Integrated Gas Control (IGC) System
Instruction Manual
(use with EPP-201/360 Power Sources)
055801029607/2014
Integrated Gas Control (IGC) System
2
Integrated
Gas Control (IGC) System
Be sure this information reaches the operator.
You can get extra copies through your supplier.
CAUTION
These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the
principles of operation and safe practices for arc welding and cutting equipment, we urge
you to read our booklet, “Precautions and Safe Practices for Arc Welding, Cutting, and
Gouging,” Form 52-529. Do NOT permit untrained persons to install, operate, or maintain
this equipment. Do NOT attempt to install or operate this equipment until you have read
and fully understand these instructions. If you do not fully understand these instructions,
contact your supplier for further information. Be sure to read the Safety Precautions before installing or operating this equipment.
USER RESPONSIBILITY
This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment
should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone
or written request for service advice be made to the Authorized Distributor from whom it was purchased.
This equipment or any of its parts should not be altered without the prior written approval of the manufacturer.
The user of this equipment shall have the sole responsibility for any malfunction which results from improper
use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a service facility designated by the manufacturer.
READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.
PROTECT YOURSELF AND OTHERS!
3
Integrated Gas Control (IGC) System
4
Integrated Gas Control (IGC) System
Table of Contents
SAFETY
1.0 Safety - English�������������������������������������������������������������������������������������������������������������������������������������������13
Safety - Spanish���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 17
Safety - French������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 21
DESCRIPTION
2.0 System Diagrams����������������������������������������������������������������������������������������������������������������������������������������27
Base System�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28
Base System + AHC���������������������������������������������������������������������������������������������������������������������������������������������������������������������������29
Base System + ACC���������������������������������������������������������������������������������������������������������������������������������������������������������������������������30
Base System + WIC���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 31
Base System + AHC + WIC�������������������������������������������������������������������������������������������������������������������������������������������������������������� 32
Base System + AHC + ACC�������������������������������������������������������������������������������������������������������������������������������������������������������������� 33
Base System + WIC + ACC��������������������������������������������������������������������������������������������������������������������������������������������������������������34
Base System + AHC + WIC + ACC������������������������������������������������������������������������������������������������������������������������������������������������� 35
2.1 Power Supply����������������������������������������������������������������������������������������������������������������������������������������������36
380/400V Power Supplies���������������������������������������������������������������������������������������������������������������������������������������������������������������36
460/575V Power Supplies��������������������������������������������������������������������������������������������������������������������������������������������������������������� 37
2.2 Coolant Circulator (CC-11) �������������������������������������������������������������������������������������������������������������������������38
Specifications��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������38
2.3 Interface Control Hub (ICH)�����������������������������������������������������������������������������������������������������������������������39
Specifications�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 39
ICH Mounting Dimensions������������������������������������������������������������������������������������������������������������������������������������������������������������� 39
CNC Direct Board������������������������������������������������������������������������������������������������������������������������������������������������������������������������������40
2.4 Combined Gas Control (CGC)���������������������������������������������������������������������������������������������������������������������41
Specifications�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 41
5
Integrated Gas Control (IGC) System
CGC Flow Diagram���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 42
CGC Mounting Dimensions����������������������������������������������������������������������������������������������������������������������������������������������������������� 43
CGC Bottom View������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 43
2.5 Power Distribution Box (PDB)������������������������������������������������������������������������������������������������������������������ 44
Specifications��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������44
PDB Mounting Dimensions�����������������������������������������������������������������������������������������������������������������������������������������������������������44
PDB Mounting Plate Dimensions������������������������������������������������������������������������������������������������������������������������������������������������� 45
PDB Schematic����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 45
2.6 Remote Arc Starter (RAS)�������������������������������������������������������������������������������������������������������������������������� 46
Specifications��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������46
Remote Arc Starter Connections�������������������������������������������������������������������������������������������������������������������������������������������������46
RAS Box Mounting Dimensions��������������������������������������������������������������������������������������������������������������������������������������������������� 47
RAS Box Mounting Plate Dimensions���������������������������������������������������������������������������������������������������������������������������������������� 47
2.7 PT-36 Plasma Torch����������������������������������������������������������������������������������������������������������������������������������� 48
Specifications��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������48
2.8 Air Curtain Control (ACC)���������������������������������������������������������������������������������������������������������������������������49
Specifications�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 49
ACC Mounting Dimensions������������������������������������������������������������������������������������������������������������������������������������������������������������50
ACC Component Connections������������������������������������������������������������������������������������������������������������������������������������������������������50
2.9 Water Injection Control (WIC)�������������������������������������������������������������������������������������������������������������������51
Specifications�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 51
2.10 Automatic Height Control (AHC)�������������������������������������������������������������������������������������������������������������52
Specifications�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 52
B4 Mounting Dimensions��������������������������������������������������������������������������������������������������������������������������������������������������������������� 53
6
Integrated Gas Control (IGC) System
INSTALLATION
3.0 Grounding���������������������������������������������������������������������������������������������������������������������������������������������������57
Introduction���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 57
Grounding Overview�����������������������������������������������������������������������������������������������������������������������������������������������������������������������58
Basic Layout���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 59
Elements of a Ground System�������������������������������������������������������������������������������������������������������������������������������������������������������60
Plasma Current Return Path����������������������������������������������������������������������������������������������������������������������������������������������������������60
Plasma System Safety Ground������������������������������������������������������������������������������������������������������������������������������������������������������ 61
Rail System Safety Ground�������������������������������������������������������������������������������������������������������������������������������������������������������������64
Earth Ground Rod����������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 65
Ground Rod����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 65
Soil Resistivity������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 65
Utility Power Electrical Ground����������������������������������������������������������������������������������������������������������������������������������������������������66
Multiple Ground Rods��������������������������������������������������������������������������������������������������������������������������������������������������������������������� 67
Machine Grounding Schematic���������������������������������������������������������������������������������������������������������������������������������������������������68
3.1 Placement of Power Supply�����������������������������������������������������������������������������������������������������������������������69
Input Power Connection����������������������������������������������������������������������������������������������������������������������������������������������������������������69
Input Conductors������������������������������������������������������������������������������������������������������������������������������������������������������������������������������69
Input Connection Procedure�������������������������������������������������������������������������������������������������������������������������������������������������������� 70
Output Connection Procedure����������������������������������������������������������������������������������������������������������������������������������������������������� 70
Interface Cables/Connections������������������������������������������������������������������������������������������������������������������������������������������������������ 71
3.2 Placement of CC-11 Coolant Circulator�����������������������������������������������������������������������������������������������������72
Input Power Connection����������������������������������������������������������������������������������������������������������������������������������������������������������������72
Coolant Connections and Optional Equipment��������������������������������������������������������������������������������������������������������������������� 73
3.3 Placement of RAS Box��������������������������������������������������������������������������������������������������������������������������������74
Connections on the RAS Box�������������������������������������������������������������������������������������������������������������������������������������������������������� 74
3.4 Torch Connections��������������������������������������������������������������������������������������������������������������������������������������76
3.5 Mounting Torch to Machine ���������������������������������������������������������������������������������������������������������������������77
3.6 Placement of ICH����������������������������������������������������������������������������������������������������������������������������������������78
7
Integrated Gas Control (IGC) System
3.7 Placement of PDB���������������������������������������������������������������������������������������������������������������������������������������78
3.8 Placement of CGC���������������������������������������������������������������������������������������������������������������������������������������78
Individual Component Connections������������������������������������������������������������������������������������������������������������������������������������������ 79
ACC Component Connections������������������������������������������������������������������������������������������������������������������������������������������������������80
Component Placement Example������������������������������������������������������������������������������������������������������������������������������������������������� 81
OPERATION
4.0 Interface Control Hub��������������������������������������������������������������������������������������������������������������������������������85
4.1 Operation����������������������������������������������������������������������������������������������������������������������������������������������������87
ICH Connectors���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 87
Display Screens����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������88
Editing a Parameter on the Display��������������������������������������������������������������������������������������������������������������������������������������������88
Setup Descriptions��������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 91
Communication Options���������������������������������������������������������������������������������������������������������������������������������������������������������������� 92
Station Options���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 93
Digital I/O��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 95
Digital Inputs��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������95
Digital Outputs���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 95
4.2 Modes of Operation:��������������������������������������������������������������������������������������������������������������������������������� 96
Remote Interface without Serial Communication�����������������������������������������������������������������������������������������������������������������96
Operation sequence with ESAB supplied plasma lifter:������������������������������������������������������������������������������������������������������98
Operation sequence with customer supplied plasma lifter:��������������������������������������������������������������������������������������������100
Remote Interface with Serial Communication����������������������������������������������������������������������������������������������������������������������101
Local Interface - Diagnostics Only���������������������������������������������������������������������������������������������������������������������������������������������102
Operation sequence:����������������������������������������������������������������������������������������������������������������������������������������������������������������������103
Interface Wiring Descriptions�����������������������������������������������������������������������������������������������������������������������������������������������������105
Interface Wiring�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������105
8
Integrated Gas Control (IGC) System
4.3 Maintenance/Troubleshooting���������������������������������������������������������������������������������������������������������������109
Communication Problems�����������������������������������������������������������������������������������������������������������������������������������������������������������109
Digital Input Problems������������������������������������������������������������������������������������������������������������������������������������������������������������������109
Digital Output Problems���������������������������������������������������������������������������������������������������������������������������������������������������������������109
Gas Problems������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������109
Power Supply Problems����������������������������������������������������������������������������������������������������������������������������������������������������������������109
Error Messages on the ICH Display������������������������������������������������������������������������������������������������������������������������������������������� 110
Module Errors������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������111
Module Errors����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 112
Process Errors������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 113
Process Errors������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 114
Process Errors������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 115
Process Errors������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 116
APPENDIX
ESAB Serial Communication Interface����������������������������������������������������������������������������������������������������������119
Introduction�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 119
System Requirements�������������������������������������������������������������������������������������������������������������������������������������������������������������������� 119
Installation�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������120
Operation�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������123
ICH Serial Communication Protocol��������������������������������������������������������������������������������������������������������������134
Commands����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������134
ICH Communication Errors���������������������������������������������������������������������������������������������������������������������������������������������������������� 141
ICH Login Sequence����������������������������������������������������������������������������������������������������������������������������������������������������������������������� 141
ICH Communication Error Messages����������������������������������������������������������������������������������������������������������������������������������������142
ICH Communication Error Messages����������������������������������������������������������������������������������������������������������������������������������������143
ICH Communication Error Messages����������������������������������������������������������������������������������������������������������������������������������������144
ICH Parameter Loading�����������������������������������������������������������������������������������������������������������������������������������������������������������������145
9
Integrated Gas Control (IGC) System
PT-36 Mechanized Plasmarc Cutting Torch��������������������������������������������������������������������������������������������������146
Package Options Available ���������������������������������������������������������������������������������������������������������������������������������������������������������146
Optional Accessories����������������������������������������������������������������������������������������������������������������������������������������������������������������������146
PT-36 Torch Consumable Kits������������������������������������������������������������������������������������������������������������������������������������������������������147
Recommended Regulators����������������������������������������������������������������������������������������������������������������������������������������������������������150
Connection of Torch to Plasma System����������������������������������������������������������������������������������������������������������������������������������� 151
Connection to the Remote Arc Starter Box���������������������������������������������������������������������������������������������������������������������������� 151
Mounting Torch to Machine ������������������������������������������������������������������������������������������������������������������������������������������������������152
Preparing to Cut������������������������������������������������������������������������������������������������������������������������������������������������������������������������������155
Torch Front End Disassembly������������������������������������������������������������������������������������������������������������������������������������������������������ 161
Assembly of Torch Front End������������������������������������������������������������������������������������������������������������������������������������������������������164
Assembly of Torch Front End using the Speedloader��������������������������������������������������������������������������������������������������������165
Torch Front End Disassembly (for Production Thick Plate)�����������������������������������������������������������������������������������������������166
Assembly of Torch Front End (for Production Thick Plate)�����������������������������������������������������������������������������������������������169
Torch Body Maintenance ����������������������������������������������������������������������������������������������������������������������������������������������������������� 171
Removal and Replacement of the Torch Body����������������������������������������������������������������������������������������������������������������������172
Reduced Consumable Life �������������������������������������������������������������������������������������������������������������������������������������������������������� 174
Checking for Coolant Leaks��������������������������������������������������������������������������������������������������������������������������������������������������������� 175
10
SAFETY
SAFETY
DESCRIPTION
INSTALLATION
OPERATION
APPENDIX
SAFETY
SAFETY
12
SAFETY
SAFETY
1.0 Safety - English
WARNING: These Safety Precautions are
for your protection. They summarize
precautionary information from the
references listed in Additional Safety
Information section. Before performing any installation or operating procedures, be sure to read and
follow the safety precautions listed below as well
as all other manuals, material safety data sheets,
labels, etc. Failure to observe Safety Precautions
can result in injury or death.
PROTECT YOURSELF AND OTHERS -Some welding, cutting, and gouging
processes are noisy and require ear
protection. The arc, like the sun, emits
ultraviolet (UV) and other radiation and can injure
skin and eyes. Hot metal can cause burns. Training
in the proper use of the processes and equipment
is essential to prevent accidents. Therefore:
1.Always wear safety glasses with side shields in
any work area, even if welding helmets, face
shields, and goggles are also required.
2. Use a face shield fitted with the correct filter and
cover plates to protect your eyes, face, neck, and
ears from sparks and rays of the arc when operating or observing operations. Warn bystanders
not to watch the arc and not to expose themselves
to the rays of the electric-arc or hot metal.
3.Wear flameproof gauntlet type gloves, heavy
long-sleeve shirt, cuffless trousers, high-topped
shoes, and a welding helmet or cap for hair
protection, to protect against arc rays and hot
sparks or hot metal. A flameproof apron may also
be desirable as protection against radiated heat
and sparks.
4. Hot sparks or metal can lodge in rolled up sleeves,
trouser cuffs, or pockets. Sleeves and collars
should be kept buttoned, and open pockets
eliminated from the front of clothing.
5.Protect other personnel from arc rays and hot
sparks with a suitable non-flammable partition
or curtains.
6.Use goggles over safety glasses when chipping
slag or grinding. Chipped slag may be hot and
can fly far. Bystanders should also wear goggles
over safety glasses.
FIRES AND EXPLOSIONS -- Heat from
flames and arcs can start fires. Hot
slag or sparks can also cause fires and
explosions. Therefore:
1. Remove all combustible materials well away from
the work area or cover the materials with a protective non-flammable covering. Combustible
materials include wood, cloth, sawdust, liquid
and gas fuels, solvents, paints and coatings,
paper, etc.
2.Hot sparks or hot metal can fall through cracks
or crevices in floors or wall openings and cause a
hidden smoldering fire or fires on the floor below.
Make certain that such openings are protected
from hot sparks and metal.“
3. Do not weld, cut or perform other hot work until
the work piece has been completely cleaned so
that there are no substances on the work piece
which might produce flammable or toxic vapors.
Do not do hot work on closed containers. They
may explode.
4.Have fire extinguishing equipment handy for
instant use, such as a garden hose, water pail,
sand bucket, or portable fire extinguisher. Be
sure you are trained in its use.
5.Do not use equipment beyond its ratings. For
example, overloaded welding cable can overheat
and create a fire hazard.
6.After completing operations, inspect the work
area to make certain there are no hot sparks or
hot metal which could cause a later fire. Use fire
watchers when necessary.
7. For additional information, refer to NFPA Standard 51B, "Fire Prevention in Use of Cutting and
Welding Processes", available from the National
Fire Protection Association, Battery march Park,
Quincy, MA 02269.
ELECTRICAL SHOCK -- Contact with
live electrical parts and ground can
cause severe injury or death. DO NOT
use AC welding current in damp areas,
if movement is confined, or if there is
danger of falling.
13
SAFETY
SAFETY
1. Be sure the power source frame (chassis) is connected to the ground system of the input power.
3.Welders should use the following procedures to
minimize exposure to EMF:
2. Connect the work piece to a good electrical ground.
A.Route the electrode and work cables together.
Secure them with tape when possible.
3. Connect the work cable to the work piece. A poor
or missing connection can expose you or others
to a fatal shock.
4. Use well-maintained equipment. Replace worn or
damaged cables.
5. Keep everything dry, including clothing, work area,
cables, torch/electrode holder, and power source.
6. Make sure that all parts of your body are insulated
from work and from ground.
7. Do not stand directly on metal or the earth while
working in tight quarters or a damp area; stand
on dry boards or an insulating platform and wear
rubber-soled shoes.
B.Never coil the torch or work cable around your
body.
C.Do not place your body between the torch and
work cables. Route cables on the same side of
your body.
D. Connect the work cable to the work piece as close
as possible to the area being welded.
E.Keep welding power source and cables as far
away from your body as possible.
8. Put on dry, hole-free gloves before turning on the
power.
FUMES AND GASES -- Fumes and
gases, can cause discomfort or harm,
particularly in confined spaces. Do
not breathe fumes and gases. Shielding gases can cause asphyxiation.
9. Turn off the power before removing your gloves.
Therefore:
10. Refer to ANSI/ASC Standard Z49.1 (listed on
next page) for specific grounding recommendations. Do not mistake the work lead for a ground
cable.
1. Always provide adequate ventilation in the work area
by natural or mechanical means. Do not weld, cut, or
gouge on materials such as galvanized steel, stainless steel, copper, zinc, lead, beryllium, or cadmium
unless positive mechanical ventilation is provided.
Do not breathe fumes from these materials.
ELECTRIC AND MAGNETIC FIELDS — May be
dangerous. Electric current flowing through any
conductor causes localized Electric
and Magnetic Fields (EMF). Welding and cutting current creates EMF
around welding cables and welding
machines. Therefore:
1.Welders having pacemakers should consult their
physician before welding. EMF may interfere with
some pacemakers.
2. Exposure to EMF may have other health effects which
are unknown.
14
2. Do not operate near degreasing and spraying operations. The heat or arc rays can react with chlorinated
hydrocarbon vapors to form phosgene, a highly
toxic gas, and other irritant gases.
3.If you develop momentary eye, nose, or throat irritation while operating, this is an indication that
ventilation is not adequate. Stop work and take
necessary steps to improve ventilation in the work
area. Do not continue to operate if physical discomfort persists.
4. Refer to ANSI/ASC Standard Z49.1 (see listing below)
for specific ventilation recommendations.
SAFETY
CYLINDER HANDLING -- Cylinders,
if mishandled, can rupture and violently release gas. Sudden rupture
of cylinder, valve, or relief device can
injure or kill. Therefore:
1. Use the proper gas for the process and use the
proper pressure reducing regulator designed to
operate from the compressed gas cylinder. Do not
use adaptors. Maintain hoses and fittings in good
condition. Follow manufacturer's operating instructions for mounting regulator to a compressed gas
cylinder.
2.Always secure cylinders in an upright position by
chain or strap to suitable hand trucks, undercarriages, benches, walls, post, or racks. Never secure
cylinders to work tables or fixtures where they may
become part of an electrical circuit.
3. When not in use, keep cylinder valves closed. Have
valve protection cap in place if regulator is not connected. Secure and move cylinders by using suitable
hand trucks. Avoid rough handling of cylinders.
4. Locate cylinders away from heat, sparks, and flames.
Never strike an arc on a cylinder.
5. For additional information, refer to CGA Standard P-1,
"Precautions for Safe Handling of Compressed Gases
in Cylinders", which is available from Compressed
Gas Association, 1235 Jefferson Davis Highway,
Arlington, VA 22202.
EQUIPMENT MAINTENANCE -- Faulty or improperly maintained equipment can cause
injury or death. Therefore:
1. Always have qualified personnel perform the installation, troubleshooting, and maintenance work.
Do not perform any electrical work unless you are
qualified to perform such work.
2. Before performing any maintenance work inside a
power source, disconnect the power source from
the incoming electrical power.
3. Maintain cables, grounding wire, connections, power
cord, and power supply in safe working order. Do
not operate any equipment in faulty condition.
4. Do not abuse any equipment or accessories. Keep
equipment away from heat sources such as furnaces,
wet conditions such as water puddles, oil or grease,
corrosive atmospheres and inclement weather.
5. Keep all safety devices and cabinet covers in position
and in good repair.
6.Use equipment only for its intended purpose. Do
not modify it in any manner.
ADDITIONAL SAFETY INFORMATION -- For more
information on safe practices for electric
arc welding and cutting equipment, ask
your supplier for a copy of "Precautions
and Safe Practices for Arc Welding, Cutting and Gouging", Form 52-529.
The following publications, which are available from
the American Welding Society, 550 N.W. LeJuene Road,
Miami, FL 33126, are recommended to you:
1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.
2. AWS C5.1 - “Recommended Practices for Plasma Arc
Welding”.
3. AWS C5.2 - “Recommended Practices for Plasma Arc
Cutting”.
4. AWS C5.3 - “Recommended Practices for Air Carbon
Arc Gouging and Cutting”.
5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.
6. AWS C5.6 - “Recommended Practices for Gas Metal
Arc Welding”.
7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.
8.ANSI/AWS F4.1, “Recommended Safe Practices for
Welding and Cutting of Containers That Have Held
Hazardous Substances.”
9. CSA Standard - W117.2 = Safety in Welding, Cutting
and Allied Processes.
15
SAFETY
5. WARNING: This product, when used for welding
or cutting, produces fumes or gases which contain chemicals known to the State of California
to cause birth defects and, in some cases, cancer. (California Health & Safety Code §25249.5
et seq.)
SAFETY
SAFETY
Meaning of symbols - As used throughout this manual: Means Attention! Be Alert! Your
safety is involved.
DANGER
Means immediate hazards which, if not avoided, will result in immediate,
serious personal injury or loss of life.
CAUTION
Means potential hazards which could result in personal injury or loss of life.
WARNING
Means hazards which could result in minor personal injury.
Enclosure Class
The IP code indicates the enclosure class, i.e. the degree of protection against penetration by solid objects or
water. Protection is provided against touch with a finger, penetration of solid objects greater than 12mm and
against spraying water up to 60 degrees from vertical. Equipment marked IP21S may be stored, but is not
intended to be used outside during precipitation unless sheltered.
CAUTION
This product is solely intended for plasma cutting. Any other use may
result in personal injury and / or equipment damage.
CAUTION
CAUTION
If equipment is placed on a surface that slopes more
than 15°, toppling over may occur. Personal injury and
/ or significant damage to equipment is possible.
Maximum
Tilt Allowed
15°
CAUTION
CAUTION
To avoid personal injury and/or equipment damage,
lift using method and attachment points shown here.
16
SAFETY
ADVERTENCIA: Estas Precauciones de
Seguridad son para su protección. Ellas
hacen resumen de información proveniente de las referencias listadas en la sección
"Información Adicional Sobre La Seguridad". Antes
de hacer cualquier instalación o procedimiento de
operación , asegúrese de leer y seguir las precauciones de seguridad listadas a continuación así como
también todo manual, hoja de datos de seguridad
del material, calcomanias, etc. El no observar las
Precauciones de Seguridad puede resultar en daño
a la persona o muerte.
PROTEJASE USTED Y A LOS DEMAS-Algunos procesos de soldadura, corte
y ranurado son ruidosos y requiren
protección para los oídos. El arco, como
el sol , emite rayos ultravioleta (UV) y otras radiaciones
que pueden dañar la piel y los ojos. El metal caliente
causa quemaduras. EL entrenamiento en el uso propio
de los equipos y sus procesos es esencial para prevenir
accidentes. Por lo tanto:
1. Utilice gafas de seguridad con protección a los lados
siempre que esté en el área de trabajo, aún cuando esté
usando careta de soldar, protector para su cara u otro
tipo de protección.
2. Use una careta que tenga el filtro correcto y lente para
proteger sus ojos, cara, cuello, y oídos de las chispas y
rayos del arco cuando se esté operando y observando
las operaciones. Alerte a todas las personas cercanas
de no mirar el arco y no exponerse a los rayos del arco
eléctrico o el metal fundido.
3. Use guantes de cuero a prueba de fuego, camisa pesada
de mangas largas, pantalón de ruedo liso, zapato alto
al tobillo, y careta de soldar con capucha para el pelo,
para proteger el cuerpo de los rayos y chispas calientes
provenientes del metal fundido. En ocaciones un delantal
a prueba de fuego es necesario para protegerse del calor
radiado y las chispas.
4. Chispas y partículas de metal caliente puede alojarse en
las mangas enrolladas de la camisa , el ruedo del pantalón
o los bolsillos. Mangas y cuellos deberán mantenerse
abotonados, bolsillos al frente de la camisa deberán ser
cerrados o eliminados.
5. Proteja a otras personas de los rayos del arco y chispas
calientes con una cortina adecuada no-flamable como
división.
6. Use careta protectora además de sus gafas de seguridad
cuando esté removiendo escoria o puliendo.
La escoria puede estar caliente y desprenderse
con velocidad. Personas cercanas deberán usar
gafas de seguridad y careta protectora.
FUEGO Y EXPLOSIONES -- El calor de
las flamas y el arco pueden ocacionar
fuegos. Escoria caliente y las chispas
pueden causar fuegos y explosiones.
Por lo tanto:
1. Remueva todo material combustible lejos del área de
trabajo o cubra los materiales con una cobija a prueba de
fuego. Materiales combustibles incluyen madera, ropa,
líquidos y gases flamables, solventes, pinturas, papel, etc.
2. Chispas y partículas de metal pueden introducirse en las
grietas y agujeros de pisos y paredes causando fuegos
escondidos en otros niveles o espacios. Asegúrese de
que toda grieta y agujero esté cubierto para proteger
lugares adyacentes contra fuegos.
3. No corte, suelde o haga cualquier otro trabajo relacionado
hasta que la pieza de trabajo esté totalmente limpia y
libre de substancias que puedan producir gases inflamables o vapores tóxicos. No trabaje dentro o fuera de
contenedores o tanques cerrados. Estos pueden explotar
si contienen vapores inflamables.
4. Tenga siempre a la mano equipo extintor de fuego para
uso instantáneo, como por ejemplo una manguera con
agua, cubeta con agua, cubeta con arena, o extintor
portátil. Asegúrese que usted esta entrenado para su
uso.
5. No use el equipo fuera de su rango de operación. Por
ejemplo, el calor causado por cable sobrecarga en los
cables de soldar pueden ocasionar un fuego.
6. Después de termirar la operación del equipo, inspeccione
el área de trabajo para cerciorarse de que las chispas o
metal caliente ocasionen un fuego más tarde. Tenga
personal asignado para vigilar si es necesario.
7. Para información adicional , haga referencia a la publicación NFPA Standard 51B, "Fire Prevention in Use of
Cutting and Welding Processes", disponible a través de la
National Fire Protection Association, Batterymarch Park,
Quincy, MA 02269.
CHOQUE ELECTRICO -- El contacto con las partes eléctricas energizadas y tierra puede causar daño severo
o muerte. NO use soldadura de corriente
alterna (AC) en áreas húmedas, de movimiento confinado en lugares estrechos
o si hay posibilidad de caer al suelo.
17
SAFETY
Safety - Spanish
SAFETY
SAFETY
1. Asegúrese de que el chasis de la fuente de poder
esté conectado a tierra através del sistema de
electricidad primario.
2. Conecte la pieza de trabajo a un buen sistema de
tierra física.
3. Conecte el cable de retorno a la pieza de trabajo.
Cables y conductores expuestos o con malas
conexiones pueden exponer al operador u otras
personas a un choque eléctrico fatal.
4. Use el equipo solamente si está en buenas condiciones. Reemplaze cables rotos, dañados o con
conductores expuestos.
5. Mantenga todo seco, incluyendo su ropa, el área de
trabajo, los cables, antorchas, pinza del electrodo,
y la fuente de poder.
6. Asegúrese que todas las partes de su cuerpo están
insuladas de ambos, la pieza de trabajo y tierra.
7. No se pare directamente sobre metal o tierra mientras trabaja en lugares estrechos o áreas húmedas;
trabaje sobre un pedazo de madera seco o una
plataforma insulada y use zapatos con suela de
goma.
8. Use guantes secos y sin agujeros antes de energizar
el equipo.
9. Apage el equipo antes de quitarse sus guantes.
10. Use como referencia la publicación ANSI/ASC
Standard Z49.1 (listado en la próxima página) para
recomendaciones específicas de como conectar el
equipo a tierra. No confunda el cable de soldar a
la pieza de trabajo con el cable a tierra.
CAMPOS ELECTRICOS Y MAGNETICOS - Son peligrosos. La corriente
eléctrica fluye através de cualquier
conductor causando a nivel local
Campos Eléctricos y Magnéticos
(EMF). Las corrientes en el área de corte y soldadura,
crean EMF alrrededor de los cables de soldar y las
maquinas. Por lo tanto:
1. Soldadores u Operadores que use marca-pasos para
el corazón deberán consultar a su médico antes de
soldar. El Campo Electromagnético (EMF) puede
interferir con algunos marca-pasos.
2.Exponerse a campos electromagnéticos (EMF) puede
causar otros efectos de salud aún desconocidos.
