for all types of fires.
NFPA 54 (National Fuel Gas Code) Provides safety requirements for fuel-gas equipment installations, piping, and venting.
NFPA 70 (National Electrical Code) Deals with proper installation of electrical systems
and equipment.
NFPA 70B (Recommended Practice for Electrical Equipment Maintenance) Provides guidelines for maintenance and inspection of electrical equipment such as batteries.
NFPA 70E (Standard for Electrical Safety Requirements for Employee Workplaces) A
basis for evaluating and providing electrical safety-related installation requirements, maintenance
requirements, requirements for special equipment, and work practices. This document is compatible with OSHA (Occupational Safety and Health Administration) requirements.
NFPA 72 (National Fire Alarm Code) Provides a guide to the design, installation, testing, use, and maintenance of fire-alarm systems.
NFPA 75 (Standard for the Protection of Information Technology Equipment) Establishes requirements for computer-room installations that require fire protection.
NFPA 101 (Life Safety Code) Deals with minimum building-design, construction,
operation, and maintenance requirements needed to protect building occupants from fire.
NFPA 262 (Standard Method of Test for Flame Travel and Smoke of Wires and
Cables for Use in Air-Handling Spaces) Describes techniques for testing visible smoke
and fire-spreading characteristics of wires and cables.
NFPA 780 (Standard for the Installation of Lightning Protection Systems) Establishes
guidelines for protection of buildings, people, and special structures from lightning strikes.
NFPA 1221 (Standard for the Installation, Maintenance, and Use of Emergency Services Communications System) Provides guidance for fire-service communications systems used for emergency notification. This guide incorporates NFPA 297 (Guide on Principals and Practices for Communications Systems).
Where Do Codes Come From?
155
These codes are updated every few years; the NEC, for example, is updated every three years.
It was updated in 2002 and will be again in 2005.
You can purchase guides to the NEC that make the code easier for the layman to understand.
Like the NEC, these guides may be purchased at almost any technical or large bookstore. You
can also purchase the NEC online from the NFPA’s excellent website at www.nfpa.org.
If you are responsible for the design of a telecommunications infrastructure, a solid understanding of the NEC is essential. Otherwise, your installation may run into all sorts of red tape
from your local municipality.
TIP
The best reference on the Internet for the NEC is the National Electrical Code Internet Connection maintained by Mike Holt at www.mikeholt.com. You’ll find useful information there
for both the beginner and expert. Mike Holt is also the author of the book Understanding
the 2002 National Electrical Code, which is an excellent reference for anyone trying to make
heads or tails of the NEC.
Underwriters Laboratories
Underwriters Laboratories, Inc. (UL) is a nonprofit product-safety testing and certification
organization. Once an electrical product has been tested, UL allows the manufacturer to place
the UL listing mark on the product or product packaging.
KEY TERM UL listed and UL recognized The UL mark identifies whether a product is UL listed or UL
recognized. If a product carries the UL Listing Mark (UL in a circle) followed by the word
LISTED, an alphanumeric control number, and the product name, it means that the complete (all components) product has been tested against the UL’s nationally recognized
safety standards and found to be reasonably free of electrical-shock risk, fire risk, and
other related hazards. If a product carries the UL Recognized Component Mark (the symbol
looks like a backward R and J), it means that individual components may have been tested
but not the complete product. This mark may also indicate that testing or evaluation of all
the components is incomplete.
You may find a number of different UL marks on a product listed by the UL (all UL listing
marks contain UL inside of a circle). Some of these include the following:
UL This is the most common of the UL marks and indicates that samples of the complete
product have met UL’s safety requirements.
C-UL This UL mark is applied to products that have been tested (by Underwriters Laboratories) according to Canadian safety requirements and can be sold in the Canadian market.
C-UL-US This is a relatively new listing mark that indicates compliance with both Canadian and U.S. requirements.
156
Chapter 4 • Cable System and Infrastructure Constraints
UL-Classified This mark indicates that the product has been evaluated for a limited range
of hazards or is suitable for use under limited or special conditions. Specialized equipment
such as firefighting gear, industrial trucks, and other industrial equipment carry this mark.
C-UL-Classified This is the classification marking for products that the UL has evaluated
for specific hazards or properties, according to Canadian standards.
C-UL-Classified-US Products with this classification marking meet the classified compliance standards for both the United States and Canada.
Recognized Component Mark (backward R and J) Products with the backward R and
J have been evaluated by the UL but are designed to be part of a larger system. Examples are
the power supply, circuit board, disk drives, CD-ROM drive, and other components of a
computer. The Canadian designator (a C preceding the Recognized Component Mark) is the
Canadian equivalent.
C-Recognized Component-US The marking indicates a component certified by the UL
according to both the U.S. and Canadian requirements.
International EMC Mark The electromagnetic compatibility mark indicates that the
product meets the electromagnetic requirements for Europe, the United States, Japan, and
Australia (or any combination of the four). In the United States, this mark is required for
some products, including radios, microwaves, medical equipment, and radio-controlled
equipment.
Other marks on equipment include the Food Service Product Certification mark, the Field
Evaluated Product mark, the Facility Registration mark, and the Marine UL mark.
TIP
To see actual examples of the UL marks described above, visit www.ul.com/mark.
The NEC requires that a Nationally Recognized Test Laboratory (NRTL) rate communications cables used in commercial and residential products as “listed for the purpose.” Usually
UL is used to provide listing services, but the NEC only requires that the listing be done by an
NRTL; other laboratories, therefore, can provide the same services. One such alternate testing
laboratory is ETL SEMKO (www.etlsemko.com).
More than 750 UL standards and standard safety tests exist; some of the ones used for evaluating cabling-related products include the following:
UL 444 Applies to testing multiple conductors, jacketed cables, single or multiple coaxial cables, and optical-fiber cables. This test applies to communications cables intended to
be used in accordance with the NEC Article 800 or the Canadian Electrical Code (Part I)
Section 60.
Where Do Codes Come From?
157
UL 910 Applies to testing the flame spread and smoke density (visible smoke) for electrical
and optical-fiber cables used in spaces that handle environmental air (that’s a fancy way to say
the plenum). This test does not investigate the level of toxic or corrosive elements in the
smoke produced, nor does it cover cable construction or electrical performance. NEC Article 800 specifies that cables that have passed this test can carry the NEC flame rating designation CMP (communications multipurpose plenum).
UL 1581 Applies to testing flame-spread properties of a cable designed for general-purpose
or limited use. This standard contains details of the conductors, insulation, jackets, and coverings, as well as the methods for testing preparation. The measurement and calculation specifications given in UL 1581 are used in UL 44 (Standards for the Thermoset-Insulated Wires and
Cables), UL 83 (Thermoplastic-Insulated Wires and Cables), UL 62 (Flexible Cord and Fixture Wire), and UL 854 (Service-Entrance Cables). NEC Article 800 specifies that cables that
have passed these tests can carry the NEC flame-rating designation CMG, CM, or CMX (all
of which mean communications general-purpose cable).
UL 1666 Applies to testing flame-propagation height for electrical and optical-fiber cables
installed in vertical shafts (the riser). This test only makes sure that flames will not spread
from one floor to another. It does not test for visible smoke, toxicity, or corrosiveness of the
products’ combustion. It does not evaluate the construction for any cable or the cable’s electrical performance. NEC Article 800 specifies that cables that have passed this test may carry
a designation of CMR (communications riser).
UL has an excellent website that has summaries of all the UL standards and provides access
to its newsletters. The main UL website is www.ul.com; a separate website for the UL Standards
Department is located at http://ulstandardsinfonet.ul.com. UL standards may be purchased through Global Engineering Documents on the Web at http://global.ihs.com.
Codes and the Law
At the state level in the United States, many public-utility/service commissions issue their own
rules governing the installation of cabling and equipment in public buildings. States also monitor tariffs on the state’s service providers.
At the local level, the state, county, city, or other authoritative jurisdiction issues codes. Most
local governments issue their own codes that must be adhered to when installing communications cabling or devices in the jurisdictions under their authority. Usually, the NEC is the basis
for electrical codes, but often the local code will be stricter.
Over whom the jurisdiction has authority must be determined prior to any work being initiated.
Most localities have a code office, a fire marshal, or a permitting office that must be consulted.
158
Chapter 4 • Cable System and Infrastructure Constraints
The strictness of the local codes will vary from location to location and often reflects a particular geographic region’s potential for or experience with a disaster. For example:
WARNING
●
Some localities in California have strict earthquake codes regarding how equipment and
racks must be attached to buildings.
●
In Chicago, some localities require that all cables be installed in metal conduits so that
cables will not catch fire easily. This is also to help prevent flame spread that some cables
may cause.
●
Las Vegas has strict fire-containment codes that require firestopping of openings between
floors and firewalls. These openings may be used for running horizontal or backbone cabling.
Local codes take precedence over all other installation guidelines. Ignorance of local codes
could result in fines, having to reinstall all components, or the inability to obtain a Certificate of Occupancy.
Localities may adopt any version of the NEC or write their own codes. Don’t assume that a
specific city, county, or state has adopted the NEC word for word. Contact the local buildingcodes, construction, or building-permits department to be sure that what you are doing is legal.
Historically, telecommunications cable installations were not subject to local codes or inspections. However, during several commercial building fires, the communications cables burned
and produced toxic smoke and fumes, and the smoke obscured the building’s exit points. This
contributed to deaths. When the smoke mixed with the water vapor, hydrochloric acid was produced, resulting in significant property damage. Because of these fires, most jurisdictions having
authority now issue permits and perform inspections of the communications cabling.
It is impossible to completely eliminate toxic elements in smoke. Corrosive elements,
although certainly harmful to people, are more a hazard to electronic equipment and other
building facilities. The NEC flame ratings for communications cables are designed to limit the
spread of the fire and, in the case of plenum cables, the production of visible smoke that could
obscure exits. The strategy is to allow sufficient time for people to exit the building and to minimize potential property damage. By specifying acceptable limits of toxic or corrosive elements
in the smoke and fumes, the NFPA is not trying to make the burning cables “safe.” Note, however, that there are exceptions to the previous statement, notably cables used in transportation
tunnels, where egress points are limited.
TIP
If a municipal building inspector inspects your cabling installation and denies you a permit
(such as a Certificate of Occupancy), he or she must tell you exactly which codes you are
not in compliance with.
The National Electrical Code
159
The National Electrical Code
This section summarizes the information in the National Electrical Code (NFPA 70). All
information contained in this chapter is based upon the 2002 edition of the NEC; the code is
reissued every three years. Prior to installing any communications cable or devices, consult
your local jurisdictions having authority to determine which codes apply to your project.
Do not assume that local jurisdictions automatically update local codes to the most current
version of the NEC. You may find that local codes reference older versions with requirements
that conflict with the latest NEC. Become familiar with the local codes. Verify all interpretations with local code-enforcement officials, as enforcement of the codes is their responsibility.
If you are responsible for the design of a telecommunications infrastructure or if you supervise
the installation of such an infrastructure, you should own the official code documents and be
intimately familiar with them.
The following list of NEC articles is not meant to be all-inclusive; it is a representation of
some of the articles that may impact telecommunications installations.
The NEC is divided into chapters, articles, and sections. Technical material often refers to
a specific article or section. Section 90-3 explains the arrangement of the NEC chapters. The
NEC currently contains nine chapters; most chapters concern the installation of electrical
cabling, equipment, and protection devices. The pertinent chapter for communications is
Chapter 8. The rules governing the installation of communications cable differ from those that
govern the installation of electrical cables; thus, the rules for electrical cables as stated in the
NEC do not generally apply to communications cables. Section 90-3 states this by saying that
Chapter 8 is independent of all other chapters in the NEC except where they are specifically
referenced in Chapter 8.
This section only summarizes information from the 2002 National Electrical Code relevant
to communications systems. Much of this information refers to Chapter 8 of the NEC.
NOTE
If you would like more information about the NEC, you should purchase the NEC in its
entirety or a guidebook.
NEC Chapter 1 General Requirements
NEC Chapter 1 includes definitions, usage information, and descriptions of spaces about electrical equipment. Its articles are described in the following sections.
Article 100—Definitions
Article 100 contains definitions for NEC terms that relate to the proper application of the NEC.
160
Chapter 4 • Cable System and Infrastructure Constraints
Article 110.3 (B)—Installation and Use
Chapter 8 references this article, among others. It states that any equipment included on a list
acceptable to the local jurisdiction having authority and/or any equipment labeled as having
been tested and found suitable for a specific purpose shall be installed and used in accordance
with any instructions included in the listing or labeling.
Article 110.26—Spaces about Electrical Equipment
This article calls for a minimum of three feet of clear working space around all electrical equipment, to permit safe operation and maintenance of the equipment. Article 110.26 is not referenced in Chapter 8, but many standards-making bodies address the need for three feet of clear
working space around communications equipment.
NEC Chapter 2 Wiring and Protection
NEC Chapter 2 includes information about conductors on poles, installation requirements for
bonding, and grounding.
Grounding is important to all electrical systems because it prevents possibly fatal electrical
shock. Further information about grounding can be found in TIA/EIA-607, which is the Commercial Building Grounding and Bonding Requirements for Telecommunications standard.
The grounding information in NEC Chapter 2 that affects communications infrastructures
includes the following articles.
Article 225.14 (D)—Conductors on Poles
This article is referenced in Chapter 8 and states that conductors on poles shall have a minimum
separation of one foot where not placed on racks or brackets. If a power cable is on the same pole
as communications cables, the power cable (over 300 volts) shall be separated from the communications cables by not less than 30 inches. Historically, power cables have always been placed
above communications cables on poles because when done so communications cables cannot
inflict bodily harm to personnel working around them. Power cables, though, can inflict bodily
harm, so they are put at the top of the pole out of the communications workers’ way.
Article 250—Grounding
Article 250 covers the general requirements for the bonding and grounding of electricalservice installations. Communications cables and equipment are bonded to ground using the
building electrical-entrance service ground. Several subsections in Article 250 are referenced in
Chapter 8; other subsections not referenced in Chapter 8 will be of interest to communications
personnel both from a safety standpoint and for effective data transmission. Buildings not properly bonded to ground are a safety hazard to all personnel. Communications systems not properly
bonded to ground will not function properly.
The National Electrical Code
161
Article 250.4 (A)(4)—Bonding of Electrically Conductive Materials and Other Equipment
Electrically conductive materials (such as communications conduits, racks, cable trays, and
cable shields) likely to become energized in a transient high-voltage situation (such as a lightning strike) shall be bonded to ground in such a manner as to establish an effective path to
ground for any fault current that may be imposed.
Article 250.32—Two or More Buildings or Structures Supplied from a Common Service
This article is referenced in Chapter 8. In multibuilding campus situations, the proper bonding of
communications equipment and cables is governed by several different circumstances, as follows:
Section 250.32 (A)—Grounding Electrode Each building shall be bonded to ground
with a grounding electrode (such as a ground rod), and all grounding electrodes shall be
bonded together to form the grounding-electrode system.
Section 250.32 (B)—Grounded Systems In remote buildings, grounding system shall
comply with either (1) or (2):
(1) Equipment-Grounding Conductor Rules here apply where the equipmentgrounding conductor is run with the electrical-supply conductors and connected to the
building or structure disconnecting means and to the grounding-electrode conductors.
(2) Grounded Conductor Rules here apply where the equipment-grounding conductor is not run with the electrical-supply conductors.
Section 250.32 (C)—Ungrounded Systems The electrical ground shall be connected to
the building disconnecting means.
Section 250.32 (D)—Disconnecting Means Located in Separate Building or Structure
on the Same Premises The guidelines here apply to installing grounded circuit conductors
and equipment-grounding conductors and bonding the equipment-grounding conductors to
the grounding-electrode conductor in separate buildings when one main electrical service feed
is to one building with the service disconnecting means and branch circuits to remote buildings. The remote buildings do not have a service disconnecting means.
Section 250.32 (E)—Grounding Conductor The size of the grounding conductors per
NEC Table 250.66 is discussed here.
Article 250.50—Grounding-Electrode System
This article is referenced in Chapter 8. On premises with multiple buildings, each electrode at
each building shall be bonded together to form the grounding-electrode system. The bonding
conductor shall be installed in accordance with the following:
Section 250.64 (A) Aluminum or copper-clad aluminum conductors shall not be used.
162
Chapter 4 • Cable System and Infrastructure Constraints
Section 250.64 (B) This section deals with grounding-conductor installation guidelines.
Section 250.64 (E) Metallic enclosures for the grounding-electrode conductor shall be
electrically continuous.
The bonding conductor shall be sized per Section 250.66; minimum sizing is listed in NEC
Table 250.66. The grounding-electrode system shall be connected per Section 250.70. An
unspliced (or spliced using an exothermic welding process or an irreversible compression connection) grounding-electrode conductor shall be run to any convenient grounding electrode. The
grounding electrode shall be sized for the largest grounding-electrode conductor attached to it.
WARNING
Note that interior metallic water pipes shall not be used as part of the grounding-electrode
system. This is a change from how communications workers historically bonded systems
to ground.
Article 250.52—Grounding Electrodes
This article defines the following structures that can be used as grounding electrodes:
Section 250-.52 (1)—Metal Underground Water Pipe An electrically continuous
metallic water pipe, running a minimum of 10 feet in direct contact with the earth, may be
used in conjunction with a grounding electrode. The grounding electrode must be bonded
to the water pipe.
Section 250.52 (2)—Metal Frame of the Building or Structure The metal frame of a
building may be used as the grounding electrode, where effectively grounded.
Section 250.52 (3)—Concrete-Encased Electrode Very specific rules govern the use of
steel reinforcing rods, embedded in concrete at the base of the building, as the groundingelectrode conductor.
Section 250.52 (4)—Ground Ring A ground ring that encircles the building may be used
as the grounding-electrode conductor if the minimum rules of this section are applied.
Section 250-52 (5)—Rod and Pipe Electrodes Rods and pipes of not less than eight
feet in length shall be used. Rods or pipes shall be installed in the following manner (the letters correspond to NEC subsections):
(a) Electrodes of pipe or conduit shall not be smaller than 3/4 inch trade size and shall
have an outer surface coated for corrosion protection.
(b) Electrodes of rods of iron or steel shall be at least 5/8 inch in diameter.
Section 250-52 (6)—Plate Electrodes Each plate shall be at least 1/4 inch in thickness
installed not less than 21/2 feet below the surface of the earth.
The National Electrical Code
163
Section 250.52 (7)—Other Local Metal Underground Systems or Structures Underground pipes, tanks, or other metallic systems may be used as the grounding electrode. In certain
situations, vehicles have been buried and used for the grounding electrode.
WARNING
Metal underground gas piping systems or aluminum electrodes shall not be used for
grounding purposes.
Article 250.60—Use of Air Terminals
This section is referenced in Article 800. Air terminals are commonly known as lightning rods.
They must be bonded directly to ground in a specific manner. The grounding electrodes used for
the air terminals shall not replace a building grounding electrode. Article 250.60 does not prohibit the bonding of all systems together. FPN (fine print note) number 2: Bonding together of
all separate grounding systems will limit potential differences between them and their associated
wiring systems.
Article 250.70—Methods of Grounding Conductor Connection to Electrodes
This section is referenced in Article 800 of Chapter 8. All conductors must be bonded to the
grounding-electrode system. Connections made to the grounding-electrode conductor shall be
made by exothermic welding, listed lugs, listed pressure connectors, listed clamps, or other listed
means. Not more than one conductor shall be connected to the electrode by a single clamp.
For indoor telecommunications purposes only, a listed sheet-metal strap-type ground clamp,
which has a rigid metal base and is not likely to stretch, may be used.
Article 250.94—Bonding to Other Services
An accessible means for connecting intersystem bonding and grounding shall be provided at
the service entrance. This section is also referenced in Article 800, as telecommunications services must have an accessible means for connecting to the building bonding and grounding system where the telecommunications cables enter the building. The three acceptable means are
as follows:
(1) Exposed inflexible metallic service raceways.
(2) Exposed grounding-electrode conductor.
(3) Approved means for the external connection of a copper or other corrosion-resistant
bonding or grounding conductor to the service raceway or equipment. An approved external
connection is the main grounding busbar, which should be located in the telecommunications entrance facility.
164
Chapter 4 • Cable System and Infrastructure Constraints
Article 250.104—Bonding of Piping Systems and Exposed Structural Steel
Article 250.104 concerns the use of metal piping and structural steel. The following section is
relevant here:
Section 250.104 (A)—Metal Water Piping The section is referenced in Article 800.
Interior metal water-piping systems may be used as bonding conductors as long as the interior metal water piping is bonded to the service-entrance enclosure, the grounded conductor
at the service, or the grounding-electrode conductor or conductors.
Article 250.119—Identification of Equipment-Grounding Conductors
Equipment-grounding conductors may be bare, covered, or insulated. If covered or insulated,
outer finish shall be green or green with yellow stripes. The following section is relevant:
Section 250.119 (A)—Conductors Larger Than No. 6 A conductor larger than No. 6
shall be permitted. The conductor shall be permanently identified at each end and at each
point where the conductor is accessible. The conductor shall have one of the following:
(1) Stripping on the insulation or covering for the entire exposed length
(2) A green coloring or covering
(3) Marking with green tape or adhesive labels
NOTE
The bonding and grounding minimum specifications listed here are for safety. Further specifications for the bonding of telecommunication systems to the building grounding electrode are in the ANSI/TIA/EIA-607 Standard, which is discussed in detail in Chapter 2.
NEC Chapter 3 Wiring Methods and Materials
NEC Chapter 3 covers wiring methods for all wiring installations. Certain articles are of special interest to telecommunication installation personnel and are described as follows.
Article 300.11—Securing and Supporting
This article covers securing and supporting electrical and communications wiring. The following section is of interest:
Section 300.11 (A)—Secured in Place Cables and raceways shall not be supported by
ceiling grids or by the ceiling support-wire assemblies. All cables and raceways shall use an
independent means of secure support and shall be securely fastened in place. This section was
a new addition in the 1999 code. Currently, any wires supported by the ceiling assembly are
“grandfathered” and do not have to be rearranged. So if noncompliant ceiling assemblies
existed before NEC 1999 was published, they can remain in place. A ceiling or the ceiling
The National Electrical Code
165
support wires cannot support new installations of cable; the cables must have their own independent means of secure support.
Ceiling support wires may be used to support cables; however, those support wires shall not
be used to support the ceiling. The cable support wires must be distinguished from the ceiling support wires by color, tags, or other means. Cable support wires shall be secured to the
ceiling assembly.
Article 300.21—Spread of Fire or Products of Combustion
Installations of cable in hollow spaces such as partition walls, vertical shafts, and ventilation
spaces such as ceiling areas shall be made so that the spread of fire is not increased. Communications cables burn rapidly and produce poisonous smoke and gasses. If openings are created
or used through walls, floors, ceilings, or fire-rated partitions, they shall be firestopped. If a
cable is not properly firestopped, a fire can follow the cable (remember the movie Towering
Inferno?). A basic rule of thumb is this: If a hole exists, firestop it. Firestop manufacturers have
tested and approved design guidelines that must be followed when firestopping any opening.
WARNING
Consult with your local jurisdiction having authority prior to installing any firestop.
Article 300.22—Wiring in Ducts, Plenums, and Other Air-Handling Spaces
This article applies to using communications and electrical cables in air ducts and the plenum.
The following sections go into detail:
Section 300.22 (A)—Ducts for Dust, Loose Stock, or Vapor Removal No wiring of
any type shall be installed in ducts used to transport dust, loose stock, or flammable vapors
or for ventilation of commercial cooking equipment.
Section 300.22 (B)—Ducts or Plenums Used for Environmental Air If cables will be
installed in a duct used to transport environmental air, the cable must be enclosed in a metal
conduit or metallic tubing. Flexible metal conduit is allowed for a maximum length of four feet.
Section 300.22 (C)—Other Space Used for Environmental Air The space over a
hung ceiling, which is used for the transport of environmental air, is an example of the type
of space to which this section applies. Cables and conductors installed in environmental airhandling spaces must be listed for the use; e.g., a plenum-rated cable must be installed in a
plenum-rated space. Other cables or conductors that are not listed for use in environmental
air-handling spaces shall be installed in electrical metallic tubing, metal conduit, or solidbottom metal cable tray with solid metal covers.
Section 300.22 (D)—Information Technology Equipment Electric wiring in airhandling spaces beneath raised floors for information-technology equipment shall be
permitted in accordance with Article 645.
166
Chapter 4 • Cable System and Infrastructure Constraints
NEC Chapter 5 Special Occupancy
NEC Chapters 1 through 3 apply to residential and commercial facilities. NEC Chapter 5
deals with areas that may need special consideration, including those that may be subject to
flammable or hazardous gas and liquids and that have electrical or communications cabling.
NEC Chapter 7 Special Conditions
NEC Chapter 7 deals with low-power systems such as signaling and fire-control systems.
Article 725.1—Scope
This article covers remote-control, signaling, and power-limited circuits that are not an integral
part of a device or appliance (for example, safety-control equipment and building-management
systems). The article covers the types of conductors to be used, their insulation, and conductor
support.
Article 760—Fire-Alarm Systems
Fire-alarm systems are not normally considered part of the communications infrastructure, but
the systems and wiring used for fire-alarm systems are becoming increasingly integrated into
the rooms and spaces designated for communications. As such, all applicable codes must be followed. Codes of particular interest to communications personnel are as follows:
Section 760.61 (D)—Cable Uses and Permitted Substitutions Multiconductor communications cables CMP, CMR, CMG, and CM are permitted substitutions for Class 2 and
3 general- and limited-use communication cable. Class 2 or 3 riser cable can be substituted
for CMP or CMR cable. Class 2 or 3 plenum cable can only be substituted with CMP or
MPP plenum cable. Coaxial, single-conductor cable MPP (multipurpose plenum), MPR
(multipurpose riser), MPG (multipurpose general), and MP (multipurpose) are permitted
substitutions for FPLP (fire-protective signal cable plenum), FPLR (fire-protective signal
cable riser), and FPL (fire-protective signal cable general use) cable.
Section 760.71 (B)—Conductor Size The size of conductors in a multiconductor cable
shall not be smaller than AWG (American Wire Gauge) 26. Single conductors shall not be
smaller than AWG 18. Standard multiconductor communications cables are AWG 24 or
larger. Standard coaxial cables are AWG 16 or larger.
Article 770—Optical-Fiber Cables and Raceways
The provisions of this article apply to the installation of optical-fiber cables, which transmit
light for control, signaling, and communications. This article also applies to the raceways that
contain and support the optical-fiber cables. The provisions of this article are for the safety of
the installation personnel and users coming in contact with the optical-fiber cables; as such,
The National Electrical Code
167
installation personnel should follow the manufacturers’ guidelines and recommendations for
the installation specifics on the particular fiber being installed. Three types of optical fiber are
defined in the NEC:
Nonconductive Optical-fiber cables that contain no metallic members or other conductive materials are nonconductive. It is important for personnel to know whether a cable contains metallic members. Cables containing metallic members may become energized by
transient voltages or currents, which may cause harm to the personnel touching the cables.
Conductive Cables that contain a metallic strength member or other metallic armor or
sheath are conductive. The conductive metallic members in the cable are for the support and
protection of the optical fiber—not for conducting electricity or signals—but they may
become energized and should be tested for foreign voltages and currents prior to handling.
Composite Cables that contain optical fibers and current-carrying electrical conductors,
such as signaling copper pairs, are composite. Composite cables are classified as electrical
cables and should be tested for voltages and currents prior to handling. All codes applying to
copper conductors apply to composite optical-fiber cables.
WARNING
The 2002 version of the NEC defines abandoned optical fiber cable as “installed optical
fiber cable that is not terminated at equipment other than a connector and not identified
for future use with a tag.” This is important to you because 800.52 (B) now requires that
abandoned cable be removed during the installation of any additional cabling. Make sure
you know what abandoned cable you have and who will pay for removal when you have
cabling work performed.
Article 770.6—Raceways for Optical-Fiber Cables
Plastic raceways for optical-fiber cables, otherwise known as innerducts, shall be listed for the
space they occupy; for example: a general listing for a general space, a riser listing for a riser space,
or a plenum listing for a plenum space. The optical fiber occupying the innerduct must also be
listed for the space. Unlisted-underground or outside-plant innerduct shall be terminated at the
point of entrance.
Article 770.8—Mechanical Execution of Work
Optical-fiber cables shall be installed in a neat and workmanlike manner. Cables and raceways
shall be supported by the building structure. The support structure for the optical fibers and
raceways must be attached to the structure of the building, not attached to a ceiling, lashed to
a pipe or conduit, or laid in on ductwork.
168
Chapter 4 • Cable System and Infrastructure Constraints
Article 770.50—Listings, Marking, and Installation of Optical-Fiber Cables
Optical-fiber cables shall be listed as suitable for the purpose; cables shall be marked in accordance
with NEC Table 770.50. Most manufacturers put the marking on the optical-fiber cable jacket
every two to four feet. The code does not tell you what type of cable to use (such as single-mode or
multimode), just that the cable should be resistant to the spread of fire. For fire-resistance and cable
markings for optical cable, see Table 4.1.
T A B L E 4 . 1 Optical Cable Markings from NEC Table 770.50
Marking
Description
OFNP
Nonconductive optical-fiber plenum cable
OFCP
Conductive optical-fiber plenum cable
OFNR
Nonconductive optical-fiber riser cable
OFCR
Conductive optical-fiber riser cable
OFNG
Nonconductive optical-fiber general-purpose cable
OFCG
Conductive optical-fiber general-purpose cable
OFN
Nonconductive optical-fiber general-purpose cable
OFC
Conductive optical-fiber general-purpose cable
Article 770.51—Listing Requirements for Optical Fiber Cables and Raceways
Section 770.51 (A)—Types OFNP and OFCP Cables with these markings are for use
in plenums, ducts, and other spaces used for handling environmental air. These cables have
adequate fire resistance and low smoke-producing characteristics.
Section 770.51 (B)—Types OFNR and OFCR These markings indicate cable for use
in a vertical shaft or from floor to floor. These cables have fire-resistant characteristics capable of preventing the spread of fire from floor to floor.
Section 770.51 (C)—Types OFNG and OFCG Cables with these designations are for
use in spaces not classified as a plenum and are for general use on one floor. These cables are
fire resistant.
Section 770.51 (D)—Types OFN and OFC These cables are for the same use as
OFNG and OFCG cables. OFN and OFC have the same characteristics as OFNG and
OFCG, though they must meet different flame tests.
Section 770.51 (E)—Plenum raceways These raceways have adequate fire-resistant and
low smoke-producing characteristics. Plenum raceways must be used in plenum-rated areas.
Plenum-rated cable is the only type cable that may occupy the plenum-rated raceway.
The National Electrical Code
169
Section 770.51 (F) Riser raceways Riser raceways have fire-resistant characteristics to
prevent the spread of fire from floor to floor and must be used in the riser.
Section 770.51 (G)—General-Purpose Raceways General-purpose raceways are fire
resistant and used in general nonplenum areas, or they travel from floor to floor.
Article 770.53—Cable Substitutions
In general, a cable with a higher (better) flame rating can always be substituted for a cable with
a lower rating (see Table 4.2).
T A B L E 4 . 2 Optical Fiber Cable Substitutions from NEC Table 770.53
Cable Type
Permitted Substitutions
OFNP
None
OFCP
OFNP
OFNR
OFNP
OFCR
OFNP, OFCP, OFNR
OFNG, OFN
OFNP, OFNR
OFCG, OFC
OFNP, OFCP, OFNR, OFCR, OFNG, OFN
NEC Chapter 8 Communications Systems
NEC Chapter 8 is the section of the NEC that directly relates to the design and installation of
a telecommunications infrastructure.
Article 800.1—Scope
This article covers telephone systems, telegraph systems, outside wiring for alarms, paging systems, building-management systems, and other central station systems.
For the purposes of this chapter, we define cable as a factory assembly of two or more conductors having an overall covering.
WARNING
The 2002 version of the NEC defines abandoned communication cable as “installed communications cable that is not terminated at both ends at a connector or other equipment
and not identified for future use with a tag.” This is important to you because 800.52 (B)
now requires that abandoned cable be removed during the installation of any additional
cabling. Make sure you know what abandoned cable you have and who will pay for removal
when you have cabling work performed.
170
Chapter 4 • Cable System and Infrastructure Constraints
Article 800.6—Mechanical Execution of Work
Communications circuits and equipment shall be installed in a neat and workmanlike manner.
Cables installed exposed on the outer surface of ceiling and sidewalls shall be supported by the
structural components of the building structure in such a manner that the cable is not damaged
by normal building use. Such cables shall be attached to structural components by straps, staples, hangers, or similar fittings designed and installed so as not to damage the cable.
Article 800.8—Hazardous Locations
Cables and equipment installed in hazardous locations shall be installed in accordance with
Article 500.
Article 800.10—Overhead Wires and Cables
Cables entering buildings from overhead poles shall be located on the pole on different
crossarms from power conductors; the crossarms for communications cables shall be
located below the crossarms for power. Sufficient climbing space must be between the
communications cables in order for someone to reach the power cables. A minimum
distance separation of 12 inches must be maintained from power cables.
Article 800.11—Underground Circuits Entering Buildings
In a raceway system underground, such as one composed of conduits, communications raceways shall be separated from electric-cable raceways with brick, concrete, or tile partitions.
Article 800.30—Protective Devices
A listed primary protector shall be provided on each circuit run partly or entirely in aerial wire
and on each circuit that may be exposed to accidental contact with electric light or power. Primary protection shall also be installed on circuits in a multibuilding environment on premises
in which the circuits run from building to building and in which a lightning exposure exists. A
circuit is considered to have lightning exposure unless one of the following conditions exists:
(1) The buildings are sufficiently high to intercept lightning (such as circuits in a large metropolitan area). Chances of lightning hitting a cable are minimal; the lightning will strike a
building and be carried to ground through the lightning-protection system. Furthermore,
Article 800.13 states that a separation of at least six feet shall be maintained from lightning
conductors; do not attach cable to lightning conductors, run cable parallel with them, or lay
your cables across them. Stay as far away from the lightning-protection systems as possible.
(2) Direct burial or underground cable runs 140 feet or less with a continuous metallic
shield or in a continuous metallic conduit where the metallic shield or conduit is bonded to
the building grounding-electrode system. An underground cable with a metallic shield or in
The National Electrical Code
171
metallic conduit that has been bonded to ground will carry the lightning to ground prior to
its entering the building. If the conduit or metallic shields have not been bonded to ground,
the lightning will be carried into the building on the cable, which could result in personnel
hazards and equipment damage.
(3) The area has an average of five or fewer thunderstorm days per year with an earth resistance of less than 100 ohm-meters.
Very few areas in the United States meet any one of these criteria. It is required that customers in areas that do meet any one of these criteria install primary protection. Primary protection is inexpensive compared to the people and equipment it protects. When in doubt, install
primary protection on all circuits entering buildings no matter where the cables originate or
how they travel.
Several types of primary protectors are permitted by the National Electrical Code:
Fuseless primary protectors Fuseless primary protectors are permitted under any of the
following conditions:
●
●
●
●
●
Noninsulated conductors enter the building through a cable with a grounded metallic
sheath, and the conductors in the cable safely fuse on all currents greater than the
current-carrying capacity of the primary protector. This protects all circuits in an
overcurrent situation.
Insulated conductors are spliced onto a noninsulated cable with a grounded metallic
sheath. The insulated conductors are used to extend circuits into a building. All conductors or connections between the insulated conductors and the exposed plant must
safely fuse in an overcurrent situation.
Insulated conductors are spliced onto noninsulated conductors without a grounded metallic sheath. A fuseless primary protector is allowed in this case only if the primary protector
is listed for this purpose or the connections of the insulated cable to the exposed cable or
the conductors of the exposed cable safely fuse in an overcurrent situation.
Insulated conductors are spliced onto unexposed cable.
Insulated conductors are spliced onto noninsulated cable with a grounded metallic
sheath, and the combination of the primary protector and the insulated conductors
safely fuse in an overcurrent situation.
Fused primary protectors If the requirements for fuseless primary protectors are not
met, a fused type primary protector shall be used. The fused-type protector shall consist of
an arrester connected between each line conductor and ground.
The primary protector shall be located in, on, or immediately adjacent to the structure or
building served and as close as practical to the point at which the exposed conductors enter or
172
Chapter 4 • Cable System and Infrastructure Constraints
attach to the building. In a residential situation, primary protectors are located on an outside
wall where the drop arrives at the house. In a commercial building, the primary protector is
located in the space where the outside cable enters the building. The primary-protector location should also be the one that offers the shortest practicable grounding conductor to the primary protector to limit potential differences between communications circuits and other
metallic systems. The primary protector shall not be located in any hazardous location nor in
the vicinity of easily ignitable material.
Article 800.32—Secondary Protector Requirements
Secondary protection shunts to ground any currents or voltages that are passed through the
primary protector. Secondary protectors shall be listed for this purpose and shall be installed
behind the primary protector. Secondary protectors provide a means to safely limit currents
to less than the current-carrying capacity of the communications wire and cable, listed telephone-line cords, and listed communications equipment that has ports for external communications circuits.
Article 800.33—Cable Grounding
The metallic sheath of a communications cable entering a building shall be grounded as close
to the point of entrance into the building as practicably possible. The sheath shall be opened
to expose the metallic sheath, which shall then be grounded. In some situations, it may be necessary to remove a section of the metallic sheath to form a gap. Each section of the metallic
sheath shall then be bonded to ground.
Article 800.40—Primary-Protector Grounding
Primary protectors shall be grounded in one of the following ways:
Section 800.40 (A)—Grounding Conductor Insulation The grounding conductor
shall be insulated and listed as suitable for the purpose. The following criteria apply:
Material The grounding conductor shall be copper or other corrosion-resistant conductive material and either stranded or solid.
Size The grounding conductor shall not be smaller than 14 AWG
Run in a straight line
as possible.
The grounding conductor shall be run in as straight a line
Physical damage The grounding conductor shall be guarded from physical damage.
If the grounding conductor is run in a metal raceway (such as conduit), both ends of the
metal raceway shall be bonded to the grounding conductor.
The National Electrical Code
173
Section 800.40 (B)—Electrode The grounding conductor shall be attached to the
grounding electrode as follows:
●
●
It should be attached to the nearest accessible location on the building or structure
grounding-electrode system, the grounded interior metal water-pipe system, the
power-service external enclosures, the metallic power raceway, or the power-service
equipment enclosure.
If a building has no grounding means from the electrical service, install the grounding conductor to an effectively grounded metal structure or a ground rod or pipe of not less than
five feet in length and 1/2 inch in diameter, driven into permanently damp earth and separated at least six feet from lightning conductors or electrodes from other systems.
Section 800.40 (D)—Bonding of Electrodes If a separate grounding electrode is
installed for communications, it must be bonded to the electrical electrode system with a
conductor not smaller than AWG 6. Bonding together of all electrodes will limit potential
differences between them and their associated wiring systems.
Article 800.50—Listings, Markings, and Installation of Communications Wires and Cables
Communications wires and cables installed in buildings shall be listed as suitable for the purpose
and marked in accordance with NEC Table 800.50. Listings and markings shall not be required on
a cable that enters from the outside and where the length of the cable within the building, measured
from its point of entrance, is less than 50 feet. It is possible to install an unlisted cable more than 50
feet into a building from the outside, but it must be totally enclosed in rigid metal conduit. Outside
cables may not be extended 50 feet into a building if it is feasible to place the primary protector
closer than 50 feet to the entrance point. Table 4.3 refers to the contents of NEC Table 800.50.
T A B L E 4 . 3 Copper Communications-Cable Markings from NEC Table 800.50
Marking
Description
MPP
Multipurpose plenum cable
CMP
Communications plenum cable
MPR
Multipurpose riser cable
CMR
Communications riser cable
MPG
Multipurpose general-purpose cable
CMG
Communications general-purpose cable
MP
Multipurpose general-purpose cable
CM
Communications general-purpose cable
CMX
Communications cable, limited use
CMUC
Under-carpet communications wire and cable
174
Chapter 4 • Cable System and Infrastructure Constraints
Article 800.51—Listing Requirements for Communications Wires and Cables and
Communications Raceways
Conductors in communications cables, other than coaxial, shall be copper. The listings are
described as follows:
Section 800.51 (A)—Type CMP Type CMP cable is suitable for use in ducts, plenums,
and other spaces used for environmental air. CMP cable shall have adequate fire-resistant and
low smoke-producing characteristics.
Section 800.51 (B)—Type CMR Type CMR cable is suitable for use in a vertical run
from floor to floor and shall have fire-resistant characteristics capable of preventing the
spreading of fire from floor to floor.
Section 800.51 (C)—Type CMG Type CMG is for general use, not for use in plenums
or risers. Type CMG is resistant to the spread of fire.
Section 800.51 (D)—Type CM Type CM is suitable for general use, not for use in plenums or risers; it is also resistant to the spread of fire.
Section 800.51 (E)—Type CMX Type CMX cable is used in residential dwellings. It is
resistant to the spread of fire.
Section 800.51 (F)—Type CMUC Type CMUC is a cable made specifically for undercarpet use; it may not be used in any other place, nor can any other cable be installed under carpets. It is resistant to flame spread.
Section 800.51 (G)—Multipurpose (MP) Cables Multiconductor and coaxial cables
meeting the same requirements as communications cables shall be listed and marked as MPP,
MPR, MPG, and MP.
Section 800.51 (H)—Communications Wires Wires and cables used as cross-connects
or patch cables in communications rooms or spaces shall be listed as being resistant to the
spread of fire.
Section 800.51 (I)—Hybrid Power and Communications Cable Hybrid power and
communications cables are permitted if they are listed and rated for 600 volts minimum and
are resistant to the spread of fire. These cables are allowed only in general-purpose spaces,
not in risers or plenums.
Section 800.51 (J)—Plenum Communications Raceway Plenum-listed raceways are
allowed in plenum areas; they shall have low smoke-producing characteristics and be resistant to the spread of fire.
The National Electrical Code
175
Section 800.51 (K)—Riser Communications Raceway Riser-listed raceways have adequate fire-resistant characteristics capable of preventing the spread of fire from floor to floor.
Section 800.51 (L)—General-Purpose Communications Raceway General-purpose
communications raceways shall be listed as being resistant to the spread of fire.
Article 800.52—Installation of Communications Wires, Cables, and Equipment
This article defines the installation of communications wires, cables, and equipment with respect
to electrical-power wiring. The following summarizes important sections within Article 800.52:
Communications wires and cables are permitted in the same raceways and enclosures with
the following power-limited types: remote-control circuits, signaling circuits, fire-alarm systems, nonconductive and conductive optical-fiber cables, community antenna and radio distribution systems, and low-power network-powered broadband-communications circuits.
Communications cables or wires shall not be placed in any raceway, compartment, outlet
box, junction box, or similar fitting with any conductors of electrical power.
Communications cables and wires shall be separated from electrical conductors by at least two
inches, but the more separation the better. The NEC and the ANSI standards no longer give
minimum power separations from high-voltage power and equipment because it has been
found that separation is generally not enough to shield communications wires and cables from
the induced noise of high power. Concrete, tiles, grounded metal conduits, or some other form
of insulating barrier may be necessary to shield communications from power.
Installations in hollow spaces, vertical shafts, and ventilation or air-handling ducts shall be
made so that the possible spread of fire or products of combustion is not substantially increased.
Openings around penetrations through fire resistance-rated walls, partitions, floors, or ceilings
shall be firestopped using approved methods to maintain the fire resistance rating.
The accessible portion of abandoned communications cables shall not be permitted to remain.
WARNING
That last, simple, almost unnoticeable sentence above is actually an earth shaker. Especially since the infrastructure expansion boom of the ‘90s, commercial buildings are full of
abandoned cable. Much of this cable is old Category 1 and Category 3 type cable, some
of it with inadequate flame ratings. The cost of removing these cables as part of the process of installing new cabling could be substantial. Make sure your RFQ clearly states this
requirement and who is responsible for the removal and disposal costs.
Section 800.53 (G)—Cable Substitutions In general, a cable with a higher (better)
flame rating can always be substituted for a cable with a lower rating. Table 4.4 shows permitted substitutions.
176
Chapter 4 • Cable System and Infrastructure Constraints
T A B L E 4 . 4 Cable Uses and Permitted Substitutions from NEC Article 800.53 (G), Table 800.53
Cable Type
Use
References
Permitted Substitutions
CMP
Communications plenum
cable
800.53 (A)
MPP
CMR
Communications riser cable
800.53 (B)
MPP, CMP, MPR
CMG, CM
Communications generalpurpose cable
800.53 (E)(1)
MPP, CMP, MPR, CMR, MPG,
MP
CMX
Communications cable,
limited use
800.53 (E)
MPP, CMP, MPR, CMR, MPG,
MP, CMG, CM
Knowing and Following the Codes
Knowing and following electrical and building codes is of utmost importance. If you don’t, at the
very least you may have problems with building inspectors. But more importantly, an installation
that does not meet building codes may endanger the lives of the building’s occupants.
Furthermore, even if you are an information-technology director or network manager, being
familiar with the codes that affect the installation of your cabling infrastructure can help you
when working with cabling and electrical contractors. Knowing your local codes can also help
you when working with your local, city, county, or state officials.
Chapter 5
Cabling System Components
• The Cable
• Wall Plates and Connectors
• Cabling Pathways
• Wiring Closets
178
Chapter 5 • Cabling System Components
ick up any cabling catalog, and you will find a plethora of components and associated
buzzwords that you never dreamed existed. Terms such as patch panel, wall plate, plenum,
110-block, 66-block, modular jacks, raceways, and patch cables are just a few. What do they all mean,
and how are these components used to create a structured cabling system?
P
In this chapter, we’ll provide an overview and descriptions of the inner workings of a structured cabling system so that you won’t feel so confused next time you pick up a cabling catalog or work with professional cabling installers. Topics in this chapter include the
following:
●
Picking the right type of cable
●
Fire safety and cabling products
●
Cabling components in workstation areas
●
Concealing cables and protecting fiber-optic cable
●
Wiring closets, which include Telecommunications and Equipment Rooms
●
Networking components often found in a telecommunications room
The Cable
In Chapter 2, we discussed the various cable media recommended by the ANSI/TIA/EIA568-B Commercial Building Telecommunications Cabling Standard and some of the cables’
performance characteristics. Rather than repeating the characteristics of available cable
media, we’ll describe the components involved in transmitting data from the work area to the
wiring closet. These major cable components are horizontal cable, backbone cable, and
patch cable.
Horizontal and Backbone Cables
The terms horizontal cable and backbone (sometimes called vertical or riser) cable have nothing
to do with the cable’s physical orientation toward the horizon. Horizontal cables run
between a cross-connect panel in a wiring closet and a wall jack. Backbone cables run
between wiring closets and the main cross-connect point of a building (usually referred to as
the equipment room). Figure 5.1 illustrates the typical components found in a structured
cabling environment, including the horizontal cable, backbone cable, telecommunication
outlets, and patch cables.
More information on horizontal and backbone cabling can be found in Chapter 2. Installing
copper cabling for use with horizontal or backbone cabling is discussed in Chapter 7.
The Cable
FIGURE 5.1
179
Structural ceiling
Typical components
found in a structured
cabling system
Plenum
Telecommunications
room
Voice
Cross-connects
Data Patch
Panel
Backbone or
vertical cables
Structural ceiling/floor
Plenum
Riser
Telecommunications
room
Horizontal cable
in the wall
Voice
Cross-connects
Data Patch
Panel
Telecommunications
outlet
Patch panels
and rack
Patch
cable
Horizontal Cables
Horizontal runs are most often implemented with 100-ohm, four-pair, unshielded twisted-pair
(UTP), solid-conductor cables, as specified in the ANSI/TIA/EIA-568 Standard for commercial buildings. The Standard also provides for horizontal cabling to be implemented using
62.5/125-micron or 50/125-micron multimode optical fiber. The Standard recognizes 150ohm shielded twisted-pair (STP) cable, but does not recommend it for new installations, and
it is expected to be removed from the next revision of the Standard. Coaxial cable is not a recognized horizontal cable type for voice or data installations.
Backbone Cables
Backbone cables can be implemented using 100-ohm UTP, 62.5/125-micron or 50/125micron multimode optical fiber, or 8.3/125-micron single-mode optical cable. Neither 150ohm STP nor coaxial cable is allowed. Optical fiber is the preferred installation medium
180
Chapter 5 • Cabling System Components
because of distance limitations associated with copper wiring. Another plus for running a fiber
backbone is that glass does not conduct electricity and is thus not subject to electromagnetic
interference (EMI) like copper is.
Modular Patch Cables
Modular patch cables (patch cords) are used to provide the connection between field-terminated
horizontal cables and network-connectivity devices such as switches and hubs and connections
between the wall-plate jack and network devices such as computers. They are the part of the
network wiring you can actually see. As the saying goes, a chain is only as strong as its weakest
link. Because of their exposed position in structured cable infrastructures, modular patch cords
are almost always the weakest link.
Whereas horizontal UTP cables contain solid conductors, patch cords are made with
stranded conductors because they are more flexible. The flexibility allows them to withstand
the abuse of frequent flexing and reconnecting. Although you could build your own fieldterminated patch cords, we strongly recommend against it.
The manufacture of patch cords is very exacting, and even under controlled factory conditions
it is difficult to achieve and guarantee consistent transmission performance. The first challenge
lies within the modular plugs themselves. The parallel alignment of the contact blades forms a
capacitive plate, which becomes a source of signal coupling or crosstalk. Further, the untwisting
and splitting of the pairs as a result of the termination process increases the cable’s susceptibility
to crosstalk interference. If that weren’t enough, the mechanical crimping process that secures
the plug to the cable could potentially disturb the cable’s normal geometry by crushing the conductor pairs. This is yet another source of crosstalk interference and a source of attenuation.
TIP
Modular cords that have been factory terminated and tested are required to achieve consistent transmission performance.
At first glance, modular patch cords may seem like a no-brainer, but they may actually be
the most crucial component to accurately specify. When specifying patch cables, you may
also require that your patch cords be tested to ensure that they meet the proper transmissionperformance standards for their category.
Pick the Right Cable for the Job
Professional cable installers and cable-plant designers are called upon to interpret and/or draft
cable specifications to fulfill businesses’ structured-cabling requirements. Anyone purchasing
cable for business or home use may also be required to make a decision regarding what type
of cable to use. Installing inappropriate cable could be very unfortunate in the event of a disaster such as a fire.
Wall Plates and Connectors
181
What do we mean by unfortunate? It is very conceivable that the cable-plant designer or
installer could be held accountable in court and held responsible for damages incurred as a
result of substandard cable installation. Cables come in a variety of different ratings, and many
of these ratings have to do with how well the cable will fare in a fire.
Using the general overview information provided in Chapter 1 and the more specific information in Chapters 2 though 4, you should now have adequate information to specify the
proper cable for your installation.
First, you must know the installation environment and what the applicable NEC and local
fire-code requirements will allow regarding the cables’ flame ratings. In a commercial building,
this usually comes down to where plenum-rated cables must be installed and where a lower rating (usually CMR) is acceptable.
Your second decision on cabling must be on media type. The large majority of new installations use fiber-optic cable in the backbone and UTP cable for the horizontal.
For fiber cable, you will need to specify single-mode or multimode, and if it is multimode,
you will need to specify core diameter, i.e., 62.5/125 or 50/125. For UTP cables, you need to
specify the appropriate transmission-performance category. Most new installations today use
Category 5e, and there is a growing migration to Category 6. Make sure that you specify that
patch cords be rated in the same category as, or higher than, the horizontal cable.
Wall Plates and Connectors
Wall plates and connectors serve as the work-area endpoints for horizontal cable runs. In addition to wall plates, you have the option of installing surface and/or floor-mounted boxes in your
work area. Using these information outlets or telecommunications outlets helps you organize
your cables and aid in protecting horizontal wiring from end users. Without the modularity
provided by information outlets, you would wind up wasting a significant amount of cable trying to accommodate all the possible computer locations within a client’s work area—the excess
cable would most likely wind up as an unsightly coil in a corner. Modular wall plates can be
configured with outlets for UTP, optical fiber, coaxial, and audio/visual cables.
NOTE
Refer to Chapter 8 for more information on wall plates.
Wall plates and surface- and floor-mounted boxes come in a variety of colors to match your
office’s decor. Companies such as Ortronics, Panduit, and The Siemon Company also offer
products that can be used with modular office furniture. The Siemon Company even went one
step further and integrated its telecommunications cabling system into its own line of office
182
Chapter 5 • Cabling System Components
furniture called MACsys. Figure 5.2 shows a sample faceplate from the Ortronics TracJack line
of faceplates.
FIGURE 5.2
An Ortronics TracJack
faceplate configured
with UTP and audio/visual modular outlets
(Photo courtesy of
Ortronics)
To help ensure that a cable’s proper bend radius is maintained, Panduit and The Siemon
Company offer angled modules to snap into their faceplates. Figure 5.3 shows The Siemon
Company’s CT faceplates and MAX series angled modules. Faceplates with angled modules
for patch cords keep the cord from sticking straight out and becoming damaged.
FIGURE 5.3
A Siemon Company’s
CT faceplate configured with UTP and optical fiber MAX series
angled modules (Photo
courtesy of The Siemon Company)
Cabling Pathways
183
Cabling Pathways
In this section, we’ll look at the cabling-system components outlined by the ANSI/TIA/EIA569-A Commercial Building Telecommunications Pathways and Spaces Standard for concealing, protecting, and routing your cable plant. In particular, we’ll describe the components used
in work areas and wiring closets and for horizontal and backbone cable runs. As you read these
descriptions, you’ll notice they all must be electrically grounded per the ANSI/TIA/EIA-607
Commercial Building Grounding and Bonding Requirements for Telecommunications.
Conduit
Conduit is pipe. It can be metallic or nonmetallic, rigid or flexible (as permitted by the applicable electrical code), and it runs from a work area to a wiring closet. One advantage of using
conduit to hold your cables is that it may already exist in your building. Assuming the pipe has
space, it shouldn’t take long to pull your cables through it. A drawback to conduit is that it provides a finite amount of space to house cables. When drafting specifications for conduit, we
recommend that you require that enough conduit be installed so that it would be only 40 percent full by your current cable needs. Conduit should only be filled to a maximum of 60 percent, so this margin leaves you with room for future growth.
According to the ANSI/TIA/EIA-569-A Standard, conduit can be used to route horizontal
and backbone cables. Firestopped conduit can also be used to connect wiring closets in multistoried buildings. Some local building codes require the use of conduit for all cable, both telecommunication and electrical.
In no cases should communication cables be installed in the same conduit as electrical cables
without a physical barrier between them. Aside from (and because of) the obvious potential
hazard, it is not allowed by the NEC.
Cable Trays
As an alternative to conduit, cable trays can be installed to route your cable. Cable trays are typically wire racks specially designed to support the weight of a cable infrastructure. They provide an ideal way to manage a large number of horizontal runs. Cables simply lie within the
tray, so they are very accessible when it comes to maintenance and troubleshooting. The
ANSI/TIA/EIA-569-A Standard provides for cable trays to be used for both horizontal and
backbone cables.
Figure 5.4 shows a cable runway system. This type of runway looks like a ladder that is
mounted horizontally inside the ceiling space or over the top of equipment racks in a telecommunications or equipment room. In the ceiling space, this type of runway keeps cables from
being draped over the top of fluorescent lights, HVAC equipment, or ceiling tiles; they are also
184
Chapter 5 • Cabling System Components
helpful in keeping cable from crossing electrical conduit. Separating the cable is especially useful near telecommunication and equipment rooms where there may be much horizontal cable
coming together. When used in a telecommunications or equipment room, this runway can
keep cables off the floor or run from a rack of patch panels to an equipment rack.
Another type of cable-suspension device is the CADDY CatTrax from Erico. These cable
trays are flexible and easy to install, and they can be installed in the ceiling space, telecommunications room, or equipment room. The CatTrax (shown in Figure 5.5) also keeps cables from
being laid directly onto the ceiling tile of a false ceiling or across lights and electrical conduit
because it provides continuous support for cables.
TIP
Numerous alternatives to cable-tray supports exist. One of the most common is a J hook.
J hooks are metal supports in the shape of an L or J that attach to beams, columns, walls,
or the structural ceiling. Cables are simply draped from hook to hook. Spacing of hooks
should be from 4 feet to 5 feet maximum, and the intervals should vary slightly to avoid the
creation of harmonic intervals that may affect transmission performance.
FIGURE 5.4
A runway system used
to suspend cables
overhead
J hooks
Ladder racks for managing
cables in equipment room,
in telecommunications closet,
or in the plenum
19" rack
Cabling Pathways
185
FIGURE 5.5
The CADDY CatTrax
flexible cable tray from
Erico (Photo courtesy
of Erico)
Raceways
Raceways are special types of conduits used for surface mounting horizontal cables and are usually pieced together in a modular fashion with vendors providing connectors that do not exceed
the minimum bend radius. Raceways are mounted on the outside of a wall in places where cable
is not easily installed inside the wall; they are commonly used on walls made of brick or concrete where no telecommunications conduit has been installed. To provide for accessibility and
modularity, raceways are manufactured in components (see Figure 5.6). Figure 5.7 shows a
sample of a surface-mount raceway carrying a couple of different cables; this raceway is hinged
to allow cables to be easily installed.
One-piece systems usually provide a flexible joint for opening the raceway to access cables;
after opening, the raceway can be snapped shut. To meet information-output needs, raceway
vendors often produce modular connectors to integrate with their raceway systems.
186
Chapter 5 • Cabling System Components
FIGURE 5.6
A surface-mounted
modular raceway system (Photo courtesy of
MilesTek)
FIGURE 5.7
A sample surfacemount raceway
with cables (Photo
courtesy of The
Siemon Company)
Fiber-Protection Systems
As with raceways, fiber-protection systems (see Figure 5.8) are special types of conduits and cablemanagement systems designed specifically to address the special protection needs of opticalfiber cable. Although maintaining proper bend radius is important for all cable media, severe
bends in optical-fiber cable will result in attenuation and eventual signal loss, which translates
to lost data, troubleshooting, downed network connections, and lost productivity. Severe
Wiring Closets
187
bends can also lead to cracking and physical failure of the fiber. To protect your fiber investment, we recommend that you consider investing in a fiber-protection system.
KEY TERM inner duct Inner duct is a flexible plastic conduit system often used inside a larger conduit; fiber-optic cable is run through it for an additional layer of protection.
When evaluating a prospective fiber-protection system, you should account for the total cost
of the installation rather than the cost of materials. Also ensure that it will support the weight
of your cable without sagging. In addition, because your network will grow with time, you
should consider how flexible the solution will be for future modifications. Will you be able to
add new segments or vertical drops without having to move existing cable? The most expensive
part of your system will be the labor costs associated with the installation. Does the system
require special tools to install, or does it snap together in a modular fashion?
Wiring Closets
The wiring closet is where your network begins. Up to this point, we’ve described the components required to bring your end users to this common ground, the foundation of the digital
nervous system. In this section, we’ll cover the types of wiring closets, along with suggested
design elements. From there, we’ll discuss the pieces of equipment found within a typical
closet. We’ll conclude with a brief discussion on network devices.
FIGURE 5.8
The Siemon Company’s LightWays fiberprotection system
(Photo courtesy of The
Siemon Company)
188
Chapter 5 • Cabling System Components
A Wiring Closet by Any Other Name
Wiring closets are known by a number of names and acronyms. Although some cabling professionals use the term wiring closets, others call them intermediate cross-connects (ICCs) or
intermediate distribution frames (IDFs). The ANSI/TIA/EIA-568-B Standard refers to wiring
closets as telecommunications rooms. They are usually remote locations in a large or multistory building.
The wiring closets are all connected to a central wiring center known by the ANSI/TIA/EIA-568-B
Standard as an equipment room. Other cabling professionals call this the main distribution frame
(MDF) or the main cross-connect (MCC).
Intermediate cross-connect, main distribution frame, and main cross-connect are incomplete
descriptions of the rooms’ purposes because modern systems require the housing of electronic gear in addition to the cross-connect frames, main or intermediate.
Horizontal cabling is run from telecommunications rooms to the workstation areas. Backbone
cabling runs from the telecommunications rooms to the equipment rooms and between telecommunications rooms.
Two types of wiring closets exist: telecommunications rooms and equipment rooms.
Depending on the size of your organization and size of your building, you may have one or
more telecommunications rooms concentrating to an equipment room. Telecommunications
rooms are strategically placed throughout a building to provide a single point for termination
from your work areas. In a multistory building, you should have at least one telecommunications room per floor. As the distances between your end devices and telecommunications room
approach their recommended maximum limits (90 meters), you should consider implementing
additional telecommunications rooms. Ideally, these are included during the planning stage
prior to construction or remodeling.
Telecommunications rooms are connected to the equipment room in a star configuration by
either fiber or copper backbone cables. As we mentioned in our discussion of backbone cabling,
fiber is preferred because the distances from the equipment room to the last telecommunications room can total 2,000 meters for multimode and 3,000 meters for single mode. When connecting with UTP copper, the backbone run lengths must total 800 meters or less for
telephone systems and 90 meters or less for data systems.
TIA/EIA Recommendations for Wiring Closets
The TIA/EIA does not distinguish between the roles of telecommunications rooms for its published standards. The following is a summary of the minimum standards for a telecommunications
Wiring Closets
189
wiring room per the ANSI/TIA/EIA-569-A Commercial Building Telecommunications Pathways
and Spaces Standard:
●
The telecommunications room must be dedicated to telecommunications functions.
●
Equipment not related to telecommunications shall not be installed in or enter the telecommunications room.
●
Multiple closets on the same floor shall be interconnected by a minimum of one 78(3)
(3-inch or 78-mm opening) trade-size conduit or equivalent pathway.
●
The telecommunications room must support a minimum floor loading of 2.4 kilo-Pascals
(50 lbf/ft2).
The equipment room is used to contain the main distribution frame (the main location for
backbone cabling), phone systems, power protection, uninterruptible power supplies, LAN
equipment (such as bridges, routers, switches, and hubs), and possible file servers and data-processing equipment. ANSI/TIA/EIA-569-A provides a recommendation of a minimum of 0.75
square feet of floor space in the equipment room for every 100 square feet of user workstation
area. You can also estimate the requirements for square footage using Table 5.1, which shows
estimated equipment-room square footage based on the number of workstations.
TIP
Further information about the ANSI/TIA/EIA-569-A Standard can be found in Chapter 2.
T A B L E 5 . 1 Estimated Square-Foot Requirements Based on the Number of Workstations
Number of Workstations
Estimated Equipment-Room Floor Space
1 to 100
150 square feet
101 to 400
400 square feet
401 to 800
800 square feet
801 to 1,200
1,200 square feet
NOTE
The floor space required in any equipment room will be dictated by the amount of equipment that must be housed there. Use Table 5.1 for a base calculation, but don’t forget to
take into account equipment that may be in this room, such as LAN racks, phone switches,
and power supplies.
Additional requirements:
●
There shall be a minimum of two dedicated 120V 20A nominal, nonswitched, AC duplex
electrical-outlet receptacles, each on separate branch circuits.
190
Chapter 5 • Cabling System Components
●
Additional convenience duplex outlets shall be placed at 1.8-meter (6-foot) intervals
around the perimeter, 150 mm (6 inches) above the floor.
●
There shall be access to the telecommunications grounding system, as specified by ANSI/
TIA/EIA-607.
●
HVAC requirements to maintain a temperature the same as the adjacent office area shall be
met. A positive pressure shall be maintained with a minimum of one air change per hour or
per code.
●
There shall be a minimum of one room per floor to house telecommunications equipment/
cable terminations and associated cross-connect cable and wire.
●
The wiring closet shall be located near the center of the area being served.
●
Horizontal pathways shall terminate in the telecommunications room on the same floor as
the area served.
●
The wiring closet shall accommodate seismic requirements.
●
Two walls should have 20 mm (3/4-inch) A-C plywood 2.44 m (8 feet) high.
●
Lighting shall be a minimum of 500 lx (50 footcandles) and mounted 2.6 m (8.5 feet) above
the floor.
●
False ceilings shall not be provided.
●
There shall be a minimum door size of 910 mm (36 inches) wide and 2,000 mm (80 inches)
high without sill, hinged to open outward or slide side-to-side or be removable, and it shall
be fitted with a lock.
Although the items are suggestions, it is our position that you should strive to fulfill as many
of these requirements as possible. If your budget only allows for a few of these suggestions,
grounding, separate power, and the ventilation and cooling requirements should be at the top
of your list.
NOTE
As noted in Chapter 2, telecommunications rooms and equipment rooms should be locked.
If your organization’s data is especially sensitive, consider putting an alarm system on the
rooms.
Cabling Racks and Enclosures
Racks are the pieces of hardware that help you organize cabling infrastructure. They range in
height from 39 to 84 inches and come in two widths, 19 and 23 inches. Nineteen-inch widths
are much more commonplace and have been in use for nearly 60 years. These racks are commonly called just 19-inch racks or, sometimes, EIA racks. Mounting holes are spaced between
Wiring Closets
191
5/8
and two inches apart, so you can be assured that no matter what your preferred equipment
vendor is, its equipment will fit in your rack. In general, three types of racks are available for
purchase: wall-mounted brackets, skeletal frames, and full equipment cabinets.
TIP
Not all racks use exactly the same type of mounting screws or mounting equipment. Make
sure that you have sufficient screws or mounting gear for the types of racks you purchase.
Wall-Mounted Brackets
For small installations and areas where economy of space is a key consideration, wall-mounted
brackets may provide the best solution. Wall-mounted racks such as MilesTek’s Swing Gate
wall rack in Figure 5.9 have a frame that swings out 90 degrees to provide access to the rear
panels and include wire guides to help with cable management.
FIGURE 5.9
MilesTek’s Swing Gate
wall rack (Photo courtesy of MilesTek)
Racks such as the one in Figure 5.9 are ideal for small organizations that may only have a few
dozen workstations or phone outlets but are still concerned about building an organized
cabling infrastructure.
TIP
Prior to installing wall-mounted racks with swinging doors, be sure to allow enough room
to open the front panel.
Skeletal Frames (19-Inch Racks)
Skeletal frames, often called 19-inch racks or EIA racks, are probably the most common type
of rack. These racks, like the one shown in Figure 5.10, are designed and built based on the
192
Chapter 5 • Cabling System Components
EIA-310C standards. These skeletal frames come in sizes ranging from 39 to 84 inches in
height with a 22-inch base plate to provide stability. Their open design makes it easy to work
on both the front and back of the mounted equipment.
FIGURE 5.10
A skeletal frame (19inch rack) (Photo courtesy of MilesTek)
When installing a skeletal frame, you should leave enough space between the rack and the
wall to accommodate the installed equipment (most equipment is 6 to 18 inches deep). You
should also leave enough space behind the rack for an individual to work (at least 12 to 18
inches). You will also need to secure the rack to the floor so that it does not topple over.
These racks can also include cable management. If you have ever worked with a rack that has
more than a few dozen patch cords connected to it with no cable-management devices, then
you understand just how messy skeletal racks can be. Figure 5.11 shows an Ortronics Mighty
Mo II wall-mount rack that includes cable management.
Racks are not limited to just patch panels and network-connectivity devices. Server computers, for example, can be installed into a rack-mountable chassis. Many accessories can be
mounted into rack spaces, including utility shelves, monitor shelves, and keyboard shelves. Figure 5.12 shows some of the more common types of shelves available for 19-inch racks. If you
have a need for some sort of shelf not commercially available, most machine shops are
equipped to manufacture it.
Wiring Closets
FIGURE 5.11
The Ortronics Mighty
Mo II wall-mount rack
with cable management (Photo courtesy
of Ortronics)
FIGURE 5.12
Shelves available for
19-inch racks (Photo
courtesy of MilesTek)
193
194
Chapter 5 • Cabling System Components
Full Equipment Cabinets
The most expensive of your rack options, full equipment cabinets, offer the security benefits of
locking cabinet doors. Full cabinets can be as simple as the ones shown in Figure 5.13, but they
can also become quite elaborate, with Plexiglas doors and self-contained cooling systems.
Racks such as the one in Figure 5.13 provide better physical security, cooling, and protection
against electromagnetic interference than standard 19-inch rack frames. In some high-security
environments, this type of rack is required for LAN equipment and servers.
FIGURE 5.13
A full equipment cabinet (Photo courtesy of
MilesTek)
Cable-Management Accessories
If your rack equipment does not include wire management, numerous cable-management
accessories, as shown in Figure 5.14, can suit your organizational requirements. Large wiring
closets can quickly make a rat’s nest out of your horizontal cable runs and patch cables. Cable
hangers on the front of a rack can help arrange bundles of patch cables to keep them neat and
orderly. Rear-mounted cable hangers provide strain-relief anchors and can help to organize
horizontal cables that terminate at the back of patch panels.
Wiring Closets
195
FIGURE 5.14
Cable-management accessories from MilesTek (Photo courtesy
of MilesTek)
Electrical Grounding
In our discussion on conduit, we stated that regardless of your conduit solution, you will have
to make sure that it complies with the ANSI/TIA/EIA-607 Commercial Building Grounding
and Bonding Requirements for Telecommunications Standard for electrical grounding. The
same holds true for your cable-rack implementations. Why is this so important? Well, to put
it bluntly, your network can kill you, and in this case, we’re not referring to the massive coronary brought on by users’ printing challenges!
For both alternating- and direct-current systems, electrons flow from a negative to a positive
source, with two conductors required to complete a circuit. If a difference in resistance exists
between a copper wire path and a grounding path, a voltage potential will develop between
your hardware and its earth ground. In the best-case scenario, this voltage potential will form
a Galvanic cell, which will simply corrode your equipment. This phenomenon is usually demonstrated in freshman chemistry classes by using a potassium-chloride salt bridge to complete
the circuit between a zinc anode and a copper cathode. If the voltage potential were to become
great enough, simply touching your wiring rack could complete the circuit and discharge
enough electricity to kill you or one of your colleagues.
WARNING
One of the authors knows someone who was thrown to the ground when he touched an
improperly grounded communications rack. Grounding is serious business and should not be
undertaken by the layperson. Low voltage does not mean large shocks cannot be generated.
196
Chapter 5 • Cabling System Components
We recommend working with your electrical contractor and power company to get the best
and shortest ground you can afford. One way to achieve this is to deploy separate breaker boxes
for each office area. Doing so will shorten the grounding length for each office or group.
Cross-Connect Devices
Fortunately for us, organizations seem to like hiring consultants; however, most people are
usually less than thrilled to see some types of consultants—in particular, space-utilization and
efficiency experts. Why? Because they make everyone move! Cross-connect devices are cabling
components you can implement to make changes to your network less painful.
The 66 Punch-Down Blocks
For more than 25 years, 66 punch-down blocks, shown in Figure 5.15, have been used as telephonesystem cross-connect devices. They support 50 pairs of wire. Wires are connected to the terminals of the block using a punch-down tool. When a wire is “punched down” into a terminal, the
wire’s insulation is pierced and the connection is established to the block. Separate jumpers then
connect blocks. When the need arises, jumpers can be reconfigured to establish the appropriate
connections.
FIGURE 5.15
A 66 punch-down block
(Photo courtesy of The
Siemon Company)
Wiring Closets
197
The use of 66 punch-down blocks has dwindled significantly in favor of 110-blocks.
The 110 and S-210 Punch-Down Blocks
Figure 5.16 shows 110-blocks, another flavor of punch-down media; they are better suited for
use with data networks. The 110-blocks come in sizes that support anywhere from 25 to 500
wire pairs. Unlike 66-blocks, which use small metal jumpers to bridge connections, 110-blocks
are not interconnected via jumpers but instead use 24 AWG cross-connect wire. The Siemon
Company produces a connecting block called an S-210 that is capable of delivering Category
6 performance.
FIGURE 5.16
Another type of punchdown media, 110
punch-down blocks
(Photo courtesy of
MilesTek)
Some installations of data and voice systems require the use of 25-pair connectors. Some network hubs and phone systems use these 25-pair connectors, rather than modular-type plugs
like the RJ-45, to interface with their hardware. You can purchase 110-style connector blocks
prewired with 25-pair connector cables, such as the one seen in Figure 5.17.
TIP
If you purchase a 110- or 66-style block wired to 25-pair connectors, make sure the equipment is rated to the appropriate Category of cable performance that you intend to use it
with. The 66-blocks are rarely used for data.
198
Chapter 5 • Cabling System Components
FIGURE 5.17
The Siemon Company’s prewired 110block with 25-pair connectors (Photo courtesy of The Siemon
Company)
Modular Patch Panels
As an alternative to punch-down blocks, you can also terminate your horizontal cabling
directly into RJ-45 patch panels (see Figure 5.18). This approach is becoming increasingly
popular because it lends itself to exceptionally easy reconfigurations. To reassign a network client to a new port on the switch, all you have to do is move a patch cable. Another benefit is that
when they’re installed cleanly, they can make your wiring closet look great!
TIP
When ordering any patch panel, make sure that you order one that has the correct wiring
pattern (T568A or T568B). The wiring pattern is usually color-coded on the 110-block. As
with modular jacks, some patch panels allow either configuration.
Patch panels normally have 110-block connectors on the back.
FIGURE 5.18
Modular patch panels
(Photo courtesy of
MilesTek)
Wiring Closets
199
In some environments, only a few connections are required, and a large patch panel is not
needed. In other environments, it may not be possible to mount a patch panel with a 110-block
on the back because of space constraints. In this case, smaller modular-jack wall-mount blocks
(see Figure 5.19) may be useful. These are available in a variety of sizes and port configurations.
You can also get these in either horizontal or backbone configurations.
FIGURE 5.19
The Siemon Company’s S-110 modularjack wall-mount block
(Photo courtesy of The
Siemon Company)
Consolidation Points
Both the ANSI/TIA/EIA-568-B and ISO/IEC 11801 Standards allow for a single transition
point or consolidation point in horizontal cabling. The consolidation point is usually used to transition between a 25-pair UTP cabling (or separate four-pair UTP cables) that originated in the
wiring closet and cable that spreads out to a point where many networked or voice devices may
be, such as with modular furniture. An example of a typical consolidation point (inside a protective cabinet) is shown in Figure 5.20.
NOTE
One type of consolidation point is a multiuser telecommunications outlet assembly
(MUTOA). Basically, this is a patch-panel device located in an open office space. Long
patch cords are used to connect workstations to the MUTOA. When using a MUTOA, the 90meter horizontal cabling limit must be shortened to compensate for the longer patch cords.
Fiber-Optic Connector Panels
If your organization is using optical-fiber cabling (either for horizontal or backbone cabling),
then you may see fiber-optic connector panels. These will sometimes look similar to the UTP RJ45 panels seen earlier in this chapter, but they are commonly separate boxes that contain space
for cable slack. A typical 24-port fiber-optic panel is pictured in Figure 5.21.
200
Chapter 5 • Cabling System Components
FIGURE 5.20
A consolidation point
(Photo courtesy of The
Siemon Company)
FIGURE 5.21
A fiber-optic connector
panel (Photo courtesy
of MilesTek)
Administration Standards
After troubleshooting a network issue and figuring out that it’s a problem with the physical
layer, have you ever found complete spaghetti in a wiring closet? In our consulting practices,
we see this all too often. Our clients then pay two to three times the regular consulting fees
because it takes so much time to sort through the mess.
NOTE
Network administrators should be judged by the neatness of their wiring closets.
Wiring Closets
201
To provide a standard methodology for the labeling of cables, pathways, and spaces, the TIA/
EIA published the ANSI/TIA/EIA-606 Administration Standard for the Telecommunications
Infrastructure of Commercial Buildings. In addition to guidelines for labeling, the Standard
also recommends the color-coding scheme shown in Table 5.2. This scheme applies not only
to labeling of cables and connections but also to the color of the cross-connect backboards in
the telecommunication rooms. It does not necessarily apply to the colors of cable jackets,
although some installations may attempt to apply it.
T A B L E 5 . 2 Color-Coding Schemes
Color Code
Usage
Black
No termination type assigned
White
First-level backbone (MC/IC or MC/TC terminations)
Red
Reserved for future use
Gray
Second-level backbone (IC/TC terminations)
Yellow
Miscellaneous (auxiliary, security alarms, etc.)
Blue
Horizontal-cable terminations
Green
Network connections
Purple
Common equipment (PBXs, host LANs, muxes)
Orange
Demarcation point (central-office terminations)
Brown
Interbuilding backbone (campus cable terminations)
Besides labeling and color coding, you should also consider bundling groups of related cables
with plastic cable ties (tie-wraps). Plastic cable ties come in a variety of sizes for all kinds of
applications. When bundling cables, however, be sure not to cinch them too tightly, as you
could disturb the natural geometry of the cable. If you ever have to perform maintenance on
a group of cables, all you have to do is cut the plastic ties and add new ones when you’re finished. Plastic tie-wraps are sturdy and very common, but they must be cut to be removed; some
companies are now making hook-and-loop (Velcro) tie-wraps.
TIP
Plastic cable ties are inexpensive and versatile, and you can never have too many of them.
Whether you implement the ANSI/TIA/EIA-606 Standard or come up with your own
methodology, the most import aspect of cable administration is to have accurate documentation of your cable infrastructure.
202
Chapter 5 • Cabling System Components
Stocking Your Wiring Closets
The wiring equipment discussed in this chapter is commonly found in many cabling installations; larger, more complex installations may have additional components that we did not
mention here. The components mentioned in this chapter can be purchased from just about
any cabling or telecommunications supplier. Some of the companies that were very helpful in
the production of this chapter have much more information online. You can find more information about these companies and their products by visiting them on the Web:
MilesTek www.milestek.com
The Siemon Company www.siemon.com
Ortronics www.ortronics.com
Erico www.erico.com
Chapter 6
Tools of the Trade
• Building a Cabling Tool Kit
• Common Cabling Tools
• Cable Testing
• Cabling Supplies to Have on Hand
• Tools That a Smart Data-Cable Technician Carries
• A Preassembled Kit Could Be It
204
Chapter 6 • Tools of the Trade
his chapter discusses tools that are essential to proper installation of data and video cabling.
It also describes tools, many of which you should already have, that make the job of installing cables easier.
T
If you’re reading this book, it is likely that you’re a do-it-yourselfer or you’re managing people who are hands-on. So be advised: Don’t start any cabling job without the proper tools. You
might be able to install a data-cabling system with nothing but a knife and screwdriver, but
doing so may cost you many hours of frustration and diminished quality.
If you are a hands-on person, you can probably relate to this story: A number of years ago,
Jim was attempting to change the rear shock absorbers on a truck. The nuts holding the shocks
were rusted in place and, working in his garage, there was nothing he could do to loosen them.
After maybe an hour of frustrating effort, Jim gave up and took the truck to a local service station for help. In literally seconds, the nuts were loose. What made the difference? Tools. The
mechanics at the station had access to tools that were missing from Jim’s home handyman kit.
Using tools like a hydraulic lift and impact wrenches made the job infinitely easier than lying
on a garage floor and tugging on a Craftsman Best box-end wrench.
In addition to saving time, using the appropriate tools will save money. Knowing what the
right tools are and where to use them is an important part of the job.
The Right Tool and the Right Price
Just as the right tools are important for doing a job well, so is making sure that you have highquality equipment. Suppose you see two punch-down tools advertised in a catalog and one of
them is $20 and the other is $60. Ask why one is more expensive than the other is. Compare
the features of the two; if they seem to be the same, you can usually assume that more expensive tool is designed for professionals.
With all tools, there are levels of quality and a range of prices you can choose from. It’s trite
but true: You get what you pay for, generally speaking, so our advice is to stay away from the
really cheap stuff. On the other hand, if you only anticipate light to moderate use, you needn’t
buy top-of-the-line equipment.
Building a Cabling Tool Kit
Throughout this chapter, a number of different of tools are discussed, and photos illustrate
them. Don’t believe for a minute that we’ve covered all the models and permutations available!
This chapter should be an introduction to the types of tools you may require, and it should help
you to recognize a particular tool so you can go get the one that best suits you. It is impossible
for us to determine your exact tool needs. Keeping your own needs in mind, read through the
descriptions that follow, and choose those tools that you anticipate using. Then, shop your list.
Common Cabling Tools
205
Myriad online catalog houses and e-commerce sites sell the tools and parts you need to complete your cabling tool kit. A few of these include:
●
IDEAL DataComm at www.idealindustries.com
●
MilesTek at www.milestek.com
●
Jensen Tools at www.jensentools.com
●
The Siemon Company at www.siemon.com
●
Radio Shack at www.radioshack.com
●
Labor Saving Devices, Inc. at www.lsdinc.com
If you have to scratch and sniff before buying, visit a local distributor in your area. Check
your local phone book for vendors such as Anicom, Anixter, GE Supply, Graybar, and many
other distributors that specialize in servicing the voice/data market; many of these vendors
have counter sale areas where you can see and handle the merchandise before purchasing.
We can’t possibly describe in precise detail how each tool works or all the ways you can apply
it to different projects. We’ll supply a basic description of each tool’s use, but because of the
wide variety of manufacturers and models available, you’ll have to rely on the manufacturer’s
instructions on exactly how to use a particular device.
Common Cabling Tools
A number of tools are common to most cabling tool kits: wire strippers, wire cutters, cable
crimpers, punch-down tools, fish tape, and toning tools. Most of these tools are essential for
installing even the most basic of cabling systems.
Tools Can Be Expensive
Most people who are not directly involved in the installation of telecommunications cabling
systems don’t realize how many tools you might need to carry or the value of them. A do-ityourselfer can get by with a few hundred dollars’ worth of tools, but a professional may need
to carry many thousands of dollars’ worth, depending on the job that is expected.
A typical cabling team of three or four installers may carry as much as $12,000 in installation
gear and tools. If this team carries sophisticated testing equipment such as a fiber-optic
OTDR (Optical Time-Domain Reflectometer), the value of their tools may jump to over
$50,000. A fully equipped fiber-optic team carrying an OTDR and optical-fiber fusion splicer
could be responsible for over $100,000 worth of tools. And some people wonder why cabling
teams insist on taking their tools home with them each night!
206
Chapter 6 • Tools of the Trade
Wire Strippers
What do you want to strip today? The variety of cable strippers represented in this section is
a function of the many different types of cable you can work with, different costs of the cable
strippers, and versatility of the tools.
Strippers for UTP, ScTP, and STP cables are used to remove the outer jacket and have to
accommodate the wide variation in the geometry of UTP cables. Unlike coax, which is usually
consistently smooth and round, twisted-pair cables can have irregular surfaces due to the jacket
shrinking down around the pairs. Additionally, the jacket thickness can differ greatly depending on brand and flame rating. The trick is to aid removal of the jacket without nicking or otherwise damaging the insulation on the conductors underneath.
The wire stripper in Figure 6.1 uses an adjustable blade so that you can fix the depth, matching it to the brand of cable you are working with. Some types use spring tension to help keep
the blade at the proper cutting depth.
In both cases, the goal is to score (lightly cut) the jacket without penetrating it completely.
Then, you flex the cable to break the jacket along the scored line. This ensures that the wire
insulation is nick-free. In some models, the tool can also be used to score or slit the jacket
lengthwise in the event you need to expose a significant length of conductors.
NOTE
When working with UTP, ScTP, or STP cables, you will rarely need to strip the insulation from the
conductors. Termination of these cable types on patch panels, cross-connects, and most wall
plates employs the use of insulation displacement connectors (IDCs) that make contact with the
conductor by slicing through the insulation. Should you need to strip the insulation from a twistedpair cable, keep a pair of common electrician’s strippers handy. Just make sure it can handle the
finer gauge wires such as 22, 24, and 26 AWG that are commonly used with LAN wiring.
FIGURE 6.1
A wire stripper (Photo
courtesy of MilesTek)
Common Cabling Tools
207
Coaxial Wire Strippers
Coaxial cable strippers are designed with two or three depth settings. These settings correspond to the different layers of material in the cable. Coaxial cables are pretty standardized in
terms of central-conductor diameter, thickness of the insulating and shielding layers, and
thickness of the outer jacket, making this an effective approach.
In the inexpensive (but effective for the do-it-yourself folks) model shown in Figure 6.2, the depth
settings are fixed. The wire stripper in Figure 6.2 can be used to strip coaxial cables (RG-59 and
RG-6) to prepare them for F-type connectors.
To strip the cable, you insert it in a series of openings that allows the blade to penetrate to different layers of the cable. At every step, you rotate the tool around the cable and then pull the tool
toward the end of the cable, removing material down to where the blade has penetrated. To avoid
nicking the conductor, the blade is notched at the position used to remove material.
One problem with the model shown in Figure 6.2 is that you end up working pretty hard to
accomplish the task. For its low price, the extra work may be a good tradeoff if stripping coax
isn’t a day-in, day-out necessity. However, if you are going to be working with coaxial cables
on a routine basis, you should consider some heftier equipment. Figure 6.3 shows a model that
accomplishes the task in a more mechanically advantageous way (that means it’s easier on your
hands). In addition, it offers the advantage of adjustable blades so that you can optimize the cutting thickness for the exact brand of cable you’re working with.
FIGURE 6.2
Inexpensive coaxial
wire strippers (Photo
courtesy of MilesTek)
208
Chapter 6 • Tools of the Trade
FIGURE 6.3
Heavy-duty coaxial wire
strippers (Photo courtesy of MilesTek)
FIGURE 6.4
A fiber-optic cable stripper (Photo courtesy of
IDEAL DataComm)
Coaxial strippers are commonly marked with settings that assist you in removing the right
amount of material at each layer from the end of the cable so it will fit correctly in an F- or
BNC-type connector.
Common Cabling Tools
209
Fiber-Optic Cable Strippers
Fiber-optic cables require very specialized tools. Fortunately, the dimensions of fiber coatings,
claddings, and buffers are standardized and manufactured to precise tolerances. This allows tool
manufactures to provide tools such as the one shown in Figure 6.4 that will remove material to
the exact thickness of a particular layer without damage to the underlying layer. Typically, these
look like a conventional multigauge wire stripper with a series of notches to provide the proper
depth of penetration.
Wire Cutters
You can, without feeling very guilty, use a regular set of lineman’s pliers to snip through coaxialand twisted-pair cables. You can even use them for fiber-optic cables, but cutting through
the aramid yarns used as strength members can be difficult; you will dull your pliers quickly,
not to mention what you may do to your wrist.
KEY TERM aramid Aramid is the common name for the material trademarked as Kevlar that’s used
in bulletproof vests. It is used in optical-fiber cable to provide additional strength.
So why would you want a special tool for something as mundane as cutting through the
cable? Here’s the catch regarding all-purpose pliers: As they cut, they will mash the cable flat.
All the strippers described previously work best if the cable is round. Specialized cutters such
as the one shown in Figure 6.5 are designed for coax and twisted-pair cables to preserve the
geometry of the cable as they cut. This is accomplished using curved instead of flat blades.
For fiber-optic cables, special scissors are available that cut through aramid with relative ease.
Figure 6.6 shows scissors designed for cutting and trimming the Kevlar strengthening members found in fiber-optic cables.
FIGURE 6.5
Typical wire cutters
(Photo courtesy of
MilesTek)
210
Chapter 6 • Tools of the Trade
FIGURE 6.6
IDEAL DataComm’s
Kevlar scissors (Photo
courtesy of IDEAL
DataComm)
Cable Crimpers
Modular plugs and coaxial connectors are attached to cable ends using crimpers, which are
essentially very specialized pliers. So why can’t you just use a pair of pliers? Crimpers are
designed to apply force evenly and properly for the plug or connector being used. Some crimpers use a ratchet mechanism to ensure that a complete crimp cycle has been made. Without this
special design, your crimp job will be inconsistent at best, and it may not work at all. In addition, you’ll damage connectors and cable ends, resulting in wasted time and materials. Remember that the right tool, even if it’s expensive, can save you money!
Twisted-Pair Crimpers
Crimpers for twisted-pair cable must accommodate various-sized plugs. The process of crimping involves removing the cable jacket to expose the insulated conductors, inserting the conductors in the modular plug (in the proper order!), and applying pressure to this assembly using
the crimper. The contacts for the modular plug (such as the ones shown in Figure 6.7) are actually blades that cut through the insulation and make contact with the conductor. The act of
crimping not only establishes this contact but also pushes the contact blades down into proper
position for insertion into a jack. Finally, the crimping die compresses the plug strain-relief
indentations to hold the connector on the cable.
Common Cabling Tools
211
FIGURE 6.7
An eight-position modular plug (a.k.a. RJ-45
connector) (Photo
courtesy of The Siemon Company)
NOTE
Modular plugs for cables with solid conductors (horizontal wiring) are sometimes different
from plugs for cables with stranded conductors (patch cords). The crimper fits either, and
some companies market a universal plug that works with either. Make sure you select the
proper type when you buy plugs and make your connections.
The crimper shown in Figure 6.8 is designed so that a specific die is inserted, depending on
the modular plug being crimped. If you buy a flexible model like this, you will need dies that
fit an eight-conductor position (data, a.k.a. RJ-45) and a six-position type (voice, a.k.a. RJ-11
or RJ-12) plug at a minimum. If you intend to do any work with telephone handset cords, you
should also get a die for four-position plugs.
Other twisted-pair crimpers are configured for specific plug sizes and don’t offer the flexibility of changeable dies. Inexpensive models available at the local home-improvement center
for less than $15 usually have two positions; these are configured to crimp eight-, six-, or fourposition type plugs. These inexpensive tools often do not have the ratchet mechanism found on
professional installation crimpers. Figure 6.9 shows a higher-quality crimper that has two positions, one for eight-position plugs and one for four-position plugs.
Less expensive crimpers are targeted at the do-it-yourself market—those who are doing a little phone-extension work around the house on a weekend or who only crimp a few cables at a
time. Better-quality units targeted for the intermediate user will usually have one opening for
eight-position and one opening for six-position plugs. If you work with data connectors such
as the eight-position modular jack (RJ-45), your crimping tool must have a crimp cavity for
eight-position plugs.
212
Chapter 6 • Tools of the Trade
FIGURE 6.8
A crimper with multiple
dies for RJ-11, RJ-45,
and MMJ modular connectors (Photo courtesy of MilesTek)
FIGURE 6.9
An Ideal Ratchet Telemaster crimper with
crimp cavities for
eight- and four-position
modular plugs (Photo
courtesy of IDEAL
DataComm)
FIGURE 6.10
An Ideal Crimpmaster
Crimp Tool (Photo
courtesy of IDEAL
DataComm)
Common Cabling Tools
213
Coaxial-Cable Crimpers
Coaxial-cable crimpers also are available with either changeable dies or with fixed-size crimp
openings. Models aimed strictly at the residential installer will feature dies or openings suitable
for applying F-type connectors to RG-58, RG-59, and RG-6 series coax. For the commercial
installer, a unit that will handle dies such as RG-11 and thinnet with BNC-type connectors is
also necessary. Figure 6.10 shows IDEAL DataComm’s Crimpmaster Crimp Tool, which can
be configured with a variety of die sets such as RG-6, RG-9, RG-58, RG-59, RG-62, cable-TV
F-type connectors, and others.
There’s a very functional item that is used in conjunction with your crimper to install
F-type RG-59 and RG-6 connectors. Figure 6.11 shows an F-type connector installation
tool. One end is used to ream space between the outer jacket and the dielectric layer of the
coax. On the other end, you thread the connector and use the tool to push the connector
down on the cable. This accessory speeds installation of F-type connectors and reduces
wear and tear on your hands.
Punch-Down Tools
Twisted-pair cables are terminated in jacks, cross-connect blocks (66-blocks), or patch panels
(110-blocks) that use insulation displacement connectors (IDCs). Essentially, IDCs are little
knife blades with a V-shaped gap or slit between them. You force the conductor down into the
V and the knife blades cut through the insulation and make contact with the conductor.
Although you could accomplish this using a small flat-blade screwdriver, doing so very often
will guarantee you infamy in the Hack Hall of Fame. It would be sort of like hammering nails
with a crescent wrench. The correct device for inserting a conductor in the IDC termination
slot is a punch-down tool.
NOTE
You can find more information on 66-blocks and 110-blocks in Chapter 5 and Chapter 7.
Additional information about wall plates can be found in Chapter 8.
A punch-down tool is really just a handle with a special “blade” that fits a particular IDC.
There are two main types of IDC terminations: the 66-block and the 110-block. The 66-block
terminals have a long history rooted in voice cross-connects. The 110-block is a newer design,
originally associated with AT&T but now generic in usage. In general, 110-type IDCs are used
for data, and 66-type IDCs are used for voice, but neither is absolutely one or the other.
Different blades are used depending upon whether or not you are going to be terminating on
110-blocks or 66-blocks. Though the blades are very different, most punch-down tools are
designed to accept either. In fact, most people purchase the tool with one and buy the other as
an accessory, so that one tool serves two terminals.
214
Chapter 6 • Tools of the Trade
FIGURE 6.11
A MilesTek F-type
connector installation
tool (Photo courtesy
of MilesTek)
FIGURE 6.12
IDEAL DataComm’s
nonimpact punch-down
tool (Photo courtesy of
IDEAL DataComm)
Blades are designed with one end being simply for punch-down. When you turn the blade
and apply the other end, it punches down and cuts off excess conductor in one operation. Usually you will use the punch-and-cut end, but for daisy-chaining on a cross-connect, you would
use the end that just punches down.
TIP
If you are terminating cables in Krone or BIX (by Nordx) equipment, you will need special
punch-down blades. These brands use proprietary IDC designs.
Punch-down tools are available as nonimpact in their least expensive form. Nonimpact tools
generally require more effort to make a good termination, but they are well suited for people
who only occasionally perform punch-down termination work. Figure 6.12 shows a typical
nonimpact punch-down tool.
The better-quality punch-down tools are spring-loaded impact tools. When you press down
and reach a certain point of resistance, the spring gives way, providing positive feedback that the
termination is made. Typically, the tool will adjust to high- and low-impact settings. Figure 6.13
shows an impact punch-down tool. Notice the dial near the center of the tool—it allows the user
to adjust the impact setting. The manufacturer of the termination equipment you are using will
recommend the proper impact setting.
Common Cabling Tools
215
With experience, you can develop a technique and rhythm that lets you punch down patch
panels and cross-connects very quickly. However, nothing is so frustrating as interrupting your
sequence rhythm because the blade stayed on the terminal instead of in the handle of the tool.
The better punch-down tools have a feature that locks the blade in place, rather than just holding it in with friction. For the occasional user, a friction-held blade is okay, but for the professional, a lock-in feature is a must that will save time and, consequently, money.
TIP
You should always carry at least one extra blade for each type of termination that you are
doing. Once you get the hang of punch-downs, you’ll find that the blades don’t break often,
but they do break occasionally. The cutting edge will also become dull and stop cutting
cleanly. Extra blades are inexpensive and can be easily ordered from the company you purchased your punch-down tool from.
FIGURE 6.13
IDEAL DataComm’s
impact tool with
adjustable impact
settings (Photo
courtesy of IDEAL
DataComm)
FIGURE 6.14
The Palm Guard (Photo
courtesy of The Siemon
Company)
216
Chapter 6 • Tools of the Trade
Some brands of 110-block terminations support the use of special blades that will punch
down multiple conductors at once, instead of one at a time.
If you are punching down IDC connectors on modular jacks from The Siemon Company
that fit into modular wall plates, a tool from that company may be of use to you. Rather than
trying to find a surface to hold the modular jack against, you can use the Palm Guard (see
Figure 6.14) to hold the modular jack in place while you punch down the wires.
TIP
A four-inch square of carpet padding or mouse pad makes a good palm protector when
punching down cable on modular jacks.
Fish Tapes
A good fish tape is the best friend of the installer who does MACs (moves, adds, changes) or retrofit installations on existing buildings. Essentially, it is a long wire, steel tape, or fiberglass rod
that is flexible enough to go around bends and corners but retains enough stiffness so that it can
be pushed and worked along a pathway without kinking or buckling.
Like a plumber’s snake, a fish tape is used to work blindly through an otherwise inaccessible
area. For example, say you needed to run a cable from a ceiling space down inside a joist cavity
in a wall to a new wall outlet. From within the ceiling space, you would thread the fish tape
down into the joist cavity through a hole in the top plate of the wall. From this point, you would
maneuver it in front of any insulation and around any other obstacles such as electrical cables
that might also be running in the joist cavity. When the tape becomes visible through the retrofit outlet opening, you would draw the tape out. Then you would attach either a pull string
or the cable itself and withdraw the fish tape.
Fish tapes (see Figure 6.15) are available in various lengths, with 50- and 100-foot lengths
being common. They come in spools that allow them to be reeled in and out as necessary and
are available virtually anywhere electrical supplies are sold, in addition to those sources mentioned earlier.
An alternative to fish tapes that is often helpful when placing cable in existing wall or ceiling
spaces is the fiberglass pushrod, as shown in Figure 6.16. These devices are more rigid than fish
tapes but are still able to flex when necessary. Their advantage is that they will always return
to a straight orientation, making it easier to probe for “hidden” holes and passageways. The
rigidity also lets you push a cable or pull string across a space. Some types are fluorescent or
reflective so that you can easily see their position in a dark cavity. They typically come in 48inch sections that connect together as you extend them into the space. A number of accessories
(see Figure 6.17) are available to place on the tip that make it easier to push the rod over
obstructions, to aid in retrieval through a hole at the other end, or to attach a pull string or
cable for pulling back through the space.
Common Cabling Tools
FIGURE 6.15
IDEAL DataComm’s
fish tape (Photo
courtesy of IDEAL
DataComm)
FIGURE 6.16
Fiberglass pushrods
(Photo courtesy of
Labor Saving
Devices, Inc.)
FIGURE 6.17
Pushrod accessories
(Photo courtesy of
Labor Saving
Devices, Inc.)
217
218
Chapter 6 • Tools of the Trade
FIGURE 6.18
A voltage/continuity
tester (Photo courtesy
of IDEAL DataComm)
Voltage Meter
There is a right way and a wrong way to determine if an electrical circuit has a live voltage on
it. Touching it is the wrong way. A simple voltage meter such as the one pictured in Figure 6.18
is a much better solution, and it won’t put your health plan to work. Though not absolutely
necessary in the average data-cabling tool kit, a voltage meter is rather handy.
Cable Testing
Dozens of cable testers are available on the market. Some of them sell for less than $100; fullfeatured ones sell for over $5,000. High-end fiber-optic testers can sell for over $30,000! Chapter 14 discusses cable testing and certification, so we won’t steal any thunder from that chapter
here. However, in your tool kit you should include some basic tools that you don’t need to get
a second mortgage on your house to purchase.
Cable testers can be as simple as a cable-toning tool that helps you to identify a specific cable;
they can also be continuity testers or the cable testers that cost thousands of dollars.
A Cable-Toning Tool
A cable toner is a device for determining if the fundamental cable installation has been done
properly. It should be noted that we are not discussing the sophisticated type of test set
required to certify a particular level of performance, such as a Category 5e link or channel.
These are discussed in detail in Chapter 14.
Cable Testing
219
FIGURE 6.19
A tone generator
(Photo courtesy of
IDEAL DataComm)
In its simplest form, the toner is a simple continuity tester that confirms that what is connected at one end is electrically continuous to the other end. An electrical signal, or tone, is
injected on the circuit being tested and is either received and verified on the other end or
looped back for verification on the sending end. Some tools provide visual feedback (with a
meter), whereas others utilize audio feedback. Testing may require that you have a partner (or
a lot of scurrying back and forth on your part) at the far end of the cable to administer the
inductive probe or loop-back device. Figure 6.19 shows a tone generator, and Figure 6.20
shows the corresponding amplifier probe.
More sophisticated testers will report, in addition to continuity, length of run and will check
for shorts and crosses (accidental contact of one conductor with another), reversed pairs, transposed pairs, and split pairs.
Twisted-Pair Continuity Tester
Many of the common problems of getting cables to work are simple ones. The $5,000 cable
testers are nice, but for simple installations they are overkill. If the cable installer is not careful
during installation, the cable’s wire pairs may be reversed, split, or otherwise incorrectly wired.
A simple continuity tester can help you solve many of the common problems of data and voice
twisted-pair cabling, including testing for open circuits and shorts.
Figure 6.21 shows a simple continuity tester from IDEAL DataComm; this tester (the LinkMaster Tester) consists of the main testing unit and a remote tester. The remote unit is patched
220
Chapter 6 • Tools of the Trade
into one side of the cable, and the main unit is patched into the other side. It can quickly and
accurately detect common cabling problems such as opens, shorts, reversed pairs, or split pairs.
Cable testers such as the one shown in Figure 6.19 are available from many vendors and sell for
under $100. Testers such as these can save you many hours of frustration as well as the hundreds or even thousands of dollars that you might spend on a more sophisticated tester.
Coaxial Tester
Though coaxial cable is a little less complicated to install and terminate, problems can still arise
during installation. The tester shown in Figure 6.22 is the IDEAL DataComm Mini Coax
Tester. This inexpensive, compact tester is designed to test coax-cable runs terminated with
BNC-style connectors. It can test two modes of operation: standard and Hi-Z for long runs.
Coaxial-cable testers will quickly help you identify opens and shorts.
FIGURE 6.20
An amplifier probe
(Photo courtesy of
IDEAL DataComm)
FIGURE 6.21
Ideal’s LinkMaster
Tester (Photo courtesy
of IDEAL DataComm)
Cable Testing
221
FIGURE 6.22
Ideal’s Mini Coax
Tester (Photo courtesy
of IDEAL DataComm)
FIGURE 6.23
An optical-fiber continuity tester (Photo
courtesy of Jensen
Tools)
Optical-Fiber Testers
Optical fiber requires a whole new class of cable testers. Just like copper-cable testers, opticalfiber testers are specialized. Figure 6.23 shows a simple continuity tester that verifies that light
transmits through the cable.
222
Chapter 6 • Tools of the Trade
FIGURE 6.24
An optical-fiber
attenuation tester
(Photo courtesy of
Jensen Tools)
Another type of optical-fiber test device is the attenuation tester, such as the one shown in Figure 6.24. Like the continuity tester, the attenuation tester tests whether or not light is making its
way through the cable; but it also tests how much of the light signal is being lost. Anyone installing much fiber-optic cable should have an attenuation tester. Most problems with optical-fiber
cables can be detected with this tool. Good optical-fiber attenuation testers can be purchased for
less than $1,000.
NOTE
An attenuation tester checks for how much signal is lost on the cable, whereas a continuity
tester only measures whether light is passing through the cable.
Many high-end cable testers, such as those available from Hewlett-Packard, Microtest, and
others, can test both optical fiber and copper (provided you have purchased the correct add-on
modules). You need to know a few points when you purchase any type of optical-fiber tester:
●
The tester should include the correct fiber connectors (ST, SC, FDDI, LC, MT-RJ, etc.)
for the types of connectors you will be using.
●
The tester should support the type of fiber-optic cable you need to test (single mode or
multimode).
●
The tester should test the wavelength (for attenuation testers) at which you require the
cable to be used (usually 850 or 1300nm).
Cabling Supplies and Tools
223
Professional fiber-optic cable installers usually carry tools such as an optical time domain
reflectometer (OTDR) that perform more advanced tests on optical-fiber cable. OTDRs are
not for everyone, as they can easily cost in excess of $30,000.
Cabling Supplies and Tools
When you think of cabling supplies, you probably envision boxes of cables, wall plates, modular connectors, and patch panels. True, those are all necessary parts of a cabling installation,
but you should have other key consumable items in your cabling tool kit that will make your
life a little easier.
Some of the consumable items you may carry are fairly generic. A well-equipped cabling technician carries a number of miscellaneous items essential to a cabling install, including the following:
●
Electrician’s tape—multiple colors are often desirable
●
Duct tape
●
Plastic cable ties (tie-wraps) for permanent bundling and tie-offs
●
Hook and loop cable ties for temporarily segregating and bundling cables
●
Adhesive labels or a specialized cable-labeling system
●
Sharpies or other type of permanent markers
●
Wire nuts or crimp-type wire connectors
An item that most cable installers use all the time is the tie-wrap. Tie-wraps help to make the
cable installation neater and more organized. However, most tie-wraps are permanent; you have
to cut them to release them. Hook-and-loop (Velcro-type) cable wraps (shown in Figure 6.25)
give you the ability to quickly wrap a bundle of cable together (or attach it to something else) and
then to remove it just as easily. These come in a variety of colors and sizes and can be ordered
from most cable-equipment and wire-management suppliers.
Cable-Pulling Tools
One of the most tedious tasks that a person pulling cables will face is the process of getting the
cables through the area between the false or drop-ceiling tiles and the structural ceiling. This
is where most horizontal cabling is installed. One method is to pull out every ceiling tile, pull
the cable a few feet, move your stepladder to the next open ceiling tile, and pull the cable a few
more feet. Some products that are helpful in the cabling-pulling process are telescoping pull
tools and pulleys that cable can be threaded through so that more cable can be pulled without
exceeding the maximum pull tension.
224
Chapter 6 • Tools of the Trade
FIGURE 6.25
Reusable cable wraps
(Photo courtesy of
MilesTek)
FIGURE 6.26
The Gopher Pole
(Photo courtesy of
MilesTek)
Figure 6.26 shows the Gopher Pole, which is a telescoping pole that compresses to a minimum length of less than 5 feet and extends to a maximum length of 22 feet. This tool can help
when pulling or pushing cable through hard-to-reach places.
Another useful set of items to carry are cable pulleys (shown in Figure 6.27); these pulleys
help a single person to do the work of two people when pulling cable. We recommend carrying
a set of four pulleys if you are pulling a lot of cable.
Though not specifically in the cable-pulling category, equipment to measure distance is
especially important. A simple tape measure will suffice for most of you, but devices that can
record long distances quickly may also be useful if you measure often. Sophisticated laser-based
tools measure distances at the click of a button; however, a more reasonable tool would be
something like one of the rolling measure tools pictured in Figure 6.28. This tool has a measuring wheel that records the distance as you walk.
Cabling Supplies and Tools
225
FIGURE 6.27
Cable pulleys (Photo
courtesy of MilesTek)
FIGURE 6.28
Professional rolling
measure tools (Photo
courtesy of MilesTek)
If you do much work fishing cable through tight, enclosed spaces, such as stud or joist cavities
in walls and ceilings, the Wall-eye, shown in Figure 6.29, can be an indispensable tool. This
device is a periscope with a flashlight attachment that fits through small openings (like a singlegang outlet cutout) and lets you view the inside of the cavity. You can look for obstructions or
electrical cables, locate fish-tapes, or spot errant cables that have gotten away during the pulling process.
226
Chapter 6 • Tools of the Trade
FIGURE 6.29
The Wall-eye (Photo
courtesy of Labor
Saving Devices, Inc.)
Necessity Is the Mother of Invention
The need to get a pull string across extended distances of inaccessible area—for example,
in a drop-ceiling space—is a common one faced by cable installers. Devices like the Gopher
Pole described previously are certainly one solution. Left to their own devices, however, inventive cable installers have come up with a number of clever methods for getting their pull string
from one point to another. We know of cases where the string was taped to a tennis ball and
thrown or attached to an arrow and shot across the space with a bow. One company markets
a toy dart gun that carries the pull string with the dart. Trained ferrets have been used. Our
favorite though, is the one used by a guy who brought his kid’s 4 × 4 radio-controlled toy truck
and off-roaded his way across the ceiling tiles, trailing the pull string behind.
Another great tool for working in cavities and enclosed spaces is a length of bead chain and
a magnet. When you drop the chain into a cavity from above (holding on to one end, of course),
the extremely flexible links will “pour” over any obstructions and eventually end up in the bottom of the cavity. You insert the magnet into an opening near the bottom of the cavity and snag
and extract the chain. Attach a pull-string, retract the chain, and you’re ready to make the cable
pull. One model of such a device is the Wet Noodle, marketed by Labor Saving Devices Inc.,
and shown in Figure 6.30.
Cabling Supplies and Tools
227
Retrofit installations in residences require specialized drill bits. These bits come on long,
flexible shafts that let you feed them through restricted openings in order to drill holes in studs,
joists, and sole and top plates. Attachable extensions let you reach otherwise inaccessible locations. Examples of these bits and extensions are shown in Figure 6.31. Because of their flexibility, they can bend or curve, even during the drilling process. You can almost literally drill
around corners! Most models have holes in the ends of the bit for attaching a pull string so that
when you retract the bit, you can pull cable back through. The bits can be purchased in lengths
up to 72 inches, with extensions typically 48 inches each.
Controlling flexible drill bits requires an additional specialized tool, the bit directional tool
as shown in Figure 6.32. It has loops that hook around the shaft of the drill bit and a handle you
use to flex the bit to its proper path—simple in design, essential in function.
FIGURE 6.30
The Wet Noodle (Photo
courtesy of Labor Saving Devices, Inc.)
FIGURE 6.31
Specialized drill bits
and extensions (Photos courtesy of Labor
Saving Devices, Inc.)
228
Chapter 6 • Tools of the Trade
FIGURE 6.32
A bit directional tool
(Photo courtesy
of Labor Saving
Devices, Inc.)
Wire-Pulling Lubricant
Wire- or cable-pulling lubricant is a slippery, viscous liquid goop that you apply to the cable
jacket to allow it to slide more easily over surfaces encountered during the cable pull. Wire
lubricant (see Figure 6.33) is available in a variety of quantities, from less than a gallon to fivegallon buckets.
The vast majority of cable jackets for premises cables in the U.S. are some form of PVC. One
characteristic of PVC is that, depending on the specific compound, it has a relatively high coefficient of friction. This means that at the microscopic level, the material is rough, and the
rough surface results in drag resistance when the cable jacket passes over another surface.
Where two PVC-jacketed cables are in contact, or where PVC conduit is used, the problem is
made worse. Imagine two sandpaper blocks rubbing against each other.
In many cases, the use of pulling lubricant is not necessary. However, for long runs through
conduit or in crowded cable trays or raceways, you may find that either you cannot complete the
pull or you will exceed the cable’s maximum allowable pulling tension unless a lubricant is used.
The lubricant is applied either by continuously pouring it over the jacket near the start of the
run, or by wiping it on by hand as the cable is pulled. Where conduit is used, the lubricant can
be poured in the conduit as the cable is pulled.
Cabling Supplies and Tools
229
FIGURE 6.33
Wire-pulling lubricant
(Photo courtesy of
IDEAL DataComm)
Lubricant has some drawbacks. Obviously, it can be messy; some types also congeal or
harden over time, which makes adjustment or removal of cables difficult because they are effectively glued in place. Lubricant can also create a blockage in conduit and raceways that prevents
new cables from being installed in the future.
TIP
Make sure the lubricant you are using is compatible with the insulation and jacket material
of which the cables are made (hint: Don’t use 10W30 motor oil). The last thing you need
is a call back because the pulling lubricant you used dissolved or otherwise degraded the
plastics in the cable, leaving a bunch of bare conductors or fibers.
Cable-Marking Supplies
One of our biggest beefs with installed cabling systems (and those yet to be installed) is a profound lack of documentation. If you observe a professional data-cable installer in action, you
will notice that the cabling system is well documented. Though some professionals will even
use color coding on cables, the best start for cable documentation is assigning each cable a
number.
The easiest way to number cables is to use a simple numbering system consisting of strips of
numbers. These strips are numbered 0 through 9 and come in a variety of colors. Colors include
black, white, gray, brown, red, orange, yellow, green, blue, and violet. You can use these strips to
230
Chapter 6 • Tools of the Trade
create your own numbering system. The cable is labeled at each end (the patch panel and the wall
plate), and the cable number is recorded in whatever type of documentation is being used.
The numbered strips are often made of Tyvek, a material invented by DuPont that is well
suited for making strong, durable products of high-density polyethylene fibers. Tyvek is nontoxic and chemically inert, so it will not adversely affect cables that it is applied to.
These wire-marking labels are available in two flavors: rolls and sheets. The rolls can be used
without dispensers. Figure 6.34 shows a 3M dispenser that holds rolls of wire markers; the dispenser also provides a tear-off cutting blade.
Figure 6.35 shows a booklet of wire-marker sheets that allow you to pull off individual numbers.
FIGURE 6.34
A 3M dispenser for
rolls of wire-marking
strips (Photo courtesy
of MilesTek)
FIGURE 6.35
A booklet of wiremarker sheets (Photo
courtesy of IDEAL
DataComm)
Tools That a Smart Data-Cable Technician Carries
231
FIGURE 6.36
Letters, numbers, and
icons on self-adhesive
strips (Photo courtesy
of MilesTek)
Wall-Plate Marking Supplies
Some wall-plate and patch-panel systems provide their own documentation tools, but others
don’t. A well-documented system includes identifying labels on the wall plates. Figure 6.36
shows self-adhesive letters, numbers, and icons that can be used with wall plates and patch panels. Check with the manufacturer of your wall plates and patch panels to see if these are part of
the system you are using; if they are not, you should use some such labeling system.
Tools That a Smart Data-Cable Technician Carries
Up to this point, all the tools we’ve described are specific to the wire-and-cable installation
industry. But you’ll also need everyday tools in the course of the average install. Even if you
don’t carry all of these (you’d clank like a knight in armor and your tool belt would hang around
your knees if you did), you should at least have them handy in your arsenal of tools:
●
A flat blade and number 1 and number 2 Phillips screwdrivers. Power screwdrivers are
great time-and-effort savers, but you’ll still occasionally need the hand types.
●
A hammer.
●
Nut drivers.
●
Wrenches.
●
A flashlight (a no-hands or headband model is especially handy).
●
A drill and bits up to 1.5 inches.
●
A saw that can be used to cut rectangular holes in drywall for electrical boxes.
●
A good pocket, electrician’s, or utility knife.
232
TIP
Chapter 6 • Tools of the Trade
●
Electrician’s scissors.
●
A tape measure.
●
Face masks to keep your lungs from getting filled with dust when working in dusty areas.
●
A stud finder to locate wooden or steel studs in the walls.
●
A simple continuity tester or multitester.
●
A comfortable pair of work gloves.
●
A sturdy stepladder, nonconductive recommended.
●
A tool belt with appropriate loops and pouches for the tools you use most.
●
Two-way radios or walkie-talkies. They are indispensable for pulling or testing over even
moderate distances or between floors. Invest in the hands-free models that have a headset,
and you’ll be glad you did.
●
Extra batteries (or recharging stands) for your flashlights, radios, and cable testers.
Installation Tip: Wall-outlet boxes are often placed one hammer length from the floor, especially in residences (this is based on a standard hammer, not the heavier and longer framing hammers). It’s a real time saver, but check the boxes installed by the electricians
before you use this quick measuring technique for installing the datacom boxes, so that
they’ll all be the same height.
A multipurpose tool is also very handy. One popular choice is a Leatherman model with a coax
crimper opening in the jaws of the pliers. It’s just the thing for those times when you’re on the
ladder looking down at the exact tool you need lying on the floor where you just dropped it.
One of the neatest ideas for carrying tools is something that IDEAL DataComm calls the
Bucket Bag (pictured in Figure 6.37). This bag sits over a five-gallon bucket and allows you to
easily organize your tools.
A Preassembled Kit Could Be It
Finally, don’t ignore the possibility that a preassembled kit might be just right for you. It may
be more economical and less troublesome than buying the individual components. IDEAL
DataComm, Jensen Tools, and MilesTek all offer a range of tool kits for the voice and data
installer. These are targeted for the professional installer, and they come in a variety of configurations customized for the type of installation you’ll do most often. They are especially
suitable for the intermediate to expert user. Figure 6.38 shows a tool kit from MilesTek, and
Figure 6.39 shows a toolkit from Jensen Tools.
A Preassembled Kit Could Be It
FIGURE 6.37
IDEAL DataComm’s
Bucket Bag (Photo
courtesy of IDEAL
DataComm)
FIGURE 6.38
MilesTek tool kit
(Photo courtesy of
MilesTek)
233
234
Chapter 6 • Tools of the Trade
FIGURE 6.39
Jensen Tools Master
Cable Installer’s Kit
(Photo courtesy of
Jensen Tools)
Part II
Network Media and
Connectors
Chapter 7: Copper Cable Media
Chapter 8: Wall Plates
Chapter 9: Connectors
Chapter 10: Fiber-Optic Media
Chapter 11: Unbounded (Wireless) Media
Chapter 7
Copper Cable Media
• Types of Copper Cabling
• Best Practices for Copper Installation
• Copper Cable for Data Applications
• Copper Cable for Voice Applications
• Testing
238
Chapter 7 • Copper Cable Media
hough optical-fiber cabling continues to make inroads toward becoming the cabling
medium of choice for horizontal cable (cable to the desktop), copper-based cabling, specifically UTP, remains king of the hill. This is, in part, due to the fact that it is inexpensive, well
understood, and easy to install; further, the networking devices required to support copper
cabling are inexpensive compared with their fiber-optic counterparts. Cost is almost always the
determining factor when deciding whether to install copper or optical-fiber cable—unless you
have a high-security or really high-bandwidth requirement, in which case optical fiber
becomes more desirable.
T
A variety of copper cabling types is available for telecommunications infrastructures today,
but this chapter will focus on the use of Category 5e and Category 6 unshielded twisted-pair
(UTP) cable. When installing a copper-based cabling infrastructure, one of your principal
concerns should be adhering to whichever Standard you have decided to use, either the ANSI/
TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard or the ISO/
IEC 11801 Generic Cabling for Customer Premises Standard. In North America, the ANSI/
TIA/EIA-568-B Standard is preferred. Both these documents are discussed in Chapter 2.
Types of Copper Cabling
Pick up any larger cabling catalog, and you will find myriad types of copper cables. However,
many of these cables are unsuitable for data and voice communications. Often, cable is manufactured with specific purposes in mind, such as audio, doorbell, remote equipment control, or
other low-speed, low-voltage applications. Cable used for data communications must support
high-bandwidth applications over a wide frequency range. Even for digital telephones, the
cable must be chosen correctly.
Many types of cable are used for data and telecommunications. The application you are using
must be taken into consideration when choosing the type of cable you will install. Table 7.1
lists some of the historic and current copper cables and common applications run on them.
With the UTP cabling types found in Table 7.1, applications that run on lower-grade cable
will also run on higher grades of cable (for example, digital telephones can be used with Category 3, 4, 5, 5e, or 6 cabling).
Major Cable Types Found Today
When you plan to purchase cable for a new installation, the decisions you have to make are
mind-boggling. What cable will support 100Base-TX or 1000Base-T? Will this cable support even faster applications in the future? Do you choose stranded-conductor cable or solidconductor cable? Should you use different cable for voice and data? Do you buy a cable that
only supports present standards or one that is designed to support future standards? The list
of questions goes on and on.
Types of Copper Cabling
239
T A B L E 7 . 1 Common Types of Copper Cabling and the Applications That Run on Them
Cable Type
Common Applications
UTP Category 1
Signaling, door bells, alarm systems
UTP Category 2
Digital phone systems, Apple LocalTalk
UTP Category 3
10Base-T, 4Mbps Token Ring
UTP Category 4
16Mbps Token Ring
UTP Category 5
100Base-TX, 1000Base-T
UTP Category 5e
100Base-TX, 1000Base-T
UTP Category 6
100Base-TX, 1000Base-T, 10 Gigabit Ethernet*
Multi-pair UTP cable
Analog and digital voice applications
Shielded twisted-pair (STP)
4Mbps and 16Mbps Token Ring
Screened twisted-pair (ScTP)
100Base-TX, 1000Base-T, 10 Gigabit Ethernet*
Coaxial RG-8
Thick Ethernet (10Base-5), video
Coaxial RG-58
Thin Ethernet (10Base-2)
Coaxial RG-59
CATV (Community antenna television, AKA, cable TV)
Coaxial RG-6/U
CATV, CCTV (Closed Circuit TV), satellite, HDTV, cable
modem
Coaxial RG-6/U Quad Shield
Same as RG-6 with extra shielding
Coaxial RG-62
ARCnet, video, IBM 3270
* Trials and Standards development for 10 Gigabit Ethernet over UTP and ScTP are still a work in progress.
NOTE
Solid-conductor cable is used for horizontal cabling. The entire conductor is one single
piece of copper. Stranded-conductor cable is used for patch cords and shorter cabling runs;
the conductor consists of strands of smaller wire. These smaller strands make the cable
more flexible but also cause it to have higher attenuation. Any cable that will be used for
horizontal cabling (in the walls) should be solid conductor.
We’ll review the different types of cable listed in Table 7.1 and expand on their performance
characteristics and some of their possible uses.
UTP cables are 100-ohm plus or minus 15 percent, 23 or 24 AWG (American Wire
Gauge), twisted-pair cables. Horizontal cabling uses unshielded, four-pair cables (as shown
in Figure 7.1), but voice applications can use cables with 25, 50, 100, or more pairs bundled
together. UTP cables may contain a slitting cord or rip cord that makes it easier to strip back
the jacket. Each of the wires is color coded to make it easier for the cable installer to identify
and correctly terminate the wire.
240
Chapter 7 • Copper Cable Media
FIGURE 7.1
Common UTP cable
Slitting cord made of nylon
or other polymer
Jacket
Twisted pairs—
each wire’s insulation
is color coded.
Category 1 UTP Cable
Category 1 UTP cable only supports applications operating at 100kHz or less. Applications
operating at less than 100kHz are very low-speed applications, such as analog voice, doorbells,
alarm systems, RS-232, and RS-422. Category 1 cable is not used very often due to its limited
use with data and voice applications and, although it is cheap to install, it will not be possible
to use it for anything other than low-speed applications. Category 1 was never recognized by
any version of the ANSI/TIA/EIA-568 Standard.
Category 2 UTP Cable
Category 2 UTP cable was designed to support applications that operate at a frequency rate of
less than 4MHz. If you could find any these days, this cable could be used for low-speed applications such as digital voice, Apple LocalTalk, serial applications, ARCnet, ISDN, some DSL
applications, and T-1. Most telecommunications designers choose a minimum of Category 3
cable for digital voice. Because of its very limited capabilities, Category 2 was never recognized
in ANSI/TIA/EIA-568 and is now extinct..
Category 3 UTP Cable
In the early 1990s, Category 3 UTP cable was the workhorse of the networking industry for a
few years after it was approved as a standard. It is designed to support applications requiring
bandwidth up to 16MHz, including digital and analog voice, 10Base-T Ethernet, 4Mbps
Types of Copper Cabling
Color Codes for UTP Cables
The individual wires in a UTP cable are color coded for ease of identification and termination.
A four-pair cable has 8 conductors. Four of these conductors are each colored either blue,
orange, green, or brown, and are called “ring” conductors. Four of the conductors are colored
white. These are the “tip” conductors. Each tip conductor is mated with a ring conductor and
twisted together to form a pair. So, with all those white conductors, how do you tell which tip
conductor goes with which ring conductor when they are untwisted prior to termination? Each
tip conductor is marked with either a band of its ring-mate’s color at regular intervals, or has
a stripe of its ring-mate’s color running its length. This becomes even more important when
working with 25-pair or larger cables, and in larger cables, the ring conductors may also have
PI markings. A four-pair UTP cable with band marks on the tip conductors is shown below.
Tip
White/blue
Ring
Blue (or blue/white)
Tip
Pair 1
White/orange
Ring
Orange (or orange/white)
Pair 2
Pair 3
Pair 4
Tip
Ring
White/green
Green (or green/white)
Band color
Tip
Base color
Ring
White/brown
Brown (or brown/white)
The sequence of the conductor pairs is shown below. Since white is the common color in fourpair cables and is always numbered or inserted into a punch-down block first, it is common
practice to list the tip conductors first.
Continued on next page
241
242
Chapter 7 • Copper Cable Media
Pair
Tip Conductor
Ring Conductor
Pair 1
White/blue (white with blue PI)
Blue (or blue/white)
Pair 2
White/orange (white with orange PI)
Orange (or orange/white)
Pair 3
White/green (white with green PI)
Green (or green/white)
Pair 4
White/brown (white with brown PI)
Brown (or brown/white)
For example, in pair 1 (the blue pair), the two wires are white/blue and blue. Depending on
whom you ask, you may get different answers as to which wire is considered primary and
which is considered secondary. In the United States and much of the world, premises-cabling
people consider the tip wire to be primary because that wire that is connected to a connecting
block first. Others consider the ring wire to be the primary. However, as long as they are wired
correctly, it does not matter what you call the tip and ring wires.
Token Ring, 100Base-T4 Fast Ethernet, 100VG-AnyLAN, ISDN, and DSL applications.
Most digital-voice applications use a minimum of Category 3 cabling.
Category 3 cable is usually four-pair twisted-pair cable, but some multi-pair (bundled) cables
(25-pair, 50-pair, etc.) are certified for use with Category 3 applications. Those multi-pair
cables are sometimes used with 10Base-T Ethernet applications; they are not recommended.
NOTE
The industry trend is toward installing Category 5e or Category 6 cabling instead of a combination of Category 3 cabling for voice and Category 5e or 6 for data.
Category 4 UTP Cable
Category 4 cable had a short life in the marketplace and is now a thing of the past. It was
designed to support applications operating at frequencies up to 20MHz. The price of Category
4 and Category 5 cable is almost identical, so most people chose Category 5 cable because it
had five times the bandwidth of Category 4 and therefore the capability of supporting much
higher-speed applications. The intent of Category 4 cabling was to support Ethernet, 4Mbps
Token Ring, and 16Mbps Token Ring, as well as digital voice applications. Category 4 cable
has been removed from the ANSI/TIA/EIA-568-B version of the Standard.
Category 5/5e UTP Cable
Category 5 and Category 5e cable currently reign as king in existing installations of UTP
cabling for data applications.
Category 5 cable was invented to support applications requiring bandwidth up to 100MHz.
In addition to applications supported by Category 4 and earlier cables, Category 5 supported
Types of Copper Cabling
243
100Base-TX, TP-PMD (FDDI over copper), ATM (155Mbps), and, under certain conditions,
1000Base-T (Gigabit Ethernet).
In the fall of 1999, the ANSI/TIA/EIA ratified an addendum to the ANSI/TIA/EIA-568-A
Standard to approve additional performance requirements for Category 5e cabling. Category
5e has superceded Category 5 as the recognized cable for new UTP data installations, and this
is reflected in the current version of the Standard since Category 5e is a recognized cable type
while Category 5 has been moved to informative annexes simply to support legacy installations.
Some manufacturers make 25-pair multi-pair (bundled or feeder) cable that support Category 5 installations, but we are a little uncomfortable with using these cables for high-speed
applications such as 100Base-TX or 1000Base-T.
NOTE
Category 5 cable will support 1000Base-T, provided the installed cabling system passes
the performance specifications outlined in Annex D of ANSI/TIA/EIA-568-B.1.
Category 6 UTP Cable
With the publication of ANSI/TIA/EIA-568-B.2-1, Category 6 UTP became a recognized
cable type. With bandwidth up to 200MHz, this cable category will support any application
that Category 5e and lower cables will support. Further, it is designed to support 1000Base-T
(Gigabit Ethernet) and, it is hoped, will support 10 Gigabit Ethernet. Category 6 designs typically incorporate an inner structure that separates each pair from the others in order to
improve crosstalk performance.
Shielded Twisted-Pair Cable (IBM Type 1A)
Originally developed by IBM to support applications such as Token Ring and the IBM Systems
Network Architecture, shielded twisted-pair (STP) cable can currently support applications requiring bandwidth up to 600MHz. Though many types of shielded cable are on the market, the Type
1A cable is the most shielded. An IBM Type 1A (STP-A) cable, shown in Figure 7.2, has an outer
shield that consists of braided copper; this shield surrounds the 150-ohm, 22 AWG, two-pair conductors. Each conductor is insulated and then each twisted pair is individually shielded.
All the shielding in an STP-A cable provides better protection against external sources of
EMI than UTP cable does, but the shielding makes the cable thicker and more bulky. Typical
applications are 4Mbps and 16Mbps Token Ring and IBM terminal applications (3270 and
5250 terminals). STP cabling is expensive to install, and many people think that it provides
only marginally better EMI protection than a well-made Category 5 or higher UTP. If you are
considering STP cabling solely because it provides better EMI protection and higher potential
bandwidth, you should consider using fiber-optic cable instead.
NOTE
IBM now recommends Category 5 or better cabling for Token Ring users.
244
Chapter 7 • Copper Cable Media
FIGURE 7.2
Braided shield
An STP-A cable and an
ScTP cable
Cable jacket
Individual
pair shield
STP-A cable
Multi-pair UTP Cable
Multi-pair UTP cable is cable that has more than four pairs. Often called backbone, bundled, or
feeder cable, multi-pair cable usually comes in 25-, 50-, or 100-pair increments, though higher
pair counts are available. Though it is sometimes called backbone cabling, this term can be misleading if you are looking at cabling from a data-cabling perspective. High-pair-count multipair cabling is typically used with voice applications only.
Some vendors sell 25- and 50-pair cable that is intended for use with Category 5 or Category
5e applications, but that many pairs of cable all supporting data in the same sheath makes us
nervous. All those individual wire pairs generate crosstalk that affects all the other pairs. The
ANSI/TIA/EIA-568-B Standard does not recognize such cables for horizontal applications,
but includes information on them in ANSI/TIA/EIA-568-B.1, Annexes B and C (Informative).
We have also seen applications with voice and 10Base-T Ethernet data in the same multi-pair
cable. Sharing the same sheath with two different applications is not recommended either.
NOTE
Many manufacturers make 25-pair and 50-pair cables rated to Category 5 or Category 5e–
level performance, but we, and the Standard, recommend using individual four-pair cables
when trying to achieve Category 5 or better performance levels.
Color Codes and Multi-pair Cables
Color codes for 25-pair cables are a bit more sophisticated than for four-pair cables due to the
many additional wire pairs. In the case of 25-pair cables, there is one additional ring color
(slate) and four additional tip colors (red, black, yellow, and violet). Table 7.2 lists the color
coding for 25-pair cables.
Types of Copper Cabling
245
T A B L E 7 . 2 Color Coding for 25-Pair Cables
NOTE
Pair Number
Tip Color
Ring Color
1
White
Blue
2
White
Orange
3
White
Green
4
White
Brown
5
White
Slate
6
Red
Blue
7
Red
Orange
8
Red
Green
9
Red
Brown
10
Red
Slate
11
Black
Blue
12
Black
Orange
13
Black
Green
14
Black
Brown
15
Black
Slate
16
Yellow
Blue
17
Yellow
Orange
18
Yellow
Green
19
Yellow
Brown
20
Yellow
Slate
21
Violet
Blue
22
Violet
Orange
23
Violet
Green
24
Violet
Brown
25
Violet
Slate
Often, with high-pair-count UTP cable, both the tip and the ring conductor bear PI markings.
For example, in pair 1, the white tip conductor would have PI markings of blue, and the blue
ring conductor would have PI markings of white.
As with four-pair UTP cable, the tip color is always connected first. For example, when terminating 25-pair cable to a 66-block, white/blue would be connected to pin 1, then blue/white
would be connected to pin 2, and so forth.
246
Chapter 7 • Copper Cable Media
When cable pair counts exceed 25 pairs, the cable is broken up into binder groups consisting
of 25 pairs of wire. Within each binder group, the color code for the first 25 pairs is repeated.
So how do you tell pair 1 in one binder group from pair 1 in another? Each binder group within
the larger bundle of pairs that make up the total cable is marked with uniquely colored plastic
binders wrapped around the 25-pair bundle. The binder colors follow the same color-code
sequence as the pairs, so installers don’t have to learn two color systems, e.g., the first 25-pair
binder group has white/blue binders, the second has white/orange binders, and so on.
Coaxial Cable
Coaxial cable has been around since local area networking was in its infancy. The original
designers of Ethernet picked coaxial cable as their “ether” because coaxial cable is well
shielded, has high bandwidth capabilities and low attenuation, and is easy to install. Coaxial
cables are identified by their RG designation. Coaxial cable can have a solid or stranded core
and impedance of 50, 75, or 92 ohms. Coaxial such as the one shown in Figure 7.3 is called
coaxial cable because it has one wire that carries the signal surrounded by a layer of insulation
and another concentric shield; both the shield and the inner conductor run along the same axis.
The outer shield also serves as a ground and should be grounded to be effective.
FIGURE 7.3
Copper mesh
(shielding)
Coaxial cable
Copper wire
Insulation
Jacket
(outside insulation)
Types of Copper Cabling
NOTE
247
Coaxial cable is still widely used for video applications; in fact, its use is increasing due to
greater demand for CCTV. However, it is not recommended for data installations and is not
recognized by the Standard for such.
A number of different types of coaxial cable were formerly used for data; these are shown in
Table 7.3.
T A B L E 7 . 3 Common Coaxial-Cable Types
NOTE
RG Number
Center Wire Gauge
Impedance
Conductor
RG-6/U
18 AWG
75 ohms
Solid
RG-6/U QS
18 AWG
75 ohms
Solid
RG-8/U
10 AWG
50 ohms
Solid
RG-58/U
20 AWG
53.5 ohms
Solid
RG-58C/U
20 AWG
50 ohms
Solid
RG-58A/U
20 AWG
50 ohms
Stranded
RG-59/U
20 AWG
75 ohms
Solid
RG-62/U
22 AWG
93 ohms
Solid
Sometimes you will see coaxial cable labeled as 802.3 Ethernet Thinnet or 802.3 Ethernet
Thicknet. Thin Ethernet cable is RG-58 and is used for 10-Base-2 Ethernet; thick Ethernet
cable is RG-8 and is used for 10Base-5 Ethernet.
Hybrid or Composite Cable
You may hear the term hybrid or composite cable used. This cable is not really a special type of cable
but is one that contains multiple smaller cables within a common cable jacket or spiral wrap. The
smaller cables can either be the same type or a mixture of cable types. For example, a common
cable that is manufactured now contains four-pair Category 5e UTP cable and two strands of
multimode fiber-optic cable. What is nice about these cable types is that you get two different
types of media to a single location by pulling only one cable. Manufacturer CommScope builds
hybrid cables. For more information, check out CommScope’s website at www.commscope.com.
Requirements for these cables are called out in several sections of ANSI/TIA/EIA-568-B.
Picking the Right Patch Cables
Though not really part of a discussion on picking cable types for horizontal cable, the subject
of patch cords should be addressed. Patch cables (or patch cords) are the cables that are used to
connect 110-type connecting blocks, patch-panel ports, or telecommunication outlets (wallplate outlets) to network equipment or telephones.
248
Chapter 7 • Copper Cable Media
We have stated this elsewhere in the book, but it deserves repeating: You should purchase
factory-made patch cables. Patch cables are a critical part of the link between a network device
(such as a PC) and the network equipment (such as a hub). Determining appropriate transmission requirements and testing methodology for patch cords was one of the holdups in completing the ANSI/TIA/EIA-B.2-1 Category 6 specification. Low-quality, poorly made, and
damaged patch cables very frequently contribute to network problems. Often the patch cable
is considered the weakest link in the structured cabling system. Poorly made patch cables will
contribute to attenuation loss and increased crosstalk.
Factory-made patch cables are constructed using exacting and controlled circumstances to
assure reliable and consistent transmission-performance parameters. These patch cables are
tested and guaranteed to perform correctly.
Patch cables are made of stranded-conductor cable to give them additional flexibility. However,
stranded cable has up to 20 percent higher attenuation values than solid-conductor cable, so lengths
should be kept to a minimum. The ANSI/TIA/EIA-568-B Standard allows for a 5-meter (16-foot)
maximum-length patch cable in the wiring closet and a 5-meter (16-foot) maximum-length patch
cable at the workstation area. Here are some suggestions to consider when purchasing patch cables:
NOTE
●
Don’t make them yourself. Many problems result from bad patch cables.
●
Choose the correct category for the performance level you want to achieve.
●
Make sure the patch cables you purchase use stranded conductors for increased flexibility.
●
Purchase a variety of lengths and make sure you have a few extra of each length.
●
Consider purchasing patch cords from the same manufacturer that makes the cable and connecting hardware, or from manufacturers who have teamed up to provide compatible cable,
patch cords, and connecting hardware. Many manufacturers are a part of such alliances.
●
Consider color coding your patch cords in the telecommunication closet. An example of
this would be:
●
Blue cords for workstations
●
Gray cords for voice
●
Red cords for servers
●
Green cords for hub-to-hub connections
●
Yellow for other types of connections
The suggested color coding for patch cords loosely follows the documentation guidelines
described in Chapter 5.
Types of Copper Cabling
249
Why Pick Copper Cabling?
Copper cabling has been around and in use since electricity was invented. Despite its antiquity,
it is much more popular than optical-fiber cabling. And the quality of copper wire has continued to improve. Over the past 100 years, copper manufacturers have developed the refining
and drawing processes so that copper is even more high quality than when it was first used for
communication cabling.
High-speed technologies, such as 155Mbps ATM and Gigabit Ethernet, that experts said
would never run over copper wire are running over copper wiring today.
Network managers pick copper cabling for a variety of reasons: Copper cable (especially
UTP cable) is inexpensive and easy to install, the installation methods are well understood, and
the components (patch panels, wall-plate outlets, connecting blocks, etc.) are inexpensive. Further, UTP-based equipment (PBX systems, Ethernet routers, etc.) that uses the copper cabling
is much more affordable than comparable fiber equipment.
NOTE
The main downsides to using copper cable are that copper cable can be susceptible to outside interference (EMI), optical fiber provides much greater bandwidth, and the data on copper wire is not as secure as data traveling through an optical fiber. This is not an issue for
the typical installation.
Table 7.4 lists some of the common technologies that currently use unshielded twisted-pair
Ethernet. With the advances in networking technology and twisted-pair cable, it makes you
wonder what applications you will see on UTP cables in the future.
T A B L E 7 . 4 Applications That Use Unshielded Twisted-Pair Cables
Application
Data Rate
Encoding Scheme*
Pairs Required
10Base-T Ethernet
10Mbps
Manchester
2
100Base-TX Ethernet
100Mbps
4B5B/NRZI/MLT-3
2
100Base-T4 Ethernet
100Mbps
8B6T
4
1000Base-T Gigabit Ethernet
1000Mbps
PAM5
4
100Base-VG AnyLAN
100Mbps
5B6B/NRZ
4
4Mbps Token Ring
4Mbps
Manchester
2
16Mbps Token Ring
16Mbps
Manchester
2
ATM-25
25Mbps
NRZ
2
ATM-155
155Mbps
NRZ
2
TP-PMD (FDDI over copper)
100Mbps
MLT-3
2
* Encoding is a technology that allows more than one bit to be passed through a wire during a single cycle (hertz).
250
Chapter 7 • Copper Cable Media
10 Gigabit Ethernet is not included in Table 7.5 because the requirements for use with UTP
cable are still being developed.
Best Practices for Copper Installation
We used our own installations of copper cabling, as well as the tips and techniques of many others, to create guidelines for you to follow to ensure that your UTP cabling system will support
all the applications you intend it to. These guidelines include the following:
●
Following standards
●
Making sure you do not exceed distance limits
●
Good installation techniques
Following Standards
One of the most important elements to planning and deploying a new telecommunications infrastructure is to make sure you are following a Standard. In the United States, this Standard is the
ANSI/TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard. It may be
purchased from Global Engineering Documents on the Internet at http://global.ihs.com. We
highly recommend that anyone designing a cabling infrastructure own this document.
TIP
Have you purchased or do you plan to purchase the ANSI/TIA/EIA-568-B Standard? We recommend that you buy the entire TIA/EIA Telecommunications Building Wiring Standards collection on CD from Global. This is a terrific resource (especially from which to cut and paste
sections into an RFP) and can be purchased with a subscription that lets you receive
updates as they are published.
Following the ANSI/TIA/EIA-568-B Standard will ensure that your cabling system is
interoperable with any networking or voice applications that have been designed to work with
that Standard.
Standards development usually lags behind what is available on the market, as manufacturers
try to advance their technology to gain market share. Getting the latest innovations incorporated into a standard is difficult because these technologies are often not tested and deployed
widely enough for the standards committees to feel comfortable approving them. Some vendors (such as Avaya, with SYSTIMAX Structured Connectivity Solutions) install cabling systems that may provide greater performance than the current Standards require and will still
remain compatible with existing Standards.
Best Practices for Copper Installation
TIP
251
If a vendor proposes a solution to you that has a vendor-specific performance spin on it,
make sure it is backward compatible with the current Standards. Also ask the vendor to
explain how their product will be compatible with what is still being developed by the Standards work groups.
Cable Distances
One of the most important things that the ANSI/TIA/EIA-568-B Standard defines is the maximum distance that a horizontal cable should traverse. The maximum distance between the
patch panel (or cross-connect, in the case of voice) and the wall plate (the horizontal portion
of the cable) must not exceed 90 meters (285 feet). Further, the patch cord used in the telecommunications closet (patch panel to hub or cross-connect) cannot exceed 5 meters (16 feet), and
the patch cord used on the workstation side must not exceed 5 meters (16 feet).
You may find that higher-quality cables will allow you to exceed this distance limit for older
technologies such as 10Base-T Ethernet or 100VG-AnyLAN. However, you are not guaranteed that those horizontal cable runs that exceed 90 meters will work with future technologies
designed to work with TIA/EIA Standards, so it is strongly recommended that you follow the
Standard and not “customize” your installation.
Some tips relating to distance and the installation of copper cabling include:
●
Never exceed the 90-meter maximum distance for horizontal cables.
●
Horizontal cable rarely goes in a straight line from the patch panel to the wall plate. Don’t
forget to account for the fact that horizontal cable may be routed up through walls, around
corners, and through conduit. If your horizontal cable run is 90 meters as the crow flies, it’s
too long.
●
Account for any additional cable distance that may be required as a result of trays, hooks,
and cable management.
●
Leave some slack in the ceiling above the wiring rack in case retermination is required or
the patch panel must be moved; cabling professionals call this a service loop. Some professional cable installers leave as much as an extra 10 feet in the ceiling bundled together or
looped around a hook (as seen in Figure 7.4).
Wiring Patterns
The ANSI/TIA/EIA-568-B Standard recommends one of two wiring patterns for modular
jacks and plugs: T568-A and T568-B. The only difference between these wiring patterns is that
pin assignments for pairs 2 and 3 are reversed. However, these two wiring patterns are constantly causing problems for end users and weekend cable installers. What is the problem?
Older patch panels and modular wall-plate outlets came in either the T568-A or T568-B wiring
252
Chapter 7 • Copper Cable Media
patterns. The actual construction of these devices is exactly the same, but they are color coded
according to either the T568-A wiring standard or the T568-B wiring standard. Newer connecting hardware is usually color coded so that either configuration can be used. The confusion
comes from people wondering which one to use. It doesn’t matter. They both work the same
way. But you have to be consistent at each end of the cable. If you use T568-A at one end, you
must use it at the other; likewise with T568-B.
The cable pairs are assigned to specific pin numbers. The pin numbers are numbered from
left to right if you are looking into the modular jack outlet or down on the top of the modular
plug. Figure 7.5 shows the pin numbers for the eight-position modular jack (RJ-45) and plug.
FIGURE 7.4
J-hooks to
suspend cable
Leaving some cable
slack in the ceiling
Plenum
Extra loop
of cable
Horizontal
cable
Patch panel
Patch cord
(maximum
distance
6 meters)
Hub
19-inch rack
Best Practices for Copper Installation
253
FIGURE 7.5
Pin positions for the
eight-position modular
plug and jack
Top
8 76 54 3 2 1
1 2 3 4 5 6 78
Bottom
Modular eight-position plug
Modular eight-position jack
Which Wiring Pattern Should You Choose?
The T568-A wiring pattern is most prevalent outside of the United States and in U.S. government installations. T568-B used to be more prevalent in private installations in the United
States. This has changed, however. The recommended pattern to use for new installations is
T568-A. It is the only pattern recognized by ANSI/TIA/EIA-570, the residential wiring Standard. The reason for recommending T568-A is that pairs 1 and 2 are configured the same as
a wiring pattern called USOC, which is prevalent in voice installations.
The wiring pattern chosen makes no difference to the applications used. The signal does not
care what color wire it is running through.
The most important factor is to choose one wiring configuration and stick with it. This
means when purchasing patch panels, 110-blocks, and wall plates, they should all be capable of
using the same wiring pattern.
NOTE
More information about the T568-A and T568-B wiring configurations can be found in Chapter 9.
Planning
Planning plays an essential role in any successful implementation of a technology; structured
cabling systems are no exception. If you are planning to install a larger structured cabling system (more than a few hundred cable runs), consider hiring a professional consultant to assist
you with the planning phases.
254
Chapter 7 • Copper Cable Media
NOTE
Chapter 15 has information on planning and preparing a request for proposal (RFC) for a
structured cabling system. Chapter 12 covers the essential design issues you must consider when building a structured cabling system.
The following are some questions you should ask when planning a cabling infrastructure that
includes copper cabling:
●
How many cables should be run to each location?
●
Should you use cable trays, J hooks, or conduit where the cable is in the ceiling space?
●
Will the voice system use patch panels, or will the voice cable be cross-connected via 66blocks directly to the phone-system blocks?
●
Is there a danger of cable damage from water, rodents, or chemicals?
●
Has proper grounding been taken care of for equipment racks and cable terminations
requiring grounding?
●
Will you use the same category of cable for voice and data?
●
Will new holes be required between floors for backbone cable or through firewalls for horizontal or backbone cable?
●
Will any of the cables be exposed to the elements or outdoors?
Cabling @ Work: Critter Damage
Cabling folklore is full of stories of cabling being damaged by termites, rats, and other vermin.
This might have been hard for us to believe if we had not seen such damage ourselves. One
such instance of this type of damage occurred because rats were using a metal conduit to run
on the cable between walls. Additional cable was installed, which blocked the rats’ pathway,
so they chewed holes in the cable.
We have heard numerous stories of cable damage as a result of creatures with sharp teeth.
In fact, the U.S. Department of Wildlife has a facility to administer a gopher test to cables
intended for outdoor use in gopher-infested areas. Outside Plant (OSP) cables typically have
metal tapes surrounding the jacket. Some are thick and strong enough to resist chew-through
by rodents. They test the cable by—you guessed it—letting gophers in a cage gnaw on the
cable. After a predetermined duration, the cable is examined to see if the gopher was able to
penetrate through the jacket and shields to the conductors.
Consider any area that cable may be run through and take into consideration what you may
need to do to protect the cable.
Best Practices for Copper Installation
255
Cable Management
Good cable management starts with the design of the cabling infrastructure. When installing
horizontal cable, consider using cable trays or J hooks in the ceiling to run the cable. They will
prevent the cable from resting on ceiling tiles, power conduits, or air-conditioning ducts, all of
which are not allowed according to ANSI/TIA/EIA-568-B.
Further, make sure that you plan to purchase and install cable-management guides and
equipment near patch panels and on racks so that when patch cables are installed, cable management will be available.
Installing Copper Cable
When you start installing copper cabling, much can go wrong. Even if you have adequately
planned your installation, situations can still arise that will cause you problems either immediately or in the long term. Here are some tips to keep in mind for installing copper cabling:
●
Do not untwist the twisted pairs at the cable connector or anywhere along the cable length
any more than necessary (less than 0.5 inches for Category 5 and 5e, less than 0.375 inches
for Category 6).
●
Taps (bridged taps) are not allowed.
●
Use connectors, patch panels, and wall plates that are compatible with the cable.
●
When tie-wrapping cables, do not overtighten cable bundles.
●
Staples are not recommended for fastening cables to supports. If they are used, don’t staple
the cables too tightly. Use a staple gun and staples (plastic staples, if possible) that are
designed to be used with data cables. Do not use a generic staple gun; you will be on the
express train to cable damage.
●
Never splice a data cable if it has a problem at some point through its length; run a new
cable instead.
●
When terminating, remove as little of the cable’s jacket as possible, preferably less than
three inches. When finally terminated, the jacket should be as close as possible to where the
conductors are punched down.
●
Don’t lay data cables directly across ceiling tiles or grids. Use a cable tray, J hook, horizontal ladder, or other method to support the cables. Avoid any sort of cable-suspension device
that appears as if it will crush the cables.
●
Follow proper grounding procedures for all equipment to reduce the likelihood of electrical shock and reduce the effects of EMI.
●
All voice runs should be home-run, not daisy-chained. When wiring jacks for home or
small office telephone use, the great temptation is to daisy-chain cables together from one
256
Chapter 7 • Copper Cable Media
jack to the next. Don’t do it. For one thing, it won’t work with modern PBX systems. For
another, each connection along the way causes attenuation and crosstalk, which can
degrade the signal even at voice frequencies.
●
If you have a cable with damaged pairs, replace it. You will be glad you did. Don’t use
another unused pair from the same cable because other pairs may be damaged to the point
where they only cause intermittent problems, which are difficult to solve. Substituting pairs
also prevents any future upgrades that require the use of all four pairs in the cable.
Pulling Cable
If you are just starting out in the cabling business or if you have never been around cable when
it is installed, the term pulling cable is probably not significant. However, any veteran installer
will tell you that pulling is exactly what you do. Cable is pulled from boxes or spools, passed up
into the ceiling, and then, every few feet, the installers climb into the ceiling and pull the cable
along a few more feet. In the case of cable in conduit, the cable is attached to a drawstring and
pulled through.
While the cable is pulled, a number of circumstances can happen that will cause irreparable
harm to the cable. But you can take steps to make sure that damage is avoided. Here is a list of
copper-cabling installation tips:
●
Do not exceed the cable’s minimum bend radius by making sharp bends. The bend radius
for four-pair UTP cables should not be less than 4 times the cable diameter and not less
than10 times the cable diameter for multi-pair (25-pair and greater cable). Avoid making
too many 90-degree bends.
●
Do not exceed maximum cable pulling tension (110N or 25 pounds of force for four-pair
UTP cable).
●
When pulling a bundle of cables, do not pull cables unevenly. It is important that all the
cables share the pulling tension equally.
●
When building a system that supports both voice and data, run the intended voice lines to
a patch panel separate from the data lines.
●
Be careful not to twist the cable too tightly; doing so can damage the conductors and the
conductor insulation.
●
Avoid sources of heat such as hot-water pipes, steam pipes, or warm-air ducts.
●
Be aware that damage can be caused by all sorts of other evil entities such as drywall screws,
wiring-box edges, and other sharp objects found in ceilings and walls.
New cable is shipped in reels or coils. Often the reels are in boxes and the cable easily
unspools from the boxes as you pull on it. Other times, the cable reels are not in a box, and you
Best Practices for Copper Installation
257
must use some type of device to allow the reel to turn freely while you pull the cable. In these
cases, a device similar to the one pictured in Figure 7.6 may be just the ticket. These are often
called wire-spool trees. For emergency or temporary use, a broomstick or piece of conduit
through a stepladder will work.
When the coils are inside a box, you dispense the cable directly from the box by pulling on
it. You should never take these coils from the box and try to use them. The package is a special
design and without the box the cable will tangle hopelessly.
TIP
When troubleshooting any wiring system, disconnect the data or voice application from
both sides (the phone, PC, hub, and PBX). This goes for home telephone wiring, too!
Separating Voice and Data Patch Panels
Some installations of voice and data cabling will terminate the cabling on the same patch panel.
Although this is not entirely frowned upon by cabling professionals, many will tell you that it
is more desirable to have a separate patch panel dedicated to voice applications. This is essential
if you use a different category of cable for voice than for data (such as if you use Category 5e
cable for data but Category 3 cable for voice).
In the example in Figure 7.7, the wall plate has two eight-position modular outlets (one for
voice and one for data). The outlets are labeled V1 for voice and D1 for data. In the telecommunications closet, these two cables terminate on different patch panels, but each cable goes
to position 1 on the patch panel. This makes the cabling installation much easier to document
and to understand. The assumption in Figure 7.7 is that the voice system is terminating to a
patch panel rather than a 66-block. The voice system is then patched to another patch panel
that has the extensions from the company’s PBX, and the data port is patched to a network hub.
FIGURE 7.6
A reel for holding
spools of cable to
make cable pulling
easier
258
Chapter 7 • Copper Cable Media
FIGURE 7.7
Voice horizontal
cable
Using separate patch
panels for voice and
data
Data
horizontal
cable
Voice patch
panel
Patch
cable
Patch
cables
Port 1
Telephone
Port 1
V1
Data patch
panel
Hub
PBX
D1
Wall
plate
PC
Feeder cable
to PBX
19-inch rack
Patch panel with
cross-connects to
phone switch
Telecommunications closet
Sheath Sharing
The ANSI/TIA/EIA-568-B Standard does not specifically prohibit sheath sharing—that is,
when two applications share the same sheath—but its acknowledgment of this practice is
reserved for cables with more than four pairs. Sometimes though, someone may decide that he
or she cannot afford to run two separate four-pair cables to a single location and may use different pairs of the cable for different applications. Table 7.5 shows the pin arrangement that
might be used if a splitter (such as the one described in Chapter 9) were employed. Some installations may split the cable at the wall outlet and patch panel rather than using a splitter.
When two applications share the same cable sheath, performance problems can occur. Two
applications (voice and data or data and data) running inside the same sheath may interfere with
one another. Applications operating at lower frequencies such as 10Base-T may work perfectly
well, but higher-frequency applications such as 100Base-TX will operate with unpredictable
results. Also, as previously noted, two applications sharing the same four-pair cable sheath will
prevent future upgrades to faster LAN technologies such as Gigabit Ethernet.
Because results can be unpredictable, and to future-proof your installation, we strongly recommend that you never use a single four-pair cable for multiple applications. Even for home
applications where you may want to share voice and data applications (such as Ethernet and
Best Practices for Copper Installation
259
T A B L E 7 . 5 Shared-Sheath Pin Assignments
Pin number
Usage
T568-A Wire Color
T568-B Wire Color
Pin 1
Ethernet transmit +
White/green
White/orange
Pin 2
Ethernet transmit –
Green
Orange
Pin 3
Ethernet receive +
White/orange
White/green
Pin 4
Phone inner wire 1
Blue
Blue
Pin 5
Phone inner wire 2
White/blue
White/blue
Pin 6
Ethernet receive –
Orange
Green
Pin 7
Phone inner wire 3
White/brown
White/brown
Pin 8
Phone inner wire 4
Brown
Brown
your phone service), we recommend separate cables. The ringer voltage on a home telephone
can disrupt data transmission on adjacent pairs of wire, and induced voltage could damage your
network electronics.
Avoiding Electromagnetic Interference
All electrical devices generate electromagnetic fields in the radio frequency (RF) spectrum.
These electromagnetic fields produce electromagnetic interference (EMI) and interfere with
the operation of other electric devices and the transmission of voice and data. You will notice
EMI if you have a cordless or cellular phone and you walk near a microwave oven or other
source of high EMI.
Data transmission is especially susceptible to disruption from EMI, so it is essential that cabling
installed with the intent of supporting data (or voice) transmissions be separated from EMI sources.
Here are some tips that may be helpful when planning pathways for data and voice cabling:
●
Data cabling must never be installed in the same conduit with power cables. Aside from the
EMI issue, it is not allowed by the NEC.
●
If data cables must cross power cables, they should do so at right angles.
●
Power and data cables should never share holes bored through concrete, wood, or steel.
Again, it is an NEC violation as well as an EMI concern.
●
Telecommunication outlets should be placed at the same height from the floor as power
outlets, but they should not share stud space.
●
Maintain at least two inches of separation from open electrical cables up to 300 volts. Six
inches is a preferred minimum separation.
●
Maintain at least six inches of separation from lighting sources or fluorescent-light power
supplies.
260
Chapter 7 • Copper Cable Media
●
Maintain at least four inches of separation from antenna leads and ground wires.
●
Maintain at least six inches of separation from neon signs and transformers.
●
Maintain at least six feet of separation from lightning rods and wires.
●
Other sources of EMI include photocopiers, microwave ovens, laser printers, electrical
motors, elevator shafts, generators, fans, air conditioners, and heaters.
Copper Cable for Data Applications
In this section of the book, we will discuss using the cable you have run for data applications, and we
will give some samples of ways that these applications can be wired. An important part of any telecommunications cabling system that supports data is the 110-block, which is a great place to start.
110-Blocks
The telecommunications industry used the 66-style block for many years, and it was considered the mainstay of the industry. The 66-blocks were traditionally used only for voice applications; though we have seen them used to cross-connect data circuits, this is not
recommended. The 110-blocks are newer than 66-blocks and have been designed to overcome
some of the problems associated with 66-blocks. The 110-blocks were designed to support
higher-frequency applications, accommodate higher-density wiring arrangements, and better
separate the input and output wires.
The standard 66-block enabled you to connect 25 pairs of wires to it, but the 110-blocks are
available in many different configurations supporting not only 25 pairs of wire but 50, 100, 200,
and 300 pairs of wires as well. The 110-block has two primary components: the 110 wiring block
on which the wires are placed, and the 110-connecting block (shown in Figure 7.8), which is used
to terminate the wires. A 110-wiring block will consist of multiple 110-connector blocks; there
will be one 110-connector block for each four-pair cable that must be terminated.
FIGURE 7.8
The 110-connector
block
Wires are inserted into these
slots and terminated.
Copper Cable for Data Applications
261
FIGURE 7.9
A 110-block to
RJ-45 patch cable
(Photo courtesy of
The Siemon Company)
The 110-wiring block will consist of a few or many rows of 110-connector blocks. The wires
are inserted into the connecting block and terminated by a punch-down tool or vendor-specific
tool. These blocks are a type of IDC (insulation displacement connector); as the wires make
contact with the metal on the blocks, the insulation is sliced, and the metal makes contact with
the conductor. Remember, to prevent excessive crosstalk, don’t untwist the pairs more than 0.5
inches for Category 5 and 5e, and 0.375 inches for Category 6 cable, when terminating onto
a 110-connecting block.
The 110-blocks come in a wide variety of configurations. Some simply allow the connection
of 110-block jumper cables. Figure 7.9 shows a 110-block jumper cable; one side of the cable
is connected to the 110-block, and the other side is a modular eight-pin plug (RJ-45).
Other 110-blocks have RJ-45 connectors adjacent to the 110-blocks, such as the one shown
in Figure 7.10. If the application uses the 50-pin Telco connectors such as some Ethernet
equipment and many voice applications do, 110-blocks such as the one shown in Figure 7.11
can be purchased that terminate cables to the 110-connecting blocks but then connect to 50pin Telco connectors.
You will also find 110-blocks on the back of patch panels; each 110-connecting block has a
corresponding port on the patch panel. Figure 7.12 shows the 110-block on the back of a patch
panel. The front side of the patch panel shown in Figure 7.13 shows a 96-port patch panel; each
port will have a corresponding 110-connecting block.
262
Chapter 7 • Copper Cable Media
FIGURE 7.10
A 110-block with RJ-45
connectors on the
front (Photo courtesy
of The Siemon
Company)
FIGURE 7.11
A 110-block with 50pin Telco connectors
(Photo courtesy of The
Siemon Company)
FIGURE 7.12
A 110-block on the
back side of a patch
panel (Photo courtesy
of Computer Training
Academy)
Copper Cable for Data Applications
263
FIGURE 7.13
A 96-port patch panel
(Photo courtesy of
MilesTek)
NOTE
The patch panel with the 110-block on the back is the most common configuration in modern data telecommunication infrastructures.
NOTE
When purchasing patch panels and 110-blocks, make sure you purchase one that has the
correct wiring pattern. Most newer 110-blocks are color coded for either the T568-A or
T568-B wiring pattern.
NOTE
The 110-connecting blocks are almost always designed for solid-conductor wire. Make sure
that you use solid-conductor wire for your horizontal cabling.
Sample Data Installations
As long as you follow the ANSI/TIA/EIA-568-B Standard, most of your communications infrastructure will be pretty similar and will not vary based on whether it is supporting voice or a specific data application. The horizontal cables will all follow the same structure and rules. However,
when you start using the cabling for data applications, you’ll notice some differences. We will
now take a look at a couple of possible scenarios for the usage of a structured cabling system.
The first scenario, shown in Figure 7.14, shows the typical horizontal cabling terminated to a
patch panel. The horizontal cable terminates to the 110-block on the back of the patch panel.
When a workstation is connected to the network, it is connected to the network hub by means
of a RJ-45 patch cable that connects the appropriate port on the patch panel to a port on the hub.
The use of a generic patch panel in Figure 7.14 allows this cabling system to be the most versatile and expandable. Further, the system can also be used for voice applications if the voice
system is also terminated to patch panels.
264
Chapter 7 • Copper Cable Media
FIGURE 7.14
Horizontal
cable
A structured cabling
system designed for
use with data
PC
Wall
plate
Patch panel
Hub
Patch
cable
FIGURE 7.15
A structured cabling
system terminated
into 110-connecting
blocks with 50-pin
Telco connectors
Horizontal
cable
PC
110-block with
50-pin Telco
connectors
25-pair
cable
Wall
plate
Patch
cable
Hub with 50-pin
Telco connector
Another scenario involves the use of 110-blocks with 50-pin Telco connectors. These 50-pin
Telco connectors are used to connect to phone systems or to hubs that are equipped with the
appropriate 50-pin Telco interface. These are less versatile than patch panels because each
connection must be terminated directly to a connection that connects to a hub.
In past years, we have worked with these types of connections, and network administrators have
reported to us that these are more difficult to work with. Further, these 50-pin Telco connectors
may not be interchangeable with equipment you purchase in the future. Figure 7.15 shows the
use of a 110-block connecting to network equipment using a 50-pin Telco connector.
A final scenario that is a combination of the patch-panel approach and the 110-block approach is
the use of a 110-block and 110-block patch cables (such as the one shown previously in Figure 7.9).
This is almost identical to the patch-panel approach, except that the patch cables used in the telecommunications closet have a 110-block connector on one side and an RJ-45 on the other. This
configuration is shown in Figure 7.16.
Copper Cable for Data Applications
FIGURE 7.16
110-block
Horizontal
cable
Structured cabling using 110-blocks and
110-block patch cords
PC
265
110-block
patch cord
Wall
plate
Hub
Patch
cable
RJ-45 ports
on hubs
FIGURE 7.17
Fiber optic or
copper backbone
cable for data
Structured cabling
that includes data
backbone cabling
Fiber or copper
backbone patch panel
Horizontal
cable
PC
Patch panel
Patch
cable
Patch
cables
Wall
plate
Patch
cable
Fiber or copper
backbone patch panel
Main hub
or switch
Patch
cables
Hub
File servers
Telecommunications closet
Equipment room
The previous examples are fairly simple and involve only one wiring closet. Any installation
that requires more than one telecommunications closet and also one equipment room will
require the service of a data backbone. Figure 7.17 shows an example where data backbone
cabling is required. Due to distance limitations on horizontal cable when it is handling data
applications, all horizontal cable is terminated to network equipment (hubs) in the telecommunications closet. The hub is then linked to other hubs via the data backbone cable.
266
Chapter 7 • Copper Cable Media
Copper Cable for Voice Applications
Unless you have an extraordinarily expensive phone system, it probably uses copper cabling to
connect the desktop telephones to the phone switch or PBX (private branch exchange). Twistedpair, copper cables have been the foundation of phone systems practically since the invention of
the telephone. The mainstay of copper-based voice cross-connect systems was the 66-block, but
it is now being surpassed by 110-block and patch-panel cross-connects.
66-Blocks
The 66-block was the most common of the punch-down blocks. It was used with telephone
cabling for many years, but is not used in modern structured wiring installations. A number of
different types of 66-blocks exist, but the most common is the 66M1-50 pictured in Figure 7.18.
FIGURE 7.18
A 66-block (Photo
courtesy of The
Siemon Company)
Copper Cable for Voice Applications
267
FIGURE 7.19
The 66-block contact
prongs
1
2
3
4
Clips
The 66M1-50 has 50 horizontal rows of IDC connectors; each row consists of four prongs
called bifurcated contact prongs. A side view of a row of contact prongs is shown in Figure 7.19.
They are called bifurcated contact prongs because they are split in two pieces. The wire is
inserted between one of the clips, and then the punch-down (impact) tool applies pressure to
insert the wire between the two parts of the clip.
The clips are labeled 1, 2, 3, and 4. The 66-block clips in Figure 7.19 show that the two clips
on the left (clips 1 and 2) are electrically connected together, as are the two clips (clips 3 and
4) on the right. However, the two sets of clips are not electrically connected to one another.
Wires can be terminated on both sides of the 66-block, and a metal “bridging” clip is inserted
between clips 1 and 2 and clips 3 and 4. This bridging clip mechanically and electrically joins
the two sides together. The advantage to this is that the sides can be disconnected easily if you
need to troubleshoot a problem.
NOTE
Some 66-blocks have a 50-pin Telco connector on one side of the 66-block.
Figure 7.20 shows a common use of the 66-block; in this diagram, the phone lines from the
phone company are connected to one side of the block. The lines into the PBX are connected
on the other side. When the company is ready to turn the phone service on, the bridge clips are
inserted, which makes the connection.
NOTE
The 66-blocks are typically designed for solid-conductor cable. Stranded-conductor cables
will easily come loose from the IDC-style connectors. Stranded-conductor 66-blocks are
available, however.
Figure 7.21 shows a 66-block in use for a voice system. In this picture, you can see that part
of the 66-block connectors have bridging clips connecting them. This block also has a door
that can be closed to protect the front of the block and prevent the bridging clips from being
knocked off.
268
Chapter 7 • Copper Cable Media
FIGURE 7.20
Bridging clips
A 66-block separating
phone-company lines
from the phone system
Phone
system
Phone lines
from phone
company
66-block
25-Pair Wire Assignments
The most typical type of cable connected to a 66-block is the 25-pair cable. The wiring pattern
used with the 66-block is shown in Figure 7.22. If you look at a 66-block, you will notice
notches in the plastic clips on the left and right side. These notches indicate the beginning of
the next binder group.
NOTE
The T568-A and T568-B wiring patterns do not apply to 66-blocks.
If you were to use 66-blocks and four-pair UTP cables instead of 25-pair cables, then the
wire color/pin assignments would be as shown in Figure 7.23.
Copper Cable for Voice Applications
FIGURE 7.21
A 66-block used for
voice applications
(Photo courtesy of
Computer Training
Center)
269
270
Chapter 7 • Copper Cable Media
FIGURE 7.22
The 66-block wire color/pin assignments
for 25-pair cables
Connector
Row #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Wire Color
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
White/slate
Blue/white
Red/blue
Blue/red
Red/orange
Orange/red
Red/green
Green/red
Red/brown
Brown/red
Red/slate
Slate/red
Black/blue
Blue/black
Black/orange
Orange/black
Black/green
Green/black
Black/brown
Brown/black
Black/slate
Slate/black
Yellow/blue
Blue/yellow
Yellow/orange
Orange/yellow
Yellow/green
Green/yellow
Yellow/brown
Brown/yellow
Yellow/slate
Slate/yellow
Violet/blue
Blue/violet
Violet/orange
Orange/violet
Violet/green
Green/violet
Violet/brown
Brown/violet
Violet/slate
Slate/Violet
Sample Voice Installations
In many ways, voice installations are quite similar to data installations. The differences are the type
of equipment that each end of the link is plugged into and, sometimes, the type of patch cables used.
The ANSI/TIA/EIA-568-B Standard requires at least one four-pair, unshielded twisted-pair cable
to be run to each workstation outlet installed. This cable is to be used for voice applications. We recommend using a minimum of Category 3 cable for voice applications; however, if you will purchase
Category 5e or higher cable for data, we advise using the same category of cable for voice. This
potentially doubles the number of outlets that can be used for data.
Copper Cable for Voice Applications
FIGURE 7.23
The 66-block wire color/pin assignments
for four-pair cables
271
Connector
Row #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Wire Color
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
White/blue
Blue/white
White/orange
Orange/white
White/green
Green/white
White/brown
Brown/white
No wire on row 49 when using four-pair wire
No wire on row 50 when using four-pair wire
Some sample cabling installations follow; we have seen them installed to support voice and
data. Because so many possible combinations exist, we will only be able to show you a few. The
first one (shown in Figure 7.24) is common in small- to medium-sized installations. In this
example, each horizontal cable designated for voice terminates to an RJ-45 patch panel. A second patch panel has RJ-45 blocks terminated to the extensions on the phone switch or PBX.
This makes moving a phone extension from one location to another as simple as moving the
patch cable. If this type of flexibility is required, this configuration is an excellent choice.
272
Chapter 7 • Copper Cable Media
FIGURE 7.24
A voice application using RJ-45 patch panels
Horizontal
cable
Telephone
Station patch
panel
PBX
Wall
plate
Patch
cord
RJ-45
patch
cable
PBX extensions
patch panel
25-pair or larger
backbone cable
TIP
Any wiring system that terminates horizontal wiring into an RJ-45-type patch panel will be
more versatile than traditional cross-connect blocks because any given wall-plate port/
patch-panel port combination can be used for either voice or data. However, cabling professionals generally recommend separate patch panels for voice and data. Separate panels prevent interference that might occur as a result of incompatible systems and different
frequencies used on the same patch panels.
The next example illustrates a more complex wiring environment, which includes backbone
cabling for the voice applications. This example could employ patch panels in the telecommunications closet or 66-blocks, depending on the flexibility desired. The telecommunications
closet is connected to the equipment room via twisted-pair backbone cabling. Figure 7.25 illustrates the use of patch panels, 66-blocks, and backbone cabling.
The final example is the most common for voice installations; it uses 66-blocks exclusively. You will
find many legacy installations that have not been modernized to use 110-block connections. Note
that in Figure 7.26 two 66-blocks are connected by cross-connected cable. Cross-connect cable is
simple single-pair, twisted-pair wire that has no jacket. You can purchase cross-connect wire, so don’t
worry about stripping a bunch of existing cables to get it. The example shown in Figure 7.26 is not
as versatile as it would be if you used patch panels because 66-blocks require either reconnecting the
cross-connect or reprogramming the PBX.
Figure 7.27 shows a 66-block with cross-connect wires connected to it. Though you cannot
tell it from the figure, cross-connect wires are often red and white.
273
Copper Cable for Voice Applications
FIGURE 7.25
A voice application
with a voice backbone,
patch panels, and
66-blocks
Horizontal
cable
Telephone
Station patch
panel
50-pin
Telco
connector
Wall
plate
Voice
backbone
cable
Patch
cable
Patch
cable
PBX extensions
patch panel
PBX
66-block
Telecommunications closet
25-pair
backbone
cable
50-pin
Telco
connection
Equipment room
FIGURE 7.26
Cross-connect
cable
Voice applications
using 66-blocks
exclusively
50-pin
Telco
connector
Horizontal
cable
Telephone
PBX
Wall
plate
66-block
66-block
25-pair
backbone
cable
50-pin
Telco
connection
274
Chapter 7 • Copper Cable Media
FIGURE 7.27
A 66-block with crossconnect wires (Photo
courtesy of The
Siemon Company)
The examples of 66-blocks and 110-blocks in this chapter are fairly common, but we could
not possibly cover every possible permutation and usage of these types of blocks. We hope we
have given you a representative view of some possible configurations.
Testing
Every cable run must receive a minimum level of testing. You can purchase $5,000 cable testers
that will provide you with many statistics on performance, but the most important test is simply
determining that the pairs are connected properly.
The $5,000 testers provide you with much more performance data than the simple cable
testers and will also certify that each cable run will operate at a specific performance level.
Some customers will insist on viewing results on the $5,000 cable tester, but the minimum tests
you should run will determine continuity and that the wire map is correct. You can perform a
couple different levels of testing. The cable testers that you can use include the following:
●
Tone generators and amplifier probes
●
Continuity testers
●
Wire-map testers
●
Cable-certification testers
Testing
275
FIGURE 7.28
A tone generator and
amplifier probe (Photo
courtesy of IDEAL
DataComm)
Tone Generators and Amplifier Probes
If you have a bundle of cable and you need to locate a single cable within the bundle, using a
tone generator and amplifier is the answer. Often, cable installers will pull more than one cable
(sometimes dozens) to a single location, but they will not document the ends of the cables. The
tone generator is used to send an electrical signal through the cable. On the other side of the
cable, the amplifier (a.k.a. the inductive amplifier) is placed near each cable until a sound from
the amplifier is heard, indicating that the cable is found. Figure 7.28 shows a tone generator
and amplifier probe from IDEAL DataComm.
Continuity Testing
The simplest test you can perform on a cable is the continuity test. It ensures that electrical signals are traveling from the point of origin to the receiving side. Simple continuity testers only
guarantee that a signal is being received; they do not test attenuation or crosstalk.
276
Chapter 7 • Copper Cable Media
FIGURE 7.29
A simple cable-testing
tool (Photo courtesy of
IDEAL DataComm)
Wire-Map Testers
A wire-map tester is capable of examining the pairs of wires and indicating whether or not they
are connected correctly through the link. These testers will also indicate if the continuity of
each wire is good. As long as good installation techniques are used and the correct category of
cables, connectors, and patch panels are used, many of the problems with cabling can be solved
by a simple wire-map tester. Figure 7.29 shows a simple tester from IDEAL DataComm that
performs both wire-map testing and continuity testing.
Cable Certification
If you are a professional cable installer, you may be required to certify that the cabling system
you have installed will perform at the required levels. Testing tools more sophisticated than a
simple continuity tester or wire-map tester perform these tests. The tools have two components, one for each side of the cable link. Tools such as the Microtest OMNIscanner2 perform
many sophisticated tests that the less expensive scanners cannot. Cable testing and certification
is covered in more detail in Chapter 14.
Common Problems with Copper Cabling
Sophisticated testers may provide a reason for a failed test. Some of the problems you may
encounter include:
●
Length problems
Testing
●
Wire-map problems
●
NEXT and FEXT (crosstalk) problems
●
Attenuation problems
277
Length Problems
If a cable tester indicates that you have length problems, the most likely cause is that the cable
you have installed exceeds the maximum length. Length problems may also occur if the cable
has an open or short. Another possible problem is that the cable tester’s NVP (Nominal Velocity of Propagation) setting is configured incorrectly. To correct it, run the tester’s NVP diagnostics or setup to make sure that the NVP value is set properly.
Wire-Map Problems
When the cable tester indicates a wire-map problem, pairs are usually transposed in the wire.
This is often a problem when mixing equipment that supports the T568-A and T568-B wiring
patterns; it can also occur if the installer has split the pairs (individual wires are terminated on
incorrect pins). A wire-map problem may also indicate an open or short in the cable.
NEXT and FEXT (Crosstalk) Problems
If the cable tester indicates crosstalk problems, the signal in one pair of wires is “bleeding” over
into another pair of wires; when the crosstalk values are strong enough, this can interfere with
data transmission. NEXT problems indicate that the cable tester has measured too much
crosstalk on the near end of the connection. FEXT problems indicate too much crosstalk on
the opposite side of the cable. Crosstalk is often caused by the conductors of a pair being separated, or “split,” too much when they are terminated. Crosstalk problems can also be caused
by external interference from EMI sources and cable damage or when components (patch panels and connectors) that are only supported for lower categories of cabling are used.
NEXT failures reported on very short cable runs, 15 meters (50 feet) and less, require special
consideration. Such failures are a function of signal harmonics, resulting from imbalance in
either the cable or the connecting hardware or induced by poor-quality installation techniques.
The hardware or installation (punch-down) technique is usually the culprit, and you can fix the
problem by either reterminating (taking care not to untwist the pairs) or by replacing the connecting hardware with a product that is better electrically balanced. It should be noted that
most quality NICs are constructed to ignore the “short-link” phenomenon and may function
just fine under these conditions.
278
Chapter 7 • Copper Cable Media
Attenuation Problems
When the cable tester reports attenuation problems, the cable is losing too much signal
across its length. This can be a result of the cabling being too long. Also check to make sure
the cable is terminated properly. When running horizontal cable, make sure that you use
solid-conductor cable; stranded cable has higher attenuation than solid cable and can contribute to attenuation problems over longer lengths. Other causes of attenuation problems
include high temperatures, cable damage (stretching the conductors), and the wrong category of components (patch panels and connectors).
Chapter 8
Wall Plates
• Wall-Plate Design and Installation Issues
• Fixed-Design Wall Plates
280
Chapter 8 • Wall Plates
n Chapter 5, you learned about the basic components of a structured cabling system. One of
the most visible of these components is the wall plate (also called a workstation outlet or station
outlet because it is usually placed near a workstation). As its name suggests, a wall plate is a flat
plastic or metal plate that usually mounts in or on a wall (although some “wall” plates actually are
mounted in floors and ceilings). Wall plates include one or more jacks. A jack is the connector
outlet in the wall plate that allows a workstation to make a physical and electrical connection to
the network cabling system. Jack and outlet are often used interchangeably.
I
Wall plates come in many different styles, types, brands, and yes, even colors (in case you
want to color-coordinate your wiring system). In this chapter, you will learn about the different
types of wall plates available and their associated installation issues.
WARNING
The National Electrical Code dictates how various types of wiring (including power and telecommunications wiring) must be installed, but be aware that NEC compliance varies from state to
state. The NEC code requirements given in this chapter should be verified against your local
code requirements before you do any structured cable-system design or installation.
Wall-Plate Design and Installation Issues
When you plan your cabling-system installation, you must be aware of a few wall-plate installation issues to make the most efficient installation. The majority of these installation issues come
from compliance with the ANSI/TIA/EIA-570-A (for residential) and ANSI/TIA/EIA-568-B
(for commercial installations) telecommunications Standards. You’ll have to make certain choices
about how best to conform to these Standards based on the type of installation you are doing.
These choices will dictate the different steps you’ll need to take during the installation of the different kinds of wall plates.
The main design and installation issues you must deal with for wall plates are as follows:
●
Manufacturer system
●
Wall-plate location
●
Wall-plate mounting system
●
Fixed-design or modular plate
In this section, you will learn what each of these installation issues is and how each will affect
your cabling-system installation.
Manufacturer System
There is no “universal” wall plate. Hundreds of different wall plates are available, each with its
design merits and drawbacks. It would be next to impossible to detail every type of manufacturer and wall plate, so in this chapter we’ll just give a few examples of the most popular types.
Wall-Plate Design and Installation Issues
281
The most important thing to remember about using a particular manufacturer’s wall-plate system in your structured-cabling system is that it is a system. Each component in a wall-plate system
is designed to work with the other components and, generally speaking, can’t be used with components from other systems. A wall-plate system consists of a wall plate and its associated jacks.
When designing your cabling system, you must choose the manufacturer and wall-plate system
that best suits your needs.
Wall-Plate Location
When installing wall plates, you must decide the best location on the wall. Obviously, the wall
plate should be fairly near the workstation, and in fact, the ANSI/-TIA/EIA-568-B Standard says
that the maximum length from the workstation to the wall-plate patch cable can be no longer
than 5 meters (16 feet). This short distance will affect exactly where you place your wall plate in
your design. If you already have your office laid out, you will have to locate the wall plates as close
as possible to the workstations so that your wiring system will conform to the Standard.
Additionally, you want to keep wall plates away from any source of direct heat that could
damage the connector or reduce its efficiency. In other words, don’t place a wall plate directly
above a floor heating register or baseboard heater.
A few guidelines exist for where to put your wall plates on a wall for code compliance and the
most trouble-free installation. You must account for the vertical and horizontal positions of the
wall plate. Both positions have implications, and you must understand them before you design
your cabling system. We’ll examine the vertical placement first.
Vertical Position
When deciding the vertical position of your wall plates, you must take into account either the
residential or commercial National Electrical Code (NEC) sections. Obviously, which section
you go by depends on whether you are performing a residential or commercial installation.
In residential installations, you have some flexibility. You can place a wall plate in almost any
vertical position on a wall, but the NEC suggests that you place it so that the top of the plate
is no more than 18 inches from the subfloor (the same distance as electrical outlets). If the wall
plate is to service a countertop or a wall phone, the top of the plate should be no more than 48
inches from the subfloor. These vertical location requirements are illustrated in Figure 8.1.
NOTE
The vertical heights may be adjusted, if necessary, for elderly or handicapped occupants,
according to the Americans with Disabilities Act (ADA) guidelines.
TIP
Remember that the vertical heights may vary from city to city and from residential to commercial electrical codes.
282
Chapter 8 • Wall Plates
Horizontal Position
Wall plates should be placed horizontally so that they are as close as possible to work-area
equipment (computers, phones, etc.). In fact, the ANSI/TIA/EIA-568-B Standard requires
that work-area cables should not exceed 5 meters (16 feet). Wall plates should be spaced so that
they are within 5 meters of any possible workstation location. So you will have to know where
the furniture is in a room before you can decide where to put the wall plates for the network
and phone. Figure 8.2 illustrates this horizontal-position requirement.
TIP
When placing telecommunications outlets, consider adding more than one per room to
accommodate for rearrangement of the furniture. It usually helps to “mirror” the opposing
wall-outlet layout (i.e., north-south and east-west walls will be mirror images of each other
with respect to their outlet layout).
FIGURE 8.1
Wall-plate vertical
location
48 in.
18 in.
FIGURE 8.2
Horizontal wall-plate
placement
Max distance: 6m (20 ft.)
Patch cable no more
than 5m (16 feet) long
Wall-Plate Design and Installation Issues
283
Another horizontal-position factor to take into account is the proximity to electrical fixtures.
Data-communications wall plates and wall boxes cannot be located in the same stud cavity as
electrical wall boxes when the electrical wire is not encased in metal conduit. (A stud cavity is
the space between the two vertical wood or metal studs and the drywall or wallboard attached
to those studs.)
The stud-cavity rule primarily applies to residential telecommunications wiring as per the
ANSI/TIA/EIA-570-A Standard. The requirement, as illustrated in Figure 8.3, keeps stray electrical signals from interfering with communications signals. Notice that even though the electrical outlets are near the communications outlets, they are never in the same stud cavity.
Wall-Plate Mounting System
Another decision you must make regarding your wall plates is how you will mount them to the
wall. Three main systems, each with their own unique applications, are used to attach wall
plates to a wall:
●
Outlet boxes
●
Cut-in plates
●
Surface-mount outlet boxes
FIGURE 8.3
Placing telecommunications outlets and
electrical wall boxes in
different stud cavities
Notice that telecom outlet and
electrical outlets are located
in separate stud cavities.
Electrical
outlet
Telecom
outlet
284
Chapter 8 • Wall Plates
The following sections describe each of these mounting systems and their various applications.
Outlet Boxes
The most common wall-plate mounting in commercial applications is the outlet box, which is
simply a plastic or metal box attached to a stud in a wall cavity. Outlet boxes have screw holes
in them that allow a wall plate to be attached. Additionally, they usually have some provision
(either nails or screws) that allows them to be attached to a stud. These outlet boxes, as their
name suggests, are primarily used for electrical outlets, but they can also be used for telecommunications wiring because the wall plates share the same dimensions and mountings.
Plastic boxes are cheaper than metal ones and are usually found in residential or light commercial installations. Metal boxes are typically found in commercial applications and usually
use a conduit of some kind to carry electrical or data cabling. Which you choose depends on
the type of installation you are doing. Plastic boxes are fine for simple, residential Category 3
copper installations. However, if you want to install Category 5, 5e, or higher, you must be
extremely careful with the wire so that you don’t kink it or make any sharp bends in it. Also, if
you run your network cable before the drywall is installed (and in residential wiring with plastic
boxes, you almost always have to), it is likely that during the drywall installation the wires could
be punctured or stripped. Open-backed boxes are often installed to avoid bend-radius problems and to allow cable to be pushed back into the cavity and out of reach of the dry-wall
installers’ tools. If you can’t find open-backed boxes, buy plastic boxes and cut the backs off
with a saw.
Metal boxes can have the same problems, but these problems are minimized if the metal
boxes are used with conduit—that is, a plastic or metal pipe that attaches to the box. In commercial installations, a metal box to be used for telecommunications wiring is attached to a
stud. Conduit is run from the box to a 45-degree elbow that terminates in the airspace above
a dropped ceiling. This installation technique is the most common wiring method in new commercial construction and is illustrated in Figure 8.4. This method allows you to run the telecommunications wire after the wallboard and ceiling have been installed, thus minimizing the
chance of damage to the cable.
Cut-In Mounting
Outlet boxes work well as wall-plate supports when you are able to access the studs during the
construction of a building. But what type of wall-plate mounting system do you use once the
drywall is in place and you need to put a wall plate on that wall? Use some kind of cut-in mounting hardware (also called remodeling or retrofit hardware), so named because you cut a hole in
the drywall and place into it some kind of mounting box or plate that will support the wall plate.
This type of mounting is used when you need to run a cable into a particular stud cavity of a
finished wall.
Wall-Plate Design and Installation Issues
285
Cut-in mountings fall into two different types: remodel boxes and cover-plate mounting brackets.
Remodel Boxes
Remodel boxes are simply plastic or metal boxes that mount to the hole in the drywall using
screws or special friction fasteners. The main difference between remodel boxes and regular
outlet boxes is that remodel boxes are slightly smaller and can only be mounted in existing
walls. Some examples of remodel boxes are shown in Figure 8.5.
FIGURE 8.4
A common metal box
with conduit, in a commercial installation
Wall
cavity
Drop ceiling
Metal conduit
Metal outlet box
FIGURE 8.5
Examples of common
remodel boxes
286
Chapter 8 • Wall Plates
Installing a remodel box so that you can use it for data cabling is simple. Just follow these steps:
1. Using the guidelines discussed earlier in this chapter, determine the location of the new
cabling wall plate. With a pencil, mark a line indicating the location for the top of the box.
2. Using the hole template provided with the box, trace the outline of the hole to be cut onto
the wall with a pencil or marker, keeping the top of the hole aligned with the mark you
made in step 1. If no template is provided, use the box as a template by flipping the box over
so the face is against the wall and tracing around the box.
3. Using a drywall keyhole saw, cut out a hole, following the lines drawn using the template.
4. Insert the remodel box into the hole you just cut. If the box won’t go in easily, trim the sides
of the hole with a razor blade or utility knife.
5. Secure the box by either screwing the box to the drywall or by using the friction tabs. To
use the friction tabs (if your box has them), just turn the screw attached to the tabs until the
tabs are secured against the drywall.
Cover-Plate Mounting Brackets
The other type of cut-in mounting device for data cabling is the cover-plate mounting bracket.
Also called a cheater bracket, this mounting bracket allows you to mount a wall plate directly to
the wallboard without installing an outlet box. Figure 8.6 shows some examples of preinstalled
cover-plate mounting brackets.
FIGURE 8.6
Cover-plate mounting
bracket examples
Wall-Plate Design and Installation Issues
287
These brackets are usually made of steel or aluminum and contain flexible tabs that you push
into a precut hole in the drywall. The tabs fold over into the hole and hold the bracket securely
to the drywall. Additionally, some brackets allow you to put a screw through both the front and
the tabs on the back, thus increasing the bracket’s hold on the drywall. Plastic models are
becoming popular as well; these use tabs or ears that you turn to grip the drywall. Some also
have ratchet-type gripping devices.
Figure 8.7 shows a cover-plate mounting bracket installed in a wall ready to accept a wall
plate. Once the mounting bracket is installed, the data cable(s) can be pulled through the wall
and terminated at the jacks for the wall plate, and the wall plate can be mounted to the bracket.
Surface-Mount Outlet Boxes
The final type of wall-plate mounting system is the surface-mount outlet box, which is used
where it is not easy or possible to run the cable inside the wall (in concrete, mortar, or brick
walls, for example). Cable is run in a surface-mount raceway (a round or flat conduit) to an outlet box mounted (either by adhesive or screws) on the surface of the wall. This arrangement is
shown in Figure 8.8.
The positive side to surface-mount outlet boxes is their flexibility—they can be placed just
about anywhere. The downside is their appearance. Surface-mount installations, even when
performed with the utmost care and workmanship, still look cheap and inelegant. But sometimes they are the only choice.
Fixed-Design or Modular Plate
Another design and installation decision you have to make is whether to use fixed-design or modular wall plates. Fixed-design wall plates (as shown in Figure 8.9) have multiple jacks, but the
jacks are molded as part of the wall plate. You cannot remove the jack and replace it with a different type of connector.
FIGURE 8.7
An installed
cover-plate
mounting bracket
288
Chapter 8 • Wall Plates
FIGURE 8.8
A surface-mount outlet
box and conduit
Conduit
raceway
FIGURE 8.9
A fixed-design
wall plate
Fixed-design plates are usually used in telephone applications rather than LAN wiring applications because, although they are cheap, they have limited flexibility. Fixed-design plates have
a couple of advantages and disadvantages (as shown in Table 8.1).
T A B L E 8 . 1 Advantages and Disadvantages of Fixed-Design Wall Plates
Advantages
Disadvantages
Inexpensive
Configuration cannot be changed
Simple to install
Usually not compatible with high-speed networking systems
Modular wall plates, on the other hand, are generic and have multiple jack locations (as
shown in Figure 8.10). In a modular wall plate system, this plate is known as a faceplate (it’s not
a wall plate until it has its jacks installed). Jacks for each faceplate are purchased separately from
the wall plates.
TIP
When using modular wall plates, make sure to use the jacks designed for that wall-plate system. Generally speaking, jacks from different wall-plate systems are not interchangeable.
Fixed-Design Wall Plates
FIGURE 8.10
Modular wall plates
with multiple jack
locations
289
Modular wall plates
You will learn more about these types of wall plates in the next sections.
Fixed-Design Wall Plates
A fixed-design wall plate cannot have its jack configuration changed. In this type of wall plate,
the jack configuration is determined at the factory, and the jacks are molded as part of the plate
assembly.
You must understand a few issues before choosing a particular fixed-design wall plate for
your cabling installation, including the following:
●
Number of jacks
●
Types of jacks
●
Labeling
Number of Jacks
Because fixed-design wall plates have their jacks molded into the faceplate assembly, the number of jacks that can fit into the faceplate is limited. It is very unusual to find a fixed-design faceplate with more than two jacks (they are usually in an over-under configuration, with one jack
above the other). Additionally, most fixed-design wall plates are for UTP or coaxial copper
cable only; very few fiber-optic fixed-design wall plates are available. Figure 8.11 shows some
examples of fixed-design wall plates with various numbers of sockets.
290
Chapter 8 • Wall Plates
FIGURE 8.11
Fixed-design wall
plates with varying
numbers of sockets
FIGURE 8.12
Fixed-design plates
with a single RJ-11 or
RJ-45 jack
Types of Jacks
Fixed-design wall plates can accommodate many different types of jacks for different types of
data-communications media. However, you cannot change a wall plate’s configuration once it
is in place; instead, you must install a completely new wall plate with a different configuration.
The most common configuration of a fixed-design wall plate is the single six-position (RJ-11)
or eight-position (RJ-45) jack (as shown in Figure 8.12), which is most often used for home or
office telephone connections. This type of wall plate can be found in your local hardware store
or home center.
WARNING
Fixed-design wall plates that have eight-position jacks must be carefully checked to see if
they are data-capable. We know of retail outlets that claim their eight-position, fixed-design
wall plates are “CAT 5” compliant. They’re not. They use screw terminals instead of 110type IDC connections. If it’s got screws, folks, it ain’t CAT 5.
Other types of fixed-design wall plates can include any combination of socket connectors,
based on market demand and the whims of the manufacturer. Some of the connector combinations commonly found are as follows:
●
Single RJ-11 type
●
Single RJ-45 type
Modular Wall Plates
●
Single coax (TV cable)
●
Single BNC
●
Dual RJ-11 type
●
Dual RJ-45 type
●
Single RJ-11 type, single RJ-45 type
●
Single RJ-11 type, single coax (TV cable)
●
Single RJ-45 type, single BNC
291
Labeling
Not all wall-plate connectors are labeled. Most fixed-design wall plates don’t have special preparations for labeling (unlike modular plates). However, that doesn’t mean it isn’t important to
label each connection; on the contrary, it is extremely important so that you can tell which connection is which (extremely useful when troubleshooting). Additionally, some jacks, though
they look the same, may serve a completely different purpose. For example, RJ-45 jacks can be
used for both PBX telephone and Ethernet networking, so it’s helpful to label which is which
if a fixed-design plate has two RJ-45 jacks.
For these reasons, structured-cabling manufacturers have come up with different methods of
labeling fixed-design wall plates. The most popular method is using adhesive-backed stickers
or labels of some kind. There are alphanumeric labels (e.g., LAN and Phone) as well as icon
labels with pictures of computers for LAN ports and pictures of telephones for telephone ports.
Instead of printed labels, sometimes the manufacturer will mold the labels or icons directly into
the wall plate.
Modular Wall Plates
Modular wall plates have individual components that can be installed in varying configurations
depending on your cabling needs. The wall plates come with openings into which you install
the type of jack you want. For example, when you have a cabling-design need for a wall plate
that can have three RJ-45 jacks in one configuration and one RJ-45 jack and two fiber-optic
jacks in another configuration, the modular wall plate fills that design need very nicely.
Just like fixed-design wall plates, modular wall plates have their own design and installation
issues, including:
●
Number of jacks
●
Wall-plate jack considerations
●
Labeling
292
Chapter 8 • Wall Plates
FIGURE 8.13
Single- and doublegang wall plates
Single gang
Double gang
Number of Jacks
The first decision you must make when using modular wall plates is how many jacks you want
in each wall plate. Each opening in the wall plate can hold a different type of jack for a different
type of cable media, if necessary. The ANSI/TIA/EIA-568-B Standard recommends, at minimum, two jacks for each work-area wall plate. These jacks can be either side by side or over
and under, but they should be in the same wall plate. Additionally, each jack must be served by
its own cable, and at least one of those should be a four-pair, 100-ohm, UTP cable.
The number of jacks a plate can have is based on the size of the plate. Fixed-design wall plates
mainly come in one size. Modular plates come in a couple of different sizes. The smallest size
is single-gang, which measures 4.5 inches high and 2.75 inches wide. The next largest size is
called double-gang, which measures 4.5 by 4.5 inches (the same height as single-gang plates but
almost twice as wide). There are triple- and quad-gang plates, but they are not used as often as
single- and double-gang plates. Figure 8.13 shows the difference between a single- and doublegang wall plate.
Each manufacturer has different guidelines about how many openings for jacks fit into each
type of wall plate. Most manufacturers, however, agree that six jacks are the most you can fit
into a single-gang wall plate.
With the advent of technology and applications, such as videoconferencing and fiber to the
desktop, users need more jacks and different types of cabling brought to the desktop. You can
bring Category 3, Category 5e or Category 6, fiber-optic, and coaxial cable all to the desktop
for voice, data, and video with 6-, 12- and 16-jack wall plates.
Wall-Plate Jack Considerations
Modular wall plates are the most common type of wall plate in use for data cabling because they
meet the various TIA/EIA and NEC Standards and codes for quality data-communications
Modular Wall Plates
293
cabling. So modular wall plates have the widest variety of jack types available. All the jacks
available today differ based on a few parameters, including the following:
●
Wall-plate system type
●
Cable connection
●
Jack orientation
●
ANSI/TIA/EIA-568-B wiring pattern
Wall-Plate System Type
Remember how the type of wall plate you use dictates the type of jacks for that wall plate? Well,
logically, the reverse is true . The interlocking system that holds the jack in place in the wall
plate differs from brand to brand. So, when you pick a certain brand and manufacturer for a
jack, you must use the same brand and manufacturer of wall plate.
Cable Connection
Jacks for modern communication applications use insulation displacement connectors (IDCs),
which have small metal teeth or pins in the connector that press into the individual wires of a
UTP cable (or the wires are pressed into the teeth). The teeth puncture the outer insulation of
the individual wires and make contact with the conductor inside, thus making a connection.
This process (known as crimping or punching down, depending on the method or tool used) is
illustrated in Figure 8.14.
FIGURE 8.14
CUT
Using insulation
displacement
connectors (IDCs)
294
Chapter 8 • Wall Plates
Though they may differ in methods, any connector that uses some piece of metal to puncture
through the insulation of a strand of copper cable is an IDC connector.
Jack Orientation
Yes, jack orientation. The individual wall-plate systems use many different types of jacks, and some
of those systems use jacks with positions other than straight ahead (which is the “standard” configuration). These days, a popular configuration is a jack that’s angled approximately 45 degrees down.
There are many reasons that this jack became popular. Because it’s angled, the cable-connect takes
up less room (which is nice when a desk is pushed up tight against the wall plate). The angled connector works well in installations with high dust content because it’s harder for dust to rest inside
the connector. It is especially beneficial in fiber-to-the-desk applications because it avoids damage
to the fiber-optic patch cord by greatly reducing the bend radius of the cable when the cable is
plugged in. Figure 8.15 shows an example of an angled connector.
NOTE
Angled connectors are found in many different types of cabling installations, including
ScTP, UTP, and fiber optic.
Wiring Pattern
When connecting copper RJ-45 jacks for universal applications (according to the Standard, of
course), you must wire all jacks and patch points according to either the T568-A or T568-B
pattern. Figure 8.16 shows one side of a common snap-in jack to illustrate that the same jack
can be terminated with either T568-A or T568-B color coding. (You may want to see the color
version of this figure in the color section.) By comparing Tables 8.2 and 8.3, you can see that
the wiring schemes are different only in that the positions of pairs 2 and 3, white/orange and
white/green, respectively, are switched. If your company has a standard wiring pattern and you
wire a single jack with the opposing standard, that particular jack will not be able to communicate with the rest of the network.
FIGURE 8.15
A faceplate with angled RJ-45 and coaxial
connectors
Modular Wall Plates
295
FIGURE 8.16
A common snap-in jack
showing both T568-A
and T568-B wiring
schemes
Pin number
B
7
8
3
6
A
Color code for
T568-A and B wiring
Table 8.2 shows the wiring color scheme for the T568-A pattern. Notice how the wires are
paired and which color goes to which pin. Table 8.3 shows the same for T568-B.
T A B L E 8 . 2 Wiring Scheme for T568-A
Pin Number
Wire Color
1
White/green
2
Green
3
White/orange
4
Blue
5
White/blue
6
Orange
7
White/brown
8
Brown
T A B L E 8 . 3 Wiring Scheme for T568-B
Pin Number
Wire Color
1
White/orange
2
Orange
3
White/green
4
Blue
5
White/blue
6
Green
7
White/brown
8
Brown
296
Chapter 8 • Wall Plates
Labeling
Just like fixed-design wall plates, modular wall plates use labels to differentiate the different
jacks by their purpose. In fact, modular wall plates have the widest variety of labels—every
modular wall-plate manufacturer seems to pride itself on its varied colors and styles of labeling.
However, as with fixed-design plates, the labels are either text (e.g., LAN, Phone) or pictures of
their intended use, perhaps permanently molded in the plate or on the jack.
Biscuit Jacks
No discussion of wall plates would be complete without a discussion of biscuit jacks, or surfacemount jacks that look like small biscuits (see Figure 8.17). They were originally used in residential and light commercial installations for telephone applications. In fact, you may have
some in your home if it was built before 1975. David’s house was built in the 1920s, so when
he bought it, the house was lousy with them. When he remodeled , he removed all the biscuit
jacks, installed wall boxes in all the rooms, ran UTP and coaxial cable to all those boxes, and
installed modular wall plates, including two RJ-45s and one TV cable jack. Biscuit jacks are still
used when adding phone lines in residences, especially when people can’t put a hole in the wall
where they want the phone jack to go.
FIGURE 8.17
An example of a
biscuit jack
Advantages of Biscuit Jacks
297
Types of Biscuit Jacks
The many different types of biscuit jacks differ primarily by size and number of jacks they can
support. The smaller type measures 2.25 inches wide by 2.5 inches high and is mainly used for
residential-telephone applications. The smaller size can generally support up to a maximum of
two jacks.
The larger-sized biscuit jacks are sometimes referred to as simply surface-mount boxes because
they don’t have the shape of the smaller biscuit jacks. These surface-mount boxes are primarily
used for data-communications applications and come in a variety of sizes. They also can have
any number or type of jacks and are generally modular. Figure 8.18 shows an example of a
larger biscuit jack that is commonly used in surface-mount applications.
NOTE
Generally speaking, the smaller biscuit jacks are not rated for Category 5 (or any higher categories). They must be specifically designed for a Category 5 application. Some companies
offer a modular-design biscuit jack that lets you snap in high-performance, RJ-45-type jacks
for Category 5 and better compliance.
Advantages of Biscuit Jacks
Biscuit jacks offer a few advantages in your structured-cabling design. First of all, they are very
inexpensive compared to other types of surface-mount wiring systems, which is why many
houses that had the old four-pin telephone systems now have biscuit jacks—you could buy 20
of them for around $30. Even the biscuits that support multiple jacks are still fairly inexpensive.
Another advantage of biscuit jacks is their ability to work in situations where standard modular or fixed-design wall plates won’t work and other types of surface-mount wiring are too
bulky. The best example of this is office cubicles (i.e., modular furniture). A biscuit jack has an
adhesive tab on the back that allows it to be mounted anywhere, so you can run a telephone or
data cable to a biscuit jack and mount it under the desk where it will be out of the way.
FIGURE 8.18
Example of a larger
biscuit jack
298
Chapter 8 • Wall Plates
Finally, biscuit jacks are easy to install. The cover is removed with one screw. Inside many of
the biscuit jacks are screw terminals (one per pin in each jack), as shown in Figure 8.19. To
install the jack, strip the insulation from each conductor and wrap it clockwise around the terminal and between the washers and tighten the screw. Repeat this process for each conductor
in the cable. These jacks are not high-speed data compatible and are capable of Category 3 performance at best.
NOTE
Not all biscuit jacks use screw terminals. The more modern data-communications jacks use
IDC connectors to attach the wire to the jack.
Disadvantages of Biscuit Jacks
The main disadvantage to biscuit jacks is that the older biscuit jacks are not rated for highspeed data communications. Notice the bunch of screw terminals in the biscuit jack shown in
Figure 8.19. When a conductor is wrapped around these terminals, it is exposed to stray electromagnetic interference (EMI) and other interference, which reduces the effective ability of
this type of jack to carry data. At most, the older biscuit jacks with the screw terminals can be
rated as Category 3 and are not suitable for the 100Mbps and faster communications today’s
wiring systems must be able to carry.
FIGURE 8.19
Screw terminals inside
a biscuit jack
Screw terminals
Chapter 9
Connectors
• Twisted-Pair Cable Connectors
• Coaxial Cable Connectors
• Fiber-Optic Cable Connectors
300
Chapter 9 • Connectors
ave you ever wired a cable directly into a piece of hardware? Some equipment in years past
provided terminals or termination blocks so that cable could be wired directly into a direct
component. In modern times, this is considered bad; it is fundamentally against the precepts
of a structured cabling system to attach directly to active electronic components, either at the
workstation or in the equipment closet. On the ends of the cable you install, something must
provide access and transition for attachment to system electronics. Thus, you have connectors.
H
Connectors generally have a male component and a female component, except in the case of
hermaphroditic connectors such as the IBM data connector. Usually jacks and plugs are symmetrically shaped, but sometimes they are keyed. This means that they have a unique, asymmetric shape or some system of pins, tabs, and slots that ensure that the plug can be inserted
only one way in the jack. This chapter covers many of the connector types you will encounter
when working with structured cabling systems.
Twisted-Pair Cable Connectors
Many people in the cabling business use twisted-pair connectors more than any other type of
connector. The connectors include the modular RJ types of jacks and plugs and the hermaphroditic connector employed by IBM that is used with shielded twisted-pair cabling.
Almost as important as the cable connector is the connector used with patch panels, punchdown blocks, and wall plates; this connector is called an IDC or insulation displacement connector.
Patch-Panel Terminations
Most unshielded twisted-pair (UTP) and screened twisted-pair (ScTP)cable installations use patch
panels and, consequently, 110-style termination blocks. The 110-block (shown in Figure 9.1) contains rows of specially designed slots in which the cables are terminated using a punch-down tool.
Patch panels and 110-blocks are described in more detail in Chapter 5 and Chapter 7.
When terminating 66-blocks, 110-blocks, and often, wall plates, both UTP and ScTP connectors use IDC (insulation displacement connector) technology to establish contact with the
copper conductors. You don’t strip the wire insulation off the conductor as you would with a
screw-down connection. Instead, you force the conductor either between facing blades or onto
points that pierce the plastic insulation and make contact with the conductor.
Solid versus Stranded Conductor Cables
UTP and ScTP cables have either solid copper conductors or conductors made of several tiny
strands of copper. Solid conductors are very stable geometrically and, therefore, electrically
superior, but they will break if flexed very often. Stranded conductors are very flexible and
resistant to bend-fatigue breaks, but their cross-sectional geometry changes as they are moved,
and this can contribute to electrical anomalies. Stranded cables also have a higher attenuation
(signal loss) than solid-conductor cables.
Twisted-Pair Cable Connectors
301
FIGURE 9.1
An S-110-block with
wire management
(Photo courtesy of The
Siemon Company)
NOTE
Solid-conductor cables are usually used in backbone and horizontal cabling where, once
installed, there won’t be much movement. Stranded-conductor cables are used in patch
cords, where their flexibility is desirable and their typically short lengths mitigate transmission problems.
The differences in conductors mean a difference in IDC types. You have to be careful when
you purchase plugs, wall plates, and patch panels because they won’t work interchangeably
with solid- and stranded-core cables because the blade designs are different.
WARNING
Using the wrong type of cable/connector combination can be a major source of flaky and
intermittent connection errors after your system is running.
With a solid-conductor IDC, you are usually forcing the conductor between two blades that
form a V-shaped notch. The blades slice through the plastic and into the copper conductor,
gripping it and holding it in place. This makes a very reliable electrical contact. If you force a
stranded conductor into this same opening, contact may still be made. But, because one of the
features of a stranded design is that the individual copper filaments can move (this provides the
flexibility), they will sort of mush into an elongated shape in the V. Electrical contact may still
be made, but the grip on the conductor is not secure and often becomes loose over time.
The blade design of IDC connectors intended for stranded-core conductors is such that forcing a solid-core conductor onto the IDC connector can break the conductor or miss contact
entirely. Broken conductors can be especially problematic because the two halves of the break
302
Chapter 9 • Connectors
can be close enough together that contact is made when the temperature is warm, but the conductor may contract enough to cause an open condition when cold.
Some manufacturers of plugs advertise that their IDC connectors are universal and may be
used with either solid or stranded conductors. Try them if you like, but if you have problems,
switch to a plug specifically for the type of cable you are using.
Jacks and termination blocks are almost exclusively solid-conductor devices. You should
never punch down on a 66, 110, or modular jack with stranded conductors.
Modular Jacks and Plugs
Twisted-pair cables are most commonly available as UTP, but occasionally, a customer or
environmental circumstances may require that ScTP cable be installed. In an ScTP cable, the
individual twisted pairs are not shielded, but all the pairs collectively have a thin shield around
the shield of foil around them. Both UTP and ScTP cables use modular jacks and plugs. For
decades, modular jacks have been commonplace in the home for telephone wiring.
Modular connectors come in four-, six-, and eight-position configurations. The number of
positions defines the width of the connector. However, many times only some of the positions
have metal contacts installed. Make sure that the connectors you purchase are properly populated with contacts for your application. Commercial-grade jacks are made to snap into modular cutouts in faceplates. (More information is available on modular wall plates in Chapter 8.)
This gives you the flexibility of using the faceplate for voice, data, coax, and fiber connections,
or combinations thereof. Figure 9.2 shows a modular plug, and Figure 9.3 shows the modular
jack used for UTP. Figure 9.4 shows a modular jack for ScTP cables. Note the metal shield
around the jack; it is designed to help reduce both EMI emissions and interference from outside sources, but it must be connected properly to the cable shield to be effective.
FIGURE 9.2
An eight-position
modular plug for
UTP cable
Cable
Clip
Twisted-Pair Cable Connectors
303
FIGURE 9.3
An eight-position
modular jack for
UTP cable
FIGURE 9.4
An eight-position
modular jack for
ScTP cable
Metal shield
NOTE
The quality of plugs and jacks varies widely. Make sure that you use plugs and jacks that
are rated to the category of cabling you purchase.
Though the correct name is modular jack, they are commonly referred to as RJ-type connectors
(e.g., RJ-45). The RJ (registered jack) prefix is one of the most commonly (and incorrectly)
used prefixes in the computer industry; nearly everyone, including people working for cabling
companies, is guilty of referring to an eight-position modular jack (sometimes called an 8P8C)
as an RJ-45. Bell Telephone originated the RJ prefix and the Universal Service Order Code
(USOC) to indicate to telephone technicians what type of service was to be installed and the
wiring pattern of the jack. Since the breakup of AT&T and the divestiture of the Regional Bell
Operating Companies, registered has lost most of its meaning. However, the FCC has codified
a number of RJ-type connectors and detailed the designations and pinout configurations in
FCC Part 68, Subpart F, Section 68.502. Table 9.1 shows some of the common modular-jack
configurations.
304
Chapter 9 • Connectors
T A B L E 9 . 1 Common Modular-Jack Designations and Their Configuration
NOTE
Designation
Positions
Contacts
Used For
Wiring Pattern
RJ-11
6
2
Single-line telephones
USOC
RJ-14
6
4
Single- or dual-line
telephones
USOC
RJ-22
4
4
Phone-cord handsets
USOC
RJ-25
6
6
Single-, dual-, or triple-line
telephones
USOC
RJ-31
8
4
Security and fire alarm
See note
RJ-45
8
8
Data (10Base-T, 100BaseTX, etc.)
T568A or T568B
RJ-48
8
4
1.544Mbps (T1)
connections
System dependent
RJ-61
8
8
Single- through quad-line
telephones
USOC
The RJ-31 connection is not specifically a LAN or phone-service jack. It’s used for remote
monitoring of a secured installation via the phone lines. The monitoring company needs
first access to the incoming phone line in case of a security breach. (An intruder then
couldn’t just pick up a phone extension and interrupt the security-alert call.) USOC, T568A,
or T568B wiring configuration schemes will all work with an RJ-31, but additional shorting
circuitry is needed, which is built into the modules that use RJ-31 jacks.
The standard six- and eight-position modular jacks are not the only ones that you may find
in use. Digital Equipment Corporation designed its own six-position modular jack called the
MMJ (modified modular jack). The MMJ moved the clip portion of the jack to the right to reduce
the likelihood that phone equipment would accidentally be connected to a data jack. The MMJ
and DEC’s wiring scheme for it are shown in Figure 9.5. Although the MMJ is not as common
as standard six-position modular connectors (a.k.a. RJ-11) are, the displaced clip connector on
the MMJ, when combined with the use of plugs called the MMP (modified modular plug), certainly helps reduce accidental connections by phone or non-DEC equipment.
Another connector type that may occasionally be lumped in the category of eight-position
modular-jack architecture is called the eight-position keyed modular jack (see Figure 9.6). This
jack has a key slot on the right side of the connector. The keyed slot serves the same purpose
as the DEC MMJ when used with keyed plugs; it prevents the accidental connection of equipment that should be not be connected to a particular jack.
Twisted-Pair Cable Connectors
FIGURE 9.5
The DEC MMJ jack and
wiring scheme
Pair 3
Pair Pair
1
2
1 2 3 4 5 6
T R T T R R
Note the displaced
clip position.
Six-position
DEC MMJ
FIGURE 9.6
The eight-position
keyed modular jack
Any wiring pattern can be used.
12345678
Key slot
Eight-position keyed
Can a Six-Position Plug Be Used with an Eight-Position Modular Jack?
The answer is maybe. First, consider how many of the pairs of wires the application requires.
If the application requires all eight pairs, or if it requires the use of pins 1 and 8 on the modular jack, then it will not work.
Further, repeated inserting and extracting of a six-position modular plug into and from an
eight-position modular jack may eventually damage pins 1 and 8 in the jack.
305
306
Chapter 9 • Connectors
Determining the Pin Numbers
Which one is pin or position number 1? When you start terminating wall plates or modular
jacks, you will need to know.
Wall-plate jacks usually have a printed circuit board that identifies exactly which IDC connector
you should place each wire into. However, to identify the pins on a jack, hold the jack so that
you are facing the side that the modular plug connects to. Make sure that the clip position is
facing down. Pin 1 will be on the left-most side, and pin 8 will be on the right-most side.
View with clip side down.
Pin 1 is on the left.
12345678
Eight-position
For modular plugs, hold the plug so that the portion that connects to a wall plate or network
equipment is facing away from you. The clip should be facing down and you should be looking
down at the connector. Pin 1 is the left-most pin, and thus pin 8 will be the right-most pin.
Hold clip side down.
Pin 1 is on the left.
1 2 3 4 5 6 7 8
Unshielded twisted-pair cable
Twisted-Pair Cable Connectors
307
Wiring Schemes
The wiring scheme (also called the pinout scheme, pattern, or configuration) that you choose indicates in what order the color-coded wires will be connected to the jacks. These schemes are an
important part of standardization of a cabling system. Almost all UTP cabling uses the same
color-coded wiring schemes for cables; the color-coding scheme uses a solid color conductor,
and it has a mate that is white with a stripe or band the same color as its solid-colored mate. The
orange pair, for example, is often called “orange and white/orange.” Table 9.2 shows the color
coding and wire-pair numbers for each color code.
T A B L E 9 . 2 Wire Color Codes and Pair Numbers
NOTE
Pair Number
Color Code
Pair 1
White/blue and blue
Pair 2
White/orange and orange
Pair 3
White/green and green
Pair 4
White/brown and brown
When working with a standardized, structured cabling system, the only wiring patterns you will
need to worry about are the T568A and T568B patterns recognized in the ANSI/TIA/EIA-568-B
Standard.
USOC Wiring Scheme
The Bell Telephone Universal Service Order Code (USOC) wiring scheme is simple and easy
to terminate in up to an eight-position connector; this wiring scheme is shown in Figure 9.7.
The first pair is always terminated on the center two positions. Pair 2 is split and terminated
on each side of pair 1. Pair 3 is split and terminated on each side of pair 2. Pair 4 continues the
pattern; it is split and terminated on either side of pair 3. This pattern is always the same
regardless of the number of contacts you populate. You start in the center and work your way
to the outside, stopping when you reach the maximum number of contacts in the connector.
Tip and Ring Colors
When looking at wiring schemes for modular plugs and jacks, you may see the letters T and
R used, as in Figure 9.7. The T identifies the tip color, and the R identifies the ring color. In
a four-pair cable, the cable pairs are coded in a standard color coding, which is on the insulation of the individual wires. In a four-pair cable, the tip is the wire that is predominantly
white, and the ring identifies the wire that is a predominantly solid color.
308
Chapter 9 • Connectors
FIGURE 9.7
Pair 4
The Universal Service
Order Code (USOC) wiring scheme
Pair 3
Pair 2
Pair 1
1
2
3
W-BR W-G W-O
T
T
T
4
BL
R
5
W-BL
T
6
O
R
7
G
R
8
BR
R
Jack positions
The wire colors and associated pin assignments for USOC look like this:
Pin
1
2
3
4
5
6
7
8
Wire Color
White/brown
White/green
White/orange
Blue
White/blue
Orange
Green
Brown
Twisted-Pair Cable Connectors
WARNING
309
Do not use the USOC wiring scheme for systems that will support data transmission.
USOC is used for analog and digital voice systems but should never be used for data installations. Splitting the pairs can cause a number of transmission problems when used at frequencies greater than those employed by voice systems. These problems include excessive crosstalk,
impedance mismatches, and unacceptable signal-delay differential.
ANSI/TIA/EIA-568-B Wiring Schemes T568A and T568B
ANSI/TIA/EIA-568-B does not sanction the use of the USOC scheme. Instead, two wiring
schemes are specified, both of which are suitable for either voice or high-speed LAN operation. These are designated as T568A and T568B wiring schemes.
Both T568A and T568B are universal in that all LAN systems and most voice systems can
utilize either wiring sequence without system errors. After all, the electrical signal really
doesn’t care if it is running on pair 2 or pair 3, as long as a wire is connected to the pin it needs
to use . The TIA/EIA standard specifies eight-position, eight-contact jacks and plugs and fourpair cables, fully terminated, to facilitate this universality.
The T568B wiring configuration was at one time the most commonly used scheme, especially for commercial installations; it is shown in Figure 9.8. The TIA/EIA adopted the T568B
wiring scheme from the AT&T 258A wiring scheme.
The T568A scheme (shown in Figure 9.9) is well suited to upgrades and new installations in
residences because the wire-termination pattern for pairs 1 and 2 is the same as for USOC.
Unless a waiver is granted, the U.S. government requires all government cabling installations
to use the T568A wiring pattern. The current recommendation according to the Standard is
for all new installations to be wired with the T568A scheme.
The wire colors and the associated pin assignments for the T568B wiring scheme look like this:
Pin
Wire Color
1
White/orange
2
Orange
3
White/green
4
Blue
5
White/blue
6
Green
7
White/brown
8
Brown
310
Chapter 9 • Connectors
FIGURE 9.8
Pair 3
The T568B wiring
pattern
Pair 2
1
W-O
T
2
O
R
Pair 1
3
W-G
T
4
BL
R
5
W-BL
T
Pair 4
6
G
R
7
8
W-BR BR
T
R
Jack positions
The pin assignments for the T568A wiring schemes are identical to the assignments for the
T568B pattern except that wire pairs 2 and 3 are reversed. The T568A pattern looks like this:
Pin
Wire Color
1
White/green
2
Green
3
White/orange
4
Blue
5
White/blue
6
Orange
7
White/brown
8
Brown
Twisted-Pair Cable Connectors
FIGURE 9.9
311
Pair 2
The T568A wiring
pattern
Pair 3
1
W-G
T
2
G
R
Pair 1
3
W-O
T
4
BL
R
5
W-BL
T
Pair 4
6
O
R
7
8
W-BR BR
T
R
Jack positions
Note that when you buy eight-position modular jacks, you may need to specify whether you
want a T568A or T568B scheme because the jacks often have IDC connections on the back
where you punch the pairs down in sequence from 1 to 4. The jacks have an internal PC board
that takes care of all the pair splitting and proper alignment of the cable conductors with the
pins in the jack. Most manufacturers now provide color-coded panels on the jacks that let you
punch down either pinout scheme, eliminating the need for you to specify (and for them to
stock) different jacks depending on which pinout you use.
TIP
Whichever scheme you use, T568A or T568B, you must also use that same scheme for
your patch panels and follow it in any cross-connect blocks you install. Consistency is the
key to a successful installation.
Be aware that modular jacks pretty much look alike even though their performance may differ dramatically. Be sure you also specify the performance level (e.g., Category 3, Category 5e,
Category 6, etc.) when you purchase your jacks.
312
Chapter 9 • Connectors
Tips for Terminating UTP Connectors
Keep the following points in mind when terminating UTP connectors:
●
When connecting to jacks and plugs, do not untwist UTP more than 0.5 inches for Category 5 and 5e and not more than 0.375 inches for Category 6.
●
Always use connectors, wall plates, and patch panels that are compatible (same rating
or higher) with the grade of cable used.
●
To “future-proof” your installation, terminate all four pairs, even if the application
requires only two of the pairs.
●
Remember that the T568A wiring scheme is compatible with USOC wiring schemes that
use pairs 1 and 2.
●
When terminating ScTP cables, always terminate the drain wire on both ends of the
connection.
When working with ScTP wiring, the drain wire makes contact with the cable shield along
its entire length; this provides a ground path for EMI energy that is collected by the foil shield.
When terminating ScTP, the drain wire within the cable is connected to a metal shield on the
jack. This must be done at both ends of the cable. If left floating or if connected only on one
end, instead of providing a barrier to EMI, the cable shield becomes a very effective antenna
for both emitting and receiving stray signals.
In a cable installation that utilizes ScTP, the plugs, patch cords, and patch panels must be
shielded as well.
Other Wiring Schemes
You may come across other wiring schemes, depending on the demands of the networking or
voice application to be used. UTP Token Ring requires that pairs 1 and 2 be wired to the inside
four pins, as shown in Figure 9.10. The T568A, T568B, and USOC wiring schemes can be
used. You can also use a six-position modular jack rather than an eight-position modular jack,
but we recommend against that because your cabling system would not follow the ANSI/TIA/
EIA-568-B Standard.
The ANSI X3T9.5 TP-PMD Standard uses the two outer pairs of the eight-position modular jack; this wiring scheme (shown in Figure 9.11) is used with FDDI over copper and is compatible with both the T568A and T568B wiring patterns.
Twisted-Pair Cable Connectors
FIGURE 9.10
313
Pair 2
The Token Ring wiring
scheme
Pair
1
3456
TRTR
Eight-position modular jack
wired only for Token Ring
(pairs 1 and 2)
If you are wiring a six-position modular jack (RJ-11) for home use, be aware that a few points
are not covered by the ANSI/TIA/EIA-568-B Standard. First, the typical older-design hometelephone cable uses a separate color-coding scheme. The wiring pattern used is the USOC
wiring pattern, but the colors are different. The wiring pattern and colors you might find in a
home telephone cable and RJ-11 are as follows:
Pin Number
Pair Number
Wire Color
1
Pair 3
White
2
Pair 2
Yellow
3
Pair 1
Green
4
Pair 1
Red
5
Pair 2
Black
6
Pair 3
Blue
314
Chapter 9 • Connectors
FIGURE 9.11
The ANSI X3T9.5
TPPMD wiring scheme
Pair 1
Pair 2
12
TR
78
TR
Eight-position modular jack wired
for TP-PMD (ANSI X379.5)
Pins 3 and 4 carry the telephone line. Pair 3 is rarely used in home wiring for RJ-11 jacks.
Splitters are available to split pins 2 and 5 into a separate jack for use with a separate phone line.
WARNING
If you encounter the above color code in your home wiring, its performance is likely Category 3
at best.
Pins Used by Specific Applications
Common networking applications require the use of specific pins in the modular connectors.
The most common of these is 10Base-T and 100Base-TX. Table 9.3 shows the pin assignments and what each pin is used for.
T A B L E 9 . 3 10Base-T and 100Base-TX Pin Assignments
Pin
Usage
1
Transmit +
2
Transmit –
3
Receive +
4
Not used
5
Not used
6
Receive –
7
Not used
8
Not used
Twisted-Pair Cable Connectors
315
Using a Single Horizontal Cable Run for Two 10Base-T Connections
Let’s face it, you will sometimes not run enough cable to a certain room. You will need an extra
workstation in an area, and you won’t have enough connections. Knowing that you have a perfectly good four-pair UTP cable in the wall and only two of those pairs are in use makes your
mood even worse. Modular Y-adapters can come to your rescue.
Several companies make Y-adapters that function as splitters. They take the four pairs of wire
that are wired to the jack and split them off into two separate connections. The Siemon Company makes a variety of modular Y-adapters (see Figure 9.12) for splitting 10Base-T, Token
Ring, and voice applications. This splitter will split the four-pair cable so that it will support
two separate applications, provided that each application requires only two of the pairs. You
must specify the type of splitter you need (voice, 10Base-T, Token Ring, etc.). Don’t forget,
for each horizontal cable run you will be splitting, you will need two of these adapters: one for
the patch-panel side and one for the wall plate.
WARNING
Many cabling professionals are reluctant to use Y-adapters because the high-speed applications such as 10Base-T Ethernet and Token Ring may interfere with one another if they
are operating inside the same sheath. Certainly do not use Y-adapters for applications such
as 100Base-TX. Furthermore, Y-adapters eliminate any chance of migrating to a faster LAN
system that may utilize all four pairs.
FIGURE 9.12
A modular Y-adapter for
splitting a single fourpair cable into a cable
that will support two
separate applications
(Photo courtesy of The
Siemon Company)
316
Chapter 9 • Connectors
Crossover Cables
One of the most frequently asked questions on wiring newsgroups and bulletin boards is “How do
I make a crossover cable?” Computers that are equipped with 10Base-T or 100Base-TX network
adapters can be connected “back-to-back”; this means they do not require a hub to be networked
together. Back-to-back connections via crossover cables are really handy in a small or home office.
Crossover cables are also used to link together two pieces of network equipment (e.g., hubs,
switches, and routers) if the equipment does not have an uplink or crossover port built-in.
A crossover cable is just a patch cord that is wired to a T568A pinout scheme on one end and a
T568B pinout scheme on the other end. To make a crossover cable, you will need a crimping tool,
a couple of eight-position modular plugs (a.k.a. RJ-45 plugs), and the desired length of cable. Cut
and crimp one side of the cable as you would normally, following whichever wiring pattern you
desire, T568A or T568B. When you crimp the other end, just use the other wiring pattern.
WARNING
As mentioned several times elsewhere in this book, we recommend that you buy your patch
cords, either straight through or crossover, instead of making them yourself. Field-terminated patch cords can be time-consuming (i.e., expensive) to make and may result in poor
system performance.
Table 9.4 shows the pairs that cross over. The other two pairs wire straight through.
T A B L E 9 . 4 Crossover Pairs
Side-One Pins
Wire Colors
Side-Two Pins
1 (Transmit +)
White/green
3 (Receive +)
2 (Transmit –)
Green
6 (Receive –)
3 (Receive +)
White/orange
1 (Transmit +)
6 (Receive –)
Orange
2 (Receive –)
Shielded Twisted-Pair Connectors
In the United States, the most common connectors for cables that have individually shielded
pairs in addition to an overall shield are based on a pre-1990 proprietary cabling system specified by IBM. Designed originally to support Token Ring applications using a two-pair cable
(shielded twisted-pair, or STP), the connector is hermaphroditic. In other words, the plug
looks just like the jack, but in mirror image. Each side of the connection has a connector and
a receptacle to accommodate it. Two hermaphroditic connectors are shown in Figure 9.13.
This connector is known by a number of other names, including the STP connector, the IBM
data connector, and the universal data connector.
Coaxial Cable Connectors
317
FIGURE 9.13
Hermaphroditic data
connectors
Four-position data
connectors
The original Token Ring had a maximum throughput of 4Mbps (and later 16Mbps) and was
designed to run over STP cabling. The 16Mbps Token Ring used a 16MHz spectrum to achieve
its throughput. Cables and connectors rated to 20MHz were required to allow the system to
operate reliably, and the original STP hermaphroditic connectors were limited to a 20MHz
bandwidth. Enhancements to these connectors increased the bandwidth limit to 300MHz. These
higher-rated connectors (and cable) are designated as STP-A.
STP connectors are the Jeeps of the connector world. They are large, rugged, and versatile.
Both the cable and connector are enormous compared to four-pair UTP and RJ-type modular
plugs. They also have to be assembled and have more pieces than an Erector set. Cabling contractors used to love the STP connectors because of the premium they could charge based on
the labor required to assemble and terminate them.
Darwinian theory prevailed, however, and now the STP and STP-A connectors are all but
extinct—they’ve been crowded out by the smaller, less expensive, and easier-to-use modular
jack and plug.
Coaxial Cable Connectors
Unless you have operated a 10Base-2 or 10Base-5 Ethernet network, you are probably familiar
only with the coaxial connectors you have in your home for use with televisions and video
equipment. Actually, a number of different types of coaxial connectors exist.
318
Chapter 9 • Connectors
F-Series Coaxial Connectors
The coax connectors used with video equipment are referred to as F-series connectors (shown in
Figure 9.14). The F-connector consists of a ferrule that fits over the outer jacket of the cable and
is crimped in place. The center conductor is allowed to project from the connector and forms the
business end of the plug. A threaded collar on the plug screws down on the jack, forming a solid
connection. F-connectors are used primarily in residential installations for RG-58, RG-59, and
RG-6 coaxial cables to provide CATV, security-camera, and other video service.
F-connectors are commonly available in one-piece and two-piece designs. In the two-piece design,
the ferrule that fits over the cable jacket is a separate sleeve that you slide on before you insert the collar portion on the cable. Experience has shown us that the single-piece design is superior. Fewer parts
usually means less fumbling, and the final crimped connection is both more aesthetically pleasing and
more durable. However, the usability and aesthetics are largely a function of the design and brand of
the two-piece product. Some two-piece designs are very well received by the CATV industry.
A cheaper F-type connector available at some retail outlets attaches to the cable by screwing
the outer ferrule onto the jacket instead of crimping it in place. These are very unreliable and
pull off easily. Their use in residences is not recommended, and they should never be used in
commercial installations.
N-Series Coaxial Connectors
The N-connector is very similar to the F-connector but has the addition of a pin that fits over
the center conductor; the N-connector is shown in Figure 9.15. The pin is suitable for insertion in the jack and must be used if the center conductor is stranded instead of solid. The
assembly is attached to the cable by crimping it in place. A screw-on collar ensures a reliable
connection with the jack. The N-type connector is used with RG-8, RJ-11U, and thicknet
cables for data and video backbone applications.
FIGURE 9.14
The F-type coaxialcable connector
FIGURE 9.15
The N-type coaxial
connector
Coaxial Cable Connectors
319
The BNC Connector
When coaxial cable distributes data in commercial environments, the BNC connector is often
used. BNC stands for Bayonet Niell-Concelman, which describes both the method of securing
the connection and its inventors. Many other expansions of this acronym exist, including British Naval Connector, Bayonet Nut Coupling, Bayonet Navy Connector, and so forth. Used
with RG-6, RG-58A/U thinnet, RG-59, and RG-62 coax, the BNC utilizes a center pin, as in
the N-connector, to accommodate the stranded center conductors usually found in data coax.
The BNC connector (shown in Figure 9.16) can come as a crimp-on or a design that screws
onto the coax jacket. As with the F-connector, the screw-on type is not considered reliable and
should not be used. The rigid pin that goes over the center conductor may require crimping
or soldering in place. The rest of the connector assembly is applied much like an F-connector,
using a crimping die made specifically for a BNC connector.
To secure a connection to the jack, the BNC has a rotating collar with slots cut into it. These
slots fit over combination guide and locking pins on the jack. Lining up the slots with the pins,
you push as you turn the collar in the direction of the slots. The slots are shaped so that the plug
is drawn into the jack, and locking notches at the end of the slot ensure positive contact with
the jack. This method allows quick connection and disconnection while providing a secure
match of plug and jack.
Be aware that you must buy BNC connectors that match the impedance of the coaxial cable
to which they are applied. Most commonly, they are available in 75-ohm and 50-ohm types,
with 93-ohm as a less-used option.
TIP
With all coaxial connectors, be sure to consider the dimensions of the cable you will be using.
Coaxial cables come in a variety of diameters that are a function of their transmission properties, series rating, and number of shields and jackets. Buy connectors that fit your cable.
FIGURE 9.16
The BNC coaxial
connector
Connector
320
Chapter 9 • Connectors
Fiber-Optic Cable Connectors
If you have been working with twisted-pair copper, you are in for a bit of a surprise when you
start trying to figure out which fiber-optic connectors you need to use. There’s a regular
rogues’ gallery of them, likely the result of competing proprietary systems in the early days of
fiber deployment.
This section of the chapter focuses on the different types of fiber connectors and discusses
how they are installed onto fiber-optic cable.
Fiber-Optic Connector Types
Fiber-optic connectors use bayonet, screw-on, or “snap ‘n lock” methods to attach to the jacks;
a newer connector called the MT-RJ is remarkably similar to the eight-position modular connectors (a.k.a. RJ-45) that copper folks have been using for years.
To transmit data, two fibers are required: one to send and the other to receive. Fiber-optic
connectors fall into one of two categories based on how the fiber is terminated:
●
Simplex connectors terminate only a single fiber in the connector assembly.
●
Duplex connectors terminate two fibers in the connector assembly.
The disadvantage of simplex connectors is that you have to keep careful track of polarity. In
other words, you must always make sure that the plug on the “send” fiber is always connected
to the “send” jack and that the “receive” plug is always connected to the “receive” jack. The real
issue is when normal working folk need to move furniture around and disconnect from the jack
in their work area and then get their connectors mixed up. Experience has shown us that they
are not always color coded or labeled properly. Getting these reversed means, at the least, that
link of the network won’t work.
Duplex plugs and jacks take care of this issue. Once terminated, color coding and keying
ensures that the plug will be inserted only one way in the jack and will always achieve correct
polarity.
Table 9.5 lists some common fiber-optic connectors, along with their corresponding figure
numbers. These connectors can be used for either single-mode or multimode fibers, but make
sure you order the correct model connector depending on the type of cable you are using.
FIGURE 9.17
An SC fiber-optic
connector
Fiber-Optic Cable Connectors
T A B L E 9 . 5 Fiber-Optic Connectors
Designation
Connection Method
Configuration
Figure
SC
Snap-in
Simplex
Figure 9.17
Duplex SC
Snap-in
Duplex
Figure 9.18
ST
Bayonet
Simplex
Figure 9.19
Duplex ST
Snap-in
Duplex
Figure 9.20
FDDI (MIC)
Snap-in
Duplex
Figure 9.21
FC
Screw-on
Simplex
Figure 9.22
FIGURE 9.18
A duplex SC fiber-optic
connector
FIGURE 9.19
An ST connector
FIGURE 9.20
A duplex ST fiber-optic
connector
FIGURE 9.21
An FDDI fiber-optic
connector
321
322
Chapter 9 • Connectors
FIGURE 9.22
An FC fiber-optic
connector
Of the four layers of a tight-buffered fiber (the core, cladding, coating, and buffer), only the
core where the light is actually transmitted differs in diameter. In their infinite wisdom and
foresight, the lesser gods who originally created fiber cables made the cladding, coating, and
buffer diameters identical, allowing universal use of stripping tools and connectors.
Of the connectors in Table 9.5, the ST used to be the most widely deployed, but now the
duplex SC is specified in the Standard as the connector to be used. Other connector styles are
allowed, but not specified. Other specifications, including those for ATM, FDDI, and broadband ISDN, now also specify the duplex SC.
This wide acceptance in system specifications and standards (acceptance in one begets acceptance in others), along with ease of use and positive assurance that polarity will be maintained,
are all contributors to the duplex SC being the current connector of choice.
The SFF Issue
During the life span of this book so-called connector wars were waged. The issue was the
development of a small-form-factor (SFF) connector and jack system for fiber-optic cables. The
connectors shown in Table 9.5 all take up more physical space than their RJ-45 counterparts
on the copper side. This makes multimedia receptacle faceplates a little crowded and means
that you get fewer terminations in closets and equipment rooms than you can get with copper
in the same space. The goal was to create an optical-fiber connector with the same cross-sectional footprint as an RJ-45-style connector. For each manufacturer, the Holy Grail of this
quest was to have its design win out in the marketplace and become the de facto SFF connector
of choice.
SFF connectors were not included in previous versions of the TIA Standard because the standards committees felt that none of the SFF connector designs were mature enough. Different
manufacturers were proposing different designs, all of which were new to the market. None of
the designs had achieved widespread acceptance, so there was no clear de facto standard. ANSI
frowns on, if not prohibits outright, adoption of single-manufacturer proprietary designs as
standards because such action awards competitive advantage.
However, SFF fiber-optic connectors continue to be promoted and supported by equipment
vendors. Three of the connectors are the LC, the VF-45, and the MT-RJ. The MT-RJ currently may have a slight popularity edge, but the market has not produced an overwhelming (or
Fiber-Optic Cable Connectors
323
underwhelming) choice. The LC connector (the connector on the lower part of Figure 9.23)
is also widely used and is regarded by many optical-fiber professionals as the superior connector. SFF was taken up as a subject of consideration in TIA working group TR-48.8.1. With the
publication of ANSI/TIA/EIA-568-B.3, “alternate” connector designs are allowed, provided
they meet particular performance requirements. Small-form-factor connectors are now
allowed as alternative connectors for use in fiber-optic installations, though no particular
design is called out.
Installing Fiber-Optic Connectors
With twisted-pair and coax cables, connectors are joined to the cable and conductors using
some form of crimping or punch down, forcing the components into place. With fiber-optic
cables, a variety of methods can join the fiber with its connector. Each manufacturer of connectors, regardless of type, specifies the method to be used, the materials that are acceptable,
and sometimes, the specialized tools required to complete the connection.
When the fiber connector is inserted into the receptacle, the fiber-optic core in the plug is
placed in end-to-end contact with the fiber in the jack. Two issues are of vital importance:
●
The fiber-optic cores must be properly aligned. The end-to-end contact must be perfectly
flush with no change in the longitudinal axis. In other words, they can’t meet at an angle.
●
The surfaces must be free of defects such as scratches, pits, protrusions, and cracks.
FIGURE 9.23
Duplex SC (top),
simplex ST (middle),
and LC (bottom)
connectors (Photo
courtesy of The
Siemon Company)
324
Chapter 9 • Connectors
To address the first critical issue, fiber connector systems must incorporate a method that
both aligns and fixes the fiber in its proper position. The alignment is usually accomplished by
inserting the fiber in a built-in sleeve or ferrule. Some technique—either gluing or crimping—
is then applied to hold it in place. Three types of adhesives can glue the fiber into position:
Heat-cured adhesives After the material is injected and the fiber is inserted into the connector assembly, it is placed in a small oven to react with the adhesive and harden it. This is
time-consuming—heat-cured adhesives require as much as 20 minutes of hardening. Multiple connectors can be done at one time, but the time required to cure the adhesive still
increases labor time, and the oven is, of course, extra baggage to pack to the job site.
UV-cured adhesives Rather than hardening the material in an oven, an ultraviolet light
source is used. You may have had something similar done at your dentist the last time you had
a tooth filled. Only about a minute of exposure to the UV light is required to cure the adhesive, making this a more time-effective process.
Anaerobic-cured adhesives This method relies on the chemical reaction of two elements
of an epoxy to set up and harden. A resin material is injected in the ferrule. Then a hardener
catalyst is applied to the fiber. When the fiber is inserted in the ferrule, the hardener reacts
with the resin to cure the material. No extra equipment is required beyond the basic materials
and tools. Hardening can take place as quickly as 15 seconds.
Crimp-style connector systems for fiber-optic cable are always manufacturer-specific
regarding the tools and materials required. Follow the manufacturer’s instructions carefully.
With crimp connectors, the fiber is inserted into the connector, and the assembly is then
placed in a crimping tool that holds the fiber and connector in proper position. The tool is then
used to apply a very specific amount of pressure in a very controlled range of motion to crimp
the connector to the buffer layer of the fiber.
To address the second critical issue, part of the connecting process usually involves a polishing step. With the fiber firmly established in the connector, the end of the fiber is roughtrimmed. A series of abrasive materials is then used to finely polish the end of the fiber.
Connector systems that do not require the polishing step are available. These rely on a clean,
straight “cleave” (a guillotine-type method of cutting the fiber in two) and positive mechanical
force to hold the ends of the fibers together in such a way that a polished surface is not as critical. Such connectors are used primarily, if not exclusively, with multimode fibers because of
the larger core diameter of multimode fiber-optic cable.
Chapter 10
Fiber-Optic Media
• Introduction to Fiber-Optic Transmission
• Advantages of Fiber-Optic Cabling
• Disadvantages of Fiber-Optic Cabling
• Types and Composition of Fiber-Optic Cables
• Fiber Installation Issues
• Fiber-Optic Performance Factors
326
Chapter 10 • Fiber-Optic Media
F
iber-optic media (or optical-fiber, or fibers, for short) are any network-transmission media
that use glass, or in some cases, plastic, fiber to transmit network data in the form of light pulses.
Within the last decade, fiber optics has become an increasingly popular type of network transmission media. We’ll begin this chapter with a brief look at how fiber-optic transmissions work.
Introduction to Fiber-Optic Transmission
Fiber-optic technology is more complex in its operation than standard copper media because
the transmissions are light pulses instead of voltage transitions. Fiber-optic transmissions
encode the ones and zeros of a network transmission into ons and offs of light. The light source
is usually either a laser or some kind of light-emitting diode (LED). The light from the light
source is flashed on and off in the pattern of the data being encoded. The light travels inside
the fiber until the light signal gets to its intended destination, as shown in Figure 10.1.
Fiber-optic cables are optimized for a specific wavelength of light. The wavelength of a particular light source is the length, measured in nanometers (billionths of a meter, abbreviated
nm), between wave peaks in a typical light wave from that light source (as shown in Figure
10.2). Although the comparison is not exact, you can think of a wavelength as being similar to
the Hertz frequency cycle discussed for copper cables.
FIGURE 10.1
Reflection of a light
signal within a fiberoptic cable
Buffer
Cladding
Light
Core
FIGURE 10.2
A typical light wave
Typical light wave
Wavelength
Advantages of Fiber-Optic Cabling
327
Typically, optical fibers use wavelengths between 800 and 1500nm, depending on the light
source. Silica-based glass is most transparent at these wavelengths, and therefore the transmission
is more efficient (there is less attenuation) in this range. For a reference, visible light (the light that
you can see) has wavelengths in the range between 400 and 700nm. Most fiber-optic light sources
operate in the infrared range (between 700 and 1100nm). You can’t see infrared light, but it is a
very effective fiber-optic light source.
NOTE
Most traditional light sources can only operate within the visible wavelength spectrum and
over a range of wavelengths, not one specific wavelength. Lasers (light amplification by
stimulated emission of radiation) and LEDs produce light in a more limited, even singlewavelength, spectrum.
WARNING
Laser light sources used with fiber optic cables are extremely hazardous to your vision.
Looking directly at the end of a live optical fiber can cause severe damage to your retinas.
You could be made permanently blind. Never look at the end of a fiber optic cable without
first knowing that no light source is active.
When the light pulses reach the destination, a sensor picks up the presence or absence of the
light signal and transforms those ons and offs back into electrical signals that represent ones
and zeros.
The more the light signal bounces, the greater the likelihood of signal loss (attenuation).
Additionally, every fiber-optic connector between signal source and destination presents the
possibility for signal loss. Thus, the connectors must be installed perfectly at each connection.
Most LAN/WAN fiber transmission systems use one fiber for transmitting and one for
reception because light only travels in one direction for fiber systems—the direction of transmission. It would be difficult (and expensive) to transform a fiber-optic transmitter into a dualmode transmitter/receiver (one that could receive and transmit within the same connector).
Advantages of Fiber-Optic Cabling
The following advantages of fiber over other cabling systems explain why it is currently enjoying popularity as a network-cabling medium:
●
Immunity to electromagnetic interference (EMI)
●
Higher data rates
●
Longer maximum distances
●
Better security
328
Chapter 10 • Fiber-Optic Media
Immunity to Electromagnetic Interference (EMI)
All copper-cable network media share one common problem: They are susceptible to electromagnetic interference (EMI). EMI is stray electromagnetism that interferes with data transmission. All electrical cables generate a magnetic field around their central axis. If you pass a
metal conductor through a magnetic field, an electrical current is generated in that conductor.
When you place two copper communication cables next to each other, EMI will cause crosstalk;
signals from one cable will be induced on the other. See Chapter 1 for more information on
crosstalk, especially the section “Speed Bumps: What Slows Down Your Data.” The longer a particular copper cable is, the more chance for crosstalk.
WARNING
Never place copper communication cables next to AC current-carrying wires or power supplies. The wires and supplies can produce very large magnetic fields and thus may induce
high levels of crosstalk noise into any copper cable placed next to them. For data cables,
this will almost certainly either cause data transmissions to fail completely or become a
source of intermittent network problems.
Fiber-optic cabling is immune to crosstalk because fiber uses light signals in a glass fiber,
rather than electrical signals along a metallic conductor, to transmit data. So it cannot produce
a magnetic field and thus is immune to EMI. Fiber-optic cables can therefore be run in areas
considered to be “hostile” to regular copper cabling (e.g., elevator shafts, near transformers, in
tight bundles with other electrical cables).
Higher Possible Data Rates
Because light is immune to interference and travels almost instantaneously to its destination,
much higher data rates are possible with fiber-optic cabling technologies than with traditional
copper systems. Data rates far exceeding the gigabit per second (Gbps) range and higher are
possible. Single-mode fiber optic cables are capable of transmitting at these multigigabit data
rates over very long distances.
You will often encounter the word “bandwidth” when describing fiber-optic data rates. In
Chapter 3, we described copper bandwidth as being a function of analog frequency range.
With optical-fiber, bandwidth does not refer to channels, or frequency, but rather just the bitthroughput rate.
Longer Maximum Distances
Typical copper data-transmission media are subject to distance limitations of maximum segment lengths no longer than one kilometer. Because they don’t suffer from the EMI problems
of traditional copper cabling and because they don’t use electrical signals that can degrade substantially over long distances, single-mode fiber optic cables can span distances up to 70 kilometers (about 43.5 miles) without using signal-boosting repeaters.
Disadvantages of Fiber-Optic Cabling
329
Better Security
Copper-cable transmission media are susceptible to eavesdropping through taps. A tap (short for
wiretap) is a device that punctures through the outer jacket of a copper cable and touches the
inner conductor. The tap intercepts signals sent on a LAN and sends them to another (unwanted)
location. Electromagnetic (EM) taps are similar devices; but rather than puncturing the cable,
they use the cable’s magnetic fields, which are similar to the pattern of electrical signals. If you’ll
remember, simply placing a conductor next to a copper conductor with an electrical signal in it
will produce a duplicate (albeit a lower-power version) of the same signal. The EM tap then simply amplifies that signal and sends it on to the person who initiated the tap.
Because fiber-optic cabling uses light instead of electrical signals, it is immune to most types of
eavesdropping. Traditional taps won’t work because any intrusion on the cable will cause the light
to be blocked and the connection simply won’t function. EM taps won’t work because no magnetic
field is generated. Because of its immunity to traditional eavesdropping tactics, fiber-optic cabling
is used in networks that must remain secure, such as government and research networks.
Disadvantages of Fiber-Optic Cabling
With all of its advantages, many people use fiber-optic cabling. However, fiber-optic cabling
does have a couple of major disadvantages, including higher cost and a potentially more difficult installation.
Higher Cost
It’s ironic, but the higher cost of fiber-optic cabling has little to do with the cable these days.
Increases in available fiber-optic-cable manufacturing capacity have lowered cable prices to
levels comparable to high-end UTP on a per-foot basis, and the cables are no harder to pull.
Modern fiber-optic connector systems have greatly reduced the time and labor required to terminate fiber. At the same time, the cost of connectors and the time it takes to terminate UTP
have increased because Category 5e and Category 6 require greater diligence and can be harder
to work with than Category 5. So the installed cost of the basic link, patch panel to wall outlet,
is roughly the same for fiber and UTP.
Here’s where the costs diverge. Ethernet hubs, switches, routers, NICS, and patch cords for
UTP are very (almost obscenely) inexpensive. A good-quality 10/100 auto-sensing Ethernet
NIC for a PC can be purchased for less than $20. A fiber-optic NIC for a PC costs several times
as much. Hubs, routers, and switches have similar differences in price, UTP vs. fiber. For an
IT manager who’s got several hundred workstations to deploy and support, that translates to
megabucks and keeps UTP a viable solution. The cost of network electronics keeps fiber more
expensive than UTP, and ultimately, it is preventing the mass stampede to fiber to the desk.
330
Chapter 10 • Fiber-Optic Media
Difficult to Install
Depending on the connector system you select, the other main disadvantage of fiber-optic
cabling is that it can be more difficult to install. Copper-cable ends simply need a mechanical
connection, and those connections don’t have to be perfect. Most often, the plug connectors
for copper cables are crimped on (as discussed in Chapter 8) and are punched down in an IDC
connection on the jack and patch-panel ends.
Fiber-optic cables can be much trickier to make connections for, mainly because of the
nature of the glass or plastic coreof the fiber cable. When you cut or cleave (in fiber-optic
terms) the inner core, the end of the core consists of many very small shards of glass that diffuse
the light signal and prevent it from hitting the receiver correctly. The end of the core must be
polished with a special polishing tool to make it perfectly flat so that the light will shine
through correctly. Figure 10.3 illustrates the difference between a polished and a nonpolished
fiber-optic cable-core end. The polishing step adds extra complexity to the installation of cable
ends and amounts to a longer, and thus more expensive, cabling-plant installation.
Connector systems are available for multimode fiber-optic cables that don’t require the polishing step. Using specially designed guillotine cleavers, a clean-enough break in the fiber is
made to allow a good end-to-end mate when the connector is plugged in. And, instead of using
epoxy or some other method to hold the fiber in place, the fibers are positioned in the connector so that dynamic tension holds them in proper position. The use of an index-matching gel
in such connectors further improves the quality of the connection. Such systems greatly reduce
the installation time and labor required to terminate fiber cables.
FIGURE 10.3
The difference
between a freshly cut
and a polished end
Before
polishing
After
polishing
Jacket
Jacket
Core
Core
Types of Fiber-Optic Cables
331
Types of Fiber-Optic Cables
Fiber-optic cables come in many configurations. The fiber strands can be either single mode
or multimode, step index or graded index, and tight buffered or loose-tube buffered. In addition to these options, a variety of core diameters exist for the fiber strands. Most often, the fiber
strands are glass, but plastic optical fiber (POF) exists as well. Finally, the cables can be strictly
for outdoor use, strictly for indoor use, or a “universal” type that works both indoors and out.
Composition of a Fiber-Optic Cable
A typical fiber-optic cable consists of several components:
●
Optical-fiber strand
●
Buffer
●
Strength members
●
Optional shield materials for mechanical protection
●
Outer jacket
Each of these components has a specific function within the cable to help ensure that the data
gets transmitted reliably.
Optical Fiber
An optical-fiber strand (also called an optical waveguide) is the basic element of a fiber-optic cable.
All fiber strands have at least three components to their cross sections: the core, the cladding,
and the coating. Figure 10.4 depicts the three layers of the strand.
FIGURE 10.4
Elemental layers in a
fiber-optic strand
Coating
Cladding
Core
332
Chapter 10 • Fiber-Optic Media
NOTE
Fiber strands have elements so small that it is hard to imagine the scale. You’re just not used
to dealing with such tiny elements in everyday life. The components of a fiber strand are measured in microns. A micron is one thousandth of a millimeter, or about 0.00004 inches. A typical single-mode fiber strand has a core only 8 microns, or 0.0003 inches, in diameter. A
human hair is huge by comparison. The core of a commonly used multimode fiber is 62.5
microns, or 0.002 inches in diameter. For both single mode and multimode, the cladding usually has a diameter of 125 microns, or 0.005 inches. And finally, commonly used single- and
multimode fiber strands have a coating layer that is 250 microns, or 0.01 inches, in diameter. Now we’re getting somewhere, huh? That’s all the way to one hundredth of an inch.
WARNING
The tiny diameter of fiber strands makes them extremely dangerous. When stripped of their
coating layer, as must be done for some splicing and connectorizing techniques, the strands
can easily penetrate the skin. Shards, or broken pieces of strand, can even be carried by
blood vessels to other parts of the body (or the brain) where they could wreak serious havoc.
They are especially dangerous to the eye because small pieces can pierce the eyeball, doing
damage to the eye’s surface and possibly getting trapped inside. Safety glasses and special
shard-disposal containers are a must when connecting or splicing fibers.
The fiber core is usually made of some type of plastic or glass. Several types of materials
make up the glass or plastic composition of the optical fiber core. Each material differs in its
chemical makeup and cost as well as its index of refraction, which is a number that indicates
how much light will bend when passing through a particular material. The number also indicates how fast light will travel through a particular material.
A fiber-optic strand’s cladding is a layer around the central core that is the first, albeit the
smallest, layer of protection around the glass or plastic core. It also reflects the light inside the
core because the cladding has a lower index of refraction than the core. The cladding thus permits the signal to travel in angles from source to destination—it’s like shining a flashlight onto
one mirror and having it reflect into another, then another, and so on.
The protective coating around the cladding protects the fiber core and cladding from damage.
It does not participate in the transmission of light but is simply a protective material. It protects
the cladding from abrasion damage, adds additional strength to the core, and builds up the
diameter of the strand.
The most basic differentiation of fiber optic cables is whether the fiber strands they contain
are single mode or multimode. A mode is a path for the light to take through the cable. The
wavelength of the light transmitted, the acceptance angle, and the numerical aperture interact
in such a way that only certain paths are available for the light. Single-mode fibers have cores
that are so small that only a single pathway for the light is possible. Multimode fibers have
larger cores; the options for the angles at which the light can enter the cable are greater, and
so multiple pathways are possible.
Types of Fiber-Optic Cables
333
Using its single pathway, single-mode fibers can transfer light over great distances with high
data-throughput rates. Concentrated (and expensive) laser light sources are required to send data
down single-mode fibers, and the small core diameters make connections expensive.
Multimode fibers can accept light from less intense and less expensive sources, usually LEDs.
In addition, connections are easier to align properly due to larger core diameters. Distance and
bandwidth are more limited than with single-mode fibers, but multimode cabling and electronics are generally a less expensive solution.
Single-mode fibers are usually used in long-distance transmissions or in backbone cables, so
you find them in both outdoor and indoor cables. These applications take advantage of the
extended distance and high-bandwidth properties of single-mode fiber.
Multimode fibers are usually used in an indoor LAN environment in the horizontal cables.
They are also often used in the backbone cabling where great distances are not a problem.
Single-mode and multimode fibers come in a variety of flavors. Some of the types of optical
fibers, listed from highest bandwidth and distance potential to least, include the following:
●
Single-mode glass
●
Multimode graded-index glass
●
Multimode step-index glass
●
Multimode plastic-clad silica (PCS)
●
Multimode plastic
Single-Mode Step-Index Glass
A single-mode glass fiber core is very narrow (usually less than 10 microns) and made of silica glass.
To keep the cable size manageable, the cladding for a single-mode glass core is usually more
than 10 times the size of the core (around 125 microns). Single-mode fibers are expensive, but
because of the lack of attenuation (less than 2dB per kilometer), very high speeds are possible—
in some cases, up to 50Gbps. Figure 10.5 shows a single-mode glass-fiber core.
Multimode Graded-Index Glass
A graded-index glass-fiber core, made of silica glass, has an index of refraction that changes gradually from the center outward to the cladding. The center of the core has the highest index of
refraction, i.e., the light is distorted the least near the center. If the signals travel outside the center of the core, the lower index of refraction will bend them back toward the center, where they
will travel faster, with less signal loss. The most commonly used multimode graded-index glass
fibers have a core that is either 62.5 microns in diameter or 50 microns in diameter. Figure 10.6
shows a graded-index glass core. Notice that the core is bigger than the single-mode core.
334
Chapter 10 • Fiber-Optic Media
FIGURE 10.5
An example of a singlemode glass-fiber core
8–10-micron
125-micron
250-micron
Cladding
Coating
FIGURE 10.6
A graded-index glassfiber core
Coating
Cladding
Core
Multimode Step-Index Glass
A step-index glass core is similar to a single-mode glass core but with a much larger diameter
(usually around 62.5 microns, although it can vary largely in size between 50 and 125 microns).
It gets its name from the large and abrupt change of index of refraction from the glass core to
the cladding. In fact, a step-index glass core has a uniform index of refraction. Because the signal bounces around inside the core, it is less controllable and thus suffers from larger attenuation values and, effectively, lower bandwidths. However, equipment for cables with this type
of core is cheaper than other types of cable, so step-index glass cores are found in many cables.
Multimode Plastic-Clad Silica (PCS)
A plastic-clad silica (PCS) fiber core is made out of glass central core clad with a plastic coating,
hence the name. PCS optical fibers are usually very large (200 microns or larger) and thus have
Types of Fiber-Optic Cables
335
limited bandwidth availability. However, the PCS-core optical cables are relatively cheap
when compared to their glass-clad counterparts.
Multimode Plastic
Plastic optical fibers (POF) consist of a plastic core of anywhere from 50 microns on up, surrounded by a plastic cladding of a different index of refraction. Generally speaking, these are
the lowest-quality optical fibers and are seldom sufficient to transmit light over long distances.
Plastic optical cables are used for very short-distance data transmissions or for transmission of
visible light in decorations or other specialty lighting purposes not related to data transmission.
Recently, POF has been promoted as a horizontal cable in LAN applications. However, the
difficulty in manufacturing a graded-index POF, combined with a low bandwidth-for-dollar
value, has kept POF from being accepted as a horizontal medium.
Buffer
The buffer, the second-most distinguishing characteristic of the cable, is the component that
provides the most protection for the optical fibers inside the cable. The buffer does just what
its name implies; it buffers, or cushions, the optical fiber from the stresses and forces of the outside world. Optical-fiber buffers are categorized as either tight or loose tube.
With tight buffers, a protective layer (usually a 900-micron thermoplastic covering) is
directly over the coating of each optical fiber in the cable. Tight buffers make the entire cable
more durable, easier to handle, and easier to terminate. Figure 10.7 shows tight buffering in a
single-fiber (simplex) construction. Tight-buffered cables are most often used indoors because
expansion and contraction caused by outdoor temperature swings can exert great force on a
cable. Tight-buffered designs tend to transmit the force to the fiber strand, which can damage
the strand or inhibit its transmission ability, so thermal expansion and contraction from temperature extremes is to be avoided. There are some specially designed tight-buffered designs
for either exclusive outdoor use or a combination of indoor/outdoor installation.
A loose-tube buffer, on the other hand, is essentially a tough plastic pipe about 0.125 inches
in diameter. One or several coated fibers can be placed inside the tube, depending on the cable
design. The tube is then filled with a protective substance, usually a water-blocking gel, to provide cushioning, strength, and protection from the elements. Sometimes, water-blocking powders and tapes are used to waterproof the cable, either as a replacement for the gel (rare) or in
addition to it (more common). A loose-tube design is very effective at absorbing forces exerted
on the cable so that the fiber strands are isolated from the damaging stress. For this reason,
loose-tube designs are almost always seen in outdoor installations.
Multiple tubes can be placed in a cable to accommodate a large fiber count, for highdensity communication areas such as in a large city or as trunk lines for long-distance
telecommunications.
336
Chapter 10 • Fiber-Optic Media
Figure 10.8 shows a loose-buffered fiber-optic cable. Notice that the cable shown uses waterblocking materials.
FIGURE 10.7
Strength
members
A simplex fiber-optic
cable using tight
buffering
Outer jacket
Buffer
Silicone
coating
Cladding
Optical fiber
Core (silica)
FIGURE 10.8
A fiber-optic cable
using loose buffering
with water-blocking
materials
Corrugated
Steel Armor
Outer
Jacket
Aramid
Yarns
Inner
Jacket
Buffer
Tubes
Water Ripcords
Water
Blocking
Blocking
Tape
Tape
Central
Strength
Member
Optical
Fibers
Types of Fiber-Optic Cables
337
Strength Members
Fiber-optic cables require additional support to prevent breakage of the delicate optical fibers
within the cable. That’s where the strength members come in. The strength member of a fiberoptic cable is the part that provides additional tensile (pull) strength.
The most common strength member in tight-buffered cables is aramid yarn, a popular type
of which is Kevlar, the same material found in bulletproof vests. Thousands of strands of this
material are placed in a layer, called a serving, around all the tight-buffered fibers in the cable.
When pulling on the cable, tensile force is transferred to the aramid yarn and not to the fibers.
TIP
Kevlar is extremely durable, so cables that use it require a special cutting tool, called Kevlar scissors. Kevlar cannot be cut with ordinary cutting tools.
Loose-tube fiber-optic cables sometimes have a strand of either fiberglass or steel wire as
strength members. These can be placed around the perimeter of a bundle of optical fibers
within a single cable, or the strength member can be located in the center of the cable with the
individual optical fibers clustered around it. As with aramid yarn in tight-buffered cable, tensile
force is borne by the strength member(s), not the buffer tubes or fiber strands.
Shield Materials
In fiber-optic cables designed for outdoor use, or for indoor environments with the potential
for mechanical damage, metallic shields are often applied over the inner components but under
the jacket. The shield is often referred to as armor. A common armoring material is 0.006-inch
steel with a special coating that adheres to the cable jacket. This shield should not be confused
with shielding to protect against EMI. However, when present, the shield must be properly
grounded at both ends of the cable in order to avoid an electrical-shock hazard should it inadvertently come into contact with a voltage source such as a lightning strike or a power cable.
Cable Jacket
The cable jacket of a fiber-optic cable is the outer coating of the cable that protects all the inner
components from the environment. It is usually made of a durable plastic material and comes
in various colors. As with copper cables, fiber-optic cables designed for indoor applications
must meet fire-resistance requirements of the NEC (See Chapter 1).
Additional Designations of Fiber-Optic Cables
Once you’ve determined if you need single mode or multimode, loose tube or tight-buffered,
indoor or outdoor cable, fiber-optic cables still have a variety of options from which to choose.
When buying fiber-optic cables, you will have to decide which fiber ratings you want for each
type of cable you need. Some of these ratings include the following:
338
Chapter 10 • Fiber-Optic Media
Exterior Protection of Fiber-Optic Cables
If you ever need to install fiber-optic cabling outdoors, the cable should be rated for an exterior
installation. An exterior rating means that the cable is specifically designed for outdoor use.
It will have features such as UV protection, superior crush and abrasion protection, protection
against the extremes of temperature, and an extremely durable strength member. If you use
standard indoor cable in an outdoor installation, the cables could get damaged and not function properly.
●
Core/cladding sizes
●
Number of optical fibers
●
LAN/WAN application
Core/Cladding Size
The individual fiber-optic strands within a cable are most often designated by a ratio of core
size/cladding size. This ratio is expressed in two numbers. The first is the diameter of the opticalfiber core, given in microns (µ). The second number is the outer diameter of the cladding for
that optical fiber, also given in microns. For example, a cable with a 10-micron core with a 50micron cladding would be designated as 10/50.
Three major core/cladding sizes are in use today:
●
8/125
●
50/125
●
62.5/125
We’ll examine what each one looks like as well as its major use(s).
NOTE
Sometimes, you will see a third number in the ratio (e.g., 8/125/250). The third number
is the outside diameter of the protective coating around the individual optical fibers.
8/125
An 8/125 optical fiber is shown in Figure 10.9. It is almost always designated as single-mode fiber
because the core size is only approximately 10 times larger than the wavelength of the light it’s
carrying. Thus, the light doesn’t have much room to bounce around. Essentially, the light is traveling in a straight line through the fiber.
Types of Fiber-Optic Cables
FIGURE 10.9
339
Core
An 8/125 optical fiber
8–10-micron
125-micron
250-micron
Cladding
Coating
As discussed earlier, 8/125 optical fibers are used for high-speed applications, like backbone
fiber architectures such as FDDI, ATM, and Gigabit Ethernet.
50/125
In recent years, Corning, as well as other fiber manufacturers, have been promoting 50/125
multimode fibers instead of the 62.5/125 for use in structured wiring installations. It has advantages in bandwidth and distance over 62.5/125 with about the same expense for equipment and
connectors. ANSI/TIA/EIA-568-B.3, the fiber-optic-specific segment of the Standard, recognizes 50/125 fiber as an alternate media to 62.5/125.
62.5/125
Until the introduction of 50/125, the most common multimode-fiber cable designations was
62.5/125 because it was specified in earlier versions of ANSI/TIA/EIA-568 as the multimode
media of choice for fiber installations. It has widespread acceptance in the field. A standard
multimode fiber with a 62.5-micron core with 125-micron cladding is shown in Figure 10.10.
The 62.5/125 optical fibers are used mainly in LAN/WAN applications as a kind of “generaluse” fiber (if there really is such a thing).
340
Chapter 10 • Fiber-Optic Media
FIGURE 10.10
Core
A sample 62.5/125
optical fiber
125-micron
62.5-micron
250-micron
Cladding
Coating
Number of Optical Fibers
Yet another difference between fiber-optic cables is the number of individual optical fibers
within them. The number depends on the intended use of the cable and can increase the cable’s
size, cost, and capacity.
Because the focus of this book is network cabling and the majority of fiber-optic cables you
will encounter for networking are tight buffered, we will limit our discussions here to tightbuffered cables. These cables can be divided into three categories based on the number of optical fibers:
●
Simplex cables
●
Duplex cables
●
Multifiber cables
A simplex fiber-optic cable has only one tight-buffered optical fiber inside the cable jacket. An
example of a simplex cable was shown earlier in this chapter in Figure 10.7. Because simplex
cables only have one fiber inside them, usually a thick strength member and a thicker jacket
make the cable easier to handle.
Types of Fiber-Optic Cables
341
Duplex cables, in contrast, have two tight-buffered optical fibers inside a single jacket (as
shown in Figure 10.11). The most popular use for duplex fiber-optic cables is as a fiber-optic
LAN backbone cable, because all LAN connections need a transmission fiber and a reception
fiber. Duplex cables have both inside a single cable, and running a single cable is of course easier than running two.
TIP
One type of fiber-optic cable is called a duplex cable but technically is not one. This cable
is known as zipcord. Zipcord is really two simplex cables bonded together into a single flat
optical-fiber cable. It’s called a duplex because there are two optical fibers, but it’s not
really duplex because the fibers aren’t covered by a common jacket. Zipcord is used primarily as a duplex patch cable. It is used instead of true duplex cable because it is cheap
to make and to use. Figure 10.12 shows a zipcord fiber-optic cable.
FIGURE 10.11
A sample duplex fiberoptic cable
Cable
Jacket
Aramid
Yarn
Optical Fibers
(single-mode or multimode)
FIGURE 10.12
A zipcord cable
342
Chapter 10 • Fiber-Optic Media
Finally, multifiber cables contain more than two optical fibers in one jacket. Multifiber cables
have anywhere from three to several hundred optical fibers in them. More often than not, however, the number of fibers in a multifiber cable will be a multiple of two because, as discussed
earlier, LAN applications need a send and a receive optical fiber for each connection.
LAN/WAN Application
Different fiber cable types are used for different applications within the LAN/WAN environment. Table 10.1 shows the relationship between the fiber network type, the wavelength, and
fiber size for both single-mode and multimode fiber-optic cables.
NOTE
The philosophy of a generic cable installation that will function with virtually any application
led the industry Standard, ANSI/TIA/EIA-568-B, to cover all the applications by specifying
50/125 multimode or 62.5/125 multimode as a media of choice (in addition to singlemode). The revised Standard, ANSI/TIA/EIA-568-B.3, continues to recognize single-mode
as well because it also effectively covers all the applications.
T A B L E 1 0 . 1 Network-Type Fiber Applications
Network Type
Single-Mode Wavelength/Size
Multimode Wavelength/Size
Ethernet
1300nm – 8/125-micron
850nm – 62.5/125 or 50/125-micron
Fast Ethernet
1300nm – 8/125-micron
1300nm – 62.5/125 or 50/125-micron
Gigabit Ethernet
1300nm – 8/125-micron
850nm – 62.5/125 or 50/125-micron
1550nm – 8/125-micron
1300nm - 62.5/125 or 50/125-micron
10Gbase
1300nm – 8/125-micron
850nm – 62.5/125 or 50/125-micron
1550nm – 8/125-micron
1300nm - 62.5/125 or 50/125-micron
Token Ring
Proprietary – 8/125-micron
Proprietary – 62.5/125 or 50/125-micron
ATM 155Mbps
1300nm – 8/125-micron
1300nm – 62.5/125 or 50/125-micron
FDDI
1300nm – 8/125-micron
1300nm – 62.5/125 or 50/125-micron
Fiber Installation Issues
Now that we’ve discussed details about the fiber-optic cable, we must cover the components of
a typical fiber installation and fiber-optic performance factors.
We should also mention here that choosing the right fiber-optic cable for your installation is
critical. If you don’t, your fiber installation is doomed from the start. Remember the following:
Match the rating of the fiber you are installing to the equipment. It may seem a bit
obvious, but if you are installing fiber for a hub and workstations with single-mode connections, you cannot use multimode fiber, and vice versa.
Fiber Installation Issues
343
Use fiber-optic cable appropriate for the locale. Don’t use outdoor cable in an interior
application. That would be overkill. Similarly, don’t use interior cable outside. The interior
cable doesn’t have the protection features that the exterior cable has.
Unterminated fiber is dangerous. Fiber can be dangerous in two ways: You can get glass
slivers in your hands from touching the end of a glass fiber, and laser light is harmful to
unprotected eyes. Many fiber-optic transmitters use laser light that can damage the cornea
of the eyeball when looked at. Bottom line: Protect the end of an unterminated fiber cable.
NOTE
Installing fiber-optic cable will be covered in Part III, “Cabling Design and Installation.”
Components of a Typical Installation
Just like copper-based cabling systems, fiber-optic cabling systems have a few specialized components, including enclosures and connectors.
Fiber-Optic Enclosures
Because laser light is dangerous, the ends of every fiber-optic cable must be encased in some
kind of enclosure. The enclosure not only protects humans from laser light but also protects
the fiber from damage. Wall plates and patch panels are the two main types of fiber enclosures.
You learned about wall plates in Chapter 8, so we’ll discuss patch panels here.
When most people think about a fiber enclosure, a fiber patch panel comes to mind. It allows
connections between different devices to be made and broken at the will of the network administrator. Basically, a bunch of fiber-optic cables will terminate in a patch panel. Then, short
fiber-optic patch cables are used to make connections between the various cables. Figure 10.13
shows an example of a fiber-optic patch panel. Note that dust caps are on all the fiber-optic
ports; they prevent dust from getting into the connector and preventing a proper connection.
In addition to the standard fiber patch panels, a fiber-optic installation may have one or more
fiber distribution panels, which are very similar to patch panels, in that many cables interconnect
there. However, in a distribution panel (see Figure 10.14), the connections are more permanent. Distribution panels usually have a lock and key to prevent end users from making unauthorized changes. Generally speaking, a patch panel is found wherever fiber-optic equipment
(i.e., hubs, switches, and routers) is found. Distribution panels are found wherever multifiber
cables are split out into individual cables.
344
Chapter 10 • Fiber-Optic Media
FIGURE 10.13
An example of a fiberoptic patch panel
FIGURE 10.14
A sample fiber-optic
distribution panel
1
2
1
2
3
4
5
6
4
5
6
Fiber Installation Issues
345
Fiber-Optic Connectors
Fiber-optic connectors are unique in that they must make both an optical and a mechanical
connection. Connectors for copper cables, like the RJ-45 type connector used on UTP, make
an electrical connection between the two cables involved. However, the pins inside the connector only need to be touching to make a sufficient electrical connection. Fiber-optic connectors, on the other hand, must have the fiber internally aligned almost perfectly in order to
make a connection. The common fiber-optic connectors use various methods to accomplish
this, and they are described in Chapter 9.
Fiber-Optic Performance Factors
During the course of a normal fiber installation, you must be aware of a few factors that can
negatively affect performance. They are as follows:
●
Attenuation
●
Acceptance angle
●
Numerical aperture (NA)
●
Modal dispersion
●
Chromatic dispersion
Attenuation
The biggest negative factor in any fiber-optic cabling installation is attenuation, or the loss or
decrease in power of a data-carrying signal (in the case of fiber, the light signal). It is measured in
decibels (dB or dB/km for a particular cable run). In real-world terms, a 3dB attenuation loss in a
fiber connection is equal to about a 50 percent loss of signal. Figure 10.15 graphs attenuation in
decibels versus percent signal loss. Notice that the relationship is exponential.
FIGURE 10.15
Fiber optic attenuation
Percent signal loss
Relationship of attenuation to percent signal
loss of a fiber optic
transmission
100
90
80
70
60
50
40
30
20
10
0
10
20
dB attenuation
30
40
346
Chapter 10 • Fiber-Optic Media
The more attenuation that exists in a fiber-optic cable from transmitter to receiver, the
shorter the maximum distance between them. Attenuation negatively affects transmission
speeds and distances of all cabling systems, but fiber-optic transmissions are particularly sensitive to attenuation.
Many different problems can cause attenuation of a light signal in an optical fiber, including
the following:
●
Excessive gap between fibers in a connection
●
Improperly installed connectors
●
Impurities in the fiber
●
Excessive bending of the cable
●
Excessive stretching of the cable
These problems will be covered in Chapter 14. For now, just realize that these problems
cause attenuation, an undesirable effect.
Acceptance Angle
Another factor that affects the performance of a fiber-optic cabling system is the acceptance
angle of the optical-fiber core. The acceptance angle (as shown in Figure 10.16) is the angle
through which a particular (multimode) fiber can accept light as input.
The greater the acceptance angle difference between two or more signals in a multimode
fiber, the greater the effect of modal dispersion (see the section “Modal Dispersion”). The
modal-dispersion effect also has a negative effect on the total performance of a particular cable
segment.
FIGURE 10.16
An illustration of
multifiber acceptance
angles
Acceptance
angle
Core
Acceptance cone
Cladding
Fiber Installation Issues
347
Numerical Aperture (NA)
A characteristic of fiber-optic cable that is related to the acceptance angle is the numerical aperture
(NA). The NA is calculated from the acceptance angle. The result of the calculation is a decimal
number between 0 and 1 that reflects the ability of a particular optical fiber to accept light.
A value for NA of 0 indicates that the fiber accepts, or gathers, no light. A value of 1 for NA
indicates that the fiber will accept all light it’s exposed to. A higher NA value means that light
can enter and exit the fiber from a wide range of angles, including severe angles that will not
reflect inside the core, but be lost to refraction. A lower NA value means that light can enter
and exit the fiber only at shallow angles, which helps assure the light will be properly reflected
within the core. Multi-mode fibers typically have higher NA values than single-mode fibers.
This is a reason why the less focused light from LEDs can be used to transmit over multi-mode
fibers as opposed to the focused light of a laser that is required for single-mode fibers.
Modal Dispersion
Multimode cables suffer from a unique problem known as modal dispersion, which is similar in
effect to delay skew, described in Chapter 1 relative to twisted-pair cabling. Modal dispersion
causes transmission delays in multimode fibers. Here’s how it occurs. The modes (signals)
enter the multimode fiber at varying angles, so the signals will bounce differently inside the
fiber and arrive at different times (as shown in Figure 10.17). The more severe the difference
between the entrance angles, the greater the arrival delay between the modes. In Figure 10.17,
mode A will exit the fiber first because it has fewer bounces inside the core than mode B. Mode
A has fewer bounces because its entrance angle is less severe (i.e., it’s of a lower order) than that
of mode B. The difference between the time mode A and mode B exit is the modal dispersion.
Modal dispersion gets larger, or worse, as the difference between the entrance angles increases.
FIGURE 10.17
Illustration of modal
dispersion
Multimode fiber
A
B
348
Chapter 10 • Fiber-Optic Media
Chromatic Dispersion
The last fiber-optic performance factor is chromatic dispersion, which limits the bandwidth of
certain single-mode optical fibers. It occurs when the various wavelengths of light spread out
as they travel through an optical fiber. This happens because different wavelengths of light
travel different speeds through the same media. As they bounce through the fiber, the various
wavelengths will reflect off the sides of the fibers at different angles (as shown in Figure 10.18).
The wavelengths will spread farther and farther apart until they arrive at the destination at
completely different times.
FIGURE 10.18
Single-mode
optical-fiber
chromatic
dispersion
Single-mode optical fiber
Chapter 11
Unbounded (Wireless) Media
• Infrared
• Radio Frequency (RF)
• Microwave
350
Chapter 11 • Unbounded (Wireless) Media
nbounded media have network signals that are not bound by any type of fiber or cable; hence,
they are also called wireless technologies. Unbounded (wireless) LAN media are becoming
extremely popular in modular office spaces.
U
You may ask, “Why talk about wireless technologies in a book about cabling?” The answer
is that today’s networks aren’t composed of a single technology or wiring scheme—they are
heterogeneous networks. Wireless technologies are just one way of solving a particular networking need in a heterogeneous cabling system. Although cabled networks are generally less
expensive, more robust transmission-wise, and faster (especially in the horizontal environment), in certain situations, wireless networks can carry data where traditional cabled networks
cannot. This is particularly the case in backbone or WAN implementations.
NOTE
Some pretty high bandwidth numbers are detailed in the sections that follow. These are typically
for interbuilding or WAN implementations. The average throughput speed of installed wireless
LANs in the horizontal work environment is 11Mbps. (Although 54Mbps and higher throughput is
available, it is a relatively recent phenomenon.) By comparison, any properly installed Category 5e
horizontal network is capable of 1000Mbps and higher. Wired and wireless are two different
beasts, but the comparison helps to put the horizontal speed issue into perspective.
In this chapter, you will get a brief introduction to some of the wireless technologies found
in both LANs and WANs and how they are used. We’ll start this discussion with a look at infrared transmissions.
NOTE
This chapter is only meant to introduce you to the different types of wireless networks. For more
information, go to your favorite Internet search engine and type in wireless networking.
Infrared Transmissions
Everyone who has a television with a remote control has performed an infrared transmission.
Infrared (IR) transmissions are signal transmissions that use infrared radiation as their transmission method. Infrared radiation is part of the electromagnetic spectrum. It has a wavelength
shorter than visible light (actually, it’s shorter than the red wavelength in the visible spectrum)
with more energy. Infrared is a very popular method of wireless networking. The sections that
follow examine some of the details of infrared transmissions.
How Infrared Transmissions Work
Infrared transmissions are very simple. All infrared connections work similarly to LAN transmissions, except that no cable contains the signal. The infrared transmissions travel through
the air and consist of infrared radiation that is modulated in order to encode the LAN data.
Infrared Transmissions
351
A laser diode, a small electronic device that can produce single wavelengths or frequencies of
light or radiation, usually produces the infrared radiation. A laser diode differs from a regular
laser in that it is much simpler, smaller, and lower powered; thus, the signals can only travel
over shorter distances (usually less than 500 feet).
Besides needing an infrared transmitter, all devices that communicate via infrared need an
infrared receiver. The receiver is often a photodiode, or a device that is sensitive to a particular
wavelength of light or radiation and converts the infrared signals back into the digital signals
that a computer will understand.
In some cases, the infrared transmitter and receiver are built into a single device known as an
infrared transceiver, which can both transmit and receive infrared signals. Infrared transceivers
are used primarily in short-distance infrared communications. For communications that must
travel over longer distances (e.g., infrared WAN communications must travel over several kilometers), a separate infrared transmitter and receiver are contained in a single housing. The
transmitter is usually a higher-powered infrared laser. In order to function correctly, the lasers
in both devices (sender and receiver) must be aligned with the receivers on the opposite device
(as shown in Figure 11.1).
Point-to-point and broadcast are the two types of infrared transmission. We’ll take a brief
look at each.
FIGURE 11.1
Alignment of long-distance infrared devices
Aligned
Not aligned
352
Chapter 11 • Unbounded (Wireless) Media
Point-to-Point
The most common type of infrared transmission is the point-to-point transmission, also known
as line-of-sight transmission. Point-to-point infrared transmissions are those infrared transmissions that use tightly focused beams of infrared radiation to send information or control information over a distance (i.e., from one “point” directly to another). The aforementioned infrared
remote control for your television is one example of a point-to-point infrared transmission.
LANs and WANs can use point-to-point infrared transmissions to transmit information
over short or long distances. Point-to-point infrared transmissions are used in LAN applications for connecting computers in separate buildings over short distances.
Using point-to-point infrared media reduces attenuation and makes eavesdropping difficult.
Typical point-to-point infrared computer equipment is similar to that used for consumer
products with remote controls, except they have much higher power. Careful alignment of the
transmitter and receiver is required, as mentioned earlier. Figure 11.2 shows how a network
might use point-to-point infrared transmission. Note that the two buildings are connected via
a direct line of sight with infrared transmission and that the buildings are about 1,000 feet
apart.
Point-to-point infrared systems have the following characteristics:
Frequency range Infrared light usually uses the lowest range of light frequencies, between
100GHz and 1,000THz (terahertz).
Cost The cost depends on the kind of equipment used. Long-distance systems, which typically use high-power lasers, can be very expensive. Equipment that is mass-produced for the
consumer market and can be adapted for network use is generally inexpensive.
Installation Infrared point-to-point requires precise alignment. Take extra care if highpowered lasers are used, because they can damage or burn eyes.
FIGURE 11.2
Point-to-point
infrared usage
IR transceiver
IR transceiver
Point-to-point
infrared signal
Building
A
Building
B
1000 feet
Infrared Transmissions
353
Capacity Data rates vary from 100Kbps to 16Mbps (at one kilometer).
Attenuation The amount of attenuation depends on the quality of emitted light and its
purity, as well as general atmospheric conditions and signal obstructions.
EMI Infrared transmission can be affected by intense visible light. Tightly focused beams are
fairly immune to eavesdropping because tampering usually becomes evident by the disruption
in the signal. Furthermore, the area in which the signal may be picked up is very limited.
Broadcast
Broadcast infrared systems spread the signal to a wider area and allow reception of the signal
by several receivers. One of the major advantages is mobility; the workstations or other devices
can be moved more easily than with point-to-point infrared media. Figure 11.3 shows how a
broadcast infrared system might be used.
Because broadcast infrared signals (also known as diffuse infrared) are not as focused as pointto-point, this type of system cannot offer the same throughput. Broadcast infrared is typically
limited to less than 1Mbps, making it too slow for most network needs.
Broadcast infrared systems have the following characteristics:
Frequency range Infrared systems usually use the lowest range of light frequencies, from
100GHz to 1,000THz.
FIGURE 11.3
An implementation
of broadcast infrared
media
354
Chapter 11 • Unbounded (Wireless) Media
Cost The cost of infrared equipment depends on the quality of light required. Typical
equipment used for infrared systems is quite inexpensive. High-power laser equipment is
much more expensive.
Installation Installation is fairly simple. When devices have clear paths and strong signals,
they can be placed anywhere the signal can reach, making reconfiguration easy. One concern
should be the control of strong light sources that might affect infrared transmission.
Capacity Although data rates are most often less than 1Mbps, it is theoretically possible to
reach much higher throughput.
Attenuation Broadcast infrared, like point-to-point, is affected by the quality of the emitted light and its purity and by atmospheric conditions. Because devices can be moved easily,
however, obstructions are generally not of great concern.
EMI Intense light can dilute infrared transmissions. Because broadcast infrared transmissions cover a wide area, they are more easily intercepted for eavesdropping.
Advantages of Infrared
As a medium for LAN transmissions, infrared has many advantages that make it a logical choice
for many LAN/WAN applications. These advantages include the following:
Relatively inexpensive Infrared equipment (especially the short-distance broadcast
equipment) is relatively inexpensive when compared to other wireless methods like microwave or radio frequency (RF). Because of its low cost, many laptop and portable-computing
devices contain an infrared transceiver to connect to each other and transfer files. Additionally, as a WAN transmission method, you pay for the equipment once; there are no recurring
line charges.
High bandwidths Point-to-point infrared transmissions support fairly high (around
1.544Mbps) bandwidths. They are often used as WAN links because of their speed and efficiency.
No FCC license required If a wireless transmission is available for the general (i.e.,
United States) public to listen to, the Federal Communications Commission (FCC) probably
governs it. The FCC licenses certain frequency bands for use for radio and satellite transmission. Because infrared transmissions are short range and their frequencies fall outside the
FCC bands, you don’t need to apply for an FCC-licensed frequency (a long and costly process) to use them.
NOTE
More information on the FCC can be found at its website: www.fcc.gov.
Advantages of Infrared
355
Ease of installation Installation of most infrared devices is very simple. Connect the
transceiver to the network (or host machine) and point it at the device you want to communicate with. Broadcast infrared devices don’t even need to be pointed at their host devices.
Long-distance infrared devices may need a bit more alignment, but the idea is the same.
High security on point-to-point connections Because point-to-point infrared connections are line of sight and any attempt to intercept a point-to-point infrared connection will
block the signal, point-to-point infrared connections are very secure. The signal can’t be
intercepted without the knowledge of the sending equipment.
Portability Short-range infrared transceivers and equipment are usually small and have
lower power requirements. Thus, these devices are great choices for portable, flexible networks. Broadcast infrared systems are often set up in offices where the cubicles are rearranged often. This does not mean that the computers can be in motion while connected. As
discussed later in this section, infrared requires a constant line of sight. If you should walk
behind an object and obstruct the line-of-sight between the two communicating devices, the
connection will be interrupted.
Disadvantages of Infrared
Just as with any other network technology, infrared has its disadvantages. Some of these are the
following:
Line of sight needed for focused transmissions Infrared transmissions require an
unobstructed path between sender and receiver. Infrared transmissions are similar to regular
light transmissions in that the signals don’t “bend” around corners without help, nor can the
transmissions go through walls. Some transmissions are able to bounce off surfaces, but each
bounce takes away from the total signal strength (usually halving the effective strength for
each bounce).
NOTE
Some products achieve non-line-of-sight infrared transmissions by bouncing the signal off
of walls or ceilings. You should know that for every “bounce,” the signal can degrade as
much as 50 percent. For that reason, we have stated here that focused infrared is primarily
a line-of-sight technology.
Weather attenuation Because infrared transmissions travel through the air, any change in
the air can cause degradation of the signal over a distance. Humidity, temperature, and ambient light can all negatively affect signal strength in low-power infrared transmissions. In outdoor, higher-power infrared transmissions, fog, rain, and snow can all reduce transmission
effectiveness.
356
Chapter 11 • Unbounded (Wireless) Media
Examples of Infrared Transmissions
Infrared transmissions are used for other applications in the PC world besides LAN and WAN
communication. The other applications include the following:
●
IrDA ports
●
Infrared laser devices
We’ll briefly examine these two examples of infrared technology.
IrDA Ports
More than likely, you’ve seen an IrDA port. IrDA ports are the small, dark windows on the
backs of laptops and handheld PCs that allow two devices to communicate via infrared. IrDA
is actually an abbreviation for the standards body that came up with the standard method of
short-range infrared communications, the Infrared Data Association. Based out of Walnut
Creek, California, and founded in 1993, it is a membership organization dedicated to developing standards for wireless, infrared transmission systems between computers. With IrDA
ports, a laptop or PDA (personal digital assistant) can exchange data with a desktop computer
or use a printer without a cable connection at rates up to 1.5Mbps.
Computing products with IrDA ports began to appear in 1995, and the LaserJet 5P was one
of the first printers with a built-in IrDA port. You could print to the LaserJet 5P from any laptop or handheld device (as long as you had the correct driver installed) by simply pointing the
IrDA port on the laptop or handheld device at the IrDA port on the 5P. This technology
became known as point and print. Figure 11.4 shows an example of an IrDA port on a handheld
PC. Notice how small it is compared to the size of the PC.
NOTE
For more information about the IrDA, its membership, and the IrDA port, see its website at
www.irda.org.
FIGURE 11.4
An example of an
IrDA port
IrDA port
Radio-Frequency (RF) Systems
357
Infrared-Laser Devices
Longer-distance communications via infrared transmissions are possible, but they require the
use of a special class of devices, known as infrared-laser devices. These devices have a transmitting laser, which operates in the infrared range (a wavelength from 750 to 2500nm and a
frequency of around 1THz) and an infrared receiver to receive the signal. Infrared-laser
devices usually connect multiple buildings within a campus or multiple sites within a city. One
such example of this category of infrared devices is the TerraScope system (as shown in Figure
11.5) from Optical Access, Inc. (formerly AstroTerra). This system provides data rates from 10
to 155Mbps for distances of up to 3.75 km (2.33 miles) between sender and receiver.
NOTE
You can find out more information about the TerraScope system on Optical Access’s website at www.opticalaccess.com.
Radio-Frequency (RF) Systems
Radio-frequency (RF) transmission systems are those network transmission systems that use radio
waves to transmit data. In late 1999, RF transmission systems saw a sharp increase in use. Many
companies are installing RF access points in their networks to solve certain mobility issues. 2003
saw the explosion of Wireless Hot Spots (especially in coffee shops, hotels, and airports). The
general public can go into a coffee shop and check their e-mail while they‘re getting their latte.
The relatively low cost and ease of installation of RF systems play a part in their popularity.
In this section, we will cover RF systems and their application to LAN and WAN uses.
FIGURE 11.5
The TerraScope
infrared laser device
358
Chapter 11 • Unbounded (Wireless) Media
How RF Works
Radio waves have frequencies from 10 kilohertz (kHz) to 1 gigahertz (GHz), and RF systems
use radio waves in this frequency band. The range of the electromagnetic spectrum from
10kHz to 1GHz is called radio frequency (RF).
Most radio frequencies are regulated; some are not. To use a regulated frequency, you must
receive a license from the regulatory body over that area (in the United States, the FCC). Getting a license can take a long time and can be costly; for data transmission, the license also
makes it more difficult to move equipment. However, licensing guarantees that, within a set
area, you will have clear radio transmission.
The advantage of unregulated frequencies is that few restrictions are placed on them. One
regulation, however, does limit the usefulness of unregulated frequencies: Unregulatedfrequency equipment must operate at less than one watt. The point of this regulation is to limit
the range of influence a device can have, thereby limiting interference with other signals. In
terms of networks, this makes unregulated radio communication bandwidths of limited use.
WARNING
Because unregulated frequencies are available for use by others in your area, you cannot
be guaranteed a clear communications channel.
In the United States, the following frequencies are available for unregulated use:
●
902 to 928MHz
●
2.4GHz (also internationally)
●
5.72 to 5.85GHz
Radio waves can be broadcast either omnidirectionally or directionally. Various kinds of
antennas can be used to broadcast radio signals. Typical antennas include the following:
●
Omnidirectional towers
●
Half-wave dipole
●
Random-length wire
●
Beam (such as the yagi)
Figure 11.6 shows these common types of radio-frequency antennas.
The antenna and transceiver determine the power of the RF signal. Each range has characteristics that affect its use in computer networks. For computer network applications, radio
waves are classified in three categories:
●
Low power, single frequency
●
High power, single frequency
●
Spread spectrum
Radio-Frequency (RF) Systems
359
FIGURE 11.6
Typical radio-frequency
antennas
Radio tower
Half-wave
dipole
Random-length
wire
Yagi
Table 11.1 summarizes the characteristics of the three types of radio-wave media that are
described in the following sections.
T A B L E 1 1 . 1 Radio-Wave Media
Factor
Low Power
High Power
Spread Spectrum
Frequency range
All radio frequencies
(typically low GHz
range)
All radio frequencies
(typically low GHz
range)
All radio frequencies
(typically 902 to
928MHz, 2.4 to
2.4835GHz, and 5.725
to 5.85GHz in U.S,
where 2.4 and 5.8GHz
are the most popular
today)
Cost
Moderate for wireless
Higher than low-power,
single-frequency
Moderate
Installation
Simple
Difficult
Moderate
Capacity
From below 1 to
10Mbps
From below 1 to
10Mbps
3 to 11Mbps
Attenuation
High (25 meters)
Low
High
EMI
Poor
Poor
Fair
360
Chapter 11 • Unbounded (Wireless) Media
Low Power, Single Frequency
As the name implies, single-frequency transceivers operate at only one frequency. Typical lowpower devices are limited in range to around 20 to 30 meters. Although low-frequency radio waves
can penetrate some materials, the low power limits them to the shorter, open environments.
Low-power, single-frequency transceivers have the following characteristics:
Frequency range Low-power, single-frequency products can use any radio frequency, but
higher gigahertz ranges provide better throughput (data rates).
Cost Most systems are moderately priced compared with other wireless systems.
Installation Most systems are easy to install if the antenna and equipment are preconfigured. Some systems may require expert advice or installation. Some troubleshooting may be
involved to avoid other signals.
Capacity Data rates range from 1 to 10Mbps.
Attenuation The radio frequency and power of the signal determine attenuation. Low-power,
single-frequency transmissions use low power and consequently suffer from attenuation.
EMI Resistance to EMI is low, especially in the lower bandwidths where electric motors
and numerous devices produce noise. Susceptibility to eavesdropping is high, but with the
limited transmission range, eavesdropping is generally limited to within the building where
the LAN is located.
High Power, Single Frequency
High-power, single-frequency transmissions are similar to low-power, single-frequency transmissions but can cover larger distances. They can be used in long-distance outdoor environments. Transmissions can be line of sight or can extend beyond the horizon as a result of being
bounced off the earth’s atmosphere. High-power, single-frequency can be ideal for mobile networking, providing transmission for land-based or marine-based vehicles as well as aircraft.
Transmission rates are similar to low-power rates but at much longer distances.
High-power, single-frequency transceivers have the following characteristics:
Frequency range As with low-power transmissions, high-power transmissions can use any
radio frequency, but networks favor higher gigahertz ranges for better throughput (data rates).
Cost Radio transceivers are relatively inexpensive, but other equipment (antennas, repeaters, and so on) can make high-power, single-frequency radio moderately to very expensive.
Installation Installations are complex. Skilled technicians must be used to install and
maintain high-power equipment. The radio operators must be licensed by the FCC, and
their equipment must be maintained in accordance with FCC regulations. Equipment that is
Radio-Frequency (RF) Systems
361
improperly installed or tuned can cause low data-transmission rates, signal loss, and even
interference with local radio.
Capacity Bandwidth is typically from 1 to 10Mbps.
Attenuation High-power rates improve the signal’s resistance to attenuation, and repeaters can be used to extend signal range. Attenuation rates are fairly low.
EMI Much like low-power, single-frequency transmission, vulnerability to EMI is high.
Vulnerability to eavesdropping is also high. Because the signal is broadcast over a large area,
it is more likely that signals can be intercepted.
Spread Spectrum
Spread-spectrum transmissions use the same frequencies as other radio-frequency transmissions, but they use several frequencies simultaneously rather than just one. Two modulation
schemes can be used to accomplish this, direct frequency modulation and frequency hopping.
Direct frequency modulation is the most common modulation scheme. It works by breaking
the original data into parts (called chips), which are then transmitted on separate frequencies.
To confuse eavesdroppers, spurious signals can also be transmitted. The transmission is coordinated with the intended receiver, which is aware of which frequencies are valid. The receiver
can then isolate the chips and reassemble the data while ignoring the decoy information. Figure 11.7 illustrates how direct frequency modulation works.
FIGURE 11.7
Direct frequency
modulation
362
Chapter 11 • Unbounded (Wireless) Media
The signal can be intercepted, but it is difficult to watch the right frequencies, gather the chips,
know which chips are valid data, and find the right message. This makes eavesdropping difficult.
Current 900MHz direct-sequence systems support data rates of 2 to 6Mbps. Higher frequencies offer the possibility of higher data rates.
Frequency hopping rapidly switches among several predetermined frequencies. In order for
this system to work, the transmitter and receiver must be in nearly perfect synchronization.
Bandwidth can be increased by simultaneously transmitting on several frequencies. Figure 11.8
shows how frequency hopping works.
Spread-spectrum transceivers have the following characteristics:
Frequency range Spread spectrum generally operates in the unlicensed-frequency
ranges. In the United States, devices using the 902 to 928MHz range are most common, but
2.4GHz devices are also available.
Cost Although costs depend on what kind of equipment you choose, spread spectrum is
typically fairly inexpensive when compared with other wireless media.
Installation Depending on the type of equipment you have in your system, installation can
range from simple to fairly complex.
FIGURE 11.8
Frequency hopping
Radio-Frequency (RF) Systems
363
Capacity The most common systems, the 900MHz systems, support data rates of 2 to
6Mbps, but newer systems operating in gigahertz produce higher data rates.
Attenuation Attenuation depends on the frequency and power of the signal. Because
spread-spectrum transmission systems operate at low power, which produces a weaker signal,
they usually have high attenuation.
EMI Immunity to EMI is low, but because spread spectrum uses different frequencies,
interference would need to be across multiple frequencies to destroy the signal. Vulnerability
to eavesdropping is low.
Advantages of RF
As mentioned earlier, RF systems are widely used in LANs today because of many factors:
No line of sight needed Radio waves can penetrate walls and other solid obstacles, so a
direct line of sight is not required between sender and receiver.
Low cost Radio transmitters have been around since the early twentieth century. After 100
years, high-quality radio transmitters have become extremely cheap to manufacture.
Flexible Some RF LAN systems allow laptop computers with wireless PC NICs to roam
around the room while remaining connected to the host LAN.
Disadvantages of RF
As with the other types of wireless networks, RF networks have their disadvantages:
Susceptible to jamming and eavesdropping Because RF signals are broadcast in all
directions, it is very easy for someone to intercept and interpret a LAN transmission without
the permission of the sender or receiver. Those RF systems that use spread-spectrum encoding are less susceptible to this problem.
Susceptible to RF interference All mechanical devices with electric motors produce stray
RF signals, known as RF noise. The larger the motor, the stronger the RF noise. These stray RF
signals can interfere with the proper operation of an RF-transmission LAN.
Limited range RF systems don’t have the range of satellite networks (although they can
travel longer distances than infrared networks). Because of their limited range, RF systems
are normally used for short-range network applications (e.g., from a PC to a bridge, or shortdistance building-to-building applications).
364
Chapter 11 • Unbounded (Wireless) Media
FIGURE 11.9
An example of an ad
hoc RF network
Examples of RF
RF systems are being used all over corporate America. The RF networking hardware available
today makes it easy for people to connect wirelessly to their corporate network as well as to the
Internet.
One popular type of RF network today is what is known as an ad hoc RF network, which is created when two or more entities with RF transceivers that support ad hoc networking are
brought within range of each other. The two entities send out radio waves to each other and
both recognize that they can communicate with another RF device close by. Ad hoc networks
allow people with laptops or handheld devices to create their own networks on-the-fly and
transfer data. Figure 11.9 shows an example of an ad hoc network between three notebooks.
These three notebooks all have the some RF devices that support ad hoc and have been configured to talk to each other.
Another style of RF network is a multipoint RF network, which has many stations. Each station has an RF transmitter and receiver that communicate with a central device known as a
wireless bridge. A wireless bridge (known as an RF access point in RF systems) is a device that
provides a transparent connection to the host LAN via an Ethernet or Token Ring connection
Radio-Frequency (RF) Systems
365
and uses some wireless method (e.g., infrared, RF, or microwave) to connect to the individual
nodes. This type of network is mainly used for two applications: office “cubicle farms” and
metropolitan-area wireless Internet access. Both applications require that the wireless bridge
be installed at some central point and that the stations that are going to access the network be
within the operating range of the bridge device. Figure 11.10 shows an example of this type of
network. Note that the workstations at the top of the figure can communicate wirelessly to the
server and printer connected to the same network as the bridge device.
Many different brands, makes, and models of RF LAN equipment are available. The variety
of equipment used to be a source of difficulty with LAN installers. In its infancy, every company used different frequencies, different encoding schemes, different antennas, and different
wireless protocols. The marketplace was screaming for a standard. So the IEEE 802.11 Standard was developed. Standard 802.11 specifies various protocols for wireless networking. It
does, in fact, specify that either infrared or RF can be used for the wireless network, but most
RF systems are the only ones advertising IEEE 802.11 compliance.
FIGURE 11.10
An example of an RF
multipoint network
Bridge device
Laser printer
Server
366
Chapter 11 • Unbounded (Wireless) Media
So What is Wi-Fi?
Wireless Fidelity (Wi-Fi) is a trade name given to those devices by the Wi-Fi Alliance that pass
certification tests for strictest compliance to the IEEE 802.11 standards and for interoperability. Any equipment labeled with the Wi-Fi logo will work with any other Wi-Fi equipment,
regardless of manufacturer. For more information see www.wi-fi.org.
Table 11.2 shows some examples of the available RF wireless networking products available
at the time of the writing of this book. This table shows which RF technology each product
uses as well as its primary application.
T A B L E 1 1 . 2 Available RF Wireless Networking Product Examples
Product
RF Technology
Application
Speed
Breezecom BreezNET
Spread spectrum
Multipoint and ad hoc
Up to 11Mbps
Agere Systems ORiNOCO
Spread spectrum
Multipoint
1 to 11Mbps
Cisco Aironet
Spread spectrum
Multipoint
Up to 11Mbps
Apple AirPort
Spread spectrum
Multipoint
11Mbps
The 802.11 standards contain many subset that define different wireless RF technologies
that are used for different purposes. Table 11.3 details these subsets.
T A B L E 1 1 . 3 802.11 Subsets
Max Range
subset
(Indoors at
maximum
speed)
Frequency
Speeds
802.11a
18M
5GHz
6, 12, 24,
54Mbps
No
802.11b
50M
2.4GHz
1,11Mbps
Yes (g)
802.11g
50M
2.4GHz
1,11,54 Mbps
Yes (b)
Compatible with other
802.11 subsets?
Microwave Communications
You’ve seen them: the satellite dishes on the tops of buildings in larger cities. These dishes are
most often used for microwave communications. Microwave communications use very powerful, focused beams of energy to send communications over very long distances.
Microwave Communications
367
In this section, we will cover the details of microwave communications as they apply to LAN
and WAN communications.
How Microwave Communication Works
Microwave communication makes use of the lower gigahertz frequencies of the electromagnetic spectrum. These frequencies, which are higher than radio frequencies, produce better
throughput and performance than other types of wireless communications. Table 11.4 shows
a brief comparison of the two types of microwave data-communications systems, terrestrial and
satellite. A discussion of both follows.
T A B L E 1 1 . 4 Terrestrial Microwave and Satellite Microwave
Factor
Terrestrial Microwave
Satellite Microwave
Frequency range
Low gigahertz (typically from 4 to
6GHz or 21 to 23GHz)
Low gigahertz (typically 11 to 14GHz)
Cost
Moderate to high
High
Installation
Moderately difficult
Difficult
Capacity
1 to 100Mbps
1 to 100Mbps
Attenuation
Depends on conditions (affected by
atmospheric conditions)
Depends on conditions (affected by
atmospheric conditions)
EMI resistance
Poor
Poor
Terrestrial
Terrestrial microwave systems typically use directional parabolic antennas to send and receive
signals in the lower gigahertz frequency range. The signals are highly focused and must travel
along a line-of-sight path. Relay towers extend signals. Terrestrial microwave systems are typically used when the cost of cabling is cost-prohibitive.
TIP
Because they do not use cable, microwave links often connect separate buildings where
cabling would be too expensive, difficult to install, or prohibited. For example, if a public
road separates two buildings, you may not be able to get permission to install cable over
or under the road. Microwave links would then be a good choice.
Because terrestrial microwave equipment often uses licensed frequencies, licensing commissions or government agencies (the FCC in the United States) may impose additional costs and
time constraints.
Figure 11.11 shows a microwave system connecting separate buildings. Smaller terrestrial
microwave systems can be used within a building as well. Microwave LANs operate at low
power, using small transmitters that communicate with omnidirectional hubs. Hubs can then
be connected to form an entire network.
368
Chapter 11 • Unbounded (Wireless) Media
FIGURE 11.11
A terrestrial microwave
system connecting two
buildings
Terrestrial microwave systems have the following characteristics:
Frequency range Most terrestrial microwave systems produce signals in the low gigahertz
range, usually at 4 to 6GHz and 21 to 23GHz.
Cost Short-distance systems can be relatively inexpensive, and they are effective in the
range of hundreds of meters. Long-distance systems can be very expensive. Terrestrial systems may be leased from providers to reduce startup costs, although the cost of the lease over
a long term may prove more expensive than purchasing a system.
Installation Line-of-sight requirements for microwave systems can make installation difficult. Antennas must be carefully aligned. A licensed technician may be required. Suitable
transceiver sites can be a problem. If your organization does not have a clear line of sight
between two antennas, you must either purchase or lease a site.
Capacity Capacity varies depending on the frequency used, but typical data rates are from
1 to 100Mbps.
Attenuation Frequency, signal strength, antenna size, and atmospheric conditions affect
attenuation. Normally, over short distances, attenuation is not significant, but rain and fog
can negatively affect higher-frequency microwaves.
EMI Microwave signals are vulnerable to EMI, jamming, and eavesdropping (although
microwave transmissions are often encrypted to reduce eavesdropping). Microwave systems
are also affected by atmospheric conditions.
Satellite
Satellite microwave systems transmit signals between directional parabolic antennas. Like
terrestrial microwave systems, they use low gigahertz frequencies and must be in line of
Microwave Communications
369
sight. The main difference with satellite systems is that one antenna is on a satellite in geosynchronous orbit about 50,000 kilometers (22,300 miles) above the earth. Therefore, satellite microwave systems can reach the most remote places on earth and communicate with
mobile devices.
Here’s how it usually works. A LAN sends a signal through cable media to an antenna
(commonly known as a satellite dish), which beams the signal to the satellite in orbit above the
earth. The orbiting antenna then transmits the signal to another location on the earth or, if
the destination is on the opposite side of the earth, to another satellite, which then transmits
to a location on earth.
Figure 11.12 shows a transmission being beamed from a satellite dish on earth to an orbiting
satellite and then back to earth.
Because the signal must be transmitted 50,000 kilometers to the satellite and 50,000 kilometers back to earth, satellite microwave transmissions take about as long to reach a destination a few kilometers away on land as they do to span continents. The delay between the
transmission of a satellite microwave signal and its reception, called a propagation delay,
ranges from 0.5 to 5 seconds.
FIGURE 11.12
Satellite microwave
transmission
370
Chapter 11 • Unbounded (Wireless) Media
Satellite microwave systems have the following characteristics:
Frequency range Satellite links operate in the low gigahertz range, typically from 11
to 14GHz.
Cost The cost of building and launching a satellite is extremely expensive—as high as several hundred million dollars or more. Companies such as AT&T, Hughes Network Systems,
and Scientific-Atlanta lease services, making them affordable for a number of organizations.
Although satellite communications are expensive, the cost of cable to cover the same distance
may be even more expensive.
Installation Satellite microwave installation for orbiting satellites is extremely technical and
difficult and certainly should be left to professionals in that field. The earth-based systems may
require difficult, exact adjustments. Commercial providers can help with installation.
Capacity Capacity depends on the frequency used. Typical data rates are 1 to 10Mbps.
Attenuation Attenuation depends on frequency, power, antenna size, and atmospheric
conditions. Higher-frequency microwaves are more affected by rain and fog.
EMI Microwave systems are vulnerable to EMI, jamming, and eavesdropping (although
the transmissions are often encrypted to reduce eavesdropping). Microwave systems are also
affected by atmospheric conditions.
Advantages of Microwave Communications
Microwave communications have limited use in LAN communications. However, because of their
great power, they have many advantages in WAN applications. Some of these advantages include:
Very high bandwidth Of all the wireless technologies, microwave systems have the highest bandwidth because of the high power of the transmission systems. Speeds of 100Mbps
and greater are possible.
Transmissions travel over long distances As already mentioned, their higher power
makes it possible for microwave transmissions to travel over very long distances. Transmissions can travel over distances of several miles (or several thousand miles, in the case of satellite systems).
Signals can be point-to-point or broadcast As with other types of wireless communications, the signals can be focused tightly for point-to-point communications, or they can be
diffused and sent to multiple locations via broadcast communications. This allows for the
maximum flexibility for the most applications.
Microwave Communications
371
Disadvantages of Microwave Communications
Microwave communications are not an option for most users because of their many disadvantages. Specifically, a few disadvantages make microwave communications viable for only a few
groups of people. Some of these disadvantages include the following:
Equipment is expensive Microwave transmission and reception equipment is the most
expensive of all the types of wireless transmission equipment discussed in this chapter. A
microwave transmitter/receiver combo can cost upwards of $5,000 in the United States—
and two transmitters are required for communications to take place. Cheaper microwave systems are available, but their distance and features are more limited.
Line of sight required Microwave communications require a line of sight between sender
and receiver. Generally speaking, the signal can’t be bounced off any objects.
Atmospheric attenuation As with other wireless technologies (such as infrared laser),
atmospheric conditions (e.g., fog, rain, snow) can negatively affect microwave transmissions.
For example, a thunderstorm between sender and receiver can prevent reliable communication between the two. Additionally, the higher the microwave frequency, the more susceptible to attenuation the communication will be.
Propagation delay This is primarily a disadvantage of satellite microwave. When sending
between two terrestrial stations using a satellite as a relay station, it can take anywhere from 0.5
to 5 seconds to send from the first terrestrial station through the satellite to the second station.
Safety Because the microwave beam is very high powered, it can pose a danger to any
human or animal that comes between transmitter and receiver. Imagine putting your hand in
a microwave on low power. It may not kill you, but it will certainly not be good for you.
Examples of Microwave Communications
Microwave equipment differs from infrared and RF equipment because it is more specialized
and is usually only used for WAN connections. The high power and specialization makes it a
poor choice for a LAN media (you wouldn’t want to put a microwave dish on top of every PC
in an office!). Because microwave systems are very specialized, instead of listing a few of the
common microwave products, Table 11.5 lists a few microwave-product companies and their
website addresses so you can examine their product offerings for yourself.
T A B L E 1 1 . 5 Microwave-Product Companies and Websites
Company
Website
Adaptive Broadband
www.adaptivebroadband.com
www.macom.com
www.telspec.com/swmicro.htm
M/A-COM
Southwest Microwave
Part III
Cabling Design
and Installation
Chapter 12: Cabling System Design and Installation
Chapter 13: Cable: Connector Installation
Chapter 14: Cable System Testing and Troubleshooting
Chapter 15: Creating a Request for Proposal (RFP)
Chapter 16: Cabling @ Work: Experience From the Field
Chapter 12
Cabling-System Design
and Installation
• Elements of a Successful Cabling Installation
• Cabling Topologies
• Cabling Plant Uses
• Choice of Media
• Telecommunications Rooms
• Cabling Management
• Data and Cabling Security
• Cabling Installation Procedures
376
Chapter 12 • Cabling-System Design and Installation
he previous chapters in this book were designed to teach you the basics of telecommunications
cabling procedures. You learned about the various components of a typical telecommunications installation and their functions.
T
They’re good to know, but it is more important to understand how to put the components
together into a cohesive cabling-system design. That is, after all, why you bought this book, is
it not? Each of the components of a cabling system can fit together in many different ways.
Additionally, you must design the cabling system so that each component of that system meets
or exceeds the goals of the cabling project.
In this chapter, you will learn to apply the knowledge you learned in the previous chapters
to designing and installing a structured cabling system.
Elements of a Successful Cabling Installation
Before designing your system, you should understand how the following elements contribute
to a successful installation:
●
Using proper design
●
Using quality materials
●
Practicing good workmanship
Each of these aspects can drastically affect network performance.
Proper Design
A proper cabling-system design is paramount to a well-functioning cabling infrastructure. As
with any other major project, the key to a successful cabling installation is that four-letter word:
p-l-a-n. A proper cabling-system design is simply a plan for installing the cable runs and their
associated devices.
So what is a proper design? A proper cabling-system design will take into account five primary
criteria:
●
Desired standards and performance characteristics
●
Flexibility
●
Longevity
●
Ease of administration
●
Economy
Failure to take these criteria into account can cause usability problems and poor network performance. We’ll take a brief look at each of these factors.
Elements of a Successful Cabling Installation
377
Desired Standards and Performance Characteristics
Of the proper cabling-design criteria listed, standards and performance characteristics is the
most critical. As discussed earlier in Chapter 1, standards ensure that products from many different vendors can communicate. When you design your cabling layout, you should decide on
standards for all aspects of your cabling installation so that the various products used will interconnect. Additionally, you should choose products for your design that will meet desired performance characteristics. For example, if you will be deploying a broadcast video system over
your LAN in addition to the everyday file and print traffic, it is important that the cabling system be designed with a higher-capacity network in mind (e.g., Fast Ethernet or fiber optic).
Flexibility
No network is a stagnant entity. As new technologies are introduced, companies will adopt
them at different rates. When designing a cabling system, you should plan for MACs (moves,
adds, and changes) so that if your network changes your cabling design will accommodate those
changes. In a properly designed cabling system, a new device or technology will be able to connect to any point within the cabling system.
One aspect of flexibility that many people overlook is the number of cabling outlets or drops
in a particular room. Many companies take a minimalist approach; that is, they put only the
number of drops in each room that is currently necessary. That design is fine for the time
being, but what happens when an additional device or devices are needed? It is usually easier
to have an extra drop or two (or five) installed while all of the others are being installed than
it is to return later to install a single drop.
Longevity
Let’s face it, cabling is hard work. You must climb above ceilings and, on occasion, snake through
crawlspaces to properly run the cables. Therefore, when designing a cabling system, you want to
make sure that the design will stand the test of time and last for a number of years without having
to be replaced. A great case in point: Many companies removed their coaxial-cable-based networks
in favor of the newer, cheaper, more reliable UTP cabling. Others are removing their UTP
cabling in favor of fiber-optic cable’s higher bandwidth. Now, wouldn’t it make more sense for
those companies that already had coaxial cable to directly upgrade to fiber-optic cable (or at least
to a newly released, high-end, high-quality copper UTP cabling system) rather than having to “rip
and replace” again in a few years? Definitely. If you have to upgrade your cabling system or are
currently designing your system, it is usually best to upgrade to the most current technology you
can afford. But you should also keep in mind that budget is almost always the limiting factor.
378
Chapter 12 • Cabling-System Design and Installation
Ease of Administration
Another element of a proper cabling design is ease of administration. This means that a network administrator (or subcontractor) should be able to access the cabling system and make
additions and changes, if necessary. Some of these changes might include the following:
●
Removing a station from the network
●
Replacing hubs, routers, and other telecommunications equipment
●
Installing new cables
●
Repairing existing wires
Many elements make cabling-system administration easier, the most important of which is
documentation (discussed later in this chapter). Another element is neatness. A rat’s nest of
cables is difficult to administrate because it is difficult to tell which cable goes where.
Economy
Finally, how much money you have to spend will play a part in your cabling-system design. If
you had an unlimited budget, you’d go fiber-to-the-desktop without question. All your futureproofing worries would be over (at least until the next fiber-optic innovation).
The reality is you probably don’t have an unlimited budget, so the best cabling system for you
involves compromise—taking into account the four elements listed previously and deciding
how to get the most for your investment. You have to do some very basic value-proposition
work, factoring in how long you expect to be tied to your new cabling system, what your bandwidth needs are now, and what your bandwidth needs might be in the future.
Quality Materials
Another element of a successful cabling installation is the use of quality materials. The quality of
the materials used in a cabling installation will directly affect the transmission efficiency of a network. Many times, a vendor will sell many different cabling product lines, each with a different
price point. The old adage that you get what you pay for really does apply to cabling supplies.
All the components that make up a cabling plant can be purchased in both high- and lowquality product lines. For example, you can buy RJ-45 connectors from one vendor that are
$0.03 apiece but rated at only Category 3 (i.e., they won’t work for 100Mbps networks).
Another vendor’s RJ-45 connectors may cost twice as much but be rated for Category 6
(155Mbps and above, over copper).
That doesn’t always mean that low price means low quality. Some vendors make low-price,
high-quality cabling supplies. Without playing favorites to a particular vendor, we’ll just say
that it doesn’t hurt to shop around when buying your cabling supplies. Check the Internet sites
of many different cabling vendors to compare prices.
Cabling Topologies
379
In addition to price, you should check how the product is assembled. Quality materials are
sturdy and well constructed. Low-quality materials will not be durable and may actually break
while you are handling them.
Good Workmanship
There is a saying that any job worth doing is worth doing correctly. When installing cabling,
this saying is especially true because shoddy workmanship can cause data-transmission problems and thus lower the network’s effective throughput. If you try to rush a cabling job to meet
a deadline, you will usually end up doing some or the entire job over again. For example, when
punching down the individual wires in a UTP installation, excessive untwisting of the individual wires can cause excessive near-end crosstalk (NEXT), thus lowering the effective datacarrying capacity of that connection. The connection must be removed and reterminated to
correct the problem.
The same holds true for fiber-optic cable connections. If you rush any part of the connector
installation, the effective optical transmission capacity of that connection will probably be
reduced. A reduced capacity means that you may not be able to use that connection at all
because the light will be refracted too far outside of the fiber and too much extraneous light will
get into the connection, causing it to fail.
Cabling Topologies
As discussed in Chapter 3, a topology is basically a map of a network. The physical topology
of a network describes the layout of the cables and workstations and the location of all network
components. Choosing the layout of how computers will be connected in a company’s network
is critical. It is one of the first choices you will make during the design of the cabling system,
and it is an important one because it tells you how the cables are to be run during the installation. Making a wrong decision regarding physical topology and media is costly and disruptive
because it means changing an entire installation once it is in place. The typical organization
changes the physical layout and physical media of a network only once every 5 to 10 years, so
it is important to choose a configuration that you can live with and that allows for growth.
Chapter 3 described the basics of the star, bus, and ring topologies. Here, we’ll look at some of their
advantages and disadvantages and introduce a fourth, seldom-used topology, the mesh topology.
Bus Topology
A bus topology has the following advantages:
●
It is simple to install.
380
Chapter 12 • Cabling-System Design and Installation
●
It is relatively inexpensive.
●
It uses less cable than other topologies.
On the other hand, a bus topology has the following disadvantages:
●
It is difficult to move and change.
●
The topology has little fault tolerance (a single fault can bring down the entire network).
●
It is difficult to troubleshoot.
Star Topology
Just as with the bus topology, the star topology has advantages and disadvantages. The increasing popularity of the star topology is mainly due to the large number of advantages, which
include the following:
●
It can be reconfigured quickly.
●
A single cable failure won’t bring down the entire network.
●
It is relatively easy to troubleshoot.
●
It is the only recognized topology in the industry Standard, ANSI/TIA/EIA-568-B.
The disadvantages of a star topology include the following:
●
The total installation cost can be higher because of the larger number of cables.
●
It has a single point of failure, the hub.
Ring Topology
The ring topology has a few pros but many more cons, which is why it is seldom used. On the
pro side, the ring topology is relatively easy to troubleshoot. A station will know when a cable
fault has occurred because it will stop receiving data from its upstream neighbor.
The cons are as follows:
NOTE
●
It is expensive because multiple cables are needed for each workstation.
●
It is difficult to reconfigure.
●
It is not fault tolerant. A single cable fault can bring down the entire network.
Keep in mind that these advantages and disadvantages are for a physical ring, of which
there are few, if any, in use. Logical ring topologies exist in several networks, but they are
usually laid out as a physical star.
Cabling Topologies
381
Mesh Topology
In a mesh topology (as shown in Figure 12.1), a path exists from each station to every other station in the network. Although not usually seen in LANs, a variation on this type of topology,
the hybrid mesh, is used in a limited fashion on the Internet and other WANs. Hybrid mesh
topology networks can have multiple connections between some locations, but this is done for
redundancy. Also, it is not a true mesh because there is not a connection between each and
every node; there are just a few, for backup purposes.
FIGURE 12.1
A typical mesh
topology
As you can see in Figure 12.1, a mesh topology can become quite complex because wiring and
connections increase exponentially. For every n stations, you will have n(n - 1)/2 connections. For
example, in a network of four computers, you will have 4(4 - 1)/2 connections, or six connections.
If your network grows to only 10 devices, you will have 45 connections to manage! Given this
impossible overhead, only small systems can be connected this way. The advantage to all the
work this topology requires is a more fail-safe or fault-tolerant network, at least as far as cabling
is concerned. On the con side, the mesh topology is expensive and, as you have seen, quickly
becomes too complex. Today, the mesh topology is rarely used, and then only in a WAN environment because it is fault tolerant. Computers or network devices can switch between these
multiple, redundant connections if the need arises.
Backbones and Segments
When discussing complex networks, you must be able to intelligently identify its parts. For this
reason, networks are commonly broken into backbones and segments. Figure 12.2 shows a
sample network with the backbone and segments identified.
382
Chapter 12 • Cabling-System Design and Installation
FIGURE 12.2
The backbone and segments on a sample
network
Segments
Backbone
Understanding the Backbone
The backbone is the part of the network to which all segments and servers connect. A backbone
provides the structure for a network and is considered the main part of any network. It usually
uses a high-speed communications technology of some kind (such as FDDI, ATM, 100Mb
Ethernet, or Gigabit Ethernet). All servers and all network segments typically connect directly to
the backbone so that any segment is only one segment away from any server on that backbone.
Having all segments close to the servers makes the network efficient. Notice in Figure 12.2 that
the three servers and three segments all connect to the backbone.
Understanding Segments
Segment is a general term for any short section of the cabling infrastructure that is not part
of the backbone. Just as servers connect to the backbone, workstations connect to segments.
Segments are connected to the backbone to allow the workstations on them access to the rest
of the network. Figure 12.2 shows three segments. Segments are more commonly referred
to as the horizontal cabling.
Cabling Plant Uses
383
Selecting the Right Topology
From a practical standpoint, which topology to use has been decided for you. Because of its
clear-cut advantages, the star topology is the only recognized physical layout in ANSI/TIA/
EIA-568-B. Unless you insist that your installation defy the Standard, this will be the topology
selected by your cabling-system designer.
If you choose not to go with the star topology, the bus topology is usually the most efficient
choice if you’re creating a simple network for a handful of computers in a single room because
it is simple and easy to install. Because MACs are managed better in a star topology, a bus
topology is generally not used in a larger environment. If uptime is your primary definition of
fault resistant (that is, 99 percent uptime, or less than eight hours total downtime per year), you
should seriously consider a mesh layout. However, while you are thinking about how fault tolerant a mesh network is, let the word maintenance enter your thoughts. Remember, you will
have n(n - 1)/2 connections to maintain, and this can quickly become a nightmare and exceed your
maintenance budget.
If you decide not to automatically go with a star topology and instead consider all the topologies, be sure to keep in mind cost, ease of installation, ease of maintenance, and fault tolerance.
Cabling Plant Uses
Another consideration to take into account when designing and installing a structured cabling
system is the intended use of the various cables in the system. A few years ago, structured cabling
system usually meant a company’s data network cabling. Today, cabling systems are used to
carry various kinds of information, including the following:
●
Data
●
Telephone
●
Television
●
Fire detection and security
When designing and installing your cabling system, you must keep in mind what kind of
information is going to be traveling on the network and what kinds of cables are required to
carry that information.
Because this book is mainly about data cabling, we’ll assume you know that cables can be run
for data. So, we’ll start this discussion with a discussion of telephone wiring.
384
Chapter 12 • Cabling-System Design and Installation
Telephone
The oldest (and probably most common) use for a cabling system is to carry telephone signals.
In the old days, pairs of copper wires were strung throughout a building to carry the phone signal from a central telephone closet to the individual telephone handsets. In the telephone
closet, the individual wires were brought together and mechanically and electrically connected
to all the incoming telephone lines so that the entire building was connected to the outside
world. Surprisingly, the basic layout for a telephone cabling system has changed very little. The
major difference today is that telephone systems have become digital. So most require a private
branch exchange (PBX), a special device that connects all the individual telephones together so
the telephone calls can go out over one high-speed line (called a trunk line) rather than over
multiple individual lines. Figure 12.3 shows how a current telephone network is arranged.
Generally speaking, today’s telephone networks are run along the same cabling paths as the
data cabling. Additionally, telephone systems use the same UTP cable that many networks
use for carrying data. They will usually share the same wiring closets with the data and television cabling. The wires from telephone connections can be terminated almost identically
to data cabling.
FIGURE 12.3
Phone lines to
phone company
An example of a
telephone network
PBX
PBX
Phone company
demarcation
Equipment
punch-down
Phone line
punch-down
Cabling Plant Uses
385
FIGURE 12.4
A typical television
cable installation
Televisions
Splitter/
amplifier
From cable
company
Television
With the increase in the use of on-demand video technology, it is now commonplace to run
television cable alongside data and telephone cabling. In businesses where local cable access is
possible, television cable will be run into the building and distributed to many areas to provide
cable access. You may be wondering what cable TV has to do with business. The answer is
plenty. News, stock updates, technology access, public-access programs, and, most importantly, Internet connections can all be delivered through television cable. Additionally, television cable is used for security cameras in buildings.
Like telephone cable, television cables can share the wiring pathways with their data counterparts. Television cable typically uses coaxial cable (usually RG-6/U cable) along with F-type, 75ohm coaxial connectors. The cables to the various outlets are run back to a central point where
they are connected to a distribution device. This device is usually an unpowered splitter, but it can
also be a powered, complex device known as a television distribution frame. Figure 12.4 shows
how a typical television cabling system might look. Notice the similarities between Figures 12.4
and 12.3. The topology is basically the same.
Fire-Detection and Security Cabling
One category of cabling that often gets overlooked is the cabling for fire-detection and security
devices. Examples of these devices include glass-breakage sensors, smoke alarms, motion sensors, and door-opening sensors. These devices usually run on DC current anywhere from +12
386
Chapter 12 • Cabling-System Design and Installation
to +24 volts. Cables, which are usually UTP, must be run from each of these devices back to
the central security controller. Because they usually carry power, these cables should be run
separately from, or at least perpendicular to, copper cables that are carrying data.
Choice of Media
A very important consideration when designing a cabling system for your company is which
media to use. Different media have different specifications that make them better suited for a
particular type of installation. For example, for a simple, low-budget installation, some types
of copper media might be a better choice because of their ease of installation and low cost. In
previous chapters, you learned about the different types of cabling media available and their
different communication aspects, so we won’t reiterate them here, except for the summary in
Table 12.1.
T A B L E 1 2 . 1 Summary of Cabling Media Types
Media
Advantages
Disadvantages
UTP
Relatively inexpensive
May be susceptible to EMI and
eavesdropping
Widely available
Mature standards
Easy to install
Fiber
Wireless
Only covers short (<1km) distances
without additional devices
High data rates possible
Moderately expensive electronics
Immune to EMI and largely immune to
eavesdropping
Can be difficult to install
Few distance limitations
Atmospheric attenuation
Relatively easy to install
More expensive than cabled media
Some wireless frequencies require an
FCC license
Telecommunications Rooms
Some components and considerations that pertain to telecommunications rooms must be
taken into account during the design stage. In this section, we’ll go over the LAN and telephone wiring found there, as well as the rooms’ power and HVAC requirements. For more
information on the functions and requirements of telecommunications rooms, see Chapters 2
and 5. Figure 12.5 shows how telecommunications rooms are placed in an average building.
Telecommunications Rooms
387
LAN Wiring
The first item inside a telecommunications room that will draw your attention is the large bundle
of cables coming into the closet. The bundle contains the cables that run from the closet to the
individual stations and may also contain cables that run from the room to other rooms or closets
in the building. The bundle of cables is usually bound together with straps and leads the LAN
cables to a patch panel, which connects the individual wires within a particular cable to network
ports on the front of the panel. These ports can then be connected to the network equipment
(hubs, switches, routers, and so on), or two ports can be connected together with a patch cable.
Figure 12.6 shows an example of the hardware typically found in a telecommunicationsroom.
Patch panels come in many different shapes and sizes (as shown in Figure 12.7). Some are
mounted on a wall and are known as surface-mount patch panels (also called punch-down blocks).
Others are mounted in a rack and are called rack-mount patch panels. Each type has its own benefits. Surface-mount panels are cheaper and easier to work with, but they can’t hold as many
cables and ports. Rack-mount panels are more flexible, but they are more expensive. Surfacemount patch panels make good choices for smaller (less than 50 drops) cabling installations.
Rack-mount patch panels make better choices for larger installations. Patch panels are the
main products used in LAN installations today because they are extremely cost effective and
allow great flexibility when connecting workstations.
FIGURE 12.5
Placement of telecommunications rooms
Backbone
(riser) cable
Distribution
closets
Ground level
Main closet
388
Chapter 12 • Cabling-System Design and Installation
FIGURE 12.6
Hardware typically
found in a telecommunications room and
major networking
items
Drop cable
Wall jack
Hub
Patch cable
Patch panel
Patch cable
Telephone Wiring
In addition to the LAN wiring components found in the telecommunications room, you will
usually also find all of the wiring for the telephone system, because the two are interrelated. In
most companies, a computer and a telephone are on every desk. Software programs are even
available that can connect the two technologies and allow you to receive all of your voicemails
as e-mails. These programs integrate with your current e-mail system to provide integrated
messaging services (a technology known as unified messaging).
The telephone cables from the individual telephones will come into the telecommunications
room in approximately the same location as the data cables. They will then be terminated in
some kind of patch panel (cross-connect). In many older installations, the individual wires will
be punched down in 66-blocks, a type of punch-down block that uses small “fingers” of metal
Telecommunications Rooms
389
to connect different UTP wires together. The wires on one side of the 66-block are from the
individual wires in the cables for the telephone system. Newer installations use a type of crossconnect known as a 110-block. Although it looks different than a 66-block, it functions the
same way. Instead of using punch-down blocks, it is also possible to use the same type of patch
panel as is used for the UTP data cabling for the telephone cross-connect. As with the data
cabling, that option enhances the flexibility of your cabling system.
The wires on the other side of the block usually come from the telephone PBX. The PBX
controls all the incoming and outgoing calls as well as which pair of wires is for which telephone extension. The PBX has connectors on the back that allow 25 telephone pairs to be connected to a single 66-block at a time using a single 50-pin connector (as shown in Figure 12.8).
Typically, many of these 66-blocks are placed on a large piece of plywood fastened to the wall
(as shown in Figure 12.9). The number of 66-blocks is as many as required to support the number of cables required for the number of telephones in the telephone system.
FIGURE 12.7
Patch-panel examples
390
Chapter 12 • Cabling-System Design and Installation
FIGURE 12.8
50-pin Centronics
connector
Connecting a PBX to a
66-block
25-pair
cable
66-block
PBX
FIGURE 12.9
Multiple 66-blocks in a
wiring closet
Standoff
66-block
3/4-inch
plywood
Telecommunications Rooms
391
Power Requirements
With all of these devices in the wiring closet, it stands to reason that you are going to need some
power receptacles there. Telecommunications rooms have some unique power requirements.
First of all, each of the many small electronic devices will need power, and a single-duplex outlet
will not have enough outlets. Additionally, these devices should all be on an electrical circuit dedicated to that wiring closet and separate from the rest of the building. And, in some cases, devices
within the same room may require their own circuit, separate from other devices in that room .
The circuit should have its own isolated ground. An isolated ground in commercial wiring is a
ground wire for the particular isolated outlet that is run in the same conduit as the electricalsupply connectors. This ground is called isolated because it is not tied into the grounding of the
conduit at all. The wire runs from the receptacle back to the point where the grounds and neutrals are tied together in the circuit panel. You can identify isolated-ground outlets in a commercial building because they are orange with a small green triangle on them.
NOTE
Most, if not all, residential outlets have an isolated ground because conduit is not used,
and these outlets must have a ground wire in the cable.
The wiring closet should be equipped with a minimum of two dedicated three-wire 120-volt
AC duplex outlets, each on its own 20-amp circuit, for network and system-equipment power.
In addition, separate 120-volt AC duplex outlets should be provided as convenience outlets for
tools, test equipment, etc. Convenience outlets should be a minimum of six inches off the floor
and placed at six-foot intervals around the perimeter of the room. None of the outlets shall be
switched, i.e., controlled by a wall switch or other device that might accidentally interrupt
power to the system.
HVAC Considerations
Computer and networking equipment generates much heat. Place enough equipment in a telecommunications room without ventilation, and the temperature will quickly rise to dangerous
levels. Just as sunstroke affects the human brain, high temperatures are the downfall of electronic components. The room temperature should match the ambient temperature of office
space occupied by humans, and keep it at that temperature year round.
For this reason, telecommunications rooms should be sufficiently ventilated. At the very
least, some kind of fan should exchange the air in the closet. Some telecommunications rooms
are pretty good-sized rooms with their own HVAC (heating, ventilation, and air conditioning)
controls.
392
Chapter 12 • Cabling-System Design and Installation
Cabling Management
Cabling management is guiding the cable to its intended destination without damaging it or its
data-carrying capabilities. Many different cabling products protect cable, make it look good,
and help you find the cables faster. They fall into three categories:
●
Physical protection
●
Electrical protection
●
Fire protection
In this section, we will look at the various devices used to provide each level of protection and
the concepts and procedures that go along with them.
Physical Protection
Cables can be fragile—easily cut, stretched, and broken. When performing a proper cabling
installation, cables should be protected. Many items are currently used to protect cables from
damage, including the following:
●
Conduit
●
Cable trays
●
Standoffs
●
D-rings
We’ll take a brief look at each and the different ways they are used to protect cables from damage.
Conduit
The simplest form of cable protection is a metal or plastic conduit to protect the cable as it travels through walls and ceilings. Conduit is really nothing more than a thin-walled plastic or
metal pipe. Conduit is used in many commercial installations to contain electrical wires. When
electricians run conduit for electrical installation in a new building, they can also run additional
conduit for network wiring. Conduit is put in place, and the individual cables are run inside it.
The main advantage to conduit is that it is the simplest and most robust protection for a network cable. Also, if you use plastic conduit, it can be a relatively cheap solution (metal conduit
is more expensive).
WARNING
The flame rating of plastic conduit must match the installation environment. In other words,
plastic conduit in a plenum space must have a plenum rating, just like the cable.
Cabling Management
NOTE
393
Rigid metal conduit (steel pipe) exceeds all flame-test requirements. Any cable can be
installed in any environment if it is enclosed in rigid metal conduit. Even cable that burns
like crazy can be put in a plenum space if you put it in this type of conduit.
Cable Trays
When running cable, the cable must be supported every 48 to 60 inches when hanging horizontally. Supporting the cable prevents it from sagging and putting stress on the conductors
inside. For this reason, special devices known as cable trays (also sometimes called ladder racks,
because of their appearance) are installed in ceilings. The horizontal cables from the telecommunications rooms that run to the individual telecommunications outlets are usually placed
into this tray to support them as they run horizontally. Figure 12.10 shows an example of a
cable tray. This type of cable-support system hangs from the ceiling and can support hundreds
of individual cables.
NOTE
There are many methods of cable support. Cable trays are popular in larger installations
and as a method of supporting large numbers of cables or multiple trunks. However, there
are also smaller support systems (such as “J” hooks that mount to a wall or suspend from
a ceiling) available.
Standoffs
When terminating UTP wires for telephone applications in a telecommunications room, you
will often see telephone wires run from a multi-pair cable to the 66-punch-down block. To be
neat, the individual conductors are run around the outside of the board that the punch-down
blocks are mounted to (as shown in Figure 12.11). To prevent damage to the individual conductors, they are bent around devices known as standoffs. These objects look like miniature
spools, are usually made of plastic, and are screwed to the mounting board every foot or so (also
shown in Figure 12.11).
FIGURE 12.10
An example of a
cable tray
394
Chapter 12 • Cabling-System Design and Installation
FIGURE 12.11
A telecommunications
board using standoffs
Telecommunications board
Side view
Telephone
PBX
Telecom Board
66-block
Standoff
100-pair
telephone
cable
25-pair
telephone
cables
Individual
conductors
D-Rings
For LAN installations that use racks to hold patch panels, you need some method of keeping
the cables together and organized as they come out of the cable trays and enter the telecommunications room to be terminated. On many racks, special metal rings called D-rings (named
after their shape) are used to keep the individual cables in bundles and keep them close to the
rack (as shown in Figure 12.12).
In addition to managing cable for a cabling rack, D-rings are also used on punch-down
boards on the wall to manage cables, much in the same way standoffs are. D-rings are put in
place to support the individual cables, and the cables are run to the individual punch-down
blocks on the wall. This setup is similar to the one shown earlier in Figure 12.11.
Electrical Protection (Spike Protection)
In addition to physical protection, you must take electrical protection into account when
designing and installing your cabling system. Electricity powers the network, switches, hubs,
PCs, and computer servers. Variations in power can cause problems ranging from having to
reboot after a short loss of service to damaged equipment and data. Fortunately, a number of
Cabling Management
395
products, including surge protectors, standby power supplies, uninterruptible power supplies,
and line conditioners, are available to help protect sensitive systems from the dangers of lightning strikes, dirty (uneven) power, and accidental power disconnection.
Standby Power Supply (SPS)
A standby power supply (SPS) contains a battery, a switchover circuit, and an inverter (a device
that converts the DC voltage from the battery into the AC voltage that the computer and
peripherals need). The outlets on the SPS are connected to the switching circuit, which is in
turn connected to the incoming AC power (called line voltage). The switching circuit monitors
the line voltage. When it drops below a factory preset threshold, the switching circuit switches
from line voltage to the battery and inverter. The battery and inverter power the outlets (and,
thus, the computers or devices plugged into them) until the switching circuit detects line voltage at the correct level. The switching circuit then switches the outlets back to line voltage.
NOTE
Power output from battery-powered inverters isn’t exactly perfect. Normal power output
alternates polarity 60 times a second (60Hz). When graphed, this output looks like a sine
wave. Output from inverters is stepped to approximate this sine-wave output, but it really
never duplicates it. Today’s inverter technology can come extremely close, but the differences between inverter and true AC power can cause damage to computer power supplies
over the long run.
FIGURE 12.12
LAN equipment rack
D-rings in a cabling
closet for a cabling
rack
D-rings
Side view
396
Chapter 12 • Cabling-System Design and Installation
Uninterruptible Power Supply (UPS)
A UPS is another type of battery backup often found on computers and network devices today.
It is similar to an SPS in that it has outlets, a battery, and an inverter. The similarities end there,
however.
A UPS uses an entirely different method to provide continuous AC voltage to the equipment
it supports. When a UPS is used, the equipment is always running off the inverter and battery.
A UPS contains a charging/monitoring circuit that charges the battery constantly. It also monitors the AC line voltage. When a power failure occurs, the charger stops charging the battery,
but the equipment never senses any change in power. The monitoring part of the circuit senses
the change and emits a beep to tell the user the power has failed.
NOTE
Because the power output of some UPSes (usually lower quality ones) resembles more of
a square wave than the true sine wave of AC, over time, equipment can be damaged by this
nonstandard power.
Fire Protection
All buildings and their contents are subject to destruction and damage if a fire occurs. The
cabling in a building is no exception. You must keep in mind a few cabling-design concerns to
prevent fire, smoke, or heat from damaging your cabling system, the premises on which they
are installed, and any occupants.
As discussed in Chapter 1, make sure you specify the proper flame rating for the cable according to the location in which it will be installed.
Another concern is the puncturing of fire barriers. In most residential and commercial buildings, firewalls are built specifically to stop the spread of a fire within a building. Whenever
there is an opening in a floor or ceiling that could possibly conduct fire, the opening is walled
over with fire-rated drywall to make a firewall that will prevent the spread of fire (or at least
slow it down). In commercial buildings, cinder-block walls are often erected as firewalls
between rooms.
Because firewalls prevent the spread of fire, it is important not to compromise the protection
they offer by punching holes in them for network cables. If you need to run a network cable
through a firewall, first try to find another route that won’t compromise the integrity of the
firewall. If you can’t, you must use an approved firewall penetration device (see Figure 12.13).
These devices form a tight seal around each cable that passes through the firewall. One type of
seal is made of material that is intumescent; that is, it expands several times its normal size when
exposed to very high heat (fire temperatures), sealing the hole in the firewall. That way, the
gases and heat from a fire won’t pass through.
Data and Cabling Security
397
FIGURE 12.13
An example of a firewall penetration device
Firewall protection
intumescent material
Cable tray
Brick firewall
Data and Cabling Security
Your network cables carry all the data that crosses your network. If the data your cables carry
is sensitive and should not be viewed by just anyone, you may need to take extra steps when
designing and installing your cabling system to ensure that the data stays where it belongs:
inside the cables. The level of protection you employ depends on how sensitive the data is and
how serious a security breach could be. Cabling security measures can range from the simple
to the absurdly complex.
Two ways to prevent data from being intercepted are EM (electromagnetic) transmission
regulation and tapping prevention.
EM (Electromagnetic) Transmission Regulation
You should know that the pattern of the magnetic field produced by any current-carrying conductor matches the pattern of the signals being transmitted. Based on this concept, devices
exist that can be placed around a cable to intercept these magnetic signals and turn them back
into electrical signals that can be sent to another (unwanted) location. This process is known
398
Chapter 12 • Cabling-System Design and Installation
as EM signal interception. Because the devices pick up the magnetic signals surrounding the
cable, they are said to be noninvasive.
Susceptibility to EM signal interception can be minimized by using shielded cables or by
encasing all cabling runs from source to destination in a grounded metal conduit. These shielding methods reduce the amount of stray EM signals.
Tapping Prevention
Tapping is the interception of LAN EM signals through listening devices placed around the
cable. Some tapping devices are invasive and will actually puncture the outer jacket of a cable,
or the insulation of individual wires, and touch the metal inner conductor to intercept all signals sent along that conductor. Of course, taps can be applied at the cross-connects if security
access to your equipment rooms and telecommunications rooms is lax.
To prevent taps, the best course of action is to install the cables in metal conduit or to use
armored cable, where practical. Grounding of the metal conduit will provide protection from
both EM and invasive taps but not from taps at the cross-connect. When not practical, otherwise securing the cables can make tapping much more difficult. If the person trying to tap your
communications can’t get to your cables, they can’t tap them. So you must install cables in
secure locations and restrict access to them by locking the cabling closets. Remember: If you
don’t have physical security, you don’t have network security.
Cabling Installation Procedures
Now that we’ve covered some of the factors to take into account when designing a cabling system, it’s time to discuss the process of installing an entire cabling system, from start to finish.
A cabling installation involves five steps:
1. Design the cabling system.
2. Schedule the installation.
3. Install the cables.
4. Terminate the cables.
5. Test the installation.
Design the Cabling System
We’ve already covered this part of the installation in detail in this chapter. However, it’s
important enough to reiterate: Following proper cabling design procedures will ensure the
success of your cabling system installation. Before you pull a single cable, you should have a
Cabling Installation Procedures
399
detailed plan of how the installation will proceed. You should also know the scope of the
project (how many cable runs need to be made, what connections need to be made and where,
how long the project will take, and so on). Finally, you should have the design plan available to
all people involved with the installation of the cable. That list of people includes the cabling
installer, the electrical inspector, the building inspector, and the customer (even if you are the
customer). Be sure to include anyone who needs to refer to the way the cabling is being
installed. At the very least, this information should contain a blueprint of how the cables
will be installed.
Schedule the Installation
In addition to having a proper cabling design, you should also know approximately how long
the installation will take and pick the best time to do it. For example, the best time for a new
cabling installation is while the building studs are still exposed and electrical boxes can be easily
installed. From a planning standpoint, this is approximately the same time in new construction
when the electrical cabling is installed. In fact, because of the obvious connection between electrical and telecommunications wiring, many electrical contractors are now doing low-voltage
(data) wiring so they can contract the wiring for both the electrical system and the telecommunications system.
WARNING
If you use an electrical contractor to install your communications cabling, make sure he or
she is well trained in this type of installation. Many electricians are not aware of the subtleties required to properly handle network wiring. If they treat it like the electrical wire, or
run it along with the electrical wire, you’re going to have headaches in your network performance. We recommend that the communication wiring be installed after the electrical wiring is done so that they can be kept properly segregated.
For a post-construction installation, you should schedule it so as to have the least impact on
the building’s occupants and on the existing network or existing building infrastructure. It also
works to schedule it in phases or sections.
Install the Cabling
Once you have a design and a proper schedule, you can proceed with the installation. We’ll
start with a discussion of the tools you will need.
Cabling Tools
Just like any other industry, cable installation has its own tools, some not so obvious, including
the following:
●
Pen and paper
●
Hand tools
400
Chapter 12 • Cabling-System Design and Installation
●
Cable spool racks
●
Fish tape
●
Pull string
●
Cable-pulling lubricant
●
Two-way radio
●
Labeling materials
●
Tennis ball
We’ll briefly go over how each is used during installation.
NOTE
Tools are covered in more detail in Chapter 6.
Pen and Paper
Not every cabling installer may think of pen and paper as tools, but they are. It is a good idea
to have a pen and paper handy when installing the individual cables so that you can make notes
about how particular cables are routed and installed. You should also note any problems that
occur during installation. Finally, during the testing phase (discussed later), you can record test
data in the notebook.
These notes are invaluable when it’s time to troubleshoot an installation, especially when you
have to trace a particular cable. You’ll know exactly where particular wires run and how they
were installed.
Hand Tools
It’s fairly obvious that a variety of hand tools are needed during the course of a cabling installation. You will need to remove and assemble screws, hit and cut things, and perform various
types of construction and destruction tasks. Some of the hand tools you should make sure to
include in your tool kit are (but are not limited to) the following:
●
Screwdrivers (Phillips, slotted, and Torx drivers)
●
Cordless drill (with drill bits and screwdriver bits)
●
Hammer
●
Cable cutters
●
Wire strippers
●
Punch-down tool
●
Drywall saw (hand or power)
Cabling Installation Procedures
401
Cable Spool Racks
It is usually inefficient to pull one cable at a time during installation. Typically, more than one
cable will be going from the cabling closet (usually the source of a cable run) to a workstation
outlet. So a cable installer will tape several cables together and pull them as one bundle.
The tool used to assist in pulling multiple cables is the cable spool rack (see Figure 12.14). As
you can see, the spools of cable are mounted on the rack. These racks can hold multiple spools
to facilitate the pulling of multiple cables simultaneously. They allow the cable spools to rotate
freely, thus reducing the amount of resistance to the pull.
Fish Tape
Many times, you will have to run cable into narrow conduits or narrow crawl spaces. Cables are
flexible, much like rope. Just like rope, when you try to stuff a cable into a narrow space, it simply bunches up inside the conduit. You need a way of pulling the cable through that narrow
space or providing some rigid backbone. A fish tape is one answer. It is really nothing more than
a roll of spring steel or fiberglass with a hook on the end. A bunch of cables can be hooked and
pulled through a small area, or the cables can be taped to the fish tape and pushed through the
conduit or wall cavity.
FIGURE 12.14
A cable spool rack
Cable spool rack
Cable spool
Ends taped
together
402
Chapter 12 • Cabling-System Design and Installation
Pull String
Another way to pull cables through small spaces is with a nylon pull string (also called a fish cord),
a heavy-duty cord strong enough to pull several cables through a conduit or wall cavity. The
pull string is either put in place before all the cables are pulled, or it is run at the same time as
the cables. If it is put in place before the cables are pulled, such as when the conduit is assembled or in a wall cavity before the drywall is up, you can pull through your first cables with
another string attached to the cables. The second string becomes the pull string for the next
bundle, and so on. For future expansion, you leave one string in with the last bundle you pull.
If the pull string is run at the same time as the cables, it can be used to pull additional cables
through the same conduit as already-installed cables.
Cable-Pulling Lubricant
It is important not to put too much stress (25 lbs of pull maximum) on network cables as they
are being pulled. To prevent stress on the cable during the pulling of a cable through a conduit,
a cable-pulling lubricant can be applied. It reduces the friction between the cable being pulled
and its surroundings and is specially formulated so as not to plug up the conduit or dissolve the
jackets of the other cables. It can be used any time cable needs to be pulled in tight quarters.
See Chapter 6 for more details, including some drawbacks of lubricant.
Labeling Materials
With the hundreds of cables that need to be pulled in large cabling installations, it makes a
great deal of sense to label both ends of each cable while it’s being pulled. That way, when it’s
time to terminate each individual cable, you will know which cable goes where, and you can
document that fact on your cabling map.
So you will need some labeling materials. The most common are the sticky numbers sold by
Panduit and other companies (check with your cabling supplier to see what it recommends).
You should pick a numbering standard, stick with it, and record all the numbered cables and
their uses in your cabling documentation. A good system is to number the first cable as 1, with
each subsequent cable the next higher number. You could also use combinations of letters and
numbers. To label the cables, stick a number on each of the cables you are pulling and stick
another of the same number on the corresponding box or spool containing the cable. When
you are finished pulling the cable, you can cut the cable and stick the number from the cable
spool onto the cut end of the cable. Voila! Both ends are numbered. Don’t forget to record on
your notepad the number of each cable and where it’s going.
The EIA/TIA 606-A Standard defines a labeling system to label each cable and workstation
port with its exact destination in a wiring closet using three sets of letters and numbers separated by dashes. The label is in the following format:
BBBB-RR-PORT
Cabling Installation Procedures
403
Where BBBB is a four-digit building code (usually a number), RR is the telecommunications
room number, and PORT is the patch panel and port number that the cable connects to. For
example, 0001-01-W222 would mean building 1, closet 1, wall-mounted patch panel 2 (W2),
and port 22.
Table 12.2 details the most commonly used labeling particulars.
T A B L E 1 2 . 2 EIA/TIA 606-A Labeling Particulars
Sample: 0020-2B-B23
TIP
Label
Example
Notes
Building
0020
Building 20 (comes from a standard campus or facilities
map)
Closet
2B
Closet B, 2nd floor
Panel/Port
B23
Patch Panel B, port 23
This is just one example of the standard labeling system. For more information, you should read
the EIA/TIA 606-A Standards document, which can be ordered from http://global.ihs.com.
Two-Way Radio
Two-way radios aren’t used as often as some of the other tools listed here, but they come in
handy when two people are pulling or testing cable as a team. Two-way radios allow two people who are cabling within a building to communicate with each other without having to
shout down a hallway or use cell phones. The radios are especially useful if they have handsfree headset microphones. Many two-way radios have maximum operating ranges of greater
than several kilometers, which makes them effective for cabling even very large factories and
buildings.
WARNING
If you need to use radios, be aware that you may need to obtain permission to use them
in places like hospitals or other high-security environments.
Tennis Ball
You may be saying, “Okay. I know why these other tools are listed here, but a tennis ball?”
Think of this situation. You’ve got to run several cables through the airspace above a suspended
ceiling. Let’s say the cable run is 75 meters (around 225 feet) long. The conventional way to
run this cable is to remove the ceiling tiles that run underneath the cable path, climb a ladder,
and run the cable as far as you can reach (or throw). Then you move the ladder, pull the cable
a few feet farther, and repeat until you reach the end. An easier way is to tie a pull string to a
404
Chapter 12 • Cabling-System Design and Installation
tennis ball (using duct tape, nails, screws, or whatever) and throw the tennis ball from source
to destination. The other end of the pull string can be tied to the bundle of cables so that it can
be pulled from source to destination without going up and down ladders too many times.
TIP
You may think using a tennis ball is a makeshift tool, but cabling installers have been making their own tools for as long as there have been installers. You may find that a tool you
make yourself works better than any tool you can buy.
Pulling Cable
Keep in mind the following points when pulling cable to ensure the proper operation of the
network:
●
Tensile strength
●
Bend radius
●
Protecting the cable while pulling
Tensile Strength
Contrary to popular opinion, network cables are fragile. They can be damaged in any number of ways, especially during the pulling process. The most important consideration to
remember when pulling cable is the cable’s tensile strength, a measure of how strong a cable
is along its axis. The higher the tensile strength, the more resistant the cable is to stretching
and, thus, breaking. Obviously, you can pull harder without causing damage on cables with
higher tensile strength. A cable’s tensile strength is normally given in either pounds, or in
pounds per square inch (psi).
WARNING
When pulling cable, don’t exert a pull force on the cable greater than the tensile rating of
the cable. If you do, you will cause damage to the cable and its internal conductors. If a conductor break occurs, you may not know it until you terminate and test the cable. If it breaks,
you will have to replace the whole cable. Standards and the manufacturer’s recommendations should be reviewed for tensile-strength information.
NOTE
Four-pair UTP should not have more than 25 pounds of tension applied to it (note that this
is 25 pounds, not 25 psi). This number is based on a calculation using the elongation properties of copper. When you are exerting pulling force on all four pairs of 24 AWG conductors
in a UTP cable, 25 pounds is the maximum tensile load they can withstand before the copper starts to stretch. Once stretched, a point of high attenuation has been created that will
also cause impedance and structural return-loss reflections.
Cabling Installation Procedures
FIGURE 12.15
405
Cable
The bend radius for
cable installation
ad
nd
Be
R
s
iu
Bend Radius
Most cables are designed to flex, and that makes them easy to use and install. Unfortunately,
just because they can flex doesn’t mean that they should be bent as far as possible around corners and other obstacles. Both copper and fiber-optic cables have a value known as the minimum bend radius of that cable. ANSI/TIA/EIA-568-A specifies that copper cables should be
bent no tighter than the arc of a circle that has a radius four times the cables’ diameter. For
example, if a cable has 1/4-inch diameter, it should be bent no tighter than the arc of a circle two
inches in diameter. Four times a 1/4-inch cable equals a 1-inch radius. The continuous arc created using a 1-inch radius creates a circle 2 inches in diameter. Figure 12.15 illustrates how
bend radius is measured.
TIP
You can purchase some devices from cabling products vendors that aid in the pulling of
cable so that the minimum bend radius is not exceeded. These devices are basically plastic
or metal corners with large bend radii to help guide a cable around a corner.
Protection While Pulling
In addition to being careful not to exceed either the tensile strength or bend radius of a particular cable when pulling it, you should also be careful not to pull the cable over or near anything that could damage it. For example, never pull cables over sharp, metal corners, as these
could cut into the outside jacket of the cable and, possibly, the interior conductors.
Many things could damage the cable during its installation. Just use common sense. If you
would damage your finger (or any other body part) by running it across the surface you want
to pull the cable across, chances are that it’s not a good idea to run a cable over it either.
406
Chapter 12 • Cabling-System Design and Installation
Cabling System Documentation
The most often overlooked item during cable installation is the documentation of the new
cabling system. Cabling system documentation includes information about what components make up a cabling system, how it is put together, and where to find individual cables.
This information is compiled in a set of documents that can be referred to by the network
administrator or cabling installer any time moves, adds, or changes need to be made to the
cabling system.
The most useful piece of cabling system documentation is the cabling map. Just as its name
implies, a cabling map indicates where every cable starts and ends. It also indicates approximately where each cable runs. Additionally, a cabling map can indicate the location of workstations, segments, hubs, routers, closets, and other cabling devices.
NOTE
A map can be as simple as a listing of the run numbers and where they terminate at the
workstation and patch-panel ends. Or it can be as complex as a street map, showing the
exact cable routes from patch panel to workstation outlet.
To make an efficient cabling map, you need to have specific numbers for all parts of your
cabling system. For example, a single cable run from a cabling closet to wall plate should have
the same number on the patch panel port, patch cable, wall cable, and wall plate. This way, you
can refer to a specific run of cable at any point in the system, and you can put numbers on the
cabling map to refer to each individual cable run.
Terminate the Cable
Now that you’ve learned about installing the cable, you need to know what to do with both ends
of the cable. Terminating the cables involves installing some kind of connector on each end
(either a connector or a termination block) so that the cabling system can be accessed by the
devices that are going to use it. This is the part of cabling-system installation that requires the
most painstaking attention to detail, because the quality of the termination greatly affects the
quality of the signal being transmitted. Sloppy termination will yield an installation that won’t
support higher-speed technologies.
Though many termination methods are used, they can be classified one of two ways: connectorizing or patch-panel termination. Connectorizing (putting some kind of connector
directly on the end of the cable in the wall) is covered in detail in Chapter 13, so we’ll briefly
discuss patch-panel termination.
There are many different types of patch panels, some for copper, some for fiber. Coppercable patch panels for UTP all have a few similar characteristics, for the most part. First off,
most UTP LAN patch panels (as shown in Figure 12.16) have UTP ports on the front and
Cabling Installation Procedures
407
punch-down blades (see Figure 12.17) in the back. During termination, the individual conductors in the UTP cable are pressed between the metal blades to make both the mechanical and
electrical connection between the cable and the connector on the front of the patch panel. This
type of patch panel is a 110-punch-down block (or 110-block, for short).
FIGURE 12.16
A sample patch panel
FIGURE 12.17
A punch-down blade on
a 110-block
408
Chapter 12 • Cabling-System Design and Installation
The procedure for connecting an individual cable is as follows:
1. Route the cable to the back of the punch-down block.
2. Strip off about 1/4–1/2 inch of the cabling jacket. (Be careful not to strip off too much, as that
can cause interference problems.)
3. Untwist each pair of UTP conductors and push each conductor onto its slot between the
color-coded “finger,” as shown here.
NOTE
Each Category rating has standards for termination. For example, each Category rating has
a standard for how much length can be untwisted at the termination point. Make sure you
follow these standards when terminating cable.
WARNING
Make sure that no more than 1/2 an inch or less of each twisted-conductor pair is untwisted
when terminated.
4. Using a 110-punch-down tool, push the conductor into the 110-block so that the metal fingers of
the 110-block cut into the center of each conductor, thus making the connection, as shown here.
5. Repeat steps 3 and 4 for each conductor.
Cabling Installation Procedures
FIGURE 12.18
409
Multifiber cable
A fiber-optic patch
panel
Fiber optic
patch cable
Conduit
Individual fibers
terminated
Fiber
loop
Fiber optic
connectors
Key lock
The process described here works only for UTP cables. Fiber-optic cables use different termination methods. For the most part, fiber-optic cables do use patch panels, but you can’t
punch down a fiber-optic cable because of the delicate nature of the optical fibers. Instead, the
individual fiber-optic cables are simply connectorized and connected to a special “passthrough” patch panel (as shown in Figure 12.18).
NOTE
Fiber-optic connectorization is covered in Chapter 13.
Test the Installation
Once you have a cable or cables installed and terminated, your last installation step is to test the
connection. Each connection must be tested for proper operation, category rating, and possible connection problems. If the connection has problems, it must either be reterminated or, in
the worst-case scenario, the entire cable must be repulled.
The method of testing individual cables is done most effectively and quickly with a LAN
cable tester (as shown in Figure 12.19). This cable tester usually consists of two parts: the tester
itself and a signal injector. The tester is a very complex electronic device that measures not only
410
Chapter 12 • Cabling-System Design and Installation
the presence of a signal but also the quality and characteristics of the signal. Cable testers are
available for both copper and fiber-optic cables.
NOTE
Testing tools and procedures are covered in more detail in Chapter 14.
You should test the entire cabling installation before installing any other hardware (hubs,
PCs, etc.). That way, you avoid having to troubleshoot cabling-related problems later (or at
least you minimize possible later problems).
FIGURE 12.19
A LAN cable tester
Lore grottee foorew
gotery delloo dritt
soeew plety od
soowtjoy Lore __-__
foorew gotery delloo
soeew plety od
soowtjoy•••••
AUTOTEST
1
2
4
5
6
7
8
9
0
ESC
3
ENTER
Chapter 13
Cable-Connector Installation
• Twisted-Pair Cable-Connector Installation
• Coaxial Cable-Connector Installation
• Fiber-Optic Cable-Connector Installation
412
Chapter 13 • Cable-Connector Installation
o far, you have learned about the installation of cables and the termination process. In
today’s cabling installation, the cables you install into the walls and ceilings are usually terminated at either punch-down blocks or patch panels and wall outlets. In some cases (as with
patch cables, for example), you may need to put a connector on the end of a piece of cable.
Installing connectors, or connectorizing, is an important skill for the cabling installer.
S
This chapter will cover the basics of cable-connector installation and teach you how to install
the connectors for each type of cable.
Twisted-Pair Cable-Connector Installation
For LAN and telephone installations, no cable type is currently more ubiquitous than twisted-pair
copper cabling, particularly UTP cabling. The main method to put connectors on twisted-pair
cables is crimping. You use a tool called a crimper to push the metal contacts inside the connector
onto the individual conductors in the cable, thus making the connection.
NOTE
The topic of this chapter is not cable termination (which we discussed in Chapter 12). Connectorization is normally done for patch and drop cables, whereas termination is done for the
horizontal cables from the patch panel in the wiring closet to the wall plate at the workstation.
Types of Connectors
Two main types of connectors (often called plugs) are used for connectorizing twisted-pair cable
in voice and data communications installations: the RJ-11 and RJ-45 connectors. As discussed in
Chapter 9, these are more accurately referred to as six-position and eight-position modular plugs,
but the industry is comfortable with the RJ labels. Figure 13.1 shows examples of RJ-11 and
RJ-45 connectors for twisted-pair cables. Notice that these connectors are basically the same,
except the RJ-45 accommodates more conductors and thus is slightly larger. Note too, that the
RJ-11 type connector shown in Figure 13.1, while having six positions, is only configured with
two metal contacts instead of six. This is a common cost-saving practice on RJ-11 type plugs
when only two conductor contacts will be needed for a telephone application. Conversely, you
rarely see an RJ-45 connector with less than all eight of its positions configured with contacts.
RJ-11 connectors, because of their small form factor and simplicity, were historically used
in both business and residential telephone applications, and they remain in widespread use in
homes. RJ-45 connectors, on the other hand, because of the number of conductors they support (eight total), are used primarily in LAN applications. Current recommendations are to
install RJ-45 jacks for telephone applications because those jacks support both RJ-11 and
RJ-45 connectors.
Twisted-Pair Cable-Connector Installation
413
FIGURE 13.1
RJ-11 and RJ-45
connectors
Both types of connectors are made of plastic with metal “fingers” inside them (as you can see
in Figure 13.1). These fingers are pushed down into the individual conductors in a twisted-pair
cable during the crimping process. Once these fingers are crimped and make contact with the
conductors in the twisted-pair cable, they are the contact points between the conductors and
the pins inside the RJ-11 or RJ-45 jack.
The different RJ connectors each come in two versions, for stranded and solid conductors.
As stated elsewhere, stranded-conductor twisted-pair cables are made up of many tiny hairlike
strands of copper twisted together into a larger conductor. These conductors have more surface area to make contact with but are more difficult to crimp because they change shape easily.
Because of their difficulty to connectorize, they are usually used as patch cables.
Most UTP cable installed in the walls and ceilings between patch panels and wall plates is solidconductor cable. Although they are not normally used as patch cables, solid-conductor cables are
easiest to connectorize, so many people make their own patch cords out of solid-conductor UTP.
TIP
As discussed several times in this book, we do not recommend attaching your own UTP and
STP plugs to make patch cords. Field-terminated modular connectors are notoriously time
consuming to apply and are unreliable. Special circumstances may require that you make
your own, but whenever possible, buy your UTP and STP patch cords.
414
Chapter 13 • Cable-Connector Installation
Conductor Arrangement
When making solid-conductor UTP patch cords with crimped ends, you can make many different configurations, determined by the order in which their color-coded wires are arranged.
Inside a normal UTP cable with RJ-45 ends are four pairs of conductors (eight conductors
total). Each pair is color coded blue, orange, green, or brown. Each wire will either be the solid
color or a white wire with a mark of its pair’s solid color (e.g., the orange and the white/orange
pair). Table 13.1 illustrates some of the many ways the wires can be organized.
T A B L E 1 3 . 1 Color-Coding Order for Various Configuration
Wiring Configuration
Pin #
Color Order
568A
1
White/green
2
Green
3
White/orange
4
Blue
5
White/blue
6
Orange
7
White/brown
8
Brown
1
White/orange
2
Orange
3
White/green
4
Blue
5
White/blue
6
Green
7
White/brown
8
Brown
1
White/blue
2
Blue
3
White/orange
568B
10Base-T only
Generic USOC
6
Orange
1
White/brown
2
White/green
3
White/orange
4
Blue
5
White/blue
6
Orange
7
Green
8
Brown
Twisted-Pair Cable-Connector Installation
TIP
A straight-through patch cord for data applications has both ends wired the same, i.e., both
ends T568-A or both ends T568-B. Straight-through patch cords connect PCs to wall outlets
and patch panels to network equipment such as hubs, switches, and routers. A crossover
patch cord is wired with one end T568-A and one end T568-B.
TIP
For Ethernet networking, crossover cords can connect two PCs directly together without any
intermediate network equipment. To connect hubs, routers, or switchs to each other, either
a straight-through or crossover cable will be required, depending on device-type combination. Check the equipment documentation to determine what type of patch cord you require.
.
415
When connectorizing cables, make sure you understand which standard your cabling system
uses and stick to it.
Connector Crimping Procedures
The installation procedure is pretty straightforward. The only difficult part is knowing what
“hiccups” you might run into.
Prerequisites
As with any project, you must first gather all the items you will need. These items include the
following:
●
Cable
●
Connectors
●
Stripping and crimping tools
By now, you know about the cable and connectors, so we’ll discuss the tools you’ll need for
RJ-connector installation. The first tool you’re going to need is a cable-jacket stripper, as
shown in Figure 13.2. It will only cut through the outer jacket of the cable, not through the
conductors inside. Many different kinds of cable strippers exist, but the most common are the
small, plastic ones (as in Figure 13.2) that easily fit into a shirt pocket. They are cheap to produce and purchase.
NOTE
Common strippers don’t work well (if at all) on flat cables, like silver satin. But then, technically, those cables aren’t twisted-pair cables and should never be used for data applications.
Another tool you’re going to need when installing connectors on UTP or STP cable is a
cable-connector crimper. Many different styles of crimpers can crimp connectors on UTP or
STP cables. Figure 13.3 shows an example of a crimper that can crimp both RJ-11 and RJ-45
connectors. Notice the two holes for the different connectors and the cutting bar.
416
Chapter 13 • Cable-Connector Installation
FIGURE 13.2
A common twisted-pair
cable stripper
FIGURE 13.3
A crimper for RJ-11
and RJ-45 connectors
The last tool you’re going to use is a cable tester. This device tests not only for a continuous
signal from the source connector to the destination but also the quality of that connection. We
won’t devote much space to it in this chapter, as it will be covered in Chapter 14.
Installing the Connector
Now we’ll go over the steps for installing the connectors. Pay particular attention to the order
of these steps and make sure to follow them exactly.
WARNING
A manufacturer may vary from these steps slightly. Make sure you check the manufacturer’s instructions before installing any connector.
Twisted-Pair Cable-Connector Installation
417
1. Measure the cable you want to put ends on and trim it to the proper length using your cable
cutters (as shown here). Cut the cable about 3 inches longer than the final patch-cable
length. For example, if you want a 10-foot patch cable, cut the cable to 10 feet, 3 inches.
2. Using your cable stripper, strip about 1.5 inches of the jacket from the end of the cable. To
do this, insert the cable into the stripper so that the cutter bar in the stripper is 1.5 inches
from the end of the cable (as shown in the graphic). Then, rotate the stripper around the
cable twice. This will cut through the jacket. Remove the stripper from the cable and pull
the trimmed jacket from the cable, exposing the inner conductors (as shown in the second
graphic). If a jacket slitting cord (usually a white thread) is present, separate it from the conductors and trim it back to the edge of the jacket.
418
TIP
Chapter 13 • Cable-Connector Installation
Most strippers only score the jacket to avoid cutting through and damaging the conductor
insulation. The jacket is easily removed, as bending the cable at the score mark will cause
the jacket to break evenly, and then it can be pulled off.
3. Untwist all the inner conductor pairs and spread them apart so that you can see each individual conductor, as shown here.
Twisted-Pair Cable-Connector Installation
419
4. Line up the individual conductors so that the color code matches the color-coding standard
you are using (see Table 13.1, shown previously). The alignment in the graphic shown here
is for 568B, with number 1 at the top.
5. Trim the conductors so that the ends are even with each other, making sure that the jacket
of the cable will be inside the connector (as shown here). The total length of exposed connectors after trimming should be no longer than 1/2˝ to 5/8˝ (as shown in the second graphic).
420
Chapter 13 • Cable-Connector Installation
6. Insert the conductors in the connector, ensuring that all conductors line up properly with
the pins as they were aligned in the last step. If they don’t line up, pull them out and line
them up. Do this carefully, as it’s the last step before crimping on the connector.
7. Carefully insert the connector and cable into the crimping tool (as shown in the following
graphic). Squeeze the handle firmly as far as it will go and hold it with pressure for three
seconds. As you will see in the second graphic, the crimping tool has two dies that will press
into the connector and push the pins in the connector into the conductors inside the connector. A die in the crimping tool will also push a plastic retainer into the cable jacket of the
cable to hold it securely inside the connector.
Cable
retainer
Cable
jacket
Pins
Individual
conductors
Connector
Coaxial Cable-Connector Installation
421
8. Now that you’ve crimped the connector, remove it from the crimping tool and examine it
(as shown in the next graphic). Check to ensure all conductors are making contact and that
all pins have been crimped into their respective conductors.If the connector didn’t crimp
properly, cut off the connector and redo it.
9. To finish the patch cable, put a connector on the other end of the cable and follow these
steps again, starting with step 2.
Testing
You should ensure that the connectorization was done correctly by testing the cable with a cable
tester. Put the injector on one end of the cable and put the tester on the other end. Once you have
the tester hooked up, you can test the cable for continuity (no breaks in the conductors), near-end
crosstalk (NEXT), and Category rating (all quality-of-transmission issues). The specific procedures for testing a cable vary depending on the cable tester. Usually you select the type of cable
you are testing, hook up the cable, and then press a button labeled something like Begin Test. If
the cable does not work or meet the testing requirements, reconnectorize the cable.
NOTE
Cable testers are covered in more detail in Chapter 14.
Coaxial Cable-Connector Installation
Although less popular than either twisted-pair or fiber-optic cables, you’ll encounter coaxial
cable in older LANs and in modern video installations. After reading this section, you should
be able to install a connector on a coaxial cable.
Types of Connectors
As discussed in Chapter 9, many types of coaxial cable exist, including RG-6, RG-58, and RG-62.
LAN applications primarily use RG-62- and RG-58-designated coaxial cables. RG-6 is used
primarily in video and television cable installations. The preparation processes for connectorizing RG-6, RG-58, and RG-62 are basically the same; different connectors are used for different applications, either LAN or video. You can identify the cable by examining the printing
on the outer jacket. The different types of cable will be labeled with their RG designation.
422
Chapter 13 • Cable-Connector Installation
For LAN applications, the BNC connector (shown in Figure 13.4) is used with RG-58 or
RG-62 coaxial cable. The male BNC connectors are easily identified by their knurled grip and
quarter-turn locking slot. Many video applications, on the other hand, use what is commonly
known as a coax cable TV connector or F connector (as shown in Figure 13.5) and RG-6 cable.
FIGURE 13.4
Male and female BNC
connectors
Male
Female
FIGURE 13.5
A coax cable TV F
connector
In addition to their physical appearance, coax connectors differ based on their installation
method. Basically, two types of connectors exist: crimp-on and screw-on (also known as threaded).
The crimp-on connectors require that you strip the cable, insert the cable into the connector,
and then crimp the connector onto the jacket of the cable to secure it. Most BNC connectors
used for LAN applications use this installation method. Screw-on connectors, on the other
hand, have threads inside the connector that allow the connector to be screwed onto the jacket
of the coaxial cable. These threads cut into the jacket and keep the connector from coming
loose. Screw-on connectors are generally unreliable because they can be pulled off with relative
ease. Whenever possible, use crimp-on connectors.
Connector Crimping Procedures
Now that you understand the basic connector types, we can tell you how to install them. The
basic procedural outline is similar to installing twisted-pair connectors.
Coaxial Cable-Connector Installation
423
Prerequisites
Make sure you have the right cable and connectors. For example, if you are making an Ethernet
connection cable, you must have both RG-58 coaxial cable and BNC connectors available. You
must also have the right tools, those being cable cutters, a cable stripper, a crimper for the type
of connectors you are installing, and a cable tester. These tools were discussed in the last section and also in more detail in Chapter 6.
Installing the Connector
The connector you are going to learn how to install here is the most common crimp-on style
that comes in three pieces: the center pin, the crimp sleeve, and the connector housing. Pay
particular attention to the order of these steps and make sure to follow them exactly.
WARNING
Manufacturers may vary from these steps slightly. Make sure you check the manufacturer’s
instructions before installing any connector.
1. Measure the cable you want to put ends on and trim it to the proper length using your cable
cutters. Cut the cable to exactly the length you want the cable to be.
2. Put the crimp-on sleeve on the cable jacket on the end of the cable you are going to
connectorize.
3. Using your cable stripper, strip about 5/8˝ of the jacket from the end of the cable. To do this,
insert the cable into the stripper so that the cutter bar in the stripper is one inch from the
end of the cable (as shown in the first graphic). Then, rotate the stripper around the cable
twice (as shown in the second graphic). This will cut through the jacket. Remove the stripper from the cable and pull the trimmed jacket from the cable, exposing the braided shield
and inner conductor.
424
Chapter 13 • Cable-Connector Installation
4. Trim the braided shielding so that 7/32˝ of braid is showing, as shown in the following
graphic.
Plastic
insulation
Jacket
Shielding
5/8 inch
7/32 inch
5. Strip the inner protective plastic insulation around the center conductor so that 7/16˝ of plastic is showing (thus 3/16˝ of conductor is showing), as shown in the next graphic. Note that
the shielding is folded back over the jacket.
Plastic
insulation
Jacket
Shielding
Center
conductor
5/8 inch
7/16 inch
3/16 inch
Coaxial Cable-Connector Installation
425
6. Insert the center conductor into the center pin of the connector, as shown in the first
graphic, below. Crimp the pin twice with the ratcheting crimper. After crimping (shown in
the second graphic), you shouldn’t be able to twist the pin around the center conductor.
7. Push the connector onto the end of the cable. The barrel of the connector should slide
under the shielding. Push the connector until the center pin clicks into the connector, as
shown in the following graphic.
8. Slide the ferule along the sleeve down the cable so that it pushes the braided shielding
around the barrel of the connector. Crimp the ferule barrel twice, once at the connector
side and again at the jacket side, as shown in the following two graphics.
426
Chapter 13 • Cable-Connector Installation
9. Now that you’ve crimped the connector, remove it from the crimping tool and examine it.
Check to see that the connector is securely attached to the end of the cable—you should not
be able to move it. If the connector didn’t crimp properly, cut off the connector and redo it.
10. To finish the patch cable, put a connector on the other end of the cable and follow these
steps again, starting with step 2.
Testing
Once you have a tester hooked up, you can test the cable to ensure that the cable is connectorized properly and has no breaks. See the previous subsection “Testing” under the section on
twisted-pair cable-connector installation. (The procedure described there is the same as for
coaxial cable.)
NOTE
Cable-testing procedures are covered in more detail in Chapter 14.
Fiber-Optic Cable-Connector Installation
In the early days of fiber-optic connections, connectorizing a single fiber-optic cable could take
up to a half hour. These days, due to improvements in connector design and materials, an experienced cable installer can put a connector on a fiber-optic cable in less than five minutes.
Connector Types
A number of different connector types exist for the different fiber-optic cables. Each connector
type differs based on its form factor and the type(s) of fiber-optic cables it supports. Some of
the most common fiber-optic connector types include the following:
●
SC
●
ST
●
FDDI
●
FC
Each of these types of connectors is discussed in detail in Chapter 9.
Connectorizing Methods
Almost as numerous as the different types of connectors are the different methods of attaching
them to the optical fiber. Optical fibers are made of glass and, unlike copper connections, usually a mechanical connection isn’t enough. The light has to come out of the end of the fiber
evenly with minimal loss of signal. The optical fiber has to be aligned precisely to the optical
port on the device the fiber-optical cable is connected to.
Fiber-Optic Cable-Connector Installation
427
To get the best possible connection, many connectorization methods have been developed.
Generally, connectors are attached with epoxy or without.
For both methods, the particulars may vary by manufacturer. When one manufacturer sees
that people are using a certain connectorizing system, the manufacturer will implement its own
version of that connectorizing system.
Epoxy Connectors
The epoxy system uses, obviously, the two-part glue known as epoxy. The optical fibers are
trimmed and the epoxy is applied. Then the fiber is inserted into the connector. Some epoxy
systems don’t include a tube of adhesive but have the adhesive preloaded into the connector.
In this case, the adhesive is only activated by some outside element. For example, 3M’s HotMelt system uses a thermosetting adhesive, which means that high temperature must activate
the adhesive and cause it to set. Other types of adhesive are activated by UV light.
Once the fiber is in the connector and the adhesive has been activated, the assembly is either
placed aside to air dry, or the connector is inserted into a curing oven to speed the drying process.
The majority of fiber-optic connectors are installed by some type of epoxy method, mainly
because of the method’s simplicity and ease of installation without loss of quality.
Epoxyless Connectors
The main disadvantage to epoxy-based termination is the time and extra equipment needed to
terminate a single connector—it may take up to 15 minutes. Because of this, many companies
have developed connectors, called epoxyless connectors, that don’t need any kind of adhesive to
hold them together.
Instead of glue, some kind of friction method, like crimping, is used to hold the fiber in place
in the connector. The 3M Crimplok is an example of an epoxyless system.
Connector Installation Procedures
In this section, you are going to learn how to connectorize a single multimode fiber-optic cable
with an ST connector. Even though the SC connector is now the recommended fiber-optic
connector, the installed base of ST connectors is significant and the procedures for installing
different connectors differ only slightly. Where necessary, we’ll point out where other connectorizing methods differ.
Prerequisites
As with the other types of connectorization, the first step is to gather all the tools and items you
are going to need. You are going to need some specialized fiber-optic tools, including epoxy
syringes, a curing oven, a cable-jacket stripper, a fiber stripper, a fiber-polishing tool (including
a fiber-polishing puck and abrasive pad), Kevlar scissors, and a fiber-optic loss tester. You will
428
Chapter 13 • Cable-Connector Installation
also need a few consumable items, like cable, connectors, alcohol and wipes (for cleaning the
fiber), epoxy (self-curing or thermosetting, depending on the application), and polishing
cloths. You can buy kits that contain all of these items.
If your fiber-termination system includes an oven or UV-curing device, plug it in ahead of
time so that it will be ready. If possible, make sure you have adequate space to terminate the
fiber, along with an adequate light source.
TIP
If you can, work on a black surface. It makes the fiber easier to see while terminating it.
It is hard to see optical fiber on a white space.
WARNING
Be extremely careful when dealing with bare fiber! Most optical fibers are made of glass.
The cutting or cleaving of optical fibers produces many sharp ends. Always wear safety
glasses to protect your eyes from flying shards of glass. The very fine diameter of fiber-optic
strands allows them to penetrate skin easily. They can actually enter the blood vessels and
be carried throughout the body, with great potential for harm. (Imagine one being carried
into your brain.) Properly dispose of any cut fiber scraps.
Finally, before you start, make sure you are familiar with the connector system you are using.
If possible, have the directions from the fiber connector’s manufacturer available while doing
the termination.
Installing the Connector
Installing the connector involves many complex steps. Unlike terminating copper, terminating
fiber is a very tricky operation. You must take your time and perform the following steps correctly:
1. Cut and strip the cable.
2. Trim the aramid yarn.
3. Strip the optical-fiber buffer.
4. Prepare the epoxy.
5. Epoxy the connector.
6. Insert the fiber in the connector.
7. Dry the epoxy.
8. Scribe and remove extra fiber.
9. Polish the tip.
10. Perform a visual inspection.
11. Finish.
Fiber-Optic Cable-Connector Installation
429
We have included several figures that show how to perform each operation.
Cut and Strip the Cable
Cutting the fiber is fairly simple: Simply cut through the jacket and strength members using
the fiber shears included in the fiber-optic termination kit. Optical fiber cannot be cut with
regular cutters, mainly because many fiber-optic cables contain aramid-yarn strength members, which are next to impossible to cut with regular cutters. Trim the cable exactly to the
length that you want.
TIP
Before you get out the strippers, you should perform one operation to make the installation
go smoothly. Open the fiber-optic-connector package and remove the strain-relief boot and
crimp sleeve. Place them on the cable before you strip it. Slide them down, out of the way.
That way, you don’t have to try to push them over the optical fiber and aramid yarn.
Then strip one end of the cable in two steps. First, strip the outer jacket, exposing the buffered fiber and the aramid-yarn strength members. Set the jacket stripper to the size recommended by the manufacturer. and squeeze the handle. Figure 13.6 shows a cable jacket stripper
in action. The stripper will bite through the outer jacket only. Release the handle and remove
the stripper. You should then be able to pull off the outer jacket as shown in Figure 13.7.
FIGURE 13.6
Using a cable jacket
stripper
FIGURE 13.7
Pulling off the outer
jacket of a fiber-optic
cable
430
Chapter 13 • Cable-Connector Installation
Second, carefully strip the buffer, exposing the optical fiber so you can insert it in the connector. A guide diagram on the back of the package containing the connector will show how
much of the jacket and buffer to strip off, either with measurements or by a life-size representation. Figure 13.8 shows such a diagram.
FIGURE 13.8
Aramid
yarns
A strip guide for a fiberoptic cable
Jacket
Buffer
Glass fiber
3/4 inch
3/4 inch
TIP
If you are stripping a relatively short cable (less than 25 feet) without connectors on either
end, tie a knot in the end of the cable opposite of the end you are trying to strip. That way,
you can’t pull the strength members out of the cable while you strip it. Note that this will
irreparably damage that portion of the cable, so make sure you can cut the knot out and
still have enough cable.
WARNING
Never strip a fiber-optic cable as you would a copper cable (i.e., by twisting the stripper and
pulling the stripper off with the end of the jacket). It can damage the cable.
Trim the Aramid Yarn
After removing the outer jacket, trim the aramid yarn (also called by the DuPont trademark
Kevlar), with the aramid-yarn scissors, to the length specified by the manufacturer of the connector system. To cut the yarn, grab the bundle of fibers together and loop them around your
finger. Cut the fibers so that about 1/4˝ (more or less, depending on the connector) of yarn fiber
is showing. See Figure 13.9.
Fiber-Optic Cable-Connector Installation
431
FIGURE 13.9
Cutting the aramid
yarn of a fiber-optic
cable
TIP
If you have trouble loosening the aramid yarn fibers from the inside of the cable, try blowing
on them or shaking the cable.
Strip Optical-Fiber Buffer
Now that you’ve got the jacket and aramid yarn cut and stripped properly, you can strip the
buffer from around the optical fiber. This step must be performed with extreme care. At this
point, the fiber is exposed and fragile; if it is damaged or broken, you must cut off the ends you
just stripped and start over.
This step is done with a different stripping tool than the stripper used to strip the cable jacket.
You can choose from two types of fiber-buffer strippers: the Miller tool and the No-Nik stripper. Most first-time installers like the Miller tool, but most professionals prefer the No-Nik
tool. Many fiber connectorization tool kits contain both types. For purposes here, we will show
pictures of the Miller tool.
To remove the buffer, position the stripper at a 45-degree angle to the fiber (as shown in Figure 13.10) to prevent the stripper from bending, and possibly breaking, the optical fiber. Position the stripper to only remove about 1/8˝ to 1/2˝ of buffer. Slowly but firmly squeeze the
stripper to cut through the buffer. Make sure you have cut through the entire buffer. Then,
using the stripper, pull the buffer from the fiber slowly and steadily, making sure to pull
straight along the fiber without bending it. You will have to exert some pressure, as the buffer
will not come off easily. Repeat this process to remove additional 1/8˝ to 1/4˝ “bites” of buffer
until sufficient buffer has been removed from the fiber and between 12˝ to 1˝ (depending on the
type of connector being used) of fiber is exposed. See Figure 13.11.
TIP
It’s better to have too much fiber exposed than not enough because you will trim off excess
fiber in a later step.
432
Chapter 13 • Cable-Connector Installation
FIGURE 13.10
Stripping buffer from
the optical fiber with
the Miller tool
FIGURE 13.11
The optical fiber after
stripping the buffer
from the fiber
FIGURE 13.12
An epoxy packet with a
syringe
Prepare the Epoxy
Now that the fiber-optic cable and optical fiber have been stripped and the cable is ready, set
it aside and get the epoxy ready to use (assuming, of course, your connector system incorporates epoxy). Epoxy will not work unless both of its parts are mixed. The epoxy usually comes
in packets with a syringe (see Figure 13.12) so that you can inject the epoxy into the connector.
Open the bag that contains the plastic epoxy envelope and the syringe. Remove the divider
from the envelope and mix the epoxy by kneading it with your fingers or running the flat side of
a pencil over the envelope (as shown in Figure 13.13). The epoxy is mixed when it is a uniform
Fiber-Optic Cable-Connector Installation
433
color and consistency. It should take a couple of minutes to fully mix the epoxy, especially if you
are using your fingers.
NOTE
Once the two chemicals that make up the epoxy are mixed, it will remain workable for only
a short time (usually from 15 to 30 minutes). If you are terminating several cables, you
should have them all prepared before mixing the epoxy to make the best use of your time.
Then take the new syringe out of its wrapper and remove the plunger. Hold the epoxy envelope gently (don’t put a large amount of pressure on the envelope) and cut one corner so a very
small opening (1/16˝ to 1/8˝) is formed (see Figure 13.14).
WARNING
Don’t use the aramid-yarn scissors to cut the epoxy envelope! Epoxy is very sticky and will
ruin the scissors (and they aren’t cheap!). Find a pair of cheap scissors and put these in
your fiber termination kit.
Hold the envelope in one hand and the empty syringe body in the other. Slowly pour the
epoxy into the syringe while being careful not to get epoxy on your hands or on the outside of
the syringe (see Figure 13.15). Once the syringe is almost full (leave a 1/8˝ gap at the top), stop
pouring and set the epoxy envelope aside (preferably on a wipe or towel, in case the epoxy
spills) or throw it away if it’s empty.
FIGURE 13.13
Mixing the epoxy
FIGURE 13.14
Opening the epoxy
envelope
434
Chapter 13 • Cable-Connector Installation
FIGURE 13.15
Pouring epoxy into the
syringe
FIGURE 13.16
Removing air from the
syringe
Next, gently place the plunger into the end of the syringe, but don’t push it down. Just seat
it in the end of the syringe to hold it in place. Invert the syringe so that the needle is at the top
and then tap the side of the syringe. The epoxy will sink to the bottom, and the air bubbles will
to rise the top. Grab a wipe from your termination kit and hold it above and around the needle
(as shown in Figure 13.16). Slowly squeeze the air bubbles out of the syringe until only epoxy
is left in the syringe.
Once all the air is out of the syringe, stop pushing on the plunger. When no more epoxy
comes out, pull very slightly on the plunger so a tiny bubble is at the tip of the needle. Put the
cap on the needle (if there is one) and set the syringe aside, out of the way.
Epoxy the Connector
Now you have to put the connector on the fiber. Remove the rest of the components from the
connector package (you already have the strain relief on the cable, remember?) and lay them
Fiber-Optic Cable-Connector Installation
435
out in front of you. Remove the dust cap from the end of the connector and the cap from the
syringe. Push the plunger on the syringe lightly to expel the small air bubble in the needle.
Insert the needle into the connector body on the cable side (the side that faces the cable, not
the side that faces the equipment to be connected to).
Squeeze the plunger and expel epoxy into the inside of the connector. Continue to squeeze
until a very small bead of epoxy appears at the ferrule inside the connector (as shown in Figure 13.17). The size of this bead is important, as too large of a bead means you will have to
spend much time polishing off the extra epoxy. On the other hand, too small of a bead may
not support the optical fiber inside the connector.
TIP
The proper size bead of epoxy to expel into the connector is approximately half the diameter
of the inside of the ferrule.
Once the bead appears at the ferrule, pull the needle halfway out of the connector and continue
to squeeze the plunger. Keep squeezing until the connector is filled with epoxy and the epoxy
starts to come out of the backside of the connector (see Figure 13.18). Remove the needle completely from the connector and pull back slightly on the plunger to prevent the epoxy from dripping out of the needle. Then set the connector aside and clean the needle off with a wipe.
Insert the Fiber into the Connector
You will now prepare the fiber for insertion. The fiber must be free of all dirt, fingerprints, and
oil to ensure the best possible adhesion to the epoxy. Most fiber termination kits come with
special wipes soaked in alcohol, known as Alco wipes. Hold one of these wipes in one hand,
between your thumb and forefinger, and run the fiber between them (see Figure 13.19).
FIGURE 13.17
Putting epoxy inside
the connector
436
Chapter 13 • Cable-Connector Installation
FIGURE 13.18
Finishing epoxying the
connector
FIGURE 13.19
Cleaning the fiber
Pick up the connector in one hand and carefully slide the fiber into the epoxy-filled center
(see Figure 13.20). While pushing the fiber in, rotate the connector back and forth. Doing so
will spread the epoxy evenly around the outside of the optical fiber, and it will help to center
the fiber in the connector. Don’t worry if some epoxy leaks out onto the aramid yarn—that will
actually help to secure the cable to the connector.
To secure the cable permanently to the connector, slide the crimp sleeve up from around the
cable and over the aramid fibers so that it sits against the connector (see Figure 13.21). You must
now use the crimper that comes with your fiber-optic termination kit and crimp the sleeve in two
places, once at the connector and once at the fiber. The crimper has two holes for crimping, a larger
and a smaller hole. Crimp the sleeve at the connector end using the larger hole and crimp the sleeve
at the cable-jacket end using the smaller hole (as shown in Figure 13.22).
TIP
While crimping, make sure to hold the connector against the jacket so that a tight connection is made.
Fiber-Optic Cable-Connector Installation
437
FIGURE 13.20
Inserting the fiber into
the connector
FIGURE 13.21
Putting on the crimping
sleeve
FIGURE 13.22
Crimping the sleeve
After crimping the sleeve, slide the strain-relief boot up from the cable and over the crimp
sleeve (see Figure 13.23). The connector is now secure to the cable. However, a short piece of
fiber should protrude from the connector. Be careful not to break it off. It will be scribed and
polished off in the next step.
WARNING
If you do break the piece of protruding fiber, you will have to cut off the connector and
start over.
438
Chapter 13 • Cable-Connector Installation
FIGURE 13.23
Installing the strainrelief boot
FIGURE 13.24
Drying the epoxy with
an oven
Dry the Epoxy
You must set the connector aside to dry. Most epoxies take anywhere from 12–24 hours to set
completely by themselves. However, you can speed up the process either by using a curing
oven (shown in Figure 13.24) or a UV setting device (depending on the type of epoxy used). To
dry the epoxy using one of these devices, carefully (so that you don’t break the fiber) insert the
connector into the slots or holes provided in the oven or setting device. Let the connector sit
as long as the manufacturer requires (usually somewhere between 5 and 15 minutes). Then, if
using the oven, remove the connector and place it on a cooling rack.
TIP
While the connectors are curing in the oven, you can connectorize more fibers. Remember,
you only have a short time before the epoxy is no longer usable.
Scribe and Remove Extra Fiber
After the connector has sufficiently cooled and the epoxy has dried in the connector, you are
ready to remove the excess fiber. You do so with a special tool known as a scribe. It’s impossible
Fiber-Optic Cable-Connector Installation
439
to get any kind of cutting tool close enough to the connector to cut off the remaining fiber and
glass; instead, you remove the glass fiber by scratching one side of it and breaking off the fiber.
Hold the connector firmly in one hand and use the scribe to scratch the protruding fiber
just above where it sticks out from the bead of epoxy on the connector ferrule (as shown in
Figure 13.25). Use a very light touch. Remember, the glass is very small, and it doesn’t take
much to break it.
To remove the fiber, grab the protruding piece of fiber and sharply pull up and away from
the connector (see Figure 13.26). The glass should break completely (it will still have a rough
edge, although you may not be able to see it). Dispose of the fiber remnant properly in a specially designed fiber-optic trash bag.
Polish the Tip
After scribing the fiber, the end will look similar to the one shown at the left side of Figure 13.27
To make a proper connection, you must polish the end to a perfectly flat surface with varying grits
of polishing films (basically the same idea as sandpaper, except that films are much, much finer).
The idea is to use the polishing cloth to remove a little bit of the protruding fiber at a time until the
fiber is perfectly flat and level, similar to the right side of Figure 13.27.
FIGURE 13.25
Scribing the protruding
fiber
FIGURE 13.26
Removing the fiber
440
Chapter 13 • Cable-Connector Installation
FIGURE 13.27
Fiber before and after
polishing
Before
polishing
After
polishing
Jacket
Jacket
Core
Core
FIGURE 13.28
Air polishing the fiber
after scribing
Coarse polishing, the first polishing step, removes the burrs and sharp ends present after you’ve
broken off the fiber. Grab a sheet of 12-micron film and hold it as shown in Figure 13.28. Bring
the connector into contact with the polishing film and move the connector in a figure-eight
motion. Polish the connector for about 15 seconds or until you hear a change in the sound made
as the fiber scrapes along the polishing cloth. This process is known as air polishing because you
aren’t using a backing for the polishing film.
WARNING
Air polishing will take some practice. Do not overpolish the fiber! If you do, the fiber will not
transmit light correctly and will have to be cut off and reterminated.
When you are done, a small amount of epoxy should be left, and the glass will not be completely smooth. Don’t worry, this will be taken care of in the next part of the polishing procedure. Before proceeding, clean the end of the fiber with an Alco wipe to remove any loose glass
shards or epoxy bits that might scratch the fiber during the next polishing step.
Fiber-Optic Cable-Connector Installation
441
FIGURE 13.29
Results of air polishing
FIGURE 13.30
Insert the connector
into the polishing
puck.
FIGURE 13.31
Polishing the tip of
the fiber
Next, with the polishing puck in one hand, insert the connector into the puck (as shown in
Figure 13.30). Then, very gently place the puck with the connector in it on some 3-micron polishing film placed on the polishing pad. Move the puck in a figure-eight motion four or five
times (see Figure 13.31). Stop polishing when the connector fiber doesn’t scrape along the polishing cloth and feels somewhat slick.
WARNING
Don’t overpolish the conductor with the 3-micron polishing film. Overpolishing will cause
the glass-fiber end to be undercut and cause light loss at the optic connection.
442
Chapter 13 • Cable-Connector Installation
Then clean the connector with an Alco wipe to remove any debris before polishing again.
Once clean, gently place the puck on some 0.3-micron film, which is 10 times finer than the 3
micron polishing film used in the initial polishing step above. and give it five or six quick figureeights with little or no pressure to fine-polish the fiber. Remove the connector from the polishing puck and wipe it with an Alco wipe. You’re done. It’s time to test the connector to see
how you did.
Inspect the Connector
At this stage, you should check the connector with a fiber-optic microscope for any flaws that
might cause problems. A fiber-optic microscope allows you to look very closely at the end of
the fiber you just terminated (usually magnifying the tip 100 times or more). Different microscopes work somewhat differently, but the basic procedure is the same.
Insert the connector into the fiber microscope (as shown in Figure 13.32). Look into the
eyepiece and focus the microscope using the thumb wheel or slider so that you can see the
tip of the fiber. Under 100-times magnification, the fiber should look like the image shown
in Figure 13.33. What you see is the light center (the core) and the darker ring around it (the
cladding). Holding the opposite end of the fiber near a light source will increase the contrast
between the light center and the darker perimeter. Any cracks or imperfections will show up
as very dark blotches. If you see any cracks or imperfections in the cladding, it’s no problem
because the cladding doesn’t carry a signal. However, if you see cracks in the core, first try
repolishing the fiber on the 0.3-micron polishing film. If the crack still appears, you may
have to cut the connector off and reterminate it.
FIGURE 13.32
Insert the fiber into the
fiber microscope
Fiber-Optic Cable-Connector Installation
443
FIGURE 13.33
A sample fiber-tip
image in a fiber-optic
microscope
Finish
You can now terminate the other end of the cable. Then you can use a standard fiber-cable
tester or optical time domain reflectometer (OTDR) to test the cable. You will learn more
about optical-fiber testing in Chapter 14.
Chapter 14
Cable-System Testing
and Troubleshooting
• Installation Testing
• Cable-Plant Certification
• Cable Testing Tools
• Troubleshooting Cabling Problems
446
Chapter 14 • Cable-System Testing and Troubleshooting
esting a cable installation is an essential part of both installing and maintaining a data network.
This chapter will examine the cable testing procedures that you should integrate into the
installation process and that you are likely to need afterward to troubleshoot network communication problems. We will also examine the Standards with respect to cable testing
T
Installation Testing
As you’ve learned in earlier chapters, installing the cable plant for a data network incorporates
a large number of variables. Not only must you select the appropriate cable and other hardware
for your applications and your environment, but you must also install the cable so that environmental factors have as little effect on the performance of the network as possible. Part of the
installation process should include an individual test of each cable run to eliminate the cables
as a possible cause of any problems that might occur later when you connect the computers to
the network and try to get them to communicate. Even if you are not going to be installing or
testing the cabling yourself, you should be familiar with the tests that the installers perform and
the types of results that they receive.
Incorporating a cable test into the installation will help to answer several questions:
Connections Have the connectors been attached to the cable properly? Have the wires
been connected to the correct pins at both ends?
Cable performance Is the cable free from defects that can affect performance?
Environment Has the cable been properly routed around possible sources of interference,
such as light fixtures and electrical equipment?
Certification Does the entire end-to-end cable run, including connectors, wall plates, and
other hardware, conform to the desired Standard?
The following sections examine the tests that you can perform on copper and fiber-optic
cables, the principles involved, and the tools needed. Realize, though, that you needn’t perform
every one of these tests on every cable installation. To determine which tests you need to perform and what results you should expect, see the section “Creating a Testing Regimen” later
in this chapter.
Copper-Cable Tests
Most of the copper cable installed today is twisted-pair of one form or another, and the number
of individual wire connections involved makes the installation and testing process more complicated than for other cable, particularly in light of the various standards available for the connector pinouts. The following sections list the tests for copper cables and how they work.
Installation Testing
FIGURE 14.1
A properly connected
four-pair cable, using
the T568-A pinout
5
5
4
4
3
3
6
6
1
1
2
2
7
7
8
8
447
Pair 1
Pair 2
Pair 3
Pair 4
NOTE
For more information on the equipment used to perform these tests, see the section
“Cable-Testing Tools” later in this chapter. For more information on correcting the problems
detected by these tests, see the section “Troubleshooting Cabling Problems,” also later in
this chapter.
Wire Mapping
Wire mapping is the most basic and obvious test for any twisted-pair cable installation. For
twisted-pair cables, you must test each cable run to make sure that the individual wires within
the cable are connected properly, as shown in Figure 14.1.As mentioned earlier in this book,
you can select either the T568-A or T568-B pinout configurations for a twisted-pair installation. Because all of the pairs are wired straight through and the difference between the two
configurations is minimal, there is no functional difference between them. However, you
should select one pinout and stick to it throughout your entire installation. This way you can
perform end-to-end tests as needed without being confused by mixed wire-pair colors.
A perfunctory wire-mapping test can be performed visually by simply checking the pinouts
at both ends of the cable. However, problems can occur that are not visible to the naked eye.
A proper wire-mapping tester can detect any of the following faults:
Open pair An open pair occurs when one or more of the conductors in the pair are not
connected to a pin at one or the other end. In other words, the electrical continuity of the
conductor is interrupted. This can occur if the conductor has been physically broken, or
because of incomplete or improper punch down on the IDC connector.
Shorted pair A short occurs when the conductors of a wire pair are connected to each
other at any location in the cable.
448
Chapter 14 • Cable-System Testing and Troubleshooting
Short between pairs A short between pairs occurs when the conductors of two wires in
different pairs are connected at any location in the cable.
Reversed pair A reversed pair (sometimes called a tip/ring reversal) occurs when the two
wires in a single pair are connected to the opposite pins of the pair at the other end of the
cable. For example, if the W-BL/BL pair is connected on one end with W-BL on pin 5 and
BL on pin 4 of the connector, and at the other end of the cable, W-BL is connected to pin
4 and BL is punched down on pin 5, the W-BL/BL pair is reversed.
Crossed pairs Crossed (or transposed) pairs occur when both wires of one color pair are
connected to the pins of a different color pair at the opposite end.
Split pairs Split pairs occur when one conductor from at both ends of the run. Because this
type of fault essentially requires that the same mistake be made at both ends of the connection, accidental occurrence of split pairs is relatively rare.
Figure 14.2 illustrates these faults.
NOTE
Figures 14.1 and 14.2 show the T568-A pinout configuration. If you are using the T568-B
pinout, pairs 2 and 3 switch positions from the T568-A pinout.
FIGURE 14.2
Common wire-mapping
faults
Pair 1
5
4
5
4
Pair 1
5
4
5
4
Pair 1
5
4
5
4
Pair 2
3
6
3
6
Pair 2
3
6
3
6
Pair 2
3
6
3
6
Pair 3
1
2
1
2
Pair 3
1
2
1
2
Pair 3
1
2
1
2
Pair 4
7
8
7
8
Pair 4
7
8
7
8
Pair 4
7
8
7
8
Open Pairs
Shorted Pairs
Short between
Pairs
Pair 1
5
4
5
4
Pair 1
5
4
5
4
Pair 1
5
4
5
4
Pair 2
3
6
3
6
Pair 2
3
6
3
6
Pair 2
3
6
3
6
Pair 3
1
2
1
2
Pair 3
1
2
1
2
Pair 3
1
2
1
2
Pair 4
7
8
7
8
Pair 4
7
8
7
8
Pair 4
7
8
7
8
Reversed Pairs
Crossed Pairs
Split Pairs
Installation Testing
449
Wire-mapping faults are usually caused by improper installation practices, although some
problems like opens and shorts can result from faulty or damaged cable or connectors. The
process of testing a connection’s wire mapping is fairly straightforward and requires a remote
unit that you attach at one end of the connection and a main unit for the other end. Wire-map
testing is usually included in multifunction cable testers, but you can also purchase dedicated
wire-map testers that are far less expensive.
The main unit simply transmits a signal over each wire and detects which pin at the remote
unit receives the signal. The problem of split pairs (two wires in different pairs transposed at
both ends of the connection) is the only one not immediately detectable using this method.
Because each pin is connected to the correct pin at the other end of the connection, the wire
map may appear to be correct and the connection may appear to function properly when it is
first put into service. However, the transposition causes two different signals to run over the
wires in a single twisted pair. This can result in an excess of near-end crosstalk that will cause
the performance of the cable to degrade at high data rates. Although the occurrence of split
pairs is relatively unlikely compared to the other possible wire-mapping faults, the ability to
detect split pairs is a feature that you may want to check for when evaluating cable-testing
products.
Cable Length
All LAN technologies are based on specifications that dictate the physical layer for the network, including the type of cable you can use and the maximum length of a cable segment.
Cable length should be an important consideration from the very beginning of network planning. You must situate the components of your network so that the cables connecting them do
not exceed the specified maximums.
You may therefore question why it is necessary to test the length of your cables if you have
a plan that already accounts for their length. You may also deduce (correctly) that the maximum cable-length specifications are based, at least in part, on the need to avoid the signal degradation that can be caused by attenuation and crosstalk. If you are going to perform separate
tests for these factors, why test the cable lengths, too?
You have several reasons. One is that if your network doesn’t come close to exceeding the
specifications for the protocol you plan to use, you may be able to double-check your cable
lengths and omit other tests like those for crosstalk and attenuation. Another reason is that a
cable-length test can also detect opens, shorts, and cable breaks in a connection. A third reason
is that a length test measures the so-called electrical length of the wires inside the cable.
Because the cable’s wire pairs are twisted inside the outer jacket, the physical length of the
wires is longer than the physical length of the cable.
450
Chapter 14 • Cable-System Testing and Troubleshooting
FIGURE 14.3
Time domain reflectometry measures the
time needed for a
pulse to travel to
the end of a cable
and back.
Pulse
Tester
OPEN
Reflection
Time Domain Reflectometry
The length of a cable is typically tested in one of two ways: either by time domain reflectometry
or by measuring the cable’s resistance.
A time domain reflectometer (TDR) works much like radar, by transmitting a signal on a cable
with the opposite end left open and measuring the amount of time that it takes for the signal’s
reflection to return to the transmitter, as shown in Figure 14.3. When you have this elapsed time
measurement and you know the nominal velocity of propagation (NVP), you can calculate the
length of the cable.
The NVP for a particular cable is usually provided by its manufacturer and expressed in relation to the speed of light. Some manufacturers provide the NVP as a percentage, such as 72
percent, whereas others express it as a decimal value multiplied by the speed of light (c), such
as 0.72c. Many cable testers compute the length internally, based on the results of the TDR test
and an NVP value that is either preprogrammed or that you specify for the cable you’re testing.
When testing cable length, it’s critically important that your tester uses the correct NVP value.
The NVP values for various cables can range from 60 percent (0.6c) to 90 percent (0.9c), which
creates a potential for error in the cable-length results ranging from 30 to 50 percent if the tester
is using the wrong value. Time domain reflectometry has other potential sources of inaccuracy
as well. The NVP can vary as much as 4 to 6 percent between the different wire pairs in the same
cable because of the deliberately varied twist intervals used to control crosstalk. The pulse generated by the TDR can be distorted from a square wave to one that is roughly sawtooth-shaped,
causing a variance in the measured time delay of several nanoseconds, which converts to several
feet of cable length.
Because of these possible sources of error, you should be careful when planning and constructing your network not to use cable lengths that closely approach or exceed the maximum
recommended in your protocol specification.
Locating Cable Faults
Time domain reflectometry has other applications in cable testing as well, such as the detection
and location of cable breaks, shorts, and terminators. The reflection of the test pulse back to
the transmitter is caused by a change in impedance on the cable. On a properly functioning
Installation Testing
451
cable, the open circuit at the opposite end produces the only major change in impedance. But
if an open or short exists at some point midway in the cable run, it too will cause a reflection
back to the transmitter. The size of the pulse reflected back is in direct proportion to the magnitude of the change in impedance, so a severe open or short will cause a larger reflection than
a relatively minor fault, such as a kink, a frayed cable, or a loose connection. If there is no reflection at all, the cable has been terminated at the opposite end, which causes the pulse signal to
be nullified before it can reflect back.
Cable testers use TDR to locate breaks and faults in cable by distinguishing between these
various types of reflections. For example, an open located at 25 feet in a cable run that should
be at least 100 feet long indicates that a fault in the cable exists and gives an indication of its
approximate location (see Figure 14.4). The problem may be caused by a cable that has been
entirely severed or by faulty or damaged wires inside the cable sheath. Sometimes you can’t tell
that a cable is faulty by examining it from the outside. This is why a test of each cable run during the installation process is so important.
Resistance Measuring
The second method for determining the length of a cable is to measure its resistance using a
digital multimeter (DMM). All conductors have a resistance specification, expressed in ohms
per meter (or sometimes ohms per 100 meters or ohms per foot). If you know the resistance
specification for the conductor per unit of length, you can measure the cable’s resistance and
divide the result by the manufacturer’s specification to determine the cable’s length. In the
same way, if you already know the length of the cable from a TDR test, you can use the rating
to determine the cable’s total resistance.
Environmental factors can affect resistance as can the cable’s design and improper installation. Resistance increases with temperature, so your length calculations will suffer accordingly
if you are measuring in a high- or low-temperature environment too far from the 20˚ C (68˚ F)
temperature the resistance specification is based on. The twist intervals of the pairs also will
influence your resistance measurement. Because the twists increase the actual length of the
conductors, the resistance reading will be higher and result in a longer-than-actual cable
length. And, if the conductor was stretched during installation, high resistance readings will
result, again producing longer-than-actual lengths for the cable.
FIGURE 14.4
TDRs are also used to
locate breaks and other faults in a cable.
Pulse
Tester
OPEN
Reflection
452
Chapter 14 • Cable-System Testing and Troubleshooting
Performance Testing
The tests we’ve discussed so far all relate to physical properties of the cable and ascertain if the
cable has been terminated properly and is an acceptable length. They can be performed quickly
and with relatively unsophisticated and inexpensive test devices. They are the basic, minimum
levels of testing that should be performed to ensure your network will work.
But to properly characterize your cabling’s performance, a battery of transmission tests must
be administered; they determine the data-carrying capability of your cables and connectors.
The following characteristics were all defined in Chapter 1, so we won’t explain them further
here other than to note issues related to their testing.
All of the copper-cable tests discussed in the following sections, except for Propagation
Delay and Delay Skew, have formula-based performance requirements along a continuousfrequency spectrum. In the case of Category 5 and 5e, this range is 1MHz through 100MHz.
For Category 6, requirements at additional frequencies up to 250MHz are specified. If at any
point along the spectrum the cable exceeds the specification limits, the cable fails. This is called
sweep testing because the entire frequency range is being scanned.
Testing for transmission performance requires much more sophisticated equipment than
that used for wire mapping, opens, shorts, and crosses—equipment that can cost several
thousands of dollars per test set. However, the testing is essential for qualifying your cabling
installation to a particular level of performance, e.g., Category 5e. If you can’t afford such a
set, either contract with an installation-and-testing company that has one, or rent an appropriate unit.
Impedance
As you learned earlier, variations in impedance cause signal reflections that a TDR uses to measure the length of a cable. However, these signal reflections can be caused by different factors,
including variations in the cable manufacture, structural damage caused during installation, or
connectors that are a poor match for the cable. The statistic that measures the uniformity of the
cable’s impedance is called its structural return loss (SRL), which is measured in decibels (dB),
with higher values indicating a better cable. Even when the SRL of a particular cable is acceptable, it is still possible for an installation of that cable to suffer from variations in impedance
that cause signal reflections. When you construct a network to conform to a particular cabling
specification, such as Category 5e UTP, to maintain a consistent level of impedance throughout the entire length of the cable run you have to use connectors and other hardware that have
the same rating as the cable.
If, for example, during a twisted-pair installation, you fail to maintain the twist of the wire pairs
up to a point no more than 0.5 inches for Category 5 and 5e, and 0.375 inches for Category 6,
from each connection, you run the risk of varying the impedance to the point at which a reflection
occurs (as well as causing additional crosstalk). The cumulative amount of reflection caused by
Installation Testing
453
variations in impedance on a cable run is called its return loss, which, like impedance, is measured
in ohms. If the return loss is too large, signal-transmission errors can occur at high transmission
speeds. The worst-pair performance is reported at the frequency where the result came closest to
the specified limits.
Attenuation
Attenuation is one of the most important specifications for high-speed networks; if it is too high,
the signals can degrade prematurely and data can be lost. This is especially true if your network
uses cable lengths that approach the maximum permitted by your networking protocol.
Testing the attenuation of a cable run requires a unit at both ends of the connection: one to
transmit a calibrated signal and another to receive the signal and calculate how much it has
degraded during the trip. Attenuation is measured in decibels (dB), and most good-quality
cable testers include the secondary module needed to perform the test. The worst-case result
is reported.
Near-End Crosstalk (NEXT)
Along with attenuation, near-end crosstalk (NEXT) is one of the major impediments to successfully installing and running a high-speed data network on twisted-pair cabling. Figure 14.5
shows NEXT. Testing for NEXT is a relatively simple process with today’s sophisticated test
sets. After terminating the far end of the cable run to prevent any reflections from interfering
with the test, a signal is transmitted over one pair, and the magnitude of the crosstalk signal is
measured on the other pairs (in decibels). For a complete assessment, you must test each wire
pair against each of the three other pairs, for a total of six tests, and you must perform the six
tests from both ends of the cable. The worst-case combination is reported as the cable’s performance result.
FIGURE 14.5
Near-end crosstalk
5
5
4
4
Pair 1
3
Received signal
3
Pair 2
6
6
Crosstalk
1
1
Pair 3
2
Transmitted signal
2
7
7
8
8
Pair 4
454
Chapter 14 • Cable-System Testing and Troubleshooting
FIGURE 14.6
Some high-speed protocols can generate
excessive crosstalk by
transmitting over two
wire pairs at once.
5
Pair 1
4
3
Transmitted signal
Crosstalk
Received signal
5
4
3
Pair 2
6
6
Crosstalk
1
1
Pair 3
2
Transmitted signal
2
7
7
8
8
Pair 4
Power-Sum NEXT
Power-sum NEXT (sometimes called PS-NEXT) is a measurement of the cumulative effect of
crosstalk on each wire pair when the other three pairs are transmitting data simultaneously.
Figure 14.6 shows PS-NEXT. Each pair is tested separately, yielding four results. This test
must also be performed at each end of the cable, and the worst-case result is reported.
Attenuation to Crosstalk Ratio (ACR)
The attenuation to crosstalk ratio (ACR) is a calculation, not a separate test. ACR is the difference between the attenuation for the cable run and the amount of crosstalk it exhibits, both
of which are measured in decibels. The ACR is one of the best measurements of a cable run’s
overall quality because it clearly indicates how robust the signal will appear in relation to the
noise in the cable. Crosstalk varies at either end of the cable run, so you must run an ACR test
at both ends. The worst of the ACR measurements is the rating for the cable run. You can also
compare the PS-NEXT rating with the attenuation to determine the cable’s power-sum ACR.
Far-End Crosstalk (FEXT)
Far-end crosstalk (FEXT) occurs when a signal crosses over to another wire pair as it approaches
the far end of the cable, opposite the system that transmitted it. To equalize the FEXT measurement for the amount of attenuation present, you simply subtract the attenuation value from the
FEXT value to achieve the equal-level FEXT (ELFEXT), which is the equivalent of the ACR for
the far end of the cable. There is also a power-sum ELFEXT (PS-ELFNEXT) test, which is a
combined measurement for all of the wire pairs in the cable, and a worst pair-to-pair ELFEXT
test. In most cases, these measurements are not vital to an installation test, but some technologies,
such as Gigabit Ethernet, require them. Testing must be done from both ends of the cable (each
end of the cable is attached to a transceiver, so at some point each end is the far end), and the
worst-case combinations are reported.
Installation Testing
455
Propagation Delay and Delay Skew
The length of time required for a signal to travel from one end of a cable run to the other, usually measured in nanoseconds (ns), is its propagation delay. Because of the different twist rates
used, the lengths of the wire pairs in a cable can vary. As a result, the propagation delay for each
wire pair can be slightly different. When your network is running a protocol that uses only one
pair of wires to transmit data, such as standard Ethernet, 100Base-TX Ethernet, or Token
Ring, these variations are not a problem. However, protocols that transmit over multiple pairs
simultaneously, such as 100Base-T4 and Gigabit Ethernet, can lose data when signals travelling over the different pairs arrive too far apart in time.
To quantify this variation, some testers can measure a cable run’s delay skew, which is the difference between the lowest and the highest propagation delay for the wire pairs within a cable.
Propagation delay and delay skew are characteristics critical to some high-speed LAN applications, so they should be included in your battery of tests, especially for a network that will run
one of the high-speed protocols that uses multiple pairs. For propagation delay, the worst pair
is reported; for delay skew, it is the worst combination of any two pairs.
Noise
Most cable tests attempt to detect and quantify problems that result from the effects of the
installation on the cable’s own characteristics. However, environmental factors can also affect
the functionality of the cable installation, and you should be sure to test each cable run for noise
that emanates from outside sources. Outside noise is usually generated either by EMI, which
is low-frequency, high-amplitude noise generated by AC power lines, electric motors, and fluorescent lights, or radio frequency interference (RFI), which is high-frequency, low-amplitude
noise created by radio and television sets and cellular phones. Once again, this type of noise is
usually not a problem on lower-speed networks, but it can be on protocols that run the network
at 100MHz or more.
Testing for outside noise is a matter of shutting off or detaching all devices on the LAN and
testing the cable for electrical activity. One of the most important elements of this kind of test
is to perform it when all of the equipment at the site is operating as it normally does during
work hours. For example, performing a noise test on an office network during the weekend,
when most of the lights, copiers, coffee machines, air conditioners, and other equipment are
shut down, will not give you an accurate reading.
Fiber-Optic Tests
Just as installing fiber-optic cable is completely different from installing copper-cable, the testing processes also differ greatly. Much of the copper-cable testing revolves around the various
types of interference that can affect the performance of a network. Fiber-optic cable is completely immune from interference caused by crosstalk, EMI, and RFI, however, so tests for
456
Chapter 14 • Cable-System Testing and Troubleshooting
these are not needed. What you do need for a fiber-optic installation is to ensure that the signals arrive at their destinations with sufficient strength to be read and that the installation process has not degraded that strength.
Because of its superior signal-carrying capabilities, fiber-optic cable installations can include
various types of cable runs. The typical LAN arrangement consists of single-fiber links that connect a patch panel in a wiring closet or data center to wall plates or other individual equipment sites
over relatively short distances, with patch cables at both ends to connect to a backbone network
and to computers or other devices. Because of the limited number of connections they use, testing
these types of links is fairly straightforward. However, fiber optic can also support extremely long
cable runs that require splices every two to four kilometers, which introduces a greater potential
for connection problems.
To completely test a fiber-optic installation, you should perform your battery of tests three
times. The first series of tests should be on the spooled cable before the installation to ensure
that no damage occurred during shipping. The installation costs for fiber-optic cable can be
high—often higher than the cost of the cable and other hardware—so it’s worthwhile to test
the cable before investing in its installation. Because excessive signal loss is caused mostly by the
connections, simply testing the continuity of the cable at this stage is usually sufficient. This
continuity testing is sometimes referred to as a “flashlight” test because it amounts to shining
light in one end of the fiber strand and seeing if there is light at the other end.
The second series of tests should be performed on each separate cable segment as you install
it, to ensure that the cable is not damaged during the installation and that each individual connector is installed correctly. By testing at this stage, you can localize problems immediately,
rather than trying to track them down after the entire installation is completed.
Finally, you should test the entire end-to-end connection, including all patch cables and
other hardware, to ensure that cumulative loss is within certified parameters.
For fiber-optic LAN installations, only two tests are generally required: optical power and
signal loss. The following sections examine these tests and how you perform them. Other types
of tests are used on long-distance fiber-optic links and in troubleshooting, which are much
more complex and require more elaborate equipment. For more information on these, see the
section “Cable-Testing Tools” later in this chapter.
Optical Power
The most fundamental test of any fiber-optic-cable plant is the optical-power test, as defined in the
EIA’s FOTP-95 standard, which determines the strength of the signal passing through a cable
run and is the basis for a loss-measurement (attenuation) test. The testing process involves connecting a fiber-optic power meter to one end of the cable and a light source to the other. The
power meter uses a solid-state detector to measure the average optical power emanating from the
Installation Testing
457
end of the cable, measured in decibels. For data networks using multimode cable, you should perform optical-power tests at 850 and 1,300nm wavelengths; many testers run their tests at both
settings automatically. Single-mode cables require a 1,300nm test and sometimes 1,550nm, as
well. The 1,550nm test determines whether the cable will support wavelength division multiplexing and can detect losses due to microbending, which are not apparent at 1,300nm.
WARNING
Some people claim that you can use an optical time domain reflectometer (OTDR) to test
optical power and cable-plant loss but, generally speaking, these people are either mistaken or trying to sell you an OTDR. The combination of a fiber-optic power meter and light
source is the industry-standard solution for measuring optical power and signal loss. These
tools are also, by far, the more inexpensive solution.
Loss (Attenuation)
Loss testing, along with optical power, are the two most important tests for any fiber-optic
cable installation. Loss is the term commonly used in the fiber-optic world for attenuation; it is
the lessening of the signal as it travels through the cable. The physics of optical transmission
make it less susceptible to attenuation than any copper cable, which is why fiber cable segments
can usually be much longer than copper ones. However, even if your network does not have
extremely long fiber cable runs, there can be a significant amount of loss, not because of the
cable, but because of the connections created during the installation. Loss testing verifies that
the cables and connectors were installed correctly.
Measuring the loss on a cable run is similar in practice to measuring its optical power, except
that you use a calibrated light source to generate the signal and a fiber-optic power meter to measure how much of that signal makes it to the other end. The combination of the light source and
the power meter into one unit is called an optical loss test set (OLTS). Because of the different applications that use fiber-optic cable, you should be sure to use test equipment that is designed for
your particular type of network. For example, a light source might use either a laser or an LED
to create the signal, and the wavelengths it uses may vary as well. For a fiber-optic LAN, you
should choose a product that uses a light source at wavelengths the same as the ones your network
equipment will use so that your tests generate the most accurate results possible.
The testing procedure begins with connecting the light source to one end of a reference test cable
(also called the launch cable) and the power meter to the other end. The reference test cable functions as a baseline against which you measure the loss on your installed cable runs and should use
the same type of cable as your network. After measuring the power of the light source over the reference test cable, you disconnect the power meter, connect the reference cable to the end of the
cable you want to test, and connect the power meter to the other end. Some testers include a variety of adapters to accommodate various connector types. By taking another power reading and
comparing it to the first one, you can calculate the loss for the cable run. As with the optical-power
458
Chapter 14 • Cable-System Testing and Troubleshooting
test, you should use both 850 and 1,300nm wavelengths for multimode fiber tests; you should
also test the cable from the other direction in the same way. When you have the results, compare them to the optical loss budget (OLB), which is the maximum amount of signal loss permitted for your network and your application. (You may occasionally see optical link budget; though
optical loss budget is preferred, the two terms are synonymous.)
WARNING
Be sure to protect your reference test cables from dirt and damage. A faulty reference cable
can produce in your tests false readings of high loss.
This type of test effectively measures the loss in the cable and in the connector to which the
reference test cable is attached. The connection to the power meter at the other end introduces
virtually no additional signal loss. To test the connectors at both ends of the cable run, you can
add a second reference test cable to the far end, which is called a receive cable, and connect the
power meter to it. This is known as a double-ended loss test. The type of test you perform depends
on the type of cable run you are testing and the Standard you’re using as the model for your
network.
The standard single-ended loss test is described in the FOTP-171 Standard, which was
developed by the EIA in the 1980s and intended for testing patch cables. The double-ended
loss test for multimode cables is defined in the OFSTP-14 Standard and is used to test an
installed cable run. Another Standard, the OFSTP-7, defines testing specifications for singlemode cables. The document describes two testing methods: the double-ended source/meter
test from OFSTP-14 and an OTDR test, but when the results differ (and they usually will), the
source/meter test is designated as definitive.
WARNING
Some older manuals recommend that you calibrate your power meter using both launch and
receive cables, connected by a splice bushing, when you perform double-ended loss tests.
This practice introduces additional attenuation into your baseline and can obscure the fact
that one of your reference test cables is dirty or damaged. Always establish your testing
baseline using a launch cable only.
Depending on the capabilities of your equipment, the loss-testing process might be substantially easier. Some power meters have a zero loss reference capability, meaning that you can set
the meter to read 0dB while measuring the reference test cable. Then, when you test the
installed cable run, the meter displays only the loss in decibels; no calculation is necessary.
Cable-Plant Certification
So far in this chapter, you’ve learned about the types of tests you can perform on a cable installation but not about which tests you should perform for a particular type of network—or the
Cable-Plant Certification
459
results that you should expect from these tests. The tests you perform and the results you
receive enable you to certify your cable installation as complying with a specific standard of
performance. Many of the high-quality cable testers on the market perform their various tests
automatically and provide you with a list of pass/fail results, but it is important to know not
only what is being tested but also what results the tester is programmed to evaluate as passes
and failures.
Changing standards and new technologies can affect the performance levels that you should
expect and require from your network, and a tester that is only a year or two old may yield
results that ostensibly pass muster but that are actually insufficient for the network protocol
you plan to run. Always check to see what specifications a tester is using to evaluate your cable’s
performance. With some testers, the results that determine whether a cable passes or fails a test
can be calibrated with whatever values you wish, whereas others are preprogrammed and cannot easily be changed. Obviously, the former is preferable, as it enables you to upgrade the
tester to support changing standards.
The certification that you expect your network to achieve should be based not only on
today’s requirements but also on your expectation of future requirements. Professional consultants recommended that clients install Category 5 cable for many years, long before most of
these clients even considered upgrading to Fast Ethernet or another technology that required
Category 5. This was because the additional investment for a Category 5 installation was then
minimal compared to the cost of completely recabling the network later on.
For the same reason, it may be a good idea for the cabling you install today to conform to the
requirements for technologies you’re not yet considering using. A few years ago, Fast Ethernet
was a new and untried technology, yet now it is commonplace. It makes sense to assume that
Gigabit Ethernet will be just as common a few years from now. Installing Category 6 cable now
and certifying it to conform to the highest standards currently available may not benefit you
today, but in future years you may be proud of your foresight.
Creating a Testing Regimen
The level of performance that you require from a cable installation should specify which tests
you have to perform during the installation process and what test results are acceptable. For
example, a UTP installation intended only for voice-telephone traffic requires nothing more
than a wire-mapping test to ensure that the appropriate connections have been made. Other
factors will probably not affect the performance of the network sufficiently to warrant testing
them. A data network, on the other hand, requires additional testing, and as you increase the
speed at which data will travel over the network and the number of wire pairs used, the need
for more extensive testing increases as well. Table 14.1 lists the most common data link layer
protocols used on copper-cable networks and the corresponding tests you should perform on
a new cable installation.
460
Chapter 14 • Cable-System Testing and Troubleshooting
T A B L E 1 4 . 1 Minimum Cable Tests Required for Copper-Based Networking Protocols
Network Type
Tests Required
Voice telephone
Wire mapping
10Base-T Ethernet
Wire mapping, length, attenuation, NEXT
100Base-TX
Wire mapping, length, attenuation, NEXT, propagation delay, delay skew
Token Ring
Wire mapping, length, attenuation, NEXT
TP-PMD FDDI
Wire mapping, length, attenuation, NEXT
155Mbps ATM
Wire mapping, length, attenuation, NEXT
Gigabit Ethernet
Wire mapping, length, attenuation, NEXT, propagation delay, delay skew, PSNEXT, ELFNEXT, PS-ELFNEXT, return loss
For fiber-optic cable installations, optical-power and loss testing is sufficient for all multimode fiber LANs. For single-mode networks with long cable runs, OTDR testing is also recommended, as described in the section “Optical Time Domain Reflectometers” later in this
chapter.
Copper-Cable Certification
The ANSI/TIA/EIA-568-B Standard includes performance requirements for horizontal and
backbone cabling. The Standard defines two types of horizontal links for the purposes of testing. The permanent link refers to the permanently installed cable connection that typically runs
from a wall plate at the equipment site to a patch panel in a wiring closet or data center. The
channel link refers to the complete end-to-end cable run including the basic link and the patch
cables used to connect the equipment to the wall plate and the patch-panel jack to the hub or
other device.
Tables 14.2 and 14.3 summarize some performance levels required for copper cable testing,
broken down by cable category at selected frequencies, for permanent link and channel link
testing, respectively.
T A B L E 1 4 . 2 TIA Permanent-Link Testing Performance Standards
Category 3
Category 5
Category 5e
Category 6
Wire mapping
All pins
properly
connected
All pins
properly
connected
All pins
properly
connected
All pins
properly
connected
Length (in meters, not
including tester cords)
< 90
< 90
< 90
< 90
Cable-Plant Certification
T A B L E 1 4 . 2 C O N T I N U E D TIA Permanent-Link Testing Performance Standards
Category 3
Category 5
Category 5e
Category 6
60.0
65.0
NEXT (dB)
@ 1MHz
40.1
60.0
@ 10MHz
24.3
45.5
48.5
57.8
@ 100MHz
N/A
29.3
32.3
41.8
@ 250MHz
N/A
N/A
N/A
35.3
@ 1MHz
N/A
57.0
62.0
PS-NEXT (dB)
N/A
@ 10MHz
N/A
N/A
45.6
55.5
@ 100MHz
N/A
N/A
29.3
39.3
@ 250MHz
N/A
N/A
N/A
32.7
@ 1MHz
N/A
58.6
64.2
@ 10MHz
N/A
38.6
44.2
@ 100MHz
N/A
17.0
18.6
24.2
@ 250MHz
N/A
N/A
N/A
16.2
@ 1MHz
N/A
N/A
55.6
61.2
@ 10MHz
N/A
N/A
35.6
41.2
@ 100MHz
N/A
N/A
15.6
21.2
@ 250MHz
N/A
N/A
N/A
13.2
Propagation delay @
10MHz
N/A
< 498ns
< 498ns
< 498ns
Delay skew @ 10MHz
N/A
< 44ns
< 44ns
< 44ns
ELFEXT (dB)
57.0
37.0
PS-ELNEXT (dB)
T A B L E 1 4 . 3 TIA Channel-Link Testing Performance Standards
Category 3
Category 5
Category 5e
Category 6
Wire mapping
All pins properly
connected
All pins properly
connected
All pins properly
connected
All pins properly
connected
Length (in meters,
not including tester
cords)
< 100
< 100
< 100
< 100
@ 1MHz
39.1
60.0
60.0
65.0
@ 10MHz
22.7
44.0
47.0
56.6
NEXT (dB)
461
462
Chapter 14 • Cable-System Testing and Troubleshooting
T A B L E 1 4 . 3 C O N T I N U E D TIA Channel-Link Testing Performance Standards
Category 3
Category 5
Category 5e
Category 6
@ 100MHz
N/A
27.1
30.1
39.9
@ 250MHz
N/A
N/A
N/A
33.1
@ 1MHz
N/A
N/A
57.0
62.0
@ 10MHz
N/A
N/A
44.0
54.0
@ 100MHz
N/A
N/A
27.1
37.1
@ 250MHz
N/A
N/A
N/A
30.2
@ 1MHz
N/A
57.0
57.4
63.3
@ 10MHz
N/A
37.0
37.4
43.3
@ 100MHz
N/A
17.0
17.4
23.3
@ 250MHz
N/A
N/A
N/A
15.3
PS-NEXT (dB)
ELFEXT (dB)
PS-ELFEXT (dB)
@ 1MHz
N/A
54.4
54.4
60.3
@ 10MHz
N/A
34.4
34.4
40.3
@ 100MHz
N/A
14.4
14.4
20.3
@ 250MHz
N/A
N/A
N/A
12.3
Propagation delay @
10MHz
N/A
< 555ns
< 555ns
< 555ns
Delay skew @ 10MHz
N/A
<50ns
<50ns
<50ns
Fiber-Optic Certification
After testing the signal loss generated by a fiber-optic cable run, you compare the results to the
optical loss budget (OLB) for the cable to determine if the installation is within performance
parameters. The OLB is a calculation based on the number of connectors and splices in a cable
run and the length of the cable. The basic formula for computing the OLB is as follows:
OLB = cable loss + connector loss + splice loss
Essentially, you add together the amount of acceptable loss for the length of the cable and for
the number of splices and connectors. You do this by multiplying the actual cable length and the
number of splices and connectors by predefined coefficients. These coefficients vary according
to the type of fiber cable you’re using, the wavelength of the network, the standard you adhere to,
and the sources you consult. The values you opt to use for the coefficients determine how stringent your tests will be. Lower coefficients result in a lower OLB, meaning that you will tolerate
a smaller amount of attenuation on your network.
Cable-Plant Certification
463
For the connectors, coefficients range from 0.5 to a maximum of 0.75. For the splices, coefficients are 0.2 or 0.3. For the cable-length coefficient, use the values listed in Table 14.4.
T A B L E 1 4 . 4 Cable Coefficients for Optical Loss Budget Calculations
850nm
1,300nm
1,550nm
Multimode fiber
3 to 3.75dB/km
1 to 1.5dB/km
N/A
Single-mode fiber
N/A
0.4dB/km
0.3dB/km
Using these coefficient values, you construct an OLB formula like the following, which provides for the most stringent possible test standard on a multimode cable run at 850nm:
OLB = (number of connectors*0.5) + (number of splices*0.2) + (cable length*3.0 dB/km)
Third-Party Certification
Testing your cable installation for compliance to a specific performance level is a great way
to ensure that the cable plant will support the networking protocol you plan to run. If you
have installed the cabling yourself, testing is needed to check your work, and if you have the
cable installed by a third party, testing ensures that the job was done correctly. Handheld
testers can perform a comprehensive battery of tests and provide results in a simple pass/fail
format, but these results depend on what standards the device is configured to use.
In most cases, it isn’t difficult to modify the parameters of the tests performed by these
devices (either accidentally or deliberately) so that they produce false positive results. Improper
use of these devices can also introduce inaccuracies into the testing process. As a general rule,
it isn’t a good idea to have the same people check the work that they performed. This is not
necessarily an accusation of duplicity. It’s simply a fact of human nature that intimate familiarity with something can make it difficult to recognize faults in it.
For these reasons, you may want to consider engaging a third-party testing-and-certification
company to test your network after the cable installation is completed and certify its compliance with published standards. If your own people are installing the cable, then this is a good
way to test their work thoroughly without having to purchase expensive testing equipment. If
your cable will be installed by an outside contractor, adding a clause into the contract that states
acceptance of the work is contingent on the results of an independent test is a good way of
ensuring that you get a quality job, even if you accept the lowest bid. What contractor would
be willing to risk having to reinstall an entire network?
464
Chapter 14 • Cable-System Testing and Troubleshooting
Cable-Testing Tools
The best method for addressing a faulty cable installation is to avoid the problems in the first
place by purchasing high-quality components and installing them carefully. But no matter how
careful you are, problems are bound to arise. This section covers the tools that you can use to
test cables both at the time of their installation and afterwards, when you’re troubleshooting
cable problems. Cable-testing tools can range from simple, inexpensive, mechanical devices to
elaborate electronic testers that automatically supply you with a litany of test results in an easyto-read pass/fail format.
The following sections list the types of tools available for both copper and fiber-optic cable
testing. This is not to say that you need all of the tools listed here. In fact, in some of the following sections, we attempt to steer you away from certain types of tools. In some cases, both
high-tech and low-tech devices are available that perform roughly the same function, and you
can choose which you prefer according to the requirements of your network, your operational
budget, or your temperament. Some of the tools are extremely complicated and require extensive training to use effectively, where others are usable by anyone who can read.
You should select the types of tools you need based on the descriptions of cable tests given
earlier in this chapter, the test results required by the standards you’re using, and the capabilities of the workers—not to mention the amount of money you want to spend.
Wire-Map Testers
A wire-map tester transmits signals through each wire in a copper twisted-pair cable to determine if it is connected to the correct pin at each end. Wire mapping is the most basic test for
twisted-pair cables because the eight separate wire connections involved in each cable run are
a common source of installation errors. Wire-map testers detect transposed wires, opens (broken or unconnected wires), and shorts (wires or pins improperly connected to each other)—all
problems that can render a cable run inoperable.
Wire-map testing is nearly always included in multifunction cable testers, but in some cases
it may not be worth the expense to spend thousands of dollars on a comprehensive device. Dedicated wire-map testers are relatively inexpensive and enable you to test your installation for
the most common faults that occur during installation and afterward. If you are installing
voice-grade cable, for example, a simple wire-mapping test may be all that’s needed. Slightly
more expensive devices do wire-map testing in addition to other basic functions, such as TDR
length testing.
A wire-map tester consists of a remote unit that you attach to the far end of a connection and
the battery-operated, handheld main unit that displays the results. Typically, the tester displays
various codes to describe the type of faults it finds. In some cases, you can purchase a tester with
Cable-Testing Tools
465
multiple remote units that are numbered, so that one person can test several connections without constantly traveling back and forth from one end of the connections to the other to move
the remote unit.
WARNING
The one wiring fault that is not detectable by a dedicated wire-map tester is a split pair,
because even though the pinouts are incorrect, the cable is still wired straight through. To
detect split pairs, you must use a device that tests the cable for the near-end crosstalk that
split pairs cause.
Continuity Testers
A continuity tester is an even simpler and less expensive device than a wire-map tester. It is
designed to check a copper-cable connection for basic installation problems, such as opens,
shorts, and crossed pairs. These devices usually cannot detect more complicated twisted-pair
wiring faults such as split pairs, but they are sufficient for basic cable testing, especially for
coaxial cables, which have only two conductors that are not easily confused by the installer.
Like a wire-map tester, a continuity tester consists of two separate units that you connect to
each end of the cable to be tested. In many cases, the two units can snap together for storage
and easy testing of patch cables.
Tone Generators
The simplest type of copper-cable tester is also a two-piece unit, a tone generator and probe, also
sometimes called a fox and hound wire tracer. With a standard jack, you connect to the cable the
unit that transmits a signal; or, with an alligator clip, you connect the unit to an individual wire.
The other unit is an inductive amplifier, which is a penlike probe that emits an audible tone
when touched to the other end of the conductor.
This type of device is most often used to locate a specific connection in a punch-down block.
For example, some installers prefer to run all of the cables for a network to the central punchdown block without labeling them. Then they use a tone generator to identify which block is
connected to which wall plate and label the punch-down block accordingly. You can also use
the device to identify a particular cable at any point between the two ends. Because the probe
can detect through the sheath the cable containing the tone signal, you can locate one specific
cable out of a bundle in a ceiling conduit or other type of raceway. Connect the tone generator
to one end and touch the probe to each cable in the bundle until you hear the tone.
In addition, by testing the continuity of individual wires using alligator clips, you can use a tone
generator and probe to locate opens, shorts, and miswires. An open wire will produce no tone at
the other end, a short will produce a tone on two or more wires at the other end, and an improperly connected wire will produce a tone on the wrong pin at the other end.
466
Chapter 14 • Cable-System Testing and Troubleshooting
Using a tone generator is extremely time-consuming, however, and it’s nearly as prone to
errors as the cable installation. You either have to continually travel from one end of the cable
to the other to move the tone generator unit or use a partner to test each connection, keeping
in close contact using radios or some other means of communication. When you consider the
time and effort involved, you will probably find that investing in a wire-map tester is a more
practical solution.
Time Domain Reflectometers (TDR)
As described earlier in the section “Cable Length,” a time domain reflectometer (TDR) is the
primary tool used to determine the length of a copper cable and to locate the impedance variations that are caused by opens, shorts, damaged cables, and interference with other systems.
Two basic types of TDRs are available: those that display their results as a waveform on an
LCD or CRT screen and those that use a numeric readout to indicate the distance to a source
of impedance. The latter type of TDR provides less detail but is easy to use and relatively inexpensive. Many of the automated copper-cable testers on the market have a TDR integrated
into the unit. Waveform TDRs are not often used for field testing these days because they are
much more expensive than the numeric type and require a great deal more expertise to use
effectively.
You can use a TDR to test any kind of cable that uses metallic conductors, including the
coaxial and twisted-pair cables used to construct LANs. A high-quality TDR can detect a large
variety of cable faults, including open conductors; shorted conductors; loose connectors;
sheath faults; water damage; crimped, cut, or smashed cables; and many other conditions. In
addition, the TDR can measure the length of the cable and the distance to any of these faults.
Many people also use the TDR as an inventory-management tool to ensure that a reel contains
the length of cable advertised and to determine if a partially used reel contains enough cable for
a particular job.
NOTE
A special kind of TDR, called an optical time domain reflectometer (OTDR), is used to test
fiber-optic cables. For more information, see the section “Optical Time Domain Reflectometers (OTDRs)” later in this chapter.
Fault Detection
When a TDR transmits its signal pulse onto a cable, any extraordinary impedance that the signal encounters causes it to reflect back to the unit, where it can be detected by a receiver. The
amount of impedance determines the magnitude of the reflected signal. The TDR registers the
magnitude of the reflection and uses it to determine the source of the impedance. The TDR
also measures the elapsed time between the transmission of the signal and the receipt of the
reflection and, using the NVP that you supply for the cable, determines the location of the
Cable-Testing Tools
467
impedance. For example, on an unterminated cable with no faults, the only source of impedance is the end of the cable, which registers as an open, enabling the TDR to measure the overall length of the cable.
Faults in the cable return reflections of different magnitudes. A complete open caused by a
broken cable prevents the signal from traveling any farther down the cable, so it appears as the
last reflection. However, less serious faults enable the signal to continue on down the cable,
possibly generating additional reflections. A waveform TDR displays the original test signal on
an oscilloscope-like screen, as well as the individual reflections. An experienced operator can
analyze the waveforms and determine what types of faults caused the reflections and where
they are located.
Automated TDRs analyze the reflections internally and use a numerical display to show the
results. Some of these devices are dedicated TDR units that can perform comprehensive cablefault tests at a substantially lower price than a waveform TDR and are far easier to use. The unit
displays the distance to the first fault located on the cable and may also display whether the
reflection indicates a high impedance change (denoting an open) or a low impedance change
(denoting a short). Some of these units even offer the ability to connect to a standard oscilloscope in order to display waveform results, if desired.
Blind Spots
Some TDRs enable you to select from a range of pulse widths. The pulse width specifies the
amount of energy the unit transmits as its test pulse. The larger the pulse width, the longer
the signal travels on the cable, enabling the TDR to detect faults at greater distances. However, signals with larger pulse widths also take longer to transmit, and the TDR is all but
incapable of detecting a fault during the time that it is transmitting. For example, because the
signal pulse travels at approximately 3ns per meter, a 20ns pulse means that the beginning of
the pulse will be about 6.6 meters from the transmitter when the end of the pulse leaves the
unit. This time interval during which the pulse transmission tales place is known as a blind
spot, and it can be a significant problem because faults often occur in the patch cables, wall
plates, and other connectors near to the end of the cable run.
When you have a TDR with a variable pulse-width control, you should always begin your
tests with the lowest setting so that you can detect faults that occur close to the near end of
the cable. If no faults are detected, you can increase the setting to test for faults at greater distances. Larger pulse widths can also aid in detecting small faults that are relatively close. If
a cable fault is very subtle and you use a low pulse-width setting, the attenuation of the cable
may prevent the small reflection from being detected by the receiver. Larger pulse widths
may produce a reflection that is more easily detected.
468
Chapter 14 • Cable-System Testing and Troubleshooting
If your TDR uses a fixed-pulse width, you may want to connect an extra jumper cable
between the unit and the cable run to be tested. This jumper cable should be at least as long
as the blind spot and should use cable of the same impedance as the cable to be tested. It
should also have high-quality connections to both the tester and the cable run. If you choose
to do this, however, be sure to subtract the length of the jumper cable from all distances given
in the test results.
Integrated TDRs
Many of the combination cable testers on the market include TDR technology, primarily for
determining the cable length, but they may not include the ability to detect subtle cable faults
like the dedicated units can. Obviously, a severed cable is always detectable by the display of a
shorter length than expected, but other faults may not appear. Some units are not even
designed to display the cable length by default but instead simply present a pass/fail result
based on a selected network type. If, for example, you configure the unit to test a 10Base-T
cable, any length less than 100 meters may receive a pass rating. For the experienced installer,
a unit that can easily display the raw data in which the pass/fail results are based is preferable.
Another concern when selecting a TDR is its ability to test all four of the wire pairs in a
twisted-pair cable. Some devices use time domain reflectometry only to determine the length
of the cable and are not intended for use as fault locators. So they might not test all the wire
pairs, making it seem as though the cable is intact for its entire length when, in fact, opens or
shorts could be on one or more pairs.
Fiber-Optic Power Meters
A fiber-optic power meter measures the intensity of the signal transmitted over a fiber-optic cable.
The meter is similar in principle to a multimeter that measures electric current, except that it
works with light instead of electricity. The meter uses a solid-state detector to measure the signal intensity and incorporates signal-conditioning circuitry and a digital display. Different
meters are for different fiber-optic cables and applications. Meters for use on short-wavelength
systems, up to 850nm, use a silicon detector, whereas long-wavelength systems need a meter with
a germanium or InGaAs detector that can support 850 to 1,550nm. In many cases, optical power
meters are marketed as models intended for specific applications, such as CATV (cable television), telephone systems, and LANs.
Other, more expensive units can measure both long- and short-wavelength signals. Given
that the cost of fiber-optic test equipment can be quite high, you should generally try to find
products specifically suited for your network and application so that you’re not paying for features you’ll never use. A good optical power meter enables you to display results in various units
of measure and signal resolutions, can be calibrated to different wavelengths, and measures
Cable-Testing Tools
469
power in the range of at least 0dBm to –50dBm. Some meters intended for special applications
can measure signals as high as +20dBm to –70dBm. An optical power meter registers the average optical power over time, not the peak power, so it is sensitive to a signal source with a
pulsed output. If you know the pulse cycle of the signal source, you can compute the peak
power from the average power reading.
A fiber-optic power meter that has been properly calibrated to NIST (the United States’
National Institute of Standards and Technology) standards typically has a +/–5 percent margin
for error, due primarily to variances introduced by the connection to the cable being tested,
low-level noise generated by the detector, and the meter’s signal conditioning circuitry. These
variances are typical for all optical power meters, regardless of their cost and sophistication.
The ability to connect the power meter to the cables you want to test is obviously important.
Most units use modular adapters that enable you to connect to any of the dozens of connector
styles used in the fiber-optic industry, although ST and SC connectors are most commonly
used on LANs. The adapters may or may not be included with the unit, however, and reference
test cables usually are not, so be sure to get all of the accessories you need to perform your tests.
Fiber-Optic Test Sources
To measure the strength of an optical signal, a signal source must be at the other end of the
cable. Although you can use a fiber-optic power meter to measure the signal generated by your
network equipment, accurately measuring the signal loss of a cable requires a consistent signal
generated by a fiber-optic test source. A companion to the power meter in a fiber-optic tool kit,
the test source is also designed for use with a particular type of network. Sources typically use
LEDs (for multimode fiber) or lasers (for single-mode fiber) to generate a signal at a specific
wavelength, and you should choose a unit that simulates the type of signals used by your network equipment.
Like power meters, test sources must be able to connect to the cable being tested. Some
sources use modular adapters like those on power meters, but others, especially laser sources,
use a fixed connector that requires you to supply a hybrid jumper cable that connects the light
source to the test cable.
Like optical power meters, light sources are available in a wide range of models. LED sources
are less expensive than laser sources, but beware of extremely inexpensive light sources. Some
are intended only for identifying a particular cable in a bundle, using visible light. These
devices are not suitable for testing signal loss in combination with a power meter.
Optical Loss Test Sets and Test Kits
In most cases, you need both an optical power meter and a light source in order to properly
install and troubleshoot a fiber-optic network, and you can usually save a good deal of money
470
Chapter 14 • Cable-System Testing and Troubleshooting
and effort by purchasing the two together. You will thus be sure to purchase units that both
support the wavelengths and power levels you need and that are calibrated for use together.
You can purchase the devices together as a single combination unit called an optical loss test
set (OLTS) or as separate units in a fiber-optic test kit.
An OLTS is generally not recommended for field testing, because it is a single unit. While
useful in a lab or for testing patch cables, two separate devices would be needed to test a permanently installed link because you have to connect the light source to one end of the cable and
the power meter to the other. However, for fiber-optic contractors involved in large installations, it may be practical to give workers their own OLTS set so that they can work with a partner and easily test each cable run in both directions.
Fiber-optic test kits are the preferable alternative for most fiber-optic technicians because
they include a power meter and light source that are designed to work together, usually at a
price that is lower than the cost of two separate products. Many test kits also include an assortment of accessories needed to test a particular type of network, such as adapters for various
types of connectors, reference test cables, and a carrying case. Prices for test kits can range from
$500 to $600 for basic functionality to as much as $5,000 for a comprehensive kit that can test
virtually every type of fiber-optic cable.
TIP
Communications can be a vital element of any cable installation in which two or more people are working together, especially when the two ends of the permanent cable runs can be
a long distance apart, as on a fiber-optic network. Some test sets address this problem by
incorporating voice communication devices into the power meter and light source, using the
tested cable to carry the signals.
Optical Time Domain Reflectometers (OTDRs)
An optical time domain reflectometer (OTDR) is the fiber-optic equivalent of the TDR used to test
copper cables. The OTDR transmits a calibrated signal pulse over the cable to be tested and
monitors the signal that returns back to the unit. Instead of measuring signal reflections caused
by electrical impedance as a TDR does, however, the OTDR measures the signal returned by
backscatter, a phenomenon that affects all fiber-optic cables. Backscatter is caused by photons
bouncing off of the inside walls of the cable in every direction, as shown in Figure 14.7. While
the scatter occurs in all directions as shown, some of this reflected light will bounce all the way
back to the transmitting end of the fiber, where it is detected by the OTDR. The scattered signal returned to the OTDR is much weaker than the original pulse, due to the attenuation of
the outgoing pulse, the relatively small amount of signal that is scattered (called the backscatter
coefficient of the cable), and the attenuation of the scattered signal on its way back to the source.
Cable-Testing Tools
471
FIGURE 14.7
OTDRs detect the
scattered photons
on a fiber optic
cable that return
to the transmitter.
As with a TDR, the condition of the cable causes variances in the amount of backscatter
returned to the OTDR, which is displayed on an LCD or CRT screen as a waveform. By interpreting the signal returned, it’s possible to identify cable faults of specific types and other conditions. An OTDR can locate splices and connectors and measure their performance, identify
stress problems caused by improper cable installation, and locate cable breaks, manufacturing
faults, and other weaknesses. Knowing the speed of the pulse as it travels down the cable, the
OTDR can also use the elapsed time between the pulse’s transmission and reception to pinpoint the location of specific conditions on the cable.
The two primary tasks that OTDRs should not be used for are measuring a cable’s signal loss
and locating faults on LANs. Measuring loss is the job of the power meter and light source,
which are designed to simulate the conditions of the network. Using an OTDR, it is possible
to compute a cable’s length based on the backscatter returned to the unit. The advantage to
using an OTDR for this purpose is that you can test the cable from one end, whereas the traditional method requires that the light source be connected to one end and the power meter
to the other.
OTDRs also have limited distance-resolution capabilities over short distances, making them
quite difficult to use effectively in a LAN environment where the cables are only a few hundred
feet long. OTDRs are used primarily on long-distance connections, such as those used by telephone and cable-television networks. As a result, you might find people who are experts at
fiber-optic LAN applications that have never seen or used an OTDR. Other reasons could also
account for why they may not have used an OTDR. One is that, as with TDRs, interpreting
the waveforms generated by an OTDR takes a good deal of training and experience. Another
reason is their jaw-dropping price. Full-featured OTDR units can cost anywhere from $17,000
to $30,000. Smaller units (sometimes called mini-OTDRs) with fewer features can run from
$7,000 to $15,000.
Fiber-Optic Inspection Microscopes
Splicing and attaching connectors to fiber-optic cables are tasks that require great precision,
and the best way to inspect cleaved fiber ends and polished connection ferrules is with a microscope. Fiber-optic inspection microscopes are designed to hold cables and connectors in precisely the correct position for examination, enabling you to detect dirty, scratched, or cracked
472
Chapter 14 • Cable-System Testing and Troubleshooting
connectors and ensure that cables are cleaved properly in preparation for splicing. Good
microscopes typically provide approximately 100-power magnification (although products
range from 30 to 800 power), have a built-in light source (for illuminating the object under the
scope), and are able to support various types of connectors using additional stages (platforms
on which the specimen is placed), which may or may not be included.
Visual Fault Locators
The light that transmits data over fiber-optic cable is invisible to the naked eye, making it difficult to ensure without a formal test that installers have made the proper connections. A visual
fault locator (sometimes called a cable tracer) is a quick and dirty way to test the continuity of a
fiber-cable connection by sending visible light over a fiber-optic cable. A typical fault locator
is essentially a flashlight that applies its LED or incandescent light source to one end of a cable,
which is visible from the other end. A fault locator enables you to find a specific cable out of a
bundle and ensure that a connection has been established.
More powerful units that use laser light sources can actually make points of high loss—such
as breaks, kinks, and bad splices—visible to the naked eye, as long as the cable sheath is not
completely opaque. For example, the yellow- or orange-colored sheaths commonly used on
single-mode and multimode cables (respectively) usually admit enough of the light energy lost
by major cable faults to make them detectable from outside. In a world of complex and costly
testing tools, fault locators are one of the simplest and most inexpensive items in a fiber-optic
toolkit. Their utility is limited when compared to some of the other tools described here, but
they are a convenient means of finding a particular cable and locating major installation faults.
Multifunction Cable Scanners
The most heavily marketed cable-testing tools available today are the multifunction cable scanners, sometimes called certification tools. These devices are available for both copper and fiberoptic networks and perform a series of tests on a cable run, compare the results against either
preprogrammed standards or parameters that you supply, and display the outcome as a series
of pass or fail ratings. Most of these units perform the basic tests called for by the most commonly used standards, such as wire mapping, length, attenuation, and NEXT for copper
cables, and optical power and signal loss for fiber optic. Many of the copper-cable scanners also
go beyond the basics to perform a comprehensive battery of tests, including propagation delay,
delay skew, PS-NEXT, ELFNEXT, PS-ELFNEXT, and return loss.
The primary advantage of a multifunction cable scanner is that anyone can use it. You simply connect the unit to a cable, press a button, and read off the results after a few seconds.
Many units can store the results of many individual tests in memory, download them to a PC,
or output them directly to a printer. This primary advantage, however, is also the primary
Cable-Testing Tools
473
disadvantage. The implication behind these products is that you don’t really have to understand the tests being performed, the results of those tests, or the cabling standards used to
evaluate them. The interface insulates you from the raw data, and you are supposed to trust
the manufacturer implicitly and believe that a series of pass ratings means that your cables are
installed correctly and functioning properly.
The fundamental problem with this process, however, is that the user must have sufficient
knowledge of applicable specifications to ensure that appropriate parameters are being used by
the test set. Some units may claim to certify Category 7 cables, for example, when standards for
these cables do not exist. When evaluating products like these, it’s important to choose units
that are able to be upgraded or manually configurable so that you can keep up with the constantly evolving requirements.
This configurability can lead to another problem, however. In many cases, it isn’t difficult to
modify the testing parameters of these units to make it easier for a cable to pass muster. For
example, simply changing the NVP for a copper cable can make a faulty cable pass the unit’s
tests. An unscrupulous contractor can conceivably perform a shoddy installation using inferior
cable and use his own carefully prepared tester to show the client a list of perfect “pass” test
results. This should not preclude the use of these testers for certifying your cabling installation.
Rather, you need to be vigilant in hiring reliable contractors.
As another example, some of the more elaborate (and more expensive) fiber-optic cable
testers attempt to simplify the testing process by supplying main and remote units that both
contain an integrated light source and semiconductor detector and by testing at the 850nm and
1,300nm wavelengths simultaneously. This type of device enables you to test the cable in both
directions and at both wavelengths simply by connecting the two units to either end of a cable
run. You needn’t use reference test cables to swap the units to test the run from each direction
or run a separate test for each wavelength.
However, these devices, apart from costing several times as much as a standard power meter/
light source combination, do not compare the test results to a baseline established with that
equipment. Instead, they compare them to preprogrammed standards, which, when it comes
to fiber-optic cables, can be defined as somewhat loose. So the device is designed primarily for
people who really don’t understand what they are testing and who will trust the device’s passor-fail judgment without question—even when the standards used to gauge the test results are
loose enough to permit faulty installations to receive a pass rating.
Multifunction test units are an extremely efficient means of testing and troubleshooting your
network. But understand what they are testing and either examine the raw data gathered by the
unit or verify that the requirements loaded to evaluate the results are valid. The prices of these
products can be shocking, however. Both copper and fiber-optic units can easily run to several
thousand dollars.
474
Chapter 14 • Cable-System Testing and Troubleshooting
Troubleshooting Cabling Problems
Cabling problems account for a substantial number of network-support calls; some authorities
say as many as 40 to 50 percent. Whether or not the figure is accurate, any network administrator will nevertheless experience network-communication problems that can be attributed to
no other cause than the network cabling. The type of cable your network uses and how it is
installed will have a big effect on the frequency and severity of cabling problems.
For example, a coaxial thin Ethernet network allowed to run wild on floors and behind furniture is far more likely to experience problems than a 10Base-T network installed inside the
walls and ceilings. This is true not only because the coaxial cables are exposed and more liable
to be damaged but also because the bus topology is more sensitive to faults and the BNC connectors are more easily loosened. Once cabling is installed in the walls and verified for performance, there is very little that will go wrong with it. This goes to show that you can take steps
toward minimizing the potential for cable problems by selecting the right products and installing them properly.
Establishing a Baseline
The symptoms of many cable problems are similar to symptoms of software problems, so it can
often be difficult to determine when the cable causes a problem. The first step in simplifying
the isolation of the source of network problems is to make sure that all of your cables are functioning properly at the outset. You do this by testing all of your cable runs as you install them,
as described earlier in this chapter, and by documenting your network installation.
If you use a multifunction cable tester, you can usually store the results of your tests by retaining them in the tester’s memory, copying them to a PC, or printing them out. You thus establish a performance baseline against which you can compare future test results. For example, by
recording the lengths of all your cable runs at the time of the installation, you can tell if a cable
break has occurred later by retesting and seeing if the length results are different than before.
In the same way, you can compare the levels of crosstalk, outside noise, and other characteristics that may have changed since the cable was installed. Even if your tester does not have these
data-storage features, you should manually record the results for future reference.
Another good idea is to create and maintain a map of all your cable runs on a floor plan of
your site. Sometimes cable problems can be the result of outside factors, such as interference
from electrical equipment in the building. A problem that affects multiple cable runs might be
traced to a particular location where new equipment was installed or existing equipment modified. When you install your cables inside walls and ceilings (and especially when outside contractors do it for you), it can be difficult to pinpoint the routes that individual cables take. A
map serves as a permanent record of your installation, both for yourself and any future people
working on the network.
Troubleshooting Cabling Problems
475
Locating the Problem
Troubleshooting your network’s cable plant requires many of the same common-sense skills as
other troubleshooting. You try to isolate the cause of the problem by asking questions like the
following:
●
Has the cable ever worked properly?
●
When did the malfunctions start?
●
Do the malfunctions occur at specific times?
●
What has changed since the cable functioned properly?
Once you’ve gathered all the answers to such questions, the troubleshooting consists of steps
like the following:
1. Split the system into its logical elements.
2. Locate the element that is most likely the cause of the problem.
3. Test the element or install a substitute to verify it as the cause of the problem.
4. If the suspected element is not the cause, move on to the next likely element.
5. After locating the cause of the problem, repair or replace it.
You might begin troubleshooting by determining for sure that the cable run is the source of
the problem. You can do this by connecting different devices to both ends of the cable to see
if the problem continues to occur. Once you verify that the cable is at fault, you can logically
break it down into its component elements. For example, a typical cable run might consist of
two patch cables (one at each end), a wall plate, a punch-down block, and the permanently
installed cable.
In this type of installation, it is easiest to test the patch cables, either by replacing them or
testing them with a cable scanner. Replacing components can be a good troubleshooting
method, as long as you know that the replacements are good. If, for example, you purchase a
box of 100 cheap patch cables that are labeled Category 5e when they actually are Category 3
cable, replacing one with another won’t do any good.
The most accurate method is to test the individual components with a cable scanner. If the
patch cables pass, then proceed to test the permanent link. If you don’t have a scanner available,
you can examine the connectors at either end of the cable run and even reconnect or replace
them to verify that they were installed correctly. However, there’s little you can do if the problem is inside a wall or in some other inaccessible place. If you do have a scanner, the results of
the tests should provide you with the information you need to proceed.
476
Chapter 14 • Cable-System Testing and Troubleshooting
Resolving Specific Problems
Cable testers, no matter how elaborate, can’t tell you what to do to resolve the problems they
disclose. The following sections examine some of the courses of action you can take to address
the most common cabling problems.
Wire-Map Faults
Wire-map faults are the result of an improper installation. When the wires within a
twisted-pair cable are attached to the wrong pins, the cable is no longer wired straight
through. If the pairs used to carry network data are involved, then signals won’t reach their
destination. In most cases, this fault occurs on a permanent link, although it is possible for
a patch cable to be miswired.
The possible causes of wire-map faults are simple errors made during the installation or the
use of different pinouts (T568-A and T568-B) at each end of the cable. Whatever the cause,
however, the remedy is to rewire the connectors on one or both ends so that each pin at one
end is connected to its equivalent pin at the other end.
Excessive Length
Cable lengths should be carefully planned before network installation and tested immediately
after installation to make sure that the cables are not longer than the recommended maximum
according to the ANSI/TIA/EIA-568-B Standard. Cable runs that are too long can cause problems like late collisions on an Ethernet network or excessive retransmissions due to attenuated
signals. Most protocols have some leeway built into them that permit a little excess, so don’t be
overly concerned if the maximum allowable length for a cable segment is 95 meters and you
have one run that is 96 meters long.
TIP
It’s possible for a cable tester to generate incorrect length readings if the tester is improperly calibrated. If the cable length seems wrong, check to make sure that the nominal velocity of propagation (NVP) setting for the cable is correct. Also, some testers include the
patch cable between the tester and the connection point in the calculated cable length.
To address the problem, you can start by using shorter patch cables, if possible. In some
cases, you may find that an installer has left extra cable coiled in a ceiling or wall space that can
be removed, and the end can be reconnected to the wall plate or punch-down block. Sometimes a more efficient cable route can enable you to rewire the run using less cable. If, however,
you find that bad planning caused the problem and the wall plate is too far away from the
punch-down block, you can still take actions.
The first and easiest action is to test the attenuation and NEXT on the cable run to see if they
exceed the requirements for the protocol. These characteristics are the primary reasons for
Troubleshooting Cabling Problems
477
these maximum-length specifications. If you have installed cable that is of a higher quality than
is required, you may be able to get away with the additional length, but if you are having network problems, chances are this isn’t the answer.
Opens and Shorts
Opens and shorts can be caused by improper installation, or they can occur later if a cable is
damaged or severed. If the cable’s length is correct but one or more wires are open or shorted,
then a connector is likely faulty or has come loose and needs repairing or replacing. If all of the
wires in a cable are reported as open in the same place or if the length of all the wires is suddenly
shorter than it should be, the cable may have been accidentally cut by nearby equipment or by
someone working in the area. Cables damaged but not completely severed may show up with
drastically different lengths for the wire pairs or as shorts at some interim point.
Cable scanners usually display the distance to the open or short so that you can more easily
locate and repair it. For cables installed in walls and ceilings, the cable map you (we hope) created during the installation can come in handy. If you don’t know the cable’s route, you can use
a tone generator and probe to trace the cable to the point of the break.
It is tempting to try to splice the ends of the severed wires. Don’t do it. You’ll create a nexus
for all sorts of potential transmission problems, including SRL (structural return loss) reflections, higher attenuation, and increased crosstalk. You must completely replace the permanent
cable run. Broken or damaged patch cables should always be discarded.
Excessive Attenuation
A cable run can exhibit excessive attenuation for several different reasons, most of which are
attributable to improper installation practices. The most obvious cause is excessive length. The
longer the cable, the more the signals attenuate. Address this problem as you would any other
excessive-length condition.
Another possible cause is that the cable used in the run is not suitable for the rate at which
data will be transmitted. If, for example, you try to run a 100Base-TX network using Category 3
cable, one of the reasons it will fail is that the specified attenuation level for Category 3 allows
the signal to decay more than 100Base-TX can handle. In this case, there is no other alternative
than to replace the cable with the proper grade. Inferior or untwisted patch cables are a frequent cause of this type of problem. These are easily replaced, but if your permanent links are
not of an appropriate performance grade, the only alternative is to replace the cabling.
Excessive attenuation can also be caused by other components that are of an inferior grade,
such as connectors or punch-down blocks. Fortunately, these are generally easier to replace
than the entire cable.
478
Chapter 14 • Cable-System Testing and Troubleshooting
Environmental factors, such as a conductor stretched during installation or a high-heat environment, also cause excessive attenuation.
Excessive Crosstalk
Crosstalk is a major problem that can have many different causes, including the following:
Inferior cable Cables not of the grade required for a protocol can produce excessive
crosstalk levels. The only solution is to replace the cable with the appropriate grade.
Inferior components All the components of a cable run should be rated at the same grade,
including all connectors. Using Category 3 connectors on a Category 5e network can introduce excessive crosstalk and other problems. Replace inferior components with those of the
correct grade.
Improper patch cables Replace inappropriate cables with twisted-pair patch cables that
are rated the same as your permanent links. Silver-satin patch cables used for telephone systems may appear at first to work with data connections, but the wire pairs in these cables are
not twisted, and the main reason for twisting conductors together in pairs is to minimize
crosstalk.
Split pairs Incorrect pinouts that cause data-carrying wires to be twisted together result in
additional crosstalk, even when both ends are wired in the same way. Split pairs can be the
result of mistakes during the installation or the use of the USOC pinouts. The solution is to
reattach the connectors at both ends using either the T568-A or T568-B pinouts.
Couplers Using couplers to join short lengths of cable generates more crosstalk than using
a single cable segment of the appropriate length. Use one 12-foot patch cable (for example)
instead of two 6-foot cables joined with a coupler. When repairing broken permanent links,
pull a new length of cable rather than using couplers to join the broken ends together.
Twisting The individual wire pairs of every Category 5e cable must remain twisted up to
a point no farther than 1/2 (0.5) inches from any connector. A Category 6 pair must remain
twisted to within 3/8 (0.375) inches of its termination. If the wires are too loosely twisted, reattach the connectors, making sure that all of the wire pairs are twisted tightly.
Sharing cables Many network protocols use only two of the four wire pairs in a standard
twisted-pair cable, so some people believe they can utilize the other two pairs for voice traffic
or some other application. They shouldn’t, however, because other signals running over the
same cable can produce crosstalk. The problem may be difficult to diagnose in these cases
because the crosstalk only occurs when the other application is using the other wire pairs,
such as when the user is talking on the phone. If two pairs in a wire are used for another application, you must install new cabling for one application or the other so that they will no
longer share a cable.
Troubleshooting Cabling Problems
479
Excessive Noise
The potential for noise generated by outside sources should be considered during the planning
phase of a network installation. Cables should be routed away from AC power lines, light fixtures, electric motors, and other sources of EMI and RFI. Sometimes outside noise sources can
be difficult to detect. You may, for example, test your cables immediately after you install them
and detect no excess noise from outside sources and then find during later testing that your network performance is severely degraded by noise. It is entirely possible that a new source of
interference has been introduced into the environment, but you also have to consider that your
original tests may not have been valid.
If you installed and tested the cable plant during nights and weekends, your tests for outside
noise may have generated all pass ratings because some sources of noise were not operating.
When lights and machinery are turned on Monday morning, noise levels could be excessive.
Always test your cable runs in the actual environmental conditions in which they’ll be used.
If, after cable installation, a new source generates excessive noise levels, you must either move
the cables and source away from each other or replace the UTP cables with fiber-optic cables.
Chapter 15
Creating a Request for
Proposal (RFP)
• What Is a Request for Proposal?
• Developing a Request for Proposal
• Distributing the RFP and Managing the Vendor-Selection Process
• Project Administration
• Technology Network Infrastructure Request for Proposal
(A Sample RFP)
482
Chapter 15 • Creating a Request for Proposal (RFP)
ll journeys begin with a single step. In the case of a telecommunications infrastructure and/
or hardware project that is not performed in-house, that first step is the creation of the
Request for Proposal (RFP). The RFP is essential to the success of your telecommunicationsinfrastructure project.
A
Anyone who rushes into a project without a clear view of what he or she needs to accomplish
is foolish. A vendor who accepts a job without a clear definition of the work to be performed is
also foolish, and a poor business person to boot. The RFP is essential for setting the pace of a
project that is going to involve both a client and an outside vendor. You may choose to write your
own RFP, or you may choose to hand the entire cabling design project and RFP generation over
to a specialized consulting company. Another option is to work with the consulting company but
do much of the groundwork beforehand. Any of these three choices still requires that you have
a good knowledge of generating an RFP.
The consulting companies that can perform the steps documented in this chapter are made
up of experts in their field and can save you time and money. However, for installations smaller
than a few hundred locations, you may not need a consulting company to prepare an RFP.
What Is a Request for Proposal?
The Request for Proposal (RFP) is essential for defining what you want designed and built for
the physical layer of your voice and data networks. An improperly constructed physical layer
will contribute to poor reliability and poor performance.
NOTE
Though certainly medium- and large-scale projects will require an RFP, smaller projects (a few
dozen cabling runs) on which you’re working with a trusted vendor do not require one.
The RFP sets the tone for the entire cabling-infrastructure project. The best way to think of
an RFP is as a combination of a guidebook, map, and rulebook. It clearly articulates the project,
goals, expectations, and terms of engagement between the parties. In addition, for it to serve
your best interests, it must be designed to be fair to all parties involved. A well-thought-out and
well-written RFP goes a very long way toward ensuring the success of the project. On the other
hand, a poorly thought out and badly written RFP can make your project a nightmare.
Having been on both sides of the fence, we have seen the influence that the RFP has on both
parties and upon the overall success of an effort. One of the mistakes that we have seen made
is that the buyer and vendor often see the RFP as a tool with which to take advantage of the
other party. This is most unfortunate because it sets the stage for an adversarial relationship
right from the beginning.
What Is a Request for Proposal?
WARNING
483
The RFP can ensure a successful relationship with your vendor and the successful completion of your cabling project. Unfortunately, some see it as a tool for taking advantage of the
other party. We do not recommend using an RFP in this way!
The best way to prevent such a scenario from occurring is by making sure that the RFP
clearly describes the scope of the project, the buyer’s requirements and expectations of the vendor, and the responsibilities of all parties involved. Because it is to be used as a rule book, it
must be designed to promote fairness.
To create that type of RFP, you or your consulting company must do much legwork to
ensure that many of the issues associated with the effort are identified, defined, addressed, and
properly articulated in the RFP document. That preplanning often involves many people.
It is important to remember that although the project involves the installation of technology,
it also involves many departments outside of the technology group, perhaps including management, finance, facility management, and legal departments as well as the departments getting the new network.
Before we get into some of the nuts-and-bolts aspects of creating the RFP, we’ll talk about
what the goal of the project should be.
What Do We Want in Life?
The goal of every RFP should be the creation of an infrastructure that satisfies the needs of the
organization today while being flexible enough to handle the emerging technologies of tomorrow. Everyone wants a system that they do not have to upgrade every time they need to install
a faster piece of hardware or advanced application. In addition, no one wants to spend
megabucks on their infrastructure, upgrading it every 11/2 years to keep pace with industry
advancements.
The goal of every RFP should also be to create an infrastructure that appears to be invisible.
Wouldn’t it be nice if an IT cabling infrastructure could be as invisible as electrical wiring?
Think about your electrical wiring for just a second; when was the last time you had to upgrade
it because you bought a new appliance? Or when did you have to add additional breakers to
your electrical panel because you wanted to plug in another lamp or another computer?
Well, the good news is that with the proper planning and design, your communication infrastructure can become virtually invisible—thanks to the many advances within the infrastructure segment of the telecommunications and information industries within the last decade. It
is possible to create cabling configurations that can and should become standard throughout
every type of office in every site within your organization.
484
Chapter 15 • Creating a Request for Proposal (RFP)
Perhaps the best part is that the potential system will not limit the types of data-communications
hardware purchased or the pool of infrastructure contractors from which you can invite to bid
on the installation. It can also be flexible enough to satisfy everyone’s needs. Sounds like a pipe
dream, doesn’t it? Well, it isn’t. A well-designed, well-engineered, and well-installed infrastructure becomes the “enabler” for the rest of your applications and future technology
requirements.
Developing a Request for Proposal
Developing the RFP involves quite a bit of work, depending on the size of both the project
and your organization. The first part of the development process involves analyzing exactly
what your current and future needs are. Along with this, you must determine any restrictions
and constraints that may be placed upon the system you will install.
Once you know what your needs are and the factors that will constrain you, the next phase is to
design the system and determine the components you will need. Once you have the system design
and know what components will be necessary, you can proceed with putting together the RFP.
The Needs Analysis
Many people will be involved in the needs analysis, the most important step in creating an RFP,
and you must be thorough. One of the reasons this step is important is because you can use this
opportunity to establish “buy-in” from others in your organization.
For the sake of this discussion, we must assume that the infrastructure project being planned
is at least of medium-sized scope. As one who is in charge of such things, your task may be to
handle a simple 20-network node expansion. Then again, perhaps you have been given the task
of overseeing and implementing an organization-wide infrastructure installation or upgrade
involving hundreds of users located in multiple sites. In either scenario, the same basic
approaches should be taken.
The objective of the needs analysis is to define the specific project. The needs analysis should
involve anyone who will be affected by the installation of the system. Depending on the size of
your organization, some of the people you will want to solicit advice from include the following:
●
Those who are responsible for any type of information technology that will be affected by
your project
●
The people in facilities and/or facilities management
●
The electrician or electrical contractor
●
Managers who can help you gain a better understanding of the long-term goals of the organization as they relate to information technology and facilities
Developing a Request for Proposal
485
Getting Input from Key Players
It is important to get input from upper management and the strategic planners within your
organization so you can understand the types of technology-dependent services, applications,
and efficiencies that they may require or need to have deployed in order to realize the company’s goals.
Through these meetings, those who are responsible will define the scope of the project, the
intent, deadlines, payment terms, bonding, and insurance issues.
All these solicitations of input may sound like overkill, but we can assure you they are not.
You may be saying to yourself, “Why would I want to make my life even more miserable than
it already is by inviting all of these people’s opinions into my project?” You may be surprised,
but by doing so you will, in fact, be making your life much easier. Plus, you will save yourself
a great deal of time, money, and aggravation in the not-too-distant future. Trust us on this one:
A little bit of self-induced insanity today will save you from stark-raving madness tomorrow.
All the people from whom you will solicit opinions are going to have an opinion anyway. Furthermore, it is safe to assume that these opinions will be communicated to you about two hours
after it is too late to do anything reasonable about them. In addition, think of all the new friends
you will make (just what you were looking for, we’re sure)! Most of these people are just dying
to tell you what to do and how to do it. By asking them for their opinion up-front, you are taking away their right to give you another one later. “Speak now or forever hold your peace”
strictly applies here.
NOTE
One IT director we know held “town hall” meetings with her company’s managers when she
began planning the infrastructure for their new location. The meetings often demonstrated
how quickly the managers rushed to protect their own fiefdoms, but the combination of all
the managers discussing the infrastructure needs also generated new ideas and requirements that she had not previously thought of.
Most important, though, is that scheduling meetings with these folks will help you understand
the organization’s overall needs from a variety of vantage points. The information and the understanding you receive will help you to get through the process. For instance, perhaps the facilities
folks have information that, once conveyed to you and the wiring contractors, will lower the
project cost and/or eliminate change orders and cost overruns. Or perhaps the in-house electrician is planning an installation in the same buildings during the same time frame, which would
allow you to combine efforts and create efficiencies that would save time, money, and work. And
finally, getting feedback from upper management about their long-range plans could prevent you
from being hit with a new imaging-application rollout that will require “only” one more UTP
circuit to be installed to every outlet location you just paid to have cabled!
486
Chapter 15 • Creating a Request for Proposal (RFP)
You’d be surprised at some of the details that we have unearthed from employers and clients
during the initial cabling-system planning meetings. Some of these details would have caused
time, money, and effort to be wasted if they had not been revealed, including:
●
An entire wing of a building was to be renovated three months after the new cable was to
have been installed.
●
Major expansion was planned in six months, and an area that currently had only a few workstation locations would be accommodating several dozen additional sales people.
●
A departmental restructuring was taking place, and an entire group of people was going to
be moved to a new location.
●
The local building codes did not allow any data, voice, or electrical cabling in the plenum
unless it was in conduit.
●
Telecommunications infrastructure designs had to be approved by a registered, professional engineer, as required by the state in which the customer was located.
●
A new phone-switch and voicemail system was being purchased and would also have to be
cabled shortly after the data-cabling project. Management mistakenly viewed this as a separate project.
●
In a law firm, all the attorneys were going to be given a notebook computer in addition to their
desktop computers. These notebook computers would require network access while the attorneys were in their offices, so each attorney’s office would require two network connections.
●
A new photocopier tracking system was to be installed that would require cabling to a tracking computer located in the computer room. In addition, these new photocopiers were
going to function as network devices and would require their own Ethernet connections.
●
Management wanted all offices of managers and senior project personnel, as well as conference rooms, to have cable TV hookups.
In each of these cases, prior to the initial meetings, we thought we had a pretty good idea of
what the company was planning to do. The additional information was helpful (and sometimes
vital) to the successful installation of the new cabling installation.
The Bonus: Getting Buy-In
In addition to gaining pertinent information, your wisely inclusive communication will get you
“buy-in” on your project. In other words, if you show respect to the people involved by bringing them into the loop, many of them will feel a part of what is going on and (you hope) won’t
fight against it.
We must issue a warning here, however! You are the boss of the project and must remain so.
If you let others control what you are responsible for, you have a recipe for disaster. No one
gets a vote in Cableland. They need to know that they are involved in at best a benevolent dictatorship, and you are the dictator.
Developing a Request for Proposal
NOTE
487
Responsibility for a project and the authority to make the final decision on a project need
to go hand-in-hand.
If the one who has authority over the project is not held responsible for the outcome, be prepared for disaster. For any project to have a chance of succeeding, authority and responsibility
must be welded together.
Cabling @ Work: Questions to Ask When Gathering Information
You have the key players in a room, and you have outlined what your cabling project will entail.
They may look at you with a “So what am I doing here?” expression on their faces. What are
some of the key questions that you may want to ask them? Here is a list of our favorites:
●
How long is the company planning to occupy the space we are cabling?
●
Will new technologies be implemented in the near or long term? These may include voice,
data, video, network-attached PDAs, notebook computers, remote-controlled devices,
security systems, and new photocopier technology.
●
Will any new voice and data applications require fiber-optic cabling? What type of fiberoptic cable do these applications require?
●
What electrical-code requirements and building requirements will influence the datacommunications cabling?
●
Are the telecommunications rooms properly grounded?
●
Are there installation time requirements? Will the areas that need to be worked in be accessible only during certain hours? Are they accessible on weekends and at night? Will the
installation personnel have to work around existing office furniture and/or employees?
●
Do building security requirements exist for contract personnel working in the areas in
question? Are there places that contractors must be escorted?
●
Does the contractor have to be unionized? Will any areas of the installation be affected
by union rules, such as the loading dock and elevators?
●
Are there plans to move to faster networking technologies, such as 100BaseTX,155Mbps ATM, 622Mbps ATM, or Gigabit Ethernet?
●
How many work area outlets should be installed? (You may have your own opinions on
this, but it is a good idea to hear others’ thoughts on the matter.)
●
If they are not already, should the voice and data cabling infrastructures be combined?
Continued on next page
488
Chapter 15 • Creating a Request for Proposal (RFP)
●
What insurance should the contractor carry? Should he or she be bonded? Licensed?
Certified?
●
Will construction or rewiring affect any deadlines?
●
Will the contractor have to access any areas of the building that are not part of your
leased space (e.g., entrance facilities and telecommunications rooms)?
●
Will the company be providing parking and working space (e.g., storage space, office,
telephone, fax, etc.) for the contractor and his or her employees?
●
If the organization spans multiple floors of a single building, is space available in the risers (conduits between floors) to accommodate additional cables? If not, who will have to
give approval for new risers to be drilled?
●
If the organization spans multiple buildings, how will the cable (usually fiber) be connected between buildings?
These are all questions that you will want to know the answers to if you are writing an RFP or
if you are a contractor responding to an RFP. Your newfound friends may answer some of
these questions, and you may have to answer others.
Designing the Project for the RFP
Once you have completed the needs analysis of your project, you should be prepared to enter
into the design phase. Although much of the design may be left up to the contractor whom you
choose to install your system, many of the design-related questions should be answered in the
RFP. This may seem a bit intimidating to the uninitiated, but we assure you that if you divide
the project into small bite-sized (or “byte-sized,” if you don’t mind the pun) pieces, you will
conquer the task. Even the largest and most intimidating projects become manageable when
broken into small tasks.
Components of a Cabling Infrastructure
The first step in dividing the project is to identify the four major subsystems of a cabling infrastructure. These are the telecommunications rooms, the backbone cabling, the horizontal
cabling, and the work area components. These and other subsystems are described by the
ANSI/TIA/EIA-568-B Standard and are discussed in more detail in Chapter 2. Within each of
these categories are several components.
NOTE
When designing cabling systems, you should conform to a known standard. In the United States,
the standard you should use is the ANSI/TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard. In Europe and other parts of the world, the ISO/IEC 11801 Generic
Cabling for Customer Premises Standard is the one to use. Most other countries in the world
have adopted one of these Standards as their own, but they may call it something different.
Developing a Request for Proposal
489
Backbone Cabling
The backbone (a.k.a. vertical, trunking, or riser) cabling connects the telecommunications
rooms (TR) with the equipment room (ER); the equipment room is where the central phone
and data equipment is located. Although the ANSI/TIA/EIA-568-B Standard allows for an
intermediate telecommunications room, we don’t recommend these for data applications.
Telecommunications rooms should be connected to the equipment room via backbone cabling
in a hub-and-spoke manner.
Many RFPs will leave the determination of the number of cables and pairs up to the company
that responds to the RFP; the responding company will figure out the number of pairs and
feeder cables based on requirements you supply for voice and data applications. Other RFP
authors will specify exactly how many cables and multipair cables must be used. The decision
is up to you, but if you have little experience specifying backbone capacity, you may want to
leave the decision to a professional. Some decisions that you may have to make with respect to
backbone cable include the following:
●
The number of multipair copper cables that must be used for voice applications.
●
How many strands of fiber must be used between telecommunications rooms for data and
voice applications.
●
Whether single-mode or multimode fiber-optic cable will be used. Most data applications
use multimode fiber, though some newer voice and applications use single-mode fiber.
●
Whether any four-pair UTP cable (Category 5e or 6) will be installed as backbone cabling.
NOTE
Backbone sizing can be tricky. If you are not careful, you will incorrectly calculate the backbone capacity you need. If you are not sure of the exact capacity you require, leave it to the
contractor to specify the right amount.
Telecommunications Rooms
Still more decisions must be made about the telecommunications room. Some of these decisions will be yours to make, and someone else in your organization will make other decisions.
Here are some points about telecommunications rooms that you may need to think about:
●
If the telecommunications room is to house electrical equipment, the room should be environmentally conditioned (temperature and humidity need to be maintained at acceptable levels).
●
Appropriate grounding for racks and equipment has to exist. This is often the responsibility
of the electrician. Don’t ignore good grounding rules. Consult ANSI/TIA/EIA-607 and
the NEC for more information. If the rooms are not grounded properly, you need to know
who will be responsible for installing grounding.
●
Sufficient space and lighting need to be provided so that all necessary equipment can be
installed and people can be in the room working on it.
490
Chapter 15 • Creating a Request for Proposal (RFP)
●
Backup power or uninterruptible power supplies (UPSs) should be installed in the telecommunications rooms.
●
Proper access should be given to information-technology personnel. However, the rooms
should be secure to prevent unwanted tampering or data theft.
The typical telecommunications room is going to include components such as the following:
●
Punch-down blocks for voice. Some punch-down blocks can be used to cross-connect data
circuits, but they are generally not recommended.
●
Wall space, if you are going to use punch-down blocks (they are usually mounted on plywood that is mounted to the wall).
●
Patch panels for copper and fiber circuits. It is a good practice to separate the patch panels
used for data applications from the patch panels used for voice applications.
●
Racks, cabinets, and enclosures for patch panels, telecommunications gear, UPSs, LAN
hubs, etc. Shelves for the racks and cabinets are often forgotten on RFPs and in the initial
design. Don’t forget extra mounting hardware for the racks, cabinets, and enclosures.
●
Wire-management equipment used on the walls and on the racks. These are also often forgotten during the initial design phase. Good wire-management practice means that the
telecommunications rooms will be cleaner and easier to troubleshoot.
●
Patch cables for the copper and fiber-optic patch panels and hubs. These are the most commonly forgotten components on RFPs. Make sure that the patch cables match the category
of cable that you use. ANSI/TIA/EIA-568-B specifies a maximum total length of five meters
(16 feet) of patch cord per horizontal channel in the telecommunications room. If you don’t
need cables that long, you should use only the length necessary. You may want to order varying lengths of patch cables to keep things neat and untangled.
Horizontal Cabling
The horizontal cabling, sometimes called the distribution cabling, runs from the telecommunications room to the work area. The horizontal cabling is the component most often planned
incorrectly. Cabling contractors know this and will often bid extremely low on the overall cost
of a job so that they can get the follow-on work of adds, moves, and changes. This is because
running single runs of horizontal cable is far more costly than installing many runs of cable at
once. To save yourself future unnecessary costs, make sure that you plan for a sufficient amount
of horizontal cable.
Some of the components you will have to think about when planning your horizontal
cable include:
●
How much cable should be run between each work area and a telecommunications room?
ANSI/TIA/EIA-568-B recommends either a minimum of one UTP and one fiber cable or
Developing a Request for Proposal
491
two UTP cables. In an all-UTP environment, we recommend running four UTP cables to
each work area.
●
What category of UTP cable should be run? Most telephone applications today will use
Category 3 cabling; 10Base-T Ethernet will also run on Category 3 cable. Faster Ethernet
and other twisted-pair technologies require at least Category 5 cabling. A minimum of Category 5e is recommended.
●
If using fiber-optic cable, what type of fiber cable should you use and how many pairs
should you run to each work area? Typically, two pairs of multimode fiber-optic cable are
used for horizontal cable, but this will depend on the applications in use and the number of
data connections to be installed at each location. Care should be taken to ensure that no
applications require single-mode fiber-optic cable.
●
Per ANSI/TIA/EIA-568-B, the maximum distance that horizontal cable can extend (not
including patch cables and cross-connects) is 90 meters (285 feet).
●
Should you use some type of “shared-sheath” cabling for horizontal cabling? For example,
since 10Base-T only uses two pairs of a four-pair cable, some network managers decide to
use the other two pairs for an additional 10Base-T connection or a telephone connection.
We strongly discourage the use of a shared sheath for data applications. All four pairs should
be terminated in a single eight-position outlet for future applications.
Work Area
The final major area is the work area, which includes the wall plates, user patch cables, and user
equipment. The work area can also include adapters such as baluns that modify the cable impedance. Many design issues relating to the work area will revolve around the choice of wall plates.
Here are some points to think about relating to the work area:
●
Know what type of wall plates you will use. The wall plate must have sufficient information
outlets to accommodate the number of horizontal cables you use. Many varieties of modular wall plates on the market will accommodate fiber, UTP, video, audio, and coaxial modules in the same plates. See Chapter 8 for more information.
●
For UTP cabling, the connecting hardware must also match the category of UTP cable you use.
●
For fiber-optic cable, the wall plate and connector types must match the cable type you use and
the requirements for the station cables (station patch cables) and fiber-optic connector types.
●
Don’t forget to estimate the number of patch cables you will need, and include this in the
RFP. ANSI/TIA/EIA-568-B specifies a maximum length for patch cables of five meters (16
feet). UTP patch cables should be stranded copper cable and should match the category of
cable used throughout the installation.
●
Though not as common now as they were years ago, impedance-changing devices such as
baluns might be necessary. Make sure that you have specified these in your cabling RFP if
they are not being provided elsewhere.
492
Chapter 15 • Creating a Request for Proposal (RFP)
How Much Is Enough?
Now that the categories and their components have been identified, the next order of business
is to determine how much of these items will be needed. This is when you will begin to realize
the benefits of the needs analysis that you performed. The size and components of your infrastructure are always based upon the immediate needs of your organization coupled with a factoring in of “realistic” future needs.
Wall Plates and Information Outlets
When designing a cabling infrastructure, always start from the desktop and work backward.
For instance, an accurate count of the number of people and their physical locations will
determine the minimum number of information outlets that will be needed and where they
will be installed.
SUGGESTION
wall plates and information outlets Depending on the design of the wall plate, a single
wall plate can accommodate multiple information outlets. An information outlet can accommodate voice, data, or video applications.
Some IT and cabling professionals will automatically double this minimum number in order
to give themselves room to grow. Our experience with information outlets is that, once you
have your cabling system in place, you never seem to have enough. With wall plates in particular, there never seems to be one close to where you want to put phones and data equipment.
Here are some ideas that may help you to plan information outlets:
●
Don’t forget locations such as network-printer locations and photocopier locations.
●
In some larger offices, it may be helpful to install two wall plates at each location on
opposite walls. This keeps the station patch-cable lengths to a minimum and also helps
keep cable clutter to a minimum, as cables would not have to cross the entire length of a
large office.
●
Special-use rooms, such as conference rooms and war rooms, should be cabled with at least
one wall plate identical to one in a typical workstation area.
●
Training rooms should have at least four more information outlets than you anticipate
needing.
●
Use extreme caution when cabling to locations outside of your organization’s office space,
such as to a shared conference room; it may allow outsiders to access your data and voice
systems. Although it may seem unlikely, we have seen it happen.
Developing a Request for Proposal
493
Cabling @ Work: Putting Data Cables in Places You Would Never Imagine
A few years ago during a hotel’s remodeling project, the hotel wired only the minimum locations required to install its new local area network. Later that year during a phone-system
upgrade, the hotel had to rewire each room.
Shortly after that, this hotel decided to offer in-room fax machines and additional telephones
on additional lines. Each room had to have additional cabling installed. Now the hotel is again
succumbing to the pressures of the traveling businessperson and is installing 100Base-T
Internet connections. At the same time, it is wiring its restaurants and retail locations for Category 5e cabling because its new cash register system uses 100Base-T network connections.
Though no precise figures have been calculated to see exactly how much would have been
saved by doing the entire job at one time, estimates indicate that the 400-room hotel could have
saved as much $80,000 by performing all the cabling infrastructure work at the same time.
Backbone and Horizontal Cabling
The number of information outlets required and their wall-plate locations will determine the
sizing of your horizontal cables (fiber strands and copper pairs) as well as the size and placement of your main cross-connect (MC) and any required intermediate and horizontal crossconnects (IC and HC, respectively.). The applications to be run and accessed at the desktop
determine the types of cables to be installed and the number of circuits needed at each wallplate location.
Some RFPs merely provide the numbers of wall plates and information outlets per wall plate
and leave the rest of the calculations up to the cabling contractor. Other RFPs don’t even get this
detailed and expect the contractor to gather this information during his or her walk-through. Our
preference is to have this information readily available to the contractor prior to the walkthrough and site survey. The less ambiguous you are and the more you put into writing, the easier
your job and your contractor’s job will be. Information about wall plates and information outlets
has to be gathered and documented by someone; you are the person who has to live with the
results. Always remain open-minded to contractor’s suggestions for additional locations, though.
Rules for Designing Your Infrastructure
As you gather information and start planning the specifics of your cabling infrastructure, keep
in mind our rules outlined here. Some of these result from our own experiences, and cabling
and information-technology professionals have contributed others to us:
●
Think “flexibility” and design accordingly. You will always find more uses and have more
requirements of your infrastructure than you are seeing today. Technology changes and
organizations change; be prepared.
494
Chapter 15 • Creating a Request for Proposal (RFP)
●
Create organizational standards and stick to them. Define the different outlet types that
exist in your facility. For instance, those in the accounting department may need fewer circuits than those in operations, and operations may need a different configuration than
those in sales. Once you determine the various types of configurations required, standardize them and commit to installing the same configuration throughout the particular department. On the other hand, you may decide that it makes sense to give everyone the same
configuration. Some companies shift employees and departments around frequently, so
this approach may be better suited to such an environment. Whatever you do, standardize
one option or another and stick to it. Doing so will make troubleshooting, ordering of
parts, and moves, adds, and changes (MACs) much less confusing.
●
Use modular wall plates. Buy a wall plate that has more “openings” than circuits installed
at the location. If you install two cables, buy wall plates that have three or four ports. The
cost difference is minimal, and you will preserve your investment in the event extra cables
are installed or activated.
●
Never install any UTP cable that is not at least Category 5e–rated. For data applications, Category 3 is dead. You should even strongly consider installing Category 6, if your budget will
allow. Three things in life never change: death, taxes, and the need for more bandwidth.
●
Always install one more cable at each location than is going to be immediately used. If your
budget is tight, you may choose not to terminate or test the circuit or not to add the necessary patch-panel ports, but do try to install the extra “pipe.” Invariably, organizations find
a use for that extra circuit. That cable will also enable you to quickly respond to any late
special-connectivity needs with minimal cost and disruption.
●
Whenever possible, leave a pull-string in the pathway to make future expansion easier.
●
Use wire management above and below each patch panel. A neat patch panel begets a neat
patch field. A messy patch field begets trouble.
●
Make sure your connectors, patch cables, patch panels, and wall jacks are rated the same as
your cable. Category 5e for Category 5e. Category 6 for Category 6. The same should hold
true for installation practices.
●
If you venture into the world beyond Category 6 cabling systems, remember that they are
not standardized as of this writing. Further, vendor claims about the performance of these
cables may be true only if you use all components from the same vendor or from a vendor
alliance that includes cable and connectivity components.
●
Label the circuits at the wall plate and at the patch panel. Although some people feel it is
important to label the cable itself, do so only if it does not increase the cost of the cabling
installation.
Developing a Request for Proposal
495
●
Never underinstall fiber strands. Never, ever, ever install only two strands of fiber-optic cable
between telecommunications rooms and the equipment room! Install only four strands if you
have no money at all. You must try to install a minimum of six or eight strands. Much convergence is occurring in the low-voltage industries—alarm systems, HVAC systems, and
CCTV (closed-circuit television), CATV, and satellite video systems are all using digital
information and running on fiber backbones. The installation of additional fiber beyond your
current data needs could make you a hero the next time an alarm system or HVAC system is
upgraded. Remember the movie Field of Dreams: Build it, and they will come.
●
Include a few strands (four or eight strands) of single-mode fiber with your multimode fiber
backbone. Even if you do not see the need for it today, put it in. To save money, you may
choose not to terminate or test it, but it should be part of your backbone. Video applications
and multimode’s inability to handle some of the emerging higher bandwidth and fastermoving data applications makes this a very smart bet.
●
Oversize your voice/copper backbone by a minimum of 10 to 25 percent if you can afford
it. A safe way to size your voice copper trunk is to determine the maximum number of telephone stations you anticipate you will need. Determine the number of voice locations that
will be fed from each room and then size your voice backbone to reflect 2.5 pairs per station
fed. For example, in the case of a room that will feed a maximum of 100 telephone stations,
you should install 250 pairs.
●
Test and document all copper distribution. If you install Category 5e cable and components,
insist upon 100 percent Category 5e compliance on all copper distribution circuits. All conductors of all circuits must pass. More sophisticated UTP cable testers provide printed test
results; you should obtain and keep the test results from each location. Some testing software
packages will allow you to keep these in a database. Tests should be reviewed prior to acceptance of the work. Note, though, that if you ask for Category 5e cable testing for each circuit,
it may increase the cost of the overall installation.
●
Test and document all fiber backbone cable. Bidirectional attenuation testing using a
power meter is sufficient for LAN applications. (Bidirectional refers to testing each strand
by shooting the fiber from the MC to the IC or HC and then shooting the fiber from the
HC or IC to the MC.) Testing should be done at both 850nm and 1300nm on multimode
fiber. Much has been made of the need to use an OTDR (optical time domain reflectometer) to test fiber; however, this is overkill. The key factor in the functionality of the fiber
backbone is attenuation. The use of an OTDR increases the cost of testing significantly
while providing nonessential additional information.
●
Document the infrastructure on floor plans. Once this is done, maintain the documentation and keep it current. Accurate documentation is an invaluable troubleshooting and
496
Chapter 15 • Creating a Request for Proposal (RFP)
planning tool. Show the outlet location and use a legend to identify the outlet types. Differentiate between these:
●
Data only, voice only, and voice/data locations
●
Each circuit at that location (by number)
●
All MC, IC, and HC locations
●
Backbone cable routings
Although there is more to designing a telecommunications infrastructure system, the information in this section provides some basic guidelines that should help to remove some of the
mystery.
Writing the RFP
If you have been successful at gathering information and asking the right questions, you are
ready to start writing your RFP. Although no exact guideline exists for writing an RFP, this section provides a list of suggested guidelines. (We have also included a sample RFP at the end of
this chapter.) By following these steps, you will be able to avoid many mistakes that could
become very costly during the course of the project and/or the relationship.
Remember, though, regardless of how much ink is used to spell out expectations, the spirit
of the agreement under which everyone operates really works to make a project successful.
TIP
There is a terrific Word document template for a structured cabling RFP in the members-only
section of the BICSI website (www.bicsi.org). If you are working with an RCDD, or someone in your company is a BICSI member, have them get it for you. It could save you a lot
of work.
Including the Right Content in the RFP
Will the RFP accurately specify what you want? To ensure that it does, take the following steps:
●
Educate yourself about the components of the system to be specified and some of the
options available to you.
●
Evaluate specific desired features and functionality of the proposed system, required
peripherals, interfaces, and expectations for life cycle and warranty period.
●
Solicit departmental/organizational input for desired features, requirements, and financial
considerations.
●
Determine the most cost-efficient solution for one-year, three-year, and even perhaps fiveyear projections.
Developing a Request for Proposal
497
●
Evaluate unique applications (wireless, voice messaging, fiber, etc.) and their transmission
requirements and departmental or operational requirements and restraints that could
impact those applications.
●
Analyze perceived versus actual needs for features and functionality, future applications,
system upgradability, etc.
●
Define contractor qualifications. Strongly consider requirements that call for vendors to be
certified by the infrastructure component manufacturer whose products they are proposing
to install. The same holds true for hardware bids. It is important that any vendor selling
hardware be an authorized reseller for the hardware manufacturer. Call for proof of each
certification and authorization as part of the initial bid submittal.
●
Prepare a draft outline of selected requirements and acceptable timelines (which is subject
to minor changes by mutual agreement).
●
Define project milestones and completion dates. Milestones include bid conference dates,
walk-through dates, dates to submit clarifications, the final bid due date, acceptance dates,
project-start dates, installation milestones, etc.
●
Include in the RFP sections on scope of work, testing acceptance, proposed payment schedules, liquidated damages (damages to be paid in the event of default), restoration, licensing,
permits fees, milestone dates, etc.
●
Call for all pricing to be in an itemized format, listing components and quantities to be
installed and unit and extended prices.
●
Request that costs to add or delete circuits—on a per circuit basis—be included in the
response to the RFP.
●
Include detailed language addressing the “intent” of the bid. Such language should articulate that the intent is to have a system installed that contains all of the components necessary to create a fully functional system. Language should be included that calls for the
contractors to address at time of contract completion any omissions in the bid that would
prohibit the system from being fully functional.
●
Ask for references from similar jobs.
●
Make sure to allow for adequate time for detailed site survey/estimating.
●
Upon receipt of bids, narrow field to three finalists and do the following:
●
●
Correlate information and prioritize or rank the three remaining bids on cost versus
performance. Don’t get hung up on costs. If a bid seems too good to be true, it may be.
Examine the vendor’s qualifications and the materials they are specifying.
Schedule meetings and/or additional surveys for best-and-final bids from remaining
vendors.
498
Chapter 15 • Creating a Request for Proposal (RFP)
●
Specify that the RFP is the intellectual property of the client and should not be distributed. Though this won’t stop an unscrupulous vendor from passing around information about your infrastructure, you have instructed them not to. One consulting
company we know of actually assigns each vendor’s copy of the RFP a separate number
that appears on the footer of each page.
What Makes a Good RFP?
Does a good RFP have many pages (did you do in a few trees printing it)? Can you take advantage of the contractor? These are not good benchmarks for determining if your RFP will help
to create a good working relationship between yourself and the company that you contract.
You may want to ask yourself the following questions about the RFP you are generating:
●
Is it fair?
●
Does it ensure that only competent bidders will meet the contractor qualifications?
●
Is it nondiscriminatory?
●
Does it communicate the objectives and the wishes of the client clearly and accurately?
●
Does it provide protection to both the client and the service provider?
●
Does it provide opportunities for dialog between the parties (e.g., mandatory site walkthroughs, regular progress meetings, etc.)?
●
Does it clearly state all deadlines?
●
Does it define payment terms?
●
Does it define the relationship of the parties?
●
Does it address change-order procedures?
Distributing the RFP and Managing the Vendor-Selection Process
Once the RFP has been written, you may think you are home free. However, the next step is
just as important as the creation of the RFP: You will then be ready to distribute the RFP to
prospective vendors and begin the vendor-selection process.
Distributing RFPs to Prospective Vendors
If you worked with an infrastructure consultant on your RFP, that person may already have a
list of contractors and vendors that you can use to fulfill your vendor needs. Many of these vendors may have already been tried and tested by your consultant. However, if you have developed your own RFP, you will need to find prospective vendors to whom you can distribute
your RFP for bids.
Distributing the RFP and Managing the Vendor-Selection Process
499
How do you find the vendors? We suggest the following ways:
●
Ask IT professionals from companies similar to yours for a list of vendors they have used
for cabling.
●
If you are a member of a users group or any type of professional organization, ask for vendor suggestions at your next group meeting.
●
If you work with a systems-integration company, ask your contact at that company for one
or more vendor recommendations. Chances are good that the contact has worked with vendors in the past that can respond to your RFP.
●
Consult your phone-system (PBX) vendor. Many phone-system companies have a division
that does cabling.
●
If you have a contact at the telephone company, consult that person for suggestions.
As you distribute RFPs to potential vendors, be prepared to schedule vendor meetings and
site inspections. For a cabling installation that involves approximately 500 to 2,000 nodes, you
can expect to spend at least one full day in meetings and on-site inspections for each vendor to
whom you submit the cabling RFP.
Vendor Selection
When reviewing the proposals you get, you may be tempted to simply pick the lowest-cost proposal. However, we recommend that you select a vendor based upon criteria that include, but
are not limited to, the following:
●
Balance between cost and performance
●
Engineering design and innovative solutions
●
Proven expertise in projects of similar scope, size, and complexity
●
Quality craftsmanship
●
Conformance with all appropriate codes, ordinances, articles, and regulations
Check references. Ask not only about the quality of work but about the quality of a relationship
the reference had with the specific vendor and whether the vendor completed all tasks on time.
Insist on a detailed warranty of a system’s life cycle. Consider the ability to perform and any
other requirements deemed necessary to execute the intent of contract.
Present a detailed description of work to be performed, payment agreements, and compliance with items contained in the RFP. Include this in the contract.
Identify key project personnel from both sides of the agreement, including the staff associated with accountability/responsibility for making decisions, and the authority to do so.
500
Chapter 15 • Creating a Request for Proposal (RFP)
NOTE
Once you have selected a vendor, promptly send letters or place phone calls to the rejected
vendors. We agree that it is hard to tell vendors they have not been accepted, but it is worse
if they hear about it through the grapevine or if they have to call you to find out.
Project Administration
After accepting the RFP, you are ready for the next phase of your installation challenge, the
project-administration phase. This phase is no less critical than the others are. Here are some
tips we have found to be helpful during an infrastructure deployment:
●
Schedule regular progress meetings. Progress reports should be submitted and compared
to project milestones. Accountability should be assigned, with scheduled follow-up and resolution dates.
●
Make sure that the contractor supervises 100 percent of the quality inspections of work performed. Cable-certification reports should be maintained and then submitted at progress
meetings.
●
Make sure that the contractor maintains and provides as-built documentation, the progress
of which should be inspected at the regular progress meetings. The as-built documentation
may include outlet locations, circuit numbers, telecommunications-room locations, and
backbone and distribution routing. Particular care should be taken to make sure this documentation is done properly, as it tends to slip through the cracks.
Cutover
If you install cabling in a location that you do not yet occupy, you do not have to be aware of
cutover from an existing system. As long as the new cabling system is properly designed, it is
relatively easy to move to the new system as you occupy the new location.
However, if you are supervising the installation for a location you do occupy, you will need
to consider interoperability and the task of switching over to the new system. In a small system
(less than 200 horizontal runs), the cutover may occur very quickly, but in medium to large systems, cutover can take days or weeks. Follow these guidelines:
●
Cutover preparation should begin 5 to 15 days prior to the scheduled date, unless otherwise
mutually agreed upon.
●
Cutover personnel and backups should be designated and scheduled well in advance.
Technology Network Infrastructure Request for Proposal (A Sample RFP)
501
●
Cutover personnel should have access to all records, diagrams, drawings, or other documentation prepared during the course of the project.
●
Acceptance should begin at the completion of the cutover and could continue for a period
of 5 to 10 working days prior to signing. The warranty should begin immediately upon
signing of acceptance.
●
Acceptance criteria should include 100 percent of all circuits installed. All circuits should
pass specified performance tests, and that should be recorded in the project-history file and
cable-management systems.
By following the guidelines, as appropriate to your particular situation, you can greatly
reduce the chances of any aspect of your project spiraling out of control.
The final part of this chapter provides a sample of an RFP that has been successfully used in
several projects in which we have been involved. Although we caution anyone from adopting
an existing RFP without first doing a thorough analysis of his or her own specific needs, the following document can be a guide.
Technology Network Infrastructure Request for Proposal (A Sample RFP)
The following sample RFP, used for a school, may help you generate your own. It is suitable for small installations (fewer than 500 circuits). For larger installations, consider
working with an infrastructure consultant. Remember, this document will probably not fit
anyone’s needs exactly.
502
Chapter 15 • Creating a Request for Proposal (RFP)
General
The general section of this RFP includes contractor’s requirements and defines the purpose of
the RFP, the work that the RFP covers, and the RFP intent.
Contractor’s Requirements
(a) The successful contractor must be a certified installer of the infrastructure components
being provided and show proof thereof.
(b) The contractor must be an authorized reseller of the networking and infrastructure
components quoted and show proof thereof.
(c) Work will be supervised by a Registered Communications Distribution Designer
(RCDD) during all phases of the installation. An RCDD must be on site and available
to technicians and installers any time work is being performed.
Purpose of This RFP
(a) The purpose of the “Technology Network Infrastructure RFP” is to provide a functional
specification for a comprehensive technology network system, including required network
cabling and components and required network devices. The purpose of this is also to provide adequate details and criteria for the design of this technology network system.
(b) The contractor shall provide cables, network equipment, and components necessary to
construct an integrated local area networking infrastructure.
(c) The contractor shall be responsible for the installation of the technology network systems as defined in the “Cable Plant.”
This document provides specifications to be used to design the installation of a networking
infrastructure and associated equipment. The contractor shall furnish all labor, materials,
tools, equipment, and reasonable incidental services necessary to complete an acceptable
installation of the horizontal and riser data communications cabling plant. This is to include,
but is not necessarily limited to, faceplates, modular jacks, connectors, data patch panels,
equipment racks, cable, and fiber optics.
Work Included
Work shall include all components for both a horizontal and riser data cable plant from workstation outlet termination to wire-room terminations. All cable-plant components, such as outlets, wiring-termination blocks, racks, patch cables, intelligent-hub equipment, etc., will be
furnished, installed, and tested by this contractor. The data cable plant is designed to support
a 100Mbps Ethernet computer network. The data cabling plant and components shall carry a
manufacturer-supported 10-year performance warranty for data rates up to 100Mbps. The
Technology Network Infrastructure Request for Proposal (A Sample RFP)
503
bidder must provide such manufacturer guarantee for the above requirements as part of the bid
submission.
The scope of work includes all activities needed to complete the wiring described in this document and the drawings that will be made available during the mandatory walk-through.
Any and all overtime or off-hours work required to complete the scope of work within the time
frame specified is to be included in the contractor’s bid. No additional overtime will be paid.
The awarded contractor must instruct the owner’s representative in all the necessary procedures for satisfactory operation and maintenance of the plant relating to the work described in
their specifications and provide complete maintenance manuals for all systems, components,
and equipment specified. Maintenance manuals shall include complete wiring diagrams, parts
lists, etc. to enable the owner’s representative to perform any and all servicing, maintenance,
troubleshooting, inspection, testing, etc. as may be necessary and/or requested.
The contractor shall respond to trouble calls within twenty-four (24) hours after receipt of
such a call considered not in need of critical service. Critical-service calls must be responded
to on site, within four hours of receipt of a trouble call. Bidder must acknowledge their agreement to this requirement as part of the RFP response.
All basic electronic equipment shall be listed by Underwriters Laboratories, Inc. The contractor shall have supplied similar apparatuses to comparable installations, rendering satisfactory service for at least three years where applicable.
The installation shall be in accordance with the requirements of the National Electrical Code,
state and local ordinances, and regulations of any other governing body having jurisdiction.
The cable system design is to be based on the ANSI/TIA/EIA-568-B Commercial Building
Telecommunications Cabling Standard and Bulletins TSB-36 and TSB-40. No deviation from
the Standards and recommendations is permitted unless authorized in writing.
Intent
This network cable system design will provide the connectivity of multiple microcomputers,
printers, and/or terminals through a local area network environment. Each designated network interface outlet will have a capacity to support the available protocols, asynchronous
10- and 100Mbps Ethernet, 4- and 16Mbps Token Ring, FDDI, etc., through the network
cabling and topology specified. The school may select one or any combination of the aforementioned media and access protocol methods; therefore, the design and installation shall
have the versatility required to allow such combinations.
It is the intent of this document to describe the functional requirements of the computer network and components that comprise the “Technology Network System.” Bid responses must
include all of the above, materials, appliances, and services of every kind necessary to properly
504
Chapter 15 • Creating a Request for Proposal (RFP)
execute the work and to cover the terms and conditions of payment thereof and to establish
minimum acceptable requirements for equipment design and construction and contract performance to assure fulfillment of the educational purpose.
Cable Plant
The following section covers the installation of horizontal cabling, backbone cabling, cable
pathways, fire-code compliance, wire identification, and cross-connects.
Horizontal Cable
The following requirements apply for horizontal cabling:
(a) Each classroom shall have two quad-outlet wall plates installed. Each of the four information outlets shall be terminated with eight-pin modular jacks (RJ-45). The wall plates
will be placed on opposite walls. There are a total of 37 classrooms.
(b) The computer skills classroom shall have 15 quad-outlet wall plates installed. Each will
have four information outlets terminated using eight-pin modular jacks. Each wall plate
will be located to correspond to a computer desk housing two computers. These locations
will be marked on the blueprints supplied during the walk-through.
(c) Each administration office shall have one quad-outlet wall plate with four information
outlets, each terminated using eight-pin modular jacks. There are 23 such office locations.
(d) Common administrative areas shall have one quad-outlet wall plate with four information outlets terminated with eight-pin modular jacks. There are 17 such common
administrative areas.
(e) The school library shall have quad-outlet plates placed in each of the librarian work
areas, the periodical desk, and the circulation desk. The student research area shall
have two quad-outlet plates. Eight work areas total require quad outlets. The exact
locations of where these are to be installed will be specified on the blueprints supplied
during the walk-through.
(f) The school computer lab shall have 20 quad-outlet wall plates installed. The locations
of these will be specified on the blueprints to be supplied during the walk-through.
(g) Horizontal cable shall never be open but rather will run through walls or be installed in
the raceway if the cable cannot be installed in walls.
(h) The contractor is responsible for pulling, terminating, and testing all circuits being
installed.
(i) The horizontal cable for the data network shall be twisted-pair wire specified as Category 5e by the ANSI/TIA/EIA-568-B Standard and shall be UL-listed and verified. The
Technology Network Infrastructure Request for Proposal (A Sample RFP)
505
cable shall meet all fire and smoke requirements of the latest edition of the NEC for the
location of the installed cable.
(j) Testing for the distribution components will comply with ANSI/TIA/EIA-568-B Category 5e specifications and will certify 100 percent functionality of all conductors. All
circuits must be tested and found to be in compliance. All testing results will be provided
to customer in a hard copy and electronic Excel format.
(k) The data-cable specifications are intended to describe the minimum standard for use in
the “Technology Network System.” The use of higher-grade data cabling is recommended if such can be provided in a cost-effective manner.
(l) Each cable shall be assigned a unique cable number.
(m) In the telecommunications room, the contractor shall install four separate color-coded
patch panels. Each wall plate’s information outlet shall use a different patch panel, and
the wall-plate information outlets will be documented using the patch panel’s color code
and the patch-panel number.
(n) Wire management shall be employed in all telecommunications rooms and the
equipment room.
Data Backbone Cabling
The following specifications apply to the data backbone cabling:
(a) An ANSI/TIA/EIA-568-B–compliant 50/125-micron multimode fiber-optic cable network is to be the backbone between the equipment room (the MC) and any telecommunications (wiring) rooms.
(b) All telecommunications rooms shall have 12 strands of multimode fiber-optic cable
between the telecommunications room and the equipment room.
(c) All fiber must be FDDI– and 100Base-FX–compatible.
(d) All fibers are to be terminated using SC-type connectors.
(e) All fiber is to be installed in an innerduct from rack to rack. A 15-foot coil of fiber is to
be safely and securely coiled at each rack. The contractor will be responsible for any
drilling or core holes and sleeving necessitated by national, state, and/or local codes.
(f) The fiber-optic patch panels are to be configured to the amount of strands terminated
at each location. Fiber-optic panels shall be metallic, are to have a lockable slack storage
drawer that can pull out, and shall occupy one rack position.
(g) Testing of fibers will be done using a power meter. The tests will be conducted at
850nm and 1300nm, bidirectionally. All test results will be provided to the customer
in hard-copy format.
506
Chapter 15 • Creating a Request for Proposal (RFP)
Fire-Code Compliance
All cabling installed in the riser and horizontal distribution shall meet or exceed all local fire
codes. At a minimum, the requirements of the latest edition of the NEC shall be met, unless
superceded by a local code.
Wiring Pathways
The following are related to the installation of cable in plenum and other cable pathways:
(a) Cable pathway design should follow the ANSI/TIA/EIA-569 (Commercial Buildings
Standards for Telecommunications Pathways and Spaces) Standard.
(b) The methods used to run cable through walls, ceilings, and floor shall be subject to all
state and local safety code and fire regulations. The contractor assumes all responsibility
for ensuring that these regulations are observed.
(c) Cables shall be routed behind walls wherever possible. Surface-mount raceway shall be
used where necessary.
(d) New cables shall be independently supported using horizontal ladders or other wiresuspension techniques. Cables shall not be allowed to lie on ceiling tiles or attached to
electrical conduits.
(e) System layout shall restrict excessive cable lengths; therefore, routing of horizontal
cables shall be in a manner as not to exceed 90 meters from device plate to patch panel
located in the assigned wiring room. Each cable shall be home-run directly from its
cross-connect to the wall plate.
(f) Cables shall be terminated at the rear of the patch panel within the telecommunications
rooms and at the wall plates only. There shall be no splicing of any of the cables installed.
Intermediate cross-connects and transition points are not allowed.
(g) The following are the minimum distances that Category 5e UTP shall be run from common sources of EMI.
EMI Source
Minimum Cable
Separation
Fluorescent lighting
12 inches
Neon lighting
12 inches
Power cable 2 KVA or less
5 inches
Unshielded power cable over 2 KVA
39 inches
Transformers and motors
39 inches
Technology Network Infrastructure Request for Proposal (A Sample RFP)
507
Wiring Identification
All cables, wall jacks, and patch-panel ports shall be properly tagged in a manner to be determined
at a later date. Each cable end must be identified within six inches from the termination point.
Telecommunications Rooms
The following are related to the installation of the telecommunications (wiring) rooms:
(a) The rooms to be used as the originating points for network cables that home-run to the
room outlets are referred to as wire rooms or telecommunications rooms. All racks and their
exact locations will be confirmed during the mandatory walk-through; their locations are
specified on the blueprints that will be provided during the initial walk-through.
(b) Rack layout should provide enough space to accommodate the cabling, equipment racks,
patch panels, and network-control equipment, as required. Additionally, the locations
should provide for convenient access by operational personnel.
(c) All racks are to be configured as shown on the attached diagram, with all the fiber-optic
cables at the top of the rack, the distribution below the fiber, and the hardware components mounted below the distribution patch panels.
(d) All racks, panels, and enclosures for mounting equipment shall meet 19-inch EIA
mounting-width specifications. Each equipment rack should include two 19-inch rack
shelves that can support the weight of a 50-pound uninterruptible power supply.
(e) Equipment racks shall be properly grounded to nearest building ground and must be
properly attached to the floor and supporting wall by means of horizontal-rack bracket
mount. All equipment racks must have a six-outlet 20-amp power strip with surge protection installed inside.
MC/IC Cable Management
The following relates to cable management for the main cross-connect (MC) and intermediate
cross-connect (IC) in the equipment room, and horizontal cross-connects (HC) in telecommunications rooms:
(a) The contractor is required to install cable management on all racks installed. Cable management is to consist of horizontal management between each panel and vertical management
on the sides of the rack.
(b) All cable management is to be of the “base-and-cover” style. Cable management is to be
provided for the front of the rack only.
508
Chapter 15 • Creating a Request for Proposal (RFP)
As-Built Diagrams
Contractor will provide as-built documentation within 15 days of completion of the project.
These prints will include outlet locations, outlet numbers, MC/IC/HC locations, trunk-cable
routing, and legends for all symbols.
Network Hardware Specifications
The networking hardware should be provided, installed, and serviced through a certified
reseller/integrator or direct from the manufacturer.
Bidding Process
All work is to be completed based on the dates from the attached schedule. Dates on the
attached schedule include walk-through dates, bid submission dates, and expected project-start
and completion dates. Questions and comments are welcomed; prospective contractors are
encouraged to submit these questions in writing.
Bid Submittals
The following are related to submittal of bids:
(a) All bids are to be submitted in triplicate.
(b) Each bid is to list all labor, material, and hardware costs in an itemized fashion. The
detail is to include itemized unit pricing, cost per unit, and extended prices for each of
the material and hardware components as well as the specific labor functions.
(c) A cost, per outlet, to add or delete outlet locations is to be included in the pricing format.
This cost is not to include any changes in hardware or patch-panel quantities.
(d) There is also to be a scope of work provided that details all of the functions to be provided by the contractor for the project.
(e) Quote optional Category 5e patch cables and station cables on a per-unit cost basis. List
pricing for 3-foot, 5-foot, 7-foot, 9-foot, and 14-foot patch cables.
(f) Quote optional network cutover assistance on a per-hour basis per technician.
Miscellaneous
All data found in this RFP and associated documents is considered to be confidential information. Further, data gathered as a result of meetings and walk-through visits is considered to be
confidential information. This confidential information shall not be distributed outside of
organizations directly related to the contractor without expressed, written approval.
Further, all data submitted by prospected contractors will be treated as confidential and proprietary; it will not be shared outside of the vendor-evaluation committee.
Chapter 16
Cabling @ Work:
Experience from the Field
• Hints and Guidelines
• Case Studies
510
Chapter 16 • Cabling @ Work: Experience from the Field
hroughout the research phase for this book, cabling installers related to us their experiences,
hints, tips, and stories from the field. There is no substitute for advice and stories from people who have been in the trenches. Though some of the topics mentioned in this chapter are
also mentioned elsewhere in the book, we felt it was important to reiterate them through people’s experiences.
T
Much of this chapter is targeted toward the professional cable installer, but anyone installing
cabling will find some helpful information here. First, we’ll give you some guidelines about the
business of cable installation, and then we’ll include a handful of case studies drawn from our
experience in the industry.
Hints and Guidelines
After a few years in the cabling business, you’ll learn skills and approaches not specifically
related to cabling technology, which will mark your work as professional. These skills and
approaches will help you even if you’re simply evaluating the work of others. They are
described in the following sections.
Know What You Are Doing
Purchasing (and reading!) this book is a step in the right direction. You need to know more
than just how to install cable, however. To design and implement a good cable plant for yourself or for a customer, you also need to know how networks are used and how they grow. Consider the following:
Understand current technology. You need to understand which technologies are appropriate for a given situation. UTP (Category 5e or greater) is the king of desktop cabling, for
example, although optical-fiber cabling has become the rule for campus backbones. Wireless
works great in mobile environments but over long distances introduces licensing issues. Read
this book for information on cabling technologies and check other networking magazines
and books for details on competing technologies.
Understand the standards that apply to your work. The TIA/EIA publishes the
ANSI/TIA/EIA-568-B Standard, and the ISO/IEC publishes the ISO/IEC 11801 Standard. Both are discussed in Chapter 2. Professionals will be intimately familiar with one or
the other of these Standards (in the United States, it will be the ANSI/TIA/EIA-568-B
Standard).
Know the limitations of the technology you use. Don’t try to run Category 5e
twisted-pair cable for 500 meters, for example. Point-to-point lasers don’t cope well with
snow. Single-mode fiber can carry a signal farther than multimode fiber. You can pull only
Hints and Guidelines
511
so many twisted-pair cables through a conduit. Outside plant cable is not the same as inside
plant cable, which can be divided into plenum and nonplenum. (You do know the difference,
don’t you? Your fire marshal and building inspector certainly do.) This book tells you what
you need to know about current network-cable technology.
Keep an eye on new developments. Watch for changes in technology. Which advances
in networking will make your cabling setup obsolete, and which will enhance it? We know
people who were putting in 10Base-2 and 10Base-5 coaxial cable for networking in 1995,
cable that was used for a year or two and then never used again because all local area networking moved to UTP cable. One of the interesting developments occurring as this book
is being written is high-density fiber-optic connectors that allow the simultaneous connection of several fibers at once, much like the way RJ-45 jacks connect four pairs of cable at the
same time. We suggest you subscribe to the cabling industry’s trade magazines to keep
abreast of the field; information about these magazines can be found in Appendix B.
Understand the business of cabling. Even if you are just installing a network for your
own company’s use, you should strive to perform a professional job. After all, you are the customer in that instance, and you want to be pleased with the results. You should know how to
plan the job, acquire materials, assemble a team, train and supervise the crew, oversee the
installation, test, document, and sign off the job. Read the rest of this chapter for some hints
on the business of cabling. Numerous industry periodicals can keep you up-to-date on the
latest in cabling business. Again, see Appendix B for more information.
Understand the business of business. Though not related specifically to networks, if
you are installing networks for others, you need to need to know how to run a business (or
you need to hire people who will do it for you). That includes knowing about attracting work,
bidding, developing and negotiating contracts, hiring, scheduling, billing, accounting, and so
on. For more detailed information on the business of business, check out your local college’s
or university’s business school.
Plan the Installation
Every well-executed job was at one point merely a well-planned job with realistic appraisals of
the time, equipment, materials, and labor required. The following steps will help you develop
that realistic plan:
Get the complete specification. Obtain in writing, with detailed and accurate blueprints, exactly what sort of network the customer wants. Often it is up to you to plan the cable
paths, but the customer usually has a good idea of where the network drops and patch panels
should be located. Don’t forget to confirm that the blueprints are accurate and up-to-date.
512
Chapter 16 • Cabling @ Work: Experience from the Field
Perform a job walk. Go to the site and walk through the job. Peer up into ceilings and
look at conduits. Examine any walls that you’ll have to penetrate. Make sure that the telecommunications room has sufficient space for your own racks and patch panels. Some areas
are much easier to network than others—an office building that uses ceiling tiles and is still
under construction, for example, is much easier to wire than an old brick building with plastered ceilings or an aircraft carrier with watertight bulkheads and convoluted cable paths.
Clarify inconsistencies and ambiguities. If you don’t see a way to get a cable from one
location to another, point it out. Ask why the front desk doesn’t have a drop planned. Doesn’t
the receptionist have a computer? Will a computer be placed there in the future? Questions
you ask at this stage can save you from change orders later.
Calculate the lengths of network runs. With an accurate blueprint, you can calculate
lengths away from the site. Otherwise, you’ll have to break out the measuring wheel and walk
the path of the cables. You will have to use the measuring wheel for any outside cable runs
(from one building to another, for example).
Plan for service loops and waste. The last bit of cable you pull from the spool is always
too short. Runs often have to go around unexpected obstacles. When you pull a group of
cables to the same general area, some will need more length to get to their destination than
others will. But you’ll still have to pull the same amount of cable in the bundle for all the runs
in an area and trim each cable to fit. You should trim the cable a little too long and push the
extra back up into the wall or ceiling so that, if necessary, the jack location can be moved later
without requiring the whole run to be pulled through again. That adds up to 10 to 30 percent
more cable than a naïve plan would indicate.
Evaluate your manpower and skill level. How many feet of cable can your installers pull
in an hour? Do you have enough teams to pull groups of cable in different directions—and
do you have supervisors for the teams? How many faceplates can each installer punch down
in an hour? After you’ve gained some experience, you will be able to look at a job and know
how long it will take your team. In the meantime, calculate it out.
Have the Right Equipment
The right tools indicate your commitment to doing the job right. Some tools are designed for
the do-it-yourselfer, whereas others are designed for professionals that install cable every day.
All experienced cable installers should carry punch-down tools, screwdrivers, snips, twine and
fish tape, electrical tape, a measuring wheel, a cable tester, and patch-panel lights. See Chapter
6 for more information about tools.
Hints and Guidelines
513
Test and Document
Many cable installers view testing and documentation as a convenience to the customer and an
annoyance to be avoided. We view the lack of testing and documentation as a threat to everyone’s sanity.
We can’t count the number of times a customer has come to one of us and said, “This cable
that you installed is bad. None of us can get any work done, and it is all your fault.” If you kept
the test documents (and you should always keep a copy of them for your own records), you can
point to them and say, “But it passed with flying colors then, and you signed here. Of course,
we stand by our work and we’ll come out and fix it if it’s broken, but you just might want to
check your network adapter settings [or jumper cable or network equipment before someone
drives all the way out there…”
NOTE
Don’t discount the fact that damage can occur to a cable, jack, or patch-panel connection
after the cabling system is installed.
Another common problem professional cable installers report is being called in to fix cabling
problems left by another installer who didn’t bother to test. Honest mistakes can be made in
any cabling installation; the following are examples:
●
Copper cables were routed past RF-noisy power lines.
●
Cables had their jackets scraped off when pulled through narrow places or around corners.
●
Installed cables, jacks, and/or patch panels were labeled incorrectly.
●
Cables were bent in too tight a radius.
●
Category 5e copper cables had their wires punched down in the wrong order.
●
Cable was installed that exceeded the maximum length specified by the standards.
Testing your cable plant after you install it will pinpoint any of these problems. We are amazed
that some installers simply assume that they’ve made no mistakes. Nobody’s perfect—but you
don’t have to remind your customers of that.
Train Your Crew
You can get any group of enthusiastic guys together and pull cable through a ceiling. Punching
down the little colored strands of wire at the end of the cable into the faceplate is a different
matter—show them how to do it first, give them some cable scraps, and have them punch down
both ends. Then test those short cables. Until your crew gets a feel for punching down the
cables correctly, you’ll find crossed wires, marginal connections, and strands cut too short and
too long. It takes practice to do it right, but the time you spend training your crew will be well
worth the absence of problems to fix on the job site.
514
Chapter 16 • Cabling @ Work: Experience from the Field
Terminating fiber-optic cable requires a different order of training altogether. Unless your
installers have spent hours cutting, stripping, polishing, and terminating fiber-optic cable and
then examining what they’ve done wrong in a microscope, they’ll never get it done right. Have
your installers make all their mistakes on your own property rather than on your customers’
property.
Work Safely
Train your crew in safety as well as proper cabling methodology. If you take some basic steps
to reduce the likelihood of accidents and your liability, you will sleep better at night.
Make sure that the safety lectures you give are themselves done safely, too. Once we had a
contract to install fiber-optic cable in military hospitals. This was a retrofit situation, and we
did not have precut holes in the drop locations; we had to cut the holes ourselves. A supervisor
was showing how to properly wield a drill with a hole-saw bit installed and said, “And never
chock the bit with your hand, like this—,” whereupon he grabbed the hole-saw bit with one
hand and touched the trigger of the drill with the other to tighten the bit. Naturally, the drill
whined, the bit spun, and blood dripped on the floor from the new gouge in the supervisor’s
hand. Fortunately, he did not drill a new hole through his hand. Because the incident happened
in a wing of a hospital, a nurse took him away and bandaged his hand. He returned shortly
thereafter and resumed his safety lecture. “And in the case of an on-the-job accident,” he continued after looking at his watch, “you can take 15 minutes off.” He was kidding, of course, but
his unintentional example made an impression on the crew.
Network installers work quite a bit in ceilings, tight places, new-construction areas, dusty
areas, and around all sorts of construction equipment. Make sure your employees know proper
safety methods for handling ladders, wearing safety helmets, using dust masks, and so on.
Make It Pretty
The cable we install looks good. We are proud of our work, and so is the customer when we’re
done. Our telecommunications rooms look like something important happens there—huge
bundles of cable swoop out of conduits and separate into neatly dressed branches that flow
across to their requisite rack locations. The customer appreciates a telecommunications room
that looks orderly, and an orderly wiring installation is easier to diagnose and fix network problems in. We needn’t jiggle and pull cables to figure out which direction a bad line is running—
when we look at it we know just by where it is. This saves a tremendous amount of time, both
for us and for the customer, long after we’re gone.
You can feel real pride when cabling systems you have installed are printed up in magazines.
In one case, a cabling company was installing a fiber-to-the desk network for a local biotech
Work Safely
515
company. This was when fiber was new and expensive (as opposed to fiber-network equipment
now, which is simply expensive), and the supervisor was nervous about its installation and anxious to test it to make sure it all worked properly. Once the far ends of the cables had all been
terminated, he terminated the fiber patch panels (which involves much cutting, polishing, gluing, and so forth and isn’t something you just redo without a lot of expense). Unfortunately, he
neglected to dress the cables first. Now, you can’t untangle a knot once you’ve glued the ends
together, which is essentially what he’d done. Fortunately, he’d left enough cable for a service
loop (see the section “Plan for Contingencies”), and he used the extra length to push his new
and permanent knot up into the ceiling where it couldn’t be seen. With a junction box around
the knot (look—cables go in, cables come out—never mind what’s inside!) the plant was neat
and ready for the photographers.
Look Good Yourself
It is important that you and your installation crew look appropriate for the job. The customer
forms an impression about you and your company by how you walk, talk, and dress. The customer is reassured and happy when he sees professionals behaving in a professional manner; he
is dismayed and apprehensive when he sees yokels yokeling. Even if you are installing cable for
your own company, the way you and your crew carry yourselves will carry over into the work
you do. Of course, this doesn’t mean you and your installers should be running around in
three-piece suits pulling cables through walls, but neither should you look like you’ve been
dragged out of the nearest alley.
Every cabling company we have worked with has had a dress code of jeans and a T-shirt for
their installers, and the company provides the T-shirts (with a company logo on the back, of
course). The T-shirts identify the work crew on the site and provide free off-site advertisement
as well (if the logo is not too terribly designed and the installers aren’t embarrassed to wear
them at home!).
Plan for Contingencies
No job ever goes exactly as planned. If you have only enough time, materials, and manpower
for the job as planned, you will inevitably come up short. Make sure to keep the following in
mind as you plan:
Service loops If you’ve read this far, you’ve already seen one reason for leaving service
loops in installed cable (a service loop is an extra length of cable (a few feet) coiled up and
left in the ceiling or wall). Another reason to leave service loops comes from a basic rule of
cable: you can always cut it shorter, but you can’t cut it longer. Inevitably, racks need to be
moved, desks are reoriented, and partitions are shifted—often even before you’re done
with the job. If the cable is a bit longer than you originally needed, you can just pull it over
516
Chapter 16 • Cabling @ Work: Experience from the Field
to the new location and reterminate rather than pulling a whole new cable to the new location. Also, if you determine while you’re testing the plant (you are testing, aren’t you?) that
the cable has been punched down incorrectly, you will need an extra couple of inches to
punch it down correctly.
Additional drops Customers are always forgetting locations that they need network connectivity in (“Oh, you mean the printer requires a LAN connection too?”), so you should be
prepared with additional cable, faceplates, and jacks for the inevitable change order. You can
charge for the extra time and material required to install the extra drops, of course. Some
companies bid low and expect to make their profit on exorbitant change-order costs, but we
prefer to plan ahead and pleasantly surprise the customer with reasonable change-order
prices. Jim estimates that at least 75 percent of all cabling installations he has worked on
required additional drops within the first