TM
POOLPAK R-410A
SWHP SERIES
(MODELS SR, S, SE, SEP)
Engineering Guide
EGW05-SWHPEG-20140724
Packaged Natatorium Environment Control System
PoolPakTM SWHP Series
Natatorium Dehumidification Unit
For unit weights and dimensions, see PoolPak SWHP Weights and Dimensions Guide.
TM
TM
TM
The Leader in Indoor Pool Dehumidification
3491 Industrial Drive . York, PA 17402 . USA . 800-959-7725 . Fax 717-757-5085
for more information: www.poolpak.com
TM
TABLE OF CONTENTS
SECTION I: INDOOR POOL APPLICATION...............................................................................................................1
Introduction................................................................................................................................................................................... 1
Creating an ideal environment for indoor pool facilities............................................................................................................ 1
Operating Cost.......................................................................................................................................................................... 1
Application.................................................................................................................................................................................... 1
Moisture Loads ......................................................................................................................................................................... 1
Effects of Moisture .................................................................................................................................................................... 1
Indoor Air Quality....................................................................................................................................................................... 1
Occupant Comfort..................................................................................................................................................................... 2
Pool Water Chemistry .............................................................................................................................................................. 2
Equipment Choices....................................................................................................................................................................... 3
Overview .................................................................................................................................................................................. 3
Ventilation with Heating......................................................................................................................................................... 3
Ventilation with Heating and Energy Recovery...................................................................................................................... 3
Mechanical Dehumidification................................................................................................................................................. 3
Hybrids................................................................................................................................................................................... 4
Other Technologies................................................................................................................................................................ 4
Room Air Distribution.................................................................................................................................................................... 4
Airside Design........................................................................................................................................................................... 4
Supply Air.............................................................................................................................................................................. 5
Return Air............................................................................................................................................................................... 6
Ductwork Design................................................................................................................................................................... 6
Air Distribution....................................................................................................................................................................... 6
Air Connections to PoolPak™............................................................................................................................................... 7
Other Air-side Considerations................................................................................................................................................ 7
SECTION II: POOLPAK PRINCIPLES, FUNCTIONS, AND FEATURES................................................................... 8
Principles of Operation................................................................................................................................................................. 8
Room Dew Point Control........................................................................................................................................................... 9
PoolPak™ Operation................................................................................................................................................................ 10
Standard Items Factory Mounted.......................................................................................................................................... 10
Standard Items Factory Supplied for Field Installation.......................................................................................................... 10
System Options..................................................................................................................................................................... 10
ECC Control System..................................................................................................................................................................... 12
Overview................................................................................................................................................................................... 12
Humidity Control........................................................................................................................................................................ 12
Cold Surface Temperature Humidity Reset............................................................................................................................... 13
Space Heating........................................................................................................................................................................... 13
Networking Multiple Units ......................................................................................................................................................... 13
Smart Economizer (SR)............................................................................................................................................................ 13
Space Cooling (optional)........................................................................................................................................................... 13
Air Conditioning with Air-Cooled Condenser ........................................................................................................................ 13
Air Conditioning with Water-Cooled Condenser ................................................................................................................... 14
Air Conditioning with Chilled Water Coil ............................................................................................................................... 14
Pool Water Heating................................................................................................................................................................... 14
Smart Pump Control.................................................................................................................................................................. 14
Occupied/Unoccupied Control Mode ....................................................................................................................................... 14
Purge Mode (SR and SEP)....................................................................................................................................................... 14
CO2 Based Demand Ventilation .............................................................................................................................................. 14
Event Mode (SR) ...................................................................................................................................................................... 14
Selection....................................................................................................................................................................................... 16
Overview................................................................................................................................................................................... 16
Available Configurations........................................................................................................................................................ 16
Unit Selection Software Program.............................................................................................................................................. 16
EGW05-SWHPEG-20140724
I
TM
SECTION III: SIZING AND PERFORMANCE.............................................................................................................17
PoolPak SWHP Unit Dimensions and Weight.............................................................................................................................. 17
PoolPak SWHP Unit Capacity...................................................................................................................................................... 17
Pool Water Condenser Pressure Drop and Heat Capacity........................................................................................................... 18
PoolPak Auxiliary Gas Furnace Capacity..................................................................................................................................... 19
PoolPak Auxiliary Electric Heat Capacity...................................................................................................................................... 19
PoolPak Air-Cooled Condenser (ACC) Dimensions, Weight and Electrical.................................................................................. 20
Water-Cooled Condenser (WCC)................................................................................................................................................. 26
SECTION IV: INSTALLATION.....................................................................................................................................29
Overview....................................................................................................................................................................................... 29
Handling.................................................................................................................................................................................... 29
Rigging...................................................................................................................................................................................... 29
Clearance.................................................................................................................................................................................. 29
Foundation................................................................................................................................................................................ 30
Inspection.................................................................................................................................................................................. 30
Unit Hookup.............................................................................................................................................................................. 30
Gas Furnace Auxiliary Heat (Optional).................................................................................................................................. 30
Power Supply........................................................................................................................................................................ 30
Single Point Power Supply.................................................................................................................................................... 31
Dual Point Power Supply....................................................................................................................................................... 31
Control Wiring........................................................................................................................................................................ 31
Condensate Piping................................................................................................................................................................ 31
Curb Mounting....................................................................................................................................................................... 31
ECCIII Controls Field Wiring......................................................................................................................................................... 32
Overview................................................................................................................................................................................... 32
Remote Interface Unit (1).......................................................................................................................................................... 32
Outside Air Temperature and Relative Humidity Sensor (2)...................................................................................................... 33
Cold Surface Temperature Sensor (3)....................................................................................................................................... 33
Smoke Purge Input (SR only) (4).............................................................................................................................................. 34
Fire Trip Input (5)....................................................................................................................................................................... 34
Occupied Mode Input (6)........................................................................................................................................................... 34
Purge Mode Input (SR and SEP) (7)......................................................................................................................................... 34
Remote Exhaust Fan Interlock (S only) (8)............................................................................................................................... 34
Alarm Output (9)........................................................................................................................................................................ 34
Auxiliary Pool Water Heating System (10)................................................................................................................................ 34
Auxiliary Air Heating System (11).............................................................................................................................................. 35
System 1 Remote Air-Cooled Condenser Interlock and Control (12)........................................................................................ 35
System 2 Remote Air-Cooled Condenser Interlock and Control (13)........................................................................................ 35
Auxiliary Air Heat Control Valve (14)......................................................................................................................................... 35
Building Automation System Connection (15)........................................................................................................................... 35
Multi-unit Network Connection (Multi-unit installations only) (16)............................................................................................. 35
System 1 Remote Water-Cooled Condenser Interlock (If equipped) (17)................................................................................. 36
System 2 Remote Water-Cooled Condenser Interlock (If equipped) (18)................................................................................. 36
Pool Water Temperature Sensor (19)........................................................................................................................................ 36
Smart Pump Control Output (20).............................................................................................................................................. 36
Event Mode (21)........................................................................................................................................................................ 36
Summer Vent Mode (22)........................................................................................................................................................... 36
Supply Temperature Sensor (not shown).................................................................................................................................. 36
SWHP Field Wiring Diagram..................................................................................................................................................... 37
Pool Water Piping And Installation................................................................................................................................................ 38
PoolPaK Pool Water Circulation Loop....................................................................................................................................... 38
Auxiliary Pool Water Heater (field supplied).............................................................................................................................. 38
Main Pool Water Pump and PoolPak Pool Water Loop Pump Interlocks.................................................................................. 38
Pool Water Isolation Valves....................................................................................................................................................... 38
Pool Water Flow Switch............................................................................................................................................................ 39
Pool Water Piping Composition................................................................................................................................................. 39
Freeze Protection...................................................................................................................................................................... 39
Condensate Drains And Piping..................................................................................................................................................... 40
II
EGW05-SWHPEG-20140724
TM
Air-Cooled Condenser Installation................................................................................................................................................ 41
Space and Location Requirements........................................................................................................................................... 41
Walls or Obstructions............................................................................................................................................................. 41
Multiple Units......................................................................................................................................................................... 41
Units in Pits............................................................................................................................................................................ 42
Decorative Fences................................................................................................................................................................. 42
Field Installed Piping................................................................................................................................................................. 43
Piping Guidelines................................................................................................................................................................... 43
SECTION V: OPERATION...........................................................................................................................................47
Remote Interface Unit (RIU)......................................................................................................................................................... 47
Service Display Connection...................................................................................................................................................... 47
Multiple Unit Interfacing............................................................................................................................................................. 47
Building Automation System (BAS) Connection........................................................................................................................ 48
PoolPak Remote Access Package (RAP)................................................................................................................................. 48
Send Emails – Alerts for Alarms................................................................................................................................................ 48
ECC III Network Operation........................................................................................................................................................... 48
CM1 Configuration.................................................................................................................................................................... 49
RIU Configuration...................................................................................................................................................................... 49
Network Configuration............................................................................................................................................................... 50
Network Ctl - No (Yes or No) ................................................................................................................................................ 50
Water Temp Ctl - Local (Local or Net) .................................................................................................................................. 50
Changing Network Set Points................................................................................................................................................... 50
ECC III Service Troubleshooting................................................................................................................................................... 51
Troubleshooting Overview......................................................................................................................................................... 51
Alarm Reset.............................................................................................................................................................................. 51
Supply Fan Not Running ...................................................................................................................................................... 51
Return Fan Not Running (SR only)....................................................................................................................................... 51
Fire Trip Active ...................................................................................................................................................................... 52
Smoke Purge Active ............................................................................................................................................................. 52
Return Air Temperature Out of Range .................................................................................................................................. 52
Supply and Return Fans Not Running .................................................................................................................................. 52
Freeze Danger, Low Supply Air Temperature ....................................................................................................................... 52
Low Compressor Oil Pressure (Recip Compressors only).................................................................................................... 52
High Compressor Motor Temperature................................................................................................................................... 52
High Refrigerant Pressure..................................................................................................................................................... 52
Low Refrigerant Pressure ..................................................................................................................................................... 52
Compressor Current Transducer Failed................................................................................................................................ 52
10 Fault Compressor Lockout .............................................................................................................................................. 53
Sensor Failure (All Sensors) ................................................................................................................................................. 53
Expansion Board Comm Failure ........................................................................................................................................... 53
Fault History Log ...................................................................................................................................................................... 53
Manual Control ......................................................................................................................................................................... 54
Digital Output ........................................................................................................................................................................ 54
Analog Output ....................................................................................................................................................................... 55
System Status Information ....................................................................................................................................................... 56
Data Log Retrieval.................................................................................................................................................................... 59
Maintenance................................................................................................................................................................................. 60
Overview................................................................................................................................................................................... 60
Daily Maintenance..................................................................................................................................................................... 60
Monthly Maintenance................................................................................................................................................................ 60
Annual Maintenance................................................................................................................................................................. 61
SECTION VI: WIRING..................................................................................................................................................63
Single Point Power Connection.................................................................................................................................................... 63
Dual Point Power Connection....................................................................................................................................................... 63
Remote Connections.................................................................................................................................................................... 64
Multiple Unit Interface................................................................................................................................................................... 65
EGW05-SWHPEG-20140724
III
TM
LIST OF TABLES
Table 1-1. Typical Pool Water and Air Temperature Set-Points.................................................................................................... 2
Table 1-2. Recommended Pool Water Chemistry......................................................................................................................... 3
Table 3-1. PoolPak™ SWHP Unit Capacity.................................................................................................................................. 17
Table 3-2. Pool Water Condenser Pressure Drop and Heat Capacity.......................................................................................... 18
Table 3-3. PoolPak™ Auxiliary Gas Furnace Capacity................................................................................................................. 19
Table 3-4. PoolPak™ Auxiliary Electric Heat Capacity................................................................................................................. 19
Table 3-5. ACC - Model SWHP 0060............................................................................................................................................ 20
Table 3-6. ACC - Model SWHP 0080............................................................................................................................................ 20
Table 3-7. ACC - Model SWHP 0100............................................................................................................................................ 21
Table 3-8. ACC - Model SWHP 0120............................................................................................................................................ 21
Table 3-9. ACC - Model SWHP 0140............................................................................................................................................ 22
Table 3-10. ACC - Model SWHP 0190.......................................................................................................................................... 22
Table 3-11. ACC - Model SWHP 0220.......................................................................................................................................... 23
Table 3-12. ACC - Model SWHP 0260.......................................................................................................................................... 23
Table 3-13. ACC - Model SWHP 0300.......................................................................................................................................... 24
Table 3-14. ACC - Model SWHP 0340.......................................................................................................................................... 24
Table 3-15. Remote Water Cooled Condenser Dimensions......................................................................................................... 26
Table 3-16. WCC Piping Connections.......................................................................................................................................... 26
Table 3-17. Water Cooled Condenser Performance..................................................................................................................... 28
Table 4-1. Pipe Sizes for Remote Refrigerant Condensers.......................................................................................................... 44
Table 4-2. Remote ACC Refrigerant (R-410A) Charge................................................................................................................. 45
Table 4-3. Refrigerant (R-410A) Charge for Different Line Sizes.................................................................................................. 45
Table 5-1. Recommended Pool Water Chemistry......................................................................................................................... 60
LIST OF FIGURES
Figure 2-1. Dew Point Control Psychrometric............................................................................................................................... 9
Figure 2-2. SWHP SR System Schematic.................................................................................................................................... 11
Figure 2-3. SWHP SEP System Schematic.................................................................................................................................. 11
Figure 2-4. Typical PoolPak™ Rooftop Installation....................................................................................................................... 15
Figure 3-1. Air Cooled Condenser Dimensions - End View.......................................................................................................... 25
Figure 3-2. Air Cooled Condenser Dimensions - Side View ........................................................................................................ 25
Figure 3-3. Remote Cooling Tower Dimensions........................................................................................................................... 26
Figure 3-4. PoolPak™ Optional Water-Cooled Condenser Cabinet - Attached............................................................................ 27
Figure 4-1. Field Wiring Diagram.................................................................................................................................................. 37
Figure 4-2. Pool Water Piping Schematic..................................................................................................................................... 39
Figure 4-3. Negative Pressure Condensate Piping Schematic..................................................................................................... 40
Figure 4-4. Remote ACC Installation Around Walls or Obstructions............................................................................................. 41
Figure 4-5. Remote ACC Installation When Installing Multiple Units............................................................................................ 41
Figure 4-6. Remote ACC Installation When Installing Units in Pits............................................................................................... 42
Figure 4-7. Remote ACC Installation When Installing Units Near Decorative Fences.................................................................. 42
Figure 4-8. Remote ACC Above Unit............................................................................................................................................ 44
Figure 5-1. Remote Interface Unit Graphic................................................................................................................................... 47
Figure 5-2. Data Retrieval Using USB Key................................................................................................................................... 59
Figure 6-1. Single Point Power Connection.................................................................................................................................. 63
Figure 6-2. Dual Point Power Connection ................................................................................................................................... 63
Figure 6-3. Remote Connections.................................................................................................................................................. 64
Figure 6-4. Multiple Unit Interface................................................................................................................................................. 65
IV
EGW05-SWHPEG-20140724
TM
SECTION I: INDOOR POOL APPLICATION
INTRODUCTION
CREATING AN IDEAL ENVIRONMENT FOR INDOOR POOL FACILITIES
Indoor pool facilities are unlike any other structure in design, construction and maintenance requirements. Humidity, air
and water temperatures are especially difficult to control, and improper management usually results in an uncomfortable
environment, excessive operating costs and possibly serious structural damage. Effectively controlling these special
conditions require control hardware and control sequences specially engineered for large commercial indoor pool
applications. The PoolPak™ System utilizes an environmental control package designed to meet all special needs of the
indoor pool environment, while reducing energy usage and building maintenance costs.
OPERATING COST
Energy consumption is a direct function of the variables necessary to satisfy the occupant and protect the facility.
These variables include space heating and cooling, water heating, humidity removal and ventilation. Maintaining ideal
and precise environmental conditions has a fairly high cost of operation. A majority of the indoor pools, regardless of
geographic location, require water and space heating 70% to 90% of the year.
APPLICATION
MOISTURE LOADS
An indoor swimming pool produces large quantities of water vapor through evaporation, which accounts for roughly
95% of the pool water heat loss, making the water colder. This excessive humidity will form damaging condensation
unless removed from the building. In the past, the method of removing this water vapor was by ventilating an otherwise
energy efficient building, exhausting the humid air and the energy it contained. Additional energy was used to bring in
and heat the make-up air and to heat the pool water.
More cost effective technologies offer an alternative method adding heat exchangers and mechanical heat recovery
systems with many useful options. The ideal solution to removing the water vapor from the pool area is to convert the
latent (wet) heat contained in the moist air back into sensible (dry) heat, placing it back into the pool water and air.
EFFECTS OF MOISTURE
Excess humidity in natatorium structures may be readily apparent as condensation on cool surfaces such as windows and
outside doors, the growth of mildew or mold and when coupled with poor pool chemistry, the accelerated corrosion of
metals. In its less obvious forms, moisture may penetrate walls and ceilings and cause rot that becomes noticeable only
when large scale structural failure occurs. Humidity levels are also a major factor in the comfort of pool users.
INDOOR AIR QUALITY
Pools and water parks with water features have a higher evaporation rate than a standard pool because of the increased
water surface area. Chloramines (See Pool Water Chemistry below), which are present in the water, become more
concentrated in the air as the “water to air” interactions increase, affecting the indoor air quality. To control the buildup
of chloramines and gases in an enclosed poolroom, the space must have an adequate supply of outside air or ventilation
circulating through the structure at all times.
EGW05-SWHPEG-20140724
1
TM
A strong “chlorine” odor is an indicator of poor pool water chemistry and is generally offensive to the occupants. Higher
levels of chloramines can cause skin/eye irritation and respiratory problems commonly known as “lifeguard lung”.
Most poolrooms are designed with a minimum ventilation rate to dilute the airborne pollutants generated from the
chemical interactions in the pool water. Typically these rates are based on ASHRAE standard 62.1 and dictated by local
codes at about 0.5 CFM/square foot of pool and deck area, but depending on the pool water chemistry the ventilation rate
may not always be adequate for good poolroom IAQ.
However, increasing ventilation rates can significantly add to the cost of operation. Energy conservation strategies such
as heat recovery, airflow measurement and CO2 based control help control costs while improving IAQ.
Depending on the geographic location and season of the year, treating the outside air has a direct effect on energy
consumption. Some facilities prefer higher than minimum ventilation rates, up to 100% of OA, to maximize indoor air
quality, but the cost of treating this air can be significant.
OCCUPANT COMFORT
Occupant comfort in a natatorium is easy to understand. If you ever swam in an outdoor pool on a cold, windy day
or exited a pool in a dry, desert location you will probably notice an immediate chill. The opposite is true where high
humidity is not adequately controlled either through ventilation or by mechanical means. The moisture level can
reach such a state where it is oppressive or stuffy. Common complaints are difficulty in breathing and the room being
perceived to be warmer than the actual dry bulb temperature would suggest.
Regardless of the source of discomfort, users will not enjoy the facility if water/air temperatures and humidity levels
are not within a narrow range. Ideal water temperature is around 82°F with the air temperature about 2˚F higher to
prevent chilling when exiting the pool and to minimize evaporation from the pool surface. Refer to Table 1 for some
recommended temperatures for poolrooms, which can be adjusted to meet specific needs of bathers. In general, “active”
poolrooms are maintained at lower temperature ranges so the users don’t overheat, while warmer temperatures are more
common for seniors or children or less active pools.