18
3.Los soldadores deberán usar los siguientes procedimientos para minimizar exponerse al EMF:
A.Mantenga el electrodo y el cable a la pieza de
trabajo juntos, hasta llegar a la pieza que usted
quiere soldar. Asegúrelos uno junto al otro con
cinta adhesiva cuando sea posible.
B.Nunca envuelva los cables de soldar alrededor
de su cuerpo.
C.Nunca ubique su cuerpo entre la antorcha y el
cable, a la pieza de trabajo. Mantega los cables a
un sólo lado de su cuerpo.
D.Conecte el cable de trabajo a la pieza de trabajo
lo más cercano posible al área de la soldadura.
E. Mantenga la fuente de poder y los cables de soldar
lo más lejos posible de su cuerpo.
HUMO Y GASES -- El humo y los
gases, pueden causar malestar o
daño, particularmente en espacios
sin ventilación. No inhale el humo
o gases. El gas de protección puede
causar falta de oxígeno. Por lo tanto:
1. Siempre provea ventilación adecuada en el área
de trabajo por medio natural o mecánico. No solde,
corte, o ranure materiales con hierro galvanizado,
acero inoxidable, cobre, zinc, plomo, berílio, o cadmio a menos que provea ventilación mecánica
positiva . No respire los gases producidos por
estos materiales.
2. No opere cerca de lugares donde se aplique substancias químicas en aerosol. El calor de los rayos
del arco pueden reaccionar con los vapores de
hidrocarburo clorinado para formar un fosfógeno,
o gas tóxico, y otros irritant es.
3. Si momentáneamente desarrolla inrritación de
ojos, nariz o garganta mientras est á operando, es
indicación de que la ventilación no es apropiada.
Pare de trabajar y tome las medidas necesarias
para mejorar la ventilación en el área de trabajo.
No continúe operando si el malestar físico persiste.
4. Haga referencia a la publicación ANSI/ASC Standard
Z49.1 (Vea la lista a continuación) para recomendaciones específicas en la ventilación.
SAFETY
MANEJO DE CILINDROS-- Los cilindros, si no son manejados correctamente, pueden romperse y liberar
violentamente gases. Rotura repentina del cilindro, válvula, o válvula de
escape puede causar daño o muerte.
Por lo tanto:
1. Utilize el gas apropiado para el proceso y utilize
un regulador diseñado para operar y reducir la
presión del cilindro de gas . No utilice adaptadores. Mantenga las mangueras y las conexiones
en buenas condiciones. Observe las instrucciones
de operación del manufacturero para montar el
regulador en el cilindro de gas comprimido.
2. Asegure siempre los cilindros en posición vertical
y amárrelos con una correa o cadena adecuada
para asegurar el cilindro al carro, transportes, tablilleros, paredes, postes, o armazón. Nunca asegure
los cilindros a la mesa de trabajo o las piezas que
son parte del circuito de soldadura . Este puede ser
parte del circuito elélectrico.
3.Cuando el cilindro no está en uso, mantenga la
válvula del cilindro cerrada. Ponga el capote de
protección sobre la válvula si el regulador no
está conectado. Asegure y mueva los cilindros
utilizando un carro o transporte adecuado. Evite
el manejo brusco de los
MANTENIMIENTO DEL EQUIPO -- Equipo
defectuoso o mal mantenido puede causar daño o muerte. Por lo tanto:
1. Siempre tenga personal cualificado para efectuar l a instalación, diagnóstico, y mantenimiento
del equipo. No ejecute ningún trabajo eléctrico a
menos que usted esté cualificado para hacer el
trabajo.
2. Antes de dar mantenimiento en el interior de la
fuente de poder, desconecte la fuente de poder
del suministro de electricidad primaria.
3. Mantenga los cables, cable a tierra, conexciones,
cable primario, y cualquier otra fuente de poder
en buen estado operacional. No opere ningún
equipo en malas condiciones.
4. No abuse del equipo y sus accesorios. Mantenga
el equipo lejos de cosas que generen calor como
hornos, también lugares húmedos como charcos
de agua , aceite o grasa, atmósferas corrosivas y
las inclemencias del tiempo.
5.Mantenga todos los artículos de seguridad y
coverturas del equipo en su posición y en buenas
condiciones.
6.Use el equipo sólo para el propósito que fue
diseñado. No modifique el equipo en ninguna
manera.
INFORMACION ADICIONAL DE SEGURIDAD -- Para
más información sobre las prácticas de seguridad de los equipos de arco eléctrico para
soldar y cortar, pregunte a su suplidor por
una copia de "Precautions and Safe Practices
for Arc Welding, Cutting and Gouging-Form
52-529.
Las siguientes publicaciones, disponibles através de
la American Welding Society, 550 N.W. LeJuene Road,
Miami, FL 33126, son recomendadas para usted:
1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.
2. AWS C5.1 - “Recommended Practices for Plasma Arc
Welding”.
3. AWS C5.2 - “Recommended Practices for Plasma Arc
Cutting”.
4. AWS C5.3 - “Recommended Practices for Air Carbon
Arc Gouging and Cutting”.
5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.
6. AWS C5.6 - “Recommended Practices for Gas Metal
Arc Welding”.
7.AWS SP - “Safe Practices” - Reprint, Welding Handbook.
8.ANSI/AWS F4.1, “Recommended Safe Practices for
Welding and Cutting of Containers That Have Held
Hazardous Substances.”
9. CSA Standard - W117.2 = Safety in Welding, Cutting
and Allied Processes.
19
SAFETY
5. ADVERTENCIA-- Este producto cuando se utiliza
para soldaduras o cortes, produce humos o
gases, los cuales contienen químicos conocidos por el Estado de California de causar
defectos en el nacimiento, o en algunos casos, Cancer. (California Health & Safety Code
§25249.5 et seq.)
SAFETY
SAFETY
SIGNIFICADO DE LOS sImbolOs -- Según usted avanza en la lectura de este folleto: Los Símbolos
Significan ¡Atención! ¡Esté Alerta! Se trata de su seguridad.
peligro
Significa riesgo inmediato que, de no ser evadido, puede resultar inmediatamente en serio daño personal o la muerte.
ADVERTENCIA
Significa el riesgo de un peligro potencial que puede resultar en serio daño
personal o la muerte.
CUIDADO
Significa el posible riesgo que puede resultar en menores daños a la persona.
Clase de envolvente
El código IP indica la clase de envolvente, es decir, el grado de protección contra la penetración de objetos
sólidos o agua. Se provee protección contra el toque con un dedo, penetración de objetos sólidos de un tamaño
superior a 12 mm y contra rocío de agua de hasta 60 grados de la vertical. El equipo marcado IP21S se puede
almacenar, pero no se debe usar en el exterior durante periodos de precipitaciones a menos que esté protegido.
ADVERTENCIA
Este producto sólo se debe usar para corte por plasma Cualquier otro uso
puede causar lesiones físicas y/o daños en los equipos.
ADVERTENCIA
Si el equipo se coloca sobre una superficie con una
inclinación superior a 15°, se puede producir un volcamiento. Es posible que se produzcan lesiones físicas y/o daños importantes en los equipos.
ADVERTENCIA
Para evitar lesiones físicas y/o daños en los equipos,
levante mediante el método y los puntos de sujeción
que se indican en esta ilustración.
20
Inclinación
máxima permitida
15°
SAFETY
AVERTISSEMENT : Ces règles de sécurité
ont pour but d'assurer votre protection.
Ils récapitulent les informations de précaution provenant des références dans
la section des Informations de sécurité supplémentaires. Avant de procéder à l'installation ou d'utiliser
l'unité, assurez-vous de lire et de suivre les précautions de sécurité ci-dessous, dans les manuels, les
fiches d'information sur la sécurité du matériel et
sur les étiquettes, etc. Tout défaut d'observer ces
précautions de sécurité peut entraîner des blessures
graves ou mortelles.
PROTÉGEZ-VOUS -- Les processus de
soudage, de coupage et de gougeage
produisent un niveau de bruit élevé et
exige l'emploi d'une protection auditive.
L'arc, tout comme le soleil, émet des rayons ultraviolets
en plus d'autre rayons qui peuvent causer des blessures
à la peau et les yeux. Le métal incandescent peut causer
des brûlures. Une formation reliée à l'usage des processus et de l'équipement est essentielle pour prévenir les
accidents. Par conséquent:
1. Portez des lunettes protectrices munies d'écrans latéraux
lorsque vous êtes dans l'aire de travail, même si vous devez porter un casque de soudeur, un écran facial ou des
lunettes étanches.
2. Portez un écran facial muni de verres filtrants et de plaques
protectrices appropriées afin de protéger vos yeux, votre
visage, votre cou et vos oreilles des étincelles et des rayons
de l'arc lors d'une opération ou lorsque vous observez une
opération. Avertissez les personnes se trouvant à proximité
de ne pas regarder l'arc et de ne pas s'exposer aux rayons
de l'arc électrique ou le métal incandescent.
3. Portez des gants ignifugiés à crispin, une chemise épaisse
à manches longues, des pantalons sans rebord et des
chaussures montantes afin de vous protéger des rayons
de l'arc, des étincelles et du métal incandescent, en plus
d'un casque de soudeur ou casquette pour protéger vos
cheveux. Il est également recommandé de porter un tablier
ininflammable afin de vous protéger des étincelles et de
la chaleur par rayonnement.
4. Les étincelles et les projections de métal incandescent
risquent de se loger dans les manches retroussées, les
rebords de pantalons ou les poches. Il est recommandé
de garder boutonnés le col et les manches et de porter
des vêtements sans poches en avant.
5. Protégez toute personne se trouvant à proximité des étincelles et des rayons de l'arc à l'aide d'un rideau ou d'une
cloison ininflammable.
6. Portez des lunettes étanches par dessus vos lunettes de
sécurité lors des opérations d'écaillage ou de meulage
du laitier. Les écailles de laitier incandescent peuvent être
projetées à des distances considérables. Les personnes se
trouvant à proximité doivent également porter des lunettes
étanches par dessus leur lunettes de sécurité.
INCENDIES ET EXPLOSIONS -- La
chaleur provenant des flammes ou de
l'arc peut provoquer un incendie. Le
laitier incandescent ou les étincelles
peuvent également provoquer un
incendie ou une explosion. Par conséquent :
1. Éloignez suffisamment tous les matériaux combustibles
de l'aire de travail et recouvrez les matériaux avec un
revêtement protecteur ininflammable. Les matériaux
combustibles incluent le bois, les vêtements, la sciure, le
gaz et les liquides combustibles, les solvants, les peintures
et les revêtements, le papier, etc.
2. Les étincelles et les projections de métal incandescent
peuvent tomber dans les fissures dans les planchers ou
dans les ouvertures des murs et déclencher un incendie
couvant à l'étage inférieur Assurez-vous que ces ouvertures sont bien protégées des étincelles et du métal
incandescent.
3. N'exécutez pas de soudure, de coupe ou autre travail à
chaud avant d'avoir complètement nettoyé la surface de
la pièce à traiter de façon à ce qu'il n'ait aucune substance
présente qui pourrait produire des vapeurs inflammables
ou toxiques. N'exécutez pas de travail à chaud sur des
contenants fermés car ces derniers pourraient exploser.
4. Assurez-vous qu'un équipement d'extinction d'incendie
est disponible et prêt à servir, tel qu'un tuyau d'arrosage,
un seau d'eau, un seau de sable ou un extincteur portatif.
Assurez-vous d'être bien instruit par rapport à l'usage de
cet équipement.
5.Assurez-vous de ne pas excéder la capacité de
l'équipement. Par exemple, un câble de soudage surchargé peut surchauffer et provoquer un incendie.
6.Une fois les opérations terminées, inspectez l'aire de
travail pour assurer qu'aucune étincelle ou projection de
métal incandescent ne risque de provoquer un incendie
ultérieurement. Employez des guetteurs d'incendie au
besoin.
7. Pour obtenir des informations supplémentaires, consultez
le NFPA Standard 51B, "Fire Prevention in Use of Cutting
and Welding Processes", disponible au National Fire
Protection Association, Batterymarch Park, Quincy, MA
02269.
CHOC ÉLECTRIQUE -- Le contact avec des pièces électriques ou les pièces de mise à la terre
sous tension peut causer des blessures
graves ou mortelles. NE PAS utiliser un
courant de soudage c.a. dans un endroit
humide, en espace restreint ou si un
danger de chute se pose.
21
SAFETY
Safety - French
SAFETY
SAFETY
1.Assurez-vous que le châssis de la source
d'alimentation est branché au système de mise à
la terre de l'alimentation d'entrée.
2. Branchez la pièce à traiter à une bonne mise de
terre électrique.
3. Branchez le câble de masse à la pièce à traiter et
assurez une bonne connexion afin d'éviter le risque
de choc électrique mortel.
4.Utilisez toujours un équipement correctement
entretenu. Remplacez les câbles usés ou endommagés. 5. Veillez à garder votre environnement sec, incluant
les vêtements, l'aire de travail, les câbles, le porteélectrode/torche et la source d'alimentation.
6. Assurez-vous que tout votre corps est bien isolé de
la pièce à traiter et des pièces de la mise à la terre.
7. Si vous devez effectuer votre travail dans un espace
restreint ou humide, ne tenez vous pas directement sur le métal ou sur la terre; tenez-vous sur
des planches sèches ou une plate-forme isolée et
portez des chaussures à semelles de caoutchouc.
8. Avant de mettre l'équipement sous tension, isolez
vos mains avec des gants secs et sans trous.
9. Mettez l'équipement hors tension avant d'enlever
vos gants.
10. Consultez ANSI/ASC Standard Z49.1 (listé à
la page suivante) pour des recommandations
spécifiques concernant les procédures de mise à
la terre. Ne pas confondre le câble de masse avec
le câble de mise à la terre.
CHAMPS ÉLECTRIQUES ET MAGNÉTIQUES — comportent un risque de danger. Le
courant électrique qui passe dans
n'importe quel conducteur produit
des champs électriques et magnétiques localisés. Le soudage et le
courant de coupage créent des champs électriques
et magnétiques autour des câbles de soudage et
l'équipement. Par conséquent :
1.Un soudeur ayant un stimulateur cardiaque doit
consulter son médecin avant d'entreprendre une
opération de soudage. Les champs électriques et
magnétiques peuvent causer des ennuis pour certains stimulateurs cardiaques.
2.L'exposition à des champs électriques et magnétiques peut avoir des effets néfastes inconnus pour
la santé.
22
3. Les soudeurs doivent suivre les procédures suivantes
pour minimiser l'exposition aux champs électriques
et magnétiques :
A.Acheminez l'électrode et les câbles de masse
ensemble. Fixez-les à l'aide d'une bande adhésive
lorsque possible.
B. Ne jamais enrouler la torche ou le câble de masse
autour de votre corps.
C. Ne jamais vous placer entre la torche et les câbles
de masse. Acheminez tous les câbles sur le même
côté de votre corps.
D.Branchez le câble de masse à la pièce à traiter le
plus près possible de la section à souder.
E. Veillez à garder la source d'alimentation pour le
soudage et les câbles à une distance appropriée
de votre corps.
LES VAPEURS ET LES GAZ -- peuvent
causer un malaise ou des dommages
corporels, plus particulièrement
dans les espaces restreints. Ne respirez pas les vapeurs et les gaz. Le
gaz de protection risque de causer
l'asphyxie. Par conséquent :
1. Assurez en permanence une ventilation adéquate
dans l'aire de travail en maintenant une ventilation naturelle ou à l'aide de moyens mécanique.
N'effectuez jamais de travaux de soudage, de coupage ou de gougeage sur des matériaux tels que
l'acier galvanisé, l'acier inoxydable, le cuivre, le zinc,
le plomb, le berylliym ou le cadmium en l'absence
de moyens mécaniques de ventilation efficaces. Ne
respirez pas les vapeurs de ces matériaux.
2.N'effectuez jamais de travaux à proximité d'une
opération de dégraissage ou de pulvérisation.
Lorsque la chaleur
ou le rayonnement de l'arc entre en contact avec les
vapeurs d'hydrocarbure chloré, ceci peut déclencher
la formation de phosgène ou d'autres gaz irritants,
tous extrêmement toxiques.
3. Une irritation momentanée des yeux, du nez ou de la
gorge au cours d'une opération indique que la ventilation n'est pas adéquate. Cessez votre travail afin
de prendre les mesures nécessaires pour améliorer
la ventilation dans l'aire de travail. Ne poursuivez
pas l'opération si le malaise persiste.
4.Consultez ANSI/ASC Standard Z49.1 (à la page
suivante) pour des recommandations spécifiques
concernant la ventilation.
SAFETY
MANIPULATION DES CYLINDRES -La manipulation d'un cylindre, sans
observer les précautions nécessaires,
peut produire des fissures et un
échappement dangereux des gaz.
Une brisure soudaine du cylindre, de la
soupape ou du dispositif de surpression peut causer
des blessures graves ou mortelles. Par conséquent :
1. Utilisez toujours le gaz prévu pour une opération et le
détendeur approprié conçu pour utilisation sur les cylindres de gaz comprimé. N'utilisez jamais d'adaptateur.
Maintenez en bon état les tuyaux et les raccords. Observez
les instructions d'opération du fabricant pour assembler
le détendeur sur un cylindre de gaz comprimé.
2. Fixez les cylindres dans une position verticale, à l'aide
d'une chaîne ou une sangle, sur un chariot manuel, un
châssis de roulement, un banc, un mur, une colonne ou
un support convenable. Ne fixez jamais un cylindre à un
poste de travail ou toute autre dispositif faisant partie
d'un circuit électrique.
3. Lorsque les cylindres ne servent pas, gardez les soupapes
fermées. Si le détendeur n'est pas branché, assurez-vous
que le bouchon de protection de la soupape est bien en
place. Fixez et déplacez les cylindres à l'aide d'un chariot
manuel approprié. Toujours manipuler les cylindres avec
soin.
4. Placez les cylindres à une distance appropriée de toute
source de chaleur, des étincelles et des flammes. Ne jamais
amorcer l'arc sur un cylindre.
5.Pour de l'information supplémentaire, consultez CGA
Standard P-1, "Precautions for Safe Handling of Compressed Gases in Cylinders", mis à votre disposition par
le Compressed Gas Association, 1235 Jefferson Davis
Highway, Arlington, VA 22202.
ENTRETIEN DE L'ÉQUIPEMENT -- Un équipement entretenu de façon défectueuse ou
inadéquate peut causer des blessures
graves ou mortelles. Par conséquent :
1. Efforcez-vous de toujours confier les tâches d'installation,
de dépannage et d'entretien à un personnel qualifié.
N'effectuez aucune réparation électrique à moins d'être
qualifié à cet effet.
2. Avant de procéder à une tâche d'entretien à l'intérieur
de la source d'alimentation, débranchez l'alimentation
électrique.
3.Maintenez les câbles, les fils de mise à la terre, les
branchements, le cordon d'alimentation et la source
d'alimentation en bon état. N'utilisez jamais un équipement s'il présente une défectuosité quelconque.
4.N'utilisez pas l'équipement de façon abusive. Gardez
l'équipement à l'écart de toute source de chaleur,
notamment des fours, de l'humidité, des flaques d'eau,
de l'huile ou de la graisse, des atmosphères corrosives et
des intempéries.
5. Laissez en place tous les dispositifs de sécurité et tous les
panneaux de la console et maintenez-les en bon état.
6. Utilisez l'équipement conformément à son usage prévu
et n'effectuez aucune modification.
INFORMATIONS SUPPLÉMENTAIRES RELATIVES À LA
SÉCURITÉ -- Pour obtenir de l'information
supplémentaire sur les règles de sécurité à
observer pour l'équipement de soudage à
l'arc électrique et le coupage, demandez un exemplaire du livret "Precautions and Safe Practices for
Arc Welding, Cutting and Gouging", Form 52-529.
Les publications suivantes sont également recommandées et mises à votre disposition par l'American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126 :
1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.
2. AWS C5.1 - “Recommended Practices for Plasma Arc
Welding”.
3. AWS C5.2 - “Recommended Practices for Plasma Arc
Cutting”.
4. AWS C5.3 - “Recommended Practices for Air Carbon
Arc Gouging and Cutting”.
5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.
6. AWS C5.6 - “Recommended Practices for Gas Metal
Arc Welding”.
7.AWS SP - “Safe Practices” - Reprint, Welding Handbook.
8.ANSI/AWS F4.1, “Recommended Safe Practices for
Welding and Cutting of Containers That Have Held
Hazardous Substances.”
9. CSA Standard - W117.2 = Safety in Welding, Cutting
and Allied Processes.
23
SAFETY
5. AVERTISSEMENT : Ce produit, lorsqu'il est utilisé
dans une opération de soudage ou de coupage,
dégage des vapeurs ou des gaz contenant des
chimiques considéres par l'état de la Californie
comme étant une cause des malformations
congénitales et dans certains cas, du cancer.
(California Health & Safety Code §25249.5 et
seq.)
SAFETY
SAFETY
SIGNIFICATION DES SYMBOLES
Ce symbole, utilisé partout dans ce manuel, signifie "Attention" ! Soyez vigilant ! Votre sécurité
est en jeu.
DANGER
Signifie un danger immédiat. La situation peut
entraîner des blessures graves ou mortelles.
AVERTISSEMENT
Signifie un danger potentiel qui peut entraîner des
blessures graves ou mortelles.
ATTENTION
Signifie un danger qui peut entraîner des blessures
corporelles mineures.
Classe de protection de l’enveloppe
L’indice de protection (codification IP) indique la classe de protection de l’enveloppe, c’est-à-dire, le degré de
protection contre les corps solides étrangers ou l’eau. L’enveloppe protège contre le toucher, la pénétration
d’objets solides dont le diamètre dépasse 12 mm et contre l’eau pulvérisée à un angle de jusqu’à 60 degrés de
la verticale. Les équipements portant la marque IP21S peuvent être entreposés à l’extérieur, mais ne sont pas
conçus pour être utilisés à l’extérieur pendant une précipitation à moins d’être à l’abri.
AVERTISSEMENT
Ce produit a été conçu pour la découpe au plasma seulement. Toute autre
utilisation pourrait causer des blessures et/ou endommager l’appareil.
AVERTISSEMENT
L’équipement pourrait basculer s’il est placé sur une
surface dont la pente dépasse 15°. Vous pourriez
vous blesser ou endommager l’équipement de façon
importante.
AVERTISSEMENT
Soulevez à l’aide de la méthode et des points
d’attache illustrés afin d’éviter de vous blesser ou
d’endommager l’équipement.
24
Angle
d’inclinaison
maximal
15°
SAFETY
DESCRIPTION
DESCRIPTION
INSTALLATION
OPERATION
APPENDIX
DESCRIPTION
Below are some abbreviations used throughout this manual.
DESCRIPTION
ABBREVIATIONS:
A/C - Air Curtain
ACC - Air Curtain Control
AHC - Automatic Height Control
CGC - Combined Gas Control
ICH - Interface Control Hub
IGC - Integrated Gas Control
PDB - Power Distribution Box
RAS - Remote Arc Starter
WIC - Water Injection Control
26
DESCRIPTION
2.0 System Diagrams
1. Base System
This system is the basic configuration for the IGC Plasma System. It contains the major components, such as the
Power Supply (EPP201/360/450/601), Coolant Circulator, PT-36 Torch, Remote Arc Starter (RAS), Combined Gas
Control (CGC), Power Distribution Box (PDB), and Interface Control Hub (ICH). This system will meet most customers’
needs in cutting carbon steel, stainless steel, and aluminum. It also has the functionality of marking on carbon
steel and stainless steel with the same torch and the same consumables. By simply alternating cutting and marking
mode on the fly, this system is capable of cutting and marking in the same part program without changing the
consumables.
To use this system, customer CNC needs to send start signal and corner signal while in geometric corner; at the
same time, customer CNC needs to monitor the fault signal and motion enable signal from ICH. This base system
does not come with Automatic Height Control (AHC). Customer will have to provide AHC and control its sequence.
2. Base System + AHC
This system includes the Base System plus the ESAB AHC, called a “B4 lifter”. In this configuration, ICH will control
plasma sequence, and also the AHC sequence. Customer CNC needs to provide the start signal and corner signal
for normal cutting.
3. Base System + ACC
This system includes the above Base System and ESAB Air Curtain Control (ACC). Air Curtain is a device used to
improve the performance of plasma arc when cutting underwater. ICH from the Base System will control the
sequence and turn on/off the air.
4. Base System + WIC
This system is configured to introduce the Water Injection Control (WIC), a module used to regulate cut water flow
to shield the cutting process. This configuration is to meet needs of a customer who wants to cut stainless steel
without using H35. This system still uses the standard PT-36 torch, but a different set of consumables. Similar to the
dry system, this WIC system can also do marking with water shield.
5. Base System + AHC + WIC
This system provides customer the Base System, AHC (Automatic Height Control), and WIC (Water Injection
Control). With this system, customer needs only to provide start signal and corner signal for cutting stainless steel
with water injection.
6. Base System + AHC + ACC
This system gives the customer the ability to cut under water with ESAB Automatic Height Control (AHC).
7. Base System + WIC + ACC
This system is the Base System adding Water Injection Control (WIC) and Air Curtain Control (ACC). Customer needs
to provide their own Height Control and control its sequence.
8. Base System + AHC + WIC + ACC
This complete system gives the opportunity for customer to cut carbon steel, stainless steel, and aluminum with
ESAB Auto Height Control (AHC). Customer has the capability to cut stainless steel with the Water Injection Control
(WIC), and underwater with the help of Air Curtain Control (ACC).
27
DESCRIPTION
The following pages illustrate different system configurations available on the Integrated Gas Control (IGC) System. With this system, ESAB offers 8 different configurations to meet customer’s requirements. Below are the
descriptions of each configuration.
