Prolon M2000 SERIES Hardware Manual


Add to my manuals
21 Pages

advertisement

Prolon M2000 SERIES Hardware Manual | Manualzz

HARDWARE GUIDE

Rooftop Controller M2000 Series

Specifications and Operational Guide

www.proloncontrols.com | [email protected]

17 510, rue Charles, Suite 100, Mirabel, QC, J7J 1X9

REV. 6.1.8

PL-HRDW-RTU-M2000-C/F-EN

Table of Contents

General Information ............................................................................................................................ 4

PL-M2000 Rooftop Controller ....................................................................................................... 4

Description ..................................................................................................................................................................... 4

General Behaviour ........................................................................................................................................................ 4

Operating Sequence ...................................................................................................................... 5

General ............................................................................................................................................................................ 5

Occupied Mode ............................................................................................................................................................. 5

Unoccupied Mode ........................................................................................................................................................ 5

Components ........................................................................................................................................ 6

Component Identification .......................................................................................................................................... 6

LEDs and Switches ........................................................................................................................................................ 7

HAND/OFF/AUTO Switches ......................................................................................................................................... 8

Jumpers ........................................................................................................................................................................... 8

Input and Output Identification ............................................................................................................................... 9

Addressing Dipswitch Configuration for Network Communication ............................................................. 10

Inputs ................................................................................................................................................. 11

Temperature Sensors ................................................................................................................................................. 11

Room Sensors .............................................................................................................................................................. 12

Proof of Fan .................................................................................................................................................................. 12

Dry Contact for Clogged Filter or Schedule Override ....................................................................................... 13

Static Pressure and CO2 ............................................................................................................................................13

Outputs .............................................................................................................................................. 14

Output Specifications ................................................................................................................................................ 14

Typical Connection of Triac Outputs 1 to 5 .......................................................................................................... 15

Typical Connection of Analog Outputs 1 to 3 ..................................................................................................... 15

DMUX-4J Connection on Digital Output 2 for 3 or 4 Stage Cooling ............................................................. 16

PTA2 Connection on Digital Output 2 for Analog Cooling .............................................................................. 17

Power Source & Network ................................................................................................................... 18

Power Source ............................................................................................................................................................... 18

Network Communication ......................................................................................................................................... 18

Technical Specifications .................................................................................................................... 19

Compliance ........................................................................................................................................20

FCC User Information .................................................................................................................................................20

Industry Canada .........................................................................................................................................................20

Overall Dimensions ........................................................................................................................... 21

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 2

Table of Figures

Figure 1 - Component Identification ............................................................................................................................ 6

Figure 2 - LEDs Identification .......................................................................................................................................... 7

Figure 3 - Location of the EXTERNAL jumpers .......................................................................................................... 8

Figure 4 - Location of the INTERNAL jumpers ............................................................................................................ 8

Figure 5 - INT and NET jumpers ...................................................................................................................................... 8

Figure 6 - AI jumpers ......................................................................................................................................................... 8

Figure 7 - Input and Output Identification .................................................................................................................. 9

Figure 8 - RJ45 Pinout ....................................................................................................................................................... 9

Figure 9 - Addressing Dipswitch .................................................................................................................................. 10

Figure 10 - Connecting the Temperature Sensors ................................................................................................... 11

Figure 11 - Typical Wiring of the PL-RS Room Sensor to the Controller............................................................. 12

Figure 12 - Connecting the Proof of Fan Contact to the Controller.................................................................... 12

Figure 13 - Connecting the Dry Contact Input to the Controller ........................................................................ 13

Figure 14 - Connecting the CO2 and Pressure Sensors .......................................................................................... 13

Figure 15 - Connection of Digital Output 3 and 4 ................................................................................................... 15

Figure 16 - Connecting Analog Output 1 (External Power) .................................................................................. 15

Figure 17 - Connecting the DMUX-4J (Powered by M2000) ................................................................................. 16

Figure 18 - Connecting the PTA2 (Powered by M2000) ......................................................................................... 17

Figure 19 - Connecting the 24VAC Power Source .................................................................................................... 18

Figure 20 - Connecting to the Network ..................................................................................................................... 18

Figure 21 - M2000 Size Diagram................................................................................................................................... 21

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 3

General Information

PL-M2000 Rooftop Controller

Description

The ProLon PL-M2000 RTU Rooftop controller is a microprocessor-based controller designed to operate rooftops or other mechanical HVAC systems. It uses PI (Proportional-Integral) control loops and acts as a master when used on a network with ProLon zone controllers.