The desirable humidity range is generally between 50 and 60%. A humidity level greater than 60% can create a sticky
feeling and difficulty breathing. A humidity level lower than 50% will result in evaporative cooling on the bather’s skin,
creating a chill. Poor air movement caused by improper duct placement within the poolroom will also lead to occupant
discomfort. Excessive supply air blowing on bathers can create drafts, while uneven air distribution may create stagnant
zones within the space.
Table 1-1. Typical Pool Water and Air Temperature Set-Points
Water Temp. oF
Air Temp. oF
Recreational Pools
80-85
Water Temp + 2
55-60
Therapy Pools
86-92
861
55-60
Whirlpools
99-104
861
55-60
1
Room RH %
Normally max 86 F to minimize overheating of occupants
o
POOL WATER CHEMISTRY
Water chemistry in swimming pools is critical for the health of the bathers and the condition of the enclosure and
components. An enclosure with poor water chemistry has a noticeable “chlorine” smell, which is an indication of high
chloramines in the air. Not only does this have an effect on the water, but it affects the bathers and the air they breathe.
Dehumidification/ventilation equipment is not designed to remedy the effects of poor pool chemistry, but is designed to
deliver prescribed ventilation to manage smaller amounts of pollutants generated from normal pool activity. Pool water
chemistry is a part of daily maintenance and it is recommended that the users follow the current National Spa and Pool
Institute standards. See “Indoor Pool Water Chemistry – Controlling Chloramines with Proper Chlorine Management,”
MK2-BROPOOLCHEM, for more information on pool water chemistry.
2
EGW05-SWHPEG-20140724
TM
Table 1-2. Recommended Pool Water Chemistry
Pool
Spa
Ideal
Min
Max
Ideal
Min
Max
Total Chlorine (ppm)
1.0 - 3.0
1
3
3.0 - 5.0
1
10
Free Chlorine (ppm)
1.0 - 3.0
1
3
3.0 - 5.0
1
10
0
0
0.3
0
0
0.3
2.0 - 4.0
2
4
3.0 - 5.0
2
10
pH
7.4 - 7.6
7.2
7.8
7.4 - 7.6
7.2
7.8
Total Alkalinity (ppm)
80 - 100
80
180
80 - 100
60
180
1000 - 2000
300
3000
1000 - 2000
300
3000
200 - 400
150
1000
200 - 400
150
1000
30 - 50
10
100
30 - 50
10
100
Combined Chlorine (ppm)
Bromine (ppm) if applicable
TDS (ppm)
Calcium Hardness (ppm)
Calcium Acid (ppm)
EQUIPMENT CHOICES
OVERVIEW
There are several methods for controlling humidity, temperature and ventilation in poolrooms. Each method offers some
level of control, but there can be significant differences in first cost and operating cost of each method. Geographic
location, degree of comfort, unit cost and operational cost must be evaluated in the selection of the correct system.
Ventilation with Heating
•
•
•
•
•
•
•
Moisture removal is accomplished through the dilution with dryer outside air
High cost of operation (air reheating)
Lowest first cost
No opportunity to recover energy in the ventilation airstream
No opportunity to recover energy into the pool water
No integral cooling capability
Summer space conditions can be unbearably hot and humid
Ventilation with Heating and Energy Recovery
•
•
•
•
•
•
Moisture removal is accomplished through the dilution with dryer outside air
Significant heat recovery from ventilation air stream
Cost-effective method but with modest operating cost
Performance limitations in humid areas or during summer peaks
No opportunity to recover energy into the pool water
No integral cooling capability
Mechanical Dehumidification
•
•
•
•
•
•
•
•
•
•
Moisture removal is accomplished through mechanical refrigeration
Significant heat recovery using “heat pump” technology
Recovers the most energy from the ventilation airstream
Offers an opportunity to recover energy into the supply airstream
Offers an opportunity to recover energy into the pool water
Higher first cost with lower operating cost
No performance limitations based on location
Tightest control of setpoint conditions
Integral cooling capability
Can be integrated to include appropriate ventilation strategies
EGW05-SWHPEG-20140724
3
TM
Hybrids
• Combines various technologies to increase efficiency and capability
• Utilizes ventilation as primary dehumidification method
• Switches to heat pump method when conditions require better environmental control
Other Technologies
Desiccant technology can be adapted to provide super dry air which is injected into the poolroom to dilute the moisture
load. The regeneration phase of the desiccant is typically driven by waste heat from refrigeration cycle or other fossil
fuel.
Wheels are sometimes considered because of their wide acceptance as heat recovery devices. Latent or Enthalpy wheels
are not suitable for pools, but sensible wheels may have application.
ROOM AIR DISTRIBUTION
All PoolPak™ models provide continuous air recirculation, and with a good air distribution system, will promote
uniform space conditions. To remove the required moisture and maintain controlled conditions, it is essential that there
be adequate air movement and distribution in the natatorium. The unit must remove the humid air from the pool area
and discharge the dehumidified air back into it. The supply air should be distributed over areas subject to condensation
(windows, outside walls, support trusses, skylights, etc.).
AIRSIDE DESIGN
The supply air volume and external static pressure capability of the fan is given for each model in the Performance
Section. It is recommended that an experienced engineering or mechanical contracting firm do the design, sizing and
layout of the duct system.
The recommended volume of supply air should provide three to eight air changes an hour. However, in larger waterparks
or spaces with high sensible heat gain, higher airflows may be appropriate. Lower air volumes require more care to avoid
short cycling the air between the return and supply, air stratification and pockets of high humidity.
The most even control of space conditions occurs with proper air distribution and a proper air flow rate. This provides
space control without excessive loading and unloading of refrigerant-based dehumidification equipment.
4
EGW05-SWHPEG-20140724
TM
Supply Air
After dehumidification, dry air is supplied back to the room. Supply air should be distributed from ducting around the
perimeter (see Figure 1-1) of the space. The two options for perimeter supply air distribution are overhead (see Figure
1-2) or below grade (see Figure 1-3).
Figure 1-1. Perimeter Air Distribution
Sky Light
Figure 1-2. Overhead Air Distribution
RETURN AIR
SUPPLY AIR
TO SKYLIGHTS
POOLPAK
DEHUMIDIFICATION
SYSTEM
Figure 1-3. Below Grade Air Distribution
SUPPLY AIR BLOWING
DOWN FROM SOFFIT DUCTS
COVERING WINDOWS AND
MOISTURE-EXPOSED AREAS
RETURN AIR
SUPPLY AIR
TO SKYLIGHTS
POOLPAK
DEHUMIDIFICATION
SYSTEM
SUPPLY AIR BLOWING UP
FROM BELOW-GRADE
DUCTS COVERING WINDOWS
AND MOISTURE-EXPOSED
AREAS
The warm, dry air should be directed over outside walls, windows and other surfaces susceptible to condensation. Supply
ducts should be as short and with as few turns as possible. Use turning vanes to minimize air noise and static pressure
drop.
Recommended maximum supply duct air velocity is 1000 FPM. The recommended velocity from diffusers is 300 to 500
FPM. Air velocities in ducts should be kept as low as is reasonable to avoid excessive noise in the ducts. In multiple unit
installations, supply air from each unit may go into a common supply duct or into a plenum. The duct should be attached
with a flexible connection to minimize vibration transmission.
EGW05-SWHPEG-20140724
5
TM
Return Air
The unit will operate most efficiently in a natatorium where the supply and return openings are placed diagonally
opposite each other. All ducting should be done in accordance with acceptable practices. Return air ducts in the section
just prior to entering the unit return air opening and elbows in both the return and supply air ducts must comply with the
guidelines set forth in SMACNA HVAC Duct Construction Standards Metal and Flexible – Third Edition, Chapter 4.
Ductwork Design
All supply and return duct work to the unit should be installed such that no condensate occurs on the duct work. Duct
turns and transitions must be made carefully to keep friction losses to a minimum. Duct elbows should contain splitters
or turning vanes and avoid short radius fittings.
Duct work that is connected to the fan discharge should run in a straight line with proper transitions, and minimum
distances to elbows as recommended by SMACNA and should not be reduced in cross-sectional area. Never deadhead
the fan discharge into the flat side of a plenum.
Duct work attached to the PoolPak™ unit return air connection must be done in accordance with SMACNA
recommended standards and /or generally accepted industry practice.
Supply and return duct work should have all seams sealed before applying insulation to the exterior of the duct work.
The insulation’s seams must be sealed, wrapped, and mastic coated. Use of pre-insulated duct work (interior) is
acceptable if it meets local codes; however, all seams must be sealed prior to startup.
Air Distribution
Supply outlets and return grilles should be carefully placed to avoid short-circuiting in the space. Short-circuiting
creates stagnant areas where humidity and temperatures may build up to undesirable levels, reducing the effectiveness
of the PoolPak™ System. Return grilles can be placed high in the space to reduce return ductwork, however removal of
chloramines from the occupied area has become much more of a design consideration and so low returns are favored by
poolroom designers.
Supply air should be directed 45 degrees up and down (most of the air will be directed downward) toward exterior walls,
windows, skylights, and other areas where stagnant conditions could cause humidity buildup and condensation problems
or drafts (see Figure 1-4). The end result of the supply air ducts is to wash the surfaces of the pool room that are prone to
condensation with the warm, dry supply air.
Figure 1-4. Supply Air Proportions
12”
20% OF SUPPLY
AIR DIRECTED
ALONG CEILING
WINDOW
SURFACE
80% OF SUPPLY
AIR DIRECTED
DOWN WALLS
6
EGW05-SWHPEG-20140724
TM
Diffusers for supply ducts located overhead (as opposed to under the deck) must be sized such that the supply air will be
thrown all the way to the deck and wash the entire wall surface from supply duct to the floor.
As a rule, directing the supply air at or across the pool surface increases the evaporation rate. To control the buildup of
chloramines at the surface of the pool, some air may be directed at the pool surface. Supply outlets should not discharge
directly onto surfaces where drafts may be created that will blow on swimmers walking along the edges of the pool.
Spectators should have supply air directed toward their faces.
Air Connections to PoolPak™
PoolPak™ outside air intake and exhaust air openings may have rain hoods if the unit is mounted outdoors. Rain hood
locations are illustrated on the unit arrangement drawings. The intake and exhaust should be screened to prevent the
entrance of foreign matter and arranged to avoid recirculation of exhaust and outside air. Also, when auxiliary gas heat is
selected (in an outside installation), a combustion air louver or rain hood is provided.
Supply, return, outside, and exhaust air ductwork connections over 5 feet long must be supported to avoid damage
to unit. Short, flexible connections of rubber or canvas can be made between the return duct and the unit to eliminate
vibration transmission through the duct.
PoolPak™ International does not recommend the use of equipment rooms or locker rooms as return or supply air
plenums due to the potential of corrosion for components installed in the room. The return air duct should always
connect the pool enclosure to the return air connection of the PoolPak™ unit(s).
Other Air-side Considerations
A duct heater (hot water coil, electric, or gas) may be installed in the supply duct to provide auxiliary space heating.
Be sure that the additional air pressure drop across the heater is accounted for in the unit fan selection. These heating
components must be designed for use in swimming pool environments.
Maintain the poolroom at a slightly negative pressure. This will minimize moisture and chemical odor migration to other
spaces. The exhaust fan should be sized for about 5-10% greater CFM than the amount of outside air being introduced
into the space. Ducts can be fabric, aluminum, PVC, or galvanized steel. Even though “dry air” is being supplied back
to the pool, do not use duct board or similar materials. If the PoolPak™ unit is installed in an area that is below the
natatorium’s dew point temperature, the ducts may require insulation, pitching and drainage.
Continuous vapor barriers are required between the poolroom and all other interior and exterior spaces because of the
high dewpoint in the poolroom all the time. Care must be taken during design and installation to avoid gaps in the
vapor barriers or building damage may result. For more information, see the PoolPak™ Educational Library articles
“Efflorescence, What Causes It and How Do You Remove It?” and “Vapor Barriers In Natatoriums”.
Windows and exterior doors must be selected with adequate thermal insulation (including thermal breaks) to minimize
condensation on their interior surfaces even if the supply air is directed across these components. Doors and windows
must also have as low an air leakage as possible. Although the space will be maintained at a slightly negative pressure,
cold air leaking into the space from poorly sealed openings will negate all of the effects of good thermal insulation.
EGW05-SWHPEG-20140724
7
TM
SECTION II: POOLPAK PRINCIPLES, FUNCTIONS,
AND FEATURES
PRINCIPLES OF OPERATION
The PoolPak™ System is a complete environmental control system designed expressly for indoor swimming pool
enclosures. It takes into account two important factors: the swimming pool occupant (personal comfort) and the
swimming pool environment (the physical structure and surrounding furnishings).
The swimming pool enclosure can be a hostile environment for equipment, decor and building structures. A PoolPak™
System’s major function is to dehumidify the pool enclosure air through a vapor compression cycle. During this cycle
the PoolPak™ System recycles the sensible and latent heat and places it back into the pool water and air as needed. This
recycling process saves money and keeps your pool environment efficient and safe.
Solid state microprocessor technology, working in conjunction with sensors, continually monitors water and air
conditions to provide superior occupant comfort. Unlike typical outside air ventilation systems, a PoolPak™ System
recycles energy and blankets the walls and windows with warm, dry air.
PoolPak™ dehumidification systems reduce the energy input required to maintain pool water and air temperatures. By
dehumidifying the air and recycling the latent energy back into the pool air and water, the unit will reduce operating
costs when compared to conventional heating and ventilating systems. Pool water and enclosure heating are still needed
but with greatly reduced requirements.
A PoolPak™ unit, when matched correctly to the evaporation rate of the pool water and overall dehumidification
requirements, will efficiently maintain the pool air at relative humidity levels between 50% and 60%. It should be noted
that a lower evaporation rate occurs when the pool enclosure’s air temperature is maintained above the pool water
temperature. Evaporation losses, and the energy required to maintain desired room conditions, will dramatically increase
if the air temperature is allowed to fall below the pool water temperature. It is recommended that the continuous dry bulb
temperature entering the evaporator of the PoolPak™ unit not fall below 75°F.
PoolPak™ International recommends that backup heating equipment for both pool water and pool enclosure air is
capable of carrying the full system heating requirements. This makes for a well-designed system that will provide the
least amount of pool down time if unforeseen system problems occur. Building conductive loads and other losses must
be taken into consideration.
AUTOMATIC CONTROL OF AIR TEMPERATURE AND HUMIDITY
An integral part of any PoolPak™ System is a proven microprocessor control system which automatically senses and
maintains comfort conditions. Sensors detect changes in humidity and air temperature in the indoor pool environment
and quickly regulate supply air conditions to meet set point comfort levels, even during periods of unusually heavy pool
use.
To prevent condensation on walls and windows, the PoolPak™ System automatically adjusts humidity in response to
changes in wall or window surface temperatures. As the seasons and weather conditions change, the PoolPak™ System
changes its own mode of operation. Throughout the year, PoolPak™ thinks “efficiency” and automatically selects the
least expensive energy source for the poolroom conditions.
PoolPak™ models include a factory mounted and wired space temperature and humidity sensor at the return air opening
of the unit. Refer to the installation section for mounting location. Caution should be exercised. When the outside air is to
be introduced into the space for ventilation, adequate exhaust capacity via an integral (or a separate external fan) must be
specified to ensure the poolroom remains slightly negative. An inadequately sized exhaust system may result in damage
to the structure and pool odors may be forced into other areas of the building.
8
EGW05-SWHPEG-20140724
TM
ROOM DEW POINT CONTROL
PoolPak™ units with the ECC controller operate using an advanced type of control utilizing dew point and dry bulb
temperature control. This method of control is more accurate than conventional relative humidity control. The main
purpose of a dehumidification system is to maintain the amount of moisture in the pool area below a level that would
cause damage to the building. Relative humidity is a measurement of the percentage of moisture which is in the air at a
given dry bulb temperature in proportion to the maximum amount of moisture that could be contained at this particular
dry bulb temperature. Warmer air can hold more moisture than colder air, therefore, changes in dry bulb temperature
will change the relative humidity reading without any change in the actual amount of moisture in the air. The amount
of moisture in the air is expressed as “grains of moisture per pound of dry air” and is directly related to the dew point
temperature.
The ECC uses dew point control to operate the PoolPak™ unit and maintain the moisture level below the setpoint (see
Figure 2-1). The space dry bulb temperature and relative humidity determine the dew point temperature. By varying the
space temperature and space relative humidity set points, the dew point set point is changed. When the space dew point
temperature rises more than 1/2 degree Fahrenheit above the space dew point temperature set point, the ECC controller
energizes the compressor for dehumidification. As the dew point temperature drops more than 1/2 degree Fahrenheit
below the dew point temperature set point, the controller de-energizes the compressor.
Figure 2-1. Dew Point Control Psychrometric
Dew Point
82˚F / 28˚C
If RA here, space too
cold, too humid
If RA here, space too
hot, too humid
Humidity Ratio
lbw / lba
0.030
80˚F / 27˚C
0.028
75˚F / 24˚C
0.024
70˚F / 21˚C
0.020
65˚F / 18˚C
0.016
60˚F / 16˚C
55˚F / 13C̊
50˚F / 10˚C
80%
60%
40%
0.012
If RA here, space too
cold, humidity OK
If RA here, space too
hot, humidity OK
45˚F / 7˚C
0.008
40˚F / 4˚C
35˚F / 2˚C
30˚F / -1˚C
0.004
20%
0.000
30˚F/-1˚C
40˚F/4˚C
50˚F/10˚C
60˚F/16˚C
70˚F/21˚C
80˚F/27˚C
Dry Bulb Temp.
90˚F/32˚C
100˚F/38˚C
110˚F/43˚C
120˚F/49˚C
ALL_DewpointControlPsychro_20131220.eps
EGW05-SWHPEG-20140724
9
TM
POOLPAK™ OPERATION
The PoolPak™ fan draws in warm, moist air from the pool enclosure. This air passes through the evaporator
(dehumidification) coil and gives up heat energy to the refrigerant which is in a cool, liquid state. This exchange of
energy causes the air temperature to fall below its dew point, resulting in moisture condensation on the evaporator coil.
The moisture formed falls into the unit’s condensate drain pan. After passing through the evaporator coil, the refrigerant
becomes a cool gas.
The refrigerant enters the unit’s compressor, where it is compressed into a hot gas. While in the compressor, the
refrigerant absorbs the energy used to operate the compressor. This hot gas refrigerant then travels either through an air
reheat coil, the pool water condenser or to an optional auxiliary air conditioning condenser, which may be either air or
water cooled. If air heating is called for, the air reheat coil is used. The hot refrigerant exchanges energy with the cooler,
dehumidified air coming from the evaporator coil. This causes the temperature of the air to rise for heating.
If pool water heating is required the hot gas flows into a pool water condenser, where it adds energy to the incoming pool
water. This heats the pool water while the refrigerant is condensed into a warm liquid. If space cooling is called for, the
refrigerant flows to the auxiliary air conditioning condenser bypassing the air reheat coil and pool water condenser and
allowing cool air from the evaporator coil to provide space cooling.
The SR series includes a return fan that allows for economizer operation and up to 100% outside air as shown in the SR
typical schematic, Figure 2-2.
The S series can include a factory mounted exhaust fan (SE), an exhaust and purge fan (SEP) or just an outside air
damper (S). A typical SEP series unit is shown in Figure 2-3. This series does not have a return fan so that the outside
air is limited to about 30% under normal operation.
