S-8239A Series
www.sii-ic.com
OVERCURRENT MONITORING IC
FOR MULTI-SERIAL-CELL PACK
Rev.1.3_00
© Seiko Instruments Inc., 2013-2014
The S-8239A Series is an overcurrent monitoring IC for multi-serial-cell pack including high-accuracy voltage detection
circuits and delay circuits.
The S-8239A Series is suitable for protection of lithium-ion / lithium polymer rechargeable battery packs from overcurrent.
„ Features
• Built-in high-accuracy voltage detection circuit
*1
0.04 V to 0.30 V (10 mV step)
Accuracy ±15 mV
Overcurrent 1 detection voltage
Overcurrent 2 detection voltage
0.1 V to 0.7 V (100 mV step)
Accuracy ±100 mV
Overcurrent 3 detection voltage
1.2 V (Fixed)
Accuracy ±300 mV
• Built-in three-step overcurrent detection circuit: Overcurrent 1, overcurrent 2, overcurrent 3
• Overcurrent 3 detection function is selectable: Available, unavailable
• UVLO (under voltage lock out) function
UVLO detection voltage
2.0 V (Fixed)
Accuracy ±100 mV
• High-withstand voltage device is used:
VM pin, DO pin: Absolute maximum rating 28 V
• Delay times are generated only by an internal circuit (External capacitors are unnecessary).
• Low current consumption
During normal operation:
7.0 μA max.
During UVLO operation:
6.0 μA max.
• Output logic:
Active "L"
• Wide operation temperature range:
Ta = −40°C to +85°C
• Lead-free (Sn 100%), halogen-free
*1. Overcurrent 1 detection voltage ≤ 0.06 V should be satisfied in the case of overcurrent 2 detection voltage = 0.1 V.
Overcurrent 1 detection voltage ≤ 0.85 × overcurrent 2 detection voltage − 0.05 V should be satisfied in the case of
overcurrent 2 detection voltage ≥ 0.2 V.
„ Applications
• Lithium-ion rechargeable battery pack
• Lithium polymer rechargeable battery pack
„ Package
• SOT-23-6
Seiko Instruments Inc.
1
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Block Diagram
DP
DO
+
VDD
−
Delay circuit
output control circuit
UVLO detection
comparator
+
−
VM
RVMS
Overcurrent latch
comparator
+
−
VINI
Overcurrent 1
detection comparator
+
−
Overcurrent 2
detection comparator
+
−
VSS
Overcurrent 3
detection comparator
Remark All the diodes shown in the figure are parasitic diodes.
Figure 1
2
Seiko Instruments Inc.
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Product Name Structure
1. Product name
S-8239A xx
-
M6T1
U
Environmental code
U: Lead-free (Sn 100%), halogen-free
Package abbreviation and IC packing specifications*1
M6T1: SOT-23-6, Tape
Serial code*2
Sequentially set from AA to ZZ
*1. Refer to the tape drawing.
*2. Refer to "3. Product name list".
2. Package
Table 1 Package Drawing Codes
Package Name
SOT-23-6
Dimension
Tape
Reel
MP006-A-P-SD
MP006-A-C-SD
MP006-A-R-SD
3. Product name list
Table 2
Product Name
Overcurrent 1
Detection
Voltage
[VDIOV1]
Overcurrent 2
Detection
Voltage
[VDIOV2]
Overcurrent 1
Detection
Delay Time
[tDIOV1]
Overcurrent 2
Detection
Delay Time
[tDIOV2]
Overcurrent 3
Detection
Function
S-8239AAA-M6T1U
0.08 V
0.4 V
1150 ms
1.12 ms
Unavailable
S-8239AAB-M6T1U
0.10 V
0.5 V
1150 ms
0.28 ms
Unavailable
S-8239AAC-M6T1U
0.10 V
0.3 V
18.0 ms
0.28 ms
Unavailable
S-8239AAD-M6T1U
0.10 V
0.2 V
290 ms
0.56 ms
Unavailable
S-8239AAE-M6T1U
0.10 V
0.7 V
18.0 ms
0.56 ms
Unavailable
S-8239AAF-M6T1U
0.04 V
0.3 V
4600 ms
0.28 ms
Unavailable
S-8239AAG-M6T1U
0.10 V
0.2 V
1150 ms
1.12 ms
Available
S-8239AAH-M6T1U
0.06 V
0.1 V
290 ms
0.56 ms
Unavailable
S-8239AAI-M6T1U
0.10 V
0.3 V
290 ms
0.28 ms
Unavailable
S-8239AAJ-M6T1U
0.11 V
0.3 V
4600 ms
2.24 ms
Available
Remark Contact our sales office for the products with detection voltage value other than those specified above.
