GPC® 554

Add to my manuals
88 Pages

advertisement

GPC® 554 | Manualzz
GPC® 554
General Purpose Controller 80C552
MANUALE TECNICO
Via dell' Artigiano, 8/6
® 40016 San Giorgio di Piano
grifo
(Bologna) ITALY
E-mail: [email protected]
http://www.grifo.it
http://www.grifo.com
Tel. +39 051 892.052 (r.a.) FAX: +39 051 893.661
GPC® 554
Edizione 3.20
Rel. 2 Dicembre 1999
®
®
, GPC , grifo , sono marchi registrati della ditta grifo®
ITALIAN TECHNOLOGY
GPC® 554
General Purpose Controller 80C552
MANUALE TECNICO
Modulo Intelligente ABACO® BLOCK, della Serie 4, nel formato 100x50 mm;
CPU 80C552, da 22 MHz; 32K RAM; 32K EPROM; 32K EEPROM, RAM o
EPROM; Circuiteria di Back-Up RAM, tramite batteria al Litio esterna; EEPROM
seriale fino ad 8 KBytes; Watch-Dog settabile da software; 2 linee seriali in
RS232, di cui una software; 6/8 linee di A/D Converter da 10 Bits con fondo scala
da +2,5 V o +5 V; 16 linee TTL di I/O; 2 uscite PWM da 8 bits; 2 Dips leggibili
da software; Jumper per RUN/DEBUG Mode; Timer-Counter da 16 bits con 4
registri di Capture e 3 di Comparazione; Connettore da 26 vie per ABACO®
I/O BUS; Connettore da 26 vie per I/O, A/D e PWM; Possibilità di funzionamento
in Idle-Mode o Power-Down Mode; Unica alimentazione a +5 Vdc, 130mA con
Protezione tramite TransZorb™; Contenitore, opzionale, per guide ad Ω tipo
DIN 46277-1 e DIN 46277-3; Vasta disponibilità di software di sviluppo quali
Monitor-Debugger, CMX, Assembler, GET51 e BASIC Interpretato, BASIC
Compiler, Compilatori C, ecc.
Via dell' Artigiano, 8/6
® 40016 San Giorgio di Piano
grifo
(Bologna) ITALY
E-mail: [email protected]
http://www.grifo.it
http://www.grifo.com
Tel. +39 051 892.052 (r.a.) FAX: +39 051 893.661
GPC® 554
Edizione 3.20
Rel. 2 Dicembre 1999
®
®
, GPC , grifo , sono marchi registrati della ditta grifo®
ITALIAN TECHNOLOGY
Vincoli sulla documentazione
grifo® Tutti i Diritti Riservati
Nessuna parte del presente manuale può essere riprodotta, trasmessa, trascritta, memorizzata in un archivio o tradotta in altre lingue, con qualunque forma o mezzo, sia esso
elettronico, meccanico, magnetico ottico, chimico, manuale, senza il permesso scritto
della grifo®.
IMPORTANTE
Tutte le informazioni contenute nel presente manuale sono state accuratamente verificate, ciononostante grifo® non si assume nessuna responsabilità per danni, diretti o
indiretti, a cose e/o persone derivanti da errori, omissioni o dall'uso del presente
manuale, del software o dell' hardware ad esso associato.
grifo® altresi si riserva il diritto di modificare il contenuto e la veste di questo manuale
senza alcun preavviso, con l' intento di offrire un prodotto sempre migliore, senza che
questo rappresenti un obbligo per grifo®.
Per le informazioni specifiche dei componenti utilizzati sui nostri prodotti, l'utente deve
fare riferimento agli specifici Data Book delle case costruttrici o delle seconde sorgenti.
LEGENDA SIMBOLI
Nel presente manuale possono comparire i seguenti simboli:
Attenzione: Pericolo generico
Attenzione: Pericolo di alta tensione
Marchi Registrati
, GPC®, grifo® : sono marchi registrati della grifo®.
Altre marche o nomi di prodotti sono marchi registrati dei rispettivi proprietari.
ITALIAN TECHNOLOGY
grifo®
INDICE GENERALE
INTRODUZIONE......................................................................................................................... 1
VERSIONE SCHEDA .................................................................................................................. 1
CARATTERISTICHE GENERALI ........................................................................................... 2
PROCESSORE DI BORDO ................................................................................................... 3
CLOCK ..................................................................................................................................... 3
ALIMENTAZIONE DI BORDO ............................................................................................ 4
COMUNICAZIONE SERIALE ............................................................................................. 4
MEMORIE ............................................................................................................................... 4
ABACO® I/O BUS .................................................................................................................... 6
LOGICA DI CONTROLLO ................................................................................................... 6
LINEE DI I/O DIGITALI ....................................................................................................... 6
A/D CONVERTER .................................................................................................................. 6
SPECIFICHE TECNICHE ......................................................................................................... 8
CARATTERISTICHE GENERALI ...................................................................................... 8
CARATTERISTICHE FISICHE ........................................................................................... 8
CARATTERISTICHE ELETTRICHE ................................................................................. 9
INSTALLAZIONE ..................................................................................................................... 10
CONNESSIONI CON IL MONDO ESTERNO ................................................................. 10
CN2 - CONNETTORE PER BATTERIA ESTERNA DI BACK UP ........................... 10
CN1 - CONNETTORE PER ABACO® I/O BUS ............................................................ 11
CN5 - CONNETTORE PER LINEE DI I/O, A/D E PWM ........................................... 12
CN3A - CONNETTORE PER LINEA SERIALE A ..................................................... 14
CN3B - CONNETTORE PER LINEA SERIALE B ...................................................... 16
J7/J8 - CONNETTORE PER ACQUISIZIONE LINEE A/D P5.6 E P5.7 ................... 18
INTERFACCIE PER I/O DIGITALI ................................................................................... 19
TASTO DI RESET ................................................................................................................ 19
INTERFACCIAMENTO DEGLI I/O CON IL CAMPO ................................................... 20
TRIMMER E TARATURE ................................................................................................... 20
JUMPERS............................................................................................................................... 21
JUMPERS A 2 VIE ........................................................................................................... 22
JUMPERS A 3 VIE ........................................................................................................... 24
INPUT DI BORDO ................................................................................................................ 25
RESET E WATCH DOG ...................................................................................................... 25
COMUNICAZIONE SERIALE ........................................................................................... 25
INTERRUPTS ........................................................................................................................ 26
SELEZIONE MEMORIE ..................................................................................................... 26
DESCRIZIONE SOFTWARE ................................................................................................... 27
GPC® 554
Rel. 3.20
Pagina I
grifo®
ITALIAN TECHNOLOGY
MAPPAGGI ED INDIRIZZAMENTI ...................................................................................... 29
MAPPAGGIO DELLE RISORSE DI BORDO .................................................................. 29
MAPPAGGIO PERIFERICHE IN I/O ................................................................................ 29
MAPPAGGIO DELLE MEMORIE ..................................................................................... 30
MAPPAGGIO 0 ................................................................................................................. 30
MAPPAGGIO 1 ................................................................................................................. 31
MAPPAGGIO 3 ................................................................................................................. 32
DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO .................................. 33
JUMPER J2, J7 E J8 ............................................................................................................. 33
EPROM SERIALE ................................................................................................................ 33
PERIFERICHE DELLA CPU .............................................................................................. 34
SCHEDE ESTERNE .................................................................................................................. 35
BIBLIOGRAFIA ........................................................................................................................ 39
APPENDICE A: DISPOSIZIONE JUMPERS E DRIVERS ............................................... A-1
APPENDICE B: DESCRIZIONE COMPONENTI DI BORDO ......................................... B-1
APPENDICE C: MONTAGGIO MECCANICO DELLA SCHEDA .................................. C-1
APPENDICE D: SCHEMI ELETTRICI ............................................................................... D-1
APPENDICE E: INDICE ANALITICO ................................................................................. E-1
Pagina II
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
INDICE DELLE FIGURE
FIGURA 1: SCHEMA A BLOCCHI ......................................................................................................... 5
FIGURA 2: FOTO DELLA SCHEDA ....................................................................................................... 7
FIGURA 3: PIANTE COMPONENTI ...................................................................................................... 7
FIGURA 4: CN2 - CONNETTORE PER BATTERIA ESTERNA DI BACK UP ............................................... 10
FIGURA 5: CN1 - CONNETTORE PER ABACO® I/O BUS .............................................................. 11
FIGURA 6: CN5 - CONNETTORE PER LINEE DI I/O, A/D E PWM ................................................... 12
FIGURA 7: SCHEMA DI COLLEGAMENTO LINEE DI I/O E A/D ........................................................... 13
FIGURA 8: CN3A-CONNETTORE PER LINEA SERIALE A ................................................................... 14
FIGURA 9: SCHEMA DI COMUNICAZIONE SERIALE ............................................................................. 15
FIGURA 10: ESEMPIO DI COLLEGAMENTO IN RS 232 ...................................................................... 15
FIGURA 11: CN3B-CONNETTORE PER LINEA SERIALE B ................................................................. 16
FIGURA 12: DISPOSIZIONE CONNETTORI, TRIMMER, MEMORIE, ECC.................................................. 17
FIGURA 13: J7/J8 - CONNETTORE PER ACQUISIZIONE LINEE A/D P5.6 E P5.7 ............................... 18
FIGURA 14: TABELLA RIASSUNTIVA JUMPERS ................................................................................... 21
FIGURA 15: TABELLA JUMPERS A 2 VIE ........................................................................................... 22
FIGURA 16: DISPOSIZIONE JUMPERS ................................................................................................ 23
FIGURA 17: TABELLA JUMPERS A 3 VIE ........................................................................................... 24
FIGURA 18: TABELLA DI SELEZIONE MEMORIE ................................................................................ 26
FIGURA 19: TABELLA INDIRIZZAMENTO I/O .................................................................................... 29
FIGURA 20: MAPPAGGIO DELLE MEMORIE IN MODO 0 (BASIC+DEBUG).................................. 30
FIGURA 21: MAPPAGGIO DELLE MEMORIE IN MODO 1 (ASM) ..................................................... 31
FIGURA 22: MAPPAGGIO DELLE MEMORIE IN MODO 3 (ASM) ..................................................... 32
FIGURA 23: SCHEMA DELLE POSSIBILI CONNESSIONI ........................................................................ 37
FIGURA A1: DISPOSIZIONE JUMPERS PER MEMORIE ....................................................................... A-1
FIGURA A2: DISPOSIZIONE JUMPERS PER COMUNICAZIONE SERIALE ............................................... A-2
FIGURA C1: QUOTE PER MONTAGGIO IN PIGGY-BACK .................................................................... C-1
FIGURA C2: MONTAGGIO IN PIGGY-BACK ...................................................................................... C-2
FIGURA C3: MONTAGGIO SU GUIDA WEIDMULLER ........................................................................ C-3
FIGURA D1: SCHEMA ELETTRICO DI ESPANSIONE PPI ................................................................... D-1
FIGURA D2: SCHEMA ELETTRICO SPA 03 .................................................................................... D-2
FIGURA D3: SCHEMA ELETTRICO QTP 16P ................................................................................. D-3
FIGURA D4: SCHEMA ELETTRICO QTP 24P 1/2 ........................................................................... D-4
FIGURA D5: SCHEMA ELETTRICO QTP 24P 2/2 ........................................................................... D-5
FIGURA D6: SCHEMA ELETTRICO IAC 01 .................................................................................... D-6
FIGURA D7: SCHEMA ELETTRICO DI I/O SU ABACO® I/O BUS .................................................. D-7
FIGURA D8: SCHEMA ELETTRICO INTERFACCIA BUS .................................................................... D-8
GPC® 554
Rel. 3.20
Pagina III
grifo®
Pagina IV
ITALIAN TECHNOLOGY
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
INTRODUZIONE
L’uso di questi dispositivi é rivolto - IN VIA ESCLUSIVA - a personale specializzato.
Scopo di questo manuale é la trasmissione delle informazioni necessarie all’uso competente e sicuro
dei prodotti. Esse sono il frutto di un’elaborazione continua e sistematica di dati e prove tecniche
registrate e validate dal Costruttore, in attuazione alle procedure interne di sicurezza e qualità
dell'informazione.
I dati di seguito riportati sono destinati - IN VIA ESCLUSIVA - ad un utenza specializzata, in grado
di interagire con i prodotti in condizioni di sicurezza per le persone, per la macchina e per l’ambiente,
interpretando un’elementare diagnostica dei guasti e delle condizioni di funzionamento anomale e
compiendo semplici operazioni di verifica funzionale, nel pieno rispetto delle norme di sicurezza e
salute vigenti.
Le informazioni riguardanti installazione, montaggio, smontaggio, manutenzione, aggiustaggio,
riparazione ed installazione di eventuali accessori, dispositivi ed attrezzature, sono destinate - e
quindi eseguibili - sempre ed in via esclusiva da personale specializzato avvertito ed istruito, o
direttamente dall’ASSISTENZA TECNICA AUTORIZZATA, nel pieno rispetto delle
raccomandazioni trasmesse dal costruttore e delle norme di sicurezza e salute vigenti.
I dispositivi non possono essere utilizzati all'aperto. Si deve sempre provvedere ad inserire i moduli
all'interno di un contenitore a norme di sicurezza che rispetti le vigenti normative. La protezione di
questo contenitore non si deve limitare ai soli agenti atmosferici, bensì anche a quelli meccanici,
elettrici, magnetici, ecc.
Per un corretto rapporto coi prodotti, é necessario garantire leggibilità e conservazione del manuale,
anche per futuri riferimenti. In caso di deterioramento o più semplicemente per ragioni di
approfondimento tecnico ed operativo, consultare direttamente l’Assistenza Tecnica autorizzata.
Al fine di non incontrare problemi nell’uso di tali dispositivi, é conveniente che l’utente - PRIMA
DI COMINCIARE AD OPERARE - legga con attenzione tutte le informazioni contenute in questo
manuale. In una seconda fase, per rintracciare più facilmente le informazioni necessarie, si può fare
riferimento all’indice generale e all’indice analitico, posti rispettivamente all’inizio ed alla fine del
manuale.
VERSIONE SCHEDA
Il presente manuale é riferito alla scheda GPC® 554 versione 100997 e sucessive. La validità delle
informazioni riportate é quindi subordinata al numero di versione della scheda in uso e l'utente deve
quindi sempre verificare la giusta corrispondenza tra le due indicazioni. Sulla scheda il numero di
versione é riportato in più punti sia a livello di serigrafia che di stampato (ad esempio nell’angolo
in basso a sinistra vicino al contatto P1, sul lato componenti).
GPC® 554
Rel. 3.20
Pagina 1
grifo®
ITALIAN TECHNOLOGY
CARATTERISTICHE GENERALI
La scheda GPC® 554 (General Purpose Contreller, 80C552, 4 type) é un potente modulo di
controllo, della fascia Low-Cost con consumi ridotti, in grado di funzionare autonomamente e/o
come periferica intelligente e/o remotata in una più vasta rete di telecontrollo e/o di acquisizione. Fa
parte della Serie 4 di CPU nel formato BLOCK, con ingombro di 100x50 mm. La GPC® 554 può
essere fornita di un supporto in plastica provvisto degli attacchi per le guide Ω tipo DIN 46277-1
e DIN 46277-3. In questo modo non é necessario l’uso di un Rack, ma la scheda può essere montata,
in modo più economico, direttamente nel quadro elettrico. Viste le ridotte dimensioni della scheda
GPC® 554, questa può essere montata nella stessa guida in plastica che contiene le periferiche di I/
O, come ad esempio i moduli della serie ZBR o ZBT, formando in questo modo un unico elemento
BLOCK. Un'altra tipica applicazione della scheda GPC® 554, é quella di essere adoperata come un
modulo di CPU da montare in Piggy-Back sulle schede periferiche realizzate direttamente dall'utente.
La scheda supporta le varie versioni del chip quali 80C552, 87C552, tutti Software compatibili con
il diffusissimo 8051 Intel. Sono disponibili diversi Tools di sviluppo software che consentono di
poter usare la scheda come sistema di sviluppo di se stessa, sia in Assembler che con linguaggi
evoluti. Una particolare menzione và ai Tools di sviluppo quali i vari Compilatori C,
BASCOM 8051 ed il comodo BASIC 554. Quest'ultimo é compatibile con il diffusissimo
MCS® BASIC-52 della Intel, a cui sono stati aggiunti dei nuovi comandi. Tra i nuovi é doveroso
citarne alcuni come quelli relativi all'A/D, I2C-BUS, EEPROM Seriale, gestione diretta dei Display
LCD o Fluorescenti e di una tastiera a matrice, ecc. Per un uso immediato di quest'ultimo nuovo
comando, sono disponibili delle schede della serie KDL-224 oppure, per chi ha bisogno di un oggetto
finito, esiste il Pannello Operatore tipo QTP 24P. Questo Pannello Operatore, offerto nella versione
a giorno, ha la stessa estetica della QTP 24 ma, non disponendo di intelligenza locale, viene
comandato direttamente dalla GPC® 554, consentendo così una notevole riduzione dei costi. Il
BASIC 554, oltre alla nota facilità di Debugger, consente di programmare direttamente a bordo
scheda una EEPROM con il programma utente. Per velocizzare l'applicativo oppure per non
renderlo leggibile ad occhi indiscreti, é disponibile il Compilatore BASIC BXC51 con le librerie
adatte ad accettare come sorgente quanto generato e debaggato con il BASIC 554. La GPC® 554 é
dotata di una serie di connettori normalizzati, standard ABACO®, che le consentono di utilizzare
immediatamente la numerosa serie di moduli BLOCK di I/O oppure le permettono il collegamento,
in modo molto semplice ed economico, delle interfacce da campo costruite direttamente dall’utente
o da terze parti. Per una rapida prototipizzazione si può ricorrere alle ottime s chede SPA 03 ed
SPA 04 su cui é possibile montare, anche in Piggy-Back, la GPC® 554. La presenza del connettore
ABACO® I/O BUS permette di pilotare direttamente schede quali: tutti i moduli ZBR o ZBT,
ADC 812, DAC 212, CAN 14, ecc. e tramite ABB 03 o ABB 05 é possibile gestire tutte le numerose
schede periferiche disponibili sul BUS ABACO®.
- Modulo Intelligente Abaco® BLOCK, della Serie 4, nel formato 100x50 mm
- Contenitore, opzionale, per guide ad Ω tipo DIN 46277-1 e DIN 46277-3
- CPU 80C552, a 22 MHz con indirizzamento massimo di 96KBytes
- 32K RAM
- 2 zoccoli per 32K EPROM e 32K EEPROM, RAM o EPROM
- Circuiteria di Back-Up per RAM, tramite batteria al Litio esterna
- E2 seriale fino a 8 KBytes; Watch-Dog settabile da software
- 2 linee seriali in RS232, di cui una software, con Baud-Rate settabile da software
- 6/8 linee di A/D Converter da 10 Bits, +2,5V o +5V fondo scala; tempo di conv. 27µs
- 16 linee TTL di I/O, settabili da software
Pagina 2
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
- 2 uscite di PWM da 8 bits indipendenti
- 2 Dips leggibili da software e Jumper per RUN/DEBUG Mode
- Timer-Counter da 16 bits con 4 registri di Capture e 3 di Comparazione
- 6 uscite Set-Reset legate al Comparatore T2, più 2 uscite di Toggle
- Connettore da 26 vie per ABACO® I/O BUS
- Connettore da 26 vie per I/O, A/D e PWM
- Possibilità di funzionamento in Idle-Mode o Power-Down Mode
- Unica alimentazione a +5 Vdc, 130mA con Protezione tramite TransZorb™
- Vasta disponibilità di software di sviluppo quali Monitor-Debugger, CMX, Assembler,
GET51 e BASIC Interpretato, BASIC Compiler, Compilatori C, ecc.
Viene di seguito riportata una descrizione dei blocchi funzionali della scheda, con indicate le
operazioni effettuate da ciascuno di essi. Per una facile individuazione di tali blocchi e per una
verifica delle loro connessioni, fare riferimento alla figura 1.
PROCESSORE DI BORDO
La scheda GPC® 554 é predisposta per accettare i processori della famiglia 80C552 Philips
(80C552, 87C552, 80C562, 87C562, ecc.) . Tali processori ad 8 bit sono codice compatibile 8051
Intel e sono quindi caratterizzati da un esteso set di istruzioni, da un’alta velocità di esecuzone e di
manipolazione dati e da una efficiente gestione vettorizzata degli interrupts. Di seguito vine riportato
un elenco di tutte le caratteristiche principali della CPU che tale scheda é in grado di montare:
- 8k bytes EPROM, 256 bytes RAM
- 6 ports di I/O ad 8 bits;
- 2 Timer/Counters da 16 bits
- 1 Timer/Counters da 16 bits con funzioni di Capture e Compare;
- 2 livelli di priorità per gli Interrupt;
- 8 linee di A/D converter da 10 bits;
- 2 linee indipendenti di PWM da 8 bits;
- 1 linea seriale UART;
- 1 linea per I2C bus;
- Watch Dog Timer con tempo d’intervento definibile da software;
- Funzionamento in IDDLE-MODE o POWER-DOWN MODE;
Per maggiori informazioni a riguardo di questo componente si faccia riferimento all’appendice B
oppure all’apposita documentazione della casa costruttrice.
CLOCK
Sulla GPC® 554 é presente una circuiteria, basata su un quarzo da 22,1184 MHz, che provvede a
generare la frequenza di clock per la CPU da cui vengono ricavate anche le frequenze necessarie per
le altre sezioni della scheda (Timer/Counter, Linee Seriali, PWM, ecc.).
GPC® 554
Rel. 3.20
Pagina 3
grifo®
ITALIAN TECHNOLOGY
ALIMENTAZIONE DI BORDO
L' unica tensione di alimentazione necessaria é di +5 Vdc e deve eesere fornita tramite gli appositi
pin di CN1. Sulla scheda sono state adottate tutte le scelte circuitali e componentistiche che tendono
a ridurre i consumi, compresa la possibilità di far lavorare alcuni microcontrollori in power down ed
idle mode ed a ridurre la sensibilità ai disturbi. Si ricorda inoltre che é presente una circuiteria di
protezione tramite TransZorb™ per evitare danni dovuti a tensioni non corrette.
COMUNICAZIONE SERIALE
La comunicazione tramite la linea seriale A é completamente settabile via software per quanto
riguarda sia il protocollo sia la velocità (da un minimo di 225 ad un massimo di 115200 Baud).
Tali settaggi avvengono tramite la programmazione dei relativi registri interni alla CPU 80C552 di
cui la scheda é provvista, quindi per ulteriori informazioni si faccia riferimento all’appendice B o alla
documentazione tecnica della casa costruttrice.
Dal punto di vista hardware si ricorda che la linea seiale A può essere bufferata solo in RS 232.
Alcuni pacchetti software come per esempio il BASIC554 utilizzano una seconda seriale software
bufferata in RS 232 che é disponibile sul connettore CN3B.
MEMORIE
E’ possibile dotare la scheda di un massimo di 104K di memoria variamente suddivisi con un
massimo di 32K EPROM, 32K RAM, 32K RAM/EEPROM/EPROM ed infine 8K di EEPROM
seriale. La scelta della configurazione delle memorie presenti sulla scheda può avvenire in relazione
all’applicazione da risolvere e quindi in relazione alle esigenze dell’utente. Da questo punto di vista
si ricorda che la scheda viene normalmente fornita con 32K RAM di lavoro e 512 bytes di EEPROM
seriale; tutte le rimanenti memorie devono essere quindi opportunamente specificate in fase di ordine
della scheda.
Tramite la circuiteria di back up presente a bordo scheda é inoltre la possibile tamponare i 32K RAM
di lavoro (IC8) aggiungendo quindi la possibilità di mantenere i dati anche in assenza di alimentazione.
Questa caratteristica fornisce alla scheda la possibilità di ricordare in ogni condizione, una serie di
parametri come ad esempio la configurazione o lo stato del sistema. La circuiteria di back up é basata
su una batteria esterna collegabile tramite un apposito connettore. Qualora la quantità di RAM
tamponata risulti insufficiente (ad esempio per sistemi di data loghin) si possono sempre utilizzare
i moduli di RAM tamponata e/o di EEPROM su IC6.
Il mappaggio delle risorse di memoria avviene tramite una opportuna circuiteria di bordo, che
provvede ad allocare i dispositivi all’interno dello spazio d’indirizzamento del microprocessore; tale
logica di controllo provvede a gestire in modo completamente automatico diversi tipi di mappaggi
che si adattano ai diversi pacchetti software disponibili per la GPC® 554.
Per maggiori informazioni fare riferimento al capitolo DESCRIZIONE HARDWARE” e
DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO”. Per una descrizione più
approfondita sui dispositivi di memoria, sugli zoccoli da utilizzare e sullo strippaggio della scheda,
fare riferimento al paragrafo “SELEZIONE MEMORIE”.
Pagina 4
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
CN3A
CN3B
SERIAL LINE A
SERIAL LINE B
IC5
CN2
SERIAL
EEPROM
EXTERNAL
LITIUM
DRIVERS
IC 8
RS232
Hardware
Serial Line
RAM
Software
Serial Line
IC6
RAM
EEPROM
EPROM
I2C BUS
IC 4
CPU
EPROM
80C552
Control
Logic
VRef
2 Input LINES
or
2 A/D LINES
16 I/O LINES
6 A/D LINES
2 PWM LINES
J7/J8
CN5
ABACO® I/O BUS
CN1
FIGURA 1: SCHEMA A BLOCCHI
GPC® 554
Rel. 3.20
Pagina 5
grifo®
ITALIAN TECHNOLOGY
ABACO® I/O BUS
Una delle caratteristiche di fondamentale importanza della GPC® 554 è quella di disporre del
cosiddetto ABACO® I/O BUS, ovvero un connettore normalizzato ABACO® con cui è possibile
collegare la scheda ad una serie di moduli esterni intelligenti e non. Tra questi si trovano moduli per
l' acquisizione di segnali analogici (A/D), per la generazione di segnali analogici (D/A), per la
gestione di linee di I/O logico, per counter, ecc. e ne possono essere realizzati anche su specifiche
richieste dell’utente. Utilizzando un mother-board come l'ABB 03 o l'ABB 05 é inoltre possibile
gestire tutte le schede periferiche in formato europa con interfaccia per BUS ABACO®. Tale
caratteristica rende la scheda espandibile con un ottimo rapporto prezzo/prestazioni e quindi adatta
a risolvere molti dei problemi dell'automazione industriale.
LOGICA DI CONTROLLO
Il mappaggio di tutti i registri delle periferiche presenti sulla scheda e dei dispositivi di memoria, é
affidata ad un’opportuna logica di controllo che si occupa di allocare tali dispositivi nello spazio
d’indirizzamento della CPU. Per maggiori informazioni fare riferimento al paragrafo “MAPPAGGIO
DELL’I/O”.
LINEE DI I/O DIGITALI
Sulla scheda sono disponibili 16 linee di I/O digitale a livello TTL, con direzionalità settabile a livello
di bit, gestite dalla CPU. Tali linee sono collegate direttamente ad un connettore a 26 vie con pin out
compatibile allo standard I/O ABACO® da 20 vie ed hanno quindi la possibilità di essere
direttamente collegate a numerose schede d'interfaccia.
A/D CONVERTER
La sezione di A/D converter della GPC® 554 é basata su un convertitore interno alla CPU, in grado
di acquisire 8 canali con una risoluzione massima di 10 bits. Dal punto di vista software é possibile
definire quali canali attivare, dare lo start o lo stop all' acquisizione, ecc. Al fine di semplificare la
gestione dello stesso A/D alcuni pacchetti software forniscono delle procedure di utility che
gestiscono la sezione in tutte le sue parti. I segnali analogici collegabili sono segnali in tensione
variabili nel range 0÷2,49 V oppure 0÷5,00 V; tale valore di fondo scala é relativo a tutti gli ingressi
analogici e deve essere specificato in fase d'ordine. In assenza di indicazioni la scheda viene fornita
nella versione standard con fondo scala a 2,49 V.
Pagina 6
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
FIGURA 2: FOTO DELLA SCHEDA
FIGURA 3: PIANTE COMPONENTI
GPC® 554
Rel. 3.20
Pagina 7
grifo®
ITALIAN TECHNOLOGY
SPECIFICHE TECNICHE
CARATTERISTICHE GENERALI
Risorse di bordo:
16 Input/Output programmabili TTL
3 Timer Counter a 16 bit
2 Linee bidirezionali RS 232 (1 software)
1 Watch Dog
6/8 Linee di A/D converter
1 Contatto locale di reset
2 Dips utente leggibili da software
1 Jumper di configurazione
2 Linee di PWM da 8 bits
1 Interfaccia ABACO® I/O BUS
Memoria indirizzabile:
IC 4:
IC 8:
IC 6:
IC 5:
CPU di bordo:
PHILIPS 80C552
Frequenza di clock:
22.1184 MHz
Risoluzione A/D:
10 bits
Tempo conversione A/D:
27 µs
Tempo intervento watch dog:
da 1,111 msec a 283,305 msec
EPROM da 32K x 8
RAM da 32K x 8
RAM/EEPROM//EPROM da 8K x 8 a 32K x 8
EEPROM seriale da 256 bytes a 8 Kbytes
CARATTERISTICHE FISICHE
Dimensioni (L x A x P):
100 x 50 x 25 mm
110 x 60 x 60 mm
(senza contenitore)
(con contenitore per guide DIN)
Peso:
75 g
135 g
(senza contenitore)
(con contenitore per guide DIN)
Connettori:
CN1:
CN2:
CN3A:
CN3B:
CN5:
J7/J8:
Pagina 8
26 vie scatolino verticale M
2 vie verticale M
PLUG a 6 vie
PLUG a 6 vie
26 vie scatolino verticale M
4 vie strips M
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
Range di temperatura:
da 0 a 50 gradi Centigradi
Umidità relativa:
20% fino a 90% (senza condensa)
CARATTERISTICHE ELETTRICHE
Tensione di alimentazione:
+5 Vdc
Corrente assorbita sui 5 Vdc:
130 mA
Batteria esterna di back up:
3,6÷5 Vdc
Corrente di back up:
1 µA
Ingressi analogici in tensione:
0÷2,49 V; 0÷5,00 V
Impedenza ingressi analogici:
Non dichiarata dal costruttore
GPC® 554
Rel. 3.20
Pagina 9
grifo®
ITALIAN TECHNOLOGY
INSTALLAZIONE
In questo capitolo saranno illustrate tutte le operazioni da effettuare per il corretto utilizzo della
scheda. A questo scopo viene riportata l’ubicazione e la funzione degli strips e dei connettori, dei
trimmers, ecc. presenti sulla GPC®554.