General Behaviour

Although fully configurable, the ProLon M2000 Rooftop controller uses pre-established control sequences or ’’profiles’’ to operate specific HVAC equipment with dedicated output functions. These can be fully optimized to obtain the best results for each type of system. Numerous parameters enable the modification or fine tuning of the fan, the cooling outputs, the action of the heating outputs (On-or-Off / pulsed / modulating), the bypass or VFD and outside air dampers, the CO2 levels, the proportional bands, integration times, differentials, operational ranges, setpoints and a whole range of limits and safeguards.

The various programming options also allow the user to modify the schedule, unoccupied mode settings, morning warm-up and supply air pre-heating sequences as well as the network demand control strategy best suited for the building space it is controlling. All these parameters can be accessed by using the

ProLon Focus software.

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 4

Operating Sequence

General

The ProLon M2000 RTU Rooftop controller receives readings from five different temperature sensors: outside air, return air, supply air, mixed air and zone air. In addition to the temperature sensors, it also has inputs for the static pressure, CO2 levels and proof of fan. It operates on a configurable schedule using an internal real time clock. Also, as a Master device, it receives data from the zone controllers sent over the network bus. The controller then analyzes all the data and demands sent by the zones and commands the appropriate outputs to respond accordingly, within parameters set by the temperature sensors and other safety limits. The Master sends back information on its network such as supply air temperature, occupancy status and other relevant data for the zone controllers to use.

Occupied Mode

The controller operates the fan. When there is a cooling demand from the zones, the Rooftop controller will activate the cooling outputs as long as all temperature limits, delays and other related parameters are respected. Once the demand is satisfied, the outputs are deactivated within the prescribed minimum on/off time delays.

When there is a heating demand from the zones, the Rooftop controller will activate the heating outputs as long as all temperature limits, delays and other related parameters are respected. Once the demand is satisfied, the outputs are deactivated within the prescribed minimum on/off time delays.

When the CO2 levels become too high, the Rooftop controller will open the outside air damper as long as all temperature limits, delays and other related parameters are respected. Once the CO2 levels return to normal, the outside air damper returns to its previous position.

When there is no cooling or heating demand from the zones, only the fan is enabled. If the heating equipment permits, a supply air pre-heating sequence may be enabled. This allows cold mixed air to be heated to a more comfortable level for subsequent use by the zones for ventilation.

Unoccupied Mode

The fan can be configured to operate in intermittent mode. When there is a cooling or heating demand from any single zone, the Rooftop controller will activate the fan and the necessary cooling or heating outputs as long as all temperature limits, delays and other related parameter are respected. Once the demand is satisfied, the fan and any cooling/heating outputs are deactivated within the min. on/off time delays set.

During the unoccupied period, the Rooftop controller can be driven by the highest demand on the network and will operate the fan and relevant outputs accordingly.

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 5

Components

Component Identification

Figure 1 - Component Identification

Legend:

A - Addressing Dipswitch

B - AUTO/OFF/HAND Switches

C - RS485 INT port for interface communication (RJ45 plug and screw connectors are in parallel)

D - Analog outputs (3)

E - Digital outputs (5)

F - Analog inputs (9)

G - RS485 NET port for network communication

H - Terminal block for 24VAC (Class 2 transformer)

I - Jumpers for terminating and bias resistors for the INT port

J - Jumpers for terminating and bias resistors for the NET port

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 6

LEDs and Switches

The M2000 has various LEDs which are linked to different functions and outputs of the controller. Each

LED is individually identified to help the user make a quick visual diagnostic of the controller’s activity and status.

INTSND

INTREC

24VAC

5VDC

HBEAT

STAT

AO 3

AO 2

AO 1

DO 5

DO 4

DO 3

DO 2

DO 1

NETSND

NETREC

Figure 2 - LEDs Identification

LED Descriptions

24 VAC: The M2000 is receiving 24 VAC from the

power source.

5V DC: The microchip and other components

on the M2000 are being powered successfully

by a 5V DC source derived from the 24VAC

source.