Seiko Instruments Inc.
3
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Pin Configuration
1. SOT-23-6
Table 3
Top view
6 5 4
1 2 3
Figure 2
4
Pin No.
Symbol
Description
Voltage detection pin between VINI pin and VSS pin
1
VINI
(Overcurrent detection pin)
2
VM
Overcurrent latch pin
3
DO
Connection pin of discharge control FET gate
DP*1
4
Test pin for delay time measurement
5
VDD
Input pin for positive power supply
6
VSS
Input pin for negative power supply
*1. The DP pin should be open.
Seiko Instruments Inc.
Rev.1.3_00
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
„ Absolute Maximum Ratings
Table 4
Item
Input voltage between VDD pin and VSS pin
VM pin input voltage
VINI pin input voltage
DO pin output voltage
Power dissipation
Operation ambient temperature
Symbol
VDS
VVM
VVINI
VDO
PD
Topr
Storage temperature
Tstg
Applied pin
VDD
VM
VINI
DO
−
−
−
(Ta = +25°C unless otherwise specified)
Absolute Maximum Rating
Unit
VSS − 0.3 to VSS +12
V
VDD − 28 to VDD + 0.3
V
VSS − 0.3 to VSS + 12
V
VSS − 0.3 to VSS + 28
V
650*1
mW
−40 to +85
°C
−55 to +125
°C
*1. When mounted on board
[Mounted board]
(1) Board size:
114.3 mm × 76.2 mm × t1.6 mm
(2) Board name:
JEDEC STANDARD51-7
1. The DP pin should be open.
2. The absolute maximum ratings are rated values exceeding which the product could suffer physical
damage. These values must therefore not be exceeded under any conditions.
700
Power dissipation (PD) [mW]
Caution
600
500
400
300
200
100
0
0
100
150
50
Ambient temperature (Ta) [°C]
Figure 3 Power Dissipation of Package (When Mounted on Board)
Seiko Instruments Inc.
5
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Electrical Characteristics
1. Ta = +25°C
Table 5
Item
Symbol
Condition
VDIOV1
−
Overcurrent 2 detection voltage*1 VDIOV2
−
Min.
(Ta = +25°C unless otherwise specified)
Test
Test
Typ. Max. Unit
Condition Circuit
Detection Voltage
Overcurrent 1 detection voltage
Overcurrent 3 detection voltage
VDIOV3
UVLO detection voltage
VUVLO
Release Voltage
Overcurrent release voltage
VRIOV
Input Voltage, Operation Voltage
Operation voltage between
VDSOP
VDD pin and VSS pin
Current Consumption
Current consumption during
IOPE
normal operation
Current consumption during
IUVLO
UVLO operation
Internal Resistance
Internal resistance between
RVMS
VM pin and VSS pin
Output Resistance
DO pin resistance "L"
RDOL
Delay Time
Overcurrent 3 detection function
"available"
−
VDIOV1
V
− 0.015 DIOV1
VDIOV2
V
− 0.100 DIOV2
V
1
1
V
1
1
0.90
1.20
1.50
V
1
1
1.90
2.00
2.10
V
1
1
VDD criteria, VDD = 3.5 V
0.7
1.2
1.5
V
1
1
Output logic is determined*2
1.5
−
8
V
−
−
VDD = 3.5 V, VVM = 0 V
1.0
3.5
7.0
μA
2
2
VDD = VVM = 1.5 V
0.7
3.0
6.0
μA
2
2
VDD = VVM = 3.5 V
210
300
390
kΩ
3
3
VDD = VVINI = 3.5 V, VDO = 0.5 V
2.5
5
10
kΩ
4
4
tDIOV1
tDIOV1
× 1.4
ms
5
5
tDIOV2
tDIOV2
× 1.4
ms
5
5
280
392
μs
5
5
tDIOV1
Overcurrent 1 detection delay
−
tDlOV1
× 0.6
time
tDIOV2
Overcurrent 2 detection delay
−
tDlOV2
× 0.6
time
Overcurrent 3 detection function
Overcurrent 3 detection delay
tDlOV3 "available"
168
time
UVLO detection delay time
tUVLO
−
2.94
*1. Even if overcurrent 1 detection voltage and overcurrent 2 detection voltage are
VDIOV2.