CONNESSIONI CON IL MONDO ESTERNO
Il modulo GPC®554 è provvisto di 6 connettori con cui vengono effettuate tutte le connessioni con
il campo e con le altre schede del sistema di controllo da realizzare. Di seguito viene riportato il loro
pin-out ed il significato dei segnali collegati; per una facile individuazione di tali connettori, si faccia
riferimento alla figura 12, mentre per ulteriori informazioni a riguardo del tipo di connessioni, fare
riferimento alle figure successive che illustrano il tipo di collegamento effettuato a bordo scheda.
CN2 - CONNETTORE PER BATTERIA ESTERNA DI BACK UP
CN2 é un connettore a scatolino, verticale, maschio, con passo 2,54mm a 2 vie. Tramite CN2 deve
essere collegata una batteria esterna che provvede a mantenere i dati della RAM di bordo (IC8) anche
in assenza di tensione di alimentazione.
1
+Vbat
2
GND
FIGURA 4: CN2 - CONNETTORE PER BATTERIA ESTERNA DI BACK UP
Legenda:
+Vbat
GND
Pagina 10
=
=
I
-
Positivo della batteria esterna di back up.
Negativo della batteria esterna di back up.
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
CN1 - CONNETTORE PER ABACO® I/O BUS
CN1 è un connettore a scatolino verticale con passo 2.54 mm a 26 piedini. Tramite CN1 si effettua
la connessione tra la scheda e la serie di moduli esterni di espansione, da utilizzare per l’interfacciamento
diretto con il campo. Tale collegamento è effettuato tramite l’ABACO® I/O BUS di cui questo
connettore riporta tutti i segnali a livello TTL.
D0
1
2
D1
D2
3
4
D3
D4
5
6
D5
D6
7
8
D7
A0
9
10
A1
A2
11
12
A3
A4
13
14
A5
A6
15
16
A7
/WR
17
18
/RD
/IORQ
19
20
/RESET
N.C.
21
22
N.C.
/INT BUS (/INT0)
23
24
/NMI BUS (T0)
GND
25
26
+5 Vdc
FIGURA 5: CN1 - CONNETTORE PER ABACO® I/O BUS
Legenda:
A0-A7
=
D0-D7
=
/INT BUS =
/NMI BUS =
/IORQ
=
/RD
=
/WR
=
/RESET =
+5 Vdc
=
GND
=
N.C.
=
GPC® 554
O
I/O
I
I
O
O
O
O
I
-
Rel. 3.20
Address BUS: BUS degli indirizzi.
Data BUS: BUS dei dati.
Interrupt request: richiesta d’interrupt. Deve essere in open collector.
Non Mascable Interrupt: richiesta d’interrupt non mascherabile.
Input Output Request: richiesta operazione Input Output su I/O BUS.
Read cycle status: richiesta di lettura.
Write cycle status: richiesta di scrittura.
Reset: azzeramento.
Linea di alimentazione a +5 Vcc.
Linea di massa.
Non Collegato.
Pagina 11
grifo®
ITALIAN TECHNOLOGY
CN5 - CONNETTORE PER LINEE DI I/O, A/D E PWM
CN5 è un connettore a scatolino verticale con passo 2.54 mm a 26 piedini. Tramite CN5 si effettua
la connessione tra i port 1 e 4 della CPU, e l’ambiente esterno. Inoltre sono presenti 6 linee di ingresso
per la sezione di A/D della CPU e le due uscite PWM. Da ricordare che il port 5 della CPU ha una
doppia funzione ossia le 8 linee possono essere ingressi digitali o ingressi per l' A/D converter.
P4.1
1
2
P4.0
P4.3
3
4
P4.2
P4.5
5
6
P4.4
P4.7
7
8
P4.6
P1.6
9
10
P1.7
P1.4
11
12
P1.5
P1.2
13
14
P1.3
P1.0
15
16
P1.1
GND
17
18
+5 Vdc
PWM1
19
20
PWM0
P5.1/ADC1
21
22
P5.0/ADC0
P5.3/ADC3
23
24
P5.2/ADC2
P5.5/ADC5
25
26
P5.4/ADC4
FIGURA 6: CN5 - CONNETTORE PER LINEE DI I/O, A/D E PWM
Legenda:
P1.n
P4.n
PWM0
PWM1
P5.n/ADCn
GND
+5 Vdc
Pagina 12
=
=
=
=
=
=
=
I/O
I/O
O
O
I
O
-
Linea digitale n del port 1 della CPU.
Linea digitale n del port 4 della CPU.
Linea di PWM n. 0 della CPU.
Linea di PWM n. 1 della CPU.
Linea digitale n o ingresso canale n dell' A/D della CPU.
Linea di massa per sezione digitale e sezione analogica.
Linea di alimentazione a +5 Vcc.
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
8 I/O lines
PIN 1÷8
8 I/O lines
PORT 1
PIN 9÷16
CN5
PORT 4
6 Input or A/D lines
PIN 21÷26
PORT 5.0÷5.5
2 Output or PWM lines
PWM0, PWM1
PIN 19÷20
2 Input or A/D lines
PIN 1 - J8
PIN 9÷16
PIN 1 - J7
PORT 5.6
PORT 5.7
VRef.
J7/J8
CPU
80C552
RV1
FIGURA 7: SCHEMA DI COLLEGAMENTO LINEE DI I/O E A/D
GPC® 554
Rel. 3.20
Pagina 13
grifo®
ITALIAN TECHNOLOGY
CN3A - CONNETTORE PER LINEA SERIALE A
Il connettore per la comunicazione della linea seriale A in RS 232 denominato CN3A sulla scheda,
é del tipo PLUG a 6 vie. La disposizione di tali segnali, riportata di seguito, é stata studiata in modo
da ridurre al minimo le interferenze ed in modo da facilitare la connessione con il campo, mentre i
segnali rispettano le normative definite dal CCITT relative allo standard RS 232.
6
5 4
3
2
1
GND
RxDA RS 232
+5 Vdc / GND
TxDA RS 232
N.C.
N.C.
FIGURA 8: CN3A-CONNETTORE PER LINEA SERIALE A
Legenda:
RxDA RS 232
TxDA RS 232
=
=
+5 Vdc/GND
GND
N.C.
=
=
=
Pagina 14
I
O
-
Receive Data: linea di ricezione in RS 232 della linea seriale A.
Transmit Data: linea di trasmissione in RS 232 della linea
seriale A.
Linea di alimentazione a +5 Vcc o linea di massa
Linea di massa
Non Collegato.
GPC® 554
Rel. 3.20
CN3A
grifo®
ITALIAN TECHNOLOGY
RS 232
DRIVER
CPU 80C552
HARDWARE
Serial Line
CN3B
SOFTWARE
Serial Line
5
RxD
TxD
2
TxD
RxD
6
GND
GND
Master Remote System
CN3A/B GPC® 554
FIGURA 9: SCHEMA DI COMUNICAZIONE SERIALE
FIGURA 10: ESEMPIO DI COLLEGAMENTO IN RS 232
GPC® 554
Rel. 3.20
Pagina 15
grifo®
ITALIAN TECHNOLOGY
CN3B - CONNETTORE PER LINEA SERIALE B
Il connettore per la comunicazione della linea seriale B (seriale software), in RS 232, denominato
CN3B sulla scheda, é del tipo PLUG a 6 vie. La disposizione di tali segnali, riportata di seguito, é
stata studiata in modo da ridurre al minimo le interferenze ed in modo da facilitare la connessione
con il campo, mentre i segnali rispettano le normative definite dal CCITT relative allo standard
RS232.
6
5 4
3
2
1
GND
RxDB RS 232
+5 Vdc / GND
TxDB RS 232
N.C.
N.C.
FIGURA 11: CN3B-CONNETTORE PER LINEA SERIALE B
Legenda:
RxDB RS 232
TxDB RS 232
=
=
+5 Vdc/GND
GND
N.C.
=
=
=
Pagina 16
I
O
-
Receive Data: linea di ricezione in RS 232 della linea seriale B.
Transmit Data: linea di trasmissione in RS 232 della linea
seriale B.
Linea di alimentazione a +5 Vcc o linea di massa
Linea di massa
Non Collegato.
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
CN3A
CN3B
J7/J8
CN5
IC4
RV1
CN2
CN1
P1
IC6
FIGURA 12: DISPOSIZIONE CONNETTORI, TRIMMER, MEMORIE, ECC.
GPC® 554
Rel. 3.20
Pagina 17
grifo®
ITALIAN TECHNOLOGY
J7/J8 - CONNETTORE PER ACQUISIZIONE LINEE A/D P5.6 E P5.7
J7/J8 é una strips, maschio, con passo 2,54mm a 4 vie. Tale connettore può avere una duplice
funzione, infatti é possibile utilizzare le due linee P5.6 e P5.7 come linee di ingresso alla sezione di
A/D della CPU o come inputs utente generici .
J7
J8
2
GND
1
P5.7/ADC7
2
GND
1
P5.6/ADC6
FIGURA 13: J7/J8 - CONNETTORE PER ACQUISIZIONE LINEE A/D P5.6 E P5.7
Legenda:
P5.n/ADCn
GND
Pagina 18
=
=
I
-
Linea digitale n o ingresso canale n dell' A/D della CPU.
Linea di massa per sezione digitale e sezione analogica.
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
INTERFACCIE PER I/O DIGITALI
Tramite CN5 (connettore compatibile con standard di I/O ABACO®) si può collegare la GPC® 554
ai numerosi moduli del carteggio grifo® che riportano lo stesso pin out. Dal punto di vista
dell’installazione, queste interfaccie richiedono solo un flat cable da 18 vie intestato con due
connettori da 26 e 20 vie (FLT.26+20) con cui é possibile portare anche le alimentazioni, mentre dal
punto di vista software la gestione é altrettanto semplice ed immediata, infatti i pacchetti software
disponibili per la GPC® 554 sono provvisti di tutte le procedure necessarie. Quest’ultime per la
maggioranza dei pacchetti software disponibili, coincidono con dei “driver software” o delle librerie
aggiunti al linguaggio di programmazione, che consentono di utilizzare direttamente le istruzioni ad
alto livello dello stesso linguaggio di programmazione e quindi tutta la loro potenza.
Di particolare interesse é la possibilità di collegare direttamente una serie di moduli come:
- QTP 16P, QTP 24P, KDL x24, KDF 224, DEB 01, ecc. con cui risolvere tutti i problemi di
interfacciamento operatore locale. Questi moduli sono già dotati delle risorse necessarie per gestire
un buon livello di colloquio uomo-macchina (includono infatti display alfanumerici, tastiera a
matrice e LEDs di visualizzazione) ad una breve distanza dalla GPC® 554. Dal punto di vista
software i driver disponibili rendono utilizzabili le risorse dell’interfaccia operatore direttamente
con le istruzioni ad alto livello per la gestione della console.
- MCI 64 con cui risolvere tutti i problemi di salvataggio di grosse quantità di dati. Questo modulo
é dotato di un connettore per memory card PCMCIA su cui possono essere inserite vari tipi di
memory card (RAM, FLASH, ROM, ecc) nei vari size disponibili. Dal punto di vista software i
driver disponibili coincidono con un completo file system e rendono utilizzabili le memory card
direttamente con le istruzioni ad alto livello per la gestione dei files.
- IAC 01, DEB 01 con cui gestire una stampante con interfaccia parallela CENTRONICS.
Quest’ultima può essere collegata direttamente all’interfaccia, con un cavo standard, e quindi
gestita con le istruzioni relative alla stampante del linguaggio di programmazione utilizzato.
- RBO xx, TBO xx, XBI xx, OBI xx con cui bufferare i segnali di I/O TTL nei confronti del campo.
Con questi moduli i segnali di input vengono convertiti in ingressi optoisolati di tipo NPN o PNP,
mentre i segnali di output vengono convertiti in uscite galvanicamente isolate a transistor o relé.
Per maggiori informazioni relative alle interfaccie per I/O digitali si veda il capitolo “SCHEDE
ESTERNE” e la documentazione del software utilizzato.
TASTO DI RESET
Sulla GPC® 554 é presente un contatto di reset denominato P1 che consente di attivare la linea di
/RESET della scheda. Sui due pin del P1 si può collegare un contatto normalmente aperto (ad
esempio un pulsante) ed una volta chiuso questo contatto (cortocircuitando i due pin) la scheda
riprende l’esecuzione del programma in EPROM, partendo da una condizione di azzeramento
generale. La funzione principale di questo contatto é quella di uscire da condizioni di loop infinito,
soprattutto durante la fase di debug. Per una facile individuazione di tale contatto a bordo scheda,
si faccia riferimento alla figura 12, mentre per ulteriori informazioni sulla circuiteria di reset si veda
il paragrafo “RESET E WATCH DOG”.
GPC® 554
Rel. 3.20
Pagina 19
grifo®
ITALIAN TECHNOLOGY
INTERFACCIAMENTO DEGLI I/O CON IL CAMPO
Al fine di evitare eventuali problemi di collegamento della scheda con tutta l’elettronica del campo
a cui la GPC® 554 si deve interfacciare, si devono seguire le informazioni riportate nei precedenti
paragrafi e nelle relative figure che illustrano le modalità interne di connessione.
- Per tutti i segnali che riguardano la comunicazione seriale con il protocollo RS 232, fare
riferimento alle specifiche standard di questo protocollo.
- Per tutti i segnali a livello TTL possono essere collegati a linee dello stesso tipo riferite alla massa
digitale della scheda. Il livello 0V corrisponde allo stato logico 0, mentre il livello 5V corrisponde
allo stato logico 1.
- I segnali d'ingresso alla sezione A/D devono essere collegati a segnali analogici a bassa impedenza
che rispettino il range di variazione ammesso che può essere 0÷+2,49 V o 0÷+5,00 V a seconda
della configurazione.
TRIMMER E TARATURE
Sulla GPC® 554 é presente il trimmer RV1 da utilizzare per la taraura della scheda; tale componente
permette di fissare il valore della tensione di riferimento su cui si basa la sezione di A/D converter.
La scheda viene sottoposta ad un accurato test di collaudo che provvede a verificare la funzionalità
della stessa ed allo stesso tempo a tararla in tutte le sue parti. La taratura viene effettuata in laboratorio
a temperatura costante di +20 gradi centigradi, seguendo la procedura di seguito descritta:
- Si effettua la taratura di precisione della Vref della sezione A/D tramite la regolazione del trimmer
RV1, tramite un multimetro galvanicamente isolato a 5 cifre ad un valore di 2,4900 V o 5,0000V.
- Si verifica la corrispondenza tra segnale analogico fornito in ingresso e combinazione letta dalla
sezione A/D converter. La verifica viene effettuata fornendo un segnale di verifica con un
calibratore campione e controllando che la differenza tra la combinazione determinata dalla scheda
e quella determinata in modo teorico, non superi la somma degli errori della sezione A/D.
- Si blocca il trimmer della scheda, opportunamente tarato, tramite vernice.
Le sezioni d’interfaccia analogica utilizzano componenti di alta precisione che vengono addirittura
scelti in fase di montaggio, proprio per evitare lunghe e complicate procedure di taratura. Per questo
una volta completato il test di collaudo e quindi la taratura, il trimmer RV1 viene bloccato, in modo
da garantire una immunità della taratura anche ad eventuali sollecitazioni meccaniche (vibrazioni,
spostamenti, ecc.).
La circuiteria di generazione della tensione di riferimento definisce anche il fondo scala per tutti gli
11 canali di ingresso analogico, tra i due possibili range: 0÷2,49 V o 0÷5,00 V. La scelta di questo
valore di fondo scala deve essere specificata in fase d'ordine della scheda, infatti implica il montaggio
di diversi componenti ed una diversa procedura di taratura. In assenza di indicazioni, la scheda viene
fornita nella versione standard con fondo scala a 2,49 V.
L’utente di norma non deve intervenire sulla taratura della scheda, ma se lo dovesse fare (a causa di
derive termiche, derive del tempo, ecc.) deve rigorosamente seguire la procedura sopra illustrata.
Per una facile individuazione del trimmer a bordo scheda, si faccia riferimento alla figura 12.
Pagina 20
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
JUMPERS
Esistono a bordo della GPC® 554 14 jumpers, con cui é possibile effettuare alcune selezioni che
riguardano il modo di funzionamento della stessa. Di seguito ne é riportato l’elenco, l’ubicazione e
la loro funzione nelle varie modalità di connessione.
JUMPER
N. VIE
UTILIZZO
J1
2
Configura il mappaggio della memoria.
J2
2
Setta l’input utente nella modalità di RUN o di DEBUG.
J3
3
Seleziona il tipo di dispositivo di memoria su IC6.
J4
3
Seleziona il tipo ed il size del dispositivo di memoria su IC6.
J5
3
Seleziona il tipo ed il size del dispositivo di memoria su IC6.
J6
3
Configura il mappaggio della memoria.
J7
2
Seleziona il tipo di collegamento per il pin 62 (P5.7) della CPU
(INPUT UTENTE).
J8
2
Seleziona il tipo di collegamento per il pin 63 (P5.6) della CPU
(INPUT UTENTE).
JS3
3
Seleziona il tipo di collegamento per il pin 1 di CN3A.
JS4
3
Seleziona il tipo di collegamento per il pin 1 di CN3B.
JS5
2
Seleziona area codice da ROM interna o esterna.
JS10
2
Gestisce l' abilitazione hardware del WATCH-DOG.
JS12
3
Seleziona il tipo di collegamento per il pin 26 (P3.2-/INT0) della
CPU.
JS13
3
Seleziona il tipo di collegamento per il pin 28 (P3.4-T0) della
CPU.
FIGURA 14: TABELLA RIASSUNTIVA JUMPERS
Di seguito é riportata una descrizione tabellare delle possibili connessioni dei 14 jumpers con la loro
relativa funzione. Per riconoscere tali connessioni sulla scheda si faccia riferimento alla serigrafia
della stessa o alla figura 3 di questo manuale, dove viene riportata la numerazione dei pins dei
jumpers, che coincide con quella utilizzata nella seguente descrizione. Per l’individuazione dei
jumpers a bordo della scheda, si utilizzi invece la figura 16.
GPC® 554
Rel. 3.20
Pagina 21
grifo®
ITALIAN TECHNOLOGY
JUMPERS A 2 VIE
JUMPER
CONNESSIONE
UTILIZZO
DEF.
non connesso
Questo jumper viene utilizzato con J6 e serve per
selezionare la mappatura della memoria. Vedere
il paragrafo "MAPPAGGIO DELLE MEMORIE"
per ulteriori informazioni.
*
J1
connesso
non connesso
Connette l’ingresso utente RUN/DEBUG a
livello logico 1.
connesso
Connette l’ingresso utente RUN/DEBUG a
livello logico 0.
non connesso
Connette l’ingresso utente P5.7 a livello logico 1.
connesso
Connette l’ingresso utente P5.7 a livello logico 0.
non connesso
Connette l’ingresso utente P5.6 a livello logico 1.
connesso
Connette l’ingresso utente P5.6 a livello logico 0.
non connesso
Abilitazione lettura codice dalla ROM interna del
microprocessore.
connesso
Abilitazione lettura codice dalla ROM esterna del
microprocessore = EPROM della scheda.
*
Disabilitazione hardware del WATCH-DOG.
*
*
J2
*
J7
*
J8
JS5
non connesso
JS10
connesso
Abilitazione hardware del WATCH-DOG.
FIGURA 15: TABELLA JUMPERS A 2 VIE
L’ * indica la connessione di default, ovvero la connessione impostata in fase di collaudo, con cui
la scheda viene fornita.
Pagina 22
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
J7
J8
J3
J6
J1
J5
J4
J2
JS4
JS3
JS13
JS12
JS5
JS10
FIGURA 16: DISPOSIZIONE JUMPERS
GPC® 554
Rel. 3.20
Pagina 23
grifo®
ITALIAN TECHNOLOGY
JUMPERS A 3 VIE
JUMPER CONNESSIONE
UTILIZZO
DEF.
posizione 1-2
Predispone IC6 per EPROM.
posizione 2-3
Predispone IC6 per RAM/EEPROM.
posizione 1-2
Predispone IC6 per EPROM
posizione 2-3
Predispone IC6 per RAM/EEPROM da 32 K.
Non connesso
Predispone IC6 per RAM/EEPROM da 8 K.
posizione 1-2
Predispone IC6 per RAM/EEPROM/EPROM da 32 K.
posizione 2-3
Predispone IC6 per RAM/EEPROM da 8 K.
Non connesso
Predispone IC6 per EPROM da 8 K.
posizione 1-2
Non connesso
Questo jumper viene utilizzato con J1 e serve per
selezionare la mappatura della memoria. Vedere il
paragrafo "MAPPAGGIO DELLE MEMORIE" per
ulteriori informazioni.
*
posizione 1-2
Collega il pin 1 di CN3A a GND.
*
posizione 2-3
Collega il pin 1 di CN3A a +5 Vcc.
posizione 1-2
Collega il pin 1 di CN3B a GND.
posizione 2-3
Collega il pin 1 di CN3B a +5 Vcc.
J3
J4
J5
J6
posizione 2-3
*
*
*
JS3
*
JS4
posizione 1-2
JS12
posizione 2-3
posizione 1-2
JS13
posizione 2-3
Collega il pin 26 della CPU (P3.2-/INT0) al pin 23 di
CN1 (/INT).
Collega la linea di ricezione della linea seriale B
(RS 232) al pin 26 della CPU (P3.2-/INT0).
Collega il pin 28 della CPU (P3.4-T0) al pin 24 di CN1
(/NMI).
Collega la linea di trasmissione della linea seriale B
(RS 232) al pin 28 della CPU (P3.4-T0).
*
*
FIGURA 17: TABELLA JUMPERS A 3 VIE
L’ * indica la connessione di default, ovvero la connessione impostata in fase di collaudo, con cui
la scheda viene fornita.
Pagina 24
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
INPUT DI BORDO
La scheda GPC® 554 è provvista di 3 jumpers, denominati J2, J7 e J8, che sono acquisibili via
software dall'utente.
Le applicazioni più immediate possono essere quelle destinate al settaggio delle condizioni di lavoro
o alla selezione di parametri relativi al firmware di bordo. Per ulteriori informazioni si faccia
riferimento ai paragrafi “MAPPAGGIO DELL’I/O” e "DESCRIZIONE SOFTWARE DELLE
PERIFERICHE DI BORDO", mentre per una facile individuazione della loro posizione fare
riferimento alla figura 16.
Il jumper J2 viene anche utilizzato da alcuni pacchetti software (ad esempio il BASIC554), per
selezionare la modalità di funzionamento RUN o quella DEBUG; mentre J7 e J8, come descritto in
precedenza, possono anche essere utilizzati come connettore, per il collegamento a 2 ingressi
analogici o TTL.
RESET E WATCH DOG
La scheda GPC® 554 è dotata di una circuiteria di watch dog, interna alla CPU, molto efficiente e
di facile gestione software. In particolare le caratteristiche di questa circuiteria sono le seguenti:
- funzionamento astabile;
- tempo d’intervento programmabile da software da 1,111 msec fino a 283,305 msec;
- attivazione via hardware tramite il jumper JS10;
- retrigger via software;
Si ricorda che nel funzionamento astabile una volta scaduto il tempo d’intervento la circuiteria si
attiva, rimane attiva per il tempo di reset e quindi si disattiva nuovamente.
Si ricorda inoltre che tra le sorgenti di /RESET della GPC® 554, oltre all'eventuale circuiteria di
watch dog, sono sempre presenti il pulsante P1 e la circuiteria di power on.
Per quanto riguarda l’operazione di retrigger della circuiteria di watch dog, si faccia riferimento ai
data scheet del microprocessore oppure all’appendice B di questo manuale.
COMUNICAZIONE SERIALE
La linea di comunicazione seriale A della scheda GPC® 554 può essere bufferata solo in RS 232. Dal
punto di vista software sono invece definibili tutti i parametri del protocollo fisico di comunicazione
tramite la programmazione dei registri interni della CPU.
La GPC® 554 dispone di una seconda linea di comunicazione seriale (B) che può essere bufferata
solo in RS 232. Per fare questo si devono settare i jumpers JS12 e JS13 in posizione 2-3.
La linea seriale B é una linea seriale software gestita tramite due linee di I/O del microcontrollore.
I parametri della comunicazione sono quindi definibili via software parametrizzando il firmware di
gestione (per maggiori informazioni fare riferimento al manuale d'uso del pacchetto software).
GPC® 554
Rel. 3.20
Pagina 25
grifo®
ITALIAN TECHNOLOGY
INTERRUPTS
Una caratteristica peculiare della GPC® 554 è la notevole potenza nella gestione delle interruzioni.
Di seguito viene riportata una breve descrizione di come possono essere gestiti i segnali hardware
di interrupt della scheda; per quanto riguarda la gestione di tali interrupts si faccia riferimento ai data
sheets del microprocessore oppure all’appendice B di questo manuale.
- ABACO® I/O BUS
->
Genera un interrupt sul pin T0 della CPU, tramite la linea /NMI BUS
di CN1, se il jumper JS13 é settato in posizione 1-2.
Genera un interrupt sul pin /INT0 della CPU, tramite la linea
/INT BUS di CN1, se il jumper JS12 é settato in posizione 1-2.
Generano un interrupt interno. In particolare le possibili sorgenti
d'interrupt interno sono le sezioni: Timer/Counter, A/D converter,
linea seriale e linea I2C.
- Periferiche della CPU->
Sulla scheda é presente un gestore d'interrupt che consente di attivare, disattivare, mascherare le
sorgenti d'interrupt e che regolamenta l'attivazione contemporanea di più interrupts. In questo modo
l’utente ha sempre la possibilità di rispondere in maniera efficace e veloce a qualsiasi evento esterno,
stabilendo anche la priorità delle varie sorgenti.
SELEZIONE MEMORIE
La GPC® 554 può montare fino ad un massimo di 104 Kbytes di memoria variamente suddivisa. In
particolare valgono le informazioni riportate nella seguente tabella:
IC
DISPOSITIVO
DIMENSIONE
STRIPPAGGIO
6
RAM/EEPROM
8K Bytes
J3 in 2-3; J4 non connesso; J5 in 2-3
RAM/EEPROM
32K Bytes
J3 in 2-3; J4 in 2-3; J5 in 1-2
EPROM
8K Bytes
J3 in 1-2; J4 in 1-2; J5 non connesso
EPROM
32K Bytes
J3 in 1-2; J4 in 1-2; J5 in 1-2
8
RAM
32K Bytes
4
EPROM
32K Bytes
5
EEPROM
256÷8K Bytes
FIGURA 18: TABELLA DI SELEZIONE MEMORIE
Tutti i dispositivi sopra descritti devono essere con pin out di tipo JEDEC a parte l’EEPROM seriale
di IC5 che deve essere richiesta alla grifo® in fase di ordine della scheda. Per quanto riguarda le sigle
dei vari dispositivi che possono essere montati, fare riferimento alla documentazione della casa
costruttrice. Per una facile individuazione dei dispositivi di memoria fare riferimento alla figura 12.
I moduli di RAM per IC6, possono, su richiesta, essere del tipo tamponato.
Pagina 26
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
DESCRIZIONE SOFTWARE
Questa scheda ha la possibilità di usufruire di una ricca serie di strutture software che consentono di
utilizzarne al meglio le caratteristiche. In generale la scheda può sfruttare tutte le risorse software per
il microprocessore montato e tutti i pacchetti ideati per la famiglia 51, sia ad alto che a basso livello.
Tra questi ricordiamo:
GET51: Completo programma di EDITOR , Comunicazione e gestione delle Memorie di Massa per
le schede della famiglia 51. Questo programma, sviluppato dalla grifo®, consente di operare in
condizioni ottimali, in abbinamento ai pacchetti software BASIC 554, MDP, BXC51, FMO52, ecc.
Una serie di comodi menù a tendina facilita l’uso del programma, il quale può funzionare anche in
abbinamento ad un mouse. Il programma, oltre che girare in ambiente MS-DOS, gira tranquillamente
anche sulle macchine MACINTOSH in abbinamento al programma VIRTUAL-PC. Viene fornito
su dischetti MS-DOS da 3”1/2.
MDP: monitor debugger in grado di caricare e debuggare un qualsiasi file HEX con codice ‘I51.
Dispone di tutti i comandi normalmente disponibili con un'emulatore e fornisce quindi all'utente la
possibilità di operare comodamente con tutte le risorse di bordo. Per questo pacchetto software é
sufficiente disporre di un P.C. che effettua le sole operazioni di console nei confronti dell'utente.
FORTH: completa struttura di sviluppo che consente di programmare la scheda in FORTH.
Richiede un P.C. per l'interfaccia utente e rende disponibili strutture dati e di programmazione ad alto
livello, che velocizzano lo sviluppo dell'applicativo con ottime caratteristiche in termini di codice
sviluppato e velocità di esecuzione.
BASIC 554: completa struttura di sviluppo che consente di programmare la scheda con un BASIC
interpretato adatto alle applicazioni industriali. Per opearare é sufficiente un P.C. che svolge le
funzioni di consolle nei confronti della scheda su cui viene invece sviluppato, debuggato, provato
e salvato il programma da realizzare. La programmazione é ad alto livello ed interessa la maggioranza
dei dispositivi a bordo scheda, di cui vengono già forniti i driver software di facile utilizzo.
BXC51: Cross compilatore per files sorgenti scritti in BASIC 554. Disponibile in ambiente
MS-DOS, permette un notevole incremento in termini di velocità di esecuzione rispetto all’equivalente
programma in BASIC interpretato.
