PLANET MGSW-28240F User's manual

Add to My manuals
341 Pages

advertisement

PLANET MGSW-28240F User's manual | Manualzz

User’s Manual of MGSW-28240F Managed switch

1

User’s Manual of MGSW-28240F Managed switch

Trademarks

Copyright © PLANET Technology Corp. 2019.

Contents are subject to revision without prior notice.

PLANET is a registered trademark of PLANET Technology Corp. All other trademarks belong to their respective owners.

Disclaimer

PLANET Technology does not warrant that the hardware will work properly in all environments and applications, and makes no warranty and representation, either implied or expressed, with respect to the quality, performance, merchantability, or fitness for a particular purpose. PLANET has made every effort to ensure that this User's Manual is accurate; PLANET disclaims liability for any inaccuracies or omissions that may have occurred.

Information in this User's Manual is subject to change without notice and does not represent a commitment on the part of

PLANET. PLANET assumes no responsibility for any inaccuracies that may be contained in this User's Manual. PLANET makes no commitment to update or keep current the information in this User's Manual, and reserves the right to make improvements to this User's Manual and/or to the products described in this User's Manual, at any time without notice.

If you find information in this manual that is incorrect, misleading, or incomplete, we would appreciate your comments and suggestions.

FCC Warning

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC

Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the Instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CE Mark Warning

This is a Class A product. In a domestic environment, this product may cause radio interference, in which case the user may be required to take adequate measures.

Energy Saving Note of the Device

This power required device does not support Standby mode operation. For energy saving, please remove the power cable to disconnect the device from the power circuit. In view of saving the energy and reducing the unnecessary power consumption, it is strongly suggested to remove the power connection for the device if this device is not intended to be active.

WEEE Warning

To avoid the potential effects on the environment and human health as a result of the presence of hazardous substances in electrical and electronic equipment, end users of electrical and electronic equipment should understand the meaning of the crossed-out wheeled bin symbol. Do not dispose of

WEEE as unsorted municipal waste and have to collect such WEEE separately.

Revision

PLANET MGSW-28240F User's Manual

Model: MGSW-28240F

Revision: 3.0 (Feb., 2019)

Part No: EM- MGSW-28240F _v3.0

2

User’s Manual of MGSW-28240F Managed switch

TABLE OF CONTENTS

1. INTRODUCTION .................................................................................................................. 10

1.1 Packet Contents ......................................................................................................................................... 10

1.2 Product Description ................................................................................................................................... 11

Layer 3 Routing Support ................................................................................................................................. 11

Cybersecurity Network Solution to Minimize Security Risks ...................................................................... 12

Redundant Ring, Fast Recovery for Critical Network Applications ............................................................ 12

1588 Time Protocol and Front-access Interface Design .............................................................................. 12

AC and DC Redundant Power to Ensure Continuous Operation ................................................................ 13

Digital Input and Digital Output for External Alarm ...................................................................................... 13

IPv6/IPv4 Dual Stack and Layer 2 Capability ................................................................................................. 13

Powerful Security ............................................................................................................................................. 14

Excellent Traffic Control .................................................................................................................................. 14

Flexible and Extendable 10Gb Ethernet Solution ......................................................................................... 14

Intelligent SFP Diagnosis Mechanism............................................................................................................ 14

1.4 Product Features ........................................................................................................................................ 16

1.5 Product Specifications .............................................................................................................................. 19

2. INSTALLATION ................................................................................................................... 22

2.1 Hardware Description ................................................................................................................................ 22

2.1.1 Switch Front Panel .............................................................................................................................................. 22

2.1.2 LED Indications ................................................................................................................................................... 23

2.1.3 Switch Rear Panel ............................................................................................................................................... 25

2.2 Installing the Switch ................................................................................................................................... 26

2.2.1 Desktop Installation ............................................................................................................................................. 26

2.2.2 Rack Mounting ..................................................................................................................................................... 27

2.2.3 Installing the SFP/SFP+ Transceiver ................................................................................................................... 28

3. SWITCH MANAGEMENT .................................................................................................... 33

3.1 Requirements ............................................................................................................................................. 33

3

User’s Manual of MGSW-28240F Managed switch

3.2 Management Access Overview ................................................................................................................. 34

3.3 Administration Console ............................................................................................................................. 35

3.4 Web Management ....................................................................................................................................... 36

3.5 SNMP-based Network Management ......................................................................................................... 37

3.6 PLANET Smart Discovery Utility .............................................................................................................. 37

4. WEB CONFIGURATION ...................................................................................................... 39

4.1 Main Web Page ........................................................................................................................................... 41

4.2 System ......................................................................................................................................................... 43

4.2.1 Management ........................................................................................................................................................ 44

4.2.1.1 System Information .................................................................................................................................... 44

4.2.1.2 IP Configuration ......................................................................................................................................... 45

4.2.1.3 IP Status .................................................................................................................................................... 48

4.2.1.4 Users Configuration ................................................................................................................................... 49

4.2.1.5 Privilege Levels ......................................................................................................................................... 52

4.2.1.6 NTP Configuration ..................................................................................................................................... 54

4.2.1.6.1 System Time Correction Manually .......................................................................................................... 55

4.2.1.7 Time Configuration .................................................................................................................................... 56

4.2.1.8 UPnP ......................................................................................................................................................... 57

4.2.1.9 DHCP Relay .............................................................................................................................................. 59

4.2.1.10 DHCP Relay Statistics ............................................................................................................................. 60

4.2.1.11 CPU Load ................................................................................................................................................ 62

4.2.1.12 System Log ............................................................................................................................................. 63

4.2.1.13 Detailed Log ............................................................................................................................................ 64

4.2.1.14 Remote Syslog ........................................................................................................................................ 65

4.2.1.15 SMTP Configuration ................................................................................................................................ 66

4.2.2 Simple Network Management Protocol ............................................................................................................... 67

4.2.2.1 SNMP Overview ........................................................................................................................................ 67

4.2.2.2 SNMP System Configuration ..................................................................................................................... 68

4.2.2.3 SNMP Trap Configuration .......................................................................................................................... 70

4.2.2.4 SNMP System Information ........................................................................................................................ 72

4.2.2.5 SNMPv3 Communities .............................................................................................................................. 73

4.2.2.6 SNMPv3 Users .......................................................................................................................................... 74

4.2.2.7 SNMPv3 Groups........................................................................................................................................ 76

4.2.2.8 SNMPv3 Views .......................................................................................................................................... 77

4.2.2.9 SNMPv3 Access ........................................................................................................................................ 77

4.2.3 RMON.................................................................................................................................................................. 79

4

User’s Manual of MGSW-28240F Managed switch

4.2.3.1 RMON Alarm Configuration ....................................................................................................................... 79

4.2.3.2 RMON Alarm Status .................................................................................................................................. 81

4.2.3.3 RMON Event Configuration ....................................................................................................................... 82

4.2.3.4 RMON Event Status .................................................................................................................................. 83

4.2.3.5 RMON History Configuration ..................................................................................................................... 84

4.2.3.6 RMON History Status ................................................................................................................................ 85

4.2.3.7 RMON Statistics Configuration .................................................................................................................. 86

4.2.3.8 RMON Statistics Status ............................................................................................................................. 87

4.2.4 DHCP server ....................................................................................................................................................... 89

4.2.4.1 DHCP Server Mode Configuration ............................................................................................................. 89

4.2.4.2 DHCP Server excluded IP Configuration ................................................................................................... 90

4.2.4.3 DHCP Server pool Configuration ............................................................................................................... 91

4.2.4.4 DHCP Server pool Configuration ............................................................................................................... 92

4.3 Switching..................................................................................................................................................... 94

4.3.1 Port Management ................................................................................................................................................ 94

4.3.1.1 Port Configuration...................................................................................................................................... 94

4.3.1.2 Port Statistics Overview ............................................................................................................................. 96

4.3.1.3 Port Statistics Detailed .............................................................................................................................. 97

4.3.1.4 SFP Module Information ............................................................................................................................ 99

4.3.1.5 Port Mirror ............................................................................................................................................... 101

4.3.2 Link Aggregation ................................................................................................................................................ 104

4.3.2.1 Static Aggregation ................................................................................................................................... 106

4.3.2.2 LACP Configuration ................................................................................................................................. 107

4.3.2.3 LACP System Status ............................................................................................................................... 109

4.3.2.4 LACP Port Status .................................................................................................................................... 110

4.3.2.5 LACP Statistics ........................................................................................................................................ 111

4.3.3 VLAN ................................................................................................................................................................. 112

4.3.3.1 VLAN Overview ....................................................................................................................................... 112

4.3.3.2 IEEE 802.1Q VLAN ................................................................................................................................. 113

4.3.3.3 VLAN Port Configuration ......................................................................................................................... 116

4.3.3.4 VLAN Membership Status ....................................................................................................................... 122

4.3.3.5 VLAN Port Status .................................................................................................................................... 123

4.3.3.6 Port Isolation ........................................................................................................................................... 125

4.3.3.7 VLAN setting example: ............................................................................................................................ 127

4.3.3.7.1 Two Separate 802.1Q VLANs............................................................................................................... 127

4.3.3.7.2 VLAN Trunking between two 802.1Q aware switches .......................................................................... 129

4.3.3.7.3 Port Isolate ........................................................................................................................................... 132

4.3.3.8 MAC-based VLAN ................................................................................................................................... 133

4.3.3.9 IP Subnet-based VLAN ........................................................................................................................... 134

4.3.3.10 Protocol-based VLAN ............................................................................................................................ 135

5

User’s Manual of MGSW-28240F Managed switch

4.3.3.10 Protocol-based VLAN Membership ....................................................................................................... 137

4.3.4 Spanning Tree Protocol ..................................................................................................................................... 139

4.3.4.1 Theory ..................................................................................................................................................... 139

4.3.4.2 STP System Configuration ...................................................................................................................... 145

4.3.4.3 Bridge Status ........................................................................................................................................... 147

4.3.4.4 CIST Port Configuration .......................................................................................................................... 148

4.3.4.5 MSTI Priorities ......................................................................................................................................... 151

4.3.4.6 MSTI Configuration .................................................................................................................................. 152

4.3.4.7 MSTI Ports Configuration ........................................................................................................................ 153

4.3.4.8 Port Status ............................................................................................................................................... 155

4.3.4.9 Port Statistics .......................................................................................................................................... 156

4.3.5 Multicast ............................................................................................................................................................ 157

4.3.5.1 IGMP Snooping ....................................................................................................................................... 157

4.3.5.2 Profile Table ............................................................................................................................................. 161

4.3.5.3 Address Entry .......................................................................................................................................... 162

4.3.5.4 IGMP Snooping Configuration ................................................................................................................. 163

4.3.5.5 IGMP Snooping VLAN Configuration ....................................................................................................... 165

4.3.5.6 IGMP Snooping Port Group Filtering ....................................................................................................... 167

4.3.5.7 IGMP Snooping Status ............................................................................................................................ 168

4.3.5.8 IGMP Group Information.......................................................................................................................... 169

4.3.5.9 IGMPv3 Information ................................................................................................................................. 170

4.3.6 MLD Snooping ................................................................................................................................................... 171

4.3.6.1 MLD Snooping Configuration .................................................................................................................. 171

4.3.6.2 MLD Snooping VLAN Configuration ........................................................................................................ 172

4.3.6.3 MLD Snooping Port Group Filtering......................................................................................................... 174

4.3.6.4 MLD Snooping Status .............................................................................................................................. 175

4.3.6.5 MLD Group Information ........................................................................................................................... 176

4.3.6.6 MLDv2 Information .................................................................................................................................. 177

4.3.7 MVR (Multicast VLAN Registration) ................................................................................................................... 178

4.3.7.1 MVR Configuratio .................................................................................................................................... 179

4.3.7.2 MVR Status ............................................................................................................................................. 181

4.3.7.3 MVR Groups Information ......................................................................................................................... 182

4.3.7.4 MVR SFM Information ............................................................................................................................. 182

4.3.8 LLDP.................................................................................................................................................................. 184

4.3.8.1 Link Layer Discovery Protocol ................................................................................................................. 184

4.3.8.2 LLDP Configuration ................................................................................................................................. 184

4.3.8.3 LLDP Neighbors ...................................................................................................................................... 187

4.3.8.4 LLDP MED Configuration ........................................................................................................................ 189

4.3.8.5 LLDP-MED Neighbor ............................................................................................................................... 196

4.3.8.6 Port Statistics .......................................................................................................................................... 200

6

User’s Manual of MGSW-28240F Managed switch

4.3.9 MAC Address Table ........................................................................................................................................... 202

4.3.9.1 MAC Table Configuration ......................................................................................................................... 202

4.3.9.2 MAC Address Table Status ...................................................................................................................... 204

4.3.10 Loop Protection ............................................................................................................................................... 206

4.3.10.1 Configuration ......................................................................................................................................... 206

4.3.10.-2 Loop Protection Status ......................................................................................................................... 207

4.3.11 UDLD ............................................................................................................................................................... 208

4.3.11.1 UDLD Port Configuration ....................................................................................................................... 208

4.3.11.2 UDLD Status .......................................................................................................................................... 209

4.3.12 GVRP .............................................................................................................................................................. 210

4.3.12.1 GVRP Configuration .............................................................................................................................. 210

4.3.12.2 GVRP Port Configuration ...................................................................................................................... 212

4.4 Quality of Service ..................................................................................................................................... 213

4.4.1 General .............................................................................................................................................................. 213

4.4.1.1 QOS Port Classification ........................................................................................................................... 214

4.4.1.2 Queue Policing ........................................................................................................................................ 216

4.4.1.3 Port Tag Remarking ................................................................................................................................. 217

4.4.1.4 WERD ..................................................................................................................................................... 218

4.4.1.5 Statistics .................................................................................................................................................. 219

4.4.2 Bandwidth Control ............................................................................................................................................. 220

4.4.2.1 Port Policing ............................................................................................................................................ 220

4.4.2.2 Port Schedule .......................................................................................................................................... 221

4.4.2.3 Port Shaping ............................................................................................................................................ 222

4.4.3 Storm Control .................................................................................................................................................... 224

4.4.3.1 Storm Control Configuration .................................................................................................................... 224

4.4.4 Differentiated Service ........................................................................................................................................ 226

4.4.4.1 Port DSCP ............................................................................................................................................... 226

4.4.4.2 DSCP-based QoS ................................................................................................................................... 227

4.4.4.3 DSCP Translation .................................................................................................................................... 228

4.4.4.4 DSCP Classification ................................................................................................................................ 229

4.4.5 QCL ................................................................................................................................................................... 230

4.4.5.1 QoS Control List ...................................................................................................................................... 230

4.4.5.2 QoS Control Entry Configuration ............................................................................................................. 232

4.4.5.3 QCL Status .............................................................................................................................................. 234

4.4.5.4 Voice VLAN Configuration ....................................................................................................................... 235

4.4.5.6 Voice VLAN OUI Table ............................................................................................................................ 238

4.5 Security ..................................................................................................................................................... 239

4.5.1 Access Security ................................................................................................................................................. 239

4.5.1.1 Access Management ............................................................................................................................... 239

7

User’s Manual of MGSW-28240F Managed switch

4.5.1.2 Access Management Statistics ................................................................................................................ 240

4.5.1.3 SSH ......................................................................................................................................................... 240

4.5.1.4 HTTPs ..................................................................................................................................................... 241

4.5.2 AAA ................................................................................................................................................................... 244

4.5.2.1 Authentication Configuration .................................................................................................................... 248

4.5.2.2 RADIUS ................................................................................................................................................... 251

4.5.2.3 TACACS+ ................................................................................................................................................ 254

4.5.2.4 RADIUS Overview ................................................................................................................................... 255

4.5.2.5 RADIUS Details ....................................................................................................................................... 257

4.5.3 Port Authentication ............................................................................................................................................ 264

4.5.3.1 Network Access Server Configuration ..................................................................................................... 264

4.5.3.2 Network Access Overview ....................................................................................................................... 267

4.5.3.3 Network Access Statistics ........................................................................................................................ 269

4.5.4 Port Security ...................................................................................................................................................... 273

4.5.4.1 Port Limit Control ..................................................................................................................................... 273

4.5.4.2 Port Security Status ................................................................................................................................. 276

4.5.4.3 Port Security Detail .................................................................................................................................. 279

4.5.5 Access Control Lists .......................................................................................................................................... 280

4.5.5.1 Access Control List Status ....................................................................................................................... 280

4.5.5.2 Access Control List Configuration ............................................................................................................ 282

4.5.5.3 ACE Configuration ................................................................................................................................... 284

4.5.5.4 ACL Ports Configuration .......................................................................................................................... 295

4.5.5.5 ACL Rate Limiters .................................................................................................................................... 297

4.5.6 DHCP Snooping ................................................................................................................................................ 298

4.5.6.1 DHCP Snooping Configuration ................................................................................................................ 298

4.5.6.2 Snooping Table ........................................................................................................................................ 300

4.5.7 IP Source Guard ................................................................................................................................................ 301

4.5.7.1 IP Source Guard Configuration ................................................................................................................ 301

4.5.7.2 Static IP Source Guard Table .................................................................................................................. 302

4.5.7.3 Dynamic IP Source Guard Table ............................................................................................................. 303

4.5.8 ARP Inspection .................................................................................................................................................. 304

4.5.8.1 ARP Inspection ........................................................................................................................................ 304

4.5.8.2 ARP Inspection Static Table ..................................................................................................................... 305

4.5.8.3 Dynamic ARP Inspection Table ................................................................................................................ 306

4.6 Maintenance .............................................................................................................................................. 308

4.6.1 Web Firmware Upgrade ..................................................................................................................................... 308

4.6.2 Save Startup Config .......................................................................................................................................... 309

4.6.3 Configuration Download .................................................................................................................................... 309

4.6.4 Configuration Upload ......................................................................................................................................... 310

4.6.5 Configure Activate ............................................................................................................................................. 311

8

User’s Manual of MGSW-28240F Managed switch

4.6.6 Configure Delete ................................................................................................................................................ 311

4.6.7 Image Select ...................................................................................................................................................... 312

4.6.8 Factory Default .................................................................................................................................................. 313

4.6.9 System Reboot .................................................................................................................................................. 313

4.6.10 Ping ................................................................................................................................................................. 314

4.6.11 IPv6 Ping ......................................................................................................................................................... 315

4.6.12 Remote IP Ping................................................................................................................................................ 316

4.6.13 Cable Diagnostics ............................................................................................................................................ 317

5. SWITCH OPERATION ....................................................................................................... 319

5.1 Address Table ........................................................................................................................................... 319

5.2 Learning .................................................................................................................................................... 319

5.3 Forwarding & Filtering ............................................................................................................................. 319

5.4 Store-and-Forward ................................................................................................................................... 319

5.5 Auto-Negotiation ...................................................................................................................................... 320

6. TROUBLESHOOTING ....................................................................................................... 321

APPENDIX A: Networking Connection ............................................................................... 322

A.1 Switch's Data RJ45 Pin Assignments - 1000Mbps, 1000BASE-T ....................................................... 322

A.2 10/100Mbps, 10/100BASE-TX ................................................................................................................. 322

APPENDIX B : GLOSSARY .................................................................................................. 324

9

User’s Manual of MGSW-28240F Managed switch

1. INTRODUCTION

1.1 Packet Contents

Open the box of the Managed Switch and carefully unpack it. The box should contain the following items:

The Managed Switch

Quick Installation Guide

RJ45 to RS232 Cable

Rubber Feet

Two Rack-mounting Brackets with Attachment Screws

Power Cord

SFP Dust-proof Caps x 28

If any of these are missing or damaged, please contact your dealer immediately; if possible, retain the carton including the original packing material, and use them again to repack the product in case there is a need to return it to us for repair.

10

User’s Manual of MGSW-28240F Managed switch

1.2 Product Description

10Gbps Fiber Ports and Multiple Dual Speed Fiber Ports Deliver High-speed Networking

PLANET MGSW-28240F L3 24-Port 100/1000BASE-X SFP + 4-Port 10G SFP+ Metro Ethernet Switch is specially designed for service providers and enterprises to deliver high-speed networking over longer distances. Its SFP ports can be connected to various fiber and Ethernet cables to extend switching functionality throughout the network. The MGSW-28240F is capable of providing non-blocking switch fabric and wire-speed throughput as high as 128Gbps in the temperature range from -10 to 60 degrees C without any packet loss and cyclic redundancy check (CRC) error. It greatly simplifies the tasks of upgrading the enterprise LAN for catering to increasing bandwidth demands.

Layer 3 Routing Support

The MGSW-28240F enables the administrator to conveniently boost network efficiency by configuring Layer 3 IPv4/IPv6 VLAN static routing manually, and the IPv4

OSPFv2

(Open Shortest Path First) settings automatically. The OSPF is an interior dynamic routing protocol for autonomous system based on link state. The protocol creates a database for link state by exchanging link states among Layer 3 switches, and then uses the Shortest Path First algorithm to generate a route table based on that database.

11

User’s Manual of MGSW-28240F Managed switch

Cybersecurity Network Solution to Minimize Security Risks

The cybersecurity feature included to protect the switch management in a mission-critical network virtually needs no effort and cost to install. For efficient management, the MGSW-28240F is equipped with console, web and SNMP management interfaces.

With the built-in web-based management interface, the MGSW-28240F offers an easy-to-use, platform-independent management and configuration facility. The MGSW-28240F supports SNMP and it can be managed via any management software based on the standard SNMP protocol. For reducing product learning time, the MGSW-28240F offers Cisco-like command via Telnet or console port and customer doesn’t need to learn new command from these switches. Moreover, the

MGSW-28240F offers remote secure management by supporting SSH, SSL and SNMP v3 connection which can encrypt the packet content at each session.

Redundant Ring, Fast Recovery for Critical Network Applications

The MGSW-28240F supports redundant ring technology and features strong, rapid self-recovery capability to prevent interruptions and external intrusions. It incorporates advanced

ITU-T G.8032 ERPS (Ethernet Ring Protection Switching) technology, Spanning Tree Protocol (802.1s MSTP), and redundant power

input system into customer’s industrial automation network to enhance system reliability and uptime in harsh factory environments. In a certain, simple Ring network, the recovery time of data link can be as fast as 10ms.

1588 Time Protocol and Front-access Interface Design

The MGSW-28240F is ideal for telecom and carrier Ethernet applications, supporting MEF service delivery and timing over packet solutions for IEEE 1588 and synchronous Ethernet. The Switch comes with a user-friendly front-access design to help technicians improve wiring and installation efficiency, whereas, in the traditional design, the power socket, console port and even some extension module were always placed on the rear of the product. When technicians are installing or maintaining the older switch model on the rack, they have to be careful with other surrounding online devices as the rear-end of the product cannot be seen clearly. With the front-access design, technicians can avoid messing with other nearby devices.

12

User’s Manual of MGSW-28240F Managed switch

AC and DC Redundant Power to Ensure Continuous Operation

The MGSW-28240F possesses a

100~240V AC

power supply and dual

36~60V DC

power supply utilized as redundant power supply to ensure its continuous operation. Its redundant power system is specifically designed to handle the demands of high-tech facilities requiring the highest power integrity. Furthermore, with the 36~60V DC power supply implemented, the

MGSW-28240F can be applied as the telecom level device and placed in almost any difficult environment.

Digital Input and Digital Output for External Alarm

The MGSW-28240F helps the network administrators efficiently manage the unexpected network situations by providing Digital

Input and Digital Output for external alarm device on the front panel. The Digital Input can be used to detect and log the status of the external devices such as door intrusion detector. The Digital Output could be used to send alarm whenever the

MGSW-28240F has port link-down or power failure.

IPv6/IPv4 Dual Stack and Layer 2 Capability

Supporting both IPv6 and IPv4 protocols, the MGSW-28240F helps data centers, campuses, telecoms, and more to experience the IPv6 era with the lowest investment as its network facilities need not be replaced or overhauled if the IPv6 FTTx edge network is set up. The MGSW-28240F can be programmed for advanced switch management functions such as dynamic port link aggregation,

Q-in-Q VLAN

, private VLAN,

Multiple Spanning Tree Protocol (MSTP)

, Layer 2 to Layer 4 QoS, bandwidth control and

IGMP/MLD Snooping

. Via the link aggregation of supporting ports, the MGSW-28240F allows the operation of a high-speed trunk to combine with multiple fiber ports and supports fail-over as well.

13

User’s Manual of MGSW-28240F Managed switch

Powerful Security

The MGSW-28240F offers a comprehensive

Layer 2 to Layer 4 Access Control List (ACL)

for enforcing security to the edge.

It can be used to restrict network access by denying packets based on source and destination IP address, TCP/UDP ports or defined typical network applications. Its protection mechanism also comprises

802.1X port-based

and

MAC-based

user, and device authentication. With the private VLAN

function, communication between edge ports can be prevented to ensure user privacy. The MGSW-28240F also provides

DHCP Snooping

,

IP Source Guard

and

Dynamic ARP Inspection

functions to prevent IP snooping from attack and discard ARP packets with invalid MAC address. The network administrators can now construct highly-secure corporate networks with considerably less time and effort than before.

Excellent Traffic Control

The MGSW-28240F is loaded with powerful traffic management and QoS features to enhance connection services by telecoms and ISPs. The QoS features include wire-speed Layer 4 traffic classifiers and bandwidth limit that are particularly useful for multi-tenant units, multi-business units, Telco and network service providers’ applications. It also empowers the industrial environment to take full advantage of the limited network resources and guarantees the best performance in VoIP and video conferencing transmission.

Flexible and Extendable 10Gb Ethernet Solution

10G Ethernet is a big leap in the evolution of Ethernet. Each of the 10G SFP+ slots in the MGSW-28240F supports dual speed and

10GBASE-SR/LR or 1000BASE-SX/LX

. With its 4-port, 10G Ethernet link capability and additional 4-port 1G Ethernet link capability, the administrator now can flexibly choose the suitable SFP/SFP+ transceiver according to the transmission distance or the transmission speed required to extend the network efficiently. The MGSW-28240F provides broad bandwidth and powerful processing capacity.

Intelligent SFP Diagnosis Mechanism

The MGSW-28240F supports SFP-DDM (Digital Diagnostic Monitor) function that greatly helps network administrator to easily monitor real-time parameters of the SFP, such as optical output power, optical input power, temperature, laser bias current, and transceiver supply voltage.

14

User’s Manual of MGSW-28240F Managed switch

1.3 How to Use This Manual

This User’s Manual is structured as follows:

Section 2

,

INSTALLATION

The section explains the functions of the Managed Switch and how to physically install the Managed Switch.

Section 3

,

SWITCH MANAGEMENT

The section contains the information about the software function of the Managed Switch.

Section 4

,

WEB CONFIGURATION

The section explains how to manage the Managed Switch by Web interface.

Section 5

,

SWITCH OPERATION

The chapter explains how to do the switch operation of the Managed Switch.

Section 6

,

TROUBLESHOOTING

The chapter explains how to do troubleshooting of the Managed Switch.

Appendix A

The section contains cable information of the Managed Switch.

15

User’s Manual of MGSW-28240F Managed switch

1.4 Product Features

 Physical Port

 24 100/1000BASE-X SFP mini-GBIC/SFP ports

 4 10/100/1000BASE-T RJ45 ports

, shared with Port-1 to Port-4

 4 10GBASE-SR/LR SFP+ slots

, compatible with 1000BASE-SX/LX/BX SFP

RJ45 to RS232 DB9 console interface for basic management and setup

 Hardware Conformance

One 100 to 240V AC or dual 36 to 60V DC power input, redundant power with polarity reverse protect function

19-inch rack-mountable design

IP30 metal case

-10 to 60 degrees C operating temperature

 Digital Input and Digital Output

2 digital input (DI)

2 digital output (DO)

Integrates sensors into auto alarm system

Transfers alarm to IP network via email and SNMP trap

 Layer 3 IP Routing Features

IP dynamic routing protocol supports OSPFv2

Routing interface provides per VLAN routing mode

 Supports maximum 128 static routes and route summarization

 Layer 2 Features

Store-and-forward architecture with runt/CRC filtering that eliminates erroneous packets to optimize the network bandwidth

Storm control support

- Broadcast/Multicast/Unknown unicast

Supports

VLAN

- IEEE 802.1Q tagged VLAN

- Up to 256 VLANs groups, out of 4096 VLAN IDs

- Provides Bridging (VLAN Q-in-Q) support (IEEE 802.1ad)

- Private VLAN Edge (PVE)

- Protocol-based VLAN

- MAC-based VLAN

- IP subnet-based VLAN

- Voice VLAN

- GVRP

16

User’s Manual of MGSW-28240F Managed switch

Supports

Spanning Tree Protocol

- IEEE 802.1D Spanning Tree Protocol (STP)

- IEEE 802.1w Rapid Spanning Tree Protocol (RSTP)

- IEEE 802.1s Multiple Spanning Tree Protocol (MSTP), spanning tree by VLAN

- BPDU Guard

Supports

Link Aggregation

- 802.3ad Link Aggregation Control Protocol (LACP)

- Cisco ether-channel (static trunk)

- Maximum 14 trunk groups, with 16 ports for each trunk group

- Up to 32Gbps bandwidth (full duplex mode)

Provides port mirror (many-to-1)

Port mirroring monitors the incoming or outgoing traffic on a particular port

Loop protection to avoid broadcast loops

Supports ERPS (Ethernet Ring Protection Switching)

IEEE 1588 and Synchronous Ethernet network timing

 Quality of Service

■ Ingress Shaper and Egress Rate Limit per port bandwidth control

■ 8 priority queues on all switch ports

■ Traffic classification

- IEEE 802.1p CoS

- TOS/DSCP/IP Precedence of IPv4/IPv6 packets

- IP TCP/UDP port number

- Typical network application

■ Strict priority and Weighted Round Robin (WRR) CoS policies

■ Supports QoS and In/Out bandwidth control on each port

■ Traffic-policing on the switch port

■ DSCP remarking

 Multicast

Supports IGMP snooping v1, v2 and v3

Supports MLD snooping v1 and v2

Querier mode support

IGMP snooping port filtering

MLD snooping port filtering

MVR (Multicast VLAN Registration)

 Security

Authentication

- IEEE 802.1x port-based/MAC-based network access authentication

- IEEE 802.1x authentication with guest VLAN

- Built-in RADIUS client to cooperate with the RADIUS servers

- RADIUS/TACACS+ users access authentication

Access Control List

- IP-based Access Control List (ACL)

17

User’s Manual of MGSW-28240F Managed switch

- MAC-based Access Control List (ACL)

Source MAC/IP address binding

 DHCP Snooping

to filter distrusted DHCP messages

 Dynamic ARP Inspection

discards ARP packets with invalid MAC address to IP address binding

 IP Source Guard

prevents IP spoofing attacks

IP address access management to prevent unauthorized intruder

 Management

IPv4 and IPv6 dual stack management

Switch Management Interfaces

- Console/Telnet command line interface

- Web switch management

- SNMP v1, v2c, and v3 switch management

- SSH/SSL secure access

 IPv6

address/NTP management

Built-in Trivial File Transfer Protocol (TFTP) client

BOOTP and DHCP for IP address assignment

System Maintenance

- Firmware upload/download via HTTP/TFTP

- Reset button for system reboot or reset to factory default

- Dual images

DHCP relay and option 82

User privilege levels control

NTP (Network Time Protocol)

Link Layer Discovery Protocol (LLDP) and LLDP-MED

Network diagnostic

- SFP-DDM (Digital Diagnostic Monitor)

- Cable diagnostic technology provides the mechanism to detect and report potential cabling issues

- ICMPv6/ICMPv4 remote ping

SMTP/Syslog remote alarm

Four RMON groups (history, statistics, alarms and events)

SNMP trap for interface link up and link down notification

System Log

PLANET Smart Discovery Utility for deployment management

18

User’s Manual of MGSW-28240F Managed switch

1.5 Product Specifications

Product

Hardware version

Hardware Specifications

Copper Ports

SFP/mini-GBIC Slots

SFP+ Slots

MGSW-28240F

3

4 10/100/1000BASE-T RJ45 auto-MDI/MDI-X ports, shared with Port-1 to Port-4

24 100/1000BASE-X SFP interfaces,

Compatible with 100BASE-FX SFP transceiver

4 10GbBASE-SR/LR SFP+ interfaces (Port-25 to Port-28)

Compatible with 1000BASE-SX/LX/BX SFP transceiver

1 x RS232-to-RJ45 serial port (115200, 8, N, 1) Console

Switch Architecture

Store-and-Forward

Switch Fabric

Throughput

Address Table

Shared Data Buffer

128Gbps/non-blocking

95.2Mpps@64Bytes

16K entries, automatic source address learning and aging

Flow Control

Jumbo Frame

Reset Button

32M bits

IEEE 802.3x pause frame for full duplex

Back pressure for half duplex

10K bytes

< 5 sec: System reboot

> 5 sec: Factory default

440 x 200 x 44.5 mm, 1U height Dimensions (W x D x H)

Weight

LED Indicator

2.935kg

System:

AC (Green), DC1 (Green), DC2 (Green), Fault (Red)

Ring (Green), R.O. (Green)

10/100/1000T RJ45 Interfaces (Port 1 to Port 4):

1000Mbps LNK/ACT (Green)

10/100Mbps LNK/ACT (Amber)

100/1000Mbps SFP Combo Interfaces (Port 21 to Port 24):

1000Mbps LNK/ACT (Green)

100Mbps LNK/ACT (Amber)

1/10Gbps SFP+ Interfaces (Port 25 to Port 28):

10Gbps LNK/ACT (Green)

1Gbps LNK/ACT (Amber )

Power Consumption

AC input:

Max. 36.5 watts/125.2 BTU

DC input:

Max. 38.7 watts/132.7 BTU

Power Requirements – AC

AC 100~240V, 50/60Hz 1A

Power Requirements – DC

DC 36~60V, 1.2A

DI and DO

EFT Protection

ESD Protection

2 digital input (DI):

Level 0: -24~2.1V

Level 1: 2.1~24V

Max. input current: 10mA

2 digital output (DO): Open collector to 24VDC, 100mA

6KV DC

6KV DC

19

User’s Manual of MGSW-28240F Managed switch

Layer 2 Management Functions

Port Configuration

Port disable/enable

Auto-negotiation 10/100/1000Mbps full and half duplex mode selection

Flow control disable/enable

Port Status

Display each port’s speed duplex mode, link status, flow control status, auto-negotiation status, trunk status

Port Mirroring

VLAN

Link Aggregation

TX/RX/Both

Many-to-1 monitor

802.1Q tagged VLAN

Q-in-Q tunneling

Private VLAN Edge (PVE)

MAC-based VLAN

Protocol-based VLAN

Voice VLAN

IP Subnet-based VLAN

MVR (Multicast VLAN registration)

Up to 256 VLAN groups, out of 4096 VLAN IDs

GVRP

IEEE 802.3ad LACP/static trunk

14 trunk groups with 16 port per trunk group

Spanning Tree Protocol

QoS

IGMP Snooping

MLD Snooping

Access Control List

Bandwidth Control

IEEE 802.1D Spanning Tree Protocol

IEEE 802.1w Rapid Spanning Tree Protocol

IEEE 802.1s Multiple Spanning Tree Protocol

Traffic classification based, strict priority and WRR

8-level priority for switching:

- Port number

- 802.1p priority

- 802.1Q VLAN tag

- DSCP/ToS field in IP packet

IGMP (v1/v2/v3) snooping, up to 255 multicast groups

IGMP querier mode support

MLD (v1/v2) snooping, up to 255 multicast groups

MLD querier mode support

IP-based ACL/MAC-based ACL

Up to 256 entries

Per port bandwidth control

Ingress: 100Kbps~1000Mbps

Egress: 100Kbps~1000Mbps

Layer 3 Functions

IP Interfaces

Max. 128 VLAN interfaces

Routing Table

Max. 128 routing entries

Routing Protocols

IPv4 hardware static routing

IPv6 hardware static routing

OSPFv2 dynamic routing

20

User’s Manual of MGSW-28240F Managed switch

Management

Basic Management

Interfaces

Secure Management

Interfaces

Console; Telnet; Web browser; SNMP v1, v2c

SSH, SSL, SNMPv3

SNMP MIBs

RFC 1213 MIB-II

RFC 1493 Bridge MIB

RFC 1643 Ethernet MIB

RFC 2863 Interface MIB

RFC 2665 Ether-Like MIB

RFC 2819 RMON MIB (Group 1,

2, 3 and 9)

RFC 2737 Entity MIB

RFC 2618 RADIUS Client MIB

RFC 2863 IF-MIB

RFC 2933 IGMP-STD-MIB

RFC 3411 SNMP-Frameworks-MIB

RFC 4292 IP Forward MIB

RFC 4293 IP MIB

RFC 4836 MAU-MIB

IEEE 802.1X PAE

LLDP

Standards Conformance

Regulatory Compliance

FCC Part 15 Class A, CE

IEEE 802.3 10BASE-T

IEEE 802.3u

100BASE-TX/100BASE-FX

IEEE 802.3z Gigabit SX/LX

Standards Compliance

IEEE 802.1Q VLAN tagging

IEEE 802.1X Port Authentication Network Control

IEEE 802.1ab LLDP

RFC 768 UDP

IEEE 802.3ab Gigabit 1000T RFC 793 TFTP

IEEE 802.3ae 10Gb/s Ethernet RFC 791 IP

IEEE 802.3x flow control and back RFC 792 ICMP pressure

IEEE 802.3ad port trunk with

LACP

IEEE 802.1D Spanning Tree

Protocol

IEEE 802.1w Rapid Spanning

Tree Protocol

IEEE 802.1s Multiple Spanning

Tree Protocol

IEEE 802.1p Class of Service

RFC 2068 HTTP

RFC 1112 IGMP v1

RFC 2236 IGMP v2

RFC 2328 OSPF v2

RFC 3376 IGMP v3

RFC 2710 MLD v1

FRC 3810 MLD v2

ITU G.8032 Ethernet Ring Protection Switching

Environment

Operating

Temperature: -10 ~ 60 degrees C for AC power input

Temperature: -40 ~ 75 degrees C for DC power input

Relative Humidity: 5 ~ 95% (non-condensing)

Storage

Temperature: -40 ~ 80 degrees C

Relative Humidity: 5 ~ 95% (non-condensing)

21

User’s Manual of MGSW-28240F Managed switch

2. INSTALLATION

This section describes the hardware features and installation of the Managed Switch on the desktop or rack mount. For easier management and control of the Managed Switch, familiarize yourself with its display indicators, and ports. Front panel illustrations in this chapter display the unit LED indicators. Before connecting any network device to the Managed Switch, please read this chapter completely.

2.1 Hardware Description

2.1.1 Switch Front Panel

The front panel provides a simple interface monitoring the Managed Switch. Figures 2-1-1 show the front panels of the

Managed Switches.

MGSW-28240F Front Panel

Figure 2-1-1:

Front Panel of MGSW-28240F

Gigabit TP interface

10/100/1000BASE-T copper, RJ45 twisted-pair: Up to 100 meters.

SFP slots

100/1000BASE-X mini-GBIC slot, SFP (Small Factor Pluggable) transceiver module: From 550 meters (Multi-mode fiber), up to 10/30/50/70/120 kilometers (Single-mode fiber).

Reset button

On the left of the front panel, the reset button is designed to reboot the Managed Switch without turning off and on the power. The following is the summary table of the reset button functions :

Reset Button Pressed and Released Function

< 5 sec

:

System reboot

Reboot the Managed Switch

> 5 sec

:

Factory Default

Reset the Managed Switch to Factory Default configuration.

The Managed Switch will then reboot and load the default settings as shown below:

。 Default Username: admin

。 Default Password: admin

。 Default IP address:

192.168.0.100

。 Subnet mask:

255.255.255.0

。 Default Gateway:

192.168.0.254

22

User’s Manual of MGSW-28240F Managed switch

2.1.2 LED Indications

The front panel LEDs indicate instant status of power and system status, fan status, port links / PoE-in-use and data activity; they help monitor and troubleshoot when needed. Figures 2-1-2 show the LED indications of the Managed Switches.

MGSW-28240F Front Panel

Figure 2-11

LED Panel of MGSW-28240F

 LED definition

 System

LED

Ring

R.O.

DC1

DC2

FAN1

FAN2

Fault

PWR

Green

Green

Green

Green

Red

Color

Green

Green

Green

Function

Lights

Indicates that Ring state is in idle.

Blinks

Indicates that the Ring state is protected.

Lights

Indicates that the switch is set to ring owner.

Off

Indicates that the switch doesn’t set to ring owner.

Lights

Indicates that the Switch is powered on by DC1 input.

Lights

Indicates that the Switch is powered on by DC2 input.

Lights

Indicates that the FAN1 has stopped.

Lights

Indicates that the FAN2 has stopped.

Lights

Indicates that Switch AC/DC or port has failed.

Lights

Indicates that the Switch is powered on.

Blinks

Indicates the System is running under booting procedure.

23

User’s Manual of MGSW-28240F Managed switch

 10/100/1000BASE-T interfaces for port1 to port24 SFP slot

LED Color

Green

Function

Lights

Indicates the link through that SFP port is successfully established with speed of

1000Mbps

.

Blinks

Indicates that the switch is actively sending or receiving data over that port.

LNK/ACT

Off

Indicates that the SFP port is link down.

Lights

Indicates the link through that SFP port is successfully established with speed of 10Mbps or 100Mbps.

Orange

Blinks

Indicates that the switch is actively sending or receiving data over that port.

Off

Indicates that the SFP port is link down.

 10/100/1000BASE-T interfaces (Shared Port1~Port4)

LED Color Function

LNK/ACT

Green

Orange

Lights

Off

Indicates the link through that port is successfully established with 1Gbps.

To indicate that the port is link down

Lights

Off

Indicates the link through that SFP port is successfully established with speed of 10Mbps or 100Mbps.

To indicate that the port is link down

 10GBASE-SR/LR SFP+ interfaces for port25 to port28

LED

LNK/ACT

Color

Green

Orange

Function

Lights

To indicate the link through that SFP port is successfully established with

10Gbps

Off

To indicate that the SFP port is link down

Lights

To indicate the link through that SFP port is successfully established with

1Gbps

Off

To indicate that the SFP port is link down

24

User’s Manual of MGSW-28240F Managed switch

2.1.3 Switch Rear Panel

The rear panel of the Managed Switch consists of the AC/DC inlet power socket. Figures 2-1-3 show the rear panels of the

Managed Switches.

MGSW-28240F Rear Panel

Figure 2-13

Rear Panel of MGSW-28240F

AC Power Receptacle

For compatibility with electrical voltages in most areas of the world, the Managed Switch’s power supply can automatically adjust line power in the range of 100-240V AC and 50/60 Hz.

Plug the female end of the power cord firmly into the receptacle on the rear panel of the Managed Switch and the other end of the power cord into an electrical outlet and the power will be ready.

The device is a power-required device, which means it will not work till it is powered. If your networks should be active all the time, please consider using UPS (Uninterrupted Power Supply) for your device.

Power Notice:

It will prevent you from network data loss or network downtime. In some areas, installing a surge suppression device may also help to protect your Managed Switch from being damaged by unregulated surge or current to the Switch or the power adapter.

25

User’s Manual of MGSW-28240F Managed switch

2.2 Installing the Switch

This section describes how to install your Managed Switch and make connections to the Managed Switch. Please read the following topics and perform the procedures in the order being presented. To install your Managed Switch on a desktop or shelf, simply complete the following steps.

2.2.1 Desktop Installation

To install the Managed Switch on desktop or shelf, please follow these steps:

Step 1:

Attach the rubber feet to the recessed areas on the bottom of the Managed Switch.

Step 2:

Place the Managed Switch on the desktop or the shelf near an AC power source, as shown in Figure 2-2-1 .

Figure 2-2-1:

Place the Managed Switch on the Desktop

Step 3:

Keep enough ventilation space between the Managed Switch and the surrounding objects.

When choosing a location, please keep in mind the environmental restrictions discussed in Chapter 1,

Section 4, and specifications.

Step 4:

Connect the Managed Switch to network devices.

Connect one end of a standard network cable to the 10/100/1000 RJ45 ports on the front of the Managed Switch .

Connect the other end of the cable to the network devices such as printer server, workstation or router.

Connection to the Managed Switch requires UTP Category 5e network cabling with RJ45 tips. For more information, please see the Cabling Specification in Appendix A.

Step 5:

Supply power to the Managed Switch.

Connect one end of the power cable to the Managed Switch.

Connect the power plug of the power cable to a standard wall outlet.

When the Managed Switch receives power, the Power LED should remain solid Green.

26

User’s Manual of MGSW-28240F Managed switch

2.2.2 Rack Mounting

To install the Managed Switch in a 19-inch standard rack, please follow the instructions described below.

Step 1:

Place the Managed Switch on a hard flat surface, with the front panel positioned towards the front side.

Step 2:

Attach the rack-mount bracket to each side of the Managed Switch with supplied screws attached to the package.

Figure 2-2-2 shows how to attach brackets to one side of the Managed Switch.

Figure 2-2-2:

Attach Brackets to the Managed Switch.

You must use the screws supplied with the mounting brackets. Damage caused to the parts by using incorrect screws would invalidate the warranty.

Step 3:

Secure the brackets tightly.

Step 4:

Follow the same steps to attach the second bracket to the opposite side.

Step 5:

After the brackets are attached to the Managed Switch, use suitable screws to securely attach the brackets to the rack , as shown in Figure 2-2-3 .

Figure 2-2-3:

Mounting Managed Switch in a Rack

Step 6:

Proceed with Steps 4 and 5 of session 2.2.1 Desktop Installation to connect the network cabling and supply power to the Managed Switch.

27

User’s Manual of MGSW-28240F Managed switch

2.2.3 Installing the SFP/SFP+ Transceiver

The sections describe how to insert an SFP/SFP+ transceiver into an SFP/SFP+ slot. The SFP/SFP+ transceivers are hot-pluggable and hot-swappable. You can plug in and out the transceiver to/from any SFP/SFP+ port without having to power down the Managed Switch, as the Figure 2-2-4 shows..

Figure 2-2-4:

Plug-in the SFP/SFP+ Transceiver

 Approved PLANET SFP/SFP+ Transceivers

PLANET Managed Switch supports both single mode and multi-mode SFP/SFP+ transceivers. The following list of approved

PLANET SFP/SFP+ transceivers is correct at the time of publication:

It is recommended to use PLANET SFP/SFP+ on the Managed Switch. If you insert an SFP/SFP+ transceiver that is not supported, the Managed Switch will not recognize it.

10Gigabit Ethernet Transceiver (10GBASE-X SFP+)

Model

MTB-RJ

MTB-SR

MTB-LR

MTB-TSR

MTB-TLR

Speed (Mbps)

10G

10G

10G

10G

10G

Connector

Interface

Copper

LC

LC

LC

LC

Fiber Mode

--

Multi Mode

Single Mode

Multi Mode

Single Mode

Distance

30m

300m

10km

300m

10km

Wavelength (nm)

--

850nm

1310nm

850nm

1310nm

Operating Temp.

0 ~ 70 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

-40 ~ 75 degrees C

-40 ~ 75 degrees C

28

User’s Manual of MGSW-28240F Managed switch

10Gigabit Ethernet Transceiver (10GBASE-BX, Single Fiber Bi-directional SFP)

Model

Speed

(Mbps)

Connector

Interface

Fiber Mode Distance Wavelength (TX) Wavelength (RX)

1270nm 1330nm MTB-LA20 10G WDM(LC) Single Mode 20km

MTB-LB20 10G WDM(LC) Single Mode 20km 1330nm

1270nm

1270nm

1330nm MTB-LA40 10G WDM(LC) Single Mode 40km

MTB-LB40 10G WDM(LC) Single Mode 40km 1330nm 1270nm

MTB-LA60 10G WDM(LC) Single Mode 60km

MTB-LB60 10G WDM(LC) Single Mode 60km

1270nm

1330nm

1330nm

1270nm

Gigabit Ethernet Transceiver (1000BASE-X SFP)

Operating Temp.

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

Model

MGB-GT

MGB-SX(V2)

MGB-SX2(V2)

MGB-LX(V2)

MGB-L40

MGB-L80

MGB-L120(V2)

MGB-TSX

MGB-TSX2

MGB-TLX(V2)

MGB-TL40

DDM Speed (Mbps)

--

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Connector

Interface

Copper

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

Fiber Mode Distance Wavelength (nm)

Operating

Temp.

--

Multi Mode

Multi Mode

100m

550m

2km

--

850nm

1310nm

0 ~ 60 ℃

0 ~ 60 ℃

0 ~ 60 ℃

Single Mode

Single Mode

Single Mode

Single Mode

20km

40km

80km

120km

1310nm

1310nm

1550nm

1550nm

0 ~ 60 ℃

0 ~ 60 ℃

0 ~ 60 ℃

0 ~ 60 ℃

Multi Mode

Multi Mode

Single Mode

Single Mode

550m

2km

20km

40km

850nm

1310nm

1310nm

1310nm

1550nm

-40 ~ 75 ℃

-40 ~ 75 ℃

-40 ~ 75 ℃

-40 ~ 75 ℃

-40 ~ 75 ℃ MGB-TL80 YES 1000 LC Single Mode

Gigabit Ethernet Transceiver (1000BASE-BX, Single Fiber Bi-directional SFP)

80km

Model

DDM

MGB-LA10(V2)

MGB-LB10(V2)

MGB-LA20(V2)

MGB-LB20(V2)

MGB-LA40(V2)

MGB-LB40(V2)

YES

YES

YES

Speed

(Mbps)

1000

1000

1000

1000

1000

1000

Connector

Interface

Fiber Mode Distance Wavelength (TX) Wavelength (RX)

Operating

Temp.

WDM(LC) Single Mode 10km 1310nm 1550nm 0 ~ 60 ℃

WDM(LC) Single Mode

WDM(LC) Single Mode

WDM(LC) Single Mode

WDM(LC) Single Mode

WDM(LC) Single Mode

10km

20km

20km

40km

40km

1550nm

1310nm

1550nm

1310nm

1550nm

1310nm

1550nm

1310nm

1550nm

1310nm

0 ~ 60 ℃

0 ~ 60 ℃

0 ~ 60 ℃

0 ~ 60 ℃

0 ~ 60 ℃

29

User’s Manual of MGSW-28240F Managed switch

MGB-LA80

MGB-LB80

MGB-TLA10(V2)

MGB-TLB10(V2)

YES

MGB-TLA20

MGB-TLB20

MGB-TLA40

MGB-TLB40

MGB-TLA80

MGB-TLB80

YES

YES

YES

YES

1000

1000

1000

1000

1000

1000

1000

1000

1000

WDM(LC) Single Mode 80km

WDM(LC) Single Mode 80km

WDM(LC) Single Mode 10km

WDM(LC) Single Mode 10km

WDM(LC) Single Mode 20km

WDM(LC) Single Mode 20km

WDM(LC) Single Mode 40km

WDM(LC) Single Mode 40km

WDM(LC) Single Mode 80km

1490nm

1550nm

1310nm

1550nm

1310nm

1550nm

1310nm

1550nm

1490nm

1550nm

1490nm

1550nm

1310nm

1550nm

1310nm

1550nm

1310nm

1550nm

1000 WDM(LC) Single Mode 80km

Fast Ethernet Transceiver (100BASE-X SFP)

Model

MFB-FX

MFB-F20

MFB-F40

MFB-F60

MFB-F120

MFB-TFX

MFB-TF20

Speed (Mbps)

100

100

100

100

100

100

100

Connector

Interface

LC

LC

LC

LC

LC

LC

LC

1550nm 1490nm

Fiber Mode

Multi Mode

Single Mode

Single Mode

Single Mode

Single Mode

Multi Mode

Single Mode

Distance Wavelength (nm)

2km

20km

40km

60km

120km

2km

20km

1310nm

1310nm

1310nm

1310nm

1310nm

1310nm

13100nm

Operating Temp.