HBEAT: When this LED is blinking, the microchip

is active and the controller’s program is running

(normal). When this LED is ON and steady, the

M2000 is inactive and the microchip is awaiting

programming (you must use ProLon’s Focus

software to reprogram the microchip).

STAT: Reserved.

NETSND: Indicates the transmission of data

onto the network communication bus.

NETREC: Indicates reception of data from the

network communication bus.

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN

INTSND: Indicates the transmission of data onto

the interface communication bus.

INTREC: Indicates the reception of data from

the interface communication bus.

AO3: The intensity of the LED represents the

voltage present on analog output 3.

AO2: The intensity of the LED represents the

voltage present on analog output 2.

AO1: The intensity of the LED represents the

voltage present on analog output 1.

DO5: Represents the activity of digital output 5.

DO4: Represents the activity of digital output 4.

DO3: Represents the activity of digital output 3.

DO2: Represents the activity of digital output 2.

DO1: Represents the activity of digital output 1.

7

HAND/OFF/AUTO Switches

Each output on the M2000 has a dedicated switch that lets the user manually override the activity of the output. “HAND” mode (switch at rightmost position) fully activates the output (24 VAC for digital outputs,

10VDC for analog outputs). “OFF” (switch at center) deactivates the output and “AUTO” (switch at left) returns control of the output to the program in the M2000’s microchip.

Jumpers

The M2000 has jumpers that are externally accessible (see Figure 3), as well as jumpers that are on the lower internal board (see Figure 4), that allow for configuration of various hardware elements.

INT

NET

Jumper AI

AI9

AI8

AI7

AI6

AI5

AI4

AI3

AI2

AI1

Figure 3 - Location of the EXTERNAL jumpers Figure 4 - Location of the INTERNAL jumpers

• INT: These are the jumpers for the bias and terminating resistors used for the interface communication

bus. See the ProLon network guide for information about bias and terminating resistors.

(See Figure 5)

• NET: These are the jumpers for the bias and terminating resistors used for the network communication

bus. See the ProLon network guide for information about bias and terminating resistors.

(See Figure 5)

• AI 1 - 9: These jumpers allow the user to select the signal mode of the associated analog input.

(See Figure 6)

Figure 5 - INT and NET jumpers

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN

0-5 volts 4-20 mA THERMISTOR

Figure 6 - AI jumpers

8

Input and Output Identification

All the inputs and outputs of the M2000 use pluggable screw type terminal blocks with elevator style clamping, which make connections easier and more secure.

For incoming communication from a remote computer or network controller, dual RJ45 type connectors are available in parallel with screw type terminal blocks. The RJ45 connectors allow the use of premade

CAT5 cables for simple plug-and-play RS485 communication. These RJ45 connectors follow the Modbus pinout specification for RS485 communication.

RTU

Incoming communication from remote computer or network controller

(Dual RJ45 and

Terminal Blocks)

RTUS

INT Port: ProLon Digital

Temperature Sensor

- OR -

Incoming RS485 Network

Communication (Modbus)

AO 3 Bypass / VSD

AO 2 Economizer

AO 1 Preheating / Mod. Heat

DO 5 Heat (W2) / Exhaust Fan / Baseboard

DO 4 Heat (W1) / Preheat Perm.

DO 3 Cooling (Y2)

DO 2 Cooling (Y1)

DO 1 Fan (G)

Bottom Row:

Common for all outputs

24 VA

Figure 7 - Input and Output Identification

Bottom Row:

Common for all inputs

Static pressure (0-5 / 1-5V) (1 / 1.5 / 2 / 2.5 in)

CO2 sensor (4-20 mA)

External dry contact for proof of fan

Zone temperature setpoint (0-10K potentiometer)

Zone temperature sensor (10K thermistor)

Mixed air temp (10K therm) / Dry contact for clogged filter /

Dry contact for schedule override /

Auxiliary Temp Input (10K thermistor)

Supply air temperature sensor (10K thermistor)

Return air temperature sensor (10K thermistor)

Outside air temperature sensor (10K thermistor)

RTU

Outgoing network communication

(to zones)

RTUS

NET Port: ProLon Digital

Temperature Sensor

- OR -

Incoming RS485 Network

Communication (Modbus)

Controller’s power source

Unit’s R&C terminal (24VAC)

Figure 8 - RJ45 Pinout

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 9

Addressing Dipswitch Configuration for Network Communication

For proper communication, a unique address must be configured on each controller by setting the first

7 switches on the addressing dipswitch bloc to the desired value. The dipswitch bloc is located on the front section of the PL-M2000 RTU.

