INSTALLATION MANUAL
R-410A
OUTDOOR SPLIT-SYSTEM
AIR CONDITIONING
®
MODELS: 13 & 14.5 SEER - RAC SERIES
1.5 TO 5 TONS – 1 & 3 PHASE
LIST OF SECTIONS
GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
SAFETY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
UNIT INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
ORIFICE INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
TXV INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
EVACUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
SYSTEM CHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ELECTRICAL CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
INSTRUCTING THE OWNER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
WIRING DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
START UP SHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
LIST OF FIGURES
Typical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Top Cap Installation/Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Installation of Vapor Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Underground Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Heat Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Orifice Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Outdoor Unit Control Box (Single Phase) . . . . . . . . . . . . . . . . . . . . . .7
Outdoor Unit Control Box (Three Phase) . . . . . . . . . . . . . . . . . . . . . . .7
Typical Field Wiring (Air Handler / Electrical Heat) (Single-Phase) . . .8
Typical Field Wiring (Air Handler / Electrical Heat) (Three-Phase) . . . 8
Thermostat Chart - Single Stage AC with PSC Air Handler . . . . . . . . 9
Thermostat Chart - Single Stage AC with PSC Air Handler . . . . . . . 10
Thermostat Chart - Single Stage AC with PSC Furnace . . . . . . . . . 11
Thermostat Chart - Single Stage AC with PSC Furnace . . . . . . . . . 12
Wiring Diagram - Single Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Wiring Diagram - Three Phase 2.5-5 Tons . . . . . . . . . . . . . . . . . . . . 15
Wiring Diagram - Three Phase 6.3 Ton . . . . . . . . . . . . . . . . . . . . . . 16
24 VAC Connection Wiring for 2-pipe A/C, 6.3 Ton
Condensing Unit with 7.5 Ton Air Handler . . . . . . . . . . . . . . . . . . . . 16
LIST OF TABLES
Application Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
R-410A Saturation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SECTION I: GENERAL
The outdoor units are designed to be connected to a matching indoor
coil with sweat connect lines. Sweat connect units are factory charged
with refrigerant for a matching indoor coil plus 15 feet of field-supplied
lines.
The refrigerant charge may need to be changed for some indoor-outdoor unit combinations, elevation differences or total line lengths. Refer
to Application Data covering “General Piping Recommendations and
Refrigerant Line Length” (Part Number 247077).
SECTION II: SAFETY
This is a safety alert symbol. When you see this symbol on
labels or in manuals, be alert to the potential for personal
injury.
Understand and pay particular attention to the signal words DANGER,
WARNING, or CAUTION.
DANGER indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury.
WARNING indicates a potentially hazardous situation, which, if not
avoided, could result in death or serious injury.
CAUTION indicates a potentially hazardous situation, which, if not
avoided may result in minor or moderate injury. It is also used to
alert against unsafe practices and hazards involving only property damage.
R-410A systems operate at higher pressures than R-22 systems. Do
not use R-22 service equipment or components on R-410A equipment. Service equipment Must Be Rated for R-410A.
Improper installation may create a condition where the operation of
the product could cause personal injury or property damage.
Improper installation, adjustment, alteration, service or maintenance
can cause injury or property damage. Refer to this manual for assistance or for additional information, consult a qualified contractor,
installer or service agency.
INSPECTION
As soon as a unit is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage
should be noted on the carrier’s delivery receipt. A separate request for
inspection by the carrier’s agent should be made in writing. See Local
Distributor for more information.
Requirements For Installing/Servicing R-410A Equipment
•
•
This product must be installed in strict compliance with the enclosed
installation instructions and any applicable local, state, and national
codes including, but not limited to building, electrical, and mechanical
codes.
Johnson Controls Unitary Products
•
•
•
•
•
Gauge sets, hoses, refrigerant containers, and recovery system
must be designed to handle the POE type oils, and the higher
pressures of R-410A.
Manifold sets should be high side and low side with low side
retard.
All hoses must have a 700 psig service pressure rating.
Leak detectors should be designed to detect HFC refrigerant.
Recovery equipment (including refrigerant recovery containers)
must be specifically designed to handle R-410A.
Do not use an R-22 TXV.
A liquid-line filter drier is required on every unit.
726415-UIM-C-0813
726415-UIM-C-0813
LIMITATIONS
The unit should be installed in accordance with all National, State and
Local Safety Codes and the limitations listed below:
1. Limitations for the indoor unit, coil, and appropriate accessories
must also be observed.
2. The outdoor unit must not be installed with any duct work in the air
stream. The outdoor fan is the propeller type and is not designed to
operate against any additional external static pressure.
3. The maximum and minimum conditions for operation must be
observed to ensure a system that will give maximum performance
with minimum service.
TABLE 1: Application Limitations
Ambient Air Temperature
on Outdoor Coil
Min. DB
50°F
Air Temperature on
Indoor Coil
Max. DB
115°F
Min. WB
57°F
Max. WB
72°F
4. The unit should not be operated at outdoor temperatures below
50°F without an approved low ambient operation accessory kit
installed.
5. The maximum allowable line length for this product is 75 feet.
SECTION III: UNIT INSTALLATION
LOCATION
Before starting the installation, select and check the suitability of the
location for both the indoor and outdoor unit. Observe all limitations and
clearance requirements.
The outdoor unit must have sufficient clearance for air entrance to the
condenser coil, air discharge, and service access. See Figure 1.
NOTICE
For multiple unit installations, units must be spaced a minimum of 18”
(46 cm) apart (coil face to coil face).
If the unit is to be installed on a hot sun exposed roof or a black-topped
ground area, the unit should be raised sufficiently above the roof or
ground to avoid taking the accumulated layer of hot air into the outdoor
unit.
Remove the shipping brackets that anchor the unit to the skid by
removing one or more screws from the bottom of the coilguard. Slide
the brackets out, and reinstall the removed screws. Failure to do so
may result in a potential safety hazard as the shipping bracket may
be an exposed sharp edge.
ADD-ON REPLACEMENT/RETROFIT
When this unit is being used as a replacement for an R-410A unit, it is
required that the outdoor unit, indoor coil, and metering device all be
replaced. The following steps should be performed in order to insure
proper system operation and performance. Line-set change out is also
recommended.