SINGLE
PHASE
POWER
THREE
PHASE
POWER
{
{
PS
POWER
DATA
CNC
LIQUID
GAS
CNC-PWR
CNC-IO
CC-TC IN
ICH-CNC
RAS-CAN
RAS-ESTOP
RAS-TC OUT
RAS-TC IN
RAS-PA
RAS-E(-)
Customer Supplied
ICH
(Power
Distribution Box)
PDB
ICH-CGC-CAN
PDB-AC IN
RAS
(Remote Arc Starter)
PDB-PWR1
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Coolant Return Hose
Coolant Supply Hose
Work Table
Pilot Arc Cable
Power Cable
RAS-PSC
CGC-CAN
CGC-N2/Air
CGC-Ar
CGC-O2/H35/F5
CGC-N2/Air
CGC-PWR
AHC
CGC
(Combined Gas Control)
Plasma Gas Hose
Shield Gas Hose
Phone 1-843-664-5550
Email: oemplasma@esab.com
CGC-PG
CGC-SG
(Automatic Height Control)
Power, Pilot Arc, Coolant
AHC-VDR
Integrated Gas Control System
Interconnect Diagram
PS & CC Control Cable
ICH-PWR IN
CC-TC OUT
PS-W
PS-PA
PS(-)
PS-PSC
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
(Power Supply)
R
ICH-RAS-CAN
Base System
ICH-GAS-PWR
PT-36 Torch
Base
System
R
SINGLE
PHASE
POWER
THREE
PHASE
POWER
{
{
PS
POWER
DATA
CNC
LIQUID
GAS
CNC-PWR
CNC-IO
CC-TC IN
ICH-CNC
RAS-CAN
RAS-ESTOP
RAS-TC OUT
RAS-TC IN
RAS-PA
RAS-E(-)
Customer Supplied
ICH
(Power
Distribution Box)
PDB
ICH-CGC-CAN
PDB-AC IN
RAS
(Remote Arc Starter)
PDB-PWR1
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Coolant Return Hose
Coolant Supply Hose
Work Table
Pilot Arc Cable
Power Cable
RAS-PSC
CGC-CAN
CGC-N2/Air
CGC-Ar
CGC-O2/H35/F5
CGC-N2/Air
CGC-PWR
CGC
(Combined Gas Control)
Plasma Gas Hose
Shield Gas Hose
Phone 1-843-664-5550
Email: oemplasma@esab.com
CGC-PG
CGC-SG
AHC
(Automatic
Height
Control)
Power, Pilot Arc, Coolant
AHC-VDR
Integrated Gas Control System
Interconnect Diagram
PS & CC Control Cable
ICH-PWR IN
CC-TC OUT
PS-W
PS-PA
PS(-)
PS-PSC
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
(Power Supply)
R
ICH-RAS-CAN
Base System + AHC
ICH-GAS-PWR
PT-36 Torch
AHC
R
SINGLE
PHASE
POWER
THREE
PHASE
POWER
{
{
POWER
DATA
CNC
LIQUID
GAS
CNC-PWR
CNC-IO
CC-TC IN
ICH-CNC
RAS-CAN
RAS-ESTOP
RAS-TC OUT
RAS-TC IN
RAS-PA
RAS-E(-)
RAS-PSC
ICH
ACC-IN
ICH-CGC-CAN
(Air Curtain Control)
ACC
PDB
(Power
Distribution Box)
PDB-A/C1
ACC-AIR
PDBA/C
CTRL
PDB-AC IN
RAS
(Remote Arc Starter)
CGC-N2/Air
CGC
-PWR
ACC
-A/C
OUT
CGC-CAN
CGC
-A/C IN
CGC-N2/Air
CGC-Ar
CGC-O2/H35/F5
PDB
-PWR1
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
CC-TC OUT
Coolant Return Hose
Coolant Supply Hose
Work Table
Pilot Arc Cable
PS-PA
PS-W
Power Cable
PS & CC Control Cable
PS(-)
PS-PSC
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
(Power Supply)
PS
AHC
(Automatic Height Control)
CGC
(Combined Gas Control)
PT-36 Torch
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma Gas Hose
CGC-PG
Shield Gas Hose
CGC-SG
Air Curtain Hose
CGC-A/C OUT
Power, Pilot Arc, Coolant
AHC-VDR
Integrated Gas Control System
Interconnect Diagram
ICH-RAS-CAN
R
ICH-GAS-PWR
Base System + ACC
ICH-AUX
Air Curtain
ACC
R
SINGLE
PHASE
POWER
{
POWER
DATA
CNC
CC-TC IN
LIQUID
GAS
CNC-PWR
CNC-IO
ICH-CNC
RAS-TC IN
RAS-CAN
RAS-ESTOP
RAS-TC OUT
ICH
(Power
Distribution Box)
WIC
PDB-PWR1
(Water Injection Control)
PDB
ICH-CGC-CAN
PDB-AC IN
WIC-AIR IN
WIC-H2O IN
WIC-CAN
WIC-AC-IN
RAS
(Remote Arc Starter)
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
CC-TC OUT
CNC-WIC PWR
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
Coolant Return Hose
Coolant Supply Hose
Work Table
RAS-PA
Pilot Arc Cable
PS-PA
PS-W
RAS-E(-)
Power Cable
PS(-)
ICH-RAS-CAN
(Power Supply)
ICH-WIC-CAN
THREE
PHASE
POWER
RAS-PSC
PS & CC Control Cable
PS-PSC
ICH-GAS-PWR
PS
CGC-CAN
CGC-N2/Air
CGC-Ar
CGC-O2/H35/F5
CGC-N2/Air
CGC-PWR
WIC-H2O
OUT
(Combined Gas Control)
Plasma Gas Hose
BPR-SG
BPR-H2O
Phone 1-843-664-5550
Email: oemplasma@esab.com
CGC-PG
Power, Pilot Arc, Coolant
AHC
(Automatic
Height Control)
CGC
AHC-VDR
Integrated Gas Control System
Interconnect Diagram
CGC-SG
R
(Back
Pressure
Regulator)
BPR
WIC
PT-36 Torch
BPR-SG/H2O
Base System + WIC
Shield Gas Hose
R
SINGLE
PHASE
POWER
{
{
POWER
DATA
CNC
CC-TC IN
LIQUID
GAS
CNC-PWR
CNC-IO
ICH-CNC
RAS-CAN
RAS-ESTOP
RAS-TC OUT
RAS-TC IN
RAS-PA
RAS-E(-)
RAS-PSC
ICH
WIC
CGC-N2/Air
CGC
-PWR
CGC-Ar
CGC-CAN
CGC-N2/Air
AHC-VDR
AHC
CGC
CGC-PG
BPR-SG
BPR-H2O
(Back
Pressure
Regulator)
BPR
PT-36 Torch
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma Gas Hose
(Automatic
Height Control)
Power, Pilot Arc, Coolant
AHC-CAN
AHC-AC IN
(Combined Gas Control)
WIC-H2O
OUT
CGC-O2/H35/F5
PDB
-PWR1
(Water Injection Control)
(Power
Distribution Box)
PDB
ICH-CGC-CAN
PDB
-AC IN
WIC-AIR IN
WIC-H2O IN
WIC-CAN
WIC-AC-IN
CAN BUS
AHC Input Power
RAS
(Remote Arc Starter)
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
CC-TC OUT
CNC-WIC PWR
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
Coolant Return Hose
Coolant Supply Hose
Work Table
Pilot Arc Cable
PS-PA
PS-W
Power Cable
PS(-)
ICH-RAS-CAN
(Power Supply)
ICH-AHC-PWR
THREE
PHASE
POWER
ICH-AHC-CAN
PS & CC Control Cable
ICH-WIC-CAN
PS-PSC
ICH-GAS-PWR
PS
Integrated Gas Control System
Interconnect Diagram
CGC-SG
R
BPR-SG/H2O
Base System + AHC + WIC
Shield Gas Hose
AHC
WIC
R
SINGLE
PHASE
POWER
{
{
PS
POWER
DATA
CNC
LIQUID
GAS
CNC-PWR
CNC-IO
CC-TC IN
ICH-CNC
RAS-CAN
RAS-ESTOP
RAS-TC OUT
RAS-TC IN
RAS-PA
RAS-E(-)
RAS-PSC
ICH
PDB
ACC-IN
ICH-CGC-CAN
(Air Curtain Control)
ACC
(Power
Distribution Box)
PDB-A/C1
ACC-AIR
PDBA/C
CTRL
PDB-AC IN
Can Bus
AHC Input Power
RAS
(Remote Arc Starter)
CGC-N2/Air
CGC
-PWR
ACC
-A/C
OUT
CGC-CAN
CGC
-A/C IN
CGC-N2/Air
CGC-Ar
CGC-O2/H35/F5
PDB
-PWR1
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
CC-TC OUT
Coolant Return Hose
Coolant Supply Hose
Work Table
Pilot Arc Cable
PS-PA
PS-W
Power Cable
PS(-)
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
(Power Supply)
ICH-RAS-CAN
THREE
PHASE
POWER
PS & CC Control Cable
ICH-AHC-PWR
PS-PSC
AHC
(Automatic
Height Control)
CGC
(Combined Gas Control)
PT-36 Torch
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma Gas Hose
CGC-PG
Shield Gas Hose
CGC-SG
Air Curtain Hose
CGC-A/C OUT
Power, Pilot Arc, Coolant
AHC-CAN
AHC-AC IN
AHC-VDR
Integrated Gas Control System
Interconnect Diagram
ICH-AHC-CAN
R
ICH-GAS-PWR
Base System + AHC + ACC
ICH-AUX
Air Curtain
AHC
ACC
R
SINGLE
PHASE
POWER
{
{
POWER
DATA
CNC
CC-TC IN
LIQUID
GAS
CNC-PWR
CNC-IO
ICH-CNC
RAS-CAN
RAS-ESTOP
RAS-TC OUT
RAS-TC IN
RAS-PA
RAS-E(-)
RAS-PSC
ICH
WIC
CGC-N2/Air
CGC
-PWR
CGC-Ar
CGC-CAN
CGC-N2/Air
AHC-VDR
AHC
CGC
CGC-PG
BPR-SG
BPR-H2O
(Back
Pressure
Regulator)
BPR
PT-36 Torch
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma Gas Hose
(Automatic
Height Control)
Power, Pilot Arc, Coolant
AHC-CAN
AHC-AC IN
(Combined Gas Control)
WIC-H2O
OUT
CGC-O2/H35/F5
PDB
-PWR1
(Water Injection Control)
(Power
Distribution Box)
PDB
ICH-CGC-CAN
PDB
-AC IN
WIC-AIR IN
WIC-H2O IN
WIC-CAN
WIC-AC-IN
CAN BUS
AHC Input Power
RAS
(Remote Arc Starter)
RAS-VDR
BOLD FONT = Cable Connection Label
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
CC-TC OUT
CNC-WIC PWR
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
Coolant Return Hose
Coolant Supply Hose
Work Table
Pilot Arc Cable
PS-PA
PS-W
Power Cable
PS(-)
ICH-RAS-CAN
(Power Supply)
ICH-AHC-PWR
THREE
PHASE
POWER
ICH-AHC-CAN
PS & CC Control Cable
ICH-WIC-CAN
PS-PSC
ICH-GAS-PWR
PS
Integrated Gas Control System
Interconnect Diagram
CGC-SG
R
BPR-SG/H2O
Base System + WIC + ACC
Shield Gas Hose
AHC
WIC
R
SINGLE
PHASE
POWER
{
POWER
DATA
Customer
CNC
CC-TC IN
LIQUID
GAS
CNC-PWR
CNC-IO
CNC-A/C CTRL
ICH-CNC
RAS-TC IN
RAS-PA
RAS-E(-)
RAS-CAN
RAS-ESTOP
Customer Supplied
ICH
(Interface Control Hub)
IFH-RAS-CAN
Coolant Return Hose RAS-TC OUT
Coolant Supply Hose
Work Table
ICH-PWR IN
CC-TC OUT
CNC-WIC PWR
CNC-ESTOP
(Coolant Circulator)
CC
CC-IC
PS-IC
PS-W
Pilot Arc Cable
PS-PA
IFH-AHC-CAN
{
Power Cable
PS(-)
IFH-AHC-PWR
(Power Supply)
RAS-PSC
IFH-WIC-CAN
THREE
PHASE
POWER
PS & CC Control Cable
WIC
ACC-AIR
ACC-IN
PDB-A/C1
PDB-A/C IN
ACC
(Air Curtain Control)
(Power
Distribution Box)
PDB
(Water Injection Control)
PDB-A/C CTRL
WIC-AIR IN
WIC-H2O IN
WIC-CAN
WIC-AC-IN
BOLD FONT = Cable Connection Label
IFH-CGC-CAN
CAN BUS
AHC Input Power
RAS
(Remote Arc Starter)
RAS-VDR
AHC-VDR
CGC-N2/Air
CGC-PWR
ACC-A/C OUT
CGC-CAN
CGC-A/C IN
CGC-N2/Air
CGC-Ar
CGC-O2/H35/F5
PDB-PWR1
WIC-H2O OUT
AHC-CAN
AHC-AC IN
Power, Pilot Arc, Coolant
AHC
(Automatic
Height Control)
CGC
(Combined Gas Control)
CGC-A/C OUT
PS-PSC
CGC-SG
PS
IFH-GAS-PWR
(Back
Pressure
Regulator)
BPR
PT-36 Torch
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma
Gas Hose
CGC-PG
BPR-SG
BPR-A/C
BPR-H2O
AHC
WIC
ACC
BPR-SG/H2O
Integrated Gas Control System
Interconnect Diagram
Shield Gas Hose
Base System + AHC + WIC + ACC
BPR-A/C
Air Curtain
Air Curtain Hose
R
Input
Output
36
360 VDC
IP 21
Weight
493 kg
585 x 1040 x 1195 mm
Protection Class
Dimensions
32 KW
Output Power (100% Duty)
10A to 36A
100A
Input Fuse (Recommended)
Output Open Circuit Voltage
(OCV) (High Range Cutting)
Output Marking Range
(100% Duty)
2/0 AWG
Recommended Input
Power Cable
30A to 200A
200A
90.0 %
Input Power Factor
Output Cutting Range
(100% Duty)
2/0 AWG
35.5 KW
Input Power
493 kg
585 x 1040 x 1195 mm
IP 21
72 KW
10A to 36A
30A to 360A
360 VDC
90.0 %
82.5 KW
91.6 KVA
39.5 KVA
Input KVA
50 / 60 HZ
430VDC
200A
2/0 AWG
90%
98.9 KW
IP 21
90 KW
10A to 100A
35A to 450A
406VDC
200A
2/0 AWG
90%
98.9 KW
109.9 KVA
50/60 HZ
167A RMS
380VAC
m3 450
380V
50/60HZ
400V TAPS
850 kg
400VAC
m3 450
400V
50/60HZ
427VDC
200A
2/0 AWG
90%
99.1 KW
110.2 KVA
50/60 HZ
159A RMS
950 x 1050 x 1150 mm
109.9 KVA
50/60 HZ
167A RMS
380VAC
m3 450
380V
50/60HZ
380V TAPS
430VDC
250A
4/0 AWG
90%
128.5 KW
IP 21
120 KW
10A to 100A
35A to 600A
406VDC
250A
4/0 AWG
90%
128.5 KW
142.8 KVA
50/60 HZ
217A RMS
380VAC
m3 601
380V
50/60HZ
400V TAPS
850 kg
427VDC
250A
4/0 AWG
90%
128.4 KW
142.7 KVA
50/60 HZ
206A RMS
400VAC
m3 601
400V
50/60HZ
950 x 1050 x 1150 mm
142.8 KVA
50/60 HZ
217A RMS
380VAC
m3 601
380V
50/60HZ
380V TAPS
m3 Plasma Power Supply Input/Output Information
140 / 132A RMS
50 / 60 HZ
60 / 57A RMS
Input Current (3-Phase)
380 / 400V
m3 360,
380 / 400V,
50 / 60Hz
Input Frequency
380 / 400V
Input Voltage (3-Phase)
m3 201,
380 / 400V,
50 / 60Hz
380/400V Power Supplies
The IGC system can use different plasma power supplies. ESAB provides the EPP-201/360/450/601, with various input voltages and current output
for your requirements. For details about our power supplies, please refer to the power supply’s specific manual.
2.1 Power Supply
DESCRIPTION
DESCRIPTION
Input
Output
2/0 AWG
Recommended Input
Power Cable
360 VDC
90.0 %
Input Power Factor
IP 21
Weight
493 kg
585 x 1040 x 1195 mm
Protection Class
Dimensions
32 KW
10A to 36A
Output Marking Range
(100% Duty)
Output Power (100% Duty)
30A to 200A
60A
2/0 AWG
90.0 %
Output Cutting Range
(100% Duty)
Output Open Circuit Voltage
(OCV) (High Range Cutting)
100A
35.5 KW
Input Fuse (Recommended)
40.6 KVA
40.6 KVA
Input KVA
Input Power
35.5 KW
60 HZ
41A RMS
575V
m3 201
575V, 60Hz
60 HZ
Input Frequency
460V
51A RMS
Input Voltage (3-Phase)
Input Current (3-Phase)
m3 201
460V, 60Hz
IP 21
72 KW
10A to 36A
30A to 360A
360 VDC
125A
2/0 AWG
90.0 %
82.5 KW
91.6 KVA
60 HZ
92A RMS
575V
m3 360
575V, 60Hz
493 kg
585 x 1040 x 1195 mm
150A
2/0 AWG
90.0 %
82.5 KW
91.6 KVA
60 HZ
115A RMS
460V
m3 360
460V, 60Hz
IP 21
90 KW
10A to 100A
35A to 450A
431VDC
150A
2/0 AWG
90%
98.6 KW
109.6 KVA
60 HZ
110A RMS
575VAC
m3 450
575V, 60HZ
850 kg
950 x 1050 x 1150 mm
200A
1/0 AWG
90%
99.0 KW
110.0 KVA
60 HZ
138A RMS
460VAC
m3 450
460V, 60HZ
m3 Plasma Power Supply Input/Output Information
IP 21
120 KW
10A to 100A
35A to 600A
431VDC
200A
1/0 AWG
90%
128.2 KW
142.4 KVA
60 HZ
143A RMS
575VAC
m3 601
575V, 60HZ
850 kg
950 x 1050 x 1150 mm
250A
1/0 AWG
90%
128.4 KW
142.6 KVA
60 HZ
179A RMS
460VAC
m3 601
460V, 60HZ
DESCRIPTION
460/575V Power Supplies
DESCRIPTION
37
DESCRIPTION
2.2 Coolant Circulator (CC-11)
DESCRIPTION
p/n 0558007515
The Coolant Circulator (CC-11) recirculates coolant to
cool the torch, electrode and nozzle. For more specific details, please refer to the CC-11 Instruction manual.
Specifications
Dimensions: 34.00" (864 mm) high x 21.75" (552 mm) wide x 28.00 (711 mm) deep
Weight: 215 lb. dry (97.5 kg) / 249 lb. wet (113 kg)
Pump Type:
Positive displacement, rotary vane type with adjustable by-pass valve (200 psi / 13.8 bars max.),
CW rotation as viewed from nameplate.
Radiator Type: Copper tubing, aluminum finned air-to-water type with galvanized steel frame.
50Hz, 1 Phase Input Power
60Hz, 1 Phase Input Power
AC Input Voltages
200 / 230 / 400 / 460 / 575 V, + / - 10%
AC Input Amperage
9 / 8 / 5 / 4 / 3 Amperes
1.60 gpm at 175 psi
1.60 gpm at 175 psi
Pump Capacity
(6.0 l/min at 12 bars)
(6.0 l/min at 12 bars)
Cooling Capacity @ 1.60 gpm
16,830 BTU / hr. (4900 watts)
20,200 BTU / hr. (5900 watts)
(6.0 l/min)
at 45° F (25° C) temperature difference between high coolant temperature and ambient air temperature using ESAB coolant p/n 0558004297 (25% propylene glycol / 75% distilled water).
Max. Delivery Pressure
175 psig (12 bars)
Reservoir Capacity
4 gallons (15.2 liters)
38
DESCRIPTION
2.3 Interface Control Hub (ICH)
p/n 0558009607
Specifications
Dimensions: 7.50” (190.5 mm) high x 10.125” (257.2 mm) wide x 6.50” (165.1 mm) deep
Weight: 8.5 lbs. (3.9 kg)
Operating Temperature
5-40°C (41-104°F)
Max Humidity
95% non-condensing
Enclosure Degree of Protection
IP54
Input Power Reduction
230 VAC, 5 Amps
120 VAC, 3 Amps
ICH Mounting Dimensions
11.50”
(292.1 mm)
 0.28”
(7.1 mm)
3.00”
(76.2 mm)
39
DESCRIPTION
The Interface Control Hub (ICH) provides the plasma process control including current, gas and torch height (if
applicable). It also serves as the interface between the customer CNC and the ESAB IGC plasma system. At the
same time, it functions as a hub for CAN communication.
DESCRIPTION
CNC Direct Board
DESCRIPTION
p/n 0558009991
The CNC Direct board is the control and interface board inside the ICH. It provides the process control, interface
to customer CNC, system setup, panel interface, etc. Below is a skeleton of this CNC board. It shows the major
components and the major connectors on the board. The table below gives the functions of these connections.
Port
Port
Function
CNC Control, DB37
X2
RS232
X3
CAN1 and 24VDC input
X4
CAN2
X6
Spare I/O
S2, S3
X7
Reserved
V12
IC, Main processor
X8
Aux Control, DB25
V13
EEProm, Save data for system configuration,
error history, etc.
X9
ASIOB1 Communication
V41
IC for ASIOB1
XS1
40
Function
X1
Switches: Plasma Start, Gas Test
XS2
Switches: Local/Remote, Station Select and
Screen Select
XP1
Programming port 1
XP2
Programming port 2
J1
ID switches, by default S2=1, S3=4
DIP switches:
1- 120R for CAN1, 2- 120R for CAN2,
3- VCC to ASIOB1, 4- GND to ASIOB1
Default: 1 - ON, 2 - ON, 3 - OFF, 4 - OFF
DESCRIPTION
2.4 Combined Gas Control (CGC)
p/n 0558010241
DESCRIPTION
The Combined Gas Control (CGC) regulates the output of the
plasma gas (PG) selected from the three plasma gas inlets (N2/
Air, O2/H35/F5 and Argon) and controls the flow of shield gas
(SG). It is powered by 24 Volts (AC and DC) from the Power Distribution Box and receives commands via the CAN-bus.
There are four gas inputs (three plasma gases, one shield gas),
two gas outputs (SG, PG), and one outboard connection (air curtain). The four inputs are fitted with porous
bronze filters and "G-1/4" (BSPP) female right hand thread. Either of two adaptor fitting kits are available to adapt
standard metric or CGA hose connections. The gas fittings and adaptors are listed in the following tables.
Specifications
Gas
Plasma
Metric
Input
Adaptors
Fitting
ESAB
P/N
Argon
G-1/4” right hand male x G-1/4” right hand male
0558010163
N2/Air
G-1/4” right hand male x G-1/4” right hand male
0558010163
O2/H35/F5*
G-1/4” right hand male x G-1/4” right hand male
0558010163
Shield
N2/Air
G-1/4” right hand male x G-1/4” right hand male
0558010163
Air Curtain
Air
G-1/4” right hand male x “B” Air/Water right hand male
0558010165
ESAB Kit p/n
0558000254
Dimensions: 8.5” (215.9 mm) long x 6.0” (152.4 mm) wide x 4.5” (114.3 mm) high
Weight: 8.65 lbs. (3.9 kg)
Power Input: 24 VAC/DC
Plasma
CGA
Input
Adaptors
Argon
G-1/4” right hand male x “B” Inert Gas right hand female
0558010166
N2/Air
G-1/4” right hand male x “B” Inert Gas right hand female
0558010166
O2/H35/F5*
G-1/4” right hand male x “B” Oxygen right hand male
0558010167
Shield
N2/Air
G-1/4” right hand male x “B” Air/Water right hand male
0558010165
Air Curtain
Air
G-1/4” right hand male x “B” Air/Water right hand male
0558010165
ESAB Kit p/n
0558000253
* Another adapator is required when connecting H35/F5.
Part Number - 0558010246 (G-1/4” right hand female x G-1/4” left hand male)
* Another adapator is required when connecting H35/F5.
Part Number - 0558010245 (“B” Oxygen right hand female x “B” Fuel Gas left hand male)
Outputs
SG
1/4” NPT x 5/8"-18 LH male
10Z30
PG
1/4” NPT x “B” Inert Gas right hand female
2064113
Air Curtain
1/8” NPT x “B” Inert Gas left hand female
08030280
41
DESCRIPTION
CAUTION
DESCRIPTION
NOTE
When connecting fuel gas lines to the oxygen plasma gas input, or reconnecting oxygen after fuel gas use, extra care must be taken to assure that all lines from input through the torch are completely purged.
It is recommended to purge the system and torch lines with nitrogen
for 60 seconds prior to reconnection, then purge the nitrogen for 60
seconds with the new supply gas before cutting.
Each gas has a requirement for maximum flow and pressure as shown in chart below:
Gas
Plasma
Shield
Air Curtain
Argon
O2/H35/F5
N2/Air
N2/Air
Air
CGC Flow Diagram
42
Pressure
125 psi (8.6 bar), 200 SCFH (5.7 SCMH)
125 psi (8.6 bar) for O2, 75 psi (5.2 bar) for H35/F5, 255 SCFH (7.2 SCMH)
125 psi (8.6 bar), 255 SCFH (7.2 SCMH)
125 psi (8.6 bar), 353 SCFH (10.0 SCMH)
80 psi (5.5 bar), 1200 SCFH (34.0 SCMH)
DESCRIPTION
CGC Mounting Dimensions
p/n 0558008459
DESCRIPTION
4.00”
(101.6mm)
 0.281
(7.1mm)
0.313”
(8.0mm)
0.37”
(9.5mm)
7.50”
(190.5mm)
CGC Bottom View
4.72”
(120.0mm)
0.37”
(9.5mm)
M6
0.90”
(22.9mm)
2.52”
(64.0mm)
43
DESCRIPTION
2.5 Power Distribution Box (PDB)
DESCRIPTION
p/n 0558010242
The Power Distribution Box (PDB) takes 230 vac or
115 vac depending on the switch setup. Outputs
of 24 vdc and 24 vac are to supply power to the
Combined Gas Control (CGC). The PDB also recieves
commands from the ICH via the A/C CTRL port. This
is for controlling the air curtain outputs. By default,
the PDB can control one CGC and one air curtain. If
needed, a second CGC and air curtain can be controlled after putting another power block and necessary connectors inside. Power block and connectors
kit part number is 0558010247.
Specifications
Dimensions: 10” (254 mm) long x 9.5” (241.3 mm) wide x 4.25” (108 mm) high
Weight: 9.0 lbs. (4.1 kg)
Input Power
Output Power
230 VAC, 2 Amps
115 VAC, 3 Amps
24 V AC/DC
PDB Mounting Dimensions
8.00”
(203.2 mm)
6.50”
(165.1 mm)
.875”
(22.2 mm)
44
M6
3.00”
(76.2 mm)
4.25”
(108.0 mm)
10.00”
(254.0 mm)
DESCRIPTION
PDB Mounting Plate Dimensions
p/n 0558008794
 0.281
(7.1mm)
0.313”
(8.0mm)
0.50”
(12.7mm)
9.50”
(241.3mm)
PDB Schematic
From the factory, the PDB’s 230/115VAC switch is set to 230VAC. If the customer requires a different input voltage, then change the switch to 115 VAC.
45
DESCRIPTION
5.75”
(146.0mm)
DESCRIPTION
2.6 Remote Arc Starter (RAS)
DESCRIPTION
p/n 0558008150
The Remote Arc Starter is more commonly referred to as
the RAS Box. The RAS box serves as an interface between
the plasma controller and the EPP family of plasma power
supplies, helping to deliver a stable plasma arc. The RAS
box also provides a voltage feedback to the plasma torch
lift. This voltage is used to regulate the torch height while
cutting, maintaining the proper height of the torch above
the work piece.
Within the RAS box there is an I/O module for communicating with the plasma controller, a High Frequency/Voltage Divider circuit board which provides pilot arc ionization and voltage divider functions to regulate torch height.
Coolant connections and torch power connections are made within the RAS box and provide an interface between the power supply, coolant circulator and the torch.
Specifications
Dimensions: 8.75” (222.3 mm) high x 7.50” (190.5 mm) wide x 17.00” (431.8 mm) deep
Weight: 28.5 lbs. (12.9 kg)
Remote Arc Starter Connections
Note:
Chassis must be connected to
the machine ground.
A
B
G, H
C
D
F
E
J
I
46
Letter
Description
A
3 Pin Voltage Divider Connection to the Lift
B
8 Pin Can Bus Connection to the CNC or Interface
C
24 Pin Amphenol Power Supply Connection
D
E-Stop
E
Coolant Inlet - Flowing to the Torch
F
Coolant Return - Flowing back to the Coolant Circulator from the Torch
G, H
Strain Relief Fittings
I
Torch Shroud Connection
J
Machine Ground Connection
DESCRIPTION
RAS Box Mounting Dimensions
The box has four M6 x 1 threaded mounting holes shown in pattern below.
DESCRIPTION
CAUTION
If fasteners are threaded into the box from below, the length of the fasteners
must not allow them to extend more than 0.25” beyond the edge of the internal
female threads. If fasteners are too long they can interfere with the components
inside the box.
5.00”
(127.00 mm)
1.00”
(2.54 mm)
2.75”
(69.85 mm)
13.75”
(349.25 mm)
RAS Box Mounting Plate Dimensions
p/n 0558008461
18.50"
(469.9 mm)
17.50"
(444.5 mm)
8.75"
(222.3 mm)
7.50"
(190.5 mm)
3.25"
(82.6 mm)
6.50"
(165.1 mm)
47
DESCRIPTION
2.7 PT-36 Plasma Torch
DESCRIPTION
p/n 0558008300
The PT-36 Mechanized Plasmarc Cutting Torch is a
plasma arc torch factory assembled to provide torch
component concentricity and consistent cutting accuracy.
7.54"
(191.5 mm)
2.00"
(50.8 mm)
9.13"
(231.9 mm)
6.17"
(156.7 mm)
10.50" (266.7 mm)
Length of Sleeve
Specifications
Type: Water cooled, Dual gas, mechanized plasmarc cutting torch
Current Rating: 1000 Amps @ 100% duty cycle
Mounting Diameter: 2 “(50.8 mm)
Length of Torch without leads: 16.7 “(42 cm)
IEC 60974-7 Voltage Rating: 500 volts peak
Striking Voltage (maximum value of HI-FREQUENCY voltage): 8000 VAC
Minimum Coolant Flowrate: 1.3 GPM (5.9 L/min)
Minimum Coolant Pressure at Inlet: 175 psig (12.1 bar)
Maximum Coolant Pressure at Inlet: 200 psig (13.8 bar)
Minimum Acceptable Rating of Coolant Recirculator: 16,830 BTU/HR (4.9 kW) at High Coolant Temperature Ambient = 45°F (25°C) and 1.6 USGPM (6 L/min)
Maximum Safe Gas Pressures at Inlets to Torch: 125 psig (8.6 bar)
Safety Interlocks: This torch is intended for use with ESAB plasmarc cutting systems and controls employing a
water flow switch on the coolant return line from the torch. Removal of the nozzle retaining cup to service
the torch breaks the coolant return path.
48
DESCRIPTION
2.8 Air Curtain Control (ACC)
DESCRIPTION
p/n 37440
p/n 0558010243
Specifications
Dimensions: 6.00” high (152.4 mm) x 9.56” wide (242.8 mm) x 2.50” deep (63.5 mm)
Weight: 4.00 lbs. (1.81 kg)
Input Power: 24 VAC
The Air Curtain is a device used to improve the performance of plasma arc when cutting underwater. The device
mounts onto the torch and produces a curtain of air. This allows the plasma arc to operate in a relatively dry zone
to reduce noise, fume, and arc radiation, even though the torch has been submerged.
The Air Curtain requires a source of compressed air that needs to be clean, dry and oil-free. It should be delivered
at 80 psi @ 1200 cfh (5.5 bar @ 34 CMH).