These switches are numbered from 1 to 7 and represent a binary value from 1 to 64 (1, 2, 4, 8, 16, 32, and

64 respectively). The last switch (#8) is reserved. The value of each switch that is in the ON position is added together to form the numerical address of the controller.

The example in Figure 9 shows the switches 1, 2 and 4 in the ON position. Therefore, the corresponding values are 1, 2 and 8, giving an address sum of 11.

The ProLon network allows a maximum of 127 addresses; therefore 127 controllers.

Figure 9 - Addressing Dipswitch

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 10

Inputs

Temperature Sensors

The M2000 Rooftop controller has four analog inputs that monitor outside air, supply air, return air and mixed air temperatures (see Figure 10) and will integrate these readings into its control sequence. The sensors used are standard 10k type thermistors that share a single common connection.

Alternatively, the supply air temperature can be retrieved from a zone controller that has its own supply sensor and belongs to the M2000’s network.

The outside air temperature can be also be provided by an alternate source. If a network controller is present on the network, it can retrieve the outside temperature reading from one controller and distribute it to any other controllers on the network.

Mixed air sensor

Supply air sensor

Return air sensor

Outside air sensor

Figure 10 - Connecting the Temperature Sensors

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 11

Room Sensors

The M2000 RTU can receive the setpoint and temperature from a specific room when a PL-RS analog thermostat is connected to it. The M2000 will then automatically integrate this information into its control sequence. The setpoint may also simply be set by software. The PL-RS series room sensors are connected using a 3-conductor cable (see Figure 11).

PL-RS Room Sensor

Jumper from 1 to 3

Figure 11 - Typical Wiring of the PL-RS Room Sensor to the Controller

Proof of Fan

The M2000 RTU has an analog input dedicated to the proof of fan signal. Please refer to Figure 12 to see how to correctly connect it to analog input 7. To indicate proof of fan, the contact must be closed. If no proof of fan signal is available, you must short analog input 7, or else the controller will interpret the absence of signal as a fan malfunction and no heating or cooling action will be taken.

Proof of Fan

Figure 12 - Connecting the Proof of Fan Contact to the Controller

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 12

Dry Contact for Clogged Filter or Schedule Override

Analog input 4 on the M2000 RTU can also be configured as a dry contact input for either a clogged filter sensor or as a schedule override input. Please refer to Figure 13 to see proper connection.

Clogged filter sensor: To indicate that the filter is clogged, the contact must be closed.

Schedule Override: Closing the contact causes the M2000 to immediately return to occupied

mode from unoccupied mode. The M2000 remains in occupied mode as long as the contact is held

closed. If it was already in occupied mode, there is no change.

Clogged Filter

OR

Schedule

Override

Figure 13 - Connecting the Dry Contact Input to the Controller

Static Pressure and CO2

Analog inputs 8 and 9 on the M2000 rooftop controller are dedicated to the CO2 and static pressure sensors, respectively. By default, a 4-20 mA signal is expected for the CO2 input and a 0-5 VDC or 1-5 VDC signal is expected for the static pressure input. However, this can be modified using the internal jumpers

(see p.8). Please refer to Figure 14 for correct wiring.

(-)

(+)

Static Pressure Sensor

(-)

(+)

CO2 Sensor

Figure 14 - Connecting the CO2 and Pressure Sensors

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 13

Outputs

The M2000 Rooftop controller contains 8 customizable outputs; five triac ON/OFF outputs (24VAC) and three analog outputs (0-10VDC). Output configuration is performed via the ProLon Focus software.

An integrated resettable fuse protects each of the outputs of the M2000 against current surges and short circuits. This protection will cut the current to the output as soon as an overload condition is detected.

The fuse is a round, yellow-coloured PTC that will change to orange and heat up on an overload condition. Once power has been removed from the M2000, the fuse will cool down and automatically reset. Fix the faulty wiring and you will be able to activate the output once again.