MCA 51: Macro Cross Assembler. Disponibile in ambiente MS-DOS e nella versione assoluta o
rilocabile, permette una facile ed efficiente programmazione in assembler, dei microcontrollori
basati sull’8051. In versione rilocabile, viene anche fornito un linker ed un gestore di librerie.
MCC 51: Integer Cross Compiler per files sorgenti scritti in linguaggio C. Disponibile in ambiente
MS-DOS, genera un source assembly compatibile con il MICRO/ASM 51 o con il macro assembler
rilocabile dell'Intel (MCS-51).
MCS 51: Simulatore e Debugger a livello source. Simulatore/Debugger in grado di simulare i
microcontrolloridella famiglia I51 e di monitorare lo stato di esecuzione di un programma. Permette
tramite un PC e senza l'aggiunta di emulatori o hardware addizionale, il caricamento o il salvataggio
di file HEX o simbolici, il settaggio di breakpoints, l'esecuzione in modalità trace di istruzioni C e/
o assembler, la visualizzazione di qualsiasi registro o variabile, ecc.
GPC® 554
Rel. 3.20
Pagina 27
grifo®
ITALIAN TECHNOLOGY
MCK 51: E' la somma dei pacchetti MCC 51 e MCA 51 e coincide con un completo compilatore C
in grado di generare codice eseguibile per la famiglia '51 Intel e di generare un file simbolico
utilizzabile dall'MCS 51.
HI TECH C 51: Cross compilatore per file sorgenti scritti in linguaggio C. E’ un potente pacchetto
software che tramite un comodo I.D.E. permette di utilizzare un editor, un compilatore C (floating
point), un assemblatore, un ottimizzatore, un linker e un remote debugger. Sono inoltre inclusi i
source delle librerie.
SYS51CW: Cross compilatore per programmi scritti in C, disponibile in ambiente WINDOWS con
un comodo IDE che mette a disposizione: editor, compilatore C, assemblatore, ottimizzatore, linker,
librerie ed un debugger simbolico remoto.
SYS51PW: Cross compilatore per programmi scritti in PASCAL, disponibile in ambiente WINDOWS
con un comodo IDE che mette a disposizione: editor, compilatore PASCAL, assemblatore,
ottimizzatore, linker, librerie ed un debugger simbolico remoto.
XPAS51: Cross compilatore per files sorgenti scritti in PASCAL,disponibile in ambiente MS-DOS.
DDS MICRO C 51: E’ un comodo pacchetto software, a basso costo, che tramite un completo I.D.E.
permette di utilizzare un editor, un compilatore C (integer), un assemblatore, un linker e un remote
debugger abbinato ad un monitor. Sono inclusi i sorgenti delle librerie ed una serie di utility.
NOICE: Potente struttura di debugger composta da un monitor debugger residente sulla scheda e da
un apposito programma MS-DOS. I due programmi comunicano tramite una linea seriale in RS 232.
Il NOICE include: debug a livello sorgente, disassemblatore, visualizzatore di file, editor e
visualizzazione della memoria, numero di breakpoint illimitato, esecuzione di singole istruzioni
indipendente dall'hardware, definizione di simboli, possibilità di eseguire file di comandi, gestione
del back trace, help in linea, ecc.
OPEN 51/UNI: Emulatore in circuit per la famiglia '51 Intel. E' un potente pacchetto hardware e
software che include: debug a livello sorgente e simbolico, gestione di progetti, editor multi finestra,
esecuzione di compilatori, assemblatori esterni, debug di più moduli contemporaneo, disassemblatore,
funzioni di step e trace a livello sorgente, funzioni di animazione, veloce gestione dei breakpoint
sempre a livello sorgente, visualizzazione e modifica di variabili a livello di strutture dati ad alto
livello.
BASCOM 8051: Cross compilatore a basso costo per files sorgenti scritti in BASIC, disponibile in
ambiente WINDOWS con un comodo IDE che mette a disposizione un editor, il compilatore ed un
simulatore molto potente per il debugger del sorgente. Comprende molti modelli di memoria, svariati
tipi di dati ed istruzioni dedicate alle risorse hardware.
FMO52: monitor debugger in grado di caricare e debuggare un qualsiasi file HEX con codice ‘I51.
Dispone di tutti i comandi normalmente disponibili con un'emulatore e fornisce quindi all'utente la
possibilità di operare comodamente con tutte le risorse di bordo. Per questo pacchetto software é
sufficiente disporre di un P.C. che effettua le sole operazioni di console nei confronti dell'utente.
E’ inoltre in grado di programmare su FLASH EPROM l’applicativo sviluppato dall’utente e
sucessivamente eseguirlo in modalità di autorun.
Pagina 28
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
MAPPAGGI ED INDIRIZZAMENTI
In questo capitolo ci occuperemo di fornire tutte le informazioni relative all’utilizzo della scheda, dal
punto di vista della programmazione via software. Tra queste si trovano le informazioni riguardanti
il mappaggio della scheda e la gestione software delle sezioni componenti.
MAPPAGGIO DELLE RISORSE DI BORDO
La gestione delle risorse della scheda é affidata ad una logica di controllo completamente realizzata
con logiche programmabili. Essa si occupa del mappaggio delle zone di RAM ed EPROM e di tutte
le periferiche di bordo, semplificando l' operatività dell' utente. La logica di controllo é realizzata in
modo da gestire separatamente il mappaggio delle memorie di bordo ed il mappaggio delle
periferiche viste in Input/Output. Complessivamente la CPU 80C552 indirizza direttamente 64K di
area codice e 64K di area dati, quindi alla logica di controllo è assegnato il compito di allocare i
dispositivi di memoria installabili nello spazio fisico massimo di 128K Bytes. Questa gestione è
effettuata via hardware tramite lo strippaggio di alcuni jumpers (J3, J4, J5, J1, J6) con cui si può
definire quali memorie utilizzare e il range di indirizzamento per ciascuna di esse. Per quanto
riguarda il mappaggio dell’I/O si deve invece ricordare che la logica di controllo provvede
naturalmente a non utilizzare le locazioni riservate per le periferiche interne della CPU, in modo da
evitare ogni problema di conflittualità.
Riassumendo i dispositivi mappati sulla scheda sono essenzialmente:
- 32K Bytes di EPROM su IC 4
- 32K Bytes di RAM su IC 8
- Fino a 32K Bytes di RAM/EEPROM/EPROM su IC 6
- ABACO® I/O BUS
- RUN/DEBUG (stato di J2)
Questi occupano gli indirizzi riportati nei paragrafi seguenti e non possono essere riallocati in nessun
altro indirizzo. La EEPROM seriale di IC 5, é sempre gestita dalla logica di controllo, ma
effettivamente non occupa spazio d'indirizzamento in quanto sfrutta una comunicazione seriale
sincrona gestita tramite linee di I/O della CPU.
MAPPAGGIO PERIFERICHE IN I/O
Come detto precedentemente, per l' I/O si sono utilizzati gli ultimi 256 indirizzi (192 utilizzati per
l' ABACO® I/O BUS, e 64 bytes per la lettura del jumper J2 e per future espansioni) dei 64K Bytes
dell' area dati gestita dalla CPU. Per maggior chiarezza si riporta il nome del registro, il suo indirizzo,
il tipo di accesso ed una breve descrizione del loro significato:
DISP.
REG.
IND.
ABACO® I/O BUS
I/O BUS
FF00H÷FFBFH
RUNDEB
FFC0H÷FFFFH
RUN/DEBUG
R/W
SIGNIFICATO
R/W Indirizzi ABACO® I/O BUS
R
Registro di acquisizione stato del
jumper di input utente J2
FIGURA 19: TABELLA INDIRIZZAMENTO I/O
Per quanto riguarda la descrizione del significato dei registri qui sopra riportati, si faccia riferimento
al capitolo sucessivo “DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO”.
GPC® 554
Rel. 3.20
Pagina 29
grifo®
ITALIAN TECHNOLOGY
MAPPAGGIO DELLE MEMORIE
Per quanto riguarda il mappaggio delle memorie, la scheda può essere configurata in 3 modi.
Di seguito viene riportata una schematizzazione di questi indirizzamenti, con le indicazioni di come
devono essere strippati i jumpers J1 e J6 che svolgono questa selezione.
Si ricorda che la combinazione binaria dei jumpers J1 e J6 indica il numero del mappaggio.
MAPPAGGIO 0
CODE AREA DATA AREA
FFFFH
FFFFH
ON BOARD I/O
RUN/DEBUG
FF00H
FEFFH
ABACO®
I/OBUS
FFC0H
FFBFH
FF00H
NOT
USED
7EFFH
IC6
RAM
EPROM
EEPROM
0000H
32 K
8000H
7FFFH
7FFFH
7FFFH
0000H
32 K
0000H
32 K
IC4
EPROM
IC8
RAM
J1
0000H
3
2
1
J6
Not connected
Not connected
FIGURA 20: MAPPAGGIO DELLE MEMORIE IN MODO 0 (BASIC+DEBUG)
Configurazione jumpers: J1 in posizione NON CONNESSO; J6 in posizione NON CONNESSO
Usato dai pacchetti software: BASIC 554; BXC51; HI TECH C; DDS C; RSD 554 (J6 in 1-2); ecc.
Pagina 30
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
MAPPAGGIO 1
CODE AREA DATA AREA
FFFFH
FFFFH
ON BOARD I/O
RUN/DEBUG
FFC0H
FFBFH
FF00H
FEFFH
ABACO®
I/O BUS
FF00H
NOT
USED
7EFFH
IC8
RAM
0000H
32 K
8000H
7FFFH
7FFFH
IC4
EPROM
J1
3
2
1
J6
0000H
32 K
Not connected
Connected
0000H
FIGURA 21: MAPPAGGIO DELLE MEMORIE IN MODO 1 (ASM)
Configurazione jumpers: J1 in posizione CONNESSO; J6 in posizione NON CONNESSO
Usato da pacchetti software come: HI TECH C; DDS C; ecc.
GPC® 554
Rel. 3.20
Pagina 31
grifo®
ITALIAN TECHNOLOGY
MAPPAGGIO 3
CODE AREA DATA AREA
FFFFH
FFFFH
ON BOARD I/O
RUN/DEBUG
FFC0H
FFBFH
FF00H
FEFFH
ABACO®
I/O BUS
NOT
USED
7EFFH
FF00H
IC6
RAM
EPROM
EEPROM
0000H
32 K
8000H
7FFFH
7FFFH
2000H
IC8
RAM
NOT
USED
32 K
2000H
1FFFH
NOT
USED
1FFFH
0000H
0000H
32 K
3
J1
2
1
IC4
EPROM
J6
Position 2-3
Connected
FIGURA 22: MAPPAGGIO DELLE MEMORIE IN MODO 3 (ASM)
Configurazione jumpers: J1 in posizione CONNESSO; J6 in posizione 2-3
Usato da pacchetti software come: MD/P; LUCIFER HI TECH C; DDS C; FMO52; ecc.
Pagina 32
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO
Nel paragrafo precedente sono stati riportati gli indirizzi di allocazione di tutte le periferiche e di
seguito viene riportata una descrizione dettagliata della funzione e del significato dei relativi registri
(al fine di comprendere le sucessive informazioni, fare sempre riferimento alla tabella di indirizzamento
I/O). Qualora la documentazione riportata fosse insufficiente fare riferimento direttamente alla
documentazione tecnica della casa costruttrice del componente. In questo capitolo inoltre non
vengono descritte le sezioni che fanno parte del microprocessore; per quanto riguarda la
programmazione di quest’ultime si faccia riferimento alla documentazione tecnica della casa
costruttrice del componente oppure all’appendice B di questo manuale.
Nei paragrafi sucessivi si usano le indicazioni D0÷D7 per fare riferiment ai bits della combinazione
utilizzata nelle operazioni di I/O.
JUMPER J2, J7 E J8
Il jumper J2 montato a bordo della GPC®554 può essere acquisito via software, effettuando una
semplice operazione di lettura all’indirizzo di allocazione del registro RUNDEB. Il significato dei
bits del registro é il seguente:
D7
-> Stato di J2
D6÷D0
-> RISERVATI
Si ricorda che tale jumper svolge la funzione di selettore delle modalità RUN o DEBUG,
caratteristica di alcuni pachetti software della grifo®.
Per quanto riguarda il funzionamento di J7 e J8 é praticamente molto simile a J2, la differenza é nel
fatto che per acquisire il loro stato bisogna effettuare una operazione di lettura direttamente su due
pins della CPU e più precisamente:
P5.6
-> Stato di J8
P5.7
-> Stato di J7
Il jumper NON CONNESSO fornisce lo stato logico 1, mentre il jumper CONNESSO fornisce lo
stato logico 0.
EEPROM SERIALE
Per quanto riguarda la gestione del modulo di EEPROM seriale (IC5), si faccia riferimento alla
documentazione specifica del componente. In questo manuale tecnico non viene riportata alcuna
informazione software in quanto la modalità di gestione è articolata e prevede una conoscenza
approfondita del componente e comunque l'utente può usare le apposite procedure ad alto livello
fornite nel pacchetto di programmazione. Si ricorda solo che i primi 32 bytes (0...31) sono riservati,
da alcuni pacchetti software che ne fanno un’utilizzo specifico, perciò si deve evitare la modifica dei
medesimi. Dal punto di vista elettrico :
linea DATA (SDA)
-> pin P3.3 della CPU
linea CLOCK (SCL) -> pin P3.5 della CPU
Data l'implementazione hardware della circuiteria di gestione del modulo di EEPROM seriale, si
ricorda che i segnali A2, A1 e A0 dello slave address sono rispettivamente posti a 0,0 e 0.
GPC® 554
Rel. 3.20
Pagina 33
grifo®
ITALIAN TECHNOLOGY
PERIFERICHE DELLA CPU
La descrizione dei registri e del relativo significato di tutte le periferiche interne della CPU (linea
seriale, timer/counter, A/D converter, PWR, linea I2C, linee di I/O) é disponibile nell'appendice B.
Qualora queste informazioni fossero ancora insufficienti, fare riferimento alla documentazione
tecnica della casa costruttrice.
Pagina 34
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
SCHEDE ESTERNE
La scheda GPC® 554 si interfaccia a buona parte dei moduli della serie BLOCK e di interfaccia
utente. Le risorse di bordo possono essere facilmente aumentate collegando la GPC® 554 alle
numerose schede periferiche del carteggio grifo® tramite l'ABACO® I/O BUS. Anche schede in
formato Europa con BUS ABACO® possono essere collegate, sfruttando gli appositi mother boards.
A titolo di esempio ne riportiamo un elenco con una breve descrizione delle caratteristiche di
massima, per maggiori informazioni, richiedere la documentazione specifica.
OBI 01 - OBI 02
Opto BLOCK Input NPN-PNP
Interfaccia per 16 input optoisolati e visualizzati tipo NPN, PNP, connettore a morsettiera, connettore
normalizzato I/O ABACO® a 20 vie; sezione alimentatrice; attacco rapido per guide DIN 46277-1
e DIN 46277-3.
OBI N8 - OBI P8
Opto BLOCK Input NPN-PNP
Interfaccia per 8 input optoisolati e visualizzati tipo NPN, PNP, connettore a morsettiera, connettore
normalizzato I/O ABACO® a 20 vie; sezione alimentatrice; attacco rapido per guide DIN 46277-1
e DIN 46277-3.
TBO 01 - TBO 08
Transistor BLOCK Output
Interfaccia per 16 connettore normalizzato I/O ABACO® a 20 vie; 16 o 8 output a transistor in Open
Collector da 45 Vcc 3 A su connettore a morsettiera. Uscite optoisolate e visualizzate; attacco rapido
per guide DIN 6277-1 e 3.
RBO 01
Relé BLOCK Output
Interfaccia per connettore normalizzato I/O ABACO® a 20 vie; 8 output visualizzati con relé da 5
o 10 A (connettore a morsettiera); contatti in scambio (N.O. e N.C.); attacco rapido per guide DIN
46277-1 e 3.
RBO 08 - RBO 16
Relé BLOCK Output
Interfaccia per connettore normalizzato I/O ABACO® a 20 vie; 8 o 16 output visualizzati con relé
da 3 A con MOV; connettore a morsettiera; attacco rapido per guide DIN 46277-1 e 3.
XBI 01
miXed BLOCK Input-Output
Interfaccia tra 8 input + 8 output TTL (connettore normalizzato I/O ABACO® a 20 vie), con 8 output
a transistor in Open Collector da 45 Vcc 3 A + 8 input con filtro a Pi-Greco (connettore a morsettiera).
I/O optoisolati e visualizzati; attacco rapido per guide DIN 46277-1 e 3.
XBI R4 - XBI T4
miXed BLOCK Input-Output
Interfaccia per connettore normalizzato I/O ABACO® a 20 vie; 4 relé da 3 A con MOV o 4 transistor
open collectors da 3 A optoisolati; 4 linee di input optoisolate; linee di I/O visualizzate; connettore
a morsettiera; attacco rapido per guide DIN tipo C e guide Ω.
GPC® 554
Rel. 3.20
Pagina 35
grifo®
ITALIAN TECHNOLOGY
FBC 20 - FBC 120
Flat Block Contact 20 vie
Interfaccia tra 2 o 1 connettori a perforazione di isolante (scatolino da 20 vie maschi) e la filatura da
campo (morsettiere a rapida estrazione). Attacco rapido per guide tipo DIN 46277-1 e 3.
IBC 01
Interface Block Comunication
Scheda di conversioni per comunicazioni seriali. 2 linee RS 232; 1 linea RS 422-485; 1 linea in fibra
ottica; interfaccia DTE/DCE selezionabile; attacco rapido per guide tipo DIN 46277-1 e 3.
IAC 01
Interface Adapter Centronics
Interfaccia tra 16 I/O TTL su connettore normalizzato I/O ABACO® a 20 vie e connettore a vaschetta
D 25 vie femmina con pin out standard Centronics per la gestione di una stampante parallela.
IAF 42
Interface Adapter Futaba
Interfaccia tra 16 I/O TTL su connettore normalizzato I/O ABACO® e connettore a scatolino a 20
vie con pin out standard per la gestione dei display fluorescenti della FUTABA.
IAL 42
Interface Adapter LCD
Interfaccia tra 16 I/O TTL su connettore normalizzato I/O ABACO® e connettore a scatolino a 14
vie con pin out standard per la gestione di display fluorescenti LCD.
DEB 01
Didactis Experimental Board
Scheda di supportro per l’utilizzo di 16 linee di I/O TTL. Comprende: 16 tasti; 16 LED; 4 digits;
tastiera a matrice da 16 tasti; interfaccia per stampante Centronics, dislay LCD, display Fluorescente,
connettore I/O GPC® 68; collegamento con il campo.
MCI 64
Memory Cards Interfaces 64 MBytes
Interfaccia per la gestione di Memory cards PCMCIA a 68 pins tramite un connettore normalizzato
I/O ABACO®; sono disponibili driver per linguaggi ad alto livello.
KDL X24 - KDF 224
Keyboard Display LCD 2,4 righe 24 tasti - Keyboard Display Fluorescent 2 righe 24 tasti
Interfaccia tra 16 I/O TTL su connettore normalizzato I/O ABACO® a 20 vie e tastiera a matrice
esterna da 24 tasti; display alfanumerico fluorescente 20x 2 o LCD 20x2, 20x4 retroilluminato a
LEDs. Predisposizione per collegamento a tastiera telefonica.
QTP 24P
Quick Terminal Panel 24 tasti con interfaccia Parallela
Interfaccia operatore provvista di display alfanumerico fluorescente 20x 2 o LCD 20x2, 20x4
retroilluminato a LEDs; tastiera a membrana da 24 tasti di cui 12 configurabili dall'utente; 16 LEDs
di stato; alimentatore a bordo scheda in grado di pilotare anche carichi esterni; interdaccia parallela
basata su 16 I/O TTL di un connettore normalizzato I/O ABACO® a 20 vie. Tasti ed etichette
personalizzabili tramite serigrafie da inserire in apposite tasche; opzione di contenitore metallico.
Pagina 36
GPC® 554
Rel. 3.20
GPC® 554
Rel. 3.20
ZBx series
PC like or
Macintosh
PLC
QTP G28
BATTERY
to RAM Back up
LITIUM
EXTERNAL
ANY I/O TYPE
CI/O R16-T16, etc.
IPC 52,
UAR 24,
etc.
-
+
ABACO ® I/O BUS
1 Hardware Serial Line RS-232
ABB 03 or ABB 05, etc.
ABACO ® BUS
1 Software Serial Line RS-232
PC like or
Macintosh
QTP 22 QTP G26
DAC
DAC
V
8 Bits 2 PWM lines
10 Bits ANALOG
INPUT VOLTAGE
+2,490 V or +5,000 V
to XBI-01 , OBI-01 , RBO-08 etc.....
OPTO
RELAY
TRANS.
COUPLED
DIGITAL TTL INPUT/OUTPUT
DIRECT CONNECTION
TO QTP 24P
PLC
ITALIAN TECHNOLOGY
grifo®
FIGURA 23: SCHEMA DELLE POSSIBILI CONNESSIONI
Pagina 37
grifo®
ITALIAN TECHNOLOGY
QTP G28
Quick Terminal Panel 28 tasti con LCD grafico
Interfaccia operatore provvista di display grafico da 240x128 pixel retroilluminato con lampada a
catodo freddo; tastiera a membrana da 28 tasti di cui 5 configurabili dall'utente; 16 LEDs di stato;
alimentatore a bordo scheda; interdaccia seriale in RS 232, RS 422-485 o current loop; linea seriale
ausiliaria in RS 232 Tasti ed etichette personalizzabili dall'utente tramite serigrafie da inserire in
apposite tasche; contenitore metallico e plastico; EEPROM di set up; 256K EPROM o FLASH; Real
Time Clock; 128K RAM; buzzer. Firmware di gestione che svolge funzione di terminale con
primitive grafiche.
ZBR xxx
Zipped BLOCK Relays xx Input + xx Output
Periferica per xx Input optoisolati e visualizzati tipo NPN; xx relé da 3A con MOV; connettori a
morsettiera per ingressi optoisolati e uscite; connettore normalizzato ABACO® I/O BUS; 61 LEDs
di visualizzazione; sezione alimentatrice a bordo; attacco rapide per guide Ω. Le possibili configurazioni
in termini di numero di I/O sono: xxx=324 con 32 In e 24 Out; xxx=246 con 24 In e 16 Out; xxx=168
con 16 In e 8 Out.
ZBT xxx
Zipped BLOCK Transistors xx Input + xx Output
Periferica per xy Input optoisolati e visualizzati tipo NPN; yz darlinghton da 3A con diodo di
ricircolo; connettori a morsettiera per ingressi optoisolati e uscite; connettore normalizzato ABACO®
I/O BUS; 61 LEDs di visualizzazione; sezione alimentatrice a bordo; attacco rapide per guide Ω. Le
possibili configurazioni in termini di numero di I/O sono: xxx=324 con 32 In e 24 Out; xxx=246 con
24 In e 16 Out; xxx=168 con 16 In e 8 Out.
ABB 05
ABACO® Block BUS 5 slots
Mother board ABACO® da 5 slots; passo 4 TE; guidaschede; connettori normalizzati di alimentazione;
tasto di reset; LEDs per alimentazioni; interfaccia ABACO® I/O BUS; sezione alimentatrice per +5
Vdc; sezione alimentatrice per +V Opto; sezioni alimentatrici galvanicamente isolate; tre tipi di
alimentazione: da rete, bassa tensione o stabilizzata. Attacco rapido per guide Ω.
ABB 03
ABACO Block BUS 3 slots
Mother board ABACO® da 3 slots; passo 4 TE; guidaschede; connettori normalizzati di alimentazione;
tasto di reset; LEDs per alimentazioni; interfaccia ABACO® I/O BUS. Attacco rapido per guide Ω.
®
CAN 14
Control Area Network, 1 channel, galvanically insulated
Modulo periferico della serie 4 (100x50 mm); UART CAN SJA1000; 1 canale seriale
galvanicamentesolato; interfaccia per ABACO® I/O BUS; possibilità di montaggio diretto su guide
Ω di tipo DIN 46277-1 e 3.
DAC 212
Digital to Analog Converter 12 bits, multi-range
Modulo periferico della serie 4 (100x50 mm); D/A converter multi-range a 2 canali da 12 bit; range
del segnali d’uscita ± 10 o 0/+10 Vdc; interfaccia per ABACO® I/O BUS; possibilità di montaggio
diretto su guide Ω di tipo DIN 46277-1 e 3.
Pagina 38
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
ADC 812
Analog to Digital Converter, 8 channels, 12 bits multi-range
Modulo periferico della serie 4 (100x50 mm); A/D converter DAS (Data Acquisition System)
multi-range a 8 canali da 12 bit; Track-Hold; tempo di conversione 6µs; range dei segnali d’ingresso
±10, ±5, +10, +5Vdc oppure 0÷20, 4÷20mA; interfaccia per ABACO® I/O BUS; possibilità di
montaggio diretto su guide Ω di tipo DIN 46277-1 e 3.
BIBLIOGRAFIA
E' riportato di seguito, un elenco di manuali e note tecniche, a cui l'utente può fare riferimento per
avere maggiori chiarimenti, sui vari componenti montati a bordo della scheda GPC® 554.
Manuale TEXAS INSTRUMENTS:
Manuale TEXAS INSTRUMENTS:
The TTL Data Book - SN54/74 Families
Linear Circuits Dtata Book - Volume 3
Manuale NEC:
Memory Products
Manuale MAXIM:
New Releases Data Book - Volume 4
Manuale XICOR:
Data Book
Manuale PHILIPS:
80C51 - Based 8-Bit Microcontrollers
Manuale NATIONAL SEMICONDUCTOR: Linear Databook - Volume 2
Manuale SGS-THOMSON:
GPC® 554
Rel. 3.20
Programmable Logic Manual GAL Products
Pagina 39
grifo®
Pagina 40
ITALIAN TECHNOLOGY
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
APPENDICE A: DISPOSIZIONE JUMPERS
J3
J6
J1
J5
J4
FIGURA A1: DISPOSIZIONE JUMPERS PER MEMORIE
GPC® 554
Rel. 3.20
Pagina A-1
grifo®
ITALIAN TECHNOLOGY
JS4
JS3
JS13
JS12
FIGURA A2: DISPOSIZIONE JUMPERS PER COMUNICAZIONE SERIALE
Pagina A-2
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
APPENDICE B: DESCRIZIONE COMPONENTI DI BORDO
Philips Semiconductors
Product specification
Single-chip 8-bit microcontroller
80C552/83C552
Single-chip 8-bit microcontroller with 10-bit A/D, capture/compare timer, high-speed outputs, PWM
FEATURES
• 80C51 central processing unit
• 8k × 8 ROM expandable externally to 64k
•
•
bytes
•
•
•
•
In addition, the 8XC552 has two software
selectable modes of power reduction—idle
mode and power-down mode. The idle mode
freezes the CPU while allowing the RAM,
timers, serial ports, and interrupt system to
continue functioning. The power-down mode
saves the RAM contents but freezes the
oscillator, causing all other chip functions to
be inoperative.
Two 8-bit resolution, pulse width
modulation outputs
– 3.5 to 24MHz (ROM, ROMless only)
– 3.5 to 30MHz (ROM, ROMless only)
•
Three operating ambient temperature
ranges:
– P83C552xBx: 0°C to +70°C
– P83C552xFx: –40°C to +85°C
(XTAL frequency max. 24 MHz)
– P83C552xHx: –40°C to +125°C
(XTAL frequency max. 16 MHz)
Five 8-bit I/O ports plus one 8-bit input port
shared with analog inputs
LOGIC SYMBOL
VSS
VDD
XTAL1
XTAL2
EA
ALE
PSEN
AVSS
AVDD
AVref+
AVref–
STADC
PWM0
PWM1
ADC0-7
LOW ORDER
ADDRESS AND
DATA BUS
CT0I
CT1I
CT2I
CT3I
T2
RT2
SCL
SDA
HIGH ORDER
ADDRESS AND
DATA BUS
CMSR0-5
CMT0
CMT1
RST
EW
The device also functions as an arithmetic
processor having facilities for both binary and
BCD arithmetic plus bit-handling capabilities.
The instruction set consists of over 100
instructions: 49 one-byte, 45 two-byte, and
17 three-byte. With a 16MHz (24MHz)
crystal, 58% of the instructions are executed
in 0.75µs (0.5µs) and 40% in 1.5µs (1µs).
Multiply and divide instructions require 3µs
(2µs).
RxD/DATA
TxD/CLOCK
INT0
INT1
T0
T1
WR
RD
2
1998 Aug 13
GPC® 554
– 3.5 to 16MHz
PORT 0
The 8XC552 contains a non-volatile 8k × 8
read-only program memory (83C552), a
volatile 256 × 8 read/write data memory, five
8-bit I/O ports, one 8-bit input port, two 16-bit
timer/event counters (identical to the timers of
the 80C51), an additional 16-bit timer coupled
to capture and compare latches, a 15-source,
two-priority-level, nested interrupt structure,
an 8-input ADC, a dual DAC pulse width
modulated interface, two serial interfaces
(UART and I2C-bus), a “watchdog” timer and
on-chip oscillator and timing circuits. For
systems that require extra capability, the
8XC552 can be expanded using standard
TTL compatible memories and logic.
•
A 10-bit ADC with eight multiplexed analog
inputs
Three speed ranges:
PORT 1
87C552—8k bytes EPROM (described in a
separate chapter)
•
Capable of producing eight synchronized,
timed outputs
On-chip watchdog timer
PORT 2
80C552—ROMless version of the 83C552
•
256 × 8 RAM, expandable externally to 64k
bytes
Full-duplex UART compatible with the
standard 80C51
PORT 3
•
•
•
•
•
Two standard 16-bit timer/counters
PORT 5
The 80C552/83C552 (hereafter generically
referred to as 8XC552) Single-Chip 8-Bit
Microcontroller is manufactured in an
advanced CMOS process and is a derivative
of the 80C51 microcontroller family. The
8XC552 has the same instruction set as the
80C51. Three versions of the derivative exist:
• 83C552—8k bytes mask programmable
ROM
An additional 16-bit timer/counter coupled
to four capture registers and three compare
registers
PORT 4
DESCRIPTION
ROM code protection
I2C-bus serial I/O port with byte oriented
master and slave functions
Rel. 3.20
Pagina B-1
1998 Aug 13
* Do not connect.