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

0 ~ 60 degrees C

-40 ~ 75 degrees C

-40 ~ 75 degrees C

0 ~ 60 ℃

0 ~ 60 ℃

-40 ~ 75

-40 ~ 75

-40 ~ 75

-40 ~ 75

-40 ~ 75

-40 ~ 75

-40 ~ 75

-40 ~ 75

30

User’s Manual of MGSW-28240F Managed switch

Fast Ethernet Transceiver (100BASE-BX, Single Fiber Bi-directional SFP)

Model Speed (Mbps)

Connector

Interface

Fiber Mode Distance

Wavelength (TX)

Wavelength (RX)

MFB-FA20

MFB-FB20

100

100

WDM(LC) Single Mode 20km

WDM(LC) Single Mode 20km

1310nm

1550nm

1550nm

1310nm

MFB-TSA 100 WDM(LC) Multi Mode 2km 1310nm 1550nm

Operating Temp.

0 ~ 60 degrees C

0 ~ 60 degrees C

-40 ~ 75 degrees C

MFB-TSB

MFB-TFA20

MFB-TFB20

MFB-TFA40

100

100

100

100

WDM(LC) Multi Mode 2km

WDM(LC) Single Mode 20km

WDM(LC) Single Mode 20km

WDM(LC) Single Mode 40km

1550nm

1310nm

1550nm

1310nm

1310nm

1550nm

1310nm

1550nm

-40 ~ 75 degrees C

-40 ~ 75 degrees C

-40 ~ 75 degrees C

-40 ~ 75 degrees C

MFB-TFB40 100 WDM(LC) Single Mode 40km 1550nm 1310nm -40 ~ 75 degrees C

Before connecting the other Managed Switches, workstation or Media Converter.

1. Make sure both sides of the SFP transceiver are with the same media type, for example, 1000BASE-SX to 1000BASE-SX,

1000BASE-LX to 1000BASE-LX.

2. Check whether the fiber-optic cable type matches the SFP transceiver model.

 To connect to 1000BASE-SX SFP transceiver, use the multi-mode fiber cable -- with one side being male duplex LC connector type.

 To connect to 1000BASE-LX SFP transceiver, use the single-mode fiber cable -- with one side being male duplex LC connector type.

 Connecting the fiber cable

1. Attach the duplex LC connector on the network cable to the SFP transceiver.

2. Connect the other end of the cable to a device – switches with SFP installed, fiber NIC on a workstation or a media converter.

3. Check the LNK/ACT LED of the SFP slot on the front of the Managed Switch. Ensure that the SFP transceiver is operating correctly.

4. Check the Link mode of the SFP port if the link fails. It works with some fiber-NICs or media converters and sets the link mode to “1000 Force” or “100 Force” when needed.

 Removing the transceiver module

1. Make sure there is no network activity by checking with the network administrator. Or through the management interface of the switch/converter (if available), disable the port in advance.

2. Remove the fiber optic cable gently.

3. Turn the lever of the MGB module to a horizontal position.

4. Pull out the module gently through the lever.

31

User’s Manual of MGSW-28240F Managed switch

Figure 2-2-5

Pull out the SFP transceiver

Never pull out the module without making use of the lever or the push bolts on the module.

Removing the module with forced could damage the module and SFP module slot of the

Managed Switch.

32

User’s Manual of MGSW-28240F Managed switch

3. SWITCH MANAGEMENT

This chapter explains the methods that you can use to configure management access to the Managed Switch. It describes the types of management applications and the communication and management protocols that deliver data between your management device (workstation or personal computer) and the system. It also contains information about port connection options.

This chapter covers the following topics:

Requirements

Management Access Overview

Administration Console Access

Web Management Access

SNMP Access

Standards, Protocols, and Related Reading

3.1 Requirements

 Workstations

running Windows 2000/XP, 2003, Vista/7/8/10, 2008, MAC OS9 or later, or Linux, UNIX , or other platforms compatible with

TCP/IP

protocols.

 Workstation

is installed with

Ethernet NIC

(Network Interface Card)

 Serial Port

connect (Terminal)

The above PC with COM Port (DB9/RS-232) or USB-to-RS232 converter

Ethernet Port connect

Network cables - Use standard network (UTP) cables with RJ45 connectors.

The above workstation is installed with

Web Browser

and

JAVA runtime environment

plug-in

It is recommended to use Internet Explore 7.0 or above to access Managed Switch.

33

User’s Manual of MGSW-28240F Managed switch

3.2 Management Access Overview

The Managed Switch gives you the flexibility to access and manage it using any or all of the following methods:

An administration console

 Web browser

interface

An external

SNMP-based network management application

The administration console and Web browser interface support are embedded in the Managed Switch software and are available for immediate use. Each of these management methods has their own advantages. Table 3-1 compares the three management methods.

Method

Console

Advantages

No IP address or subnet needed

Text-based

Telnet functionality and HyperTerminal built into Windows

95/98/NT/2000/ME/XP operating

Disadvantages

Must be near the switch or use dial-up connection

Not convenient for remote users

Modem connection may prove to be unreliable or slow systems

Secure

Web Browser •

Ideal for configuring the switch remotely

Compatible with all popular browsers

Can be accessed from any location

Most visually appealing

SNMP Agent •

Communicates with switch functions at the MIB level

Based on open standards

Security can be compromised (hackers need only know the IP address and subnet mask)

May encounter lag times on poor connections

Requires SNMP manager software

Least visually appealing of all three methods

Some settings require calculations

Security can be compromised (hackers need only know the community name)

Table 3-1

Comparison of Management Methods

34

User’s Manual of MGSW-28240F Managed switch

3.3 Administration Console

The administration console is an internal, character-oriented, and command line user interface for performing system administration such as displaying statistics or changing option settings. Using this method, you can view the administration console from a terminal, personal computer, Apple Macintosh, or workstation connected to the Managed Switch's console

(serial) port.

Figure 3-1-1:

Console Management

Direct Access

Direct access to the administration console is achieved by directly connecting a terminal or a PC equipped with a terminal-emulation program (such as

HyperTerminal

) to the Managed Switch console (serial) port. When using this management method, a straight DB9 RS232 cable

is required to connect the switch to the PC. After making this connection, configure the terminal-emulation program to use the following parameters:

The default parameters are:

 115200 bps

 8 data bits

 No parity

 1 stop bit

Figure 3-1-2:

Terminal Parameter Settings

35

User’s Manual of MGSW-28240F Managed switch

You can change these settings, if desired, after you log on. This management method is often preferred because you can remain connected and monitor the system during system reboots. Also, certain error messages are sent to the serial port, regardless of the interface through which the associated action was initiated. A Macintosh or PC attachment can use any terminal-emulation program for connecting to the terminal serial port. A workstation attachment under UNIX can use an emulator such as TIP.

3.4 Web Management

The Managed Switch offers management features that allow users to manage the Managed Switch from anywhere on the network through a standard browser such as Microsoft Internet Explorer. After you set up your IP address for the switch, you can access the Managed Switch's Web interface applications directly in your Web browser by entering the IP address of the

Managed Switch.

Figure 3-1-3:

Web Management

You can then use your Web browser to list and manage the Managed Switch configuration parameters from one central location, just as if you were directly connected to the Managed Switch's console port. Web Management requires either

Microsoft

Internet Explorer 7.0

or later,

Safari

or

Mozilla Firefox 1.5

or later.

Figure 3-1-4:

Web Main Screen of Managed Switch

36

User’s Manual of MGSW-28240F Managed switch

3.5 SNMP-based Network Management

You can use an external SNMP-based application to configure and manage the Managed Switch, such as SNMP Network

Manager, HP Openview Network Node Management (NNM) or What’s Up Gold. This management method requires the SNMP agent on the switch and the SNMP Network Management Station to use the same community string

. This management method, in fact, uses two community strings: the get community

string and the set community

string. If the SNMP Net-work management Station only knows the set community string, it can read and write to the MIBs. However, if it only knows the get community string, it can only read MIBs. The default getting and setting community strings for the Managed Switch is public.

Figure 3-1-5:

SNMP Management

3.6 PLANET Smart Discovery Utility

For easily listing the Managed Switch in your Ethernet environment, the Planet Smart Discovery Utility from user’s manual

CD-ROM is an ideal solution. The following installation instructions are to guide you to running the Planet Smart Discovery

Utility.

1. Deposit the Planet Smart Discovery Utility in administrator PC.

2. Run this utility as the following screen appears.

Figure 3-1-6:

Planet Smart Discovery Utility Screen

37

User’s Manual of MGSW-28240F Managed switch

If there are two LAN cards or above in the same administrator PC, choose a different LAN card by using the

“Select Adapter” tool.

3. Press the

“Refresh” button for the currently connected devices in the discovery list as the screen shows below:

Figure 3-1-7:

Planet Smart Discovery Utility Screen

1. This utility shows all necessary information from the devices, such as MAC address, device name, firmware version, and device IP subnet address. It can also assign new password, IP subnet address and description to the devices.

2. After setup is completed, press the “

Update Device

”, “

Update Multi

” or “

Update All

” button to take effect. The functions of the 3 buttons above are shown below:

 Update Device

: use current setting on one single device.

 Update Multi: use current setting on choose multi-devices.

 Update All: use current setting on whole devices in the list.

The same functions mentioned above also can be found in “

Option

” tools bar.

3. To click the “

Control Packet Force Broadcast

” function, it allows you to assign a new setting value to the Web Smart

Switch under a different IP subnet address.

4. Press the “

Connect to Device

” button and the Web login screen appears in Figure 3-1-4.

5. Press the “

Exit

” button to shut down the Planet Smart Discovery Utility.

38

User’s Manual of MGSW-28240F Managed switch

4. WEB CONFIGURATION

This section introduces the configuration and functions of the Web-based management from Managed Switch.

About Web-based Management

The Managed Switch offers management features that allow users to manage the Managed Switch from anywhere on the network through a standard browser such as Microsoft Internet Explorer.

The Web-based Management supports Internet Explorer 7.0. It is based on Java Applets with an aim to reduce network bandwidth consumption, enhance access speed and present an easy viewing screen.

By default, IE7.0 or later version does not allow Java Applets to open sockets. The user has to explicitly modify the browser setting to enable Java Applets to use network ports.

The Managed Switch can be configured through an Ethernet connection, making sure the manager PC must be set to the same

IP subnet address with the Managed Switch.

For example, the default IP address of the Managed Switch is 192.168.0.100

, then the manager PC should be set to

192.168.0.x

(where x is a number between 1 and 254, except 100), and the default subnet mask is 255.255.255.0.

If you have changed the default IP address of the Managed Switch to 192.168.1.1 with subnet mask 255.255.255.0 via console, then the manager PC should be set to 192.168.1.x (where x is a number between 2 and 254) to do the relative configuration on manager PC.

Figure 4-1-1:

Web Management

 Logging on to the Managed Switch

1. Use Internet Explorer 7.0 or above Web browser. Enter the factory-default IP address to access the Web interface. The factory-default IP address is shown as follows: http://192.168.0.100

39

User’s Manual of MGSW-28240F Managed switch

2. When the following login screen appears, please enter the default username " admin

" with password “ admin

” (or the username/password you have changed via console) to login the main screen of Managed Switch. The login screen in

Figure 4-1-2 appears.

Figure 4-1-2:

Login Screen

Default User name: admin

Default Password: admin

After entering the username and password, the main screen appears as shown in Figure 4-1-3 .

Figure 4-1-3:

Web Main Page

Now, you can use the Web management interface to continue the switch management or manage the Managed Switch by Web interface. The Switch Menu on the left of the web page lets you access all the commands and statistics the Managed Switch provides.

40

User’s Manual of MGSW-28240F Managed switch

1. It is recommended to use Internet Explore 7.0 or above to access Managed Switch.

2. The changed IP address takes effect immediately after clicking on the

Save

button. You need to use the new IP address to access the Web interface.

3. For security reason, please change and memorize the new password after this first setup.

4. Only accept command in lowercase letter under web interface.

4.1 Main Web Page

The Managed Switch provides a Web-based browser interface for configuring and managing it. This interface allows you to access the Managed Switch using the Web browser of your choice. This chapter describes how to use the Managed Switch’s

Web browser interface to configure and manage it.

Main Functions

Copper Port Link

Help Button

Figure 4-1-4:

Web Main Page

Main Screen

Panel Display

The web agent displays an image of the Managed Switch’s ports. The Mode can be set to display different information for the ports, including Link up or Link down. Clicking on the image of a port opens the

Port Statistics

page.

The port status are illustrated as follows:

State

RJ45 Ports

SFP Ports

Link Down

41

User’s Manual of MGSW-28240F Managed switch

Main Menu

Using the onboard web agent, you can define system parameters, manage and control the Managed Switch, and all its ports, or monitor network conditions. Via the Web-Management, the administrator can set up the Managed Switch by selecting the functions those listed in the Main Function. The screen in Figure 4-1-5 appears.

Figure 4-1-5:

Managed Switch Main Functions Menu

42

User’s Manual of MGSW-28240F Managed switch

4.2 System

Use the System menu items to display and configure basic administrative details of the Managed Switch. Under the System, the following topics are provided to configure and view the system information. This section has the following items:

■ System Information

IP Configuration

IP Status

The Managed Switch system information is provided here.

Configure the IPv4/IPv6 interface and IP routes of the Managed Switch on this page.

This page displays the status of the IP protocol layer. The status is defined by the IP interfaces, the IP routes and the neighbor cache (ARP cache) status.

This page provides an overview of the current users. Currently the only way ■ Users Configuration to login as another user on the web server is to close and reopen the browser.

■ Privilege Levels

■ NTP Configuration

■ Time Configuration

■ UPnP

This page provides an overview of the privilege levels.

Configure NTP server on this page.

Configure time parameter on this page.

Configure UPnP on this page.

■ DHCP Relay

Configure DHCP Relay on this page.

■ DHCP Relay Statistics

This page provides statistics for DHCP relay.

■ CPU Load

■ System Log

This page displays the CPU load, using an SVG graph.

The system log information of the Managed Switch system is provided here.

■ Detailed Log

■ Remote Syslog

■ SMTP Configuration

■ SNMP

■ RMON

■ DHCP server

The detailed log information of the Managed Switch system is provided here.

Configure remote syslog on this page.

Configure SMTP parameters on this page.

Configure SNMP parameters on this page

Configure the RMON parameters on this page

Configure the DHCP server on this page

43

User’s Manual of MGSW-28240F Managed switch

4.2.1 Management

4.2.1.1 System Information

The System Infomation page provides information for the current device information. System Information page helps a switch administrator to identify the hardware MAC address, software version and system uptime. The screen in Figure 4-2-1 appears.

Figure 4-2-1:

System Information Page Screenshot

The page includes the following fields:

Object

Contact

Name

Location

MAC Address

• Temperature

• Power Status

System Date

• System Uptime

• Software Version

• Software Date

Description

The system contact configured in SNMP | System Information | System Contact.

The system name configured in SNMP | System Information | System Name.

The system location configured in SNMP | System Information | System Location.

The MAC Address of this Managed Switch.

Indicates chipset temperature.

The status of power input (AC and DC)

The current (GMT) system time and date. The system time is obtained through the configured NTP Server, if any.

The period of time the device has been operational.

The software version of the Managed Switch.

The date when the Managed Switch software was produced.

44

User’s Manual of MGSW-28240F Managed switch

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page; any changes made locally will be undone.

4.2.1.2 IP Configuration

The IP Configuration includes the IP Configuration, IP Interface and IP Routes. The configured column is used to view or change the IP configuration. The maximum number of interfaces supported is 128 and the maximum number of routes is 32.

The screen in Figure 4-2-2 appears.

Figure 4-2-2:

IP Configuration Page Screenshot

The current column is used to show the active IP configuration.

Object

• IP Configurations Domain Name

Mode

DNS Server

Description

Configure the Switch Domain Name

Configure whether the IP stack should act as a Host or a Router. In

Host mode, IP traffic between interfaces will not be routed. In Router mode traffic is routed between all interfaces.

This setting controls the DNS name resolution done by the switch. The following modes are supported:

 No DNS server

No DNS server will be used..

 Configure IPv4 or IPv6

Explicitly specify the name of local domain.

Make sure the configured domain name meets your organization's given domain.

From any DHCPv6 interfaces

The first domain name offered from a DHCPv6 lease to a

45

• IP Interface

• IP Routes

User’s Manual of MGSW-28240F Managed switch

DHCPv6-enabled interface will be used.

From this DHCPv6 interface

Specify from which DHCPv6-enabled interface a provided domain name should be preferred..

DNS Proxy

When DNS proxy is enabled, system will relay DNS requests to the currently configured DNS server, and reply as a DNS resolver to the

Rapid

Commit client devices on the network.

Delete

VLAN

Select this option to delete an existing IP interface.

The VLAN associated with the IP interface. Only ports in this VLAN will be able to access the IP interface. This field is only available for input when creating a new interface.

IPv4

DHCP

IPv4

Enabled

Fallback

Current

Lease

Address

Enable the DHCP client by checking this box.

The number of seconds for trying to obtain a DHCP lease.

For DHCP interfaces with an active lease, this column shows the current interface address, as provided by the DHCP server.

Provide the IP address of this Managed Switch in dotted decimal notation.

Mask Length The IPv4 network mask, in number of bits ( prefix length ). Valid values are between 0 and 30 bits for a IPv4 address.

DHCPv6 Enable

Enable the DHCPv6 client by checking this box. If this option is enabled, the system will configure the IPv6 address of the interface using the

DHCPv6 protocol

Enable the DHCPv6 Rapid-Commit option by checking this box. If this option is enabled, the DHCPv6 client terminates the waiting process as

IPv6 soon as a Reply message with a Rapid Commit option is received.

This option is only manageable when DHCPv6 client is enabled.

Current

Lease

Address

For DHCPv6 interface with an active lease, this column shows the interface address provided by the DHCPv6 server

Provide the IP address of this Managed Switch. An IPv6 address is in

128-bit records represented as eight fields of up to four hexadecimal digits with a colon separating each field (:).

Mask Length

The IPv6 network mask, in number of bits ( prefix length ). Valid values are between 1 and 128 bits for an IPv6 address.

Delete

Network

Select this option to delete an existing IP route.

The destination IP network or host address of this route. Valid format is dotted decimal notation or a valid IPv6 notation. A default route can use the value 0.0.0.0

or IPv6 :: notation.

Mask Length The destination IP network or host mask, in number of bits ( length ). prefix

46

Gateway

Next Hop VLAN

User’s Manual of MGSW-28240F Managed switch

The IP address of the IP gateway. Valid format is dotted decimal notation or a valid IPv6 notation. Gateway and Network must be of the same type.

The VLAN ID (VID) of the specific IPv6 interface associated with the gateway.

Buttons

: Click to add a new IP interface. A maximum of 128 interfaces are supported.

: Click to add a new IP route. A maximum of 32 routes are supported.

: Click to apply changes.

: Click to undo any changes made locally and revert to previously saved values.

47

User’s Manual of MGSW-28240F Managed switch

4.2.1.3 IP Status

IP Status displays the status of the IP protocol layer. The status is defined by the IP interfaces, the IP routes and the neighbor cache (ARP cache) status. The screen in Figure 4-2-3 appears.

Figure 4-2-3:

IP Status Page Screenshot

The page includes the following fields:

Object

IP Interfaces

IP Routes

• Neighbor Cache

Interface

Type

Address

Status

Network

Gateway

Status

IP Address

Link Address

Description

The name of the interface.

The address type of the entry. This may be

The gateway address of this route.

The status flags of the route.

The IP address of the entry.

LINK or

The status flags of the interface (and/or address).

IPv4

The current address of the interface (of the given type).

The destination IP network or host address of this route.

.

The Link (MAC) address for which a binding to the IP address given exists.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page.

48

User’s Manual of MGSW-28240F Managed switch

4.2.1.4 Users Configuration

This page provides an overview of the current users. Currently the only way to login as another user on the web server is to close and reopen the browser. After setup is completed, press the

“Apply”

button to take effect. Please login web interface with new user name and password; the screen in Figure 4-2-4 appears.

The page includes the following fields:

Figure 4-2-4:

Users Configuration Page Screenshot

Object

• User Name

Description

The name identifying the user. This is also a link to Add/Edit User.

• Privilege Level

The privilege level of the user.

The allowed range is

1

to

15

. If the privilege level value is 15, it can access all groups, i.e. that is granted the full control of the device. But other values need to refer to each group privilege level. User's privilege should be the same or greater than the group privilege level to have the access to that group.

By default setting, most groups privilege level 5 has the read-only access and privilege level 10 has the read-write access. And the system maintenance (software upload, factory defaults and etc.) needs user privilege level 15.

Generally, the privilege level 15 can be used for an administrator account, privilege level

10 for a standard user account and privilege level 5 for a guest account.

Buttons

: Click to add a new user.

Add / Edit User

This page configures a user – add, edit or delete user.

49

User’s Manual of MGSW-28240F Managed switch

Figure 4-2-5:

Add / Edit User Configuration Page Screenshot

The page includes the following fields:

Object

• Username

Password

Password (again)

Privilege Level

Description

A string identifying the user name that this entry should belong to. The allowed string length is

1

to

31

. The valid user name is a combination of letters, numbers and underscores.

The password of the user. The allowed string length is

1

to

31

.

Please enter the user’s new password here again to confirm.

The privilege level of the user.

The allowed range is

1

to

15

. If the privilege level value is 15, it can access all groups, i.e. that is granted the fully control of the device. But others value need to refer to each group privilege level. User's privilege should be same or greater than the group privilege level to have the access of that group.

By default setting, most groups privilege level 5 has the read-only access and privilege level 10 has the read-write access. And the system maintenance

(software upload, factory defaults and etc.) needs user privilege level 15.

Generally, the privilege level 15 can be used for an administrator account, privilege level 10 for a standard user account and privilege level 5 for a guest account.

Buttons

: Click to apply changes.

: Click to undo any changes made locally and revert to previously saved values.

: Click to undo any changes made locally and return to the Users.

: Delete the current user. This button is not available for new configurations (Add new user).

50

User’s Manual of MGSW-28240F Managed switch

Once the new user is added, the new user entry is shown on the Users Configuration page.

Figure 4-2-6:

User Configuration Page Screenshot

If you forget the new password after changing the default password, please press the “Reset” button on the front panel of the Managed Switch for over 10 seconds and then release it. The current setting including VLAN will be lost and the Managed Switch will restore to the default mode.

51

User’s Manual of MGSW-28240F Managed switch

4.2.1.5 Privilege Levels

This page provides an overview of the privilege levels. After setup is completed, please press the

“Apply”

button to take effect.

Please login web interface with new user name and password and the screen in Figure 4-2-7 appears.

Figure 4-2-7:

Privilege Levels Configuration Page Screenshot

52

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Object

• Group Name

• Privilege Level

Description

The name identifying the privilege group. In most cases, a privilege level group consists of a single module (e.g. LACP, RSTP or QoS), but a few of them contain more than one. The following description defines these privilege level groups in details:

 System

: Contact, Name, Location, Timezone, Log.

 Security

: Authentication, System Access Management, Port (contains Dot1x port, MAC based and the MAC Address Limit), ACL, HTTPS, SSH, ARP

Inspection and IP source guard.

 IP

: Everything except 'ping'.

 Port

: Everything except 'VeriPHY'.

 Diagnostics

: 'ping' and 'VeriPHY'.

 Maintenance

: CLI- System Reboot, System Restore Default, System

Password, Configuration Save, Configuration Load and Firmware Load.

Web- Users, Privilege Levels and everything in Maintenance.

 Debug

: Only present in CLI.

Every privilege level group has an authorization level for the following sub groups:

 Configuration read-only

 Configuration/execute read-write

 Status/statistics read-only

 Status/statistics read-write

(e.g. for clearing of statistics).

Buttons

: Click to apply changes.

: Click to undo any changes made locally and revert to previously saved values.

53

User’s Manual of MGSW-28240F Managed switch

4.2.1.6 NTP Configuration

Configure NTP on this page.

NTP

is an acronym for

Network Time Protocol

, a network protocol for synchronizing the clocks of computer systems. NTP uses UDP (data grams) as transport layer. You can specify NTP Servers. The NTP Configuration screen in Figure 4-2-8 appears.

The page includes the following fields:

Figure 4-2-8:

NTP Configuration Page Screenshot

Object

• Mode

• Server #

Description

Indicates the NTP mode operation. Possible modes are:

 Enabled

: Enable NTP mode operation. When enabling NTP mode operation, the agent forward and transfer NTP messages between the clients and the server when they are not on the same subnet domain.

 Disabled

: Disable NTP mode operation.

Provide the NTP IPv4 or IPv6 address of this switch. IPv6 address is in 128-bit records represented as eight fields of up to four hexadecimal digits with a colon separating each field (:).

For example, 'fe80::215:c5ff:fe03:4dc7'. The symbol '::' is a special syntax that can be used as a shorthand way of representing multiple 16-bit groups of contiguous zeros, but it can only appear once. It also uses a legal IPv4 address like '::192.1.2.34'.

Buttons

: Click to apply changes.

: Click to undo any changes made locally and revert to previously saved values.

54

User’s Manual of MGSW-28240F Managed switch

4.2.1.6.1 System Time Correction Manually

Configure NTP on this page.

NTP

is an acronym for

Network Time Protocol

, a network protocol for synchronizing the clocks of computer systems. NTP uses UDP (data grams) as transport layer. You can specify NTP Servers. The NTP Configuration screen in Figure 4-2-8 appears.

Figure 4-2-8:

System time correction Manually Page Screenshot

The page includes the following fields:

Object

• User Manually

• Date

Description

Indicates the NTP mode as manual operation. Possible modes are:

 Enabled

: Enable NTP manual mode operation. When enabling NTP user manually mode operation, the system time will follow the date setting.

 Disabled

: Disable NTP user manual mode operation.

If enable the user manually , Switch can set the Year / Mouth / Day/ Hour / Minute

/ Second in this page

Buttons

: Click to apply changes.

: Click to undo any changes made locally and revert to previously saved values.

55

User’s Manual of MGSW-28240F Managed switch

4.2.1.7 Time Configuration

Configure Time Zone on this page. A

Time Zone

is a region that has a uniform standard time for legal, commercial, and social purposes. It is convenient for areas in close commercial or other communication to keep the same time, so time zones tend to follow the boundaries of countries and their subdivisions. The Time Zone Configuration screen in Figure 4-2-9 appears

Figure 4-2-9:

Time Configuration Page Screenshot

The page includes the following fields:

Object

• Time Zone

• Acronym

• Daylight Saving

Time

Description

Lists various Time Zones worldwide. Select appropriate Time Zone from the drop-down and click Save to set.

User can set the acronym of the time zone. This is a User configurable acronym to identify the time zone. ( Range: Up to 16 characters )

This is used to set the clock forward or backward according to the configurations set below for a defined Daylight Saving Time duration. Select 'Disable' to disable the

Daylight Saving Time configuration. Select 'Recurring' and configure the Daylight

Saving Time duration to repeat the configuration every year. Select 'Non-Recurring' and configure the Daylight Saving Time duration for single time configuration.

56

User’s Manual of MGSW-28240F Managed switch

Buttons

( Default: Disabled ).

• Start Time Settings • Week

- Select the starting week number.

• Day

- Select the starting day.

• Month

- Select the starting month.

• Hours

- Select the starting hour.

• Minutes

- Select the starting minute.

• End Time Settings • Week

- Select the ending week number.

• Day

- Select the ending day.

• Month

- Select the ending month.

• Hours

- Select the ending hour.

• Minutes

- Select the ending minute

• Offset Settings

Enter the number of minutes to add during Daylight Saving Time. ( Range: 1 to

1440 )

: Click to apply changes.

: Click to undo any changes made locally and revert to previously saved values.

4.2.1.8 UPnP

Configure UPnP on this page. UPnP is an acronym for

Universal Plug and Play

. The goals of UPnP are to allow devices to connect seamlessly and to simplify the implementation of networks in the home (data sharing, communications, and entertainment) and in corporate environments for simplified installation of computer components. The UPnP Configuration screen in Figure 4-2-10 appears.

Figure 4-2-10:

UPnP Configuration Page Screenshot

The page includes the following fields:

Object Description

57

• Mode

• Advertising

Duration

• IP Addressing

Mode switch device.

The index of the specific IP VLAN interface. It will only be applied when IP

Addressing Mode is static. Valid configurable values ranges from 1 to 4095.

Default value is 1.

User’s Manual of MGSW-28240F Managed switch

Indicates the UPnP operation mode. Possible modes are:

 Enabled

: Enable UPnP mode operation.

 Disabled

: Disable UPnP mode operation.

When the mode is enabled, two ACEs are added automatically to trap UPnP related packets to CPU. The ACEs are automatically removed when the mode is disabled.

The duration, carried in SSDP packets, is used to inform a control point or control points how often it or they should receive a SSDP advertisement message from this switch. If a control point does not receive any message within the duration, it will think that the switch no longer exists. Due to the unreliable nature of UDP, in the standard it is recommended that such refreshing of advertisements to be done at less than one-half of the advertising duration. In the implementation, the switch sends SSDP messages periodically at the interval one-half of the advertising duration minus 30 seconds. Valid values are in the range 100 to 86400.

IP addressing mode provides two ways to determine IP address assignment:

Dynamic : Default selection for UPnP. UPnP module helps users choosing the IP address of the switch device. It finds the first available system IP address.

Static : User specifies the IP interface VLAN for choosing the IP address of the

Buttons

• Static VLAN

Interface ID

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

Figure 4-2-11:

UPnP devices Shown on Windows My Network Place

58

User’s Manual of MGSW-28240F Managed switch

4.2.1.9 DHCP Relay

Configure DHCP Relay on this page.

DHCP Relay

is used to forward and transfer DHCP messages between the clients and the server when they are not on the same subnet domain.

The

DHCP option 82 enables a DHCP relay agent to insert specific information into a DHCP request packets when forwarding client DHCP packets to a DHCP server and remove the specific information from a DHCP reply packets when forwarding server

DHCP packets to a DHCP client. The DHCP server can use this information to implement IP address or other assignment policies. Specifically the option works by setting two sub-options:

 Circuit ID (option 1)

 Remote ID (option 2)

The

Circuit ID

sub-option is supposed to include information specific to which circuit the request came in on.

The

Remote ID

sub-option was designed to carry information relating to the remote host end of the circuit.

The definition of Circuit ID in the switch is 4 bytes in length and the format is "vlan_id" "module_id" "port_no". The parameter of

"vlan_id" is the first two bytes representing the VLAN ID. The parameter of "module_id" is the third byte for the module ID. The parameter of "port_no" is the fourth byte and it means the port number.

The Remote ID is 6 bytes in length, and the value equals the DHCP relay agent’s MAC address. The DHCP Relay Configuration screen in Figure 4-2-12 appears.

Figure 4-2-12

DHCP Relay Configuration Page Screenshot

The page includes the following fields:

Object

• Relay Mode

• Relay Server

• Relay Information

Description

Indicates the DHCP relay mode operation. Possible modes are:

 Enabled

: Enable DHCP relay mode operation. When enabling DHCP relay mode operation, the agent forwards and transfers DHCP messages between the clients and the server when they are not on the same subnet domain.

And the DHCP broadcast message won't flood for security considered.

 Disabled

: Disable DHCP relay mode operation.

Indicates the DHCP relay server IP address. A DHCP relay agent is used to forward and transfer DHCP messages between the clients and the server when they are not on the same subnet domain.

Indicates the DHCP relay information mode option operation. Possible modes

59

User’s Manual of MGSW-28240F Managed switch

Mode

• Relay Information

Policy are:

 Enabled

: Enable DHCP relay information mode operation. When enabling

DHCP relay information mode operation, the agent inserts specific information (option82) into a DHCP message when forwarding to DHCP server and removing it from a DHCP message when transferring to DHCP client. It only works under DHCP relay operation mode enabled.

 Disabled

: Disable DHCP relay information mode operation.

Indicates the DHCP relay information option policy. When enabling DHCP relay information mode operation, if agent receives a DHCP message that already contains relay agent information. It will enforce the policy. And it only works under

DHCP relay information operation mode enabled. Possible policies are:

 Replace

: Replace the original relay information when receiving a DHCP message that already contains it.

 Keep

: Keep the original relay information when receiving a DHCP message that already contains it.

 Drop

: Drop the package when receiving a DHCP message that already contains relay information.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.2.1.10 DHCP Relay Statistics

This page provides statistics for DHCP relay. The DHCP Relay Statistics screen in Figure 4-2-13 appears.

Figure 4-2-13:

DHCP Relay Statistics Page Screenshot

60

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Server Statistics

Object

• Transmit to Server

• Transmit Error

• Receive from Server

Description

The packets number that relayed from client to server.

The packets number that erroneously sent packets to clients.

The packets number that received packets from server.

• Receive Missing Agent

Option

• Receive Missing

Circuit ID

The packets number that received packets without agent information options.

The packets number that received packets whose the Circuit ID option was missing.

• Receive Missing

Remote ID

The packets number that received packets whose Remote ID option was missing.

• Receive Bad Circuit ID

The packets number whose the Circuit ID option did not match known circuit ID.

Receive Bad Remote ID

The packets number whose the Remote ID option did not match known Remote

ID.

Client Statistics

Object

• Transmit to Client

Description

The packets number that relayed packets from server to client.

• Transmit Error

• Receive from Client

The packets number that erroneously sent packets to servers.

The packets number that received packets from server.

• Receive Agent Option

The packets number that received packets with relay agent information option.

• Replace Agent Option

The packets number that replaced received packets with relay agent information option.

• Keep Agent Option

The packets number that kept received packets with relay agent information option.

• Drop Agent Option

The packets number that dropped received packets with relay agent information option.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

: Clears all statistics.

61

User’s Manual of MGSW-28240F Managed switch

4.2.1.11 CPU Load

This page displays the CPU load, using an SVG graph. The load is measured as average over the last 100ms, 1 sec and 10 seconds intervals. The last 120 samples are graphed, and the last numbers are displayed as text as well. In order to display the

SVG graph, your browser must support the SVG format. Consult the SVG Wiki for more information on browser support.

Specifically, at the time of writing, Microsoft Internet Explorer will need to have a plugin installed to support SVG. The CPU Load screen in Figure 4-2-14 appears.

Figure 4-2-14:

CPU Load Page Screenshot

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

If your browser cannot display anything on this page, please download Adobe SVG tool and install it in your computer.

62

User’s Manual of MGSW-28240F Managed switch

4.2.1.12 System Log

The Managed Switch system log information is provided here. The System Log screen in Figure 4-2-15 appears.

Figure 4-2-15:

System Log Page Screenshot

The page includes the following fields:

Object

• ID

• Level

Description

The ID (>= 1) of the system log entry.

• Clear Level

The level of the system log entry. The following level types are supported:

 Info

: Information level of the system log.

 Warning

: Warning level of the system log.

 Error

: Error level of the system log.

 All

: All levels.

To clear the system log entry level. The following level types are supported:

 Info

: Information level of the system log.

 Warning

: Warning level of the system log.

 Error

: Error level of the system log.

 All

: All levels.

The time of the system log entry.

• Time

• Message

The message of the system log entry.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Updates the system log entries, starting from the current entry ID.

: Flushes the selected log entries.

: Hides the selected log entries.

: Downloads the selected log entries.

63

User’s Manual of MGSW-28240F Managed switch

: Updates the system log entries, starting from the first available entry ID.

: Updates the system log entries, ending at the last entry currently displayed.

: Updates the system log entries, starting from the last entry currently displayed.

: Updates the system log entries, ending at the last available entry ID.

4.2.1.13 Detailed Log

The Managed Switch system detailed log information is provided here. The Detailed Log screen in Figure 4-2-16 appears.

The page includes the following fields:

Figure 4-2-15:

Detailed Log Page Screenshot

Buttons

Object

• ID

• Message

Description

The ID (>= 1) of the system log entry.

The message of the system log entry.

: Download the system log entry to the current entry ID.

: Updates the system log entry to the current entry ID.

: Updates the system log entry to the first available entry ID.

: Updates the system log entry to the previous available entry ID.

: Updates the system log entry to the next available entry ID.

: Updates the system log entry to the last available entry ID.

: Print the system log entry to the current entry ID.

64

User’s Manual of MGSW-28240F Managed switch

4.2.1.14 Remote Syslog

Configure remote syslog on this page. The Remote Syslog screen in Figure 4-2-17 appears.

The page includes the following fields:

Figure 4-2-17:

Remote Syslog Page Screenshot

Object

• Mode

• Syslog Server IP

• Syslog Level

Description

Indicates the server mode operation. When the mode operation is enabled, the syslog message will send out to syslog server. The syslog protocol is based on

UDP communication and received on UDP port 514 and the syslog server will not send acknowledgments back sender since UDP is a connectionless protocol and it does not provide acknowledgments. The syslog packet will always send out even if the syslog server does not exist. Possible modes are:

 Enabled

: Enable remote syslog mode operation.

 Disabled

: Disable remote syslog mode operation.

Indicates the IPv4 host address of syslog server. If the switch provides DNS feature, it also can be a host name.

Indicates what kind of message will send to syslog server. Possible modes are:

 Info

: Send information, warnings and errors.

 Warning

: Send warnings and errors.

 Error

: Send errors.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

65

User’s Manual of MGSW-28240F Managed switch

4.2.1.15 SMTP Configuration

This page facilitates an SMTP Configuration on the switch. The SMTP Configure screen in Figure 4-2-18 appears.

Figure 4-2-18:

SMTP Configuration Page Screenshot

The page includes the following fields:

Object

• SMTP Mode

• SMTP Server

• SMTP Port

• SMTP Authentication

Description

Controls whether SMTP is enabled on this switch.

Type the SMTP server name or the IP address of the SMTP server.

Set port number of SMTP service.

Controls whether SMTP authentication is enabled if authentication is required when an e-mail is sent.

Type the user name for the SMTP server if Authentication is Enabled.

Buttons

• Authentication User

Name

• Authentication

Password

• E-mail From

• E-mail Subject

• E-mail 1 To

• E-mail 2 To

Type the password for the SMTP server if Authentication is Enabled.

Type the sender’s e-mail address. This address is used for reply e-mails.

Type the subject/title of the e-mail.

Type the receiver’s e-mail address.

: Send a test mail to mail server to check whether this account is available or not.

: Click to save changes.

: Click to undo any changes made locally and revert to previously saved values.

66

User’s Manual of MGSW-28240F Managed switch

4.2.2 Simple Network Management Protocol

4.2.2.1 SNMP Overview

The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite.

SNMP enables network administrators to manage network performance, find and solve network problems, and plan for network growth.

An SNMP-managed network consists of three key components: Network management stations (NMSs), SNMP agents,

Management information base (MIB) and network-management protocol:

Network management stations (NMSs):

Sometimes called consoles, these devices execute management applications that monitor and control network elements. Physically, NMSs are usually engineering workstation-caliber computers with fast CPUs, megapixel color displays, substantial memory, and abundant disk space. At least one NMS must be present in each managed environment.

Agents:

Agents are software modules that reside in network elements. They collect and store management information such as the number of error packets received by a network element.

Management information base (MIB):

A MIB is a collection of managed objects residing in a virtual information store.

Collections of related managed objects are defined in specific MIB modules.

Network-management protocol:

A management protocol is used to convey management information between agents and NMSs. SNMP is the Internet community's de facto standard management protocol.

Figure 4-2-2-1:

SNMP Operations

SNMP itself is a simple request/response protocol. NMSs can send multiple requests without receiving a response.

■ Get --

Allows the NMS to retrieve an object instance from the agent.

■ Set --

Allows the NMS to set values for object instances within an agent.

■ Trap --

Used by the agent to asynchronously inform the NMS of some event. The SNMPv2 trap message is designed to replace the SNMPv1 trap message.

67

User’s Manual of MGSW-28240F Managed switch

SNMP community

An SNMP community is the group that devices and management stations running SNMP belong to. It helps define where information is sent. The community name is used to identify the group. An SNMP device or agent may belong to more than one

SNMP community. It will not respond to requests from management stations that do not belong to one of its communities. SNMP default communities are:

Write

= private

Read

= public

Use the SNMP Menu to display or configure the Managed Switch's SNMP function. This section has the following items:

 System Configuration

 Trap Configuration

 System Information

 SNMPv3 Communities

 SNMPv3 Users

 SNMPv3 Groups

 SNMPv3 Views

 SNMPv3 Access

4.2.2.2 SNMP System Configuration

Configure SNMP on this page.

Configure SNMP trap on this page.

The system information is provided here.

Configure SNMPv3 communities table on this page.

Configure SNMPv3 users table on this page.

Configure SNMPv3 groups table on this page.

Configure SNMPv3 views table on this page.

Configure SNMPv3 accesses table on this page.

Configure SNMP on this page. The SNMP System Configuration screen in Figure 4-2-2-2 appears.

Figure 4-2-2-2:

SNMP System Configuration Page Screenshot

The page includes the following fields:

Object

• Mode

• Version

Description

Indicates the SNMP mode operation. Possible modes are:

 Enabled

: Enable SNMP mode operation.

 Disabled

: Disable SNMP mode operation.

Indicates the SNMP supported version. Possible versions are:

68

• Read Community

• Write Community

• Engine ID

User’s Manual of MGSW-28240F Managed switch

 SNMP v1

: Set SNMP supported version 1.

 SNMP v2c

: Set SNMP supported version 2c.

 SNMP v3

: Set SNMP supported version 3.

Indicates the community read access string to permit access to SNMP agent.

The allowed string length is 0 to 255, and the allowed content is the ASCII characters from 33 to 126.

The field is applicable only when SNMP version is SNMPv1 or SNMPv2c. If

SNMP version is SNMPv3, the community string will be associated with SNMPv3 communities table. It provides more flexibility to configure security name than a

SNMPv1 or SNMPv2c community string. In addition to community string, a particular range of source addresses can be used to restrict source subnet.

Indicates the community write access string to permit access to SNMP agent.

The allowed string length is 0 to 255, and the allowed content is the ASCII characters from 33 to 126.

The field is applicable only when SNMP version is SNMPv1 or SNMPv2c. If

SNMP version is SNMPv3, the community string will be associated with SNMPv3 communities table. It provides more flexibility to configure security name than a

SNMPv1 or SNMPv2c community string. In addition to community string, a particular range of source addresses can be used to restrict source subnet.

Indicates the SNMPv3 engine ID. The string must contain an even number between 10 and 64 hexadecimal digits, but all-zeros and all-'F's are not allowed.

Change of the Engine ID will clear all original local users.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

69

User’s Manual of MGSW-28240F Managed switch

4.2.2.3 SNMP Trap Configuration

Configure SNMP trap on this page. The SNMP Trap Configuration screen in Figure 4-2-2-3 appears.

Figure 4-2-2-3:

SNMP Trap Configuration Page Screenshot

The page includes the following fields:

Object

• Trap Config

• Trap Mode

• Trap Version

Description

Indicates which trap Configuration's name for configuring. The allowed string length is 0 to 255, and the allowed content is ASCII characters from 33 to 126.

Indicates the SNMP trap mode operation. Possible modes are:

 Enabled

: Enable SNMP trap mode operation.

 Disabled

: Disable SNMP trap mode operation.

Indicates the SNMP trap supported version. Possible versions are:

 SNMP v1

: Set SNMP trap supported version 1.

 SNMP v2c

: Set SNMP trap supported version 2c.

 SNMP v3

: Set SNMP trap supported version 3.

70

User’s Manual of MGSW-28240F Managed switch

• Trap Community

• Trap Destination

Address

• Trap Destination Port

Indicates the community access string when send SNMP trap packet. The allowed string length is 0 to 255, and the allowed content is the ASCII characters from 33 to 126.

Indicates the SNMP trap destination address.

• Trap Inform Mode

• Trap Inform Timeout

(seconds)

• Trap Inform Retry

Times

• Trap Probe Security

Engine ID

• Trap Security Engine

ID

• Trap Security Name

• System

• Interface

• AAA

• Switch

Indicates the SNMP trap destination port. SNMP Agent will send SNMP message via this port, the port range is 1~65535.

Indicates the SNMP trap inform mode operation. Possible modes are:

 Enabled

: Enable SNMP trap authentication failure.

 Disabled

: Disable SNMP trap authentication failure.

Indicates the SNMP trap inform timeout.

The allowed range is

0

to

2147

.

Indicates the SNMP trap inform retry times.

The allowed range is

0

to

255

.

Indicates the SNMPv3 trap probe security engine ID mode of operation. Possible values are:

 Enabled

: Enable SNMP trap probe security engine ID mode of operation.

 Disabled

: Disable SNMP trap probe security engine ID mode of operation.

Indicates the SNMP trap security engine ID. SNMPv3 sends traps and informs using USM for authentication and privacy. A unique engine ID for these traps and informs is needed. When "Trap Probe Security Engine ID" is enabled, the ID will be probed automatically. Otherwise, the ID specified in this field is used. The string must contain an even number(in hexadecimal format) with number of digits between 10 and 64, but all-zeros and all-'F's are not allowed.

Indicates the SNMP trap security name. SNMPv3 traps and informs using USM for authentication and privacy. A unique security name is needed when traps and informs are enabled.

Enable/disable that the Interface group's traps. Possible traps are:

 Warm Start

: Enable/disable Warm Start trap.

 Cold Start

: Enable/disable Cold Start trap.

Indicates that the Interface group's traps. Possible traps are:

 Link Up

: Enable/disable Link up trap.

 Link Down

: Enable/disable Link down trap.

 LLDP

: Enable/disable LLDP trap.

Indicates that the AAA group's traps. Possible traps are:

Authentication Fail

: Enable/disable SNMP trap authentication failure trap.

Indicates that the Switch group's traps. Possible traps are:

 STP

: Enable/disable STP trap.

 RMON

: Enable/disable RMON trap.

71

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.2.2.4 SNMP System Information

The switch system information is provided here. The SNMP System Information screen in Figure 4-2-2-4 appears.

Figure 4-2-2-4:

System Information Configuration Page Screenshot

The page includes the following fields:

Object

• System Contact

System Name

System Location

Description

The textual identification of the contact person for this managed node, together with information on how to contact this person. The allowed string length is 0 to

255, and the allowed content is the ASCII characters from 32 to 126.

An administratively assigned name for this managed node. By convention, this is the node's fully-qualified domain name. A domain name is a text string drawn from the alphabet (A-Za-z), digits (0-9), minus sign (-). No space characters are permitted as part of a name. The first character must be an alpha character. And the first or last character must not be a minus sign. The allowed string length is 0 to 255.

The physical location of this node(e.g., telephone closet, 3rd floor). The allowed string length is 0 to 255, and the allowed content is the ASCII characters from 32 to 126.

72

User’s Manual of MGSW-28240F Managed switch

4.2.2.5 SNMPv3 Communities

Configure SNMPv3 communities table on this page. The entry index key is Community. The SNMPv3 Communities screen in

Figure 4-2-2-5 appears.

Figure 4-2-2-5:

SNMPv3 Communities Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• Community

• Source IP

Description

Check to delete the entry. It will be deleted during the next save.

Indicates the community access string to permit access to SNMPv3 agent. The allowed string length is 1 to 32, and the allowed content is ASCII characters from

33 to 126. The community string will be treated as security name and map a

SNMPv1 or SNMPv2c community string.

Indicates the SNMP access source address. A particular range of source addresses can be used to restrict source subnet when combined with source mask.

Indicates the SNMP access source address mask.

Buttons

• Source Mask

: Click to add a new community entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

73

User’s Manual of MGSW-28240F Managed switch

4.2.2.6 SNMPv3 Users

Configure SNMPv3 users table on this page. The entry index keys are Engine ID and User Name. The SNMPv3 Users screen in

Figure 4-2-2-6 appears.

Figure 4-2-2-6:

SNMPv3 Users Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• Engine ID

Description

Check to delete the entry. It will be deleted during the next save.

An octet string identifying the engine ID that this entry should belong to. The string must contain an even number(in hexadecimal format) with number of digits between 10 and 64, but all-zeros and all-'F's are not allowed. The SNMPv3 architecture uses the User-based Security Model (USM) for message security and the View-based Access Control Model (VACM) for access control. For the

USM entry, the usmUserEngineID and usmUserName are the entry's keys.

• User Name

• Security Level

• Authentication

Protocol

In a simple agent, usmUserEngineID is always that agent's own snmpEngineID value. The value can also take the value of the snmpEngineID of a remote SNMP engine with which this user can communicate. In other words, if user engine ID equal system engine ID then it is local user; otherwise it's remote user.

A string identifying the user name that this entry should belong to. The allowed string length is 1 to 32, and the allowed content is ASCII characters from 33 to

126.

Indicates the security model that this entry should belong to. Possible security models are:

 NoAuth, NoPriv

: None authentication and none privacy.

 Auth, NoPriv

: Authentication and none privacy.

 Auth, Priv

: Authentication and privacy.

The value of security level cannot be modified if entry already exist. That means must first ensure that the value is set correctly.

Indicates the authentication protocol that this entry should belong to. Possible authentication protocol are:

 None

: None authentication protocol.

 MD5

: An optional flag to indicate that this user using MD5 authentication

74

• Authentication

Password

• Privacy Protocol

User’s Manual of MGSW-28240F Managed switch protocol.

 SHA

: An optional flag to indicate that this user using SHA authentication protocol.

The value of security level cannot be modified if entry already exist. That means must first ensure that the value is set correctly.

A string identifying the authentication pass phrase. For MD5 authentication protocol, the allowed string length is 8 to 32. For SHA authentication protocol, the allowed string length is 8 to 40. The allowed content is the ASCII characters from

33 to 126.

Indicates the privacy protocol that this entry should belong to. Possible privacy protocol are:

 None

: None privacy protocol.

 DES

: An optional flag to indicate that this user using DES authentication protocol.

 AES

: An optional flag to indicate that this user uses AES authentication protocol.

A string identifying the privacy pass phrase. The allowed string length is 8 to 32, and the allowed content is the ASCII characters from 33 to 126.

Buttons

• Privacy Password

: Click to add a new user entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

75

User’s Manual of MGSW-28240F Managed switch

4.2.2.7 SNMPv3 Groups

Configure SNMPv3 groups table on this page. The entry index keys are Security Model and Security Name. The SNMPv3

Groups screen in Figure 4-2-2-7 appears.

Figure 4-2-2-7:

SNMPv3 Groups Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• Security Model

• Security Name

• Group Name

Description

Check to delete the entry. It will be deleted during the next save.

Indicates the security model that this entry should belong to. Possible security models are:

 v1

: Reserved for SNMPv1.

 v2c

: Reserved for SNMPv2c.

 usm

: User-based Security Model (USM).

A string identifying the security name that this entry should belong to.

The allowed string length is 1 to 32, and the allowed content is the ASCII characters from 33 to 126.

A string identifying the group name that this entry should belong to.

The allowed string length is 1 to 32, and the allowed content is the ASCII characters from 33 to 126.

Buttons

: Click to add a new group entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

76

User’s Manual of MGSW-28240F Managed switch

4.2.2.8 SNMPv3 Views

Configure SNMPv3 views table on this page. The entry index keys are View Name and OID Subtree. The SNMPv3 Views screen in Figure 4-2-2-8 appears.

Figure 4-2-2-8:

SNMPv3 Views Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• View Name

• View Type

• OID Subtree

Description

Check to delete the entry. It will be deleted during the next save.

A string identifying the view name that this entry should belong to. The allowed string length is 1 to 32, and the allowed content is the ASCII characters from 33 to 126.

Indicates the view type that this entry should belong to. Possible view type are:

 included

: An optional flag to indicate that this view subtree should be included.

 excluded

: An optional flag to indicate that this view subtree should be excluded.

In general, if a view entry's view type is 'excluded', it should be exist another view entry which view type is 'included' and it's OID subtree overstep the 'excluded' view entry.

The OID defining the root of the subtree to add to the named view. The allowed

OID length is 1 to 128. The allowed string content is digital number or asterisk(*).

Buttons

: Click to add a new view entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.2.2.9 SNMPv3 Access

Configure SNMPv3 accesses table on this page. The entry index keys are Group Name, Security Model and Security Level.