Output Specifications

Output

DO 1

DO 2

DO 3

DO 4

DO 5

AO 1

AO 2

AO 3

Type

Triac source 24VAC,

Max Current: 300 mA

Triac source 24VAC,

Max Current: 300 mA

Triac source 24VAC,

Max Current: 300 mA

Triac source 24VAC,

Max Current: 300 mA

Triac source 24VAC,

Max Current: 300 mA

On-or-Off

On-or-Off

On-or-Off

On-or-Off

On-or-Off

Action Application

Fan

(G)

Cooling (1st Stage)

(Y1)

Cooling (2nd Stage)

(Y2)

Heating (W1) /

Preheat Permission

Heating (W2) /

Exhaust Fan (Power

Exhaust or Ventilation) /

Baseboard

Configurable Analog Output:

- 0 to 10 VDC

- 2 to 10 VDC

- 0 to 5 VDC

Max Current: 40 mA

Configurable Analog Output:

- 0 to 10 VDC

- 2 to 10 VDC

Max Current: 40 mA

Modulating Proportional /

Pulse /

On-or-Off

Preheating Only /

Preheat + Heating /

Heating

Modulating Proportional Economizer

Configurable Analog Output:

- 0 to 10 VDC

- 2 to 10 VDC

Max Current: 40 mA

Modulating Proportional

Bypass /

Variable Speed Drive

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 14

Typical Connection of Triac Outputs 1 to 5

On the M2000 Rooftop controller, all triac outputs produce a 24 VAC live voltage when activated. Note that all output voltages originate from a single voltage supply: the equipment’s transformer. Consequentially, only the live side of the output connections are usually needed; these are on the top row (see figure

15). The bottom row is the common (GND).

Equipment Terminal Board

(W1)

(Y2)

Figure 15 - Connection of Digital Output 3 and 4

Typical Connection of Analog Outputs 1 to 3

For all analog outputs, the common is found on the bottom row terminal blocks, and the active signals are found on the top row terminal blocks (see Figure 16). Analog outputs 1 can be configured to modulate a 0-10 VDC load, to pulse a 0 or 10 VDC triac relay or to control a 10 VDC On/Off relay. Analog outputs 2 and 3 can only modulate a DC load (0-10 VDC or 2-10 VDC).

External Load

SSR

(+)

(-)

Figure 16 - Connecting Analog Output 1 (External Power)

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 15

DMUX-4J Connection on Digital Output 2 for 3 or 4 Stage Cooling

When 3 or 4 stages of cooling are required, the M2000 Rooftop controller must be equipped with a

DMUX-4J. The DMUX-4J input is only connected to Digital Output 2 on the M2000 Rooftop controller.

The DMUX-4J must be configured to “Sequenced Relay Control” with a 1 second pulse resolution. The

“Triac Input Selection” jumper must be set to normal signal input and the “Power Type Selection” jumper must be set to AC power. The DMUX-4J outputs are then connected to the rooftop unit (see figure 17).

Each of the DMUX-4J outputs have connections for “Normally Closed” and “Normally Open” operation, so use the connection that is compatible with your rooftop unit. For more information on the DMUX-4J, consult the Specification Sheet and the Installation Guide for the DMUX-4J.

PWR+

PWR-

IN+

IN-

NO4

C4

NO3

C3

NO2

C2

NO1

C1

Y4

Y3

Y2

Y1

24 VA

24 VAC

G

R

C

OFF ON

J9

AC DC

TRIAC NORM

J10

O

A

AUTO

DMUX-4J Jumpers

Figure 17 - Connecting the DMUX-4J (Powered by M2000)

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 16

PTA2 Connection on Digital Output 2 for Analog Cooling

When proportional modulating cooling is required, the M2000 Rooftop controller must be equipped with a PTA2 v.1. interface to create an analog 0-10Vdc output signal. The PTA2 input is connected to Digital

Output 2 on the M2000 Rooftop controller. The input pulse range must be set to 0.1-10 sec. For more information on the PTA2, consult the Specification Sheet and the Installation Guide for the PTA2.