*2. It indicates that DO pin output logic is determined.
6
VDIOV1
+ 0.015
VDIOV2
+ 0.100
Seiko Instruments Inc.
4.90
6.86
s
5
5
in the same range, VDIOV1 is lower than
Rev.1.3_00
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
2. Ta = −40°C to +85°C*1
Table 6
Item
Symbol
Condition
(Ta = −40°C to +85°C*1 unless otherwise specified)
Test
Test
Min.
Typ. Max. Unit
Condition Circuit
Detection Voltage
VDIOV1
−
Overcurrent 2 detection voltage*2 VDIOV2
−
Overcurrent 1 detection voltage
Overcurrent 3 detection voltage
VDIOV3
UVLO detection voltage
VUVLO
Release Voltage
Overcurrent release voltage
VRIOV
Input Voltage, Operation Voltage
Operation voltage between
VDSOP
VDD pin and VSS pin
Current Consumption
Current consumption during
IOPE
normal operation
Current consumption during
IUVLO
UVLO operation
Internal Resistance
Internal resistance between
RVMS
VM pin and VSS pin
Output Resistance
DO pin resistance "L"
RDOL
Delay Time
Overcurrent 3 detection function
"available"
−
VDIOV1
V
− 0.021 DIOV1
VDIOV2
V
− 0.130 DIOV2
VDIOV1
+ 0.021
VDIOV2
+ 0.130
V
1
1
V
1
1
0.70
1.20
1.70
V
1
1
1.85
2.00
2.15
V
1
1
VDD criteria, VDD = 3.5 V
0.5
1.2
1.7
V
1
1
Output logic is determined*3
1.5
−
8
V
−
−
VDD = 3.5 V, VVM = 0 V
0.7
3.5
8.0
μA
2
2
VDD = VVM = 1.5 V
0.5
3.0
7.0
μA
2
2
VDD = VVM = 3.5 V
150
300
450
kΩ
3
3
VDD = VVINI = 3.5 V, VDO = 0.5 V
1.2
5
15
kΩ
4
4
tDIOV1
tDIOV1
Overcurrent 1 detection delay
−
tDIOV1
ms
5
5
tDlOV1
× 0.2
× 1.8
time
tDIOV2
tDIOV2
Overcurrent 2 detection delay
−
tDIOV2
ms
5
5
tDlOV2
× 0.2
× 1.8
time
Overcurrent 3 detection function
Overcurrent 3 detection delay
μs
5
5
tDlOV3
56
280
504
"available"
time
UVLO detection delay time
tUVLO
−
0.98
4.90
8.82
s
5
5
*1. Since products are not screened at high and low temperatures, the specification for this temperature range is
guaranteed by design, not tested in production.
*2. Even if overcurrent 1 detection voltage and overcurrent 2 detection voltage are in the same range, VDIOV1 is lower than
VDIOV2.
*3. It indicates that DO pin output logic is determined.
Seiko Instruments Inc.
7
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Test Circuits
Caution
Unless otherwise specified, the output voltage levels "H" and "L" at the DO pin (VDO) are judged by
the threshold voltage (1.0 V) of the N-channel FET. Judge the DO pin level with respect to VSS.
1. Overcurrent 1 detection voltage, overcurrent 2 detection voltage, overcurrent release voltage,
UVLO detection voltage
(Test condition 1, test circuit 1)
The overcurrent 1 detection voltage (VDIOV1) is defined as the voltage V2 whose delay time for changing VDO from "H"
to "L" lies between the minimum and the maximum value of the overcurrent 1 detection delay time after the voltage
V2 is increased instantaneously (within 10 μs) from the set conditions of V1 = V3 = 3.5 V, V2 = 0 V.
The overcurrent 2 detection voltage (VDIOV2) is defined as the voltage V2 whose delay time for changing VDO from "H"
to "L" lies between the minimum and the maximum value of the overcurrent 2 detection delay time after the voltage
V2 is increased instantaneously (within 10 μs) from the set conditions of V1 = V3 = 3.5 V, V2 = 0 V.
The overcurrent release voltage (VRIOV) is defined as the voltage V3 at which VDO goes from "L" to "H" after
decreasing V2 to 0 V and the voltage V3 is increased gradually from the set conditions of V1 = V2 = 3.5 V, V3 = 0 V.