The SNMPv3 Access screen in Figure 4-2-2-9 appears.

77

User’s Manual of MGSW-28240F Managed switch

Figure 4-2-2-9:

SNMPv3 Accesses Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• Group Name

• Security Model

• Security Level

• Read View Name

• Write View Name

Description

Check to delete the entry. It will be deleted during the next save.

A string identifying the group name that this entry should belong to. The allowed string length is 1 to 32, and the allowed content is the ASCII characters from 33 to 126.

Indicates the security model that this entry should belong to. Possible security models are:

 any

: Accepted any security model (v1|v2c|usm).

 v1

: Reserved for SNMPv1.

 v2c

: Reserved for SNMPv2c.

 usm

: User-based Security Model (USM)

Indicates the security model that this entry should belong to. Possible security models are:

 NoAuth, NoPriv

: None authentication and none privacy.

 Auth, NoPriv

: Authentication and none privacy.

 Auth, Priv

: Authentication and privacy.

The name of the MIB view defining the MIB objects for which this request may request the current values. The allowed string length is 1 to 32, and the allowed content is the ASCII characters from 33 to 126.

The name of the MIB view defining the MIB objects for which this request may potentially SET new values. The allowed string length is 1 to 32, and the allowed content is the ASCII characters from 33 to 126.

Buttons

: Click to add a new access entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

78

User’s Manual of MGSW-28240F Managed switch

4.2.3 RMON

RMON is the most important expansion of the standard SNMP. RMON is a set of MIB definitions, used to define standard network monitor functions and interfaces, enabling the communication between SNMP management terminals and remote monitors. RMON provides a highly efficient method to monitor actions inside the subnets.

MID of RMON consists of 10 groups. The switch supports the most frequently used groups 1, 2, 3 and 9:

 Statistics:

Maintain basic usage and error statistics for each subnet monitored by the agent.

 History:

Record periodical statistic samples available from statistics.

 Alarm:

Allow management console users to set any count or integer for sample intervals and alert thresholds for

RMON agent records.

 Event:

A list of all events generated by RMON agent.

Alarm depends on the implementation of Event. Statistics and History display some current or history subnet statistics. Alarm and Event provide a method to monitor any integer data change in the network, and provide some alerts upon abnormal events

(sending Trap or record in logs).

4.2.3.1 RMON Alarm Configuration

Configure RMON Alarm table on this page. The entry index key is

ID

.; screen in Figure 4-2-3-1 appears.

Figure 4-2-3-1:

RMON Alarm Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• ID

• Interval

• Variable

Description

Check to delete the entry. It will be deleted during the next save.

Indicates the index of the entry. The range is from 1 to 65535.

Indicates the interval in seconds for sampling and comparing the rising and falling threshold. The range is from 1 to 2^31-1.

Indicates the particular variable to be sampled; the possible variables are:

 InOctets

: The total number of octets received on the interface, including framing characters.

 InUcastPkts

: The number of uni-cast packets delivered to a higher-layer

79

User’s Manual of MGSW-28240F Managed switch

• Sample Type protocol.

 InNUcastPkts

: The number of broadcast and multi-cast packets delivered to a higher-layer protocol.

 InDiscards

: The number of inbound packets that are discarded even the packets are normal.

 InErrors

: The number of inbound packets that contains errors preventing them from being deliverable to a higher-layer protocol.

 InUnknownProtos

: the number of the inbound packets that is discarded because of the unknown or un-support protocol.

 OutOctets

: The number of octets transmitted out of the interface, including framing characters.

 OutUcastPkts

: The number of uni-cast packets that requests to transmit.

 OutNUcastPkts

: The number of broadcast and multi-cast packets that requests to transmit.

 OutDiscards

: The number of outbound packets that is discarded even the packets are normal.

 OutErrors

: The number of outbound packets that could not be transmitted because of errors.

 OutQLen

: The length of the output packet queue (in packets).

The method of sampling the selected variable and calculating the value to be compared against the thresholds; possible sample types are:

 Absolute

: Get the sample directly.

 Delta

: Calculate the difference between samples (default).

The value of the statistic during the last sampling period.

• Value

• Startup Alarm

Buttons

• Rising Threshold

• Rising Index

• Falling Threshold

• Falling Index

The method of sampling the selected variable and calculating the value to be compared against the thresholds; possible sample types are:

 Rising

Trigger alarm when the first value is larger than the rising threshold.

 Falling

Trigger alarm when the first value is less than the falling threshold.

 RisingOrFalling

Trigger alarm when the first value is larger than the rising threshold or less than the falling threshold (default).

Rising threshold value (-2147483648-2147483647).

Rising event index (1-65535).

Falling threshold value (-2147483648-2147483647)

Falling event index (1-65535).

: Click to add a new community entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

80

User’s Manual of MGSW-28240F Managed switch

4.2.3.2 RMON Alarm Status

This page provides an overview of RMON Alarm entries. Each page shows up to 99 entries from the Alarm table, default being

20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the Alarm table. The first displayed will be the one with the lowest ID found in the Alarm table; screen in Figure

4-2-3-2 appears.

Figure 4-2-3-2:

RMON Alarm Overview Page Screenshot

The page includes the following fields:

Object

• ID

• Interval

Variable

Sample Type

Description

Indicates the index of Alarm control entry.

Indicates the interval in seconds for sampling and comparing the rising and falling threshold.

Indicates the particular variable to be sampled.

The method of sampling the selected variable and calculating the value to be compared against the thresholds.

The value of the statistic during the last sampling period.

The alarm that may be sent when this entry is first set to valid.

Rising threshold value

Rising event index

Falling threshold value

Falling event index

Buttons

• Value

• Startup Alarm

• Rising Threshold

• Rising Index

• Falling Threshold

• Falling Index

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Updates the table, starting from the first entry in the Alarm Table, i.e. the entry with the lowest ID.

: Updates the table, starting with the entry after the last entry currently displayed.

81

User’s Manual of MGSW-28240F Managed switch

4.2.3.3 RMON Event Configuration

Configure RMON Event table on this page. The entry index key is

ID

; screen in Figure 4-2-3-3 appears.

Figure 4-2-3-3

RMON Event Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• ID

• Desc

• Type

• Community

• Event Last Time

Description

Check to delete the entry. It will be deleted during the next save.

Indicates the index of the entry. The range is from 1 to 65535.

Indicates this event, the string length is from 0 to 127, default is a null string.

Indicates the notification of the event; the possible types are:

 none

: The total number of octets received on the interface, including framing characters.

 log

: The number of uni-cast packets delivered to a higher-layer protocol.

 snmptrap

: The number of broad-cast and multi-cast packets delivered to a higher-layer protocol.

 logandtrap

: The number of inbound packets that are discarded even the packets are normal.

Specify the community when trap is sent, the string length is from 0 to 127, default is "public".

Indicates the value of sysUpTime at the time this event entry last generated an event.

Buttons

: Click to add a new community entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

82

User’s Manual of MGSW-28240F Managed switch

4.2.3.4 RMON Event Status

This page provides an overview of RMON Event table entries. Each page shows up to 99 entries from the Event table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the Event table. The first displayed will be the one with the lowest Event Index and Log Index found in the Event table; screen in Figure 4-2-3-4 appears.

Figure 4-2-3-4:

RMON Event Overview Page Screenshot

The page includes the following fields:

Buttons

Object

• Event Index

• Log Index

• Logtime

• Log Description

Description

Indicates the index of the event entry.

Indicates the index of the log entry.

Indicates Event log time.

Indicates the Event description.

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Updates the table starting from the first entry in the Alarm Table, i.e. the entry with the lowest ID.

: Updates the table, starting with the entry after the last entry currently displayed.

: Updates the table, starting with the entry after the last entry currently displayed.

83

User’s Manual of MGSW-28240F Managed switch

4.2.3.5 RMON History Configuration

Configure RMON History table on this page. The entry index key is

ID

; screen in Figure 4-2-3-5 appears.

Figure 4-2-3-5:

RMON History Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• ID

• Data Source

• Interval

Description

Check to delete the entry. It will be deleted during the next save.

Indicates the index of the entry. The range is from 1 to 65535.

Indicates the port ID which wants to be monitored.

• Buckets

Indicates the interval in seconds for sampling the history statistics data. The range is from 1 to 3600, default value is 1800 seconds.

Indicates the maximum data entries associated this History control entry stored in RMON. The range is from 1 to 3600, default value is 50.

The number of data will be saved in the RMON.

Buttons

• Buckets Granted

: Click to add a new community entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

84

User’s Manual of MGSW-28240F Managed switch

4.2.3.6 RMON History Status

This page provides an detail of RMON history entries; screen in Figure 4-2-3-6 appears.

Figure 4-2-3-6:

RMON History Overview Page Screenshot

The page includes the following fields:

Object

• History Index

• Sample Index

• Sample Start

• Drop

Octets

Pkts

Broadcast

CRC Errors

Multicast

Undersize

Oversize

Frag.

Jabb.

Coll.

Description

Indicates the index of History control entry.

Indicates the index of the data entry associated with the control entry.

The value of sysUpTime at the start of the interval over which this sample was measured.

The total number of events in which packets were dropped by the probe due to lack of resources.

The total number of octets of data (including those in bad packets) received on the network.

The total number of packets (including bad packets, broadcast packets, and multicast packets) received.

The total number of good packets received that were directed to the broadcast address.

The total number of good packets received that were directed to a multicast address.

The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets

(FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).

The total number of packets received that were less than 64 octets.

The total number of packets received that were longer than 1518 octets.

The number of frames whose size is less than 64 octets received with invalid

CRC.

The number of frames whose size is larger than 64 octets received with invalid

CRC.

The best estimate of the total number of collisions in this Ethernet segment.

85

User’s Manual of MGSW-28240F Managed switch

• Utilization

The best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent.

Buttons

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

:

Updates the table, starting from the first entry in the History table, i.e., the entry with the lowest History

Index and Sample Index

: Updates the table, starting with the entry after the last entry currently displayed.

4.2.3.7 RMON Statistics Configuration

Configure RMON Statistics table on this page. The entry index key is

ID

; screen in Figure 4-2-3-7 appears.

Figure 4-2-3-7:

RMON Statistics Configuration Page Screenshot

The page includes the following fields:

Buttons

Object

• Delete

• ID

• Data Source

Description

Check to delete the entry. It will be deleted during the next save.

Indicates the index of the entry. The range is from 1 to 65535.

Indicates the port ID which wants to be monitored.

: Click to add a new community entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

86

User’s Manual of MGSW-28240F Managed switch

4.2.3.8 RMON Statistics Status

This page provides an overview of RMON Statistics entries. Each page shows up to 99 entries from the Statistics table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the Statistics table. The first displayed will be the one with the lowest ID found in the Statistics table; screen in

Figure 4-2-3-8 appears.

Figure 4-2-3-8:

RMON Statistics Status Overview Page Screenshot

The page includes the following fields:

Object

• ID

• Data Source (ifIndex)

• Drop

• Undersize

• Oversize

• Frag.

Octets

Pkts

Broadcast

Multicast

CRC Errors

Jabb.

Coll.

Description

Indicates the index of Statistics entry.

The port ID which wants to be monitored.

The total number of events in which packets were dropped by the probe due to lack of resources.

The total number of octets of data (including those in bad packets) received on the network.

The total number of packets (including bad packets, broadcast packets, and multicast packets) received.

The total number of good packets received that were directed to the broadcast address.

The total number of good packets received that were directed to a multicast address.

The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets.

The total number of packets received that were less than 64 octets.

The total number of packets received that were longer than 1518 octets.

The number of frames whose size is less than 64 octets received with invalid

CRC.

The number of frames whose size is larger than 64 octets received with invalid

CRC.

The best estimate of the total number of collisions in this Ethernet segment.

87

User’s Manual of MGSW-28240F Managed switch

64 Bytes

65~127

128~255

256~511

512~1023

1024~1518

The total number of packets (including bad packets) received that were 64 octets in length.

The total number of packets (including bad packets) received that were between

65 to 127 octets in length.

The total number of packets (including bad packets) received that were between

128 to 255 octets in length.

The total number of packets (including bad packets) received that were between

256 to 511 octets in length.

The total number of packets (including bad packets) received that were between

512 to 1023 octets in length.

The total number of packets (including bad packets) received that were between

1024 to 1518 octets in length.

Buttons

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Updates the table, starting from the first entry in the Alarm Table, i.e. the entry with the lowest ID.

: Updates the table, starting with the entry after the last entry currently displayed.

88

User’s Manual of MGSW-28240F Managed switch

4.2.4 DHCP server

4.2.4.1 DHCP Server Mode Configuration

Configure DHCP server mode on this page. The entry index key is

ID

.; screen in Figure 4-2-4-1 appears.

Figure 4-2-4-1:

DHCP server mode Page Screenshot

The page includes the following fields:

Object

• Mode

• VLAN Mode

• VLAN Range

• Mode

Description

Configure the operation mode per system. Possible modes are:

Enabled : Enable DHCP server per system.

Disabled : Disable DHCP server pre system.

Configure operation mode to enable/disable DHCP server per VLAN.

Indicate the VLAN range in which DHCP server is enabled or disabled. The first

VLAN ID must be smaller than or equal to the second VLAN ID. BUT, if the VLAN range contains only 1 VLAN ID, then you can just input it into either one of the first and second VLAN ID or both.

On the other hand, if you want to disable existed VLAN range, then you can follow the steps.

1. press to add a new VLAN range.

2. input the VLAN range that you want to disable.

3. choose Mode to be Disabled .

4. press to apply the change.

Then, you will see the disabled VLAN range is removed from the DHCP Server mode configuration page.

Indicate the operation mode per VLAN. Possible modes are:

Enabled : Enable DHCP server per VLAN.

Disabled : Disable DHCP server pre VLAN.

89

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to add a new VLAN range.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.2.4.2 DHCP Server excluded IP Configuration

Configure DHCP server mode on this page. The entry index key is

ID

.; screen in Figure 4-2-4-2 appears.

Figure 4-2-4-2:

DHCP server excluded Page Screenshot

The page includes the following fields:

Object

• IP range

Description

Define the IP range to be excluded IP addresses. The first excluded IP must be smaller than or equal to the second excluded IP. BUT, if the IP range contains only 1 excluded IP, then you can just input it to either one of the first and second excluded IP or both.

Buttons

: Click to add a new excluded IP range.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

90

User’s Manual of MGSW-28240F Managed switch

4.2.4.3 DHCP Server pool Configuration

This page manages DHCP pools. According to the DHCP pool, DHCP server will allocate IP address and deliver configuration parameters to DHCP client. screen in Figure 4-2-4-3 appears.

Figure 4-2-4-3:

DHCP server pool Page Screenshot

The page includes the following fields:

Object

Name

Type

IP

Subnet Mask

Description

Configure the pool name that accepts all printable characters, except white space. If you want to configure the detail settings, you can click the pool name to go into the configuration page.

Display which type of the pool is.

Network : the pool defines a pool of IP addresses to service more than one

DHCP client.

Host : the pool services for a specific DHCP client identified by client identifier or hardware address.

Display network number of the DHCP address pool.

If "-" is displayed, it means not defined

Display subnet mask of the DHCP address pool.

If "-" is displayed, it means not defined.

Display lease time of the pool.

Buttons

• Lease Time

: Click to add a new excluded IP range.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

91

User’s Manual of MGSW-28240F Managed switch

4.2.4.4 DHCP Server pool Configuration

This page displays the database counters and the number of DHCP messages sent and received by DHCP server.

. screen in Figure 4-2-4-4 appears.

Figure 4-2-4-4:

DHCP server Statistics Page Screenshot

The page includes the following fields:

Database Counters

Object

• Pool

• Excluded IP Address

• Declined IP Address

Binding Counters

Object

• Automatic Binding

• Manual Binding

• Expired Binding

Description

Number of pools

Number of excluded IP address ranges

Number of declined IP addresses.

Description

Number of bindings with network-type pools

Number of bindings that administrator assigns an IP address to a client. That is, the pool is of host type.

Number of bindings that their lease time expired or they are cleared from

Automatic/Manual type bindings.

92

User’s Manual of MGSW-28240F Managed switch

DHCP message Received Counters

Object

• Discover

• Request

• Decline

• Release

• Inform

DHCP message Sent Counters

Description

Number of DHCP DISCOVER messages received.

Number of DHCP REQUEST messages received.

Number of DHCP DECLINE messages received.

Number of DHCP RELEASE messages received.

Number of DHCP INFORM messages received.

Buttons

Object

• Offer

• ACK

• NAK

Description

Number of DHCP OFFER messages sent.

Number of DHCP ACK messages sent.

Number of DHCP NAK messages sent.

: Check this box to refresh the page automatically. Automatic refresh occurs every ?

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

93

User’s Manual of MGSW-28240F Managed switch

4.3 Switching

4.3.1 Port Management

Use the Port Menu to display or configure the Managed Switch's ports. This section has the following items:

 Port Configuration

 Port Statistics Overview

 Port Statistics Detail

 SFP Module Information

 Port Mirror

Configures port connection settings

Lists Ethernet and RMON port statistics

Lists Ethernet and RMON port statistics

Display SFP information

Sets the source and target ports for mirroring

4.3.1.1 Port Configuration

This page displays current port configurations. Ports can also be configured here. The Port Configuration screen in Figure

4-3-1-1 appears.

Figure 4-3-1-1:

Port Configuration Page Screenshot

The page includes the following fields:

Object

• Port

• Port Description

• Link

• Current Link Speed

Description

This is the logical port number for this row.

Indicates the per port description.

The current link state is displayed graphically. Green indicates the link is up and red indicates the link is down.

Provides the current link speed of the port.

94

User’s Manual of MGSW-28240F Managed switch

• Configured Link Speed

Select any available link speed for the given switch port. Draw the menu bar to

• Flow Control select the mode.

 Auto

– Set up Auto negotiation for copper interface.

 10Mbps HDX

- Force sets 10Mbps/Half-Duplex mode.

 10Mbps FDX

- Force sets 10Mbps/Full-Duplex mode.

 100Mbps HDX

- Force sets 100Mbps/Half-Duplex mode.

 100Mbps FDX

- Force sets 100Mbps/Full-Duplex mode.

 1Gbps FDX

- Force sets 10000Mbps/Full-Duplex mode.

 Auto Fiber (10G)

– Set up 10G fiber port for negotiation automatically.

 Disable

– Shut down the port manually.

When

Auto Speed

is selected on a port, this section indicates the flow control capability that is advertised to the link partner.

When a fixed-speed setting is selected, that is what is used. The Current Rx column indicates whether pause frames on the port are obeyed, and the Current

Tx column indicates whether pause frames on the port are transmitted. The Rx and Tx settings are determined by the result of the last Auto-Negotiation.

Check the configured column to use flow control. This setting is related to the setting for Configured Link Speed.

• Maximum Frame Size

Enter the maximum frame size allowed for the switch port, including FCS. The allowed range is 1518 bytes to 10056 bytes.

When setting each port to run at 100M Full-, 100M Half-, 10M Full-, and 10M Half-speed modes.

The Auto-MDIX function will disable.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Click to refresh the page. Any changes made locally will be undone.

95

User’s Manual of MGSW-28240F Managed switch

4.3.1.2 Port Statistics Overview

This page provides an overview of general traffic statistics for all switch ports. The Port Statistics Overview screen in Figure

4-3-1-2 appears.

Figure 4-3-1-2:

Port Statistics Overview Page Screenshot

The displayed counters are:

Object

• Port

• Packets

• Bytes

• Errors

Description

The logical port for the settings contained in the same row.

The number of received and transmitted packets per port.

The number of received and transmitted bytes per port.

The number of frames received in error and the number of incomplete transmissions per port.

The number of frames discarded due to ingress or egress congestion.

The number of received frames filtered by the forwarding process.

• Drops

• Filtered

Buttons

: Download the Port Statistics Overview result in EXCEL file.

: Click to refresh the page immediately.

: Clears the counters for all ports.

: Print the Port Statistics Overview result.

Auto-refresh : Check this box to enable an automatic refresh of the page at regular intervals.

96

User’s Manual of MGSW-28240F Managed switch

4.3.1.3 Port Statistics Detailed

This page provides detailed traffic statistics for a specific switch port. Use the port select box to select which switch port details to display. The displayed counters are the totals for receive and transmit, the size counters for receive and transmit, and the error counters for receive and transmit. The Detailed Port Statistics screen in Figure 4-3-1-3 appears.

Figure 4-3-1-3:

Detailed Port Statistics Port 1 Page Screenshot

The page includes the following fields:

Receive Total and Transmit Total

Object

• Rx and Tx Packets

• Rx and Tx Octets

• Rx and Tx Unicast

• Rx and Tx Multicast

• Rx and Tx Broadcast

• Rx and Tx Pause

Description

The number of received and transmitted (good and bad) packets

The number of received and transmitted (good and bad) bytes, including FCS, but excluding framing bits.

The number of received and transmitted (good and bad) unicast packets.

The number of received and transmitted (good and bad) multicast packets.

The number of received and transmitted (good and bad) broadcast packets.

A count of the MAC Control frames received or transmitted on this port that has an opcode indicating a PAUSE operation.

97

User’s Manual of MGSW-28240F Managed switch

Receive and Transmit Size Counters

The number of received and transmitted (good and bad) packets split into categories based on their respective frame sizes.

Receive and Transmit Queue Counters

The number of received and transmitted packets per input and output queue.

Receive Error Counters

Object

• Rx Drops

• Rx CRC/Alignment

• Rx Undersize

• Rx Oversize

• Rx Fragments

• Rx Jabber

• Rx Filtered

Description

The number of frames dropped due to lack of receive buffers or egress congestion.

The number of frames received with CRC or alignment errors.

The number of short frames received with valid CRC.

The number of long frames received with valid CRC.

The number of short frames received with invalid CRC.

The number of long frames received with invalid CRC.

The number of received frames filtered by the forwarding process.

Short frames are frames that are smaller than 64 bytes.

Long frames are frames that are longer than the configured maximum frame length for this port.

1 Short frames are frames that are smaller than 64 bytes.

2 Long frames are frames that are longer than the configured maximum frame length for this port.

Transmit Error Counters

Object

• Tx Drops

• Tx Late/Exc. Coll.

Description

The number of frames dropped due to output buffer congestion.

The number of frames dropped due to excessive or late collisions.

Buttons

: Click to refresh the page immediately.

: Clears the counters for all ports.

Auto-refresh : Check this box to enable an automatic refresh of the page at regular intervals.

98

User’s Manual of MGSW-28240F Managed switch

4.3.1.4 SFP Module Information

The MGSW-28240F has supported the SFP module with digital diagnostics monitoring

(

DDM

) function. This feature is also known as digital optical monitoring (DOM). You can check the physical or operational status of an SFP module via the SFP

Module Information page. This page shows the operational status, such as the transceiver type, speed, wavelength, optical output power, optical input power, temperature, laser bias current and transceiver supply voltage in real time. You can also use the hyperlink of port no. to check the statistics on a specific interface. The SFP Module Information screen in Figure 4-3-1-4 appears.

Figure 4-3-1-4:

SFP Module Information for Switch Page Screenshot

The page includes the following fields:

Object

• Type

• Speed

Description

Display the type of current SFP module; the possible types are:

10GBASE-SR

10GBASE-LR

1000BASE-SX

1000BASE-LX

100BASE-FX

Display the speed of current SFP module; the speed value or description is got from the SFP module. Different vendors SFP modules might show different speed information.

99

User’s Manual of MGSW-28240F Managed switch

• Wave Length (nm)

Display the wavelength of current SFP module; the wavelength value is got from the SFP module. Use this column to check if the wavelength values of two nodes are matched while the fiber connection failed.

Buttons

• Distance (m)

• Temperature (C)

– SFP DDM Module Only

• Voltage(V)

– SFP DDM Module Only

• Current(mA)

– SFP DDM Module Only

• TX power (dBm)

– SFP DDM Module Only

• RX power (dBm)

– SFP DDM Module Only

Display the support distance of current SFP module; the distance value is got from the SFP module.

Display the temperature of current SFP DDM module; the temperature value is got from the SFP DDM module.

Display the voltage of current SFP DDM module; the voltage value is got from the

SFP DDM module.

Display the Ampere of current SFP DDM module; the Ampere value is got from the SFP DDM module.

Display the TX power of current SFP DDM module; the TX power value is got from the SFP DDM module. from the SFP DDM module.

Display the RX power of current SFP DDM module; the RX power value is got

SFP Monitor Event Alert: send trap

Warning Temperature: degrees C

Check SFP Monitor Event Alert box; it will be in accordance with your warning temperature setting and allows users to record message out via SNMP Trap.

Auto-refresh : Check this box to enable an automatic refresh of the page at regular intervals.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Click to refresh the page immediately.

100

User’s Manual of MGSW-28240F Managed switch

4.3.1.5 Port Mirror

Configure port Mirroring on this page. This function provides monitoring network traffic that forwards a copy of each incoming or outgoing packet from one port of a network Switch to another port where the packet can be studied. It enables the manager to keep close track of switch performance and alter it if necessary.

To debug network problems, selected traffic can be copied, or mirrored, to a mirror port where a frame analyzer can be attached to analyze the frame flow.

The Managed Switch can unobtrusively mirror traffic from any port to a monitor port. You can then attach a protocol analyzer or RMON probe to this port to perform traffic analysis and verify connection integrity.

Figure 4-3-1-5:

Port Mirror Application

The traffic to be copied to the mirror port is selected as follows:

• All frames received on a given port (also known as ingress or source mirroring).

• All frames transmitted on a given port (also known as egress or destination mirroring).

Mirror Port Configuration

The Port Mirror screen in Figure 4-3-1-6 appears.and click the session ID to Figure 4-3-1-7

Figure 4-3-1-6:

Mirror Configuration Page Screenshot

101

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-1-7:

Mirror Configuration Page Screenshot

The page includes the following fields:

Object

• Session

• Mode

• Type

• VLAN ID

Description

Select session id to configure.

To Enabled/Disabled the mirror or Remote Mirroring function

Mirror

Source

The switch is running on mirror mode.

The source port(s) and destination port are located on this switch.

The switch is a source node for monitor flow.

The source port(s) , reflector port are located on this switch.

RMirror destination

The switch is an end node for monitor flow.

The destination port(s) is located on this switch.

The VLAN ID points out where the monitor packet will copy to. The default VLAN ID is

200.

102

User’s Manual of MGSW-28240F Managed switch

• Reflector Port

• Source VLAN(s)

Configuration

• Remote Mirroring

Port Configuration

The reflector port is a method to redirect the traffic to Remote Mirroring VLAN. Any device connected to a port set as a reflector port loses connectivity until the Remote Mirroring is disabled.

In the stacking mode, you need to select switch ID to select the correct device.

If you shut down a port, it cannot be a candidate for reflector port.

If you shut down the port which is a reflector port, the remote mirror function cannot work

The switch can supports VLAN-based Mirroring. If you want to monitor some VLANs on the switch, you can set the selected VLANs on this field.

The following table is used for port role selecting.

■ Port

: The logical port for the settings contained in the same row..

■ Source:

Select mirror mode.

Disabled Neither frames transmitted nor frames received are mirrored.

Both Frames received and frames transmitted are mirrored on the

Destination port

.

Rx only Frames received on this port are mirrored on the

Destination port

.

Frames transmitted are not mirrored.

Tx only Frames transmitted on this port are mirrored on the

Destination port

.

Frames received are not mirrored

■ Destination

: Select destination port.

This checkbox is designed for mirror or Remote Mirroring.

The destination port

is a switched port that you receive a copy of traffic from the source port.

Buttons

For a given port, a frame is only transmitted once. It is therefore not possible to mirror Tx frames on the mirror port

. Because of this, mode

for the selected mirror port is limited to

Disabled

or

Rx only

.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

103

User’s Manual of MGSW-28240F Managed switch

4.3.2 Link Aggregation

Port Aggregation optimizes port usage by linking a group of ports together to form a single Link Aggregated Groups (LAGs). Port

Aggregation multiplies the bandwidth between the devices, increases port flexibility, and provides link redundancy.

Each LAG is composed of ports of the same speed, set to full-duplex operations. Ports in a LAG, can be of different media types

(UTP/Fiber, or different fiber types), provided they operate at the same speed.

Aggregated Links can be assigned manually (

Port Trunk

) or automatically by enabling Link Aggregation Control Protocol

(

LACP

) on the relevant links.

Aggregated Links are treated by the system as a single logical port. Specifically, the Aggregated Link has similar port attributes to a non-aggregated port, including auto-negotiation, speed, Duplex setting, etc.

The device supports the following Aggregation links :

 Static LAGs

(

Port Trunk

) – Force aggregared selected ports to be a trunk group.

 Link Aggregation Control Protocol

(

LACP

) LAGs - LACP LAG negotiate Aggregated Port links with other LACP ports located on a different device. If the other device ports are also LACP ports, the devices establish a LAG between them.

Figure 4-3-2-1:

Link Aggregation

104

User’s Manual of MGSW-28240F Managed switch

The

Link Aggregation Control Protocol

(

LACP

) provides a standardized means for exchanging information between Partner

Systems that require high speed redundant links. Link aggregation lets you group up to eight consecutive ports into a single dedicated connection. This feature can expand bandwidth to a device on the network. LACP operation requires full-duplex mode, more detail information refer to the IEEE 802.3ad standard.

Port link aggregations can be used to increase the bandwidth of a network connection or to ensure fault recovery. Link aggregation lets you group up to 4 consecutive ports into a single dedicated connection between any two the Switch or other

Layer 2 switches. However, before making any physical connections between devices, use the Link aggregation Configuration menu to specify the link aggregation on the devices at both ends. When using a port link aggregation, note that:

The ports used in a link aggregation must all be of the same media type (RJ45, 100 Mbps fiber).

The ports that can be assigned to the same link aggregation have certain other restrictions (see below).

Ports can only be assigned to one link aggregation.

The ports at both ends of a connection must be configured as link aggregation ports.

None of the ports in a link aggregation can be configured as a mirror source port or a mirror target port.

All of the ports in a link aggregation have to be treated as a whole when moved from/to, added or deleted from a VLAN.

The Spanning Tree Protocol will treat all the ports in a link aggregation as a whole.

Enable the link aggregation prior to connecting any cable between the switches to avoid creating a data loop.

Disconnect all link aggregation port cables or disable the link aggregation ports before removing a port link aggregation to avoid creating a data loop.

It allows a maximum of 10 ports to be aggregated at the same time. The Managed Switch support Gigabit Ethernet ports (up to

5 groups). If the group is defined as a LACP static link aggregation group, then any extra ports selected are placed in a standby mode for redundancy if one of the other ports fails. If the group is defined as a local static link aggregation group, then the number of ports must be the same as the group member ports.

The aggregation code ensures that frames belonging to the same frame flow (for example, a TCP connection) are always forwarded on the same link aggregation member port. Recording of frames within a flow is therefore not possible. The aggregation code is based on the following information:

• Source MAC

• Destination MAC

• Source and destination IPv4 address.

• Source and destination TCP/UDP ports for IPv4 packets

Normally, all 5 contributions to the aggregation code should be enabled to obtain the best traffic distribution among the link aggregation member ports. Each link aggregation may consist of up to 10 member ports. Any quantity of link aggregation s may be configured for the device (only limited by the quantity of ports on the device.) To configure a proper traffic distribution, the ports within a link aggregation must use the same link speed.

105

User’s Manual of MGSW-28240F Managed switch

4.3.2.1 Static Aggregation

This page is used to configure the Aggregation hash mode and the aggregation group. The aggregation hash mode settings are global.

Hash Code Contributors

The Static Aggregation screen in Figure 4-3-2-1 appears.

Figure 4-3-2-1 :

Aggregation Mode Configuration Page Screenshot

The page includes the following fields:

Object Description

• Source MAC Address

The Source MAC address can be used to calculate the destination port for the frame. Check to enable the use of the Source MAC address, or uncheck to disable. By default, Source MAC Address is enabled.

• Destination MAC

Address

The Destination MAC Address can be used to calculate the destination port for the frame. Check to enable the use of the Destination MAC Address, or uncheck to disable. By default, Destination MAC Address is disabled.

• IP Address

The IP address can be used to calculate the destination port for the frame. Check to enable the use of the IP Address, or uncheck to disable. By default, IP Address is enabled.

• TCP/UDP Port Number

The TCP/UDP port number can be used to calculate the destination port for the frame. Check to enable the use of the TCP/UDP Port Number, or uncheck to disable. By default, TCP/UDP Port Number is enabled.

Static Aggregation Group Configuration

The Aggregation Group Configuration screen in Figure 4-3-2-2 appears.

106

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-2-2:

Aggregation Group Configuration Page Screenshot

The page includes the following fields:

.

Object

• Group ID

• Port Members

Description

Indicates the group ID for the settings contained in the same row. Group ID

"Normal" indicates there is no aggregation. Only one group ID is valid per port.

Each switch port is listed for each group ID. Select a radio button to include a port in an aggregation, or clear the radio button to remove the port from the aggregation. By default, no ports belong to any aggregation group.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.2.2 LACP Configuration

Link Aggregation Control Protocol (LACP) - LACP LAG negotiate Aggregated Port links with other LACP ports located on a different device. LACP allows switches connected to each other to discover automatically whether any ports are member of the same LAG.

This page allows the user to inspect the current LACP port configurations, and possibly change them as well. The LACP

Configuration screen in Figure 4-3-2-3 appears.

107

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-2-3 :

LACP Port Configuration Page Screenshot

The page includes the following fields:

Object

• Port

• LACP Enabled

Key

Role

Timeout

Priority

Description

The switch port number.

Controls whether LACP is enabled on this switch port. LACP will form an aggregation when 2 or more ports are connected to the same partner.

The Key value incurred by the port, range 1-65535 . The Auto setting will set the key as appropriate by the physical link speed, 10Mb = 1, 100Mb = 2, 1Gb = 3.

Using the Specific setting, a user-defined value can be entered. Ports with the same Key value can participate in the same aggregation group, while ports with different keys cannot.

The default setting is “

Auto

The Role shows the LACP activity status. The Active will transmit LACP packets each second, while Passive will wait for a LACP packet from a partner (speak if spoken to).

The Timeout controls the period between BPDU transmissions. Fast will transmit

LACP packets each second, while Slow will wait for 30 seconds before sending a

LACP packet.

The Priority controls the priority of the port. If the LACP partner wants to form a larger group than is supported by this device then this parameter will control which ports will be active and which ports will be in a backup role. Lower number means greater priority.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

108

User’s Manual of MGSW-28240F Managed switch

4.3.2.3 LACP System Status

This page provides a status overview of all LACP instances. The LACP Status Page display the current LACP aggregation

Groups and LACP Port status. The LACP System Status screen in Figure 4-3-2-4 appears.

Figure 4-3-2.4:

LACP System Status Page Screenshot

The page includes the following fields:

Object

• Aggr ID

Description

The Aggregation ID associated with this aggregation instance.

For LLAG the id is shown as 'isid:aggr-id' and for GLAGs as 'aggr-id'

The system ID (MAC address) of the aggregation partner.

The Key that the partner has assigned to this aggregation ID.

The priority of the aggregation partner.

The time since this aggregation changed.

Shows which ports are a part of this aggregation for this switch.

Buttons

• Partner System ID

• Partner Key

• Partner Priority

• Last Changed

• Local Ports

: Click to refresh the page immediately.

Auto-refresh : Automatic refresh occurs every 3 seconds.

109

User’s Manual of MGSW-28240F Managed switch

4.3.2.4 LACP Port Status

This page provides a status overview of LACP status for all ports. The LACP Port Status screen in Figure 4-5-6 appears.

The page includes the following fields:

Figure 4-3-2-4:

LACP Status Page Screenshot

Object

Port

Key

LACP

• Aggr ID

• Partner System ID

• Partner Port

• Partner Priority

Description

The switch port number.

'Yes' means that LACP is enabled and the port link is up. 'No' means that LACP is not enabled or that the port link is down. 'Backup' means that the port could not join the aggregation group but will join if other port leaves. Meanwhile it's LACP status is disabled.

The key assigned to this port. Only ports with the same key can aggregate together.

The Aggregation ID assigned to this aggregation group.

The partner’s System ID (MAC address).

The partner’s port number connected to this port.

The partner's port priority.

Buttons

: Click to refresh the page immediately.

Auto-refresh : Automatic refresh occurs every 3 seconds.

110

User’s Manual of MGSW-28240F Managed switch

4.3.2.5 LACP Statistics

This page provides an overview for

LACP

statistics for all ports.

. The LACP Statistics screen in Figure 4-3-2-5 appears.

Figure 4-3-2.5:

LACP System Statistics Screenshot

The page includes the following fields:

Object

• Port

• LACP Received

LACP Transmitted

Discarded

Description

The switch port number.

Shows how many LACP frames have been received at each port.

Shows how many LACP frames have been sent from each port.

Shows how many unknown or illegal LACP frames have been discarded at each port.

Buttons

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

:

Clears the counters for all ports.

111

User’s Manual of MGSW-28240F Managed switch

4.3.3 VLAN

4.3.3.1 VLAN Overview

A Virtual Local Area Network (VLAN)

is a network topology configured according to a logical scheme rather than the physical layout. VLAN can be used to combine any collection of LAN segments into an autonomous user group that appears as a single

LAN. VLAN also logically segment the network into different broadcast domains so that packets are forwarded only between ports within the VLAN. Typically, a VLAN corresponds to a particular subnet, although not necessarily.

VLAN can enhance performance by conserving bandwidth, and improve security by limiting traffic to specific domains.

A VLAN is a collection of end nodes grouped by logic instead of physical location. End nodes that frequently communicate with each other are assigned to the same VLAN, regardless of where they are physically on the network. Logically, a VLAN can be equated to a broadcast domain, because broadcast packets are forwarded to only members of the VLAN on which the broadcast was initiated.

1. No matter what basis is used to uniquely identify end nodes and assign these nodes VLAN membership, packets cannot cross VLAN without a network device performing a routing function between the VLANs.

2. The Managed Switch supports IEEE 802.1Q VLAN. The port untagging function can be used to remove the 802.1 tag from packet headers to maintain compatibility with devices that are tag-unaware..

The Managed Switch's default is to assign all ports to a single 802.1Q VLAN named

DEFAULT_VLAN. As new VLAN is created, the member ports assigned to the new VLAN will be removed from the DEFAULT_ VLAN port member list. The DEFAULT_VLAN has a VID = 1.

This section has the following items:

 VLAN Port Configuration

Enables VLAN group

 VLAN Membership Status

Displays VLAN membership status

 VLAN Port Status

 Private VLAN

Displays VLAN port status

Creates/removes primary or community VLANs

 Port Isolation

 MAC-based VLAN

Enables/disablse port isolation on port

Configures the MAC-based VLAN entries

 MAC-based VLAN Status

Displays MAC-based VLAN entries

 Protocol-based VLAN

Configures the protocol-based VLAN entries

 Protocol-based VLAN

Membership

Displays the protocol-based VLAN entries

112

User’s Manual of MGSW-28240F Managed switch

4.3.3.2 IEEE 802.1Q VLAN

In large networks, routers are used to isolate broadcast traffic for each subnet into separate domains. This Managed Switch provides a similar service at Layer 2 by using VLANs to organize any group of network nodes into separate broadcast domains.

VLANs confine broadcast traffic to the originating group, and can eliminate broadcast storms in large networks. This also provides a more secure and cleaner network environment.

An IEEE 802.1Q VLAN is a group of ports that can be located anywhere in the network, but communicate as though they belong to the same physical segment.

VLANs help to simplify network management by allowing you to move devices to a new VLAN without having to change any physical connections. VLANs can be easily organized to reflect departmental groups (such as Marketing or R&D), usage groups

(such as e-mail), or multicast groups (used for multimedia applications such as videoconferencing).

VLANs provide greater network efficiency by reducing broadcast traffic, and allow you to make network changes without having to update IP addresses or IP subnets. VLANs inherently provide a high level of network security since traffic must pass through a configured Layer 3 link to reach a different VLAN.

This Managed Switch supports the following VLAN features:

 Up to 255 VLANs based on the IEEE 802.1Q standard

 Port overlapping, allowing a port to participate in multiple VLANs

 End stations can belong to multiple VLANs

 Passing traffic between VLAN-aware and VLAN-unaware devices

 Priority tagging

IEEE 802.1Q Standard

IEEE 802.1Q (tagged) VLAN

are implemented on the Switch. 802.1Q VLAN require tagging, which enables them to span the entire network (assuming all switches on the network are IEEE 802.1Q-compliant).

VLAN allow a network to be segmented in order to reduce the size of broadcast domains. All packets entering a VLAN will only be forwarded to the stations (over IEEE 802.1Q enabled switches) that are members of that VLAN, and this includes broadcast, multicast and unicast packets from unknown sources.

VLAN can also provide a level of security to your network. IEEE 802.1Q VLAN will only deliver packets between stations that are members of the VLAN. Any port can be configured as either tagging

or untagging

.:

The untagging feature of IEEE 802.1Q VLAN allows VLAN to work with legacy switches that don't recognize VLAN tags in packet headers.

 The tagging feature allows VLAN to span multiple 802.1Q-compliant switches through a single physical connection and allows Spanning Tree to be enabled on all ports and work normally.

Some relevant terms:

-

Tagging

- The act of putting 802.1Q VLAN information into the header of a packet.

-

Untagging

- The act of stripping 802.1Q VLAN information out of the packet header.

113

User’s Manual of MGSW-28240F Managed switch

802.1Q VLAN Tags

The figure below shows the 802.1Q VLAN tag. There are four additional octets inserted after the source MAC address. Their presence is indicated by a value of

0x8100 in the Ether Type field. When a packet's Ether Type field is equal to 0x8100, the packet carries the IEEE 802.1Q/802.1p tag. The tag is contained in the following two octets and consists of 3 bits of user priority,

1 bit of Canonical Format Identifier (CFI - used for encapsulating Token Ring packets so they can be carried across Ethernet backbones), and 12 bits of

VLAN ID (VID)

. The 3 bits of user priority are used by 802.1p. The VID is the VLAN identifier and is used by the 802.1Q standard. Because the VID is 12 bits long, 4094 unique VLAN can be identified.

The tag is inserted into the packet header making the entire packet longer by 4 octets. All of the information originally contained in the packet is retained.

802.1Q Tag

User Priority CFI

1 bit

VLAN ID (VID)

12 bits

TPID (Tag Protocol Identifier)

2 bytes

3 bits

TCI (Tag Control Information)

2 bytes

Preamble Destination

Address

6 bytes

Source

Address

6 bytes

VLAN TAG

4 bytes

Ethernet

Type

2 bytes

Data FCS

46-1500 bytes 4 bytes

The Ether Type and VLAN ID are inserted after the MAC source address, but before the original Ether Type/Length or Logical

Link Control. Because the packet is now a bit longer than it was originally, the Cyclic Redundancy Check (CRC) must be recalculated.

Adding an IEEE802.1Q Tag

Dest. Addr. Src. Addr. Length/E. type Data Old CRC

Original Ethernet

Dest. Addr. Src. Addr.

E. type Tag

Length/E. type Data New CRC

New Tagged Packet

Priority CFI VLAN ID

Port VLAN ID

Packets that are tagged (are carrying the 802.1Q VID information) can be transmitted from one 802.1Q compliant network device to another with the VLAN information intact. This allows 802.1Q VLAN to span network devices (and indeed, the entire network – if all network devices are 802.1Q compliant).

114

User’s Manual of MGSW-28240F Managed switch

Every physical port on a switch has a PVID. 802.1Q ports are also assigned a PVID, for use within the switch. If no VLAN are defined on the switch, all ports are then assigned to a default VLAN with a PVID equal to 1. Untagged packets are assigned the

PVID of the port on which they were received. Forwarding decisions are based upon this PVID, in so far as VLAN are concerned.

Tagged packets are forwarded according to the VID contained within the tag. Tagged packets are also assigned a PVID, but the

PVID is not used to make packet forwarding decisions, the VID is.

Tag-aware switches must keep a table to relate PVID within the switch to VID on the network. The switch will compare the VID of a packet to be transmitted to the VID of the port that is to transmit the packet. If the two VID are different the switch will drop the packet. Because of the existence of the PVID for untagged packets and the VID for tagged packets, tag-aware and tag-unaware network devices can coexist on the same network.

A switch port can have only one PVID, but can have as many VID as the switch has memory in its VLAN table to store them.

Because some devices on a network may be tag-unaware, a decision must be made at each port on a tag-aware device before packets are transmitted – should the packet to be transmitted have a tag or not? If the transmitting port is connected to a tag-unaware device, the packet should be untagged. If the transmitting port is connected to a tag-aware device, the packet should be tagged.

Default VLANs

The Switch initially configures one VLAN, VID = 1, called

"default."

The factory default setting assigns all ports on the Switch to the

"default"

. As new VLAN are configured in Port-based mode, their respective member ports are removed from the "default."

Assigning Ports to VLANs

Before enabling VLANs for the switch, you must first assign each port to the VLAN group(s) in which it will participate. By default all ports are assigned to VLAN 1 as untagged ports. Add a port as a tagged port if you want it to carry traffic for one or more

VLANs, and any intermediate network devices or the host at the other end of the connection supports VLANs. Then assign ports on the other VLAN-aware network devices along the path that will carry this traffic to the same VLAN(s), either manually or dynamically using GVRP. However, if you want a port on this switch to participate in one or more VLANs, but none of the intermediate network devices nor the host at the other end of the connection supports VLANs, then you should add this port to the VLAN as an untagged port.

VLAN-tagged frames can pass through VLAN-aware or VLAN-unaware network interconnection devices, but the VLAN tags should be stripped off before passing it on to any end-node host that does not support VLAN tagging.

VLAN Classification

When the switch receives a frame, it classifies the frame in one of two ways. If the frame is untagged, the switch assigns the frame to an associated VLAN (based on the default VLAN ID of the receiving port). But if the frame is tagged, the switch uses the tagged VLAN ID to identify the port broadcast domain of the frame.

115

User’s Manual of MGSW-28240F Managed switch

Port Overlapping

Port overlapping can be used to allow access to commonly shared network resources among different VLAN groups, such as file servers or printers. Note that if you implement VLANs which do not overlap, but still need to communicate, you can connect them by enabled routing on this switch.

Untagged VLANs

Untagged (or static) VLANs are typically used to reduce broadcast traffic and to increase security. A group of network users assigned to a VLAN form a broadcast domain that is separate from other VLANs configured on the switch. Packets are forwarded only between ports that are designated for the same VLAN. Untagged VLANs can be used to manually isolate user groups or subnets.

4.3.3.3 VLAN Port Configuration

This page is used for configuring the Managed Switch port VLAN. The VLAN per Port Configuration page contains fields for managing ports that are part of a VLAN. The port default VLAN ID (PVID) is configured on the VLAN Port Configuration page.

All untagged packets arriving to the device are tagged by the ports PVID.

Understand nomenclature of the Switch

IEEE 802.1Q Tagged and Untagged

Every port on an 802.1Q compliant switch can be configured as tagged or untagged.

• Tagged:

Ports with tagging enabled will put the VID number, priority and other VLAN information into the header of all packets that flow into those ports. If a packet has previously been tagged, the port will not alter the packet, thus keeping the VLAN information intact. The VLAN information in the tag can then be used by other 802.1Q compliant devices on the network to make packet-forwarding decisions.

• Untagged:

Ports with untagging enabled will strip the 802.1Q tag from all packets that flow into those ports. If the packet doesn't have an 802.1Q VLAN tag, the port will not alter the packet. Thus, all packets received by and forwarded by an untagging port will have no 802.1Q VLAN information. (Remember that the PVID is only used internally within the Switch). Untagging is used to send packets from an 802.1Q-compliant network device to a non-compliant network device.

Frame Income

Frame Leave

Income Frame is tagged

Leave port is tagged Frame remains tagged

Income Frame is untagged

Tag is inserted

Leave port is untagged Tag is removed Frame remain untagged

Table 4-3-3-1:

Ingress / Egress Port with VLAN VID Tag / Untag Table

116

User’s Manual of MGSW-28240F Managed switch

IEEE 802.1Q Tunneling (Q-in-Q)

IEEE 802.1Q Tunneling (Q-in-Q) is designed for service providers carrying traffic for multiple customers across their networks.

Q-in-Q tunneling is used to maintain customer-specific VLAN and Layer 2 protocol configurations even when different customers use the same internal VLAN IDs. This is accomplished by inserting

Service Provider VLAN (SPVLAN)

tags into the customer’s frames when they enter the service provider’s network, and then stripping the tags when the frames leave the network.

A service provider’s customers may have specific requirements for their internal VLAN IDs and number of VLANs supported.

VLAN ranges required by different customers in the same service-provider network might easily overlap, and traffic passing through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations, require intensive processing of VLAN mapping tables, and could easily exceed the maximum VLAN limit of

4096.

The Managed Switch supports multiple VLAN tags and can therefore be used in MAN applications as a provider bridge, aggregating traffic from numerous independent customer LANs into the

MAN (Metro Access Network)

space. One of the purposes of the provider bridge is to recognize and use VLAN tags so that the VLANs in the MAN space can be used independent of the customers’ VLANs. This is accomplished by adding a VLAN tag with a MAN-related VID for frames entering the MAN. When leaving the MAN, the tag is stripped and the original VLAN tag with the customer-related VID is again available.

This provides a tunneling mechanism to connect remote costumer VLANs through a common MAN space without interfering with the VLAN tags. All tags use EtherType

0x8100

or

0x88A8

, where 0x8100 is used for customer tags and 0x88A8 are used for service provider tags.

In cases where a given service VLAN only has two member ports on the switch, the learning can be disabled for the particular

VLAN and can therefore rely on flooding as the forwarding mechanism between the two ports. This way, the MAC table requirements is reduced.

117

Global VLAN Configuration

The Global VLAN Configuration screen in Figure 4-6-1 appears.

User’s Manual of MGSW-28240F Managed switch

Figure 4-6-1 :

Global VLAN Configuration Screenshot

The page includes the following fields:

Object

• Allowed Access

VLANs

Description

This field shows the allowed Access VLANs, it only affects ports configured as

Access ports. Ports in other modes are members of all VLANs specified in the

Allowed VLANs field.

By default, only VLAN 1 is enabled. More VLANs may be created by using a list syntax where the individual elements are separated by commas. Ranges are specified with a dash separating the lower and upper bound.

The following example will create VLANs 1, 10, 11, 12, 13, 200, and 300:

1,10-13,200,300 . Spaces are allowed in between the delimiters.

• Ethertype for Custom

S-ports

This field specifies the ethertype/TPID (specified in hexadecimal) used for

Custom S-ports. The setting is in force for all ports whose Port Type is set to

S-Custom-Port.

Port VLAN Configuration

The VLAN Port Configuration screen in Figure 4-6-2 appears.

Figure 4-6-2 :

Port VLAN Configuration Screenshot

118

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Object

• Port

• Mode Access

Trunk

Hybrid

• Port VLAN

Description

This is the logical port number for this row.

Access ports are normally used to connect to end stations. Dynamic features like

Voice VLAN may add the port to more VLANs behind the scenes. Access ports have the following characteristics:

Member of exactly one VLAN, the Port VLAN (Access VLAN), which by default is 1

Accepts untagged and C-tagged frames

Discards all frames that are not classified to the Access VLAN

On egress all frames classified to the Access VLAN are transmitted untagged. Other (dynamically added VLANs) are transmitted tagged

Trunk ports can carry traffic on multiple VLANs simultaneously, and are normally used to connect to other switches. Trunk ports have the following characteristics:

By default, a trunk port is member of all VLANs (1-4095)

The VLANs that a trunk port is member of may be limited by the use of

Allowed VLANs

Frames classified to a VLAN that the port is not a member of are discarded

By default, all frames but frames classified to the Port VLAN (a.k.a.