1. Change-out of the indoor coil to an approved R-410A coil/ condensing unit combination with the appropriate metering device.
2. Change-out of the line-set when replacing an R-22 unit with an
R410-A unit is highly recommended to reduce cross-contamination
of oils and refrigerants.
3. If change-out of the line set is not practical, then the following precautions should be taken.
•
Inspect the line set for kinks, sharp bends, or other restrictions,
and for corrosion.
• Determine if there are any low spots which might be serving as oil
traps.
• Flush the line set with a commercially available flush kit to
remove as much of the existing oil and contaminants as possible.
• Install a suction line filter-drier to trap any remaining contaminants, and remove after 50 hours of operation.
4. If the outdoor unit is being replaced due to a compressor burnout,
then installation of a 100% activated alumina suction-line filter drier
in the suction-line is required, in addition to the factory installed liquid-line drier. Operate the system for 10 hours. Monitor the suction
drier pressure drop. If the pressure drop exceeds 3 psig, replace
both the suction-line and liquid-line driers. After a total of 10 hours
run time where the suction-line pressure drop has not exceeded 3
psig, replace the liquid line drier, and remove the suction-line drier.
Never leave a suction-line drier in the system longer than 50 hours
of run time.
Provide an adequate structural support.
60” OVERHEAD
CLEARANCE
MINIMUM 18” SERVICE
ACCESS CLEARANCE
ON ONE SIDE
WEATHERPROOF
DISCONNECT
SWITCH
THERMOSTAT
NEC CLASS 1 WIRING
NEC CLASS 2 WIRING
10” CLEARANCE
AROUND PERIMETER
TO FURNACE OR
AIR HANDLER
TERMINAL BLOCK
TO INDOOR COIL
NOTES:
ALL OUTDOOR WIRING MUST BE WEATHERPROOF.
MINIMUM 24” UNIT TO UNIT CLEARANCE.
CONTROL
ACCESS
PANEL
SEAL OPENING(S) WITH
PERMAGUM OR EQUIVALENT
FIGURE 1: Typical Installation
2
Johnson Controls Unitary Products
726415-UIM-C-0813
GROUND INSTALLATION
The unit should be installed on a solid base that is 2” (5.1 cm) above
grade and will not shift or settle, causing strain on the refrigerant lines
and possible leaks. Maintain the clearances shown in Figure 1 and
install the unit in a level position. The base pad should not come in contact with the foundation or side of the structure because sound may be
transmitted to the residence.
The length of the refrigerant tubing between the outdoor unit and indoor
coil should be as short as possible to avoid capacity and efficiency
losses. Excessive spacing of the outdoor unit from the home can result
in the refrigerant lines being restricted by trampling or being punctured
by lawn mowers. Locate the outdoor unit away from bedroom windows
or other rooms where sound might be objectionable.
2. Repeat on any two adjacent tabs and remove the top cap from the
fan grill hub.
Brand Logo
Adverse effects of snow or sleet accumulating on the outdoor coil can
be eliminated by placing the outdoor unit where the prevailing wind
does not blow across the unit. Trees, shrubs, corners of buildings, and
fences standing off from the coil can reduce capacity loss due to wind
chill effect.
Provide ample clearance from shrubs to allow adequate air to pass
across the outdoor coil without leaves or branches being pulled into the
coil.
ROOF INSTALLATION
When installing units on a roof, the structure must be capable of supporting the total weight of the unit, including a pad, lintels, rails, etc.,
which should be used to minimize the transmission of sound or vibration into the conditioned space.
LIQUID LINE FILTER-DRIER
The air conditioning unit’s filter/dryer is located on the liquid line.
NOTICE
Replacements for the liquid line drier must be exactly the same as
marked on the original factory drier. See Source1 for O.E.M. replacement driers.
Failure to do so or using a substitute drier or a granular type may
result in damage to the equipment.
Filter-Drier
Source 1 Part No.
Apply with Models
S1-02922195000
All
TOP CAP INSTALLATION/REMOVAL
The top cap can be found nested between the base valves and blockoff
panel of this unit (if not already installed to the fan grill hub). The top
cap should be removed from the bag and attached to the center hub of
the fan grill.
For installation:
1. Remove the top cap from the bag.
2. Align the round top cap label brand name with the flat markings
near the top cap edge and apply firmly to the top cap. Refer to Figure 2.
3. Place the cap with the prongs facing downward against the hub of
the fan grill.
4. Align the two top marks on the top cap with any set of the fan grill
rods. Refer to Figure 2.
5. Press firmly on each of the 6 spokes to cause the tabs to hook
tightly to the rim of the fan grill.
For removal (to access fan motor acorn nuts):
1. By using a flat-tip screwdriver, carefully pry one of the tabs away
from the fan grill hub until it disengages the tab.
Johnson Controls Unitary Products
FIGURE 2: Top Cap Installation/Removal
PIPING CONNECTIONS
The outdoor condensing unit must be connected to the indoor evaporator coil using field supplied refrigerant grade (ACR) copper tubing that is
internally clean and dry. Units should be installed only with the tubing
sizes for approved system combinations as specified in tabular data
sheet. The charge given is applicable for total tubing lengths up to 15
feet (4.6 m). See Application Data Part Number 247077 for installing
tubing of longer lengths and elevation differences.
NOTICE
Using a larger than specified line size could result in oil return problems. Using too small a line will result in loss of capacity and other
problems caused by insufficient refrigerant flow. Slope horizontal
vapor lines at least 1" (2.5 cm) every 20 feet (6.1 m) toward the outdoor unit to facilitate proper oil return.
This system uses R-410A refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system.
Gauge sets, hoses, refrigerant containers, and recovery system must
be designed to handle R-410A. If you are unsure, consult the equipment manufacturer.
Never install a suction-line filter drier in the liquid line of an R-410A
system. Failure to follow this warning can cause a fire, injury or death.
PRECAUTIONS DURING LINE INSTALLATION
1. Install the lines with as few bends as possible. Care must be taken
not to damage the couplings or kink the tubing. Use clean hard
drawn copper tubing where no appreciable amount of bending
around obstruction is necessary. If soft copper must be used, care
must be taken to avoid sharp bends which may cause a restriction.