The UVLO detection voltage (VUVLO) is defined as the voltage V1 at which VDO goes from "H" to "L" after the voltage
V1 and V3 are decreased gradually from the set conditions of V1 = V3 = 3.5 V, V2 = 0 V.
2. Overcurrent 3 detection voltage (Overcurrent 3 detection function "available")
(Test condition 1, test circuit 1)
The overcurrent 3 detection voltage (VDIOV3) is defined as the voltage V2 whose delay time for changing VDO from "H"
to "L" lies between the minimum and the maximum value of the overcurrent 3 detection delay time after the voltage
V2 is increased instantaneously (within 10 μs) from the set conditions of V1 = V3 = 3.5 V, V2 = 0 V.
3. Current consumption during normal operation, current consumption during UVLO operation
(Test condition 2, test circuit 2)
The current consumption during normal operation (IOPE) is the current that flows through the VDD pin (IDD) under the
set conditions of V1 = 3.5 V, V2 = 0 V.
The current consumption during UVLO operation (IUVLO) is IDD under the set conditions of V1 = V2 = 1.5 V.
4. Internal resistance between VM pin and VSS pin
(Test condition 3, test circuit 3)
The internal resistance between the VM pin and the VSS pin (RVMS) is the resistance between the VM pin and the
VSS pin under the set condition of V1 = V2 = V3 = 3.5 V.
5. DO pin resistance "L"
(Test condition 4, test circuit 4)
The DO pin resistance "L" (RDOL) is the DO pin resistance under the set conditions of V1 = V2 = 3.5 V, V3 = 0.5 V.
8
Seiko Instruments Inc.
Rev.1.3_00
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
6. Overcurrent 1 detection delay time
(Test condition 5, test circuit 5)
6. 1 In the case of VDIOV2 = 0.1 V
The overcurrent 1 detection delay time (tDIOV1) is the time period from when the voltage V2 exceeds VDIOV1 to when
VDO goes to "L", after V2 is increased to 0.08V instantaneously (within 10 μs) under the set conditions of V1 =
3.5 V, V2 = 0 V.
6. 2 In the case of VDIOV2 ≥ 0.2 V
The overcurrent 1 detection delay time (tDIOV1) is the time period from when the voltage V2 exceeds VDIOV1 to when
VDO goes to "L", after V2 is increased to VDIOV1 max. + 0.01 V instantaneously (within 10 μs) under the set
conditions of V1 = 3.5 V, V2 = 0 V.
7. Overcurrent 2 detection delay time, UVLO detection delay time
(Test condition 5, test circuit 5)
The overcurrent 2 detection delay time (tDIOV2) is the time period from when the voltage V2 exceeds VDIOV2 to when
VDO goes to "L", after V2 is increased to 0.9 V instantaneously (within 10 μs) under the set conditions of V1 = 3.5 V,
V2 = 0 V.
The UVLO detection delay time (tUVLO) is the time period from when the voltage V1 falls below VUVLO to when VDO
goes to "L", after V1 is decreased to 1.8 V instantaneously (within 10 μs) under the set conditions of V1 = 3.5 V, V2 =
0 V.
8. Overcurrent 3 detection delay time (Overcurrent 3 detection function "available")
(Test condition 5, test circuit 5)
The overcurrent 3 detection delay time (tDIOV3) is the time period from when the voltage V2 exceeds VDIOV3 to when
VDO goes to "L", after V2 is increased to 1.6 V instantaneously (within 10 μs) under the set conditions of V1 = 3.5 V,
V2 = 0 V.
Seiko Instruments Inc.
9
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
IDD
A
DP
VDD
V1
VSS
S-8239A Series
V3
VM
VSS
VM
DO
VINI
DO
VINI
DP
VDD
V1
S-8239A Series
Rev.1.3_00
100 kΩ
V2
V2
V VDO
COM
COM
Figure 5 Test Circuit 2
Figure 4 Test Circuit 1
V1
S-8239A Series
V1
S-8239A Series
VINI
DO
VINI
VM
VSS
VM
VSS
DP
VDD
DP
VDD
DO
A IVM
A IDO
COM
COM
Figure 7 Test Circuit 4
Figure 6 Test Circuit 3
DP
VDD
V1
S-8239A Series
VM
VSS
DO
VINI
100 kΩ
V2
Oscilloscope
COM
Figure 8 Test Circuit 5
10
V2
V3
V2
Seiko Instruments Inc.