Native VLAN) get tagged on egress. Frames classified to the Port

VLAN do not get C-tagged on egress

Egress tagging can be changed to tag all frames, in which case only tagged frames are accepted on ingress

Hybrid ports resemble trunk ports in many ways, but adds additional port configuration features. In addition to the characteristics described for trunk ports, hybrid ports have these abilities:

Can be configured to be VLAN tag unaware, C-tag aware, S-tag aware, or S-custom-tag aware

Ingress filtering can be controlled

Ingress acceptance of frames and configuration of egress tagging can be configured independently

Determines the port's VLAN ID

(

PVID

). Allowed VLANs are in the range 1 through 4095, default being 1.

■ On ingress, frames get classified to the Port VLAN if the port is configured as

VLAN unaware, the frame is untagged, or VLAN awareness is enabled on the port, but the frame is priority tagged (VLAN ID = 0).

■ On egress, frames classified to the Port VLAN do not get tagged if Egress

Tagging configuration is set to untag Port VLAN.

119

User’s Manual of MGSW-28240F Managed switch

Port Type

Ingress Filtering

• Ingress Acceptance

The Port VLAN is called an "

Access VLAN

" for ports in Access mode and Native

VLAN for ports in Trunk or Hybrid mode.

Ports in hybrid mode allow for changing the port type, that is, whether a frame's

VLAN tag is used to classify the frame on ingress to a particular VLAN, and if so, which TPID it reacts on. Likewise, on egress, the Port Type determines the TPID of the tag, if a tag is required.

Unaware:

On ingress, all frames, whether carrying a VLAN tag or not, get classified to the Port VLAN, and possible tags are not removed on egress.

C-Port:

On ingress, frames with a VLAN tag with TPID = 0x8100 get classified to the VLAN ID embedded in the tag. If a frame is untagged or priority tagged, the frame gets classified to the Port VLAN. If frames must be tagged on egress, they will be tagged with a C-tag.

S-Port:

On ingress, frames with a VLAN tag with TPID = 0x8100 or 0x88A8 get classified to the VLAN ID embedded in the tag. If a frame is untagged or priority tagged, the frame gets classified to the Port VLAN. If frames must be tagged on egress, they will be tagged with an S-tag.

S-Custom-Port:

On ingress, frames with a VLAN tag with a TPID = 0x8100 or equal to the

Ethertype configured for Custom-S ports get classified to the VLAN ID embedded in the tag. If a frame is untagged or priority tagged, the frame gets classified to the Port VLAN. If frames must be tagged on egress, they will be tagged with the custom S-tag.

Hybrid ports allow for changing ingress filtering. Access and Trunk ports always have ingress filtering enabled.

■ If ingress filtering is enabled (checkbox is checked), frames classified to a

VLAN that the port is not a member of get discarded.

■ If ingress filtering is disabled, frames classified to a VLAN that the port is not a member of are accepted and forwarded to the switch engine.

However, the port will never transmit frames classified to VLANs that it is not a member of.

Hybrid ports allow for changing the type of frames that are accepted on ingress.

■ Tagged and Untagged

Both tagged and untagged frames are accepted.

■ Tagged Only

Only tagged frames are accepted on ingress. Untagged frames are discarded.

■ Untagged Only

120

Egress Tagging

• Allowed VLANs

• Forbidden VLANs

User’s Manual of MGSW-28240F Managed switch

Only untagged frames are accepted on ingress. Tagged frames are discarded.

This option is only available for ports in Hybrid mode. Ports in Trunk and Hybrid mode may control the tagging of frames on egress.

Untag Port VLAN

Frames classified to the Port VLAN are transmitted untagged. Other frames are transmitted with the relevant tag.

Tag All

All frames, whether classified to the Port VLAN or not, are transmitted with a tag.

Untag All

All frames, whether classified to the Port VLAN or not, are transmitted without a tag.

Ports in Trunk and Hybrid mode may control which VLANs they are allowed to become members of. The field's syntax is identical to the syntax used in the

Enabled VLANs field.

By default, a Trunk or Hybrid port will become member of all VLANs, and is therefore set to 1-4095 . The field may be left empty, which means that the port will not become member of any VLANs.

A port may be configured to never be member of one or more VLANs. This is particularly useful when dynamic VLAN protocols like MVRP and GVRP must be prevented from dynamically adding ports to VLANs. The trick is to mark such

VLANs as forbidden on the port in question. The syntax is identical to the syntax used in the Enabled VLANs field.

By default, the field is left blank, which means that the port may become a member of all possible VLANs.

The port must be a member of the same VLAN as the Port VLAN ID.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

121

User’s Manual of MGSW-28240F Managed switch

4.3.3.4 VLAN Membership Status

This page provides an overview of membership status for VLAN users. The VLAN Membership Status screen in Figure 4-6-4 appears.

Figure 4-3-3-4:

VLAN Membership Status for Static User Page Screenshot

The page includes the following fields:

Object

• VLAN User

• Port Members

• VLAN Membership

Description

A VLAN User is a module that uses services of the VLAN management functionality to configure VLAN memberships and VLAN port configuration such as PVID, UVID. Currently we support following VLAN :

-

Admin

: This is referred as static.

-

NAS

: NAS provides port-based authentication, which involves communications between a Supplicant, Authenticator, and an Authentication

Server.

-

GVRP

: GVRP (GARP VLAN Registration Protocol or Generic VLAN

Registration Protocol) is a protocol that facilitates control of virtual local area networks (VLANs) within a larger network .

-

Voice VLAN

: Voice VLAN is a VLAN configured specially for voice traffic typically originating from IP phones.

- MVR

: MVR is used to eliminate the need to duplicate multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is sent only on a single (multicast) VLAN.

A row of check boxes for each port is displayed for each VLAN ID.

If a port is included in a VLAN, an image will be displayed.

If a port is included in a Forbidden port list, an image will be displayed.

If a port is included in a Forbidden port list and dynamic VLAN user register

VLAN on same Forbidden port, then conflict port will be displayed as conflict port.

The VLAN Membership Status page shall show the current VLAN port members for all VLANs configured by a selected VLAN User (selection shall be allowed by a Combo Box). When ALL VLAN Users are selected, it shall show this

122

User’s Manual of MGSW-28240F Managed switch information for all the VLAN Users, and this is by default. VLAN membership allows the frames classified to the VLAN ID to be forwarded on the respective

VLAN member ports.

Buttons

: Select VLAN Users from this drop down list.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

: Updates the table starting from the first entry in the VLAN Table, i.e. the entry with the lowest VLAN ID.

: Updates the table, starting with the entry after the last entry currently displayed.

4.3.3.5 VLAN Port Status

This page provides VLAN Port Status. The VLAN Port Status screen in Figure 4-3-3-5 appears.

Figure 4-3-3-5:

VLAN Port Status for Combined users Page Screenshot

The page includes the following fields:

Object

• Port

• Port Type

Description

The logical port for the settings contained in the same row.

Show the VLAN Awareness for the port.

If VLAN awareness is enabled, the tag is removed from tagged frames received on the port. VLAN tagged frames are classified to the VLAN ID in the tag.

If VLAN awareness is disabled, all frames are classified to the Port VLAN ID and

123

User’s Manual of MGSW-28240F Managed switch

• Ingress Filtering

• Frame Type

• Port VLAN ID

• Tx Tag

• Untagged VLAN ID

• Conflicts tags are not removed.

Show the ingress filtering for a port. This parameter affects VLAN ingress processing. If ingress filtering is enabled and the ingress port is not a member of the classified VLAN of the frame, the frame is discarded.

Shows whether the port accepts all frames or only tagged frames. This parameter affects VLAN ingress processing. If the port only accepts tagged frames, untagged frames received on that port are discarded.

Shows the PVID setting for the port.

Shows egress filtering frame status whether tagged or untagged.

Shows UVID (untagged VLAN ID). Port's UVID determines the packet's behavior at the egress side.

Shows status of Conflicts whether exists or Not. When a Volatile VLAN User requests to set VLAN membership or VLAN port configuration, the following conflicts can occur:

Functional Conflicts between feature.

Conflicts due to hardware limitation.

Direct conflict between user modules.

Buttons

: Select VLAN Users from this drop down list.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

124

User’s Manual of MGSW-28240F Managed switch

4.3.3.6 Port Isolation

Overview

When a VLAN is configured to be a private VLAN, communication between ports within that VLAN can be prevented. Two application examples are provided in this section:

Customers connected to an ISP can be members of the same VLAN, but they are not allowed to communicate with each other within that VLAN.

Servers in a farm of web servers in a Demilitarized Zone (DMZ) are allowed to communicate with the outside world and with database servers on the inside segment, but are not allowed to communicate with each other

For private VLANs to be applied, the switch must first be configured for standard VLAN operation When this is in place, one or more of the configured VLANs can be configured as private VLANs. Ports in a private VLAN fall into one of these two groups:

 Promiscuous ports

— Ports from which traffic can be forwarded to all ports in the private VLAN

— Ports which can receive traffic from all ports in the private VLAN

 Isolated ports

— Ports from which traffic can only be forwarded to promiscuous ports in the private VLAN

— Ports which can receive traffic from only promiscuous ports in the private VLAN

125

User’s Manual of MGSW-28240F Managed switch

The configuration of promiscuous and isolated ports applies to all private VLANs. When traffic comes in on a promiscuous port in a private VLAN, the VLAN mask from the VLAN table is applied. When traffic comes in on an isolated port, the private VLAN mask is applied in addition to the VLAN mask from the VLAN table. This reduces the ports to which forwarding can be done to just the promiscuous ports within the private VLAN.

This page is used for enabling or disabling port isolation on ports in a Private VLAN. A port member of a VLAN can be isolated to other isolated ports on the same VLAN and Private VLAN. The Port Isolation screen in Figure 4-3-3-6 appears.

Figure 4-3-3-6:

Port Isolation Configuration Page Screenshot

The page includes the following fields:

Object

• Port Members

Description

A check box is provided for each port of a private VLAN. When checked, port isolation is enabled on that port. When unchecked, port isolation is disabled on that port.

By default, port isolation is disabled

on all ports.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

126

User’s Manual of MGSW-28240F Managed switch

4.3.3.7 VLAN setting example:

 Separate VLAN

 802.1Q VLAN Trunk

 Port Isolate

4.3.3.7.1 Two Separate 802.1Q VLANs

The diagram shows how the Managed Switch handle Tagged and Untagged traffic flow for two VLANs. VLAN Group 2 and

VLAN Group 3 are separated VLAN. Each VLAN isolate network traffic so only members of the VLAN receive traffic from the same VLAN members. The screen in Figure 4-6-7 appears and Table 4-6-8 describes the port configuration of the Managed

Switches.

Figure 4-3-3-7:

Two Separate VLANs Diagram

VLAN Group

VLAN Group 1

VLAN Group 2

VLAN Group 3

VID

1

2

3

Untagged Members

Port-7 ~ Port-52

Port-1,Port-2

Port-4,Port-5

The scenario is described as follows:

 Untagged packet entering VLAN 2

Table 4-1:

VLAN and Port Configuration

Tagged Members

N/A

Port-3

Port-6

127

User’s Manual of MGSW-28240F Managed switch

1. While

[PC-1]

transmit an untagged

packet enters

Port-1

, the Managed Switch will tag it with a

VLAN Tag=2

.

[PC-2]

and

[PC-3]

will received the packet through

Port-2

and

Port-3

.

2. [PC-4],[PC-5] and [PC-6] received no packet.

3. While the packet leaves

Port-2

, it will be stripped away it tag becoming an untagged

packet.

4. While the packet leaves

Port-3

, it will keep as a tagged

packet with

VLAN Tag=2

.

 Tagged packet entering VLAN 2

5.

6.

While

[PC-3]

transmit a tagged

packet with

VLAN Tag=2

enters

Port-3

,

[PC-1]

and

[PC-2]

will received the packet through

Port-1

and

Port-2

.

While the packet leaves

Port-1

and

Port-2

, it will be stripped away it tag becoming an untagged

packet.

 Untagged packet entering VLAN 3

1. While

[PC-4]

transmit an

untagged

packet enters

Port-4

, the switch will tag it with a

VLAN Tag=3

.

[PC-5]

and

[PC-6]

will received the packet through

Port-5

and

Port-6

.

2. While the packet leaves

Port-5

, it will be stripped away it tag becoming an untagged

packet.

3. While the packet leaves

Port-6

, it will keep as a tagged

packet with

VLAN Tag=3

.

For this example, VLAN Group 1 just set as default VLAN, but only focus on VLAN 2 and VLAN 3 traffic flow

Setup steps

1. Add VLAN Group

Add two VLANs – VLAN 2 and VLAN 3

Type 1-3 in Allowed Access VLANs column, the 1-3 is including VLAN1 and 2 and 3.

Figure 4-3-3-8:

Add VLAN 2 and VLAN 3

2. Assign VLAN Member and PVID for each port:

VLAN 2 : Port-1,Port-2 and Port-3

VLAN 3 : Port-4, Port-5 and Port-6

VLAN 1 : All other ports – Port-7~Port-52

128

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-3-9:

Change Port VLAN of Port 1~3 to be VLAN2 and Port VLAN of Port 4~6 to be VLAN3

3. Enable VLAN Tag for specific ports

Link Type: Port-3 (VLAN-2) and Port-6 (VLAN-3)

Change Port 3 Mode as Trunk, Selects Egress Tagging as Tag All and Types 2 in the Allowed VLANs column.

Change Port 6 Mode as Trunk and Selects Egress Tagging as Tag All and Types 3 in the Allowed VLANs column.

The Per Port VLAN configuration in Figure 4-3-3-10 appears.

Figure 4-3-3-10:

Check VLAN 2 and 3 Members on VLAN Membership Page

4.3.3.7.2 VLAN Trunking between two 802.1Q aware switches

The most cases are used for “

Uplink

” to other switches. VLANs are separated at different switches, but they need to access with other switches within the same VLAN group. The screen in Figure 4-6-11 appears.

129

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-3-11:

VLAN Trunking Diagram

Setup steps

1. Add VLAN Group

Add two VLANs – VLAN 2 and VLAN 3

Type 1-3 in Allowed Access VLANs column, the 1-3 is including VLAN1 and 2 and 3.

Figure 4-3-3-12:

Add VLAN 2 and VLAN 3

2. Assign VLAN Member and PVID for each port :

VLAN 2 : Port-1,Port-2 and Port-3

VLAN 3 : Port-4, Port-5 and Port-6

VLAN 1 : All other ports – Port-7~Port-52

130

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-3-13:

Changes Port VLAN of Port 1~3 to be VLAN2 and Port VLAN of Port 4~6 to be VLAN3

For the VLAN ports connecting to the hosts, please refer to 4.6.10.1 examples. The following steps will focus on the VLAN

Trunk port

configuration.

1. Specify

Port-7

to be the 802.1Q VLAN

Trunk port

.

2. Assign

Port-7

to both

VLAN 2

and

VLAN 3

at the VLAN Member configuration page.

3. Define a

VLAN 1

as a

“Public Area”

that overlapping with both

VLAN 2 members and

VLAN 3 members

.

4. Assign the VLAN Trunk Port to be the member of each VLAN – which wants to be aggregated. For this example, add

Port-7

to be

VLAN 2

and

VLAN 3

member port.

5. Specify

Port-7

to be the 802.1Q VLAN

Trunk port

, and the Trunking port must be a

Tagged

port while egress. The Port-7 configuration is shown in Figure 4-3-3-1 4 .

Figure 4-3-3-14:

VLAN Overlap Port Setting & VLAN 1 – The Public Area Member Assign

131

User’s Manual of MGSW-28240F Managed switch

That is, although the VLAN 2 members: Port-1 to Port-3 and VLAN 3 members: Port-4 to Port-6 also belongs to VLAN 1. But with different PVID settings, packets form VLAN 2 or VLAN 3 is not able to access to the other VLAN.

6. Repeat Steps 1 to 6, set up the VLAN Trunk port at the partner switch and add more VLANs to join the VLAN trunk, repeat

Steps 1 to 3 to assign the Trunk port to the VLANs.

4.3.3.7.3 Port Isolate

The diagram shows how the Managed Switch handles isolated and promiscuous ports, and the each PC is not able to access the isolated port of each other’s PCs. But they all need to access with the same server/AP/Printer. This section will show you how to configure the port for the server – that could be accessed by each isolated port.

Setup steps

1. Assign Port Mode

Set Port-1~Port-4 in Isolate port.

Set Port5 and Port-6 in Promiscuous port. The screen in Figure 4-3-3-17 appears.

Figure 4-3-3-17:

The Configuration of Isolated and Promiscuous Port

132

User’s Manual of MGSW-28240F Managed switch

4.3.3.8 MAC-based VLAN

The MAC-based VLAN entries can be configured here. This page allows for adding and deleting MAC-based VLAN entries and assigning the entries to different ports. This page shows only static entries. The MAC-based VLAN screen in Figure 4-3-3-18 appears.

Figure 4-3-3-18:

MAC-based VLAN Membership Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• MAC Address

• VLAN ID

• Port Members

• Adding a New

MAC-based VLAN

Description

To delete a MAC-based VLAN entry, check this box and press save.

Indicates the MAC address.

Indicates the VLAN ID.

A row of check boxes for each port is displayed for each MAC-based VLAN entry.

To include a port in a MAC-based VLAN, check the box. To remove or exclude the port from the MAC-based VLAN, make sure the box is unchecked. By default, no ports are members, and all boxes are unchecked.

Click “Add New Entry” to add a new MAC-based VLAN entry. An empty row is added to the table, and the MAC-based VLAN entry can be configured as needed. Any unicast MAC address can be configured for the MAC-based VLAN entry. No broadcast or multicast MAC addresses are allowed. Legal values for a

VLAN ID are 1 through 4095.

The MAC-based VLAN entry is enabled when you click on "Save". A MAC-based

VLAN without any port members will be deleted when you click "Save".

The “Delete” button can be used to undo the addition of new MAC-based VLANs.

Buttons

: Click to add a new MAC-based VLAN entry.

133

User’s Manual of MGSW-28240F Managed switch

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

: Updates the table starting from the first entry in the MAC-based VLAN Table.

: Updates the table, starting with the entry after the last entry currently displayed.

4.3.3.9 IP Subnet-based VLAN

The IP subnet to VLAN ID mappings can be configured here. This page allows adding, updating and deleting IP subnet to VLAN ID mapping entries and assigning them to different ports.

The IP Subnet-based VLAN screen in Figure

4-3-3-19 appears.

Figure 4-3-3-19:

IP Subnet-based VLAN Membership Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

IP Address

Mask Length

VLAN ID

Port Members

Adding a New IP subnet-based VLAN

Description

To delete a mapping, check this box and press save. The entry will be deleted in the stack.

Indicates the subnet's IP address (Any of the subnet's host addresses can be also provided here, the application will convert it automatically).

IIndicates the subnet's mask length

Indicates the VLAN ID the subnet will be mapped to. IP Subnet to VLAN ID is a unique matching.

A row of check boxes for each port is displayed for each IP subnet to VLAN ID mapping entry. To include a port in a mapping, simply check the box. To remove or exclude the port from the mapping, make sure the box is unchecked. By default, no ports are members and all boxes are unchecked.

Click to add a new IP subnet to VLAN ID mapping entry. An empty row is added to the table, and the mapping can be configured as needed. Any IP

134

User’s Manual of MGSW-28240F Managed switch address/mask can be configured for the mapping. Legal values for the VLAN ID are 1 to 4095 .

The IP subnet to VLAN ID mapping entry is enabled when you click on "Apply".

The button can be used to undo the addition of new mappings. The maximum possible IP subnet to VLAN ID mappings are limited to 128.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

4.3.3.10 Protocol-based VLAN

This page allows you to add new protocols to Group Name (unique for each Group) mapping entries as well as allow you to see and delete already mapped entries for the switch. The Protocol-based VLAN screen in Figure 4-3-3-19 appears.

Figure 4-3-3-20:

Protocol to Group Mapping Table Page Screenshot

The page includes the following fields:

Object

• Delete

• Frame Type

Description

To delete a Protocol to Group Name map entry, check this box. The entry will be deleted on the switch during the next Save.

Frame Type can have one of the following values:

1.

Ethernet

2.

LLC

3.

SNAP

Note: On changing the Frame type field, valid value of the following text field will

135

User’s Manual of MGSW-28240F Managed switch

• Value vary depending on the new frame type you selected.

Valid value that can be entered in this text field depends on the option selected from the preceding Frame Type selection menu.

Below is the criteria for three different Frame Types:

1.

For Ethernet

: Values in the text field when Ethernet is selected as a

Frame Type is called etype. Valid values for etype ranges from

0x0600-0xffff

2.

For LLC

: Valid value in this case is comprised of two different sub-values. a.

DSAP

: 1-byte long string (0x00-0xff) b.

SSAP

: 1-byte long string (0x00-0xff)

Buttons

3.

For SNAP

: Valid value in this case also is comprised of two different sub-values. a.

OUI

: OUI (Organizationally Unique Identifier) is value in format of xx-xx-xx where each pair (xx) in string is a hexadecimal value ranges from 0x00-0xff. b.

PID

: If the OUI is hexadecimal 000000, the protocol ID is the

Ethernet type (EtherType) field value for the protocol running on top of SNAP; if the OUI is an OUI for a particular organization, the protocol ID is a value assigned by that organization to the protocol running on top of SNAP.

In other words, if value of OUI field is 00-00-00 then value of PID will be etype (0x0600-0xffff) and if value of OUI is other than 00-00-00 then valid value of PID will be any value from 0x0000 to 0xffff.

• Group Name

A valid Group Name is a unique 16-character long string for every entry which consists of a combination of alphabets (a-z or A-Z) and integers(0-9).

Note

: special character and underscore(_) are not allowed.

• Adding a New Group to

VLAN mapping entry

Click “Add New Entry” to add a new entry in mapping table. An empty row is added to the table; Frame Type, Value and the Group Name can be configured as needed.

The “Delete” button can be used to undo the addition of new entry.

: Click to add a new entry in mapping table.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

136

User’s Manual of MGSW-28240F Managed switch

: Click to refresh the page immediately.

4.3.3.11 Protocol-based VLAN Membership

This page allows you to map a already configured Group Name to a VLAN for the switch. The Group Name to VLAN Mapping

Table screen in Figure 4-6-20 appears.

Figure 4-3-3-20:

Group Name to VLAN Mapping Table Page Screenshot

The page includes the following fields:

Object

• Delete

Description

To delete a Group Name to VLAN map entry, check this box. The entry will be deleted on the switch during the next Save

• Group Name

A valid Group Name is a string of almost 16 characters which consists of a combination of alphabets (a-z or A-Z) and integers(0-9), no special character is

• VLAN ID allowed. Whichever Group name you try map to a VLAN must be present in

Protocol to Group mapping table and must not be preused by any other existing mapping entry on this page.

Indicates the ID to which Group Name will be mapped. A valid VLAN ID ranges from 1-4095.

• Port Members

A row of check boxes for each port is displayed for each Group Name to VLAN ID mapping. To include a port in a mapping, check the box. To remove or exclude the port from the mapping, make sure the box is unchecked. By default, no ports are members, and all boxes are unchecked.

• Adding a New Group to

VLAN mapping entry

Click “Add New Entry” to add a new entry in mapping table. An empty row is added to the table, the Group Name, VLAN ID and port members can be configured as needed. Legal values for a VLAN ID are 1 through 4095.

The “Delete” button can be used to undo the addition of new entry.

137

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

138

User’s Manual of MGSW-28240F Managed switch

4.3.4 Spanning Tree Protocol

4.3.4.1 Theory

The Spanning Tree protocol can be used to detect and disable network loops, and to provide backup links between switches, bridges or routers. This allows the switch to interact with other bridging devices in your network to ensure that only one route exists between any two stations on the network, and provide backup links which automatically take over when a primary link goes down. The spanning tree algorithms supported by this switch include these versions:

 STP – Spanning Tree Protocol (IEEE 802.1D)

 RSTP – Rapid Spanning Tree Protocol (IEEE 802.1w)

 MSTP – Multiple Spanning Tree Protocol (IEEE 802.1s)

The

IEEE 802.1D Spanning Tree

Protocol and

IEEE 802.1w Rapid Spanning Tree

Protocol allow for the blocking of links between switches that form loops within the network. When multiple links between switches are detected, a primary link is established. Duplicated links are blocked from use and become standby links. The protocol allows for the duplicate links to be used in the event of a failure of the primary link. Once the Spanning Tree Protocol is configured and enabled, primary links are established and duplicated links are blocked automatically. The reactivation of the blocked links (at the time of a primary link failure) is also accomplished automatically without operator intervention.

This automatic network reconfiguration provides maximum uptime to network users. However, the concepts of the Spanning

Tree Algorithm and protocol are a complicated and complex subject and must be fully researched and understood. It is possible to cause serious degradation of the performance of the network if the Spanning Tree is incorrectly configured. Please read the following before making any changes from the default values.

The Switch STP performs the following functions:

 Creates a single spanning tree from any combination of switching or bridging elements.

 Creates multiple spanning trees – from any combination of ports contained within a single switch, in user specified groups.

 Automatically reconfigures the spanning tree to compensate for the failure, addition, or removal of any element in the tree.

 Reconfigures the spanning tree without operator intervention.

Bridge Protocol Data Units

For STP to arrive at a stable network topology, the following information is used:

The unique switch identifier

The path cost to the root associated with each switch port

The port identifier

STP communicates between switches on the network using Bridge Protocol Data Units (BPDUs). Each BPDU contains the following information:

The unique identifier of the switch that the transmitting switch currently believes is the root switch

139

User’s Manual of MGSW-28240F Managed switch

The path cost to the root from the transmitting port

The port identifier of the transmitting port

The switch sends BPDUs to communicate and construct the spanning-tree topology. All switches connected to the LAN on which the packet is transmitted will receive the BPDU. BPDUs are not directly forwarded by the switch, but the receiving switch uses the information in the frame to calculate a BPDU, and, if the topology changes, initiates a BPDU transmission.

The communication between switches via BPDUs results in the following:

One switch is elected as the root switch

The shortest distance to the root switch is calculated for each switch

A designated switch is selected. This is the switch closest to the root switch through which packets will be forwarded to the root.

A port for each switch is selected. This is the port providing the best path from the switch to the root switch.

Ports included in the STP are selected.

Creating a Stable STP Topology

It is to make the root port a fastest link. If all switches have STP enabled with default settings, the switch with the lowest MAC address in the network will become the root switch. By increasing the priority (lowering the priority number) of the best switch,

STP can be forced to select the best switch as the root switch.

When STP is enabled using the default parameters, the path between source and destination stations in a switched network might not be ideal. For instance, connecting higher-speed links to a port that has a higher number than the current root port can cause a root-port change.

STP Port States

The BPDUs take some time to pass through a network. This propagation delay can result in topology changes where a port that transitioned directly from a Blocking state to a Forwarding state could create temporary data loops. Ports must wait for new network topology information to propagate throughout the network before starting to forward packets. They must also wait for the packet lifetime to expire for BPDU packets that were forwarded based on the old topology. The forward delay timer is used to allow the network topology to stabilize after a topology change. In addition, STP specifies a series of states a port must transition through to further ensure that a stable network topology is created after a topology change.

Each port on a switch using STP exists is in one of the following five states:

 Blocking

– the port is blocked from forwarding or receiving packets

 Listening

– the port is waiting to receive BPDU packets that may tell the port to go back to the blocking state

 

Learning

– the port is adding addresses to its forwarding database, but not yet forwarding packets

 Forwarding

– the port is forwarding packets

 Disabled

– the port only responds to network management messages and must return to the blocking state first

A port transitions from one state to another as follows:

 From initialization (switch boot) to blocking

 From blocking to listening or to disabled

 From listening to learning or to disabled

 From learning to forwarding or to disabled

140

From forwarding to disabled

From disabled to blocking

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-4-1:

STP Port State Transitions

You can modify each port state by using management software. When you enable STP, every port on every switch in the network goes through the blocking state and then transitions through the states of listening and learning at power up. If properly configured, each port stabilizes to the forwarding or blocking state. No packets (except BPDUs) are forwarded from, or received by, STP enabled ports until the forwarding state is enabled for that port.

2. STP Parameters

STP Operation Levels

The Switch allows for two levels of operation: the switch level and the port level. The switch level forms a spanning tree consisting of links between one or more switches. The port level constructs a spanning tree consisting of groups of one or more ports. The STP operates in much the same way for both levels.

On the switch level, STP calculates the Bridge Identifier for each switch and then sets the Root

Bridge and the Designated Bridges.

On the port level, STP sets the Root Port and the Designated Ports.

141

User’s Manual of MGSW-28240F Managed switch

The following are the user-configurable STP parameters for the switch level:

Parameter

Bridge Identifier(Not user configurable except by setting priority below)

Priority

Description

A combination of the User-set priority and the switch’s MAC address.

The Bridge Identifier consists of two parts: a 16-bit priority and a 48-bit Ethernet MAC address 32768 + MAC

A relative priority for each switch – lower numbers give a higher priority and a greater

Default Value

32768 + MAC

32768 chance of a given switch being elected as the root bridge

Hello Time

The length of time between broadcasts of the hello message by the switch

2 seconds

Maximum Age Timer

Measures the age of a received BPDU for a port and ensures that the BPDU is discarded when its age exceeds the value of the maximum age timer.

Forward Delay Timer

The amount time spent by a port in the learning and listening states waiting for a

BPDU that may return the port to the blocking state.

The following are the user-configurable STP parameters for the port or port group level:

20 seconds

15 seconds

Variable Description

Port Priority

A relative priority for each port –lower numbers give a higher priority and a greater chance of a given port being elected as the root port

Port Cost

A value used by STP to evaluate paths –

STP calculates path costs and selects the path with the minimum cost as the active path

Default Value

128

200,000-100Mbps Fast Ethernet ports

20,000-1000Mbps Gigabit Ethernet ports

0 - Auto

Default Spanning-Tree Configuration

Feature

Enable state

Port priority

Port cost

Bridge Priority

Default Value

STP disabled for all ports

128

0

32,768

142

User’s Manual of MGSW-28240F Managed switch

User-Changeable STA Parameters

The Switch’s factory default setting should cover the majority of installations. However, it is advisable to keep the default settings as set at the factory; unless, it is absolutely necessary. The user changeable parameters in the Switch are as follows:

Priority

– A Priority for the switch can be set from 0 to 65535. 0 is equal to the highest Priority.

Hello Time

– The Hello Time can be from 1 to 10 seconds. This is the interval between two transmissions of BPDU packets sent by the Root Bridge to tell all other Switches that it is indeed the Root Bridge. If you set a Hello Time for your Switch, and it is not the Root Bridge, the set Hello Time will be used if and when your Switch becomes the Root Bridge.

The Hello Time cannot be longer than the Max. Age; otherwise, a configuration error will occur.

Max. Age

– The Max Age can be from 6 to 40 seconds. At the end of the Max Age, if a BPDU has still not been received from the Root Bridge, your Switch will start sending its own BPDU to all other Switches for permission to become the Root Bridge. If it turns out that your Switch has the lowest Bridge Identifier, it will become the Root Bridge.

Forward Delay Timer

– The Forward Delay can be from 4 to 30 seconds. This is the time any port on the

Switch spends in the listening state while moving from the blocking state to the forwarding state.

Observe the following formulas when setting the above parameters:

Max. Age _ 2 x (Forward Delay - 1 second)

Max. Age _ 2 x (Hello Time + 1 second)

Port Priority

– A Port Priority can be from 0 to 240. The lower the number, the greater the probability the port will be chosen as the Root Port.

Port Cost

– A Port Cost can be set from 0 to 200000000. The lower the number, the greater the probability the port will be chosen to forward packets.

3. Illustration of STP

A simple illustration of three switches connected in a loop is depicted in the below diagram. In this example, you can anticipate some major network problems if the STP assistance is not applied.

If switch A broadcasts a packet to switch B, switch B will broadcast it to switch C, and switch C will broadcast it to back to switch

A and so on. The broadcast packet will be passed indefinitely in a loop, potentially causing a network failure. In this example,

STP breaks the loop by blocking the connection between switch B and C. The decision to block a particular connection is based on the STP calculation of the most current Bridge and Port settings.

Now, if switch A broadcasts a packet to switch C, then switch C will drop the packet at port 2 and the broadcast will end there.

Setting-up STP using values other than the defaults, can be complex. Therefore, you are advised to keep the default factory settings and STP will automatically assign root bridges/ports and block loop connections. Influencing STP to choose a particular switch as the root bridge using the Priority setting, or influencing STP to choose a particular port to block using the Port Priority and Port Cost settings is, however, relatively straight forward.

143

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-4-2:

Before Applying the STA Rules

In this example, only the default STP values are used.

Figure 4-3-4-3:

After Applying the STA Rules

144

User’s Manual of MGSW-28240F Managed switch

The switch with the lowest Bridge ID (switch C) was elected the root bridge, and the ports were selected to give a high port cost between switches B and C. The two (optional) Gigabit ports (default port cost = 20,000) on switch A are connected to one

(optional) Gigabit port on both switch B and C. The redundant link between switch B and C is deliberately chosen as a 100 Mbps

Fast Ethernet link (default port cost = 200,000). Gigabit ports could be used, but the port cost should be increased from the default to ensure that the link between switch B and switch C is the blocked link.

4.3.4.2 STP System Configuration

This page allows you to configure STP system settings. The settings are used by all STP Bridge instances in the Switch. The

Managed Switch support the following Spanning Tree protocols:

Compatiable -- Spanning Tree Protocol (STP):

Provides a single path between end stations, avoiding and eliminating loops.

‧ Normal -- Rapid Spanning Tree Protocol (RSTP) :

Detects and uses of network topologies that provide faster spanning tree convergence, without creating forwarding loops.

Extension – Multiple Spanning Tree Protocol (MSTP) :

Defines an extension to RSTP to further develop the usefulness of virtual LANs (VLANs). This "Per-VLAN" Multiple Spanning Tree Protocol configures a separate

Spanning Tree for each VLAN group and blocks all but one of the possible alternate paths within each Spanning

Tree.

The STP System Configuration screen in Figure 4-3-4-4 appears.

Figure 4-3-4-4:

STP Bridge Configuration Page Screenshot

145

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Basic Settings

Object

• Protocol Version

• Bridge Priority

• Hello Time

• Forward Delay

• Max Age

• Maximum Hop Count

• Transmit Hold Count

Description

The STP protocol version setting. Valid values are:

 STP

(IEEE 802.1D Spanning Tree Protocol)

 RSTP

(IEEE 802.2w Rapid Spanning Tree Protocol)

 MSTP

(IEEE 802.1s Multiple Spanning Tree Protocol)

Controls the bridge priority. Lower numeric values have better priority. The bridge priority plus the MSTI instance number, concatenated with the 6-byte MAC address of the switch forms a Bridge Identifier.

For MSTP operation, this is the priority of the CIST. Otherwise, this is the priority of the STP/RSTP bridge.

The interval between sending STP BPDU's. Valid values are in the range 1 to 10 seconds, default is 2 seconds

The delay used by STP Bridges to transition Root and Designated Ports to

Forwarding (used in STP compatible mode). Valid values are in the range 4 to 30 seconds

-Default: 15

-Minimum: The higher of 4 or [(Max. Message Age / 2) + 1]

-Maximum: 30

The maximum age of the information transmitted by the Bridge when it is the

Root Bridge. Valid values are in the range 6 to 40 seconds.

-Default: 20

-Minimum: The higher of 6 or [2 x (Hello Time + 1)].

-Maximum: The lower of 40 or [2 x (Forward Delay -1)]

This defines the initial value of remaining Hops for MSTI information generated at the boundary of an MSTI region. It defines how many bridges a root bridge can distribute its BPDU information. Valid values are in the range 6 to 40 hops.

The number of BPDU's a bridge port can send per second. When exceeded, transmission of the next BPDU will be delayed. Valid values are in the range 1 to

10 BPDU's per second.

Advanced Settings

Object Description

• Edge Port BPDU

Filtering

Control whether a port explicitly configured as Edge will transmit and receive

BPDUs.

• Edge Port BPDU Guard

Control whether a port explicitly configured as Edge will disable itself upon reception of a BPDU. The port will enter the error-disabled state, and will be

146

User’s Manual of MGSW-28240F Managed switch removed from the active topology.

• Port Error Recovery

Control whether a port in the error-disabled state automatically will be enabled after a certain time. If recovery is not enabled, ports have to be disabled and re-enabled for normal STP operation. The condition is also cleared by a system reboot.

The time that has to pass before a port in the error-disabled state can be enabled. Valid values are between 30 and 86400 seconds (24 hours).

• Port Error Recovery

Timeout

The Managed Switch implements the Rapid Spanning Protocol as the default spanning tree protocol. When selecting

“Compatibles”

mode, the system uses the RSTP (802.1w) to be compatible and to co-work with another STP (802.1D)’s BPDU control packet.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.4.3 Bridge Status

This page provides a status overview for all STP bridge instances. The displayed table contains a row for each STP bridge instance, where the column displays the following information: The Bridge Status screen in Figure 4-3-4-5 appears.

Figure 4-3-4-5:

STP Bridge Status Page Screenshot

The page includes the following fields:

Object

• MSTI

• Bridge ID

• Root ID

• Root Port

• Root Cost

Description

The Bridge Instance. This is also a link to the STP Detailed Bridge Status.

The Bridge ID of this Bridge instance.

The Bridge ID of the currently elected root bridge.

The switch port currently assigned the root port role.

Root Path Cost. For the Root Bridge this is zero. For all other Bridges, it is the

147

User’s Manual of MGSW-28240F Managed switch sum of the Port Path Costs on the least cost path to the Root Bridge.

• Topology Flag

The current state of the Topology Change Flag for this Bridge instance.

• Topology Change Last

The time since last Topology Change occurred.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

4.3.4.4 CIST Port Configuration

This page allows the user to inspect the current STP CIST port configurations, and possibly change them as well. The CIST Port

Configuration screen in Figure 4-3-4-6 appears.

Figure 4-3-4-6 :

STP CIST Port Configuration Page Screenshot

The page includes the following fields:

Object

• Port

Description

The switch port number of the logical STP port.

148

• STP Enabled

• Path Cost

• Priority

• AdminEdge

• AutoEdge

• Restricted Role

• Restricted TCN

• BPDU Guard

• Point-to-point

User’s Manual of MGSW-28240F Managed switch

Controls whether RSTP is enabled on this switch port.

Controls the path cost incurred by the port. The

Auto

setting will set the path cost as appropriate by the physical link speed, using the 802.1D recommended values. Using the

Specific

setting, a user-defined value can be entered. The path cost is used when establishing the active topology of the network. Lower path cost ports are chosen as forwarding ports in favor of higher path cost ports.

Valid values are in the range 1 to 200000000.

Controls the port priority. This can be used to control priority of ports having identical port cost. (See above).

Default:

128

Range: 0-240, in steps of 16

Controls whether the operEdge flag should start as being set or cleared. (The initial operEdge state when a port is initialized).

Controls whether the bridge should enable automatic edge detection on the bridge port. This allows operEdge to be derived from whether BPDU's are received on the port or not.

If enabled, causes the port not to be selected as Root Port for the CIST or any

MSTI, even if it has the best spanning tree priority vector. Such a port will be selected as an Alternate Port after the Root Port has been selected. If set, it can cause lack of spanning tree connectivity. It can be set by a network administrator to prevent bridges external to a core region of the network influence the spanning tree active topology, possibly because those bridges are not under the full control of the administrator. This feature is also known as

Root Guard

.

If enabled, causes the port not to propagate received topology change notifications and topology changes to other ports. If set it can cause temporary loss of connectivity after changes in a spanning tree's active topology as a result of persistently incorrect learned station location information. It is set by a network administrator to prevent bridges external to a core region of the network, causing address flushing in that region, possibly because those bridges are not under the full control of the administrator or the physical link state of the attached LANs transits frequently.

If enabled, causes the port to disable itself upon receiving valid BPDU's. Contrary to the similar bridge setting, the port

Edge

status does not effect this setting.

A port entering error-disabled state due to this setting is subject to the bridge Port

Error Recovery setting as well.

Controls whether the port connects to a point-to-point LAN rather than a shared medium. This can be automatically determined, or forced either true or false.

Transitions to the forwarding state is faster for point-to-point LANs than for shared media.

149

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

By default, the system automatically detects the speed and duplex mode used on each port, and configures the path cost according to the values shown below. Path cost “0” is used to indicate auto-configuration mode. When the short path cost method is selected and the default path cost recommended by the IEEE 8021w standard exceeds 65,535, the default is set to

65,535.

Port Type

Ethernet

IEEE 802.1D-1998

50-600

Fast Ethernet

10-60

Gigabit Ethernet

3-10

IEEE 802.1w-2001

200,000-20,000,000

20,000-2,000,000

2,000-200,000

Table 4-3-4-1:

Recommended STP Path Cost Range

Port Type

Ethernet

Fast Ethernet

Gigabit Ethernet

Link Type

Half Duplex

Full Duplex

Trunk

Half Duplex

Full Duplex

Trunk

IEEE 802.1D-1998

100

95

90

19

18

15

IEEE 802.1w-2001

2,000,000

1,999,999

1,000,000

200,000

100,000

50,000

Full Duplex 4 10,000

Trunk 3

Table 4-3-4-2:

Recommended STP Path Costs

5,000

Port Type

Ethernet

Link Type IEEE 802.1w-2001

Half Duplex

Full Duplex

Trunk

2,000,000

1,000,000

500,000

Fast Ethernet

Half Duplex

Full Duplex

200,000

100,000

Trunk 50,000

Gigabit Ethernet

Full Duplex 10,000

Trunk 5,000

Table 4-3-4-3:

Default STP Path Costs

150

User’s Manual of MGSW-28240F Managed switch

4.3.4.5 MSTI Priorities

This page allows the user to inspect the current STP MSTI bridge instance priority configurations, and possibly change them as well. The MSTI Priority screen in Figure 4-3-4-7 appears.

The page includes the following fields:

Figure 4-3-4-7:

MSTI Priority Page Screenshot

Object

• MSTI

• Priority

Description

The bridge instance. The CIST is the default instance, which is always active.

Controls the bridge priority. Lower numerical values have better priority. The bridge priority plus the MSTI instance number, concatenated with the 6-byte

MAC address of the switch forms a Bridge Identifier.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

151

User’s Manual of MGSW-28240F Managed switch

4.3.4.6 MSTI Configuration

This page allows the user to inspect the current STP MSTI bridge instance priority configurations, and possibly change them as well. The MSTI Configuration screen in Figure 4-3-4-8 appears.

Figure 4-3-4-8:

MSTI Configuration Page Screenshot

The page includes the following fields:

Configuration Identification

Object

• Configuration Name

Description

The name identifying the VLAN to MSTI mapping. Bridges must share the name and revision (see below), as well as the VLAN-to-MSTI mapping configuration in order to share spanning trees for MSTI's. (Intra-region). The name is at most 32 characters.

• Configuration Revision

The revision of the MSTI configuration named above. This must be an integer between 0 and 65535.

152

User’s Manual of MGSW-28240F Managed switch

MSTI Mapping

Object

• MSTI

• VLANs Mapped

Description

The bridge instance. The CIST is not available for explicit mapping, as it will receive the VLANs not explicitly mapped.

The list of VLAN's mapped to the MSTI. The VLANs must be separated with comma and/or space. A VLAN can only be mapped to one MSTI. A unused MSTI should just be left empty. (I.e. not having any VLANs mapped to it.)

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.4.7 MSTI Ports Configuration

This page allows the user to inspect the current STP MSTI port configurations, and possibly change them as well. A MSTI port is a virtual port, which is instantiated separately for each active CIST (physical) port for each MSTI instance configured and applicable for the port. The MSTI instance must be selected before displaying actual MSTI port configuration options.

This page contains MSTI port settings for physical and aggregated ports. The aggregation settings are global. The MSTI Port

Configuration screen in Figure 4-3-4-9 & Figure 4-3-4-10 appears.

Figure 4-3-4-9 :

MSTI Port Configuration Page Screenshot

The page includes the following fields:

MSTI Port Configuration

Object

• Select MSTI

Description

Select the bridge instance and set more detail configuration.

153

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-4-10 :

MST1 MSTI Port Configuration Page Screenshot

The page includes the following fields:

MSTx MSTI Port Configuration

Object

• Port

• Path Cost

• Priority

Description

The switch port number of the corresponding STP CIST (and MSTI) port.

Controls the path cost incurred by the port. The Auto setting will set the path cost as appropriate by the physical link speed, using the 802.1D recommended values. Using the Specific setting, a user-defined value can be entered. The path cost is used when establishing the active topology of the network. Lower path cost ports are chosen as forwarding ports in favor of higher path cost ports. Valid values are in the range 1 to 200000000.

Controls the port priority. This can be used to control priority of ports having identical port cost.

Buttons

: Click to set MSTx configuration

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

154

User’s Manual of MGSW-28240F Managed switch

4.3.4.8 Port Status

This page displays the STP CIST port status for port physical ports in the currently selected switch.

The STP Port Status screen in Figure 4-3-4-11 appears.

The page includes the following fields:

Figure 4-3-4-11:

STP Port Status Page Screenshot

Object

Port

CIST Role

CIST State

Description

The switch port number of the logical STP port.

The current STP port role of the ICST port. The port role can be one of the following values:

AlternatePort

BackupPort

RootPort

DesignatedPort

Disable

The current STP port state of the CIST port . The port state can be one of the following values:

Disabled

Learning

Forwarding

The time since the bridge port was last initialized.

• Uptime

Buttons

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds

155

User’s Manual of MGSW-28240F Managed switch

4.3.4.9 Port Statistics

This page displays the STP port statistics counters for port physical ports in the currently selected switch.

The STP Port Statistics screen in Figure 4-3-4-12 appears.

The page includes the following fields:

Figure 4-3-4-12:

STP Statistics Page Screenshot

Object

• Port

• MSTP

• RSTP

• STP

Description

The switch port number of the logical RSTP port.

The number of MSTP Configuration BPDU's received/transmitted on the port.

The number of RSTP Configuration BPDU's received/transmitted on the port.

TCN

Discarded Unknown

Discarded Illegal

The number of legacy STP Configuration BPDU's received/transmitted on the port.

The number of (legacy) Topology Change Notification BPDU's received/transmitted on the port.

The number of unknown Spanning Tree BPDU's received (and discarded) on the port.

The number of illegal Spanning Tree BPDU's received (and discarded) on the port.

Buttons

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

: Clears the counters for all ports.

156

User’s Manual of MGSW-28240F Managed switch

4.3.5 Multicast

4.3.5.1 IGMP Snooping

The

Internet Group Management Protocol (IGMP)

lets host and routers share information about multicast groups memberships. IGMP snooping is a switch feature that monitors the exchange of IGMP messages and copies them to the CPU for feature processing. The overall purpose of IGMP Snooping is to limit the forwarding of multicast frames to only ports that are a member of the multicast group.

About the Internet Group Management Protocol (IGMP) Snooping

Computers and network devices that want to receive multicast transmissions need to inform nearby routers that they will become members of a multicast group. The

Internet Group Management Protocol (IGMP)

is used to communicate this information. IGMP is also used to periodically check the multicast group for members that are no longer active. In the case where there is more than one multicast router on a sub network, one router is elected as the ‘queried’. This router then keeps track of the membership of the multicast groups that have active members. The information received from IGMP is then used to determine if multicast packets should be forwarded to a given sub network or not. The router can check, using IGMP, to see if there is at least one member of a multicast group on a given subnet work. If there are no members on a sub network, packets will not be forwarded to that sub network.

Figure 4-3-5-1:

Multicast Service

157

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-5-2:

Multicast Flooding

Figure 4-3-5-3:

IGMP Snooping Multicast Stream Control

158

User’s Manual of MGSW-28240F Managed switch

IGMP Versions 1 and 2

Multicast groups allow members to join or leave at any time. IGMP provides the method for members and multicast routers to communicate when joining or leaving a multicast group. IGMP version 1 is defined in RFC 1112. It has a fixed packet size and no optional data. The format of an IGMP packet is shown below:

IGMP Message Format

Octets

0 8 16 31

Type Response Time Checksum

Group Address (all zeros if this is a query)

The IGMP Type codes are shown below:

Type

0x11

Meaning

Membership Query (if Group Address is 0.0.0.0)

0x11

Specific Group Membership Query (if Group Address is

Present)

0x16

0x17

Membership Report (version 2)

Leave a Group (version 2)

0x12 Membership Report (version 1)

IGMP packets enable multicast routers to keep track of the membership of multicast groups, on their respective sub networks.

The following outlines what is communicated between a multicast router and a multicast group member using IGMP.

A host sends an IGMP

“report”

to join a group

A host will never send a report when it wants to leave a group (for version 1).

A host will send a

“leave” report when it wants to leave a group (for version 2).

Multicast routers send IGMP queries (to the all-hosts group address: 224.0.0.1) periodically to see whether any group members exist on their sub networks. If there is no response from a particular group, the router assumes that there are no group members on the network.

The Time-to-Live (TTL) field of query messages is set to 1 so that the queries will not be forwarded to other sub networks.

IGMP version 2 introduces some enhancements such as a method to elect a multicast queried for each LAN, an explicit leave message, and query messages that are specific to a given group.

159

User’s Manual of MGSW-28240F Managed switch

The states a computer will go through to join or to leave a multicast group are shown below:

Figure 4-3-5-4:

IGMP State Transitions

 IGMP Querier –

A router, or multicast-enabled switch, can periodically ask their hosts if they want to receive multicast traffic. If there is more than one router/switch on the LAN performing IP multicasting, one of these devices is elected “ querier

” and assumes the role of querying the LAN for group members. It then propagates the service requests on to any upstream multicast switch/router to ensure that it will continue to receive the multicast service.

Multicast routers use this information, along with a multicast routing protocol such as

DVMRP or PIM, to support IP multicasting across the Internet.

160

User’s Manual of MGSW-28240F Managed switch

4.3.5.2 Profile Table

This page provides IPMC Profile related configurations. The IPMC profile is used to deploy the access control on IP multicast streams. It is allowed to create at maximum 64 Profiles with at maximum 128 corresponding rules for each. The Profile Table screen in Figure 4-3-5-5 appears.

The page includes the following fields:

Figure 4-3-5-5:

IPMC Profile Configuration Page

Object

• Global Profile Mode

Delete

Profile Name

Rule

Profile Description

Description

Enable/Disable the Global IPMC Profile.

System starts to do filtering based on profile settings only when the global profile mode is enabled.

Check to delete the entry.

The designated entry will be deleted during the next save.

The name used for indexing the profile table.

Each entry has the unique name which is composed of at maximum 16 alphabetic and numeric characters. At least one alphabet must be present.

Additional description, which is composed of at maximum 64 alphabetic and numeric characters, about the profile.

No blank or space characters are permitted as part of description. Use "_" or "-" to separate the description sentence.

When the profile is created, click the edit button to enter the rule setting page of the designated profile. Summary about the designated profile will be shown by clicking the view button. You can manage or inspect the rules of the designated profile by using the following buttons:

: List the rules associated with the designated profile.

: Adjust the rules associated with the designated profile.

Buttons

161

User’s Manual of MGSW-28240F Managed switch

: Click to add new IPMC profile. Specify the name and configure the new entry. Click "Save”.

: Click to apply changes

:

Click to undo any changes made locally and revert to previously saved values.

4.3.5.3 Address Entry

This page provides address range settings used in

IPMC profile

. The address entry is used to specify the address range that will be associated with

IPMC

Profile. It is allowed to create at maximum 128 address entries in the system.

The Profile Table screen in Figure 4-3-5-6 appears.

Figure 4-3-5-6:

IPMC Profile Address Configuration Page

The page includes the following fields:

Object

• Delete

• Entry Name

• Start Address

• End Address

Description

Check to delete the entry.

The designated entry will be deleted during the next save.

The name used for indexing the address entry table.

Each entry has the unique name which is composed of at maximum 16 alphabetic and numeric characters. At least one alphabet must be present.

The starting IPv4/IPv6 Multicast Group Address that will be used as an address range.

The ending IPv4/IPv6 Multicast Group Address that will be used as an address range.