11
P3.2/INT0 26
P3.1/TxD 25
P3.0/RxD 24
P1.7/SDA 23
P1.6/SCL 22
P1.5/RT2 21
P1.4/T2 20
P1.3/CT3I 19
P1.2/CT2I 18
P1.1/CT1I 17
P1.0/CT0I 16
RST 15
P4.7/CMT1 14
P4.6/CMT0 13
P4.5/CMSR5 12
P4.4/CMSR4
31
30
29
28
27
3
2
1
68
66
67
65
3
37
36
35
34
33
32
43
42
61
41
62
40
63
39
64
38
PLASTIC LEADED CHIP CARRIER
4
PWM1
5
P4.1/CMSR1
P3.4/T0
P3.3/INT1
6
7
STADC
NC*
P4.2/CMSR2
P4.0/CMSR0
P3.5/T1
PWM0
NC*
EW
P3.7/RD
P3.6/WR
8
P5.4/ADC4
NC*
9
P5.0/ADC0
XTAL2
P5.5/ADC5
P2.0/A08
P4.3/CMSR3 10
V DD
XTAL1
P5.6/ADC6
P2.1/A09
Plastic Leaded Chip Carrier
P5.1/ADC1
VSS
AVDD
P2.2/A10
PIN CONFIGURATIONS
P5.2/ADC2
Single-chip 8-bit microcontroller
P5.3/ADC3
VSS
P5.7/ADC7
P2.3/A11
Pagina B-2
P2.4/A12
Philips Semiconductors
ALE
P2.7/A15
SU00932
44 P2.5/A13
45 P2.6/A14
46
47 PSEN
48
49 EA
50 P0.7/AD7
51 P0.6/AD6
52 P0.5/AD5
53 P0.4/AD4
54 P0.3/AD3
55 P0.2/AD2
56 P0.1/AD1
57 P0.0/AD0
58 AVREF–
59 AVREF+
60 AVSS
80C552/83C552
Product specification
XTAL1
ALTERNATE FUNCTION OF PORT 2
2
P3
ALTERNATE FUNCTION OF PORT 1
P2
ALTERNATE FUNCTION OF PORT 0
P1
PARALLEL I/O
PORTS AND
EXTERNAL BUS
3
TxD
3
ALTERNATE FUNCTION OF PORT 5
5
ALTERNATE FUNCTION OF PORT 4
CT0I-CT3I
5
P4
1
FOUR
16-BIT
CAPTURE
LATCHES
ALTERNATE FUNCTION OF PORT 3
P5
16
4
RxD
8-BIT
PORT
1
T2
RT2
T2
16-BIT
TIMER/
EVENT
COUNTERS
DATA
MEMORY
256 x 8 RAM
VSS
8-BIT INTERNAL BUS
PROGRAM
MEMORY
8k x 8 ROM
VDD
3
3
SERIAL
UART
PORT
3
INT1
CPU
INT0
80C51 CORE
EXCLUDING
ROM/RAM
3
1
P0
T1
T0, T1
TWO 16-BIT
TIMER/EVENT
COUNTERS
3
0
A8-15
AD0-7
RD
WR
1998 Aug 13
2
0
3
3
PSEN
ALE
EA
XTAL2
T0
BLOCK DIAGRAM
Single-chip 8-bit microcontroller
Philips Semiconductors
1
16
PWM1
T2
16-BIT
COMPARATORS
wITH
REGISTERS
DUAL
PWM
PWM0
CMSR0-CMSR5
CMT0, CMT1
4
COMPARATOR
OUTPUT
SELECTION
ADC
RST
EW
1
SCL
SERIAL
I2C PORT
1
T3
WATCHDOG
TIMER
5
ADC0-7 SDA
STADC
– +
AVREF
AVDD
AVSS
80C552/83C552
Product specification
grifo®
ITALIAN TECHNOLOGY
GPC® 554
Rel. 3.20
GPC® 554
Rel. 3.20
1996 Aug 06
are not implemented. The two SIO1 related flags ES1 in SFR
IEN0 and PS1 in SFR IP0 are also not implemented. These two
(I2C).
• Disregard the description of SIO1
• The SFRs for the interface: S1ADR, S1DAT, S1STA, and S1CON
This chapter of the users’ guide can be used for the 83C562 by
omitting or changing the following:
All other functions, pinning and packaging are unchanged.
cycles to 24 machine cycles.
• The time of an A/D conversion has decreased from 50 machine
bits.
• The resolution of the A/D converter is decreased from 10 bits to 8
configuration instead of open drain.
• The SIO1 (I2C) interface has been omitted.
• The output of port lines P1.6 and P1.7 have a standard
The 83C562 has been derived from the 8XC552 with the following
changes:
83C562 OVERVIEW
The 8XC552 has two software selectable modes of reduced activity
for further power reduction—Idle and Power-down. The idle mode
freezes the CPU and resets Timer T2 and the ADC and PWM
circuitry but allows the other timers, RAM, serial ports, and interrupt
system to continue functioning. The power-down mode saves the
RAM contents but freezes the oscillator, causing all other chip
functions to become inoperative.
The 8XC552 contains a nonvolatile 8k × 8 read-only program
memory, a volatile 256 × 8 read/write data memory, five 8-bit I/O
ports and one 8-bit input port, two 16-bit timer/event counters
(identical to the timers of the 80C51), an additional 16-bit timer
coupled to capture and compare latches, a fifteen-source,
two-priority-level, nested interrupt structure, an 8-input ADC, a dual
DAC pulse width modulated interface, two serial interfaces (UART
and I2C bus), a “watchdog” timer, and on-chip oscillator and timing
circuits. For systems that require extra capability, the 8XC552 can
be expanded using standard TTL compatible memories and logic
80C552: ROMless version of the 83C552
87C552: 8k bytes EPROM, 256 bytes RAM
83C552: 8k bytes mask-programmable ROM, 256 bytes RAM
The 8XC552 single-chip 8-bit microcontroller is manufactured in an
advanced CMOS process and is a derivative of the 80C51
microcontroller family. The 8XC552 uses the powerful instruction set
of the 80C51. Additional special function registers are incorporated
to control the on-chip peripherals. Three versions of the derivative
exist although the generic term “8XC552” is used to refer to family
members:
The 8XC552 is a stand-alone high-performance microcontroller
designed for use in real-time applications such as instrumentation,
industrial control, and automotive control applications such as
engine management and transmission control. The device provides,
in addition to the 80C51 standard functions, a number of dedicated
hardware functions for these applications.
8XC552 OVERVIEW
80C51 Family Derivatives
Philips Semiconductors
2
V IN
AV ref
AV ref
AV ref
The standard 80C51 SFRs are present and function identically in the
8XC552 except where noted in the following sections.
Special Function Registers
The special function registers (directly addressable only) contain all
of the 8XC552 registers except the program counter and the four
register banks. Most of the 56 special function registers are used to
control the on-chip peripheral hardware. Other registers include
arithmetic registers (ACC, B, PSW), stack pointer (SP), and data
pointer registers (DHP, DPL). Sixteen of the SFRs contain 128
directly addressable bit locations. Table 1 lists the 8XC552’s special
function registers.
The stack may be located anywhere in the internal RAM by loading
the 8-bit stack pointer. Stack depth is 256 bytes maximum.
Data Memory
The internal data memory is divided into 3 sections: the lower 128
bytes of RAM, the upper 128 bytes of RAM, and the 128-byte
special function register areas. The lower 128 bytes of RAM are
directly and indirectly addressable. While RAM locations 128 to 255
and the special function register area share the same address
space, they are accessed through different addressing modes. RAM
locations 128 to 255 are only indirectly addressable, and the special
function registers are only directly addressable. All other aspects of
the internal RAM are identical to the 8051.
Program Memory
The 8XC552 contains 8k bytes of on-chip program memory which
can be extended to 64k bytes with external memories (see
Figure 1). When the EA pin is held high, the 8XC552 fetches
instructions from internal ROM unless the address exceeds 1FFFH.
Locations 2000H to FFFFH are fetched from external program
memory. When the EA pin is held low, all instruction fetches are
from external memory. ROM locations 0003H to 0073H are used by
interrupt service routines.
Differences From the 80C51
renamed to SIO, SBUF, and SCON. The interrupt related flags
ES0 and PS0 are renamed ES and PS. Interrupt source S0 is
renamed S. The serial I/O function remains the same.
• The serial I/O function SIO0 and its SFRs S0BUF and S0CON are
The A/D conversion time is 24 machine cycles instead of 50
machine cycles, and the sampling time is 6 machine cycles
instead of 8 machine cycles. The conversion time takes 3
machine cycles per bit.
256
consequently the two high-order bits 6 and 7 of SFR ADCON are
not implemented. These two locations are undefined after RESET.
The 8-bit result of an A/D conversion is present in SFR ADCH.
The result can always be calculated from the formula:
• The A/D converter has a resolution of 8 bits instead of 10 bits and
standard configuration and electrical characteristics as P1.0-P1.5.
Port lines P1.6 and P1.7 have alternative functions.
• Port lines P1.6 and P1.7 are not open drain but have the same
flag locations are undefined after RESET. The interrupt vector for
SIO1 is not used.
8XC552/562 overview
EXTERNAL
(EA = 0)
PROGRAM MEMORY
INTERNAL
(EA = 1)
EXTERNAL
Timer T2 may be read “on the fly” but possesses no extra read
latches, and software precautions may have to be taken to avoid
misinterpretation in the event of an overflow from least to most
significant byte while Timer T2 is being read. Timer T2 is not
loadable and is reset by the RST signal or by a rising edge on the
The maximum repetition rate for Timer T2 is twice the maximum
repetition rate for Timer 0 and Timer 1. T2 (P1.4) is sampled at
S2P1 and again at S5P1 (i.e., twice per machine cycle). A rising
edge is detected when T2 is LOW during one sample and HIGH
during the next sample. To ensure that a rising edge is detected, the
input signal must be LOW for at least 1/2 cycle and then HIGH for at
least 1/2 cycle. If a rising edge is detected before the end of S2P1,
the timer will be incremented during the following cycle; otherwise it
will be incremented one cycle later. The prescaler has a
programmable division factor of 1, 2, 4, or 8 and is cleared if its
division factor or input source is changed, or if the timer/counter is
reset.
1996 Aug 06
INTERNAL
DATA MEMORY
INTERNAL
DATA RAM
3
SPECIAL
FUNCTION
REGISTERS
OVERLAPPED
SPACE
(0000H) 0
(FFFFH) 64K
SU00754
EXTERNAL
DATA MEMORY
8XC552/562 overview
Timer T2 may be reset by a rising edge on RT2 (P1.5) if the Timer
T2 external reset enable bit (T2ER) in T2CON is set. This reset also
clears the prescaler. In the idle mode, the timer/counter and
prescaler are reset and halted. Timer T2 is controlled by the
TM2CON special function register (see Figure 3).
To enable the 16-bit overflow interrupt, bits ET2 (IE1.7, enable
overflow interrupt) and T2IS1 (TM2CON.7, 16-bit overflow interrupt
select) must be set. Bit T2OV (TM2IR.7) is the Timer T2 16-bit
overflow flag. All interrupt flags must be reset by software. To enable
both byte and 16-bit overflow, T2IS0 and T2IS1 must be set and two
interrupt service routines are required. A test on the overflow flags
indicates which routine must be executed. For each routine, only the
corresponding overflow flag must be cleared.
When the least significant byte of the timer overflows or when a
16-bit overflow occurs, an interrupt request may be generated.
Either or both of these overflows can be programmed to request an
interrupt. In both cases, the interrupt vector will be the same. When
the lower byte (TML2) overflows, flag T2B0 (TM2CON) is set and
flag T20V (TM2IR) is set when TMH2 overflows. These flags are set
one cycle after an overflow occurs. Note that when T20V is set,
T2B0 will also be set. To enable the byte overflow interrupt, bits ET2
(IEN1.7, enable overflow interrupt, see Figure 2) and T2IS0
(TM2CON.6, byte overflow interrupt select) must be set. Bit TWB0
(TM2CON.4) is the Timer T2 byte overflow flag.
input signal RT2, if enabled. RT2 is enabled by setting bit T2ER
(TM2CON.5).
Figure 1. Memory Map
(00H) 0
(7FH) 127
(FFH) 255
Timer T2
Timer T2 is a 16-bit timer consisting of two registers TMH2 (HIGH
byte) and TML2 (LOW byte). The 16-bit timer/counter can be
switched off or clocked via a prescaler from one of two sources:
fOSC/12 or an external signal. When Timer T2 is configured as a
counter, the prescaler is clocked by an external signal on T2 (P1.4).
A rising edge on T2 increments the prescaler, and the maximum
repetition rate is one count per machine cycle (1MHz with a 12MHz
oscillator).
(0000H) 0
(1FFFH) 8191
(2000H) 8192
(FFFFH) 64K
80C51 Family Derivatives
Philips Semiconductors
ITALIAN TECHNOLOGY
grifo®
Pagina B-3
Pagina B-4
A/D converter high
Adc control
B register
Capture control
Capture high 3
Capture high 2
Capture high 1
Capture high 0
Compare high 2
Compare high 1
Compare high 0
Capture low 3
Capture low 2
Capture low 1
Capture low 0
Compare low 2
Compare low 1
Compare low 0
Data pointer
(2 bytes)
Data pointer high
Data pointer low
Interrupt enable 0
Interrupt enable 1
Interrupt priority 0
Interrupt priority 1
Port 5
Port 4
ADCH#
ADCON#
B*
CTCON#
CTH3#
CTH2#
CTH1#
CTH0#
CMH2#
CMH1#
CMH0#
CTL3#
CTL2#
CTL1#
CTL0#
CML2#
CML1#
CML0#
DPTR:
IEN0*#
IEN1*#
IP0*#
IP1*#
P5#
P4#
GPC® 554
Port 2
Port 1
Port 0
Power control
P2*
P1*
P0*
PCON#
87H
80H
90H
A0H
B0H
C0H
C4H
F8H
B8H
E8H
A8H
83H
82H
CFH
CEH
CDH
CCH
CBH
CAH
C9H
AFH
AEH
ADH
ACH
ABH
AAH
A9H
EBH
F0H
C5H
C6H
E0H
DIRECT
ADDRESS
86
D6
D7
1996 Aug 06
AC
–
SMOD
AD6
87
AD7
SCL
96
SDA
A14
97
A6
A15
WR
A7
B6
RD
CMT0
B7
C6
C7
CMT1
ADC6
ADC7
PCM2
FE
PT2
PAD
–
FF
BE
BF
EE
ECM2
EF
ET2
EAD
AE
CTP3
F6
ADC.0
E6
EA
AF
CTN3
F7
ADC.1
E7
4
F0
D5
–
AD5
85
RT2
95
A13
A5
T1
B5
CMSR5
C5
ADC5
PCM1
FD
PS1
BD
ECM1
ED
ES1
AD
CTN2
F5
ADEX
E5
RS1
D4
WLE
AD4
84
T2
94
A12
A4
T0
B4
CMSR4
C4
ADC4
PCM0
FC
PS0
BC
ECM0
EC
ES0
AC
CTP2
F4
ADCI
E4
RS0
D3
GF1
AD3
83
CT3I
93
A11
A3
INT1
B3
CMSR3
C3
ADC3
PCT3
FB
PT1
BB
ECT3
EB
ET1
AB
CTN1
F3
ADCS
E3
OV
D2
GF0
AD2
82
CT2I
92
A10
A2
INT0
B2
CMSR2
C2
ADC2
PCT2
FA
PX1
BA
ECT2
EA
EX1
AA
CTP1
F2
AADR2
E2
F1
D1
PD
AD1
81
CT1I
91
A9
A1
TXD
B1
CMSR1
C1
ADC1
PCT1
F9
PT0
B9
ECT1
E9
ET0
A9
CTN0
F1
AADR1
E1
P
D0
IDL
AD0
80
CT0I
90
A8
A0
RXD
B0
CMSR0
C0
ADC0
PCT0
F8
PX0
B8
ECT0
E8
EX0
A8
CTP0
F0
AADR0
E0
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB
LSB
PSW*
Program status word
D0H
CY
* SFRs are bit addressable.
# SFRs are modified from or added to the 80C51 SFRs.
Port 3
P3*
DPH
DPL
Accumulator
DESCRIPTION
8XC552 Special Function Registers
ACC*
SYMBOL
Table 1.
00H
00xx0000B
FFH
FFH
FFH
FFH
FFH
xxxxxxxxB
00H
x0000000B
00H
00H
00H
00H
xxxxxxxxB
xxxxxxxxB
xxxxxxxxB
xxxxxxxxB
00H
00H
00H
xxxxxxxxB
xxxxxxxxB
xxxxxxxxB
xxxxxxxxB
00H
00H
00H
00H
00H
xx000000B
xxxxxxxxB
00H
RESET
VALUE
Serial 1 control
Set enable
Timer high 1
Timer high 0
Timer low 1
Timer low 0
Timer high 2
Timer low 2
Timer mode
SICON#*
STE#
TH1
TH0
TL1
TL0
TMH2#
TML2#
TMOD
Timer 2 int flag reg
C8H
EAH
88H
89H
8DH
8CH
8BH
8AH
EDH
ECH
EEH
D8H
D9H
DAH
DBH
98H
99H
81H
EFH
FEH
FDH
FCH
DIRECT
ADDRESS
DE
DF
1996 Aug 06
IEN1 (E8H)
7
6
5
REN
9C
RP44
TB8
9B
RP43
ECT2
2
CMI0
CC
T2B0
TR0
8C
M0
SP44
ST0
DC
SC1
ECT1
1
CTI3
CB
T2P1
IE1
8B
GATE
SP43
SI
DB
SC0
Enable Timer T2 overflow interrupt(s)
Enable T2 Comparator 2 interrupt
Enable T2 Comparator 1 interrupt
Enable T2 Comparator 0 interrupt
Enable T2 Capture register 3 interrupt
Enable T2 Capture register 2 interrupt
Enable T2 Capture register 1 interrupt
Enable T2 Capture register 0 interrupt
ECT3
3
CMI1
CD
T2ER
TF0
8D
M1
SP45
STA
DD
SC2
5
Figure 2. Timer T2 Interrupt Enable Register (IEN1)
ET2
ECM2
ECM1
ECM0
ECT3
ECT2
ECT1
ECT0
IEN1.7
IEN1.6
IEN1.5
IEN1.4
IEN1.3
IEN1.2
IEN1.1
IEN1.0
4
ECM0
FUNCTION
ECM1
SYMBOL
ECM2
BIT
(MSB)
ET2
CMI2
CE
CF
T20V
T2IS0
T2IS1
TR1
8E
TF1
C/T
8F
TG46
GATE
TG47
ENS1
SC3
CR2
SM2
9D
RP45
RB8
9A
RP42
SU00755
(LSB)
ECT0
0
CTI2
CA
T2P0
IT1
8A
C/T
SP42
AA
DA
0
CTI1
C9
T2MS1
IE0
89
M1
SP41
CR1
D9
0
TI
99
RP41
 SLAVE ADDRESS 
SM1
9E
TP46
SC4
SM0
9F
TP47
CTI0
C8
T2MS0
IT0
88
M0
SP40
CR0
D8
0
GC
RI
98
RP40
00H
00H
00H
00H
00H
00H
00H
00H
00H
00H
00H
C0H
00H
F8H
00H
00H
00H
xxxxxxxxB
07H
00H
00H
00H
00H
RESET
VALUE
8XC552/562 overview
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB
LSB
T3#
Timer 3
FFH
* SFRs are bit addressable.
# SFRs are modified from or added to the 80C51 SFRs.
TM2IR#*
Timer 2 control
Serial 1 status
S1STA#
Timer control
Serial 1 data
SIDAT#
TM2CON#
Serial 1 address
TCON*
Serial 0 control
S1ADR#
Serial 0 data buffer
Stack pointer
Reset/toggle enable
PWM prescaler
PWM register 1
PWM register 0
DESCRIPTION
8XC552 Special Function Registers (Continued)
S0CON*
S0BUF
SP
RTE#
PWMP#
PWM1#
PWM0#
SYMBOL
Table 1.
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
GPC® 554
Rel. 3.20
7
6
5
4
3
TM2CON.1
TM2CON.0
2
1
1996 Aug 06
INTEX: CLR
POP
POP
RETI
T2OV
PSW
ACC
;reset interrupt flag
;restore status
;restore accumulator
;return from interrupt
TIMEX2 ;increment second byte
A,TIMEX2
INTEX
;jump to INTEX if there is no overflow
TIMEX3 ;increment third byte (high order)
INC
MOV
JNZ
INC
;save accumulator
;save status
;increment first byte (low order)
;of extended timer
A,TIMEX1
INTEX
;jump to INTEX if ;there is no overflow
ACC
PSW
TIMEX1
T2MS1
Timer T2 halted (off)
T2 clock source = fOSC/12
Test mode; do not use
T2 clock source = pin T2
Mode Selected
0
(LSB)
T2MS0
6
SU00756
Using the capture control register CTCON (see Figure 5), these
inputs may capture on a rising edge, a falling edge, or on either a
rising or falling edge. The inputs are sampled during S1P1 of each
cycle. When a selected edge is detected, the contents of Timer T2
are captured at the end of the cycle.
Capture Logic: The four 16-bit capture registers that Timer T2 is
connected to are: CT0, CT1, CT2, and CT3. These registers are
loaded with the contents of Timer T2, and an interrupt is requested
upon receipt of the input signals CT0I, CT1I, CT2I, or CT3I. These
input signals are shared with port 1. The four interrupt flags are in
the Timer T2 interrupt register (TM2IR special function register). If
the capture facility is not required, these inputs can be regarded as
additional external interrupt inputs.
The combination of Timer T2 and the capture and compare logic is
very powerful in applications involving rotating machinery,
automotive injection systems, etc. Timer T2 and the capture and
compare logic are shown in Figure 4.
Timer T2, Capture and Compare Logic: Timer T2 is connected to
four 16-bit capture registers and three 16-bit compare registers. A
capture register may be used to capture the contents of Timer T2
when a transition occurs on its corresponding input pin. A compare
register may be used to set, reset, or toggle port 4 output pins at
certain pre-programmable time intervals.
Figure 3. T2 Control Register (TM2CON)
0
1
0
1
T2MS1 T2MS0
MOV
JNZ
OVINT: PUSH
PUSH
INC
Clock source
Clock source/2
Clock source/4
Clock source/8
Timer T2 Clock
Timer T2 mode select
0
1
0
1
0
0
1
1
0
0
1
1
T2P0
Timer T2 prescaler select
T2P0
T2MS1
T2MS0
T2P1
FUNCTION
Timer T2 16-bit overflow interrupt select
Timer T2 byte overflow interrupt select
Timer T2 external reset enable. When this bit is set,
Timer T2 may be reset by a rising edge on RT2 (P1.5).
Timer T2 byte overflow interrupt flag
T2BO
T2P1
T2BO
T2P1
T2P0
TM2CON.4
TM2CON.3
TM2CON.2
T2ER
SYMBOL
TSIS1
T2IS0
T2ER
T2IS0
BIT
TM2CON.7
TM2CON.6
TM2CON.5
(MSB)
T2IS1
Timer T2 Extension: When a 12MHz oscillator is used, a 16-bit
overflow on Timer T2 occurs every 65.5, 131, 262, or 524 ms,
depending on the prescaler division ratio; i.e., the maximum cycle
time is approximately 0.5 seconds. In applications where cycle times
are greater than 0.5 seconds, it is necessary to extend Timer T2.
This is achieved by selecting fosc/12 as the clock source (set
T2MS0, reset T2MS1), setting the prescaler division ration to 1/8
(set T2P0, set T2P1), disabling the byte overflow interrupt (reset
T2IS0) and enabling the 16-bit overflow interrupt (set T2IS1). The
following software routine is written for a three-byte extension which
gives a maximum cycle time of approximately 2400 hours.
TM2CON (EAH)
off
T
TG
STE
RTE
T
R
S
TG
R
S
R
R
S
S
R
R
S
S
External reset
enable
1/12
CT0
CTI0
INT
P4.7
P4.6
P4.5
P4.4
P4.3
P4.2
P4.1
P4.0
I/O port 4
CT1
When a match with CM1 occurs, the controller resets bits 0-5 of port
4 if the corresponding bits of the reset/toggle enable register RTE
are at logic 1 (see Figure 6 for RTE register function). If RTE is “0”,
then P4.n is not affected by a match between CM1 or CM2 and
Timer 2. When a match with CM2 occurs, the controller “toggles”
bits 6 and 7 of port 4 if the corresponding bits of the RTE are at
logic 1. The port latches of bits 6 and 7 are not toggled.
Compare Logic: Each time Timer T2 is incremented, the contents
of the three 16-bit compare registers CM0, CM1, and CM2 are
compared with the new counter value of Timer T2. When a match is
found, the corresponding interrupt flag in TM2IR is set at the end of
the following cycle. When a match with CM0 occurs, the controller
sets bits 0-5 of port 4 if the corresponding bits of the set enable
register STE are at logic 1.
1996 Aug 06
=
=
R
T
TG =
=
S
toggle status
toggle
7
CT2
CTI2
INT
CM1 (R)
COMP
TMH2
TML2
=
=
INT
higher 8 bits
lower 8 bits
CM2 (T)
COMP
CT3
CTI3
INT
SU00757
INT
The CT0I and CT1I flags are set during S4 of the cycle in which the
contents of Timer T2 are captured. CT0I is scanned by the interrupt
logic during S2, and CT1I is scanned during S3. CT2I and CT3I are
set during S6 and are scanned during S4 and S5. The associated
Timer T2 Interrupt Flag Register TM2IR: Eight of the nine Timer
T2 interrupt flags are located in special function register TM2IR (see
Figure 8). The ninth flag is TM2CON.4.
The modified port latch information appears at the port pin during
S5P1 of the cycle following the cycle in which a match occurred. If
the port is modified by software, the outputs change during S1P1 of
the following cycle. Each port 4 bit can be set or reset by software at
any time. A hardware modification resulting from a comparator
match takes precedence over a software modification in the same
cycle. When the comparator results require a “set” and a “reset” at
the same time, the port latch will be reset.
Thus, if the current operation is “set,” the next operation will be
“reset” even if the port latch is reset by software before the “reset”
operation occurs. The first “toggle” after a chip RESET will set the
port latch. The contents of these two flip-flops can be read at STE.6
and STE.7 (corresponding to P4.6 and P4.7, respectively). Bits
STE.6 and STE.7 are read only (see Figure 7 for STE register
function). A logic 1 indicates that the next toggle will set the port
latch; a logic 0 indicates that the next toggle will reset the port latch.
CM0, CM1, and CM2 are reset by the RST signal.
Two additional flip-flops store the last operation, and it is these
flip-flops that are toggled.
T2 SFR address:
INT
16-bit overflow interrupt
CT3I
8XC552/562 overview
8-bit overflow interrupt
CT2I
CMO (S)
COMP
reset
set
T2 Counter
CTI1
INT
Figure 4. Block Diagram of Timer 2
Prescaler
CT1I
Measuring Time Intervals Using Capture Registers: When a
recurring external event is represented in the form of rising or falling
edges on one of the four capture pins, the time between two events
can be measured using Timer T2 and a capture register. When an
event occurs, the contents of Timer T2 are copied into the relevant
capture register and an interrupt request is generated. The interrupt
service routine may then compute the interval time if it knows the
previous contents of Timer T2 when the last event occurred. With a
12MHz oscillator, Timer T2 can be programmed to overflow every
524ms. When event interval times are shorter than this, computing
the interval time is simple, and the interrupt service routine is short.
For longer interval times, the Timer T2 extension routine may be
used.
T2ER
RT2
T2
fosc
CT0I
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
ITALIAN TECHNOLOGY
grifo®
Pagina B-5
Pagina B-6
1996 Aug 06
STE (EEH)
RTE (EFH)
CTCON (EBH)
6
7
TP47
TP46
RP45
RP44
RP43
RP42
RP41
RP40
RTE.7
RTE.6
RTE.5
RTE.4
RTE.3
RTE.2
RTE.1
RTE.0
TG47
5
GPC® 554
TG47
TG46
SP45
SP44
SP43
SP42
SP41
SP40
2
CTP1
1
CTN1
0
(LSB)
CTP0
3
RP43
2
RP42
1
RO41
0
(LSB)
RP40
SU00758
SP43
3
SP42
2
SP41
1
(LSB)
SP40
0
Toggle flip-flops
Toggle flip-flops
If “1” then P4.5 is set on a match between CM0 and Timer T2
If “1” then P4.4 is set on a match between CM0 and Timer T2
If “1” then P4.3 is set on a match between CM0 and Timer T2
If “1” then P4.2 is set on a match between CM0 and Timer T2
If “1” then P4.1 is set on a match between CM0 and Timer T2
If “1” then P4.0 is set on a match between CM0 and Timer T2
FUNCTION
SP44
4
Reset/Toggle Enable Register (RTE)
8
SU00759
SU00760
If “1” then P4.7 toggles on a match between CM1 and Timer T2
If “1” then P4.6 toggles on a match between CM1 and Timer T2
If “1” then P4.5 is reset on a match between CM1 and Timer T2
If “1” then P4.4 is reset on a match between CM1 and Timer T2
If “1” then P4.3 is reset on a match between CM1 and Timer T2
If “1” then P4.2 is reset on a match between CM1 and Timer T2
If “1” then P4.1 is reset on a match between CM1 and Timer T2
If “1” then P4.0 is reset on a match between CM1 and Timer T2
FUNCTION
RP44
4
Capture Control Register (CTCON)
Figure 7. Set Enable Register (STE)
SYMBOL
3
CTN1
Capture Register 3 triggered by a falling edge on CT3I
Capture Register 3 triggered by a rising edge on CT3I
Capture Register 2 triggered by a falling edge on CT2I
Capture Register 2 triggered by a rising edge on CT2I
Capture Register 1 triggered by a falling edge on CT1I
Capture Register 1 triggered by a rising edge on CT1I
Capture Register 0 triggered by a falling edge on CT0I
Capture Register 0 triggered by a rising edge on CT0I
SP45
STE.7
STE.6
STE.5
STE.4
STE.3
STE.2
STE.1
STE.0
TG46
BIT
(MSB)
6
Figure 6.