Standard Items Factory Mounted
•
•
•
•
•
•
•
Evaporator (dehumidification) coil
Air reheat coil (hot gas reheat coil)
Bottom, top (for indoor installations) or horizontal supply air configuration
Filters and filter rack
Air temperature and relative humidity sensor
Compressor suction and discharge pressure transducers
Compressor suction temperature
Standard Items Factory Supplied for Field Installation
•
•
•
•
Remote Interface Unit (RIU)
Cold surface temperature sensor
Outside air temperature and humidity sensor
Pool Water Temperature Sensor
System Options
•
•
•
•
•
•
•
•
10
Remote air-cooled condenser for space air conditioning
Flywheel air conditioning (SR and SEP)
Water-cooled condenser
Capability of introducing outside air
Economizer control (SR and SEP)
Network multiple units
Remote monitoring via Internet
Weatherproofing for outdoor installation
EGW05-SWHPEG-20140724
TM
Figure 2-2. SWHP SR System Schematic
Figure 2-3. SWHP SEP System Schematic
HEAT RECOVERY
OPTION
EXHAUST TO OUTSIDE
OUTSIDE
AIR
T
H
T
GLYCOL PUMP
TO AIR-COOLED
CONDENSER OR
WATER-COOLED
CONDENSER
(OPTIONAL)
S
NOTE: ALL ITEMS WITHIN
DASHED LINE AREA ARE
CONTROLLED BY POOLPAK
MICROPROCESSOR CONTROLLER
SOLENOID
VALVES
S
NATATORIUM
COLD SURFACE
TEMPERATURE
SENSOR
S
COMPRESSOR
AUXILIARY HEATING COIL
(OPTIONAL HOT WATER,
NATURAL GAS INDIRECT-FIRED
FURNACE, STEAM OR ELECTRIC)
DAMPER
EXHAUST
FAN
T
WARM
RETURN
AIR
FROM
POOL
SUPPLY
SUPPLY
AIR TO
POOL
FAN
H
PURGE
FAN
EVAPORATOR
COIL (HEAT
RECOVERY
COIL)
EXPANSION
VALVE
CONDENSER/
REHEAT COIL
RECEIVER
COOL POOL WATER
POOL WATER
CONDENSER
FROM AIR-COOLED
CONDENSER OR WATERCOOLED CONDENSER
(OPTIONAL)
WARM POOL WATER
PURGE TO OUTSIDE
HOT LIQUID REFRIGERANT
HOT GAS REFRIGERANT
COLD LIQUID REFRIGERANT
COLD GAS REFRIGERANT
T TEMPERATURE SENSOR
H RELATIVE HUMIDITY SENSOR
AUXILIARY POOL
WATER HEATER
(SUPPLIED BY OTHERS)
EGW05-SWHPEG-20140724
11
TM
ECC CONTROL SYSTEM
OVERVIEW
The PoolPak™ is controlled by the Electronic Control Center (ECC III), a microprocessor-based system that
incorporates all of the functions necessary to maintain correct natatorium space temperature and humidity and control
pool water temperature. The ECC is designed to work with the PoolPak™ dehumidification system to provide an
environment that is both comfortable and cost effective. It controls unwanted humidity in the pool enclosure and helps to
prevent unsightly condensation from forming on surfaces.
System parameters and/or system status readouts are provided on the remote-mounted display/keypad panel, Remote
Interface Unit (RIU). Set points may be changed easily and may be password protected. Set points are saved in the
memory of the ECC and are not erased in the event of a power failure. Critical operating data can be easily accessed by a
qualified service technician for the purpose of system operation and evaluation.
The ECC III controller has a fault code history log that records the last 50 faults in the order of their occurrence. Each
fault code is recorded along with the date and time and the values of the critical system parameters. This fault code
history log is accessible at the control panel via the ECC III controller and at the remote display/keypad panel (Remote
Interface Unit, RIU). The fault code history log is also accessible with the optional Remote Access Package (RAP). This
Remote Access Package is available only with a BACnet/IP based Building Automation System (BAS).
The PoolPak™ ECC III also has the option to be directly connected to several different BAS options. The ECC III can be
connected to either a LonWorks based BAS or a Modbus RTU based BAS, BACnet/IP and BACnet MS/TP.
All PoolPak™ operating and logic controls are factory mounted and wired. The control sequences are designed
specifically to control swimming pool environmental conditions.
As a minimum, the PoolPak™ control system provides full modulation of the heat recovery/heating system by
proportional control of dry bulb temperature, relative humidity, interior building-skin-temperature-based humidity reset,
and outside air volume.
The PoolPak™ controls automatically operate the heating, dehumidification, and heat recovery system in response
to the greatest requirements while adjusting unit outputs to maintain building conditions. The PoolPak™ controls are
capable of providing full heating capacity to either air or water and of providing proportional control of heating and
dehumidification by loading stages of compressor capacity as necessary. As building requirements are satisfied, the
compressor unloads.
The PoolPak™ System provides outside air ventilation to satisfy minimum air ventilation requirements per ASHRAE
62.1 ventilation standard.
HUMIDITY CONTROL
When equipped, the economizer is activated if dehumidification is required, air temperature is satisfied, the absolute
humidity of the outside air is lower than the absolute humidity of the pool room air and the outside air temperature will
not adversely affect the pool room air temperature.
The PoolPak™ provides full proportional control of relative humidity by staging unit capacity. The humidity controller
energizes the compressor. The moist air from the pool room is drawn over the evaporator coil, where the air is cooled
below its dew point. In this cooling process, the moisture in the return air is condensed onto the evaporator coil. The heat
recovered in the refrigerant from the dehumidification process is directed to the air reheat condenser if the space needs
heating or to the pool water condenser if pool water temperature is below the set point.
12
EGW05-SWHPEG-20140724
TM
COLD SURFACE TEMPERATURE HUMIDITY RESET
The ECC control system includes a sensor that measures the temperature of the coldest surface in the pool enclosure,
usually an exterior window or door frame. When the temperature of this surface approaches the dewpoint temperature
of the space, the controller lowers the humidity setpoint to activate dehumidification. This function helps to prevent
condensation on the cold surface. Typical locations for this condensate prevention surface temperature sensor are north
facing exterior walls, windows, window/door frames and skylights.
SPACE HEATING
Space heating via heat recovery uses full proportional control of the space dry bulb temperature by staging compressor
loading of unit capacity with humidity override. Heat is recovered automatically from the pool room return air. The
PoolPak™ automatically controls the output of the optional factory-installed auxiliary air-heating coil which can be hot
water, steam, electric or gas.
NETWORKING MULTIPLE UNITS
ECC networking allows multiple units to be connected together. The units will work with each other to control water
temperature, air temperature and relative humidity. Networked units have all the features of standard units plus the ability
to control water temperature in multiple pools. All units on the network are accessible from a single remote interface
unit for convenience.
SMART ECONOMIZER (SR)
The Smart Economizer utilizes the simultaneous operation of the heat recovery and economizer control sequence.
When the PoolPak™ compressor is operating in the heating and/or dehumidifying heat recovery mode, return air passes
through the evaporator. The sensible and latent heat in the return air is transferred to the refrigerant. Air leaving the
evaporator is cold and saturated. The exact temperature and dew point of the air leaving the evaporator is monitored
and compared to outside air temperature and dew point. If the outside air is warmer and/or dryer than the air leaving
the evaporator, all the air leaving the evaporator is exhausted and 100% outside air is drawn into the PoolPak™. All the
heat recovered in the PoolPak™ unit refrigerant is transferred to the supply air in the air reheat condenser. The Smart
Economizer saves more energy than a standard mixing box and economizer.
SPACE COOLING (OPTIONAL)
If space cooling is required and the unit is equipped with an auxiliary refrigerant condenser (air-cooled or water-cooled),
the ECC will activate the space cooling mode of operation. In this mode, the heat removed from the space air will be
directed to the auxiliary condenser. The air cooling mode of operation is independent of the need for dehumidification.
The PoolPak™ SR and SEP units are equipped with economizer sections. The ECC will automatically select the most
economical method for space cooling. An economizer utilizes outside air rather than the refrigeration system to achieve
space cooling. A sensor connected to the ECC monitors the outside air temperature. When appropriate, the controller will
disable the compressor and bring in cool outside air for economical operation.
Air Conditioning with Air-Cooled Condenser
The PoolPak™ can be equipped with a properly sized remote air-cooled condenser. This remote condenser can be
“piggyback-mounted” on the PoolPak during installation or installed on a separate pad.
EGW05-SWHPEG-20140724
13
TM
Air Conditioning with Water-Cooled Condenser
The PoolPak™ unit can be equipped with a factory-mounted or remote-mounted air conditioning water condenser. This
condenser can be either cleanable or non-cleanable. Sensible and latent heat recovered in the air conditioning mode is
rejected to the water condenser if pool water temperature requirements are satisfied.
Air Conditioning with Chilled Water Coil
When chilled water is available, a chilled water coil can be factory-installed upstream of the supply fan. The coil has a
factory-installed and wired two-way flow control valve and is controlled by the PoolPak™ control system.
POOL WATER HEATING
If the space temperature is at or above the set point and the pool water temperature is below the set point, hot gas
is directed to the pool water condenser when the compressor is running. During times when the pool water requires
more heat than is available from the pool water condenser, the PoolPak™ activates the auxiliary pool water heater. An
auxiliary pool water heater must be supplied as part of the pool water pump and filter system.
NOTE
Contact factory for pool water temperature set points greater than 87° F
SMART PUMP CONTROL
Smart Pump control allows the ECC to control operation of the PoolPak™ water loop pump. When the ECC determines
that pool heating and space cooling are required, a contact closure signal activates the remote pump. The pump will be
deactivated when the pool heating or space cooling requirement is satisfied.
OCCUPIED/UNOCCUPIED CONTROL MODE
The PoolPak™ unit time clock allows 7-day, 24-hour scheduling of operational control for both occupied and
unoccupied times during the year. During unoccupied times, the outside air and exhaust dampers are kept in the closed
position to minimize the air-heating load. During occupied times, the PoolPak™ operates to maintain programmed
natatorium parameters.
PURGE MODE (SR AND SEP)
The PoolPak™ has a purge cycle to fully ventilate the natatorium at the airflow (CFM) specified for the unit’s supply
fan. The purge cycle is programmable by the owner as necessary to ventilate the natatorium after shocking the pool. Unit
controls provide completely automatic operation by controlling the supply fan and return (or purge) fan and by opening
the outside air and exhaust air dampers for the programmed time intervals.
CO2 BASED DEMAND VENTILATION
The amount of outside air ventilation provided is controlled by the PoolPak™ unit based on the CO2 level sensors in the
return air stream.
EVENT MODE (SR)
The Event Mode changes the ventilation air quantity to meet the demands of an event or situation where additional
outside air is needed. The unit controller can store up to 28 schedule events, which is user adjustable at the Remote
User Interface (RUI). During Event Mode, the minimum damper position is raised to a value higher than the minimum
damper setpoint. For each event, the screen shows the day of the week, the hour in 24-hour format, the minute, and the
event type.
14
EGW05-SWHPEG-20140724
TM
Figure 2-4. Typical PoolPak™ Rooftop Installation
AUXILIARY
POOL WATER
HEATER
AQUA STAT
(TO POOLPAK)
INTERNET
CONNECTION
TELEPHONE
LINE
Modbus RTU
R
LonWorks
R
OUTSIDE AIR
TEMPERATURE
AND HUMIDITY
SENSORS
OUTSIDE AIR
RAINHOOD/
BIRD SCREEN
SUPPLY
AIR DUCT
AUXILIARY HOT WATER COIL
SUPPLY AND RETURN LINES
FUSED POWER
DISCONNECTS
SUPPLY AIR
REMOTE
AIR COOLED
CONDENSER
(OPTIONAL)
FIRE STAT AND
SMOKE DETECTOR
(OPTIONAL)
ECC
lll
AUXILIARY
POOL WATER
HEATER
OM
POOLRO
IDIFIER
DEHUM
POOLPAK
CONDENSATE
RETURN LINE
COLD WALL
TEMPERATURE
SENSOR
RETURN AIR
enter
alarm
on-off
POOL WATER
SUPPLY LINE
ECC III REMOTE
DISPLAY/KEYPAD
PANEL
AUXILIARY POOL
WATER HEATER
AQUA STAT
SENSOR
BALANCING
VALVE
AUXILIARY
POOL WATER
CONDENSATE
PUMP
RETURN LINE
FULL ROOF
CURB MOUNTING
POOL
WATER
SUPPLY
LINE
BALANCING
VALVE
REMOTE
AIR COOLED
CONDENSER
(OPTIONAL)
POOL
FILTER
REMOTE POOL
WATER SENSOR
AUXILIARY
WATER
COIL LINES
POOL WATER
LINES
MAIN POOL
WATER PUMP
POOL WATER
RETURN LINE
CONDENSATE
LINE
SUPPLY
DUCT
RETURN
DUCT
CURB
PPK_EG_GR_SEP_3D_Installation_20100608.eps
EGW05-SWHPEG-20140724
15
TM
SELECTION
OVERVIEW
The PoolPak™ system is available in several configurations. Contact your authorized PoolPak™ representative for the
best configuration for your application.
Available Configurations
•
•
•
•
•
Indoor and outdoor units from 15 tons to 80 tons
SR units with integral supply and return fans, including 100% Outside Air economizer capability
S units with integral supply fan and provision for up to 35% outside air
SE units with integral supply and exhaust fans and provision for up to 35% outside air
SEP units with integral supply, exhaust and purge fans and provision for up to 100% outside air during a purge
cycle
UNIT SELECTION SOFTWARE PROGRAM
PoolPak™ International LLC maintains a computerized software selection program. Please contact your Exclusive
PoolPak™ Sales Representative. A copy of the information required for the program can be found in publication
“PoolPak Selection Input Data“. A copy of this form in spreadsheet format may be obtained from the Engineering
Library of the PoolPak™ website.
16
EGW05-SWHPEG-20140724
TM
SECTION III: SIZING AND PERFORMANCE
POOLPAK SWHP UNIT DIMENSIONS AND WEIGHT
Refer to the PoolPak SWHP Weights and Dimensions Guide found in the Engineering Library of the PoolPak™ website.
POOLPAK SWHP UNIT CAPACITY
Table 3-1. PoolPak™ SWHP Unit Capacity
SR
Series
Air Flow
(CFM)
060
080
100
120
140
190
220
260
300
340
6,000
7,000
10,000
12,000
15,000
18,000
20,000
24,000
28,000
28,000
Unit Performance at 82 F and 60% RH
Moisture
Evaporator
Evaporator
Removal Rate
Total Capacity Sensible Capacity
(Lb/Hr)
(MBtu/H)
(Mbtu/H)
90
116
126
165
189
217
252
330
378
434
186
238
283
364
417
470
567
729
834
941
91
115
149
189
217
240
300
379
433
490
Compressor
Input Power
(KW)
Total Heat
Rejection
(MBtu/H)
13.6
19.2
20.3
27.5
30.9
36.6
40.6
55
61.8
73.2
230
300
350
450
517
590
700
900
1,034
1,080
Compressor
Input Power
(KW)
13.7
18.3
20.3
27.5
30.9
36.6
40.6
55
61.8
73.2
Total Heat
Rejection
(MBtu/H)
233
313
350
450
517
590
700
900
1,034
1,080
Unit Performance at 82 F and 60% RH
S, SE, SEP
Series
060S
080S
100S
120S
140S
190S
220S
260S
300S
340S
Air Flow
(CFM)
7,000
8,000
10,000
12,000
15,000
18,000
20,000
24,000
28,000
30,000
Moisture
Evaporator
Evaporator
Removal Rate
Total Capacity Sensible Capacity
(Mbtu/H)
(Lb/Hr)
(MBtu/H)
90
180
85
116
254
131
126
283
149
165
364
189
189
417
217
217
470
240
252
567
300
330
729
379
378
834
433
434
941
490
EGW05-PerformanceSummary-20140723.xls
EGW05-SWHPEG-20140724
17
TM
POOL WATER CONDENSER PRESSURE DROP AND HEAT
CAPACITY
Table 3-2. Pool Water Condenser Pressure Drop and Heat Capacity
Model
Pool Water
GPM
Water (WC-ft)1
Water (WC-ft)2
Heating Cap.
(Mbtu/hr)
Full Water Condenser
SWHP 060
25
28
23
230
SWHP 080
35
32
28
310
SWHP 100
40
24
26
350
SWHP 120
50
30
25
450
SWHP 140
60
33
29
520
SWHP 190
70
32
26
600
SWHP 220
80
31
28
700
SWHP 260
100
32
27
900
SWHP 300
120
35
31
1040
SWHP 340
140
34
28
1200
Partial Water Condenser
SWHP 060
N/A
N/A
N/A
N/A
SWHP 080
20
18
14
155
SWHP 100
25
21
16
175
SWHP 120
25
21
16
225
SWHP 140
25
21
16
225
SWHP 190
30
22
20
300
SWHP 220
40
29
26
350
SWHP 260
50
30
25
450
SWHP 300
60
33
29
520
SWHP 340
70
32
26
600
1
Cleanable, vented condenser (double wall).
2
18
Spiral, vented condenser (double wall).
EGW05-SWHPEG-20140724
TM
POOLPAK AUXILIARY GAS FURNACE CAPACITY
Table 3-3. PoolPak™ Auxiliary Gas Furnace Capacity
Single
Furnace
Dual
Furnace
Drum
Furnace
Input
Mbtu/H
225
250
300
350
400
450
500
600
700
800
1060
1250
1560
Applicable Cabinet size
B
C
Furnace**
Output
Mbtu/H
Min CFM
Max CFM
Min CFM
Max CFM
Min CFM
Max CFM
180
3,500
8,000
200
3,500
9,000
8,000
9,000
240
3,500
10,000
8,000
10,000
280
3,500
10,000
8,000
13,000
320
3,500
10,000
8,000
14,000
360
8,000
16,000
15,000
16,000
400
8,000
18,000
15,000
18,000
480
8,000
18,000
15,000
20,000
560
8,000
18,000
15,000
26,000
640
8,000
18,000
15,000
30,000
850
12,000
18,000
15,000
30,000
1000
14,000
18,000
15,000
30,000
1250
15,000
18,000
15,000
30,000
PPK_EG_TB_FurnaceSize_20100114.xls
** Actual CFM allowed is determined by the cabinet size and Model chosen
A
POOLPAK AUXILIARY ELECTRIC HEAT CAPACITY
Table 3-4. PoolPak™ Auxiliary Electric Heat Capacity
Size
KW
20
25
36
35
40
50
60
70
80
90
100
Applicable Cabinet size
A
B
Heater**
Min CFM
Max CFM
Min CFM
Max CFM
Min CFM
3,500
6,500
3,500
8,000
8,000
8,000
3,500
9,500
8,000
9,500
3,500
10,000
8,000
11,500
3,500
10,000
8,000
13,000
3,500
10,000
8,000
16,000
15,000
4,000
10,000
8,000
18,000
15,000
4,000
10,000
8,000
18,000
15,000
5,500
10,000
8,000
18,000
15,000
6,000
10,000
8,000
18,000
15,000
6,500
10,000
8,000
18,000
15,000
PPK_EG_TB_ElectricHeatSize_20100114.xls
** Actual CFM allowed is determined by the cabinet size and Model chosen
EGW05-SWHPEG-20140724
C
Max CFM
16,000
18,000
20,000
24,000
24,000
28,000
19
TM
POOLPAK AIR-COOLED CONDENSER (ACC) DIMENSIONS, WEIGHT
AND ELECTRICAL
Note: Below tables contain the piping sizes of the remote ACC stub-outs. Additional field piping may be needed to make
the transition from the ACC connections (ACC Conns) to correct refrigeration lineset sizing (see Table 4-2).
Table 3-5. ACC - Model SWHP 0060
Ambient Air
(ºF)
95/100º
105º
110º
115º
ACC Model
ACC0273
ACC0333
ACC0453
ACC0623
Number Fans
wide
long
1
2
1
2
1
2
1
3
Refrigerant
Circuits
One
ACC Conns (stub outs)
Hot Gas
1-5/8
One
1-5/8
One
2-1/8
One
2-1/8
Liquid
1-1/8
1-1/8
1-3/8
1-3/8
Weight
Lbs
580
630
690
1010
ACC Voltage
FLA
MCA
MOP
208/230-3-60
14.0
20.0
35.0
460-3-60
7.0
15.0
15.0
575-3-60
5.6
15.0
15.0
380-3-50
5.8
15.0
15.0
208/230-3-60
14.0
20.0
35.0
460-3-60
7.0
15.0
15.0
575-3-60
5.6
15.0
15.0
380-3-50
5.8
15.0
15.0
208/230-3-60
14.0
20.0
35.0
460-3-60
7.0
15.0
15.0
575-3-60
5.6
15.0
15.0
380-3-50
5.8
15.0
15.0
208/230-3-60
21.0
22.8
40.0
460-3-60
10.5
15.0
20.0
575-3-60
8.4
15.0
15.0
380-3-50
8.8
15.0
20.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
Table 3-6. ACC - Model SWHP 0080
Ambient Air
(ºF)
95/100º
105º
ACC Model
ACC0333
ACC0363
ACC0433
110º
115º
ACC0523
ACC0773
Number Fans
wide
1
1
1
1
2
long
2
2
2
3
2
Refrigerant
Circuits
One
One
One
One
One
ACC Conns (stub outs)
Hot Gas
1-5/8
1-5/8
2-1/8
2-1/8
2-1/8
Liquid
1-1/8
1-1/8
1-3/8
1-3/8
1-3/8
Weight
Lbs
580
630
680
930
1320
ACC Voltage
FLA
MCA
MOP
208/230-3-60
14.0
20.0
35.0
460-3-60
7.0
15.0
15.0
575-3-60
5.6
15.0
15.0
380-3-50
5.8
15.0
15.0
208/230-3-60
14.0
20.0
35.0
460-3-60
7.0
15.0
15.0
575-3-60
5.6
15.0
15.0
380-3-50
5.8
15.0
15.0
208/230-3-60
21.0
22.8
40.0
460-3-60
10.5
15.0
20.0
575-3-60
8.4
15.0
15.0
380-3-50
8.8
15.0
20.0
208/230-3-60
28.0
29.8
45.0
460-3-60
14.0
15.0
20.0
575-3-60
11.2
15.0
15.0
380-3-50
11.7
15.0
20.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
20
EGW05-SWHPEG-20140724
TM
Table 3-7. ACC - Model SWHP 0100
Ambient
Air (ºF)
ACC Model
Number
Fans
wide
long
Refrigerant
Circuits
Model 0100**
Refrigerant Line
Size
Hot
Liquid
Gas
Weight
Lbs
ACC0363
1
2
One
1-5/8
1-1/8
630
ACC0433
1
2
One
2-1/8
1-3/8
680
ACC0433
1
2
One
2-1/8
1-3/8
680
ACC0493
1
3
One
2-1/8
1-3/8
930
110º
ACC0683
1
3
One
2-1/8
1-3/8
1010
115º
ACC0963
2
2
One
2-1/8
1-3/8
1490
95/100º
105º
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
14.0
7.0
5.6
5.8
14.0
7.0
5.6
8.8
21.0
10.5
8.4
8.8
28.0
14.0
20.0
15.0
15.0
15.0
20.0
15.0
15.0
15.0
22.8
15.0
15.0
15.0
29.8
15.0
35.0
15.0
15.0
15.0
35.0
15.0
15.0
20.0
40.0
20.0
15.0
20.0
45.0
20.0
575-3-60
11.2
15.0
15.0
380-3-50
11.7
15.0
20.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
Table 3-8. ACC - Model SWHP 0120
Ambient
Air (ºF)
ACC Model
Number
Fans
wide
long
Refrigerant
Circuits
Model 0120**
Refrigerant Line
Size
Hot Gas
Liquid
Weight
Lbs
ACC0433
1
2
One
2-1/8
1-3/8
680
ACC0493
1
3
One
2-1/8
1-3/8
930
ACC0553
1
3
One
2-1/8
1-3/8
930
ACC0593
1
3
One
2-1/8
1-3/8
1000
110º
ACC0773
2
2
One
2-1/8
1-3/8
1390
115º
ACC1163
2
3
One
2-1/8
1-3/8
2060
95/100º
105º
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
14.0
7.0
5.6
8.8
21.0
10.5
8.4
8.8
28.0
14.0
11.2
11.7
42.0
21.0
20.0
15.0
15.0
15.0
22.8
15.0
15.0
15.0
29.8
15.0
15.0
15.0
43.8
21.9
35.0
15.0
15.0
20.0
40.0
20.0
15.0
20.0
45.0
20.0
15.0
20.0
60.0
30.0
575-3-60
16.8
20.0
25.0
380-3-50
17.5
21.9
30.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
EGW05-SWHPEG-20140724
21
TM
Table 3-9. ACC - Model SWHP 0140
Ambient
Air (ºF)
ACC Model
Number
Fans
wide
long
Refrigerant
Circuits
Model 0140**
Refrigerant Line
Size
Hot
Liquid
Gas
Weight
Lbs
ACC0493
1
3
One
2-1/8
1-3/8
930
ACC0593
1
3
One
2-1/8
1-3/8
1000
105º
ACC0663
2
2
One
2-1/8
1-3/8
1340
110º
ACC0923
2
2
One
2-1/8
1-3/8
1490
115º
ACC1373
2
3
One
2-1/8
1-3/8
2210
95/100º
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
21.0
10.5
8.4
8.8
28.0
14.0
11.2
11.7
28.0
14.0
11.2
11.7
42.0
21.0
22.8
15.0
15.0
15.0
29.8
15.0
15.0
15.0
29.8
15.0
15.0
15.0
43.8
21.9
40.0
20.0
15.0
20.0
45.0
20.0
15.0
20.0
45.0
20.0
15.0
20.0
60.0
30.0
575-3-60
16.8
20.0
25.0
380-3-50
17.5
21.9
30.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
Table 3-10. ACC - Model SWHP 0190
Ambient
Air (ºF)
ACC Model
Number
Fans
wide
long
Refrigerant
Circuits
Model 0190**
Refrigerant Line
Size
Hot
Liquid
Gas
Weight
Lbs
ACC0593
1
3
One
2-1/8
1-3/8
1000
ACC0663
2
2
One
2-1/8
1-3/8
1340
ACC0733
2
2
One
2-1/8
1-3/8
1340
ACC0863
2
2
One
2-1/8
1-3/8
1440
110º
ACC1163
2
3
One
2-1/8
1-3/8
2060
115º
ACC1813
2
4
One
2-1/8
1-3/8
2930
95/100º
105º
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
21.0
10.5
8.4
11.7
28.0
14.0
11.2
11.7
42.0
21.0
16.8
17.5
56.0
28.0
22.8
15.0
15.0
15.0
29.8
15.0
15.0
15.0
43.8
21.9
20.0
21.9
57.8
28.9
40.0
20.0
15.0
20.0
45.0
20.0
15.0
20.0
60.0
30.0
25.0
30.0
70.0
35.0
575-3-60
22.4
23.1
30.0
380-3-50
23.3
28.9
35.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
22
EGW05-SWHPEG-20140724
TM
Table 3-11. ACC - Model SWHP 0220
Ambient
Air (ºF)
ACC Model
Number
Fans
wide long
Model 0220**
Refrigerant
Circuits
Refrigerant Line Size
Weight
Hot Gas
Liquid
Lbs
ACC0734
2
2
Two
2@
1-5/8
2@
1-1/8
1340
ACC0864
2
2
Two
2@2-1/8
2@1-3/8
1440
ACC0994
2
3
Two
2@
2-1/8
2@
1-3/8
1990
ACC1094
2
3
Two
2@2-1/8
2@1-3/8
1990
110º
ACC1374
2
3
Two
2@
2-1/8
2@
1-3/8
2210
115º
ACC1974
2
5
Two
2@
2-1/8
2@
1-3/8
3410
95/100º
105º
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
28.0
14.0
11.2
11.7
42.0
21.0
16.8
17.5
42.0
21.0
16.8
17.5
70.0
35.0
29.8
15.0
15.0
15.0
43.8
21.9
20.0
21.9
43.8
21.9
20.0
21.9
71.8
35.9
45.0
20.0
15.0
20.0
60.0
30.0
25.0
30.0
60.0
30.0
25.0
30.0
90.0
45.0
575-3-60
28.0
28.7
35.0
380-3-50
29.2
35.9
45.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
Table 3-12. ACC - Model SWHP 0260
Ambient
Air (ºF)
ACC Model
Number
Fans
wide long
Model 0260**
Refrigerant
Circuits
Refrigerant Line Size
Weight
Hot Gas
Liquid
Lbs
ACC0864
2
2
Two
2@2-1/8
2@1-3/8
1440
ACC0994
2
3
Two
2@2-1/8
2@1-3/8
1990
ACC1094
2
3
Two
2@2-1/8
2@1-3/8
1990
ACC1294
2
3
Two
2@2-1/8
2@1-3/8
2140
110º
ACC1654
2
4
Two
2@
2-1/8
2@
1-3/8
2730
115º
ACC2444
2
5
Two
2@
2-1/8
2@
1-3/8
3660
95/100º
105º
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
28.0
14.0
11.2
17.5
42.0
21.0
16.8
17.5
56.0
28.0
22.4
23.3
70.0
35.0
29.8
15.0
15.0
21.9
43.8
21.9
20.0
21.9
57.8
28.9
23.1
28.9
71.8
35.9
45.0
20.0
15.0
30.0
60.0
30.0
25.0
30.0
70.0
35.0
30.0
35.0
90.0
45.0
575-3-60
28.0
28.7
35.0
380-3-50
29.2
35.9
45.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
EGW05-SWHPEG-20140724
23
TM
Table 3-13. ACC - Model SWHP 0300
Ambient
Air (ºF)
95/100º
105º
ACC Model
Model 0300**
Number
Fans
wide long
Refrigerant
Circuits
Refrigerant Line Size
Weight
Hot Gas
Liquid
Lbs
ACC Voltage
FLA
MCA
MOP
208/230-3-60
460-3-60
575-3-60
42.0
21.0
16.8
43.8
21.9
20.0
60.0
30.0
25.0
ACC0994
2
3
Two
2@ 2
1/8
2@
1-3/8
1990
ACC1184
2
3
Two
2@
2-1/8
2@
1-3/8
2140
380-3-50
17.5
21.9
30.0
208/230-3-60
460-3-60
575-3-60
42.0
21.0
16.8
43.8
21.9
20.0
60.0
30.0
25.0
ACC1294
2
3
Two
2@
2-1/8
2@
1-3/8
2140
ACC1464
2
4
Two
2@
2-1/8
2@
1-3/8
2630
110º
ACC1924
2
4
Two
2@
2-1/8
2@
1-3/8
2930
115º
ACC2934
2
6
Two
2@
2-1/8
2@
1-3/8
4370
380-3-50
23.3
28.9
35.0
208/230-3-60
460-3-60
575-3-60
380-3-50
208/230-3-60
460-3-60
56.0
28.0
22.4
23.3
84.0
42.0
57.8
28.9
23.1
28.9
85.8
42.9
70.0
35.0
30.0
35.0
100.0
50.0
575-3-60
33.6
34.3
40.0
380-3-50
35.0
42.9
50.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side)
PPK_R410A_ACC_Summary_20110104.xls
Table 3-14. ACC - Model SWHP 0340
Model 0340**
Ambient Air
(ºF)
95/100º
105º
110º
115º
Number Fans
wide
long
Refrigerant
Circuits
ACC1294
2
3
ACC1464
2
ACC1564
ACC1824
ACC Model
ACC2444
ACC1813 x 2***
ACC Conns (stub outs)
Weight
Hot Gas
Liquid
Lbs
Two
2@
2 1/8
2@
1-3/8
2140
4
Two
2@ 2-1/8
2@ 1-3/8
2630
2
4
Two
2@
2-1/8
2@
1-3/8
2630
2
4
Two
2@ 2-1/8
2@ 1-3/8
2830
2
2
5
4
Two
Two
2@
2-1/8
2@
2-1/8
2@
1-3/8
2@
1-3/8
3660
2930
ACC Voltage
FLA
MCA
MOP
208/230-3-60
42.0
43.8
60.0
460-3-60
21.0
21.9
30.0
575-3-60
16.8
20.0
25.0
380-3-50
23.3
28.9
35.0
208/230-3-60
56.0
57.8
70.0
460-3-60
28.0
28.9
35.0
575-3-60
22.4
23.1
30.0
380-3-50
23.3
28.9
35.0
208/230-3-60
70.0
71.8
90.0
460-3-60
35.0
35.9
45.0
575-3-60
28.0
28.7
35.0
380-3-50
29.2
35.9
45.0
208/230-3-60
56.0
57.8
70.0
460-3-60
28.0
28.9
35.0
575-3-60
22.4
23.1
30.0
380-3-50
23.3
28.9
35.0
** Dimensions - see Air Cooled Condenser dimension views with number of fans wide (end) and number long (side),
***The ACC package contains 2 separate condenser units. Each condenser should be piped to each individual refrigerant circuit.
Values for physical and electrical characteristics are for each individual condenser unit.
24
EGW05-SWHPEG-20140724
TM
Figure 3-1. Air Cooled Condenser Dimensions - End View
45.4
NOTE: ALL DIMENSIONS ARE IN INCHES.
42.3
88
85
49.1
50
38
1-ROW
0.875 DIA MTG
HOLES TYP
80.5
0.875 DIA MTG
HOLES TYP
2-ROW
PPK_EG_GR_ACCEndView.eps
Figure 3-2. Air Cooled Condenser Dimensions - Side View
NOTE: ALL
DIMENSIONS
ARE IN
INCHES.
180
127
1-ROW x 3
2-ROW x 3
1-ROW x 2
2-ROW x 2
20.25
20.25
53
106
53
53
165
112
233
1-ROW x 4
2-ROW x 4
20.25
53
53
53
53
218
286
1-ROW x 5
2-ROW x 5
20.25
53
53
53
53
53
271
339
1-ROW x 6
2-ROW x 6
20.25
53
53
53
53
53
53
324
PPK_EG_GR_ACCSideView.eps
EGW05-SWHPEG-20140724
25
TM
WATER-COOLED CONDENSER (WCC)
A remotely located water-cooled condenser utilizing either cooling tower water or chilled water is available. Some
models may be able to have the cooling tower/chilled water condenser mounted to the side of the unit. Contact factory
for specific applications.
Figure 3-3. Remote Cooling Tower Dimensions
REFRIGERATION
CONNECTIONS
3" APPROXIMATE
3" APPROXIMATE
C
DISCHARGE
SYSTEM 2
LIQUID
SYSTEM 2
DISCHARGE
SYSTEM 1
LIQUID
SYSTEM 1
F
E
D - WATER
PIPING
DIAMETER
A
B
PPK_EG_GR_CoolingTwrRemoteDim.eps
POOLPAK OPTIONAL WATER-COOLED
CABINET
- REMOTE Dimensions
Table 3-15. Remote CONDENSER
Water Cooled
Condenser
Remote Cooling Tower and Chilled Water Cabinet Dimensions1
Cabinet Size2
Weight (lb)
A**
B**
C**
E**
F**
A
79
44
63
15
55
950
B
79
44
63
15
55
1200
C
79
44
63
15
55
1500
1
All Dimensions are rounded to the nearest Inch -- Contact factory for exact dimensions
2
A cabinet - 060, 080, 100; B Cabinet - 100, 120, 140; C Cabinet - 140, 190, 220, 260, 300, 340
**Refer to drawing above for dimension call-outs
Table 3-16. WCC Piping Connections
Water Piping1, CPVC
D
Model2
26
WCC Connections1 (stub outs)
Discharge
Liquid
060
2
1-1/8
1-1/8
080/100
2
1-3/8
1-1/8
120/140/190
2
1-5/8
1-3/8
220
3
1-3/8
1-1/8
260/300/340
3
1-5/8
1-3/8
1
Piping dimensions in inches
2
Models 220, 260, 300, 340 have 2 refrigeration circuits piped independently
EGW05-SWHPEG-20140724
TM
Figure 3-4. PoolPak™ Optional Water-Cooled Condenser Cabinet - Attached
POOLPAK OPTIONAL WATER-COOLED
CONDENSER CABINET - ATTACHED
REFRIGERATION
CONNECTIONS
12" APPROXIMATE
3" APPROXIMATE
C
DISCHARGE
SYSTEM 2
LIQUID
SYSTEM 2
DISCHARGE
SYSTEM 1
LIQUID
SYSTEM 1
F
E
D - WATER
PIPING
DIAMETER
B
A
PPK_EG_GR_AttachedWaterCooledCondenser.eps
EGW05-SWHPEG-20140724
27
TM
Table 3-17. Water Cooled Condenser Performance
Cooling Tower Water Condenser 1
SWHP Model
gpm
Water (Feet) 4
Chilled Water Condenser 2
gpm
Heat Rejection 3
Water (Feet) 5
060
25
28
25
24
230
080
35
32
25
31
310
100
40
29
35
23
350
120
50
30
40
18
450
140
60
33
50
27
520
190
70
32
60
27
600
220
80
31
70
24
350/350 6
260
100
32
80
20
450/450 6
300
120
35
100
28
520/520 6
340
140
34
120
28
600/600 6
1
Maximum 90 oF EWT
2
Maximum 55 F EWT
3
Heat rejection at 120 F Condensing Temperature
4
Cleanable, vented condenser
5
Spiral, vented condenser
6
Two circuit water-cooled condenser, one for each compressor
NOTE
Contact factory if water-cooled condenser line length is more than 100 ft and/or the
water-cooled condenser is located more than 20 feet below the PoolPak.
28
Mbtu/hr
EGW05-SWHPEG-20140724
TM
SECTION IV: INSTALLATION
OVERVIEW
Installation requires the unit to be placed on a roof mounted curb, in a mechanical room or outside on an equipment
housekeeping pad. Isolation pads should be placed under the unit to minimize transmission of noise due to unit
operation. Then pool water is piped to the unit. Electrical power from a properly sized fused disconnect is connected to
the unit. The supply and return air ducts are connected to their respective locations on the unit. The condensate is piped
back to the pool or to the sewer. If an optional remote air-cooled condenser is used, place the condenser in a proper
outdoor location. Refrigerant piping is then run from the air cooled condenser to the PoolPak™ unit. Refrigerant lines
must be leak checked and evacuated through installer provided Schrader valves. Control and power wiring are run to
complete the installation. If a field-furnished auxiliary space heating coil is installed, the control for this heater must be
field-wired to the PoolPak™ controls shown in the field wiring diagram. Refer to Figure 2-4 for a typical installation.
HANDLING
Care should be taken during handling to avoid damage to panels, drain piping, etc. The PoolPak™ can be moved into
position using pipe rollers underneath the base of the unit or it can be lifted using a crane or a hoist attached through the
lifting points provided on the unit base frame.
Use suitable spreaders or a frame to prevent damage to the PoolPak™. Cables must be adjusted to length to correct for
the heavier compressor end of the unit.
!CAUTION
Lifting hooks must be blocked away from the side of the unit to prevent damage to
the door panels while lifting. Do NOT walk on top of the unit or serious damage may
result.
Failure to follow these directions will result in serious damage to the unit. PoolPak™ will not accept responsibility or
liability for repairing any resulting damage.
RIGGING
PoolPak™ units require the use of a spreader bar that is at least as wide as the unit. Care must be taken to remove all
doors or openings that will interfere with the chains or slings to prevent damage to the unit. In general, two to four
lifting points are provided on each side of the unit, depending on the unit size and length. All provided lifting points
must be used to prevent unit damage. Proper lifting technique for each unit type is provided by a decal on that unit.
CLEARANCE
The clearance for service and repair must be 4 feet on all sides. For less than 4-foot clearances, consult your local
PoolPak™ representative or the factory.Mounting
The PoolPak™ unit is designed for indoor or outdoor locations, either ground-level or roof-top. The location must allow
for free condensate drainage (without freezing), ventilation, supply and return ducts and sufficient clearance for servicing
the unit.
For ground-level installation, precautions should be taken to protect the unit from tampering by or injury to unauthorized
personnel. Safety precautions such as a fenced enclosure or additional locking devices on the panels or doors are
advisable. Check with local authorities for safety regulations. Tables of weight distribution can be found at the
Engineering Library section of the PoolPak™ website.
EGW05-SWHPEG-20140724
29
TM
FOUNDATION
The unit must be mounted on a flat and level foundation capable of supporting the entire operating weight of the
equipment. The unit MUST NOT set flat on a concrete slab. The PoolPak™ unit MUST BE raised 6 inches to allow
for sufficient height to adequately trap the condensate line and to allow for electrical service entrance. The unit must be
supported at a minimum of six places, including all corners and the center points of each side. Each support should be
at least 12 inches long. The unit must be level to ensure proper condensate drainage. If the unit is elevated beyond the
normal reach of service personnel, a catwalk capable of supporting service personnel, their equipment, and the scroll
compressor(s) (about 1,000 lb.) must be constructed around the unit.
For ground-level installation, a one-piece concrete slab with footers that extend below the frost line is highly
recommended. Additionally, the slab should not be tied to the main building foundations to prevent noise transmission.
The unit must be supported with adequate space to allow for a condensate line trap.
For roof-top installation, choose a location with adequate structural strength to support the entire weight of the unit and
service personnel. For non-curb mounted units, provide spring vibration isolation to minimize vibration transmission to
the roof structure. The unit must be situated with adequate height for a condensate line trap. The PoolPak unit may be
mounted on equipment rails with spring vibration isolation. For any alternative mountings not discussed here, contact
the factory for additional guidance. Care must be taken not to damage the roof. If the roof is bonded, consult the building
contractor for allowable installation procedures.
INSPECTION
Immediately upon receiving the unit, inspect it for damage which may have occurred during transit. If damage is evident,
note it on the carrier’s freight bill. A written request for inspection by the carrier’s agent should be made at once.
UNIT HOOKUP
Avoid tearing or damaging unit insulation while working on or around the unit. Do not stack access panels. Stand them
upright with the insulation away from traffic.
Gas Furnace Auxiliary Heat (Optional)
When using a gas furnace, power venting is provided for all unit sizes. No additional venting or caps are provided.
Please refer to the furnace manufacturer’s manual for piping and venting instructions. Natural gas furnaces are
available with outputs of 180,000 to 1,250,000 BTU, as determined by unit configuration and project requirements.
Power Supply
The contractor is required to supply (unless supplied as an option by PoolPak™) and install separate fused disconnect(s)
within easy accessibility of the PoolPak™ unit. Use the minimum circuit capacity listed on the unit’s data plate to
determine the minimum wire size for incoming electrical power. The ground connection for the unit is located in the unit
control panel. The power supply to the unit must be adequate for the compressor starting amperage (LRA). All field
wiring must be done according to the wiring diagram provided with the unit and in conformance to the National Electrical
Code (NEC) and any other applicable local electrical code(s).
If a remote or piggy-backed air-cooled condenser is required, a separate power feed must be provided for the air-cooled
condenser. When the auxiliary electric heater option is provided, another power connection point (3L1, 3L2, and 3L3) is
provided in the supply fan compartment. This power connection feeds the auxiliary electric heating coil. With this option,
the contractor is required to supply and install a second fused disconnect.
30
EGW05-SWHPEG-20140724
TM
Single Point Power Supply
Refer to the “Single Point Power Wiring” diagram, Figure 6-1, in the Wiring section of this manual.
Only the following models of PoolPak™ SR units
• SWHP 60/80/100/120 – all voltages
• SWHP140/190/220/260/300 - 460V and 575V only.
All models of the PoolPak™ S, SE, SEP units
Dual Point Power Supply
See the “Dual Point Power Wiring” diagram, Figure 6-2, in the Wiring section of this manual.
All models of PoolPak™ SR Units
• S, SE, SEP units are NOT available in this configuration
Control Wiring
All control wiring field connections are described in the ECCIII Controls Field Wiring section of this manual. The wiring
diagram is also furnished with the PoolPak™. All control wiring is low voltage.
Condensate Piping
The condensate may be piped to a drain or returned to the pool if local codes allow. If returned to the pool, the condensate
should be piped to the skimmer. PoolPak™ International recommends neither for, nor against, the practice of returning
condensate to the pool. The installer should review the local codes prior to making the decision of where to dispose of the
condensate. The amount of condensate produced in a year is about equal to the volume of the pool.
Curb Mounting
Curbs have been designed specifically for the PoolPak™ product line. Contact factory for roof curb dimensions. The
outside dimensions of the curb are such that the base of the PoolPak™ extends over the edge of the curb on each side. This
aids in preventing rain water, running down the sides of the unit, from getting between the base of the PoolPak™ and the
curb. It is the installing contractor’s responsibility to properly complete the following:
•
•
•
•
•
•
Flash the curb into the roof
Insulate the curb
Connect the supply and return duct to the PoolPak™
Connect condensate drain lines with appropriate traps
Seal the curb top surface to the bottom of the PoolPak™ with supplied gasket
For SR units, seal the pool water pipes where they go through the curb cap under the compressor compartment
If specified when ordering, all water piping connections can be made through the curb. These water connections include:
•
•
•
•
•
•
Pool water
Condensate
Auxiliary hot water coil
Chilled water coil
Domestic hot water
Whirlpool water
EGW05-SWHPEG-20140724
31
TM
If the PoolPak™ is to be mounted on another manufacturer’s curb, the PoolPak™ factory must be notified of this at the
time the PoolPak™ sales order is submitted. PoolPak™ units produced for curb mounting, whether on a PoolPak™ curb
or on another manufacturer’s curb, receive special weatherizing and insulating that non-curb mounted PoolPak™ units do
not receive.
NOTE
If the factory is not notified that a PoolPak is to be curb mounted, the PoolPak base
will not be watertight, it will leak, and it will not be properly insulated.
For SR series units, the compressor end of the curb must have a special weather tight pan with the weather seal under
the bulkhead between the compressor and return air compartments. The pan under the compressor compartment has
provisions for running the pool water lines through the cap and isolates the area under the curb from the compressor
compartment and from possible pool water or oil leaks as well as from the ambient conditions present in the compressor
compartment.
ECCIII CONTROLS FIELD WIRING
OVERVIEW
The ECC III is the Electronic Control Center programmable controller designed specifically for the PoolPak™
dehumidification system. It is a robust system capable of a variety of functions. The following text describes the field
wiring required for proper operation of the ECC dehumidification system in a typical PoolPak™ unit installation. The
field wiring diagram, Figure 4-1, shows the location of the connections for the sensors and other required devices. The
numbers following the text identifies the location on the field wiring diagram showing how each field wired device is
connected to the PoolPak™ unit electrical panel.
REMOTE INTERFACE UNIT (1)
The Remote Interface Unit (RIU) allows the user to view space temperature, relative humidity and pool water
temperature. It also provides the ability to change set points, receive alarm notifications, and perform advanced
diagnostic functions.
The RIU should be mounted in a convenient location, outside the natatorium, that is protected from splashing pool water
and corrosive air. The ambient temperature of the mounting location must always be greater than 32°F. The maximum
distance from the PoolPak™ control panel is 1,000 feet. For distances greater than 1,000 feet, contact the factory.
!CAUTION
Mounting the RIU inside the natatorium may cause damage to the unit. Problems
occurring from mounting the RIU in the natatorium will not be covered under warranty.
The ECC III includes a 7-foot long, black RJ25 cable. If the RIU is to be mounted directly to the PoolPak™ unit, this
cable can be plugged directly into port J10 on control module CM1 in the PoolPak™ control panel.
For remote mounting of the RIU, the installing contractor must run a six-conductor (three twisted pairs), 16-20 AWG cable
from the PoolPak™ control panel to the remote location. One end of this cable will terminate on terminal block T17 in
the control panel. The other end will terminate on a factory-supplied RJ25 jack. The wires for terminals T17.1 and T17.2
should be from the same twisted pair. The second pair should be used for T17.3 and T17.4 and the third pair for T17.5 and
T17.6. Proper polarity and connection is essential for correct operation of the RIU. Improper wiring can cause permanent
damage. Please review the color code and connections to the RJ25 jack carefully.
32
EGW05-SWHPEG-20140724
TM
The RIU includes a mounting bracket that is designed to fit a standard, single-gang box, mounted horizontally in the wall.
Do not use the “through-the-wall” mounting option. The RJ25 jack and most of the black cable should be placed inside
the box before installing the mounting bracket. Use the screws that come with the box to secure the bracket. Using an
“extra deep” box will make it easier to fit the RJ25 cable and jack inside. After the mounting bracket is secured to the wall,
connect the RJ25 cable to the jack on the back of the RIU. Slide the RIU onto the bracket until it snaps into place.
An extra RJ25 cable is supplied to allow direct connection of the RIU at the PoolPak™ control panel during service or
startup.
OUTSIDE AIR TEMPERATURE AND RELATIVE HUMIDITY SENSOR (2)
The ECC III uses an outside air temperature and humidity sensor to make smart economizer decisions and to prevent aircooled condenser operation during low ambient conditions.
The sensor should be mounted on the exterior surface of a north-facing surface without exposure to direct sunlight. Wire
entry to the sensor terminal box is provided with a compression-type fitting, suitable for cable diameters of from 1/8 to
1/4 inch.
Do not connect a conduit directly to the sensor’s terminal box. Use a small piece of UV-resistant cable to make the
transition from the conduit to the sensor. A direct conduit connection will allow condensation to form inside the sensor,
resulting in permanent damage.
Orient the sensor as shown on the included instruction sheet. Proper orientation of the sensor and radiation shields is
essential. Carefully review the wiring connections shown on the field-wiring diagram. Improper connection may
damage the sensor and/or the ECC III control module. The cable should be four-conductor (two twisted pairs), 16–20
AWG copper.
!CAUTION
Improper connection may damage the sensor and/or the ECC III control module.
The cable should be four-conductor (two twisted pairs), 16-20 AWG copper.
COLD SURFACE TEMPERATURE SENSOR (3)
This sensor measures the temperature of the coldest surface in the pool enclosure. When the temperature of the surface
drops within 5°F of the space dew point, the dew point set point will automatically be reset downward to help prevent
condensation on the cold surface. It should be noted that this function will not be able to compensate for lower-quality
building materials, such as single-pane glass or non-thermally broken window frames.
The sensor should be mounted so it is in direct contact with an exterior door, window, or skylight frame not subject to
direct sunlight. Do not mount on a gang box. In cases where there are no exterior doors or windows, the sensor should be
mounted on the interior surface of an exterior wall. Avoid mounting the surface temperature sensor where it will get direct
exposure from sunlight. The sensor housing has a single 1/8-inch hole for mounting.
Wire as shown on the field-wiring diagram. Electrical connection should be made with two-conductor (one shielded,
twisted pair), 16-20 AWG copper cable. Connect the shield drain wire to ground at the PoolPak™ control panel end only.
EGW05-SWHPEG-20140724
33
TM
SMOKE PURGE INPUT (SR ONLY) (4)
The ECC III can receive a contact closure from a building fire and smoke control system. This input must be connected
to dry (voltage free) contacts only. When this input is activated, the ECC III will energize the return fan only and
will open the exhaust air damper to 100%, while closing the outside air intake and recirculation dampers to 0%. The
compressors will be disabled during this mode, and the RIU will display an alarm message indicating that smoke purge
mode has been activated. Using the ECC III configuration menu, it is possible to set this input to be active on open or
active on close.
FIRE TRIP INPUT (5)
The ECC III can receive a signal from a building fire and smoke control system. This input must be connected to dry
(voltage free) contacts only. When this input is activated, the ECC III will shut down the compressors and all unitmounted fans, and will close the outside air and exhaust air dampers. The RIU will display an alarm message indicating
that fire trip mode has been activated. Using the ECC III configuration menu, it is possible to set this input to be active
on open or active on close.
OCCUPIED MODE INPUT (6)
The ECC III can receive a contact closure from a Building Automation System (BAS) or from a time clock to override
the occupancy schedule stored in the controller’s memory. This input must be connected to dry (voltage free) contacts
only. If the schedule is currently requesting unoccupied operation, activating this input will force the controller into
occupied mode. Although this input overrides the ECC III internal schedule, it will not override commands sent to the
controller via the LonWorks or Modbus RTU interfaces.
PURGE MODE INPUT (SR AND SEP) (7)
The ECC III can receive a contact closure from a remote mounted switch or from a BAS. This input must be connected
to dry (voltage free) contacts only. When activated, the controller will shut down the compressors. During purge mode
operation, the ECC III will attempt to maintain space temperature with the auxiliary heating system. If the supply air
temperature drops to 40°F, purge mode is automatically terminated to provide freeze protection. Purge mode commands
sent to the ECC III through the LonWorks or Modbus RTU interface take precedence over the purge mode input.
REMOTE EXHAUST FAN INTERLOCK (S ONLY) (8)
The ECC III can provide a contact closure to enable a remote exhaust fan. These contacts will close during an occupied
time period in the ECC III occupancy schedule. The contacts may be directly connected to an external circuit, provided
it is 24 VAC maximum and the current does not exceed 1A inductive.
ALARM OUTPUT (9)
The ECC III will activate the alarm output when uncleared alarms are present. This output mimics the status of the red
alarm light on the RIU. The output provides form C dry contacts. The contacts may be directly connected to an external
circuit, provided it is 24 VAC maximum and the current does not exceed 1A inductive.
AUXILIARY POOL WATER HEATING SYSTEM (10)
The auxiliary pool water heating system is not provided by PoolPak™. The ECC III provides a dry contact closure that
signals a need for auxiliary water heating. The contacts may be directly connected to the heater control circuit, provided
it is 24 VAC maximum and the current does not exceed 1A inductive. Any other application will require the use of an
additional field-provided and installed relay to interface to the heater. The auxiliary heating system must provide its own
thermostat, wired in series with the output of the ECC III. Typically, the set point for this thermostat is 2°F above the
pool water temperature set point in the ECC III.
34
EGW05-SWHPEG-20140724
TM
AUXILIARY AIR HEATING SYSTEM (11)
The auxiliary heating system is normally factory-installed inside the PoolPak™ unit. In this case, all interface wiring
between the ECC III and the heater is factory-installed. If the PoolPak is not equipped with an auxiliary heating option,
the ECC III provides contact closures to control three discrete stages of auxiliary air heating. The contacts may be directly
connected to the heater’s control circuit, provided it is 24 VAC maximum and the current does not exceed 1A inductive.
The three outputs are energized in order, by number, as heating demands dictate.
SYSTEM 1 REMOTE AIR-COOLED CONDENSER INTERLOCK AND CONTROL (12)
The ECC III monitors terminals T10.1 and T10.2 for 120 VAC from the remote air-cooled condenser. This 120 VAC proof
signal indicates that power is on at the remote condenser. The ECC III will not select the mechanical air conditioning
mode if the proof signal is inactive. When mechanical air conditioning is selected, a 120 VAC control signal is sent to the
remote condenser through terminals T10.3 and T10.4. This signal energizes the fan starters in the ACC.
SYSTEM 2 REMOTE AIR-COOLED CONDENSER INTERLOCK AND CONTROL (13)
The ECC III monitors terminals T11.1 and T11.2 for 120 VAC provided by the remote air-cooled condenser. This 120
VAC proof signal indicates that power is on at the remote condenser. In most cases, a single remote condenser is used
for both system 1 and system 2. For this reason, the factory installs jumpers from T10.1 and T10.2 to T11.1 and T11.2,
respectively. This allows a single 120 VAC proof signal from the condenser to activate the proof input of both systems.
When mechanical air conditioning is selected, a 120 VAC control signal is sent to the remote condenser through
terminals T11.3 and T11.4. This signal energizes the fan starters in the ACC.
AUXILIARY AIR HEAT CONTROL VALVE (14)
The ECC III provides an analog signal to control a proportional hot water or steam valve. Normally, the valve is factorymounted and wired inside the PoolPak™ unit. However, if a remote valve is used, it can be connected directly to the
PoolPak™ control panel. Terminal block T12 provides 24 VDC power and a control signal. The actuator on the external
valve must consume less than 5 VA at 24 VDC. The default control signal to the actuator is 2-10 VDC. The voltage span of
the control signal can be adjusted in the configuration menu.
BUILDING AUTOMATION SYSTEM CONNECTION (15)
The ECC III is capable of direct connection to BACnet IP or MS/TP, LonWorks, or Modbus RTU BAS systems. When
equipped with the LonWorks interface, the ECC III utilizes an Echelon FTT10 transceiver for connection to a TP/FT-10
network channel. The Modbus RTU interface is RS485-based, with user selectable baud rates of 1,200, 2,400, 4,800,
9,600, and 19,200.
This interface allows a BAS to monitor detailed dehumidifier status information. It also allows the BAS to make set point
changes, to control occupancy modes and to control purge mode.
When the ECC III is equipped with the BACnet/IP interface or PoolPak™ RAP, the RJ45 connection is to the serial card
port on control module CM1.
Detailed information on BAS interface operation is available on the PoolPak™ website.
MULTI-UNIT NETWORK CONNECTION (MULTI-UNIT INSTALLATIONS ONLY) (16)
The ECC III utilizes a proprietary, private network to coordinate with other PoolPak™ units operating in the same space.
This allows up to five PoolPak™ units to coordinate operation using a master/slave scheme. The PoolPak™ units are
connected to each other by daisy-chaining the three terminals of T15. The network is RS485-based. The connections
should be made with 24 AWG minimum, category 5 cable. Use wires from the same pair for the connection of terminals
1 and 2. The total network length should not exceed 500 feet. For total network lengths of more than 500 feet, contact the
factory.
EGW05-SWHPEG-20140724
35
TM
SYSTEM 1 REMOTE WATER-COOLED CONDENSER INTERLOCK (IF EQUIPPED) (17)
The ECC III monitors the entering water temperature in the remote water-cooled condenser to ensure it is below 90°F
and that there will be adequate water flow to operate in the air cooling mode. Field wiring must be connected in series
between the normally closed (open on rise) contacts of the system 1 temperature switch, the nornally open terminals of
the flow switch located in the remote water cooled condenser enclosure, and relay 5R, terminals 11 and 14, located on the
PoolPak™ control panel. The ECC III will not select the mechanical air conditioning mode if the proof signal is inactive.
SYSTEM 2 REMOTE WATER-COOLED CONDENSER INTERLOCK (IF EQUIPPED) (18)
The ECC III monitors the entering water temperature in the remote water-cooled condenser to ensure it is below 90°F
and that there will be adequate water flow to operate in the air cooling mode. Field wiring must be connected in series
between the normally closed (open on rise) contacts of the system 1 temperature switch, the normally open terminals
of the flow switch located in the remote water cooled condenser enclosure, and relay X5R, terminals 11 and 14, located
on the PoolPak™ control panel. The ECC III will not select the mechanical air conditioning mode if the proof signal is
inactive.