Buttons

:

Click to add new address range. Specify the name and configure the addresses. Click "Save

”.

: Click to apply changes

:

Click to undo any changes made locally and revert to previously saved values.

162

User’s Manual of MGSW-28240F Managed switch

:

Refreshes the displayed table starting from the input fields.

:

Updates the table starting from the first entry in the IPMC Profile Address Configuration.

:

Updates the table, starting with the entry after the last entry currently displayed.

4.3.5.4 IGMP Snooping Configuration

This page provides IGMP Snooping related configuration. The IGMP Snooping Configuration screen in Figure 4-3-5-7 appears.

Figure 4-3-5-7:

IGMP Snooping Configuration Page Screenshot

The page includes the following fields:

Object

• Snooping Enabled

• Unregistered IPMCv4

Flooding Enabled

• IGMP SSM Range

Description

Enable the Global IGMP Snooping.

Enable unregistered IPMCv4 traffic flooding.

The flooding control takes effect only when IGMP Snooping is enabled.

When IGMP Snooping is disabled, unregistered IPMCv4 traffic flooding is always active in spite of this setting.

SSM (Source-Specific Multicast) Range allows the SSM-aware hosts and routers

163

User’s Manual of MGSW-28240F Managed switch

Leave Proxy Enable

Proxy Enable

Router Port run the SSM service model for the groups in the address range.

Enable IGMP Leave Proxy. This feature can be used to avoid forwarding unnecessary leave messages to the router side.

Enable IGMP Proxy. This feature can be used to avoid forwarding unnecessary join and leave messages to the router side.

Specify which ports act as IGMP router ports. A router port is a port on the

Ethernet switch that leads towards the Layer 3 multicast device or IGMP querier.

The Switch forwards IGMP join or leave packets to an IGMP router port.

 Auto:

Select “Auto” to have the Managed Switch automatically uses the port as IGMP Router port if the port receives IGMP query packets.

 Fix

:

The Managed Switch always uses the specified port as an IGMP

Router port. Use this mode when you connect an IGMP multicast server or IP camera which applied with multicast protocol to the port.

 None:

The Managed Switch will not use the specified port as an IGMP

Router port. The Managed Switch will not keep any record of an

IGMP router being connected to this port. Use this mode when you connect other IGMP multicast servers directly on the non-querier

Managed Switch and don’t want the multicast stream to be flooded by uplinking switch through the port that is connected to the IGMP querier.

Enable the fast leave on the port.

Enable to limit the number of multicast groups to which a switch port can belong.

Buttons

• Fast Leave

• Throtting

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

164

User’s Manual of MGSW-28240F Managed switch

4.3.5.5 IGMP Snooping VLAN Configuration

Each page shows up to 99 entries from the VLAN table, default being 20, selected through the "entries per page" input field.

When first visited, the web page will show the first 20 entries from the beginning of the VLAN Table. The first displayed will be the one with the lowest VLAN ID found in the VLAN Table.

The "VLAN" input fields allow the user to select the starting point in the VLAN Table. The IGMP Snooping VLAN Configuration screen in Figure 4-3-5-8 appears.

Figure 4-3-5-8:

IGMP Snooping VLAN Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

Description

Check to delete the entry. The designated entry will be deleted during the next save.

The VLAN ID of the entry.

• VLAN ID

• IGMP Snooping Enable

Enable the per-VLAN IGMP Snooping. Only up to 32 VLANs can be selected.

• Querier Election

Querier Address

Compatibility

Enable the IGMP Querier election in the VLAN. Disable to act as an IGMP

Non-Querier.

Define the IPv4 address as source address used in IP header for IGMP Querier election.

■ When the Querier address is not set, system uses IPv4 management address of the IP interface associated with this VLAN.

■ When the IPv4 management address is not set, system uses the first available IPv4 management address. Otherwise, system uses a pre-defined value.

By default, this value will be 192.0.2.1

Compatibility is maintained by hosts and routers taking appropriate actions depending on the versions of IGMP operating on hosts and routers within a network. The allowed selection is

IGMP-Auto

,

Forced IGMPv1

,

Forced

IGMPv2

,

Forced IGMPv3

.

Default compatibility value is

IGMP-Auto

.

165

User’s Manual of MGSW-28240F Managed switch

Buttons

PRI

RV

(PRI) Priority of Interface. It indicates the IGMP control frame priority level generated by the system. These values can be used to prioritize different classes of traffic.

The allowed range is

0

(best effort) to

7

(highest), default interface priority value is 0

Robustness Variable. The Robustness Variable allows tuning for the expected packet loss on a network.

QI

QRI

The allowed range is

1

to

255

, default robustness variable value is 2.

Query Interval. The Query Interval is the interval between General Queries sent by the Querier. The allowed range is

1

to

31744

seconds, default query interval is

125 seconds.

Query Response Interval. The Max Response Time used to calculate the Max

Resp Code inserted into the periodic General Queries.

The allowed range is

0

to

31744

in tenths of seconds, default query response interval is 100 in tenths of seconds (10 seconds).

• LLQI (LMQI for IGMP)

Last Member Query Interval. The Last Member Query Time is the time value represented by the Last Member Query Interval, multiplied by the Last Member

Query Count.

• URI

The allowed range is

0

to

31744

in tenths of seconds, default last member query interval is 10 in tenths of seconds (1 second).

Unsolicited Report Interval. The Unsolicited Report Interval is the time between repetitions of a host's initial report of membership in a group.

The allowed range is

0

to

31744

seconds, default unsolicited report interval is 1 second.

: Refreshes the displayed table starting from the "VLAN" input fields.

: Updates the table starting from the first entry in the VLAN Table, i.e. the entry with the lowest VLAN ID.

: Updates the table, starting with the entry after the last entry currently displayed.

: Click to add new IGMP VLAN. Specify the VID and configure the new entry.

Click "Save". The specific IGMP VLAN starts working after the corresponding static VLAN is also created.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

166

User’s Manual of MGSW-28240F Managed switch

4.3.5.6 IGMP Snooping Port Group Filtering

In certain switch applications, the administrator may want to control the multicast services that are available to end users. For example, an IP/TV service based on a specific subscription plan. The IGMP filtering feature fulfills this requirement by restricting access to specified multicast services on a switch port, and IGMP throttling limits the number of simultaneous multicast groups a port can join.

IGMP filtering enables you to assign a profile to a switch port that specifies multicast groups that are permitted or denied on the port. An IGMP filter profile can contain one or more, or a range of multicast addresses; but only one profile can be assigned to a port. When enabled, IGMP join reports received on the port are checked against the filter profile. If a requested multicast group is permitted, the IGMP join report is forwarded as normal. If a requested multicast group is denied, the IGMP join report is dropped.

IGMP throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either “deny” or “replace”. If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group. The IGMP Snooping Port Group Filtering Configuration screen in Figure 4-8-9 appears.

Figure 4-3-5-9:

IGMP Snooping Port Filtering Profile Configuration Page Screenshot

The page includes the following fields:

Object

• Port

• Filtering Profile

Description

The logical port for the settings.

Select the IPMC Profile as the filtering condition for the specific port. Summary about the designated profile will be shown by clicking the view button

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

167

User’s Manual of MGSW-28240F Managed switch

4.3.5.7 IGMP Snooping Status

This page provides IGMP Snooping status. The IGMP Snooping Status screen in Figure 4-3-5-10 appears.

Figure 4-3-5-10:

IGMP Snooping Status Page Screenshot

The page includes the following fields:

Object

• VLAN ID

• Querier Version

• Host Version

• Querier Status

• Querier Transmitted

• Querier Received

• V1 Reports Received

• V2 Reports Received

• V3 Reports Received

• V2 Leave Received

• Router Port

Port

Status

Description

The VLAN ID of the entry.

Working Querier Version currently.

Working Host Version currently.

Show the Querier status is "ACTIVE" or "IDLE".

The number of Transmitted Querier.

The number of Received Querier.

The number of Received V1 Reports.

The number of Received V2 Reports.

The number of Received V3 Reports.

The number of Received V2 Leave.

Display which ports act as router ports. A router port is a port on the Ethernet switch that leads towards the Layer 3 multicast device or IGMP querier.

Static denotes the specific port is configured to be a router port.

Dynamic denotes the specific port is learnt to be a router port.

Both denote the specific port is configured or learnt to be a router port.

Switch port number.

Indicate whether specific port is a router port or not.

168

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to refresh the page immediately.

: Clears all Statistics counters.

Auto-refresh : Automatic refresh occurs every 3 seconds.

4.3.5.8 IGMP Group Information

Entries in the IGMP Group Table are shown on this Page. The IGMP Group Table is sorted first by VLAN ID, and then by group.

Each page shows up to 99 entries from the IGMP Group table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the IGMP Group Table. The "Start from

VLAN", and "group" input fields allow the user to select the starting point in the IGMP Group Table. The IGMP Groups

Information screen in Figure 4-3-5-11 appears.

Figure 4-3-5-9:

IGMP Snooping Groups Information Page Screenshot

The page includes the following fields:

Buttons

Object

• VLAN ID

• Groups

• Port Members

Description

VLAN ID of the group.

Group address of the group displayed.

Ports under this group.

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Refreshes the displayed table starting from the input fields.

: Updates the table, starting with the first entry in the IGMP Group Table.

: Updates the table, starting with the entry after the last entry currently displayed.

169

User’s Manual of MGSW-28240F Managed switch

4.3.5.9 IGMPv3 Information

Entries in the IGMP SSM Information Table are shown on this page. The IGMP SSM Information Table is sorted first by VLAN ID, then by group, and then by Port No. Diffrent source addresses belong to the same group are treated as single entry.

Each page shows up to 99 entries from the IGMP SSM (Source Specific Multicast) Information table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the

IGMP SSM Information Table.

The "

Start from VLAN

", and "

Group

" input fields allow the user to select the starting point in the IGMP SSM Information Table.

The IGMPv3 Information screen in Figure 4-3-5-12 appears.

Figure 4-3-5-12:

IGMP SSM Information Page Screenshot

The page includes the following fields:

Buttons

Object

• VLAN ID

• Group

• Port

• Mode

Description

VLAN ID of the group.

Group address of the group displayed.

Switch port number.

Indicates the filtering mode maintained per (VLAN ID, port number, Group

Address) basis. It can be either Include or Exclude.

• Source Address

IP Address of the source. Currently, system limits the total number of IP source addresses for filtering to be 128.

• Type

Indicates the Type. It can be either Allow or Deny.

• Hardware Filter/Switch

Indicates whether data plane destined to the specific group address from the source IPv4 address could be handled by chip or not.

Auto-refresh : Check this box to enable an automatic refresh of the page at regular intervals.

: Click to refresh the page immediately.

: Updates the table, starting with the first entry in the IGMP Group Table.

: Updates the table, starting with the entry after the last entry currently displayed.

170

User’s Manual of MGSW-28240F Managed switch

4.3.6 MLD Snooping

4.3.6.1 MLD Snooping Configuration

This page provides MLD Snooping related configuration. The MLD Snooping Configuration screen in Figure 4-8-13 appears.

Figure 4-3-6-1:

MLD Snooping Configuration Page Screenshot

The page includes the following fields:

Object

• Snooping Enabled

• Unregistered IPMCv6

Flooding enabled

MLD SSM Range

Leave Proxy Enable

Description

Enable the Global MLD Snooping.

Enable unregistered IPMCv6 traffic flooding.

The flooding control takes effect only when MLD Snooping is enabled.

When MLD Snooping is disabled, unregistered IPMCv6 traffic flooding is always active in spite of this setting.

SSM (Source-Specific Multicast) Range allows the SSM-aware hosts and routers run the SSM service model for the groups in the address range.

Enable MLD Leave Proxy. This feature can be used to avoid forwarding unnecessary leave messages to the router side.

171

User’s Manual of MGSW-28240F Managed switch

Proxy Enable

Router Port

Buttons

• Fast Leave

• Throtting

: Click to apply changes

Enable MLD Proxy. This feature can be used to avoid forwarding unnecessary join and leave messages to the router side.

Specify which ports act as router ports. A router port is a port on the Ethernet switch that leads towards the Layer 3 multicast device or MLD querier.

If an aggregation member port is selected as a router port, the whole aggregation will act as a router port. The allowed selection is

Auto

,

Fix

,

Fone

, default compatibility value is Auto.

Enable the fast leave on the port.

Enable to limit the number of multicast groups to which a switch port can belong.

: Click to undo any changes made locally and revert to previously saved values.

4.3.6.2 MLD Snooping VLAN Configuration

Each page shows up to 99 entries from the VLAN table, default being 20, selected through the "entries per page" input field.

When first visited, the web page will show the first 20 entries from the beginning of the VLAN Table. The first displayed will be the one with the lowest VLAN ID found in the VLAN Table.

The "VLAN" input fields allow the user to select the starting point in the VLAN Table. The MLD Snooping VLAN Configuration screen in Figure 4-3-6-2 appears.

Figure 4-3-6-2:

IGMP Snooping VLAN Configuration Page Screenshot

The page includes the following fields:

Object

• Delete

• VLAN ID

Description

Check to delete the entry. The designated entry will be deleted during the next save.

The VLAN ID of the entry.

172

User’s Manual of MGSW-28240F Managed switch

Buttons

• MLD Snooping Enable

Enable the per-VLAN MLD Snooping. Up to 32 VLANs can be selected for MLD

Snooping.

• Querier Election

Enable to join MLD Querier election in the VLAN. Disable to act as a MLD

Non-Querier.

• Compatibility

Compatibility is maintained by hosts and routers taking appropriate actions depending on the versions of MLD operating on hosts and routers within a network. The allowed selection is MLD-Auto , Forced MLDv1 , Forced MLDv2 , default compatibility value is MLD-Auto.

• PRI

(PRI) Priority of Interface. It indicates the MLD control frame priority level generated by the system. These values can be used to prioritize different classes of traffic. The allowed range is

0

(best effort) to

7

(highest), default interface priority value is 0

RV

QI

Robustness Variable. The Robustness Variable allows tuning for the expected packet loss on a network. The allowed range is

1

to

255

, default robustness variable value is

2

.

Query Interval. The Query Interval is the interval between General Queries sent by the Querier. The allowed range is

1

to

31744

seconds, default query interval is

125 seconds.

• QRI

Query Response Interval. The Max Response Time used to calculate the Max

Resp Code inserted into the periodic General Queries. The allowed range is

0

to

31744

in tenths of seconds, default query response interval is 100 in tenths of seconds (10 seconds).

• LLQI (LMQI for IGMP)

Last Member Query Interval. The Last Member Query Time is the time value represented by the Last Member Query Interval, multiplied by the Last Member

Query Count. The allowed range is

0

to

31744

in tenths of seconds, default last member query interval is 10 in tenths of seconds (1 second).

• URI

Unsolicited Report Interval. The Unsolicited Report Interval is the time between repetitions of a host's initial report of membership in a group. The allowed range is

0

to

31744

seconds, default unsolicited report interval is 1 second.

: Refreshes the displayed table starting from the "VLAN" input fields.

: Updates the table starting from the first entry in the VLAN Table, i.e. the entry with the lowest VLAN ID.

: Updates the table, starting with the entry after the last entry currently displayed.

:Click to add new MLD VLAN. Specify the VID and configure the new entry.

Click "Save". The specific MLD VLAN starts working after the corresponding static VLAN is also created.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

173

User’s Manual of MGSW-28240F Managed switch

4.3.6.3 MLD Snooping Port Group Filtering

In certain switch applications, the administrator may want to control the multicast services that are available to end users. For example, an IP/TV service based on a specific subscription plan. The MLD filtering feature fulfills this requirement by restricting access to specified multicast services on a switch port, and MLD throttling limits the number of simultaneous multicast groups a port can join.

MLD filtering enables you to assign a profile to a switch port that specifies multicast groups that are permitted or denied on the port. A MLD filter profile can contain one or more, or a range of multicast addresses; but only one profile can be assigned to a port. When enabled, MLD join reports received on the port are checked against the filter profile. If a requested multicast group is permitted, the MLD join report is forwarded as normal. If a requested multicast group is denied, the MLD join report is dropped.

MLD throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either “deny” or “replace”. If the action is set to deny, any new MLD join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group. The MLD Snooping Port Group Filtering Configuration screen in Figure 4-8-15 appears.

Figure 4-3-6-3:

MLD Snooping Port Group Filtering Configuration Page Screenshot

The page includes the following fields:

Object

• Port

• Filtering Group

Description

The logical port for the settings.

Select the IPMC Profile as the filtering condition for the specific port. Summary about the designated profile will be shown by clicking the view button.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

174

User’s Manual of MGSW-28240F Managed switch

4.3.6.4 MLD Snooping Status

This page provides MLD Snooping status. The IGMP Snooping Status screen in Figure 4-3-6-4 appears.

Figure 4-3-6-4:

MLD Snooping Status Page Screenshot

The page includes the following fields:

Object

VLAN ID

Querier Version

• Host Version

• Querier Status

• Querier Transmitted

• Querier Received

• V1 Reports Received

• V2 Reports Received

• V1 Leave Received

• Router Port

• Port

Description

The VLAN ID of the entry.

Working Querier Version currently.

Working Host Version currently.

Shows the Querier status is "ACTIVE" or "IDLE".

"DISABLE" denotes the specific interface is administratively disabled.

The number of Transmitted Querier.

The number of Received Querier.

The number of Received V1 Reports.

The number of Received V2 Reports.

The number of Received V1 Leaves.

Display which ports act as router ports. A router port is a port on the Ethernet switch that leads towards the Layer 3 multicast device or MLD querier.

Static denotes the specific port is configured to be a router port.

Dynamic denotes the specific port is learnt to be a router port.

Both denote the specific port is configured or learnt to be a router port.

Switch port number.

175

User’s Manual of MGSW-28240F Managed switch

Buttons

• Status

Indicates whether specific port is a router port or not.

: Click to refresh the page immediately.

: Clears all Statistics counters.

Auto-refresh : Automatic refresh occurs every 3 seconds.

4.3.6.5 MLD Group Information

Entries in the MLD Group Table are shown on this page. The MLD Group Table is sorted first by VLAN ID, and then by group.

Each page shows up to 99 entries from the MLD Group table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the MLD Group Table.

The "Start from VLAN", and "group" input fields allow the user to select the starting point in the MLD Group Table. The MLD

Groups Information screen in Figure 4-3-6-5 appears.

Figure 4-3-6-5:

MLD Snooping Groups Information Page Screenshot

The page includes the following fields:

Buttons

Object

• VLAN ID

• Groups

• Port Members

Description

VLAN ID of the group.

Group address of the group displayed.

Ports under this group.

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

: Updates the table, starting with the first entry in the IGMP Group Table.

: Updates the table, starting with the entry after the last entry currently displayed.

176

User’s Manual of MGSW-28240F Managed switch

4.3.6.6 MLDv2 Information

Entries in the MLD SFM Information Table are shown on this page. The MLD SFM (Source-Filtered Multicast) Information Table also contains the SSM (Source-Specific Multicast) information. This table is sorted first by VLAN ID, then by group, and then by

Port. Different source addresses belong to the same group are treated as single entry. Each page shows up to 99 entries from the MLD SFM Information table, default being 20, selected through the "entries per page" input field. When first visited, the web

Page will show the first 20 entries from the beginning of the MLD SFM Information Table.

The "Start from VLAN", and "group" input fields allow the user to select the starting point in the MLD SFM Information Table.

The MLDv2 Information screen in Figure 4-3-6-6 appears.

Figure 4-3-6-6:

MLD SSM Information Page Screenshot

The page includes the following fields:

Buttons

Object

• VLAN ID

• Group

• Port

• Mode

Description

VLAN ID of the group.

Group address of the group displayed.

Switch port number.

Indicates the filtering mode maintained per (VLAN ID, port number, Group

Address) basis. It can be either Include or Exclude.

• Source Address

IP Address of the source. Currently, system limits the total number of IP source addresses for filtering to be 128.

• Type

Indicates the Type. It can be either Allow or Deny.

• Hardware Filter/Switch

Indicates whether data plane destined to the specific group address from the source IPv6 address could be handled by chip or not.

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Refreshes the displayed table starting from the input fields.

: Updates the table starting from the first entry in the MLD SFM Information Table.

: Updates the table, starting with the entry after the last entry currently displayed.

177

User’s Manual of MGSW-28240F Managed switch

4.3.7 MVR (Multicast VLAN Registration)

The MVR feature enables multicast traffic forwarding on the Multicast VLANs.

■ In a multicast television application, a PC or a network television or a set-top box can receive the multicast stream.

■ Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. When a subscriber selects a channel, the set-top box or PC sends an IGMP/MLD report message to Switch

A to join the appropriate multicast group address.

■ Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.

It is allowed to create at maximum 8 MVR VLANs with corresponding channel settings for each Multicast VLAN. There will be totally at maximum 256 group addresses for channel settings.

This page provides MVR related configuration. The MVR screen in Figure 4-3-7-1 appears

178

4.3.7.1 MVR Configuratio

User’s Manual of MGSW-28240F Managed switch

Figure 4-3-7-2:

MVR Configuration Page Screenshot

The page includes the following fields:

Object

• MVR Mode

Delete

MVR VID

MVR Name

Description

Enable/Disable the Global MVR.

The Unregistered Flooding control depends on the current configuration in

IGMP/MLD Snooping.

It is suggested to enable Unregistered Flooding control when the MVR group table is full.

Check to delete the entry. The designated entry will be deleted during the next save.

Specify the Multicast VLAN ID.

Be Caution

: MVR source ports are not recommended to be overlapped with management VLAN ports.

MVR Name is an optional attribute to indicate the name of the specific MVR

VLAN. Maximum length of the MVR VLAN Name string is 16. MVR VLAN Name

179

• IGMP Address

• Mode

• Tagging

• Priority

• LLQI

• Interface Channel

Setting

• Port

• Port Role

User’s Manual of MGSW-28240F Managed switch can only contain alphabets or numbers. When the optional MVR VLAN name is given, it should contain at least one alphabet. MVR VLAN name can be edited for the existing MVR VLAN entries or it can be added to the new entries.

Define the IPv4 address as source address used in IP header for IGMP control frames. The default IGMP address is not set (0.0.0.0).

When the IGMP address is not set, system uses IPv4 management address of the IP interface associated with this VLAN.

When the IPv4 management address is not set, system uses the first available

IPv4 management address. Otherwise, system uses a pre-defined value. By default, this value will be 192.0.2.1.

Specify the MVR mode of operation. In Dynamic mode, MVR allows dynamic

MVR membership reports on source ports. In Compatible mode, MVR membership reports are forbidden on source ports. The default is Dynamic mode.

Specify whether the traversed IGMP/MLD control frames will be sent as

Untagged or Tagged with MVR VID. The default is Tagged.

Specify how the traversed IGMP/MLD control frames will be sent in prioritized manner. The default Priority is 0.

Define the maximum time to wait for IGMP/MLD report memberships on a receiver port before removing the port from multicast group membership. The value is in units of tenths of a seconds. The range is from 0 to 31744. The default

LLQI is 5 tenths or one-half second.

When the MVR VLAN is created, select the IPMC Profile as the channel filtering condition for the specific MVR VLAN. Summary about the Interface Channel

Profiling (of the MVR VLAN) will be shown by clicking the view button. Profile selected for designated interface channel is not allowed to have overlapped permit group address.

The logical port for the settings.

Configure an MVR port of the designated MVR VLAN as one of the following roles.

 Inactive

: The designated port does not participate MVR operations.

 Source

: Configure uplink ports that receive and send multicast data as source ports. Subscribers cannot be directly connected to source ports.

 Receiver

: Configure a port as a receiver port if it is a subscriber port and should only receive multicast data. It does not receive data unless it becomes a member of the multicast group by issuing IGMP/MLD messages.

Be Caution

: MVR source ports are not recommended to be overlapped with management VLAN ports.

Select the port role by clicking the Role symbol to switch the setting.

180

User’s Manual of MGSW-28240F Managed switch

I indicates Inactive; S indicates Source; R indicates Receiver

The default Role is Inactive.

Enable the fast leave on the port.

Buttons

• Immediate Leave

: Click to add new MVR VLAN. Specify the VID and configure the new entry. Click "Save"

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.7.2 MVR Status

This page provides MVR status. The MVR Status screen in Figure 4-3-7-3 appears.

The page includes the following fields:

Figure 4-3-7-3:

MVR Status Page Screenshot

Object

• VLAN ID

• IGMP/MLD Queries Received

• IGMP/MLD Queries Transmitted

Description

The Multicast VLAN ID.

The number of Received Queries for IGMP and MLD, respectively.

The number of Transmitted Queries for IGMP and MLD, respectively.

• IGMPv1 Joins Received

The number of Received IGMPv1 Joins.

• IGMPv2/MLDv1 Reports Received

The number of Received IGMPv2 Joins and MLDv1 Reports, respectively.

• IGMPv3/MLDv2 Reports Received

The number of Received IGMPv1 Joins and MLDv2 Reports, respectively.

• IGMPv2/MLDv1 Leaves Received

The number of Received IGMPv2 Leaves and MLDv1 Dones, respectively.

Buttons

: Click to refresh the page immediately.

: Clears all Statistics counters.

Auto-refresh : Automatic refresh occurs every 3 seconds.

181

User’s Manual of MGSW-28240F Managed switch

4.3.7.3 MVR Groups Information

Entries in the MVR Group Table are shown on this page. The MVR Group Table is sorted first by VLAN ID, and then by group.

Each page shows up to 99 entries from the MVR Group table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the MVR Group Table.

The "Start from VLAN", and "group" input fields allow the user to select the starting point in the MVR Group Table. The MVR

Groups Information screen in Figure 4-3-7-4 appears.

Figure 4-3-7-4:

MVR Groups Information Page Screenshot

The page includes the following fields:

Buttons

Object

• VLAN

• Groups

• Port Members

Description

VLAN ID of the group.

Group ID of the group displayed.

Ports under this group.

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Refreshes the displayed table starting from the input fields.

: Updates the table starting from the first entry in the MVR Channels (Groups) Information Table.

: Updates the table, starting with the entry after the last entry currently displayed.

4.3.7.4 MVR SFM Information

Entries in the MVR SFM Information Table are shown on this page. The MVR

SFM

(

Source-Filtered Multicast

) Information

Table also contains the SSM (Source-Specific Multicast) information. This table is sorted first by VLAN ID, then by group, and

182

User’s Manual of MGSW-28240F Managed switch then by Port. Different source addresses belong to the same group are treated as single entry.

Each page shows up to 99 entries from the MVR SFM Information Table, default being 20, selected through the "entries per page" input field. When first visited, the web page will show the first 20 entries from the beginning of the MVR SFM Information

Table.

The "Start from VLAN", and "Group Address" input fields allow the user to select the starting point in the MVR SFM Information

Table. The MVR SFM Information screen in Figure 4-3-7-5 appears.

Figure 4-3-7-5:

MVR SFM Information Page Screenshot

The page includes the following fields:

Object

VLAN ID

Group

• Port

• Mode

• Source Address

Description

VLAN ID of the group.

Group address of the group displayed.

Switch port number.

Indicates the filtering mode maintained per (VLAN ID, port number, Group

Address) basis. It can be either Include or Exclude.

IP Address of the source. Currently, system limits the total number of IP source addresses for filtering to be 128. When there is no any source filtering address, the text "None" is shown in the Source Address field.

Indicates the Type. It can be either Allow or Deny.

• Type

• Hardware Filter /

Switch

Indicates whether data plane destined to the specific group address from the source IPv4/IPv6 address could be handled by chip or not.

Buttons

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Refreshes the displayed table starting from the input fields.

: Updates the table starting from the first entry in the MVR SFM Information Table.

183

User’s Manual of MGSW-28240F Managed switch

4.3.8 LLDP

4.3.8.1 Link Layer Discovery Protocol

Link Layer Discovery Protocol (LLDP)

is used to discover basic information about neighboring devices on the local broadcast domain. LLDP is a Layer 2 protocol that uses periodic broadcasts to advertise information about the sending device. Advertised information is represented in

Type Length Value (TLV)

format according to the IEEE 802.1ab standard, and can include details such as device identification, capabilities and configuration settings. LLDP also defines how to store and maintain information gathered about the neighboring network nodes it discovers.

Link Layer Discovery Protocol - Media Endpoint Discovery (LLDP-MED)

is an extension of LLDP intended for managing endpoint devices such as Voice over IP phones and network switches. The LLDP-MED TLVs advertise information such as network policy, power, inventory, and device location details. LLDP and LLDP-MED information can be used by SNMP applications to simplify troubleshooting, enhance network management, and maintain an accurate network topology.

4.3.8.2 LLDP Configuration

This page allows the user to inspect and configure the current LLDP port settings. The LLDP Configuration screen in Figure

4-3-8-1 appears.

Figure 4-3-8-1:

LLDP Configuration Page Screenshot

184

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

LLDP Parameters

Object

• Tx Interval

• Tx Hold

• Tx Delay

• Tx Reinit

Description

The switch is periodically transmitting LLDP frames to its neighbors for having the network discovery information up-to-date. The interval between each LLDP frame is determined by the

Tx Interval

value. Valid values are restricted to 5 -

32768 seconds.

Default:

30

seconds

This attribute must comply with the following rule:

(Transmission Interval * Hold Time Multiplier) ≤65536, and

Transmission Interval

>= (4 * Delay Interval)

Each LLDP frame contains information about how long the information in the

LLDP frame shall be considered valid. The LLDP information valid period is set to

Tx Hold

multiplied by

Tx Interval

seconds. Valid values are restricted to 2 - 10 times.

TTL in seconds is based on the following rule:

(Transmission Interval * Holdtime Multiplier) ≤ 65536.

Therefore, the default TTL is 4*30 = 120 seconds.

If some configuration is changed (e.g. the IP address) a new LLDP frame is transmitted, but the time between the LLDP frames will always be at least the value of

Tx Delay

seconds.

Tx Delay

cannot be larger than 1/4 of the

Tx Interval value. Valid values are restricted to 1 - 8192 seconds.

This attribute must comply with the rule:

(4 * Delay Interval) ≤Transmission In terval

When a port is disabled, LLDP is disabled or the switch is rebooted a LLDP shutdown frame is transmitted to the neighboring units, signaling that the LLDP information isn't valid anymore.

Tx Reinit

controls the amount of seconds between the shutdown frame and a new LLDP initialization. Valid values are restricted to 1 - 10 seconds.

LLDP Port Configuration

The LLDP port settings relate to the switch, as reflected by the page header.

Object

• Port

• Mode

Description

The switch port number of the logical LLDP port.

Select LLDP mode.

 Rx only

The switch will not send out LLDP information, but LLDP information from neighbor units is analyzed.

185

User’s Manual of MGSW-28240F Managed switch

 Tx only

The switch will drop LLDP information received from neighbors, but will send out LLDP information.

 Disabled

The switch will not send out LLDP information, and will drop LLDP information received from neighbors.

 Enabled

The switch will send out LLDP information, and will analyze LLDP information received from neighbors.

• CDP Aware

Select CDP awareness.

The CDP operation is restricted to decoding incoming CDP frames (

The switch doesn't transmit CDP frames

). CDP frames are only decoded if LLDP on the port is enabled.

Only CDP TLVs that can be mapped to a corresponding field in the LLDP neighbours' table are decoded. All other TLVs are discarded (Unrecognized CDP

TLVs and discarded CDP frames are not shown in the LLDP statistics.). CDP

TLVs are mapped onto LLDP neighbours' table as shown below.

CDP TLV "Device ID" is mapped to the LLDP "Chassis ID" field.

CDP TLV "Address" is mapped to the LLDP "Management Address" field. The

CDP address TLV can contain multiple addresses, but only the first address is shown in the LLDP neighbours table.

CDP TLV "Port ID" is mapped to the LLDP "Port ID" field.

CDP TLV "Version and Platform" is mapped to the LLDP "System Description" field.

Both the CDP and LLDP support "system capabilities", but the CDP capabilities cover capabilities that are not part of the LLDP. These capabilities are shown as

"others" in the LLDP neighbours' table.

If all ports have CDP awareness disabled the switch forwards CDP frames received from neighbour devices. If at least one port has CDP awareness enabled all CDP frames are terminated by the switch.

Note: When CDP awareness on a port is disabled the CDP information isn't removed immediately, but gets removed when the hold time is exceeded.

• Port Description

Optional TLV: When checked the "port description" is included in LLDP information transmitted.

• System Name

Optional TLV: When checked the "system name" is included in LLDP information transmitted.

• System Description

Optional TLV: When checked the "system description" is included in LLDP information transmitted.

• System Capabilities

Optional TLV: When checked the "system capability" is included in LLDP information transmitted.

• Management Address

Optional TLV: When checked the "management address" is included in LLDP information transmitted.

186

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.8.3 LLDP Neighbors

This page provides a status overview for all

LLDP

neighbors. The displayed table contains a row for each interface on which an LLDP neighbor is detected. The columns hold the following information:

The LLDP neighbors screen in

Figure 4-3-8-3 appears.

Figure 4-3-8-3:

LLDP Neighbors Page Screenshot

The page includes the following fields:

LLDP Neighbors Parameters

Object

• Local Interface

• Chassis ID

• Remote Port ID

• Port Description

• System Name

• System Capabilities

Description

The interface on which the LLDP frame was received.

The

Chassis ID

is the identification of the neighbor's LLDP frames.

The

Remote Port ID

is the identification of the neighbor port.

Port Description

is the port description advertised by the neighbor unit.

System Name

is the name advertised by the neighbor unit.

System Capabilities

describes the neighbor unit's capabilities. The possible capabilities are:

1. Other

2. Repeater

3. Bridge

187

User’s Manual of MGSW-28240F Managed switch

4. WLAN Access Point

5. Router

6. Telephone

7. DOCSIS cable device

8. Station only

9. Reserved

Buttons

When a capability is enabled, the capability is followed by (+). If the capability is disabled, the capability is followed by (-).

• Management Address Management Address

is the neighbor unit's address that is used for higher layer entities to assist discovery by the network management. This could for instance hold the neighbor's IP address.

:

Click to refresh the page.

188

User’s Manual of MGSW-28240F Managed switch

4.3.8.4 LLDP MED Configuration

This page allows you to configure the LLDP-MED. The LLDPMED Configuration screen in Figure 4-3-8-4 appears.

Figure 4-3-8-4:

LLDPMED Configuration Page Screenshot

The page includes the following fields:

Fast start repeat count

Object Description

• Fast start repeat count

Rapid startup and Emergency Call Service Location Identification Discovery of endpoints is a critically important aspect of VoIP systems in general. In addition, it is best to advertise only those pieces of information which are specifically relevant to particular endpoint types (for example only advertise the voice network policy to permitted voice-capable devices), both in order to conserve the limited LLDPU space and to reduce security and system integrity issues that can come with inappropriate knowledge of the network policy.

With this in mind LLDP-MED defines an LLDP-MED Fast Start interaction between the protocol and the application layers on top of the protocol, in order to achieve these related properties. Initially, a Network Connectivity Device will only transmit LLDP TLVs in an LLDPDU. Only after an LLDP-MED Endpoint Device is

189

User’s Manual of MGSW-28240F Managed switch detected, will an LLDP-MED capable Network Connectivity Device start to advertise LLDP-MED TLVs in outgoing LLDPDUs on the associated port. The

LLDP-MED application will temporarily speed up the transmission of the

LLDPDU to start within a second, when a new LLDP-MED neighbour has been detected in order share LLDP-MED information as fast as possible to new neighbours.

Because there is a risk of an LLDP frame being lost during transmission between neighbours, it is recommended to repeat the fast start transmission multiple times to increase the possibility of the neighbours receiving the LLDP frame. With

Fast start repeat count

it is possible to specify the number of times the fast start transmission would be repeated. The recommended value is 4 times, given that 4

LLDP frames with a 1 second interval will be transmitted, when an LLDP frame with new information is received.

It should be noted that LLDP-MED and the LLDP-MED Fast Start mechanism is only intended to run on links between LLDP-MED Network Connectivity Devices and Endpoint Devices, and as such does not apply to links between LAN infrastructure elements, including Network Connectivity Devices, or other types of links.

LLDP-MED Interface Configuration

Object

• Interface

Description

The interface name to which the configuration applies.

• Transmit TLVs -

Capabilities

• Transmit TLVs -

Policies

• Transmit TLVs -

Location

• Transmit TLVs - PoE

• Device Type

When checked the switch's capabilities is included in LLDP-MED information transmitted

When checked the configured policies for the interface is included in LLDP-MED information transmitted.

When checked the configured location information for the switch is included in LLDP-MED information transmitted.

When checked the configured PoE (Power Over Ethernet) information for the interface is included in LLDP-MED information transmitted

Any LLDP-MED Device is operating as a specific type of LLDP-MED Device, which may be either a Network Connectivity Device or a specific Class of

Endpoint Device, as defined below.

A Network Connectivity Device is a LLDP-MED Device that provides access to the IEEE 802 based LAN infrastructure for LLDP-MED Endpoint Devices

An LLDP-MED Network Connectivity Device is a LAN access device based on any of the following technologies :

1. LAN Switch/Router

190

User’s Manual of MGSW-28240F Managed switch

2. IEEE 802.1 Bridge

3. IEEE 802.3 Repeater (included for historical reasons)

4. IEEE 802.11 Wireless Access Point

5. Any device that supports the IEEE 802.1AB and MED extensions that can relay IEEE 802 frames via any method.

An Endpoint Device a LLDP-MED Device that sits at the network edge and provides some aspect of IP communications service, based on IEEE 802 LAN technology.

The main difference between a Network Connectivity Device and an Endpoint

Device is that only an Endpoint Device can start the LLDP-MED information exchange.

Even though a switch always should be a Network Connectivity Device, it is possible to configure it to act as an Endpoint Device, and thereby start the

LLDP-MED information exchange (In the case where two Network Connectivity

Devices are connected together)

Coordinates Location

Object

• Latitude

• Longitude

• Altitude

• Map Datum

Description

Latitude

SHOULD be normalized to within 0-90 degrees with a maximum of 4 digits.

It is possible to specify the direction to either

North

of the equator or

South

of the equator.

Longitude

SHOULD be normalized to within 0-180 degrees with a maximum of 4 digits.

It is possible to specify the direction to either

East

of the prime meridian or

West of the prime meridian.

Altitude

SHOULD be normalized to within -32767 to 32767 with a maximum of 4 digits.

It is possible to select between two altitude types (floors or meters).

Meters

: Representing meters of Altitude defined by the vertical datum specified.

Floors

: Representing altitude in a form more relevant in buildings which have different floor-to-floor dimensions. An altitude = 0.0 is meaningful even outside a building, and represents ground level at the given latitude and longitude. Inside a building, 0.0 represents the floor level associated with ground level at the main entrance.

The

Map Datum

used for the coordinates given in this Option

 WGS84

: (Geographical 3D) - World Geodesic System 1984, CRS Code

4327, Prime Meridian Name: Greenwich.

191

User’s Manual of MGSW-28240F Managed switch

 NAD83/NAVD88

: North American Datum 1983, CRS Code 4269, Prime

Meridian Name: Greenwich; The associated vertical datum is the North

American Vertical Datum of 1988 (NAVD88). This datum pair is to be used when referencing locations on land, not near tidal water (which would use

Datum = NAD83/MLLW).

 NAD83/MLLW

: North American Datum 1983, CRS Code 4269, Prime

Meridian Name: Greenwich; The associated vertical datum is Mean Lower

Low Water (MLLW). This datum pair is to be used when referencing locations on water/sea/ocean.

Civic Address Location

IETF Geopriv Civic Address based Location Configuration Information (Civic Address LCI).

Object

• Country code

Description

The two-letter ISO 3166 country code in capital ASCII letters - Example: DK, DE or US.

• State

National subdivisions (state, canton, region, province, prefecture).

• County

• City

County, parish, gun (Japan), district.

City, township, shi (Japan) - Example: Copenhagen

• City district

City division, borough, city district, ward, chou (Japan)

• Block (Neighborhood)

Neighborhood, block

• Street

• Leading street direction

Street - Example: Poppelvej

Leading street direction - Example: N

• Trailing street suffix

• Street suffix

• House no.

• House no. suffix

• Landmark

• Additional location info

• Name

• Zip code

• Building

• Apartment

• Floor

• Room no.

• Place type

• Postal community

Trailing street suffix - Example: SW

Street suffix - Example: Ave, Platz

House number - Example: 21

House number suffix - Example: A, 1/2

Landmark or vanity address - Example: Columbia University

Additional location info - Example: South Wing

Name (residence and office occupant) - Example: Flemming Jahn

Postal/zip code - Example: 2791

Building (structure) - Example: Low Library

Unit (Apartment, suite) - Example: Apt 42

Floor - Example: 4

Room number - Example: 450F

Place type - Example: Office

Postal community name - Example: Leonia

192

User’s Manual of MGSW-28240F Managed switch name

• P.O. Box

• Additional code

Post office box (P.O. BOX) - Example: 12345

Additional code - Example: 1320300003

Emergency Call Service

Emergency Call Service (e.g. E911 and others), such as defined by TIA or NENA.

Object

• Emergency Call

Service

Description

Emergency Call Service

ELIN identifier data format is defined to carry the ELIN identifier as used during emergency call setup to a traditional CAMA or ISDN trunk-based PSAP. This format consists of a numerical digit string, corresponding to the ELIN to be used for emergency calling.

Policies

Network Policy Discovery enables the efficient discovery and diagnosis of mismatch issues with the VLAN configuration, along with the associated Layer 2 and Layer 3 attributes, which apply for a set of specific protocol applications on that port. Improper network policy configurations are a very significant issue in VoIP environments that frequently result in voice quality degradation or loss of service.

Policies are only intended for use with applications that have specific 'real-time’ network policy requirements, such as interactive voice and/or video services.

The network policy attributes advertised are:

1. Layer 2 VLAN ID (IEEE 802.1Q-2003)

2. Layer 2 priority value (IEEE 802.1D-2004)

3. Layer 3 Diffserv code point (DSCP) value (IETF RFC 2474)

This network policy is potentially advertised and associated with multiple sets of application types supported on a given port.

The application types specifically addressed are:

1. Voice

2. Guest Voice

3. Softphone Voice

4. Video Conferencing

5. Streaming Video

6. Control / Signaling (conditionally support a separate network policy for the media types above)

A large network may support multiple VoIP policies across the entire organization, and different policies per application type.

LLDP-MED allows multiple policies to be advertised per port, each corresponding to a different application type. Different ports on the same Network Connectivity Device may advertise different sets of policies, based on the authenticated user identity or

193

User’s Manual of MGSW-28240F Managed switch port configuration.

It should be noted that LLDP-MED is not intended to run on links other than between Network Connectivity Devices and

Endpoints, and therefore does not need to advertise the multitude of network policies that frequently run on an aggregated link interior to the LAN.

Object

• Delete

• Policy ID

• Application Type

Description

Check to delete the policy. It will be deleted during the next save.

ID for the policy. This is auto generated and shall be used when selecting the polices that shall be mapped to the specific ports.

Intended use of the application types:

 Voice

- for use by dedicated IP Telephony handsets and other similar appliances supporting interactive voice services. These devices are typically deployed on a separate VLAN for ease of deployment and enhanced security by isolation from data applications.

 Voice Signaling (conditional)

- for use in network topologies that require a different policy for the voice signaling than for the voice media. This application type should not be advertised if all the same network policies apply as those advertised in the Voice application policy.

 Guest Voice

- support a separate 'limited feature-set' voice service for guest users and visitors with their own IP Telephony handsets and other similar appliances supporting interactive voice services.

 Guest Voice Signaling (conditional)

- for use in network topologies that require a different policy for the guest voice signaling than for the guest voice media. This application type should not be advertised if all the same network policies apply as those advertised in the Guest

Voice application policy.

 Softphone Voice

- for use by softphone applications on typical data centric devices, such as PCs or laptops. This class of endpoints frequently does not support multiple VLANs, if at all, and are typically configured to use an 'untagged’ VLAN or a single 'tagged’ data specific

VLAN. When a network policy is defined for use with an 'untagged’

VLAN (see Tagged flag below), then the L2 priority field is ignored and only the DSCP value has relevance.

 Video Conferencing

- for use by dedicated Video Conferencing equipment and other similar appliances supporting real-time interactive video/audio services.

 Streaming Video

- for use by broadcast or multicast based video content distribution and other similar applications supporting streaming

194

User’s Manual of MGSW-28240F Managed switch

• Tag video services that require specific network policy treatment. Video applications relying on TCP with buffering would not be an intended use of this application type.

 Video Signaling (conditional)

- for use in network topologies that require a separate policy for the video signaling than for the video media. This application type should not be advertised if all the same network policies apply as those advertised in the Video Conferencing application policy.

Tag

indicating whether the specified application type is using a 'tagged’ or an

'untagged’ VLAN.

 Untagged

indicates that the device is using an untagged frame format and as such does not include a tag header as defined by IEEE

802.1Q-2003. In this case, both the VLAN ID and the Layer 2 priority fields are ignored and only the DSCP value has relevance.

 Tagged

indicates that the device is using the IEEE 802.1Q tagged frame format, and that both the VLAN ID and the Layer 2 priority values are being used, as well as the DSCP value. The tagged format includes an additional field, known as the tag header. The tagged frame format also includes priority tagged frames as defined by IEEE

802.1Q-2003.

VLAN identifier (VID) for the port as defined in IEEE 802.1Q-2003

• VLAN ID

• L2 Priority

L2 Priority is the Layer 2 priority to be used for the specified application type. L2

Priority may specify one of eight priority levels (0 through 7), as defined by IEEE

802.1D-2004. A value of 0 represents use of the default priority as defined in

IEEE 802.1D-2004.

• DSCP

DSCP value to be used to provide Diffserv node behavior for the specified application type as defined in IETF RFC 2474. DSCP may contain one of 64 code point values (0 through 63). A value of 0 represents use of the default

DSCP value as defined in RFC 2475.

• Adding a new policy

Click to add a new policy. Specify the

Application type

,

Tag

,

VLAN ID

,

L2 Priority

and

DSCP

for the new policy. Click "Save".

The number of policies supported is 32

Port Policies Configuration

Every port may advertise a unique set of network policies or different attributes for the same network policies, based on the authenticated user identity or port configuration.

Object

• Port

Description

The port number for which the configuration applies.

195

User’s Manual of MGSW-28240F Managed switch

• Policy ID

The set of policies that shall apply for a given port. The set of policies is selected by checkmarking the checkboxes that corresponds to the policies

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.8.5 LLDP-MED Neighbor

This page provides a status overview for all LLDP-MED neighbors. The displayed table contains a row for each port on which an

LLDP neighbor is detected. The LLDP-MED Neighbor Information screen in Figure 4-3-8-5 appears. The columns hold the following information:

Figure 4-3-8-5:

LLDP-MED Neighbor Information Page Screenshot

The page includes the following fields:

Fast start repeat count

Object

• Port

Description

The port on which the LLDP frame was received.

• Device Type

LLDP-MED Devices are comprised of two primary Device Types: Network

Connectivity Devices and Endpoint Devices.

LLDP-MED Network Connectivity Device Definition

LLDP-MED Network Connectivity Devices, as defined in TIA-1057, provide access to the IEEE 802 based LAN infrastructure for LLDP-MED Endpoint

Devices. An LLDP-MED Network Connectivity Device is a LAN access device based on any of the following technologies:

1. LAN Switch/Router

2. IEEE 802.1 Bridge

3. IEEE 802.3 Repeater (included for historical reasons)

4. IEEE 802.11 Wireless Access Point

196

User’s Manual of MGSW-28240F Managed switch

5. Any device that supports the IEEE 802.1AB and MED extensions defined by

TIA-1057 and can relay IEEE 802 frames via any method.

LLDP-MED Endpoint Device Definition

Within the LLDP-MED Endpoint Device category, the LLDP-MED scheme is broken into further Endpoint Device Classes, as defined in the following.

Each LLDP-MED Endpoint Device Class is defined to build upon the capabilities defined for the previous Endpoint Device Class. Fore-example will any

LLDP-MED Endpoint Device claiming compliance as a Media Endpoint (Class II) also support all aspects of TIA-1057 applicable to Generic Endpoints (Class I), and any LLDP-MED Endpoint Device claiming compliance as a Communication

Device (Class III) will also support all aspects of TIA-1057 applicable to both

Media Endpoints (Class II) and Generic Endpoints (Class I).

LLDP-MED Generic Endpoint (Class I)

The LLDP-MED Generic Endpoint (Class I) definition is applicable to all endpoint products that require the base LLDP discovery services defined in TIA-1057, however do not support IP media or act as an end-user communication appliance. Such devices may include (but are not limited to) IP Communication

Controllers, other communication related servers, or any device requiring basic services as defined in TIA-1057.

Discovery services defined in this class include LAN configuration, device location, network policy, power management, and inventory management.

LLDP-MED Media Endpoint (Class II)

The LLDP-MED Media Endpoint (Class II) definition is applicable to all endpoint products that have IP media capabilities however may or may not be associated with a particular end user. Capabilities include all of the capabilities defined for the previous Generic Endpoint Class (Class I), and are extended to include aspects related to media streaming. Example product categories expected to adhere to this class include (but are not limited to) Voice / Media Gateways,

Conference Bridges, Media Servers, and similar.

Discovery services defined in this class include media-type-specific network layer policy discovery.

LLDP-MED Communication Endpoint (Class III)

The LLDP-MED Communication Endpoint (Class III) definition is applicable to all endpoint products that act as end user communication appliances supporting IP media. Capabilities include all of the capabilities defined for the previous Generic

Endpoint (Class I) and Media Endpoint (Class II) classes, and are extended to include aspects related to end user devices. Example product categories expected to adhere to this class include (but are not limited to) end user communication appliances, such as IP Phones, PC-based softphones, or other communication appliances that directly support the end user.

197

• LLDP-MED

Capabilities

• Application Type

• Policy

User’s Manual of MGSW-28240F Managed switch

Discovery services defined in this class include provision of location identifier

(including ECS / E911 information), embedded L2 switch support, inventory management

LLDP-MED Capabilities describes the neighbor unit's LLDP-MED capabilities.

The possible capabilities are:

1. LLDP-MED capabilities

2. Network Policy

3. Location Identification

4. Extended Power via MDI - PSE

5. Extended Power via MDI - PD

6. Inventory

7. Reserved

Application Type indicating the primary function of the application(s) defined for this network policy, advertised by an Endpoint or Network Connectivity Device.

The possible application types are shown below.

 Voice

- for use by dedicated IP Telephony handsets and other similar appliances supporting interactive voice services. These devices are typically deployed on a separate VLAN for ease of deployment and enhanced security by isolation from data applications.

 Voice Signaling

- for use in network topologies that require a different policy for the voice signaling than for the voice media.

 Guest Voice

- to support a separate limited feature-set voice service for guest users and visitors with their own IP Telephony handsets and other similar appliances supporting interactive voice services.

Guest Voice Signaling - for use in network topologies that require a different policy for the guest voice signaling than for the guest voice media.

 Softphone Voice

- for use by softphone applications on typical data centric devices, such as PCs or laptops.

 Video Conferencing

- for use by dedicated Video Conferencing equipment and other similar appliances supporting real-time interactive video/audio services.

 Streaming Video

- for use by broadcast or multicast based video content distribution and other similar applications supporting streaming video services that require specific network policy treatment. Video applications relying on TCP with buffering would not be an intended use of this application type.

 Video Signaling

- for use in network topologies that require a separate policy for the video signaling than for the video media.

Policy

indicates that an Endpoint Device wants to explicitly advertise that the policy is required by the device. Can be either Defined or Unknown

198

User’s Manual of MGSW-28240F Managed switch

• TAG

• VLAN ID

• Priority

• DSCP

• Auto-negotiation

• Auto-negotiation status

 Unknown

: The network policy for the specified application type is currently unknown.

 Defined

: The network policy is defined.

TAG is indicating whether the specified application type is using a tagged or an untagged VLAN. Can be Tagged or Untagged

 Untagged

: The device is using an untagged frame format and as such does not include a tag header as defined by IEEE 802.1Q-2003.