SYMBOL
7
5
4
CTP2
Special function register IP1 (Figure 8) is used to determine the
Timer T2 interrupt priority. Setting a bit high gives that function a
high priority, and setting a bit low gives the function a low priority.
The functions controlled by the various bits of the IP1 register are
shown in Figure 8.
The 16-bit overflow flag (T2OV) and the byte overflow flag (T2BO)
are set during S6 of the cycle in which the overflow occurs. These
flags are recognized by the interrupt logic during the next cycle.
CAPTURE/INTERRUPT ON:
RP45
BIT
(MSB)
6
TP46
Figure 5.
CTN3
CTP3
CTN2
CTP2
CTN1
CTP1
CTN0
CTP0
CTCON.7
CTCON.6
CTCON.5
CTCON.4
CTCON.3
CTCON.2
CTCON.1
CTCON.0
TP47
5
CTN2
SYMBOL
CTP3
BIT
(MSB)
CTN3
7
interrupt requests are recognized during the following cycle. If these
flags are polled, a transition at CT0I or CT1I will be recognized one
cycle before a transition on CT2I or CT3I since registers are read
during S5. The CMI0, CMI1, and CMI2 flags are set during S6 of the
cycle following a match. CMI0 is scanned by the interrupt logic
during S2; CMI1 and CMI2 are scanned during S3 and S4. A match
will be recognized by the interrupt logic (or by polling the flags) two
cycles after the match takes place.
7
6
2
CTI2
3
PCT3
2
PCT2
1
PCT1
0
(LSB)
PCT0
0
(LSB)
CTI0
SU00761
Timer T2 overflow interrupt(s) priority level
Timer T2 comparator 2 interrupt priority level
Timer T2 comparator 1 interrupt priority level
Timer T2 comparator 0 interrupt priority level
Timer T2 capture register 3 interrupt priority level
Timer T2 capture register 2 interrupt priority level
Timer T2 capture register 1 interrupt priority level
Timer T2 capture register 0 interrupt priority level
FUNCTION
PCM0
4
Interrupt Flag Register (TM2IR)
5
1
CTI1
Timer T2 16-bit overflow interrupt flag
CM2 interrupt flag
CM1 interrupt flag
CM0 interrupt flag
CT3 interrupt flag
CT2 interrupt flag
CT1 interrupt flag
CT0 interrupt flag
Watchdog operation is activated when external pin EW is tied low.
When EW is tied low, it is impossible to disable the watchdog
operation by software.
If the 8-bit timer overflows, a short internal reset pulse is generated
which will reset the 8XC552. A short output reset pulse is also
generated at the RST pin. This short output pulse (3 machine
cycles) may be destroyed if the RST pin is connected to a capacitor.
This would not, however, affect the internal reset operation.
t = 12 × 2048 × 1/fOSC
(= 1.5ms at fOSC = 16MHz; = 1ms at fOSC = 24MHz)
Watchdog Circuit Description: The watchdog timer (Timer T3)
consists of an 8-bit timer with an 11-bit prescaler as shown in Figure
9. The prescaler is fed with a signal whose frequency is 1/12 the
oscillator frequency (1MHz with a 12MHz oscillator). The 8-bit timer
is incremented every “t” seconds, where:
Timer T3, The Watchdog Timer
In addition to Timer T2 and the standard timers, a watchdog timer is
also incorporated on the 8XC552. The purpose of a watchdog timer
is to reset the microcontroller if it enters erroneous processor states
(possibly caused by electrical noise or RFI) within a reasonable
period of time. An analogy is the “dead man’s handle” in railway
locomotives. When enabled, the watchdog circuitry will generate a
system reset if the user program fails to reload the watchdog timer
within a specified length of time known as the “watchdog interval.”
1996 Aug 06
3
CTI3
Timer 2 Interrupt Priority Register (IP1)
PT2
PCM2
PCM1
PCM0
PCT3
PCT2
PCT1
PCT0
IP1.7
IP1.6
IP1.5
IP1.4
IP1.3
IP1.2
IP1.1
IP1.0
4
CMI0
FUNCTION
PCM1
SYMBOL
PCM2
BIT
(MSB)
PT2
6
T2OV
CMI2
CMI1
CMI0
CTI3
CTI2
CTI1
CTI0
TM2IR.7
TM2IR.6
TM2IR.5
TM2IR.4
TM2IR.3
TM2IR.2
TM2IR.1
TM2IR.0
7
5
CMI1
SYMBOL
CMI2
BIT
(MSB)
T2OV
8XC552/562 overview
9
The programmer must now partition the software in such a way that
reloading of the watchdog is carried out in accordance with the above
requirements. The programmer must determine the execution times
of all software modules. The effect of possible conditional branches,
subroutines, external and internal interrupts must all be taken into
account. Since it may be very difficult to evaluate the execution
times of some sections of code, the programmer should use worst
case estimations. In any event, the programmer must make sure
that the watchdog is not activated during normal operation.
In order to prepare software for watchdog operation, a programmer
should first determine how long his system can sustain an
erroneous processor state. The result will be the maximum
watchdog interval. As the maximum watchdog interval becomes
shorter, it becomes more difficult for the programmer to ensure that
the user program always reloads the watchdog timer within the
watchdog interval, and thus it becomes more difficult to implement
watchdog operation.
How to Operate the Watchdog Timer: The watchdog timer has to
be reloaded within periods that are shorter than the programmed
watchdog interval; otherwise the watchdog timer will overflow and a
system reset will be generated. The user program must therefore
continually execute sections of code which reload the watchdog
timer. The period of time elapsed between execution of these
sections of code must never exceed the watchdog interval. When
using a 16MHz oscillator, the watchdog interval is programmable
between 1.5ms and 392ms. When using a 24MHz oscillator, the
watchdog interval is programmable between 1ms and 255ms.
Figure 8. Interrupt Flag Register (TM2IR) and Timer T2 Interrupt Priority Register (IP1)
IP1 (F8H)
TM2IR (C8H)
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
Internal Bus
GPC® 554
Rel. 3.20
Write T3
Clear
Prescaler (11-bit)
Internal
reset
Overflow
1996 Aug 06
WATCHDOG: ORL PCON,#10H ;set condition flag (PCON.4)
MOV T3,WATCH-INV
;load T3 with watchdog interval
RET
;watchdog service routine:
LCALL WATCHDOG
;to be inserted at each watchdog reload location within
;the user program:
T3
EQU 0FFH ;address of watchdog timer T3
PCON
EQU 087H ;address of PCON SFR
WATCH-INTV EQU 156 ;watchdog interval (e.g., 2x100ms)
;at the program start:
Watchdog Software Example: The following example shows how
watchdog operation might be handled in a user program.
During the early stages of software development/debugging, the
watchdog may be disabled by tying the EW pin high. At a later
stage, EW may be tied low to complete the debugging process.
In the idle mode, the watchdog circuitry remains active. When
watchdog operation is implemented, the power-down mode cannot
be used since both states are contradictory. Thus, when watchdog
operation is enabled by tying external pin EW low, it is impossible to
enter the power-down mode, and an attempt to set the power-down
bit (PCON.1) will have no effect. PCON.1 will remain at logic 0.
10
PCON.1
LOADEN
PD
P
RRST
RST
The 8XC552 on-chip I2C logic provides a serial interface that meets
the I2C bus specification and supports all transfer modes (other than
the low-speed mode) from and to the I2C bus. The SIO1 logic
handles bytes transfer autonomously. It also keeps track of serial
transfers, and a status register (S1STA) reflects the status of SIO1
and the I2C bus.
The output latches of P1.6 and P1.7 must be set to logic 1 in order
to enable SIO1.
SIO1, I2C Serial I/O: The I2C bus uses two wires (SDA and SCL) to
transfer information between devices connected to the bus. The
main features of the bus are:
– Bidirectional data transfer between masters and slaves
– Multimaster bus (no central master)
– Arbitration between simultaneously transmitting masters without
corruption of serial data on the bus
– Serial clock synchronization allows devices with different bit rates
to communicate via one serial bus
– Serial clock synchronization can be used as a handshake
mechanism to suspend and resume serial transfer
– The I2C bus may be used for test and diagnostic purposes
SIO0: SIO0 is a full duplex serial I/O port identical to that on the
80C51. Its operation is the same, including the use of timer 1 as a
baud rate generator.
Serial I/O
The 8XC552 is equipped with two independent serial ports: SIO0
and SIO1. SIO0 is a full duplex UART port and is identical to the
80C51 serial port. SIO1 accommodates the I2C bus.
If it is possible for this subroutine to be called in an erroneous state,
then the condition flag WLE should be set at different parts of the
main program.
Figure 9. Watchdog Timer
Internal Bus
PCON.4
WLE
Clear
LOAD LOADEN
Timer T3 (8-bit)
The watchdog timer is reloaded in two stages in order to prevent
erroneous software from reloading the watchdog. First PCON.4
(WLE) must be set. The T3 may be loaded. When T3 is loaded,
PCON.4 (WLE) is automatically reset. T3 cannot be loaded if
PCON.4 (WLE) is reset. Reload code may be put in a subroutine as
it is called frequently. Since Timer T3 is an up-counter, a reload
value of 00H gives the maximum watchdog interval (510ms with a
12MHz oscillator), and a reload value of 0FFH gives the minimum
watchdog interval (2ms with a 12MHz oscillator).
EW
fOSC/12
VDD
1996 Aug 06
Serial data and the serial clock are received through P1.7/SDA
and P1.6/SCL. After each byte is received, an acknowledge bit is
transmitted. START and STOP conditions are recognized as the
beginning and end of a serial transfer. Address recognition is
performed by hardware after reception of the slave address and
direction bit.
3. Slave Receiver Mode:
The first byte transmitted contains the slave address of the
transmitting device (7 bits) and the data direction bit. In this case
the data direction bit (R/W) will be logic 1, and we say that an “R”
is transmitted. Thus the first byte transmitted is SLA+R. Serial
data is received via P1.7/SDA while P1.6/SCL outputs the serial
clock. Serial data is received 8 bits at a time. After each byte is
received, an acknowledge bit is transmitted. START and STOP
conditions are output to indicate the beginning and end of a
serial transfer.
2. Master Receiver Mode:
Serial data output through P1.7/SDA while P1.6/SCL outputs the
serial clock. The first byte transmitted contains the slave address
of the receiving device (7 bits) and the data direction bit. In this
case the data direction bit (R/W) will be logic 0, and we say that
a “W” is transmitted. Thus the first byte transmitted is SLA+W.
Serial data is transmitted 8 bits at a time. After each byte is
transmitted, an acknowledge bit is received. START and STOP
conditions are output to indicate the beginning and the end of a
serial transfer.
1. Master Transmitter Mode:
Modes of Operation: The on-chip SIO1 logic may operate in the
following four modes:
The master device generates all of the serial clock pulses and the
START and STOP conditions. A transfer is ended with a STOP
condition or with a repeated START condition. Since a repeated
START condition is also the beginning of the next serial transfer, the
I2C bus will not be released.
2. Data transfer from a slave transmitter to a master receiver. The
first byte (the slave address) is transmitted by the master. The
slave then returns an acknowledge bit. Next follows the data
bytes transmitted by the slave to the master. The master returns
an acknowledge bit after all received bytes other than the last
byte. At the end of the last received byte, a “not acknowledge” is
returned.
A typical I2C bus configuration is shown in Figure 10, and Figure 11
shows how a data transfer is accomplished on the bus. Depending
on the state of the direction bit (R/W), two types of data transfers are
possible on the I2C bus:
1. Data transfer from a master transmitter to a slave receiver. The
first byte transmitted by the master is the slave address. Next
follows a number of data bytes. The slave returns an
acknowledge bit after each received byte.
The CPU interfaces to the I2C logic via the following four special
function registers: S1CON (SIO1 control register), S1STA (SIO1
status register), S1DAT (SIO1 data register), and S1ADR (SIO1
slave address register). The SIO1 logic interfaces to the external I2C
bus via two port 1 pins: P1.6/SCL (serial clock line) and P1.7/SDA
(serial data line).
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
11
SHIFT REGISTER, S1DAT
This 8-bit special function register contains a byte of serial data to
be transmitted or a byte which has just been received. Data in
S1DAT is always shifted from right to left; the first bit to be
transmitted is the MSB (bit 7) and, after a byte has been received,
the first bit of received data is located at the MSB of S1DAT. While
data is being shifted out, data on the bus is simultaneously being
shifted in; S1DAT always contains the last byte present on the bus.
Thus, in the event of lost arbitration, the transition from master
transmitter to slave receiver is made with the correct data in S1DAT.
COMPARATOR
The comparator compares the received 7-bit slave address with its
own slave address (7 most significant bits in S1ADR). It also
compares the first received 8-bit byte with the general call address
(00H). If an equality is found, the appropriate status bits are set and
an interrupt is requested.
ADDRESS REGISTER, S1ADR
This 8-bit special function register may be loaded with the 7-bit slave
address (7 most significant bits) to which SIO1 will respond when
programmed as a slave transmitter or receiver. The LSB (GC) is
used to enable general call address (00H) recognition.
The output stages consist of open drain transistors that can sink
3mA at VOUT < 0.4V. These open drain outputs do not have
clamping diodes to VDD. Thus, if the device is connected to the I2C
bus and VDD is switched off, the I2C bus is not affected.
INPUT FILTERS AND OUTPUT STAGES
The input filters have I2C compatible input levels. If the input voltage
is less than 1.5V, the input logic level is interpreted as 0; if the input
voltage is greater than 3.0V, the input logic level is interpreted as 1.
Input signals are synchronized with the internal clock (fOSC/4), and
spikes shorter than three oscillator periods are filtered out.
SIO1 Implementation and Operation: Figure 12 shows how the
on-chip I2C bus interface is implemented, and the following text
describes the individual blocks.
In a given application, SIO1 may operate as a master and as a
slave. In the slave mode, the SIO1 hardware looks for its own slave
address and the general call address. If one of these addresses is
detected, an interrupt is requested. When the microcontroller wishes
to become the bus master, the hardware waits until the bus is free
before the master mode is entered so that a possible slave action is
not interrupted. If bus arbitration is lost in the master mode, SIO1
switches to the slave mode immediately and can detect its own
slave address in the same serial transfer.
The first byte is received and handled as in the slave receiver
mode. However, in this mode, the direction bit will indicate that
the transfer direction is reversed. Serial data is transmitted via
P1.7/SDA while the serial clock is input through P1.6/SCL.
START and STOP conditions are recognized as the beginning
and end of a serial transfer.
4. Slave Transmitter Mode:
8XC552/562 overview
ITALIAN TECHNOLOGY
grifo®
Pagina B-7
Pagina B-8
RP
RP
VDD
Start
Condition
S
1996 Aug 06
SCL
SDA
1
MSB
I2C bus
Slave Address
2
7
P1.6/SCL
8XC552
P1.7/SDA
9
ACK
1
2
12
3–8
Repeated if more bytes
are transferred
9
ACK
Acknowledgment
Signal from Receiver
Other Device with
I2C Interface
Clock Line Held Low While
Interrupts Are Serviced
Bus Configuration
Figure 11. Data Transfer on the I2C Bus
8
Acknowledgment
Signal from Receiver
R/W
Direction
Bit
Figure 10. Typical
I 2C
Other Device with
I2C Interface
SCL
SDA
P/S
Repeated
Start
Condition
Stop
Condition
1996 Aug 06
P1.6/SCL
P1.7/SDA
P1.6
Output
Stage
Input
Filter
Output
Stage
Input
Filter
P1.7
GPC® 554
S1STA
Status Bits
S1CON
Timer 1
Overflow
S1DAT
S1ADR
Status Register
Status
Decoder
Control Register
Serial Clock
Generator
Arbitration &
Sync Logic
Shift Register
Comparator
Address Register
Timing
&
Control
Logic
13
Figure 12. I2C Bus Serial Interface Block Diagram
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
8
8
8
8
ACK
Interrupt
fOSC/4
8XC552/562 overview
Internal Bus
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
GPC® 554
Rel. 3.20
1
2
(1)
3
(2)
4
(3)
8
ACK
9
8XC552/562 overview
Mark
Duration
(1)
Space Duration
(2)
(3)
(1)
1996 Aug 06
The synchronization logic will synchronize the serial clock generator
with the clock pulses on the SCL line from another device. If two or
more master devices generate clock pulses, the “mark” duration is
Arbitration may also be lost in the master receiver mode. Loss of
arbitration in this mode can only occur while SIO1 is returning a “not
acknowledge: (logic 1) to the bus. Arbitration is lost when another
device on the bus pulls this signal LOW. Since this can occur only at
the end of a serial byte, SIO1 generates no further clock pulses.
Figure 13 shows the arbitration procedure.
ARBITRATION AND SYNCHRONIZATION LOGIC
In the master transmitter mode, the arbitration logic checks that
every transmitted logic 1 actually appears as a logic 1 on the I2C
bus. If another device on the bus overrules a logic 1 and pulls the
SDA line low, arbitration is lost, and SIO1 immediately changes from
master transmitter to slave receiver. SIO1 will continue to output
clock pulses (on SCL) until transmission of the current serial byte is
complete.
14
SERIAL CLOCK GENERATOR
This programmable clock pulse generator provides the SCL clock
pulses when SIO1 is in the master transmitter or master receiver
mode. It is switched off when SIO1 is in a slave mode. The
programmable output clock frequencies are: fOSC/120, fOSC/9600,
and the Timer 1 overflow rate divided by eight. The output clock
A slave may stretch the space duration to slow down the bus
master. The space duration may also be stretched for handshaking
purposes. This can be done after each bit or after a complete byte
transfer. SIO1 will stretch the SCL space duration after a byte has
been transmitted or received and the acknowledge bit has been
transferred. The serial interrupt flag (SI) is set, and the stretching
continues until the serial interrupt flag is cleared.
determined by the device that generates the shortest “marks,” and
the “space” duration is determined by the device that generates the
longest “spaces.” Figure 14 shows the synchronization procedure.
Figure 14. Serial Clock Synchronization
3. The SCL line is released, and the serial clock generator commences with the mark duration.
2. Another device still pulls the SCL line low after SIO1 releases SCL. The serial clock generator is forced into the wait state
until the SCL line is released.
1. Another service pulls the SCL line low before the SIO1 “mark” duration is complete. The serial clock generator is immediately
reset and commences with the “space” duration by pulling SCL low.
SCL
SDA
Figure 13. Arbitration Procedure
2. Another device overrules a logic 1 (dotted line) transmitted by SIO1 (master) by pulling the SDA line low. Arbitration is
lost, and SIO1 enters the slave receiver mode.
3. SIO1 is in the slave receiver mode but still generates clock pulses until the current byte has been transmitted. SIO1 will
not generate clock pulses for the next byte. Data on SDA originates from the new master once it has won arbitration.
1. Another device transmits identical serial data.
SCL
SDA
(1)
80C51 Family Derivatives
Philips Semiconductors
1996 Aug 06
S1ADR (DBH)
X
7
SCL
SDA
X
6
X
5
3
X
2
X
1
BSD7
X
0
GC
7
SD7
6
SD6
5
SD5
4
3
SD3
shift direction
SD4
2
SD2
1
SD1
0
SD0
S1DAT
8
ACK
When the CPU writes to S1DAT, BSD7 is loaded with the content of
S1DAT.7, which is the first bit to be transmitted to the SDA line (see
Figure 16). After nine serial clock pulses, the eight bits in S1DAT will
have been transmitted to the SDA line, and the acknowledge bit will
be present in ACK. Note that the eight transmitted bits are shifted
back into S1DAT.
S1DAT and the ACK flag form a 9-bit shift register which shifts in or
shifts out an 8-bit byte, followed by an acknowledge bit. The ACK
flag is controlled by the SIO1 hardware and cannot be accessed by
the CPU. Serial data is shifted through the ACK flag into S1DAT on
the rising edges of serial clock pulses on the SCL line. When a byte
has been shifted into S1DAT, the serial data is available in S1DAT,
and the acknowledge bit is returned by the control logic during the
ninth clock pulse. Serial data is shifted out from S1DAT via a buffer
(BSD7) on the falling edges of clock pulses on the SCL line.
Eight bits to be transmitted or just received. A logic 1 in S1DAT
corresponds to a high level on the I2C bus, and a logic 0
corresponds to a low level on the bus. Serial data shifts through
S1DAT from right to left. Figure 15 shows how data in S1DAT is
serially transferred to and from the SDA line.
SD7 - SD0:
S1DAT (DAH)
The Data Register, S1DAT: S1DAT contains a byte of serial data to
be transmitted or a byte which has just been received. The CPU can
read from and write to this 8-bit, directly addressable SFR while it is
not in the process of shifting a byte. This occurs when SIO1 is in a
defined state and the serial interrupt flag is set. Data in S1DAT
remains stable as long as SI is set. Data in S1DAT is always shifted
from right to left: the first bit to be transmitted is the MSB (bit 7), and,
after a byte has been received, the first bit of received data is
located at the MSB of S1DAT. While data is being shifted out, data
on the bus is simultaneously being shifted in; S1DAT always
contains the last data byte present on the bus. Thus, in the event of
lost arbitration, the transition from master transmitter to slave
receiver is made with the correct data in S1DAT.
Internal Bus
15
8XC552/562 overview
The most significant bit corresponds to the first bit received from the
I2C bus after a start condition. A logic 1 in S1ADR corresponds to a
high level on the I2C bus, and a logic 0 corresponds to a low level
on the bus.
Figure 15. Serial Input/Output Configuration
Shift Pulses
own slave address
X
4
The Address Register, S1ADR: The CPU can read from and write
to this 8-bit, directly addressable SFR. S1ADR is not affected by the
SIO1 hardware. The contents of this register are irrelevant when
SIO1 is in a master mode. In the slave modes, the seven most
significant bits must be loaded with the microcontroller’s own slave
address, and, if the least significant bit is set, the general call
address (00H) is recognized; otherwise it is ignored.
The Four SIO1 Special Function Registers: The microcontroller
interfaces to SIO1 via four special function registers. These four
SFRs (S1ADR, S1DAT, S1CON, and S1STA) are described
individually in the following sections.
STATUS DECODER AND STATUS REGISTER
The status decoder takes all of the internal status bits and
compresses them into a 5-bit code. This code is unique for each I2C
bus status. The 5-bit code may be used to generate vector
addresses for fast processing of the various service routines. Each
service routine processes a particular bus status. There are 26
possible bus states if all four modes of SIO1 are used. The 5-bit
status code is latched into the five most significant bits of the status
register when the serial interrupt flag is set (by hardware) and
remains stable until the interrupt flag is cleared by software. The
three least significant bits of the status register are always zero. If
the status code is used as a vector to service routines, then the
routines are displaced by eight address locations. Eight bytes of
code is sufficient for most of the service routines (see the software
example in this section).
CONTROL REGISTER, S1CON
This 7-bit special function register is used by the microcontroller to
control the following SIO1 functions: start and restart of a serial
transfer, termination of a serial transfer, bit rate, address recognition,
and acknowledgment.
TIMING AND CONTROL
The timing and control logic generates the timing and control signals
for serial byte handling. This logic block provides the shift pulses for
S1DAT, enables the comparator, generates and detects start and
stop conditions, receives and transmits acknowledge bits, controls
the master and slave modes, contains interrupt request logic, and
monitors the I2C bus status.
pulses have a 50% duty cycle unless the clock generator is
synchronized with other SCL clock sources as described above.
80C51 Family Derivatives
Philips Semiconductors
ITALIAN TECHNOLOGY
grifo®
Pagina B-9
Pagina B-10
7
CR2
6
ENS1
5
STA
4
STO
3
SI
2
AA
1
CR1
0
CR0
GPC® 554
1996 Aug 06
SI, THE SERIAL INTERRUPT FLAG
SI = “1”: When the SI flag is set, then, if the EA and ES1 (interrupt
enable register) bits are also set, a serial interrupt is requested. SI is
set by hardware when one of 25 of the 26 possible SIO1 states is
STO = “0”: When the STO bit is reset, no STOP condition will be
generated.
If the STA and STO bits are both set, the a STOP condition is
transmitted to the I2C bus if SIO1 is in a master mode (in a slave
mode, SIO1 generates an internal STOP condition which is not
transmitted). SIO1 then transmits a START condition.
STO, THE STOP FLAG
STO = “1”: When the STO bit is set while SIO1 is in a master mode,
a STOP condition is transmitted to the I2C bus. When the STOP
condition is detected on the bus, the SIO1 hardware clears the STO
flag. In a slave mode, the STO flag may be set to recover from an
error condition. In this case, no STOP condition is transmitted to the
I2C bus. However, the SIO1 hardware behaves as if a STOP
condition has been received and switches to the defined “not
addressed” slave receiver mode. The STO flag is automatically
cleared by hardware.
STA = “0”: When the STA bit is reset, no START condition or
repeated START condition will be generated.
If STA is set while SIO1 is already in a master mode and one or
more bytes are transmitted or received, SIO1 transmits a repeated
START condition. STA may be set at any time. STA may also be set
when SIO1 is an addressed slave.
STA, THE START FLAG
STA = “1”: When the STA bit is set to enter a master mode, the SIO1
hardware checks the status of the I2C bus and generates a START
condition if the bus is free. If the bus is not free, then SIO1 waits for
a STOP condition (which will free the bus) and generates a START
condition after a delay of a half clock period of the internal serial
clock generator.
In the following text, it is assumed that ENS1 = “1”.
ENS1 should not be used to temporarily release SIO1 from the I2C
bus since, when ENS1 is reset, the I2C bus status is lost. The AA
flag should be used instead (see description of the AA flag in the
following text).
ENS1 = “1”: When ENS1 is “1”, SIO1 is enabled. The P1.6 and P1.7
port latches must be set to logic 1.
ENS1, THE SIO1 ENABLE BIT
ENS1 = “0”: When ENS1 is “0”, the SDA and SCL outputs are in a
high impedance state. SDA and SCL input signals are ignored, SIO1
is in the “not addressed” slave state, and the STO bit in S1CON is
forced to “0”. No other bits are affected. P1.6 and P1.7 may be used
as open drain I/O ports.
S1CON (D8H)
The Control Register, S1CON: The CPU can read from and write
to this 8-bit, directly addressable SFR. Two bits are affected by the
SIO1 hardware: the SI bit is set when a serial interrupt is requested,
and the STO bit is cleared when a STOP condition is present on the
I2C bus. The STO bit is also cleared when ENS1 = “0”.
16
The frequencies shown in Table 2 are unimportant when SIO1 is in a
slave mode. In the slave modes, SIO1 will automatically synchronize
with any clock frequency up to 100kHz.
A 12.5kHz bit rate may be used by devices that interface to the I2C
bus via standard I/O port lines which are software driven and slow.
100kHz is usually the maximum bit rate and can be derived from a
16MHz, 12MHz, or a 6MHz oscillator. A variable bit rate (0.5kHz to
62.5kHz) may also be used if Timer 1 is not required for any other
purpose while SIO1 is in a master mode.
CR0, CR1, AND CR2, THE CLOCK RATE BITS
These three bits determine the serial clock frequency when SIO1 is
in a master mode. The various serial rates are shown in Table 2.
When SIO1 is in the not addressed slave mode, its own slave
address and the general call address are ignored. Consequently, no
acknowledge is returned, and a serial interrupt is not requested.
Thus, SIO1 can be temporarily released from the I2C bus while the
bus status is monitored. While SIO1 is released from the bus,
START and STOP conditions are detected, and serial data is shifted
in. Address recognition can be resumed at any time by setting the
AA flag. If the AA flag is set when the part’s own slave address or
the general call address has been partly received, the address will
be recognized at the end of the byte transmission.
When SIO1 is in the addressed slave transmitter mode, state C8H
will be entered after the last serial is transmitted (see Figure 20).
When SI is cleared, SIO1 leaves state C8H, enters the not
addressed slave receiver mode, and the SDA line remains at a high
level. In state C8H, the AA flag can be set again for future address
recognition.
AA = “0”: if the AA flag is reset, a not acknowledge (high level to
SDA) will be returned during the acknowledge clock pulse on SCL
when:
– A data has been received while SIO1 is in the master receiver
mode
– A data byte has been received while SIO1 is in the addressed
slave receiver mode
AA, THE ASSERT ACKNOWLEDGE FLAG
AA = “1”: If the AA flag is set, an acknowledge (low level to SDA) will
be returned during the acknowledge clock pulse on the SCL line
when:
– The “own slave address” has been received
– The general call address has been received while the general call
bit (GC) in S1ADR is set
– A data byte has been received while SIO1 is in the master
receiver mode
– A data byte has been received while SIO1 is in the addressed
slave receiver mode
SI = “0”: When the SI flag is reset, no serial interrupt is requested,
and there is no stretching of the serial clock on the SCL line.
While SI is set, the low period of the serial clock on the SCL line is
stretched, and the serial transfer is suspended. A high level on the
SCL line is unaffected by the serial interrupt flag. SI must be reset
by software.
entered. The only state that does not cause SI to be set is state
F8H, which indicates that no relevant state information is available.
Explanation
Start condition
7-bit slave address
Read bit (high level at SDA)
Write bit (low level at SDA)
Acknowledge bit (low level at SDA)
Not acknowledge bit (high level at SDA)
8-bit data byte
Stop condition
1996 Aug 06
When a serial interrupt routine is entered, the status code in S1STA
is used to branch to the appropriate service routine. For each status
In Figures 17-37, circles are used to indicate when the serial
interrupt flag is set. The numbers in the circles show the status code
held in the S1STA register. At these points, a service routine must
be executed to continue or complete the serial transfer. These
service routines are not critical since the serial transfer is suspended
until the serial interrupt flag is cleared by software.
Abbreviation
S
SLA
R
W
A
A
Data
P
Data transfers in each mode of operation are shown in Figures
17–37. These figures contain the following abbreviations:
More Information on SIO1 Operating Modes: The four operating
modes are:
– Master Transmitter
– Master Receiver
– Slave Receiver
– Slave Transmitter
The Status Register, S1STA: S1STA is an 8-bit read-only special
function register. The three least significant bits are always zero.