V3
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Operation
1. Normal status
The S-8239A Series monitors the voltage between the VINI pin and the VSS pin to control discharging. When the
VINI pin voltage is equal to or lower than the overcurrent 1 detection voltage (VDIOV1), the DO pin becomes "High-Z".
This status is called the normal status.
Caution
When a battery is connected to the S-8239A Series for the first time, the DO pin may not be
"High-Z". In this case, short the VM pin and VSS pin or connect the charger to restore the normal
status.
2. Overcurrent status (Overcurrent 1, overcurrent 2, overcurrent 3)
When a battery is in the normal status, if the VINI pin voltage is equal to or higher than the overcurrent detection
voltage because the discharge current is equal to or higher than the specified value and the status continues for the
overcurrent detection delay time or longer, the DO pin voltage becomes the VSS potential. This status is called the
overcurrent status. The overcurrent status is retained when the voltage between the VDD pin and the VM pin is equal
to or lower than the overcurrent release voltage (VRIOV).
In the overcurrent status, the VM pin and VSS pin are shorted by the internal resistor between the VM pin and the
VSS pin (RVMS) in the S-8239A Series. However, the VM pin voltage is at the VDD potential due to the external load as
long as the external load is connected. When the external load is disconnected completely, the VM pin returns to the
VSS potential.
The overcurrent status is released when the voltage between the VDD pin and the VM pin is equal to or higher than
VRIOV.
3. UVLO status
The S-8239A Series includes a UVLO (under voltage lock out) function to prevent the IC malfunction due to the
decrease of the battery voltage when detecting the overcurrent. When the battery voltage in the normal status is
equal to or lower than the UVLO detection voltage (VUVLO) and the status continues for the UVLO detection delay time
(tUVLO) or longer, the DO pin voltage becomes the VSS potential. This status is called the UVLO status.
In the UVLO status, the VM pin and VSS pin are shorted by RVMS between the VM pin and the VSS pin in the
S-8239A Series.
After that, the UVLO status is released if the battery voltage becomes equal to or higher than VUVLO.
Seiko Instruments Inc.
11
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
4. Delay circuit
The detection delay times are determined by dividing a clock of approximately 3.5 kHz with the counter.
Remark The overcurrent 2 detection delay time (tDIOV2) starts when the overcurrent 1 detection voltage (VDIOV1) is
detected. When the overcurrent 2 detection voltage (VDIOV2) is detected over tDIOV2 after the detection of
VDIOV1, the DO pin becomes the VSS potential within tDIOV2 of detection.
DO pin
High-Z
0 ≤ tD ≤ tDIOV2
VSS
tDIOV2
tD
Time
VDIOV2
VINI pin
VDIOV1
VSS
Time
Figure 9
5. DP pin
The DP pin is a test pin for delay time measurement and it should be open in the actual application.
If a capacitor whose capacitance is 1000 pF or more or a resistor whose resistance is 1 MΩ or less is connected to
this pin, error may occur in the delay times or in the detection voltages.
12
Seiko Instruments Inc.
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Timing Chart
1. Overcurrent detection
1. 1 Overcurrent 3 detection function "available"
VINI pin
VDIOV3
VDIOV2
VDIOV1
VSS
VDD
VRIOV
VM pin
VSS
High-Z
DO pin
High-Z
High-Z
High-Z
VSS
External load connection
Overcurrent 1 detection
delay time (tDIOV1)
Overcurrent 2 detection
delay time (tDIOV2)
Status*1
(1)
(2)
(1)
(2)
Overcurrent 3 detection
delay time (tDIOV3)
(1)
(2)
(1)
*1. (1): Normal status
(2): Overcurrent status
Figure 10
Seiko Instruments Inc.
13
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
1. 2 Overcurrent 3 detection function "unavailable"
VINI pin
VDIOV2
VDIOV1
VSS
VDD
VRIOV
VM pin
VSS
High-Z
DO pin
High-Z
High-Z
VSS
External load connection
Overcurrent 1 detection delay time (tDIOV1) Overcurrent 2 detection delay time (tDIOV2)
Status
*1
(1)
(2)
(1)
(2)
*1. (1): Normal status
(2): Overcurrent status
Figure 11
14
Seiko Instruments Inc.
(1)
Rev.1.3_00
Rev.1.3_00
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
2. UVLO detecion
VUVLO
Battery voltage
VDD
VM pin
VSS
DO pin
High-Z
High-Z
VSS
Charger connection
External load connection
UVLO detection delay time (tUVLO)
Status*1
(1)
(2)
(1)
*1. (1): Normal status
(2): UVLO status
Remark The charger is assumed to charge with a constant current.
Figure 12
Seiko Instruments Inc.
15
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ 5-serial-cell Protection Circuit Example
Figure 13 shows the 5-serial-cell protection circuit example used by the S-8239A Series and the S-8225A Series. Contact
our sales office when using the circuit other than the following protection circuit example.
EB+
100 Ω
1 MΩ
FET4
1 MΩ
CTLD
VDD
CTLC
VC1
CO
VC2
1 kΩ
0.1 μF
1 kΩ
FET2
RVM
330 kΩ
FET1*2
RDOP
VM
DP
S-8239A
Series
DO
VDD
RDO
VINI
RVINI
1 MΩ
CHA−
DIS−
CFET
DFET
*2
FET3
DO
VC3
S-8225A
Series*1
SEL1
VC4
RVDD
1 kΩ
CVDD
1 kΩ
SEL2
VC5
CDT
VC6
CCT
VSS
1 kΩ
VSS
0.1 μF 0.1 μF
ZVINI
0.1 μF
100 Ω
0.1 μF
1 kΩ
0.1 μF
1 kΩ
0.1 μF
1 kΩ
0.1 μF
1 kΩ
0.1 μF
1 kΩ
0.1 μF
1 kΩ
RSENSE
Figure 13
Table 7 Constants for External Components
Symbol
RVDD
RVINI
RSENSE
RVM
RDO*3
RDOP
CVDD
Min.
300
1
0
1
−
330
0.022
Typ.
470
−
−
5.1
5.1
510
0.1
Max.
1000
−
−
51
−
2000
1
Unit
Ω
kΩ
mΩ
kΩ
kΩ
kΩ
μF
*1. Refer to the data sheet of the S-8225A Series for the recommended value for external components
of the S-8225A Series.
*2. Use the products with the same model number for FET1 and FET2.
*3. Set up the optimal constant according to the FET in use.
Caution 1. The above constants may be changed without notice.
2. The example of connection shown above and the constants do not guarantee proper operation.
Perform through evaluation using the actual application to set the constant.
3. The DP pin should be open.
16
Seiko Instruments Inc.
Rev.1.3_00
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
„ Precautions
•
The application conditions for the input voltage, output voltage, and load current should not exceed the package power
dissipation.
•
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic
protection circuit.
•
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by products
including this IC of patents owned by a third party.
Seiko Instruments Inc.
17
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Characteristics (Typical Data)
1. Current consumption
1. 2 IOPE vs. VDD
8
8
6
6
IOPE [μA]
IOPE [μA]
1. 1 IOPE vs. Ta
4
2
0
−40 −25
0
+25
Ta [°C]
+50
+75 +85
0
+25
Ta [°C]
+50
+75 +85
4
2
0
0
2
4
VDD [V]
6
8
1. 3 IUVLO vs. Ta
IUVLO [μA]
8
6
4
2
0
−40 −25
2. Overcurrent detection / release voltage, UVLO function and delay times
2. 1 VDIOV1 vs. Ta
2. 2 VDIOV2 vs. Ta
VDIOV2 = 0.4 V
0.10
0.6
0.09
0.5
VDIOV2 [V]
VDIOV1 [V]
VDIOV1 = 0.08 V
0.08
0.07
0.06
−40 −25
0
+25
Ta [°C]
+50
+25
Ta [°C]
+50
+75 +85
0
+25
Ta [°C]
+50
+75 +85
1.5
1.3
VRIOV [V]
VDIOV3 [V]
0
1.8
1.4
1.2
1.1
1.0
18
−40 −25
2. 4 VRIOV vs. Ta
1.5
0.9
0.3
0.2
+75 +85
2. 3 VDIOV3 vs. Ta
0.4
−40 −25
0
+25
Ta [°C]
+50
+75 +85
1.2
0.9
0.6
Seiko Instruments Inc.
−40 −25
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
2. 6 VDIOV2 vs. VDD
2. 5 VDIOV1 vs. VDD
VDIOV2 = 0.4 V
0.10
0.6
0.09
0.5
VDIOV2 [V]
VDIOV1 [V]
VDIOV1 = 0.08 V
0.08
0.07
0.06
0.4
0.3
0.2
2
3
4
5
6
7
2
8
3
4
5
VDD [V]
6
7
8
4
5
VDD [V]
6
7
8
VDD [V]
2. 7 VDIOV3 vs. VDD
2. 8 VRIOV vs. VDD
1.5
1.8
1.4
1.5
VRIOV [V]
VDIOV3 [V]
1.3
1.2
1.1
1.0
0.9
1.2
0.9
0.6
2
3
4
5
6
7
2
8
3
VDD [V]
2. 9 tDIOV1 vs. Ta
2. 10 tDIOV2 vs. Ta
tDIOV2 = 1.12 ms
1.6
1.4
1.4
tDIOV2 [ms]
tDIOV1 [s]
tDIOV1 = 1150 ms
1.6
1.2
1.0
0.8
−40 −25
+25
Ta [°C]
0
+50
+75 +85
2. 11 tDIOV3 vs. Ta
1.2
1.0
0.8
−40 −25
0
+25
Ta [°C]
+50
+75 +85
2. 12 tDIOV1 vs. VDD
400
1.6
340
1.4
tDIOV1 [s]
tDIOV3 [μs]
tDIOV1 = 1150 ms
280
220
160
−40 −25
0
+25
Ta [°C]
+50
+75 +85
1.2
1.0
0.8
Seiko Instruments Inc.
2
3
4
5
VDD [V]
6
7
8
19
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
2. 13 tDIOV2 vs. VDD
Rev.1.3_00
2. 14 tDIOV3 vs. VDD
1.6
400
1.4
340
tDIOV3 [μs]
tDIOV2 [ms]
tDIOV2 = 1.12 ms
1.2
1.0
0.8
280
220
160
2
3
4
5
6
7
2
8
3
4
VDD [V]
2. 15 VUVLO vs. Ta
8
5.5
tUVLO [s]
VUVLO [V]
7
6.0
2.1
20
6
2. 16 tUVLO vs. VDD
2.2
2.0
1.9
1.8
5
VDD [V]
5.0
4.5
4.0
3.5
−40 −25
0
+25
Ta [°C]
+50
+75 +85
3.0
Seiko Instruments Inc.
1.5
1.6
1.7
1.8
VDD [V]
1.9
2.0
OVERCURRENT MONITORING IC FOR MULTI-SERIAL-CELL PACK
S-8239A Series
Rev.1.3_00
„ Marking Specification
1. SOT-23-6
Top view
6
5
(1) to (3):
(4):
4
Product code (Refer to Product name vs. Product code)
Lot number
(1) (2) (3) (4)
1
2
3
Product name vs. Product code
Product Name
S-8239AAA-M6T1U
S-8239AAB-M6T1U
S-8239AAC-M6T1U
S-8239AAD-M6T1U
S-8239AAE-M6T1U
S-8239AAF-M6T1U
S-8239AAG-M6T1U
S-8239AAH-M6T1U
S-8239AAI-M6T1U
S-8239AAJ-M6T1U
Product Code
(1)
(2)
(3)
3
S
A
3
S
B
3
S
C
3
S
D
3
S
E
3
S
F
3
S
G
3
S
H
3
S
I
3
S
J
Seiko Instruments Inc.
21
2.9±0.2
1.9±0.2
6
0.95
5
1
4
2
3
+0.1
0.15 -0.05
0.95
0.35±0.15
No. MP006-A-P-SD-2.0
TITLE
SOT236-A-PKG Dimensions
No.
MP006-A-P-SD-2.0
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
2.0±0.05
+0.2
ø1.0 -0
0.25±0.1
4.0±0.1
1.4±0.2
3.2±0.2
3 2 1
4 5 6
Feed direction
No. MP006-A-C-SD-3.1
TITLE
SOT236-A-Carrier Tape
No.
MP006-A-C-SD-3.1
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. MP006-A-R-SD-2.1
SOT236-A-Reel
TITLE
MP006-A-R-SD-2.1
No.
SCALE
UNIT
QTY
mm
Seiko Instruments Inc.
3,000
www.sii-ic.com
•
•
The information described herein is subject to change without notice.
•
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
•
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
•
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, vehicle equipment,
in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment, without prior
written permission of Seiko Instruments Inc.
•
•
The products described herein are not designed to be radiation-proof.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.
Download PDF
Similar pages