POOL WATER TEMPERATURE SENSOR (19)
Units that will utilize the Smart Pump Technology to control the PoolPak™ secondary pool water loop pump require the
installation of a factory supplied pool water temperature sensor. It must be mounted upstream of the PoolPak™ unit and
the auxiliary water heater. The sensor can be threaded directly into a 1/4” FPT fitting. Electrical connections should be
made with 22 AWG, copper, 2 conductor, shielded, twisted-pair cable. The wires from the factory-installed pool water
temperature sensor must be removed from the bottom of T3, terminals 9 and 10, before connecting the field wires for the
remote mounted sensor. Connect the shield drain wire to ground at the PoolPak™ unit end only.
SMART PUMP CONTROL OUTPUT (20)
The ECCIII provides a contact closure to activate the PoolPak™ water loop pump when pool water heating and space
cooling are required. The output contacts may be directly connected to an external circuit provided it is 115VAC
maximum and less than 1A inductive.
EVENT MODE (21)
The ECCIII provides a contact closure to activate the Event Mode function. During Event Mode, the minimum damper
position is raised to a value higher than the minimum damper setpoint. This can be used to temporarily allow dilution of
the space air during extremely high pool usage or a large number of spectators.
SUMMER VENT MODE (22)
The ECCIII provides a contact closure to activate the Summer Vent Mode function. This mode is identical to smoke
purge, but it does not generate an alarm. The purpose of this mode is to accommodate a facility’s desire to draw lots of
air through open windows and wall louvers in the summer.
SUPPLY TEMPERATURE SENSOR (NOT SHOWN)
For units with a Jackson and Church furnace, there will be a supply sensor shipped loose in the poolpak control panel.
This sensor is to be located in the supply duct at least 10 feet downstream from the unit.
Electrical connections should be made with 22 AWG, copper, 2 conductor, shielded, twisted-pair cable. The wires from
the factory-installed temperature sensor must be removed and replaced on terminals 30 and TC2 in the power flame
terminal block in the Jackson and Church furnace.
36
EGW05-SWHPEG-20140724
TM
SWHP FIELD WIRING DIAGRAM
Figure 4-1. Field Wiring Diagram
16
1
15
9
20
10
11
22
21
7
6
5
4
3
2
14
13
12
8
19
17
18
PPK_EG_GR_FieldWiring.eps
EGW05-SWHPEG-20140724
37
TM
POOL WATER PIPING AND INSTALLATION
POOLPAK POOL WATER CIRCULATION LOOP
The PoolPak™ unit pool water condenser (full or partial) must be connected to a secondary circulation loop with its
own circulation pump (field-supplied) to obtain the required design water flows. See Figure 4-2 for a typical piping
configuration.
The secondary pool water loop supply must come from the main pool water distribution line, downstream of the main
pool water pump and the pool filter, before the take off to the auxiliary pool water heater. The discharge from this
secondary loop goes back into the primary distribution line downstream of the secondary loop supply and upstream
of the auxiliary pool water heater. This location is required so that the PoolPak™ unit will sense the actual pool water
temperature.
The secondary circulation loop should be located near the main pool water distribution line on the supply line of the
secondary loop feeding the PoolPak™ unit. The pump should be self-priming and vented. The pump should be located at
the lowest point possible in this secondary circulation loop. For example, if the PoolPak™ unit is located on a mezzanine
and the main pump filter are located in the basement below the mezzanine; the second pump should be located in the
basement with the filter, not on the mezzanine with the PoolPak™ unit. Particular attention must be given to venting
when the PoolPak™ unit is installed above the level of the main pool water system. When designing a system that has
over 20 to 30 feet of vertical rise, the system should be considered to be open (size pump accordingly, assuming no
gravitational assistance).
AUXILIARY POOL WATER HEATER (FIELD SUPPLIED)
The auxiliary pool water heater must be installed downstream of the PoolPak™ unit’s secondary loop discharge. It is
normally installed in its own secondary loop as shown in the figure. The auxiliary pool water heater is controlled by the
PoolPak™ System. It is only turned on either when the heat available from the PoolPak™ is insufficient for pool water
heating and pool water temperature drops to 1.5°F below set point or when the pool water flow to the PoolPak™ unit is
below the minimum required water flow.
MAIN POOL WATER PUMP AND POOLPAK POOL WATER LOOP PUMP INTERLOCKS
The main pool water distribution pump and the PoolPak™ pool water loop pump must each have its own start/stop
switch. Wire the main pool water pump’s auxiliary contacts in accordance with the manufacturer’s specifications and run
the wires to the PoolPak™ unit auxiliary pool water loop pump starter. Wire the auxiliary pump so that it operates only
when the main pool water pump operates. This interlocking is necessary to prevent overheating and possible damage to
the pool water piping and PoolPak™ pool water loop pump.
POOL WATER ISOLATION VALVES
Hand stop valves and pressure gauge stopcocks are factory-installed in the pool water supply and return lines inside
the PoolPak™ unit for servicing. A third hand valve (field-supplied) should be installed upstream of the auxiliary pool
water pump so that the pump can be isolated for service. A fourth hand valve (field-supplied), installed in the main pool
water line between the secondary loop supply and return, is normally required to balance the flow in the PoolPak™ unit
secondary loop.
38
EGW05-SWHPEG-20140724
TM
POOL WATER FLOW SWITCH
A pool water loop flow switch is factory-installed in the PoolPak™ unit. The flow switch is factory-calibrated and should
not be adjusted. If the flow switch contacts are not closed when water is flowing through the PoolPak™ unit, there may
be insufficient water flow. The PoolPak™ unit can be operated with inadequate water flow; however, the PoolPak™
System will not go into a water-heating mode until the water flow switch contacts are closed by sufficient water flow.
Refer to Table 3-2 for design pool water flow.
POOL WATER PIPING COMPOSITION
Pipe must be a suitable material such as CPVC Schedule 80 plastic pipe. PVC, copper, iron or steel pipe is NOT suitable.
It must be kept free of all foreign matter.
FREEZE PROTECTION
Any pool water piping (field-supplied) exposed to outdoor ambient air temperatures must be protected against freezing.
Wrap pipes with electric heat tape (follow manufacturer’s instructions) controlled by an automatic thermostat and set at a
minimum of 35°F. Insulate all piping. Insulation must be sealed at all seams.
NOTE
Power for the field-installed heat tape must be supplied external to the PoolPak unit.
Figure 4-2. Pool Water Piping Schematic
FLOW SWITCH
POOL WATER
TEMPERATURE SENSOR
Pool
MANUAL ISOLATION
BALL VALVES
International
T
ISOLATION
VALVE
AUXILIARY POOL
WATER LOOP PUMP
(SMART
PUMP
OPTION CONTROL
BY POOLPAK)
SWHP UNIT
CONTROL WIRING
FIELD CONNECTIONS
POOL FILTER
ISOLATION
VALVE
ELECTRICAL
INTERLOCK
WATER FROM POOL
BALANCING
VALVE
(SMART PUMP OPTION POOL WATER
TEMPERATURE SENSOR)
AUXILIARY POOL
WATER HEATER
THERMOSTAT
AUXILIARY POOL
WATER HEATER
TEMPERATURE
SENSOR
MAIN POOL
WATER PUMP
AUXILIARY
POOL WATER
HEATER
WATER TO POOL
BALANCING
VALVE
PPK_EG_GR_PoolWaterPipingSchematic.eps
EGW05-SWHPEG-20140724
39
TM
CONDENSATE DRAINS AND PIPING
The drain pans are connected to a common drain system. Connections are available on both sides of the base frame as
well as under the unit. The connection underneath the unit comes temporarily plugged from the factory. Field installation
of negative pressure condensate drain traps is required using one of these three connections. The non-trapped drain
connections must be permanently capped with a suitable PVC plug. See Figure 4-3 for more detail on the sizing and
materials of the negative pressure condensate drain trap.
For outdoor units, wrap drain lines and trap with electric heat tape (follow manufacturer’s instructions) controlled by an
automatic thermostat set at a minimum of 35°F to protect against freezing. Outdoor units also require insulation of all
external condensate piping. Insulation must be sealed at all seams.
NOTE
Power for heat tape must be supplied external to the PoolPak unit.
If the drain traps are vented to ambient pressure, they can be tied together after trapping and directed towards the nearest
roof or floor drain. Provisions MUST be made for disposal of condensate as directed by local plumbing code.
!CAUTION
If condensate is returned to a closed filter system that does not have a surge tank,
care must be taken to ensure free flow of condensate back to the closed filter.
For additional questions or concerns regarding installation of condensate drains, please contact PoolPak™ Service.
Figure 4-3. Negative Pressure Condensate Piping Schematic
REMOVABLE
CLEANOUT
SWHP UNIT
OPEN TEE
FOR VENT
1
UNIT BASE
1 4 INCHES MINIMUM OR MAX NEGATIVE STATIC
PRESSURE (INCHES W.C.) + 1 INCH
2
PLUG THE
UNUSED
CONNECTION
WITH SUITABLE
PVC PLUG
2 2 INCHES MINIMUM OR 1/2 x 1
MINIMUM SCHEDULE 40 PVC
NOTE: NOT TO SCALE
SWHP-NegPressCondPiping-20140408.eps
40
EGW05-SWHPEG-20140724
TM
AIR-COOLED CONDENSER INSTALLATION
SPACE AND LOCATION REQUIREMENTS
The most important consideration which must be taken into account when deciding upon the locations of air-cooled
equipment is the provision for a supply of ambient air to the condenser, and removal of heated air from the condenser
area. Where this essential requirement is not adhered to, it will result in higher head pressures, which cause poor
operation and possible eventual failure of equipment. Units must not be located in the vicinity of steam, hot air, or fume
exhausts.
Another consideration which must be taken is that the unit should be mounted away from noise sensitive spaces and
must have adequate support to avoid vibration and noise transmission into the building. Units should be mounted over
corridors, utility areas, rest rooms, and other auxiliary areas where high levels of sound are not an important factor.
Sound and structural consultants should be retained for recommendations.
Walls or Obstructions
The unit should be located so that air may circulate freely and not be re-circulated. For proper air flow and access all
sides of the units should be a minimum of “W” away from any wall or obstruction (see Figure 4-4, Figure 4-5, Figure
4-6, or Figure 4-7). It is preferred that this distance be increased whenever possible. Care should be taken to see that
ample room is left for maintenance work through access doors and panels. Overhead obstructions are not permitted.
When the unit is in an area where it is enclosed by three walls, the unit must be installed as indicated for units in a pit.
Figure 4-4. Remote ACC Installation Around Walls or Obstructions
AIR FLOW
W*
MIN.
* ”W”=Total width of the condenser
Multiple Units
For units placed side by side, the minimum distance between units is the width of the largest unit. If units are placed
end to end, the minimum distance between the units is 4 feet.
Figure 4-5. Remote ACC Installation When Installing Multiple Units
AIR FLOW
AIR FLOW
W*
MIN.
* ”W”=Total width of the condenser
EGW05-SWHPEG-20140724
41
TM
Units in Pits
The top of the unit should be level with the top of the pit and side distances increased to “2W”. If the top of the units is
not level with the top of the pit, discharge cones or stacks must be used to raise discharge air to the top of the pit. This is
a minimum requirement.
Figure 4-6. Remote ACC Installation When Installing Units in Pits
STACK
(BY OTHERS
IF SUPPLIED)
AIR
FLOW
10’ MAX.
2W*
MIN.
2W*
MIN.
* ”W”=Total width of the condenser
Decorative Fences
Fences must have 50% free area, with 1 foot undercut, a “W” minimum clearance, and must not exceed the tops of the
unit. If these requirements are not met, the unit must be installed as indicated for “Units in Pits”.
Figure 4-7. Remote ACC Installation When Installing Units Near Decorative Fences
1”
MIN.
W*
MIN.
AIR FLOW
* ”W”=Total width of the condenser
42
EGW05-SWHPEG-20140724
W*
MIN.
TM
FIELD INSTALLED PIPING
Installation of the outdoor air-cooled condenser should only be done by a qualified refrigeration mechanic familiar with
this type of work. Many service problems can be avoided by taking adequate precautions to provide an internally clean
and dry system and by using procedures and materials that conform to established standards.
Piping Guidelines
The following piping recommendations are intended for use as a general guide. For more complete information, refer to
the latest ASHRAE Handbook.
Materials:
• Use clean, dehydrated, refrigeration-grade copper tubing for all refrigerant lines. Hard drawn tubing should be used
where no appreciable amount of bending around pipes or obstructions is necessary. If soft copper tubing must be
used, care should be taken to avoid sharp bends which may cause restrictions and excessive refrigerant pressure
drops.
• Use long radius elbows wherever possible with one exception - short radius elbows should be used for any traps in
the hot gas riser.
• Braze all copper to copper joints with a phosphorus-copper alloy material such as Silfos 5 or equivalent. Do not use
soft solder.
• During brazing operations flow an inert gas, such as nitrogen, through the lines to prevent internal oxidation scaling
and contamination.
• Support refrigeration lines at intervals with suitable hangers, brackets or clamps.
• Pack glass fiber insulation and a sealing material around refrigerant lines, where they penetrate a wall, to reduce
vibration and to retain some flexibility.
• The liquid line and discharge line should not be in contact with one another. If the installing contractor must tie
these lines together because of an installation requirement, the contractor must insulate them from each other to
prevent heat transfer. Because the discharge line is hot during system operation, precautions should be taken to
avoid personnel injury.
• PoolPak™ units do not utilize compressors with unloading stages. Consequently, double hot gas risers are not
needed for reduced load conditions as refrigerant flow rates will not fall below minimum velocities necessary to
carry oil up through the discharge line.
• A field provided, field installed liquid line filter-drier is required in the field piping adjacent to the PoolPak™ unit.
Sizing:
• The lines must be sized and routed so that oil is carried through the system. Using smaller lines than recommended
will give excessive pressure drops, resulting in reduced capacity and increased power consumption. Oversized lines
could result in an oil flow problem within the system and possible compressor damage.
• Excessive pressure drops in the liquid line may cause flashing of the refrigerant and a loss of a liquid seal at
the expansion valve inlet. A reduction in capacity may then occur because the presence of gaseous refrigerant
will partially block the expansion valve. Using the hot gas and liquid line sizes recommended in the Air Cooled
Condenser section for these units and the proper system refrigerant charge will prevent this problem.
• Discharge lines should be designed to prevent condensed refrigerant and oil from draining back to the compressor
during OFF cycles. Use the following guidelines:
◦◦ The highest point in the discharge line should be above the highest point in the condenser coil. (See Figure 4-8)
◦◦ The hot gas line should loop toward the floor if the condenser is located above the PoolPak™ unit, especially if
the hot gas riser is long.
• For refrigerant line sizing for an Air Cooled Condenser (ACC) where the lineset length is less than 100 feet or the
ACC location is less than 50 feet higher or 20 feet lower than the unit, use the below Table 4-1.
• ACC line lengths beyond the above limits will void warranty unless written approval is obtained from the
factory PRIOR to installation and startup.
EGW05-SWHPEG-20140724
43
TM
Table 4-1. Pipe Sizes for Remote Refrigerant Condensers
Hot Gas Lines2
Model1
Liquid Lines2
Horizontal Run
Vertical Riser
0060
1-3/8
1-3/8
7/8
0080
1-3/8
1-3/8
1-1/8
0100
1-5/8
1-5/8
1-1/8
0120
1-5/8
1-5/8
1-3/8
0140
2-1/8
1-5/8
1-3/8
0190
2-1/8
1-5/8
1-3/8
0220
1-5/8
1-5/8
1-1/8
0260
1-5/8
1-5/8
1-3/8
0300
2-1/8
1-5/8
1-3/8
0340
2-1/8
1-5/8
1-3/8
1
Models 220, 260, 300, 340 have two refrigeration circuits piped independently.
2
All pipe diameters are nominal OD inch sizes. Use only certified refrigeration tubing.
WARNING!
Above chart is for lineset length less than 100 ft and ACC located less than 50ft above unit or 20ft
below unit. Failures due to a piping layout not within these limits nor receiving prior PoolPak
Factory approval will not be covered under PoolPak™ warranty.
Figure 4-8. Remote ACC Above Unit
TOP OF CONDENSER COIL
REMOTE
AIR-COOLED OR
WATER-COOLED
CONDENSER
HOT GAS LINE
Pool
Pool
LIQUID
LINE
*
In t e r n a tiona l
LINE SIZED BALL VALVE
*
* EVACUATION AND CHARGING PORTS
REPLACABLE CORE FILTER DRIER
(Sporlan C-96”N” Series shell. “N” is dependent on liquid line size)
44
EGW05-SWHPEG-20140724
TM
Refrigerant and Oil Charging:
• PoolPak™ units are shipped with the required charge for self contained operation only. The remote ACC option
does NOT provide the refrigerant charge or oil required for the ACC and line sets.
• Refer to the below remote ACC and line size charging charts to calculate the additional charge required.
• For the additional oil required, multiply 2% by the total additional refrigerant charge (ACC and lineset length).
◦◦ For Copeland compressors, use Copeland Ultra 32 CC POE refrigeration oil.
◦◦ For Bitzer compressors, use Idemitsu FVC32D PVE refrigeration oil.
• Contact Factory for additional help or verifying the additional refrigerant charge.
Table 4-2. Remote ACC Refrigerant (R-410A) Charge
ACC Model
Single Circuit
ACC Model
Two Circuits - per circuit
ACC0273
8.4
ACC0734
12.2
ACC0333
12.6
ACC0864
16.8
ACC0363
12.6
ACC0994
18.5
ACC0433
16.8
ACC1094
18.5
ACC0453
16.8
ACC1184
24.4
ACC0493
18.5
ACC1294
24.4
ACC0523
18.5
ACC1374
24.4
ACC0553
18.5
ACC1464
43.8
ACC0593
25.3
ACC1564
43.8
ACC0623
25.3
ACC1654
43.8
ACC0663
24.4
ACC1824
58.9
ACC0683
25.3
ACC1924
58.9
ACC0733
24.4
ACC1974
53.9
ACC0773
24.4
ACC2444
72.4
ACC0863
33.7
ACC2934
85.9
ACC0923
33.7
ACC0963
33.7
ACC1163
37.0
ACC1373
48.8
ACC1813
117.8
Table 4-3. Refrigerant (R-410A) Charge for Different Line Sizes
Tube OD (in)
Wall thickness (in)
Tubing Type
Discharge1 lb/ft
Liquid1 lb/ft
7/8
0.045
L
0.021
0.192
1 1/8
0.05
L
0.036
0.327
1 3/8
0.055
L
0.055
0.499
1 5/8
0.072
K
0.076
0.684
2 1/8
0.083
K
0.133
1.196
1
Based on 120 F saturated condensing temperature.
WARNING!
Above chart is for lineset length less than 100 ft and ACC located less than 50ft above unit or 20ft
below unit. Failures due to a piping layout not within these limits nor receiving prior PoolPak.
Factory approval will not be covered under PoolPak™ warranty.
EGW05-SWHPEG-20140724
45
TM
This page intentionally left blank
46
EGW05-SWHPEG-20140724
TM
SECTION V: OPERATION
The below is a summary of PoolPak™ operation, service, and maintenance features of the PoolPak™ SWHP unit and
controller. For complete detail, refer to the PoolPak™ SWHP Installation and Operation Manual that can be found on the
PoolPak™ website.
REMOTE INTERFACE UNIT (RIU)
The PoolPak™ ECC III control system includes a Remote Interface Unit (RIU) display/keypad panel that can be located
remotely from the unit for the convenience of the owner. A standard three-line telephone jack connects to the control
system at terminal block T17 using a six-wire cable. The RIU connects to this telephone jack using the special RJ-25
cable supplied.
Normally, the Remote Interface Unit (RIU) will automatically rotate between four different screens to display the status
of the system. Pressing the HOLD/ROTATE key will stop the automatic screen rotation and will hold the presentlydisplayed screen. After a 10-minute delay, the screens will resume normal rotation. The user may also turn off the hold
function before the delay terminates by pressing the HOLD/ROTATE key a second time.
Four set points, Space Temperature, Space Relative Humidity, Pool Water Temperature 1 and Pool Water Temperature 2,
can be accessed through the RIU. To change a set point, press the corresponding set point key.
Figure 5-1. Remote Interface Unit Graphic
POOLPAK
ECC lll
POOLROOM
DEHUMIDIFIER
on-off
alarm
enter
PPK_All_ECCIII_RIU outline dwg 20100316.eps
SERVICE DISPLAY CONNECTION
For service convenience, there is an auxiliary RJ-25 jack located on the upper left side of ECC III Control Module #1,
port J10. The RIU may be removed from its remote location and connected here using the special RJ-25 cable supplied with
the control system.
Extensive troubleshooting features accessible from the RIU are described in the troubleshooting section.
MULTIPLE UNIT INTERFACING
When there is more than one PoolPak™ unit installed at a single site, the units should be connected together. This is
necessary so that each PoolPak™ unit can be coordinated. It also allows the owner to access PoolPak™ operational
information for all the units from a single location.
EGW05-SWHPEG-20140724
47
TM
BUILDING AUTOMATION SYSTEM (BAS) CONNECTION
The PoolPak™ ECC III control system provides four optional Building Automation System (BAS) connection types;
LonWorks, Modbus RTU, BACnet/IP, or BACnet MS/TP. When the optional Remote Access Package (RAP) is installed,
BACnet/IP is the only option available.
When the ECC III is equipped with the BACnet/IP interface, the RJ45 connection is to the serial card port on control
module CM1. All other interface options are connected to terminal block T16 in the main control panel.
POOLPAK REMOTE ACCESS PACKAGE (RAP)
The PoolPak™ Remote Access Package (RAP) is a stand-alone communication system. The system runs an embedded
web server over an IEEE 802.3 10/100 BaseT Ethernet. The web server operates on TCP/IP port 80, the Internet
default for web traffic. The web server port is configurable. The RAP can be accessed from either an internal network
or the Internet. IP addresses and ports must be routed to the RAP for access via the Internet. Virtual Private Network
Connections (VPN) to the RAP will not be supported.
SEND EMAILS – ALERTS FOR ALARMS
When a critical alarm occurs with the PoolPak™ unit, the RAP will send an email to the PoolPak™ Service Department,
via a mail server maintained by PoolPak™.
ECC III NETWORK OPERATION
ECC III networking allows up to five PoolPak™ units to be connected together over a proprietary, private network.
The units will work with each other to control water temperature, air temperature and relative humidity. Networked
PoolPak™ units have all the features of standard PoolPak™ units plus the ability to control water temperature in
multiple pools. All units on the network are accessible from any RIU (Remote Interface Unit) on the network. Refer to
the Multiple Unit Interface diagram in the wiring section of this manual for multiple PoolPak unit field communication
loop connections.
Networked ECC III units operate in a master/slave environment. This means that the fuzzy logic engine in one unit
(master) determines heating, cooling and dehumidification requirements and broadcasts them over the network to the
other units (slaves). This ensures that each unit will make control decisions based on the same information. During
steady state conditions, all units networked together will operate in the same basic mode (i.e., heating or cooling). Slight
discrepancies in damper position and number of stages active are normal. This is caused by slight sensor calibration
differences among the units.
Each networked unit contains all sensors and controls necessary for independent operation and is capable of acting in
the master role. Units on the network are identified by an address of one to five. The unit with the lowest address having
no un-cleared alarms will be the master unit. If an alarm condition occurs in the master unit, it will give up the role
of master. The unit with the next lowest address and no un-cleared alarms will take over the master role. The unit that
experienced the alarm condition will operate in the slave role until the alarm is cleared at the RIU. In the unlikely event
that all units have un-cleared alarms, they will each act individually.
A single RIU can be used to monitor all units on the network. Indicator lights beside Roman numeral buttons I through
V indicate which unit is being displayed. The next unit in line can be selected by pressing the V button. If an alarm
condition occurs in a unit, the corresponding light will flash and the RIU will automatically switch to the unit with the
alarm. The light will continue to flash even if the RIU is displaying another unit.
For the standard configuration, all set points can be changed while the RIU is displaying any unit. The set point is
automatically updated in every unit on the network. Other configurations may require the RIU to be displaying a
particular unit to change the set point.
48
EGW05-SWHPEG-20140724
TM
The RIU provides two network status screens. They can be accessed through the status menu accessed with key III. The
first screen displays the status of units one through five as ONLINE or OFFLINE. Use this screen to verify that all units
on the network are connected and communicating with each other. The second screen displays network information for
the unit that is being displayed by the RIU, including network role, connection status, and network address.
CM1 CONFIGURATION
The unit networking address is set by pressing the small button to the right of the CM1 plug, J3. Pressing the button
one time will display the current I/O address setting. On single unit installations, this should be 1. On multi-unit
installations, each unit should be set to a different address between 1 and 5. No two I/O addresses can be the same while
connected to the same network.
To change the I/O address, press and hold the button for approximately 5 seconds until it begins flashing slowly. Once
flashing, release the button and press it sequentially until the desired address is displayed (must be 1, 2, 3, 4 or 5) and
release the button. After approximately 5 seconds, the displayed number will begin flashing faster to indicate the new
address has been set. Cycle power at the Control Power switch to complete the address change.
RIU CONFIGURATION
The RIU network address is set by pressing the UP, DOWN, and ENTER buttons simultaneously and holding them down
for approximately 5 seconds. The display will show “Display address setting”. Press the ENTER to move the cursor to
the current address field. Use the UP and DOWN buttons to change the address to either 10, 11, or 12 and press ENTER.
To configure the ECC III RIU addresses, press the UP, DOWN, and ENTER buttons simultaneously and hold them down
for approximately 5 seconds. The display will show “Display address setting”. Press the ENTER four times to move the
cursor past the screens showing “Display address setting”, “I/O Board address” and “Terminal config Press ENTER to
continue. Use the keypad to enter the RIU configuration as follows:
P: 0x
Trm1 Trm2 Trm3 Adr
10
11
12
Priv/Shared
Sh
Sh
Sh Ok? Y
(x = CM1 I/O address)
When prompted “OK?”, select “Y” to save the configuration and to exit. The RIU will go blank and then beep several
times before bringing up the normal status display.
EGW05-SWHPEG-20140724
49
TM
NETWORK CONFIGURATION
Using the following parameters, it is possible to configure the ECC III network to accommodate a wide variety of
installation options. Press the I key to access these parameters on the configuration menu. These parameters must be set
in each unit individually. Default values are shown in bold type.
Network Ctl - No (Yes or No)
Determines whether the unit will participate in the master/slave environment. Setting this parameter to No will cause
the unit to act like a standard single ECC III unit. This unit will never become the master on the network and will not
listen to the control variables broadcast by the master. Although units with this parameter set to No do not participate
in the master/slave environment, they are still accessible through any network RIU. Like Local pool water control, this
parameter, when set to No, requires this unit to be displayed on the RIU before changing any of the set points.
Water Temp Ctl - Local (Local or Net)
Determines whether the unit will control water temperature based on the master’s command (Net) or its own
temperature sensor(s) and set points (Local). If a unit set to Local becomes the master, other units in the network will
not use the master’s command for water heating. Instead, they will look at the next unit in line that is not set to Local.
This parameter is set to Local only if the unit is connected to a different pool than the rest of the units on the network.
Because the unit is controlling water temperature on its own, it is necessary to select the correct unit with the RIU before
changing the water temperature set point.
CHANGING NETWORK SET POINTS
Each unit on the network maintains two groups of set points: network and local. If a unit has the Network Ctl parameter
set to Yes and the Water Temp Ctl parameter set to Net, it will control to the network set points. Set points changed when
the RIU is displaying this unit will be changed in every unit on the network with the same Network Ctl and Water Temp
Ctl parameters. Units that are configured for Network Ctl and Local Water Temp Ctl will use the local water temperature,
set point and the network air temperature and relative humidity set points. The water temperature set point will only be
changed in the unit currently being displayed by the RIU. Units that are not configured for Network Control will use all
local set points. Therefore, any set points changed while the control panel is displaying this unit will be changed only in
this unit.
50
EGW05-SWHPEG-20140724
TM
ECC III SERVICE TROUBLESHOOTING
TROUBLESHOOTING OVERVIEW
When properly installed according to the instructions in this manual, the PoolPak™ ECC III control system will perform as
designed and will provide a pool environment that is both comfortable and cost effective. However, in the unlikely event that
the system does not function properly, the ECC III has many features that will help a service technician resolve the issue.
The PoolPak™ has numerous safety devices designed to protect the system from failures. The compressor(s) will be shut
down when any of the following occur:
•
•
•
•
•
•
•
High Refrigerant Pressure
Low Refrigerant Pressure
High Compressor Motor Temperature
Low Compressor Oil Pressure
Fan Motors Not Operating
Compressor Motor Overload
Space Temperature Out of Range
Additionally, the compressor and/or fan motors will be shut down when a fire control system alerts the ECC III that a fire
trip or smoke purge mode of operation is required.
Whenever a fault condition occurs, the alarm button on the RIU and CM1 will glow red and the displays will show the
fault condition and a recommended course of action. After 10 compressor-related faults occur, the affected compressor
system will be locked out for protection. Repetitive faults can cause compressor motor failure. When a compressor fault
condition exists, it must be diagnosed and corrected before resetting the system.
After a fault has been eliminated, the control panel alarm light will remain lit. However, the alarm will no longer be
shown in the normal status screen rotation. Pressing the alarm key will show any faults that have occurred since the
alarm light was reset.
ALARM RESET
To reset the alarm light, press and hold key VI and then press the ALARM button. If there are currently no active fault
conditions, the alarm light will go off. The alarm contact closure output of the controller operates in conjunction with the
alarm light on the RIU and CM1. To reset the alarm light using the keypad on CM1, press ALARM and ESC at the same
time.
The following fault conditions are detected by the ECC III control system:
Supply Fan Not Running
The controller has detected that the supply fan motor is not running even though the digital output for the contactor is
energized. This condition is detected by the current transducer for the supply fan motor. The most likely cause is a motor
overload condition that caused the motor protector to trip or a damper feedback issue.
Return Fan Not Running (SR only)
The controller has detected that the return fan motor is not running even though the digital output for the contactor is
energized. This condition is detected by the current transducer for the return fan motor. The most likely cause is a motor
overload condition that caused the motor protector to trip or a damper feedback issue.
EGW05-SWHPEG-20140724
51
TM
Fire Trip Active
An external fire control system has requested fire trip operation by sending a signal to the PoolPak™ unit Fire Trip
terminals.
Smoke Purge Active
An external control has requested smoke purge operation by sending a contact closure to the PoolPak™ unit Smoke
Purge terminals.
Return Air Temperature Out of Range
The return air temperature is outside of the safe operating range (60°F to 105°F dry bulb, <55°F wet bulb) for the
compressor(s). If the space temperature is close to the set point, the most likely cause of this alarm is a defective return
air temperature sensor.
Supply and Return Fans Not Running
The controller has detected that both fan motors (SR) are not running even though the appropriate digital outputs are
energized. The most likely cause is the motor protectors have been set to the OFF position or a damper feedback issue.
Freeze Danger, Low Supply Air Temperature
The supply air temperature measured by the controller is less than 40°F. This condition can potentially damage a
hot water or steam coil. The ECC III will close the outside and exhaust air dampers in an attempt to protect the nonfunctioning coil. The most likely cause of this condition is a failure of the auxiliary heat source (e.g., hot water pump or
valve) or a bad outside air damper or acuator.
Low Compressor Oil Pressure (Recip Compressors only)
The oil pressure monitor on the compressor has detected insufficient oil pressure for 2 minutes. The ECC III will shut
down the affected compressor. The most likely cause of this condition is loss of power during compressor operation.
High Compressor Motor Temperature
The controller has detected that the temperature of the compressor motor winding is too high or the compressor motor is
drawing too much current based on the compressor overload detection device(s).
High Refrigerant Pressure
The controller has detected that the compressor is not running even though the digital output for the compressor
contactor is energized. This condition is detected with the current transducer for the compressor motor. The most likely
cause is the high-pressure safety switch is open. The switch opens if the discharge pressure exceeds 585 psig on R-410A
units. The most likely cause of this condition is insufficient airflow caused by dirty filters or loose belts.
Low Refrigerant Pressure
The controller has detected that the low-pressure safety switch is open. The switch opens if the suction pressure drops
below 45 psig on R-410A units. The most likely cause is insufficient evaporator airflow caused by dirty filters or loose
belts.
Compressor Current Transducer Failed
The controller has detected that the current transducer for the compressor has failed. Compressor operation will be
disabled to prevent repetitive high pressure faults. The most likely cause of this fault is a defective compressor motor
current transducer.
52
EGW05-SWHPEG-20140724
TM
10 Fault Compressor Lockout
Ten compressor faults have occurred since the unit was last reset. This condition indicates that a repetitive compressor
fault is present. See the history log to determine the mode of operation to assist in determining the cause of the lockout.
Sensor Failure (All Sensors)
The controller has detected that the value of a system sensor is outside of the expected range. The alarm screen will show
which sensor has failed. The most likely cause is a defective sensor.
Expansion Board Comm Failure
The main control module CM1 is unable to communicate with the expansion card, CM2. The most likely cause is a
blown fuse on the control module CM2.
FAULT HISTORY LOG
To assist in troubleshooting, the ECC III maintains a log of the 50 most recent faults. The log contains the date and time
of occurrence, along with the fault code and a snapshot of system conditions at the time of the fault.
The fault history log is accessed from the System Status Information menu. Press the III key to access the menu and then
press the UP arrow key until the fault history screens are displayed. There are two screens on SWHP60-190 units and a
third screen on SWHP220-340 models.
Each fault in the log is assigned a number from 1 to 50. Fault number 1 is the most recent and 50 is the oldest. To cycle
through the list of faults, move the cursor to the fault number on any of the fault history screens and then press ENTER.
Use the UP and DOWN arrow keys to cycle through the fault history screens one at a time. To go to the next fault, repeat
these steps.
All fault history screens display the following parameters:
Date @ Time - Date and time the fault occurred. The date is in MMDD format. The time is in 24-hour format, HHMM.
FC: - Code number assigned to the fault. The codes are as follows:
2 - Power Restored
3 - Return Fan Motor Not Running
4 - Supply Fan Motor Not Running
5 - Fire Trip Active
6 - Smoke Purge Active
7 - Space Temperature Out of Range (<60°F to >105°F dry bulb, <55°F wet bulb)
8 - Supply and Return Fan Motors Not Running
9 - Supply Temperature Less than 40°F
11 - Low Oil Pressure in Compressor System 1
13 - Low Refrigerant Pressure in Compressor System 1
14 - High Motor Temperature in Compressor System 1
15 - High Refrigerant Pressure in Compressor System 1
16 - Current Transducer Failure Compressor System 1
17 - Crankcase Heater Breaker Off on Compressor System 1
50 - 10 Fault Lockout of Compressor System 1
111 -Low Oil Pressure in Compressor System 2
113 - Low Refrigerant Pressure in Compressor System 2
114 - High Motor Temperature in Compressor System 2
115 - High Refrigerant Pressure in Compressor System 2
EGW05-SWHPEG-20140724
53
TM
116 - Current Transducer Failure Compressor System 2
117 - Crankcase Heater Breaker Off on Compressor System 2
150 - 10 Fault Lockout of Compressor System 2
Fault history screen 1 also displays the following parameters:
T: - Return air temperature at the time the fault occurred.
RH: - Return air relative humidity at the time the fault occurred.
OT: - Outside air temperature at the time the fault occurred.
DP: - Outside air damper position at the time the fault occurred.
C1: - Compressor System 1 Mode at the time the fault occurred. The codes are as follows:
0 - Off
1 - Air Heating
3 - Water Heating
4 - Air Cooling
C2: - Compressor System 2 Mode at the time the fault occurred. The codes are the same as C1.
S1: - Compressor System 1 stages active at the time the fault occurred.
S2: - Compressor System 2 stages active at the time the fault occurred.
ST: - Supply air temperature at the time the fault occurred.
Fault history screen 2 also displays the following parameters:
SS1 – System Status 1. Factory use.
DP1 – Compressor System 1 Discharge Pressure
SS2 – System Status 2. Factory use.
SP1 – Compressor System 1 Suction Pressure
ST1 – Compressor System 1 Suction Temperature
LT1 – Compressor System 1 Liquid Temperature
Fault history screen 3 also displays the following parameters: (SWHP220-340 only)
SS1 – System Status 1. Factory use.
DP1 – Compressor System 1 Discharge Pressure
SS2 – System Status 2. Factory use.
SP2 – Compressor System 2 Suction Pressure
ST2 – Compressor System 2 Suction Temperature
LT2 – Compressor System 2 Liquid Temperature
MANUAL CONTROL
The ECC III contains an enhanced manual control mode for improved troubleshooting efficiency. This allows a qualified
HVAC service technician to manually control all digital and analog outputs.
Digital Output
Each digital output of the ECC III may be controlled individually by setting the corresponding parameter to one of three
possible values: AUTO, ON, or OFF. A setting of AUTO gives control of the digital output relay to the software in the
ECC III. ON will force the output relay to energize regardless of the status requested by the software. OFF will force the
output relay to de-energize regardless of the status requested by the software.
54
EGW05-SWHPEG-20140724
TM
The following manual digital output parameters are available:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Sply Fan Outp - Supply Fan Contactor
Rtn Fan Output - Return Fan Contactor Aux Air 1
Output - Auxiliary Air Heating Stage 1 Relay
Aux Air 2 Output - Auxiliary Air Heating Stage 2 Relay
Aux Air 3 Output - Auxiliary Air Heating Stage 3 Relay
Aux Wtr 1 Output - Auxiliary Water Heating 1 Relay
Aux Wtr 2 Output - Auxiliary Water Heating 2 Relay
Alarm Output - Alarm Output Relay
S1 Cmpr 1 Output - Compressor 1A Contactor (Scrolls); Sys 1 Compressor Contactor (Recip)
S1 Cmpr 2 Output - Compressor 1B Contactor (Scrolls); Sys 1 Stage 2 Unloader (Recip)
S1 Cmpr 3 Output - Compressor 1C Contactor (Scrolls); Sys 1 Stage 3 Unloader (Recip)
S1 AC Sol Output - System 1 AC Solenoid Valve
S1 Liq #1 Output - System 1 Liquid Solenoid Valve 1
S1 Liq #2 Output - System 1 Liquid Solenoid Valve 2
S1 Wtr Sl Output - System 1 Water Heating Solenoid Valve
S1 Reh 1 Output - System 1 Air Reheat Solenoid Valve 1
S1 Reh 2 Output - System 1 Air Reheat Solenoid Valve 2
S1 RH Sft Strt - System 1 Air Reheat Solenoid Valve 4
S2 Cmpr 1 Output - Compressor 2A Contactor (Scrolls); Sys 2 Compressor Contactor (Recip)
S2 Cmpr 2 Output - Compressor 2B Contactor (Scrolls); Sys 2 Stage 2 Unloader (Recip)
S2 AC Sol Output - System 2 AC Solenoid Valve
S2 Liq #1 Output - System 2 Liquid #1 Solenoid Valve
S2 Liq #2 Output - System 2 Liquid #2 Solenoid Valve
S2 Wtr Sl Output - System 2 Water Heating Solenoid Valve
S2 Reh 1 Output - System 2 Air Reheat Solenoid Valve 1
S2 Reh 2 Output - System 2 Air Reheat Solenoid Valve 2
Exh Fan Output - Exhaust Fan Contactor
Spl 1 Dig Output - Special Option Digital Output Relay 1
Spl 2 Dig Output - Special Option Digital Output Relay 2
S2 RH Sft Strt - System 2 Air Reheat Solenoid Valve 4
S2 Cmpr 3 Output - Compressor 2C Contactor (Scrolls); Sys 2 Stage 3 Unloader (Recip)
Analog Output
Each analog output of the ECC III may be controlled individually by setting the corresponding parameter.
The following analog output parameters are available:
•
•
•
•
•
•
•
•
Exh Dpr Pos - Exhaust Air Damper Actuator Position
Rcrc Dpr Pos - Recirculation Air Damper Actuator Position
Outs Dpr Pos - Outside Air Damper Actuator Position
AuxAirHtSig - Auxiliary Air Heating Control Valve Position
Spl1AlgOut - Special Option Analog Output 1
Spl2AlgOut - Special Option Analog Output 2
Spl3AlgOut - Special Option Analog Output 3
Spl4AlgOut - Special Option Analog Output 4
EGW05-SWHPEG-20140724
55
TM
SYSTEM STATUS INFORMATION—III KEY (ESC + DOWN ON CM1’S KEYPAD)
The following system status information is available from the RIU:
01. Day Of Week - Occupancy Status - Date
02. Time - Time of Day in 24 hour format
03. Spc Air T - Space Air Temperature
04. Spc RH % - Space Relative Humidity
05. PoolWtr 1 - Pool Water Temperature 1
06. PoolWtr 2 - Pool Water Temperature 2
07. Outside T - Outside Air Temperature
08. Outside % - Outside Air Relative Humidity
09. Damper Pos - Outside Air Damper Position (SR only)
10. Compr #1 - System 1 Compressor Status
11. Compr Avl #1 - System 1 Compressor Anticycle Timer Status
12. Low Press #1 - System 1 Low Pressure Cutout Status
13. Hi Press #1 - System 1 High Pressure Cutout Status
14. Oil Press #1 - Sys 1 Compressor Oil Pressure Status (Recip Only)
15. Motor T #1 - Sys 1 Compressor Motor Temperature Cutout Status
16. Operation #1 - System 1 Compressor Control Switch Status
17. Stages #1 - System 1 Compressor Stages Active
18. Curr Flt #1 - System 1 Current Compressor Fault Code
19. Last Flt #1 - System 1 Last Compressor Fault Code
20. Compr #2 - System 2 Compressor Status
21. Compr Avl #2 - System 2 Compressor Anticycle Timer Status
22. Low Press #2 - System 2 Low Pressure Cutout Status
23. Hi Press #2 - System 2 High Pressure Cutout Status
24. Oil Press #2 - Sys 2 Compressor Oil Pressure Status (Recip Only)
25. Motor T #2 - Sys 2 Compressor Motor Temperature Cutout Status
26. Operation #2 - System 2 Compressor Control Switch Status
27. Stages #2 - System 2 Compressor Stages Active
28. Curr Flt #2 - System 2 Current Compressor Fault Code
29. Last Flt #2 - System 2 Last Compressor Fault Code
30. Supply Fan - Supply Fan Motor Status
31. Return Fan - Return Fan Motor Status (SR) Purge Fan Motor Status (SEP)
32. Smoke Purge - Smoke Purge Input Status
33. Fire Trip - Fire Trip Input Status
34. Surface T - Surface Temperature
35. Supply T - Supply Air Temperature
36. Pool Pump Outp - Pool Pump Status
37.Wtr #1 Need - Pool 1 Water Heating Requirement
38. Wtr #2 Need - Pool 2 Water Heating Requirement
39. Wtr Flow #1 - System 1 Pool Water Flow Switch Status
40. Wtr Flow #2 - System 2 Pool Water Flow Switch Status
41. Off Evap - Air Leaving Evaporator Temperature (SR only)
42. Off Evap % - Air Leaving Evaporator Relative Humidity (SR only)
43. AOE Dpt - Air Leaving Evaporator Dewpoint Temperature (SR only)
44. Space Dpt - Space Dewpoint Temperature
45. Outs Dpt - Outside Air Dewpoint Temperature
46. Ht/Cool Need - Current Space Heating and Cooling Requirements
47. Dehumid Need - Current Space Dehumidification Requirements
48. Stages - Compressor Stages Running
49. Version -ECC III Control Module 1 Software Version Number
56
EGW05-SWHPEG-20140724
TM
104. Purge - Purge Mode Status (SR, SEP only)
CM2 Ver - ECC Control Module 2 Software Version Number
CM3 - ECC Control Module 3 Software Version Number
CM4 - ECC Control Module 4 Software Version Number
CM5 - ECC Control Module 5 Software Version Number
124. ACC #1 Stat - System 1 Air Cooled Condenser Status
125. ACC #2 Stat - System 2 Air Cooled Condenser Status
140. Cpr 1 Mode - System 1 Mode of Operation
141. Cpr 2 Mode - System 2 Mode of Operation
142. Occ_Flag - Occupancy Mode
170. Fault Cnt 1 - System 1 Compressor Fault Count Since Last Reset
171. Fault Cnt 2 - System 2 Compressor Fault Count Since Last Reset
172. Exh Dpr - Actual Exhaust or Purge Air Damper Position
173. Rcrc Dpr - Actual Recirculation or Bypass air Damper Position
174. Outs Dpr - Actual Outside Air Damper Position
175. Des Dpr - Desired Outside Air Damper Position (SR only)
176. Min D Alw - Minimum Damper Position Setpoint (SR only)
177. Max D Alw - Maximum Damper Position Setpoint (SR only)
178. Economiz - Economizer Status (SR & SEP only)
180. Aux Air Ht - Auxiliary Air Heating Stages Active
181. Aux Wtr 1 - Pool 1 Auxiliary Water Heater Status
182. Aux Wtr 2 - Pool 2 Auxiliary Water Heater Status
183. Flywhl Act - Flywheel Cooling Status
184. Cpr1 Remain - System 1 Anticycle Time Remaining
185. Cpr2 Remain - System 2 Anticycle Time Remaining
Sply Fan Curr - Supply Fan Motor Current
Rtn Fan Curr - Return Fan Motor Current (SR only)
Cmpr 1 Curr - System 1 Compressor Current
Cmpr 2 Curr - System 2 Compressor Current
Dpr Limit Code - Damper Position Limit Code (SR only)
FzyDprChg - Fuzzy Logic Mixing Box Control Output (SR only) 0.0 - 150.0
FzyRatCprChg - Fuzzy Logic Space Temperature Control Variable 0.0 - 200.0
FzyDptCprChg - Fuzzy Logic Dew Point Control Variable 0.0 - 200.0
SF Econo Actv – Single Fan Economizer Active? (SEP only)
Network Unit Status – Displays if unit ID 1-5 are ONLINE or OFFLINE. (Network installations only)
Network Role – Displays if the unit is operating in the master or slave role. (Network installations only)
Unit ID Number – Read only. Displays the unit ID that is currently displayed (1-5)
EGW05-SWHPEG-20140724
57
TM
Run time information – The ECCIII records the number of run hours for the following components or modes: Supply
Fan, Return Fan, Compressor 1A, 1B, 1C, System 1 Reheat Mode, System 1 Air Cooling Mode, System 1 Water
Heat Mode, Compressor 2A, 2B, 2C, System 2 Reheat Mode, System 2 Air Cooling Mode, System 2 Water Heat
Mode, Economizer Mode, Smart Economizer Mode, Occupied Mode, and Occupied & Economizer Mode.
Last Hour Averages – The ECCIII does rolling averages of the following information: Return Air Temperature, Return
Air Humidity, Outside Air Temperature, Outside Air Humidity, Percent of Compressor Staging, Mixing Box %
Open, Economizer Active, Smart Economizer Active, and Occupied Time.
SchedPurgeActv – Scheduled Purge Active.
BAS Purge Actv – Building Automation System Purge Active.
Timed Purge Actv – Timed Purge Active.
DigIn Purge Actv – Digital Input Purge Active.
Summer Vent Mode – Summer Vent Mode Active.
Sys Startup – Sys Startup Active.
Rtn WB Temp – Return Air Wet Bulb Temperature calculated by the ECCIII.
SysStatus1 – Factory use.
SysStatus2 – Factory use.
OA Fltr Lif Rem – Outside Air Filter Life Remaining.
RA Fltr Lif Rem – Return Air Filter Life Remaining.
Compressor Sys 1 & Compressor Sys 2 - The ECCIII displays the following information for Compressor System 1 &
Compressor System 2 (SWHP220-340 only):
DP – Discharge Pressure
SP – Suction Pressure
ST – Suction Temperature
SH – Superheat
LT – Liquid Tempeerature
SC – Subcooling
Fault History Screens – The ECCIII records information when a fault occurs. See above Fault History Log section for
more detail.
58
EGW05-SWHPEG-20140724
TM
DATA LOG RETRIEVAL
The ECCIII records data every minute keeping approximately 30 days of data. To aid in troubleshooting, this data can be
downloaded to a USB pen drive and sent to PoolPak™ Service for analysis.
To begin, remove the cover to the right of the service buttons on the CM1 module. It is the part that has a red Carel label
attached. Gently pry it off from the top. Insert a USB pen drive with at least 3MB of storage available into the USB slot.
Figure 5-2. Data Retrieval Using USB Key
PPK_USB_Key.jpg
Press Alarm and Enter together for 3 seconds to enter the option menu. Select FLASH/USB memory and press Enter to
confirm.
Select USB pen drive and press ENTER. Wait a few seconds after the pendrive has been plugged in for it to be
recognized by the controller. If the message “No USB disk or PC connected” is displayed momentarily with the request
to connect a pendrive key or computer USB cable, wait a few seconds until the recognition message is shown (“USB
disk found”).
Insert Password is displayed. Use the up arrow to change the password to 1943 and DOWNLOAD (pCO-pen) and press
ENTER. Select Download LOGS and press ENTER. Press ENTER key to start the download. Downloading logs Please
wait…. is displayed. Once the download is completed (approximately , the screen will display “Operation complete.
Data downloaded. LOG00_01”
Remove the pen drive and connect it to a USB port on your computer. Email the folder called LOG00_01 to
service@poolpak.com along with the job name and serial number of the PoolPak™.
EGW05-SWHPEG-20140724
59
TM
MAINTENANCE
OVERVIEW
Periodic routine maintenance will promote extended equipment life. While PoolPak™ units use components that are
usually maintenance free and do not require service, a simple check could result in noticing possible problems before
they develop into major problems.
DAILY MAINTENANCE
Pool water chemistry is a part of daily maintenance and it is recommended that National Spa and Pool Institute standards
are followed. PoolPak™ International recommends daily logging of your pool water chemistry. MAINTENANCE
AND POOL WATER CHEMISTRY ARE IMPORTANT FACTORS IN THE PROTECTION OF YOUR
WARRANTY RIGHTS.
Table 5-1. Recommended Pool Water Chemistry
POOL
Total Chlorine
Free Chlorine (ppm)
Combined Chlorine (ppm)
Bromine (ppm) if applicable
PH
Total Alkalinity
TDS
Calcium Hardness (ppm)
Calcium Acid (ppm)
SPA
Ideal
Min
1.0 - 3.0
1.0 - 3.0
0
2.0 - 4.0
7.4 - 7.6
80 - 100
1000 - 2000
200 - 400
30 - 50
1
1
0
2
7.2
80
300
150
10
3
3
0.3
4
7.8
180
3000
1000
100
Ideal
Min
Max
3.0 - 5.0
3.0 - 5.0
0
3.0 - 5.0
7.4 - 7.6
80 - 100
1000 - 2000
200 - 400
30 - 50
1
1
0
2
7.2
60
300
150
10
10
10.0q
0.3
10
7.8
180
3000
1000
100
MONTHLY MAINTENANCE
NOTE
To prevent personal injury, disconnect all electrical power to the unit prior to
performing any of the following maintenance procedures.
Perform the following on a monthly basis:
1. AIR FILTERS: Check and replace as necessary. On average, filters need to be replaced every three months.
2. FANS AND DRIVES: Check for worn or loose belts and adjust or replace as necessary. When it is necessary to
replace one belt in a set, the entire set of belts should be replaced. Fan belts can be retightened 24 to 48 hours after
replacement with BX style cogged belts.
3. BEARINGS: For Comefri fans, use SHC-100 Mobil Synthetic bearing grease to lubricate the ball bearings every six
(6) months, the spherical roller bearings every month. For Lau fans, use standard lithium bearing greases to lube fan
bearings every month. DO NOT GREASE ANY MOTOR BEARING WITH BEARING TYPE ENDING IN “ZZ”.
This information can be found on the motor nameplate
4. COMPRESSOR OIL LEVEL: The ideal time for checking the oil level is during an extended period of operation
because then there will be the least amount of refrigerant mixed with the oil. The compressor should have been
in operation for at least 15 minutes and the crankcase should feel warm or hot to the touch. During the period of
operation, the refrigerant will be pumped out of the oil until only the normal quantity remains. Each compressor
system is equipped with an oil sight glass for checking oil level. Oil should be added to the system by a qualified
refrigerant service technician only. The oil level in the compressor is correct when oil is visible between the bottom
and two-thirds of the sight glass.
60
EGW05-SWHPEG-20140724
TM
5. REFRIGERANT CHARGE: Check the two sight glasses located in the valve compartment on the end of the
evaporator coil. When the refrigerant charge is correct, there should be no bubbles in the sight glasses. Intermittent
bubbles are normal during the first 10 minutes of operation or following a change in stages or operating mode.
6. CONDENSATE LINE: Ensure that it is free of obstructions. Always keep the condensate trap and lines free and
clear. The PoolPak™ is capable of producing up to 40 gallons of condensate per hour.
7. UNIT INTERIOR/EXTERIOR: Check for torn insulation and repair if necessary. Check for scratches, nicks, rust,
etc. and repaint promptly using Fox Gard Gray, Part No. 13-0008Z003.
8. LOGBOOK: Check and record, in the logbook, the following actual operating values and the values read from the
ECCIII controller display:
◦◦ Space Temperature
◦◦ Space Relative Humidity
◦◦ Pool Water Temperature
◦◦ Pool Water Free and Total Chlorine
9. DAMPER OPERATION: Ensure that dampers open and close fully without binding.
ANNUAL MAINTENANCE
Perform the following on an annual basis:
1. All items listed under MONTHLY MAINTENANCE.
2. COMPRESSOR AND REFRIGERATION SYSTEM: The compressor and refrigeration system should be inspected
annually by a qualified service technician. At minimum, the following items should be done:
◦◦ Change and inspect the refrigerant filter drier (only if the system has been open).
◦◦ Complete unit operation test including log entries.
◦◦ Inspect fan bearings and belts for excessive wear and replace if necessary.
◦◦ General refrigeration system inspection for possible leaks, chafing between tubing, or other items detrimental to
operation.
◦◦ Touch up scratches in the paint.
◦◦ Check electrical connections for tightness including those in the compressor electrical box.
◦◦ Clean debris and dirt from drain pans.
EGW05-SWHPEG-20140724
61
TM
This page intentionally left blank
62
EGW05-SWHPEG-20140724
TM
SECTION VI: WIRING
SINGLE POINT POWER CONNECTION
Figure 6-1. Single Point Power Connection
OPTIONAL AUXILIARY
ELECTRIC HEAT ONLY
1L1
1L2
1L3
3L1
G
3L2
FUSED
DISCONNECT
3 PHASE
60 HZ
3L3
G
ELECTRIC
HEAT FUSED
DISCONNECT
3 PHASE
60 HZ
COPPER CONDUCTORS ONLY
COPPER CONDUCTORS ONLY
POWER WIRING - SWHP S, SE, SEP 60/80/100/120 - ALL VOLTAGES; SWHP SR 140/190/220/260/300 - 460V & 575V
PPK_EG_GR_SinglePointWiringSchematic.eps
DUAL POINT POWER CONNECTION
Figure 6-2. Dual Point Power Connection
OPTIONAL AUXILIARY
ELECTRIC HEAT ONLY
1L1
1L2
1L3
2L1
G G
2L2
2L3
FAN MOTORS
FUSED
DISCONNECT
3 PHASE
60 HZ
3L1
COMPRESSOR
FUSED
DISCONNECT
3 PHASE
60 HZ
3L2
3L3
G
ELECTRIC
HEAT FUSED
DISCONNECT
3 PHASE
60 HZ
COPPER CONDUCTORS ONLY
COPPER CONDUCTORS ONLY
POWER WIRING - SR UNITS; ALL VOLTAGES
PPK_EG_GR_DualPointWiringSchematic.eps
EGW05-SWHPEG-20140724
63
TM
REMOTE CONNECTIONS
Figure 6-3. Remote Connections
POOLPAK CONTROL PANEL
CONTROL
TRANSFORMER ECC III
DC
POWER
SUPPLY
ECC III
CONTROLLER
MODULE 2
FACTORY WIRING
REMOTE DISPLAY
SERVICE
CONNECTION**
RJ25 JACK SUPPLIED
AND WIRED BY POOLPAK
FACTORY WIRING
ECC III
CONTROLLER
MODULE 1
FACTORY WIRING
FIELD WIRING TERMINAL STRIPS (SEE FIGURE 28)
T10 T11 T12
T13
T14
T20
T21
T9
T16 T15 T17
RJ45 ETHERNET
10/100 DIRECT
CONNECTION**
OPTIONAL
REMOTE
ACCESS
PACKAGE
(RAP)
RJ11
SINGLE
TELEPHONE
LINE DIAL UP
CONNECTION
CATEGORY 5
TWISTED PAIR
- 6 WIRES
- 24 GAUGE MIN
- 1000 FT MAX LENGTH
CATEGORY 5
TWISTED PAIR
- 3 WIRES
- 24 GAUGE MIN
- 500 FT MAX LENGTH
3 LINE
TELEPHONE JACK (BY POOLPAK)
BUILDING
AUTOMATION
SYSTEM (BAS)
REMOTE
DISPLAY/KEYPAD
SPECIAL
PANEL
CABLE
(BY POOLPAK)
CATEGORY 5
TWISTED PAIR
- 3 WIRES
- 24 GAUGE MIN
- 500 FT MAX LENGTH
MULTIPLE UNIT NETWORK
CONNECTION
** ANY UNIT MAY BE USED FOR MULTIPLE UNIT APPLICATIONS
PPK_EG_GR_ECCRemoteInstallationSchematic.eps
64
EGW05-SWHPEG-20140724
TM
MULTIPLE UNIT INTERFACE
Figure 6-4. Multiple Unit Interface
CONTROL PANEL
UNIT #1
CONTROL PANEL
UNIT #2
T16 T15
T16 T15
*
LonWorks (TM)
CONNECTION
OR
Modbus R RTU
CONNECTION
CONTROL PANEL
UNIT #3
T16 T15
BAS
BAS
NET
NET
3 WIRES
24 GAUGE MIN,
500 FT MAX LENGTH,
CAT-5 CABLE
* MAY BE CONNECTED ON ANY T16 TERMINAL BLOC K
PPK_EG_GR_ECCMultiUnitControl.eps
LonWorks™, Neuron™, 3150™ and LonMark™ are registered trademarks of the Echelon Corporation, registered in
the USA and other countries. LonMaker™ is a trademark of the Echelon Corporation. These trademarks are used in the
text. However, for the sake of readability, they are not individually marked.
EGW05-SWHPEG-20140724
65
TM
TM
The Leader in Indoor Pool Dehumidification
3491 Industrial Drive . York, PA 17402 . USA . 800-959-7725 . Fax 717-757-5085
for more information: www.poolpak.com
EGW05-SWHPEG-20140724
66
Download PDF
Similar pages