The five most significant bits contain the status code. There are 26
possible status codes. When S1STA contains F8H, no relevant state
information is available and no serial interrupt is requested. All other
S1STA values correspond to defined SIO1 states. When each of
these states is entered, a serial interrupt is requested (SI = “1”). A
valid status code is present in S1STA one machine cycle after SI is
set by hardware and is still present one machine cycle after SI has
been reset by software.
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
17
1
bit
rate
6
ENS1
7
CR2
5
0
STA
4
0
STO
3
0
SI
2
X
AA
1
0
CR0
bit rate
CR1
When the slave address and the direction bit have been transmitted
and an acknowledgment bit has been received, the serial interrupt
flag (SI) is set again, and a number of status codes in S1STA are
possible. There are 18H, 20H, or 38H for the master mode and also
68H, 78H, or B0H if the slave mode was enabled (AA = logic 1). The
appropriate action to be taken for each of these status codes is
detailed in Table 3. After a repeated start condition (state 10H). SIO1
may switch to the master receiver mode by loading S1DAT with
SLA+R).
The master transmitter mode may now be entered by setting the
STA bit using the SETB instruction. The SIO1 logic will now test the
I2C bus and generate a start condition as soon as the bus becomes
free. When a START condition is transmitted, the serial interrupt flag
(SI) is set, and the status code in the status register (S1STA) will be
08H. This status code must be used to vector to an interrupt service
routine that loads S1DAT with the slave address and the data
direction bit (SLA+W). The SI bit in S1CON must then be reset
before the serial transfer can continue.
CR0, CR1, and CR2 define the serial bit rate. ENS1 must be set to
logic 1 to enable SIO1. If the AA bit is reset, SIO1 will not
acknowledge its own slave address or the general call address in
the event of another device becoming master of the bus. In other
words, if AA is reset, SIO0 cannot enter a slave mode. STA, STO,
and SI must be reset.
S1CON (D8H)
Master Transmitter Mode: In the master transmitter mode, a
number of data bytes are transmitted to a slave receiver (see
Figure 17). Before the master transmitter mode can be entered,
S1CON must be initialized as follows:
code, the required software action and details of the following serial
transfer are given in Tables 3-7.
8XC552/562 overview
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
D7
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
1996 Aug 06
CR1
0
1
0
1
0
1
0
1
CR0
Serial Clock Rates
CR2
Table 2.
(3) High level on SDA
(2)
(2)
Loaded by the CPU
(1)
D7
(2) Shifting data in S1DAT and ACK
(1) Valid data in S1DAT
BSD7
Shift BSD7
S1DAT
ACK
Shift ACK & S1DAT
SCL
SDA
D6
D6
D4
D4
(2)
(2)
D3
D3
(2)
(2)
D2
D2
(2)
(2)
D1
D1
6MHz
18
47
54
63
75
12.5
100
–
0.5 < 62.5
12MHz
63
71
83
100
17
–
–
0.67 < 56
16MHz
BIT FREQUENCY (kHz) AT fOSC
Figure 16. Shift-in and Shift-out Timing
D5
(2)
(2)
23
27
31
37
6.25
50
100
0.25 < 62.5
(2)
(2)
D5
D0
(2)
(2)
(1)
A
Shift Out
Shift In
fOSC DIVIDED BY
(3)
A
256
224
192
160
960
120
60
96 × (256 – reload value Timer 1)
(Reload value range: 0 – 254 in mode 2)
(2)
(2)
D0
8XC552/562 overview
1996 Aug 06
S
08H
n
Data
SLA
W
MT
A
Data
78H
80H
Other MST
Continues
Other MST
Continues
P
Any Number of Data Bytes and Their Associated Acknowledge Bits
68H
A
38H
A or A
20H
A
18H
A
P
19
Other MST
Continues
P
10H
S
SLA
To Corresponding
States in Slave Mode
38H
A or A
30H
A
28H
W
8XC552/562 overview
Figure 17. Format and States in the Master Transmitter Mode
This Number (Contained in S1STA) Corresponds to a Defined State of the I2C Bus. See Table 3.
A
From Slave to Master
From Master to Slave
Arbitration Lost and Addressed as Slave
Arbitration Lost in Slave Address or Data Byte
Not Acknowledge Received after a Data Byte
Not Acknowledge Received after the Slave Address
Next Transfer Started with a Repeated Start Condition
Successful Transmission to
a Slave Receiver
80C51 Family Derivatives
ÇÇÇÇ
ÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
80C51 Family Derivatives
Philips Semiconductors
ÇÇÇ
ÇÇÇ
Rel. 3.20
To MST/REC Mode
Entry = MR
R
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
GPC® 554
ÇÇÇ
ÇÇÇ ÇÇÇÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
Philips Semiconductors
ITALIAN TECHNOLOGY
grifo®
Pagina B-11
08H
S
SLA
GPC® 554
1996 Aug 06
n
Data
R
A
P
78H
80H
Other MST
Continues
Other MST
Continues
Any Number of Data Bytes and Their Associated Acknowledge Bits
68H
A
38H
A or A
48H
A
40H
Data
A
Data
To Corresponding
States in Slave Mode
50H
20
Figure 18. Format and States in the Master Receiver Mode
This Number (Contained in S1STA) Corresponds to a Defined State of the I2C Bus. See Table 4.
A
From Slave to Master
From Master to Slave
ÇÇ
ÇÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
Arbitration Lost and Addressed as Slave
Arbitration Lost in Slave Address or Acknowledge Bit
Not Acknowledge Received after the Slave Address
Next Transfer Started with a Repeated Start Condition
Successful Reception
from a Slave Transmitter
A
58H
A
P
10H
S
38H
Other MST
Continues
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
MR
R
8XC552/562 overview
W
To MST/TRX Mode
Entry = MT
SLA
S
SLA
1996 Aug 06
n
Data
W
A
Data
General
Call
Any Number of Data Bytes and Their Associated Acknowledge Bits
78H
A
70H
A
68H
A
60H
Data
A
A
Data
SLA
Data
88H
A
80H
A
P or S
A0H
P or S
8XC552/562 overview
80H
90H
21
Figure 19. Format and States in the Slave Receiver Mode
This Number (Contained in S1STA) Corresponds to a Defined State of the I2C Bus. See Table 5.
A
From Slave to Master
From Master to Slave
Arbitration Lost as MST and Addressed as Slave by General Call
Last Data Byte Is Not Acknowledged
Reception of the General Call Address
and One or More Data Bytes
Arbitration Lost as MST and
Addressed as Slave
Last Data Byte Received Is
Not Acknowledged
Reception of the Own Slave Address
and One or More Data Bytes
All Are Acknowledged.
80C51 Family Derivatives
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
80C51 Family Derivatives
98H
P or S
A0H
90H
A
P or S
A
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ ÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇ
ÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇ
Philips Semiconductors
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
Pagina B-12
ÇÇÇ ÇÇÇ
ÇÇÇ ÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
Rel. 3.20
R
A
7
5
X
4
3
X
own slave address
X
2
X
1
X
0
GC
1996 Aug 06
The upper 7 bits are the address to which SIO1 will respond when
addressed by a master. If the LSB (GC) is set, SIO1 will respond to
X
6
Slave Receiver Mode: In the slave receiver mode, a number of
data bytes are received from a master transmitter (see Figure 19).
To initiate the slave receiver mode, S1ADR and S1CON must be
loaded as follows:
X
Data
B8H
Last Data Byte Transmitted.
Switched to Not Addressed Slave
(AA Bit in S1CON = “0”
22
C8H
A
C0H
A
P or S
All “1”s
P or S
1
X
6
ENS1
7
CR2
5
0
STA
4
0
STO
3
0
SI
2
1
AA
1
X
CR1
0
X
CR0
If the AA bit is reset during a transfer, SIO1 will return a not
acknowledge (logic 1) to SDA after the next received data byte.
While AA is reset, SIO1 does not respond to its own slave address
or a general call address. However, the I2C bus is still monitored
and address recognition may be resumed at any time by setting AA.
This means that the AA bit may be used to temporarily isolate SIO1
from the I2C bus.
When S1ADR and S1CON have been initialized, SIO1 waits until it
is addressed by its own slave address followed by the data direction
bit which must be “0” (W) for SIO1 to operate in the slave receiver
mode. After its own slave address and the W bit have been
received, the serial interrupt flag (I) is set and a valid status code
can be read from S1STA. This status code is used to vector to an
interrupt service routine, and the appropriate action to be taken for
each of these status codes is detailed in Table 5. The slave receiver
mode may also be entered if arbitration is lost while SIO1 is in the
master mode (see status 68H and 78H).
CR0, CR1, and CR2 do not affect SIO1 in the slave mode. ENS1
must be set to logic 1 to enable SIO1. The AA bit must be set to
enable SIO1 to acknowledge its own slave address or the general
call address. STA, STO, and SI must be reset.
S1CON (D8H)
the general call address (00H); otherwise it ignores the general call
address.
Figure 20. Format and States of the Slave Transmitter Mode
When the slave address and the data direction bit have been
transmitted and an acknowledgment bit has been received, the
serial interrupt flag (SI) is set again, and a number of status codes in
S1STA are possible. These are 40H, 48H, or 38H for the master
mode and also 68H, 78H, or B0H if the slave mode was enabled
(AA = logic 1). The appropriate action to be taken for each of these
status codes is detailed in Table 4. ENS1, CR1, and CR0 are not
affected by the serial transfer and are not referred to in Table 4. After
a repeated start condition (state 10H), SIO1 may switch to the
master transmitter mode by loading S1DAT with SLA+W.
S1ADR (DBH)
A
Arbitration Loast as MST and
Addressed as Slave
Any Number of Data Bytes and Their Associated Acknowledge Bits
B0H
A
A8H
Data
This Number (Contained in S1STA) Corresponds to a Defined State of the I2C Bus. See Table 6.
A
From Slave to Master
SLA
Master Receiver Mode: In the master receiver mode, a number of
data bytes are received from a slave transmitter (see Figure 18).
The transfer is initialized as in the master transmitter mode. When
the start condition has been transmitted, the interrupt service routine
must load S1DAT with the 7-bit slave address and the data direction
bit (SLA+R). The SI bit in S1CON must then be cleared before the
serial transfer can continue.
n
Data
S
From Master to Slave
ÇÇ
ÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
Reception of the Own
Slave Address and
Transmission of One or
More Data Bytes
8XC552/562 overview
ÇÇÇ
ÇÇÇ
ÇÇÇ
80C51 Family Derivatives
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
GPC® 554
ÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
Philips Semiconductors
A repeated START
condition has been
transmitted
10H
1996 Aug 06
38H
30H
28H
20H
Arbitration lost in
SLA+R/W or
Data bytes
Data byte in S1DAT has
been transmitted; NOT
ACK has been received
Data byte in S1DAT has
been transmitted; ACK
has been received
SLA+W has been
transmitted; NOT ACK
has been received
SLA+W has been
transmitted; ACK has
been received
A START condition has
been transmitted
08H
18H
STATUS OF THE
I2C BUS AND
SIO1 HARDWARE
1
no S1DAT action
No S1DAT action
1
0
1
0
no S1DAT action or
no S1DAT action or
No S1DAT action or
0
Load data byte or
1
1
0
no S1DAT action
0
1
no S1DAT action
no S1DAT action or
no S1DAT action or
1
0
Load data byte or
0
no S1DAT action or
no S1DAT action or
1
no S1DAT action
Load data byte or
1
0
0
X
X
X
STA
no S1DAT action or
no S1DAT action or
Load data byte or
Load SLA+W or
Load SLA+R
Load SLA+W
TO/FROM S1DAT
23
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
STO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SI
TO S1CON
APPLICATION SOFTWARE RESPONSE
Master Transmitter Mode
STATUS
CODE
(S1STA)
Table 3.
80C51 Family Derivatives
Philips Semiconductors
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
AA
I2C bus will be released;
not addressed slave will be entered
A START condition will be transmitted when the
bus becomes free
Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a
START condition will be transmitted;
STO flag will be reset
Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a
START condition will be transmitted;
STO flag will be reset
Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a
START condition will be transmitted;
STO flag will be reset
Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a
START condition will be transmitted;
STO flag will be reset
As above
SLA+W will be transmitted;
SIO1 will be switched to MST/REC mode
SLA+W will be transmitted;
ACK bit will be received
NEXT ACTION TAKEN BY SIO1 HARDWARE
8XC552/562 overview
ITALIAN TECHNOLOGY
grifo®
Pagina B-13
Pagina B-14
I2C BUS AND
SIO1 HARDWARE
A START condition has
been transmitted
A repeated START
condition has been
transmitted
Arbitration lost in
NOT ACK bit
SLA+R has been
transmitted; ACK has
been received
SLA+R has been
transmitted; NOT ACK
has been received
Data byte has been
received; ACK has been
returned
Data byte has been
received; NOT ACK has
been returned
CODE
(S1STA)
08H
10H
38H
40H
48H
50H
58H
1996 Aug 06
STATUS OF THE
1
0
1
read data byte or
read data byte
0
Read data byte or
0
1
no S1DAT action
read data byte
0
no S1DAT action or
Read data byte or
1
0
no S1DAT action
No S1DAT action or
0
1
No S1DAT action or
0
No S1DAT action
X
X
X
No S1DAT action or
Load SLA+R or
Load SLA+W
Load SLA+R
STA
24
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
STO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SI
TO S1CON
APPLICATION SOFTWARE RESPONSE
TO/FROM S1DAT
Master Receiver Mode
STATUS
Table 4.
AA
X
X
X
1
0
X
X
X
1
0
X
X
X
X
X
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a
START condition will be transmitted;
STO flag will be reset
Repeated START condition will be transmitted
Data byte will be received;
NOT ACK bit will be returned
Data byte will be received;
ACK bit will be returned
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a
START condition will be transmitted;
STO flag will be reset
Repeated START condition will be transmitted
Data byte will be received;
NOT ACK bit will be returned
Data byte will be received;
ACK bit will be returned
I2C bus will be released;
SIO1 will enter a slave mode
A START condition will be transmitted when the
bus becomes free
As above
SLA+W will be transmitted;
SIO1 will be switched to MST/TRX mode
SLA+R will be transmitted;
ACK bit will be received
NEXT ACTION TAKEN BY SIO1 HARDWARE
General call address
(00H) has been
received; ACK has
been returned
Arbitration lost in
SLA+R/W as master;
General call address
has been received,
ACK has been
returned
Previously addressed
with own SLV
address; DATA has
been received; ACK
has been returned
70H
78H
80H
GPC® 554
Previously addressed
with General Call;
DATA byte has been
received; NOT ACK
has been returned
98H
1996 Aug 06
Previously addressed
with General Call;
DATA byte has been
received; ACK has
been returned
90H
Previously addressed
with own SLA; DATA
byte has been
received; NOT ACK
has been returned
Arbitration lost in
SLA+R/W as master;
Own SLA+W has
been received, ACK
returned
68H
88H
Own SLA+W has
been received; ACK
has been returned
SIO1 HARDWARE
I2C BUS AND
1
read data byte or
0
0
1
1
read data byte or
read data byte or
read data byte
X
X
Read data byte or
read data byte
Read data byte or
1
0
read data byte
0
read data byte or
X
X
X
Read data byte or
read data byte
Read data byte or
no S1DAT action
X
X
No S1DAT action or
X
no S1DAT action
X
No S1DAT action or
X
no S1DAT action
X
No S1DAT action or
X
no S1DAT action
STA
No S1DAT action or
TO/FROM S1DAT
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
STO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SI
TO S1CON
APPLICATION SOFTWARE RESPONSE
Slave Receiver Mode
STATUS OF THE
60H
(S1STA)
CODE
STATUS
Table 5.
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
AA
Switched to not addressed SLV mode; no
recognition of own SLA or General call address
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1
Switched to not addressed SLV mode; no
recognition of own SLA or General call address. A
START condition will be transmitted when the bus
becomes free
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1. A START condition
will be transmitted when the bus becomes free.
Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned
Switched to not addressed SLV mode; no
recognition of own SLA or General call address
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1
Switched to not addressed SLV mode; no
recognition of own SLA or General call address. A
START condition will be transmitted when the bus
becomes free
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1. A START condition
will be transmitted when the bus becomes free.
Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned
Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned
Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned
Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned
Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned
NEXT ACTION TAKEN BY SIO1 HARDWARE
8XC552/562 overview
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
GPC® 554
Rel. 3.20
STATUS OF THE
I2C BUS AND
SIO1 HARDWARE
Own SLA+R has been
received; ACK has
been returned
Arbitration lost in
SLA+R/W as master;
Own SLA+R has been
received, ACK has
been returned
Data byte in S1DAT
has been transmitted;
ACK has been
received
Data byte in S1DAT
has been transmitted;
NOT ACK has been
received
Last data byte in
S1DAT has been
transmitted (AA = 0);
ACK has been
received
STATUS
CODE
(S1STA)
A8H
B0H
B8H
C0H
C8H
1996 Aug 06
0
0
1
1
No STDAT action or
No STDAT action or
No STDAT action
STA
No STDAT action or
TO/FROM S1DAT
0
0
0
0
0
0
0
0
SI
TO S1CON
STO
1
1
no S1DAT action or
no S1DAT action
0
1
no S1DAT action
no S1DAT action or
1
no S1DAT action or
0
0
no S1DAT action or
No S1DAT action or
0
X
load data byte
No S1DAT action or
X
X
load data byte
Load data byte or
X
X
load data byte
Load data byte or
X
STA
Load data byte or
TO/FROM S1DAT
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
STO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SI
TO S1CON
APPLICATION SOFTWARE RESPONSE
Slave Transmitter Mode
A STOP condition or
repeated START
condition has been
received while still
addressed as
SLV/REC or SLV/TRX
A0H
Table 6.
I2C BUS AND
SIO1 HARDWARE
CODE
(S1STA)
APPLICATION SOFTWARE RESPONSE
Slave Receiver Mode (Continued)
STATUS OF THE
STATUS
Table 5.
AA
1
0
1
0
1
0
1
0
1
0
1
0
1
0
AA
1
0
1
0
Switched to not addressed SLV mode; no
recognition of own SLA or General call address
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1
Switched to not addressed SLV mode; no
recognition of own SLA or General call address. A
START condition will be transmitted when the bus
becomes free
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1. A START condition
will be transmitted when the bus becomes free.
Switched to not addressed SLV mode; no
recognition of own SLA or General call address
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1
Switched to not addressed SLV mode; no
recognition of own SLA or General call address. A
START condition will be transmitted when the bus
becomes free
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1. A START condition
will be transmitted when the bus becomes free.
Last data byte will be transmitted and
ACK bit will be received
Data byte will be transmitted; ACK bit will be
received
Last data byte will be transmitted and ACK bit will
be received
Data byte will be transmitted; ACK bit will be
received
Last data byte will be transmitted and
ACK bit will be received
Data byte will be transmitted; ACK will be received
NEXT ACTION TAKEN BY SIO1 HARDWARE
Switched to not addressed SLV mode; no
recognition of own SLA or General call address
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1
Switched to not addressed SLV mode; no
recognition of own SLA or General call address. A
START condition will be transmitted when the bus
becomes free
Switched to not addressed SLV mode; Own SLA will
be recognized; General call address will be
recognized if S1ADR.0 = logic 1. A START condition
will be transmitted when the bus becomes free.
NEXT ACTION TAKEN BY SIO1 HARDWARE
1996 Aug 06
If the SIO1 hardware detects a repeated START condition on the I2C
bus before generating a repeated START condition itself, it will
release the bus, and no interrupt request is generated. If another
master frees the bus by generating a STOP condition, SIO1 will
transmit a normal START condition (state 08H), and a retry of the
total serial data transfer can commence.
A repeated START condition may be generated in the master
transmitter or master receiver modes. A special case occurs if
another master simultaneously generates a repeated START
condition (see Figure 21). Until this occurs, arbitration is not lost by
either master since they were both transmitting the same data.
Simultaneous Repeated START Conditions from Two Masters
Some Special Cases: The SIO1 hardware has facilities to handle
the following special cases that may occur during a serial transfer:
S1STA = 00H:
This status code indicates that a bus error has occurred during an
SIO1 serial transfer. A bus error is caused when a START or STOP
condition occurs at an illegal position in the format frame. Examples
of such illegal positions are during the serial transfer of an address
byte, a data byte, or an acknowledge bit. A bus error may also be
caused when external interference disturbs the internal SIO1
signals. When a bus error occurs, SI is set. To recover from a bus
error, the STO flag must be set and SI must be cleared. This causes
SIO1 to enter the “not addressed” slave mode (a defined state) and
to clear the STO flag (no other bits in S1CON are affected). The
SDA and SCL lines are released (a STOP condition is not
transmitted).
S1STA = F8H:
This status code indicates that no relevant information is available
because the serial interrupt flag, SI, is not yet set. This occurs
between other states and when SIO1 is not involved in a serial
transfer.
Miscellaneous States: There are two S1STA codes that do not
correspond to a defined SIO1 hardware state (see Table 7). These
are discussed below.
If the AA bit is reset during a transfer, SIO1 will transmit the last byte
of the transfer and enter state C0H or C8H. SIO1 is switched to the
not addressed slave mode and will ignore the master receiver if it
continues the transfer. Thus the master receiver receives all 1s as
serial data. While AA is reset, SIO1 does not respond to its own
slave address or a general call address. However, the I2C bus is still
monitored, and address recognition may be resumed at any time by
setting AA. This means that the AA bit may be used to temporarily
isolate SIO1 from the I2C bus.
Slave Transmitter Mode: In the slave transmitter mode, a number
of data bytes are transmitted to a master receiver (see Figure 20).
Data transfer is initialized as in the slave receiver mode. When
S1ADR and S1CON have been initialized, SIO1 waits until it is
addressed by its own slave address followed by the data direction
bit which must be “1” (R) for SIO1 to operate in the slave transmitter
mode. After its own slave address and the R bit have been received,
the serial interrupt flag (SI) is set and a valid status code can be
read from S1STA. This status code is used to vector to an interrupt
service routine, and the appropriate action to be taken for each of
these status codes is detailed in Table 6. The slave transmitter mode
may also be entered if arbitration is lost while SIO1 is in the master
mode (see state B0H).
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
27
The SIO1 hardware only reacts to a bus error when it is involved in
a serial transfer either as a master or an addressed slave. When a
bus error is detected, SIO1 immediately switches to the not
addressed slave mode, releases the SDA and SCL lines, sets the
interrupt flag, and loads the status register with 00H. This status
code may be used to vector to a service routine which either
attempts the aborted serial transfer again or simply recovers from
the error condition as shown in Table 7.
BUS ERROR
A bus error occurs when a START or STOP condition is present at
an illegal position in the format frame. Examples of illegal positions
are during the serial transfer of an address byte, a data or an
acknowledge bit.
If a forced bus access occurs or a repeated START condition is
transmitted while SDA is obstructed (pulled LOW), the SIO1
hardware performs the same action as described above. In each
case, state 08H is entered after a successful START condition is
transmitted and normal serial transfer continues. Note that the CPU
is not involved in solving these bus hang-up problems.
If the SDA line is obstructed by another device on the bus (e.g., a
slave device out of bit synchronization), the problem can be solved
by transmitting additional clock pulses on the SCL line (see Figure
23). The SIO1 hardware transmits additional clock pulses when the
STA flag is set, but no START condition can be generated because
the SDA line is pulled LOW while the I2C bus is considered free.
The SIO1 hardware attempts to generate a START condition after
every two additional clock pulses on the SCL line. When the SDA
line is eventually released, a normal START condition is transmitted,
state 08H is entered, and the serial transfer continues.
I2C BUS OBSTRUCTED BY A LOW LEVEL ON SCL OR SDA
An I2C bus hang-up occurs if SDA or SCL is pulled LOW by an
uncontrolled source. If the SCL line is obstructed (pulled LOW) by a
device on the bus, no further serial transfer is possible, and the
SIO1 hardware cannot resolve this type of problem. When this
occurs, the problem must be resolved by the device that is pulling
the SCL bus line LOW.
If an uncontrolled source generates a superfluous START or masks
a STOP condition, then the I2C bus stays busy indefinitely. If the
STA flag is set and bus access is not obtained within a reasonable
amount of time, then a forced access to the I2C bus is possible. This
is achieved by setting the STO flag while the STA flag is still set. No
STOP condition is transmitted. The SIO1 hardware behaves as if a
STOP condition was received and is able to transmit a START
condition. The STO flag is cleared by hardware (see Figure 22).
FORCED ACCESS TO THE I2C BUS
In some applications, it may be possible for an uncontrolled source
to cause a bus hang-up. In such situations, the problem may be
caused by interference, temporary interruption of the bus or a
temporary short-circuit between SDA and SCL.
If the STA flag in S1CON is set by the routines which service these
states, then, if the bus is free again, a START condition (state 08H)
is transmitted without intervention by the CPU, and a retry of the
total serial transfer can commence.
DATA TRANSFER AFTER LOSS OF ARBITRATION
Arbitration may be lost in the master transmitter and master receiver
modes (see Figure 13). Loss of arbitration is indicated by the
following states in S1STA; 38H, 68H, 78H, and B0H (see Figures 17
and 18).
8XC552/562 overview
ITALIAN TECHNOLOGY
grifo®
Pagina B-15
Pagina B-16
1996 Aug 06
08H
S
SLA
W
A
SI
S
1
AA
X
Other MST Continues
0
Other Master Sends Repeated
START Condition Earlier
28H
A
0
STO
No S1CON action
P
Retry
08H
S
28
SLA
Only the internal hardware is affected in the
MST or addressed SLV modes. In all cases,
the bus is released and SIO1 is switched to the
not addressed SLV mode. STO is reset.
Wait or proceed current transfer
NEXT ACTION TAKEN BY SIO1 HARDWARE
Figure 21. Simultaneous Repeated START Conditions from 2 Masters
Data
No S1DAT action
STA
TO S1CON
APPLICATION SOFTWARE RESPONSE
TO/FROM S1DAT
No S1DAT action
18H
Bus error during MST or
selected slave modes,
due to an illegal START
or STOP condition. State
00H can also occur
when interference
causes SIO1 to enter an
undefined state.
00H
SIO1 HARDWARE
(S1STA)
No relevant state
information available;
SI = 0
I2C BUS AND
F8H
STATUS OF THE
CODE
Miscellaneous States
STATUS
Table 7.
(1)
1996 Aug 06
Start Condition
(1)
Start Condition
(3)
8XC552/562 overview
29
Figure 23. Recovering from a Bus Obstruction Caused by a Low Level on SDA
(2)
Figure 22. Forced Access to a Busy I2C Bus
Time Limit
(1) Unsuccessful attempt to send a Start condition
(2) SDA line released
(3) Successful attempt to send a Start condition; state 08H is entered
SCL line
SDA line
STA flag
SCL line
SDA line
STO flag
STA flag
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
GPC® 554
Rel. 3.20
GPC® 554
Rel. 3.20
1996 Aug 06
A low priority interrupt may be interrupted by a high priority interrupt.
A high priority interrupt cannot be interrupted by any other interrupt
source. If two requests of different priority occur simultaneously, the
Interrupt priority levels are as follows:
“0”—low priority
“1”—high priority
Interrupt Priority Structure: Each interrupt source can be assigned
one of two priority levels. Interrupt priority levels are defined by the
interrupt priority special function registers IP0 and IP1. IP0 and IP1
are described in Figures 30 and 31.
Interrupt Enable Registers: Each interrupt source can be
individually enabled or disabled by setting or clearing a bit in the
interrupt enable special function registers IEN0 and IEN1. All
interrupt sources can also be globally enabled or disabled by setting
or clearing bit EA in IEN0. The interrupt enable registers are
described in Figures 28 and 29.
The ADCI flag may be reset by software. It cannot be set by
software. All other flags that generate interrupts may be set or
cleared by software, and the effect is the same as setting or
resetting the flags by hardware. Thus, interrupts may be generated
by software and pending interrupts can be canceled by software.
42
Execution proceeds from the vector address until the RETI
instruction is encountered. The RETI instruction clears the “priority
level active” flip-flop that was set when this interrupt was
acknowledged. It then pops the top two bytes from the stack and
reloads the program counter. Execution of the interrupted program
continues from where it was interrupted.
The processor acknowledges an interrupt request by executing a
hardware-generated LCALL to the appropriate service routine. In
some cases it also clears the flag which generated the interrupt, and
in others it does not. It clears the Timer 0, Timer 1, and external
interrupt flags. An external interrupt flag (IEO or IE1) is cleared only
if it was transition-activated. All other interrupt flags are not cleared
by hardware and must be cleared by the software. The LCALL
pushes the contents of the program counter on to the stack (but it
does not save the PSW) and reloads the PC with an address that
depends on the source of the interrupt being vectored to as shown
in Table 9.
The polling cycle is repeated with every machine cycle, and the
values polled are the values present at S5P2 of the previous
machine cycle. Note that if an interrupt flag is active but is not being
responded to because of one of the above conditions, and if the flag
is inactive when the blocking condition is removed, then the blocked
interrupt will not be serviced. Thus, the fact that the interrupt flag
was once active but not serviced is not remembered. Every polling
cycle is new.
3. The instruction in progress is RETI or any access to the interrupt
priority or interrupt enable registers. (No interrupt will be serviced
after RETI or after a read or write to IP0, IP1, IE0, or IE1 until at
least one other instruction has been subsequently executed.)
The ADC interrupt is generated by the ADCI flag in the ADC control
register (ADCON). This flag is set when an ADC conversion result is
ready to be read. ADCI is not cleared by hardware and must be
reset by software to avoid recurring interrupts.
The SIO1 (I2C) interrupt is generated by the SI flag in the SIO1
control register (S1CON). This flag is set when S1STA is loaded
with a valid status code.
2. The current machine cycle is not the final cycle in the execution
of the instruction in progress. (No interrupt request will be
serviced until the instruction in progress is completed.)