2. The lines should be installed so that they will not obstruct service
access to the coil, air handling system, or filter.
3. Care must also be taken to isolate the refrigerant lines to minimize
noise transmission from the equipment to the structure.
4. The vapor line must be insulated with a minimum of 1/2" foam rubber insulation (Armaflex or equivalent). Liquid lines that will be
exposed to direct sunlight, high temperatures, or excessive humidity must also be insulated.
3
726415-UIM-C-0813
5. Tape and suspend the refrigerant lines as shown. DO NOT allow
tube metal-to-metal contact. See Figure 3.
6. Use PVC piping as a conduit for all underground installations as
shown in Figure 4. Buried lines should be kept as short as possible
to minimize the build up of liquid refrigerant in the vapor line during
long periods of shutdown.
7. Pack fiberglass insulation and a sealing material such as permagum around refrigerant lines where they penetrate a wall to reduce
vibration and to retain some flexibility.
8. For systems with total line length exceeding 70 feet (21.3 m), see
APPLICATION DATA and worksheet "General Piping Recommendations and Refrigerant Line Length" for vapor and liquid line sizing,
calibration of liquid line pressure loss or gain, determination of
vapor line velocity, elevation limitations, orifice connections, system
charging, traps, etc.
Sheet Metal Hanger
Liquid
Line
Incorrect
This is not a backseating valve. The service access port has a valve
core. Opening or closing valve does not close service access port.
If the valve stem is backed out past the chamfered retaining wall, the
O-ring can be damaged causing leakage or system pressure could
force the valve stem out of the valve body possibly causing personal
injury.
Valve can be opened by removing the plunger cap and fully inserting a
hex wrench into the stem and backing out counter-clockwise until valve
stem just touches the chamfered retaining wall.
Connect the refrigerant lines using the following procedure:
1. Remove the cap and Schrader core from both the liquid and vapor
service valve service ports at the outdoor unit. Connect low pressure nitrogen to the liquid line service port.
2. Braze the liquid line to the liquid valve at the outdoor unit. Be sure
to wrap the valve body with a wet rag. Allow the nitrogen to continue flowing.
3. Carefully remove the plugs from the evaporator liquid and vapor
connections at the indoor coil.
Tape
Correct
Insulated Vapor Line
FIGURE 3: Installation of Vapor Line
TO OUTDOOR UNIT
TO INDOOR COIL
Liquid Line
Insulated
Vapor Line
Cap
PVC
Conduit
FIGURE 5: Heat Protection
FIGURE 4: Underground Installation
PRECAUTIONS DURING BRAZING OF LINES
All outdoor unit and evaporator coil connections are copper-to-copper
and should be brazed with a phosphorous-copper alloy material such
as Silfos-5 or equivalent. DO NOT use soft solder. The outdoor units
have reusable service valves on both the liquid and vapor connections.
The total system refrigerant charge is retained within the outdoor unit
during shipping and installation. The reusable service valves are provided to evacuate and charge per this instruction.
Serious service problems can be avoided by taking adequate precautions to assure an internally clean and dry system.
Dry nitrogen should always be supplied through the tubing while it is
being brazed, because the temperature required is high enough to
cause oxidation of the copper unless an inert atmosphere is provided.
The flow of dry nitrogen should continue until the joint has cooled.
Always use a pressure regulator and safety valve to insure that only
low pressure dry nitrogen is introduced into the tubing. Only a small
flow is necessary to displace air and prevent oxidation.
PRECAUTIONS DURING BRAZING SERVICE VALVE
Do not install any coil in a furnace which is to be operated during the
heating season without attaching the refrigerant lines to the coil. The
coil is under 30 to 35 psig inert gas pressure which must be released
to prevent excessive pressure build-up and possible coil damage.
4. Braze the liquid line to the evaporator liquid connection. Nitrogen
should be flowing through the evaporator coil.
5. Slide the grommet away from the vapor connection at the indoor
coil. Braze the vapor line to the evaporator vapor connection. After
the connection has cooled, slide the grommet back into original
position.
6. Protect the vapor valve with a wet rag and braze the vapor line connection to the outdoor unit. The nitrogen flow should be exiting the
system from the vapor service port connection. After this connection has cooled, remove the nitrogen source from the liquid fitting
service port.
7. Replace the Schrader core in the liquid and vapor valves.
8. Go to SECTION IV or SECTION V for orifice or TXV installation
depending on application.
9. Leak test all refrigerant piping connections including the service
port flare caps to be sure they are leak tight. DO NOT OVERTIGHTEN (between 40 and 60 inch - lbs. maximum).
Precautions should be taken to prevent heat damage to service valve
by wrapping a wet rag around it as shown in Figure 5. Also, protect all
painted surfaces, insulation, and plastic base during brazing. After brazing, cool joint with wet rag.
4
Johnson Controls Unitary Products
726415-UIM-C-0813
NOTICE
LIQUID LINE
SWIVEL COUPLING
(This fitting is a right-hand thread,
turn counter-clockwise to remove)
Line set and indoor coil can be pressurized to 250 psig with dry nitrogen and leak tested with a bubble type leak detector. Then release
the nitrogen charge.
Do not use the system refrigerant in the outdoor unit to purge or leak
test.
10. Evacuate the vapor line, evaporator, and liquid line to 500 microns
or less.
11. Replace cap on service ports. Do not remove the flare caps from
the service ports except when necessary for servicing the system.
ORIFICE
DISTRIBUTOR
Do not connect manifold gauges unless trouble is suspected.
Approximately 3/4 ounce of refrigerant will be lost each time a standard manifold gauge is connected.
12. Release the refrigerant charge into the system. Open both the liquid and vapor valves by removing the plunger cap and with an allen
wrench back out counter-clockwise until valve stem just touches the
chamfered retaining wall. If the service valve is a ball valve, use a
cresent wrench to turn valve stem one-quater turn counterclockwise to open. Do not overturn or the valve stem may break or
become damaged. See “PRECAUTIONS DURING BRAZING SERVICE VALVE”.
13. Replace plunger cap finger tight, then tighten an additional 1/12
turn (1/2 hex flat). Cap must be replaced to prevent leaks.
Never attempt to repair any brazed connections while the system is
under pressure. Personal injury could result.
See "System Charge” section for checking and recording system
charge.
Supplied with the outdoor unit is a Schrader Valve Core and Orifice for
highest sales volume indoor coil. The valve core must be installed in
equalizer fitting of the indoor coil.
SECTION IV: ORIFICE INSTALLATION
Failure to install Schrader Valve Core on orifice applications could
result in total refrigerant loss of the system!
Install Schrader Valve Core and Orifice as follows:
1. Slide indoor coil out of cabinet far enough to gain access to equalizer fitting on the suction line.
2. After holding charge is completely discharged remove black plastic
cap on equalizer fitting.
3. Install Schrader Valve Core supplied with the outdoor unit into
equalizer fitting using a valve core tool.
4. Loosen and remove the liquid line fitting from the orifice distributor
assembly. Note that the fitting has right hand threads.
5. Install proper size orifice supplied with outdoor unit. Refer to supplied Tabular Data Sheet for specific orifice size and indoor coil
match up.
6. After orifice is installed reinstall the liquid line to the top of the orifice
distributor assembly. Hand tighten and turn an additional 1/8 turn to
seal. Do not over tighten fittings.
7. Leak test system.
8. Replace black plastic cap on equalizer fitting.
9. Slide indoor coil back into cabinet.
Johnson Controls Unitary Products
FIGURE 6: Orifice Installation
SECTION V: TXV INSTALLATION
When using a TXV, 13 SEER models 12-48 require a hard start kit.
Models 12-48 with a “H” on the end of the model number have a factory installed hard start.
The following are the basic steps for installation. For detailed instructions, refer to the Installation Instructions accompanying the TXV kit.
Install TXV kit as follows:
Only 1TVM900 series valves are to be used on this product.
1. Relieve the holding charge by pulling off the rubber cap plug on the
suction manifold line of the coil.
2. After holding charge is completely discharged, loosen and remove
the Schrader cap seal.
3. Loosen and remove distributor cap seal.
4. Install the thermal expansion valve to the orifice distributor assembly with supplied fittings. Hand tighten and turn an additional 1/4
turn to seal. Do not overtighten fittings.
5. Install the liquid line to the top of the thermal expansion valve with
fitting supplied with the liquid line. Hand modify the liquid line to
align with casing opening. Hand tighten the liquid line and an additional 1/4 turn to seal.
6. Install the TXV equalizer line into the vapor line as follows:
a. Hand tighten the 1/4” SAE nut to the Schrader fitting and an
additional 1/3 turn to seal.
7. Install the TXV bulb to the vapor line near the equalizer line, using
the bulb clamp(s) furnished with the TXV assembly. Ensure the bulb
is making maximum contact.
a. Bulb should be installed on a horizontal run of the vapor line if
possible. The bulb should be installed on top of the line.
b.
If bulb installation is made on a vertical run, the bulb should
be located at least 16” (40.6 cm) from any bend, and on the
tubing sides opposite the plane of the bend. The bulb should
be positioned with the bulb tail at the top, so that the bulb acts
as a reservoir.
c.
Bulb should be insulated using thermal insulation provided to
protect it from the effect of the surrounding ambient temperature. Cover completely to insulate from air-stream.
5
726415-UIM-C-0813
In all cases, mount the TXV bulb after vapor line is brazed and has
had sufficient time to cool.
Schrader valve core MUST NOT be installed with TXV installation.
Poor system performance or system failure could result.
SECTION VI: EVACUATION
It will be necessary to evacuate the system to 500 microns or less. If a
leak is suspected, leak test with dry nitrogen to locate the leak. Repair
the leak and test again.
To verify that the system has no leaks, simply close the valve to the vacuum pump suction to isolate the pump and hold the system under vacuum. Watch the micron gauge for a few minutes. If the micron gauge
indicates a steady and continuous rise, it’s an indication of a leak. If the
gauge shows a rise, then levels off after a few minutes and remains
fairly constant, it’s an indication that the system is leak free but still contains moisture and may require further evacuation if the reading is
above 500 microns.
SECTION VII: SYSTEM CHARGE
The factory charge in the outdoor unit includes enough charge for the
unit, a 15 ft. (4.6 m) line set, and the smallest indoor coil match-up.
Some indoor coil matches may require additional charge. See tabular
data sheet provided in unit literature packet for charge requirements.
If a calibrated charging cylinder or accurate weighing device is available, add refrigerant accordingly. Otherwise, model-specific charging
charts are provided on the access panel of the unit.
SUPERHEAT CHARGING METHOD PISTON INDOOR
1. Set the system running in cooling mode by setting the thermostat at
least 6°F below the room temperature and operate system for at
least 10 – 15 minutes.
2. Refer to the technical guide for the recommended airflow and verify
indoor airflow (it should be about 400 SCFM per ton).
3. Measure and record the outdoor ambient (DB) temperature and the
suction pressure at the suction service valve.
4. Using the charging chart located on the unit, find the intersection of
the outdoor ambient dry bulb and the suction pressure obtained in
step 3. This is the recommended suction tube temperature at the
service valve.
5. Measure and record the suction tube temperature at the service
valve and compare to the recommended temperature obtained in
step 4.
6. Add charge if the measured suction temperature in step 5 is above
the recommended value. Remove / recover refrigerant if the measured suction temperature is below the recommended value.
Example: The suction tube temperature listed on the table at the
intersection of the outdoor DB and the suction pressure is 63°F.
Temperature of the suction tube at the service valve is 68°F. It would
be necessary to add refrigerant to drop the suction tube temperature
to 63°F.
SUBCOOLING CHARGING METHOD - TXV INDOOR
Do not leave the system open to the atmosphere.
The “TOTAL SYSTEM CHARGE” must be permanently stamped on the
unit data plate.
Total system charge is determined as follows:
1. Determine outdoor unit charge from tabular data sheet.
2. Determine indoor coil adjustment from tabular data sheet.
3. Calculate the line charge using the tabular data sheet if line length
is greater than 15 feet (4.6 m).
4. Total system charge = item 1 + item 2 + item 3.
5. Permanently stamp the unit data plate with the total amount of
refrigerant in the system.
Use the following charging method whenever additional refrigerant is
required for the system charge.
For cooling operation, unless otherwise specified, the default subcooling is 10°F.
1. Set the system running in cooling mode by setting the thermostat at
least 6°F below the room temperature and operate system for at
least 10 – 15 minutes.
2. Refer to the technical guide for the recommended indoor airflow
and verify it is correct (it should be about 400 SCFM per ton).
3. Measure and record the indoor wet bulb (WB) and the outdoor
ambient dry bulb (DB) temperature.
4. Using the charging chart located on the unit, find the intersection of
the indoor wet bulb and the outdoor dry bulb. This is the recommended liquid pressure (and subcooling value).
5. Measure and record the pressure at the liquid valve pressure port
and compare to the value obtained in step 4.
6. Add charge if the measured liquid pressure is lower than the recommended value. Remove / recover charge if the measured liquid
pressure is above the recommended value.
DO NOT attempt to pump “Total System Charge” into outdoor unit for
maintenance, service, etc. This may cause damage to the compressor and/or other components. the outdoor unit only has enough volume for the factory charge, not the “Total System Charge”.
Example: The liquid pressure listed at the intersection of the indoor
WB and the outdoor DB 320 psig. Pressure at the liquid valve is 305
psig. It would be necessary to add refrigerant to increase the liquid
pressure to 320 psig.
Refrigerant charging should only be carried out by a qualified air conditioning contractor.
Condenser subcooling is obtained by calculating the difference of the
saturated refrigerant temperature of the pressure measured at the liquid
base valve and the liquid tube temperature as measured at the liquid
base valve.
Subcooling Temp. (TC) = Saturated Temp. (TS) – Liquid Temp. (T).
Compressor damage will occur if system is improperly charged. On
new system installations, charge system per tabular data sheet for
the matched coil and follow guidelines in this instruction.
6
IT IS UNLAWFUL TO KNOWINGLY VENT, RELEASE OR DISCHARGE REFRIGERANT INTO THE OPEN AIR DURING REPAIR,
SERVICE, MAINTENANCE OR THE FINAL DISPOSAL OF THIS
UNIT.
Johnson Controls Unitary Products
726415-UIM-C-0813
TABLE 2: R-410A Saturation Properties
TEMP. °F
PRESSURE
PSIG
TEMP. °F
PRESSURE
PSIG
TEMP. °F
PRESSURE
PSIG
TEMP. °F
PRESSURE
PSIG
TEMP. °F
PRESSURE
PSIG
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
130
132
135
137
140
142
145
147
150
153
156
158
161
164
167
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
170
173
176
179
182
185
188
191
194
197
201
204
207
211
214
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
217
221
224
228
232
235
239
243
247
250
254
258
262
266
270
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
274
278
282
287
291
295
299
304
308
313
317
322
326.
331
336
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
341
345
350
355
360
365
370
375
380
385
391
396
401
407
412
SECTION VIII: ELECTRICAL
CONNECTIONS
Contactor
GENERAL INFORMATION & GROUNDING
Check the electrical supply to be sure that it meets the values specified
on the unit nameplate and wiring label.
Power wiring, control (low voltage) wiring, disconnect switches and over
current protection must be supplied by the installer. Wire size should be
sized per NEC requirements.
All field wiring must USE COPPER CONDUCTORS ONLY and be in
accordance with Local, National, Fire, Safety & Electrical Codes. This
unit must be grounded with a separate ground wire in accordance
with the above codes.
The complete connection diagram and schematic wiring label is located
on the inside surface of the unit service access panel.
Ground
Lug
Low
Voltage
Box
“Fingered”
Bushing
FIELD CONNECTIONS POWER WIRING
1. Install the proper size weatherproof disconnect switch outdoors and
within sight of the unit.
2. Remove the screws at the top and sides of the corner cover. Slide
corner cover down and remove from unit.
3. Run power wiring from the disconnect switch to the unit.
4. Route wires from disconnect through power wiring opening provided and into the unit control box as shown in Figures 7 & 8.
5. Install the proper size time-delay fuses or circuit breaker, and make
the power supply connections.
Reversible High
Voltage Conduit Plate
Dual
Run/Fan
Capacitor
FIGURE 7: Outdoor Unit Control Box (Single Phase)
Contactor
Ground
Lug
Low
Voltage
Box
“Fingered”
Bushing
Reversible High
Voltage Conduit Plate
Fan
Capacitor
FIGURE 8: Outdoor Unit Control Box (Three Phase)
Johnson Controls Unitary Products
7
726415-UIM-C-0813
FIELD CONNECTIONS CONTROL WIRING
1. Route low voltage wiring into bottom of control box as shown in Figures 7 or 8. Make low voltage wiring connections inside the low
voltage box per Figures 9 or 10.
2. The complete connection diagram and schematic wiring label is
located on the inside surface of the unit service access panel.
3. Replace the corner cover removed in Step 2.
4. All field wiring to be in accordance with national electrical codes
(NEC) and/or local-city codes.
NOTICE
5. Mount the thermostat about 5 ft. above the floor, where it will be
exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed
glass or appliances, drafts from outside doors or supply air grilles.
6. Route the 24-volt control wiring (NEC Class 2) from the outdoor unit
to the indoor unit and thermostat.
NOTICE
To eliminate erratic operation, seal the hole in the wall at the thermostat with permagum or equivalent to prevent air drafts affecting the
operation of in the thermostat.
A Start Assist Kit is available and recommended for long line set
applications or in areas of known low voltage problems.
ALL FIELD WIRING TO BE IN ACCORDANCE WITH ELECTRIC CODE (NEC) AND/OR LOCAL CODES
POWER WIRING
24 VOLT CONTROL WIRING
MINIMUM 18 GA. WIRE
(NEC CLASS 2)
POWER WIRING
CONTROL WIRING
FACTORY WIRING
FURNACE OR AIR HANDLER TERMINAL BLOCK
C
Y
R
G
W
Y
R
G
W
* TERMINAL W IS ONLY
REQUIRED ON SYSTEMS
WITH HEAT.
CONTACTOR
TERMINALS
GND.
LUG
COIL
*
ROOM THERMOSTAT
CONDENSING UNIT
ALL OUTDOOR WIRING MUST BE WEATHERPROOF. USE COPPER CONDUCTORS ONLY.
FIGURE 9: Typical Field Wiring (Air Handler / Electrical Heat) (Single-Phase)
ALL FIELD WIRING TO BE IN ACCORDANCE WITH ELECTRIC CODE (NEC) AND/OR LOCAL CODES
POWER WIRING
24 VOLT CONTROL WIRING
MINIMUM 18 GA. WIRE
(NEC CLASS 2)
POWER WIRING
CONTROL WIRING
FACTORY WIRING
FURNACE OR AIR HANDLER TERMINAL BLOCK
C
Y
R
G
W
Y
R
G
W
* TERMINAL W IS ONLY
REQUIRED ON SYSTEMS
WITH HEAT.
CONTACTOR
TERMINALS
GND.
LUG
COIL
CONDENSING UNIT
*
ROOM THERMOSTAT
ALL OUTDOOR WIRING MUST BE WEATHERPROOF. USE COPPER CONDUCTORS ONLY.
FIGURE 10: Typical Field Wiring (Air Handler / Electrical Heat) (Three-Phase)
8
Johnson Controls Unitary Products
726415-UIM-C-0813
For additional connection diagrams for all UPG equipment refer to “Low Voltage System Wiring” document available online at www.upgnet.com in the
Product Catalog Section.
AC 1A
Single Stage Air Conditioner – PSC Air Handler
THERMOSTAT
SINGLE STAGE
SINGLE STAGE
AIR
AIR CONDITIONER
CONDITIONER
PSC
AIR HANDLER
*PP11C70224
PSC
1
AIR HANDLER CONTROL
SINGLE STAGE
AIR CONDITIONER
COM
24 – Volt Common
C
24 – Volt Common
Y
Full Stage Compressor
Y/Y2
Second or Full
Stage Compressor
Y
Compressor
Compressor
Contactor
RH
24 – Volt Hot
(Heat XFMR)
R
24 – Volt Hot
G
Fan
G
Fan
W2
Second Stage Heat
RC
24 – Volt Hot
(Cool XFMR)
Y1
Single Stage Compressor
O
Reversing Valve
Energized in Cool
X/L
Malfunction Light
W
Full Stage Heat
HM1
Humidistat
W1
First Stage Heat
24VAC Humidifier
(Optional)
24VAC
Electronic Air Cleaner
(Optional)
Clipping Jumper W914 for
electric heat on thermostat
is not necessary
HUM
Humidity Switch
Open on Humidity Rise
HUM OUT
(24 VAC out)
Humidifier
EAC(24 VAC out)
Electronic Air Cleaner
Move HUM STAT
jumper to “YES”
if humidistat is to be used.
Refer to AH documentation
for W1 and W2 electric
heat staging options.
Part Numbers:
SAP = Legacy
159480 = 031-09156
2
1
FIGURE 11: Thermostat Chart - Single Stage AC with PSC Air Handler
Johnson Controls Unitary Products
9
726415-UIM-C-0813
AC 1B
Single Stage Air Conditioner – PSC Air Handler
THERMOSTAT
THERMOSTAT
*BN11C00124
*BP11C50124
*BN11C01124
*DP11C40124
*DN11C00124
SINGLE STAGE
AIR
CONDITIONER
PSC
AIR HANDLER
PSC
1
AIR HANDLER CONTROL
SINGLE STAGE
AIR CONDITIONER
C
24 – Volt Common
C
24 – Volt Common
COM
24 – Volt Common
C
24 – Volt Common
Y
Full Stage Compressor
Y
Full Stage Compressor
Y/Y2
Second or Full
Stage Compressor
Y
Compressor Contactor
RH
24 – Volt Hot
(Heat XFMR)
RH
24 – Volt Hot
(Heat XFMR)
R
24 – Volt Hot
G
Fan
G
Fan
G
Fan
W2
Second Stage Heat
RC
24 – Volt Hot
(Cool XFMR)
RC
24 – Volt Hot
(Cool XFMR)
Y1
Single Stage Compressor
O
Reversing Valve
Energized in Cool
X/L
Malfunction Light
W
Full Stage Heat
W
Full Stage Heat
2
External Humidistat
(Optional)
Open on Humidity Rise
Thermostat Installer Setup Selection of GAS/ELEC
1-System Type-must be
switch on thermostat
set to 0
is not necessary
Thermostat Installer Setup
15-Compressor Protection
must be set to 5
2
W1
First Stage Heat
24VAC Humidifier
(Optional)
24VAC
Electronic Air Cleaner
(Optional)
Part Number:
S1-2HU16700124
HUM
Humidity Switch
Open on Humidity Rise
HUM OUT
(24 VAC out)
Humidifier
EAC(24 VAC out)
Electronic Air Cleaner
Move HUM STAT
jumper to “YES”
if humidistat is to be used.
Refer to AH documentation
for W1 and W2 electric
heat staging options.
Other
PartPart
Numbers:
Numbers:
SAP = Legacy
265902
159480 = 031-09167
031-09156
2
1
FIGURE 12: Thermostat Chart - Single Stage AC with PSC Air Handler
10
Johnson Controls Unitary Products
726415-UIM-C-0813
AC 5A
Single Stage Air Conditioner – Single Stage PSC Furnace
THERMOSTAT
SINGLE STAGE
PSC
FURNACE
*PP11C70224
SINGLE STAGE PSC
FURNACE
SINGLE STAGE
AIR
CONDITIONER
SINGLE
STAGE
SINGLE
STAGE
AIR
CONDITIONER
AIR
CONDITIONER
1
C
24 – Volt Common
C
24 – Volt Common
Y
Full Stage Compressor
Y1
Single Stage Compressor
YY
Compressor
Contactor
Compressor
RH
24 – Volt Hot
(Heat XFMR)
R
24 – Volt Hot
G
Fan
G
Fan
W
Full Stage Heat
RC
24 – Volt Hot
(Cool XFMR)
Y / Y2
Second or Full
Stage Compressor
W
Full Stage Heat
HM1
Humidistat
24VAC Humidifier
(Optional)
Clipping Jumper W914 for
electric heat on thermostat
is not necessary
Other Part Numbers:
SAP = Legacy
265902 = 031-09167
1
FIGURE 13: Thermostat Chart - Single Stage AC with PSC Furnace
Johnson Controls Unitary Products
11
726415-UIM-C-0813
AC 5B
Single Stage Air Conditioner – Single Stage PSC Furnace
THERMOSTAT
THERMOSTAT
*BN11C00124
*BP11C50124
*BN11C01124
*DP11C40124
*DN11C00124
SINGLE STAGE
PSC
FURNACE
SINGLE STAGE PSC
FURNACE
SINGLE STAGE
AIR
CONDITIONER
1
SINGLE STAGE
AIR CONDITIONER
C
24 – Volt Common
C
24 – Volt Common
C
24 – Volt Common
C
24 – Volt Common
Y
Full Stage Compressor
Y
Full Stage Compressor
Y1
Single Stage Compressor
Y
Compressor Contactor
RH
24 – Volt Hot
(Heat XFMR)
RH
24 – Volt Hot
(Heat XFMR)
R
24 – Volt Hot
G
Fan
G
Fan
G
Fan
W
Full Stage Heat
RC
24 – Volt Hot
(Cool XFMR)
RC
24 – Volt Hot
(Cool XFMR)
W
Full Stage Heat
W
Full Stage Heat
2
External Humidistat
(Optional)
Open on Humidity Rise
Y / Y2
Second or Full
Stage Compressor
24VAC Humidifier
(Optional)
Thermostat Installer Setup Selection of GAS/ELEC
1-System Type-must be
switch on thermostat
set to 0
is not necessary
Thermostat Installer Setup
15-Compressor Protection
must be set to 5
2
Part Number:
S1-2HU16700124
Other Part Numbers:
SAP = Legacy
265902 = 031-09167
1
FIGURE 14: Thermostat Chart - Single Stage AC with PSC Furnace
12
Johnson Controls Unitary Products
726415-UIM-C-0813
SECTION IX: INSTRUCTING THE OWNER
Assist owner with processing warranty cards and/or online registration.
Review Owners Guide and provide a copy to the owner and guidance
on proper operation and maintenance. Instruct the owner or the operator how to start, stop and adjust temperature setting.
When applicable, instruct the owner that the compressor is equipped
with a crankcase heater to prevent the migration of refrigerant to the
compressor during the OFF cycle. The heater is energized only when
the unit is not running. If the main switch is disconnected for long periods of shut down, do not attempt to start the unit until 8 hours after the
switch has been connected. This will allow sufficient time for all liquid
refrigerant to be driven out of the compressor.
The installer should also instruct the owner on proper operation and
maintenance of all other system components.
2. The outdoor fan motor is permanently lubricated and does not
require periodic oiling.
3. If the coil needs to be cleaned, use clean water to wash dust, dirt,
and debris from outdoor condensing coil.
NOTICE
DO NOT use coil cleaners to clean outdoor condensing coil. cleaners
containing HF-, hydroxides, chlorides, and sulfates can greatly
reduce the lifetime of the aluminum condensing coil.
4. Refer to the furnace or air handler instructions for filter and blower
motor maintenance.
5. The indoor coil and drain pan should be inspected and cleaned
regularly to prevent odors and assure proper drainage.
MAINTENANCE
1. Dirt should not be allowed to accumulate on the outdoor coils or
other parts in the air circuit. Clean as often as necessary to keep
the unit clean. Use a brush, vacuum cleaner attachment, or other
suitable means.
Johnson Controls Unitary Products
IT IS UNLAWFUL TO KNOWINGLY VENT, RELEASE OR DISCHARGE REFRIGERANT INTO THE OPEN AIR DURING REPAIR,
SERVICE, MAINTENANCE OR THE FINAL DISPOSAL OF THIS
UNIT.
13
726415-UIM-C-0813
SECTION X: WIRING DIAGRAM
FIGURE 15: Wiring Diagram - Single Phase
14
Johnson Controls Unitary Products
726415-UIM-C-0813
*412217*
FIGURE 16: Wiring Diagram - Three Phase 2.5-5 Tons
Johnson Controls Unitary Products
15
726415-UIM-C-0813
1
COMPONENTS SHOWN IN DASHED LINES ARE OPTIONAL.
2
RED WIRE WILL BE REMOVED IF LOW AMBIENT KIT IS
INSTALLED.
3
YELLOW WIRE WILL BE REMOVED IF PRESSURE SWITCH
KIT IS INSTALLED.
4
IF ANY OF THE ORIGINAL WIRE SUPPLIED WITH THIS UNIT
MUST BE REPLACED, IT MUST BE REPLACED WITH TYPE
105 C, THERMOPLASTIC OR ITS EQUIVALENT.
5
DANGER - SHOCK HAZARD
TURN OFF ELECTRICAL POWER BEFORE
SERVICING TO PREVENT POSSIBLE DAMAGE
TO THE EQUIPMENT AND POSSIBLE
PERSONAL INJURY.
CAUTION
TO PREVENT ELECTRICAL SHOCK OPEN
REMOTE DISCONNECT SO ELECTRICAL
SUPPLY TO AIR CONDITIONER IS SHUT OFF.
WIRING MUST CONFORM TO NATIONAL AND LOCAL CODES.
HIGH VOLTAGE FACTORY WIRING
LOW VOLTAGE FACTORY WIRING
FIELD WIRING, LINE VOLTAGE
OPTIONAL WIRING
HPS -HIGH PRESSURE SWITCH
LP -LOW PRESSURE SWITCH
LAP -LOW AMBIENT PRESSURE SWITCH
CCH -CRANKCASE HEATER
CC -CONTACTOR COIL
ASCT -ANTI-SHORT CYCLE TIME
Optional Low Ambient Kit
LAP RELAY
RED
S
A
7
B
FAN
MOTOR
C
GND.
LAP
RED
1
R
GRN
2
1
Optional Pressure Out Kit
PS RELAY 1
YEL
FAN
CAPACITOR
BLK
COMPRESSOR
MOTOR
BLK
A
7
B
2
BLK
T1
GRN
RED
BLU BLK
BLU
BLU
BLK
BRN
BLK
LP 1
BLK
RED
24V
240V
OR
COM
480V 208V
ORG
BLK
BLK
TRANSFORMER
BRN
CCH 1
2
RED
HPS 1
T2
T3
BLK
RED
4
PLUG
5
3
BRN / WHT
6
1
BLK
RED
BRN
1
YEL / PNK
CONTACTOR
BLUE
YEL
COOLING
USE COPPER CONDUCTOR ONLY
COMMON
LOW
VOLTAGE
BOX
24 VAC
208/230 VAC 60 Hz 3Ph
380/415 VAC 50 Hz 3Ph
460 VAC 60 Hz 3Ph
HPS
CC
3
GND.
LUG
YEL / PNK
GND.
872677-UWD-A-0712
FIGURE 17: Wiring Diagram - Three Phase 6.3 Ton
6.3 TON CONDENSING UNIT
LOW VOLTAGE BOX
7.5 TON AIR HANDLER
24 V TERMINAL BLOCK
BLUE
830 /BR
C
24 I/BR
YELLOW
SI
RED
S2
C
W1
R
YI
G
TYPICAL WALL THERMOSTAT
W2
GI
2I0/Y
66
832 /BK
A EHRI B
60
833 /BL
A EHR 2 B
A BRI
B
83 I/BR
USED WITH ELECTRIC
HEAT ACCESSORIES
FIGURE 18: 24 VAC Connection Wiring for 2-pipe A/C, 6.3 Ton Condensing Unit with 7.5 Ton Air Handler
16
Johnson Controls Unitary Products
726415-UIM-C-0813
SECTION XI: START UP SHEET
Air Conditioning and Heating Start-Up Sheet
Print Form
Reset Form
Proper start-up is critical to customer comfort and equipment longevity
Start-Up Date
Technician Performing Start-Up
Installing Contractor Name
Owner Information
Name
Address
City
State or Province
Equipment Data
Upflow
Zip or Postal Code
Downflow
Horizontal Left
Indoor Unit Model #
Indoor Unit Serial #
Indoor Coil Model #
Indoor Coil Serial #
Outdoor Unit Model #
Outdoor Unit Serial #
Horizontal Right
Filter, Thermostat, Accessories
Filter Type
Filter Size
Filter Location(s)
Thermostat Type
Other System Equipment and Accessories
Connections -- Per Installation Instructions and Local Codes
Unit is level
Supply plenum and return ducts are connected and sealed
Refrigerant piping complete and leak tested
Gas piping is connected (if applicable)
Vent system is connected (if applicable)
Condensate drain for indoor coil properly connected
Condensate drain for furnace (if applicable)
Electrical: Line Voltage
Indoor unit (volts AC)
Outdoor unit (volts AC)
Ground wire is connected
Overcurrent Protection Breaker / Fuses Amperes
Polarity is correct (120vac indoor units) black is L1 (hot), white is N (neutral)
Electrical: Low Voltage
Thermostat wiring complete
Heat anticipator is set to the recommended value listed in the Installation Instructions
Low voltage values: "R" and "C" at Indoor unit control board (volts AC)
Heat anticipator
recommended value
"R" and "C" Outdoor unit control board (volts AC)
Heating Set-Up
Heating Type
Electric Air Handler
Inlet Gas Pressure (in. w.c.")
Natural Gas
Manifold Gas Pressure (in. w.c.")
Calculated input in btuh - clock the gas meter (Nat Gas Only)
Electric Heat Kit Part # (if applicable)
Venting (if applicable)
KW installed
LP Gas (Requires LP Conversion Kit)
LP Gas Conversion Kit Part # Used
LP Kit Installed By
Rated BTU/H (furnaces)
Venting system properly sized, within the limitations of the charts in the installation instructions.
Intake Size
# of 90 Degree Ells
# 0f 45 Degree Ells
Length
Exhaust Size
# of 90 Degree Ells
# 0f 45 Degree Ells
Length
Continued on next Page
Johnson Controls Unitary Products
17
Air Side: System Total External Static Pressure
Supply static before indoor coil (in w.c.")
Supply static after indoor coil (in w.c.")
Return Static (in w.c.") before filter
Return Static (in w.c.") after filter (furnace side)
Total External Static Pressure
Maximum Rated ESP (in w.c.")
COOL
ADJUST
ECM
Cooling
Indoor
Blower Set-Up
Return Air: Dry Bulb
DELAY
Orifice Size
TXV #
A
B
C
D
A
B
C
D
3
4
5
PSC
Low
Medium Low
Medium
Medium High
High
Supply Air: Dry Bulb
ECM
TXV
D
2
HEAT
X-13
1
PSC
Low
Temperature Drop
B
C
D
2
3
4
5
Medium
Low
Liquid Line Temp
# Elbows
Medium
High
Medium
Supply Air: Dry Bulb
Additional Lineset Length
Fixed Orifice
Outside Air: Dry Bulb
A
Wet Bulb
Refrigerant Charge and Metering Device
R-410A
C
1
Return Air: Dry Bulb
R-22
B
X-13
Wet Bulb
Heating
Indoor
Blower Set-Up
A
# 45s
High Side Pressure
Temperature Rise
Adder per foot - lbs.
Oz.
Total Added - lbs.
Oz.
Suction Line Temp
Subcooling
High
Low Side Pressure
Superheat
Cycle Test
Operate the unit through continuous fan cycles from the thermostat, noting and correcting any problems
Operate the unit through a cooling cycles, noting and correcting any problems
Operate the unit through several heating cycles (if applicable) from the thermostat, noting and correcting any problems
Clean Up
Installation debris disposed of and indoor and outdoor areas cleaned up?
Owner Education
Provide owner with the owner's manual
Explain operation of system to equipment owner
Explain thermostat use and programming (if applicable) to owner
Explain the importance of regular filter replacement and equipment maintenance
Comments Section
Subject to change without notice. Published in U.S.A.
Copyright © 2013 by Johnson Controls, Inc. All rights reserved.
York International Corp.
5005 York Drive
Norman, OK 73069
726415-UIM-C-0813
Supersedes: 726415-UIM-B-0713
Download PDF
Similar pages