49
DESCRIPTION
ACC Mounting Dimensions
DESCRIPTION
9.31”
(236.5 mm)
5.81”
(147.6 mm)
.312” x .500”
slots
2.91”
(74.0 mm)
1.16”
(29.5 mm)
7.00”
(177.8 mm)
ACC Component Connections
NOTE:
Cables “A” and “B” are listed in the ACC
Component Connections, INSTALLATION
section of this manual.
A
Compressed Air
50
B
DESCRIPTION
2.9 Water Injection Control (WIC)
p/n 0558009370
DESCRIPTION
The Water Injection Control (WIC) regulates the flow of cut water
supplied to the plasma torch. This water is used as a shield in
the cutting process. This shield assists in forming the plasma arc
and also cools the cut surface. The selection and output of cut
water is performed and controlled by the CNC. The WIC consists
of a water regulator, pump and a closed feedback loop between
proportional valve and flow sensor. This is controlled by a local
Process Control Unit (PCU). The PCU communicates via CAN to
the ICH while controlling the proportional and solenoid valves.
The WIC is monitored and sends feedback signals through the CAN bus to the ICH for diagnostic purposes.
Specifications
Dimensions (Electrical module)
163 mm x 307 mm x 163 mm (6.4 in x 12.1 in x 6.4 in)
Dimensions (Pump Module)
465 mm x 465 mm x 218 mm (18.3 in x 18.3 in x 8.6 in)
Weight (Electrical module)
15 lb. dry (6.8 kg)
Weight (Pump Module)
60 lb. dry (27.2 kg)
Water Requirements
Tap water with an allowable water hardness of <2 ppm as CaCO3 and Conductivity:
>200,000 ohms per inch, filtered at 5 microns. 1 gpm (3.8 l/min) minimum flow rate @ 20
psi (1.4 bar).
Air Supply (anti-freezing function)
250 CFH @ 80 psi (7.1 cmh @ 5.5 bar)
Pump
Positive displacement, rotary vane with adjustable by-pass valve (250 psi / 17.2 bars maximum), CW rotation, Capacity: 1.33 GPM @ 150 psi (5.04 l/min @ 10.3 bar),
Nominal speed: 1725 rpm, Temperature rating: 150o F (66o C)
Motor
1/2 HP, 230 VAC single phase, 60 Hz, 1725 RPM, 3.6A current,
Temperature rating: 150o F (66o C)
Pressure Regulator
Inlet water pressure: 100 psi (6.9 bar) maximum
Outlet water pressure: 20 psi (1.4 bar) factory set
Pressure Transducer
Maximum pressure range: 0 - 200 psi (0 - 13.8 bar)
Temperature range: -40o - 257o F (-40o - 125o C)
Supply voltage: 24 VDC
Pressure signal output: 4 mA for 0 psi, 20 mA for 200 psi (13.8 bar). Regulated to 1 to 5 VDC
with 250 ohm resistor.
Proportional Valve
Supply voltage: 24 VDC
Full load current: 500 mA, Input control signal: 0-10 VDC.
Coil: Standard Voltage: 24 VDC, Operating current: 100-500 mA,
Valve: Orifice size: 3/32”, Cv:0.14 (fully open)
Operating differential pressure: 115 psi (8.0 bar) ; Max. flow 1.5 gpm
Maximum fluid temperature: 150o F (66o C)
Flow Sensor
Maximum operating pressure: 200 psi (13.8 bar),
Operating temperature: -4o - 212o F (-20o - 100o C), Input power: 5 - 24 VDC @ 50 mA maximum, Output signal: 58 - 575 Hz, Flow range: 0.13 - 1.3 gpm
Air Solenoid
Supply voltage: 24 VDC, Maximum operating pressure: 140 psi (9.7 bar) , Operating temperature: 32o - 77o F (0 - 25o C)
51
DESCRIPTION
2.10 Automatic Height Control (AHC)
DESCRIPTION
p/n 0560947166
The B4 lift assembly provides vertical motion for the PT-36 plasma torch, using a typical motor, screw, and slide configuration. The motor turns an enclosed spindle screw,
which in turn raises/lowers the lifting plate along linear rails. Directional commands
given from the plasma controller determine the direction of the travel. Fixed limit
switches are included to prevent upper and lower lift’s over travel.
The lift assembly also contains components necessary to control height over work
surfaces; initial, piercing, and cutting heights are encoder controlled during the plasma cycle. During part production, height is automatically controlled by taking voltage measurements between the torch electrode and work surface.
The B4 lifts utilize an Omni Soft Touch® assembly to protect the system during station crashes. Proximity switches monitor torch position in the torch holder. If the
torch is jarred in any direction, the process will stop and an error report will be sent
to the controller.
Specifications
Dimensions:
6.0” (152.4 mm) wide x 8.5” (215.9 mm) deep x 31.5” (800.1 mm) high
Lift Speed: 315 IPM [8.0m per minute]
Vertical Travel: 8.00” [200.0 mm]
Approximate Weight including torch holder: 85 lbs. [38.5 kg]
Torch Barrel Size: 85.7 mm
IHS Accuracy: ± 0.5 mm
Component Tolerances Encoder Accuracy: ± 0.25 mm
Voltage Accuracy: ± 1 volt
52
DESCRIPTION
B4 Mounting Dimensions
(6) M8 x 1.25 x 40
Socket Head Cap Screws
4.13” [104.9mm]
3.64” [92.4mm]
0.49” [12.4mm]
0.53”
[13.5mm]
x6 M8x1.25 - 6H
THRU HOLES
2.50”
[63.5mm]
5.00”
[127.0mm]
4.47”
[113.5mm]
Recommended Monting Bracket/Nut Plate
53
DESCRIPTION
B4 lift hole patterns are provided below to aid end users in mounting the plasma station. An optional plasma
bracket/nut plate is available. For more specific details, please refer to the B4 Lift manual.
DESCRIPTION
DESCRIPTION
54
SAFETY
DESCRIPTION
INSTALLATION
INSTALLATION
OPERATION
APPENDIX
INSTALLATION
INSTALLATION
56
INSTALLATION
3.0 Grounding
Introduction
Machine grounding is an important part of the installation process, which can be greatly simplified if prepared
in advance. The most difficult part of the grounding process is designing and installing a low impedance Earth
ground rod. However, the better the Earth ground rod, the less chance there is of having electromagnetic
interference problems after the installation is complete.
WARNING
Electric Shock Hazard.
Improper grounding can cause severe injury
or death.
Improper grounding can damage machine
electrical components.
Machine must be properly grounded before
putting it into service.
The cutting table must be connected to
machine earth grounding rod.
57
INSTALLATION
Most national electric codes address grounding for the purpose of fire prevention and short circuit protection;
they do not address equipment protection and electromagnetic interference noise reduction. Therefore, this
manual presents more stringent requirements for machine grounding.
INSTALLATION
Grounding Overview
There are three parts to a ground system;
INSTALLATION
• Component or "chassis" ground
• Earth ground
• Protective Earth ground
A common symbol used to identify
a chassis ground on drawings.
Component grounding connects all pieces to a
single component, like the machine chassis, which
is then connected to a common point known as the
star point. This provides a path for electromagnetic
interference (EMI) from the enclosure to ground.
An earth ground provides a electromagnetic
interference (EMI) to return to its source.
A protective earth (PE) ground provides a safe path
for fault current. Without a properly grounded
system, an unintended path through people or
sensitive equipment may be found, resulting in
serious injury, death, and/or premature equipment
failure.
A common symbol used to identify
an earth ground on drawings.
A common symbol used to identify
a protective earth (PE) ground.
58
This section focuses on machines with a plasma
cutting system. Machines with plasma cutting
capability are particularly prone to electromagnetic
interference problems and often utilize dangerous
voltages and currents. All machines must have
electrical components grounded and attached to
an earth ground, regardless of process type (shape
cutting, marking, or other material preparation).
INSTALLATION
Basic Layout
The electrical ground layout is similar for both large and small machines. The chassis ground 4 , plasma
positive electrical lead 6 and the rail ground cables 7 are attached to a common point 8 on the cutting
table. This common connection is referred to as a star point (see illustration below). One cable 3 connects
the star point to the Earth ground rod 1 . The size of ground cables is dependant on the maximum current
output of the plasma power supply 5 . Specification of cable sizes is discussed later in this manual. Some
country standards or directives require a separate ground rod 9 for the plasma power supply. Consult your
machine schematics for more information.
INSTALLATION
8
Note: The three phase electrical input 2
to the plasma power supply must include
an electrical ground.
This illustration demonstrates multiple ground
cables fastened with a single bolt to create a star
point 8 . The location of the star point on the
cutting table will vary.
59
INSTALLATION
Elements of a Ground System
The ground system consists of five main components:
INSTALLATION
• plasma current return path
• plasma system safety ground
• utility power electrical ground
• cutting machine chassis ground
• rail system safety ground.
Ensure provisions are made during the installation for each of these elements for creating a complete ground
system.
Plasma Current Return Path
The return path ground cable is the most important element of the ground system. It completes the path for
the plasma current. Solid, low impedance, well maintained electrical connections are a necessity.
The plasma cutting current is generated by the plasma power supply 1 . A welding cable carries this current
from the negative (-) connection 2 in the plasma power supply through the x axis cable chain 3 to the
torch. The current then arcs 4 to the work piece on the cutting table. The current path must be closed so
that the current can easily return to its source. This is done by connecting the cutting table to the positive (+)
connection 5 on the plasma power supply. If the return path ground cable is not connected, the plasma
system will not work. There will be no way for the arc to establish between the torch and the work piece. If
the cable is connected, but the connections have a very high resistance, it will limit the current of the arc, and
cause dangerous voltage levels between system components.
1
3
2
4
5
60
INSTALLATION
The only way to ensure that all components are at the same voltage level (same potential), and thus eliminate
the possibility of being shocked, is to ensure that all interconnections are making good electrical contact.
Good electrical contact requires that connections are made with bare metal to metal contact, the connections
are very tight, and are protected from rust and corrosion. Use a grinder or wire wheel to clean all paint, rust,
and dirt from the surface when connecting cable lugs to any metal surface. Use an electrical joint compound
between cable lugs and metal surfaces to prevent future rust and corrosion. Use the largest size bolts, nuts,
and washers possible, and tighten fully. Use lock washers to ensure that connections stay tight.
INSTALLATION
Plasma System Safety Ground
The plasma system safety ground (or ground rod)
serves several important purposes. It provides:
• Frame voltage for personnel safety by ensuring
that there are no potential differences between
system components and building components.
• A stable signal reference for all digital and analog
electrical signals on the cutting machine.
• Helps control electromagnetic Interference (or
EMI).
• Provides a discharge path for short circuits and
high voltage spikes, such as those caused by
lightening strikes.
61
INSTALLATION
INSTALLATION
There are many misconceptions about the ground rod, and the role it plays in reducing electromagnetic
interference. In theory, the ground rod is present to eliminate possible potential differences between
equipment and building structures. However many people believe that the ground rod allows all radio
frequency noise 1 to be absorbed and disappear into the Earth. Experience has shown that a good ground
rod will eliminate radio frequency noise problems.
Misconception about Earth ground rods.
1
62
INSTALLATION
In reality the ground rod is providing a low impedance path by which noise currents 1 may return to their
source 2 .
INSTALLATION
Earth ground rod reality.
2
1
63
INSTALLATION
Rail System Safety Ground
INSTALLATION
The rail system safety ground makes sure that the
entire rail is at ground potential, eliminating any
possible shock hazard, and providing backup for the
machine chassis ground in case of a plasma current
short circuit. All four corners of the rail system should
be connected to the cutting table.
64
INSTALLATION
Earth Ground Rod
The best way to make sure that your Earth ground connection is optimized is to enlist the services of a
professional. There are a number of engineering firms which specializes in designing and installing Earth
grounding systems. However, if this option cannot be used, then there are several things which can be done to
ensure that your Earth ground connection is good:
Ground Rod
Soil Resistivity
Soil resistivity can be changed in two ways: by altering the mineral content, the moisture content, or both.
The ideal solution to poor soil resistivity is to excavate the immediate area and backfill with conditioned soil
additives. In extremely dry areas, the moisture content can be improved by installing a drip system which
continually moisturizes the soil surrounding the ground rod. A crude way of affecting soil moisture and content
is to use salt water, or rock salt to condition the surrounding soil.
65
INSTALLATION
The ground rod itself can be optimized in two ways: length and diameter. The longer the grounding rod,
the better the connection. The same is true for diameter: the larger the diameter, the better the connection.
However, if the soil resistance is very low, then a ground rod longer than 3m [10 feet] does not make a
significant difference. Since soil resistivity is rarely as good as it could be, a standard grounding rod should be
25mm [1 inch] in diameter and 6m [20 feet] long.
INSTALLATION
Utility Power Electrical Ground
INSTALLATION
The utility power electrical ground must accompany all 3 phase and single phase power feeds. This electrical
ground provides the proper reference for all incoming power. Failure to provide this ground is a violation of
most electrical codes, and a serious safety hazard.
Depending on the 3 phase power arrangement (either a “Delta” or a “Y”), the line to ground voltage may be
equal to, or less than the line to line voltage. A problem exists any time the line to ground voltage exceeds any
individual line to line voltage (difference in potential). Contact your local utility company if you are not sure
that your 3 phase power has a proper electrical ground. Make sure that your electrical contractor properly
installs the electrical ground wire with all 3 phase and single phase power feeds.
The electrical ground must be connected to the appropriate terminal inside of the plasma power supply. Size
wire according to local electrical codes.
3
2
1
1 Utility Power Electrical Ground
2 3 Phase Electrical Supply
3 Plasma Power Supply
66
INSTALLATION
Multiple Ground Rods
There are a number of reasons why multiple ground rods should not be used. While installing multiple rods
may improve a safety ground or lightening ground, it offers no advantage for electromagnetic interference
reduction, and can cause more problems than it is worth.
The problem with multiple ground rods is that each rod uses an “interfacing Electromagnetic Interference
sphere” 1 of earth, having a radius of 1.1 times the length of the rod. Overlapping of these Electromagnetic
Interference spheres 2 causes a loss in grounding effectiveness proportional to the amount of overlap.
1.1 l
l
1
2
Multiple ground rods should be avoided if possible.
However, if all other avenues have been explored
to lessen your systems’ electronic interferences,
multiple ground rods are an option.
2.5 l
Such a system should be installed by a professional
and the distance between the rods should exceed
2.5 times the length of the rods.
67
INSTALLATION
Multiple ground points can also create undetectable
“sneak” pathways for radio frequency noise currents,
actually causing more interference! Instead of
considering multiple ground rods, take steps to
make the single ground rod as good a ground
connection as possible.
INSTALLATION
Machine Grounding Schematic
2
1
INSTALLATION
3
4
8
10
5
(+)
9
1
Main Control Enclosure
2 Component Enclosures
3 Main Star Ground
4 Rails
5 Cutting Table
6 System Star Ground (on Table)
7 Earth Ground Rod
8
Plasma Power Supply
9 Plasma Power Supply Ground (required by EU
Standards)
10 Electrical System Ground
68
7
6
• All electrical enclosures bolted to the
machine chassis
• Machine chassis grounded to star point on
cutting table.
• Rails grounded to cutting table
• Plasma ground connected to star point on
cutting table
• Earth ground rod connected to star point on
cutting table.
• A separate ground rod is required for the
plasma power supply by some regulations
and directives. Check with local regulations
to determine if this additional ground rod is
required.
INSTALLATION
Check upon receipt
1. Verify all the system components on your order have been received.
2. Inspect the system components for any physical damage that may have occurred during shipping. If
there is evidence of damage, please contact your supplier with the model number and serial number
from the nameplate.
Before Installation
Locate the major components to the right position prior to making electrical, gas, and interface connections.
Refer to the system interconnection diagrams for major components placement. Ground all major components
to earth at one point. To prevent leaks, make sure to tighten all gas and water connections with specific torque.
3.1 Placement of Power Supply
WARNING
Failure to follow instructions could lead to death, injury or
damaged property. Follow these instructions to prevent injury or
property damage. You must comply with local, state and national
electrical and safety codes.
• A minimum of 1 meter (3 ft.) clearance on front and back for cooling air flow.
• Plan for top panel and side panels having to be removed for maintenance, cleaning and inspection.
• Locate the power supply relatively close to a properly fused electrical power supply.
• Keep area beneath power supply clear for cooling air flow.
• Environment should be relatively free of dust, fumes and excessive heat. These factors will affect cooling
efficiency.
Input Power Connection
WARNING
Electric shock can kill! Provide maximum protection against
electrical shock. Before any connections are made inside the
machine, open the line wall disconnect switch to turn power off.
Input power must be provided from a line (wall) disconnect switch that contains fuses or circuit breakers in accordance to local or state regulations.
Input Conductors
• Customer needs to supply the input conductors, which may consist either of heavy rubber covered copper
conductors (three power and one ground) or run in solid or flexible conduit.
• Size of input conductors is dependent on the current. Please refer to the specific power supply manual for
the size on input conductors.
69
INSTALLATION
WARNING
All installation and service of the electrical and plumbing systems
must conform to national and local electrical and plumbing codes.
Installation should be performed only by qualified, licensed
personnel. Consult your local authorities for any regulation issues.
INSTALLATION
Input Connection Procedure
Connection example of EPP-360
1. Remove cover panel.
2. Thread cables through the access opening.
3. Secure cables with strain relief at the access
opening.
INSTALLATION
4. Connect the ground lead to the stud on the chassis.
5. Connect the power leads to the primary terminals.
6. Connect the input conductors to the line (wall)
disconnect.
7. Before applying power, replace the cover panel.
Chassis Ground
Primary Terminals
WARNING
Electric shock can kill! Dangerous voltage and current may be
present any time working around a plasma power source with
covers removed:
• DISCONNECT POWER SOURCE AT THE LINE (WALL) DISCONNECT.
• HAVE A QUALIFIED PERSON CHECK THE OUTPUT BUS BARS (POSITIVE
AND NEGATIVE) WITH A VOLTMETER.
Output Connection Procedure
Connection example of EPP-360
1. Open access panel on the lower front of the
power source.
2. Thread output cables through the openings at
the bottom of the power source immediately
behind the front panel.
3. Connect cables to designated terminals
mounted inside the power source using UL
listed pressure wire connectors.
4. Close front access panel.
Workpiece connection
Pilot Arc connection
Electrode connection
70
INSTALLATION
Interface Cables/Connections
Connection example of EPP-360
INSTALLATION
CNC Interface Cable
Water Cooler Interface Cable
CC-11 rear view
RAS Box front view
CNC Interface Cables
Part Number
Length
Part Number
Length
Water Cooler Interface Cables
Part Number
Length
0558004651
7.6m
0558004654
30.5m
0558004837
5.0m
0558004652
15.0m
0558003978
38.1m
0558004838
10.0m
0558004653
22.8m
0558004655
45.7m
0558004839
20.0m
71
INSTALLATION
3.2 Placement of CC-11 Coolant Circulator
Install the CC-11 in an appropriate location so as to maintain adequate and unrestricted airflow into and out of
the cabinetry.
Input Power Connection
INSTALLATION
A 3-conductor power cable suitable to meet the required input power must be installed. The cable must have
0.25” (6.4 mm) ring lugs installed on the machine end. Connect the power leads to the L1 and L2 terminals and
the ground lead to the ground lug located on the base near the rear panel. A strain relief fitting is provided to
feed a power cable through the rear panel of the cabinet. Please refer to the CC-11 Instruction manual for details.
Electrical installation must be in accordance with local electrical codes for this type of equipment.
CAUTION
Voltage link MUST be moved if equipment is operated at any voltage
other than 575V. Failure to move voltage link to location that matches input voltage can result in damage to equipment.
Input Power Cable
L1 and L2 terminals
NOTE:
Voltage link is shipped in
this location which is for
575 volt operation.
Typical connection for 460 VAC input
72
INSTALLATION
Coolant Connections and Optional Equipment
Connect the hoses to the CC-11 accordingly.
CC-11 rear view
Coolant Connections
Control Cable
INSTALLATION
When the CC-11 unit is installed above
the plasma torch location, Shut-off
Valve (p/n 0558008364) should be ordered and installed. It is connected to
the CC-11 using the “Coolant Supply To
Torch” fitting located on the rear panel.
The shut-off valve closes when delivery
pressure falls below approximately 25
psig (1.7 bar). This will insure that water does not drain from the unit when
changing consumables.
Shut-off Valve
p/n 0558008364
An 8-pin receptacle J1 is provided on the rear panel to supply the CC-11 with 115 VAC
control voltage for pump motor contactor control. The CC-11 is normally supplied
with this control voltage in order for the pump and fan to operate. J1 also provides
contact closure signals for a satisfied 1.00 gpm (3.8 l/min) flow switch (pins D and C)
and coolant level switch satisfied (pins E and H).
RAS Box front view
Connection example of EPP-360
73
INSTALLATION
INSTALLATION
These connectors are located on the back of the unit. Connect the hoses to the CC-11 accordingly. The torch
hose ends should be fitted with one 5/8"-18 male left-hand air / water hose and one 5/8"-18 female right-hand
air / water hose connector.
With the torch and the CC-11 connected, fill the reservoir with the specially formulated torch coolant.
Do not use regular anti-freeze solutions, such as for
an automobile, as the additives will harm the pump
and torch. ESAB P/N 0558004297 is recommended
for service down to 12° F (-11° C). ESAB P/N 156F05 is
recommended for service below 12° F (-11° C) to -34°
F (-36° C).
After filling the reservoir, run the pump with its cap
removed in order to purge air from the radiator, hoses, and torch. Re-check coolant level to ensure reservoir is filled. Replace reservoir cap after purging and
checking coolant level.
Coolant Connections
3.3 Placement of RAS Box
Connections on the RAS Box
1. Remove or unlock the cover screws and lift the box cover off to expose internal components.
WARNING
The cover is grounded to the Remote Arc Starter Box internally with
a short ground wire. Remove cover carefully to avoid damage to the
wire or loosening of the ground wire.
2. Power cables pass through the strain relief fittings.
Pilot Arc Cable enters through strain relief fitting
to Voltage Divider (VDR)
to CAN
to PS Control
Coolant IN
to E-Stop
Coolant OUT
Power Source Cables enter through strain relief fittings
74
INSTALLATION
Buss Bar / Block
Nomex Insulation
Locking Screw
3. Strip back the insulation of the 4/0 (95 mm2) cable, approximately 38 mm.
4. Insert the 4/0 (95 mm2) cable in the buss bar/block hole until copper extends to the edge of the buss bar /
block.
5. Tighten the locking screw(s) down on the cable.
Standard VDR Cable
VDR Cable (with free end)
6. If a non-ESAB lifter is to be used with a system the supplied VDR cable will only have a connector on one
end. The other end of the cable will have no connector. The end with the supplied connector is to be
connected to the RAS box to its corresponding socket which is labeled “Voltage Divider.”
The free end of the VDR cable will be connected to the lifter. Although this is a three conductor cable,
only two of the wires are used, BRN (VDR - ) and BLU (WORK). The black wire is a spare and is to be
terminated and capped inside of the lifter. The corresponding pin at the RAS box comes terminated from
the factory. The RAS box is not to be modified.
It is imperative that the BLUE wire be connected to ground. The BROWN wire is the VDR(-) output.
Customer
Supplied
Lifter
VDR (Voltage Divider Cable)
Ground
in Lifter is
required for
reference
75
INSTALLATION
Connection for Pilot Arc Cable
INSTALLATION
3.4 Torch Connections
Torch hook-up requires the connection of power cables / coolant hoses, pilot arc cable and chassis ground. On
the PT-36 torch, the coolant hoses from the RAS box to the torch also carry electrode power.
The pilot arc cable is connected inside the arc starter box. The pilot arc cable also has a green/yellow wire that is
connected to a grounding stud.
Power Cable /
Coolant Connections
INSTALLATION
Pilot Arc Connection
Ground
Stud
Chassis
Ground
Wire
Pilot
Arc Cable
Power Cable /
Coolant
PG Hose
SG Hose
76
INSTALLATION
3.5 Mounting Torch to Machine
WARNING
Clamping on Torch body may cause dangerous current to flow
through machine chassis.
Mount torch on insulated sleeve here.
INSTALLATION
• Do not mount on stainless steel torch body.
• Torch body is electrically insulated, however high frequency start
current may arc through to find a ground.
• Clamping near torch body may result in arcing between body and
DO NOT mount
on steel torch
body here.
machine.
• When this arcing occurs, torch body may require non-warranty
replacement.
• Damage to machine components may result.
• Clamp only on insulated torch sleeve (directly above label) not less
than 1.25" (31.75 mm) from the torch end of the sleeve.
• PT-36 Torch has an outside diameter of 50mm for standard
mounting.
77
INSTALLATION
3.6 Placement of ICH
The ICH should be located close to the operator for easy access.
INSTALLATION
Connect required CAN cables between ICH and other CAN nodes,
such as Remote Arc Starter (RAS), B4 lifter, if applicable. CAN connection is always made from left to right, if one node is removed
from CAN bus, all nodes on the right need to be shifted to left. After
connecting all CAN nodes, a terminator is required. Leave all unused
CAN ports open.
Connect DB37 cable to port “CNC” on ICH. The other side of DB37,
is connected to the customer’s CNC via a male DB37 connector. An
optional breakout board may be used.
Connect power from ICH to PDB and B4 lifter, if applicable. Make sure the power switch on ICH is off.
Connect power to ICH box.
3.7 Placement of PDB
The PDB should be placed on the deck as it is used for
supplying power to the CGC.
3.8 Placement of CGC
The CGC regulates the plasma gas and shield gas. For optimum
performance, it should always be placed close to torch. According to the material being cut, the customer needs to select and
connect the correct inlet gases. Inline filters are embedded into
the inlet fittings. Please make sure all inlet gases meet the pressure and flow requirements.
Connect 24V AC/DC power from PDB, then connect CAN cable
to ICH.
78
INSTALLATION
Individual Component Connections
Part numbers and lengths for the cables shown below are provided on the following page.
PDB front
ICH back
A
INSTALLATION
B
CGC front
C
PDB back
“A” - Power cable from ICH to PDB (115/230V)
“B” - CAN cable from ICH to CGC
Part Number
Length
Part Number
Length
Part Number
Length
Part Number
Length
0560947962
1m (3.3’)
0560947088
5m (16’)
0558008464
1m (3.3’)
0558008473
10m (33’)
0560946776
2m (6.4’)
0560947089
6m (19’)
0558008465
2m (6.5’)
0558008474
11m (36’)
0560947964
3m (10’)
0560947090
7m (23’)
0558008466
3m (10’)
0558008475
12m (39’)
0560947087
4m (13’)
0558008467
4m (13’)
0558008476
13m (43’)
0558008468
5m (16’)
0558008477
14m (46’)
0558008469
6m (19’)
0558008478
15m (49’)
0558008470
7m (23’)
0558008479
20m (66’)
“C” - Power cable PDB to CGC (24 VAC/DC)
Part Number
Length
Part Number
Length
0558008471
8m (26’)
0558008809
25m (82')
0560947079
1.5m (5’)
0560947064
8m (26’)
0558008472
9m (30’)
0558008480
36m (118')
0560947080
3m (10’)
0560947065
9m (30’)
0560947061
4m (13’)
0560947082
10m (33’)
0560947081
5m (16’)
0560946780
12.8m (42')
0560947062
6m (19’)
0560947066
15m (49’)
0560947063
7m (23’)
0560947083
20m (66’)
79
INSTALLATION
ACC Component Connections
INSTALLATION
A
B
Compressed Air
80
Part Number
0560947067
0560947075
0560947076
0560947068
0560947077
0560947069
0560946782
“A” - Cable from ACC to PDB
Length
Part Number
0.5m (1.7’)
0560947070
1.5m (5’)
0560947071
3m (10’)
0560947072
4m (13’)
0560947078
5m (16’)
0560947073
6m (19’)
0560947074
6.1m (20')
0560946758
Part Number
“B” - Air Curtain hose from ACC to CGC
Length
Part Number
Length
7m (23’)
8m (26’)
9m (30’)
10m (33’)
15m (49’)
20m (66’)
25m (82')
Length
0558004841
1.4m (4.75’)
0558004846
7.6m (25’)
0558004842
1.8m (6’)
0558008503
8.0m (26.25’)
0558004843
3.7m (12’)
0558008504
9.1m (30’)
0558004844
4.6m (15.25’)
0558008505
10.1m (33')
0558004845
5.3m (17.25’)
0558008506
11.0m (36.25’)
0558006865
6.1m (20’)
0558008507
11.9m (39.5’)
0558008502
7.0m (23’)
INSTALLATION
Component Placement Example
6
alternative mounting location
8
6
5
INSTALLATION
2
7
4
1
3
2
Components
CNC
Interface Control Hub (ICH)
3
PT-36 Torch
4
B4 Lift
5
Combined Gas Control (CGC)
6
Remote Arc Starter Box (RAS)
7
Power Supply
8
Power Distribution Box (PDB)
1
81
INSTALLATION
INSTALLATION
82
SAFETY
DESCRIPTION
INSTALLATION
OPERATION
OPERATION
APPENDIX
OPERATION
OPERATION
84
OPERATION
4.0 Interface Control Hub
The ICH (Interface Control Hub) is used to interface the ESAB m3 Process Control with the customer CNC using
RS232/RS422/RS485 and digital I/O.
Operation of the m3 IGC system can be made via the ICH (Interface Control Hub) in the following modes.
1. Remote mode without serial communications. (Default)
2. Remote mode with serial communications.
3. Local mode - diagnostics only.
The following pages describe how to operate the ICH.
OPERATION
85
OPERATION
7
OPERATION
6
1
2
3
4
5
ICH front view
8
9
10
11
12
13
16
15
14
GND
Note:
Chassis must be connected
to the machine ground.
ICH back view
86
OPERATION
4.1 Operation
ICH Connectors
Item Number
Description
1
Plasma Start
In Local mode, this switch will start the plasma process. If the Gas Test switch
is set to on, then the process will go into TEST Mode. In TEST Mode the power
supply faults, errors, and warnings are ignored while at the same time the steps
for starting the power supply and turning HF on are skipped.
2
Gas Test
In Local mode, this switch will start the plasma gas and shield gas at their start
values. If the plasma start switch is turned on after this one, the plasma process
will start in test mode.
3
Local/Remote
This switch will change the ICH system from being remotely controlled, via the
serial communications and digital inputs from the CNC, to locally controlled via
the switches on the Interface Control Hub.
4
Station Select
This switch is a momentary switch which will change the station of which the
information on the screen is displaying. If the system is in local mode, then the
station selected will change to only the station displayed.
5
Screen Select
This switch will allow the user to select different screens.
This only has an effect in local mode under normal operation, when communication is set to none, and in the set up mode. This wheel will allow you to
change the parameter the cursor is currently on. The button will also allow you
to see a more detailed error message when on the error log screen.
To work the wheel for editing a parameter, push the wheel, move the wheel to
change the value, and then press the wheel again to lock in the value.
6
Encoder Wheel
with Push Button
7
Power Switch
This switch will turn on the Interface Control Hub.
8
Input Power
Customer supplied input power to ICH. See specifications for power requirements.
9
AHC Power
Power connection for an ESAB lift (B4 or A6).
10
Gas Power
Power connection to the Power Distribution Box (PDB), which provides 24 VAC/
DC to the Combined Gas Control (CGC).
11
RS232
RS232 protocol for remote control if needed.
12
ASIOB1
ASIOB1 protocol for retrofitting older ESAB systems.
13
CNC
14
AUX Control
15
CAN Vision 5x
16
Fuses
DB37 connector to interface to customer I/O. This also has the RS422/485 connections.
DB25 connector for auxiliary options such as Air Curtain.
Not used.
Replace fuses with same type and size.
87
OPERATION
Item
OPERATION
Display Screens
Startup Screen
On powerup the ICH screen displays the following information for 3 seconds:
OPERATION
Software version
Editing a Parameter on the Display
Only available when communication is set to none or Local/Remote switch is set to Local.
1.
2.
3.
4.
Use the encoder wheel to scroll to the parameter.
Push the wheel.
Turn the wheel to edit the value.
Push the wheel again to lock the value.
Gas Selection Screen
L = Local
C = Cutting
M = Marking
Parameter Set Type
Gas Selection (see table)
Plasma Start (Bar)
Shield Start (CMH)
Plasma Cut (Bar)
Shield Cut (CMH)
Cut Current (Amp)
Start Current (Amp)
Plasma Output (Bar)
Shield Output (CMH)
Current Output (Amp)
88
Gas Select Table
GS
Plasma
Shield
Start
Cut
Start
Cut
1
N2
O2
N2
N2
2
Air
O2
Air
Air
3
N2
N2
N2
N2
4
N2
H35
Air
Air
5
N2
H35
N2
N2
6
Ar
Ar
Air
Air
7
Ar
Ar
N2
N2
8
Air
Air
Air
Air
9
N2
O2
Air
Air
10
N2
N2
Air
Air
11
Ar
O2
N2
N2
12
Ar
O2
Air
Air
13
Ar
Ar
H2O
H2O
14
N2
N2
H2O
H2O
OPERATION
Timers Screen
Timers
Current Ramp Up Time (seconds)
Piercing Time (seconds)
Second Ramp for Thick Plate (seconds)
Current Ramp Down Time (seconds)
Time to delay gas off from the time plasma start is removed. (seconds)
Time to raise torch when cutting is complete (Height Control option required) (seconds)
OPERATION
Height Control Screen (Height Control option required)
Height Settings
Initial/Ignition Height (mm)
Piercing Height (mm)
Cutting Height (mm)
Plate Thickness (mm)
Arc Voltage (volts)
Encoder Height (mm)
Arc Voltage Output (volts)
89
OPERATION
OPERATION
CNC Input Screen
Inputs
CNC’s Direct
Input
ACT
(selection program
is currently
running)
Plasma Start
0
0
Corner
0
0
Block AHC
0
0
Plasma Test
0
0
Mark Mode
0
0
Stat 1 ON
0
0
Stat 2 ON
0
0
Stat 1 UP**
0**
0**
Stat 1 Down**
0**
0**
Stat 2 UP**
0**
0**
Stat 2 Down**
0**
0**
**only present when the Height Control option is present
CNC Output Screen
Outputs
Defined by motion signal
System has faulted
Arc was lost during cut/mark
System is not ready to cut/mark
Station 1 is on Upper Limit Switch
Station 2 is on Upper Limit Switch
Motion Signal options:
Arc On - Motion Enable only goes high when arc is
on. Normally used when no torch lifter is supplied
with plasma system.
Motion - Motion Enable only goes high when motion
is allowed. Normally used when a torch lifter is supplied with plasma system.
90
OPERATION
Setup Descriptions
Setup - The “setup screen” on the Interface Control Hub is accessed by having “Plasma Start” set to “on” and “Remote/
Local” set to “local” when powering up the box. It is exited by turning the power off and then back on. Make sure to
reset the switches back to the original state for parameter display. The encoder wheel with pushbutton, is used to select an
item and change the values or to select a sub-menu.
An example shown here, is for setting up a Plasma
System configured for the following:
1. m3 Integrated Gas Control System
2. EPP-360 Plasma Power Supply
3. Supplied with ESAB Lifter
4. No Water Injection option
OPERATION
Long Preflow Timer (seconds)
Short Preflow Timer (seconds)
Gas purge before Intial Height sensing (seconds)
Power Supply type
ESAB lifter installed
ESAB Water Injection Module installed
Motion Enable Signal meaning
Gas Control type
Gas Test timeout (seconds)
Error Log
Communication Options
Station 1 Lift Options
Station 2 Lift Options
Save Constants
Reload Constants
If the ESAB lifter has not been supplied with the system, the ICH setup screen for the above configuration would
be as shown below:
Long Preflow Timer (seconds)
Short Preflow Timer (seconds)
Gas purge before Intial Height sensing (seconds)
Power Supply type
ESAB lifter installed
ESAB Water Injection Module installed
Motion Enable Signal meaning
Gas Control type
Gas Test timeout (seconds)
Error Log
Communication Options
Save Constants
Reload Constants
91
OPERATION
OPERATION
Described below are the various options to be modified before setting up the plasma system for operation:
Long Preflow
The long preflow is the time, in milliseconds, the system will wait for the gases to flow before starting the power supply. This
time is only used for each start until there is a successful start (after power-up) or when the gas being used is not compatible
with the previous gas being used.
Short Preflow
The short preflow is the time, in milliseconds, the system will wait for the gases to flow before starting the power supply. This
time is only used for when it can be asserted that the last gas used and the current gas are compatible.
Power Supply
The power supply option is where the power supply attached to the system is specified. The EPP-201, EPP-360, EPP-450 and the
EPP-601 are the available choices.
ESAB Lifter
The ESAB Lifter option is set to “yes” if an ESAB lifter was purchased for use with this system.
ESAB Injection
The ESAB Injection option specifies that the ESAB water injection module was purchased for use with this system.
Motion Signal
Arc On - Motion Enable only goes high when arc is on. Normally used when no torch lifter is supplied with plasma system.
Motion - Motion Enable only goes high when motion is allowed. Normally used when a torch lifter is supplied with plasma
system.
Gas Control
This option specifies which type of Gas Control is to be used. The options are: (1) Water - Water Injection is the only shield available, (2) CGC - Combined Gas Control in use, (3) Full - The fully automatic gas control system is in use.
Gas Timeout
This specifies the maximum time, in seconds, which gases will be allow to flow during a gas test before they are automatically
shut off.
Error Log
The error log stores up to 13 errors at a time reported by the ICH in the order they are detected. These errors are only cleared by
selecting “clear”. Select the error, by pushing the pushbutton part of the encoder wheel, to see more details about the error.
Communication
The communication section is used to change the serial communications between the ICH and the CNC.
Protocol - There are four options: None, RS-232, RS-422, and RS-485. Serial communications is disabled when none is selected.
The RS-422 protocol uses four wire while the RS-485 uses two wire.
Baud Rate - The baud rate must be set to the same rate as the CNC’s serial communication transfer rate. Available options are:
300, 1200, 2400, 9600, 19200.
Parity - The parity needs to match the CNC’s serial communication parity. Available options are: None, Even, and Odd.
Stop Bits - The stop bits needs to match the CNC’s serial communication stop bits. Available options are: 1 or 2.
Communication Options
Communication Options
Protocol
Baud Rate
Parity
Stop Bits
Previous Screen
92
OPERATION
Station Options
The following are the options listed under station 1 and station 2:
Lift Type
The lifter type specifies which lift is being used. Available options are: A6 or B4.
Arc Volt Cut
The arc voltage calibration used when in cutting mode. Using a calibrated voltmeter, measure the voltage from the bus bar
in the Remote Arc Starter Box to ground, while the process is active in cut mode. If that is higher than the arc voltage requested,
then raise this number. If it is lower, then low this number.
Arc Volt Mark
The arc voltage calibration used when in marking mode. Using a calibrated voltmeter, measure the voltage from the bus bar in
the Remote Arc Starter Box to ground, while the process is active in mark mode. If that is higher than the arc voltage requested,
then raise this number. If it is lower, then lower this number. The result should be around half of the “Arc Volt Cut” option.
ULS to Table
The distance from the torch tip, when on the upper limit switch, to the top of the table slats. This is in micrometers.
Fast Speed
This is the speed at which the lifter will move when not in the slowdown zone, when using height control, or when moving up.
The slowdown zone is the plate thickness, plus 25 millimeter, above the table slats.
Slow Speed
This is the speed at which the lifter will move when in the slowdown zone or using height control. The slowdown zone is the plate
thickness, plus 25 millimeter, above the table slats.
OPERATION
Station 1 Lift Options
Lift Type
Arc Voltage for Cutting
Arc Voltage for Marking
Upper Limit Switch to Table (µm)
Fast Speed (Relative speed 0-500)
Slow Speed (Relative speed 0-500)
Previous Screen
Station 2 Lift Options
Lift Type
Arc Voltage for Cutting
Arc Voltage for Marking
Upper Limit Switch to Table (µm)
Fast Speed (Relative speed 0-500)
Slow Speed (Relative speed 0-500)
Previous Screen
93
OPERATION
Once the setup is complete, make sure to save the constants by selecting the “Save Constants” tab. The following screen will be displayed for a couple of seconds to confirm that your changes have been taken.
OPERATION
Save Complete
If you do not want to keep the changes you have made and would like to revert back to the last saved settings
then select the “Reload Constants” tab. The following screen will be displayed for a couple of seconds to confirm that your changes have been taken.
Load Complete
94
OPERATION
Digital I/O
Digital Inputs
Digital inputs are to be only turned on with 24 VDC. Any other voltage may damage the board or cause unpredictable results. The best method is to send the 24 VDC from the DB37 connector back on the input, via a relay
or opto-isolator chip.
Signal Name
Corner
Description
Informs the ICH to reduce the current to the corner current and block height
control (if enabled)
Block AHC
Block height control
Plasma Test
Prevents the ICH from sending the start signal to the high frequency unit and
power supply during a plasma start. Power supply faults are ignored.
Plasma Start
Start the plasma process
Mark
Station 1 Down
Station 2 Up
Station 2 Down
Move the station 1 lifter up (if installed)
OPERATION
Station 1 Up
Switch to marking mode and use the last loaded marking data
Move the station 1 lifter down (if installed)
Move the station 2 lifter up (if installed)
Move the station 2 lifter down (if installed)
Station 2 On
Turn on station 2.
Station 1 On
Turn on station 1.
Digital Outputs
Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement.
Signal Name
Description
This signal is high when the arc is on or the process is off, when motion signal
Motion Enable/Arc On is set to Motion in the setup screen. This signal is high when the arc is on, when
motion signal is set to Arc On in the setup screen.
System Fault
The ICH has detected a problem which required the process to stop. Send message 003 or check the error log to get the exact set of errors. These are reset
with a 000 command, but will remain in the error log.
Arc Lost
The arc was lost during a cut/mark operation. This is reset on the next plasma
start.
Not Ready
The ICH is not ready to start the process. Possible causes: no Station selected,
not in Remote Mode, Plasma Start was high on boot up and is still high, Gas
settings missing, Start Current missing, Cut Current missing, Timers missing,
Height Control settings missing (if a lifter is installed).
Station 1 ULS
Station 1 is on the upper limit switch.
Station 2 ULS
Station 2 is on the upper limit switch.
95
OPERATION
4.2 Modes of Operation:
Remote Interface without Serial Communication
This mode describes the instance when the CNC controls everything except parameter selection via the digital
inputs and outputs. To operate in this mode, go to the setup screen and change the “Protocol” to “None” under “Communications”.
• The process parameters need to be modified on the ICH screen every time the CNC needs to change the
cutting or marking parameters. The ICH system supports a cutting parameter set and a marking parameter
set. The last used set will be available upon restarting the ICH. This requires starting the process at least
once with the set.
• The cutting parameters and marking parameters can be loaded into different tables in the ICH. After all the
parameters are loaded, switching can be done by pressing the push button on the parameter line in the
Gas Selection screen.
OPERATION
• Gas Test - The gas test function is designed to allow diagnostics of the gas control system. The gas test
feature can be enabled by turning on the “Plasma Test” digital input and issuing a “Plasma Start”. The
gases flowing in each test and the pressure/flow at which they are set to, is based on the currently loaded
parameters on the ICH display.
• The ICH system has two possible sequences it can be running. One with the lifter height controlled by the
ICH system and another with the lifter height controlled by the CNC.
Described below are examples for cutting a part from the CNC. The parameters from the cut data manual used
for the setup below are detailed on the following page.
Material Type
Material Thickness
Cut Quality
Current
Start Gas
Cut Gas
Shield Gas
96
Carbon Steel
12 mm
Production
200 Amps
N2
O2
Air
90
N2/AIR
Shield Gas
Plasma Start - Bar
Shield Start - CMH
Plasma Cut - Bar
Shield Cut - CMH
Cut Current - Amps
Start Current - Amps
P2
P3
P4
P5
P6
P7
Pierce
Thick Plate
Ramp Down
Gas Off
Raise Lift
T2
T3
T4
T5
T6
Pierce
Cutting
Thickness
Arc Voltage - Volts
H2
H3
H4
H5
2.0(0.080)
149
142
3556(140)
6(0.250)
3(0.125)
1.7(0.065)
3(0.125)
3(0.125)
5715(225)
6(0.250)
Kerf - mm (inch)
4(0.160)
1.0
1.0
6(0.250)
0.35
0.35
4(0.160)
0.0
0.6
0.0
0.6
0.6
50
50
0.1
100
100
0.6
2.8
2.8
0.1
2.8
4.1
2.8
4.1
9
1.7
9
6(0.250)
1.7
3(0.125)
2.5(0.100)
1905(75)
153
10(0.375)
3(0.125)
6(0.250)
4(0.160)
1.0
0.35
0.6
0.0
0.2
0.6
50
100
2.8
4.1
2.8
1.7
9
10(0.375)
Material Thickness - mm (inch)
Speed - mm/min (in/min)
Machine Parameters:
Ignition
H1
Height Parameters: mm (inch)
Ramp Up
T1
Timers: (sec)
Gas Select
P1
Gas Parameters:
description
O2
Cut Gas
code
100
N2/AIR
Start Gas
Material
Amperes
9
Carbon Steel
Gas Select
PROducTION
2.5(0.100)
1524(60)
155
12(0.500)
3(0.125)
6(0.250)
4(0.160)
1.0
0.35
0.6
0.0
0.4
0.6
50
100
2.8
4.1
2.8
1.7
9
12(0.500)
OPERATION
OPERATION
P MS 100A GS9 ncode112 pic2
OPERATION
OPERATION
97
OPERATION
Operation sequence with ESAB supplied plasma lifter:
1. Setup the part program that needs to be cut from the CNC.
2. Go to the ICH screen for “C:Cutting Parameters” and setup the parameters according to the cut data manual:
L = Local
C = Cutting
M = Marking
OPERATION
Parameter Set Type
Gas Selection (see table under DISPLAY SCREENS section)
Plasma Start (Bar)
Shield Start (CMH)
Plasma Cut (Bar)
Shield Cut (CMH)
Cut Current (Amp)
Start Current (Amp)
Plasma Output (Bar)
Shield Output (CMH)
Current Output (Amp)
3. Next, go to the ICH screen for Timers and setup the timer values according to the cut data manual:
Timers
Current Ramp Up Time (seconds)
Piercing Time (seconds)
Second Ramp for Thick Plate (seconds)
Current Ramp Down Time (seconds)
Time to delay gas off from the time plasma start is removed. (seconds)
Time to raise torch when cutting is complete (Height Control option required) (seconds)
98
OPERATION
4. Next, go to the ICH screen for Height Settings and setup the height parameters according to the cut data
manual:
Height Settings
Initial/Ignition Height (mm)
Piercing Height (mm)
Cutting Height (mm)
Plate Thickness (mm)
Arc Voltage (volts)
Encoder Height (mm)
Arc Voltage Output (volts)
99
OPERATION
5. Once all of the setups have been completed on the ICH, refer to the cut data manual for the Speed and Kerf
inputs to be made on the CNC part program.
6. Execute the program from the CNC and send a “Plasma Start” signal to the ICH.
7. The following happens while the CNC waits for motion enable.
a. The ICH starts the purge before initial height sensing.
b. The torch comes down, does the initial height sensing and finishes the preflow.
c. The ICH starts the power supply.
d. The ICH waits for the arc to transfer and the main current to start, turning the high frequency generator off once the arc has transferred. If the motion signal constant is set to “Arc On”, this is when the
“Motion Enable” signal is returned to the CNC.
e. The gas switches from start to cut values and gas.
f. The ICH ramps the current up to the desired cutting/marking current.
g. The ICH raises to the piercing height.
h. The ICH waits a time, from the parameters, for the current to pierce the plate.
i. The ICH lowers down to the cutting height. If the motion signal constant is set to “Motion”, this is when the “Motion Enable” signal is returned to the CNC.
8. Start moving the machine in the shape desired, turning the corner signal on when not going at full speed for
the parameters sent.
9. Remove the “Plasma Start” signal to the ICH at the end of cut.
10. The following happens while the CNC waits for “Motion Enable” to be removed and come back (if the motion signal constant is set to “Motion”).
a.
“Motion Enable” is removed, if the motion signal constant is set to “Motion”.
b. The current ramps down.
c. The power supply is turned off and, after a time specified in the parameters, the gas stop flowing.
If the motion signal constant is set to “Arc On”, this is when the “Motion Enable” signal is removed.
d. The lift raises for an amount of time specified in the process parameters.
e. If the motion signal constant is set to “Motion”, then this is when “Motion Enable” is returned.
OPERATION
Operation sequence with customer supplied plasma lifter:
1. Setup the part program that needs to be cut from the CNC.
2. Go to the ICH screen for “C:Cutting Parameters” and setup the parameters according to the cut data manual:
L = Local
C = Cutting
M = Marking
OPERATION
Parameter Set Type
Gas Selection (see table under DISPLAY SCREENS section)
Plasma Start (Bar)
Shield Start (CMH)
Plasma Cut (Bar)
Shield Cut (CMH)
Cut Current (Amp)
Start Current (Amp)
Plasma Output (Bar)
Shield Output (CMH)
Current Output (Amp)
3. Next go to the ICH screen for Timers and setup the timer values according to the cut data manual:
Timers
Current Ramp Up Time (seconds)
Piercing Time (seconds)
Second Ramp for Thick Plate (seconds)
Current Ramp Down Time (seconds)
Time to delay gas off from the time plasma start is removed. (seconds)
Time to raise torch when cutting is complete (Height Control option required) (seconds)
100
OPERATION
Remote Interface with Serial Communication
This mode of operation is used if the customer needs to have plasma parameter selection controlled from the
CNC. There are two ways this can be achieved:
1. ESAB Serial Communication Interface - ESCI.
ESCI is a an easy to use software with a graphical interface for downloading the necessary parameters to the
ICH for the best cut quality. All the operator needs to know is the material type, thickness of the material,
cut amperage and type of plasma gas. More details about the software and the system requirements are
described in the appendix.
2. Serial protocol controlled by customer CNC.
Detailed information on the protocol is described in the appendix.
101
OPERATION
4. Once all of the setups have been completed on the ICH, refer to the cut data manual for the Speed and Kerf
inputs to be made on the CNC part program.
5. Also, setup the height parameters according to the cut data manual from the CNC.
6. Execute the program from the CNC.
7. The torch, controlled from the CNC, comes down and begins ignition height sensing. Block AHC and Corner
can be set to start the purge and preflow. Send plasma start to start.
8. Send a “Plasma Start” signal to the ICH after the torch is at ignition height.
9. The following happens while the CNC waits for “Motion Enable”.
a. The ICH starts the purge.
b. The ICH starts the power supply.
c. The ICH waits for the arc to transfer and the main current to start, turning the high frequency
generator off once the arc has transferred. If motion signal constant is set to “Arc On”, then “Motion Enable” is sent back.
d. The gas switches from start to cut values and gas.
e. The ICH ramps the current up to the desired cutting/marking current. At this time, the torch needs to be raised to piercing height.
f. The ICH waits a fixed time for the current to pierce the plate. If motion signal constant is set to
“Motion”, then “Motion Enable” is sent back.
10. Start moving the machine in the shape desired, turning the corner signal on when not going the full
speed for the parameters sent.
11. Remove the “Plasma Start” signal to the ICH at the end of cut.
12. The following happens while the CNC waits for “Motion Enable” to be removed and come back (if the motion signal constant is set to “Motion”).
a.
“Motion Enable” is removed, if the motion signal constant is set to “Motion”.
b. The current ramps down.
c. The power supply is turned off and, after a time specified in the parameters, the gas stop flowing.
If the motion signal constant is set to “Arc On”, this is when the “Motion Enable” signal is removed.
d. If the motion signal constant is set to “Motion”, then this is when “Motion Enable” is returned.
ESAB Welding and Cutting Products
AIR
Description
AIR
AIR
Start Gas
Cut Gas
200
Amperes
Shield Gas
Carbon Steel
proDuCtioN
118
Plasma Start - Bar
Shield Start - CMH
Plasma Cut - Bar
Shield Cut - CMH
Cut Current - Amps
Start Current - Amps
P2
P3
P4
P5
P6
P7
Thick Plate
Ramp Down
Gas Off
T3
T4
T5
Pierce
Cutting
Thickness
Arc Voltage - Volts
H2
H3
H4
H5
3810(150)
2.5(0.100)
143
143
2.5(0.100)
6(0.250)
5(0.188)
5080(200)
3(0.125)
3(0.125)
Kerf - mm (inch)
4(0.160)
10(0.375)
4 (0.160)
10(0.375)
1.0
0.35
0.35
1.0
0.0
0.6
0.0
0.6
0.6
0.1
0.6
100
100
0.1
4.3
200
4.3
200
4.3
3.0
4.3
3.0
8
2.0
8
6(0.250)
2.0
5(0.188)
2.6(0.103)
2540(100)
146
10(0.375)
3(0.125)
10(0.375)
4(0.160)
1.0
0.35
0.6
0.0
0.2
0.6
100
200
4.3
3.0
4.3
2.0
8
10(0.375)
Materialthickness-mm(inch)
Speed - mm/min (in/min)
Machineparameters:
Ignition
H1
heightparameters:mm(inch)
Raise Lift
Pierce
T2
T6
Ramp Up
T1
timers:(sec)
Gas Select
P1
gasparameters:
Code
102
Material
Carbon Steel
Air
2.8(0.110)
2413(95)
158
12(0.500)
6(0.218)
10(0.375)
4(0.160)
1.0
0.35
0.6
0.0
0.3
0.6
100
200
4.3
3.0
4.3
2.0
8
12(0.500)
2.8(0.112)
1905(75)
160
16(0.625)
6(0.218)
13(0.500)
4(0.160)
1.0
0.35
0.6
0.0
0.3
0.6
100
200
3.7
3.0
3.7
2.0
8
16(0.625)
2.9(0.116)
1651(65)
165
20(0.750)
6(0.250)
13(0.500)
4(0.160)
1.0
0.35
0.6
0.0
0.4
0.6
100
200
3.7
3.0
3.7
2.0
8
20(0.750)
3.2(0.126)
889(35)
180
25(1.000)
10(0.375)
13(0.500)
4(0.160)
1.0
0.35
0.6
0.0
0.7
0.6
100
200
4.3
3.0
4.3
2.0
8
25(1.000)
3.3(0.128)
635(25)
182
32(1.250)
10(0.375)
20(0.800)
4(0.160)
1.0
0.35
0.6
0.0
1.0
0.6
100
200
2.6
3.0
2.6
2.0
8
32(1.250)
3.3(0.130)
380(15)
189
38(1.500)
10(0.375)
20(0.800)
4(0.160)
1.0
0.35
0.6
0.0
1.0
0.6
100
200
2.6
3.0
2.6
2.0
8
38(1.500)
3.6(0.140)
255(10)
201
45(1.750)
10(0.375)
20(0.800)
4(0.160)
1.0
0.35
0.6
0.0
1.0
0.6
100
200
2.6
3.0
2.6
2.0
8
45(1.750)
OPERATION
Version 4.0 released on 15Mar11
P MS 200A GS8 ncode124 pic23
3.8(0.148)
152(6)
211
50(2.000)
10(0.375)
20(0.800)
4(0.160)
1.0
0.35
0.6
0.0
1.0
0.6
100
200
2.6
3.0
2.6
2.0
8
50(2.000)
OPERATION
Local Interface - Diagnostics Only
The local interface is used to test the plasma system for diagnostic purposes. This allows limited use of the system (i.e. only one station at a time) and is normally used for troubleshooting. This will disable the CNC’s ability to
control the system, but will still allow the CNC to get the status (including the gas pressures and flows) and errors.
Upon switching to local mode for the first time, since the last reboot, the parameters loaded are for 200 amp
Carbon Steel Air Production cutting.
OPERATION
Note:
The actual operation of cutting should not be performed while in this mode as the CNC is not in
control of the process.
L = Local
C = Cutting
M = Marking
Parameter Set Type
Gas Selection (see table)
Plasma Start (Bar)
Shield Start (CMH)
Plasma Cut (Bar)
Shield Cut (CMH)
Cut Current (Amp)
Start Current (Amp)
OPERATION
Plasma Output (Bar)
Shield Output (CMH)
Current Output (Amp)
Operation sequence:
1. To enable the local interface, the “Local/Remote” switch needs to be in the “Local” position.
2. Set up the parameters for the process as needed from the cut data manual.
3. If plasma is to be turned on, then set the “Plasma Start” to “ON” and the gas test switch to the “OFF” position.
4. If the plasma lifter is supplied from ESAB, then the lifter will perform an initial height sense operation.
5. The following happens after the torch is at ignition height:
a. The ICH starts the purge.
b. The ICH starts the power supply.
c. The ICH waits for the arc to transfer and the main current to start, turning the high frequency generator off
once the arc has transferred. If motion signal constant is set to “Arc On”, then “Motion Enable” is sent back.
d. The gas switches from start to cut values and gas.
e. The ICH ramps the current up to the desired cutting/marking current.
f. The ICH waits a fixed time for the current to pierce the plate.
6.If “Gas Test” is turned on before “Plasma Start” is on, then all the above steps are repeated except that a signal to the power supply is not sent from the ICH.
103
104
System Error
Motion Enable
Block AHC
Station On
Corner
Mark
Plasma Start
Plasma Test
Process Step
Idle
Purge
IHS Preflow Power Supply Start
Marking Mode with ESAB supplied lifter
OCV Delay
HF Start
Arc On Current Ramp Up
Piercing
Go To Cutting Height
SVG
Picture
created
ICH with
Cutting
Mode with
ESAB as
supplied
lifter Lift - Cutting - Arc Voltage.svg
OPERATION
Cutting
Current Ramp Down Raise Lifter
End Process
Idle
Page 1 of 1
OPERATION
Timing Sequence
OPERATION
Interface Wiring Descriptions
Interface Wiring
DB37 Connector
This cable should be a twisted pair cable with an overall shield attached to the shell on both ends of the cable.
It has a DB37 male connector on each end.
Wire No.
Signal Name
1
RS422 RX-
Serial receive negative
Function
2
RS422/485 TX-
Serial transmit negative
3
RS422/485 GND
Communication Ground
Digital Output 1 (-)
Motion Enable Emitter
Digital Output 2 (-)
System Fault Emitter
6
Digital Output 3 (-)
Arc Lost Emitter
7
Digital Output 4 (-)
Not Ready Emitter
8
Digital Output 5 (-)
Station 1 ULS Emitter
9
Digital Output 6 (-)
Station 2 ULS Emitter
10
Digital Output 7 (-)
Spare Output Emitter
11
Digital Output 8 (-)
Spare Output Emitter
12
Digital Input 1
Corner
13
Digital Input 2
Block AHC
14
Digital Input 3
Plasma Test
15
Digital Input 4
Cycle Start
16
Digital Input 10
17
24VDC
18
GND
19
Digital Input 5
Station 2 On
24 VDC Power
Ground
Mark
20
RS422 RX+
Serial receive positive
21
RS422/485 TX+
Serial transmit positive
22
GND
23
Digital Output 1 (+)
Ground
Motion Enable Collector
24
Digital Output 2 (+)
System Fault Collector
25
Digital Output 3 (+)
Arc Lost Collector
26
Digital Output 4 (+)
Not Ready Collector
27
Digital Output 5 (+)
Station 1 ULS Collector
28
Digital Output 6 (+)
Station 2 ULS Collector
29
Digital Output 7 (+)
Spare Output Collector
30
Digital Output 8 (+)
Spare Output Collector
31
Digital Input 6
Station 1 Up (If installed)
32
Digital Input 7
Station 1 Down (If installed)
33
Digital Input 8
Station 2 Up (If installed)
34
Digital Input 9
Station 2 Down (If installed)
35
Digital Input 11
Station 1 On
36
GND
37
24VDC
FG
Field Ground
OPERATION
4
5
Ground
24 VDC Power
Cable Shield Ground (Connected via the connector shell)
105
OPERATION
DB37 Connector
The customer has two options available for wiring to the DB37 connector shown below:
Connection assemblies for ICH and CNC interface.
Option 1:
ESAB provided DB37 cable (Male-Male) and terminal block assembly for connection to CNC.
DB37 Cable
DB37 Terminal
Block Assembly
Example DB37 Breakout boards:
OPERATION
ICH Box
Manufacturer
Part Number
Sea Level
TB02-KT
Winford
BRK37F series
Advantech *
ADAM-3937
*ESAB recommended part available as ESAB part number
0558009990.
Option 2:
ESAB provided DB37 cable (Male-Male) and customer provided DB37 (Female) connector. Customer builds their
own DB37 Interface for connection to CNC.
DB37 Cable
To Customer
provided
DB37 Interface
ICH Box
DB37 Cable
Part Number
0558010071
0558010072
0558010073
0558010074
0558010075
106
Length
2M
3M
4M
5M
6M
Part Number
0558010076
0558010077
0558010078
0558010079
0558010080
Length
7M
10 M
15 M
20 M
25 M
OPERATION
RS422 Cable Wiring:
Customer supplied cable - must be shielded,
twisted pair (STP) cable with shield bonded to
ground.
RS422 Adaptor
ICH via DB37
1 txd +
21 txd +
2 txd -
2 txd -
3 rxd +
20 rxd +
4 rxd -
1 rxd -
5 gnd
3 gnd
OPERATION
Example serial converters:
Manufacturer
Part Number
B & B Electronics
485DRCI
B & B Electronics
4WSSD9OTB
Comm Front
CVT-485-422-4
Axeon *
STS-1915SI
*ESAB recommended part available as ESAB part number
0558009988.
DB25 Connector- Air Curtain Option
The DB25 connector is used to connect ICH to the Power Distribution Box (PDB). This cable should be a shielded,
twisted pair cable that has a DB25 male connector on one end and a DB25 female connector on the other end.
The DB25 connector is used with the Air Curtain option.
Wire No.
Signal Name
1
Analog Input 1
Function
Spare
Wire No.
Signal Name
14
Station 1 Air Curtain(-)
Station 1 Air Curtain
Function
2
Analog Input 2
Spare
15
Station 2 Air Curtain(-)
Station 2 Air Curtain
3
Analog Output 1
Spare
16
Spare 3
Spare output emitter
Spare
17
Spare 4
Spare output emitter
CNC Analog COM
18
Spare 5
Spare output emitter
Spare
19
Station 1 Air Curtain (+)
Station 1 Air Curtain
4
Analog Output 2
5
CNC Analog Common
6
Analog Input 3
7
Analog Input 4
Spare
20
Station 2 Air Curtain (+)
8
Analog Output 3
Spare
21
Spare 3
Spare output collector
Station 2 Air Curtain
9
Analog Output 4
Spare
22
Spare 4
Spare output collector
10
Input 1
Spare
23
Spare 5
Spare output collector
11
Input 2
Spare
24
24VDC
Power
12
Input 3
Spare
25
CHASSIS GND
Ground
13
Input 4
Spare
107
OPERATION
DB9 Connector
This is a standard DB9 RS232 cable. This communication port is not recommended for production use.
Wire No.
Signal Name
Function
1
NC
2
RS232 RX
Receive
3
RS232 TX
Transmit
4
NC
No Connect
5
NC
No Connect
No Connect
6
GND
7
RS232 RTS
Ground
Ready To Send
8
RS232 CTS
Clear To Send
9
NC
No Connect
OPERATION
Power Connector
Wire No.
Signal Name
Function
1
Line 1
Line 1 of 230 VAC or Line of 115 VAC (No Height Control)
2
Line 2
Line 2 of 230VAC or Neutral of 115 VAC (No Height Control)
3
NC
4
GND
No Connect
Ground
Digital Output Wiring Examples
Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement. There are two good
methods for doing this. There is a small voltage drop across the opto-isolator in the Interface Control Hub, so
it is recommended that a voltage of at least 12 VDC be used in order to protect against noise generated by the
plasma system’s starting circuit.
24V
Method 1: Using the 24 VDC to drive a digital input circuit on the
CNC’s input.
DO+ 1
DO- 1
R1
R2
10K
1M
5V
R3
2.74K
Method 2: Using the 24 VDC to drive a relay coil and using the contact on the coil however the CNC needs it.
24V
24V
DO+ 1
DO+ 1
DO- 1
R1
R2
10K
1M
R3
2.74K
5V
DO- 1
A
coil
B
External CNC
Serial
Digital I/O
108
C
OPERATION
4.3 Maintenance/Troubleshooting
Communication Problems
Problem
Resolution
Unable to send and receive messages
Make sure the CNC’s RX - is on pin 2, TX – is on pin 1, RX + is on pin 21,
and TX + is on pin 20 of the DB37 connector. Also make sure the constant for the communication protocol is set properly. Communication
ground should be connected to pin 3.
502 Error message
The command is not allowed in this state.
Digital Input Problems
Problem
Resolution
Make sure the inputs are wired to the proper input on the ICH.
No input on the screen is changing when the
CNC turns on an input to the ICH
Make sure the CNC is only sending the 24 VDC from DB37 connector
back to the ICH as the input when turning the input on.
OPERATION
The wrong input on the screen is changing
when the CNC turns on an input to the ICH
Digital Output Problems
Problem
The ICH shows the output turning on but
there is no voltage on the output’s emitter
side.
Resolution
Check for voltage on the collector side. If there is a DC voltage there
greater than 10 volts, then call service.
Gas Problems
Problem
The CNC turns on a gas test and no gas
comes out of the torch.
Resolution
Make sure the plasma gas box and shield gas box have power (green
LED on the same side as the cable connections is lit).
Power Supply Problems
Problem
Power supply will not start.
Resolution
Make sure power is supplied.
Check for an error code on the power supply display.
Check for plasma test signal being low.
Check for E-stop signal not connected to RAS Box.
109
OPERATION
Error Messages on the ICH Display
Error Log Screen
OPERATION
Last received error always shown at top.
Clear all errors on screen.
This screen can be accessed by using “Switch Screen” on the ICH and displays a log of the last 13 errors received by the ICH. By moving the cursor to the error and pressing the hand wheel, more details of the error are
displayed.
Error Screen
Station number
Type of Error
Error ID
Error details
This screen can be accessed by scrolling down to the
“fault” text and pressing the hand wheel or through
the error log screen.
110
OPERATION
Module Errors
ID
Problem
Solution
The CRC was wrong on the module.
This error will normally correct itself. If it continues, replace the
module/board.
9
The checksum of the station constants do not match
the station constants.
This error will normally correct itself. If it continues, replace the
module/board.
B
The watchdog telegram has not been received in 400
ms.
1. Check the CAN cable connection between the module and the ICH.
2. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
3. Make sure the CAN modules are plugged in, starting at port 1 and not
skipping a port.
4. Check that the module has power.
5. Replace the module.
11
The module is reporting a checksum error.
This error will normally correct itself. If it continues, replace the
module/board.
12
The module has caries out a reset.
1. Check if the unit has a stable power supply.
2. Check if the module is properly grounded.
3. Replace the module.
1A
The watchdog counter has been exceeded.
1. Check if the unit has a stable power supply.
2. Check if the module is properly grounded.
3. Replace the module.
1B
The output driver has a short circuit.
1. Check the driver output for a short circuit in the wiring.
2. Replace the module.
1C
The wrong or no expansion board is installed.
Replace the module.
1D
There was a checksum error during the transfer of the
station constants.
This error will normally correct itself. If it continues, replace the
module/board.
1E
The CAN send buffer overflowed.
1F
The CAN receive buffer overflowed.
Please report these errors to service with the steps you took to produce
them.
22
The output of the digital output does not match the
command.
OPERATION
3
1. Check the driver output for a short circuit in the wiring.
2. Replace the module.
23
The checksum of the calibration data is wrong.
Replace the module.
2B
The Junma amplifier is reporting an alarm.
Check the Junma's LEDs for more details on the error.
2C
There is a checksum error in the calibration data.
Replace the module.
2D
The output signal status on the relay output are
varying.
1. Check the driver output for a short circuit in the wiring.
2. Replace the module.
2E
The heat sink is over heating.
2F
There is no input voltage for the motor.
Please report these errors to service with the steps you took to produce
them.
30
The checksum of the local PLC on the module is
wrong.
Replace the module.
Please report these errors to service with the steps you took to produce
them.
31
The output cable to the motor is shorted.
34
There is a problem with the encoder cable.
53
The checksum of the local PLC on the module is
wrong.
Replace the module.
54
The output signal status on the relay output are
varying.
1. Check the driver output for a short circuit in the wiring.
2. Replace the module.
59
There was a checksum error during the transfer of the
station constants.
This error will normally correct itself. If it continues, replace the
module/board.
5A
The module has preformed a reset.
1. Check if the unit has a stable power supply.
2. Check if the module is properly grounded.
3. Replace the module.
111
OPERATION
Module Errors
OPERATION
ID
112
Problem
5B
The wrong position sensor is in use.
Solution
5C
There is no servo amplifier.
5D
The limit switch has been reached.
5E
There is an over current in the servo amplifier.
5F
The watchdog counter has been exceeded.
1. Check if the unit has a stable power supply.
2. Check if the module is properly grounded.
3. Replace the module.
C8
The commanded value is too high.
1. Check that the command does not exceed the input pressure/flow
abilities of the module.
C9
The input pressure on plasma gas 1 is above 145 PSI
(10 BAR).
1. Check that the input pressures to the Shield Gas Control are below
145 PSI (10 BAR).
2. Replace the Plasma Gas Control.
CA
The input pressure on plasma gas 1 is below 51 PSI
(3.5 BAR).
1. Check that the input pressures to the Shield Gas Control are above 51
PSI (3.5 BAR).
2. Check that the line between the Shield Gas Control and Plasma Gas
Control, labeled PG1, is not clogged or leaking.
3. Check the pressure on PG1. If it is below 51 PSI (3.5 BAR), then replace
the Shield Gas Control.
4. Replace the Plasma Gas Control.
CB
The input pressure on plasma gas 2 is above 145 PSI
(10 BAR).
1. Check that the input pressures to the Shield Gas Control are below
145 PSI (10 BAR).
2. Replace the Plasma Gas Control.
CC
The input pressure on plasma gas 2 is below 51 PSI
(3.5 BAR).
1. Check that the input pressures to the Shield Gas Control are above 51
PSI (3.5 BAR).
2. Check that the line between the Shield Gas Control and Plasma Gas
Control, labeled PG2, is not clogged or leaking.
3. Check the pressure on PG2. If it is below 51 PSI (3.5 BAR), then replace
the Shield Gas Control.
4. Replace the Plasma Gas Control.
FD
There was an unkown error from the CAN port in the
ICH.
Please report these errors to service with the steps you took to produce
them.
FE
The module has preformed a reset.
1. Check if the unit has a stable power supply.
2. Check if the module is properly grounded.
3. Replace the module.
FF
The module's telegram counters did not match the
ICH's telegram counter
1. Check the CAN cable connection between the module and the ICH.
2. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
3. Make sure the CAN modules are plugged in, starting at port 1 and not
skipping a port.
4. Check that the module has stable power.
5. If this is happening often, replace the module.
Please report these errors to service with the steps you took to produce
them.
OPERATION
Process Errors
Problem
Solution
1
The input pressure on plasma gas is above 145 PSI (10
BAR).
1. Check that the input pressures to the Combined Gas Control are
below 145 PSI (10 BAR).
2. Replace the Combined Gas Control.
2
The input pressure on plasma gas is below 51 PSI (3.5
BAR).
1. Check that the input pressures to the combined Gas Control are above
51 PSI (3.5 BAR).
2. Replace the Combined Gas Control.
3
The input pressure on shield gas is above 145 PSI (10
BAR).
1. Check that the input pressures to the Combined Gas Control are
below 145 PSI (10 BAR).
2. Replace the Combined Gas Control.
4
The input pressure on shield gas is below 51 PSI (3.5
BAR).
1. Check that the input pressures to the Combined Gas Control are
above 51 PSI (3.5 BAR).
2. Replace the Combined Gas Control.
5
The output pressure of the plasma gas is more than 7
PSI (0.5 BAR) above the command.
1. Check for a clogged line between the Combined Gas Control and the
torch.
2. Check for clogged/damaged consumables.
3. Replace the Combined Gas Control.
6
The output pressure of the plasma gas is more than 7
PSI (0.5 BAR) below the command.
1. Check for a leaking line between the Combined Gas Control and the
torch.
2. Check for the correct consumables are properly installed.
3. Replace the Combined Gas Control.
9
The shield gas flow is more than 35 CFH (1 CMH)
above the command.
1. Check for a leaking line between the Combined Gas Control and the
torch.
2. Check for the correct consumables are properly installed.
3. Replace the Combined Gas Control.
A
The shield gas flow is more than 35 CFH (1 CMH)
below the command.
1. Check for a clogged line between the Combined Gas Control and the
torch.
2. Check for clogged/damaged consumables.
3. Replace the Combined Gas Control.
D
The arc voltage is more than 300 Volts above the
command.
1. Check for a short in the VDR cable.
2. Check for good grounding on the lifter control box.
3. Replace the MCU in the lifter control box.
E
The arc voltage is more than 300 Volts below the
command.
1. Check for a short in the VDR cable.
2. Check for good grounding on the lifter control box.
3. Replace the MCU in the lifter control box.
F
The current output is more than 50 Amps above the
command.
1. Check the feedback voltage from the power supply is the expected
value.
2. Check the command voltage to the power supply is the expected
value.
10
The current output is more than 50 Amps below the
command.
1. Check the feedback voltage from the power supply is the expected
value.
2. Check the command voltage to the power supply is the expected
value.
11
The torch has crashed into the work piece.
1. Make sure the stand-off voltage, if using arc voltage height control
mode, is correct for the thickness being cut/marked.
2. Make sure the CNC speed is correct for the thickness being cut/
marked.
3. Make sure the plate is level, if using encoder height control mode.
12
The arc went out before the plasma start went low.
1. Make sure the part being cut/marked fits on the work piece.
2. If this was during a hole cutting, make sure to turn off the plasma start
signal before doing overburn.
13
The initial height sensing failed to complete in 10
seconds.
1. Make sure the work piece is below the torch.
2. Make sure the work piece is properly grounded.
3. Make sure the torch tip is free of debris.
113
OPERATION
ID
OPERATION
Process Errors
OPERATION
ID
114
Problem
Solution
16
The Combined Gas Control (CGC) failed to respond
properly to the ICH's watchdog command.
1. Check the CAN cable connection between the Combined Gas Control
and the ICH.
2. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
3. Make sure the CAN modules are plugged in, starting at port 1 and not
skipping a port.
4. Check that the Combined Gas Control has power. If it does not, check
the power cable for a short. If no short is present, check the Power
Distribution Box's fuse and input power.
5. Replace the Combined Gas Control.
17
The Water Injection Control (WIC) failed to respond
properly to the ICH's watchdog command.
1. Check the CAN cable connection between the Water Injection Control
and the ICH.
2. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
3. Make sure the CAN modules are plugged in, starting at port 1 and not
skipping a port.
4. Check that the Water Injection Control has power. If it does not, check
the Water Injection Control's fuse and input power.
5. Replace the Water Injection Control's PCUA.
18
The lifter failed to respond properly to the ICH's
watchdog command.
1. Check the CAN cable connection between the lifter and the ICH.
2. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
3. Make sure the CAN modules are plugged in, starting at port 1 and not
skipping a port.
4. Check that the lifter has power. If it does not, check the power cable
for a short.
5. Replace the lifter's MCU.
19
The coolant flow is below 1 GPM (3.78 LPM).
1. Check the coolant level in the tank.
2. Check the flow switch for proper operation.
3. Check the coolant flow input to the RAS.
4. Check for the coolant flow signal is being properly transferred
through the power supply.
1A
The power supply is reporting a fault.
Check the power supply for more details.
1B
The Remote Arc Starter (RAS) failed to respond
properly to the ICH's watchdog command.
1. Check the CAN cable connection between the Remote Arc Starter and
the ICH.
2. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
3. Make sure the CAN modules are plugged in, starting at port 1 and not
skipping a port.
5. Replace the Remote Arc Starter's PCUA.
1C
The torch failed to start within 2 seconds of preflow
finishing.
1. Make sure the torch is the recommended distance from the work
piece.
2. Increase the pilot arc current, up to 10 amps.
3. Check that the HF is coming out of the torch. If not, check the HF relay
in the RAS.
1D
The lower limit switch, on the lifter, has been tripped.
1. Check for a short in the lower limit switch wiring.
2. Make sure the cutting does not require the lifter to move beyond its
limits.
1E
The ICH has reset because of a trap error.
1F
The ICH has reset because of an OP code error.
20
The ICH has reset because the reset pin on the
processor was shorted.
21
The ICH has reset because of a software command.
22
The ICH has reset because of the hardware watchdog
timed out.
23
The ICH has reset because of a brown out.
24
The ICH has reset because of a power on reset.
Please report these errors to service with the steps you took to produce
them.
OPERATION
Process Errors
ID
Problem
Solution
The serial port has reported a parity error.
1. Check for cable grounding issues.
2. If using RS-232, try using a fiber optic converter and short (< 6") cables
to the ICH and the computer.
26
The serial port has reported a framing error.
27
The serial port has reported a receive buffer overrun.
Slow the communication speed of the ICH and computer.
28
The serial port has reported an unknown error.
1. Check for cable grounding issues.
2. If using RS-232, try using a fiber optic converter and short (< 6") cables
to the ICH and the computer.
29
The LCD has reset.
1. Check the grounding of the ICH enclosure.
2. Replace the ICH's main board.
2A
The current command from the RAS was more than
100 millivolts above the command.
1. Check the output voltage of the RAS. If it is above 10 volts, replace the
RAS's PCUA.
2. Check if the current command is correct on the power supply. If it is,
this error can be disabled by unplugging the analog input. Please refer
to the RAS schematics for the connector to unplug.
2B
The current command from the RAS was more than
100 millivolts below the command.
1. Check the output voltage of the RAS for a short. If there is no short
and the output is 0 volts, replace the RAS's PCUA.
2. Check if the current command is correct on the power supply. If it is,
this error can be disabled by unplugging the analog input. Please refer
to the RAS schema
2C
The cut water output pressure is more than 200 PSI (14
BAR), while the pump is on.
1. Check the output pressure of the regulator inside the Water Injection
Control.
2. Check the voltage feedback from the pressure sensor. If it is ok,
replace the Water Injection Control's PCUA.
3. Replace the pressure sensor.
2D
The cut water output pressure is less than 44 PSI (3
BAR), while the pump is on.
1. Check the fuses for the pump.
2. Check that the contactor for the pump is not destroyed.
3. Check the output signal to the contactor from the PCUA is coming on.
4. Check that the pump motor is coming on.
5. Make sure the pump head is moving water and not bypassing 100%.
6. Replace the pressure sensor.
2E
The CAN port has reported a receive buffer overrun.
2F
The CAN port has reported an invalid message on the
bus.
30
The CAN port has reported that the bus was
corrupted.
1. Make sure all CAN cables are connected securely.
2. Make sure all modules are properly grounded.
3. Make sure there is a terminating resistor plug at the end of the CAN
bus chain or the last module is plugged into port 7.
4. Make sure all the dip switches on the top of the ICH are toggled
towards the display.
5. Make sure there are no CAN cables being coiled or run with the power
leads or torch leads.
31
There was an ASIOB bus error.
1. Make sure the 5V from the CNC's ASIOB connection is not connected
to the main board in the ICH.
2. Make sure all the dip switches on the ICH's main baord are toggled
towards the display.
3. Make sure the ASIOB cable is securely connected to the ICH.
32
The initial height sensors are shorted.
1. Check for debris on the shield of the torch.
2. If using the omni crash protection, check that the sensor is properly
adjusted.
115
OPERATION
25
OPERATION
Process Errors
OPERATION
ID
116
Problem
33
An unkown error has occurred.
34
The ICH has rebooted because of a request to switch
to the bootloader.
35
The ICH has rebooted because an unexpected
interrupt was fired.
36
The ICH has rebooted because of an addressing issue.
37
The ICH has rebooted because of an oscillator failure.
38
The ICH has rebooted because of a stack overflow or
underflow.
39
The ICH has rebooted because of a math error.
3A
The ICH has rebooted for an unkown reason.
Solution
Please report these errors to service with the steps you took to produce
them.
SAFETY
DESCRIPTION
INSTALLATION
OPERATION
APPENDIX
APPENDIX
APPENDIX
APPENDIX
118
APPENDIX
ESAB Serial Communication Interface
Introduction
ESAB Serial Communication Interface (ESCI) is the software developed for operating the Interface Control
Hub (ICH) remotely. This software is developed on the .NET Framework which will communicate with the ICH
through a serial interface.
For customers who have RS232, instead of RS422, an RS232 to RS422 converter may be used to communicate
via RS422 with the ICH.
System Requirements
There are certain requirements that need to be met in order to install and operate the ESAB Serial
Communication Interface on your system.
Minimum Requirements:
1.
2.
3.
4.
5.
6.
7.
8.
9.
CPU: 1.2GHz P4
Memory: 256MB
Operating System: Windows XP SP2
Hard disk: 30MB + Log Space
Serial Communication Port (RS232 or RS422)
Display: 800x600
Keyboard or Touch screen
Windows Installer 3.1 (Included in Redistro Folder)
.Net Framework 2.0 (Included in Redistro Folder)
Recommended Requirements:
CPU: 2GHz P4
Memory: 512MB
Operating System: Windows XP SP3
Hard disk: 30MB + Log Space
Serial Communication Port (RS232 or RS422)
Display: 800x600
Keyboard or Touch screen
Windows Installer 3.1 (Included in Redistro Folder)
.Net Framework 2.0 (Included in Redistro Folder)
APPENDIX
1.
2.
3.
4.
5.
6.
7.
8.
9.
119
APPENDIX
Installation
Installation of the ESCI software is straight forward. Insert the media containing the ESCI setup file into the
system on which you want to install ESCI and run the setup.exe file. Then follow the instructions on screen.
When installation is complete, run the configurator to setup the software for first use.
Figure 1: Communication Configurations
APPENDIX
Figure 2: System Options
Figure 3: GRP File Generator
120
APPENDIX
The communication settings (shown in Figure 1), i.e., Port, Speed, Parity and Stop Bit, must match the ICH
settings.
The different log levels (shown in Figure 2) available are:
None - Do not record any information.
Errors only - Record the communication errors.
Errors and warnings only - Record communication errors and warnings.
Errors, warnings and information - Record communication errors, warnings, and information about the
parameter database etc.
Everything (debug) - Record all the information. This is not recommended unless there are serious
problems and the customer wants to debug it.
The GRP generator (shown in Figure 3) allows for the recreation of the GRP file, based on the power supply and
a WIC being present. Select the power supply installed, if there is a WIC present, and then click generate. When
the file is created, a message will be displayed.
APPENDIX
121
APPENDIX
APPENDIX
122
APPENDIX
Operation
This section shows how to operate the ESCI software with ICH for remote operation. Launch the ESCI software
on your system, the ESAB logo, as shown in Figure 7, is displayed which states ESCI is loading parameters
database.
Figure 7: ESCI Loading Screen
APPENDIX
123
APPENDIX
Once the ESCI has finished loading the parameter database, the user graphical interface screen, as shown in
Figure 8 for m3 Gen2 and Figure 9 for IGC, will be displayed depending on the mode of operation.
APPENDIX
Figure 8: m3 Gen2 Parameter Screen with one station turned on
124
APPENDIX
Figure 8 is with one station turned on. As stations are turned on, the tab for the station(s) will appear like they
are in Figure 9 and 10.
Figure 9: IGC Parameter Screen with all stations on
APPENDIX
125
APPENDIX
Figure 10: m3 Gen2 with all stations turned on
APPENDIX
Throughout the application, this document will assume there is a mouse or touch screen attached to the
computer/CNC running the software. If only a keyboard is attached, the tab key can be used to move between
buttons and dropdown lists, the arrow keys can be used to change the dropdown lists, and the spacebar key
can be used to “click” the buttons.
From all the tabs, it is possible to view the consumables, edit the parameters, freeze the gauges, clear errors,
get version information, minimize the application, get the information needing to be loaded on the CNC, and
download parameters to the ICH. To view the consumables needed for the currently selected parameters,
click the show consumables button, Figure 11 will then be displayed. To get rid of the consumables screen
click it or press any key. To download the parameters to the ICH, click on the download button. Once the
download is started, a progress bar (Figure 12) will appear and when complete, the progress bar will disappear
and a message box (Figure 13) stating that the download is complete will appear for a few seconds. The speed,
kerf, and arc voltage (if height control is not controlled by the ICH) will have the values, needing to be set on
the CNC, displayed in the bottom right area of the screen.
126
APPENDIX
Figure 11: Consumable Pictures
Figure 12: Parameter Download Status Bar
Figure 13: Parameter Download Complete
APPENDIX
127
APPENDIX
The freeze gauges on error option allows the gauges to be frozen in the state they were last in when an error
occurs. The station error list will display the error reported by the ICH, which can be cleared by clicking the
clear button. This will also unfreeze the gauges. To get greater detailed information about the error, click on
the error.
The version information will display the version of the ICH and the application’s version. The power supply
type will also be displayed in the same area.
The gas test buttons on the parameter screen will allow for testing each gas output for the currently
downloaded parameters, which is displayed on the gauges to the left. The blue arrow is the start value and the
red arrow is the cut/mark value.
The height control test button will only show up if the ICH controls the lifter. This button will cause the
height control to find the initial height for cutting/marking.
The air curtain button will enable/disable the air curtain output. The clear timers/counters button will
reset the number of starts and the arc on time, which are displayed on the station’s tab.
The edit parameters button will display the screen in Figure 14 (m3 Gen 2) or Figure 15 (IGC). This is
where all the parameter editing occurs. On this screen all the parameters can be changed. When saving the
parameters a parameter group must be specified and can not be the “Standard” group. The “Standard” group
is reserved for the parameters from ESAB. The reload button will reload the parameters on the screen back
to what they were originally.
APPENDIX
Figure 14: m3 Gen2 parameter edit screen
128
APPENDIX
Figure 15: IGC parameter edit screen
The station’s tab is where the feedback from the ICH is displayed, as shown in Figure 16 (m3 Gen2) and Figure
17 (IGC). The red area on the gauges is the area where an error will occur. The yellow area is the area where
the performance of the plasma system will be degraded, but still work without producing an error. The green
area is the ideal area to be in. Below the needle in each gauge, there is the digital value being read back from
the ICH. The yellow and red areas on the gauges measuring the output pressures and flow will only appear
when the process is active. This is indicated when the process step is not 0. The process step displays the step
number the ICH is currently in. The step 0 is the idle step, where gas and height control tests can be done. The
coolant level warning text will only appear when there is a low coolant level detected in the coolant circulator,
it is recommended to check for coolant leaks and refill the coolant circulator when this occurs. The warning
will not stop the plasma system from functioning. But the coolant flow error is more likely to occur during a
cut/mark operation, which can damage the part being made by the plasma system when it shuts down.
APPENDIX
129
APPENDIX
APPENDIX
Figure 16: m3 Gen2 station tab
130
APPENDIX
Figure 17: IGC station tab
APPENDIX
131
APPENDIX
Demo Server
This section shows how to operate the Demo Server. The demo server software will simulate an ICH via an
Ethernet connection. The protocol used on the Ethernet connection is the same as the one used on the serial
connection. Launch the Demo Server on your system and when it is loaded, the screen in Figure 18 will be
displayed.
Figure 18: Demo Server Main Screen
From here the system type, power supply, lifter, and WIC options can be selected. Once these options are
setup to simulate the ICH system desired, the ESCI software can be launched. This can be done by clicking the
launch ESCI button or by running the ESCI software via other means. The recommended method is via the
launch ESCI button on the demo server. Once the ESCI software is launched, via the launch ESCI button, the
launch ESCI button will change to Quit ESCI. This button can be used to quit the ESCI software at any time.
APPENDIX
The three buttons above the launch ESCI button simulate the digital inputs from the CNC to the ICH. The
plasma start button will start the process and lock out the Mark Mode button. The Mark Mode button
will put the simulator into Marking mode. The corner button will switch the simulator between corner
current and cut/mark current. The Station On buttons will toggle the station on/off, simulating the station
on digital input from the CNC to the ICH.
The step is the current process step being simulated. The warning code, fault code and extended fault code
are the raw codes sent back to the ESCI software. The meaning of the code is explained in the serial protocol
section of the manual. By clicking the Edit Fault And Warning Code button, they can be edited by the
name of the fault/warning. This can be seen in Figure 19. By clicking on the ADD button, Figure 20 will appear
where the fault codes can be added. The Clear All faults button will clear all of the faults.
132
APPENDIX
Figure 19: Demo Server Error Screen
Figure 20: Demo Server Error Selection Screen
APPENDIX
133
APPENDIX
ICH Serial Communication Protocol
The serial communication with the ICH can be achieved by RS-232, RS-422, or RS-485. This is selectable via the
constant editor mode. Each command and response from the Interface Control Hub has a two character checksum on the end. The checksum can be calculated with the following formula:
Checksum = Hex (Truncate ((ASCII (Character1) + ASCII (Character2) + … + ASCII (CharacterN)), 8 bits))
Where Character1 through CharacterN are the characters of the command/response and data to be sent with
the command/response. Truncate is a function that drops all bits higher than the number of bits specified. Hex
converts the number into its hexadecimal representation in a string.
Note:
During the starting of the plasma process a high frequency generator will become active for
about one second. This will cause communication checksum errors on messages sent and received for up to three seconds. The ICH will automatically resume normal communication after
this time.
Commands
000:
Hello command
This will also reset all errors.
Command:
000<Checksum>
Response:
000ESAB m3-CAN OEM<Checksum>
001:
Version request
Command:
001<Checksum>
Response:
001<Power Supply Version> <ICH Version><Checksum>
Power Supply Version is 4 characters long and in hexadecimal format. ICH Version is 4 characters long and in hexadecimal format. The first two characters are the major and the second two characters are the minor (e.g. Major.Minor)
002:
Get station status
Command:
002<Checksum>
APPENDIX
Response:
002<Station 1 Status> <Station 2 Status><Checksum>
Station 1 Status and Station 2 Status are 4 characters of hexadecimal, each in the following format:
Bit 11-15:
Bit 10:
Bit 9:
Bit 8:
Bit 0-7:
134
Spare
Coolant Level OK
Mark Mode
Station Selected
Process Step
APPENDIX
003:
Get station errors
Command:
003<Checksum>
Response:
003<Station 1 Errors> <Station 2 Errors><Checksum>
Station 1 Errors and Station 2 Errors are 8 characters of hexadecimal each in the following format:
Bit 31:
Bit 30:
Bit 29:
Bit 28:
Bit 27:
Bit 26:
Bit 25:
Bit 24:
Bit 23:
Bit 22:
Bit 21:
Bit 20:
Bit 19:
Bit 18:
Bit 17:
Bit 16:
Bit 15:
Bit 14:
Bit 13:
Bit 12:
Bit 11:
Bit 10:
Bit 9:
Bit 8:
Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:
Spare
Lower Limit Switch
Spare
Spare
Spare
Power Supply Fault
Crash
Coolant Flow OK
Current too low
Current too high
Arc Voltage too low
Arc Voltage too high
Shield Gas 2 Flow too low
Shield Gas 2 Flow too high
Shield Gas 1 Flow too low
Shield Gas 1 Flow too high
Plasma Gas 2 Flow too low
Plasma Gas 2 Flow too high
Plasma Gas output pressure too low
Plasma Gas output pressure too high
Plasma Gas 2 input pressure too low
Plasma Gas 2 input pressure too high
Plasma Gas 1 input pressure too low
Plasma Gas 1 input pressure too high
Water Injection Module Missing
Power Supply Missing
Plasma Gas Box Missing
Shield Gas Box Missing
Lifter Missing
Arc Lost
Ignition Timeout
IHS Timeout
004:
Remote Mode
Command:
004<Checksum>
Response:
0040<Checksum> if in local mode and 0041<Checksum> if in remote mode
APPENDIX
135
APPENDIX
005:
Get extended errors (only available on version 1.7 or later)
Command:
005<Checksum>
Response:
005<Station 1 Errors> <Station 2 Errors><Checksum>
Station 1 Errors and Station 2 Errors are 8 characters of hexadecimal each in the following format:
Bit 16-31:
Bit 15:
Bit 14:
Bit 13:
Bit 12:
Bit 11:
Bit 10:
Bit 9:
Bit 8:
Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:
Spare
Lower limits switch
Current feedback, inside RAS, too low
Current feedback, inside RAS, too high
WIC Error
WIC Watchdog
RAS Error
RAS Watchdog
CGC Error
CGC Watchdog
PGC Error
PGC Watchdog
SGC Error
SGC Watchdog
Sensor short on lifter
Lifter Error
Lifter Watchdog
006:
Parameter Loading Mark/Cut
Command:
0061<Checksum> for mark parameters are being loaded and 0060<Checksum> for
cut parameters.
Response:
0061<Checksum> at all times.
007:
Air Curtain enable/disable
Command:
0071<Checksum> for enabled and 0070<Checksum> for disabled.
APPENDIX
Response:
0070<Checksum> if action not allowed and 0071<Checksum> if the action was allowed.
136
APPENDIX
008: Retrieve Options
Command:
008<Checksum>
Response: 008<Lifter><Water Injection><Gas Control><Checksum>
Each is 1 byte long. There is a ICH controlled lifter if Lifter is “1”, otherwise there is no height control from the Interface Control Hub. There is a water injection module attached if Water Injection is “1”, otherwise there is no water injection module.
The Gas Control determines which type of control there is.
“0” - Water Injection only.
“1” - Combined Gas Control is used.
“2” - Full Gas Control is used.
028:
Read current
Command:
028<Checksum>
Response:
028<Station 1 Current> <Station 2 Current><Checksum>
Station 1 Current and Station 2 Current are both 4 characters long and in the unit amperes.
058:
Set currents
Command:
058<Start Current> <Cut Current> <End Current> <Pilot Arc Current><Checksum>
All the currents are in amperes and 4 characters long.
Response:
0581<Checksum> if allowed and 0580<Checksum> if not
060:
Shield Cut Gas Test Begin
Command:
060<Checksum>
Response:
0600<Checksum> if not allowed and 0601<Checksum> if allowed
061:
Shield Cut Gas Test End
Command:
061<Checksum>
Response:
0611<Checksum>
APPENDIX
062:
Shield Start Gas Test Begin
Command:
062<Checksum>
Response:
0620<Checksum> if not allowed and 0621<Checksum> if allowed
137
APPENDIX
063:
Shield Start Gas Test End
Command:
063<Checksum>
Response:
0631<Checksum>
064:
Start Gas Test Begin
Command:
064<Checksum>
Response:
0640<Checksum> if not allowed and 0641<Checksum> if allowed
065:
Start Gas Test End
Command:
065<Checksum>
Response:
0651<Checksum>
066:
Cut Gas Test Begin
Command:
066<Checksum>
Response:
0660<Checksum> if not allowed and 0661<Checksum> if allowed
067:
Cut Gas Test End
Command:
067<Checksum>
Response:
0671<Checksum>
069:
IHS Test
Command:
069<On/Off><checksum>
On is 1 and Off is 0.
APPENDIX
Response:
0691<Checksum> if allowed and 0690<Checksum> if not allowed
070:
Set Corner Current
Command:
070<Corner Current><Checksum>
The corner current is in amperes and is 4 characters long
Response:
0701<Checksum> if allowed and 0700<Checksum> if not allowed
138
APPENDIX
078:
Gas Pressure/Flow loading
Command:
078<PG1 Start> <PG1 Cut> <PG2 Start> <PG2 Cut> <SG1 Start> <SG1 Cut> <SG2 Start> <SG2 Cut><Checksum>
Plasma gases (PG) are in millibar (mBar) and 5 characters long, while shield gases (SG) are in 1000 times cubic meter per hour (1000 * CMH) or milliliters per minute (mLM) and 5 characters long.
Response:
0781<Checksum> if allowed and 0780<Checksum> if not allowed
087:
Set height settings
Command:
087<Initial Height> <Cutting Height> <Pierce Height> <Arc Voltage> <Thickness><Checksum>
Initial Height, Cutting Height, Pierce Height, and Arc Voltage are in micrometers and 5 characters long. Thickness is in micrometers and is 6 characters long.
Response:
0871<Checksum> if allowed and 0870<Checksum> if not allowed.
094:
Gas pressure/flow readings from sensors
Command:
094<Checksum>
Response:
094<Station 1 SG1 Flow> <Station 1 SG2 Flow> <Station 1 PG Output Pressure> <Station 1 PG2 Flow> <Station 1 PG1 Input Pressure> <Station 1 PG2 Input Pressure> <Station 1 SG Output Pressure> <Station 2 SG1 Flow> <Station 2 SG2 Flow> <Station 2 PG Output Pressure> <Station
2 PG2 Flow> <Station 2 PG1 Input Pressure> <Station 2 PG2 Input Pressure> <Station 2 SG Out
put Pressure><Checksum>
All the readings are 5 characters each. Pressures are in millibar (mBar) and flows are in 1000 times cubic meter per hour (1000 * CMH). If water injection is in use than SG1 and SG2 flow are the water injection flow in milliliter per minute (mLM) and SG Output Pressure is the water injection pressure.
095:
Load timers
Command:
095<Current Ramp Up> <Current Ramp Down> <Gas Off Delay> <Preflow> <Raise When
Complete> <Piercing Timer><Checksum>
All timers are in milliseconds and 5 characters long.
Response:
0951<Checksum>
APPENDIX
096:
Gas select
Command:
096<Gas Select><Checksum>
Gas Select is 2 Characters long.
Response:
0961<Checksum> if allowed and 0960<Checksum> if not allowed
139
APPENDIX
097:
Load thick plate timer
Command:
097<Thick Plate Timer><Checksum>
The timer is in milliseconds and 5 characters long.
Response:
0971<Checksum>
099:
Read current gas pressure/flow parameters
Command:
099<Checksum>
Response:
099<PG1 Cut> <PG1 Start> <PG2 Cut> <PG2 Start> <SG1 Cut> <SG1 Start> <SG2 Cut> <SG2 Start><Checksum>
Plasma gases (PG) are in millibar (mBar) and 5 characters long, while shield gases (SG) are in 1000 * cubic meter per hour (1000 * CMH) or milliliters per minute (mLM) and 5 characters long.
098 & 122:
Read gas select
Command:
098<Checksum>
122<Checksum>
Response:
098<Gas Select><Checksum>
122<Gas Select><Checksum>
Gas Select is 2 Characters long.
124:
Reset Timers/Counters
Command:
124<Checksum>
Response:
1241<Checksum> all the time
125:
Read Timers/Counters
Command:
125<Checksum>
Response:
125<Station 1 Timer> <Station 1 Counter> <Station 2 Timer> <Station 2 Counter><Checksum>
APPENDIX
140
Timers are in the format “hh:mm:ss” and counters are 4 characters long hexadecimal numbers. The counter represents the number of times the torch has been fired since the last reset and the timer is how long the process was running since the last reset.
APPENDIX
ICH Communication Errors
There are three possible communication errors:
500:
Bad Checksum
The message was received but the checksum was incorrect. Wait one second and then retry. Another 500 will be transmitted after the one second is up.
501:
Unknown Command
The command was received but the received command was not a recognized command.
502:
Communication Not Allowed
Communication is not allowed because the Local/Remote toggle switch is set to local.
Toggle the Local/Remote switch to remote, and try again.
ICH Login Sequence
The login sequence should be in the following order:
1.
Hello (000)
2.
Version (001)
3.
Get status (002)
4.
Get errors (003)
5.
Get Timers/Counters (125)
6.
Check remote mode status (004)
7.
Retrieve options (008)
Example:
Send
Receive
00090
000ESAB m3-CAN OEM4B
00191
0010168 010041
00292
0020000 000032
00393
00300000000 00000000B3
12598
12500:00:00 0000 00:00:00 0000A0
00494
0041C5
00898
00800129
APPENDIX
141
APPENDIX
ICH Communication Error Messages
Error
IHS Timeout
Ignition Timeout
Arc Lost
Resolution
Check that there is a plate below the torch and within the stroke of the lifter.
Check the ICH display to see if the station is selected.
Check the lift amplifier in the lift box for a fault.
Call service if none of the above work.
Check that the power supply is turned on.
Check that the torch is within the specified distance to the plate.
Check that the pilot arc cable is attached, in the Remote Arc Starter box, to the pilot arc connection point and
on the other end to the power supply’s pilot arc connection point.
Check that the electrode cables are connected to the block in the Remote Arc Starter box.
Check that the work cables are connected to the work piece, normally via a slat.
Check that the machine did not stall over a small hole or try to cut across a large hole (or off the edge of the
plate).
Check that the input power to the power supply did not drop out.
Lifter Missing
Check that the lifter has the CAN cable connected and there are no empty plugs between the lifter’s CAN plug
and CAN 1 on the Interface Control Hub.
If this setup has no lifter, then edit the constant, via the constant editing mode, to disable the lifter functions.
Call service if there seems to be no cabling issues.
Shield Gas Box
Missing
Check for 230/115 VAC on the power plug of the Shield Gas Box.
Check that the Shield Gas Box has the CAN cable connected and there are no empty plugs between the Shield
Gas Box’s CAN plug and CAN 1 on the Interface Control Hub.
Call service if there seems to be no cabling issues.
Plasma Gas Box
Missing
Check for 24 VDC and 24 VAC on the power plug of the Plasma Gas Box.
Check that the Plasma Gas Box has the CAN cable connected and there are no empty plugs between the Plasma
Gas Box’s CAN plug and CAN 1 on the Interface Control Hub.
Call service if there seems to be no cabling issues.
Check that the Remote Arc Starter has the CAN cable connected and there are no empty plugs between the
Remote Arc Starter’s CAN plug and CAN 1 on the Interface Control Hub.
Call service if there seems to be no cabling issues.
Water Injection
Module Missing
Check that the Water Injection Box has the CAN cable connected and there are no empty plugs between the
Water Injection Box’s CAN plug and CAN 1 on the Interface Control Hub.
If this setup has no water injection box, then edit the constant, via the constant editing mode, to disable the
water injection functions.
Call service if there seems to be no cabling issues.
Plasma Gas 1
input pressure
too high
Check the input gas regulator to insure the input pressure to the system is below 10 Bar (145 PSI).
If the input pressure has been verified to be below 10 Bar (145 PSI), then call service.
Plasma Gas 1
input pressure
too low
Check the input gas regulator to insure the input pressure to the system is above 4 Bar (60 PSI).
Check for a clogged inline filter.
Check for a gas leak or pinched hose between the regulator and the Plasma Gas Box.
If the input pressure has been verified to be above 4 Bar (60 PSI), then call service.
Plasma Gas 2
input pressure
too high
Check the input gas regulator to insure the input pressure to the system is below 10 Bar (145 PSI).
If the input pressure has been verified to be below 10 Bar (145 PSI), then call service.
Plasma Gas 2
input pressure
too low
Check the input gas regulator to insure the input pressure to the system is above 4 Bar (60 PSI).
Check for a clogged inline filter.
Check for a gas leak or pinched hose between the regulator and the Plasma Gas Box.
If the input pressure has been verified to be above 4 Bar (60 PSI), then call service.
APPENDIX
Power Supply
Missing
142
APPENDIX
ICH Communication Error Messages
Error
Resolution
Plasma Gas output pressure too
high
Check for a pinched hose between the Plasma Gas Box and the torch.
Check consumables for correctness and damage.
Call Service.
Plasma Gas
output pressure
too low
Check for a leak in the hose between the Plasma Gas Box and the torch.
Check consumables for correctness and damage/wear.
Check input pressure to be at least 1 Bar (14.5 PSI) above command output pressure.
Call Service.
Check consumables for correctness and/or damage/wear.
Plasma Gas 2 Flow Check for correct gas on the input lines to the plasma gas box and shield gas box.
too high
Check for a leak in the hose between the Plasma Gas Box and the torch.
Call Service.
Check consumables for correctness and/or damage/wear.
Plasma Gas 2 Flow Check for correct gas on the input lines to the plasma gas box and shield gas box.
too low
Check for a pinched hose between the Plasma Gas Box and the torch.
Call Service.
Shield Gas 1 Flow
too high
Check consumables for correctness and/or damage/wear.
Check for correct gas on the input lines to the shield gas box.
Check for a leak in the hose between the Shield Gas Box and the torch.
Call Service.
Shield Gas 1 Flow
too low
Check consumables for correctness and/or damage/wear.
Check for correct gas on the input lines to the shield gas box.
Check for a pinched hose between the Shield Gas Box and the torch.
Call Service.
Shield Gas 2 Flow
too high
Check consumables for correctness and/or damage/wear.
Check for correct gas on the input lines to the shield gas box.
Check for a leak in the hose between the Shield Gas Box and the torch.
Call Service.
Shield Gas 2 Flow
too low
Check consumables for correctness and/or damage/wear.
Check for correct gas on the input lines to the shield gas box.
Check for a pinched hose between the Shield Gas Box and the torch.
Call Service.
Arc Voltage too
high
Check that the torch did not just go over a hole in the plate.
Adjust the arc voltage calibration for errors between read voltage and actual voltage.
Check for a wavy plate.
Call Service.
Arc Voltage too
low
Check for a damaged or missing VDR cable.
Adjust the arc voltage calibration for errors between read voltage and actual voltage.
Check for a wavy plate.
Call Service.
Current too high
Check commanded current on the display on the power supply matches the desired current.
Call Service.
Current too low
Check commanded current on the display on the power supply matches the desired current.
Call Service.
Coolant Flow OK
Check coolant level in the reservoir in the coolant circulator.
Call Service.
Crash
Check the fault on the display panel of the power supply and follow instructions in the power supply’s manual.
143
APPENDIX
Power Supply
Fault
Check for damage to the torch consumables; replace damaged consumables with new ones.
Remove the obstacle(s) from the path of the torch.
APPENDIX
ICH Communication Error Messages
Resolution
Error
Lifter Watchdog
Lifter Error
The Lifter’s control module has watchdogged.
Check the CAN cables for damage.
Make sure the terminating resistor is installed, if not, all 7 parts are in use.
Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.
The Lifter’s control module has reported an error.
Check the ICH Error Log for exact error.
Plasma Gas Control Watchdog
The Plasma Gas Control’s control module has watchdogged.
Check the CAN cables for damage.
Make sure the terminating resistor is installed, if not, all 7 parts are in use.
Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.
Plasma Gas Control Error
The Plasma Gas Control’s control module has reported an error.
Check the ICH Error Log for exact error.
The Combined Gas Control’s control module has watchdogged.
Combined Gas
Check the CAN cables for damage.
Control Watchdog Make sure the terminating resistor is installed, if not, all 7 parts are in use.
Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.
Combined Gas
Control Error
Remote Arc
Starter Watchdog
Remote Arc
Starter Error
The Combined Gas Control’s control module has reported an error.
Check the ICH Error Log for exact error.
The Remote Arc Starter’s control module has watchdogged.
Check the CAN cables for damage.
Make sure the terminating resistor is installed, if not, all 7 parts are in use.
Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.
The Remote Arc Starter’s control module has reported an error.
Check the ICH Error Log for exact error.
The Water Injection Control’s control module has watchdogged.
Water Injection
Check the CAN cables for damage.
Control Watchdog Make sure the terminating resistor is installed, if not, all 7 parts are in use.
Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.
Water Injection
Control Error
The Water Injection Control’s control module has reported an error.
Check the ICH Error Log for exact error.
Sensor short on
Lifter
The Lifter has a sensor short.
Check the crash sensor for proper operation and adjust as needed.
Current Feedback, The current feedback, inside the RAS box, is too high.
inside RAS, too
Check the 24 pin cable to the power supply for a short.
high
Verify the command to the power supply is greater than 10 volts.
Current Feedback,
The current feedback, inside the RAS box, is too low.
inside RAS, too
Check the 24 pin cable to the power supply for a short.
low
Lower Limit
Switch
The lower limit switch was tripped on the lifter.
APPENDIX
The Shield Gas Control’s control module has watchdogged.
Shield Gas Control Check the CAN cables for damage.
Watchdog
Make sure the terminating resistor is installed, if not, all 7 parts are in use.
Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.
Shield Gas Control The Shield Gas Control’s control module has reported an error.
Error
Check the ICH Error Log for exact error.
144
APPENDIX
ICH Parameter Loading
The sequence for loading a whole parameter set.
1.
2.
3.
4.
5.
6.
7.
Parameter type (006)
Gas select (096)
Gas pressure and flows (078)
Current (058)
Corner current (070)
Timers (095)
Heights (087) (if lifter exists)
The sequence for loading a single parameter is to send the parameter type command (006) and then the command for the parameter to be updated (with all the fields populated with the updated values). One marking
and one cutting parameter set is the maximum the ICH will store. The parameters are only stored until the next
power cycle of the Interface Control Hub.
Example:
The following example is for loading the parameters to mark and cut a 6 mm (~0.250”) plate with 200 Amps and
only air for the gas when cutting.
Send
Receive
0060C6
0061C7
0960807
0961D0
07800000 00000 02000 03030 04270 04270 00000 0000021
0781D0
0580100 0200 0100 002003
0581CE
070020059
0701C8
09500600 00600 00350 00000 01000 00100F4
0951CF
08704000 03200 10000 00143 00600017
0871D0
0061C7
0061C7
0960605
0961D0
07802760 02760 00000 00000 02000 02000 00000 0000021
0781D0
0580012 0014 0014 00200C
0581CE
070001058
0701C8
09500100 00100 00350 00000 01000 00000E9
0951CF
08704000 04100 04000 00070 0250001A
0871D0
APPENDIX
145
APPENDIX
PT-36 Mechanized Plasmarc Cutting Torch
The PT-36 Mechanized Plasmarc Cutting Torch is a plasma arc torch factory
assembled to provide torch component concentricity and consistent cutting accuracy. For this reason, the torch body can not be rebuilt in the field.
Only the torch front-end has replaceable parts.
The purpose of this section is to provide the operator with all the information required to install and service the PT-36 Mechanized Plasmarc Cutting
Torch. Technical reference material is also provided to assist in troubleshooting the cutting package.
Package Options Available
PT-36 package options available through your ESAB dealer. See Replacement Parts section for component part
numbers.
DESCRIPTIONS FOR PT-36 TORCH ASSEMBLY'S
PART NUMBER
PT-36 Torch Assembly 4.5 ft (1,4m)
0558008301
PT-36 Torch Assembly 6 ft (1,8m)
0558008302
PT-36 Torch Assembly 12 ft (3,6m)
0558008303
PT-36 Torch Assembly 14 ft Mini-Bevel (4,3m)
0558008308
PT-36 Torch Assembly 15 ft (4,6m)
0558008304
PT-36 Torch Assembly 17 ft (5,2m)
0558008305
PT-36 Torch Assembly 20 ft (6,1m)
0558008306
PT-36 Torch Assembly 25 ft (7,6m)
0558008307
Optional Accessories
APPENDIX
Bubble Muffler - When used in conjunction with a water pump recirculating water
from the table and by using compressed air, this device creates a bubble of air which
enables a PT-36 Plasmarc Cutting Torch to be used underwater with less sacrifice of cut
quality. This system also permits operation above water as the flow of water through
the muffler reduces fume, noise, and arc U.V. Radiation.
(for installation/operation instructions see manual 0558006722).............................. 37439
Air Curtain - This device when supplied with compressed air is used to improve the
performance of the PT-36 Plasmarc Cutting Torch when cutting underwater. The device mounts onto the torch and produces a curtain of air. This allows the plasma arc to
operate in a relatively dry zone, even though the torch has been submerged to reduce
noise, fume, and arc radiation. To be used in underwater applications only.
(for installation/operation instructions see manual 0558006404)..............................37440
146
APPENDIX
Speedloader assembly, handheld................................................................0558006164
NOTE:
Cannot be used with vent hole nozzles.
Speedloader assembly, 5 fixtures.................................................................0558006165
PT-36 Torch Consumable Kits
PT-36 Repair & Accessories Kit ....................................................................................0558005221
Quantity
Description
0558003804
1
Torch Body PT-36 w/O-rings
0004485648
10
O-ring 1.614 ID x .070
0558002533
2
Baffle, 4 Hole x .032
0558001625
2
Baffle, 8 Hole x .047
0558002534
1
Baffle, 4 x .032 Reverse
0558002530
1
Baffle, 8 x .047 Reverse
0558005457
1
Baffle, 4 Hole x .022
0558003924
3
Electrode Holder PT-36 w/O-ring
0004485671
10
O-ring .364 ID x .070
0004470045
2
Nozzle Retaining Cup, Standard
0004470030
1
Shield Gas Diffuser, Low Current
0004470031
5
Shield Gas Diffuser, Standard
0004470115
1
Shield Gas Diffuser, Reverse
0004470046
2
Shield Retainer, Standard
0558003858
2
Contact Ring w/screw
0004470044
6
Screw, Contact Ring
0004470049
2
Hex Key Wrench .109"
0558007105
1
Nut Driver 7/16" (Electrode tool)
0558003918
1
Electrode Holder Tool PT-36
0004470869
1
Silicon Grease DC-111 5.3oz
APPENDIX
Part Number
147
APPENDIX
APPENDIX
PT-36 Start-Up Kits ...............................................................................................................................
148
0558005224
600 amp
0558005223
360-450 amp
0558005222
200 amp
Part Number
10
10
10
0558003914
Electrode O2 UltraLife, Standard
5
5
5
0558003928
Electrode N2/H35, Standard
5
5
5
0558005459
Electrode O2/N2, Low Current
5
5
5
0558006908
Nozzle PT-36 0.8mm (.030")
5
5
5
0558006010
Nozzle PT-36 1.0mm (.040")
5
5
5
0558008010
Nozzle PT-36 1.0mm (.040") PR
5
5
5
0558006014
Nozzle PT-36 1.4mm (.055")
5
5
5
0558006018
Nozzle PT-36 1.8mm (.070")
5
5
5
0558006020
Nozzle PT-36 2.0mm (.080")
5
5
5
0558006023
Nozzle PT-36 2.3mm (.090")
5
5
-
0558006025
Nozzle PT-36 2.5mm (.099")
5
5
-
0558006030
Nozzle PT-36 3.0mm (.120")
5
5
-
0558006036
Nozzle PT-36 3.6mm (.141")
5
-
-
0558006041
Shield PT-36 4.1mm (.161")
5
5
5
0558007624
Shield PT-36 2.4mm (.095")
5
5
5
0558006130
Shield PT-36 3.0mm (.120")
5
5
5
0558006141
Shield PT-36 4.1mm (.160")
5
5
5
0558006166
Shield PT-36 6.6mm (.259")
5
-
-
0558006199
Shield PT-36 9.9mm (.390")
Description
APPENDIX
PT-36 H35 Heavy Plate Start-up Kit.............................................................................0558005225
Part Number
Quantity
Description
0558003963
5
Electrode, Tungsten 3/16"D
0558003965
5
Nozzle H35 .198" Divergent
0558003964
2
Collet 3/16"D Electrode
0558005689
2
Electrode/Collet Holder PT-36
0558003967
2
Collet Body
0558002532
5
Baffle, 32 Hole x .023
0558006688
5
Shield High Current
0558003918
1
Electrode Holder Tool PT-36
0558003962
1
Tungsten Electrode Tool
0558008737
2
Nozzle Retaining Cup Assy High Current
APPENDIX
149
APPENDIX
Recommended Regulators
Liquid Cylinder Service:
O2 : R-76-150-540LC .................................................................................................................P/N 19777
N2 : R-76-150-580LC .................................................................................................................P/N 19977
High Pressure Cylinder Service:
O2 : R-77-150-540 ..........................................................................................................P/N 0558010676
Ar & N2 : R-77-150-580..................................................................................................P/N 0558010682
H2 & CH4 : R-77-150-350 .............................................................................................P/N 0558010680
Industrial Air : R-77-150-590 ....................................................................................P/N 0558010684
APPENDIX
Station/Pipeline Service:
O2 : R-76-150-024 ..........................................................................................................P/N 0558010654
Ar & N2 : R-76-150-034..................................................................................................P/N 0558010658
Air, H2, & CH4 : R-6703 ..............................................................................................................P/N 22236
150
APPENDIX
Connection of Torch to Plasma System
DANGER
Electric Shock Can Kill!
• Disconnect primary power source before making any adjustments.
• Disconnect primary source before doing maintenance on system
components.
• Do not touch front-end torch parts (nozzle, retaining cup, etc.)
without turning primary power off.
Ground Stud
Ground cable
Power cables
Pilot Arc cable
Connection to the Remote Arc Starter Box
The PT-36 has two water cooled power cables which must be connected to the negative output from the power
supply. The right handed 7/16-20 fitting is on the cable supplying coolant to the torch. The left handed 7/16-20
fitting is on the cable returning coolant from the torch. Both of these cables have a green/yellow wire to be connected to the ground stud shown above.
The pilot arc cable is connected to the arc starter box (see Installation section). The pilot arc cable also has a
green/yellow wire that is connected to a grounding stud.
APPENDIX
151
APPENDIX
Mounting Torch to Machine
DANGER
Clamping on Torch Body May Cause Dangerous Current
To Flow Through Machine Chassis.
Mount torch on insulated sleeve here
• Do not mount on stainless steel torch body.
• Torch body is electrically insulated, however high frequency
start current may arc through to find a ground.
• Clamping near torch body may result in arcing between body
and machine.
DO NOT mount
on steel torch
body here
• When this arcing occurs, torch body may require non-warranty
replacement.
• Damage to machine components may result.
• Clamp only on insulated torch sleeve (directly above label) not
APPENDIX
less than 1.25" (31.75mm) from the torch end of the sleeve.
152
APPENDIX
DANGER
Hydrogen explosion hazard! Read the following before attempting to cut with a water table.
A hazard exists whenever a water table is used for plasma arc cutting. Severe explosions have resulted from the accumulation of hydrogen beneath the plate being cut. Thousands of dollars in property damage has been caused by these
explosions. Personal injury or death could result from such an explosion. The best available information indicates that
three possible sources of hydrogen exists in water tables:
1. Molten Metal Reaction
Most of the hydrogen is liberated by a fast reaction of molten metal from the kerf in the water to form metallic oxides. This reaction explains why reactive metals with greater affinity for oxygen, such as aluminum and magnesium,
release greater volumes of hydrogen during the cut than does iron or steel. Most of this hydrogen will come to the
surface immediately, but some will cling to small metallic particles. These particles will settle to the bottom of the
water table and the hydrogen will gradually bubble to the surface.
2. Slow Chemical Reaction
Hydrogen may also result from the slower chemical reactions of cold metal particles with the water, dissimilar metals,
or chemicals in the water. The hydrogen gradually bubbles to the surface.
3. Plasma Gas
Hydrogen may come from the plasma gas. At currents over 750 amps, H-35 is used as cut gas. This gas is 35% hydrogen by volume and a total of about 125 cfh of hydrogen will be released.
Regardless of the source, the hydrogen gas can collect in pockets formed by the plate being cut and slats on the
table, or pockets from warped plate. There can also be accumulation of hydrogen under the slag tray or even in the
air reservoir, if these are part of the table design. The hydrogen, in the presence of oxygen or air, can then be ignited
by the plasma arc or a spark from any source.
4.
Follow these practices to reduce hydrogen generation and accumulation:
A. Clean the slag (especially fine particles) from the bottom of the table frequently. Refill the table with clean water.
B. Do not leave plates on the table overnight or a weekend.
C. If a water table has been unused for several hours, vibrate it in some way before the first plate is laid in position.
This will allow accumulated hydrogen in the refuse to break loose and dissipate before it is confined by a plate
on the table. This might be accomplished by laying the first plate onto the table with a slight jolt, then raising
the plate to permit hydrogen to escape before it is finally set down for cutting.
D. If cutting above water, install fans to circulate air between the plate and the water surface.
E. If cutting underwater, agitate the water under the plate to prevent accumulation of hydrogen. This can be done
by aerating the water using compressed air.
F. If possible, change the level of the water between cuts to dissipate accumulated hydrogen.
G. Maintain pH level of the water near 7 (neutral). This reduces the rate of chemical reaction between water and
metals.
APPENDIX
153
APPENDIX
WARNING
Possible explosion hazard from plasma cutting aluminum-lithium alloys!
Aluminum-Lithium (Al-Li) alloys are used in the aerospace industry because of 10% weight savings over conventional
aluminum alloys. It has been reported that molten Al-Li alloys can cause explosions when they come into contact with
water. Therefore, plasma cutting of these alloys should not be attempted in the presence of water. These alloys should
only be dry cut on a dry table. Alcoa has determined that "dry" cutting on a dry table is safe and gives good cutting results.
DO NOT dry cut over water. DO NOT water injection cut.
The following are some of the Al-Li alloys currently available:
Alithlite (Alcoa)
X8192 (Alcoa)
Alithally (Alcoa)
Navalite (U. S. Navy)
2090 Alloy (Alcoa)
Lockalite (Lockheed)
X8090A (Alcoa)
Kalite (Kaiser)
X8092 (Alcoa)
8091 (Alcan)
For additional details and information on the safe use from the hazards associated with these alloys, contact your aluminum supplier.
WARNING
Oil And Grease Can Burn Violently!
•
•
•
•
Never use oil or grease on this torch. Handle torch clean hands only on clean surface. Use silicone lubricant only where directed. Oil and grease are easily ignited and burn violently in the presence of oxygen under pressure. WARNING
Hydrogen explosion hazard.
Do Not Cut Underwater With H-35! Dangerous buildup of hydrogen gas is possible in the water table.
Hydrogen gas is extremely explosive. Reduce the water level to 4 inches minimum below the workpiece.
Vibrate plate, stir air and water frequently to prevent hydrogen gas buildup.
APPENDIX
Spark hazard.
WARNING
Heat, spatter, and sparks cause fire and burns.
• Do not cut near combustible material.
• Do not cut containers that have held combustibles.
• Do not have on your person any combustibles (e.g. butane lighter).
• Pilot arc can cause burns. Keep torch nozzle away from yourself and others when activating plasma process.
• Wear correct eye and body protection.
• Wear gauntlet gloves, safety shoes and hat.
• Wear flame-retardant clothing that covers all exposed areas.
• Wear cuffless trousers to prevent entry of sparks and slag.
154
APPENDIX
Preparing to Cut
• Select an appropriate condition from the Cut Data manual (SDP File) and install recommended torch
front-end parts (nozzle, electrode, etc.) See Cut Data manual to identify parts and settings.
• Position torch over material at desired start location.
• See Power Source Manual for proper settings.
• See Description and Installation sections for gas control and startup procedures.
Mirror Cutting
When mirror cutting, a reverse swirl gas baffle and reverse diffuser are required. These reverse parts will “spin” the gas in the
opposite direction, reversing the “good” side of the cut.
Reverse 4 x .032 Baffle
P/N 0558002534
Reverse 8 x .047 Baffle
P/N 0558002530
Reverse Diffuser
P/N 0004470115
Cut Quality
Causes affecting cut quality are interdependent. Changing one variable affects all others. Determining a solution may be difficult. The following guide offers possible solutions to different undesirable cutting results. To
begin select the most prominent condition:
• Cut Angle, negative or positive
• Cut Flatness
• Surface Finish
• Dross
• Dimensional Accuracy
Usually the recommended cutting parameters will give optimal cut quality, occasionally conditions may vary
enough that slight adjustments will be required. If so:
• Make small incremental adjustments when making corrections.
• Adjust Arc Voltage in 5 volt increments, up or down as required.
• Adjust cutting speed 5% or less as required until conditions improve.
APPENDIX
155
APPENDIX
CAUTION
Before attempting ANY corrections, check cutting variables with the
factory recommended settings/consumable part numbers listed in
Cut Data manual.
Cut Angle
Negative Cut Angle
Top dimension is greater than the bottom.
• Misaligned torch
• Bent or warped material
• Worn or damaged consumables
• Standoff low (arc voltage)
• Cutting speed slow (machine travel rate)
Part
Drop
Part
Positive Cut Angle
Top dimension is less than the bottom dimension.
• Misaligned torch
• Bent or warped material
• Worn or damaged consumables
• High standoff High (arc voltage)
• Cutting speed fast
• Current high or low. (See Cut Data manual for
Part
recommended current level for specific nozzles).
APPENDIX
Drop
156
Part
APPENDIX
Cut Flatness
Top And Bottom Rounded. Condition usually occurs when
material is .25" thick (6.4mm) or less.
• High current for given material thickness.
(See Cut Data manual for proper settings).
Drop
Part
Top Edge Undercut
• Standoff low (Arc Voltage).
Drop
Part
APPENDIX
157
APPENDIX
Surface Finish
Process Induced Roughness
Cut face is consistently rough. May or may not be confined
to one axis.
Incorrect Shield Gas mixture (See Cut Data manual).
Top View
•
• Worn or damaged consumables.
Cut Face
Machine Induced Roughness
Can be difficult to distinguish from Process Induced
Roughness. Often confined to only one axis. Roughness is
inconsistent.
• Dirty rails, wheels and/or drive rack/pinion.
• Carriage wheel adjustment.
or
Machine
Induced
Roughness
Process
Induced
Roughness
Cut Face
Dross
Lag Lines
Dross is a by-product of the cutting process. It is the undesirable
material that remains attached to the part. In most cases, dross
can be reduced or eliminated with proper torch and cutting parameter setup. Refer to Cut Data manual.
Rollover
High Speed Dross
Material weld or rollover on bottom surface along kerf. Difficult
to remove. May require grinding or chipping. “S” shaped lag lines.
Standoff high (arc voltage).
•
• Cutting speed fast.
Side View
Lag Lines
Cut Face
Slow Speed Dross
Forms as globules on bottom along kerf. Removes easily.
APPENDIX
• Cutting speed slow.
Globules
Side View
158
APPENDIX
CAUTION
Recommended cutting speed and arc voltage will give optimal cutting performance in most cases. Small incremental adjustments may
be needed due to material quality, material temperature and specific
alloy. The operator should remember that all cutting variables are interdependent. Changing one setting affects all others and cut quality
could deteriorate. Always start at the recommended settings.
Top Dross
Appears as splatter on top of material. Usually removes easily.
• Cutting speed fast
• Standoff high (arc voltage)
Side View
Splatter
Intermittent Dross
Appears on top or bottom along kerf. Non-continuous. Can appear as
any kind of dross.
• Possible worn consumables
Other Factors Affecting Dross;
Cut Face
• Material temperature
• Heavy mill scale or rust
• High carbon alloys
CAUTION
Before attempting ANY corrections, check cutting variables with the
factory recommended settings/consumable part numbers listed in
the Cut Data manual.
Dimensional Accuracy
Generally using the slowest possible speed (within approved levels) will optimize part accuracy. Select consumables to allow
a lower arc voltage and slower cutting speed.
NOTICE
Recommended cutting speed and arc voltage will give optimal cutting performance.
Small incremental adjustments may be needed due to material quality, material temperature and specific alloy. The
operator should remember that all cutting variables are interdependent. Changing one setting affects all others and
cut quality could deteriorate. Always start at the recommended settings. Before attempting ANY corrections, check
cutting variables with the factory recommended settings/consumable part numbers listed in the Cut Data manual.
APPENDIX
159
APPENDIX
Torch Flow Passages
Pilot Arc
Shield Gas In
Plasma Gas In
Pilot Arc
Water In
APPENDIX
Water Out
160
APPENDIX
Torch Front End Disassembly
Wear on torch parts is a normal occurrence to plasma cutting. Starting a plasma arc is an erosive process to both
the electrode and nozzle. Regularly scheduled inspection and replacement of PT-36 parts must take place to
maintain cut quality and consistent part size.
DANGER
Hot Torch Will Burn Skin!
Allow torch to cool before servicing.
1. Remove the Shield Cup Retainer.
NOTE:
If the shield cup retainer is difficult to remove, try to screw the nozzle retaining cup tighter to
relieve pressure on the shield cup retainer.
2. Inspect mating metal surface of shield cup and shield cup retainer for nicks or dirt that might prevent these
two parts from forming a metal to metal seal. Look for pitting or signs of arcing inside the shield cup. Look
for melting of the shield tip. Replace if damaged.
3. Inspect diffuser for debris and clean as necessary. Wear on the top notches does occur, effecting gas volume.
Replace this part every other shield replacement. Heat from cutting many small parts in a concentrated area
or when cutting material greater than 0.75" (19.1mm) may require more frequent replacement.
CAUTION
Incorrect assembly of the diffuser in the shield will prevent the torch
from working properly. Diffuser notches must be mounted away
from the shield as illustrated.
Diffuser
Shield Cup
Torch Body
Nozzle
Electrode
APPENDIX
Nozzle Retaining Cup
Shield Cup Retainer
161
APPENDIX
4. Unscrew nozzle retainer and pull nozzle straight out of torch body. Inspect insulator portion of the nozzle
retainer for cracks or chipping. Replace if damaged.
Inspect nozzle for:
•
•
•
•
•
melting or excessive current transfer.
gouges from internal arcing.
nicks or deep scratches on the O-ring seating surfaces .
O-ring cuts, nicks, or wear.
Remove hafnium particles (from the nozzle) with steel wool.
Replace if any damage is found.
NOTE:
Discoloration of internal surfaces and small black starting marks are normal and do not effect
cutting performance.
If the holder was tightened sufficiently, the electrode may unscrew without being attached to the electrode
holder. When installing the electrode, use only sufficient force to adequately secure the electrode.
5. Remove electrode using electrode removal tool.
6. Disassemble electrode from electrode holder. Insert flats on the holder into a 5/16" wrench. Using the electrode tool, rotate electrode counter-clockwise to remove. Replace electrode if center insert is pitted more
than 0.09" (3/32").
Torch Body
Electrode Removal Tool
Electrode
APPENDIX
Replace electrode if center insert is
pitted more than 0.09" (3/32")
162
APPENDIX
7. Remove electrode holder from torch body. Hex on the end of the electrode holder removal tool will engage
in a hex in the holder.
Removal
Tool
Gas Baffle
Electrode Holder Assembly
Electrode
NOTE:
The electrode holder is manufactured in two pieces. Do not disassemble. If the holder is damaged, replace the electrode holder assembly.
8. Disassemble electrode holder and gas baffle. Carefully remove O-ring from electrode holder and slide baffle
from holder. Inspect nozzle seating surface (front edge) for chips. Look for cracks or plugged holes. Do not
attempt to clear holes. Replace baffle if damaged.
NOTE:
Check all O-rings for nicks or other damage that might prevent O-ring from forming a gas/water
tight seal.
Gas Baffle
Electrode Holder Assembly
O-ring
NOTE:
APPENDIX
Discoloration of these surfaces with use is
normal. It is caused by galvanic corrosion.
163
APPENDIX
Assembly of Torch Front End
Over-tightened parts will be difficult to disassemble and may damage torch. Do not over tighten parts during reassembly. Threaded
parts are designed to work properly when hand-tightened, approximately 40 to 60 inch/pounds.
CAUTION
• Reverse order of disassembly.
• Apply a very thin coat of silicone grease to O-rings before assembling mating parts. This facilitates easy
future assembly and disassembly for service.
• Installing the electrode requires only moderate tightening. If the electrode holder is made tighter than the
electrode, it is possible to change worn electrodes without removing the electrode holder.
• Turn on the coolant circulator and purge the gases through the torch.
NOTE:
When assembling, place the nozzle inside the nozzle retaining cup and thread the nozzle retaining cup/nozzle combination on the torch body. This will help align the nozzle with the assembly.
The shield cup and shield cup retainer should be installed only after installing the nozzle retaining cup and nozzle. Otherwise the parts will not seat properly and leaks may occur.
Diffuser
Nozzle
Nozzle Retaining
Cup
Shield
Cup
APPENDIX
Shield Cup Retainer
164
Electrode
Torch
body
APPENDIX
Assembly of Torch Front End using the Speedloader
Use of a speedloader, p/n 0558006164, will ease assembly
of the torch front end parts.
step 1. To use the speedloader, first insert the nozzle into the
nozzle retaining cup.
Nozzle
Nozzle Retaining Cup
step 2. Screw the speedloader into the nozzle retaining cup
to secure the nozzle.
Preassembly tool
step 3. Secure retaining nut on nozzle with preassembly tool,
p/n 0558005917 included with the speedloader.
step 4. Remove the speedloader. It is very important to
remove the speedloader to ensure proper seating of
the remaining parts.
Retaining nut
p/n 0558005916
step 5. Insert the diffuser into the shield cup.
Shield Cup
Diffuser
Shield cup retainer
step 6. Insert the nozzle retaining cup assembly into the
shield cup retainer.
Nozzle retaining cup assembly
Shield cup retainer assembly
APPENDIX
step 7. Screw shield cup retainer assembly onto nozzle retaining cup assembly.
165
APPENDIX
Torch Front End Disassembly (for Production Thick Plate)
DANGER
CAUTION
Hot Torch Will Burn Skin!
Allow torch to cool before servicing.
Incorrect assembly of the diffuser in the shield will prevent the torch
from working properly. Diffuser notches must be mounted away
from the shield as illustrated.
1. Remove the High Current Nozzle Retaining Cup assembly. Unless one of these components requires replacement, they can remain assembled to each other. Inspect for signs of melting on the shield cup and check the
insulator portion of the nozzle retaining cup for wear or damage.
High Current Shield
Torch Body
Nozzle
APPENDIX
High Current Nozzle Retaining Cup Assembly
166
APPENDIX
2. Pull nozzle straight out of torch body.
Inspect nozzle for:
•
•
•
•
•
melting or excessive current
transfer.
Nozzle Retaining Cup
gouges from internal arcing.
nicks or deep scratches on the
O-ring seating surfaces.
O-ring cuts, nicks, or wear.
Remove tungsten particles
(from the nozzle) with steel
wool.
Torch Body
Nozzle
Replace if any damage is found.
NOTE:
Discoloration of internal surfaces and small black starting marks are normal and do not effect
cutting performance.
3. Remove electrode using electrode removal tool.
4. Disassemble electrode from electrode holder. Insert flats on the holder into a 5/16" wrench. Using the electrode tool, rotate the collet body counter-clockwise to remove. Replace electrode if center is pitted more
than 0.06" (1/16") or if the flat has become irregular in shape or is worn to a larger diameter. Use only sufficient
force to adequately secure the electrode.
Torch Body
Note:
The electrode has two usable ends.
When one end is worn, flip electrode to
other end for continued use.
Electrode
Collet
Collet Body
Electrode, Tungsten
167
APPENDIX
Electrode Removal Tool
APPENDIX
5. If the electrode holder did not come out in step 3, remove the electrode holder from torch body using the
Electrode Holder Removal Tool. The hex on the end of the electrode holder removal tool will engage in a hex
in the holder.
Torch Body
Electrode Holder
Electrode Holder Removal Tool
8. Disassemble electrode holder and gas baffle. Carefully remove O-ring from electrode holder and slide baffle
from holder. Inspect nozzle seating surface (front edge) for chips. Look for cracks or plugged holes. Do not
attempt to clear holes. Replace baffle if damaged.
NOTE:
Check all O-rings for nicks or other damage that might prevent O-ring from forming a gas/water
tight seal.
Electrode Holder
O-ring (located behind baffle)
APPENDIX
Gas Baffle
168
APPENDIX
Assembly of Torch Front End (for Production Thick Plate)
CAUTION
Over tightened parts will be difficult to disassemble and may damage torch. Do not over tighten parts during reassembly. Threaded
parts are designed to work properly when hand tightened, approximately 40 to 60 inch/pounds.
• Reverse order of disassembly.
• Apply a very thin coat of silicone grease to O-rings before assembling mating parts. This facilitates easy
future assembly and disassembly for service.
• Installing the electrode requires only moderate tightening.
Torch Body
1. Replace electrode holder in torch body. Hex on the
end of the electrode holder removal tool will engage
in a hex in the holder.
Collet
Collet Body
Electrode, Tungsten
2. To replace the electrode, assemble collet, collet body
and electrode. Insert electrode assembly into the electrode removal tool and ensure electrode makes contact with bottom of tool hole (electrode will fall into
place).
APPENDIX
169
APPENDIX
3. Screw electrode assembly in a clockwise direction to torch body. Electrode will
tighten in the correct position when collet closes. When using the high current
nozzle retaining cup remove o-ring indicated and replace it with o-ring, p/n
488158 as shown.
remove this o-ring
place o-ring, p/n 488158 here
Nozzle Retaining Cup
Torch Body
Nozzle
NOTE:
APPENDIX
When assembling, place the nozzle inside the high current nozzle retaining cup and thread the
high current nozzle retaining cup/nozzle combination on the torch body. This will help align the
nozzle with the assembly. The high current shield cup can be assembled onto the high current
nozzle retaining cup at any time.
170
APPENDIX
Torch Body Maintenance
• Inspect O-rings daily and replace if damaged or worn.
• Apply a thin coat of silicone grease to O-rings before assembling torch. This facilitates easy future assembly
and disassembly for service.
• O-ring (1.61" (41mm) I.D. x .07" (1.8mm) BUNA-70A) p/n 996528.
Electric Shock Can Kill!
WARNING
Before performing torch maintenance:
• Turn power switch of the power source console to the OFF position
• Disconnect primary input power.
• Keep electrical contract ring contact points free of grease and dirt.
• Inspect ring when changing nozzle.
• Clean with cotton swab dipped in isopropyl alcohol.
O-Ring locations
Contact Ring Points
Contact Ring
Contact Ring Screw
APPENDIX
Contact Ring Points
171
APPENDIX
Removal and Replacement of the Torch Body
Electric Shock Can Kill!
WARNING
Before performing torch maintenance:
• Turn power switch of the power source console to the OFF position .
• Disconnect primary input power.
1. Loosen the worm gear hose clamp so that the torch sleeving can be freed and pulled back up the cable
bundle. Approximately 7 inches should be far enough. Unscrew the torch sleeve and slide it back until the
pilot arc connection is exposed.
Handle
Torch Body
2. Disconnect the power cables which are threaded onto the shorter stems at the back of the torch. Note that
one of these connections is left-handed. Unscrew the gas hoses from the torch head assembly by using a
7/16" (11.1mm) and a 1/2" (12.7mm) wrench. Removal of the gas hoses is easier if the power cables are removed first.
1/2" power cable
connections
APPENDIX
1/2" shield gas
connection
7/16" plasma gas
connection
172
APPENDIX
3. Unwrap the electrical tape at the back of the gray plastic insulator over the pilot arc connection. Slide the
insulator back and undo the knife connectors.
Wire splice
Electrical Tape
(shown removed)
Pilot Arc Cable
Knife-splice connection
4. To install the new torch head assembly - Connect the pilot arc cable and the main power cable by reversing
the steps taken to disconnect them. Be sure the gas and water fittings are tight enough to prevent leaks, but
do not use any kind of sealant on them. If the knife connection seems loose, tighten the connection by pressing on the parts with needle-nosed pliers after they are assembled. Secure the gray pilot arc insulator with 10
turns of electrical tape.
New Torch Head Assembly
5. Slide the handle forward and thread it firmly onto the torch body.
APPENDIX
173
APPENDIX
Reduced Consumable Life
1. Cutting Up Skeletons
Cutting skeletons (discarded material left after all pieces have been removed from a plate). Their removal from
the table can adversely affect electrode life by:
• Causing the torch to run off the work.
• Greatly increasing the start frequency. This is mainly a problem for O cutting and can be alleviated
by choosing a path with a minimum number of starts.
2
• Increasing likelihood that the plate will spring up against the nozzle causing a double arc. This can
be mitigated by careful operator attention and by increasing standoff and reducing cutting speeds.
If possible, use an OXWELD torch for skeleton cutting or operate the PT-36 at a high standoff.
2. Height Control Problems
• Torch crashing is usually caused by a change in arc voltage when an automatic height control is
used. The voltage change is usually the result of plate falling away from the arc. Disabling the height
control and extinguishing the arc earlier when finishing the cut on a falling plate can effectively
eliminate these problems.
• Torch crashing can also occur at the start if travel delay is excessive. This is more likely to occur with
thin material. Reduce delay or disable the height control.
• Torch crashing can also be caused by a faulty height control.
3. Piercing Standoff Too Low Increase pierce standoff
4. Starting on edges with
continuous pilot arc
Position torch more carefully or start on adjacent scrap material.
5. Work Flipping
The nozzle may be damaged if the torch hits a flipped up part.
6. Catching on Pierce Spatter
Increase standoff or start with longer lead-in.
7. Pierce not complete before
starting
Increase initial delay time.
APPENDIX
8. Coolant flow rate low, Plasma gas flow rate high,
Current set too high
Correct settings
9. Coolant leaks in torch
Repair leaks
174
APPENDIX
Checking for Coolant Leaks
Coolant leaks can originate from seals on the electrode, electrode holder, nozzle, and torch body. Leaks could
also originate from a crack in the insulating material of the torch or nozzle retaining cup or from a power cable.
To check for leaks from any source remove the shield cup, clean off the torch, purge it, and place it over a clean
dry plate. With the gases off, run the water cooler for several minutes and watch for leaks. Turn on the plasma
gas and watch for any mist from the nozzle exit. If there isn’t any, turn off the plasma gas, turn on the shield gas,
and watch for any mist from the shield gas passages in the nozzle retaining cup.
If a leak appears to be coming from the nozzle orifice, remove and inspect the o-rings on the nozzle, electrode,
and electrode holder. Check the sealing surfaces on the electrode holder and stainless steel torch liner.
If you suspect that a leak is coming from the electrode itself, you can install a 100 to 200 amp 2-piece nozzle base
without a nozzle tip. After purging, run the water cooler with the gas off and observe the end of the electrode. If
water is seen to collect there, make sure it is not running down the side of the electrode from a leak at an o-ring
seal.
WARNING
If it is necessary to supply power to the power source to run the water cooler, it is possible to have high voltages at the torch with no arc
present. Never touch the torch with the power source energized.
APPENDIX
175
NOTES
REVISION HISTORY
1. Originally released - 10/2012.
2. Revision 06/2014 - removed handle from RAS per J Magee.
ESAB Welding & Cutting Products, Florence, SC
COMMUNICATION GUIDE - CUSTOMER SERVICES
A. CUSTOMER SERVICE QUESTIONS:
Telephone: (800)362-7080 / Fax: (800) 634-7548
Order Entry
Product Availability
Pricing
Hours: 8:00 AM to 7:00 PM EST
Order Information
Returns
B. ENGINEERING SERVICE:
Telephone: (843) 664-4416 / Fax : (800) 446-5693
Hours: 7:30 AM to 5:00 PM EST
Warranty Returns
Authorized Repair Stations
Welding Equipment Troubleshooting
C. TECHNICAL SERVICE:
Telephone: (800) ESAB-123/ Fax: (843) 664-4452
Part Numbers
Technical Applications
Specifications
Hours: 8:00 AM to 5:00 PM EST
Equipment Recommendations
D. LITERATURE REQUESTS:
Telephone: (843) 664-5562 / Fax: (843) 664-5548
Hours: 7:30 AM to 4:00 PM EST
E. WELDING EQUIPMENT REPAIRS:
Telephone: (843) 664-4487 / Fax: (843) 664-5557
Repair Estimates
Repair Status
Hours: 7:30 AM to 3:30 PM EST
F. WELDING EQUIPMENT TRAINING
Telephone: (843)664-4428 / Fax: (843) 679-5864
Training School Information and Registrations
Hours: 7:30 AM to 4:00 PM EST
G. WELDING PROCESS ASSISTANCE:
Telephone: (800) ESAB-123 Hours: 7:30 AM to 4:00 PM EST
H. TECHNICAL ASST. CONSUMABLES:
Telephone : (800) 933-7070
Hours: 7:30 AM to 5:00 PM EST
IF YOU DO NOT KNOW WHOM TO CALL
Telephone: (800) ESAB-123
Fax: (843) 664-4462
Hours: 7:30 AM to 5:00 PM EST
or
Visit us on the web at http://www.esabna.com
The ESAB web site offers
Comprehensive Product Information
Material Safety Data Sheets
Warranty Registration
Instruction Literature Download Library
Distributor Locator
Global Company Information
Press Releases
Customer Feedback & Support
Download PDF
Similar pages