Interrupt Handling: The interrupt sources are sampled at S5P2 of
every machine cycle. The samples are polled during the following
machine cycle. If one of the flags was in a set condition at S5P2 of
the previous machine cycle, the polling cycle will find it and the
interrupt system will generate an LCALL to the appropriate service
routine, provided this hardware-generated LCALL is not blocked by
any of the following conditions:
1. An interrupt of higher or equal priority level is already in
progress.
The above Priority Within Level structure is only used when there
are simultaneous requests of the same priority level.
high priority level request is serviced. If requests of the same priority
are received simultaneously, an internal polling sequence
determines which request is serviced. Thus, within each priority
level, there is a second priority structure determined by the polling
sequence. This second priority structure is shown in Table 8.
8XC552/562 overview
The eight Timer T2 interrupts are generated by flags CTI0-CT13,
CMI0-CMI2, and by the logical OR of flags T2OV and T2BO. Flags
CTI0 to CT13 are set by input signals CT0I to CT3i. Flags CMI0 to
CMI2 are set when a match occurs between Timer T2 and the
compare registers CM0, CM1, and CM2. When an 8-bit or 16-bit
overflow occurs, flags T2BO and T2OV are set, respectively. These
nine flags are not cleared by hardware and must be reset by
software to avoid recurring interrupts.
Interrupts
The 8XC552 has fifteen interrupt sources, each of which can be
assigned one of two priority levels, as shown in Figure 27. The five
interrupt sources common to the 80C51 are the external interrupts
(INT0 and INT1), the timer 0 and timer 1 interrupts (IT0 and IT1),
and the serial I/O interrupt (RI or TI). In the 8XC552, the standard
serial interrupt is called SIO0. Since the subsystems which create
these interrupts are identical on both parts, their functionality is
likewise identical. The only differences are the locations of the
enable and priority register configurations and the priority structure.
This is detailed below along with the specifics of the interrupts
unique to the 8XC552.
80C51 Family Derivatives
Philips Semiconductors
Timer T2
Overflow
Timer 2
Capture 3
R
T
Timer 2
Compare 2
Timer 2
Capture 2
Timer 1
Overflow
Timer 2
Compare 1
Timer 2
Capture 1
External
Interrupt
Request 1
Timer 2
Compare 0
Timer 2
Capture 0
Timer 0
Overflow
ADC
I2C
Serial Port
External
Interrupt
Request 0
UART
Serial
Port
1996 Aug 06
CT3I
CT2I
CT1I
INT1
CT0I
INT0
Interrupt
sources
Source enable
Interrupt priority
registers
43
Figure 27. The Interrupt System
Global enable
Interrupt enable registers
80C51 Family Derivatives
Philips Semiconductors
o2
o1
n2
n1
m2
m1
l2
l1
k2
k1
j2
j1
i2
i1
h2
h1
g2
g1
f2
f1
e2
e1
o2
n2
m2
l2
k2
j2
i2
h2
g2
f2
e2
d2
c2
b2
a2
o1
n1
m1
l1
k1
j1
h1
i1
d2
g1
f1
e1
d1
c1
b1
a1
d1
c2
c1
b2
b1
a2
a1
Source
Identification
Source
Identification
Polling hardware
Vector
Low priority interrupt
request
Vector
High priority interrupt
request
8XC552/562 overview
ITALIAN TECHNOLOGY
grifo®
Pagina B-17
Pagina B-18
7
6
5
4
3
2
5
SYMBOL
ET2
ECM2
ECM1
ECM0
ECT3
ECT2
ECT1
ECT0
ECM0
4
1
ET0
ECT3
3
ECT2
2
ECT1
1
Enable Timer T2 overflow interrupt(s)
Enable T2 Comparator 2 interrupt
Enable T2 Comparator 1 interrupt
Enable T2 Comparator 0 interrupt
Enable T2 Capture register 3 interrupt
Enable T2 Capture register 2 interrupt
Enable T2 Capture register 1 interrupt
Enable T2 Capture register 0 interrupt
FUNCTION
ECM1
IEN1.7
IEN1.6
IEN1.5
IEN1.4
IEN1.3
IEN1.2
IEN1.1
IEN1.0
ECM2
6
BIT
(MSB)
ET2
7
EAD
ES1
ES0
ET1
EX1
ET0
EX0
IEN0.6
IEN0.5
IEN0.4
IEN0.3
IEN0.2
IEN0.1
IEN0.0
EX1
0
(LSB)
EX0
SU00762
SU00755
(LSB)
ECT0
0
Global enable/disable control
0 = No interrupt is enabled
1 = Any individually enabled interrupt will be accepted
Eanble ADC interrupt
Enable SIO1 (I2C) interrupt
Enable SIO0 (UART) interrupt
Enable Timer 1 interrupt
Enable External interrupt 1
Enable Timer 0 interrupt
Enable External interrupt 0
ET1
Figure 28. Interrupt Enable Register (IEN0)
EA
IEN0.7
ES0
FUNCTION
ES1
SYMBOL
EAD
BIT
(MSB)
EA
1996 Aug 06
IP0 (B8H)
6
5
GPC® 554
3
2
PX1
Unused
ADC interrupt priority level
SIO1 (I2C) interrupt priority level
SIO0 (UART) interrupt priority level
Timer 1 interrupt priority level
External interrupt 1 priority level
Timer 0 interrupt priority level
External interrupt 0 priority level
PT1
1
PT0
44
Figure 30. Interrupt Priority Register (IP0)
–
PAD
PS1
PS0
PT1
PX1
PT0
PX0
IP0.7
IP0.6
IP0.5
IP0.4
IP0.3
IP0.2
IP0.1
IP0.0
4
PS0
FUNCTION
PS1
SYMBOL
PAD
BIT
(MSB)
–
7
SU00763
(LSB)
PX0
0
In all cases, if the enable bit is 0, then the interrupt is disabled, and if the enable bit is 1, then the interrupt is enabled.
Figure 29. Interrupt Enable Register (IEN1)
IEN1 (E8H)
IEN0 (A8H)
1996 Aug 06
(MSB)
IP1.7
IP1.6
IP1.5
IP1.4
IP1.3
IP1.2
IP1.1
IP1.0
BIT
6
SOURCE
SOURCE
4
3
PCT3
2
PCT2
1
PCT1
T2 overflow interrupt(s) priority level
T2 comparator 2 interrupt priority level
T2 comparator 1 interrupt priority level
T2 comparator 0 interrupt priority level
T2 capture register 3 interrupt priority level
T2 capture register 2 interrupt priority level
T2 capture register 1 interrupt priority level
T2 capture register 0 interrupt priority level
FUNCTION
PCM0
45
X0
T0
X1
T1
S0
S1
CT0
CT1
CT2
CT3
ADC
CM0
CM1
CM2
T2
NAME
X0
S1
ADC
T0
CT0
CM0
X1
CT1
CM1
T1
CT2
CM2
S0
CT3
T2
NAME
Figure 31. Interrupt Priority Register (IP1)
PT2
PCM2
PCM1
PCM0
PCT3
PCT2
PCT1
PCT0
5
PCM1
SYMBOL
PCM2
Interrupt Vector Addresses
External interrupt 0
Timer 0 overflow
External interrupt 1
Timer 1 overflow
SIO0 (UART)
SIO1 (I2C)
T2 capture 0
T2 capture 1
T2 capture 2
T2 capture 3
ADC completion
T2 compare 0
T2 compare 1
T2 compare 2
T2 overflow
Table 9.
7
PT2
Interrupt Priority Structure
External interrupt 0
SIO1 (I2C)
ADC completion
Timer 0 overflow
T2 capture 0
T2 compare 0
External interrupt 1
T2 capture 1
T2 compare 1
Timer 1 overflow
T2 capture 2
T2 compare 2
SIO0 (UART)
T2 capture 3
Timer T2 overflow
Table 8.
IP1 (F8H)
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
0003H
000BH
0013H
001BH
0023H
002BH
0033H
003BH
0043H
004BH
0053H
005BH
0063H
006BH
0073H
VECTOR ADDRESS
↓
(lowest)
(highest)
↑
PRIORITY WITHIN LEVEL
SU00764
(LSB)
PCT0
0
8XC552/562 overview
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
GPC® 554
Rel. 3.20
1996 Aug 06
Pulse Width Modulated Outputs
The 8XC552 contains two pulse width modulated output channels
(see Figure 33). These channels generate pulses of programmable
length and interval. The repetition frequency is defined by an 8-bit
prescaler PWMP, which supplies the clock for the counter. The
prescaler and counter are common to both PWM channels. The 8-bit
counter counts modulo 255, i.e., from 0 to 254 inclusive. The value
of the 8-bit counter is compared to the contents of two registers:
PWM0 and PWM1. Provided the contents of either of these registers
is greater than the counter value, the corresponding PWM0 or
PWM1 output is set LOW. If the contents of these registers are
equal to, or less than the counter value, the output will be HIGH. The
pulse-width-ratio is therefore defined by the contents of the registers
Port 5 is not bidirectional and may not be configured as an output
port. All six ports are multifunctional, and their alternate functions
are listed in Table 10. A more detailed description of these features
can be found in the relevant parts of this section.
Port 5 Operation
Port 5 may be used to input up to 8 analog signals to the ADC.
Unused ADC inputs may be used to input digital inputs. These
inputs have an inherent hysteresis to prevent the input logic from
drawing excessive current from the power lines when driven by
analog signals. Channel to channel crosstalk (Ct) should be taken
into consideration when both analog and digital signals are
simultaneously input to Port 5 (see, D.C. characteristics in data
sheet).
Port 1 Operation
Port 1 operates the same as it does in the 8051 with the exception
of port lines P1.6 and P1.7, which may be selected as the SCL and
SDA lines of serial port SIO1 (I2C). Because the I2C bus may be
active while the device is disconnected from VDD, these pins are
provided with open drain drivers. Therefore pins P1.6 and P1.7 do
not have internal pull-ups.
Figure 32 shows the bit latch and I/O buffer functional diagrams of
the unique 8XC552 ports. A bit latch corresponds to one bit in a
port’s SFR and is represented as a D type flip-flop. A “write to latch”
signal from the CPU latches a bit from the internal bus and a “read
latch” signal from the CPU places the Q output of the flip-flop on the
internal bus. A “read pin” signal from the CPU places the actual port
pin level on the internal bus. Some instructions that read a port read
the actual port pin levels, and other instructions read the latch (SFR)
contents.
I/O Port Structure
The 8XC552 has six 8-bit ports. Each port consists of a latch
(special function registers P0 to P5), an input buffer, and an output
driver (port 0 to 4 only). Ports 0-3 are the same as in the 80C51,
with the exception of the additional functions of port 1. The parallel
I/O function of port 4 is equal to that of ports 1, 2, and 3. Port 5 may
be used as an input port only.
46
2
(1
f OSC
PWMP)
255
6
5
4
3
2
Prescaler division factor = PWMP + 1.
MSB
7
1
LSB
0
7
MSB
6
5
4
3
1
(PWMn)
255 (PWMn)
2
0
LSB
Analog-to-Digital Converter
The analog input circuitry consists of an 8-input analog multiplexer
and a 10-bit, straight binary, successive approximation ADC. The
analog reference voltage and analog power supplies are connected
via separate input pins. The conversion takes 50 machine cycles,
i.e., 37.5µs at an oscillator frequency of 16MHz, 25µs at an oscillator
frequency of 24MHz. Input voltage swing is from 0V to +5V.
Because the internal DAC employs a ratiometric potentiometer,
there are no discontinuities in the converter characteristic. Figure 34
shows a functional diagram of the analog input circuitry.
PWM0/1.0-7} Low/high ratio of PWMn
PWM0 (FCH)
PWM1 (FDH)
Reading PWMP gives the current reload value. The actual count of
the prescaler cannot be read.
PWMP.0-7
PWMP (FEH)
Prescaler frequency control register PWMP
When a compare register (PWM0 or PWM1) is loaded with a new
value, the associated output is updated immediately. It does not
have to wait until the end of the current counter period. Both PWMn
output pins are driven by push-pull drivers. These pins are not used
for any other purpose.
This gives a repetition frequency range of 123Hz to 31.4kHz (fOSC =
16MHz). At fosc = 24MHz, the frequency range is 184Hz to 47.1Hz.
By loading the PWM registers with either 00H or FFH, the PWM
channels will output a constant HIGH or LOW level, respectively.
Since the 8-bit counter counts modulo 255, it can never actually
reach the value of the PWM registers when they are loaded with
FFH.
f PWM
Buffered PWM outputs may be used to drive DC motors. The
rotation speed of the motor would be proportional to the contents of
PWMn. The PWM outputs may also be configured as a dual DAC. In
this application, the PWM outputs must be integrated using
conventional operational amplifier circuitry. If the resulting output
voltages have to be accurate, external buffers with their own analog
supply should be used to buffer the PWM outputs before they are
integrated. The repetition frequency fPWM, at the PWMn outputs is
give by:
PWM0 and PWM1. The pulse-width-ratio is in the range of 0 to 1
and may be programmed in increments of 1/255.
CL
D
Q
A.
Alternate Input
Function
P1.X
Latch
Q
1996 Aug 06
Read
Pin
Write to
Latch
Int . Bus
Read
Latch
CL
D
Q
C.
P4.X
Latch
Q
Pull-up not present on P1.6 and P1.7.
*Two period active pull-up as in the 80C51.
NOTE:
Read
Pin
Write to
Latch
Int . Bus
Read
Latch
*
)
VDD
VDD
Read
Pin
Write to
Latch
Int . Bus
Read
Latch
Int . Bus
47
CL
D
Read Pin
Figure 32. Port Bit Latches and I/O Buffers
P4.X
Pin
Internal
Pull-Up
Clear from
Alternate Function
*
)
P1.X
Pin
Internal
Pull-Up
Set from
Alternate Function
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
Q
To ADC
B.
Alternate Input
Function
P1.X
Latch
Q
D.
Alternate
Output
Function
P5.X
Pin
*
)
VDD
P3.X
Pin
Internal
Pull-Up
8XC552/562 overview
ITALIAN TECHNOLOGY
grifo®
Pagina B-19
Pagina B-20
1996 Aug 06
Table 10.
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
CT0I
CT1I
CT2I
CT3I
T2
RT2
SCL
SDA
A8
A9
A10
A11
A12
A13
A14
A15
RxD
TxD
INT0
INT1
T0
T1
WR
RD
CMSR0
CMSR1
CMSR2
CMSR3
CMSR4
CMSR5
CMT0
CMT1
ADC0
ADC1
ADC2
ADC3
ADC4
ADC5
ADC6
ADC7
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
PORT PIN
Input/Output Ports
GPC® 554
48
Eight analogue ADC inputs
Timer T2: compare and toggle outputs on a match
with timer T2
Timer T2: compare and set/reset outputs on a
match with timer T2
Serial input port (UART)
Serial output port (UART)
External interrupt 0
External interrupt 1
Timer 0 external input
Timer 1 external input
External data memory write strobe
External data memory read strobe
High order address byte used during
external memory accesses
T2 event input
T2 timer reset signal. Rising edge triggered
Serial port clock line I2C bus
Serial port data line I2C bus
Capture timiner input signals for timer T2
Multiplexed lower order address/data bus used
during external memory accesses
ALTERNATE FUNCTION
1996 Aug 06
ADCON
ADC7
ADC6
ADC5
ADC4
ADC3
ADC2
ADC1
ADC0
0
1
2
Analog Input
Multiplexer
1/2
fOSC
PWMP
Prescaler
PWM1
8-Bit Comparator
8-Bit Counter
8-Bit Comparator
PWM0
3
5
6
7
Internal Bus
0
1
2
3
4
5
49
Figure 34. Functional Diagram of Analog Input Circuitry
4
10-Bit A/D Converter
6
7
Output
Buffer
Output
Buffer
ADCH
–
+
Analog ground
Analog supply
Analog ref.
STADC
PWM1
PWM0
8XC552/562 overview
Figure 33. Functional Diagram of Pulse Width Modulated Outputs
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Internal Bus
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
GPC® 554
Rel. 3.20
1996 Aug 06
VDAC
0
Vin
1
1/2
–
Full Scale
+
Vin
VDAC
1
2
7/8
3
15/16
Start
4
Successive
Approximation
Register
t/tau
29/32
5
59/64
50
6
Stop
Successive
Approximation
Control Logic
Control bits ADCON.0, ADCON.1, and ADCON.2 are used to control
an analog multiplexer which selects one of eight analog channels
(see Figure 37). An ADC conversion in progress is unaffected by an
external or software ADC start. The result of a completed
conversion remains unaffected provided ADCI = logic 1; a new ADC
conversion already in progress is aborted when the idle or
power-down mode is entered. The result of a completed conversion
(ADCI = logic 1) remains unaffected when entering the idle mode.
The end of the 10-bit conversion is flagged by control bit ADCON.4
(ADCI). The upper 8 bits of the result are held in special function
register ADCH, and the two remaining bits are held in ADCON.7
(ADC.1) and ADCON.6 (ADC.0). The user may ignore the two least
significant bits in ADCON and use the ADC as an 8-bit converter (8
upper bits in ADCH). In any event, the total actual conversion time is
50 machine cycles for the 8XC552 or 24 machine cycles for the
8XC562. ADCI will be set and the ADCS status flag will be reset 50
(or 24) cycles after the command flip-flop (ADCS) is set.
The successive approximation control logic now sets the next most
significant bit (11 0000 0000B or 01 0000 0000B, depending on the
previous result), and VDAC is compared to Vin again. If the input
voltage is greater than VDAC, then the bit being tested remains set;
otherwise the bit being tested is cleared. This process is repeated
until all ten bits have been tested, at which stage the result of the
conversion is held in the successive approximation register. Figure
36 shows a conversion flow chart. The bit pointer identifies the bit
under test. The conversion takes four machine cycles per bit.
The successive approximation control logic first sets the most
significant bit and clears all other bits in the successive
approximation register (10 0000 0000B). The output of the DAC
(50% full scale) is compared to the input voltage Vin. If the input
voltage is greater than VDAC, then the bit remains set; otherwise it
is cleared.
voltage slew rate must be less than 10V/ms in order to prevent an
undefined result.
Figure 35. Successive Approximation ADC
3/4
DAC
During the next eight machine cycles, the voltage at the previously
selected pin of port 5 is sampled, and this input voltage should be
stable in order to obtain a useful sample. In any event, the input
The next two machine cycles are used to initiate the converter. At
the end of the first cycle, the ADCS status flag is set and a value of
“1” will be returned if the ADCS flag is read while the conversion is in
progress. Sampling of the analog input commences at the end of the
second cycle.
The low-to-high transition of STADC is recognized at the end of a
machine cycle, and the conversion commences at the beginning of
the next cycle. When a conversion is initiated by software, the
conversion starts at the beginning of the machine cycle which
follows the instruction that sets ADCS. ADCS is actually
implemented with two flip-flops: a command flip-flop which is
affected by set operations, and a status flag which is accessed
during read operations.
The software only start mode is selected when control bit ADCON.5
(ADEX) = 0. A conversion is then started by setting control bit
ADCON.3 (ADCS). The hardware or software start mode is selected
when ADCON.5 = 1, and a conversion may be started by setting
ADCON.3 as above or by applying a rising edge to external pin
STADC. When a conversion is started by applying a rising edge, a
low level must be applied to STADC for at least one machine cycle
followed by a high level for at least one machine cycle.
Analog-to-Digital Conversion: Figure 35 shows the elements of a
successive approximation (SA) ADC. The ADC contains a DAC
which converts the contents of a successive approximation register
to a voltage (VDAC) which is compared to the analog input voltage
(Vin). The output of the comparator is fed to the successive
approximation control logic which controls the successive
approximation register. A conversion is initiated by setting ADCS in
the ADCON register. ADCS can be set by software only or by either
hardware or software.
1996 Aug 06
ADCON.2
ADCON.1
ADCON.0
ADCON.3
AADR2
AADR1
AADR0
ADCS
ADCI
ADEX
ADCON.4
ADC.1
ADC.0
ADCON.5
Symbol
ADCON.7
ADCON.6
Bit
Function
(MSB)
ADC.1
7
1
0
End of Conversion
END
ADC.0
6
ADEX
5
ADCI
4
ADCS
3
AADR2
2
Figure 36. A/D Conversion Flowchart
EOC
END
Test Bit
Pointer
[Bit Pointer] + 1
Test
Complete
Conversion Time
[Bit]n = 1
[Bit Pointer] = MSB
1
AADR1
[Bit]n = 0
Start of Conversion
Reset SAR
SOC
0
(LSB)
AADR0
8XC552/562 overview
0
1
0
1
0
0
1
1
ADC Status
ADC not busy; a conversion can be started
ADC busy; start of a new conversion is blocked
Conversion completed; start of a new conversion requires ADCI=0
Conversion completed; start of a new conversion requires ADCI=0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
AADR1
0
1
0
1
0
1
0
1
AADR0
ADC0 (P5.0)
ADC1 (P5.1)
ADC2 (P5.2)
ADC3 (P5.3)
ADC4 (P5.4)
ADC5 (P5.5)
ADC6 (P5.6)
ADC7 (P5.7)
Selected Analog Channel
51
Figure 37. ADC Control Register (ADCON)
AADR2
Analogue input select: this binary coded address selects one of the
eight analogue port bits of P5 to be input to the converter. It can only
be changed when ADCI and ADCS are both LOW.
If ADCI is cleared by software while ADCS is set at the same time, a new A/D conversion with the same channel number may be started.
But it is recommended to reset ADCI before ADCS is set.
ADCS
ADCI
ADC start and status: setting this bit starts an A/D conversion. It may be set by software or by the external signal STADC. The ADC logic
ensures that this signal is HIGH while the ADC is busy. On completion of the conversion, ADCS is reset immediately after the interrupt
flag has been set. ADCS cannot be reset by software. A new conversion may not be started while either ADCS or ADCI is high.
ADC interrupt flag: this flag is set when an A/D conversion result is ready to be read. An interrupt is invoked if it is enabled. The flag may
be cleared by the interrupt service routine. While this flag is set, the ADC cannot start a new conversion. ADCI cannot be set by software.
Bit 1 of ADC result
Bit 0 of ADC result
Enable external start of conversion by STADC
0 = Conversion can be started by software only (by setting ADCS)
1 = Conversion can be started by software or externally (by a rising edge on STADC)
ADCON (C5H)
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
ITALIAN TECHNOLOGY
grifo®
Pagina B-21
Pagina B-22
1024
1996 Aug 06
Total resistance
= 1023R + 2 x R/
= 1024R
Result
R/2
R
R
R
R
R
R/2
V IN
AV ref
AVref–
AVref+
AV ref
AV ref
GPC® 554
Value 0000 0000 00
Value 1111 1111 11
Vin
Vref
0
1
2
3
Decoder
1021
1022
1023
(halted)
(halted and reset)
(reset; outputs are high)
(conversion aborted if in
progress).
is output for voltages Vref– to (Vref– + 1/2 LSB)
is output for voltages (Vref+ – 3/2 LSB) to Vref+
LSB
Successive
Approximation
Register
MSB
52
Successive
Approximation
Control Logic
Ready
Start
When the 8XC552 enters the power-down mode, the oscillator is
stopped. The power-down mode is entered by setting the PD bit in
the PCON register. The PD bit can only be set if the EW input is tied
HIGH.
Timer 0
Timer 1
Timer T3
SIO0 SIO1
External interrupts
In idle mode, the following functions remain active:
CPU
Timer T2
PWM0, PWM1
ADC
Power Reduction Modes
The 8XC552 has two reduced power modes of operation: the idle
mode and the power-down mode. These modes are entered by
setting bits in the PCON special function register. When the 8XC552
enters the idle mode, the following functions are disabled:
Figure 38. ADC Realization
+
Comparator
–
The result can always be calculated from the following formula:
For input voltages between Vref– and (Vref–) + 1/2 LSB, the 10-bit
result of an A/D conversion will be 00 0000 0000B = 000H. For input
voltages between (Vref+) – 3/2 LSB and Vref+, the result of a
conversion will be 11 1111 1111B = 3FFH. AVref+ and AVref– may
be between AVDD + 0.2V and AVSS – 0.2V. AVref+ should be
positive with respect to AVref–, and the input voltage (Vin) should be
between AVref+ and AVref–. If the analog input voltage range is from
2V to 4V, then 10-bit resolution can be obtained over this range if
AVref+ = 4V and AVref– = 2V.
ADC Resolution and Analog Supply: Figure 38 shows how the
ADC is realized. The ADC has its own supply pins (AVDD and AVSS)
and two pins (Vref+ and Vref–) connected to each end of the DAC’s
resistance-ladder. The ladder has 1023 equally spaced taps,
separated by a resistance of “R”. The first tap is located 0.5 x R
above Vref–, and the last tap is located 1.5 x R below Vref+. This
gives a total ladder resistance of 1024 x R. This structure ensures
that the DAC is monotonic and results in a symmetrical quantization
error as shown in Figure 40.
INPUT
VANALOG
IN
IN+1
CS
SmN
RmN
RmN+1
Multiplexer
SmN+1
CC
To Comparator
8XC552/562 overview
1996 Aug 06
Vin – Vdigital
Code
out
q
2q
4q
q = LSB = 5 mV
3q
Symmetrical Quantization Error
– q/2
+ q/2
Quantization Error
0
Vin
Vin
5q
53
Figure 40. Effective Conversion Characteristic
000
001
010
011
100
101
Figure 39. A/D Input: Equivalent Circuit
NOTE:
Because the analog to digital converter has a sampled-data comparator, the input looks capacitive to a source. When a conversion
is initiated, switch Sm closes for 8tcy (8µs @ 12MHz crystal frequency) during which time capacitance Cs + Cc is charged. It should
be noted that the sampling causes the analog input to present a varying load to an analog source.
Rm = 0.5 - 3 kohms
CS + CC = 15pF maximum
RS = Recommended < 9.6 kohms for 1 LSB @ 12MHz
RS
+
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
grifo®
ITALIAN TECHNOLOGY
Rel. 3.20
GPC® 554
Rel. 3.20
Internal
External
Power-down
Power-down
1996 Aug 06
Internal
External
Idle (1)
MEMORY
0
0
1
1
ALE
0
0
1
1
PSEN
Floating
Port data
Floating
Port data
PORT 0
54
Port data
Port data
Port data
Port data
PORT 1
Port data
Port data
Address
Port data
PORT 2
Port data
Port data
Port data
Port data
PORT 3
Port data
Port data
Port data
Port data
PORT 4
HIGH
HIGH
HIGH
HIGH
PWM0/PWM1
The SFR address space is 128 to 255. All registers except the
program counter and the four 8-bit register banks reside in this
address space. Memory mapping the SFRs allows them to be
accessed as easily as internal RAM, and as such, they can be
operated on by most instructions. The 56 SFRs are listed in Figure
43, and their mapping in the SFR address space is shown in Figures
44 and 45. RAM bit addresses are the same as in the 80C51 and
are summarized in Figure 46. The special function bit addresses are
summarized in Figure 47.
The internal data RAM address space is 0 to 255. Four 8-bit register
banks occupy locations 0 to 31. 128 bit locations of the internal data
RAM are accessible through direct addressing. These bits reside in
16 bytes of internal data RAM at locations 20H to 2FH. The stack
can be located anywhere in the internal data RAM address space by
loading the 8-bit stack pointer. The stack depth may be 256 bytes
maximum.
External Pin Status During Idle and Power-Down Modes
Idle (1)
MODE
Table 11.
In the 8XC552, the lower 8k of the 64k program memory address
space is filled by internal ROM. By tying the EA pin high, the
Memory Organization
The memory organization of the 8XC552 is the same as in the
80C51, with the exception that the 8XC552 has 8k ROM, 256 bytes
RAM, and additional SFRs. Addressing modes are the same in the
8XC552 and the 80C51. Details of the differences are given in the
following paragraphs.
Power Control Register PCON: The idle and power-down modes
are entered by writing to bits in PCON. PCON is not bit addressable.
See Figure 41.
The status of the external pins during power-down is shown in Table
11. If the power-down mode is entered while the 8XC552 is
executing out of external program memory, the port data that is held
in the P2 special function register is restored to port 2. If a port latch
contains a “1”, the port pin is held HIGH during the power-down
mode by the strong pull-up transistor.
Certain locations in program memory are reserved for specific
programs. Locations 0000H to 0002H are reserved for the
initialization program. Following reset, the CPU always begins
execution at locations 0000H. Locations 0003H to 0075H are
reserved for the fifteen interrupt request service routines.
In the power-down mode, VDD and AVDD can be reduced to
minimize power consumption. VDD and AVDD must not be reduced
before the power-down mode is entered and must be restored to the
normal operating voltage before the power-down mode is
terminated. The reset that terminates the power-down mode also
freezes the oscillator. The reset should not be activated before VDD
and AVDD are restored to their normal operating level, and must be
held active long enough to allow the oscillator to restart and stabilize
(normally less than 10ms).
Functionally, the internal data memory is the most flexible of the
address spaces. The internal data memory space is subdivided into
a 256-byte internal data RAM address space and a 128-byte special
function register (SFR) address space, as shown in Figure 42.
processor fetches instructions from internal program ROM. Bus
expansion for accessing program memory from 8k upwards is
automatic since external instruction fetches occur automatically
when the program counter exceeds 8191. If the EA pin is tied low, all
program memory fetches are from external memory. The execution
speed of the 8XC552 is the same regardless of whether fetches are
from external or internal program memory. If all storage is on-chip,
then byte location 8191 should be left vacant to prevent an
undesired pre-fetch from external program memory address 8192.
Power-Down Mode: The instruction that sets PCON.1 will be the
last instruction executed in the normal operating mode before the
power-down mode is entered. In the power-down mode, the on-chip
oscillator is stopped. This freezes all functions; only the on-chip
RAM and special function registers are held. The port pins output
the contents of their respective special function registers. A
hardware reset is the only way to terminate the power-down mode.
Reset re-defines all the special function registers, but does not
change the on-chip RAM.
7
6
PD
IDL
PCON.0
5
4
3
GF1
FUNCTION
WLE
2
GF0
PD
1
Idle mode bit. Setting this bit activates the idle
mode.
Power-down bit. Setting this bit activates the
power-down mode. It can only be set if input
EW is high.
General-purpose flag bit
Watchdog load enable. This flag must be set
by software prior to loading timer T3 (watchdog timer). It is cleared when timer T3 is
loaded.
General-purpose flag bit
(Reserved)
(Reserved)
PARALLEL I/O PORTS:
Port 5,* Port 4,*Port 3,*
Port 2,* Port 1,* Port 0*
POINTERS:
Stack Pointer,
Data Pointer (High and Low)
ARITHMETIC REGISTERS:
ACCumulator,* B register,*
Program Status Word*
1996 Aug 06
Registers
Figure 43. Special Function Registers
55
R0
R7
R0
0
R0
R7
R0
R7
7
R7
0
120
Bank 1
Bank 1
Bank 2
Direct
Addressing
Only
Direct or
Indirect
Addressing
Overlapped
Space
Special
Function
Registers
Bank 3
128
Internal
Data RAM
127
8
16
24
32
48
127
Upper
128 Bytes
Internal RAM
255
8XC552/562 overview
*NOTE: Bit and byte addressable
ADC
ADC cONtrol, ADC High byte
CAPTURE AND COMPARE LOGIC:
CapTure CONtrol,
TiMer T2 Interrupt flag Register,
CapTure Low 0, CapTure High 0,
CapTure Low 1, CapTure High 1,
CapTure Low 2, CapTure High 2,
CapTure Low 3, CapTure High 3,
CoMpare Low 0, CoMpare High 0,
CoMpare Low 1, CoMpare High 1,
CoMpare Low 2, CoMpare High 2
SeT Enable, ReseT Enable
Figure 42. Internal Data Memory Address Space
SERIAL I/O PORTS:
Serial 0 CONtrol,* Serial 0 data BUFfer,
Serial 1 CONtrol,* Serial 1 DATa,
Serial 1 STAtus, Serial 1 ADDress, PCON
TIMERS:
Timer MODe, Timer CONtrol,*
Timer Low 0, Timer High 0,
Timer Low 1, Timer High 1,
TiMer T2 CONtrol, TiMer Low 2,
Timer High 2, Timer T3
255
Addressable
Bits in RAM
(128 Bits)
Indirect
Addressing
Only
PULSE WIDTH MODULATED O/Ps:
Pulse Width Modulation Prescaler
Pulse Width Modulation Register 0,
Pulse Width Modulation Register 1
Figure 41. Power Control Register (PCON)
INTERRUPT SYSTEM:
Interrupt Priority 0,*
Interrupt Priority 1,*
Interrupt Enable 0,*
Interrupt Enable 1*
0
IDL
Double Baud rate bit. When set to logic 1 the
baud rate is doubled when the serial port SIO0
is being used in modes 1, 2, or 3.
–
If logic 1s are written to PD and IDL at the
same time, PD takes precedence. The reset
value of PCON is (0XX00000).
GF0
GF1
PCON.3
PCON.1
–
WLE
PCON.5
PCON.4
PCON.2
–
PCON.6
SYMBOL
–
SMOD
SMOD
PCON.7
BIT
PCON
(87H)
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
ITALIAN TECHNOLOGY
grifo®
Pagina B-23
127
127
255
255
Special
Function
Registers
Pagina B-24
1996 Aug 06
7
R7
R0
R7
R0
R7
R0
R7
R0
32
24
16
8
0
0
Direct Addressing
Bank 1
Bank 1
Bank 2
Bank 3
120
135
248
F8H
128
57
1996 Aug 06
00H
07H
08H
0FH
10H
03
02
01
09
11
19
21
29
31
39
41
49
51
59
61
69
71
79
00
08
10
18
20
28
30
38
40
48
50
58
60
68
70
78
Figure 46. RAM Bit Addresses
Bank 0
Bank 1
Bank 2
Bank 3
04
0A
12
1A
22
2A
32
3A
42
4A
52
5A
62
6A
72
7A
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
0
7
8
15
16
23
05
0B
13
1B
23
2B
33
3B
43
4B
53
5B
63
6B
73
7B
17H
06
0C
14
1C
24
2C
34
3C
44
4C
54
5C
64
6C
74
7C
127
24
07
0D
15
1D
25
2D
35
3D
45
4D
55
5D
65
6D
75
7D
(LSB)
18H
1FH
20H
16
21H
0E
17
0F
22H
26
1E
27
1F
23H
2E
36
3E
46
4E
56
5E
66
6E
76
7E
24H
88H
80H
2F
25H
90H
3F
47
4F
57
5F
98H
27H
28H
29H
2AH
2BH
67
6F
77
7F
37
Direct
Addressing
(Bits)
2CH
2DH
2EH
2FH
(MSB)
26H
A0H
A8H
B0H
B8H
C0H
C8H
D0H
D8H
E0H
E8H
F0H
Figure 45. Bit and Byte Addressing Overview of Internal Data Memory
Stack-Pointer Register-Indirect and
Register-Indirect Addressing
Register
Addressing
Direct
Addressing
(Bits)
48
128
136
144
152
160
168
176
184
192
200
208
216
224
232
248
240
7FH
80C51 Family Derivatives
80C51 Family Derivatives
8XC552/562 overview
Philips Semiconductors
Philips Semiconductors
58
F6
FE
F5
FD
F4
FC
F3
FB
F2
FA
F9
F1
F8
F0
E6
EE
D6
AC
DE
D5
F0
DD
STA
E5
ED
D4
RS1
DC
STO
E4
EC
87
8F
TF1
97
9F
SM0
A7
AF
EA
B7
BF
–
C7
CF
86
8E
TR1
96
9E
SM1
A6
AE
EAD
B6
BE
PAD
C6
CE
A4
AC
ES0
B4
BC
PS0
C4
CC
85
8D
TF0
95
9D
84
8C
TR0
94
9C
SM2 REN
A5
AD
ES1
B5
BD
PS1
C5
CD
T2OV CMI2 CMI1 CMI0
D7
CY
DF
CR2 ENS1
E7
EF
83
8B
IE1
93
9B
TB8
A3
AB
ET1
B3
BB
PT1
C3
CB
CTI3
D3
RS0
DB
SI
E3
EB
82
8A
IT1
92
9A
RB8
A2
AA
EX1
B2
BA
PX1
C2
CA
CTI2
D2
OV
DA
AA
E2
EA
81
89
IE0
91
99
TI
A1
A9
ET0
B1
B9
PT0
C1
C9
CTI1
D1
F1
D9
CR1
E1
E9
80
88
IT0
90
98
RI
A0
A8
EX0
B0
B8
PX0
C0
C8
CTI0
D0
P
D8
CR0
E0
E8
ET2 ECM2 ECM1 ECM0 ECT3 ECT2 ECT1 ECT0
F7
FF
PT2 PCM2 PCM1 PCM0 PCT3 PCT2 PCT1 PCT0
Bit Address
P0
TCON
P1
S0CON
P2
IEN0
P3
IP0
P4
TM2IR
PSW
S1CON
ACC
IEN1
B
IP1
Register
Mnemonic
Figure 47. Special Function Register Bit Address
80H
88H
90H
98H
A0H
A8H
B0H
B8H
C0H
C8H
D0H
D8H
E0H
E8H
F0H
F8H
Direct Byte Address (Hex)
8XC552/562 overview
grifo®
ITALIAN TECHNOLOGY
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
APPENDICE C: MONTAGGIO MECCANICO DELLA SCHEDA
La GPC® 554 può essere interfacciata al mondo esterno in due modalità; il primo é il cosidetto
montaggio in piggy-back, che consiste nel montare la scheda al di sopra del proprio hardware,
sfruttando il prolungamento dei pin dei connettori CN1 e CN5. Questi infatti si estendono nel lato
saldature per circa 7 mm, permettendo quindi un comodo inserimento su connettori femmina, del tipo
strip a passo 2.54 mm.
La seconda modalità di connessione, invece, consiste nell’inserire la scheda, eventualmente abbinata
ad una scheda periferica (ad esempio un modulo tipo ZBR o ZBT), su una guida Weidmuller tipo
RS/100 (codice 414487), per il montaggio su barre Ω del tipo DIN 46277-1 e 3; questo contenitore
plastico può essere ordinato alla grifo® come opzione BLOCK 100.4T.
In questo caso il collegamento elettrico tra la GPC® 554 e la scheda periferica avviene tramite un
flat-cable a 26 vie, che deve essere il più corto possibile, ed eventualmente può essere ordinato alla
grifo®, con il codice FLT 26+26 I/O.
Nelle figure seguenti sono riportate le quote meccaniche, relative alla posizioni dei connettori ed
alcune immagini riguardanti queste due modalità di connessione.
FIGURA C1: QUOTE PER MONTAGGIO IN PIGGY-BACK
GPC® 554
Rel. 3.20
Pagina C-1
grifo®
ITALIAN TECHNOLOGY
FIGURA C2: MONTAGGIO IN PIGGY-BACK
FIGURA C3: MONTAGGIO SU GUIDA WEIDMULLER
Pagina C-2
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
APPENDICE D: SCHEMI ELETTRICI
+5V
1
4
+5v
b
5
25
1N4148
+
Gnd
6
/RES
3
RES
1
74HCT00
10K
22µF
Gnd
D
Po wer s upp ly
100nF
100nF
100nF
26
+5V
C
10K
1
+Vcc
B
100nF
A
1
10K
/IRQ
+5V
1
P7
P6
P5
P4
P3
P2
P1
P0
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
/G
/P=Q
74HCT00
6
5
4
3
2
1
18
16
14
12
9
7
5
3
a
2
2
/RST
1
S tand ard I/ O
20 pin connecto r
2
+5V
+5V
10K
17
15
13
11
8
6
4
2
/BIRQ
19
Dip Switch
10K
BA7
BA6
BA5
BA4
BA3
BA2
16
15
14
13
12
11
10K
2
A7
A6
A5
A4
A3
A2
22µF +
+5V
74LS688
19
18
/CS
100nF
+5V
22µF +
+5V
100nF
/INT
/NMI
/CS1
/CS2
23
24
21
22
N.C.
N.C.
N.C.
N.C.
+5V
10K
9
8
7
6
5
4
3
2
BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0
8
7
6
5
4
3
2
1
1
19
/CS
4
+5V
A1
A0
/WR
/RD
/RST
BA1
BA0
/BWR
/BRD
/BRST
10
9
17
18
20
19
20
26 Vcc
3
D7
D6
D5
D4
D3
D2
D1
D0
17
AB ACO® I/O B US
26 pin connecto r
B8
B7
B6
B5
B4
B3
B2
B1
9
8
7
6
5
4
3
2
19
1
A8
A7
A6
A5
A4
A3
A2
A1
/G2
/G1
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
10K
D7
D6
D5
D4
D3
D2
D1
D0
11
12
13
14
15
16
17
18
/CS
6
/WR
36
/RD
5
RESET
/CS
11
12
13
14
15
16
17
18
10K
A1
A0
/WR
/RD
/RST
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
82c55
/WR
/RD
+5V
74LS541
10K
35
+5V
74LS245
A8
A7
A6
A5
A4
A3
A2
A1
DIR
/G
RES
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
5
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
37
38
39
40
1
2
3
4
7
8
5
6
3
4
1
2
10
11
12
13
17
16
15
14
10
9
12
11
14
13
16
15
+5V
GN D
N.C.
N.C.
PA. 7
PA. 6
PA. 5
PA. 4
PA. 3
PA. 2
PA. 1
PA. 0
PC. 7
PC. 6
PC. 5
PC. 4
PC. 3
PC. 2
PC. 1
PC. 0
3
4
8
A1
9
A0
27
28
29
30
31
32
33
34
S tand ard I/ O
20 pin connecto r
D7
D6
D5
D4
D3
D2
D1
D0
7 Gnd
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
25
24
23
22
21
20
19
18
7
8
5
6
3
4
1
2
PB .7
PB .6
PB .5
PB .4
PB .3
PB .2
PB .1
PB .0
18
+5V
17
GN D
5
+5V
40 pin Dip
9
8
22µF +
74HCT00
100nF
10
c
+5V
12
6
13
d
11 74HCT00
6
grifo®
Title: PPI example
A
B
Date: 16/11/1998
Rel. 1.1
Page :
1
1
C
of
D
FIGURA D1: SCHEMA ELETTRICO DI ESPANSIONE PPI
GPC® 554
Rel. 3.20
Pagina D-1
grifo®
A
B
ITALIAN TECHNOLOGY
C
D
1
1
CN1
CN4
+5V
RR2
D0
D1
D2
D3
D4
D5
D6
D7
100K
1
2
3
4
5
6
7
8
D0
D1
D2
D3
D4
D5
D6
D7
2
2
+5V
3
A0
A1
A2
A3
A4
A5
A6
A7
RR4
9
10
11
12
13
14
15
16
100K
A0
A1
A2
A3
A4
A5
A6
A7
1
2
3
4
5
6
+5V
74HCT688
J2
Dip Switch
RR1
17
15
13
11
8
6
4
2
P7
P6
P5
P4
P3
P2
P1
P0
100K
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
DSW1
1
2
3
4
5
6
7
8
18
16
14
12
9
7
5
3
3
IC1
1
/G
19
/P=Q
/CS
RR4
100K
+5V
4
/IRQ
/INT
/NMI
/CS1
/CS2
/WR
/RD
/RST
RR3
19
23
24
21
22
17
18
20
100K
4
/IRQ
/INT
/NMI
/CS1
/CS2
/WR
/RD
/RST
5
5
CN2
+5V
J1
26
1
R1
1K
100nF
C3
+Vd c
Gnd
Po wer s upp ly
R2
1K
C4
+5v
C1
C2
+
LD2
LD1
Rosso
Rosso
25
100nF
22µF
100nF
2
Gnd
6
6
AB ACO® I/O B US
26 pin connecto r
grifo®
Title: SPA-03
Date: 16/11/98
Page :
A
B
C
1
Rel. 1.1
of
1
D
FIGURA D2: SCHEMA ELETTRICO SPA 03
Pagina D-2
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
A
B
S tand ard I/ O 20 p in co nnector
+5V
CN4
1
7
8
5
6
3
4
1
2
PA. 7
PA. 6
PA. 5
PA. 4
PA. 3
PA. 2
PA. 1
PA. 0
C
DISPLAY 4x20
DISPLAY 2x20
CN1
CN2
RR1
D7
D6
D5
D4
D3
D2
D1
D0
14
13
12
11
10
9
8
7
14
13
12
11
10
9
8
7
1
D3
D2
D1
D0
+5V
RR2
13
16
15
14
PC. 2
PC. 1
PC. 0
PC. 3
E
R/W
RS
E
R/W
RS
6
5
4
+5V
2
6
5
4
Contrast
3
3
RV1
J1
18
17
+5V
GN D
C2
2
1
2
1
16
16
2
+5V
C1
R1
15
R3
15
R2
K eybo ard co nnector
+5V
3
PC. 4
PC. 5
PC. 6
PC. 7
11
12
9
10
N.C.
N.C.
19
20
RR2
R7
4
R6
D
C
B
A
#
9
6
3
0
8
5
2
*
7
4
1
1
4
7
*
3
R5
3
R4
2
DC Po wer s upp ly
1
Ma trix
K eybo ard
4x4
8
2
3
6
9
#
A
B
C
D
5
3
6
7
8
12 3 4
7
6
5
CN3
12345678
A
+5V
2
5
8
0
2
4
6
8
1
3
5
9
D0
D1
D2.
D3
10
12
11
13
14
B
C5
SN7407
7
CN5
4
4
3
PD1
+5V
~
A
-
+
~
C3
C4
+
4
SWITCHING
C9
C6
L1
C8
+
REGOLATOR
C7
+
TZ1
5
O PTION AL
B
5
AC Power sup ply
Title:
Date: 22-07-1998
Rel.
1
1
Page :
A
B
grifo®
QTP 16P
of
1.2
C
FIGURA D3: SCHEMA ELETTRICO QTP 16P
GPC® 554
Rel. 3.20
Pagina D-3
grifo®
A
B
I/ O 20 p ins
+5V
CN5
RR1
1
C
LCD 20x2
VF D FU TABA
CN2
PA. 7
PA. 6
PA. 5
PA. 4
PA. 3
PA. 2
PA. 1
PA. 0
ITALIAN TECHNOLOGY
7
8
5
6
3
4
1
2
D7
D6
D5
D4
D3
D2
D1
D0
LCD 20x4
CN4
CN6
1
3
5
7
9
11
13
15
14
13
12
11
10
9
8
7
14
13
12
11
10
9
8
7
SD
Col.1
Col.2
Col.3
Col.4
Col.5
Col.6
1
+5V
PC. 2
PC. 1
PC. 0
PC. 3
PC. 4
2
RR2
13
16
15
14
11
18
17
/BUSY
20
TEST
16
E
R/W
RS
E
R/W
RS
6
5
4
6
5
4
CLK
Contrast
3
3
+5V
J1
+5V
GN D
/SEL
/WR
18
17
+
8
2
1
14
10
12
16
16
15
3
N.C.
N.C.
19
20
PC. 4
11
+
15
+VLED
C10
2
4
6
R7
R5
R6
3
CN3
+5V
PC. 5
PC. 6
PC. 7
2
C12
C13
C9
RV1
2
1
R8
12
9
10
10
7
R9
Enter 6
L
H
D
9
R10
RR2
Esc
0
4
K
G
C
5
9
3
J
F
B
1
8
2
I
E
A
Q TP 24 keyb oa rd
4x6
8
R11
7
J2
6
5
4
3
2
1
8
6
10
4
12
2
Metal Panel
+5V
4
4
14
C3
IC3
7407
7
9
5
11
3
13
1
Col.6 Col.5 Col.4 Col3 Col.2 Col.1
LD1
LD2
LD3
5
LD5
LD6
LD7
LD8
A
B
C
D
LD9
LD10
LD11
LD12
E
F
G
H
LD13
LD14
LD15
LD16
I
5
LD4
QTP 24
J
K
A
L
1
2
3
4
5
6
7
8
ESC
9
0
ENTER
grifo®
Title: QTP 24P
B
Date: 22-07-1998
Rel. 1.2
Page :
2
of
1
C
FIGURA D4: SCHEMA ELETTRICO QTP 24P 1/2
Pagina D-4
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
A
B
C
CN1
+5V
IC1
1
+
IC2
C5
+
C11
+ C7 +
3
C8
SWITCHING
PD1
1
REGOLATOR
M5480
8÷24Vac
17
18
19
20
21
22
23
24
4
LD16
LD15
25
2
2
+5V
14
R1
LD13
27
13
C4
LD14
26
C2
LD12
28
LD11
2
+5V
1
3
3
D4
LD10
D3
3
+5V
LD9
4
R4
R3
LD8
5
CLK
15
LD7
6
LD6
7
SD
16
LD5
8
4
4
LD4
9
LD3
10
LD2
11
LD1
12
5
5
Title:
Date: 22-07-1998
Rel.
2
2
Page :
A
B
grifo®
QTP 24P
of
1.2
C
FIGURA D5: SCHEMA ELETTRICO QTP 24P 2/2
GPC® 554
Rel. 3.20
Pagina D-5
grifo®
A
ITALIAN TECHNOLOGY
B
C
D
1
1
CN2
20 pin Low-Profile Male
2
P1.0
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
P1.5
P1.7
P1.4
P1.6
P1.1
P1.2
P1.3
+5V
GND
CN1
25 pin D-Type Female
15
2
1
4
3
6
5
8
7
12
10
11
9
16
20
13
14
19
18
17
3
RR1
4,7 KΩ 9+1
+5V
C4 2,2 nF C6 2,2 nF C8 2,2 nF C10 2,2 nF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/STROBE
D1
D2
D3
D4
D5
D6
D7
D8
/ACK
BUSY
PE
SELECT
/AUTOLF
/FAULT
/RESET
MODE
2
3
22 µF 6,3V
C2
100 nF
+
C5
C3
C7
2,2 nF
2,2 nF
C11
C9
C1
2,2 nF
2,2 nF
2,2 nF
4
4
5
5
Title:
grifo®
IAC 01
Date: 13-11-98
Page :
A
B
1
Rel. 1.1
of
1
C
D
FIGURA D6: SCHEMA ELETTRICO IAC 01
Pagina D-6
GPC® 554
Rel. 3.20
grifo®
ITALIAN TECHNOLOGY
A
B
C
D
1
+
25
Gnd
+5V
10K
/IRQ
/INT
/NMI
/CS1
/CS2
+5V
/BIRQ
19
23
24
21
22
1
+5V
9
8
7
6
5
4
3
2
74HCT32
3
a
1
19
+5V
/CS
/RES
1
11
D0
D1
D2
D3
D4
D5
D6
D7
3
4
7
8
13
14
17
18
18
17
16
15
14
13
12
11
D0
D1
D2
D3
D4
D5
D6
D7
2
5
6
9
12
15
16
19
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
1
19
/G1
/G2
A1
A2
A3
A4
A5
A6
A7
A8
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
6
10K
74HCT32
/WR
/RD
/RST
3
a
A2
A1
A0
RES
2
1
9
10
9
c
19
20
+5V
10
9
12
11
14
13
16
15
GND
N.C.
N.C.
8
74HCT00
/CS2
2
/WR
10
18
22µF
+
/RES
D0
D1
D2
D3
D4
D5
D6
D7
3
4
7
8
13
14
17
18
/CLR
CLK
1Q
1D
2Q
2D
3Q
3D
4Q
4D
5Q
5D
6Q
6D
7Q
7D
8Q
8D
2
5
6
9
12
15
16
19
c
8
18
17
16
15
14
13
12
11
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
1
19
/G1
/G2
A1
A2
A3
A4
A5
A6
A7
A8
17
7
8
5
6
3
4
1
2
/CS2
/RD
+5V
2
3
4
5
6
7
8
9
+5V
GND
PA.7
PA.6
PA.5
PA.4
PA.3
PA.2
PA.1
PA.0
19
20
N.C.
N.C.
10
9
12
11
14
13
16
15
PC.7
PC.6
PC.5
PC.4
PC.3
PC.2
PC.1
PC.0
10K
A
B
13
grifo®
Title: I/O example
12
11 74HCT00
d
11
74HCT32
C
Date: 28/04/1999
Rel. 1.2
Page :
1
1
of
D
FIGURA D7: SCHEMA ELETTRICO DI I/O SU ABACO® I/O BUS
GPC® 554
Rel. 3.20
4
+5V
+5V
12
d
3
PC.7
PC.6
PC.5
PC.4
PC.3
PC.2
PC.1
PC.0
74HCT32
13
2
PA.7
PA.6
PA.5
PA.4
PA.3
PA.2
PA.1
PA.0
Standard I/O
20 pin connector
+5V
1
1
11
D0
D1
D2
D3
D4
D5
D6
D7
74HCT00
6
/CS1
/RD
74LS273
/RES
3
a
2
7
8
5
6
3
4
1
2
2
3
4
5
6
7
8
9
74LS541
22µF +
17
+5V
+5V
11
12
13
14
15
16
17
18
74HCT00
10K
10K
/CLR
CLK
1Q
1D
2Q
2D
3Q
3D
4Q
4D
5Q
5D
6Q
6D
7Q
7D
8Q
8D
1
/RST
+
10K
b
5
18
22µF
74LS541
D7
D6
D5
D4
D3
D2
D1
D0
4
5
1N4148
B8
B7
B6
B5
B4
B3
B2
B1
A8
A7
A6
A5
A4
A3
A2
A1
/G2
/G1
19
1
ABACO® I/O BUS
26 pin connector
/WR
74LS273
10K
74LS541
10K
9
8
7
6
5
4
3
2
/BWR
/BRD
/BRST
BA2
BA1
BA0
17
18
20
11
10
9
/CS1
2
+5V
11
12
13
14
15
16
17
18
1
Standard I/O
20 pin connector
+5V
1
+5V
19
/P=Q
A8
A7
A6
A5
A4
A3
A2
A1
DIR
/G
+5V
/WR
/RD
/RST
A2
A1
A0
1
2
3
4
5
18
16
14
12
9
7
5
3
74LS245
10K
BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0
/CS
4
/G
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
N.C.
N.C.
N.C.
N.C.
8
7
6
5
4
3
2
1
D7
D6
D5
D4
D3
D2
D1
D0
P7
P6
P5
P4
P3
P2
P1
P0
10K
17
15
13
11
8
6
4
2
2
/CS
/CS1
/CS2
/CS3
/CS4
/CS5
/CS6
/CS7
/CS8
Dip Switch
10K
BA7
BA6
BA5
BA4
BA3
16
15
14
13
12
A7
A6
A5
A4
A3
/RES
+5V
74LS688
10K
Y0
Y1
Y2
Y3
Y4
G1
Y5
/G2A Y6
/G2B Y7
6
4
5
10K
15
14
13
12
11
10
9
7
A
B
C
100nF
Gnd
1
2
3
A0
A1
A2
+5v
22µF
1
3
74LS138
100nF
100nF
100nF
26
+Vcc
100nF
100nF
+5V
+5V
Power supply
Pagina D-7
5
6
grifo®
+Vcc
26
+5V
D
Power supply
100nF
1
100nF
C
100nF
B
100nF
A
ITALIAN TECHNOLOGY
1
1
+5v
22µF
+
Gnd
25
Gnd
+5V
/IRQ
/INT
/NMI
/CS1
/CS2
3
19
/BIRQ
10K
17
15
13
11
8
6
4
2
1
23
24
21
22
/G
/P=Q
9
8
7
6
5
4
3
2
1
19
/CS
+5V
/CS
/BWR
/BRD
/BRST
17
18
20
9
8
7
6
5
4
3
2
19
1
5
+5V
+5V
A8
A7
A6
A5
A4
A3
A2
A1
DIR
/G
B8
B7
B6
B5
B4
B3
B2
B1
A8
A7
A6
A5
A4
A3
A2
A1
/G2
/G1
10K
11
12
13
14
15
16
17
18
D7
D6
D5
D4
D3
D2
D1
D0
4
+5V
74LS541
10K
ABACO® I/O BUS
26 pin connector
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
11
12
13
14
15
16
17
18
10K
/WR
/RD
/RST
5
4
5
6
/RES
22µF +
c
10
8
74HCT00
74HCT00
10K
10K
9
b
+5V
1
6
2
19
74LS245
10K
BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0
8
7
6
5
4
3
2
1
1N4148
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
3
4
/WR
/RD
/RST
P7
P6
P5
P4
P3
P2
P1
P0
1
2
3
4
5
6
7
8
N.C.
N.C.
N.C.
N.C.
+5V
D7
D6
D5
D4
D3
D2
D1
D0
Dip Switch
10K
18
16
14
12
9
7
5
3
10K
2
BA7
BA6
BA5
BA4
BA3
BA2
BA1
BA0
10K
A7
A6
A5
A4
A3
A2
A1
A0
16
15
14
13
12
11
10
9
+5V
74LS688
2
12
a
3
RES
d
13
11 74HCT00
6
74HCT00
/RST
2
1
grifo®
Title: BUS interface
Date: 16/11/98
Page :
A
B
1
C
Rel. 1.1
of
1
D
FIGURA D8: SCHEMA ELETTRICO INTERFACCIA BUS
Pagina D-8
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
APPENDICE E: INDICE ANALITICO
A
A/D CONVERTER 6, 8, 12, 18, 20, B-1
ABACO® I/O BUS 5, 11, 29, D-7
ALIMENTAZIONE 3, 9
B
BACK UP 9, 10
BIBLIOGRAFIA 39
C
CARATTERISTICHE
ELETTRICHE 9
FISICHE 8
GENERALI 8
CLOCK 3, 8
COMUNICAZIONE SERIALE
CONNETTORI 8, 10
CN1 8, 11
CN2 8, 10
CN3A 8, 14
CN3B 8, 16
CN5 8, 18
J7/J8 8
CONNETTORI 17
CORRENTE ASSORBITA 9
CPU 3, 8, 25, 26, 34, B-1
4, 14, 16, 25, A-2
D
DESCRIZIONE SOFTWARE 27
DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO
DIMENSIONI 8
33
E
EEPROM SERIALE 8, 29, 33
EPROM 4, 8, 29, A-1
F
FOTO 7
GPC® 554
Rel. 3.20
Pagina E-1
grifo®
ITALIAN TECHNOLOGY
I
I/O TTL 6, 12, 18, 19, 20, B-1
IMPEDENZA INGRESSI ANALOGICI 9
INDIRIZZAMENTI 29
INGRESSI ANALOGICI 9, 20
INPUT DI BORDO 25
INPUT UTENTE 29, 33
INSTALLAZIONE 10
INTERFACCIAMENTO DEGLI I/O CON IL CAMPO 20
INTERFACCIE PER I/O DIGITALI 19, D-1
INTERRUPTS 26, B-1
INTRODUZIONE 1
J
JUMPERS 21, 23, 33
2 VIE 22
3 VIE 24
L
LINEA SERIALE A 4, 14, 25, A-2, B-1
LINEA SERIALE B 4, 16, 25, A-2
LOGICA DI CONTROLLO 6
M
MAPPAGGI 29
MAPPAGGIO 0 30
MAPPAGGIO 1 31
MAPPAGGIO 3 32
MEMORIE 8, 17, 26, A-1
MONTAGGIO MECCANICO
C-1
P
PESO 8
PIANTE COMPONENTI
PWM 3, 12, B-1
7
R
RAM 3, 4, 8, 29, A-1
RANGE DI TEMPERATURA 9
RESET 25
RESET 19
RISOLUZIONE A/D 8
RS 232 4, 8, 14, 16, 20, 25, A-2
Pagina E-2
GPC® 554
Rel. 3.20
ITALIAN TECHNOLOGY
grifo®
S
SCHEDE ESTERNE 35
SCHEMA A BLOCCHI 5
SERIALE SOFTWARE 2, 16, 25, A-2
SOFTWARE 27
SPECIFICHE TECNICHE 8
T
TARATURE 20
TASTO DI RESET 19
TEMPO CONVERSIONE A/D 8
TRIMMER 17, 20
U
UMIDITA’ RELATIVA 9
V
VERSIONE
1
W
WATCH DOG 3, 8, 25, B-1
GPC® 554
Rel. 3.20
Pagina E-3
grifo®
Pagina E-4
ITALIAN TECHNOLOGY
GPC® 554
Rel. 3.20

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Download PDF

advertisement