2

3

4

PTA2 V.1

1

6

RTU

Y

24 VA

24 VAC

G

R

C

Figure 18 - Connecting the PTA2 (Powered by M2000)

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 17

Power Source & Network

Power Source

The M2000 controller is powered by the HVAC equipment’s 24 VAC power supply (class 2) by connecting the common (’’C’’ wire) to the "COM" terminal block and the live (‘’R’’ wire) to the "24 VAC" terminal block

(see Figure 19). The common for all inputs and outputs is the same as the power source’s common. All output power sources also originate from the HVAC equipment’s power source.

24VAC

( R )

To HVAC Equipment Terminal (Class 2)

( C )

Figure 19 - Connecting the 24VAC Power Source

Network Communication

The ProLon M2000 Rooftop controller is designed to work with the ProLon zone controllers. When they are networked, the Rooftop and zone controllers all communicate in real-time. The network connections are made using the network terminal blocks located on the M2000 controller (see Figure 20).

( A )

( B )

Outgoing

Communication

Towards Zones

Figure 20 - Connecting to the Network

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 18

Technical Specifications

Supply: 24 VAC ±10%, 50/60 Hz, Class 2

Power: 5 VA (Consumption), 40 VA (Input)

Inputs: 9 configurable analog inputs (outside temperature / return / supply / mixed air / room, dry contact for clogged filter / schedule override / proof of fan / room setpoint / CO2 levels / static pressure / auxiliary temp). Input signals (thermistor / dry contact / 4-20mA / 0-5 VDC) individually configurable for each input

Digital Outputs: 5 triac outputs, 10-30 VAC source, 300 mA max (resettable fuse)

Analog Outputs: 3 x 0-10 VDC outputs, 40 mA max

Indication lights (LED): State of each output / Communication / Power / State of microprocessor

Microprocessor: PIC18F6722, 8 bits, 40 MHz, 128KB FLASH memory

Casing: Molded ABS, UL94-HB

Communication: Modbus RTU (RS485) up to 127 nodes

Baud Rates: 9600, 19200, 38400, 57600, 76800, 115200

Connection: Removable screw-type terminal blocks (max 16 AWG) and RJ45 modular jacks

Dimensions: 5.39" x 4.41" (137 mm x 112 mm)

Environment: 32-122 ºF (0-50 ºC) Non-Condensing

Certification: UL916 Energy Management Equipment, CAN/CSA-C22.2, RoHS, FCC part 15: 2012 class B

The performance specifications are nominal and conform to acceptable industry standards. ProLon Inc. will not be liable for damages resulting from misapplication or misuse of its products.

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 19

Compliance

cULus Listed; UL 916 Energy Management Equipment, File E364757, Vol.1

CAN/CSA-C22.2 No. 2015-12, Signal Equipment

FCC Compliant to CFR47, Part 15, Subpart B, Class B

Industry Canada (IC) Compliant to ICES-003, Issue 5: CAN ICES-3 (B)/NMB-3(B)

RoHS Directive (2002/95/EC)

FCC User Information

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Caution: Any changes or modifications not approved by ProLon can void the user’s authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver

Consult the dealer or an experienced radio/TV technician for help.

Industry Canada

This Class (B) digital apparatus meets all the requirements of the Canadian Interference-Causing

Equipment regulations.

Cet appareil numérique de la Classe (B) respecte toutes les exigences du Réglement sur le matériel brouilleur du Canada.

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 20

Overall Dimensions

INT

INTSND

INTREC

1 2 3 4 5 6 7 8

1 2 4 8 16 32 64 B

ON

OFF proloncontrols.com

1-877-9PROLON

24VAC

5VDC

HBEAT

STAT

AO 3

AO 2

AO 1

DO 5

DO 4

DO 3

DO 2

DO 1

AUTO/OFF/HAND

M2000

NETSND

NETREC

NET

5.39"

(137 mm)

4.41"

(112 mm)

2.29"

(58 mm)

Figure 21 - M2000 Size Diagram

REV. 6.1.8

PL-HRDW-RTU-M2000-C/F-EN

© Copyright 2018 ProLon. All rights reserved.

No part of this document may be photocopied or reproduced by any means, or translated to another language without prior written consent of ProLon. All specifications are nominal and may change as design improvements are introduced. ProLon shall not be liable for damages resulting from misapplication or misuse of its products. All trademarks are the property of their respective owners.

REV. 6.1.8 / PL-HRDW-RTU-M2000-C/F-EN 21

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals