Quagga
A routing software package for TCP/IP networks
Quagga 0.99.22
January 2013
Kunihiro Ishiguro, et al.
c 1999-2005 Kunihiro Ishiguro, et al.
Copyright Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.
Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.
Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by Kunihiro
Ishiguro.
i
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
2
About Quagga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supported Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supported RFCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to get Quagga. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mailing List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bug Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1
Configure the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 The Configure script and its options . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Least-Privilege support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 Linux Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Build the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Install the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1
2
2
3
4
4
4
5
5
6
7
8
8
Basic commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1
Config Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Basic Config Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Sample Config File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Terminal Mode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Common Invocation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Virtual Terminal Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 VTY Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 VTY Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2.1 VTY View Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2.2 VTY Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2.3 VTY Other Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 VTY CLI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.3.1 CLI Movement Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.3.2 CLI Editing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.3.3 CLI Advanced Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
4.2
4.3
4.4
4.5
4.6
Invoking zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interface Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Static Route Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
zebra Route Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
zebra FIB push interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
zebra Terminal Mode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
18
19
20
20
ii
5
Quagga
RIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1
Starting and Stopping ripd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1 RIP netmask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 RIP Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 RIP Version Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 How to Announce RIP route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Filtering RIP Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 RIP Metric Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 RIP distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 RIP route-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 RIP Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 RIP Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11 Show RIP Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12 RIP Debug Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
RIPng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1
6.2
6.3
6.4
7
33
33
33
33
Configuring ospfd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Redistribute routes to OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Showing OSPF information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Debugging OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
35
38
41
42
44
45
45
OSPFv3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1
8.2
8.3
8.4
8.5
8.6
9
Invoking ripngd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ripngd Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ripngd Terminal Mode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ripngd Filtering Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPFv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
8
23
23
24
25
26
27
27
28
28
29
30
30
31
OSPF6 router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF6 area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF6 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Redistribute routes to OSPF6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Showing OSPF6 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OSPF6 Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
47
47
47
48
48
Babel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1
9.2
9.3
9.4
9.5
Configuring babeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Babel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Babel redistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Show Babel information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Babel debugging commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
49
50
50
50
iii
10
BGP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1 Starting BGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 BGP router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.1 BGP distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.2 BGP decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.3 BGP route flap dampening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 BGP network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.1 BGP route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.2 Route Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.3 Redistribute to BGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 BGP Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4.1 Defining Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4.2 BGP Peer commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4.3 Peer filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 BGP Peer Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6 BGP Address Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7 Autonomous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.1 AS Path Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.2 Display BGP Routes by AS Path . . . . . . . . . . . . . . . . . . . . . . . .
10.7.3 AS Path Access List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.4 Using AS Path in Route Map . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.5 Private AS Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.8 BGP Communities Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.8.1 BGP Community Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.8.2 Numbered BGP Community Lists . . . . . . . . . . . . . . . . . . . . . . .
10.8.3 BGP Community in Route Map . . . . . . . . . . . . . . . . . . . . . . . . .
10.8.4 Display BGP Routes by Community . . . . . . . . . . . . . . . . . . . . .
10.8.5 Using BGP Communities Attribute . . . . . . . . . . . . . . . . . . . . . .
10.9 BGP Extended Communities Attribute . . . . . . . . . . . . . . . . . . . . . . .
10.9.1 BGP Extended Community Lists . . . . . . . . . . . . . . . . . . . . . . . .
10.9.2 BGP Extended Communities in Route Map . . . . . . . . . . . . .
10.10 Displaying BGP Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.10.1 Show IP BGP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.10.2 More Show IP BGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.11 Capability Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.12 Route Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.13 Route Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.13.1 Multiple instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.13.2 BGP instance and view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.13.3 Routing policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.13.4 Viewing the view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.14 How to set up a 6-Bone connection . . . . . . . . . . . . . . . . . . . . . . . . . .
10.15 Dump BGP packets and table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.16 BGP Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
51
51
52
52
52
52
53
53
53
53
53
55
55
55
56
56
56
56
56
57
57
57
58
59
59
60
62
62
63
63
63
63
64
65
66
66
67
67
68
68
69
70
iv
Quagga
11
Configuring Quagga as a Route Server . . . . . 75
11.1 Description of the Route Server model. . . . . . . . . . . . . . . . . . . . . . . . 75
11.2 Commands for configuring a Route Server . . . . . . . . . . . . . . . . . . . . 79
11.3 Example of Route Server Configuration . . . . . . . . . . . . . . . . . . . . . . 80
11.3.1 Configuration of the BGP routers without Route Server . . 81
11.3.2 Configuration of the BGP routers with Route Server . . . . . 82
11.3.3 Configuration of the Route Server itself . . . . . . . . . . . . . . . . . . 83
11.3.4 Further considerations about Import and Export route-maps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
12
VTY shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12.1
12.2
13
VTY shell username . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
VTY shell integrated configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
13.1 IP Access List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 IP Prefix List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.1 ip prefix-list description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.2 ip prefix-list sequential number control . . . . . . . . . . . . . . . . . .
13.2.3 Showing ip prefix-list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.4 Clear counter of ip prefix-list . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
Route Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
14.1
14.2
14.3
14.4
14.5
14.6
15
89
89
90
90
90
91
Route
Route
Route
Route
Route
Route
Map
Map
Map
Map
Map
Map
Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Match Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Set Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Call Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exit Action Command . . . . . . . . . . . . . . . . . . . . . . . . . . .
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
94
95
95
95
95
IPv6 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
15.1
Router Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
16
Kernel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
17
SNMP Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
17.1
17.2
17.3
17.4
17.5
Getting and installing an SNMP agent . . . . . . . . . . . . . . . . . . . . . .
AgentX configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMUX configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MIB and command reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Handling SNMP Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
103
104
105
105
v
Appendix A
Zebra Protocol . . . . . . . . . . . . . . . . . . 111
A.1 Overview of the Zebra Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2 Zebra Protocol Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.1 Zebra Protocol Header (version 0) . . . . . . . . . . . . . . . . . . . . . .
A.2.2 Zebra Protocol Common Header (version 1) . . . . . . . . . . . . .
A.2.3 Zebra Protocol Header Field Definitions. . . . . . . . . . . . . . . . .
A.2.4 Zebra Protocol Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix B
111
111
111
111
111
112
Packet Binary Dump Format. . . 113
Command Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
VTY Key Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Chapter 1: Overview
1
1 Overview
Quagga is a routing software package that provides TCP/IP based routing services with
routing protocols support such as RIPv1, RIPv2, RIPng, OSPFv2, OSPFv3, IS-IS, BGP-4,
and BGP-4+ (see Section 1.4 [Supported RFCs], page 3). Quagga also supports special
BGP Route Reflector and Route Server behavior. In addition to traditional IPv4 routing
protocols, Quagga also supports IPv6 routing protocols. With SNMP daemon which supports SMUX and AgentX protocol, Quagga provides routing protocol MIBs (see Chapter 17
[SNMP Support], page 103).
Quagga uses an advanced software architecture to provide you with a high quality, multi
server routing engine. Quagga has an interactive user interface for each routing protocol and
supports common client commands. Due to this design, you can add new protocol daemons
to Quagga easily. You can use Quagga library as your program’s client user interface.
Quagga is distributed under the gnu General Public License.
1.1 About Quagga
Today, TCP/IP networks are covering all of the world. The Internet has been deployed
in many countries, companies, and to the home. When you connect to the Internet your
packet will pass many routers which have TCP/IP routing functionality.
A system with Quagga installed acts as a dedicated router. With Quagga, your machine
exchanges routing information with other routers using routing protocols. Quagga uses this
information to update the kernel routing table so that the right data goes to the right place.
You can dynamically change the configuration and you may view routing table information
from the Quagga terminal interface.
Adding to routing protocol support, Quagga can setup interface’s flags, interface’s address, static routes and so on. If you have a small network, or a stub network, or xDSL
connection, configuring the Quagga routing software is very easy. The only thing you have
to do is to set up the interfaces and put a few commands about static routes and/or default
routes. If the network is rather large, or if the network structure changes frequently, you
will want to take advantage of Quagga’s dynamic routing protocol support for protocols
such as RIP, OSPF, IS-IS or BGP.
Traditionally, UNIX based router configuration is done by ifconfig and route commands. Status of routing table is displayed by netstat utility. Almost of these commands
work only if the user has root privileges. Quagga has a different system administration
method. There are two user modes in Quagga. One is normal mode, the other is enable
mode. Normal mode user can only view system status, enable mode user can change system configuration. This UNIX account independent feature will be great help to the router
administrator.
Currently, Quagga supports common unicast routing protocols, that is BGP, OSPF,
RIP and IS-IS. Upcoming for MPLS support, an implementation of LDP is currently being
prepared for merging. Implementations of BFD and PIM-SSM (IPv4) also exist, but are
not actively being worked on.
The ultimate goal of the Quagga project is making a productive, quality, free TCP/IP
routing software package.
2
Quagga
1.2 System Architecture
Traditional routing software is made as a one process program which provides all of the
routing protocol functionalities. Quagga takes a different approach. It is made from a
collection of several daemons that work together to build the routing table. There may be
several protocol-specific routing daemons and zebra the kernel routing manager.
The ripd daemon handles the RIP protocol, while ospfd is a daemon which supports
OSPF version 2. bgpd supports the BGP-4 protocol. For changing the kernel routing
table and for redistribution of routes between different routing protocols, there is a kernel
routing table manager zebra daemon. It is easy to add a new routing protocol daemons to
the entire routing system without affecting any other software. You need to run only the
protocol daemon associated with routing protocols in use. Thus, user may run a specific
daemon and send routing reports to a central routing console.
There is no need for these daemons to be running on the same machine. You can even
run several same protocol daemons on the same machine. This architecture creates new
possibilities for the routing system.
+----+
|bgpd|
+----+
+----+
|ripd|
+----+
+-----+
|ospfd|
+-----+
+-----+
|zebra|
+-----+
|
+---------------------------|--+
|
v |
| UNIX Kernel routing table |
|
|
+------------------------------+
Quagga System Architecture
Multi-process architecture brings extensibility, modularity and maintainability. At the
same time it also brings many configuration files and terminal interfaces. Each daemon has
it’s own configuration file and terminal interface. When you configure a static route, it must
be done in zebra configuration file. When you configure BGP network it must be done in
bgpd configuration file. This can be a very annoying thing. To resolve the problem, Quagga
provides integrated user interface shell called vtysh. vtysh connects to each daemon with
UNIX domain socket and then works as a proxy for user input.
Quagga was planned to use multi-threaded mechanism when it runs with a kernel
that supports multi-threads. But at the moment, the thread library which comes with
gnu/Linux or FreeBSD has some problems with running reliable services such as routing
software, so we don’t use threads at all. Instead we use the select(2) system call for
multiplexing the events.
1.3 Supported Platforms
Currently Quagga supports gnu/Linux and BSD. Porting Quagga to other platforms is
not too difficult as platform dependent code should most be limited to the zebra daemon.
Protocol daemons are mostly platform independent. Please let us know when you find out
Quagga runs on a platform which is not listed below.
Chapter 1: Overview
3
The list of officially supported platforms are listed below. Note that Quagga may run
correctly on other platforms, and may run with partial functionality on further platforms.
•
•
•
•
gnu/Linux
FreeBSD
NetBSD
OpenBSD
Versions of these platforms that are older than around 2 years from the point of their
original release (in case of gnu/Linux, this is since the kernel’s release on kernel.org) may
need some work. Similarly, the following platforms may work with some effort:
• Solaris
• Mac OSX
Also note that, in particular regarding proprietary platforms, compiler and C library
choice will affect Quagga. Only recent versions of the following C compilers are well-tested:
• gnu’s GCC
• LLVM’s clang
• Intel’s ICC
1.4 Supported RFCs
Below is the list of currently supported RFC’s.
RFC1058
Routing Information Protocol. C.L. Hedrick. Jun-01-1988.
RF2082
RIP-2 MD5 Authentication. F. Baker, R. Atkinson. January 1997.
RFC2453
RIP Version 2. G. Malkin. November 1998.
RFC2080
RIPng for IPv6. G. Malkin, R. Minnear. January 1997.
RFC2328
OSPF Version 2. J. Moy. April 1998.
RFC2370
The OSPF Opaque LSA Option R. Coltun. July 1998.
RFC3101
The OSPF Not-So-Stubby Area (NSSA) Option P. Murphy. January 2003.
RFC2740
OSPF for IPv6. R. Coltun, D. Ferguson, J. Moy. December 1999.
RFC1771
A Border Gateway Protocol 4 (BGP-4). Y. Rekhter & T. Li. March 1995.
RFC1965
Autonomous System Confederations for BGP. P. Traina. June 1996.
RFC1997
BGP Communities Attribute. R. Chandra, P. Traina & T. Li. August 1996.
RFC2545
Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing. P.
Marques, F. Dupont. March 1999.
RFC2796
BGP Route Reflection An alternative to full mesh IBGP. T. Bates & R. Chandrasekeran. June 1996.
RFC2858
Multiprotocol Extensions for BGP-4. T. Bates, Y. Rekhter, R. Chandra, D.
Katz. June 2000.
4
Quagga
RFC2842
Capabilities Advertisement with BGP-4. R. Chandra, J. Scudder. May 2000.
RFC3137
OSPF Stub Router Advertisement, A. Retana, L. Nguyen, R. White, A. Zinin,
D. McPherson. June 2001
When SNMP support is enabled, below RFC is also supported.
RFC1227
SNMP MUX protocol and MIB. M.T. Rose. May-01-1991.
RFC1657
Definitions of Managed Objects for the Fourth Version of the Border Gateway
Protocol (BGP-4) using SMIv2. S. Willis, J. Burruss, J. Chu, Editor. July
1994.
RFC1724
RIP Version 2 MIB Extension. G. Malkin & F. Baker. November 1994.
RFC1850
OSPF Version 2 Management Information Base. F. Baker, R. Coltun. November 1995.
RFC2741
Agent Extensibility (AgentX) Protocol. M. Daniele, B. Wijnen. January 2000.
1.5 How to get Quagga
The official Quagga web-site is located at:
http://www.quagga.net/
and contains further information, as well as links to additional resources.
Quagga is a fork of GNU Zebra, whose web-site is located at:
http://www.zebra.org/.
1.6 Mailing List
There is a mailing list for discussions about Quagga. If you have any comments or suggestions to Quagga, please subscribe to:
http://lists.quagga.net/mailman/listinfo/quagga-users.
The Quagga site has further information on the available mailing lists, see:
http://www.quagga.net/lists.php
1.7 Bug Reports
If you think you have found a bug, please send a bug report to:
http://bugzilla.quagga.net
When you send a bug report, please be careful about the points below.
• Please note what kind of OS you are using. If you use the IPv6 stack please note that
as well.
• Please show us the results of netstat -rn and ifconfig -a. Information from zebra’s
VTY command show ip route will also be helpful.
• Please send your configuration file with the report. If you specify arguments to the
configure script please note that too.
Bug reports are very important for us to improve the quality of Quagga. Quagga is
still in the development stage, but please don’t hesitate to send a bug report to http://
bugzilla.quagga.net.
Chapter 2: Installation
5
2 Installation
There are three steps for installing the software: configuration, compilation, and installation.
The easiest way to get Quagga running is to issue the following commands:
% configure
% make
% make install
2.1 Configure the Software
2.1.1 The Configure script and its options
Quagga has an excellent configure script which automatically detects most host configurations. There are several additional configure options you can use to turn off IPv6 support,
to disable the compilation of specific daemons, and to enable SNMP support.
--disable-ipv6
Turn off IPv6 related features and daemons. Quagga configure script automatically detects IPv6 stack. But sometimes you might want to disable IPv6
support of Quagga.
--disable-zebra
Do not build zebra daemon.
--disable-ripd
Do not build ripd.
--disable-ripngd
Do not build ripngd.
--disable-ospfd
Do not build ospfd.
--disable-ospf6d
Do not build ospf6d.
--disable-bgpd
Do not build bgpd.
--disable-bgp-announce
Make bgpd which does not make bgp announcements at all. This feature is
good for using bgpd as a BGP announcement listener.
--enable-netlink
Force to enable gnu/Linux netlink interface. Quagga configure script detects
netlink interface by checking a header file. When the header file does not match
to the current running kernel, configure script will not turn on netlink support.
--enable-snmp
Enable SNMP support. By default, SNMP support is disabled.
--disable-opaque-lsa
Disable support for Opaque LSAs (RFC2370) in ospfd.
6
Quagga
--disable-ospfapi
Disable support for OSPF-API, an API to interface directly with ospfd. OSPFAPI is enabled if –enable-opaque-lsa is set.
--disable-ospfclient
Disable building of the example OSPF-API client.
--disable-ospf-te
Disable support for OSPF Traffic Engineering Extension (internet-draft) this
requires support for Opaque LSAs.
--enable-multipath=ARG
Enable support for Equal Cost Multipath. ARG is the maximum number of
ECMP paths to allow, set to 0 to allow unlimited number of paths.
--disable-rtadv
Disable support IPV6 router advertisement in zebra.
--disable-tests
Do not build tests. Test programs are built by default, but not ran or installed.
They can be excluded from build with this option, which will minimally decrease
compile time and overhead. They can always be built and executed at a later
time by running make check in the tests/ subdirectory, even if they’re excluded
from build.
You may specify any combination of the above options to the configure script. By
default, the executables are placed in /usr/local/sbin and the configuration files in
/usr/local/etc. The /usr/local/ installation prefix and other directories may be
changed using the following options to the configuration script.
--prefix=prefix
Install architecture-independent files in prefix [/usr/local].
--sysconfdir=dir
Look for configuration files in dir [prefix/etc]. Note that sample configuration
files will be installed here.
--localstatedir=dir
Configure zebra to use dir for local state files, such as pid files and unix sockets.
% ./configure --disable-ipv6
This command will configure zebra and the routing daemons.
2.1.2 Least-Privilege support
Additionally, you may configure zebra to drop its elevated privileges shortly after startup
and switch to another user. The configure script will automatically try to configure this
support. There are three configure options to control the behaviour of Quagga daemons.
--enable-user=user
Switch to user ARG shortly after startup, and run as user ARG in normal
operation.
--enable-group=group
Switch real and effective group to group shortly after startup.
Chapter 2: Installation
7
--enable-vty-group=group
Create Unix Vty sockets (for use with vtysh) with group owndership set to
group. This allows one to create a seperate group which is restricted to accessing
only the Vty sockets, hence allowing one to delegate this group to individual
users, or to run vtysh setgid to this group.
The default user and group which will be configured is ’quagga’ if no user or group is
specified. Note that this user or group requires write access to the local state directory
(see –localstatedir) and requires at least read access, and write access if you wish to allow
daemons to write out their configuration, to the configuration directory (see –sysconfdir).
On systems which have the ’libcap’ capabilities manipulation library (currently only
linux), the quagga system will retain only minimal capabilities required, further it will only
raise these capabilities for brief periods. On systems without libcap, quagga will run as the
user specified and only raise its uid back to uid 0 for brief periods.
2.1.3 Linux Notes
There are several options available only to gnu/Linux systems:1 . If you use gnu/Linux,
make sure that the current kernel configuration is what you want. Quagga will run with
any kernel configuration but some recommendations do exist.
CONFIG NETLINK
Kernel/User netlink socket. This is a brand new feature which enables an
advanced interface between the Linux kernel and zebra (see Chapter 16 [Kernel
Interface], page 101).
CONFIG RTNETLINK
Routing messages. This makes it possible to receive netlink routing messages. If
you specify this option, zebra can detect routing information updates directly
from the kernel (see Chapter 16 [Kernel Interface], page 101).
CONFIG IP MULTICAST
IP: multicasting. This option should be specified when you use ripd (see
Chapter 5 [RIP], page 23) or ospfd (see Chapter 7 [OSPFv2], page 35) because these protocols use multicast.
IPv6 support has been added in gnu/Linux kernel version 2.2. If you try to use the
Quagga IPv6 feature on a gnu/Linux kernel, please make sure the following libraries have
been installed. Please note that these libraries will not be needed when you uses gnu C
library 2.1 or upper.
inet6-apps
The inet6-apps package includes basic IPv6 related libraries such as inet_
ntop and inet_pton. Some basic IPv6 programs such as ping, ftp, and inetd
are also included. The inet-apps can be found at ftp://ftp.inner.net/
pub/ipv6/.
net-tools
The net-tools package provides an IPv6 enabled interface and routing utility.
It contains ifconfig, route, netstat, and other tools. net-tools may be
found at http://www.tazenda.demon.co.uk/phil/net-tools/.
1
gnu/Linux has very flexible kernel configuration features
8
Quagga
2.2 Build the Software
After configuring the software, you will need to compile it for your system. Simply issue
the command make in the root of the source directory and the software will be compiled.
If you have *any* problems at this stage, be certain to send a bug report See Section 1.7
[Bug Reports], page 4.
% ./configure
.
.
.
./configure output
.
.
.
% make
2.3 Install the Software
Installing the software to your system consists of copying the compiled programs and supporting files to a standard location. After the installation process has completed, these files
have been copied from your work directory to /usr/local/bin, and /usr/local/etc.
To install the Quagga suite, issue the following command at your shell prompt: make
install.
%
% make install
%
Quagga daemons have their own terminal interface or VTY. After installation, you have
to setup each beast’s port number to connect to them. Please add the following entries to
/etc/services.
zebrasrv
2600/tcp
# zebra service
zebra
2601/tcp
# zebra vty
ripd
2602/tcp
# RIPd vty
ripngd
2603/tcp
# RIPngd vty
ospfd
2604/tcp
# OSPFd vty
bgpd
2605/tcp
# BGPd vty
ospf6d
2606/tcp
# OSPF6d vty
ospfapi
2607/tcp
# ospfapi
isisd
2608/tcp
# ISISd vty
If you use a FreeBSD newer than 2.2.8, the above entries are already added to
/etc/services so there is no need to add it. If you specify a port number when starting
the daemon, these entries may not be needed.
You may need to make changes to the config files in /etc/quagga/*.conf. See
Section 3.1 [Config Commands], page 9.
Chapter 3: Basic commands
9
3 Basic commands
There are five routing daemons in use, and there is one manager daemon. These daemons
may be located on separate machines from the manager daemon. Each of these daemons
will listen on a particular port for incoming VTY connections. The routing daemons are:
• ripd, ripngd, ospfd, ospf6d, bgpd
• zebra
The following sections discuss commands common to all the routing daemons.
3.1 Config Commands
In a config file, you can write the debugging options, a vty’s password, routing daemon
configurations, a log file name, and so forth. This information forms the initial command
set for a routing beast as it is starting.
Config files are generally found in:
/etc/quagga/*.conf
Each of the daemons has its own config file. For example, zebra’s default config file name
is:
/etc/quagga/zebra.conf
The daemon name plus .conf is the default config file name. You can specify a config
file using the -f or --config-file options when starting the daemon.
3.1.1 Basic Config Commands
hostname hostname
[Command]
Set hostname of the router.
[Command]
Set password for vty interface. If there is no password, a vty won’t accept connections.
password password
enable password password
[Command]
Set enable password.
[Command]
[Command]
These commands are deprecated and are present only for historical compatibility. The
log trap command sets the current logging level for all enabled logging destinations,
and it sets the default for all future logging commands that do not specify a level.
The normal default logging level is debugging. The no form of the command resets
the default level for future logging commands to debugging, but it does not change
the logging level of existing logging destinations.
log trap level
no log trap
[Command]
[Command]
[Command]
Enable logging output to stdout. If the optional second argument specifying the
logging level is not present, the default logging level (typically debugging, but can be
log stdout
log stdout level
no log stdout
10
Quagga
changed using the deprecated log trap command) will be used. The no form of the
command disables logging to stdout. The level argument must have one of these
values: emergencies, alerts, critical, errors, warnings, notifications, informational, or
debugging. Note that the existing code logs its most important messages with severity
errors.
[Command]
[Command]
[Command]
If you want to log into a file, please specify filename as in this example:
log file /var/log/quagga/bgpd.log informational
If the optional second argument specifying the logging level is not present, the default
logging level (typically debugging, but can be changed using the deprecated log trap
command) will be used. The no form of the command disables logging to a file.
Note: if you do not configure any file logging, and a daemon crashes due to a signal
or an assertion failure, it will attempt to save the crash information in a file named
/var/tmp/quagga.<daemon name>.crashlog. For security reasons, this will not happen if the file exists already, so it is important to delete the file after reporting the
crash information.
log file filename
log file filename level
no log file
[Command]
[Command]
[Command]
Enable logging output to syslog. If the optional second argument specifying the
logging level is not present, the default logging level (typically debugging, but can be
changed using the deprecated log trap command) will be used. The no form of the
command disables logging to syslog.
log syslog
log syslog level
no log syslog
[Command]
[Command]
[Command]
Enable logging output to vty terminals that have enabled logging using the terminal
monitor command. By default, monitor logging is enabled at the debugging level,
but this command (or the deprecated log trap command) can be used to change the
monitor logging level. If the optional second argument specifying the logging level
is not present, the default logging level (typically debugging, but can be changed
using the deprecated log trap command) will be used. The no form of the command
disables logging to terminal monitors.
log monitor
log monitor level
no log monitor
[Command]
[Command]
This command changes the facility used in syslog messages. The default facility is
daemon. The no form of the command resets the facility to the default daemon facility.
log facility facility
no log facility
[Command]
[Command]
To include the severity in all messages logged to a file, to stdout, or to a terminal
monitor (i.e. anything except syslog), use the log record-priority global configuration command. To disable this option, use the no form of the command. By default,
log record-priority
no log record-priority
Chapter 3: Basic commands
11
the severity level is not included in logged messages. Note: some versions of syslogd
(including Solaris) can be configured to include the facility and level in the messages
emitted.
[Command]
[Command]
This command sets the precision of log message timestamps to the given number of
digits after the decimal point. Currently, the value must be in the range 0 to 6 (i.e.
the maximum precision is microseconds). To restore the default behavior (1-second
accuracy), use the no form of the command, or set the precision explicitly to 0.
log timestamp precision <0-6>
no log timestamp precision
log timestamp precision 3
In this example, the precision is set to provide timestamps with millisecond accuracy.
service password-encryption
[Command]
Encrypt password.
service advanced-vty
[Command]
Enable advanced mode VTY.
[Command]
Set system wide line configuration. This configuration command applies to all VTY
interfaces.
service terminal-length <0-512>
line vty
[Command]
Enter vty configuration mode.
banner motd default
[Command]
Set default motd string.
no banner motd
[Command]
No motd banner string will be printed.
[Line Command]
[Line Command]
Set VTY connection timeout value. When only one argument is specified it is used
for timeout value in minutes. Optional second argument is used for timeout value in
seconds. Default timeout value is 10 minutes. When timeout value is zero, it means
no timeout.
exec-timeout minute
exec-timeout minute second
[Line Command]
Do not perform timeout at all. This command is as same as exec-timeout 0 0.
no exec-timeout
access-class access-list
Restrict vty connections with an access list.
[Line Command]
12
Quagga
3.1.2 Sample Config File
Below is a sample configuration file for the zebra daemon.
!
! Zebra configuration file
!
hostname Router
password zebra
enable password zebra
!
log stdout
!
!
’ !’ and ’#’ are comment characters. If the first character of the word is one of the
comment characters then from the rest of the line forward will be ignored as a comment.
password zebra!password
If a comment character is not the first character of the word, it’s a normal character.
So in the above example ’ !’ will not be regarded as a comment and the password is set to
’zebra!password’.
3.2 Terminal Mode Commands
write terminal
[Command]
Displays the current configuration to the vty interface.
write file
[Command]
Write current configuration to configuration file.
[Command]
Change to configuration mode. This command is the first step to configuration.
configure terminal
[Command]
Set terminal display length to <0-512>. If length is 0, no display control is performed.
terminal length <0-512>
[Command]
who
Show a list of currently connected vty sessions.
[Command]
list
List all available commands.
show version
[Command]
Show the current version of Quagga and its build host information.
[Command]
Shows the current configuration of the logging system. This includes the status of all
logging destinations.
show logging
[Command]
Send a message to all logging destinations that are enabled for messages of the given
severity.
logmsg level message
Chapter 3: Basic commands
13
3.3 Common Invocation Options
These options apply to all Quagga daemons.
‘-d’
‘--daemon’
Runs in daemon mode.
‘-f file’
‘--config_file=file’
Set configuration file name.
‘-h’
‘--help’
Display this help and exit.
‘-i file’
‘--pid_file=file’
Upon startup the process identifier of the daemon is written to a file, typically in /var/run. This file can be used by the init system to implement
commands such as .../init.d/zebra status, .../init.d/zebra restart or
.../init.d/zebra stop.
The file name is an run-time option rather than a configure-time option so that
multiple routing daemons can be run simultaneously. This is useful when using
Quagga to implement a routing looking glass. One machine can be used to
collect differing routing views from differing points in the network.
‘-A address’
‘--vty_addr=address’
Set the VTY local address to bind to. If set, the VTY socket will only be bound
to this address.
‘-P port’
‘--vty_port=port’
Set the VTY TCP port number. If set to 0 then the TCP VTY sockets will
not be opened.
‘-u user’
‘--vty_addr=user’
Set the user and group to run as.
‘-v’
‘--version’
Print program version.
3.4 Virtual Terminal Interfaces
VTY – Virtual Terminal [aka TeletYpe] Interface is a command line interface (CLI) for user
interaction with the routing daemon.
3.4.1 VTY Overview
VTY stands for Virtual TeletYpe interface. It means you can connect to the daemon via
the telnet protocol.
14
Quagga
To enable a VTY interface, you have to setup a VTY password. If there is no VTY
password, one cannot connect to the VTY interface at all.
% telnet localhost 2601
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’^]’.
Hello, this is Quagga (version 0.99.22)
c 1999-2005 Kunihiro Ishiguro, et al.
Copyright User Access Verification
Password: XXXXX
Router> ?
enable
Turn on privileged commands
exit
Exit current mode and down to previous mode
help
Description of the interactive help system
list
Print command list
show
Show running system information
who
Display who is on a vty
Router> enable
Password: XXXXX
Router# configure terminal
Router(config)# interface eth0
Router(config-if)# ip address 10.0.0.1/8
Router(config-if)# ^Z
Router#
’ ?’ is very useful for looking up commands.
3.4.2 VTY Modes
There are three basic VTY modes:
There are commands that may be restricted to specific VTY modes.
3.4.2.1 VTY View Mode
This mode is for read-only access to the CLI. One may exit the mode by leaving the system,
or by entering enable mode.
3.4.2.2 VTY Enable Mode
This mode is for read-write access to the CLI. One may exit the mode by leaving the system,
or by escaping to view mode.
3.4.2.3 VTY Other Modes
This page is for describing other modes.
Chapter 3: Basic commands
15
3.4.3 VTY CLI Commands
Commands that you may use at the command-line are described in the following three
subsubsections.
3.4.3.1 CLI Movement Commands
These commands are used for moving the CLI cursor. The C character means press the
Control Key.
C-f
RIGHT
Move forward one character.
C-b
LEFT
Move backward one character.
M-f
Move forward one word.
M-b
Move backward one word.
C-a
Move to the beginning of the line.
C-e
Move to the end of the line.
3.4.3.2 CLI Editing Commands
These commands are used for editing text on a line. The C character means press the
Control Key.
C-h
DEL
Delete the character before point.
C-d
Delete the character after point.
M-d
Forward kill word.
C-w
Backward kill word.
C-k
Kill to the end of the line.
C-u
Kill line from the beginning, erasing input.
C-t
Transpose character.
3.4.3.3 CLI Advanced Commands
There are several additional CLI commands for command line completions, insta-help, and
VTY session management.
C-c
Interrupt current input and moves to the next line.
C-z
End current configuration session and move to top node.
C-n
DOWN
Move down to next line in the history buffer.
C-p
UP
Move up to previous line in the history buffer.
TAB
Use command line completion by typing TAB.
You can use command line help by typing help at the beginning of the line.
Typing ? at any point in the line will show possible completions.
Chapter 4: Zebra
17
4 Zebra
zebra is an IP routing manager. It provides kernel routing table updates, interface lookups,
and redistribution of routes between different routing protocols.
4.1 Invoking zebra
Besides the common invocation options (see Section 3.3 [Common Invocation Options],
page 13), the zebra specific invocation options are listed below.
‘-b’
‘--batch’
Runs in batch mode. zebra parses configuration file and terminates immediately.
‘-k’
‘--keep_kernel’
When zebra starts up, don’t delete old self inserted routes.
‘-r’
‘--retain’
When program terminates, retain routes added by zebra.
4.2 Interface Commands
[Command]
interface ifname
shutdown
no shutdown
[Interface Command]
[Interface Command]
Up or down the current interface.
ip address address/prefix
ipv6 address address/prefix
no ip address address/prefix
no ipv6 address address/prefix
[Interface
[Interface
[Interface
[Interface
Command]
Command]
Command]
Command]
Set the IPv4 or IPv6 address/prefix for the interface.
[Interface Command]
[Interface Command]
Set the secondary flag for this address. This causes ospfd to not treat the address as
a distinct subnet.
ip address address/prefix secondary
no ip address address/prefix secondary
description description ...
[Interface Command]
Set description for the interface.
multicast
no multicast
[Interface Command]
[Interface Command]
Enable or disables multicast flag for the interface.
[Interface Command]
[Interface Command]
Set bandwidth value of the interface in kilobits/sec. This is for calculating OSPF
cost. This command does not affect the actual device configuration.
bandwidth <1-10000000>
no bandwidth <1-10000000>
18
Quagga
[Interface Command]
[Interface Command]
Enable/disable link-detect on platforms which support this. Currently only Linux
and Solaris, and only where network interface drivers support reporting link-state via
the IFF RUNNING flag.
link-detect
no link-detect
4.3 Static Route Commands
Static routing is a very fundamental feature of routing technology. It defines static prefix
and gateway.
[Command]
network is destination prefix with format of A.B.C.D/M. gateway is gateway for the
prefix. When gateway is A.B.C.D format. It is taken as a IPv4 address gateway.
Otherwise it is treated as an interface name. If the interface name is null0 then zebra
installs a blackhole route.
ip route 10.0.0.0/8 10.0.0.2
ip route 10.0.0.0/8 ppp0
ip route 10.0.0.0/8 null0
First example defines 10.0.0.0/8 static route with gateway 10.0.0.2. Second one defines
the same prefix but with gateway to interface ppp0. The third install a blackhole
route.
ip route network gateway
[Command]
This is alternate version of above command. When network is A.B.C.D format, user
must define netmask value with A.B.C.D format. gateway is same option as above
command
ip route 10.0.0.0 255.255.255.0 10.0.0.2
ip route 10.0.0.0 255.255.255.0 ppp0
ip route 10.0.0.0 255.255.255.0 null0
These statements are equivalent to those in the previous example.
ip route network netmask gateway
ip route network gateway distance
[Command]
Installs the route with the specified distance.
Multiple nexthop static route
ip route 10.0.0.1/32 10.0.0.2
ip route 10.0.0.1/32 10.0.0.3
ip route 10.0.0.1/32 eth0
If there is no route to 10.0.0.2 and 10.0.0.3, and interface eth0 is reachable, then the last
route is installed into the kernel.
If zebra has been compiled with multipath support, and both 10.0.0.2 and 10.0.0.3 are
reachable, zebra will install a multipath route via both nexthops, if the platform supports
this.
zebra> show ip route
S> 10.0.0.1/32 [1/0] via 10.0.0.2 inactive
via 10.0.0.3 inactive
*
is directly connected, eth0
Chapter 4: Zebra
19
ip route 10.0.0.0/8 10.0.0.2
ip route 10.0.0.0/8 10.0.0.3
ip route 10.0.0.0/8 null0 255
This will install a multihop route via the specified next-hops if they are reachable, as well
as a high-metric blackhole route, which can be useful to prevent traffic destined for a prefix
to match less-specific routes (eg default) should the specified gateways not be reachable.
Eg:
zebra> show ip route 10.0.0.0/8
Routing entry for 10.0.0.0/8
Known via "static", distance 1, metric 0
10.0.0.2 inactive
10.0.0.3 inactive
Routing entry for 10.0.0.0/8
Known via "static", distance 255, metric 0
directly connected, Null0
ipv6 route network gateway
ipv6 route network gateway distance
[Command]
[Command]
These behave similarly to their ipv4 counterparts.
[Command]
Select the primary kernel routing table to be used. This only works for kernels
supporting multiple routing tables (like GNU/Linux 2.2.x and later). After setting
tableno with this command, static routes defined after this are added to the specified
table.
table tableno
4.4 zebra Route Filtering
Zebra supports prefix-list and route-map to match routes received from other quagga
components. The permit/deny facilities provided by these commands can be used to filter
which routes zebra will install in the kernel.
[Command]
Apply a route-map filter to routes for the specified protocol. protocol can be any or
one of system, kernel, connected, static, rip, ripng, ospf, ospf6, isis, bgp, hsls.
ip protocol protocol route-map routemap
[Route Map]
Within a route-map, set the preferred source address for matching routes when installing in the kernel.
set src address
The following creates a prefix-list that matches all addresses, a route-map
that sets the preferred source address, and applies the route-map to all
rip routes.
20
Quagga
ip prefix-list ANY permit 0.0.0.0/0 le 32
route-map RM1 permit 10
match ip address prefix-list ANY
set src 10.0.0.1
ip protocol rip route-map RM1
4.5 zebra FIB push interface
Zebra supports a ’FIB push’ interface that allows an external component to learn the
forwarding information computed by the Quagga routing suite.
In Quagga, the Routing Information Base (RIB) resides inside zebra. Routing protocols
communicate their best routes to zebra, and zebra computes the best route across protocols
for each prefix. This latter information makes up the Forwarding Information Base (FIB).
Zebra feeds the FIB to the kernel, which allows the IP stack in the kernel to forward packets
according to the routes computed by Quagga. The kernel FIB is updated in an OS-specific
way. For example, the netlink interface is used on Linux, and route sockets are used on
FreeBSD.
The FIB push interface aims to provide a cross-platform mechanism to support scenarios where the router has a forwarding path that is distinct from the kernel, commonly a
hardware-based fast path. In these cases, the FIB needs to be maintained reliably in the
fast path as well. We refer to the component that programs the forwarding plane (directly
or indirectly) as the Forwarding Plane Manager or FPM.
The FIB push interface comprises of a TCP connection between zebra and the FPM.
The connection is initiated by zebra – that is, the FPM acts as the TCP server.
The relevant zebra code kicks in when zebra is configured with the --enable-fpm flag.
Zebra periodically attempts to connect to the well-known FPM port. Once the connection
is up, zebra starts sending messages containing routes over the socket to the FPM. Zebra
sends a complete copy of the forwarding table to the FPM, including routes that it may
have picked up from the kernel. The existing interaction of zebra with the kernel remains
unchanged – that is, the kernel continues to receive FIB updates as before.
The format of the messages exchanged with the FPM is defined by the file fpm/fpm.h
in the quagga tree.
The zebra FPM interface uses replace semantics. That is, if a ’route add’ message for a
prefix is followed by another ’route add’ message, the information in the second message is
complete by itself, and replaces the information sent in the first message.
If the connection to the FPM goes down for some reason, zebra sends the FPM a complete
copy of the forwarding table(s) when it reconnects.
4.6 zebra Terminal Mode Commands
show ip route
Display current routes which zebra holds in its database.
[Command]
Chapter 4: Zebra
21
Router# show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP,
B - BGP * - FIB route.
K*
S
C*
C*
0.0.0.0/0
0.0.0.0/0
127.0.0.0/8
203.181.89.240/28
203.181.89.241
203.181.89.1
lo
eth0
show ipv6 route
[Command]
show interface
[Command]
show ip prefix-list [name]
[Command]
show route-map [name]
[Command]
show ip protocol
[Command]
[Command]
Display whether the host’s IP forwarding function is enabled or not. Almost any
UNIX kernel can be configured with IP forwarding disabled. If so, the box can’t work
as a router.
show ipforward
show ipv6forward
[Command]
Display whether the host’s IP v6 forwarding is enabled or not.
[Command]
Display statistics related to the zebra code that interacts with the optional Forwarding
Plane Manager (FPM) component.
show zebra fpm stats
[Command]
Reset statistics related to the zebra code that interacts with the optional Forwarding
Plane Manager (FPM) component.
clear zebra fpm stats
Chapter 5: RIP
23
5 RIP
RIP – Routing Information Protocol is widely deployed interior gateway protocol. RIP
was developed in the 1970s at Xerox Labs as part of the XNS routing protocol. RIP is
a distance-vector protocol and is based on the Bellman-Ford algorithms. As a distancevector protocol, RIP router send updates to its neighbors periodically, thus allowing the
convergence to a known topology. In each update, the distance to any given network will
be broadcasted to its neighboring router.
ripd supports RIP version 2 as described in RFC2453 and RIP version 1 as described
in RFC1058.
5.1 Starting and Stopping ripd
The default configuration file name of ripd’s is ripd.conf. When invocation ripd searches
directory /etc/quagga. If ripd.conf is not there next search current directory.
RIP uses UDP port 520 to send and receive RIP packets. So the user must have the
capability to bind the port, generally this means that the user must have superuser privileges. RIP protocol requires interface information maintained by zebra daemon. So running
zebra is mandatory to run ripd. Thus minimum sequence for running RIP is like below:
# zebra -d
# ripd -d
Please note that zebra must be invoked before ripd.
To stop ripd. Please use kill ‘cat /var/run/ripd.pid‘. Certain signals have special
meaningss to ripd.
‘SIGHUP’
Reload configuration file ripd.conf. All configurations are reseted. All routes
learned so far are cleared and removed from routing table.
‘SIGUSR1’
Rotate ripd logfile.
‘SIGINT’
‘SIGTERM’
ripd sweeps all installed RIP routes then terminates properly.
ripd invocation options. Common options that can be specified (see Section 3.3 [Common Invocation Options], page 13).
‘-r’
‘--retain’
When the program terminates, retain routes added by ripd.
5.1.1 RIP netmask
The netmask features of ripd support both version 1 and version 2 of RIP. Version 1 of
RIP originally contained no netmask information. In RIP version 1, network classes were
originally used to determine the size of the netmask. Class A networks use 8 bits of mask,
Class B networks use 16 bits of masks, while Class C networks use 24 bits of mask. Today,
the most widely used method of a network mask is assigned to the packet on the basis of
the interface that received the packet. Version 2 of RIP supports a variable length subnet
mask (VLSM). By extending the subnet mask, the mask can be divided and reused. Each
subnet can be used for different purposes such as large to middle size LANs and WAN
24
Quagga
links. Quagga ripd does not support the non-sequential netmasks that are included in RIP
Version 2.
In a case of similar information with the same prefix and metric, the old information
will be suppressed. Ripd does not currently support equal cost multipath routing.
5.2 RIP Configuration
[Command]
The router rip command is necessary to enable RIP. To disable RIP, use the no
router rip command. RIP must be enabled before carrying out any of the RIP
commands.
router rip
no router rip
[Command]
Disable RIP.
[RIP Command]
[RIP Command]
Set the RIP enable interface by network. The interfaces which have addresses matching with network are enabled.
This group of commands either enables or disables RIP interfaces between certain
numbers of a specified network address. For example, if the network for 10.0.0.0/24
is RIP enabled, this would result in all the addresses from 10.0.0.0 to 10.0.0.255 being
enabled for RIP. The no network command will disable RIP for the specified network.
network network
no network network
[RIP Command]
[RIP Command]
Set a RIP enabled interface by ifname. Both the sending and receiving of RIP packets
will be enabled on the port specified in the network ifname command. The no
network ifname command will disable RIP on the specified interface.
network ifname
no network ifname
[RIP Command]
[RIP Command]
Specify RIP neighbor. When a neighbor doesn’t understand multicast, this command
is used to specify neighbors. In some cases, not all routers will be able to understand
multicasting, where packets are sent to a network or a group of addresses. In a situation where a neighbor cannot process multicast packets, it is necessary to establish a
direct link between routers. The neighbor command allows the network administrator to specify a router as a RIP neighbor. The no neighbor a.b.c.d command will
disable the RIP neighbor.
neighbor a.b.c.d
no neighbor a.b.c.d
Below is very simple RIP configuration. Interface eth0 and interface which address
match to 10.0.0.0/8 are RIP enabled.
!
router rip
network 10.0.0.0/8
network eth0
!
Passive interface
Chapter 5: RIP
25
[RIP command]
[RIP command]
This command sets the specified interface to passive mode. On passive mode interface,
all receiving packets are processed as normal and ripd does not send either multicast or
unicast RIP packets except to RIP neighbors specified with neighbor command. The
interface may be specified as default to make ripd default to passive on all interfaces.
The default is to be passive on all interfaces.
passive-interface (IFNAME|default)
no passive-interface IFNAME
RIP split-horizon
[Interface command]
[Interface command]
Control split-horizon on the interface. Default is ip split-horizon. If you don’t
perform split-horizon on the interface, please specify no ip split-horizon.
ip split-horizon
no ip split-horizon
5.3 RIP Version Control
RIP can be configured to send either Version 1 or Version 2 packets. The default is to
send RIPv2 while accepting both RIPv1 and RIPv2 (and replying with packets of the
appropriate version for REQUESTS / triggered updates). The version to receive and send
can be specified globally, and further overriden on a per-interface basis if needs be for send
and receive seperately (see below).
It is important to note that RIPv1 can not be authenticated. Further, if RIPv1 is enabled
then RIP will reply to REQUEST packets, sending the state of its RIP routing table to
any remote routers that ask on demand. For a more detailed discussion on the security
implications of RIPv1 see Section 5.9 [RIP Authentication], page 29.
[RIP Command]
Set RIP version to accept for reads and send. version can be either ‘1” or ‘2”.
Disabling RIPv1 by specifying version 2 is STRONGLY encouraged, See Section 5.9
[RIP Authentication], page 29. This may become the default in a future release.
Default: Send Version 2, and accept either version.
version version
no version
[RIP Command]
Reset the global version setting back to the default.
[Interface command]
version can be ‘1’, ‘2’ or ‘1 2’.
This interface command overrides the global rip version setting, and selects which
version of RIP to send packets with, for this interface specifically. Choice of RIP
Version 1, RIP Version 2, or both versions. In the latter case, where ‘1 2’ is specified,
packets will be both broadcast and multicast.
Default: Send packets according to the global version (version 2)
ip rip send version version
[Interface command]
version can be ‘1’, ‘2’ or ‘1 2’.
This interface command overrides the global rip version setting, and selects which
versions of RIP packets will be accepted on this interface. Choice of RIP Version 1,
RIP Version 2, or both.
ip rip receive version version
26
Quagga
Default: Accept packets according to the global setting (both 1 and 2).
5.4 How to Announce RIP route
[RIP command]
[RIP command]
[RIP command]
[RIP command]
redistribute kernel redistributes routing information from kernel route entries into
the RIP tables. no redistribute kernel disables the routes.
redistribute kernel
redistribute kernel metric <0-16>
redistribute kernel route-map route-map
no redistribute kernel
[RIP command]
[RIP command]
[RIP command]
[RIP command]
redistribute static redistributes routing information from static route entries into
the RIP tables. no redistribute static disables the routes.
redistribute static
redistribute static metric <0-16>
redistribute static route-map route-map
no redistribute static
[RIP command]
[RIP command]
[RIP command]
[RIP command]
Redistribute connected routes into the RIP tables. no redistribute connected disables the connected routes in the RIP tables. This command redistribute connected
of the interface which RIP disabled. The connected route on RIP enabled interface
is announced by default.
redistribute connected
redistribute connected metric <0-16>
redistribute connected route-map route-map
no redistribute connected
[RIP command]
[RIP command]
[RIP command]
[RIP command]
redistribute ospf redistributes routing information from ospf route entries into the
RIP tables. no redistribute ospf disables the routes.
redistribute ospf
redistribute ospf metric <0-16>
redistribute ospf route-map route-map
no redistribute ospf
[RIP command]
[RIP command]
[RIP command]
[RIP command]
redistribute bgp redistributes routing information from bgp route entries into the
RIP tables. no redistribute bgp disables the routes.
redistribute bgp
redistribute bgp metric <0-16>
redistribute bgp route-map route-map
no redistribute bgp
If you want to specify RIP only static routes:
default-information originate
route a.b.c.d/m
no route a.b.c.d/m
[RIP command]
[RIP command]
[RIP command]
This command is specific to Quagga. The route command makes a static route only
inside RIP. This command should be used only by advanced users who are particularly
knowledgeable about the RIP protocol. In most cases, we recommend creating a static
route in Quagga and redistributing it in RIP using redistribute static.
Chapter 5: RIP
27
5.5 Filtering RIP Routes
RIP routes can be filtered by a distribute-list.
[Command]
You can apply access lists to the interface with a distribute-list command. access list is the access list name. direct is ‘in’ or ‘out’. If direct is ‘in’ the access list
is applied to input packets.
The distribute-list command can be used to filter the RIP path. distributelist can apply access-lists to a chosen interface. First, one should specify the accesslist. Next, the name of the access-list is used in the distribute-list command. For
example, in the following configuration ‘eth0’ will permit only the paths that match
the route 10.0.0.0/8
!
router rip
distribute-list private in eth0
!
access-list private permit 10 10.0.0.0/8
access-list private deny any
!
distribute-list access_list direct ifname
distribute-list can be applied to both incoming and outgoing data.
[Command]
You can apply prefix lists to the interface with a distribute-list command. prefix list is the prefix list name. Next is the direction of ‘in’ or ‘out’. If direct is ‘in’
the access list is applied to input packets.
distribute-list prefix prefix_list (in|out) ifname
5.6 RIP Metric Manipulation
RIP metric is a value for distance for the network. Usually ripd increment the metric when
the network information is received. Redistributed routes’ metric is set to 1.
[RIP command]
[RIP command]
This command modifies the default metric value for redistributed routes. The default
value is 1. This command does not affect connected route even if it is redistributed
by redistribute connected. To modify connected route’s metric value, please use
redistribute connected metric or route-map. offset-list also affects connected
routes.
default-metric <1-16>
no default-metric <1-16>
offset-list access-list (in|out)
offset-list access-list (in|out) ifname
[RIP command]
[RIP command]
5.7 RIP distance
Distance value is used in zebra daemon. Default RIP distance is 120.
distance <1-255>
no distance <1-255>
Set default RIP distance to specified value.
[RIP command]
[RIP command]
28
Quagga
[RIP command]
[RIP command]
Set default RIP distance to specified value when the route’s source IP address matches
the specified prefix.
distance <1-255> A.B.C.D/M
no distance <1-255> A.B.C.D/M
[RIP command]
[RIP command]
Set default RIP distance to specified value when the route’s source IP address matches
the specified prefix and the specified access-list.
distance <1-255> A.B.C.D/M access-list
no distance <1-255> A.B.C.D/M access-list
5.8 RIP route-map
Usage of ripd’s route-map support.
Optional argument route-map MAP NAME can be added to each redistribute statement.
redistribute static [route-map MAP_NAME]
redistribute connected [route-map MAP_NAME]
.....
Cisco applies route-map before routes will exported to rip route table. In current
Quagga’s test implementation, ripd applies route-map after routes are listed in the route
table and before routes will be announced to an interface (something like output filter). I
think it is not so clear, but it is draft and it may be changed at future.
Route-map statement (see Chapter 14 [Route Map], page 93) is needed to use route-map
functionality.
[Route Map]
This command match to incoming interface. Notation of this match is different from
Cisco. Cisco uses a list of interfaces - NAME1 NAME2 ... NAMEN. Ripd allows
only one name (maybe will change in the future). Next - Cisco means interface which
includes next-hop of routes (it is somewhat similar to "ip next-hop" statement). Ripd
means interface where this route will be sent. This difference is because "next-hop"
of same routes which sends to different interfaces must be different. Maybe it’d be
better to made new matches - say "match interface-out NAME" or something like
that.
match interface word
match ip address word
match ip address prefix-list word
[Route Map]
[Route Map]
Match if route destination is permitted by access-list.
[Route Map]
[Route Map]
Match if route next-hop (meaning next-hop listed in the rip route-table as displayed
by "show ip rip") is permitted by access-list.
match ip next-hop word
match ip next-hop prefix-list word
[Route Map]
This command match to the metric value of RIP updates. For other protocol compatibility metric range is shown as <0-4294967295>. But for RIP protocol only the
value range <0-16> make sense.
match metric <0-4294967295>
Chapter 5: RIP
29
[Route Map]
This command set next hop value in RIPv2 protocol. This command does not affect
RIPv1 because there is no next hop field in the packet.
set ip next-hop A.B.C.D
[Route Map]
Set a metric for matched route when sending announcement. The metric value range
is very large for compatibility with other protocols. For RIP, valid metric values are
from 1 to 16.
set metric <0-4294967295>
5.9 RIP Authentication
RIPv2 allows packets to be authenticated via either an insecure plain text password, included with the packet, or via a more secure MD5 based HMAC (keyed-Hashing for Message
AuthentiCation), RIPv1 can not be authenticated at all, thus when authentication is configured ripd will discard routing updates received via RIPv1 packets.
However, unless RIPv1 reception is disabled entirely, See Section 5.3 [RIP Version Control], page 25, RIPv1 REQUEST packets which are received, which query the router for
routing information, will still be honoured by ripd, and ripd WILL reply to such packets.
This allows ripd to honour such REQUESTs (which sometimes is used by old equipment
and very simple devices to bootstrap their default route), while still providing security for
route updates which are received.
In short: Enabling authentication prevents routes being updated by unauthenticated
remote routers, but still can allow routes (I.e. the entire RIP routing table) to be queried
remotely, potentially by anyone on the internet, via RIPv1.
To prevent such unauthenticated querying of routes disable RIPv1, See Section 5.3 [RIP
Version Control], page 25.
ip rip authentication mode md5
no ip rip authentication mode md5
[Interface command]
[Interface command]
Set the interface with RIPv2 MD5 authentication.
ip rip authentication mode text
no ip rip authentication mode text
[Interface command]
[Interface command]
Set the interface with RIPv2 simple password authentication.
[Interface command]
[Interface command]
RIP version 2 has simple text authentication. This command sets authentication
string. The string must be shorter than 16 characters.
ip rip authentication string string
no ip rip authentication string string
ip rip authentication key-chain key-chain
no ip rip authentication key-chain key-chain
Specifiy Keyed MD5 chain.
!
key chain test
key 1
key-string test
!
[Interface command]
[Interface command]
30
Quagga
interface eth1
ip rip authentication mode md5
ip rip authentication key-chain test
!
5.10 RIP Timers
[RIP command]
RIP protocol has several timers. User can configure those timers’ values by timers
basic command.
timers basic update timeout garbage
The default settings for the timers are as follows:
• The update timer is 30 seconds. Every update timer seconds, the RIP process
is awakened to send an unsolicited Response message containing the complete
routing table to all neighboring RIP routers.
• The timeout timer is 180 seconds. Upon expiration of the timeout, the route is
no longer valid; however, it is retained in the routing table for a short time so
that neighbors can be notified that the route has been dropped.
• The garbage collect timer is 120 seconds. Upon expiration of the garbagecollection timer, the route is finally removed from the routing table.
The timers basic command allows the the default values of the timers listed above
to be changed.
[RIP command]
The no timers basic command will reset the timers to the default settings listed
above.
no timers basic
5.11 Show RIP Information
To display RIP routes.
show ip rip
[Command]
Show RIP routes.
The command displays all RIP routes. For routes that are received through RIP, this
command will display the time the packet was sent and the tag information. This command
will also display this information for routes redistributed into RIP.
[Command]
The command displays current RIP status. It includes RIP timer, filtering, version,
RIP enabled interface and RIP peer inforation.
show ip protocols
Chapter 5: RIP
31
ripd> show ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds with +/-50%, next due in 35 seconds
Timeout after 180 seconds, garbage collect after 120 seconds
Outgoing update filter list for all interface is not set
Incoming update filter list for all interface is not set
Default redistribution metric is 1
Redistributing: kernel connected
Default version control: send version 2, receive version 2
Interface
Send Recv
Routing for Networks:
eth0
eth1
1.1.1.1
203.181.89.241
Routing Information Sources:
Gateway
BadPackets BadRoutes Distance Last Update
5.12 RIP Debug Commands
Debug for RIP protocol.
debug rip events
[Command]
Debug rip events.
debug rip will show RIP events. Sending and receiving packets, timers, and changes in
interfaces are events shown with ripd.
debug rip packet
[Command]
Debug rip packet.
debug rip packet will display detailed information about the RIP packets. The origin
and port number of the packet as well as a packet dump is shown.
debug rip zebra
[Command]
Debug rip between zebra communication.
This command will show the communication between ripd and zebra. The main information will include addition and deletion of paths to the kernel and the sending and
receiving of interface information.
show debugging rip
Display ripd’s debugging option.
show debugging rip will show all information currently set for ripd debug.
[Command]
Chapter 6: RIPng
33
6 RIPng
ripngd supports the RIPng protocol as described in RFC2080. It’s an IPv6 reincarnation
of the RIP protocol.
6.1 Invoking ripngd
There are no ripngd specific invocation options. Common options can be specified (see
Section 3.3 [Common Invocation Options], page 13).
6.2 ripngd Configuration
Currently ripngd supports the following commands:
router ripng
[Command]
Enable RIPng.
flush_timer time
[RIPng Command]
Set flush timer.
network network
[RIPng Command]
Set RIPng enabled interface by network
network ifname
[RIPng Command]
Set RIPng enabled interface by ifname
route network
[RIPng Command]
Set RIPng static routing announcement of network.
[Command]
This command is the default and does not appear in the configuration. With this
statement, RIPng routes go to the zebra daemon.
router zebra
6.3 ripngd Terminal Mode Commands
show ip ripng
[Command]
show debugging ripng
[Command]
debug ripng events
[Command]
debug ripng packet
[Command]
debug ripng zebra
[Command]
6.4 ripngd Filtering Commands
[Command]
You can apply an access-list to the interface using the distribute-list command.
access list is an access-list name. direct is ‘in’ or ‘out’. If direct is ‘in’, the access-list
is applied only to incoming packets.
distribute-list local-only out sit1
distribute-list access_list (in|out) ifname
Chapter 7: OSPFv2
35
7 OSPFv2
OSPF (Open Shortest Path First) version 2 is a routing protocol which is described in
RFC2328, OSPF Version 2. OSPF is an IGP (Interior Gateway Protocol). Compared
with RIP, OSPF can provide scalable network support and faster convergence times. OSPF
is widely used in large networks such as ISP (Internet Service Provider) backbone and
enterprise networks.
7.1 Configuring ospfd
There are no ospfd specific options. Common options can be specified (see Section 3.3
[Common Invocation Options], page 13) to ospfd. ospfd needs to acquire interface information from zebra in order to function. Therefore zebra must be running before invoking
ospfd. Also, if zebra is restarted then ospfd must be too.
Like other daemons, ospfd configuration is done in OSPF specific configuration file
ospfd.conf.
7.2 OSPF router
To start OSPF process you have to specify the OSPF router. As of this writing, ospfd does
not support multiple OSPF processes.
[Command]
[Command]
Enable or disable the OSPF process. ospfd does not yet support multiple OSPF
processes. So you can not specify an OSPF process number.
router ospf
no router ospf
[OSPF Command]
[OSPF Command]
This sets the router-ID of the OSPF process. The router-ID may be an IP address
of the router, but need not be - it can be any arbitrary 32bit number. However it
MUST be unique within the entire OSPF domain to the OSPF speaker - bad things
will happen if multiple OSPF speakers are configured with the same router-ID! If one
is not specified then ospfd will obtain a router-ID automatically from zebra.
ospf router-id a.b.c.d
no ospf router-id
[OSPF Command]
[OSPF Command]
type can be cisco|ibm|shortcut|standard. The "Cisco" and "IBM" types are equivalent.
ospf abr-type type
no ospf abr-type type
The OSPF standard for ABR behaviour does not allow an ABR to consider routes
through non-backbone areas when its links to the backbone are down, even when there
are other ABRs in attached non-backbone areas which still can reach the backbone this restriction exists primarily to ensure routing-loops are avoided.
With the "Cisco" or "IBM" ABR type, the default in this release of Quagga, this
restriction is lifted, allowing an ABR to consider summaries learnt from other ABRs
through non-backbone areas, and hence route via non-backbone areas as a last resort
when, and only when, backbone links are down.
36
Quagga
Note that areas with fully-adjacent virtual-links are considered to be "transit capable"
and can always be used to route backbone traffic, and hence are unaffected by this
setting (see [OSPF virtual-link], page 39).
More information regarding the behaviour controlled by this command can be found
in RFC 3509, Alternative Implementations of OSPF Area Border Routers, and draftietf-ospf-shortcut-abr-02.txt.
Quote: "Though the definition of the ABR (Area Border Router) in the OSPF specification does not require a router with multiple attached areas to have a backbone
connection, it is actually necessary to provide successful routing to the inter-area and
external destinations. If this requirement is not met, all traffic destined for the areas
not connected to such an ABR or out of the OSPF domain, is dropped. This document describes alternative ABR behaviors implemented in Cisco and IBM routers."
[OSPF Command]
[OSPF Command]
RFC2328, the sucessor to RFC1583, suggests according to section G.2 (changes) in
section 16.4 a change to the path preference algorithm that prevents possible routing
loops that were possible in the old version of OSPFv2. More specifically it demands
that inter-area paths and intra-area backbone path are now of equal preference but
still both preferred to external paths.
This command should NOT be set normally.
ospf rfc1583compatibility
no ospf rfc1583compatibility
[OSPF Command]
[OSPF Command]
Configures ospfd to log changes in adjacency. With the optional detail argument,
all changes in adjacency status are shown. Without detail, only changes to full or
regressions are shown.
log-adjacency-changes [detail]
no log-adjacency-changes [detail]
[OSPF Command]
[OSPF Command]
Do not speak OSPF interface on the given interface, but do advertise the interface as
a stub link in the router-LSA (Link State Advertisement) for this router. This allows
one to advertise addresses on such connected interfaces without having to originate
AS-External/Type-5 LSAs (which have global flooding scope) - as would occur if connected addresses were redistributed into OSPF (see Section 7.5 [Redistribute routes
to OSPF], page 42). This is the only way to advertise non-OSPF links into stub areas.
passive-interface interface
no passive-interface interface
timers throttle spf delay initial-holdtime
max-holdtime
no timers throttle spf
[OSPF Command]
[OSPF Command]
This command sets the initial delay, the initial-holdtime and the maximum-holdtime
between when SPF is calculated and the event which triggered the calculation. The
times are specified in milliseconds and must be in the range of 0 to 600000 milliseconds.
The delay specifies the minimum amount of time to delay SPF calculation (hence it
affects how long SPF calculation is delayed after an event which occurs outside of the
holdtime of any previous SPF calculation, and also serves as a minimum holdtime).
Consecutive SPF calculations will always be seperated by at least ’hold-time’ milliseconds. The hold-time is adaptive and initially is set to the initial-holdtime configured
Chapter 7: OSPFv2
37
with the above command. Events which occur within the holdtime of the previous
SPF calculation will cause the holdtime to be increased by initial-holdtime, bounded
by the maximum-holdtime configured with this command. If the adaptive hold-time
elapses without any SPF-triggering event occuring then the current holdtime is reset to the initial-holdtime. The current holdtime can be viewed with [show ip ospf],
page 44, where it is expressed as a multiplier of the initial-holdtime.
router ospf
timers throttle spf 200 400 10000
In this example, the delay is set to 200ms, the initial holdtime is set to 400ms and
the maximum holdtime to 10s. Hence there will always be at least 200ms between
an event which requires SPF calculation and the actual SPF calculation. Further
consecutive SPF calculations will always be seperated by between 400ms to 10s, the
hold-time increasing by 400ms each time an SPF-triggering event occurs within the
hold-time of the previous SPF calculation.
This command supercedes the timers spf command in previous Quagga releases.
max-metric router-lsa [on-startup|on-shutdown]
<5-86400>
max-metric router-lsa administrative
no max-metric router-lsa
[on-startup|on-shutdown|administrative]
[OSPF Command]
[OSPF Command]
[OSPF Command]
This enables RFC3137, OSPF Stub Router Advertisement support, where the OSPF
process describes its transit links in its router-LSA as having infinite distance so that
other routers will avoid calculating transit paths through the router while still being
able to reach networks through the router.
This support may be enabled administratively (and indefinitely) or conditionally.
Conditional enabling of max-metric router-lsas can be for a period of seconds after
startup and/or for a period of seconds prior to shutdown.
Enabling this for a period after startup allows OSPF to converge fully first without
affecting any existing routes used by other routers, while still allowing any connected
stub links and/or redistributed routes to be reachable. Enabling this for a period
of time in advance of shutdown allows the router to gracefully excuse itself from the
OSPF domain.
Enabling this feature administratively allows for administrative intervention for whatever reason, for an indefinite period of time. Note that if the configuration is written
to file, this administrative form of the stub-router command will also be written to
file. If ospfd is restarted later, the command will then take effect until manually
deconfigured.
Configured state of this feature as well as current status, such as the number of second
remaining till on-startup or on-shutdown ends, can be viewed with the [show ip ospf],
page 44 command.
[OSPF Command]
[OSPF Command]
This sets the reference bandwidth for cost calculations, where this bandwidth is considered equivalent to an OSPF cost of 1, specified in Mbits/s. The default is 100Mbit/s
auto-cost reference-bandwidth <1-4294967>
no auto-cost reference-bandwidth
38
Quagga
(i.e. a link of bandwidth 100Mbit/s or higher will have a cost of 1. Cost of lower
bandwidth links will be scaled with reference to this cost).
This configuration setting MUST be consistent across all routers within the OSPF
domain.
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
This command specifies the OSPF enabled interface(s). If the interface has an address
from range 192.168.1.0/24 then the command below enables ospf on this interface so
router can provide network information to the other ospf routers via this interface.
router ospf
network 192.168.1.0/24 area 0.0.0.0
Prefix length in interface must be equal or bigger (ie. smaller network) than prefix
length in network statement. For example statement above doesn’t enable ospf
on interface with address 192.168.1.1/23, but it does on interface with address
192.168.1.129/25.
Note that the behavior when there is a peer address defined on an interface changed
after release 0.99.7. Currently, if a peer prefix has been configured, then we test
whether the prefix in the network command contains the destination prefix. Otherwise, we test whether the network command prefix contains the local address prefix
of the interface.
network a.b.c.d/m area a.b.c.d
network a.b.c.d/m area <0-4294967295>
no network a.b.c.d/m area a.b.c.d
no network a.b.c.d/m area <0-4294967295>
7.3 OSPF area
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Summarize intra area paths from specified area into one Type-3 summary-LSA announced to other areas. This command can be used only in ABR and ONLY routerLSAs (Type-1) and network-LSAs (Type-2) (ie. LSAs with scope area) can be summarized. Type-5 AS-external-LSAs can’t be summarized - their scope is AS. Summarizing Type-7 AS-external-LSAs isn’t supported yet by Quagga.
router ospf
network 192.168.1.0/24 area 0.0.0.0
network 10.0.0.0/8 area 0.0.0.10
area 0.0.0.10 range 10.0.0.0/8
With configuration above one Type-3 Summary-LSA with routing info 10.0.0.0/8 is
announced into backbone area if area 0.0.0.10 contains at least one intra-area network
(ie. described with router or network LSA) from this range.
area a.b.c.d range a.b.c.d/m
area <0-4294967295> range a.b.c.d/m
no area a.b.c.d range a.b.c.d/m
no area <0-4294967295> range a.b.c.d/m
[OSPF Command]
[OSPF Command]
Instead of summarizing intra area paths filter them - ie. intra area paths from this
range are not advertised into other areas. This command makes sense in ABR only.
area a.b.c.d range IPV4_PREFIX not-advertise
no area a.b.c.d range IPV4_PREFIX not-advertise
Chapter 7: OSPFv2
area a.b.c.d range IPV4_PREFIX substitute
IPV4_PREFIX
no area a.b.c.d range IPV4_PREFIX substitute
IPV4_PREFIX
39
[OSPF Command]
[OSPF Command]
Substitute summarized prefix with another prefix.
router ospf
network 192.168.1.0/24 area 0.0.0.0
network 10.0.0.0/8 area 0.0.0.10
area 0.0.0.10 range 10.0.0.0/8 substitute 11.0.0.0/8
One Type-3 summary-LSA with routing info 11.0.0.0/8 is announced into backbone
area if area 0.0.0.10 contains at least one intra-area network (ie. described with
router-LSA or network-LSA) from range 10.0.0.0/8. This command makes sense in
ABR only.
area a.b.c.d virtual-link a.b.c.d
area <0-4294967295> virtual-link a.b.c.d
no area a.b.c.d virtual-link a.b.c.d
no area <0-4294967295> virtual-link a.b.c.d
[OSPF
[OSPF
[OSPF
[OSPF
Command]
Command]
Command]
Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Configure the area as Shortcut capable. See RFC3509. This requires that the ’abrtype’ be set to ’shortcut’.
area a.b.c.d shortcut
area <0-4294967295> shortcut
no area a.b.c.d shortcut
no area <0-4294967295> shortcut
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Configure the area to be a stub area. That is, an area where no router originates routes
external to OSPF and hence an area where all external routes are via the ABR(s).
Hence, ABRs for such an area do not need to pass AS-External LSAs (type-5s) or
ASBR-Summary LSAs (type-4) into the area. They need only pass Network-Summary
(type-3) LSAs into such an area, along with a default-route summary.
area a.b.c.d stub
area <0-4294967295> stub
no area a.b.c.d stub
no area <0-4294967295> stub
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Prevents an ospfd ABR from injecting inter-area summaries into the specified stub
area.
area a.b.c.d stub no-summary
area <0-4294967295> stub no-summary
no area a.b.c.d stub no-summary
no area <0-4294967295> stub no-summary
[OSPF Command]
[OSPF Command]
Set the cost of default-summary LSAs announced to stubby areas.
area a.b.c.d default-cost <0-16777215>
no area a.b.c.d default-cost <0-16777215>
area a.b.c.d export-list NAME
area <0-4294967295> export-list NAME
[OSPF Command]
[OSPF Command]
40
Quagga
[OSPF Command]
[OSPF Command]
Filter Type-3 summary-LSAs announced to other areas originated from intra- area
paths from specified area.
no area a.b.c.d export-list NAME
no area <0-4294967295> export-list NAME
router ospf
network 192.168.1.0/24 area 0.0.0.0
network 10.0.0.0/8 area 0.0.0.10
area 0.0.0.10 export-list foo
!
access-list foo permit 10.10.0.0/16
access-list foo deny any
With example above any intra-area paths from area 0.0.0.10 and from range
10.10.0.0/16 (for example 10.10.1.0/24 and 10.10.2.128/30) are announced into
other areas as Type-3 summary-LSA’s, but any others (for example 10.11.0.0/16 or
10.128.30.16/30) aren’t.
This command is only relevant if the router is an ABR for the specified area.
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Same as export-list, but it applies to paths announced into specified area as Type-3
summary-LSAs.
area a.b.c.d import-list NAME
area <0-4294967295> import-list NAME
no area a.b.c.d import-list NAME
no area <0-4294967295> import-list NAME
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Filtering Type-3 summary-LSAs to/from area using prefix lists. This command makes
sense in ABR only.
area a.b.c.d filter-list prefix NAME in
area a.b.c.d filter-list prefix NAME out
area <0-4294967295> filter-list prefix NAME in
area <0-4294967295> filter-list prefix NAME out
no area a.b.c.d filter-list prefix NAME in
no area a.b.c.d filter-list prefix NAME out
no area <0-4294967295> filter-list prefix NAME in
no area <0-4294967295> filter-list prefix NAME out
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Specify that simple password authentication should be used for the given area.
area a.b.c.d authentication
area <0-4294967295> authentication
no area a.b.c.d authentication
no area <0-4294967295> authentication
[OSPF Command]
[OSPF Command]
Specify that OSPF packets must be authenticated with MD5 HMACs within the given
area. Keying material must also be configured on a per-interface basis (see [ip ospf
message-digest-key], page 41).
area a.b.c.d authentication message-digest
area <0-4294967295> authentication message-digest
Chapter 7: OSPFv2
41
MD5 authentication may also be configured on a per-interface basis (see [ip ospf
authentication message-digest], page 41). Such per-interface settings will override
any per-area authentication setting.
7.4 OSPF interface
[Interface Command]
[Interface Command]
Set OSPF authentication key to a simple password. After setting AUTH KEY, all
OSPF packets are authenticated. AUTH KEY has length up to 8 chars.
ip ospf authentication-key AUTH_KEY
no ip ospf authentication-key
Simple text password authentication is insecure and deprecated in favour of MD5
HMAC authentication (see [ip ospf authentication message-digest], page 41).
[Interface Command]
Specify that MD5 HMAC authentication must be used on this interface. MD5 keying
material must also be configured (see [ip ospf message-digest-key], page 41). Overrides
any authentication enabled on a per-area basis (see [area authentication messagedigest], page 41).
ip ospf authentication message-digest
Note that OSPF MD5 authentication requires that time never go backwards (correct time is NOT important, only that it never goes backwards), even across resets,
if ospfd is to be able to promptly reestabish adjacencies with its neighbours after
restarts/reboots. The host should have system time be set at boot from an external
or non-volatile source (eg battery backed clock, NTP, etc.) or else the system clock
should be periodically saved to non-volative storage and restored at boot if MD5
authentication is to be expected to work reliably.
[Interface Command]
[Interface Command]
Set OSPF authentication key to a cryptographic password. The cryptographic algorithm is MD5.
ip ospf message-digest-key KEYID md5 KEY
no ip ospf message-digest-key
KEYID identifies secret key used to create the message digest. This ID is part of the
protocol and must be consistent across routers on a link.
KEY is the actual message digest key, of up to 16 chars (larger strings will be truncated), and is associated with the given KEYID.
[Interface Command]
[Interface Command]
Set link cost for the specified interface. The cost value is set to router-LSA’s metric
field and used for SPF calculation.
ip ospf cost <1-65535>
no ip ospf cost
ip ospf dead-interval <1-65535>
ip ospf dead-interval minimal hello-multiplier
<2-20>
no ip ospf dead-interval
[Interface Command]
[Interface Command]
[Interface Command]
Set number of seconds for RouterDeadInterval timer value used for Wait Timer and
Inactivity Timer. This value must be the same for all routers attached to a common
network. The default value is 40 seconds.
42
Quagga
If ’minimal’ is specified instead, then the dead-interval is set to 1 second and one must
specify a hello-multiplier. The hello-multiplier specifies how many Hellos to send per
second, from 2 (every 500ms) to 20 (every 50ms). Thus one can have 1s convergence
time for OSPF. If this form is specified, then the hello-interval advertised in Hello
packets is set to 0 and the hello-interval on received Hello packets is not checked, thus
the hello-multiplier need NOT be the same across multiple routers on a common link.
[Interface Command]
[Interface Command]
Set number of seconds for HelloInterval timer value. Setting this value, Hello packet
will be sent every timer value seconds on the specified interface. This value must
be the same for all routers attached to a common network. The default value is 10
seconds.
This command has no effect if [ip ospf dead-interval minimal], page 42 is also specified
for the interface.
ip ospf hello-interval <1-65535>
no ip ospf hello-interval
ip ospf network
[Interface Command]
(broadcast|non-broadcast|point-to-multipoint|point-to-point)
no ip ospf network
[Interface Command]
Set explicitly network type for specifed interface.
[Interface Command]
[Interface Command]
Set RouterPriority integer value. The router with the highest priority will be more eligible to become Designated Router. Setting the value to 0, makes the router ineligible
to become Designated Router. The default value is 1.
ip ospf priority <0-255>
no ip ospf priority
[Interface Command]
[Interface Command]
Set number of seconds for RxmtInterval timer value. This value is used when retransmitting Database Description and Link State Request packets. The default value is
5 seconds.
ip ospf retransmit-interval <1-65535>
no ip ospf retransmit interval
[Interface Command]
[Interface Command]
Set number of seconds for InfTransDelay value. LSAs’ age should be incremented by
this value when transmitting. The default value is 1 seconds.
ip ospf transmit-delay
no ip ospf transmit-delay
7.5 Redistribute routes to OSPF
redistribute (kernel|connected|static|rip|bgp)
redistribute (kernel|connected|static|rip|bgp)
route-map
redistribute (kernel|connected|static|rip|bgp)
metric-type (1|2)
redistribute (kernel|connected|static|rip|bgp)
metric-type (1|2) route-map word
redistribute (kernel|connected|static|rip|bgp)
metric <0-16777214>
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Chapter 7: OSPFv2
43
redistribute (kernel|connected|static|rip|bgp)
[OSPF
metric <0-16777214> route-map word
redistribute (kernel|connected|static|rip|bgp)
[OSPF
metric-type (1|2) metric <0-16777214>
redistribute (kernel|connected|static|rip|bgp)
[OSPF
metric-type (1|2) metric <0-16777214> route-map word
no redistribute (kernel|connected|static|rip|bgp)
[OSPF
Command]
Command]
Command]
Command]
Redistribute routes of the specified protocol or kind into OSPF, with the metric type
and metric set if specified, filtering the routes using the given route-map if specified.
Redistributed routes may also be filtered with distribute-lists, see [ospf distribute-list],
page 44.
Redistributed routes are distributed as into OSPF as Type-5 External LSAs into links
to areas that accept external routes, Type-7 External LSAs for NSSA areas and are
not redistributed at all into Stub areas, where external routes are not permitted.
Note that for connected routes, one may instead use passive-interface, see [OSPF
passive-interface], page 36.
default-information originate
default-information originate metric <0-16777214>
default-information originate metric <0-16777214>
metric-type (1|2)
default-information originate metric <0-16777214>
metric-type (1|2) route-map word
default-information originate always
default-information originate always metric
<0-16777214>
default-information originate always metric
<0-16777214> metric-type (1|2)
default-information originate always metric
<0-16777214> metric-type (1|2) route-map word
no default-information originate
[OSPF Command]
[OSPF Command]
[OSPF Command]
distribute-list NAME out
(kernel|connected|static|rip|ospf
no distribute-list NAME out
(kernel|connected|static|rip|ospf
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
[OSPF Command]
Originate an AS-External (type-5) LSA describing a default route into all externalrouting capable areas, of the specified metric and metric type. If the ’always’ keyword
is given then the default is always advertised, even when there is no default present
in the routing table.
[OSPF Command]
Apply the access-list filter, NAME, to redistributed routes of the given type before
allowing the routes to redistributed into OSPF (see [OSPF redistribute], page 43).
default-metric <0-16777214>
no default-metric
[OSPF Command]
[OSPF Command]
distance <1-255>
[OSPF Command]
44
Quagga
no distance <1-255>
[OSPF Command]
distance ospf (intra-area|inter-area|external)
<1-255>
no distance ospf
[OSPF Command]
[OSPF Command]
7.6 Showing OSPF information
[Command]
Show information on a variety of general OSPF and area state and configuration
information.
show ip ospf
[Command]
Show state and configuration of OSPF the specified interface, or all interfaces if no
interface is given.
show ip ospf interface [INTERFACE]
show
show
show
show
ip
ip
ip
ip
ospf
ospf
ospf
ospf
neighbor
neighbor INTERFACE
neighbor detail
neighbor INTERFACE detail
[Command]
[Command]
[Command]
[Command]
show ip ospf database
[Command]
show ip ospf database
(asbr-summary|external|network|router|summary)
show ip ospf database
(asbr-summary|external|network|router|summary)
show ip ospf database
(asbr-summary|external|network|router|summary)
adv-router adv-router
show ip ospf database
(asbr-summary|external|network|router|summary)
adv-router
show ip ospf database
(asbr-summary|external|network|router|summary)
self-originate
show ip ospf database
(asbr-summary|external|network|router|summary)
self-originate
[Command]
[Command]
link-state-id
[Command]
link-state-id
[Command]
adv-router
[Command]
link-state-id
[Command]
show ip ospf database max-age
[Command]
show ip ospf database self-originate
[Command]
[Command]
Show the OSPF routing table, as determined by the most recent SPF calculation.
show ip ospf route
7.7 Debugging OSPF
debug ospf packet
[Command]
(hello|dd|ls-request|ls-update|ls-ack|all) (send|recv)
[detail]
Chapter 7: OSPFv2
45
no debug ospf packet
[Command]
(hello|dd|ls-request|ls-update|ls-ack|all) (send|recv)
[detail]
debug ospf ism
debug ospf ism (status|events|timers)
no debug ospf ism
no debug ospf ism (status|events|timers)
[Command]
[Command]
[Command]
[Command]
debug ospf nsm
debug ospf nsm (status|events|timers)
no debug ospf nsm
no debug ospf nsm (status|events|timers)
[Command]
[Command]
[Command]
[Command]
debug ospf lsa
debug ospf lsa (generate|flooding|refresh)
no debug ospf lsa
no debug ospf lsa (generate|flooding|refresh)
[Command]
[Command]
[Command]
[Command]
debug ospf zebra
debug ospf zebra (interface|redistribute)
no debug ospf zebra
no debug ospf zebra (interface|redistribute)
[Command]
[Command]
[Command]
[Command]
show debugging ospf
[Command]
7.8 OSPF Configuration Examples
A simple example, with MD5 authentication enabled:
!
interface bge0
ip ospf authentication message-digest
ip ospf message-digest-key 1 md5 ABCDEFGHIJK
!
router ospf
network 192.168.0.0/16 area 0.0.0.1
area 0.0.0.1 authentication message-digest
An ABR router, with MD5 authentication and performing summarisation of networks
between the areas:
46
Quagga
!
password ABCDEF
log file /var/log/quagga/ospfd.log
service advanced-vty
!
interface eth0
ip ospf authentication message-digest
ip ospf message-digest-key 1 md5 ABCDEFGHIJK
!
interface ppp0
!
interface br0
ip ospf authentication message-digest
ip ospf message-digest-key 2 md5 XYZ12345
!
router ospf
ospf router-id 192.168.0.1
redistribute connected
passive interface ppp0
network 192.168.0.0/24 area 0.0.0.0
network 10.0.0.0/16 area 0.0.0.0
network 192.168.1.0/24 area 0.0.0.1
area 0.0.0.0 authentication message-digest
area 0.0.0.0 range 10.0.0.0/16
area 0.0.0.0 range 192.168.0.0/24
area 0.0.0.1 authentication message-digest
area 0.0.0.1 range 10.2.0.0/16
!
Chapter 8: OSPFv3
47
8 OSPFv3
ospf6d is a daemon support OSPF version 3 for IPv6 network. OSPF for IPv6 is described
in RFC2740.
8.1 OSPF6 router
router ospf6
router-id a.b.c.d
[Command]
[OSPF6 Command]
Set router’s Router-ID.
[OSPF6 Command]
Bind interface to specified area, and start sending OSPF packets. area can be specified
as 0.
interface ifname area area
8.2 OSPF6 area
Area support for OSPFv3 is not yet implemented.
8.3 OSPF6 interface
ipv6 ospf6 cost COST
[Interface Command]
Sets interface’s output cost. Default value is 1.
ipv6 ospf6 hello-interval HELLOINTERVAL
[Interface Command]
Sets interface’s Hello Interval. Default 40
ipv6 ospf6 dead-interval DEADINTERVAL
[Interface Command]
Sets interface’s Router Dead Interval. Default value is 40.
ipv6 ospf6 retransmit-interval RETRANSMITINTERVAL
[Interface Command]
Sets interface’s Rxmt Interval. Default value is 5.
ipv6 ospf6 priority PRIORITY
[Interface Command]
Sets interface’s Router Priority. Default value is 1.
ipv6 ospf6 transmit-delay TRANSMITDELAY
[Interface Command]
Sets interface’s Inf-Trans-Delay. Default value is 1.
8.4 Redistribute routes to OSPF6
redistribute static
redistribute connected
redistribute ripng
[OSPF6 Command]
[OSPF6 Command]
[OSPF6 Command]
48
Quagga
8.5 Showing OSPF6 information
[Command]
INSTANCE ID is an optional OSPF instance ID. To see router ID and OSPF instance
ID, simply type "show ipv6 ospf6 <cr>".
show ipv6 ospf6 [INSTANCE_ID]
[Command]
This command shows LSA database summary. You can specify the type of LSA.
show ipv6 ospf6 database
show ipv6 ospf6 interface
[Command]
To see OSPF interface configuration like costs.
show ipv6 ospf6 neighbor
[Command]
Shows state and chosen (Backup) DR of neighbor.
show ipv6 ospf6 request-list A.B.C.D
[Command]
Shows requestlist of neighbor.
show ipv6 route ospf6
This command shows internal routing table.
8.6 OSPF6 Configuration Examples
Example of ospf6d configured on one interface and area:
interface eth0
ipv6 ospf6 instance-id 0
!
router ospf6
router-id 212.17.55.53
area 0.0.0.0 range 2001:770:105:2::/64
interface eth0 area 0.0.0.0
!
[Command]
Chapter 9: Babel
49
9 Babel
Babel is an interior gateway protocol that is suitable both for wired networks and for wireless
mesh networks. Babel has been described as “RIP on speed” — it is based on the same
principles as RIP, but includes a number of refinements that make it react much faster to
topology changes without ever counting to infinity, and allow it to perform reliable link
quality estimation on wireless links. Babel is a double-stack routing protocol, meaning that
a single Babel instance is able to perform routing for both IPv4 and IPv6.
Quagga implements Babel as described in RFC6126.
9.1 Configuring babeld
The babeld daemon can be invoked with any of the common options (see Section 3.3
[Common Invocation Options], page 13).
The zebra daemon must be running before babeld is invoked. Also, if zebra is restarted
then babeld must be too.
Configuration of babeld is done in its configuration file babeld.conf.
9.2 Babel configuration
router babel
no router babel
[Command]
[Command]
Enable or disable Babel routing.
network ifname
no network ifname
[Babel Command]
[Babel Command]
Enable or disable Babel on the given interface.
[Interface Command]
[Interface Command]
Specifies whether this interface is wireless, which disables a number of optimisations
that are only correct on wired interfaces. Specifying wireless (the default) is always
correct, but may cause slower convergence and extra routing traffic.
babel wired
babel wireless
[Interface Command]
[Interface Command]
Specifies whether to perform split-horizon on the interface. Specifying no babel
split-horizon (the default) is always correct, while babel split-horizon is an
optimisation that should only be used on symmetric and transitive (wired) networks.
babel split-horizon
no babel split-horizon
[Interface Command]
Specifies the time in milliseconds between two scheduled hellos. On wired links, Babel
notices a link failure within two hello intervals; on wireless links, the link quality value
is reestimated at every hello interval. The default is 4000 ms.
babel hello-interval <20-655340>
[Interface Command]
Specifies the time in milliseconds between two scheduled updates. Since Babel makes
extensive use of triggered updates, this can be set to fairly high values on links with
little packet loss. The default is 20000 ms.
babel update-interval <20-655340>
50
Quagga
[Babel Command]
Specifies the time in milliseconds after which an “important” request or update will
be resent. The default is 2000 ms. You probably don’t want to tweak this value.
babel resend-delay <20-655340>
9.3 Babel redistribution
redistribute kind
no redistribute kind
[Babel command]
[Babel command]
Specify which kind of routes should be redistributed into Babel.
9.4 Show Babel information
show
show
show
show
[Command]
[Command]
[Command]
[Command]
These commands dump various parts of babeld’s internal state. They are mostly
useful for troubleshooting.
babel
babel
babel
babel
database
interface
neighbour
parameters
9.5 Babel debugging commands
[Babel Command]
[Babel Command]
Enable or disable debugging messages of a given kind. kind can be one of ‘common’,
‘kernel’, ‘filter’, ‘timeout’, ‘interface’, ‘route’ or ‘all’. Note that if you have
compiled with the NO DEBUG flag, then these commands aren’t available.
debug babel kind
no debug babel kind
Chapter 10: BGP
51
10 BGP
BGP stands for a Border Gateway Protocol. The lastest BGP version is 4. It is referred
as BGP-4. BGP-4 is one of the Exterior Gateway Protocols and de-fact standard of Inter
Domain routing protocol. BGP-4 is described in RFC1771, A Border Gateway Protocol 4
(BGP-4).
Many extensions have been added to RFC1771. RFC2858, Multiprotocol Extensions for
BGP-4 provides multiprotocol support to BGP-4.
10.1 Starting BGP
Default configuration file of bgpd is bgpd.conf. bgpd searches the current directory first
then /etc/quagga/bgpd.conf. All of bgpd’s command must be configured in bgpd.conf.
bgpd specific invocation options are described below. Common options may also be
specified (see Section 3.3 [Common Invocation Options], page 13).
‘-p PORT’
‘--bgp_port=PORT’
Set the bgp protocol’s port number.
‘-r’
‘--retain’
When program terminates, retain BGP routes added by zebra.
10.2 BGP router
First of all you must configure BGP router with router bgp command. To configure BGP
router, you need AS number. AS number is an identification of autonomous system. BGP
protocol uses the AS number for detecting whether the BGP connection is internal one or
external one.
[Command]
Enable a BGP protocol process with the specified asn. After this statement you can
input any BGP Commands. You can not create different BGP process under different
asn without specifying multiple-instance (see Section 10.13.1 [Multiple instance],
page 66).
router bgp asn
no router bgp asn
[Command]
Destroy a BGP protocol process with the specified asn.
[BGP]
This command specifies the router-ID. If bgpd connects to zebra it gets interface and
address information. In that case default router ID value is selected as the largest IP
Address of the interfaces. When router zebra is not enabled bgpd can’t get interface
information so router-id is set to 0.0.0.0. So please set router-id by hand.
bgp router-id A.B.C.D
10.2.1 BGP distance
[BGP]
This command change distance value of BGP. Each argument is distance value for
external routes, internal routes and local routes.
distance bgp <1-255> <1-255> <1-255>
52
Quagga
distance <1-255> A.B.C.D/M
distance <1-255> A.B.C.D/M word
[BGP]
[BGP]
This command set distance value to
10.2.2 BGP decision process
1.
2.
3.
4.
5.
6.
Weight check
Local preference check.
Local route check.
AS path length check.
Origin check.
MED check.
[BGP]
This command specifies that the length of confederation path sets and sequences
should should be taken into account during the BGP best path decision process.
bgp bestpath as-path confed
10.2.3 BGP route flap dampening
[BGP]
This command enables BGP route-flap dampening and specifies dampening parameters.
bgp dampening <1-45> <1-20000> <1-20000> <1-255>
half-life
Half-life time for the penalty
reuse-threshold
Value to start reusing a route
suppress-threshold
Value to start suppressing a route
max-suppress
Maximum duration to suppress a stable route
The route-flap damping algorithm is compatible with RFC2439. The use of this
command is not recommended nowadays, see RIPE-378.
10.3 BGP network
10.3.1 BGP route
network A.B.C.D/M
[BGP]
This command adds the announcement network.
router bgp 1
network 10.0.0.0/8
This configuration example says that network 10.0.0.0/8 will be announced to all
neighbors. Some vendors’ routers don’t advertise routes if they aren’t present in their
IGP routing tables; bgpd doesn’t care about IGP routes when announcing its routes.
no network A.B.C.D/M
[BGP]
Chapter 10: BGP
53
10.3.2 Route Aggregation
aggregate-address A.B.C.D/M
[BGP]
This command specifies an aggregate address.
[BGP]
This command specifies an aggregate address. Resulting routes inlucde AS set.
aggregate-address A.B.C.D/M as-set
[BGP]
This command specifies an aggregate address. Aggreated routes will not be announce.
aggregate-address A.B.C.D/M summary-only
no aggregate-address A.B.C.D/M
[BGP]
10.3.3 Redistribute to BGP
redistribute kernel
[BGP]
Redistribute kernel route to BGP process.
redistribute static
[BGP]
Redistribute static route to BGP process.
redistribute connected
[BGP]
Redistribute connected route to BGP process.
redistribute rip
[BGP]
Redistribute RIP route to BGP process.
redistribute ospf
[BGP]
Redistribute OSPF route to BGP process.
10.4 BGP Peer
10.4.1 Defining Peer
[BGP]
Creates a new neighbor whose remote-as is asn. peer can be an IPv4 address or an
IPv6 address.
neighbor peer remote-as asn
router bgp 1
neighbor 10.0.0.1 remote-as 2
In this case my router, in AS-1, is trying to peer with AS-2 at 10.0.0.1.
This command must be the first command used when configuring a neighbor. If the
remote-as is not specified, bgpd will complain like this:
can’t find neighbor 10.0.0.1
10.4.2 BGP Peer commands
In a router bgp clause there are neighbor specific configurations required.
54
Quagga
[BGP]
[BGP]
Shutdown the peer. We can delete the neighbor’s configuration by no neighbor peer
remote-as as-number but all configuration of the neighbor will be deleted. When
you want to preserve the configuration, but want to drop the BGP peer, use this
syntax.
neighbor peer shutdown
no neighbor peer shutdown
neighbor peer ebgp-multihop
no neighbor peer ebgp-multihop
[BGP]
[BGP]
neighbor peer description ...
no neighbor peer description ...
[BGP]
[BGP]
Set description of the peer.
[BGP]
Set up the neighbor’s BGP version. version can be 4, 4+ or 4-. BGP version 4 is
the default value used for BGP peering. BGP version 4+ means that the neighbor
supports Multiprotocol Extensions for BGP-4. BGP version 4- is similar but the
neighbor speaks the old Internet-Draft revision 00’s Multiprotocol Extensions for
BGP-4. Some routing software is still using this version.
neighbor peer version version
[BGP]
[BGP]
When you connect to a BGP peer over an IPv6 link-local address, you have to specify
the ifname of the interface used for the connection. To specify IPv4 session addresses,
see the neighbor peer update-source command below.
neighbor peer interface ifname
no neighbor peer interface ifname
This command is deprecated and may be removed in a future release. Its use should
be avoided.
[BGP]
[BGP]
This command specifies an announced route’s nexthop as being equivalent to the
address of the bgp router.
neighbor peer next-hop-self
no neighbor peer next-hop-self
[BGP]
[BGP]
Specify the IPv4 source address to use for the BGP session to this neighbour, may be
specified as either an IPv4 address directly or as an interface name (in which case the
zebra daemon MUST be running in order for bgpd to be able to retrieve interface
state).
neighbor peer update-source <ifname|address>
no neighbor peer update-source
router bgp 64555
neighbor foo update-source 192.168.0.1
neighbor bar update-source lo0
[BGP]
[BGP]
bgpd’s default is to not announce the default route (0.0.0.0/0) even it is in routing
table. When you want to announce default routes to the peer, use this command.
neighbor peer default-originate
no neighbor peer default-originate
Chapter 10: BGP
55
neighbor peer port port
neighbor peer port port
[BGP]
[BGP]
neighbor peer send-community
neighbor peer send-community
[BGP]
[BGP]
neighbor peer weight weight
no neighbor peer weight weight
[BGP]
[BGP]
This command specifies a default weight value for the neighbor’s routes.
[BGP]
[BGP]
neighbor peer maximum-prefix number
no neighbor peer maximum-prefix number
[BGP]
[BGP]
[BGP]
[BGP]
Specify an alternate AS for this BGP process when interacting with the specified peer.
With no modifiers, the specified local-as is prepended to the received AS PATH when
receiving routing updates from the peer, and prepended to the outgoing AS PATH
(after the process local AS) when transmitting local routes to the peer.
neighbor peer local-as as-number
neighbor peer local-as as-number no-prepend
neighbor peer local-as as-number no-prepend replace-as
no neighbor peer local-as
If the no-prepend attribute is specified, then the supplied local-as is not prepended
to the received AS PATH.
If the replace-as attribute is specified, then only the supplied local-as is prepended to
the AS PATH when transmitting local-route updates to this peer.
Note that replace-as can only be specified if no-prepend is.
This command is only allowed for eBGP peers.
10.4.3 Peer filtering
[BGP]
neighbor peer distribute-list name [in|out]
This command specifies a distribute-list for the peer. direct is ‘in’ or ‘out’.
neighbor peer prefix-list name [in|out]
[BGP command]
neighbor peer filter-list name [in|out]
[BGP command]
neighbor peer route-map name [in|out]
[BGP]
Apply a route-map on the neighbor. direct must be in or out.
10.5 BGP Peer Group
neighbor word peer-group
[BGP]
This command defines a new peer group.
neighbor peer peer-group word
This command bind specific peer to peer group word.
10.6 BGP Address Family
[BGP]
56
Quagga
10.7 Autonomous System
The AS (Autonomous System) number is one of the essential element of BGP. BGP is a distance vector routing protocol, and the AS-Path framework provides distance vector metric
and loop detection to BGP. RFC1930, Guidelines for creation, selection, and registration
of an Autonomous System (AS) provides some background on the concepts of an AS.
The AS number is a two octet value, ranging in value from 1 to 65535. The AS numbers
64512 through 65535 are defined as private AS numbers. Private AS numbers must not to
be advertised in the global Internet.
10.7.1 AS Path Regular Expression
AS path regular expression can be used for displaying BGP routes and AS path access
list. AS path regular expression is based on POSIX 1003.2 regular expressions. Following
description is just a subset of POSIX regular expression. User can use full POSIX regular
expression. Adding to that special character ’ ’ is added for AS path regular expression.
.
Matches any single character.
*
Matches 0 or more occurrences of pattern.
+
Matches 1 or more occurrences of pattern.
?
Match 0 or 1 occurrences of pattern.
^
Matches the beginning of the line.
$
Matches the end of the line.
_
Character _ has special meanings in AS path regular expression. It matches to
space and comma , and AS set delimiter { and } and AS confederation delimiter
( and ). And it also matches to the beginning of the line and the end of the
line. So _ can be used for AS value boundaries match. show ip bgp regexp
_7675_ matches to all of BGP routes which as AS number include 7675.
10.7.2 Display BGP Routes by AS Path
To show BGP routes which has specific AS path information show ip bgp command can be
used.
[Command]
This commands display BGP routes that matches AS path regular expression line.
show ip bgp regexp line
10.7.3 AS Path Access List
AS path access list is user defined AS path.
ip as-path access-list word {permit|deny} line
[Command]
This command defines a new AS path access list.
no ip as-path access-list word
no ip as-path access-list word {permit|deny} line
[Command]
[Command]
10.7.4 Using AS Path in Route Map
match as-path word
set as-path prepend as-path
[Route Map]
[Route Map]
Chapter 10: BGP
57
10.7.5 Private AS Numbers
10.8 BGP Communities Attribute
BGP communities attribute is widely used for implementing policy routing. Network operators can manipulate BGP communities attribute based on their network policy. BGP
communities attribute is defined in RFC1997, BGP Communities Attribute and RFC1998,
An Application of the BGP Community Attribute in Multi-home Routing. It is an optional
transitive attribute, therefore local policy can travel through different autonomous system.
Communities attribute is a set of communities values. Each communities value is 4 octet
long. The following format is used to define communities value.
AS:VAL
This format represents 4 octet communities value. AS is high order 2 octet in
digit format. VAL is low order 2 octet in digit format. This format is useful to
define AS oriented policy value. For example, 7675:80 can be used when AS
7675 wants to pass local policy value 80 to neighboring peer.
internet
internet represents well-known communities value 0.
no-export
no-export represents well-known communities value NO_EXPORT
(0xFFFFFF01). All routes carry this value must not be advertised to outside
a BGP confederation boundary. If neighboring BGP peer is part of BGP confederation, the peer is considered as inside a BGP confederation boundary, so
the route will be announced to the peer.
no-advertise
no-advertise represents well-known communities value NO_ADVERTISE
(0xFFFFFF02). All routes carry this value must not be advertise to other BGP
peers.
local-AS
local-AS represents well-known communities value NO_EXPORT_SUBCONFED
(0xFFFFFF03). All routes carry this value must not be advertised to external
BGP peers. Even if the neighboring router is part of confederation, it is
considered as external BGP peer, so the route will not be announced to the
peer.
When BGP communities attribute is received, duplicated communities value in the communities attribute is ignored and each communities values are sorted in numerical order.
10.8.1 BGP Community Lists
BGP community list is a user defined BGP communites attribute list. BGP community list
can be used for matching or manipulating BGP communities attribute in updates.
There are two types of community list. One is standard community list and another is expanded community list. Standard community list defines communities attribute. Expanded
community list defines communities attribute string with regular expression. Standard community list is compiled into binary format when user define it. Standard community list
will be directly compared to BGP communities attribute in BGP updates. Therefore the
comparison is faster than expanded community list.
58
Quagga
[Command]
This command defines a new standard community list. community is communities
value. The community is compiled into community structure. We can define multiple
community list under same name. In that case match will happen user defined order.
Once the community list matches to communities attribute in BGP updates it return
permit or deny by the community list definition. When there is no matched entry,
deny will be returned. When community is empty it matches to any routes.
ip community-list standard name {permit|deny} community
[Command]
This command defines a new expanded community list. line is a string expression
of communities attribute. line can include regular expression to match communities
attribute in BGP updates.
ip community-list expanded name {permit|deny} line
[Command]
[Command]
[Command]
These commands delete community lists specified by name. All of community lists
shares a single name space. So community lists can be removed simpley specifying
community lists name.
no ip community-list name
no ip community-list standard name
no ip community-list expanded name
[Command]
[Command]
This command display current community list information. When name is specified
the specified community list’s information is shown.
show ip community-list
show ip community-list name
# show ip community-list
Named Community standard list CLIST
permit 7675:80 7675:100 no-export
deny internet
Named Community expanded list EXPAND
permit :
# show ip community-list CLIST
Named Community standard list CLIST
permit 7675:80 7675:100 no-export
deny internet
10.8.2 Numbered BGP Community Lists
When number is used for BGP community list name, the number has special meanings.
Community list number in the range from 1 and 99 is standard community list. Community
list number in the range from 100 to 199 is expanded community list. These community
lists are called as numbered community lists. On the other hand normal community lists is
called as named community lists.
[Command]
This command defines a new community list. <1-99> is standard community list
number. Community list name within this range defines standard community list.
When community is empty it matches to any routes.
ip community-list <1-99> {permit|deny} community
Chapter 10: BGP
59
[Command]
This command defines a new community list. <100-199> is expanded community list
number. Community list name within this range defines expanded community list.
ip community-list <100-199> {permit|deny} community
[Command]
When community list type is not specifed, the community list type is automatically
detected. If community can be compiled into communities attribute, the community
list is defined as a standard community list. Otherwise it is defined as an expanded
community list. This feature is left for backward compability. Use of this feature is
not recommended.
ip community-list name {permit|deny} community
10.8.3 BGP Community in Route Map
In Route Map (see Chapter 14 [Route Map], page 93), we can match or set BGP communities
attribute. Using this feature network operator can implement their network policy based
on BGP communities attribute.
Following commands can be used in Route Map.
[Route Map]
[Route Map]
This command perform match to BGP updates using community list word. When the
one of BGP communities value match to the one of communities value in community
list, it is match. When exact-match keyword is spcified, match happen only when
BGP updates have completely same communities value specified in the community
list.
match community word
match community word exact-match
[Route Map]
[Route Map]
[Route Map]
This command manipulate communities value in BGP updates. When none is specified as communities value, it removes entire communities attribute from BGP updates.
When community is not none, specified communities value is set to BGP updates.
If BGP updates already has BGP communities value, the existing BGP communities value is replaced with specified community value. When additive keyword is
specified, community is appended to the existing communities value.
set community none
set community community
set community community additive
[Route Map]
This command remove communities value from BGP communities attribute. The
word is community list name. When BGP route’s communities value matches to the
community list word, the communities value is removed. When all of communities
value is removed eventually, the BGP update’s communities attribute is completely
removed.
set comm-list word delete
10.8.4 Display BGP Routes by Community
To show BGP routes which has specific BGP communities attribute, show ip bgp command can be used. The community value and community list can be used for show ip bgp
command.
60
Quagga
[Command]
[Command]
[Command]
show ip bgp community displays BGP routes which has communities attribute. When
community is specified, BGP routes that matches community value is displayed. For
this command, internet keyword can’t be used for community value. When exactmatch is specified, it display only routes that have an exact match.
show ip bgp community
show ip bgp community community
show ip bgp community community exact-match
[Command]
[Command]
This commands display BGP routes that matches community list word. When exactmatch is specified, display only routes that have an exact match.
show ip bgp community-list word
show ip bgp community-list word exact-match
10.8.5 Using BGP Communities Attribute
Following configuration is the most typical usage of BGP communities attribute. AS 7675
provides upstream Internet connection to AS 100. When following configuration exists in
AS 7675, AS 100 networks operator can set local preference in AS 7675 network by setting
BGP communities attribute to the updates.
router bgp 7675
neighbor 192.168.0.1 remote-as 100
neighbor 192.168.0.1 route-map RMAP in
!
ip community-list 70 permit 7675:70
ip community-list 70 deny
ip community-list 80 permit 7675:80
ip community-list 80 deny
ip community-list 90 permit 7675:90
ip community-list 90 deny
!
route-map RMAP permit 10
match community 70
set local-preference 70
!
route-map RMAP permit 20
match community 80
set local-preference 80
!
route-map RMAP permit 30
match community 90
set local-preference 90
Following configuration announce 10.0.0.0/8 from AS 100 to AS 7675. The route has
communities value 7675:80 so when above configuration exists in AS 7675, announced route’s
local preference will be set to value 80.
router bgp 100
network 10.0.0.0/8
neighbor 192.168.0.2 remote-as 7675
Chapter 10: BGP
61
neighbor 192.168.0.2 route-map RMAP out
!
ip prefix-list PLIST permit 10.0.0.0/8
!
route-map RMAP permit 10
match ip address prefix-list PLIST
set community 7675:80
Following configuration is an example of BGP route filtering using communities attribute.
This configuration only permit BGP routes which has BGP communities value 0:80 or 0:90.
Network operator can put special internal communities value at BGP border router, then
limit the BGP routes announcement into the internal network.
router bgp 7675
neighbor 192.168.0.1 remote-as 100
neighbor 192.168.0.1 route-map RMAP in
!
ip community-list 1 permit 0:80 0:90
!
route-map RMAP permit in
match community 1
Following exmaple filter BGP routes which has communities value 1:1. When there is
no match community-list returns deny. To avoid filtering all of routes, we need to define
permit any at last.
router bgp 7675
neighbor 192.168.0.1 remote-as 100
neighbor 192.168.0.1 route-map RMAP in
!
ip community-list standard FILTER deny 1:1
ip community-list standard FILTER permit
!
route-map RMAP permit 10
match community FILTER
Communities value keyword internet has special meanings in standard community lists.
In below example internet act as match any. It matches all of BGP routes even if the
route does not have communities attribute at all. So community list INTERNET is same as
above example’s FILTER.
ip community-list standard INTERNET deny 1:1
ip community-list standard INTERNET permit internet
Following configuration is an example of communities value deletion. With this configuration communities value 100:1 and 100:2 is removed from BGP updates. For communities
value deletion, only permit community-list is used. deny community-list is ignored.
router bgp 7675
neighbor 192.168.0.1 remote-as 100
neighbor 192.168.0.1 route-map RMAP in
!
ip community-list standard DEL permit 100:1 100:2
62
Quagga
!
route-map RMAP permit 10
set comm-list DEL delete
10.9 BGP Extended Communities Attribute
BGP extended communities attribute is introduced with MPLS VPN/BGP technology.
MPLS VPN/BGP expands capability of network infrastructure to provide VPN functionality. At the same time it requires a new framework for policy routing. With BGP Extended
Communities Attribute we can use Route Target or Site of Origin for implementing network
policy for MPLS VPN/BGP.
BGP Extended Communities Attribute is similar to BGP Communities Attribute. It is
an optional transitive attribute. BGP Extended Communities Attribute can carry multiple
Extended Community value. Each Extended Community value is eight octet length.
BGP Extended Communities Attribute provides an extended range compared with BGP
Communities Attribute. Adding to that there is a type field in each value to provides
community space structure.
There are two format to define Extended Community value. One is AS based format
the other is IP address based format.
AS:VAL
This is a format to define AS based Extended Community value. AS part is 2
octets Global Administrator subfield in Extended Community value. VAL part
is 4 octets Local Administrator subfield. 7675:100 represents AS 7675 policy
value 100.
IP-Address:VAL
This is a format to define IP address based Extended Community value. IPAddress part is 4 octets Global Administrator subfield. VAL part is 2 octets
Local Administrator subfield. 10.0.0.1:100 represents
10.9.1 BGP Extended Community Lists
Expanded Community Lists is a user defined BGP Expanded Community Lists.
ip extcommunity-list standard name {permit|deny}
extcommunity
[Command]
This command defines a new standard extcommunity-list. extcommunity is extended
communities value. The extcommunity is compiled into extended community structure. We can define multiple extcommunity-list under same name. In that case
match will happen user defined order. Once the extcommunity-list matches to extended communities attribute in BGP updates it return permit or deny based upon
the extcommunity-list definition. When there is no matched entry, deny will be returned. When extcommunity is empty it matches to any routes.
[Command]
This command defines a new expanded extcommunity-list. line is a string expression
of extended communities attribute. line can include regular expression to match
extended communities attribute in BGP updates.
ip extcommunity-list expanded name {permit|deny} line
Chapter 10: BGP
63
[Command]
[Command]
[Command]
These commands delete extended community lists specified by name. All of extended
community lists shares a single name space. So extended community lists can be
removed simpley specifying the name.
no ip extcommunity-list name
no ip extcommunity-list standard name
no ip extcommunity-list expanded name
[Command]
[Command]
This command display current extcommunity-list information. When name is specified the community list’s information is shown.
show ip extcommunity-list
show ip extcommunity-list name
# show ip extcommunity-list
10.9.2 BGP Extended Communities in Route Map
match extcommunity word
[Route Map]
set extcommunity rt extcommunity
[Route Map]
This command set Route Target value.
set extcommunity soo extcommunity
[Route Map]
This command set Site of Origin value.
10.10 Displaying BGP Routes
10.10.1 Show IP BGP
[Command]
[Command]
[Command]
This command displays BGP routes. When no route is specified it display all of IPv4
BGP routes.
show ip bgp
show ip bgp A.B.C.D
show ip bgp X:X::X:X
BGP table version is 0, local router ID is 10.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network
*> 1.1.1.1/32
Next Hop
0.0.0.0
Metric LocPrf Weight Path
0
32768 i
Total number of prefixes 1
10.10.2 More Show IP BGP
[Command]
This command display BGP routes using AS path regular expression (see
Section 10.7.2 [Display BGP Routes by AS Path], page 56).
show ip bgp regexp line
64
Quagga
[Command]
[Command]
This command display BGP routes using community (see Section 10.8.4 [Display
BGP Routes by Community], page 59).
show ip bgp community community
show ip bgp community community exact-match
[Command]
[Command]
This command display BGP routes using community list (see Section 10.8.4 [Display
BGP Routes by Community], page 59).
show ip bgp community-list word
show ip bgp community-list word exact-match
show ip bgp summary
[Command]
show ip bgp neighbor [peer]
[Command]
clear ip bgp peer
[Command]
Clear peers which have addresses of X.X.X.X
clear ip bgp peer soft in
[Command]
Clear peer using soft reconfiguration.
show ip bgp dampened-paths
[Command]
Display paths suppressed due to dampening
show ip bgp flap-statistics
[Command]
Display flap statistics of routes
show debug
[Command]
debug event
[Command]
debug update
[Command]
debug keepalive
[Command]
no debug event
[Command]
no debug update
[Command]
no debug keepalive
[Command]
10.11 Capability Negotiation
When adding IPv6 routing information exchange feature to BGP. There were some proposals. IETF (Internet Engineering Task Force) IDR (Inter Domain Routing) WG (Working
group) adopted a proposal called Multiprotocol Extension for BGP. The specification is described in RFC2283. The protocol does not define new protocols. It defines new attributes
to existing BGP. When it is used exchanging IPv6 routing information it is called BGP-4+.
When it is used for exchanging multicast routing information it is called MBGP.
bgpd supports Multiprotocol Extension for BGP. So if remote peer supports the protocol,
bgpd can exchange IPv6 and/or multicast routing information.
Traditional BGP did not have the feature to detect remote peer’s capabilities, e.g.
whether it can handle prefix types other than IPv4 unicast routes. This was a big problem
using Multiprotocol Extension for BGP to operational network. RFC2842, Capabilities
Chapter 10: BGP
65
Advertisement with BGP-4 adopted a feature called Capability Negotiation. bgpd use this
Capability Negotiation to detect the remote peer’s capabilities. If the peer is only configured as IPv4 unicast neighbor, bgpd does not send these Capability Negotiation packets (at
least not unless other optional BGP features require capability negotation).
By default, Quagga will bring up peering with minimal common capability for the both
sides. For example, local router has unicast and multicast capabilitie and remote router
has unicast capability. In this case, the local router will establish the connection with
unicast only capability. When there are no common capabilities, Quagga sends Unsupported
Capability error and then resets the connection.
If you want to completely match capabilities with remote peer. Please use strictcapability-match command.
[BGP]
[BGP]
Strictly compares remote capabilities and local capabilities. If capabilities are different, send Unsupported Capability error then reset connection.
neighbor peer strict-capability-match
no neighbor peer strict-capability-match
You may want to disable sending Capability Negotiation OPEN message optional parameter to the peer when remote peer does not implement Capability Negotiation. Please
use dont-capability-negotiate command to disable the feature.
[BGP]
[BGP]
Suppress sending Capability Negotiation as OPEN message optional parameter to
the peer. This command only affects the peer is configured other than IPv4 unicast
configuration.
neighbor peer dont-capability-negotiate
no neighbor peer dont-capability-negotiate
When remote peer does not have capability negotiation feature, remote peer will not send
any capabilities at all. In that case, bgp configures the peer with configured capabilities.
You may prefer locally configured capabilities more than the negotiated capabilities even
though remote peer sends capabilities. If the peer is configured by override-capability,
bgpd ignores received capabilities then override negotiated capabilities with configured values.
[BGP]
[BGP]
Override the result of Capability Negotiation with local configuration. Ignore remote
peer’s capability value.
neighbor peer override-capability
no neighbor peer override-capability
10.12 Route Reflector
bgp cluster-id a.b.c.d
[BGP]
neighbor peer route-reflector-client
no neighbor peer route-reflector-client
[BGP]
[BGP]
66
Quagga
10.13 Route Server
At an Internet Exchange point, many ISPs are connected to each other by external BGP
peering. Normally these external BGP connection are done by ‘full mesh’ method. As
with internal BGP full mesh formation, this method has a scaling problem.
This scaling problem is well known. Route Server is a method to resolve the problem.
Each ISP’s BGP router only peers to Route Server. Route Server serves as BGP information
exchange to other BGP routers. By applying this method, numbers of BGP connections is
reduced from O(n*(n-1)/2) to O(n).
Unlike normal BGP router, Route Server must have several routing tables for managing
different routing policies for each BGP speaker. We call the routing tables as different
views. bgpd can work as normal BGP router or Route Server or both at the same time.
10.13.1 Multiple instance
To enable multiple view function of bgpd, you must turn on multiple instance feature
beforehand.
[Command]
Enable BGP multiple instance feature. After this feature is enabled, you can make
multiple BGP instances or multiple BGP views.
bgp multiple-instance
[Command]
Disable BGP multiple instance feature. You can not disable this feature when BGP
multiple instances or views exist.
no bgp multiple-instance
When you want to make configuration more Cisco like one,
bgp config-type cisco
[Command]
Cisco compatible BGP configuration output.
When bgp config-type cisco is specified,
“no synchronization” is displayed. “no auto-summary” is displayed.
“network” and “aggregate-address” argument is displayed as “A.B.C.D M.M.M.M”
Quagga: network 10.0.0.0/8 Cisco: network 10.0.0.0
Quagga: aggregate-address 192.168.0.0/24 Cisco: aggregate-address 192.168.0.0
255.255.255.0
Community attribute handling is also different. If there is no configuration is specified
community attribute and extended community attribute are sent to neighbor. When user
manually disable the feature community attribute is not sent to the neighbor. In case
of bgp config-type cisco is specified, community attribute is not sent to the neighbor
by default. To send community attribute user has to specify neighbor A.B.C.D sendcommunity command.
!
router bgp 1
neighbor 10.0.0.1 remote-as 1
no neighbor 10.0.0.1 send-community
!
Chapter 10: BGP
67
router bgp 1
neighbor 10.0.0.1 remote-as 1
neighbor 10.0.0.1 send-community
!
[Command]
bgp config-type zebra
Quagga style BGP configuration. This is default.
10.13.2 BGP instance and view
BGP instance is a normal BGP process. The result of route selection goes to the kernel
routing table. You can setup different AS at the same time when BGP multiple instance
feature is enabled.
[Command]
router bgp as-number
Make a new BGP instance. You can use arbitrary word for the name.
bgp multiple-instance
!
router bgp 1
neighbor 10.0.0.1 remote-as
neighbor 10.0.0.2 remote-as
!
router bgp 2
neighbor 10.0.0.3 remote-as
neighbor 10.0.0.4 remote-as
2
3
4
5
BGP view is almost same as normal BGP process. The result of route selection does not
go to the kernel routing table. BGP view is only for exchanging BGP routing information.
[Command]
Make a new BGP view. You can use arbitrary word for the name. This view’s route
selection result does not go to the kernel routing table.
router bgp as-number view name
With this command, you can setup Route Server like below.
bgp multiple-instance
!
router bgp 1 view 1
neighbor 10.0.0.1 remote-as
neighbor 10.0.0.2 remote-as
!
router bgp 2 view 2
neighbor 10.0.0.3 remote-as
neighbor 10.0.0.4 remote-as
2
3
4
5
10.13.3 Routing policy
You can set different routing policy for a peer. For example, you can set different filter for
a peer.
68
Quagga
bgp multiple-instance
!
router bgp 1 view 1
neighbor 10.0.0.1 remote-as 2
neighbor 10.0.0.1 distribute-list 1 in
!
router bgp 1 view 2
neighbor 10.0.0.1 remote-as 2
neighbor 10.0.0.1 distribute-list 2 in
This means BGP update from a peer 10.0.0.1 goes to both BGP view 1 and view 2.
When the update is inserted into view 1, distribute-list 1 is applied. On the other hand,
when the update is inserted into view 2, distribute-list 2 is applied.
10.13.4 Viewing the view
To display routing table of BGP view, you must specify view name.
show ip bgp view name
Display routing table of BGP view name.
10.14 How to set up a 6-Bone connection
[Command]
Chapter 10: BGP
69
zebra configuration
===================
!
! Actually there is no need to configure zebra
!
bgpd configuration
==================
!
! This means that routes go through zebra and into the kernel.
!
router zebra
!
! MP-BGP configuration
!
router bgp 7675
bgp router-id 10.0.0.1
neighbor 3ffe:1cfa:0:2:2a0:c9ff:fe9e:f56 remote-as as-number
!
address-family ipv6
network 3ffe:506::/32
neighbor 3ffe:1cfa:0:2:2a0:c9ff:fe9e:f56 activate
neighbor 3ffe:1cfa:0:2:2a0:c9ff:fe9e:f56 route-map set-nexthop out
neighbor 3ffe:1cfa:0:2:2c0:4fff:fe68:a231 remote-as as-number
neighbor 3ffe:1cfa:0:2:2c0:4fff:fe68:a231 route-map set-nexthop out
exit-address-family
!
ipv6 access-list all permit any
!
! Set output nexthop address.
!
route-map set-nexthop permit 10
match ipv6 address all
set ipv6 nexthop global 3ffe:1cfa:0:2:2c0:4fff:fe68:a225
set ipv6 nexthop local fe80::2c0:4fff:fe68:a225
!
! logfile FILENAME is obsolete. Please use log file FILENAME
log file bgpd.log
!
10.15 Dump BGP packets and table
dump bgp all path
dump bgp all path interval
Dump all BGP packet and events to path file.
[Command]
[Command]
70
Quagga
dump bgp updates path
dump bgp updates path interval
[Command]
[Command]
Dump BGP updates to path file.
dump bgp routes path
dump bgp routes path
[Command]
[Command]
Dump whole BGP routing table to path. This is heavy process.
10.16 BGP Configuration Examples
Example of a session to an upstream, advertising only one prefix to it.
router bgp 64512
bgp router-id 10.236.87.1
network 10.236.87.0/24
neighbor upstream peer-group
neighbor upstream remote-as 64515
neighbor upstream capability dynamic
neighbor upstream prefix-list pl-allowed-adv out
neighbor 10.1.1.1 peer-group upstream
neighbor 10.1.1.1 description ACME ISP
!
ip prefix-list pl-allowed-adv seq 5 permit 82.195.133.0/25
ip prefix-list pl-allowed-adv seq 10 deny any
A more complex example. With upstream, peer and customer sessions. Advertising
global prefixes and NO EXPORT prefixes and providing actions for customer routes based
on community values. Extensive use of route-maps and the ’call’ feature to support selective
advertising of prefixes. This example is intended as guidance only, it has NOT been tested
and almost certainly containts silly mistakes, if not serious flaws.
router bgp 64512
bgp router-id 10.236.87.1
network 10.123.456.0/24
network 10.123.456.128/25 route-map rm-no-export
neighbor upstream capability dynamic
neighbor upstream route-map rm-upstream-out out
neighbor cust capability dynamic
neighbor cust route-map rm-cust-in in
neighbor cust route-map rm-cust-out out
neighbor cust send-community both
neighbor peer capability dynamic
neighbor peer route-map rm-peer-in in
neighbor peer route-map rm-peer-out out
neighbor peer send-community both
neighbor 10.1.1.1 remote-as 64515
neighbor 10.1.1.1 peer-group upstream
neighbor 10.2.1.1 remote-as 64516
neighbor 10.2.1.1 peer-group upstream
Chapter 10: BGP
71
neighbor 10.3.1.1 remote-as 64517
neighbor 10.3.1.1 peer-group cust-default
neighbor 10.3.1.1 description customer1
neighbor 10.3.1.1 prefix-list pl-cust1-network in
neighbor 10.4.1.1 remote-as 64518
neighbor 10.4.1.1 peer-group cust
neighbor 10.4.1.1 prefix-list pl-cust2-network in
neighbor 10.4.1.1 description customer2
neighbor 10.5.1.1 remote-as 64519
neighbor 10.5.1.1 peer-group peer
neighbor 10.5.1.1 prefix-list pl-peer1-network in
neighbor 10.5.1.1 description peer AS 1
neighbor 10.6.1.1 remote-as 64520
neighbor 10.6.1.1 peer-group peer
neighbor 10.6.1.1 prefix-list pl-peer2-network in
neighbor 10.6.1.1 description peer AS 2
!
ip prefix-list pl-default permit 0.0.0.0/0
!
ip prefix-list pl-upstream-peers permit 10.1.1.1/32
ip prefix-list pl-upstream-peers permit 10.2.1.1/32
!
ip prefix-list pl-cust1-network permit 10.3.1.0/24
ip prefix-list pl-cust1-network permit 10.3.2.0/24
!
ip prefix-list pl-cust2-network permit 10.4.1.0/24
!
ip prefix-list pl-peer1-network permit 10.5.1.0/24
ip prefix-list pl-peer1-network permit 10.5.2.0/24
ip prefix-list pl-peer1-network permit 192.168.0.0/24
!
ip prefix-list pl-peer2-network permit 10.6.1.0/24
ip prefix-list pl-peer2-network permit 10.6.2.0/24
ip prefix-list pl-peer2-network permit 192.168.1.0/24
ip prefix-list pl-peer2-network permit 192.168.2.0/24
ip prefix-list pl-peer2-network permit 172.16.1/24
!
ip as-path access-list asp-own-as permit ^$
ip as-path access-list asp-own-as permit _64512_
!
! #################################################################
! Match communities we provide actions for, on routes receives from
! customers. Communities values of <our-ASN>:X, with X, have actions:
!
! 100 - blackhole the prefix
! 200 - set no_export
! 300 - advertise only to other customers
72
Quagga
! 400 - advertise only to upstreams
! 500 - set no_export when advertising to upstreams
! 2X00 - set local_preference to X00
!
! blackhole the prefix of the route
ip community-list standard cm-blackhole permit 64512:100
!
! set no-export community before advertising
ip community-list standard cm-set-no-export permit 64512:200
!
! advertise only to other customers
ip community-list standard cm-cust-only permit 64512:300
!
! advertise only to upstreams
ip community-list standard cm-upstream-only permit 64512:400
!
! advertise to upstreams with no-export
ip community-list standard cm-upstream-noexport permit 64512:500
!
! set local-pref to least significant 3 digits of the community
ip community-list standard cm-prefmod-100 permit 64512:2100
ip community-list standard cm-prefmod-200 permit 64512:2200
ip community-list standard cm-prefmod-300 permit 64512:2300
ip community-list standard cm-prefmod-400 permit 64512:2400
ip community-list expanded cme-prefmod-range permit 64512:2...
!
! Informational communities
!
! 3000 - learned from upstream
! 3100 - learned from customer
! 3200 - learned from peer
!
ip community-list standard cm-learnt-upstream permit 64512:3000
ip community-list standard cm-learnt-cust permit 64512:3100
ip community-list standard cm-learnt-peer permit 64512:3200
!
! ###################################################################
! Utility route-maps
!
! These utility route-maps generally should not used to permit/deny
! routes, i.e. they do not have meaning as filters, and hence probably
! should be used with ’on-match next’. These all finish with an empty
! permit entry so as not interfere with processing in the caller.
!
route-map rm-no-export permit 10
set community additive no-export
route-map rm-no-export permit 20
Chapter 10: BGP
73
!
route-map rm-blackhole permit 10
description blackhole, up-pref and ensure it cant escape this AS
set ip next-hop 127.0.0.1
set local-preference 10
set community additive no-export
route-map rm-blackhole permit 20
!
! Set local-pref as requested
route-map rm-prefmod permit 10
match community cm-prefmod-100
set local-preference 100
route-map rm-prefmod permit 20
match community cm-prefmod-200
set local-preference 200
route-map rm-prefmod permit 30
match community cm-prefmod-300
set local-preference 300
route-map rm-prefmod permit 40
match community cm-prefmod-400
set local-preference 400
route-map rm-prefmod permit 50
!
! Community actions to take on receipt of route.
route-map rm-community-in permit 10
description check for blackholing, no point continuing if it matches.
match community cm-blackhole
call rm-blackhole
route-map rm-community-in permit 20
match community cm-set-no-export
call rm-no-export
on-match next
route-map rm-community-in permit 30
match community cme-prefmod-range
call rm-prefmod
route-map rm-community-in permit 40
!
! #####################################################################
! Community actions to take when advertising a route.
! These are filtering route-maps,
!
! Deny customer routes to upstream with cust-only set.
route-map rm-community-filt-to-upstream deny 10
match community cm-learnt-cust
match community cm-cust-only
route-map rm-community-filt-to-upstream permit 20
!
74
Quagga
! Deny customer routes to other customers with upstream-only set.
route-map rm-community-filt-to-cust deny 10
match community cm-learnt-cust
match community cm-upstream-only
route-map rm-community-filt-to-cust permit 20
!
! ###################################################################
! The top-level route-maps applied to sessions. Further entries could
! be added obviously..
!
! Customers
route-map rm-cust-in permit 10
call rm-community-in
on-match next
route-map rm-cust-in permit 20
set community additive 64512:3100
route-map rm-cust-in permit 30
!
route-map rm-cust-out permit 10
call rm-community-filt-to-cust
on-match next
route-map rm-cust-out permit 20
!
! Upstream transit ASes
route-map rm-upstream-out permit 10
description filter customer prefixes which are marked cust-only
call rm-community-filt-to-upstream
on-match next
route-map rm-upstream-out permit 20
description only customer routes are provided to upstreams/peers
match community cm-learnt-cust
!
! Peer ASes
! outbound policy is same as for upstream
route-map rm-peer-out permit 10
call rm-upstream-out
!
route-map rm-peer-in permit 10
set community additive 64512:3200
Chapter 11: Configuring Quagga as a Route Server
75
11 Configuring Quagga as a Route Server
The purpose of a Route Server is to centralize the peerings between BGP speakers. For
example if we have an exchange point scenario with four BGP speakers, each of which
maintaining a BGP peering with the other three (see Figure 11.2), we can convert it into
a centralized scenario where each of the four establishes a single BGP peering against the
Route Server (see Figure 11.3).
We will first describe briefly the Route Server model implemented by Quagga. We will
explain the commands that have been added for configuring that model. And finally we
will show a full example of Quagga configured as Route Server.
11.1 Description of the Route Server model
First we are going to describe the normal processing that BGP announcements suffer inside
a standard BGP speaker, as shown in Figure 11.1, it consists of three steps:
• When an announcement is received from some peer, the ‘In’ filters configured for that
peer are applied to the announcement. These filters can reject the announcement,
accept it unmodified, or accept it with some of its attributes modified.
• The announcements that pass the ‘In’ filters go into the Best Path Selection process,
where they are compared to other announcements referred to the same destination that
have been received from different peers (in case such other announcements exist). For
each different destination, the announcement which is selected as the best is inserted
into the BGP speaker’s Loc-RIB.
• The routes which are inserted in the Loc-RIB are considered for announcement to
all the peers (except the one from which the route came). This is done by passing
the routes in the Loc-RIB through the ‘Out’ filters corresponding to each peer. These
filters can reject the route, accept it unmodified, or accept it with some of its attributes
modified. Those routes which are accepted by the ‘Out’ filters of a peer are announced
to that peer.
76
Quagga
Figure 11.1: Announcement processing inside a “normal” BGP speaker
Figure 11.2: Full Mesh
Figure 11.3: Route Server and clients
Chapter 11: Configuring Quagga as a Route Server
77
Of course we want that the routing tables obtained in each of the routers are the same
when using the route server than when not. But as a consequence of having a single BGP
peering (against the route server), the BGP speakers can no longer distinguish from/to
which peer each announce comes/goes. This means that the routers connected to the route
server are not able to apply by themselves the same input/output filters as in the full mesh
scenario, so they have to delegate those functions to the route server.
Even more, the “best path” selection must be also performed inside the route server
on behalf of its clients. The reason is that if, after applying the filters of the announcer
and the (potential) receiver, the route server decides to send to some client two or more
different announcements referred to the same destination, the client will only retain the last
one, considering it as an implicit withdrawal of the previous announcements for the same
destination. This is the expected behavior of a BGP speaker as defined in RFC1771, and
even though there are some proposals of mechanisms that permit multiple paths for the
same destination to be sent through a single BGP peering, none are currently supported by
most existing BGP implementations.
As a consequence a route server must maintain additional information and perform
additional tasks for a RS-client that those necessary for common BGP peerings. Essentially
a route server must:
• Maintain a separated Routing Information Base (Loc-RIB) for each peer configured
as RS-client, containing the routes selected as a result of the “Best Path Selection”
process that is performed on behalf of that RS-client.
• Whenever it receives an announcement from a RS-client, it must consider it for the
Loc-RIBs of the other RS-clients.
• This means that for each of them the route server must pass the announcement
through the appropriate ‘Out’ filter of the announcer.
• Then through the appropriate ‘In’ filter of the potential receiver.
• Only if the announcement is accepted by both filters it will be passed to the “Best
Path Selection” process.
• Finally, it might go into the Loc-RIB of the receiver.
When we talk about the “appropriate” filter, both the announcer and the receiver of the
route must be taken into account. Suppose that the route server receives an announcement
from client A, and the route server is considering it for the Loc-RIB of client B. The filters
that should be applied are the same that would be used in the full mesh scenario, i.e., first
the ‘Out’ filter of router A for announcements going to router B, and then the ‘In’ filter of
router B for announcements coming from router A.
We call “Export Policy” of a RS-client to the set of ‘Out’ filters that the client would
use if there was no route server. The same applies for the “Import Policy” of a RS-client
and the set of ‘In’ filters of the client if there was no route server.
It is also common to demand from a route server that it does not modify some BGP attributes (next-hop, as-path and MED) that are usually modified by standard BGP speakers
before announcing a route.
The announcement processing model implemented by Quagga is shown in Figure 11.4.
The figure shows a mixture of RS-clients (B, C and D) with normal BGP peers (A). There
are some details that worth additional comments:
78
Quagga
• Announcements coming from a normal BGP peer are also considered for the Loc-RIBs
of all the RS-clients. But logically they do not pass through any export policy.
• Those peers that are configured as RS-clients do not receive any announce from the
‘Main’ Loc-RIB.
• Apart from import and export policies, ‘In’ and ‘Out’ filters can also be set for RSclients. ‘In’ filters might be useful when the route server has also normal BGP peers.
On the other hand, ‘Out’ filters for RS-clients are probably unnecessary, but we decided
not to remove them as they do not hurt anybody (they can always be left empty).
Chapter 11: Configuring Quagga as a Route Server
79
Figure 11.4: Announcement processing model implemented by the Route Server
11.2 Commands for configuring a Route Server
Now we will describe the commands that have been added to quagga in order to support
the route server features.
neighbor peer-group route-server-client
neighbor A.B.C.D route-server-client
[Route-Server]
[Route-Server]
80
Quagga
[Route-Server]
This command configures the peer given by peer, A.B.C.D or X:X::X:X as an RSclient.
neighbor X:X::X:X route-server-client
Actually this command is not new, it already existed in standard Quagga. It enables
the transparent mode for the specified peer. This means that some BGP attributes
(as-path, next-hop and MED) of the routes announced to that peer are not modified.
With the route server patch, this command, apart from setting the transparent mode,
creates a new Loc-RIB dedicated to the specified peer (those named ‘Loc-RIB for X’
in Figure 11.4.). Starting from that moment, every announcement received by the
route server will be also considered for the new Loc-RIB.
neigbor {A.B.C.D|X.X::X.X|peer-group} route-map WORD
{import|export}
[Route-Server]
This set of commands can be used to specify the route-map that represents the Import
or Export policy of a peer which is configured as a RS-client (with the previous
command).
[Route-Server]
This is a new match statement for use in route-maps, enabling them to describe
import/export policies. As we said before, an import/export policy represents a set
of input/output filters of the RS-client. This statement makes possible that a single
route-map represents the full set of filters that a BGP speaker would use for its
different peers in a non-RS scenario.
match peer {A.B.C.D|X:X::X:X}
The match peer statement has different semantics whether it is used inside an import or an export route-map. In the first case the statement matches if the address of the peer who sends the announce is the same that the address specified by
{A.B.C.D|X:X::X:X}. For export route-maps it matches when {A.B.C.D|X:X::X:X}
is the address of the RS-Client into whose Loc-RIB the announce is going to be inserted (how the same export policy is applied before different Loc-RIBs is shown in
Figure 11.4.).
[Route-map Command]
This command (also used inside a route-map) jumps into a different route-map, whose
name is specified by WORD. When the called route-map finishes, depending on its
result the original route-map continues or not. Apart from being useful for making
import/export route-maps easier to write, this command can also be used inside any
normal (in or out) route-map.
call WORD
11.3 Example of Route Server Configuration
Finally we are going to show how to configure a Quagga daemon to act as a Route Server.
For this purpose we are going to present a scenario without route server, and then we will
show how to use the configurations of the BGP routers to generate the configuration of the
route server.
All the configuration files shown in this section have been taken from scenarios which
were tested using the VNUML tool VNUML.
Chapter 11: Configuring Quagga as a Route Server
81
11.3.1 Configuration of the BGP routers without Route Server
We will suppose that our initial scenario is an exchange point with three BGP capable
routers, named RA, RB and RC. Each of the BGP speakers generates some routes (with
the network command), and establishes BGP peerings against the other two routers. These
peerings have In and Out route-maps configured, named like “PEER-X-IN” or “PEER-XOUT”. For example the configuration file for router RA could be the following:
#Configuration for router ’RA’
!
hostname RA
password ****
!
router bgp 65001
no bgp default ipv4-unicast
neighbor 2001:0DB8::B remote-as 65002
neighbor 2001:0DB8::C remote-as 65003
!
address-family ipv6
network 2001:0DB8:AAAA:1::/64
network 2001:0DB8:AAAA:2::/64
network 2001:0DB8:0000:1::/64
network 2001:0DB8:0000:2::/64
neighbor
neighbor
neighbor
neighbor
2001:0DB8::B
2001:0DB8::B
2001:0DB8::B
2001:0DB8::B
activate
soft-reconfiguration inbound
route-map PEER-B-IN in
route-map PEER-B-OUT out
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
exit-address-family
activate
soft-reconfiguration inbound
route-map PEER-C-IN in
route-map PEER-C-OUT out
!
ipv6 prefix-list COMMON-PREFIXES
ipv6 prefix-list COMMON-PREFIXES
!
ipv6 prefix-list PEER-A-PREFIXES
ipv6 prefix-list PEER-A-PREFIXES
!
ipv6 prefix-list PEER-B-PREFIXES
ipv6 prefix-list PEER-B-PREFIXES
!
ipv6 prefix-list PEER-C-PREFIXES
ipv6 prefix-list PEER-C-PREFIXES
!
route-map PEER-B-IN permit 10
seq 5 permit 2001:0DB8:0000::/48 ge 64 le 64
seq 10 deny any
seq 5 permit 2001:0DB8:AAAA::/48 ge 64 le 64
seq 10 deny any
seq 5 permit 2001:0DB8:BBBB::/48 ge 64 le 64
seq 10 deny any
seq 5 permit 2001:0DB8:CCCC::/48 ge 64 le 64
seq 10 deny any
82
Quagga
match ipv6 address prefix-list
set metric 100
route-map PEER-B-IN permit 20
match ipv6 address prefix-list
set community 65001:11111
!
route-map PEER-C-IN permit 10
match ipv6 address prefix-list
set metric 200
route-map PEER-C-IN permit 20
match ipv6 address prefix-list
set community 65001:22222
!
route-map PEER-B-OUT permit 10
match ipv6 address prefix-list
!
route-map PEER-C-OUT permit 10
match ipv6 address prefix-list
!
line vty
!
COMMON-PREFIXES
PEER-B-PREFIXES
COMMON-PREFIXES
PEER-C-PREFIXES
PEER-A-PREFIXES
PEER-A-PREFIXES
11.3.2 Configuration of the BGP routers with Route Server
To convert the initial scenario into one with route server, first we must modify the configuration of routers RA, RB and RC. Now they must not peer between them, but only with
the route server. For example, RA’s configuration would turn into:
# Configuration for router ’RA’
!
hostname RA
password ****
!
router bgp 65001
no bgp default ipv4-unicast
neighbor 2001:0DB8::FFFF remote-as 65000
!
address-family ipv6
network 2001:0DB8:AAAA:1::/64
network 2001:0DB8:AAAA:2::/64
network 2001:0DB8:0000:1::/64
network 2001:0DB8:0000:2::/64
neighbor 2001:0DB8::FFFF activate
neighbor 2001:0DB8::FFFF soft-reconfiguration inbound
exit-address-family
!
line vty
Chapter 11: Configuring Quagga as a Route Server
83
!
Which is logically much simpler than its initial configuration, as it now maintains only
one BGP peering and all the filters (route-maps) have disappeared.
11.3.3 Configuration of the Route Server itself
As we said when we described the functions of a route server (see Section 11.1 [Description
of the Route Server model], page 75), it is in charge of all the route filtering. To achieve
that, the In and Out filters from the RA, RB and RC configurations must be converted into
Import and Export policies in the route server.
This is a fragment of the route server configuration (we only show the policies for client
RA):
# Configuration for Route Server (’RS’)
!
hostname RS
password ix
!
bgp multiple-instance
!
router bgp 65000 view RS
no bgp default ipv4-unicast
neighbor 2001:0DB8::A remote-as 65001
neighbor 2001:0DB8::B remote-as 65002
neighbor 2001:0DB8::C remote-as 65003
!
address-family ipv6
neighbor 2001:0DB8::A activate
neighbor 2001:0DB8::A route-server-client
neighbor 2001:0DB8::A route-map RSCLIENT-A-IMPORT import
neighbor 2001:0DB8::A route-map RSCLIENT-A-EXPORT export
neighbor 2001:0DB8::A soft-reconfiguration inbound
neighbor
neighbor
neighbor
neighbor
neighbor
2001:0DB8::B
2001:0DB8::B
2001:0DB8::B
2001:0DB8::B
2001:0DB8::B
activate
route-server-client
route-map RSCLIENT-B-IMPORT import
route-map RSCLIENT-B-EXPORT export
soft-reconfiguration inbound
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
neighbor 2001:0DB8::C
exit-address-family
activate
route-server-client
route-map RSCLIENT-C-IMPORT import
route-map RSCLIENT-C-EXPORT export
soft-reconfiguration inbound
!
ipv6 prefix-list COMMON-PREFIXES seq 5 permit 2001:0DB8:0000::/48 ge 64 le 64
ipv6 prefix-list COMMON-PREFIXES seq 10 deny any
84
Quagga
!
ipv6 prefix-list PEER-A-PREFIXES seq 5 permit 2001:0DB8:AAAA::/48 ge 64 le 64
ipv6 prefix-list PEER-A-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-B-PREFIXES seq 5 permit 2001:0DB8:BBBB::/48 ge 64 le 64
ipv6 prefix-list PEER-B-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-C-PREFIXES seq 5 permit 2001:0DB8:CCCC::/48 ge 64 le 64
ipv6 prefix-list PEER-C-PREFIXES seq 10 deny any
!
route-map RSCLIENT-A-IMPORT permit 10
match peer 2001:0DB8::B
call A-IMPORT-FROM-B
route-map RSCLIENT-A-IMPORT permit 20
match peer 2001:0DB8::C
call A-IMPORT-FROM-C
!
route-map A-IMPORT-FROM-B permit 10
match ipv6 address prefix-list COMMON-PREFIXES
set metric 100
route-map A-IMPORT-FROM-B permit 20
match ipv6 address prefix-list PEER-B-PREFIXES
set community 65001:11111
!
route-map A-IMPORT-FROM-C permit 10
match ipv6 address prefix-list COMMON-PREFIXES
set metric 200
route-map A-IMPORT-FROM-C permit 20
match ipv6 address prefix-list PEER-C-PREFIXES
set community 65001:22222
!
route-map RSCLIENT-A-EXPORT permit 10
match peer 2001:0DB8::B
match ipv6 address prefix-list PEER-A-PREFIXES
route-map RSCLIENT-A-EXPORT permit 20
match peer 2001:0DB8::C
match ipv6 address prefix-list PEER-A-PREFIXES
!
...
...
...
If you compare the initial configuration of RA with the route server configuration above,
you can see how easy it is to generate the Import and Export policies for RA from the In
and Out route-maps of RA’s original configuration.
When there was no route server, RA maintained two peerings, one with RB and another
with RC. Each of this peerings had an In route-map configured. To build the Import
Chapter 11: Configuring Quagga as a Route Server
85
route-map for client RA in the route server, simply add route-map entries following this
scheme:
route-map <NAME> permit 10
match peer <Peer Address>
call <In Route-Map for this Peer>
route-map <NAME> permit 20
match peer <Another Peer Address>
call <In Route-Map for this Peer>
This is exactly the process that has been followed to generate the route-map
RSCLIENT-A-IMPORT. The route-maps that are called inside it (A-IMPORT-FROM-B
and A-IMPORT-FROM-C) are exactly the same than the In route-maps from the original
configuration of RA (PEER-B-IN and PEER-C-IN), only the name is different.
The same could have been done to create the Export policy for RA (route-map
RSCLIENT-A-EXPORT), but in this case the original Out route-maps where so simple
that we decided not to use the call WORD commands, and we integrated all in a single
route-map (RSCLIENT-A-EXPORT).
The Import and Export policies for RB and RC are not shown, but the process would
be identical.
11.3.4 Further considerations about Import and Export routemaps
The current version of the route server patch only allows to specify a route-map for import
and export policies, while in a standard BGP speaker apart from route-maps there are other
tools for performing input and output filtering (access-lists, community-lists, ...). But this
does not represent any limitation, as all kinds of filters can be included in import/export
route-maps. For example suppose that in the non-route-server scenario peer RA had the
following filters configured for input from peer B:
neighbor 2001:0DB8::B prefix-list LIST-1 in
neighbor 2001:0DB8::B filter-list LIST-2 in
neighbor 2001:0DB8::B route-map PEER-B-IN in
...
...
route-map PEER-B-IN permit 10
match ipv6 address prefix-list COMMON-PREFIXES
set local-preference 100
route-map PEER-B-IN permit 20
match ipv6 address prefix-list PEER-B-PREFIXES
set community 65001:11111
It is posible to write a single route-map which is equivalent to the three filters (the
community-list, the prefix-list and the route-map). That route-map can then be used inside
the Import policy in the route server. Lets see how to do it:
neighbor 2001:0DB8::A route-map RSCLIENT-A-IMPORT import
...
!
...
86
Quagga
route-map RSCLIENT-A-IMPORT permit 10
match peer 2001:0DB8::B
call A-IMPORT-FROM-B
...
...
!
route-map A-IMPORT-FROM-B permit 1
match ipv6 address prefix-list LIST-1
match as-path LIST-2
on-match goto 10
route-map A-IMPORT-FROM-B deny 2
route-map A-IMPORT-FROM-B permit 10
match ipv6 address prefix-list COMMON-PREFIXES
set local-preference 100
route-map A-IMPORT-FROM-B permit 20
match ipv6 address prefix-list PEER-B-PREFIXES
set community 65001:11111
!
...
...
The route-map A-IMPORT-FROM-B is equivalent to the three filters (LIST-1, LIST-2
and PEER-B-IN). The first entry of route-map A-IMPORT-FROM-B (sequence number 1)
matches if and only if both the prefix-list LIST-1 and the filter-list LIST-2 match. If that
happens, due to the “on-match goto 10” statement the next route-map entry to be processed
will be number 10, and as of that point route-map A-IMPORT-FROM-B is identical to
PEER-B-IN. If the first entry does not match, ‘on-match goto 10” will be ignored and the
next processed entry will be number 2, which will deny the route.
Thus, the result is the same that with the three original filters, i.e., if either LIST-1 or
LIST-2 rejects the route, it does not reach the route-map PEER-B-IN. In case both LIST-1
and LIST-2 accept the route, it passes to PEER-B-IN, which can reject, accept or modify
the route.
Chapter 12: VTY shell
87
12 VTY shell
vtysh is integrated shell of Quagga software.
To use vtysh please specify —enable-vtysh to configure script. To use PAM for authentication use —with-libpam option to configure script.
vtysh only searches /etc/quagga path for vtysh.conf which is the vtysh configuration file.
Vtysh does not search current directory for configuration file because the file includes user
authentication settings.
Currently, vtysh.conf has only two commands.
12.1 VTY shell username
[Command]
With this set, user foo does not need password authentication for user vtysh. With
PAM vtysh uses PAM authentication mechanism.
If vtysh is compiled without PAM authentication, every user can use vtysh without
authentication. vtysh requires read/write permission to the various daemons vty
sockets, this can be accomplished through use of unix groups and the –enable-vtygroup configure option.
username username nopassword
12.2 VTY shell integrated configuration
service integrated-vtysh-config
[Command]
Write out integrated Quagga.conf file when ’write file’ is issued.
This command controls the behaviour of vtysh when it is told to write out the configuration. Per default, vtysh will instruct each daemon to write out their own config
files when write file is issued. However, if service integrated-vtysh-config
is set, when write file is issued, vtysh will instruct the daemons will write out a
Quagga.conf with all daemons’ commands integrated into it.
Vtysh per default behaves as if write-conf daemon is set. Note that both may be set
at same time if one wishes to have both Quagga.conf and daemon specific files written
out. Further, note that the daemons are hard-coded to first look for the integrated
Quagga.conf file before looking for their own file.
We recommend you do not mix the use of the two types of files. Further, it is better
not to use the integrated Quagga.conf file, as any syntax error in it can lead to /all/ of
your daemons being unable to start up. Per daemon files are more robust as impact
of errors in configuration are limited to the daemon in whose file the error is made.
Chapter 13: Filtering
89
13 Filtering
Quagga provides many very flexible filtering features. Filtering is used for both input
and output of the routing information. Once filtering is defined, it can be applied in any
direction.
13.1 IP Access List
access-list name permit ipv4-network
access-list name deny ipv4-network
[Command]
[Command]
Basic filtering is done by access-list as shown in the following example.
access-list filter deny 10.0.0.0/9
access-list filter permit 10.0.0.0/8
13.2 IP Prefix List
ip prefix-list provides the most powerful prefix based filtering mechanism. In addition
to access-list functionality, ip prefix-list has prefix length range specification and
sequential number specification. You can add or delete prefix based filters to arbitrary
points of prefix-list using sequential number specification.
If no ip prefix-list is specified, it acts as permit. If ip prefix-list is defined, and no
match is found, default deny is applied.
ip prefix-list name (permit|deny) prefix [le len] [ge
len]
ip prefix-list name seq number (permit|deny) prefix [le
len] [ge len]
[Command]
[Command]
You can create ip prefix-list using above commands.
seq
seq number can be set either automatically or manually. In the case that
sequential numbers are set manually, the user may pick any number less
than 4294967295. In the case that sequential number are set automatically, the sequential number will increase by a unit of five (5) per list.
If a list with no specified sequential number is created after a list with
a specified sequential number, the list will automatically pick the next
multiple of five (5) as the list number. For example, if a list with number
2 already exists and a new list with no specified number is created, the
next list will be numbered 5. If lists 2 and 7 already exist and a new list
with no specified number is created, the new list will be numbered 10.
le
le command specifies prefix length. The prefix list will be applied if the
prefix length is less than or equal to the le prefix length.
ge
ge command specifies prefix length. The prefix list will be applied if the
prefix length is greater than or equal to the ge prefix length.
Less than or equal to prefix numbers and greater than or equal to prefix numbers can
be used together. The order of the le and ge commands does not matter.
90
Quagga
If a prefix list with a different sequential number but with the exact same rules as
a previous list is created, an error will result. However, in the case that the sequential
number and the rules are exactly similar, no error will result.
If a list with the same sequential number as a previous list is created, the new list will
overwrite the old list.
Matching of IP Prefix is performed from the smaller sequential number to the larger.
The matching will stop once any rule has been applied.
In the case of no le or ge command, the prefix length must match exactly the length
specified in the prefix list.
no ip prefix-list name
[Command]
13.2.1 ip prefix-list description
[Command]
Descriptions may be added to prefix lists. This command adds a description to the
prefix list.
ip prefix-list name description desc
[Command]
Deletes the description from a prefix list. It is possible to use the command without
the full description.
no ip prefix-list name description [desc]
13.2.2 ip prefix-list sequential number control
[Command]
With this command, the IP prefix list sequential number is displayed. This is the
default behavior.
ip prefix-list sequence-number
[Command]
With this command, the IP prefix list sequential number is not displayed.
no ip prefix-list sequence-number
13.2.3 Showing ip prefix-list
show ip prefix-list
[Command]
Display all IP prefix lists.
show ip prefix-list name
[Command]
Show IP prefix list can be used with a prefix list name.
[Command]
Show IP prefix list can be used with a prefix list name and sequential number.
show ip prefix-list name seq num
[Command]
If the command longer is used, all prefix lists with prefix lengths equal to or longer
than the specified length will be displayed. If the command first match is used, the
first prefix length match will be displayed.
show ip prefix-list name a.b.c.d/m
show ip prefix-list name a.b.c.d/m longer
[Command]
show ip prefix-list name a.b.c.d/m first-match
[Command]
show ip prefix-list summary
[Command]
Chapter 13: Filtering
91
show ip prefix-list summary name
[Command]
show ip prefix-list detail
[Command]
show ip prefix-list detail name
[Command]
13.2.4 Clear counter of ip prefix-list
[Command]
Clears the counters of all IP prefix lists. Clear IP Prefix List can be used with a
specified name and prefix.
clear ip prefix-list
clear ip prefix-list name
[Command]
clear ip prefix-list name a.b.c.d/m
[Command]
Chapter 14: Route Map
93
14 Route Map
Route maps provide a means to both filter and/or apply actions to route, hence allowing
policy to be applied to routes.
Route-maps are an ordered list of route-map entries. Each entry may specify up to four
distincts sets of clauses:
‘Matching Policy’
This specifies the policy implied if the ‘Matching Conditions’ are met or not
met, and which actions of the route-map are to be taken, if any. The two
possibilities are:
− ‘permit’: If the entry matches, then carry out the ‘Set Actions’. Then finish processing the route-map, permitting the route, unless an ‘Exit Action’
indicates otherwise.
− ‘deny’: If the entry matches, then finish processing the route-map and deny
the route (return ‘deny’).
The ‘Matching Policy’ is specified as part of the command which defines the
ordered entry in the route-map. See below.
‘Matching Conditions’
A route-map entry may, optionally, specify one or more conditions which must
be matched if the entry is to be considered further, as governed by the Match
Policy. If a route-map entry does not explicitely specify any matching conditions, then it always matches.
‘Set Actions’
A route-map entry may, optionally, specify one or more ‘Set Actions’ to set or
modify attributes of the route.
‘Call Action’
Call to another route-map, after any ‘Set Actions’ have been carried out. If the
route-map called returns ‘deny’ then processing of the route-map finishes and
the route is denied, regardless of the ‘Matching Policy’ or the ‘Exit Policy’.
If the called route-map returns ‘permit’, then ‘Matching Policy’ and ‘Exit
Policy’ govern further behaviour, as normal.
‘Exit Policy’
An entry may, optionally, specify an alternative ‘Exit Policy’ to take if the
entry matched, rather than the normal policy of exiting the route-map and
permitting the route. The two possibilities are:
− ‘next’: Continue on with processing of the route-map entries.
− ‘goto N’: Jump ahead to the first route-map entry whose order in the
route-map is >= N. Jumping to a previous entry is not permitted.
The default action of a route-map, if no entries match, is to deny. I.e. a route-map
essentially has as its last entry an empty ‘deny’ entry, which matches all routes. To change
this behaviour, one must specify an empty ‘permit’ entry as the last entry in the route-map.
To summarise the above:
94
Quagga
Permit
Deny
Match
action
deny
No Match
cont
cont
‘action’
− Apply set statements
− If call is present, call given route-map. If that returns a ‘deny’, finish
processing and return ‘deny’.
− If ‘Exit Policy’ is next, goto next route-map entry
− If ‘Exit Policy’ is goto, goto first entry whose order in the list is >= the
given order.
− Finish processing the route-map and permit the route.
‘deny’
− The route is denied by the route-map (return ‘deny’).
‘cont’
− goto next route-map entry
14.1 Route Map Command
[Command]
Configure the order’th entry in route-map-name with ‘Match Policy’ of either permit
or deny.
route-map route-map-name (permit|deny) order
14.2 Route Map Match Command
match ip address access_list
[Route-map Command]
Matches the specified access list
match ip next-hop ipv4_addr
[Route-map Command]
Matches the specified ipv4 addr.
match aspath as_path
[Route-map Command]
Matches the specified as path.
match metric metric
[Route-map Command]
Matches the specified metric.
match community community_list
Matches the specified community list
[Route-map Command]
Chapter 14: Route Map
95
14.3 Route Map Set Command
set ip next-hop ipv4_address
[Route-map Command]
Set the BGP nexthop address.
set local-preference local_pref
[Route-map Command]
Set the BGP local preference.
set weight weight
[Route-map Command]
Set the route’s weight.
set metric metric
[Route-map Command]
Set the BGP attribute MED.
set as-path prepend as_path
[Route-map Command]
Set the BGP AS path to prepend.
set community community
[Route-map Command]
Set the BGP community attribute.
set ipv6 next-hop global ipv6_address
[Route-map Command]
Set the BGP-4+ global IPv6 nexthop address.
set ipv6 next-hop local ipv6_address
[Route-map Command]
Set the BGP-4+ link local IPv6 nexthop address.
14.4 Route Map Call Command
[Route-map Command]
Call route-map name. If it returns deny, deny the route and finish processing the
route-map.
call name
14.5 Route Map Exit Action Command
on-match next
continue
[Route-map Command]
[Route-map Command]
Proceed on to the next entry in the route-map.
[Route-map Command]
[Route-map Command]
Proceed processing the route-map at the first entry whose order is >= N
on-match goto N
continue N
14.6 Route Map Examples
A simple example of a route-map:
route-map test permit 10
match ip address 10
set local-preference 200
This means that if a route matches ip access-list number 10 it’s local-preference value is
set to 200.
See Section 10.16 [BGP Configuration Examples], page 70 for examples of more sophisticated useage of route-maps, including of the ‘call’ action.
Chapter 15: IPv6 Support
97
15 IPv6 Support
Quagga fully supports IPv6 routing. As described so far, Quagga supports RIPng, OSPFv3,
Babel and BGP-4+. You can give IPv6 addresses to an interface and configure static IPv6
routing information. Quagga IPv6 also provides automatic address configuration via a
feature called address auto configuration. To do it, the router must send router advertisement messages to the all nodes that exist on the network.
15.1 Router Advertisement
no ipv6 nd suppress-ra
[Interface Command]
Send router advertisment messages.
ipv6 nd suppress-ra
[Interface Command]
Don’t send router advertisment messages.
ipv6 nd prefix ipv6prefix [valid-lifetime]
[Interface Command]
[preferred-lifetime] [off-link] [no-autoconfig]
[router-address]
Configuring the IPv6 prefix to include in router advertisements. Several prefix specific
optional parameters and flags may follow:
• valid-lifetime - the length of time in seconds during what the prefix is valid for
the purpose of on-link determination. Value infinite represents infinity (i.e. a
value of all one bits (0xffffffff)).
Range: <0-4294967295> Default: 2592000
• preferred-lifetime - the length of time in seconds during what addresses generated
from the prefix remain preferred. Value infinite represents infinity.
Range: <0-4294967295> Default: 604800
• off-link - indicates that advertisement makes no statement about on-link or offlink properties of the prefix.
Default: not set, i.e. this prefix can be used for on-link determination.
• no-autoconfig - indicates to hosts on the local link that the specified prefix cannot
be used for IPv6 autoconfiguration.
Default: not set, i.e. prefix can be used for autoconfiguration.
• router-address - indicates to hosts on the local link that the specified prefix
contains a complete IP address by setting R flag.
Default: not set, i.e. hosts do not assume a complete IP address is placed.
[Interface Command]
[Interface Command]
The maximum time allowed between sending unsolicited multicast router advertisements from the interface, in seconds.
ipv6 nd ra-interval <1-1800>
no ipv6 nd ra-interval [<1-1800>]
Default: 600
98
Quagga
[Interface Command]
[Interface Command]
The maximum time allowed between sending unsolicited multicast router advertisements from the interface, in milliseconds.
Default: 600000
ipv6 nd ra-interval msec <70-1800000>
no ipv6 nd ra-interval [msec <70-1800000>]
[Interface Command]
[Interface Command]
The value to be placed in the Router Lifetime field of router advertisements sent from
the interface, in seconds. Indicates the usefulness of the router as a default router
on this interface. Setting the value to zero indicates that the router should not be
considered a default router on this interface. Must be either zero or between value
specified with ipv6 nd ra-interval (or default) and 9000 seconds.
Default: 1800
ipv6 nd ra-lifetime <0-9000>
no ipv6 nd ra-lifetime [<0-9000>]
[Interface Command]
[Interface Command]
The value to be placed in the Reachable Time field in the Router Advertisement
messages sent by the router, in milliseconds. The configured time enables the router
to detect unavailable neighbors. The value zero means unspecified (by this router).
Default: 0
ipv6 nd reachable-time <1-3600000>
no ipv6 nd reachable-time [<1-3600000>]
[Interface Command]
[Interface Command]
Set/unset flag in IPv6 router advertisements which indicates to hosts that they should
use managed (stateful) protocol for addresses autoconfiguration in addition to any
addresses autoconfigured using stateless address autoconfiguration.
Default: not set
ipv6 nd managed-config-flag
no ipv6 nd managed-config-flag
[Interface Command]
[Interface Command]
Set/unset flag in IPv6 router advertisements which indicates to hosts that they should
use administered (stateful) protocol to obtain autoconfiguration information other
than addresses.
Default: not set
ipv6 nd other-config-flag
no ipv6 nd other-config-flag
[Interface Command]
[Interface Command]
Set/unset flag in IPv6 router advertisements which indicates to hosts that the router
acts as a Home Agent and includes a Home Agent Option.
Default: not set
ipv6 nd home-agent-config-flag
no ipv6 nd home-agent-config-flag
[Interface Command]
[Interface Command]
The value to be placed in Home Agent Option, when Home Agent config flag is set,
which indicates to hosts Home Agent preference. The default value of 0 stands for
the lowest preference possible.
Default: 0
ipv6 nd home-agent-preference <0-65535>
no ipv6 nd home-agent-preference [<0-65535>]
Chapter 15: IPv6 Support
99
+
ipv6 nd home-agent-lifetime <0-65520>
[Interface Command]
+
[Interface Command]
The value to be placed in Home Agent Option, when Home Agent config flag is set,
which indicates to hosts Home Agent Lifetime. The default value of 0 means to place
the current Router Lifetime value.
Default: 0
no ipv6 nd home-agent-lifetime [<0-65520>]
[Interface Command]
[Interface Command]
Include an Advertisement Interval option which indicates to hosts the maximum time,
in milliseconds, between successive unsolicited Router Advertisements.
Default: not set
ipv6 nd adv-interval-option
no ipv6 nd adv-interval-option
[Interface Command]
[Interface Command]
Set default router preference in IPv6 router advertisements per RFC4191.
Default: medium
ipv6 nd router-preference (high|medium|low)
no ipv6 nd router-preference [(high|medium|low)]
[Interface Command]
[Interface Command]
Include an MTU (type 5) option in each RA packet to assist the attached hosts in
proper interface configuration. The announced value is not verified to be consistent
with router interface MTU.
Default: don’t advertise any MTU option
ipv6 nd mtu <1-65535>
no ipv6 nd mtu [<1-65535>]
interface eth0
no ipv6 nd suppress-ra
ipv6 nd prefix 2001:0DB8:5009::/64
For more information see RFC2462 (IPv6 Stateless Address Autoconfiguration) ,
RFC4861 (Neighbor Discovery for IP Version 6 (IPv6)) , RFC6275 (Mobility Support in
IPv6) and RFC4191 (Default Router Preferences and More-Specific Routes).
Chapter 16: Kernel Interface
101
16 Kernel Interface
There are several different methods for reading kernel routing table information, updating
kernel routing tables, and for looking up interfaces.
‘ioctl’
The ‘ioctl’ method is a very traditional way for reading or writing kernel information. ‘ioctl’ can be used for looking up interfaces and for modifying
interface addresses, flags, mtu settings and other types of information. Also,
‘ioctl’ can insert and delete kernel routing table entries. It will soon be available on almost any platform which zebra supports, but it is a little bit ugly
thus far, so if a better method is supported by the kernel, zebra will use that.
‘sysctl’
‘sysctl’ can lookup kernel information using MIB (Management Information
Base) syntax. Normally, it only provides a way of getting information from the
kernel. So one would usually want to change kernel information using another
method such as ‘ioctl’.
‘proc filesystem’
‘proc filesystem’ provides an easy way of getting kernel information.
‘routing socket’
‘netlink’ On recent Linux kernels (2.0.x and 2.2.x), there is a kernel/user communication
support called netlink. It makes asynchronous communication between kernel
and Quagga possible, similar to a routing socket on BSD systems.
Before you use this feature, be sure to select (in kernel configuration) the kernel/netlink support option ’Kernel/User network link driver’ and ’Routing messages’.
Today, the /dev/route special device file is obsolete. Netlink communication is
done by reading/writing over netlink socket.
After the kernel configuration, please reconfigure and rebuild Quagga. You
can use netlink as a dynamic routing update channel between Quagga and the
kernel.
Chapter 17: SNMP Support
103
17 SNMP Support
SNMP (Simple Network Managing Protocol) is a widely implemented feature for collecting
network information from router and/or host. Quagga itself does not support SNMP agent
(server daemon) functionality but is able to connect to a SNMP agent using the SMUX
protocol (RFC1227) or the AgentX protocol (RFC2741) and make the routing protocol
MIBs available through it.
17.1 Getting and installing an SNMP agent
There are several SNMP agent which support SMUX or AgentX. We recommend to use
the latest version of net-snmp which was formerly known as ucd-snmp. It is free and open
software and available at http://www.net-snmp.org/ and as binary package for most
Linux distributions. net-snmp has to be compiled with --with-mib-modules=agentx to
be able to accept connections from Quagga using AgentX protocol or with --with-mibmodules=smux to use SMUX protocol.
Nowadays, SMUX is a legacy protocol. The AgentX protocol should be preferred for
any new deployment. Both protocols have the same coverage.
17.2 AgentX configuration
To enable AgentX protocol support, Quagga must have been build with the --enable-snmp
or --enable-snmp=agentx option. Both the master SNMP agent (snmpd) and each of the
Quagga daemons must be configured. In /etc/snmp/snmpd.conf, master agentx directive
should be added. In each of the Quagga daemons, agentx command will enable AgentX
support.
/etc/snmp/snmpd.conf:
#
# example access restrictions setup
#
com2sec readonly default public
group MyROGroup v1 readonly
view all included .1 80
access MyROGroup "" any noauth exact all none none
#
# enable master agent for AgentX subagents
#
master agentx
/etc/quagga/ospfd.conf:
! ... the rest of ospfd.conf has been omitted for clarity ...
!
agentx
!
Upon successful connection, you should get something like this in the log of each Quagga
daemons:
104
Quagga
2012/05/25 11:39:08 ZEBRA: snmp[info]: NET-SNMP version 5.4.3 AgentX subagent connected
Then, you can use the following command to check everything works as expected:
# snmpwalk -c public -v1 localhost .1.3.6.1.2.1.14.1.1
OSPF-MIB::ospfRouterId.0 = IpAddress: 192.168.42.109
[...]
The AgentX protocol can be transported over a Unix socket or using TCP or UDP. It usually defaults to a Unix socket and depends on how NetSNMP was built. If need to configure
Quagga to use another transport, you can configure it through /etc/snmp/quagga.conf:
/etc/snmp/quagga.conf:
[snmpd]
# Use a remote master agent
agentXSocket tcp:192.168.15.12:705
17.3 SMUX configuration
To enable SMUX protocol support, Quagga must have been build with the --enablesnmp=smux option.
A separate connection has then to be established between the SNMP agent (snmpd)
and each of the Quagga daemons. This connections each use different OID numbers and
passwords. Be aware that this OID number is not the one that is used in queries by clients,
it is solely used for the intercommunication of the daemons.
In the following example the ospfd daemon will be connected to the snmpd daemon using
the password "quagga ospfd". For testing it is recommending to take exactly the below
snmpd.conf as wrong access restrictions can be hard to debug.
/etc/snmp/snmpd.conf:
#
# example access restrictions setup
#
com2sec readonly default public
group MyROGroup v1 readonly
view all included .1 80
access MyROGroup "" any noauth exact all none none
#
# the following line is relevant for Quagga
#
smuxpeer .1.3.6.1.4.1.3317.1.2.5 quagga_ospfd
/etc/quagga/ospf:
! ... the rest of ospfd.conf has been omitted for clarity ...
!
smux peer .1.3.6.1.4.1.3317.1.2.5 quagga_ospfd
!
After restarting snmpd and quagga, a successful connection can be verified in the syslog
and by querying the SNMP daemon:
snmpd[12300]: [smux_accept] accepted fd 12 from 127.0.0.1:36255
Chapter 17: SNMP Support
105
snmpd[12300]: accepted smux peer: \
oid GNOME-PRODUCT-ZEBRA-MIB::ospfd, quagga-0.96.5
# snmpwalk -c public -v1 localhost .1.3.6.1.2.1.14.1.1
OSPF-MIB::ospfRouterId.0 = IpAddress: 192.168.42.109
Be warned that the current version (5.1.1) of the Net-SNMP daemon writes a line for
every SNMP connect to the syslog which can lead to enormous log file sizes. If that is a
problem you should consider to patch snmpd and comment out the troublesome snmp_log()
line in the function netsnmp_agent_check_packet() in agent/snmp_agent.c.
17.4 MIB and command reference
The following OID numbers are used for the interprocess communication of snmpd and the
Quagga daemons with SMUX only.
(OIDs below .iso.org.dod.internet.private.enterprises)
zebra .1.3.6.1.4.1.3317.1.2.1 .gnome.gnomeProducts.zebra.zserv
bgpd .1.3.6.1.4.1.3317.1.2.2 .gnome.gnomeProducts.zebra.bgpd
ripd .1.3.6.1.4.1.3317.1.2.3 .gnome.gnomeProducts.zebra.ripd
ospfd .1.3.6.1.4.1.3317.1.2.5 .gnome.gnomeProducts.zebra.ospfd
ospf6d .1.3.6.1.4.1.3317.1.2.6 .gnome.gnomeProducts.zebra.ospf6d
Sadly, SNMP has not been implemented in all daemons yet. The following OID numbers
are used for querying the SNMP daemon by a client:
zebra .1.3.6.1.2.1.4.24
ospfd .1.3.6.1.2.1.14
bgpd .1.3.6.1.2.1.15
ripd .1.3.6.1.2.1.23
ospf6d .1.3.6.1.3.102
.iso.org.dot.internet.mgmt.mib-2.ip.ipForward
.iso.org.dot.internet.mgmt.mib-2.ospf
.iso.org.dot.internet.mgmt.mib-2.bgp
.iso.org.dot.internet.mgmt.mib-2.rip2
.iso.org.dod.internet.experimental.ospfv3
The following syntax is understood by the Quagga daemons for configuring SNMP using
SMUX:
smux peer oid
no smux peer oid
[Command]
[Command]
smux peer oid password
no smux peer oid password
[Command]
[Command]
Here is the syntax for using AgentX:
agentx
no agentx
[Command]
[Command]
17.5 Handling SNMP Traps
To handle snmp traps make sure your snmp setup of quagga works correctly as described
in the quagga documentation in See Chapter 17 [SNMP Support], page 103.
The BGP4 mib will send traps on peer up/down events. These should be visible in your
snmp logs with a message similar to:
‘snmpd[13733]: Got trap from peer on fd 14’
106
Quagga
To react on these traps they should be handled by a trapsink. Configure your trapsink
by adding the following lines to /etc/snmpd/snmpd.conf:
# send traps to the snmptrapd on localhost
trapsink localhost
This will send all traps to an snmptrapd running on localhost. You can of course also
use a dedicated management station to catch traps. Configure the snmptrapd daemon by
adding the following line to /etc/snmpd/snmptrapd.conf:
traphandle .1.3.6.1.4.1.3317.1.2.2 /etc/snmp/snmptrap_handle.sh
This will use the bash script /etc/snmp/snmptrap_handle.sh to handle the BGP4
traps. To add traps for other protocol daemons, lookup their appropriate OID from their
mib. (For additional information about which traps are supported by your mib, lookup the
mib on http://www.oidview.com/mibs/detail.html).
Make sure snmptrapd is started.
The snmptrap handle.sh script I personally use for handling BGP4 traps is below. You
can of course do all sorts of things when handling traps, like sound a siren, have your display
flash, etc., be creative ;).
#!/bin/bash
# routers name
ROUTER=‘hostname -s‘
#email address use to sent out notification
EMAILADDR="john@doe.com"
#email address used (allongside above) where warnings should be sent
EMAILADDR_WARN="sms-john@doe.com"
# type of notification
TYPE="Notice"
# local snmp community for getting AS belonging to peer
COMMUNITY="<community>"
# if a peer address is in $WARN_PEERS a warning should be sent
WARN_PEERS="192.0.2.1"
# get stdin
INPUT=‘cat -‘
# get some vars from stdin
uptime=‘echo $INPUT | cut -d’ ’ -f5‘
peer=‘echo $INPUT | cut -d’ ’ -f8 | sed -e ’s/SNMPv2-SMI::mib-2.15.3.1.14.//g’‘
peerstate=‘echo $INPUT | cut -d’ ’ -f13‘
errorcode=‘echo $INPUT | cut -d’ ’ -f9 | sed -e ’s/\"//g’‘
suberrorcode=‘echo $INPUT | cut -d’ ’ -f10 | sed -e ’s/\"//g’‘
Chapter 17: SNMP Support
107
remoteas=‘snmpget -v2c -c $COMMUNITY localhost SNMPv2-SMI::mib-2.15.3.1.9.$peer | cut -d’
WHOISINFO=‘whois -h whois.ripe.net " -r AS$remoteas" | egrep ’(as-name|descr)’‘
asname=‘echo "$WHOISINFO" | grep "^as-name:" | sed -e ’s/^as-name://g’ -e ’s/ //g’ -e ’s/
asdescr=‘echo "$WHOISINFO" | grep "^descr:" | sed -e ’s/^descr://g’ -e ’s/ //g’ -e ’s/^ /
# if peer address is in $WARN_PEER, the email should also
# be sent to $EMAILADDR_WARN
for ip in $WARN_PEERS; do
if [ "x$ip" == "x$peer" ]; then
EMAILADDR="$EMAILADDR,$EMAILADDR_WARN"
TYPE="WARNING"
break
fi
done
# convert peer state
case "$peerstate" in
1) peerstate="Idle" ;;
2) peerstate="Connect" ;;
3) peerstate="Active" ;;
4) peerstate="Opensent" ;;
5) peerstate="Openconfirm" ;;
6) peerstate="Established" ;;
*) peerstate="Unknown" ;;
esac
# get textual messages for errors
case "$errorcode" in
00)
error="No error"
suberror=""
;;
01)
error="Message Header Error"
case "$suberrorcode" in
01) suberror="Connection Not Synchronized" ;;
02) suberror="Bad Message Length" ;;
03) suberror="Bad Message Type" ;;
*) suberror="Unknown" ;;
esac
;;
02)
error="OPEN Message Error"
case "$suberrorcode" in
01) suberror="Unsupported Version Number" ;;
108
Quagga
02) suberror="Bad Peer AS" ;;
03) suberror="Bad BGP Identifier" ;;
04) suberror="Unsupported Optional Parameter" ;;
05) suberror="Authentication Failure" ;;
06) suberror="Unacceptable Hold Time" ;;
*) suberror="Unknown" ;;
esac
;;
03)
error="UPDATE Message Error"
case "$suberrorcode" in
01) suberror="Malformed Attribute List" ;;
02) suberror="Unrecognized Well-known Attribute" ;;
03) suberror="Missing Well-known Attribute" ;;
04) suberror="Attribute Flags Error" ;;
05) suberror="Attribute Length Error" ;;
06) suberror="Invalid ORIGIN Attribute" ;;
07) suberror="AS Routing Loop" ;;
08) suberror="Invalid NEXT_HOP Attribute" ;;
09) suberror="Optional Attribute Error" ;;
10) suberror="Invalid Network Field" ;;
11) suberror="Malformed AS_PATH" ;;
*) suberror="Unknown" ;;
esac
;;
04)
error="Hold Timer Expired"
suberror=""
;;
05)
error="Finite State Machine Error"
suberror=""
;;
06)
error="Cease"
case "$suberrorcode" in
01) suberror="Maximum Number of Prefixes Reached" ;;
02) suberror="Administratively Shutdown" ;;
03) suberror="Peer Unconfigured" ;;
04) suberror="Administratively Reset" ;;
05) suberror="Connection Rejected" ;;
06) suberror="Other Configuration Change" ;;
07) suberror="Connection collision resolution" ;;
08) suberror="Out of Resource" ;;
09) suberror="MAX" ;;
*) suberror="Unknown" ;;
esac
Chapter 17: SNMP Support
;;
*)
error="Unknown"
suberror=""
;;
esac
# create textual message from errorcodes
if [ "x$suberror" == "x" ]; then
NOTIFY="$errorcode ($error)"
else
NOTIFY="$errorcode/$suberrorcode ($error/$suberror)"
fi
# form a decent subject
SUBJECT="$TYPE: $ROUTER [bgp] $peer is $peerstate: $NOTIFY"
# create the email body
MAIL=‘cat << EOF
BGP notification on router $ROUTER.
Peer: $peer
AS: $remoteas
New state: $peerstate
Notification: $NOTIFY
Info:
$asname
$asdescr
Snmpd uptime: $uptime
EOF‘
# mail the notification
echo "$MAIL" | mail -s "$SUBJECT" $EMAILADDR
109
Appendix A: Zebra Protocol
111
Appendix A Zebra Protocol
A.1 Overview of the Zebra Protocol
Zebra Protocol is used by protocol daemons to communicate with the zebra daemon.
Each protocol daemon may request and send information to and from the zebra daemon
such as interface states, routing state, nexthop-validation, and so on. Protocol daemons
may also install routes with zebra. The zebra daemon manages which route is installed into
the forwarding table with the kernel.
Zebra Protocol is a streaming protocol, with a common header. Two versions of the
header are in use. Version 0 is implicitely versioned. Version 1 has an explicit version
field. Version 0 can be distinguished from all other versions by examining the 3rd byte of
the header, which contains a marker value for all versions bar version 0. The marker byte
corresponds to the command field in version 0, and the marker value is a reserved command
in version 0.
We do not anticipate there will be further versions of the header for the foreseeable
future, as the command field in version 1 is wide enough to allow for future extensions to
done compatibly through seperate commands.
Version 0 is used by all versions of GNU Zebra as of this writing, and versions of Quagga
up to and including Quagga 0.98. Version 1 will be used as of Quagga 1.0.
A.2 Zebra Protocol Definition
A.2.1 Zebra Protocol Header (version 0)
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-------------------------------+---------------+
|
Length (2)
|
Command (1) |
+-------------------------------+---------------+
A.2.2 Zebra Protocol Common Header (version 1)
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-------------------------------+---------------+-------------+
|
Length (2)
|
Marker (1) | Version (1) |
+-------------------------------+---------------+-------------+
|
Command (2)
|
+-------------------------------+
A.2.3 Zebra Protocol Header Field Definitions
‘Length’
Total packet length including this header. The minimum length is 3 bytes for
version 0 messages and 6 bytes for version 1 messages.
‘Marker’
Static marker with a value of 255 always. This is to allow version 0 Zserv headers
(which do not include version explicitely) to be distinguished from versioned
headers. Not present in version 0 messages.
112
Quagga
‘Version’
Version number of the Zserv message. Clients should not continue processing
messages past the version field for versions they do not recognise. Not present
in version 0 messages.
‘Command’
The Zebra Protocol command.
A.2.4 Zebra Protocol Commands
Command
ZEBRA INTERFACE ADD
ZEBRA INTERFACE DELETE
ZEBRA INTERFACE ADDRESS ADD
ZEBRA INTERFACE ADDRESS DELETE
ZEBRA INTERFACE UP
ZEBRA INTERFACE DOWN
ZEBRA IPV4 ROUTE ADD
ZEBRA IPV4 ROUTE DELETE
ZEBRA IPV6 ROUTE ADD
ZEBRA IPV6 ROUTE DELETE
ZEBRA REDISTRIBUTE ADD
ZEBRA REDISTRIBUTE DELETE
ZEBRA REDISTRIBUTE DEFAULT ADD
ZEBRA REDISTRIBUTE DEFAULT DELETE
ZEBRA IPV4 NEXTHOP LOOKUP
ZEBRA IPV6 NEXTHOP LOOKUP
Value
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Appendix B: Packet Binary Dump Format
113
Appendix B Packet Binary Dump Format
Quagga can dump routing protocol packet into file with a binary format (see Section 10.15
[Dump BGP packets and table], page 69).
It seems to be better that we share the MRT’s header format for backward compatibility
with MRT’s dump logs. We should also define the binary format excluding the header,
because we must support both IP v4 and v6 addresses as socket addresses and / or routing
entries.
In the last meeting, we discussed to have a version field in the header. But Masaki told
us that we can define new ‘type’ value rather than having a ‘version’ field, and it seems to
be better because we don’t need to change header format.
Here is the common header format. This is same as that of MRT.
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Time
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Type
|
Subtype
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Length
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
If ‘type’ is PROTOCOL BGP4MP, ‘subtype’ is BGP4MP STATE CHANGE, and Address Family == IP (version 4)
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source AS number
|
Destination AS number
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Interface Index
|
Address Family
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Old State
|
New State
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where State is the value defined in RFC1771.
If ‘type’ is PROTOCOL BGP4MP, ‘subtype’ is BGP4MP STATE CHANGE, and Address Family == IP version 6
114
Quagga
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source AS number
|
Destination AS number
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Interface Index
|
Address Family
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Old State
|
New State
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
If ‘type’ is PROTOCOL BGP4MP, ‘subtype’ is BGP4MP MESSAGE, and Address
Family == IP (version 4)
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source AS number
|
Destination AS number
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Interface Index
|
Address Family
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
BGP Message Packet
|
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where BGP Message Packet is the whole contents of the BGP4 message including header
portion.
If ‘type’ is PROTOCOL BGP4MP, ‘subtype’ is BGP4MP MESSAGE, and Address
Family == IP version 6
Appendix B: Packet Binary Dump Format
115
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source AS number
|
Destination AS number
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Interface Index
|
Address Family
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Source IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Destination IP address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
BGP Message Packet
|
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
If ‘type’ is PROTOCOL BGP4MP, ‘subtype’ is BGP4MP ENTRY, and Address Family
== IP (version 4)
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
View #
|
Status
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Time Last Change
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Address Family
|
SAFI
| Next-Hop-Len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Next Hop Address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length |
Address Prefix [variable]
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Attribute Length
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
BGP Attribute [variable length]
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116
Quagga
If ‘type’ is PROTOCOL BGP4MP, ‘subtype’ is BGP4MP ENTRY, and Address Family
== IP version 6
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
View #
|
Status
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Time Last Change
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Address Family
|
SAFI
| Next-Hop-Len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Next Hop Address
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Next Hop Address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Next Hop Address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Next Hop Address (Cont’d)
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length |
Address Prefix [variable]
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Address Prefix (cont’d) [variable]
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
Attribute Length
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
BGP Attribute [variable length]
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
BGP4 Attribute must not contain MP UNREACH NLRI. If BGP Attribute has
MP REACH NLRI field, it must has zero length NLRI, e.g., MP REACH NLRI has only
Address Family, SAFI and next-hop values.
If ‘type’ is PROTOCOL BGP4MP and ‘subtype’ is BGP4MP SNAPSHOT,
0
1
2
3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
View #
|
File Name [variable]
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The file specified in "File Name" contains all routing entries, which are in the format of
“subtype == BGP4MP ENTRY”.
Constants:
/* type value */
#define MSG_PROTOCOL_BGP4MP 16
/* subtype value */
#define BGP4MP_STATE_CHANGE 0
#define BGP4MP_MESSAGE 1
#define BGP4MP_ENTRY 2
#define BGP4MP_SNAPSHOT 3
Command Index
117
Command Index
A
access-class access-list . . . . . . . . . . . . . . . . . . . . 11
access-list name deny ipv4-network . . . . . . . . . 89
access-list name permit ipv4-network . . . . . . . 89
agentx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
aggregate-address A.B.C.D/M . . . . . . . . . . . . . . . . 53
aggregate-address A.B.C.D/M as-set . . . . . . . . . 53
aggregate-address A.B.C.D/M summary-only . . 53
area <0-4294967295> authentication . . . . . . . . . 40
area <0-4294967295> authentication
message-digest . . . . . . . . . . . . . . . . . . . . . . . . . . 41
area <0-4294967295> export-list NAME . . . . . . . 40
area <0-4294967295> filter-list prefix NAME
in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
area <0-4294967295> filter-list prefix NAME
out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
area <0-4294967295> import-list NAME . . . . . . . 40
area <0-4294967295> range a.b.c.d/m . . . . . . . . 38
area <0-4294967295> shortcut . . . . . . . . . . . . . . . . 39
area <0-4294967295> stub . . . . . . . . . . . . . . . . . . . . 39
area <0-4294967295> stub no-summary . . . . . . . . 39
area <0-4294967295> virtual-link a.b.c.d . . 39
area a.b.c.d authentication . . . . . . . . . . . . . . . . . 40
area a.b.c.d authentication message-digest
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
area a.b.c.d default-cost <0-16777215> . . . . . 40
area a.b.c.d export-list NAME . . . . . . . . . . . . . . . 40
area a.b.c.d filter-list prefix NAME in . . . . 40
area a.b.c.d filter-list prefix NAME out . . . 40
area a.b.c.d import-list NAME . . . . . . . . . . . . . . . 40
area a.b.c.d range a.b.c.d/m . . . . . . . . . . . . . . . . 38
area a.b.c.d range IPV4_PREFIX not-advertise
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
area a.b.c.d range IPV4_PREFIX substitute
IPV4_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
area a.b.c.d shortcut . . . . . . . . . . . . . . . . . . . . . . . . 39
area a.b.c.d stub . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
area a.b.c.d stub no-summary . . . . . . . . . . . . . . . . 39
area a.b.c.d virtual-link a.b.c.d . . . . . . . . . . 39
auto-cost reference-bandwidth <1-4294967>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B
babel hello-interval <20-655340> . . . . . . . . . . .
babel resend-delay <20-655340> . . . . . . . . . . . . .
babel split-horizon . . . . . . . . . . . . . . . . . . . . . . . . . .
babel update-interval <20-655340> . . . . . . . . . .
babel wired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
babel wireless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bandwidth <1-10000000> . . . . . . . . . . . . . . . . . . . . . .
banner motd default . . . . . . . . . . . . . . . . . . . . . . . . . .
bgp bestpath as-path confed . . . . . . . . . . . . . . . . .
bgp cluster-id a.b.c.d. . . . . . . . . . . . . . . . . . . . . . .
49
50
49
49
49
49
17
11
52
65
bgp config-type cisco . . . . . . . . . . . . . . . . . . . . . . . .
bgp config-type zebra . . . . . . . . . . . . . . . . . . . . . . . .
bgp dampening <1-45> <1-20000> <1-20000>
<1-255>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bgp multiple-instance . . . . . . . . . . . . . . . . . . . . . . .
bgp router-id A.B.C.D . . . . . . . . . . . . . . . . . . . . . . . .
66
67
52
66
51
C
call name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
call WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
clear ip bgp peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
clear ip bgp peer soft in . . . . . . . . . . . . . . . . . . . .
clear ip prefix-list . . . . . . . . . . . . . . . . . . . . . . . . .
clear ip prefix-list name. . . . . . . . . . . . . . . . . . . .
clear ip prefix-list name a.b.c.d/m . . . . . . . .
clear zebra fpm stats . . . . . . . . . . . . . . . . . . . . . . . .
configure terminal . . . . . . . . . . . . . . . . . . . . . . . . . . .
continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
continue N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
95
80
64
64
91
91
91
21
12
95
95
D
debug babel kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
debug event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
debug keepalive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
debug ospf ism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug ospf ism (status|events|timers) . . . . . . 45
debug ospf lsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug ospf lsa (generate|flooding|refresh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug ospf nsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug ospf nsm (status|events|timers) . . . . . . 45
debug ospf packet (hello|dd|ls-request|lsupdate|ls-ack|all) (send|recv) [detail]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug ospf zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug ospf zebra (interface|redistribute)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
debug rip events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
debug rip packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
debug rip zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
debug ripng events . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
debug ripng packet . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
debug ripng zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
debug update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
default-information originate . . . . . . . . . . 26, 43
default-information originate always . . . . . . 43
default-information originate always metric
<0-16777214> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
default-information originate always metric
<0-16777214> metric-type (1|2) . . . . . . . . . 43
default-information originate always metric
<0-16777214> metric-type (1|2) route-map
word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
118
Quagga
default-information originate metric
<0-16777214> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
default-information originate metric
<0-16777214> metric-type (1|2) . . . . . . . . . 43
default-information originate metric
<0-16777214> metric-type (1|2) route-map
word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
default-metric <0-16777214> . . . . . . . . . . . . . . . . 44
default-metric <1-16> . . . . . . . . . . . . . . . . . . . . . . . 27
description description ... . . . . . . . . . . . . . . . . . 17
distance <1-255> . . . . . . . . . . . . . . . . . . . . . . . . . 28, 44
distance <1-255> A.B.C.D/M . . . . . . . . . . . . . . 28, 52
distance <1-255> A.B.C.D/M access-list . . . . . 28
distance <1-255> A.B.C.D/M word . . . . . . . . . . . . . 52
distance bgp <1-255> <1-255> <1-255> . . . . . . . 51
distance ospf
(intra-area|inter-area|external)1
<1-255>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
distribute-list access_list (in|out) ifname
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
distribute-list access_list direct ifname
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
distribute-list NAME out
(kernel|connected|static|rip|ospf . . . . . 44
distribute-list prefix prefix_list (in|out)
ifname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
dump bgp all path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
dump bgp all path interval . . . . . . . . . . . . . . . . . . . 69
dump bgp routes path . . . . . . . . . . . . . . . . . . . . . . . . . 70
dump bgp updates path . . . . . . . . . . . . . . . . . . . . . . . . 70
dump bgp updates path interval . . . . . . . . . . . . . . 70
E
enable password password . . . . . . . . . . . . . . . . . . . . . 9
exec-timeout minute . . . . . . . . . . . . . . . . . . . . . . . . . . 11
exec-timeout minute second . . . . . . . . . . . . . . . . . . 11
F
flush_timer time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
H
hostname hostname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
I
interface ifname . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
interface ifname area area . . . . . . . . . . . . . . . . . .
ip address address/prefix . . . . . . . . . . . . . . . . . . .
ip address address/prefix secondary . . . . . . . .
ip as-path access-list word {permit|deny}
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ip community-list <1-99> {permit|deny}
community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ip community-list <100-199> {permit|deny}
community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
47
17
17
56
58
59
ip community-list expanded name {permit|deny}
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ip community-list name {permit|deny}
community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
ip community-list standard name {permit|deny}
community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ip extcommunity-list expanded name
{permit|deny} line . . . . . . . . . . . . . . . . . . . . . . 62
ip extcommunity-list standard name
{permit|deny} extcommunity . . . . . . . . . . . . . 62
ip ospf authentication message-digest . . . . . . 41
ip ospf authentication-key AUTH_KEY . . . . . . . . 41
ip ospf cost <1-65535> . . . . . . . . . . . . . . . . . . . . . . . 41
ip ospf dead-interval <1-65535> . . . . . . . . . . . . . 42
ip ospf dead-interval minimal
hello-multiplier <2-20>. . . . . . . . . . . . . . . . . 42
ip ospf hello-interval <1-65535> . . . . . . . . . . . 42
ip ospf message-digest-key KEYID md5 KEY . . . 41
ip ospf network
(broadcast|non-broadcast|point-tomultipoint|point-to-point) . . . . . . . . . . . . . 42
ip ospf priority <0-255> . . . . . . . . . . . . . . . . . . . . . 42
ip ospf retransmit-interval <1-65535> . . . . . . 42
ip ospf transmit-delay. . . . . . . . . . . . . . . . . . . . . . . 42
ip prefix-list name (permit|deny) prefix [le
len] [ge len] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ip prefix-list name description desc . . . . . . . 90
ip prefix-list name seq number (permit|deny)
prefix [le len] [ge len]. . . . . . . . . . . . . . . . . 89
ip prefix-list sequence-number . . . . . . . . . . . . . 90
ip protocol protocol route-map routemap . . . . 19
ip rip authentication key-chain key-chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ip rip authentication mode md5 . . . . . . . . . . . . . . 29
ip rip authentication mode text . . . . . . . . . . . . . 29
ip rip authentication string string . . . . . . . . 29
ip rip receive version version . . . . . . . . . . . . . . 25
ip rip send version version . . . . . . . . . . . . . . . . . . 25
ip route network gateway . . . . . . . . . . . . . . . . . . . . . 18
ip route network gateway distance . . . . . . . . . . . 18
ip route network netmask gateway . . . . . . . . . . . . 18
ip split-horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ipv6 address address/prefix . . . . . . . . . . . . . . . . . 17
ipv6 nd adv-interval-option . . . . . . . . . . . . . . . . . 99
ipv6 nd home-agent-config-flag . . . . . . . . . . . . . 98
ipv6 nd home-agent-lifetime <0-65520> . . . . . . 99
ipv6 nd home-agent-preference <0-65535> . . . 98
ipv6 nd managed-config-flag . . . . . . . . . . . . . . . . . 98
ipv6 nd mtu <1-65535> . . . . . . . . . . . . . . . . . . . . . . . . 99
ipv6 nd other-config-flag . . . . . . . . . . . . . . . . . . . 98
ipv6 nd prefix ipv6prefix [valid-lifetime]
[preferred-lifetime] [off-link]
[no-autoconfig] [router-address] . . . . . . 97
ipv6 nd ra-interval <1-1800> . . . . . . . . . . . . . . . . 97
ipv6 nd ra-interval msec <70-1800000> . . . . . . 98
ipv6 nd ra-lifetime <0-9000> . . . . . . . . . . . . . . . . 98
ipv6 nd reachable-time <1-3600000> . . . . . . . . . 98
Command Index
119
ipv6 nd router-preference (high|medium|low)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ipv6 nd suppress-ra . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ipv6 ospf6 cost COST . . . . . . . . . . . . . . . . . . . . . . . . . 47
ipv6 ospf6 dead-interval DEADINTERVAL . . . . . . 47
ipv6 ospf6 hello-interval HELLOINTERVAL . . . 47
ipv6 ospf6 priority PRIORITY . . . . . . . . . . . . . . . . 47
ipv6 ospf6 retransmit-interval
RETRANSMITINTERVAL . . . . . . . . . . . . . . . . . . . . . . 47
ipv6 ospf6 transmit-delay TRANSMITDELAY . . . 47
ipv6 route network gateway . . . . . . . . . . . . . . . . . . 19
ipv6 route network gateway distance . . . . . . . . 19
L
line vty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
link-detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
log facility facility . . . . . . . . . . . . . . . . . . . . . . . . 10
log file filename . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log file filename level . . . . . . . . . . . . . . . . . . . . . . 10
log monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log monitor level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log record-priority . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log stdout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
log stdout level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
log syslog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log syslog level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log timestamp precision <0-6> . . . . . . . . . . . . . . . 11
log trap level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
log-adjacency-changes [detail] . . . . . . . . . . . . . 36
logmsg level message . . . . . . . . . . . . . . . . . . . . . . . . . 12
M
match as-path word . . . . . . . . . . . . . . . . . . . . . . . . . . .
match aspath as_path . . . . . . . . . . . . . . . . . . . . . . . . .
match community community_list . . . . . . . . . . . . .
match community word . . . . . . . . . . . . . . . . . . . . . . . . .
match community word exact-match . . . . . . . . . . .
match extcommunity word . . . . . . . . . . . . . . . . . . . . .
match interface word . . . . . . . . . . . . . . . . . . . . . . . . .
match ip address access_list . . . . . . . . . . . . . . . .
match ip address prefix-list word . . . . . . . . . . .
match ip address word . . . . . . . . . . . . . . . . . . . . . . . .
match ip next-hop ipv4_addr . . . . . . . . . . . . . . . . .
match ip next-hop prefix-list word . . . . . . . . . .
match ip next-hop word . . . . . . . . . . . . . . . . . . . . . . .
match metric <0-4294967295> . . . . . . . . . . . . . . . . .
match metric metric . . . . . . . . . . . . . . . . . . . . . . . . . .
match peer {A.B.C.D|X:X::X:X}. . . . . . . . . . . . . . .
max-metric router-lsa
[on-startup|on-shutdown] <5-86400> . . . .
max-metric router-lsa administrative . . . . . .
multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
94
94
59
59
63
28
94
28
28
94
29
29
29
94
80
37
37
17
N
neigbor {A.B.C.D|X.X::X.X|peer-group}
route-map WORD {import|export} . . . . . . . . . 80
neighbor a.b.c.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
neighbor A.B.C.D route-server-client . . . . . . 79
neighbor peer default-originate . . . . . . . . . . . . 54
neighbor peer description ... . . . . . . . . . . . . . . . 54
neighbor peer distribute-list name [in|out]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
neighbor peer dont-capability-negotiate . . . 65
neighbor peer ebgp-multihop . . . . . . . . . . . . . . . . . 54
neighbor peer filter-list name [in|out] . . . . 55
neighbor peer interface ifname . . . . . . . . . . . . . . 54
neighbor peer local-as as-number . . . . . . . . . . . 55
neighbor peer local-as as-number no-prepend
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
neighbor peer local-as as-number no-prepend
replace-as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
neighbor peer maximum-prefix number . . . . . . . . 55
neighbor peer next-hop-self . . . . . . . . . . . . . . . . . 54
neighbor peer override-capability . . . . . . . . . . 65
neighbor peer peer-group word . . . . . . . . . . . . . . . 55
neighbor peer port port . . . . . . . . . . . . . . . . . . . . . . 55
neighbor peer prefix-list name [in|out] . . . . 55
neighbor peer remote-as asn . . . . . . . . . . . . . . . . . 53
neighbor peer route-map name [in|out] . . . . . . 55
neighbor peer route-reflector-client . . . . . . 65
neighbor peer send-community . . . . . . . . . . . . . . . . 55
neighbor peer shutdown. . . . . . . . . . . . . . . . . . . . . . . 54
neighbor peer strict-capability-match . . . . . 65
neighbor peer update-source <ifname|address>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
neighbor peer version version . . . . . . . . . . . . . . . 54
neighbor peer weight weight . . . . . . . . . . . . . . . . . 55
neighbor peer-group route-server-client . . . 79
neighbor word peer-group . . . . . . . . . . . . . . . . . . . . 55
neighbor X:X::X:X route-server-client . . . . . 79
network A.B.C.D/M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
network a.b.c.d/m area <0-4294967295> . . . . . . 38
network a.b.c.d/m area a.b.c.d . . . . . . . . . . . . . . 38
network ifname . . . . . . . . . . . . . . . . . . . . . . . . 24, 33, 49
network network . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 33
no agentx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
no aggregate-address A.B.C.D/M . . . . . . . . . . . . . 53
no area <0-4294967295> authentication . . . . . . 40
no area <0-4294967295> export-list NAME . . . . 40
no area <0-4294967295> filter-list prefix
NAME in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
no area <0-4294967295> filter-list prefix
NAME out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
no area <0-4294967295> import-list NAME . . . . 40
no area <0-4294967295> range a.b.c.d/m . . . . . 38
no area <0-4294967295> shortcut . . . . . . . . . . . . . 39
no area <0-4294967295> stub . . . . . . . . . . . . . . . . . 39
no area <0-4294967295> stub no-summary . . . . . 39
no area <0-4294967295> virtual-link a.b.c.d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
no area a.b.c.d authentication . . . . . . . . . . . . . . 40
120
no area a.b.c.d default-cost <0-16777215>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
no area a.b.c.d export-list NAME . . . . . . . . . . . . 40
no area a.b.c.d filter-list prefix NAME in
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
no area a.b.c.d filter-list prefix NAME out
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
no area a.b.c.d import-list NAME . . . . . . . . . . . . 40
no area a.b.c.d range a.b.c.d/m . . . . . . . . . . . . . 38
no area a.b.c.d range IPV4_PREFIX
not-advertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
no area a.b.c.d range IPV4_PREFIX substitute
IPV4_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
no area a.b.c.d shortcut . . . . . . . . . . . . . . . . . . . . . 39
no area a.b.c.d stub . . . . . . . . . . . . . . . . . . . . . . . . . 39
no area a.b.c.d stub no-summary . . . . . . . . . . . . . 39
no area a.b.c.d virtual-link a.b.c.d . . . . . . . 39
no auto-cost reference-bandwidth . . . . . . . . . . . 38
no babel split-horizon. . . . . . . . . . . . . . . . . . . . . . . 49
no bandwidth <1-10000000> . . . . . . . . . . . . . . . . . . . 17
no banner motd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
no bgp multiple-instance . . . . . . . . . . . . . . . . . . . . 66
no debug babel kind . . . . . . . . . . . . . . . . . . . . . . . . . . 50
no debug event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
no debug keepalive . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
no debug ospf ism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug ospf ism (status|events|timers) . . . 45
no debug ospf lsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug ospf lsa (generate|flooding|refresh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug ospf nsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug ospf nsm (status|events|timers) . . . 45
no debug ospf packet (hello|dd|ls-request|lsupdate|ls-ack|all) (send|recv) [detail]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug ospf zebra . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug ospf zebra (interface|redistribute)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no debug update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
no default-information originate . . . . . . . . . . . 43
no default-metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
no default-metric <1-16> . . . . . . . . . . . . . . . . . . . . 27
no distance <1-255> . . . . . . . . . . . . . . . . . . . . . . 28, 44
no distance <1-255> A.B.C.D/M . . . . . . . . . . . . . . . 28
no distance <1-255> A.B.C.D/M access-list
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
no distance ospf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
no distribute-list NAME out
(kernel|connected|static|rip|ospf . . . . . 44
no exec-timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
no ip address address/prefix . . . . . . . . . . . . . . . . 17
no ip address address/prefix secondary . . . . . 17
no ip as-path access-list word . . . . . . . . . . . . . . 56
no ip as-path access-list word {permit|deny}
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
no ip community-list expanded name . . . . . . . . . . 58
no ip community-list name. . . . . . . . . . . . . . . . . . . . 58
no ip community-list standard name . . . . . . . . . . 58
Quagga
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
ip extcommunity-list expanded name . . . . . . 63
ip extcommunity-list name . . . . . . . . . . . . . . . . 63
ip extcommunity-list standard name . . . . . . 63
ip ospf authentication-key . . . . . . . . . . . . . . . 41
ip ospf cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ip ospf dead-interval . . . . . . . . . . . . . . . . . . . . . 42
ip ospf hello-interval. . . . . . . . . . . . . . . . . . . . 42
ip ospf message-digest-key . . . . . . . . . . . . . . . 41
ip ospf network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ip ospf priority . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ip ospf retransmit interval . . . . . . . . . . . . . . 42
ip ospf transmit-delay. . . . . . . . . . . . . . . . . . . . 42
ip prefix-list name . . . . . . . . . . . . . . . . . . . . . . . 90
ip prefix-list name description [desc] . . 90
ip prefix-list sequence-number . . . . . . . . . . 90
ip rip authentication key-chain key-chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ip rip authentication mode md5 . . . . . . . . . . . 29
ip rip authentication mode text . . . . . . . . . . 29
ip rip authentication string string . . . . . 29
ip split-horizon . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ipv6 address address/prefix . . . . . . . . . . . . . . 17
ipv6 nd adv-interval-option . . . . . . . . . . . . . . 99
ipv6 nd home-agent-config-flag . . . . . . . . . . 98
ipv6 nd home-agent-lifetime [<0-65520>]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ipv6 nd home-agent-preference [<0-65535>]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
ipv6 nd managed-config-flag . . . . . . . . . . . . . . 98
ipv6 nd mtu [<1-65535>] . . . . . . . . . . . . . . . . . . . 99
ipv6 nd other-config-flag . . . . . . . . . . . . . . . . 98
ipv6 nd ra-interval [<1-1800>] . . . . . . . . . . . 97
ipv6 nd ra-interval [msec <70-1800000>]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
ipv6 nd ra-lifetime [<0-9000>] . . . . . . . . . . . 98
ipv6 nd reachable-time [<1-3600000>] . . . . 98
ipv6 nd router-preference
[(high|medium|low)] . . . . . . . . . . . . . . . . . . . . . 99
ipv6 nd suppress-ra . . . . . . . . . . . . . . . . . . . . . . . 97
link-detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
log facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log record-priority. . . . . . . . . . . . . . . . . . . . . . . 10
log stdout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
log syslog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
log timestamp precision . . . . . . . . . . . . . . . . . . 11
log trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
log-adjacency-changes [detail] . . . . . . . . . . 36
max-metric router-lsa
[on-startup|on-shutdown|administrative]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
neighbor a.b.c.d . . . . . . . . . . . . . . . . . . . . . . . . . . 24
neighbor peer default-originate . . . . . . . . . 54
neighbor peer description ... . . . . . . . . . . . . 54
neighbor peer dont-capability-negotiate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Command Index
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
121
neighbor peer ebgp-multihop . . . . . . . . . . . . . . 54
neighbor peer interface ifname . . . . . . . . . . . 54
neighbor peer local-as. . . . . . . . . . . . . . . . . . . . 55
neighbor peer maximum-prefix number . . . . . 55
neighbor peer next-hop-self . . . . . . . . . . . . . . 54
neighbor peer override-capability . . . . . . . 65
neighbor peer route-reflector-client . . . 65
neighbor peer shutdown. . . . . . . . . . . . . . . . . . . . 54
neighbor peer strict-capability-match . . 65
neighbor peer update-source . . . . . . . . . . . . . . 54
neighbor peer weight weight . . . . . . . . . . . . . . 55
network A.B.C.D/M . . . . . . . . . . . . . . . . . . . . . . . . . 52
network a.b.c.d/m area <0-4294967295> . . . 38
network a.b.c.d/m area a.b.c.d . . . . . . . . . . . 38
network ifname . . . . . . . . . . . . . . . . . . . . . . . . . 24, 49
network network . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ospf abr-type type . . . . . . . . . . . . . . . . . . . . . . . . 35
ospf rfc1583compatibility . . . . . . . . . . . . . . . . 36
ospf router-id . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
passive-interface IFNAME . . . . . . . . . . . . . . . . . 25
passive-interface interface . . . . . . . . . . . . . 36
redistribute
(kernel|connected|static|rip|bgp) . . . . . 43
redistribute bgp . . . . . . . . . . . . . . . . . . . . . . . . . . 26
redistribute connected . . . . . . . . . . . . . . . . . . . 26
redistribute kernel. . . . . . . . . . . . . . . . . . . . . . . 26
redistribute kind . . . . . . . . . . . . . . . . . . . . . . . . . 50
redistribute ospf . . . . . . . . . . . . . . . . . . . . . . . . . 26
redistribute static. . . . . . . . . . . . . . . . . . . . . . . 26
route a.b.c.d/m . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
router babel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
router bgp asn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
router ospf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
router rip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
smux peer oid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
smux peer oid password . . . . . . . . . . . . . . . . . . . 105
timers basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
timers throttle spf . . . . . . . . . . . . . . . . . . . . . . . 36
version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
O
offset-list access-list (in|out) . . . . . . . . . . .
offset-list access-list (in|out) ifname . . .
on-match goto N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
on-match next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ospf abr-type type . . . . . . . . . . . . . . . . . . . . . . . . . . .
ospf rfc1583compatibility . . . . . . . . . . . . . . . . . . .
ospf router-id a.b.c.d. . . . . . . . . . . . . . . . . . . . . . .
27
27
95
95
35
36
35
P
passive-interface (IFNAME|default) . . . . . . . . 25
passive-interface interface . . . . . . . . . . . . . . . . 36
password password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
R
redistribute
(kernel|connected|static|rip|bgp) . . . . . 42
redistribute
(kernel|connected|static|rip|bgp) metric
<0-16777214> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
redistribute
(kernel|connected|static|rip|bgp) metric
<0-16777214> route-map word . . . . . . . . . . . . 43
redistribute
(kernel|connected|static|rip|bgp)
metric-type (1|2) . . . . . . . . . . . . . . . . . . . . . . . 43
redistribute
(kernel|connected|static|rip|bgp)
metric-type (1|2) metric <0-16777214>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
redistribute
(kernel|connected|static|rip|bgp)
metric-type (1|2) metric <0-16777214>
route-map word . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
redistribute
(kernel|connected|static|rip|bgp)
metric-type (1|2) route-map word . . . . . . . 43
redistribute
(kernel|connected|static|rip|bgp)
route-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
redistribute bgp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
redistribute bgp metric <0-16> . . . . . . . . . . . . . . 26
redistribute bgp route-map route-map . . . . . . . 26
redistribute connected . . . . . . . . . . . . . . . 26, 47, 53
redistribute connected metric <0-16> . . . . . . . 26
redistribute connected route-map route-map
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
redistribute kernel . . . . . . . . . . . . . . . . . . . . . . 26, 53
redistribute kernel metric <0-16> . . . . . . . . . . 26
redistribute kernel route-map route-map . . . 26
redistribute kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
redistribute ospf . . . . . . . . . . . . . . . . . . . . . . . . 26, 53
redistribute ospf metric <0-16> . . . . . . . . . . . . . 26
redistribute ospf route-map route-map . . . . . . 26
redistribute rip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
redistribute ripng . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
redistribute static . . . . . . . . . . . . . . . . . . 26, 47, 53
redistribute static metric <0-16> . . . . . . . . . . 26
redistribute static route-map route-map . . . 26
route a.b.c.d/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
route network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
route-map route-map-name (permit|deny) order
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
router babel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
router bgp as-number . . . . . . . . . . . . . . . . . . . . . . . . . 67
router bgp as-number view name . . . . . . . . . . . . . . 67
router bgp asn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
router ospf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
router ospf6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
router rip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
router ripng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
router zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
122
Quagga
router-id a.b.c.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
S
service advanced-vty . . . . . . . . . . . . . . . . . . . . . . . .
service integrated-vtysh-config . . . . . . . . . . . .
service password-encryption . . . . . . . . . . . . . . . .
service terminal-length <0-512> . . . . . . . . . . . .
set as-path prepend as-path . . . . . . . . . . . . . . . . .
set as-path prepend as_path . . . . . . . . . . . . . . . . .
set comm-list word delete. . . . . . . . . . . . . . . . . . . .
set community community . . . . . . . . . . . . . . . . . . 59,
set community community additive . . . . . . . . . . .
set community none . . . . . . . . . . . . . . . . . . . . . . . . . . .
set extcommunity rt extcommunity . . . . . . . . . . .
set extcommunity soo extcommunity . . . . . . . . . .
set ip next-hop A.B.C.D . . . . . . . . . . . . . . . . . . . . . .
set ip next-hop ipv4_address . . . . . . . . . . . . . . . .
set ipv6 next-hop global ipv6_address . . . . . .
set ipv6 next-hop local ipv6_address . . . . . . .
set local-preference local_pref . . . . . . . . . . . .
set metric <0-4294967295> . . . . . . . . . . . . . . . . . . .
set metric metric . . . . . . . . . . . . . . . . . . . . . . . . . . . .
set src address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
set weight weight . . . . . . . . . . . . . . . . . . . . . . . . . . . .
show babel database . . . . . . . . . . . . . . . . . . . . . . . . . .
show babel interface . . . . . . . . . . . . . . . . . . . . . . . . .
show babel neighbour . . . . . . . . . . . . . . . . . . . . . . . . .
show babel parameters . . . . . . . . . . . . . . . . . . . . . . . .
show debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
show debugging ospf . . . . . . . . . . . . . . . . . . . . . . . . . .
show debugging rip . . . . . . . . . . . . . . . . . . . . . . . . . . .
show debugging ripng . . . . . . . . . . . . . . . . . . . . . . . . .
show interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
show ip bgp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
show ip bgp A.B.C.D . . . . . . . . . . . . . . . . . . . . . . . . . .
show ip bgp community . . . . . . . . . . . . . . . . . . . . . . . .
show ip bgp community community . . . . . . . . . 60,
show ip bgp community community exact-match
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60,
show ip bgp community-list word . . . . . . . . . 60,
show ip bgp community-list word exact-match
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60,
show ip bgp dampened-paths . . . . . . . . . . . . . . . . . .
show ip bgp flap-statistics . . . . . . . . . . . . . . . . .
show ip bgp neighbor [peer] . . . . . . . . . . . . . . . . . .
show ip bgp regexp line . . . . . . . . . . . . . . . . . . . 56,
show ip bgp summary . . . . . . . . . . . . . . . . . . . . . . . . . .
show ip bgp view name. . . . . . . . . . . . . . . . . . . . . . . . .
show ip bgp X:X::X:X . . . . . . . . . . . . . . . . . . . . . . . . .
show ip community-list. . . . . . . . . . . . . . . . . . . . . . .
show ip community-list name . . . . . . . . . . . . . . . . .
show ip extcommunity-list . . . . . . . . . . . . . . . . . . .
show ip extcommunity-list name . . . . . . . . . . . . . .
show ip ospf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
show ip ospf database . . . . . . . . . . . . . . . . . . . . . . . .
11
87
11
11
56
95
59
95
59
59
63
63
29
95
95
95
95
29
95
19
95
50
50
50
50
64
45
31
33
21
63
63
60
64
64
64
64
64
64
64
63
64
68
63
58
58
63
63
44
44
show ip ospf database (asbrsummary|external|network|router|summary)
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
show ip ospf database (asbrsummary|external|network|router|summary)
1 adv-router adv-router . . . . . . . . . . . . . . . . . 44
show ip ospf database (asbrsummary|external|network|router|summary)
1 link-state-id . . . . . . . . . . . . . . . . . . . . . . . . . . 44
show ip ospf database (asbrsummary|external|network|router|summary)
1 link-state-id adv-router adv-router
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
show ip ospf database (asbrsummary|external|network|router|summary)
1 link-state-id self-originate . . . . . . . . . 44
show ip ospf database (asbrsummary|external|network|router|summary)
1 self-originate. . . . . . . . . . . . . . . . . . . . . . . . . 44
show ip ospf database max-age . . . . . . . . . . . . . . . 45
show ip ospf database self-originate . . . . . . . 45
show ip ospf interface [INTERFACE]1 . . . . . . . . . 44
show ip ospf neighbor . . . . . . . . . . . . . . . . . . . . . . . . 44
show ip ospf neighbor detail . . . . . . . . . . . . . . . . 44
show ip ospf neighbor INTERFACE . . . . . . . . . . . . . 44
show ip ospf neighbor INTERFACE detail . . . . . 44
show ip ospf route. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
show ip prefix-list . . . . . . . . . . . . . . . . . . . . . . . . . . 90
show ip prefix-list [name] . . . . . . . . . . . . . . . . . . 21
show ip prefix-list detail . . . . . . . . . . . . . . . . . . 91
show ip prefix-list detail name . . . . . . . . . . . . . 91
show ip prefix-list name . . . . . . . . . . . . . . . . . . . . . 90
show ip prefix-list name a.b.c.d/m . . . . . . . . . . 90
show ip prefix-list name a.b.c.d/m
first-match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
show ip prefix-list name a.b.c.d/m longer . . 90
show ip prefix-list name seq num . . . . . . . . . . . . 90
show ip prefix-list summary . . . . . . . . . . . . . . . . . 90
show ip prefix-list summary name . . . . . . . . . . . . 91
show ip protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
show ip protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
show ip rip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
show ip ripng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
show ip route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
show ipforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
show ipv6 ospf6 [INSTANCE_ID] . . . . . . . . . . . . . . . 48
show ipv6 ospf6 database . . . . . . . . . . . . . . . . . . . . . 48
show ipv6 ospf6 interface. . . . . . . . . . . . . . . . . . . . 48
show ipv6 ospf6 neighbor . . . . . . . . . . . . . . . . . . . . . 48
show ipv6 ospf6 request-list A.B.C.D . . . . . . . 48
show ipv6 route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
show ipv6 route ospf6 . . . . . . . . . . . . . . . . . . . . . . . . 48
show ipv6forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
show logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
show route-map [name] . . . . . . . . . . . . . . . . . . . . . . . . 21
show version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
show zebra fpm stats . . . . . . . . . . . . . . . . . . . . . . . . . 21
shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Command Index
123
smux peer oid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
smux peer oid password . . . . . . . . . . . . . . . . . . . . . . 105
U
T
V
table tableno. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
terminal length <0-512> . . . . . . . . . . . . . . . . . . . . .
timers basic update timeout garbage . . . . . . . .
timers throttle spf delay initial-holdtime
max-holdtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
username username nopassword . . . . . . . . . . . . . . . . 87
19
12
30
version version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
36
who . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
write file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
write terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
W
VTY Key Index
125
VTY Key Index
?
DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
L
C
C-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
M
M-b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
M-d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
M-f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
R
RIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
T
TAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
D
U
DEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Index
127
Index
A
I
About Quagga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Installing Quagga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B
Bug hunting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bug Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Build options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Building on Linux boxes . . . . . . . . . . . . . . . . . . . . . . . .
Building the system . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4
5
7
5
C
Compatibility with other systems . . . . . . . . . . . . . . .
Configuration files for running the software . . . . . .
Configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuring Quagga . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
9
5
7
4
D
Distribution configuration. . . . . . . . . . . . . . . . . . . . . . . 5
L
Linux configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
M
Mailing lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mailing Quagga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Making Quagga. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modifying the herd’s behavior . . . . . . . . . . . . . . . . . .
4
4
5
9
O
Operating systems that support Quagga . . . . . . . . 2
Options for configuring . . . . . . . . . . . . . . . . . . . . . . . . . 5
Options to ./configure . . . . . . . . . . . . . . . . . . . . . . . . 5
OSPFv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
E
Q
Errors in the software . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Quagga Least-Privileges . . . . . . . . . . . . . . . . . . . . . . . . 6
Quagga on other systems . . . . . . . . . . . . . . . . . . . . . . . 2
Quagga Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
F
Files for running configurations . . . . . . . . . . . . . . . . . 9
Found a bug? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R
G
Reporting bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Reporting software errors . . . . . . . . . . . . . . . . . . . . . . . 4
Getting the herd running . . . . . . . . . . . . . . . . . . . . . . . 9
S
H
How to get in touch with Quagga . . . . . . . . . . . . . . . 4
How to install Quagga . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software internals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supported platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2
2
2
Download PDF
Similar pages