 Tagged

: The device is using the IEEE 802.1Q tagged frame format

VLAN ID is the VLAN identifier (VID) for the port as defined in IEEE

802.1Q-2003. A value of 1 through 4094 is used to define a valid VLAN ID. A value of 0 (Priority Tagged) is used if the device is using priority tagged frames as defined by IEEE 802.1Q-2003, meaning that only the IEEE 802.1D priority level is significant and the default PVID of the ingress port is used instead.

Priority is the Layer 2 priority to be used for the specified application type. One of eight priority levels (0 through 7)

DSCP is the DSCP value to be used to provide Diffserv node behavior for the specified application type as defined in IETF RFC 2474. Contain one of 64 code point values (0 through 63).

Auto-negotiation

identifies if MAC/PHY auto-negotiation is supported by the link partner.

Auto-negotiation status

identifies if auto-negotiation is currently enabled at the link partner. If

Auto-negotiation

is supported and

Auto-negotiation status

is disabled, the 802.3 PMD operating mode will be determined the operational MAU type field value rather than by auto-negotiation.

Auto-negotiation Capabilities

shows the link partners MAC/PHY capabilities.

Buttons

• Auto-negotiation

Capabilities

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

199

User’s Manual of MGSW-28240F Managed switch

4.3.8.6 Port Statistics

This page provides an overview of all LLDP traffic. Two types of counters are shown. Global counters are counters that refer to the whole switch, while local counters refers to counters for the currently selected switch. The LLDP Statistics screen in Figure

4-3-8-6 appears.

Figure 4-3-8-6:

LLDP Statistics Page Screenshot

The page includes the following fields:

Global Counters

Object

• Clear global counters

• Neighbor entries were last changed

• Total Neighbors

Entries Added

• Total Neighbors

Entries Deleted

• Total Neighbors

Entries Dropped

Description

If checked the global counters are cleared when is pressed.

It also shows the time when the last entry was last deleted or added. It also shows the time elapsed since the last change was detected.

Shows the number of new entries added since switch reboot.

Shows the number of new entries deleted since switch reboot.

Shows the number of LLDP frames dropped due to that the entry table was full.

200

User’s Manual of MGSW-28240F Managed switch

• Total Neighbors

Entries Aged Out

Shows the number of entries deleted due to Time-To-Live expiring.

LLDP Statistics Local Counters

The displayed table contains a row for each port. The columns hold the following information:

Object

• Local Port

• Tx Frames

• Rx Frames

• Rx Errors

• Frames Discarded

Description

The port on which LLDP frames are received or transmitted.

The number of LLDP frames transmitted on the port.

The number of LLDP frames received on the port.

The number of received LLDP frames containing some kind of error.

If an LLDP frame is received on a port, and the switch's internal table has run full, the LLDP frame is counted and discarded. This situation is known as "Too Many

Neighbors" in the LLDP standard. LLDP frames require a new entry in the table when the Chassis ID or Remote Port ID is not already contained within the table.

Entries are removed from the table when a given port links down, an LLDP shutdown frame is received, or when the entry ages out.

• TLVs Discarded

• TLVs Unrecognized

Each LLDP frame can contain multiple pieces of information, known as TLVs

(TLV is short for "Type Length Value"). If a TLV is malformed, it is counted and discarded.

The number of well-formed TLVs, but with an unknown type value.

• Org. Discarded

• Age-Outs

The number of organizationally TLVs received.

Each LLDP frame contains information about how long time the LLDP information is valid (age-out time). If no new LLDP frame is received within the age out time, the LLDP information is removed, and the

Age-Out

counter is incremented.

Buttons

: Click to refresh the page immediately.

: Clears the local counters. All counters (including global counters) are cleared upon reboot.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

201

User’s Manual of MGSW-28240F Managed switch

4.3.9 MAC Address Table

Switching of frames is based upon the DMAC address contained in the frame. The Managed Switch builds up a table that maps

MAC addresses to switch ports for knowing which ports the frames should go to (based upon the DMAC address in the frame ).

This table contains both static and dynamic entries. The static entries are configured by the network administrator if the administrator wants to do a fixed mapping between the DMAC address and switch ports.

The frames also contain a MAC address (SMAC address ), which shows the MAC address of the equipment sending the frame.

The SMAC address is used by the switch to automatically update the MAC table with these dynamic MAC addresses. Dynamic entries are removed from the MAC table if no frame with the corresponding SMAC address have been seen after a configurable age time.

4.3.9.1 MAC Table Configuration

The MAC Address Table is configured on this page. Set timeouts for entries in the dynamic MAC Table and configure the static

MAC table here. The MAC Address Table Configuration screen in Figure 4-3-9-1 appears.

Figure 4-3-9-1:

MAC Address Table Configuration Page Screenshot

The page includes the following fields:

202

User’s Manual of MGSW-28240F Managed switch

Aging Configuration

By default, dynamic entries are removed from the MAC table after 300 seconds. This removal is also called aging.

Object

• Disable Automatic

Aging

• Aging Time

Description

Enables/disables the automatic aging of dynamic entries

The time after which a learned entry is discarded. By default, dynamic entries are removed from the MAC after 300 seconds. This removal is also called aging.

(Range: 10-10000000 seconds; Default: 300 seconds)

MAC Table Learning

If the learning mode for a given port is grayed out, another module is in control of the mode, so that it cannot be changed by the user. An example of such a module is the MAC-Based Authentication under 802.1X.

Object

• Auto

• Disable

• Secure

Description

Learning is done automatically as soon as a frame with unknown SMAC is received.

No learning is done.

Only static MAC entries are learned, all other frames are dropped.

Note:

Make sure that the link used for managing the switch is added to the Static

Mac Table before changing to secure learning mode, otherwise the management link is lost and can only be restored by using another non-secure port or by connecting to the switch via the serial interface.

Static MAC Table Configuration

The static entries in the MAC table are shown in this table. The static MAC table can contain 64 entries. The MAC table is sorted first by VLAN ID and then by MAC address.

Object

• Delete

• VLAN ID

• MAC Address

• Port Members

Description

Check to delete the entry. It will be deleted during the next save.

The VLAN ID of the entry.

The MAC address of the entry.

Checkmarks indicate which ports are members of the entry. Check or uncheck as needed to modify the entry.

• Adding a New Static

Entry

Click

"Save".

to add a new entry to the static MAC table.

Specify the VLAN ID, MAC address, and port members for the new entry. Click

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

203

User’s Manual of MGSW-28240F Managed switch

4.3.9.2 MAC Address Table Status

Dynamic MAC Table

Entries in the MAC Table are shown on this page. The MAC Table contains up to

8192

entries, and is sorted first by VLAN ID, then by MAC address. The MAC Address Table screen in Figure 4-3-9-2 appears.

Figure 4-3-9-2:

MAC Address Table Status Page Screenshot

Navigating the MAC Table

Each page shows up to 999 entries from the MAC table, default being 20, selected through the " entries per page"

input field. When first visited, the web page will show the first 20 entries from the beginning of the MAC Table. The first displayed will be the one with the lowest VLAN ID and the lowest MAC address found in the MAC Table.

The "

Start from MAC address

" and "

VLAN

" input fields allow the user to select the starting point in the MAC Table.

Clicking the “

Refresh

” button will update the displayed table starting from that or the closest next MAC Table match.

In addition, the two input fields will - upon a “

Refresh

” button click - assume the value of the first displayed entry, allowing for continuous refresh with the same start address.

The “

>>

” will use the last entry of the currently displayed VLAN/MAC address pairs as a basis for the next lookup. When the end is reached the text "no more entries" is shown in the displayed table. Use the “

|<<

” button to start over.

204

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Object

• Type

• VLAN

• MAC Address

• Port Members

Description

Indicates whether the entry is a static or dynamic entry.

The VLAN ID of the entry.

The MAC address of the entry.

The ports that are members of the entry.

Buttons

Auto-refresh : Automatic refresh occurs every 3 seconds.

: Refreshes the displayed table starting from the "Start from MAC address" and "VLAN" input fields.

: Flushes all dynamic entries.

: Updates the table starting from the first entry in the MAC Table, i.e. the entry with the lowest VLAN ID and MAC address.

: Updates the table, starting with the entry after the last entry currently displayed.

205

User’s Manual of MGSW-28240F Managed switch

4.3.10 Loop Protection

This chapter describes enabling loop protection function that provides loop protection to prevent broadcast loops in Managed

Switch.

4.3.10.1 Configuration

This page allows the user to inspect the current Loop Protection configurations, and possibly change them as well as screen in

Figure 4-3-10-1 appears.

Figure 4-3-10-1:

Loop Protection Configuration Page Screenshot

The page includes the following fields:

General Settings

Object

• Enable Loop

Protection

Description

Controls whether loop protection is enabled (as a whole).

206

User’s Manual of MGSW-28240F Managed switch

Port Configuration

Object

• Port

• Enable

• Action

• Tx Mode

Description

The switch port number of the port.

Controls whether loop protection is enabled on this switch port.

Configures the action performed when a loop is detected on a port. Valid values are

Shutdown Port

,

Shutdown Port and Log

or

Log Only

.

Controls whether the port is actively generating loop protection PDU's, or whether it is just passively looking for looped PDU's.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.10.2 Loop Protection Status

This page displays the loop protection port status of the switch; screen in Figure 4-3-10-2 appears.

Figure 4-3-10-2:

Loop Protection Status Screenshot

The page includes the following fields:

Buttons

Object

• Port

• Action

• Transmit

• Loops

• Status

• Loop

• Time of Last Loop

Description

The Managed Switch port number of the logical port.

The currently configured port action.

The currently configured port transmit mode.

The number of loops detected on this port.

The current loop protection status of the port.

Whether a loop is currently detected on the port.

The time of the last loop event detected.

: Click to refresh the page immediately.

Auto-refresh : Check this box to enable an automatic refresh of the page at regular intervals.

207

User’s Manual of MGSW-28240F Managed switch

4.3.11 UDLD

Unidirectional Link Detection (UDLD) is a data link layer protocol from Cisco Systems to monitor the physical configuration of the cables and detect unidirectional links. UDLD complements the Spanning Tree Protocol which is used to eliminate switching loops..

4.3.11.1 UDLD Port Configuration

This page allows the user to inspect the current

UDLD

configurations, and possibly change them as well.

as screen in Figure 4-3-11-1 appears.

Figure 4-3-11-1:

UDLD Configuration Page Screenshot

The page includes the following fields:

General Settings

Object

• Port

• UDLD Mode

Description

Port number of the switch.

Configures the UDLD mode on a port. Valid values are Disable , Normal and Aggressive . Default mode is Disable.

Disable

: In disabled mode, UDLD functionality doesn't exists on port..

Normal:

In normal mode, if the link state of the port was determined to be unidirectional, it will not affect the port state.

208

User’s Manual of MGSW-28240F Managed switch

• Message Interval

Aggressive:

In aggressive mode, unidirectional detected ports will get shutdown. To bring back the ports up, need to disable UDLD on that port

Configures the period of time between UDLD probe messages on ports that are in the advertisement phase and are determined to be bidirectional. The range is from 7 to 90 seconds(Default value is 7 seconds)(Currently default time interval is supported, due to lack of detailed information in RFC 5171).

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.3.11.2 UDLD Status

This page displays the

UDLD

status of the ports as well.

as screen in Figure 4-3-11-2 appears.

Figure 4-3-11-2:

UDLD status Page Screenshot

The page includes the following fields:

UDLD port status

Object

• UDLD Admin State

Description

The current port state of the logical port, Enabled if any of state(Normal,Aggressive) is Enabled.

209

User’s Manual of MGSW-28240F Managed switch

• Device ID(local)

• Device Name(local)

• Bidirectional State

Neighbour Status

The ID of Device

Name of the Device.

The current state of the port.

Buttons

Object

• Port

• Device ID

• Link Status

• Device Name

Description

The current port of neighbour device

The current ID of neighbour device.

The current link status of neighbour port.

Name of the Neighbour Device.

4.3.12 GVRP

: Click to refresh the page immediately..

GVRP (GARP VLAN Registration Protocol or Generic VLAN Registration Protocol) is a protocol that facilitates control of virtual local area networks (VLANs) within a larger network

4.3.12.1 GVRP Configuration

This page allows you to configure the global GVRP configuration settings that are commonly applied to all GVRP enabled ports. as well.

as screen in Figure 4-3-12-1 appears.

Figure 4-3-11-1:

GVRP Configuration Page Screenshot

210

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

General Settings

Object Description

• Enable GVRP globally

The GVRP feature is globally enabled by setting the check mark in the checkbox named Enable GVRP and pressing the Save button.

• GVRP protocol timers

Join-time is a value in the range of 1-20cs, i.e. in units of one hundredth of a second. The default value is 20cs.

Leave-time is a value in the range of 60-300cs, i.e. in units of one hundredth of a second. The default is 60cs.

Buttons

LeaveAll-time is a value in the range of 1000-5000cs, i.e. in units of one hundredth of a second. The default is 1000cs

• Max number of VLANs

When GVRP is enabled, a maximum number of VLANs supported by GVRP is specified. By default this number is 20. This number can only be changed when

GVRP is turned off.

:

Click to refresh the page. Note that unsaved changes will be lost.

: Click to undo any changes made locally and revert to previously saved values.

211

User’s Manual of MGSW-28240F Managed switch

4.3.12.2 GVRP Port Configuration

This configuration can be performed either before or after GVRP is configured globally - the protocol operation will be the same. as well.

as screen in Figure 4-3-12-2 appears.

Figure 4-3-11-2:

GVRP Port Configuration Page Screenshot

The page includes the following fields:

General Settings

Object

• Port

• Mode

Description

The logical port that is to be configured.

Mode can be either 'Disabled' or 'GVRP enabled'. These values turn the GVRP feature off or on respectively for the port in question.

Buttons

:

Click to refresh the page. Note that unsaved changes will be lost.

: Click to undo any changes made locally and revert to previously saved values.

212

User’s Manual of MGSW-28240F Managed switch

4.4 Quality of Service

4.4.1 General

Quality of Service (QoS) is an advanced traffic prioritization feature that allows you to establish control over network traffic. QoS enables you to assign various grades of network service to different types of traffic, such as multi-media, video, protocol-specific, time critical, and file-backup traffic.

QoS reduces bandwidth limitations, delay, loss, and jitter. It also provides increased reliability for delivery of your data and allows you to prioritize certain applications across your network. You can define exactly how you want the switch to treat selected applications and types of traffic. You can use QoS on your system to:

Control a wide variety of network traffic by:

Classifying traffic based on packet attributes.

Assigning priorities to traffic (for example, to set higher priorities to time-critical or business-critical applications).

Applying security policy through traffic filtering.

Provide predictable throughput for multimedia applications such as video conferencing or voice over IP by minimizing delay and jitter.

Improve performance for specific types of traffic and preserve performance as the amount of traffic grows.

Reduce the need to constantly add bandwidth to the network.

Manage network congestion.

QoS Terminology

• Classifier

- classifies the traffic on the network. Traffic classifications are determined by protocol, application, source, destination, and so on. You can create and modify classifications. The Switch then groups classified traffic in order to schedule them with the appropriate service level.

• DiffServ Code Point (DSCP)

- is the traffic prioritization bits within an IP header that are encoded by certain applications and/or devices to indicate the level of service required by the packet across a network.

• Service Level

- defines the priority that will be given to a set of classified traffic. You can create and modify service levels.

• Policy

- comprises a set of “rules” that are applied to a network so that a network meets the needs of the business. That is, traffic can be prioritized across a network according to its importance to that particular business type.

• QoS Profile

- consists of multiple sets of rules (classifier plus service level combinations). The QoS profile is assigned to a port(s).

• Rules

- comprises a service level and a classifier to define how the Switch will treat certain types of traffic. Rules are associated with a QoS Profile (see above).

To implement QoS on your network, you need to carry out the following actions:

1.

Define a service level to determine the priority that will be applied to traffic.

2.

Apply a classifier to determine how the incoming traffic will be classified and thus treated by the Switch.

3.

Create a QoS profile which associates a service level and a classifier.

4.

Apply a QoS profile to a port(s).

213

User’s Manual of MGSW-28240F Managed switch

4.4.1.1 QOS Port Classification

This page allows you to configure the basic QoS Classification settings for all switch ports. The Port classification screen in

Figure 4-4-1-1 appears.

Figure 4-4-1-1:

QoS Ingress Port Policers Page Screenshot

The page includes the following fields:

Object

• Port

• CoS

Description

The port number for which the configuration below applies.

Controls the default CoS value.

All frames are classified to a CoS. There is a one to one mapping between CoS, queue and priority. A CoS of 0 (zero) has the lowest priority.

The classified CoS can be overruled by a QCL entry.

Note:

If the default CoS has been dynamically changed, then the actual default

CoS is shown in parentheses after the configured default CoS.

• DPL

Controls the default DPL value.

All frames are classified to a Drop Precedence Level.

214

User’s Manual of MGSW-28240F Managed switch

• PCP

The classified DPL can be overruled by a QCL entry.

Controls the default PCP value.

All frames are classified to a PCP value.

DEI

CoS ID

Tag Class.

If the port is VLAN aware and the frame is tagged, then the frame is classified to the PCP value in the tag. Otherwise the frame is classified to the default PCP value.

Controls the default DEI value.

All frames are classified to a DEI value.

If the port is VLAN aware and the frame is tagged, then the frame is classified to the DEI value in the tag. Otherwise the frame is classified to the default DEI value.

Controls the default CoS ID value.

Every incoming frame is classified to a CoS ID, which later can be used as basis for rewriting of different parts of the frame.

Shows the classification mode for tagged frames on this port.

Disabled : Use default CoS and DPL for tagged frames.

Enabled : Use mapped versions of PCP and DEI for tagged frames.

Buttons

• DSCP Based

• WRED Group

• Ingress Map

• Egress Map

Click on the mode in order to configure the mode and/or mapping.

Note:

This setting has no effect if the port is VLAN unaware. Tagged frames received on VLAN unaware ports are always classified to the default CoS and

DPL.

Click to Enable DSCP Based QoS Ingress Port Classification.

Controls the WRED group membership.

Controls the Ingress Map selection through the Map ID. The Ingress Map ID ranges from 0 to 255 . An empty field indicates no map selection.

Controls the Egress Map selection through the Map ID. The Egress Map ID ranges from 0 to 511 . An empty field indicates no map selection

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

215

User’s Manual of MGSW-28240F Managed switch

4.4.1.2 Queue Policing

This page allows you to configure the Queue Policer settings for all switch ports.. The Queue Policing screen in Figure 4-4-1-2 appears.

Figure 4-4-1-2 :

QoS Ingress Port Classification Page Screenshot

The page includes the following fields:

Object

• Port

• Enable (E)

• Rate

• Unit

Description

The port number for which the configuration below applies.

Enable or disable the queue policer for this switch port.

Controls the rate for the queue policer. This value is restricted to 25-13128147 when "Unit" is kbps, and 1-13128 when "Unit" is Mbps. The rate is internally rounded up to the nearest value supported by the queue policer.

This field is only shown if at least one of the queue policers are enabled.

Controls the unit of measure for the queue policer rate as kbps or Mbps.

This field is only shown if at least one of the queue policers are enabled.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

216

User’s Manual of MGSW-28240F Managed switch

4.4.1.3 Port Tag Remarking

This page provides an overview of

QoS

Egress Port Tag Remarking for all switch ports.

The Port tag remarking screen in Figure 4-4-1-3 appears.

Figure 4-4-1-3:

Port Tag Remarking Page Screenshot

The page includes the following fields:

Object

• Port

• Mode

Description he logical port for the settings contained in the same row.

Click on the port number in order to configure tag remarking

Shows the tag remarking mode for this port.

Classified : Use classified PCP / DEI values.

Default : Use default PCP/DEI values.

Mapped : Use mapped versions of CoS and DPL .

217

User’s Manual of MGSW-28240F Managed switch

4.4.1.4 WERD

This page allows you to configure the Random Early Detection (RED) settings.. The Port Shaper screen in Figure 4-4-4 appears.

Figure 4-4-1-4:

QoS Egress Port Shapers Page Screenshot

The page includes the following fields:

Object

• Group

• Queue

• DPL

• Enable

• Min

Max

Max Unit

Description

The WRED group number for which the configuration below applies.

The queue number (CoS) for which the configuration below applies.

The Drop Precedence Level for which the configuration below applies.

Controls whether RED is enabled for this entry.

Controls the lower RED fill level threshold. If the queue filling level is below this threshold, the drop probability is zero. This value is restricted to 0-100%.

Controls the upper RED drop probability or fill level threshold for frames marked with Drop Precedence Level > 0 (yellow frames). This value is restricted to

1-100%.

Selects the unit for Max. Possible values are:

Drop Probability : Max controls the drop probability just below 100% fill level.

Fill Level : Max controls the fill level where drop probability reaches 100%..

Buttons

: Click to apply changes

218

User’s Manual of MGSW-28240F Managed switch

: Click to undo any changes made locally and revert to previously saved values.

4.4.1.5 Statistics

This page provides statistics for the different queues for all switch ports

. The statistice screen in Figure 4-4-1-5 appears.

The page includes the following fields:

Figure 4-4-1-5:

QoS statistics Page Screenshot

Buttons

Object

• Port

• Qn

• Rx/Tx

Description

The logical port for the settings contained in the same row.

There are 8 QoS queues per port. Q0 is the lowest priority queue.

The number of received and transmitted packets per queue.

:

Click to refresh the page immediately.

:

Clears the counters for all ports

219

User’s Manual of MGSW-28240F Managed switch

4.4.2 Bandwidth Control

4.4.2.1 Port Policing

This page allows you to configure the Policer settings for all switch ports. The Port Policing screen in Figure 4-4-2-1 appears.

Figure 4-4-2-1:

QoS Ingress Port Policers Page Screenshot

The page includes the following fields:

Object

• Port

• Enable

• Rate

Unit

Flow Control

Description

The port number for which the configuration below applies.

Controls whether the policer is enabled on this switch port.

Controls the rate for the policer. This value is restricted to 100-1000000 when the

"Unit" is " kbps

" or " fps

", and it is restricted to 1-3300 when the "Unit" is "

Mbps

" or " kfps

".

The default value is

500

.

Controls the unit of measure for the policer rate as kbps

,

Mbps

, fps

or kfps

.

The default value is " kbps

".

If flow control is enabled and the port is in flow control mode, then pause frames are sent instead of discarding frames.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

220

User’s Manual of MGSW-28240F Managed switch

4.4.2.2 Port Schedule

The Port Scheduler and Shapers for a specific port are configured on this page. The QoS Egress Port Schedule and Shaper screen in Figure 4-4-2-2 appears.

Figure 4-4-2-2:

QoS Egress Port Schedule and Shapers Page Screenshot

221

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Buttons

Object

• Schedule Mode

Description

Controls whether the scheduler mode is "

Strict Priority

" or "

Weighted

" on this switch port.

• Queue Shaper Enable

Controls whether the queue shaper is enabled for this queue on this switch port.

• Queue Shaper Rate

Controls the rate for the queue shaper.

This value is restricted to 100-1000000 when the "Unit" is "kbps", and it is

• Queue Shaper Unit restricted to 1-13200 when the "Unit" is "Mbps".

The default value is

500

.

Controls the unit of measure for the queue shaper rate as " kbps

" or "

Mbps

".

The default value is "kbps".

• Queue Shaper Excess

Controls whether the queue is allowed to use excess bandwidth.

• Queue Scheduler

Weight

Queue Scheduler

Percent

Port Shaper Enable

• Port Shaper Rate

Controls the weight for this queue.

This value is restricted to 1-100. This parameter is only shown if "Scheduler

Mode" is set to "

Weighted

".

The default value is "

17

".

Shows the weight in percent for this queue. This parameter is only shown if

"Scheduler Mode" is set to "Weighted".

Controls whether the port shaper is enabled for this switch port.

• Port Shaper Unit

Controls the rate for the port shaper.

This value is restricted to 100-1000000 when the "Unit" is "kbps", and it is restricted to 1-13200 when the "Unit" is "Mbps".

The default value is 500.

Controls the unit of measure for the port shaper rate as "kbps" or "Mbps".

The default value is "kbps".

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Click to undo any changes made locally and return to the previous page.

4.4.2.3 Port Shaping

This page provides an overview of QoS Egress Port Shapers for all switch ports.

. The Port shaping screen in Figure

4-4-2-3 appears.

222

User’s Manual of MGSW-28240F Managed switch

Figure 4-4-2-3:

QoS Egress Port Schedule and Shapers Page Screenshot

The page includes the following fields:

Object

• Schedule Mode

Description

Controls whether the scheduler mode is "

Strict Priority

" or "

Weighted

" on this switch port.

• Queue Shaper Enable

Controls whether the queue shaper is enabled for this queue on this switch port.

• Queue Shaper Rate

Controls the rate for the queue shaper.

223

User’s Manual of MGSW-28240F Managed switch

Buttons

This value is restricted to 100-1000000 when the "Unit" is "kbps", and it is restricted to 1-13200 when the "Unit" is "Mbps".

The default value is

500

.

Controls the unit of measure for the queue shaper rate as " kbps

" or "

Mbps

".

• Queue Shaper Unit

The default value is "kbps".

• Queue Shaper Excess

Controls whether the queue is allowed to use excess bandwidth.

• Queue Scheduler

Weight

Queue Scheduler

Percent

Port Shaper Enable

• Port Shaper Rate

Controls the weight for this queue.

This value is restricted to 1-100. This parameter is only shown if "Scheduler

Mode" is set to "

Weighted

".

The default value is "

17

".

Shows the weight in percent for this queue. This parameter is only shown if

"Scheduler Mode" is set to "Weighted".

Controls whether the port shaper is enabled for this switch port.

• Port Shaper Unit

Controls the rate for the port shaper.

This value is restricted to 100-1000000 when the "Unit" is "kbps", and it is restricted to 1-13200 when the "Unit" is "Mbps".

The default value is 500.

Controls the unit of measure for the port shaper rate as "kbps" or "Mbps".

The default value is "kbps".

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Click to undo any changes made locally and return to the previous page.

4.4.3 Storm Control

4.4.3.1 Storm Control Configuration

Storm control for the switch is configured on this page. There is a unicast storm rate control, multicast storm rate control, and a broadcast storm rate control. These only affect flooded frames, i.e. frames with a (VLAN ID, DMAC) pair not present on the MAC

Address table.

The configuration indicates the permitted packet rate for unicast, multicast or broadcast traffic across the switch.

The Storm Control Configuration screen in Figure 4-4-3-1 appears.

224

User’s Manual of MGSW-28240F Managed switch

Figure 4-4-3-1:

Storm Control Configuration Page Screenshot

The page includes the following fields:

Object

• Port

• Enable

• Rate

• Unit

Description

The port number for which the configuration below applies.

Controls whether the storm control is enabled on this switch port.

Controls the rate for the storm control. The default value is 500. This value is restricted to 100-1000000 when the "Unit" is "kbps" or "fps", and it is restricted to

1-13200 when the "Unit" is "Mbps" or "kfps”.

Controls the unit of measure for the storm control rate as kbps, Mbps, fps or kfps . The default value is "kbps".

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

225

User’s Manual of MGSW-28240F Managed switch

4.4.4 Differentiated Service

4.4.4.1 Port DSCP

This page allows you to configure the basic QoS Port DSCP Configuration settings for all switch ports. The Port DSCP screen in

Figure 4-9-8 appears.

Figure 4-4-4-1:

QoS Port DSCP Configuration Page Screenshot

The page includes the following fields:

Object

• Port

Ingress

Translate

Classify

Egress

Description

The Port column shows the list of ports for which you can configure dscp ingress and egress settings.

In Ingress settings you can change ingress translation and classification settings for individual ports.

There are two configuration parameters available in Ingress:

 Translate

 Classify

To Enable the Ingress Translation click the checkbox.

Classification for a port have 4 different values.

 Disable

: No Ingress DSCP Classification.

 DSCP=0

: Classify if incoming (or translated if enabled) DSCP is 0.

 Selected

: Classify only selected DSCP for which classification is enabled as specified in DSCP Translation window for the specific DSCP.

 All

: Classify all DSCP.

Port Egress Rewriting can be one of -

 Disable

: No Egress rewrite.

226

User’s Manual of MGSW-28240F Managed switch

 Enable

: Rewrite enable without remapped.

 Remap DP Unaware

: DSCP from analyzer is remapped and frame is remarked with remapped DSCP value. The remapped DSCP value is always taken from the 'DSCP Translation->Egress Remap DP0' table.

 Remap DP Aware

: DSCP from analyzer is remapped and frame is remarked with remapped DSCP value. Depending on the DP level of the frame, the remapped DSCP value is either taken from the 'DSCP

Translation->Egress Remap DP0' table or from the 'DSCP

Translation->Egress Remap DP1' table.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.4.4.2 DSCP-based QoS

This page allows you to configure the basic QoS DSCP-based QoS Ingress Classification settings for all switches. The

DSCP-based QoS screen in Figure 4-4-4-2 appears.

Figure 4-4-4-2:

DSCP-based QoS Ingress Classification Page Screenshot

227

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Object

• DSCP

• Trust

QoS Class

DPL

Description

Maximum number of supported DSCP values are 64.

Controls whether a specific DSCP value is trusted. Only frames with trusted

DSCP values are mapped to a specific QoS class and Drop Precedence Level.

Frames with untrusted DSCP values are treated as a non-IP frame.

QoS Class value can be any of (0-7)

Drop Precedence Level (0-1)

4.4.4.3 DSCP Translation

This page allows you to configure the basic QoS DSCP Translation settings for all switches. DSCP translation can be done in

Ingress or Egress. The DSCP Translation screen in Figure 4-4-4-3 appears.

Figure 4-4-4-3:

DSCP Translation Page Screenshot

The page includes the following fields:

Object Description

228

User’s Manual of MGSW-28240F Managed switch

• DSCP

• Ingress

• Translate

• Classify

• Egress

• Remap DP

Maximum number of supported DSCP values are 64 and valid DSCP value ranges from 0 to 63.

Ingress side DSCP can be first translated to new DSCP before using the DSCP for QoS class and DPL map.

There are two configuration parameters for DSCP Translation –

Translate

Classify

DSCP at Ingress side can be translated to any of (0-63) DSCP values.

Click to enable Classification at Ingress side.

There is following configurable parameter for Egress side -

■ Remap

Select the DSCP value from select menu to which you want to remap. DSCP value ranges form 0 to 63.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.4.4.4 DSCP Classification

This page allows you to map DSCP value to a QoS Class and DPL value. The DSCP Classification screen in Figure 4-4-4-4 appears.

Figure 4-4-4-4:

DSCP Classification Page Screenshot

229

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Object

• QoS Class

Description

Available QoS Class value ranges from 0 to 7. QoS Class (0-7) can be mapped to followed parameters.

Actual Drop Precedence Level.

• DPL

• DSCP

Select DSCP value (0-63) from DSCP menu to map DSCP to corresponding QoS

Class and DPL value

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.4.5 QCL

4.4.5.1 QoS Control List

This page shows the QoS Control List(QCL), which is made up of the QCEs. Each row describes a QCE that is defined. The maximum number of QCEs is 256 on each switch.

Click on the lowest plus sign to add a new QCE to the list. The QoS Control List screen in Figure 4-4-5-1 appears.

Figure 4-4-5-1:

QoS Control List Configuration Page Screenshot

The page includes the following fields:

Object

• QCE#

• Port

• DMAC

Description

Indicates the index of QCE.

Indicates the list of ports configured with the QCE.

Specify the type of Destination MAC addresses for incoming frame. Possible values are:

■ Any

: All types of Destination MAC addresses are allowed.

■ Unicast

: Only Unicast MAC addresses are allowed.

230

User’s Manual of MGSW-28240F Managed switch

SMAC

Tag Type

VID

PCP

DEI

Frame Type

Action

• Modification Buttons

■ Multicast

: Only Multicast MAC addresses are allowed.

■ Broadcast

: Only Broadcast MAC addresses are allowed.

The default value is 'Any'.

Displays the OUI field of Source MAC address, i.e. first three octet (byte) of MAC address.

Indicates tag type. Possible values are:

Any

: Match tagged and untagged frames.

Untagged

: Match untagged frames.

Tagged

: Match tagged frames.

The default value is 'Any'

Indicates (VLAN ID), either a specific VID or range of VIDs. VID can be in the range 1-4095 or 'Any'

Priority Code Point: Valid value PCP are specific(0, 1, 2, 3, 4, 5, 6, 7) or range(0-1, 2-3, 4-5, 6-7, 0-3, 4-7) or 'Any'.

Drop Eligible Indicator: Valid value of DEI can be any of values between 0, 1 or

'Any'.

Indicates the type of frame to look for incoming frames. Possible frame types are:

Any

: The QCE will match all frame type.

Ethernet

: Only Ethernet frames (with Ether Type 0x600-0xFFFF) are allowed.

LLC

: Only (LLC) frames are allowed.

SNAP

: Only (SNAP) frames are allowed.

IPv4

: The QCE will match only IPV4 frames.

IPv6

: The QCE will match only IPV6 frames.

Indicates the classification action taken on ingress frame if parameters configured are matched with the frame's content.

There are three action fields: Class, DPL and DSCP.

■ Class

: Classified QoS class.

■ DPL

: Classified Drop Precedence Level.

■ DSCP

: Classified DSCP value.

You can modify each QCE in the table using the following buttons:

: Inserts a new QCE before the current row.

: Edits the QCE.

: Moves the QCE up the list.

: Moves the QCE down the list.

: Deletes the QCE.

: The lowest plus sign adds a new entry at the bottom of the list of QCL.

231

4.4.5.2 QoS Control Entry Configuration

The QCE Configuration screen in Figure 4-4-5-2 appears.

User’s Manual of MGSW-28240F Managed switch

Figure 4-4-5-2:

QCE Configuration Page Screenshot

The page includes the following fields:

Object

• Port Members

• Key Parameters

Description

Check the checkbox button in case you what to make any port member of the

QCL entry. By default all ports will be checked

Key configuration are described as below:

DMAC Type

Destination MAC type: possible values are unicast(UC), multicast(MC), broadcast(BC) or 'Any'

SMAC

Source MAC address: 24 MS bits (OUI) or 'Any'

Tag

Value of Tag field can be 'Any', 'Untag' or 'Tag'

VID

Valid value of VLAN ID can be any value in the range 1-4095 or 'Any'; user can enter either a specific value or a range of VIDs

PCP

Priority Code Point: Valid value PCP are specific(0, 1, 2, 3, 4, 5, 6, 7) or range(0-1, 2-3, 4-5, 6-7, 0-3, 4-7) or 'Any'

DEI

Drop Eligible Indicator: Valid value of DEI can be any of values between 0, 1 or 'Any'

Frame Type

Frame Type can have any of the following values

232

• Any

• EtherType

• LLC

• SNAP

• IPv4

• IPv6

User’s Manual of MGSW-28240F Managed switch

1.

Any

2.

Ethernet

3.

LLC

4.

SNAP

5.

IPv4

6.

IPv6

Note

: all frame types are explained below.

Allow all types of frames.

Ethernet Type

Valid Ethernet type can have value within 0x600-0xFFFF or 'Any' but excluding 0x800(IPv4) and 0x86DD(IPv6), default value is 'Any'.

■ SSAP Address

Valid SSAP(Source Service Access Point) can vary from

0x00 to 0xFF or 'Any', the default value is 'Any'

■ DSAP Address

Valid DSAP(Destination Service Access Point) can vary from 0x00 to 0xFF or 'Any', the default value is 'Any'

■ Control Address

Valid Control Address can vary from 0x00 to 0xFF or

'Any', the default value is 'Any'

PID

Valid PID(a.k.a Ethernet type) can have value within 0x00-0xFFFF or 'Any', default value is 'Any'

Protocol

IP protocol number: (0-255, TCP or UDP) or 'Any'

Source IP

Specific Source IP address in value/mask format or 'Any'. IP and Mask are in the format x.y.z.w where x, y, z, and w are decimal numbers between 0 and 255. When Mask is converted to a 32-bit binary string and read from left to right, all bits following the first zero must also be zero

DSCP

Diffserv Code Point value(DSCP): It can be specific value, range of value or 'Any'. DSCP values are in the range 0-63 including BE, CS1-CS7,

EF or AF11-AF43

IP Fragment

IPv4 frame fragmented option: yes|no|any

Sport

Source TCP/UDP port:(0-65535) or 'Any', specific or port range applicable for IP protocol UDP/TCP

Dport

Destination TCP/UDP port:(0-65535) or 'Any', specific or port range applicable for IP protocol UDP/TCP

Protocol

IP protocol number: (0-255, TCP or UDP) or 'Any'

Source IP

IPv6 source address: (a.b.c.d) or 'Any', 32 LS bits

DSCP

Diffserv Code Point value(DSCP): It can be specific value, range of value or 'Any'. DSCP values are in the range 0-63 including BE, CS1-CS7, EF or

AF11-AF43

Sport

Source TCP/UDP port:(0-65535) or 'Any', specific or port range applicable for IP protocol UDP/TCP

233

Buttons

• Action Parameters

User’s Manual of MGSW-28240F Managed switch

Dport

Destination TCP/UDP port:(0-65535) or 'Any', specific or port range applicable for IP protocol UDP/TCP

Class

QoS class: (0-7) or 'Default'.

DPL

Valid Drop Precedence Level can be (0-3) or 'Default'.

DSCP

Valid DSCP value can be (0-63, BE, CS1-CS7, EF or AF11-AF43) or

'Default'.

'Default' means that the default classified value is not modified by this QCE.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values

: Return to the previous page without saving the configuration change

4.4.5.3 QCL Status

This page shows the QCL status by different QCL users. Each row describes the QCE that is defined. It is a conflict if a specific

QCE is not applied to the hardware due to hardware limitations. The maximum number of QCEs is

256

on each switch. The

QoS Control List Status screen in Figure 4-4-5-3 appears.

Figure 4-4-5-3:

QoS Control List Status Page Screenshot

The page includes the following fields:

Object

• User

• QCE#

• Port

• Frame Type

Description

Indicates the QCL user.

Indicates the index of QCE.

Indicates the list of ports configured with the QCE.

Indicates the type of frame to look for incoming frames. Possible frame types are:

234

• Action

• Conflict

User’s Manual of MGSW-28240F Managed switch

■ Any

: The QCE will match all frame types.

■ Ethernet

: Only Ethernet frames (with Ether Type 0x600-0xFFFF) are allowed.

■ LLC

: Only (LLC) frames are allowed.

■ SNAP

: Only (SNAP) frames are allowed.

■ IPv4

: The QCE will match only IPV4 frames.

■ IPv6

: The QCE will match only IPV6 frames.

Indicates the classification action taken on ingress frame if parameters configured are matched with the frame's content.

There are three action fields: Class, DPL and DSCP.

Class

: Classified QoS class; if a frame matches the QCE it will be put in the queue.

DPL

: Drop Precedence Level; if a frame matches the QCE then DP level will set to value displayed under DPL column.

DSCP

: If a frame matches the QCE then DSCP will be classified with the value displayed under DSCP column.

Displays Conflict status of QCL entries. As H/W resources are shared by multiple applications. It may happen that resources required to add a QCE may not be available, in that case it shows conflict status as 'Yes', otherwise it is always 'No'.

Please note that conflict can be resolved by releasing the H/W resources required to add QCL entry on pressing 'Resolve Conflict' button.

Buttons

: Select the QCL status from this drop down list.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to release the resources required to add QCL entry, in case the conflict status for any QCL entry is 'yes'.

: Click to refresh the page.

4.4.5.4 Voice VLAN Configuration

The Voice VLAN feature enables voice traffic forwarding on the Voice VLAN, then the switch can classify and schedule network traffic. It is recommended that there be two VLANs on a port - one for voice, one for data.

Before connecting the IP device to the switch, the IP phone should configure the voice VLAN ID correctly. It should be configured through its own GUI. The Voice VLAN Configuration screen in Figure 4-4-5-4 appears.

235

User’s Manual of MGSW-28240F Managed switch

Figure 4-4-5-4:

Voice VLAN Configuration Page Screenshot

The page includes the following fields:

Object

• Mode

VLAN ID

Aging Time

Description

Indicates the Voice VLAN mode operation. We must disable MSTP feature before we enable Voice VLAN. It can avoid the conflict of ingress filter. Possible modes are:

Enabled

: Enable Voice VLAN mode operation.

Disabled

: Disable Voice VLAN mode operation.

Indicates the Voice VLAN ID. It should be a unique VLAN ID in the system and cannot equal each port PVID. It is conflict configuration if the value equal management VID, MVR VID, PVID etc.

The allowed range is 1 to 4095.

Indicates the Voice VLAN secure learning age time. The allowed range is 10 to

10000000 seconds. It used when security mode or auto detect mode is enabled.

In other cases, it will based hardware age time.

The actual age time will be situated in the [age_time; 2 * age_time] interval.

236

• Traffic Class

• Mode

• Port Security

• Port Discovery

Protocol

User’s Manual of MGSW-28240F Managed switch

Indicates the Voice VLAN traffic class. All traffic on Voice VLAN will apply this class.

Indicates the Voice VLAN port mode.

Possible port modes are:

Disabled

: Disjoin from Voice VLAN.

Auto

: Enable auto detect mode. It detects whether there is VoIP phone attached to the specific port and configures the Voice VLAN members automatically.

Forced

: Force join to Voice VLAN.

Indicates the Voice VLAN port security mode. When the function is enabled, all non-telephone MAC address in Voice VLAN will be blocked 10 seconds. Possible port modes are:

Enabled

: Enable Voice VLAN security mode operation.

Disabled

: Disable Voice VLAN security mode operation.

Indicates the Voice VLAN port discovery protocol. It will only work when auto detect mode is enabled. We should enable LLDP feature before configuring discovery protocol to "LLDP" or "Both". Changing the discovery protocol to "OUI" or "LLDP" will restart auto detect process. Possible discovery protocols are:

■ OUI

: Detect telephony device by OUI address.

■ LLDP

: Detect telephony device by LLDP.

■ Both

: Both OUI and LLDP.

237

User’s Manual of MGSW-28240F Managed switch

4.4.5.5 Voice VLAN OUI Table

Configure VOICE VLAN OUI table on this page. The maximum entry number is 16. Modifying the OUI table will restart auto detection of OUI process. The Voice VLAN OUI Table screen in Figure 4-4-5-6 appears.

Figure 4-4-5-6:

Voice VLAN OUI Table Page Screenshot

The page includes the following fields:

Object

• Delete

• Telephony OUI

• Description

Description

Check to delete the entry. It will be deleted during the next save.

An telephony OUI address is a globally unique identifier assigned to a vendor by

IEEE. It must be 6 characters long and the input format is "xx-xx-xx" (x is a hexadecimal digit).

The description of OUI address. Normally, it describes which vendor telephony device it belongs to.

The allowed string length is 0 to 32 .

Buttons

: Click to add a new access management entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

238

User’s Manual of MGSW-28240F Managed switch

4.5 Security

4.5.1 Access Security

4.5.1.1 Access Management

Configure access management table on this page. The maximum entry number is 16. If the application's type match any one of the access management entries, it will allow access to the switch. The Access Management Configuration screen in Figure

4-5-1-1 appears.

Figure 4-5-1-2:

Access Management Configuration Overview Page Screenshot

The page includes the following fields:

Object

• Mode

Delete

VLAN ID

Start IP address

End IP address

HTTP/HTTPS

SNMP

Telnet/SSH

Description

Indicates the access management mode operation. Possible modes are:

Enabled

: Enable access management mode operation.

Disabled

: Disable access management mode operation.

Check to delete the entry. It will be deleted during the next apply .

Indicates the VLAN ID for the access management entry.

Indicates the start IP address for the access management entry.

Indicates the end IP address for the access management entry.

Indicates the host can access the switch from HTTP/HTTPS interface that the host IP address matched the entry.

Indicates the host can access the switch from SNMP interface that the host IP address matched the entry.

Indicates the host can access the switch from TELNET/SSH interface that the host IP address matched the entry.

Buttons

239

User’s Manual of MGSW-28240F Managed switch

: Click to add a new access management entry.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.1.2 Access Management Statistics

This page provides statistics for access management. The Access Management Statistics screen in Figure 4-5-1-3 appears.

Figure 4-5-1-3:

Access Management Statistics Overview Page Screenshot

The page includes the following fields:

Object

• Interface

• Receive Packets

Description

The interface that allowed remote host can access the switch.

Allow Packets

Discard Packets

The received packets number from the interface under access management mode is enabled.

The allowed packets number from the interface under access management mode is enabled.

The discarded packets number from the interface under access management mode is enabled.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

4.5.1.3 SSH

: Clears all statistics.

Configure SSH on this page. This page shows the Port Security status. Port Security is a module with no direct configuration.

Configuration comes indirectly from other modules - the user modules. When a user module has enabled port security on a port, the port is set-up for software-based learning. In this mode, frames from unknown MAC addresses are passed on to the port security module, which in turn asks all user modules whether to allow this new MAC address to forward or block it. For a MAC address to be set in the forwarding state, all enabled user modules must unanimously agree on allowing the MAC address to forward. If only one chooses to block it, it will be blocked until that user module decides otherwise.

240

User’s Manual of MGSW-28240F Managed switch

The status page is divided into two sections - one with a legend of user modules and one with the actual port status. The SSH

Configuration screen in Figure 4-5-1-4 appears.

Figure 4-5-1-4:

SSH Configuration Screen Page Screenshot

The page includes the following fields:

Object

• Mode

Description

Indicates the SSH mode operation. Possible modes are:

 Enabled

: Enable SSH mode operation.

 Disabled

: Disable SSH mode operation.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.1.4 HTTPs

Configure HTTPS on this page. The HTTPS Configuration screen in Figure 4-5-1-5 appears.

Figure 4-5-1-5:

HTTPS Configuration Screen Page Screenshot

241

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Object

• Mode

Automatic Redirect

Certificate Maintain

Certificate Pass

Phrase

Description

Indicates the HTTPS mode operation. When the current connection is HTTPS, to apply HTTPS disabled mode operation will automatically redirect web browser to an HTTP connection. Possible modes are:

 Enabled

: Enable HTTPS mode operation.

 Disabled

: Disable HTTPS mode operation.

Indicates the HTTPS redirect mode operation. It only significant if HTTPS mode

"Enabled" is selected. Automatically redirects web browser to an HTTPS connection when both HTTPS mode and Automatic Redirect are enabled or redirects web browser to an HTTP connection when both are disabled. Possible modes are:

 Enabled

: Enable HTTPS redirect mode operation.

 Disabled

: Disable HTTPS redirect mode operation.

The operation of certificate maintenance.

Possible operations are:

None : No operation.

Delete : Delete the current certificate.

Upload : Upload a certificate PEM file. Possible methods are: Web

Browser or URL .

Generate : Generate a new self-signed RSA certificate.

Enter the pass phrase in this field if your uploading certificate is protected by a specific passphrase.

• Certificate Upload

Upload a certificate PEM file into the switch. The file should contain the certificate and private key together. If you have two separated files for saving certificate and private key. Use the Linux cat command to combine them into a single PEM file.

For example, cat my.cert my.key > my.pem

Notice that the RSA certificate is recommended since most of the new version of browsers has removed support for DSA in certificate, e.g. Firefox v37 and

Chrome v39.

Possible methods are:

Web Browser : Upload a certificate via Web browser.

URL : Upload a certificate via URL, the supported protocols are HTTP , HTTPS , TFTP and FTP . The URL format is

<protocol>://[<username>[:<password>]@]< host>[:<port>][/<path>]/<file_name>. For example, tftp://10.10.10.10/new_image_path/new_image.dat,

242

Buttons

• Certificate Status

User’s Manual of MGSW-28240F Managed switch http://username:[email protected]:80/new_image_path/new_image.dat. A valid file name is a text string drawn from alphabet (A-Za-z), digits (0-9), dot (.), hyphen (-), under score(_). The maximum length is 63 and hyphen must not be first character. The file name content that only contains '.' is not allowed.

Display the current status of certificate on the switch.

Possible statuses are:

Switch secure HTTP certificate is presented .

Switch secure HTTP certificate is not presented .

Switch secure HTTP certificate is generating ...

:

Click to save changes.

: Click to undo any changes made locally and revert to previously saved values.

:

Click to refresh the page. Any changes made locally will be undone.

243

User’s Manual of MGSW-28240F Managed switch

4.5.2 AAA

This section is to control the access to the Managed Switch, including the user access and management control.

The Authentication section contains links to the following main topics:

 User Authentication

 IEEE 802.1X Port-based Network Access Control

 MAC-based Authentication

Overview of 802.1X (Port-Based) Authentication

In the 802.1X-world, the user is called the supplicant, the switch is the authenticator, and the RADIUS server is the authentication server. The switch acts as the man-in-the-middle, forwarding requests and responses between the supplicant and the authentication server. Frames sent between the supplicant and the switch are special 802.1X frames, known as

EAPOL

(EAP Over LANs)

frames. EAPOL frames encapsulate

EAP PDU s (RFC3748). Frames sent between the switch and the

RADIUS server are RADIUS packets. RADIUS packets also encapsulate EAP PDUs together with other attributes like the switch's IP address, name, and the supplicant's port number on the switch. EAP is very flexible, in that it allows for different authentication methods, like

MD5-Challenge

,

PEAP

, and

TLS

. The important thing is that the authenticator (the switch) doesn't need to know which authentication method the supplicant and the authentication server are using, or how many information exchange frames are needed for a particular method. The switch simply encapsulates the EAP part of the frame into the relevant type (EAPOL or RADIUS) and forwards it.

When authentication is complete, the RADIUS server sends a special packet containing a success or failure indication. Besides forwarding this decision to the supplicant, the switch uses it to open up or block traffic on the switch port connected to the supplicant.

Overview of MAC-based Authentication

Unlike 802.1X, MAC-based authentication is not a standard, but merely a best-practices method adopted by the industry. In

MAC-based authentication, users are called clients, and the switch acts as the supplicant on behalf of clients. The initial frame

(any kind of frame) sent by a client is snooped by the switch, which in turn uses the client's MAC address as both username and password in the subsequent EAP exchange with the RADIUS server. The 6-byte MAC address is converted to a string on the following form "xx-xx-xx-xx-xx-xx", that is, a dash (-) is used as separator between the lower-cased hexadecimal digits. The switch only supports the MD5-Challenge authentication method, so the RADIUS server must be configured accordingly.

When authentication is complete, the RADIUS server sends a success or failure indication, which in turn causes the switch to open up or block traffic for that particular client, using static entries into the MAC Table. Only then will frames from the client be forwarded on the switch. There are no EAPOL frames involved in this authentication, and therefore, MAC-based Authentication has nothing to do with the 802.1X standard.

The advantage of MAC-based authentication over 802.1X is that several clients can be connected to the same port (e.g. through a 3rd party switch or a hub) and still require individual authentication, and that the clients don't need special supplicant software to authenticate. The disadvantage is that MAC addresses can be spoofed by malicious users, equipment whose MAC

244

User’s Manual of MGSW-28240F Managed switch address is a valid RADIUS user can be used by anyone, and only the MD5-Challenge method is supported.

The 802.1X and MAC-Based Authentication configuration consists of two sections, a system- and a port-wide.

Overview of User Authentication

It is allowed to configure the Managed Switch to authenticate users logging into the system for management access using local or remote authentication methods, such as telnet and Web browser. This Managed Switch provides secure network management access using the following options:

 Remote Authentication Dial-in User Service (RADIUS)

 Terminal Access Controller Access Control System Plus (TACACS+)

 Local user name and Privilege Level control

RADIUS and TACACS+

are logon authentication protocols that use software running on a central server to control access to

RADIUS-aware or TACACS-aware devices on the network. An authentication server

contains a database of multiple user name / password pairs with associated privilege levels for each user that requires management access to the Managed Switch.

Understanding IEEE 802.1X Port-based Authentication

The IEEE 802.1X standard defines a client-server-based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.

Until the client is authenticated, 802.1X access control allows only

Extensible Authentication Protocol over LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

This section includes this conceptual information:

Device Roles

Authentication Initiation and Message Exchange

Ports in Authorized and Unauthorized States

 Device Roles

With 802.1X port-based authentication, the devices in the network have specific roles as shown below.

245

User’s Manual of MGSW-28240F Managed switch

Figure 4-5-2

Client —the device (workstation) that requests access to the LAN and switch services and responds to requests from the switch. The workstation must be running 802.1X-compliant client software such as that offered in the Microsoft

Windows XP operating system. (The client is the supplicant in the IEEE 802.1X specification.)

Authentication server —performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN and switch services.

Because the switch acts as the proxy, the authentication service is transparent to the client. In this release, the Remote

Authentication Dial-In User Service (RADIUS) security system with

Extensible Authentication Protocol (EAP) extensions is the only supported authentication server; it is available in Cisco Secure Access Control Server version 3.0.

RADIUS operates in a client/server model in which secure authentication information is exchanged between the

RADIUS server and one or more RADIUS clients.

Switch

(802.1X device)

—controls the physical access to the network based on the authentication status of the client.

The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client.

The switch includes the RADIUS client, which is responsible for encapsulating and decapsulating the Extensible

Authentication Protocol (EAP) frames and interacting with the authentication server. When the switch receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified or examined during encapsulation, and the authentication server must support EAP within the native frame format. When the switch receives frames from the

246

User’s Manual of MGSW-28240F Managed switch authentication server, the server's frame header is removed, leaving the EAP frame, which is then encapsulated for

Ethernet and sent to the client.

 Authentication Initiation and Message Exchange

The switch or the client can initiate authentication. If you enable authentication on a port by using the dot1x port-control auto interface configuration command, the switch must initiate authentication when it determines that the port link state transitions from down to up. It then sends an EAP-request/identity frame to the client to request its identity (typically, the switch sends an initial identity/request frame followed by one or more requests for authentication information). Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client's identity

If 802.1X is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client transmits frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized.

The specific exchange of EAP frames depends on the authentication method being used. “ Figure 4-5-2 ” shows a message exchange initiated by the client using the One-Time-Password (OTP) authentication method with a RADIUS server.

Figure 4-5-2:

EAP Message Exchange

247

User’s Manual of MGSW-28240F Managed switch

 Ports in Authorized and Unauthorized States

The switch port state determines whether or not the client is granted access to the network. The port starts in the unauthorized state. While in this state, the port disallows all ingress and egress traffic except for 802.1X protocol packets. When a client is successfully authenticated, the port transitions to the authorized state, allowing all traffic for the client to flow normally.

If a client that does not support 802.1X is connected to an unauthorized 802.1X port, the switch requests the client's identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1X-enabled client connects to a port that is not running the 802.1X protocol, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can retransmit the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to transition to the unauthorized state.

If the link state of a port transitions from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.

4.5.2.1 Authentication Configuration

This page allows you to configure how a user is authenticated when he logs into the switch via one of the management client interfaces. The Authentication Method Configuration screen in Figure 4-5-2-1 appears.

248

User’s Manual of MGSW-28240F Managed switch

Figure 4-5-2-1:

Authentication Method Configuration Page Screenshot

249

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Authentication Method Configuration

The authentication section allows you to configure how a user is authenticated when he logs into theswitch via one of the management client interfaces.

The table has one row for each client type and a number of columns, which are:

Object

• Client

• Methods

Description

The management client for which the configuration below applies.

Method can be set to one of the following values:

• no: Authentication is disabled and login is not possible.

• local: Use the local user database on the switch for authentication.

• radius: Use remote RADIUS server(s) for authentication.

• tacacs: Use remote TACACS+ server(s) for authentication..

Command Authorization Method Configuration

The command authorization section allows you to limit the CLI commands available to a user.

The table has one row for each client type and a number of columns, which are:

Object

• Client

• Methods

Description

The management client for which the configuration below applies.

Method can be set to one of the following values:

• no: Command authorization is disabled. User is granted access to CLI commands according to his privilege level.

• tacacs: Use remote TACACS+ server(s) for command authorization. If all remote servers are offline, the user is granted access to CLI commands according to his privilege leve

• Cmd Lvl

• Cfg Cmd

Authorize all commands with a privilege level higher than or equal to this level.

Valid values are in the range 0 to 15.

Also authorize configuration commands

250

User’s Manual of MGSW-28240F Managed switch

Accounting Method Configuration

The accounting section allows you to configure command and exec (login) accounting.

The table has one row for each client type and a number of columns, which are:

Object

• Client

• Methods

Description

The management client for which the configuration below applies.

Method can be set to one of the following values:

• no: Accounting is disabled.

• tacacs: Use remote TACACS+ server(s) for accounting.

• Cmd Lvl

Enable accounting of all commands with a privilege level higher than or equal to this level.

Valid values are in the range 0 to 15. Leave the field empty to disable command accounting.

Enable exec (login) accounting.

Buttons

• Exec

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.2.2 RADIUS

This page allows you to configure the RADIUS Servers. The RADIUS Configuration screen in Figure 4-5-2-2 appears.

251

User’s Manual of MGSW-28240F Managed switch

Figure 4-5-2-2:

RADIUS Server Configuration Page Screenshot

The page includes the following fields:

Global Configuration

These setting are common for all of the RADIUS Servers.

Object

• Timeout

• Retransmit

• Dead Time

Description

Timeout is the number of seconds, in the range 1 to 1000, to wait for a reply from a RADIUS server before retransmitting the request.

Retransmit is the number of times, in the range from 1 to 1000; a RADIUS request is retransmitted to a server that is not responding. If the server has not responded after the last retransmit, it is considered to be dead.

The Dead Time, which can be set to a number between 0 and 3600 seconds, is the period during which the switch will not send new requests to a server that has failed to respond to a previous request. This will stop the switch from continually trying to contact a server that it has already determined as dead.

Setting the Dead Time to a value greater than 0 (zero) will enable this feature, but only if more than one server has been configured.

• Key

• NAS-IP-Address

The secret key - up to 63 characters long - shared between the RADIUS server and the switch.

The IPv4 address to be used as attribute 4 in RADIUS Access-Request packets.

252

User’s Manual of MGSW-28240F Managed switch

• NAS-IPv6-Address

• NAS-Identifier

If this field is left blank, the IP address of the outgoing interface is used.

The IPv6 address to be used as attribute 95 in RADIUS Access-Request packets. If this field is left blank, the IP address of the outgoing interface is used.

The identifier - up to 253 characters long - to be used as attribute 32 in RADIUS

Access-Request packets. If this field is left blank, the NAS-Identifier is not included in the packet.

Server Configuration

The table has one row for each RADIUS Server and a number of columns, which are:

Object

• Delete

• Hostname

• Auth Port

• Acct Port

• Timeout

• Retransmit

• Key

Description

To delete a RADIUS server entry, check this box. The entry will be deleted during the next Save.

The IP address or hostname of the RADIUS server.

The UDP port to use on the RADIUS server for authentication.

The UDP port to use on the RADIUS server for accounting.

This optional setting overrides the global timeout value. Leaving it blank will use the global timeout value.

This optional setting overrides the global retransmit value. Leaving it blank will use the global retransmit value.

This optional setting overrides the global key. Leaving it blank will use the global key.

Buttons

: Click to ad

d a new RADIUS server. An empty row is added to the table, and the RADIUS server can be configured as needed. Up to 5 servers are supported.

: Click to undo the addition of the new server.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

253

User’s Manual of MGSW-28240F Managed switch

4.5.2.3 TACACS+

This page allows you to configure the TACACS+ Servers. The TACACS+ Configuration screen in Figure 4-5-2-3 appears.

Figure 4-5-2-3:

TACACS+ Server Configuration Page Screenshot

The page includes the following fields:

Global Configuration

These setting are common for all of the TACACS+ Servers.

Object

• Timeout

Description

Timeout is the number of seconds, in the range 1 to 1000, to wait for a reply from a TACACS+ server before it is considered to be dead.

• Dead Time

The Dead Time, which can be set to a number between 0 to 1440 minutes, is the period during which the switch will not send new requests to a server that has failed to respond to a previous request. This will stop the switch from continually trying to contact a server that it has already determined as dead.

Setting the Dead Time to a value greater than 0 (zero) will enable this feature, but only if more than one server has been configured.

• Key

Specify to change the secret key or not. When "Yes" is selected for the option, you can change the secret key - up to 63 characters long - shared between the

TACACS+ server and the switch.

Server Configuration

The table has one row for each TACACS+ server and a number of columns, which are:

254

User’s Manual of MGSW-28240F Managed switch

Object

• Delete

• Hostname

• Port

• Timeout

Description

To delete a TACACS+ server entry, check this box. The entry will be deleted during the next Save.

The IP address or hostname of the TACACS+ server.

The TCP port to use on the TACACS+ server for authentication.

This optional setting overrides the global timeout value. Leaving it blank will use the global timeout value.

This optional setting overrides the global key. Leaving it blank will use the global key.

Buttons

• Key

: Click to ad

d a new TACACS+ server. An empty row is added to the table, and the

TACACS+ server can be configured as needed. Up to 5 servers are supported.

: Click to undo the addition of the new server.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.2.4 RADIUS Overview

This page provides an overview of the status of the RADIUS servers configurable on the authentication configuration page. The

RADIUS Authentication/Accounting Server Overview screen in Figure 4-5-2-4 appears.

Figure 4-5-2-4:

RADIUS Authentication/Accounting Server Overview Page Screenshot

255

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

RADIUS Authentication Server Status Overview

Object

• #

• IP Address

Description

The RADIUS server number. Click to navigate to detailed statistics for this server.

The IP address and UDP port number (in <IP Address>:<UDP Port> notation) of this server.

• Authentication

Port

• Authentication

Status

UDP port number for authentication.

The current status of the server. This field takes one of the following values:

Disabled : The server is disabled.

Not Ready : The server is enabled, but IP communication is not yet up and running.

Ready : The server is enabled, IP communication is up and running, and the RADIUS module is ready to accept access attempts.

Dead (X seconds left) : Access attempts were made to this server, but it did not reply within the configured timeout. The server has temporarily been disabled, but will get re-enabled when the dead-time expires. The number of seconds left before this occurs is displayed in parentheses. This state is only reachable when more than one server is enabled.

• Accounting

Port

• Accounting

Status

UDP port number for accounting

The current status of the server. This field takes one of the following values:

Disabled : The server is disabled.

Not Ready : The server is enabled, but IP communication is not yet up and running.

Ready : The server is enabled, IP communication is up and running, and the RADIUS module is ready to accept access attempts.

Dead (X seconds left) : Access attempts were made to this server, but it did not reply within the configured timeout. The server has temporarily been disabled, but will get re-enabled when the dead-time expires. The number of seconds left before this occurs is displayed in parentheses. This state is only reachable when more than one server is enabled.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

256

User’s Manual of MGSW-28240F Managed switch

4.5.2.5 RADIUS Details

This page provides detailed statistics for a particular RADIUS server.

The RADIUS Authentication/Accounting for Server

Overview screen in Figure 4-5-2-5 appears.

Figure 4-5-2-5:

RADIUS Authentication/Accounting for Server Overview Screenshot

The page includes the following fields:

RADIUS Authentication Statistics

The statistics map closely to those specified in RFC4668 - RADIUS Authentication Client MIB. Use the server select box to switch between the backend servers to show details for.

Object

• Packet Counters

Description

RADIUS authentication server packet counter. There are seven receive and four transmit counters.

Direction Name RFC4668 Name Description

257

Rx

Rx

Rx

Rx

Rx

Rx

Rx

User’s Manual of MGSW-28240F Managed switch

Access

Accepts radiusAuthClientExtA ccessAccepts

The number of RADIUS

Access-Accept packets (valid or invalid) received from the server.

Access Rejects radiusAuthClientExtA ccessRejects

The number of RADIUS

Access-Reject packets (valid or invalid) received from the server.

Access

Challenges radiusAuthClientExtA ccessChallenges

The number of RADIUS

Access-Challenge packets

(valid or invalid) received from the server.

Malformed

Access

Responses radiusAuthClientExt

MalformedAccessRe sponses

The number of malformed

RADIUS Access-Response packets received from the server. Malformed packets include packets with an invalid length. Bad authenticators or

Message Authenticator attributes or unknown types are not included as malformed access responses.

Bad

Authenticators radiusAuthClientExtB adAuthenticators

The number of RADIUS

Access-Response packets containing invalid authenticators or Message

Authenticator attributes received from the server.

Unknown

Types radiusAuthClientExtU nknownTypes

The number of RADIUS packets that were received from the server on the authentication port and dropped for some other reason.

Packets

Dropped radiusAuthClientExtP acketsDropped

The number of RADIUS packets that were received from the server on the

258

• Other Info

User’s Manual of MGSW-28240F Managed switch

Tx

Tx

Tx

Tx authentication port and dropped for some other reason.

Access

Requests

Access

Retransmissio ns radiusAuthClientExtA ccessRetransmission s

The number of RADIUS

Access-Request packets retransmitted to the RADIUS authentication server.

Pending

Requests radiusAuthClientExtP endingRequests

The number of RADIUS

Access-Request packets destined for the server that have not yet timed out or received a response. This variable is incremented when an Access-Request is sent and decremented due to receipt of an Access-Accept,

Access-Reject,

Access-Challenge, timeout, or retransmission.

Timeouts radiusAuthClientExtA ccessRequests

The number of RADIUS

Access-Request packets sent to the server. This does not include retransmissions. radiusAuthClientExtT imeouts

The number of authentication timeouts to the server. After a timeout, the client may retry to the same server, send to a different server, or give up. A retry to the same server is counted as a retransmit as well as a timeout. A send to a different server is counted as a

Request as well as a timeout.

This section contains information about the state of the server and the latest round-trip time.

Name

IP Address

RFC4668 Name

-

Description

IP address and UDP port for the authentication server

259

User’s Manual of MGSW-28240F Managed switch

State

Round-Trip

Time in question.

- radiusAuthClient

ExtRoundTripTim e

Shows the state of the server. It takes one of the following values:

 Disabled

: The selected server is disabled.

 Not Ready

: The server is enabled, but IP communication is not yet up and running.

 Ready

: The server is enabled, IP communication is up and running, and the RADIUS module is ready to accept access attempts.

 Dead (X seconds left)

: Access attempts were made to this server, but it did not reply within the configured timeout. The server has temporarily been disabled, but will get re-enabled when the dead-time expires. The number of seconds left before this occurs is displayed in parentheses.

This state is only reachable when more than one server is enabled.

The time interval (measured in milliseconds) between the most recent Access-Reply/Access-Challenge and the Access-Request that matched it from the RADIUS authentication server. The granularity of this measurement is 100 ms. A value of 0 ms indicates that there hasn't been round-trip communication with the server yet.

RADIUS Accounting Statistics

The statistics map closely to those specified in RFC4670 - RADIUS Accounting Client MIB. Use the server select box to switch between the backend servers to show details for.

Object

• Packet Counters

Description

RADIUS accounting server packet counter. There are five receive and four transmit counters.

Direction Name

Rx

Responses

RFC4670 Name radiusAccClientExt

Responses

Description

The number of RADIUS packets (valid or invalid) received from the server.

260

Rx

Rx

Rx

Rx

Tx

Tx

Tx

User’s Manual of MGSW-28240F Managed switch

Malformed

Responses radiusAccClientExt

MalformedRespons es

The number of malformed

RADIUS packets received from the server. Malformed packets include packets with an invalid length. Bad authenticators or unknown types are not included as malformed access responses.

Bad

Authenticators

Unknown Types radiusAccClientExt

UnknownTypes

The number of RADIUS packets of unknown types that were received from the server on the accounting port.

Packets Dropped radiusAccClientExt

PacketsDropped

The number of RADIUS packets that were received from the server on the accounting port and dropped for some other reason.

Requests radiusAcctClientExt

BadAuthenticators

The number of RADIUS packets containing invalid authenticators received from the server. radiusAccClientExt

Requests

The number of RADIUS packets sent to the server.

This does not include retransmissions.

Retransmissions radiusAccClientExt

Retransmissions

The number of RADIUS packets retransmitted to the

RADIUS accounting server.

Pending

Requests radiusAccClientExt

PendingRequests

The number of RADIUS packets destined for the server that have not yet timed out or received a response. This variable is incremented when a Request is sent and decremented due to receipt of a Response, timeout, or

261

• Other Info

User’s Manual of MGSW-28240F Managed switch

Tx

Timeouts retransmission. radiusAccClientExt

Timeouts

The number of accounting timeouts to the server. After a timeout, the client may retry to the same server, send to a different server, or give up. A retry to the same server is counted as a retransmit as well as a timeout. A send to a different server is counted as a

Request as well as a timeout.

This section contains information about the state of the server and the latest round-trip time.

Name RFC4670 Name

IP Address

-

Description

IP address and UDP port for the accounting server in question.

State

Round-Trip

Time

- radiusAccClientExtRo undTripTime

Shows the state of the server. It takes one of the following values:

 Disabled

: The selected server is disabled.

 Not Ready

: The server is enabled, but IP communication is not yet up and running.

 Ready

: The server is enabled, IP communication is up and running, and the

RADIUS module is ready to accept accounting attempts.

 Dead (X seconds left)

: Accounting attempts were made to this server, but it did not reply within the configured timeout.

The server has temporarily been disabled, but will get re-enabled when the dead-time expires. The number of seconds left before this occurs is displayed in parentheses. This state is only reachable when more than one server is enabled.

The time interval (measured in milliseconds) between the most recent

Response and the Request that matched it from the RADIUS accounting server.

262

User’s Manual of MGSW-28240F Managed switch

The granularity of this measurement is

100 ms. A value of 0 ms indicates that there hasn't been round-trip communication with the server yet.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

: Clears the counters for the selected server. The "Pending Requests" counter will not be cleared by this operation.

263

User’s Manual of MGSW-28240F Managed switch

4.5.3 Port Authentication

4.5.3.1 Network Access Server Configuration

This page allows you to configure the IEEE 802.1X and MAC-based authentication system and port settings.

The IEEE 802.1X standard defines a port-based access control procedure that prevents unauthorized access to a network by requiring users to first submit credentials for authentication. One or more central servers, the backend servers, determine whether the user is allowed access to the network. These backend (RADIUS) servers are configured on the

"Configuration→Security→AAA"

Page. The IEEE802.1X standard defines port-based operation, but non-standard variants overcome security limitations as shall be explored below.

MAC-based authentication allows for authentication of more than one user on the same port, and doesn't require the user to have special 802.1X supplicant software installed on his system. The switch uses the user's MAC address to authenticate against the backend server. Intruders can create counterfeit MAC addresses, which makes MAC-based authentication less secure than 802.1X authentication. The NAS configuration consists of two sections, a system- and a port-wide. The Network

Access Server Configuration screen in Figure 4-5-3-1 appears.

Figure 4-5-3-1:

Network Access Server Configuration Page Screenshot

264

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

System Configuration

Object

• Mode

• Reauthentication

Enabled

• Reauthentication

Period

• EAPOL Timeout

• Aging Period

Description

Indicates if NAS is globally enabled or disabled on the switch. If globally disabled, all ports are allowed forwarding of frames.

If checked, successfully authenticated supplicants/clients are reauthenticated after the interval specified by the Reauthentication Period. Reauthentication for

802.1X-enabled ports can be used to detect if a new device is plugged into a switch port or if a supplicant is no longer attached.

For MAC-based ports, reauthentication is only useful if the RADIUS server configuration has changed. It does not involve communication between the switch and the client, and therefore doesn't imply that a client is still present on a port.

Determines the period, in seconds, after which a connected client must be reauthenticated. This is only active if the Reauthentication Enabled checkbox is checked. Valid values are in the range 1 to 3600 seconds.

Determines the time for retransmission of Request Identity EAPOL frames.

Valid values are in the range 1 to 65535 seconds. This has no effect for

MAC-based ports.

This setting applies to the following modes, i.e. modes using the Port Security functionality to secure MAC addresses:

■ Single 802.1X

■ Multi 802.1X

■ MAC-Based Auth

.

When the NAS module uses the Port Security module to secure MAC addresses, the Port Security module needs to check for activity on the MAC address in question at regular intervals and free resources if no activity is seen within a given period of time. This parameter controls exactly this period and can be set to a number between 10 and 1000000 seconds.

If reauthentication is enabled and the port is in a 802.1X-based mode, this is not so critical, since supplicants that are no longer attached to the port will get removed upon the next reauthentication, which will fail. But if reauthentication is not enabled, the only way to free resources is by aging the entries.

For ports in MAC-based Auth. mode, reauthentication doesn't cause direct

265

User’s Manual of MGSW-28240F Managed switch communication between the switch and the client, so this will not detect whether the client is still attached or not, and the only way to free any resources is to age the entry.

• Hold Time

This setting applies to the following modes, i.e. modes using the Port Security functionality to secure MAC addresses:

■ Single 802.1X

■ Multi 802.1X

■ MAC-Based Auth

.

If a client is denied access, either because the RADIUS server denies the client access or because the RADIUS server request times out (according to the timeout specified on the "Configuration→Security→AAA" page), the client is put on hold in the Unauthorized state. The hold timer does not count during an on-going authentication.

In MAC-based Auth. mode, the switch will ignore new frames coming from the client during the hold time.

The Hold Time can be set to a number between 10 and 1000000 seconds.

• RADIUS-Assigned QoS

Enabled

RADIUS-assigned QoS provides a means to centrally control the traffic class to which traffic coming from a successfully authenticated supplicant is assigned on the switch. The RADIUS server must be configured to transmit special RADIUS attributes to take advantage of this feature.

The "RADIUS-Assigned QoS Enabled" checkbox provides a quick way to globally enable/disable RADIUS-server assigned QoS Class functionality. When checked, the individual ports' ditto setting determines whether RADIUS-assigned

QoS Class is enabled for that port. When unchecked, RADIUS-server assigned

QoS Class is disabled for all ports.

• RADIUS-Assigned

VLAN Enabled

RADIUS-assigned VLAN provides a means to centrally control the VLAN on which a successfully authenticated supplicant is placed on the switch. Incoming traffic will be classified to and switched on the RADIUS-assigned VLAN. The

RADIUS server must be configured to transmit special RADIUS attributes to take advantage of this feature.

The "RADIUS-Assigned VLAN Enabled" checkbox provides a quick way to globally enable/disable RADIUS-server assigned VLAN functionality. When checked, the individual ports' ditto setting determines whether RADIUS-assigned

VLAN is enabled for that port. When unchecked, RADIUS-server assigned VLAN is disabled for all ports.

266

User’s Manual of MGSW-28240F Managed switch

• Guest VLAN Enabled

A Guest VLAN is a special VLAN - typically with limited network access - on which 802.1X-unaware clients are placed after a network administrator-defined timeout. The switch follows a set of rules for entering and leaving the Guest

VLAN as listed below.

The "Guest VLAN Enabled" checkbox provides a quick way to globally enable/disable Guest VLAN functionality. When checked, the individual ports' ditto setting determines whether the port can be moved into Guest VLAN. When unchecked, the ability to move to the Guest VLAN is disabled for all ports.

• Guest VLAN ID

This is the value that a port's Port VLAN ID is set to if a port is moved into the

Guest VLAN. It is only changeable if the Guest VLAN option is globally enabled.

Valid values are in the range [1; 4095].

• Max. Reauth. Count

The number of times that the switch transmits an EAPOL Request Identity frame without response before considering entering the Guest VLAN is adjusted with this setting. The value can only be changed if the Guest VLAN option is globally enabled.

Valid values are in the range [1; 255].

• Allow Guest VLAN if

EAPOL Seen

The switch remembers if an EAPOL frame has been received on the port for the life-time of the port. Once the switch considers whether to enter the Guest VLAN, it will first check if this option is enabled or disabled. If disabled (unchecked; default), the switch will only enter the Guest VLAN if an EAPOL frame has not been received on the port for the life-time of the port. If enabled (checked), the switch will consider entering the Guest VLAN even if an EAPOL frame has been received on the port for the life-time of the port.

The value can only be changed if the Guest VLAN option is globally enabled.

4.5.3.2 Network Access Overview

This page provides an overview of the current NAS port states for the selected switch. The Network Access Overview screen in

Figure 4-5-3-2 appears.

267

User’s Manual of MGSW-28240F Managed switch

Figure 4-5-3-2:

Network Access Server Switch Status Page Screenshot

The page includes the following fields:

Object

• Port

• Admin State

Port State

Last Source

Last ID

QoS Class

Port VLAN ID

Description

The switch port number. Click to navigate to detailed NAS statistics for this port.

The port's current administrative state. Refer to NAS Admin State for a description of possible values.

The current state of the port. Refer to NAS Port State for a description of the individual states.

The source MAC address carried in the most recently received EAPOL frame for

EAPOL-based authentication, and the most recently received frame from a new client for MAC-based authentication.

The user name (supplicant identity) carried in the most recently received

Response Identity EAPOL frame for EAPOL-based authentication, and the source MAC address from the most recently received frame from a new client for

MAC-based authentication.

QoS Class assigned to the port by the RADIUS server if enabled.

The VLAN ID that NAS has put the port in. The field is blank, if the Port VLAN ID is not overridden by NAS.

If the VLAN ID is assigned by the RADIUS server, "(RADIUS-assigned)" is appended to the VLAN ID. Read more about RADIUS-assigned VLANs here.

If the port is moved to the Guest VLAN, "(Guest)" is appended to the VLAN ID.

Read more about Guest VLANs here.

Buttons

: Click to refresh the page immediately.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

268

User’s Manual of MGSW-28240F Managed switch

4.5.3.3 Network Access Statistics

This page provides detailed NAS statistics for a specific switch port running EAPOL-based IEEE 802.1X authentication. For

MAC-based ports, it shows selected backend server (RADIUS Authentication Server) statistics, only. Use the port select box to select which port details to be displayed. The Network Access Statistics screen in Figure 4-5-3-3 appears.

Figure 4-5-3-3:

Network Access Statistics Page Screenshot

The page includes the following fields:

Port State

Object

• Admin State

Description

The port's current administrative state. Refer to NAS Admin State for a description of possible values.

• Port State

The current state of the port. Refer to NAS Port State for a description of the individual states.

• QoS Class

The QoS class assigned by the RADIUS server. The field is blank if no QoS class is assigned.

• Port VLAN ID

The VLAN ID that NAS has put the port in. The field is blank, if the Port VLAN ID is not overridden by NAS.

If the VLAN ID is assigned by the RADIUS server, "(RADIUS-assigned)" is appended to the VLAN ID. Read more about RADIUS-assigned VLANs here.

If the port is moved to the Guest VLAN, "(Guest)" is appended to the VLAN ID.

Read more about Guest VLANs here.

Port Counters

Object Description

269

• EAPOL Counters

User’s Manual of MGSW-28240F Managed switch

These supplicant frame counters are available for the following administrative states:

■ Force Authorized

■ Force Unauthorized

■ Port-based 802.1X

■ Single 802.1X

■ Multi 802.1X

Direction Name IEEE Name

Rx

Total dot1xAuthEapolFrames

Description

The number of valid EAPOL

Rx frames of any type that have been received by the switch.

Rx

Response ID dot1xAuthEapolRespId

FramesRx

The number of valid EAPOL

Response Identity frames that have been received by the switch.

Rx

Responses dot1xAuthEapolRespFr amesRx

The number of valid EAPOL response frames (other than

Response Identity frames) that have been received by the switch.

Rx

Rx

Rx

Rx

Start dot1xAuthEapolStartFra mesRx

The number of EAPOL Start frames that have been received by the switch.

Logoff dot1xAuthEapolLogoffFr amesRx

The number of valid EAPOL

Logoff frames that have been received by the switch.

Invalid Type dot1xAuthInvalidEapolF ramesRx

The number of EAPOL frames that have been received by the switch in which the frame type is not recognized.

Invalid Length dot1xAuthEapLengthErr orFramesRx

The number of EAPOL frames that have been received by the switch in which the Packet Body

Length field is invalid.

270

• Backend Server

Counters

User’s Manual of MGSW-28240F Managed switch

Tx

Tx

Total

Request ID dot1xAuthEapolFrames

Tx

The number of EAPOL frames of any type that have been transmitted by the switch. dot1xAuthEapolReqIdFr amesTx

The number of EAPOL

Request Identity frames that have been transmitted by the switch.

Tx

Requests dot1xAuthEapolReqFra mesTx

The number of valid EAPOL

Request frames (other than

Request Identity frames) that have been transmitted by the switch.

These backend (RADIUS) frame counters are available for the following administrative states:

Port-based 802.1X

Single 802.1X

Multi 802.1X

MAC-based Auth

.

Direction Name

Rx

Access

Challenges

IEEE Name dot1xAuthBackendAcce ssChallenges

Description

802.1X-based

:

Counts the number of times that the switch receives the first request from the backend server following the first response from the supplicant.

Indicates that the backend server has communication with the switch.

MAC-based

:

Counts all Access Challenges

Rx

Other

Requests dot1xAuthBackendOther

RequestsToSupplicant received from the backend server for this port (left-most table) or client (right-most table).

802.1X-based

:

Counts the number of times

271

Rx

Rx

Tx

User’s Manual of MGSW-28240F Managed switch

Auth.

Successes dot1xAuthBackendAuth

Successes that the switch sends an EAP

Request packet following the first to the supplicant.

Indicates that the backend server chose an EAP-method.

MAC-based

:

Not applicable.

802.1X- and MAC-based

:

Counts the number of times that the switch receives a success indication. Indicates that the supplicant/client has successfully authenticated to the backend server.

Auth.

Failures dot1xAuthBackendAuth

Fails

Responses dot1xAuthBackendResp onses

802.1X- and MAC-based

:

Counts the number of times that the switch receives a failure message. This indicates that the supplicant/client has not authenticated to the backend server.

802.1X-based:

Counts the number of times that the switch attempts to send a supplicant's first response packet to the backend server. Indicates the switch attempted communication with the backend server. Possible retransmissions are not counted.

MAC-based:

Counts all the backend server packets sent from the switch towards the backend server for a given port (left-most table) or client (right-most

272

User’s Manual of MGSW-28240F Managed switch

• Last Supplicant/Client

Info table). Possible retransmissions are not counted.

Information about the last supplicant/client that attempted to authenticate. This information is available for the following administrative states:

Name

MAC

Address

■ Port-based 802.1X

■ Single 802.1X

■ Multi 802.1X

■ MAC-based Auth

.

VLAN ID

IEEE Name dot1xAuthLastEapolF rameSource

-

Description

The MAC address of the last supplicant/client.

The VLAN ID on which the last frame from the last supplicant/client was received.

Version

Identity dot1xAuthLastEapolF rameVersion

-

802.1X-based

:

The protocol version number carried in the most recently received EAPOL frame.

MAC-based

:

Not applicable.

802.1X-based

:

The user name (supplicant identity) carried in the most recently received Response Identity

EAPOL frame.

MAC-based

:

Not applicable.

4.5.4 Port Security

4.5.4.1 Port Limit Control

This page allows you to configure the Port Security global and per-port settings.

Port Security allows for limiting the number of users on a given port. A user is identified by a MAC address and VLAN ID. If Port

Security is enabled on a port, the limit specifies the maximum number of users on the port. If this number is exceeded, an action is taken depending on violation mode. The violation mode can be one of the four different described below.

The Port Security configuration consists of two sections, a global and a per-port.. The Port Limit Control Configuration screen in

Figure 4-5-4-1 appears.

273

User’s Manual of MGSW-28240F Managed switch

Figure 4-5-4-1:

Port Limit Control Configuration Overview Page Screenshot

The page includes the following fields:

System Configuration

Object

• Aging Enabled

Description

If checked, secured MAC addresses are subject to aging as discussed under Aging Period .

• Aging Period

If Aging Enabled is checked, then the aging period is controlled with this input. If other modules are using the underlying port security for securing MAC addresses, they may have other requirements to the aging period. The underlying port security will use the shorter requested aging period of all modules that use the functionality.

The Aging Period can be set to a number between 10 and 10,000,000 seconds.

To understand why aging may be desired, consider the following scenario:

Suppose an end-host is connected to a 3rd party switch or hub, which in turn is connected to a port on this switch on which Limit Control is enabled. The end-host will be allowed to forward if the limit is not exceeded. Now suppose that the end-host logs off or powers down. If it wasn't for aging, the end-host would

274

User’s Manual of MGSW-28240F Managed switch

• Hold Time still take up resources on this switch and will be allowed to forward. To overcome this situation, enable aging. With aging enabled, a timer is started once the end-host gets secured. When the timer expires, the switch starts looking for frames from the end-host, and if such frames are not seen within the next Aging

Period, the end-host is assumed to be disconnected, and the corresponding resources are freed on the switch.

The hold time - measured in seconds - is used to determine how long a MAC address is held in the MAC table if it has been found to violate the limit. Valid range is between 10 and 10000000 seconds with a default of 300 seconds.

The reason for holding a violating MAC address in the MAC table is primarily to ensure that the same MAC address doesn't give rise to continuous notifications

(if notifications on violation count is enabled).

Port Configuration

The table has one row for each port and a number of columns, which are:

Object

• Port

• Mode

Description

The port number for which the configuration below applies.

Controls whether Limit Control is enabled on this port. Both this and the Global

Mode must be set to Enabled for Limit Control to be in effect. Notice that other modules may still use the underlying port security features without enabling Limit

Control on a given port.

• Limit

The maximum number of MAC addresses that can be secured on this port. This number cannot exceed 1024. If the limit is exceeded, the corresponding action is taken.

The switch is "born" with a total number of MAC addresses from which all ports draw whenever a new MAC address is seen on a Port Security-enabled port.

Since all ports draw from the same pool, it may happen that a configured maximum cannot be granted, if the remaining ports have already used all available MAC addresses.

• Violation Mode

If Limit is reached, the switch can take one of the following actions:

Protect: Do not allow more than Limit MAC addresses on the port, but take no further action.

Restrict: If Limit is reached, subsequent MAC addresses on the port will be counted and marked as violating. Such MAC addreses are removed from the

275

User’s Manual of MGSW-28240F Managed switch

MAC table when the hold time expires. At most Violation Limit MAC addresses can be marked as violating at any given time.

Shutdown: If Limit is reached, one additional MAC address will cause the port to be shut down. This implies that all secured MAC addresses be removed from the port, and no new addresses be learned. There are three ways to re-open the port:

1) In the "Configuration → Ports" page's "Configured" column, first disable the port, then restore the original mode.

2) Make a Port Security configuration change on the port.

• Violation Limit

3) Boot the switch.

The maximum number of MAC addresses that can be marked as violating on this port. This number cannot exceed 1024. Default is 4. It is only used when Violation Mode is Restrict .

• State

This column shows the current state of the port as seen from the Limit Control's point of view. The state takes one of four values:

 Disabled

: Limit Control is either globally disabled or disabled on the port.

 Ready

: The limit is not yet reached. This can be shown for all actions.

 Limit Reached

: Indicates that the limit is reached on this port. This state can only be shown if Action is set to

None

or

Trap

.

Shutdown

: Indicates that the port is shut down by the Limit Control module. This state can only be shown if Action is set to

Shutdown

or

Trap & Shutdown

.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Click to refresh the page. Note that non-committed changes will be lost.

4.5.4.2 Port Security Status

This page shows the Port Security status. Port Security is a module with no direct configuration. Configuration comes indirectly from other modules - the user modules. When a user module has enabled port security on a port, the port is set-up for software-based learning. In this mode, frames from unknown MAC addresses are passed on to the port security module, which in turn asks all user modules whether to allow this new MAC address to forward or block it. For a MAC address to be set in the forwarding state, all enabled user modules must unanimously agree on allowing the MAC address to forward. If only one chooses to block it, it will be blocked until that user module decides otherwise.

276

User’s Manual of MGSW-28240F Managed switch

The status page is divided into two sections - one with a legend of user modules and one with the actual port status. The Port

Security Status screen in Figure 4-5-4-2 appears.

Figure 4-5-4-2:

Port Security Status Screen Page Screenshot

The page includes the following fields:

User Module Legend

The legend shows all user modules that may request Port Security services.

Object

• User Module Name

• Abbr

Description

The full name of a module that may request Port Security services.

A one-letter abbreviation of the user module. This is used in the Users column in the port status table.

277

User’s Manual of MGSW-28240F Managed switch

Port Status

The table has one row for each port on the selected switch in the switch and a number of columns, which are:

Object

• Clear

• Port

• Users

Description

Click to remove all MAC addresses on all VLANs on this port. The button is only clickable if number of secured MAC addresses is non-zero.

The port number for which the status applies. Click the port number to see the status for this particular port.

Each of the user modules has a column that shows whether that module has enabled Port Security or not. A '-' means that the corresponding user module is not enabled, whereas a letter indicates that the user module abbreviated by that letter has enabled port security.

• Violation Mode

• State

• MAC Count

(Current, Limit)

Shows the configured Violation Mode of the port. It can take one of four values:

Disabled : Port Security is not administratively enabled on this port.

Protect : Port Security is administratively enabled in Protect mode.

Restrict : Port Security is administratively enabled in Restrict mode.

Shutdown : Port Security is administratively enabled in Shutdown mode.

Shows the current state of the port. It can take one of four values:

 Disabled

: No user modules are currently using the Port Security service.

 Ready

: The Port Security service is in use by at least one user module, and is awaiting frames from unknown MAC addresses to arrive.

 Limit Reached

: The Port Security service is enabled by at least the Limit

Control user module, and that module has indicated that the limit is reached and no more MAC addresses should be taken in.

 Shutdown

: The Port Security service is enabled by at least the Limit Control user module, and that module has indicated that the limit is exceeded. No

MAC addresses can be learned on the port until it is administratively re-opened on the Limit Control configuration web page.

The two columns indicate the number of currently learned MAC addresses

(forwarding as well as blocked) and the maximum number of MAC addresses that can be learned on the port, respectively.

If no user modules are enabled on the port, the Current column will show a dash

(-).

If the Limit Control user module is not enabled on the port, the Limit column will show a dash (-).

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page immediately.

278

User’s Manual of MGSW-28240F Managed switch

4.5.4.3 Port Security Detail

This page shows the MAC addresses secured by the Port Security module. Port Security is a module with no direct configuration. Configuration comes indirectly from other modules - the user modules. When a user module has enabled port security on a port, the port is set-up for software-based learning. In this mode, frames from unknown MAC addresses are passed on to the port security module, which in turn asks all user modules whether to allow this new MAC address to forward or block it. For a MAC address to be set in the forwarding state, all enabled user modules must unanimously agree on allowing the

MAC address to forward. If only one chooses to block it, it will be blocked until that user module decides otherwise. The Port

Security Detail screen in Figure 4-5-4-3 appears.

Figure 4-5-4-3:

Port Security Detail Screen Page Screenshot

The page includes the following fields:

Object

• MAC Address & VLAN

ID

• State

Description

The MAC address and VLAN ID that is seen on this port. If no MAC addresses are learned, a single row stating "No MAC addresses attached" is displayed.

Indicates whether the corresponding MAC address is blocked or forwarding. In the blocked state, it will not be allowed to transmit or receive traffic.

Shows the date and time when this MAC address was first seen on the port.

• Time of Addition

• Age/Hold  If at least one user module has decided to block this MAC address, it will stay in the blocked state until the hold time (measured in seconds) expires.

 If all user modules have decided to allow this MAC address to forward, and aging is enabled, the Port Security module will periodically check that this

MAC address still forwards traffic.

 If the age period (measured in seconds) expires and no frames have been seen, the MAC address will be removed from the MAC table. Otherwise a new age period will begin.

 If aging is disabled or a user module has decided to hold the MAC address indefinitely, a dash (-) will be shown.

279

User’s Manual of MGSW-28240F Managed switch

4.5.5 Access Control Lists

ACL is an acronym for Access Control List. It is the list table of ACEs, containing access control entries that specify individual users or groups permitted or denied to specific traffic objects, such as a process or a program.

Each accessible traffic object contains an identifier to its ACL. The privileges determine whether there are specific traffic object access rights.

ACL implementations can be quite complex, for example, when the ACEs are prioritized for the various situation. In networking, the ACL refers to a list of service ports or network services that are available on a host or server, each with a list of hosts or servers permitted or denied to use the service. ACL can generally be configured to control inbound traffic, and in this context, they are similar to firewalls.

ACE

is an acronym for

Access Control Entry

. It describes access permission associated with a particular ACE ID.

There are three ACE frame types (

Ethernet Type

,

ARP

, and

IPv4

) and two ACE actions ( permit

and deny

). The ACE also contains many detailed, different parameter options that are available for individual application.

4.5.5.1 Access Control List Status

This page shows the ACL status by different ACL users. Each row describes the ACE that is defined. It is a conflict if a specific

ACE is not applied to the hardware due to hardware limitations. The maximum number of ACEs is

512

on each switch. The

Voice VLAN OUI Table screen in Figure 4-5-5-1 appears.

The page includes the following fields:

Figure 4-5-5-1:

ACL Status Page Screenshot

Object

• User

• ACE

• Frame Type

Description

Indicates the ACL user.

Indicates the ACE ID on local switch.

Indicates the frame type of the ACE. Possible values are:

■ Any

: The ACE will match any frame type.

■ EType

: The ACE will match Ethernet Type frames. Note that an

Ethernet Type based ACE will not get matched by IP and ARP frames.

■ ARP

: The ACE will match ARP/RARP frames.

280

User’s Manual of MGSW-28240F Managed switch

Action

Rate Limiter

CPU

• Counter

• Conflict

■ IPv4

: The ACE will match all IPv4 frames.

■ IPv4/ICMP

: The ACE will match IPv4 frames with ICMP protocol.

■ IPv4/UDP

: The ACE will match IPv4 frames with UDP protocol.

■ IPv4/TCP

: The ACE will match IPv4 frames with TCP protocol.

■ IPv4/Other

: The ACE will match IPv4 frames, which are not

ICMP/UDP/TCP.

■ IPv6

: The ACE will match all IPv6 standard frames.

Indicates the forwarding action of the ACE.

Permit

: Frames matching the ACE may be forwarded and learned.

Deny

: Frames matching the ACE are dropped.

Indicates the rate limiter number of the ACE. The allowed range is 1 to 16. When

Disabled is displayed, the rate limiter operation is disabled.

Forward packet that matched the specific ACE to CPU

The counter indicates the number of times the ACE was hit by a frame.

Indicates the hardware status of the specific ACE. The specific ACE is not applied to the hardware due to hardware limitations.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page.

281

User’s Manual of MGSW-28240F Managed switch

4.5.5.2 Access Control List Configuration

This page shows the Access Control List (ACL), which is made up of the ACEs defined on this switch. Each row describes the

ACE that is defined. The maximum number of ACEs is

512

on each switch.

Click on the lowest plus sign to add a new ACE to the list. The reserved ACEs used for internal protocol, cannot be edited or deleted, the order sequence cannot be changed and the priority is highest. The Access Control List Configuration screen in

Figure 4-5-5-2 appears.

Figure 4-5-5-2:

Access Control List Configuration Page Screenshot

The page includes the following fields:

Object

• ACE

• Ingress Port

Policy / Bitmask

Frame Type

Action

Description

Indicates the ACE ID.

Indicates the ingress port of the ACE. Possible values are:

■ All

: The ACE will match all ingress port.

■ Port

: The ACE will match a specific ingress port.

Indicates the policy number and bitmask of the ACE.

Indicates the frame type of the ACE. Possible values are:

■ Any

: The ACE will match any frame type.

■ EType

: The ACE will match Ethernet Type frames. Note that an

Ethernet Type based ACE will not get matched by IP and ARP frames.

■ ARP

: The ACE will match ARP/RARP frames.

■ IPv4

: The ACE will match all IPv4 frames.

■ IPv4/ICMP

: The ACE will match IPv4 frames with ICMP protocol.

■ IPv4/UDP

: The ACE will match IPv4 frames with UDP protocol.

■ IPv4/TCP

: The ACE will match IPv4 frames with TCP protocol.

■ IPv4/Other

: The ACE will match IPv4 frames, which are not

ICMP/UDP/TCP.

■ IPv6

: The ACE will match all IPv6 standard frames.

Indicates the forwarding action of the ACE.

■ Permit

: Frames matching the ACE may be forwarded and learned.

■ Deny

: Frames matching the ACE are dropped.

282

User’s Manual of MGSW-28240F Managed switch

Buttons

Rate Limiter

Port Redirect

Mirror

• Counter

• Modification Buttons

■ Filter : Frames matching the ACE are filtered.

Indicates the rate limiter number of the ACE. The allowed range is 1 to 16. When

Disabled is displayed, the rate limiter operation is disabled.

Indicates the port redirect operation of the ACE. Frames matching the ACE are redirected to the port number.

The allowed values are

Disabled or a specific port number. When

Disabled

is displayed, the port redirect operation is disabled. pecify the mirror operation of this port. Frames matching the ACE are mirrored to the destination mirror port. The allowed values are:

Enabled : Frames received on the port are mirrored.

Disabled : Frames received on the port are not mirrored.

The default value is "Disabled".

The counter indicates the number of times the ACE was hit by a frame.

You can modify each ACE (Access Control Entry) in the table using the following buttons:

: Inserts a new ACE before the current row.

: Edits the ACE row.

: Moves the ACE up the list.

: Moves the ACE down the list.

: Deletes the ACE.

: The lowest plus sign adds a new entry at the bottom of the ACE listings.

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Click to refresh the page; any changes made locally will be undone.

: Click to clear the counters.

: Click to remove all ACEs.

283

User’s Manual of MGSW-28240F Managed switch

4.5.5.3 ACE Configuration

Configure an

ACE

(

Access Control Entry

) on this page. An ACE consists of several parameters. These parameters vary according to the frame type that you select. First select the ingress port for the ACE, and then select the frame type. Different parameter options are displayed depending on the frame type selected. A frame that hits this ACE matches the configuration that is defined here. The ACE Configuration screen in Figure 4-5-5-3 appears.

Figure 4-5-5-3:

ACE Configuration Page Screenshot

The page includes the following fields:

Object

Ingress Port

• Policy Bitmask

Policy Filter

Policy Value

Frame Type

Description

Select the ingress port for which this ACE applies.

Any

: The ACE applies to any port.

Port n

: The ACE applies to this port number, where n is the number of the switch port.

Specify the policy number filter for this ACE.

Any

: No policy filter is specified. (policy filter status is "don't-care".)

Specific

: If you want to filter a specific policy with this ACE, choose this value. Two field for entering an policy value and bitmask appears.

When "Specific" is selected for the policy filter, you can enter a specific policy value.

The allowed range is

0

to

255

.

When "Specific" is selected for the policy filter, you can enter a specific policy bitmask.

The allowed range is

0x0

to

0xff

.

Select the frame type for this ACE. These frame types are mutually exclusive.

■ Any

: Any frame can match this ACE.

284

• Action

• Rate Limiter

• Port Redirect

• Mirror

• Logging

• Shutdown

• Counter

User’s Manual of MGSW-28240F Managed switch

■ Ethernet Type

: Only Ethernet Type frames can match this ACE. The IEEE

802.3 describes the value of Length/Type Field specifications to be greater than or equal to 1536 decimal (equal to 0600 hexadecimal).

■ ARP

: Only ARP frames can match this ACE. Notice the ARP frames won't match the ACE with Ethernet type.

■ IPv4

: Only IPv4 frames can match this ACE. Notice the IPv4 frames won't match the ACE with Ethernet type.

■ IPv6

: Only IPv6 frames can match this ACE. Notice the IPv6 frames won't match the ACE with Ethernet type.

Specify the action to take with a frame that hits this ACE.

Permit

: The frame that hits this ACE is granted permission for the ACE operation.

Deny

: The frame that hits this ACE is dropped.

Specify the rate limiter in number of base units.

The allowed range is 1 to 16.

Disabled indicates that the rate limiter operation is disabled.

Frames that hit the ACE are redirected to the port number specified here.

The allowed range is the same as the switch port number range.

Disabled indicates that the port redirect operation is disabled.

Specify the mirror operation of this port. Frames matching the ACE are mirrored to the destination mirror port. The rate limiter will not affect frames on the mirror port. The allowed values are:

Enabled : Frames received on the port are mirrored.

Disabled : Frames received on the port are not mirrored.

The default value is "Disabled"

Specify the logging operation of the ACE. The allowed values are:

■ Enabled

: Frames matching the ACE are stored in the System Log.

■ Disabled

: Frames matching the ACE are not logged.

Note

: The logging feature only works when the packet length is less than 1518(without

VLAN tags) and the System Log memory size and logging rate is limited.

Specify the port shut down operation of the ACE. The allowed values are:

■ Enabled

: If a frame matches the ACE, the ingress port will be disabled.

■ Disabled

: Port shut down is disabled for the ACE.

Note

: The shutdown feature only works when the packet length is less than

1518(without VLAN tags).

The counter indicates the number of times the ACE was hit by a frame.

285

User’s Manual of MGSW-28240F Managed switch

MAC Parameters

Object

• SMAC Filter

• SMAC Value

• DMAC Filter

• DMAC Value

Description

(Only displayed when the frame type is Ethernet Type or ARP.)

Specify the source MAC filter for this ACE.

■ Any

: No SMAC filter is specified. (SMAC filter status is "don't-care".)

■ Specific

: If you want to filter a specific source MAC address with this ACE, choose this value. A field for entering an SMAC value appears.

When "Specific" is selected for the SMAC filter, you can enter a specific source MAC address. The legal format is "xx-xx-xx-xx-xx-xx" or "xx.xx.xx.xx.xx.xx" or

"xxxxxxxxxxxx" (x is a hexadecimal digit). A frame that hits this ACE matches this

SMAC value.

Specify the destination MAC filter for this ACE.

Any

: No DMAC filter is specified. (DMAC filter status is "don't-care".)

MC

: Frame must be multicast.

BC

: Frame must be broadcast.

UC

: Frame must be unicast.

Specific

: If you want to filter a specific destination MAC address with this

ACE, choose this value. A field for entering a DMAC value appears.

When "Specific" is selected for the DMAC filter, you can enter a specific destination

MAC address. The legal format is "xx-xx-xx-xx-xx-xx" or "xx.xx.xx.xx.xx.xx" or

"xxxxxxxxxxxx" (x is a hexadecimal digit). A frame that hits this ACE matches this

DMAC value.

 VLAN Parameters

Object

• 802.1Q Tagged

• VLAN ID Filter

• VLAN ID

Description

Specify whether frames can hit the action according to the 802.1Q tagged. The allowed values are:

Any : Any value is allowed ("don't-care").

Enabled : Tagged frame only.

Disabled : Untagged frame only.

The default value is "Any".

Specify the VLAN ID filter for this ACE.

Any

: No VLAN ID filter is specified. (VLAN ID filter status is "don't-care".)

Specific

: If you want to filter a specific VLAN ID with this ACE, choose this value. A field for entering a VLAN ID number appears.

When "Specific" is selected for the VLAN ID filter, you can enter a specific VLAN ID number. The allowed range is 1 to 4095. A frame that hits this ACE matches this VLAN

286

User’s Manual of MGSW-28240F Managed switch

• Tag Priority

ID value.

Specify the tag priority for this ACE. A frame that hits this ACE matches this tag priority.

The allowed number range is 0 to 7. The value Any means that no tag priority is specified (tag priority is "don't-care".)

 ARP Parameters

The ARP parameters can be configured when Frame Type "ARP" is selected.

Object

• ARP/RARP

• Request/Reply

• Sender IP Filter

• Sender IP Address

• Sender IP Mask

• Target IP Filter

• Target IP Address

Description

Specify the available ARP/RARP opcode (OP) flag for this ACE.

■ Any

: No ARP/RARP OP flag is specified. (OP is "don't-care".)

■ ARP

: Frame must have ARP/RARP opcode set to ARP.

■ RARP

: Frame must have ARP/RARP opcode set to RARP.

■ Other

: Frame has unknown ARP/RARP Opcode flag.

Specify the available ARP/RARP opcode (OP) flag for this ACE.

■ Any

: No ARP/RARP OP flag is specified. (OP is "don't-care".)

■ Request

: Frame must have ARP Request or RARP Request OP flag set.

■ Reply

: Frame must have ARP Reply or RARP Reply OP flag.

Specify the sender IP filter for this ACE.

Any

: No sender IP filter is specified. (Sender IP filter is "don't-care".)

Host

: Sender IP filter is set to Host. Specify the sender IP address in the

SIP Address field that appears.

Network

: Sender IP filter is set to Network. Specify the sender IP address and sender IP mask in the SIP Address and SIP Mask fields that appear.

When "Host" or "Network" is selected for the sender IP filter, you can enter a specific sender IP address in dotted decimal notation.

When "Network" is selected for the sender IP filter, you can enter a specific sender IP mask in dotted decimal notation.

Specify the target IP filter for this specific ACE.

■ Any

: No target IP filter is specified. (Target IP filter is "don't-care".)

■ Host

: Target IP filter is set to Host. Specify the target IP address in the

Target IP Address field that appears.

■ Network

: Target IP filter is set to Network. Specify the target IP address and target IP mask in the Target IP Address and Target IP Mask fields that appear.

When "Host" or "Network" is selected for the target IP filter, you can enter a specific target IP address in dotted decimal notation.

287

User’s Manual of MGSW-28240F Managed switch

• Target IP Mask

• ARP Sender MAC

Match

• RARP Target MAC

Match

• IP/Ethernet Length

• IP

• Ethernet

When "Network" is selected for the target IP filter, you can enter a specific target

IP mask in dotted decimal notation.

Specify whether frames can hit the action according to their sender hardware address field (SHA) settings.

0

: ARP frames where SHA is not equal to the SMAC address.

1

: ARP frames where SHA is equal to the SMAC address.

Any

: Any value is allowed ("don't-care").

Specify whether frames can hit the action according to their target hardware address field (THA) settings.

0

: RARP frames where THA is not equal to the SMAC address.

1

: RARP frames where THA is equal to the SMAC address.

Any

: Any value is allowed ("don't-care").

Specify whether frames can hit the action according to their ARP/RARP hardware address length (HLN) and protocol address length (PLN) settings.

■ 0

: ARP/RARP frames where the HLN is equal to Ethernet (0x06) and the

(PLN) is equal to IPv4 (0x04).

■ 1

: ARP/RARP frames where the HLN is equal to Ethernet (0x06) and the

(PLN) is equal to IPv4 (0x04).

■ Any

: Any value is allowed ("don't-care").

Specify whether frames can hit the action according to their ARP/RARP hardware address space (HRD) settings.

■ 0

: ARP/RARP frames where the HLD is equal to Ethernet (1).

■ 1

: ARP/RARP frames where the HLD is equal to Ethernet (1).

■ Any

: Any value is allowed ("don't-care").

Specify whether frames can hit the action according to their ARP/RARP protocol address space (PRO) settings.

■ 0

: ARP/RARP frames where the PRO is equal to IP (0x800).

■ 1

: ARP/RARP frames where the PRO is equal to IP (0x800).

■ Any

: Any value is allowed ("don't-care").

 IP Parameters

The IP parameters can be configured when Frame Type "IPv4" is selected.

Object

• IP Protocol Filter

Description

Specify the IP protocol filter for this ACE.

■ Any

: No IP protocol filter is specified ("don't-care").

■ Specific

: If you want to filter a specific IP protocol filter with this ACE, choose this value. A field for entering an IP protocol filter appears.

■ ICMP

: Select ICMP to filter IPv4 ICMP protocol frames. Extra fields for defining ICMP parameters will appear. These fields are explained later in

288

• IP Protocol Value

• IP TTL

• IP Fragment

• IP Option

• SIP Filter

• SIP Address

• SIP Mask

User’s Manual of MGSW-28240F Managed switch this help file.

■ UDP

: Select UDP to filter IPv4 UDP protocol frames. Extra fields for defining UDP parameters will appear. These fields are explained later in this help file.

■ TCP

: Select TCP to filter IPv4 TCP protocol frames. Extra fields for defining

TCP parameters will appear. These fields are explained later in this help file.

When "Specific" is selected for the IP protocol value, you can enter a specific value. The allowed range is

0

to

255

. A frame that hits this ACE matches this IP protocol value.

Specify the Time-to-Live settings for this ACE.

■ zero

: IPv4 frames with a Time-to-Live field greater than zero must not be able to match this entry.

■ non-zero

: IPv4 frames with a Time-to-Live field greater than zero must be able to match this entry.

Any

: Any value is allowed ("don't-care").

Specify the fragment offset settings for this ACE. This involves the settings for the More Fragments (MF) bit and the Fragment Offset (FRAG OFFSET) field for an IPv4 frame.

■ No

: IPv4 frames where the MF bit is set or the FRAG OFFSET field is greater than zero must not be able to match this entry.

■ Yes

: IPv4 frames where the MF bit is set or the FRAG OFFSET field is greater than zero must be able to match this entry.

■ Any

: Any value is allowed ("don't-care").

Specify the options flag setting for this ACE.

■ No

: IPv4 frames where the options flag is set must not be able to match this entry.

■ Yes

: IPv4 frames where the options flag is set must be able to match this entry.

■ Any

: Any value is allowed ("don't-care").

Specify the source IP filter for this ACE.

■ Any

: No source IP filter is specified. (Source IP filter is "don't-care".)

■ Host

: Source IP filter is set to Host. Specify the source IP address in the

SIP Address field that appears.

■ Network

: Source IP filter is set to Network. Specify the source IP address and source IP mask in the SIP Address and SIP Mask fields that appear.

When "Host" or "Network" is selected for the source IP filter, you can enter a specific SIP address in dotted decimal notation.

When "Network" is selected for the source IP filter, you can enter a specific SIP mask in dotted decimal notation.

289

• DIP Filter

• DIP Address

• DIP Mask

User’s Manual of MGSW-28240F Managed switch

Specify the destination IP filter for this ACE.

■ Any

: No destination IP filter is specified. (Destination IP filter is

"don't-care".)

■ Host

: Destination IP filter is set to Host. Specify the destination IP address in the DIP Address field that appears.

■ Network

: Destination IP filter is set to Network. Specify the destination IP address and destination IP mask in the DIP Address and DIP Mask fields that appear.

When "Host" or "Network" is selected for the destination IP filter, you can enter a specific DIP address in dotted decimal notation.

When "Network" is selected for the destination IP filter, you can enter a specific

DIP mask in dotted decimal notation.

 IPv6 Parameters

Object

• Next Header Filter

• Next Header Value

SIP Filter

SIP Address

Description

Specify the IPv6 next header filter for this ACE.

Any

: No IPv6 next header filter is specified ("don't-care").

Specific

: If you want to filter a specific IPv6 next header filter with this

ACE, choose this value. A field for entering an IPv6 next header filter appears.

ICMP

: Select ICMP to filter IPv6 ICMP protocol frames. Extra fields for defining ICMP parameters will appear. These fields are explained later in this help file.

UDP

: Select UDP to filter IPv6 UDP protocol frames. Extra fields for defining UDP parameters will appear. These fields are explained later in this help file.

TCP

: Select TCP to filter IPv6 TCP protocol frames. Extra fields for defining

TCP parameters will appear. These fields are explained later in this help file.

When "Specific" is selected for the IPv6 next header value, you can enter a specific value. The allowed range is

0

to

255

. A frame that hits this ACE matches this IPv6 protocol value.

Specify the source IPv6 filter for this ACE.

■ Any

: No source IPv6 filter is specified. (Source IPv6 filter is "don't-care".)

■ Specific

: Source IPv6 filter is set to Network. Specify the source IPv6 address and source IPv6 mask in the SIP Address fields that appear.

When "Specific" is selected for the source IPv6 filter, you can enter a specific

SIPv6 address. The field only supported last 32 bits for IPv6 address.

290

• SIP BitMask

• Hop Limit

User’s Manual of MGSW-28240F Managed switch

When "Specific" is selected for the source IPv6 filter, you can enter a specific

SIPv6 mask. The field only supported last 32 bits for IPv6 address. Notice the usage of bitmask, if the binary bit value is "0", it means this bit is "don't-care".

The real matched pattern is [sipv6_address & sipv6_bitmask] (last 32 bits). For example, if the SIPv6 address is 2001::3 and the SIPv6 bitmask is

0xFFFFFFFE(bit 0 is "don't-care" bit), then SIPv6 address 2001::2 and 2001::3 are applied to this rule.

Specify the hop limit settings for this ACE.

■ zero

: IPv6 frames with a hop limit field greater than zero must not be able to match this entry.

■ non-zero

: IPv6 frames with a hop limit field greater than zero must be able to match this entry.

■ Any

: Any value is allowed ("don't-care”).

 ICMP Parameters

Object

• ICMP Type Filter

• ICMP Type Value

• ICMP Code Filter

• ICMP Code Value

Description

Specify the ICMP filter for this ACE.

Any

: No ICMP filter is specified (ICMP filter status is "don't-care").

Specific

: If you want to filter a specific ICMP filter with this ACE, you can enter a specific ICMP value. A field for entering an ICMP value appears.

When "Specific" is selected for the ICMP filter, you can enter a specific ICMP value.

The allowed range is 0 to 255 . A frame that hits this ACE matches this ICMP value.

Specify the ICMP code filter for this ACE.

■ Any

: No ICMP code filter is specified (ICMP code filter status is

"don't-care").

■ Specific

: If you want to filter a specific ICMP code filter with this ACE, you can enter a specific ICMP code value. A field for entering an ICMP code value appears.

When "Specific" is selected for the ICMP code filter, you can enter a specific

ICMP code value.

The allowed range is 0 to 255 . A frame that hits this ACE matches this ICMP code value.

291

User’s Manual of MGSW-28240F Managed switch

 TCP/UDP Parameters

Object Description

• TCP/UDP Source Filter

Specify the TCP/UDP source filter for this ACE.

■ Any

: No TCP/UDP source filter is specified (TCP/UDP source filter status is "don't-care").

■ Specific

: If you want to filter a specific TCP/UDP source filter with this

ACE, you can enter a specific TCP/UDP source value. A field for entering a

TCP/UDP source value appears.

■ Range

: If you want to filter a specific TCP/UDP source range filter with this

ACE, you can enter a specific TCP/UDP source range value. A field for entering a TCP/UDP source value appears.

• TCP/UDP Source No.

When "Specific" is selected for the TCP/UDP source filter, you can enter a specific TCP/UDP source value. The allowed range is 0 to 65535 . A frame that hits this ACE matches this TCP/UDP source value.

• TCP/UDP Source

Range

When "Range" is selected for the TCP/UDP source filter, you can enter a specific

TCP/UDP source range value. The allowed range is 0 to 65535 . A frame that hits this ACE matches this TCP/UDP source value.

• TCP/UDP Destination

Filter

Specify the TCP/UDP destination filter for this ACE.

■ Any

: No TCP/UDP destination filter is specified (TCP/UDP destination filter status is "don't-care").

■ Specific

: If you want to filter a specific TCP/UDP destination filter with this

ACE, you can enter a specific TCP/UDP destination value. A field for entering a TCP/UDP destination value appears.

■ Range

: If you want to filter a specific range TCP/UDP destination filter with this ACE, you can enter a specific TCP/UDP destination range value. A field for entering a TCP/UDP destination value appears.

• TCP/UDP Destination

Number

When "Specific" is selected for the TCP/UDP destination filter, you can enter a specific TCP/UDP destination value. The allowed range is 0 to 65535 . A frame

• TCP/UDP Destination

Range that hits this ACE matches this TCP/UDP destination value.

When "Range" is selected for the TCP/UDP destination filter, you can enter a specific TCP/UDP destination range value. The allowed range is 0 to 65535 . A frame that hits this ACE matches this TCP/UDP destination value.

• TCP FIN

• TCP SYN

Specify the TCP "No more data from sender" (FIN) value for this ACE.

0

: TCP frames where the FIN field is set must not be able to match this entry.

1

: TCP frames where the FIN field is set must be able to match this entry.

Any

: Any value is allowed ("don't-care").

Specify the TCP "Synchronize sequence numbers" (SYN) value for this ACE.

292

User’s Manual of MGSW-28240F Managed switch

• TCP RST

• TCP PSH

• TCP ACK

• TCP URG

■ 0

: TCP frames where the SYN field is set must not be able to match this entry.

■ 1

: TCP frames where the SYN field is set must be able to match this entry.

■ Any

: Any value is allowed ("don't-care").

Specify the TCP "Reset the connection" (RST) value for this ACE.

0

: TCP frames where the RST field is set must not be able to match this entry.

1

: TCP frames where the RST field is set must be able to match this entry.

Any

: Any value is allowed ("don't-care").

Specify the TCP "Push Function" (PSH) value for this ACE.

0

: TCP frames where the PSH field is set must not be able to match this entry.

1

: TCP frames where the PSH field is set must be able to match this entry.

Any

: Any value is allowed ("don't-care").

Specify the TCP "Acknowledgment field significant" (ACK) value for this ACE.

■ 0

: TCP frames where the ACK field is set must not be able to match this entry.

■ 1

: TCP frames where the ACK field is set must be able to match this entry.

■ Any

: Any value is allowed ("don't-care").

Specify the TCP "Urgent Pointer field significant" (URG) value for this ACE.

■ 0

: TCP frames where the URG field is set must not be able to match this entry.

■ 1

: TCP frames where the URG field is set must be able to match this entry.

■ Any

: Any value is allowed ("don't-care").

 Ethernet Type Parameters

The Ethernet Type parameters can be configured when Frame Type "Ethernet Type" is selected.

Object

• EtherType Filter

Description

Specify the Ethernet type filter for this ACE.

■ Any

: No EtherType filter is specified (EtherType filter status is

"don't-care").

■ Specific

: If you want to filter a specific EtherType filter with this ACE, you can enter a specific EtherType value. A field for entering a

• Ethernet Type Value

EtherType value appears.

When "Specific" is selected for the EtherType filter, you can enter a specific

EtherType value.

The allowed range is

0x600

to

0xFFFF

but excluding 0x800(IPv4), 0x806(ARP) and 0x86DD(IPv6). A frame that hits this ACE matches this EtherType value.

293

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Return to the previous page.

294

User’s Manual of MGSW-28240F Managed switch

4.5.5.4 ACL Ports Configuration

Configure the ACL parameters (ACE) of each switch port. These parameters will affect frames received on a port unless the frame matches a specific ACE. The ACL Ports Configuration screen in Figure 4-5-5-4 appears.

Figure 4-5-5-4:

ACL Ports Configuration Page Screenshot

The page includes the following fields:

Object

• Port

• Policy ID

Action

Rate Limiter ID

Port Redirect

Mirror

Logging

Description

The logical port for the settings contained in the same row.

Select the policy to apply to this port. The allowed values are

0

through

255

.

The default value is 0.

Select whether forwarding is permitted ("Permit") or denied ("Deny").

The default value is "Permit".

Select which rate limiter to apply on this port. The allowed values are

Disabled or the values

1

through

16

.

The default value is "Disabled".

Select which port frames are redirected on. The allowed values are Disabled or a specific port number and it can't be set when action is permitted. The default value is "Disabled".

Specify the mirror operation of this port. The allowed values are:

Enabled : Frames received on the port are mirrored.

Disabled : Frames received on the port are not mirrored.

The default value is "Disabled".

Specify the logging operation of this port. The allowed values are:

■ Enabled

: Frames received on the port are stored in the System Log.

■ Disabled

: Frames received on the port are not logged.

295

User’s Manual of MGSW-28240F Managed switch

Shutdown

State

The default value is "Disabled".

Please note that the System Log memory size and logging rate are limited.

Specify the port shut down operation of this port. The allowed values are:

Enabled

: If a frame is received on the port, the port will be disabled.

Disabled

: Port shut down is disabled.

The default value is "Disabled".

Specify the port state of this port. The allowed values are:

Enabled

: To reopen ports by changing the volatile port configuration of the

ACL user module.

Disabled

: To close ports by changing the volatile port configuration of the

ACL user module.

The default value is "Enabled".

Counts the number of frames that match this ACE.

Buttons

• Counter

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Click to refresh the page; any changes made locally will be undone.

: Click to clear the counters.

296

User’s Manual of MGSW-28240F Managed switch

4.5.5.5 ACL Rate Limiters

Configure the rate limiter for the ACL of the switch.

The ACL Rate Limiter Configuration screen in Figure 4-5-5-5 appears.

Figure 4-5-5-5:

ACL Rate Limiter Configuration Page Screenshot

The page includes the following fields:

Object

• Rate Limiter ID

• Rate (pps)

• Unit

Description

The rate limiter ID for the settings contained in the same row.

The allowed values are:

0-3276700

in pps or

0, 100, 200, 300, ..., 1000000

in kbps.

Specify the rate unit. The allowed values are: pps : packets per second. kbps : Kbits per second.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

297

User’s Manual of MGSW-28240F Managed switch

4.5.6 DHCP Snooping

DHCP Snooping is used to block intruder on the untrusted ports of DUT when it tries to intervene by injecting a bogus DHCP reply packet to a legitimate conversation between the DHCP client and server.

Configure DHCP Snooping on this page. The DHCP Snooping Configuration screen in Figure 4-5-6 appears.

4.5.6.1 DHCP Snooping Configuration

Configure DHCP Snooping on this page.

in Figure 4-5-6-1 appears.

298

User’s Manual of MGSW-28240F Managed switch

Figure 4-5-6-1:

DHCP Snooping Configuration Screen Page Screenshot

The page includes the following fields:

Object

• Snooping Mode

• Port Mode

Configuration

Description

Indicates the DHCP snooping mode operation. Possible modes are:

 Enabled

: Enable DHCP snooping mode operation. When enable DHCP snooping mode operation, the request DHCP messages will be forwarded to trusted ports and only allowed reply packets from trusted ports.

 Disabled

: Disable DHCP snooping mode operation.

Indicates the DHCP snooping port mode. Possible port modes are:

 Trusted

: Configures the port as trusted sources of the DHCP message.

 Untrusted

: Configures the port as untrusted sources of the DHCP message.

Buttons

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

299

User’s Manual of MGSW-28240F Managed switch

4.5.6.2 Snooping Table

This page display the dynamic IP assigned information after DHCP Snooping mode is disabled. All DHCP clients obtained the dynamic IP address from the DHCP server will be listed in this table except for local VLAN interface IP addresses. Entries in the Dynamic DHCP snooping Table are shown on this page

. The Dynamic DHCP Snooping Table screen in Figure 4-5-6-2 appears.

Object

• MAC Address

Figure 4-5-6-2:

Dynamic DHCP Snooping Table Screen Page Screenshot

Description

User MAC address of the entry.

• VLAN ID

• Source Port

VLAN-ID in which the DHCP traffic is permitted.

Switch Port Number for which the entries are displayed.

• IP Address

• IP Subnet Mask

User IP address of the entry.

User IP subnet mask of the entry.

• DHCP Server Address

DHCP Server address of the entry.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

:

Refreshes the displayed table starting from the input fields

:

Flushes all dynamic entries.

: It

will use the last entry of the currently displayed table as a basis for the next lookup. When the end is reached the text "No more entries" is shown in the displayed table

: To

start over

300

User’s Manual of MGSW-28240F Managed switch

4.5.7 IP Source Guard

4.5.7.1 IP Source Guard Configuration

IP Source Guard is a secure feature used to restrict IP traffic on

DHCP snooping untrusted ports

by filtering traffic based on the DHCP Snooping Table or manually configured IP Source Bindings. It helps prevent IP spoofing attacks when a host tries to spoof and use the IP address of another host. This page provides IP Source Guard related configuration. The IP Source Guard

Configuration screen in Figure 4-5-7-1 appears.

Figure 4-5-7-1:

IP Source Guard Configuration Screen Page Screenshot

The page includes the following fields:

Object

• Mode of IP Source

Guard Configuration

• Port Mode

Configuration

Description

Enable the Global IP Source Guard or disable the Global IP Source Guard. All configured ACEs will be lost when the mode is enabled.

Specify IP Source Guard is enabled on which ports. Only when both Global Mode and Port Mode on a given port are enabled, IP Source Guard is enabled on this given port.

• Max Dynamic Clients

Specify the maximum number of dynamic clients can be learned on given ports.

This value can be 0, 1, 2 and unlimited. If the port mode is enabled and the value of max dynamic client is equal 0, it means only allow the IP packets forwarding

301

User’s Manual of MGSW-28240F Managed switch that are matched in static entries on the specific port.

Buttons

: Click to translate all dynamic entries to static entries.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.7.2 Static IP Source Guard Table

This page provides Static IP Source Guard Table. The Static IP Source Guard Table screen in Figure 4-5-7-2 appears.

Figure 4-5-7-2:

Static IP Source Guard Table Screen Page Screenshot

The page includes the following fields:

Buttons

Object

• Delete

• Port

• VLAN ID

• IP Address

• MAC Address

Description

Check to delete the entry. It will be deleted during the next save.

The logical port for the settings.

The VLAN ID for the settings.

Allowed Source IP address.

Allowed Source MAC address.

: Click to add a new entry to the Static IP Source Guard table.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

302

User’s Manual of MGSW-28240F Managed switch

4.5.7.3 Dynamic IP Source Guard Table

This page provides Static IP Source Guard Table. The Static IP Source Guard Table screen in Figure 4-5-7-3 appears.

Figure 4-5-7-3:

Static IP Source Guard Table Screen Page Screenshot

The page includes the following fields:

Object

• Port

• VLAN ID

• IP Address

• MAC Address

Description

Switch Port Number for which the entries are displayed.

VLAN-ID in which the IP traffic is permitted.

User IP address of the entry.

Source MAC address.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds

:

Refreshes the displayed table starting from the input fields.

.

:

Flushes all dynamic entries

.

:

Updates the table starting from the first entry in the Dynamic IP Source Guard Table.

:

Updates the table, starting with the entry after the last entry currently displayed.

303

User’s Manual of MGSW-28240F Managed switch

4.5.8 ARP Inspection

4.5.8.1 ARP Inspection

ARP Inspection is a secure feature. Several types of attacks can be launched against a host or devices connected to Layer 2 networks by "poisoning" the ARP caches. This feature is used to block such attacks. Only valid ARP requests and responses can go through DUT. This page provides ARP Inspection related configuration. The ARP Inspection Configuration screen in

Figure 4-5-8-1 appears.

Figure 4-5-8-1:

ARP Inspection Configuration Screen Page Screenshot

The page includes the following fields:

Object

• Mode of ARP Inspection

Configuration

Description

Enable the Global ARP Inspection or disable the Global ARP Inspection.

• Port Mode Configuration

Specify ARP Inspection is enabled on which ports. Only when both Global

Mode and Port Mode on a given port are enabled, ARP Inspection is enabled on this given port. Possible modes

are:

 Enabled

: Enable ARP Inspection operation.

 Disabled

: Disable ARP Inspection operation.

304

User’s Manual of MGSW-28240F Managed switch

If you want to inspect the VLAN configuration, you have to enable the setting of "

Check VLAN

". The default setting of "Check VLAN" is disabled. When the setting of "Check VLAN" is disabled, the log type of ARP Inspection will refer to the port setting. And the setting of "Check VLAN" is enabled, the log type of

ARP Inspection will refer to the VLAN setting. Possible setting of "

Check

VLAN

" are:

 Enabled

: Enable check VLAN operation.

 Disabled

: Disable check VLAN operation.

Only the Global Mode and Port Mode on a given port are enabled, and the setting of "Check VLAN" is disabled, the log type of ARP Inspection will refer to the port setting. There are four log types

and possible types are:

 None

: Log nothing.

 Deny

: Log denied entries.

 Permit

: Log permitted entries.

 ALL

: Log all entries.

Buttons

: Click to translate all dynamic entries to static entries.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.8.2 ARP Inspection Static Table

This page provides Static ARP Inspection Table. The Static ARP Inspection Table screen in Figure 4-5-8-2 appears.

Figure 4-5-8-2:

Static ARP Inspection Table Screen Page Screenshot

305

User’s Manual of MGSW-28240F Managed switch

The page includes the following fields:

Buttons

Object

• Delete

• Port

• VLAN ID

• MAC Address

• IP Address

Description

Check to delete the entry. It will be deleted during the next save.

The logical port for the settings.

The VLAN ID for the settings.

Allowed Source MAC address in ARP request packets.

Allowed Source IP address in ARP request packets.

: Click to add a new entry to the Static ARP Inspection table.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

4.5.8.3 Dynamic ARP Inspection Table

Entries in the Dynamic ARP Inspection Table are shown on this page. The Dynamic ARP Inspection Table contains up to 1024 entries, and is sorted first by port, then by VLAN ID, then by MAC address, and then by IP address. The Dynamic ARP

Inspection Table screen in Figure 5-8-3 appears.

Figure 5-8-3:

Dynamic ARP Inspection Table Screenshot

Navigating the ARP Inspection Table

Each page shows up to 99 entries from the Dynamic ARP Inspection table, default being 20, selected through the " entries per

Page

" input field. When first visited, the web page will show the first 20 entries from the beginning of the Dynamic ARP

Inspection Table.

The "

Start from port address

", "

VLAN

", "

MAC address

" and "

IP address

" input fields allow the user to select the starting point in the Dynamic ARP Inspection Table. Clicking the “

Refresh

” button will update the displayed table starting from that or the closest next Dynamic ARP Inspection Table match. In addition, the two input fields will - upon a “

Refresh

” button click - assume the value of the first displayed entry, allowing for continuous refresh with the same start address.

306

User’s Manual of MGSW-28240F Managed switch

The “

>>

” will use the last entry of the currently displayed as a basis for the next lookup. When the end is reached the text "No more entries" is shown in the displayed table. Use the “

|<<

” button to start over. The page includes the following fields:

Object

• Port

• VLAN ID

• MAC Address

• IP Address

Description

The port number for which the status applies. Click the port number to see the status for this particular port.

The VLAN ID of the entry.

The MAC address of the entry.

The IP address of the entry.

Buttons

Auto-refresh : Check this box to refresh the page automatically. Automatic refresh occurs every 3 seconds.

: Refreshes the displayed table starting from the "Start from MAC address" and "VLAN" input fields.

: Flushes all dynamic entries.

: Updates the table starting from the first entry in the MAC Table, i.e. the entry with the lowest VLAN ID and MAC address.

: Updates the table, starting with the entry after the last entry currently displayed.

307

User’s Manual of MGSW-28240F Managed switch

4.6 Maintenance

4.6.1 Web Firmware Upgrade

This page facilitates an update of the firmware controlling the switch. The Web Firmware Upgrade screen in Figure 4-6-1 appears.

Figure 4-6-1:

Web Firmware Upgrade Page Screenshot

To open

Firmware Upgrade

screen, perform the following:

1. Click

Maintenance

-> Web

Firmware Upgrade

.

2. The Firmware Upgrade screen is displayed as in Figure 4-6-1

3. Click the “ “button of the Main page; the system would pop up the file selection menu to choose firmware.

4. Select on the firmware and then click “ ”. The

Software Upload Progress

would show the file with upload status.

5. Once the software is loaded to the system successfully, the following screen appears. The system will load the new software after reboot.

Figure 4-6-1:

Software Successfully Loaded Notice Screen

DO NOT Power OFF

the Managed Switch until the update progress is complete.

308

User’s Manual of MGSW-28240F Managed switch

Do not quit the Firmware Upgrade page without pressing the “

OK

” button after the image is loaded. Or the system won’t apply the new firmware. User has to repeat the firmware upgrade processes.

4.6.2 Save Startup Config

This function allows to save the current configuration, thereby ensuring that the current active configuration can be used at the next reboot as the screen in Figure 4-6-2-1 appears. After saving the configuration, the screen in Figure 4-6-2-2 will appear.

Figure 4-6-2-1:

Configuration Save Page Screenshot

Figure 4-6-2-2:

Finish Saving Page Screenshot

4.6.3 Configuration Download

The switch stores its configuration in a number of text files in CLI format. The files are either virtual (RAM-based) or stored in flash on the switch.

There are three system files:

• running-config: A virtual file that represents the currently active configuration on the switch. This file is volatile.

• startup-config: The startup configuration for the switch, read at boot time.

• default-config: A read-only file with vendor-specific configuration. This file is read when the system is restored to default settings.

It is also possible to store up to two other files and apply them to running-config, thereby switching configuration.

Configuration Download page allows the download the running-config, startup-config and default-config on the switch. Please refer to the Figure 4-6-3 shown below.

309

User’s Manual of MGSW-28240F Managed switch

Figure 4-6-3:

Configuration Download Page Screenshot

4.6.4 Configuration Upload

Configuration Upload page allows the upload the running-config and startup-config on the switch. Please refer to the Figure

4-6-4 shown below.

Figure 4-6-4:

Configuration Upload Page Screenshot

If the destination is running-config, the file will be applied to the switch configuration. This can be done in two ways:

Replace mode: The current configuration is fully replaced with the configuration in the uploaded file.

Merge mode: The uploaded file is merged into

running-config .

If the file system is full (i.e. contains the three system files mentioned above plus two other files), it is not possible to create new files, but an existing file must be overwritten or another deleted first.

310

User’s Manual of MGSW-28240F Managed switch

4.6.5 Configure Activate

Thje Configure Activate page allows to activate the startup-config and default-config files present on the switch. Please refer to the Figure 4-6-5 shown below.

Figure 4-6-5:

Configuration Activate Page Screenshot

It is possible to activate any of the configuration files present on the switch, except for running-config which represents the currently active configuration.

Select the file to activate and click . This will initiate the process of completely replacing the existing configuration with that of the selected file.

4.6.6 Configure Delete

The Configure Delete page allows to delete the startup-config and default-config files which are stored in FLASH. If this is done and the switch is rebooted without a prior Save operation, this effectively resets the switch to default configuration. Please refer to the Figure 4-6-6 shown below.

Figure 4-6-6:

Configuration Delete Page Screenshot

311

User’s Manual of MGSW-28240F Managed switch

4.6.7 Image Select

This page provides information about the active and alternate (backup) firmware images in the device, and allows you to revert to the alternate image. The web page displays two tables with information about the active and alternate firmware images. The

Image Select screen in Figure 4-6-7 appears.

In case the active firmware image is the alternate image, only the "Active Image" table is shown. In this case, the Activate Alternate Image button is also disabled.

1. If the alternate image is active (due to a corruption of the primary image or by manual intervention), uploading a new firmware image to the device will automatically use the primary image slot and activate this.

2. The firmware version and date information may be empty for older firmware releases. This does not constitute an error.

Figure 4-6-7:

Software Image Selection Page Screenshot

The page includes the following fields:

Object

• Image

Description

The flash index name of the firmware image. The name of primary (preferred) image is image, the alternate image is named image.bk.

The version of the firmware image.

The date when the firmware was produced.

Buttons

• Version

• Date

: Click to use the alternate image. This button may be disabled depending on system state.

312

User’s Manual of MGSW-28240F Managed switch

4.6.8 Factory Default

You can reset the configuration of the Managed Switch on this page. Only the IP configuration is retained. The new configuration is available immediately, which means that no restart is necessary. The Factory Default screen in Figure 4-6-8 appears.

Figure 4-6-8:

Factory Default Page Screenshot

Buttons

: Click to reset the configuration to Factory Defaults.

: Click to return to the Port State page without resetting the configuration.

To reset the Managed Switch to the Factory default setting, you can also press the hardware reset button at the front panel about 10 seconds. After the device is rebooted, you can login the management Web interface within the same subnet of 192.168.0.xx.

4.6.9 System Reboot

The

Reboot page enables the device to be rebooted from a remote location. Once the Reboot button is pressed, user has to re-login the Web interface about 60 seconds later; the System Reboot screen in Figure 4-6-9 appears.

Figure 4-6-9:

System Reboot Page Screenshot

313

User’s Manual of MGSW-28240F Managed switch

Buttons

: Click to reboot the system.

: Click to return to the Port State page without rebooting the system.

4.6.10 Ping

You can also check the

SYS LED

on the front panel to identify whether the System is loaded completely or not. If the SYS LED is blinking, then it is in the firmware load stage; if the SYS LED light is on, you can use the Web browser to login the Managed Switch.

This page allows you to issue ICMP PING packets to troubleshoot IP connectivity issues.

After you press “

Start

”, 5 ICMP packets are transmitted, and the sequence number and roundtrip time are displayed upon reception of a reply. The page refreshes automatically until responses to all packets are received, or until a timeout occurs. The

ICMP Ping screen in Figure 4-6-10 appears.

The page includes the following fields:

Figure 4-6-10:

ICMP Ping Page Screenshot

Object

• IP Address

• Ping Length

Description

The destination IP Address.

The payload size of the ICMP packet. Values range from 2 bytes to 1452 bytes.

Be sure the target IP Address is within the same network subnet of the Managed Switch, or you had setup the correct gateway IP address.

Buttons

: Click to transmit ICMP packets.

: Click to re-start diagnostics with PING.

314

User’s Manual of MGSW-28240F Managed switch

4.6.11 IPv6 Ping

This page allows you to issue ICMPv6 PING packets to troubleshoot IPv6 connectivity issues.

After you press “

Start

”, 5 ICMPv6 packets are transmitted, and the sequence number and roundtrip time are displayed upon reception of a reply. The page refreshes automatically until responses to all packets are received, or until a timeout occurs. The

ICMPv6 Ping screen in Figure 4-6-11 appears.

The page includes the following fields:

Figure 4-6-11:

ICMPv6 Ping Page Screenshot

Description

The destination IP Address.

The payload size of the ICMP packet. Values range from 2 bytes to 1452 bytes.

Buttons

Object

• IP Address

• Ping Length

: Click to transmit ICMP packets.

: Click to re-start diagnostics with PING.

315

User’s Manual of MGSW-28240F Managed switch

4.6.12 Remote IP Ping

This page allows you to issue ICMP PING packets to troubleshoot IP connectivity issues on special port.

After you press “

Test

”, 5 ICMP packets are transmitted, and the sequence number and roundtrip time are displayed upon reception of a reply. The page refreshes automatically until responses to all packets are received, or until a timeout occurs. The

ICMP Ping screen in Figure 4-6-12 appears.

Figure 4-6-12:

Remote IP Ping Test Page Screenshot

The page includes the following fields:

Buttons

Object

• Port

• Remote IP Address

• Ping Size

• Result

Description

The logical port for the settings.

The destination IP Address.

The payload size of the ICMP packet. Values range from 8 bytes to 1400 bytes.

Display the ping result.

: Click to apply changes

: Click to undo any changes made locally and revert to previously saved values.

: Clears the IP Address and the result of ping value.

316

User’s Manual of MGSW-28240F Managed switch

4.6.13 Cable Diagnostics

This page is used for running the Cable Diagnostics.

Press to run the diagnostics. This will take approximately 5 seconds. If all ports are selected, this can take approximately 15 seconds. When completed, the page refreshes automatically, and you can view the cable diagnostics results in the cable status table. Note that Cable Diagnostics is only accurate for cables of length 7 - 140 meters.

10 and 100 Mbps ports will be linked down while running cable diagnostic. Therefore, running cable diagnostic on a 10 or 100

Mbps management port will cause the switch to stop responding until VeriPHY is complete. The VeriPHY Cable Diagnostics screen in Figure 4-6-13 appears.

Figure 4-6-13

VeriPHY Cable Diagnostics Page Screenshot

The page includes the following fields:

Object

• Port

• Description

Description

The port where you are requesting Cable Diagnostics.

Display per port description.

317

• Cable Status

Buttons

: Click to run the diagnostics.

User’s Manual of MGSW-28240F Managed switch

Port

:

Port number.

Pair

:

The status of the cable pair.

OK

- Correctly terminated pair

Open

- Open pair

Short

- Shorted pair

Short A

- Cross-pair short to pair A

Short B

- Cross-pair short to pair B

Short C

- Cross-pair short to pair C

Short D

- Cross-pair short to pair D

Cross A

- Abnormal cross-pair coupling with pair A

Cross B

- Abnormal cross-pair coupling with pair B

Cross C

- Abnormal cross-pair coupling with pair C

Cross D

- Abnormal cross-pair coupling with pair D

Length

:

The length (in meters) of the cable pair. The resolution is 3 meters

318

User’s Manual of MGSW-28240F Managed switch

5. SWITCH OPERATION

5.1 Address Table

The

Managed Switch

is implemented with an address table. This address table is composed of many entries. Each entry is used to store the address information of some nodes in the network, including MAC address, port no, etc. This information comes from the learning process of

Managed Switch

.

5.2 Learning

When one packet comes in from any port, the

Managed Switch

will record the source address, port no., and the other related information in address table. This information will be used to decide either forwarding or filtering for future packets.

5.3 Forwarding & Filtering

When one packet comes from some port of the

Managed Switch

, it will also check the destination address besides the source address learning. The

Managed Switch

will look up the address-table for the destination address. If not found, this packet will be forwarded to all the other ports except the port, which this packet comes in. And these ports will transmit this packet to the network it connected. If found, and the destination address is located at a different port from this packet comes in, the

Managed

Switch

will forward this packet to the port where this destination address is located according to the information from address table. But, if the destination address is located at the same port with this packet comes in, then this packet will be filtered, thereby increasing the network throughput and availability.

5.4 Store-and-Forward

Store-and-Forward is one type of packet-forwarding techniques. A Store-and-Forward

Managed Switch

stores the incoming frame in an internal buffer and do the complete error checking before transmission. Therefore, no error packets occur; it is the best choice when a network needs efficiency and stability.

The

Managed Switch

scans the destination address from the packet-header, searches the routing table provided for the incoming port and forwards the packet, only if required. The fast forwarding makes the switch attractive for connecting servers directly to the network, thereby increasing throughput and availability. However, the switch is most commonly used to segment existence hubs, which nearly always improves the overall performance. An Ethernet switching can be easily configured in any

Ethernet network environment to significantly boost bandwidth using the conventional cabling and adapters.

Due to the learning function of the

Managed Switch

, the source address and corresponding port number of each incoming and outgoing packet are stored in a routing table. This information is subsequently used to filter packets whose destination address is in the same segment as the source address. This confines network traffic to its respective domain and reduce the overall load on the network.

The

Managed Switch

performs

"Store and Fforward"

; therefore, no error packets occur. More reliably, it reduces the re-transmission rate. No packet loss will occur.

319

User’s Manual of MGSW-28240F Managed switch

5.5 Auto-Negotiation

The STP ports on the Switch have built-in

"Auto-negotiation"

. This technology automatically sets the best possible bandwidth when a connection is established with another network device (usually at Power On or Reset). This is done by detecting the modes and speeds both connected devices are capable of. Both 10BASE-T and 100BASE-TX devices can connect with the port in either half- or full-duplex mode. 1000BASE-T can be only connected in full-duplex mode.

320

User’s Manual of MGSW-28240F Managed switch

6. TROUBLESHOOTING

This chapter contains information to help you solve issues. If the Managed Switch is not functioning properly, make sure the Managed Switch was set up according to instructions in this manual.

The Link LED is not lit.

Solution:

Check the cable connection and remove duplex mode of the Managed Switch.

■ Some stations cannot talk to other stations located on the other port.

Solution:

Please check the VLAN settings, trunk settings, or port enabled/disabled status.

■ Performance is bad.

Solution:

Check the full duplex status of the Managed Switch. If the Managed Switch is set to full duplex and the partner is set to half duplex, then the performance will be poor. Please also check the in/out rate of the port.

Why the Switch doesn't connect to the network.

Solution:

1. Check the LNK/ACT LED on the switch.

2. Try another port on the Switch.

3. Make sure the cable is installed properly.

4. Make sure the cable is the right type.

5. Turn off the power. After a while, turn on power again.

■ 1000BASE-T port link LED is lit, but the traffic is irregular.

Solution:

Check that the attached device is not set to dedicate full duplex. Some devices use a physical or software switch to change duplex modes. Auto-negotiation may not recognize this type of full-duplex setting.

■ Switch does not power up.

Solution:

1. AC power cord is not inserted or faulty.

2. Check that the AC power cord is inserted correctly.

3. Replace the power cord if the cord is inserted correctly; check that the AC power source is working by connecting a different device in place of the switch.

4. If that device works, refer to the next step.

5. If that device does not work, check the AC power.

321

User’s Manual of MGSW-28240F Managed switch

APPENDIX A: Networking Connection

A.1 Switch's Data RJ45 Pin Assignments - 1000Mbps, 1000BASE-T

PIN NO

6

7

4

5

8

1

2

3

MDI

BI_DA+

BI_DA-

BI_DB+

BI_DC+

BI_DC-

BI_DB-

BI_DD+

BI_DD-

MDI-X

BI_DB+

BI_DB-

BI_DA+

BI_DD+

BI_DD-

BI_DA-

BI_DC+

BI_DC-

Implicit implementation of the crossover function within a twisted-pair cable, or at a wiring panel, while not expressly forbidden, is beyond the scope of this standard.

A.2 10/100Mbps, 10/100BASE-TX

When connecting your Switch to another Fast Ethernet switch, a bridge or a hub, a straight or crossover cable is necessary. Each port of the Switch supports auto-MDI/MDI-X detection. That means you can directly connect the Switch to any Ethernet devices without making a crossover cable. The following table and diagram show the standard RJ45 receptacle/ connector and their pin assignments:

PIN NO

RJ45 Connector pin assignment

MDI

Media Dependent Interface

MDI-X

Media Dependent Interface-Cross

1

Tx + (transmit) Rx + (receive)

2

3

Tx - (transmit)

Rx + (receive)

Rx - (receive)

Tx + (transmit)

4, 5

Not used

6

Rx - (receive)

Tx - (transmit)

7, 8

Not used

322

The standard cable, RJ45 pin assignment

6

User’s Manual of MGSW-28240F Managed switch

6 3 2 1

6

3 2 1

The standard RJ45 receptacle/connector

There are 8 wires on a standard UTP/STP cable and each wire is color-coded. The following shows the pin allocation and color of straight-through cable and crossover cable connection:

Straight Cable

1 2 3 4

1

Crossover Cable

1

1

2

2

2

3

3

4

3 4

4

5

5

5

5

6

6

6

6

7

7

7

8

8

8

7 8

SIDE 1

SIDE 2

SIDE 1

SIDE 2

SIDE 1

1 = White / Orange

2 = Orange

3 = White / Green

4 = Blue

5 = White / Blue

6 = Green

7 = White / Brown

8 = Brown

SIDE 1

1 = White / Orange

2 = Orange

3 = White / Green

4 = Blue

5 = White / Blue

6 = Green

7 = White / Brown

8 = Brown

Figure A-1:

Straight-through and Crossover Cable

SIDE 2

1 = White / Orange

2 = Orange

3 = White / Green

4 = Blue

5 = White / Blue

6 = Green

7 = White / Brown

8 = Brown

SIDE 2

1 = White / Green

2 = Green

3 = White / Orange

4 = Blue

5 = White / Blue

6 = Orange

7 = White / Brown

8 = Brown

Please make sure your connected cables are with the same pin assignment and color as the above picture before deploying the cables into your network.

323

User’s Manual of MGSW-28240F Managed switch

APPENDIX B : GLOSSARY

A

ACE

ACE is an acronym for

A ccess

C ontrol

E ntry. It describes access permission associated with a particular ACE ID.

There are three ACE frame types (Ethernet Type, ARP, and IPv4) and two ACE actions (permit and deny). The ACE also contains many detailed, different parameter options that are available for individual application.

ACL

ACL is an acronym for

A ccess

C ontrol

L ist. It is the list table of ACEs, containing access control entries that specify individual users or groups permitted or denied to specific traffic objects, such as a process or a program.

Each accessible traffic object contains an identifier to its ACL. The privileges determine whether there are specific traffic object access rights.

ACL implementations can be quite complex, for example, when the ACEs are prioritized for the various situation. In networking, the ACL refers to a list of service ports or network services that are available on a host or server, each with a list of hosts or servers permitted or denied to use the service. ACL can generally be configured to control inbound traffic, and in this context, they are similar to firewalls.

There are 3 web pages associated with the manual ACL configuration:

ACL|Access Control List

: The web page shows the ACEs in a prioritized way, highest (top) to lowest (bottom).

Default the table is empty. An ingress frame will only get a hit on one ACE even though there are more matching ACEs.

The first matching ACE will take action (permit/deny) on that frame and a counter associated with that ACE is incremented. An ACE can be associated with a policy, 1 ingress port, or any ingress port (the whole switch). If an ACE

Policy is created then that policy can be associated with a group of ports under the "Ports" web page. There are number of parameters that can be configured with an ACE. Read the web page help text to get further information for each of them. The maximum number of ACEs is 64.

ACL|Ports

: The ACL Port configuration is used to assign a Policy ID to an ingress port. This is useful to group ports to obey the same traffic rules. Traffic Policy is created under the "Access Control List". You can you also set up specific traffic properties (Action / Rate Limiter / Port copy, etc) for each ingress port. They will though only apply if the frame gets past the ACE matching without getting matched. In that case a counter associated with that port is incremented.

See the web page help text for each specific port property.

324

User’s Manual of MGSW-28240F Managed switch

ACL|Rate Limiters

: On this page, you can configure the rate limiters. There can be 15 different rate limiters, each ranging from 1 to 1024K packets per second. Under "Ports" and "Access Control List", you can assign a Rate Limiter

ID to the ACE(s) or ingress port(s).

AES

AES is an acronym for

A dvanced

E ncryption

S tandard. The encryption key protocol is applied in 802.1x standard to improve WLAN security. It is an encryption standard by the U.S. government, which will replace DES and 3DES. AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits.

AMS

AMS is an acronym for

A uto

M edia

S elect. AMS is used for dual media ports (ports supporting both copper (cu) and fiber (SFP) cables. AMS automatically determines if an SFP or a CU cable is inserted and switches to the corresponding media. If both SFP and cu cables are inserted, the port will select the prefered media.

APS

APS is an acronym for

A utomatic

P rotection

S witching. This protocol is used to secure switching that is done bidirectional in both ends of a protection group, as defined in G.8031.

Aggregation

Using multiple ports in parallel to increase the link speed beyond the limits of a port and to increase the redundancy for higher availability.

(Also Port Aggregation, Link Aggregation ).

ARP

ARP is an acronym for

A ddress

R esolution

P rotocol. It is a protocol that used to convert an IP address into a physical address, such as an Ethernet address. ARP allows a host to communicate with other hosts when only the Internet address of its neighbors is known. Before using IP, the host sends a broadcast ARP request containing the Internet address of the desired destination system.

ARP Inspection

ARP Inspection is a secure feature. Several types of attacks can be launched against a host or devices connected to

Layer 2 networks by "poisoning" the ARP caches. This feature is used to block such attacks. Only valid ARP requests and responses can go through the switch device.

325

User’s Manual of MGSW-28240F Managed switch

Auto-Negotiation

Auto-negotiation is the process where two different devices establish the mode of operation and the speed settings that can be shared by those devices for a link.

C

CC

CC is an acronym for

C ontinuity

C heck. It is a MEP functionality that is able to detect loss of continuity in a network by transmitting CCM frames to a peer MEP.

CCM

CCM is an acronym for

C ontinuity

C heck

M essage. It is a OAM frame transmitted from a MEP to its peer MEP and used to implement CC functionality.

CDP

CDP is an acronym for

C isco

D iscovery

P rotocol.

D

DEI

DEI is an acronym for

D rop

E ligible

I ndicator. It is a 1-bit field in the VLAN tag.

DES

DES is an acronym for

D ata

E ncryption

S tandard. It provides a complete description of a mathematical algorithm for encrypting (enciphering) and decrypting (deciphering) binary coded information.

Encrypting data converts it to an unintelligible form called cipher. Decrypting cipher converts the data back to its original form called plaintext. The algorithm described in this standard specifies both enciphering and deciphering operations which are based on a binary number called a key.

DHCP

DHCP is an acronym for

D ynamic

H ost

C onfiguration

P rotocol. It is a protocol used for assigning dynamic IP addresses to devices on a network.

DHCP used by networked computers (clients) to obtain IP addresses and other parameters such as the default gateway, subnet mask, and IP addresses of DNS servers from a DHCP server.

326

User’s Manual of MGSW-28240F Managed switch

The DHCP server ensures that all IP addresses are unique, for example, no IP address is assigned to a second client while the first client's assignment is valid (its lease has not expired). Therefore, IP address pool management is done by the server and not by a human network administrator.

Dynamic addressing simplifies network administration because the software keeps track of IP addresses rather than requiring an administrator to manage the task. This means that a new computer can be added to a network without the hassle of manually assigning it a unique IP address.

DHCP Relay

DHCP Relay is used to forward and to transfer DHCP messages between the clients and the server when they are not on the same subnet domain.

The DHCP option 82 enables a DHCP relay agent to insert specific information into a DHCP request packets when forwarding client DHCP packets to a DHCP server and remove the specific information from a DHCP reply packets when forwarding server DHCP packets to a DHCP client. The DHCP server can use this information to implement IP address or other assignment policies. Specifically the option works by setting two sub-options: Circuit ID (option 1) and

Remote ID (option2). The Circuit ID sub-option is supposed to include information specific to which circuit the request came in on. The Remote ID sub-option was designed to carry information relating to the remote host end of the circuit.

The definition of Circuit ID in the switch is 4 bytes in length and the format is "vlan_id" "module_id" "port_no". The parameter of "vlan_id" is the first two bytes represent the VLAN ID. The parameter of "module_id" is the third byte for the module ID. The parameter of "port_no" is the fourth byte and it means the port number.

The Remote ID is 6 bytes in length, and the value is equal the DHCP relay agents MAC address.

DHCP Snooping

DHCP Snooping is used to block intruder on the untrusted ports of the switch device when it tries to intervene by injecting a bogus DHCP reply packet to a legitimate conversation between the DHCP client and server.

DNS

DNS is an acronym for

D omain

N ame

S ystem. It stores and associates many types of information with domain names.

Most importantly, DNS translates human-friendly domain names and computer hostnames into computer-friendly IP addresses. For example, the domain name www.example.com might translate to 192.168.0.1.

DoS

DoS is an acronym for

D enial of

S ervice. In a denial-of-service (DoS) attack, an attacker attempts to prevent legitimate users from accessing information or services. By targeting at network sites or network connection, an attacker may be able to prevent network users from accessing email, web sites, online accounts (banking, etc.), or other services that rely on the affected computer.

327

User’s Manual of MGSW-28240F Managed switch otted Decimal Notation

Dotted Decimal Notation refers to a method of writing IP addresses using decimal numbers and dots as separators between octets.

An IPv4 dotted decimal address has the form x.y.z.w, where x, y, z, and w are decimal numbers between 0 and 255.

DSCP

DSCP is an acronym for

D ifferentiated

S ervices

C ode

P oint. It is a field in the header of IP packets for packet classification purposes.

E

EEE

EEE is an abbreviation for Energy Efficient Ethernet defined in IEEE 802.3az.

EPS

EPS is an abbreviation for Ethernet Protection Switching defined in ITU/T G.8031.

Ethernet Type

Ethernet Type, or EtherType, is a field in the Ethernet MAC header, defined by the Ethernet networking standard. It is used to indicate which protocol is being transported in an Ethernet frame.

F

FTP

FTP is an acronym for

F ile

T ransfer

P rotocol. It is a transfer protocol that uses the Transmission Control Protocol (TCP) and provides file writing and reading. It also provides directory service and security features.

Fast Leave

IGMP snooping Fast Leave processing allows the switch to remove an interface from the forwarding-table entry without first sending out group specific queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Fast-leave processing ensures optimal bandwidth management for all hosts on a switched network, even when multiple multicast groups are in use simultaneously.

H

HTTP

HTTP is an acronym for

H ypertext

T ransfer

P rotocol. It is a protocol that used to transfer or convey information on the

World Wide Web (WWW).

HTTP defines how messages are formatted and transmitted, and what actions Web servers and browsers should take in response to various commands. For example, when you enter a URL in your browser, this actually sends an HTTP

328

User’s Manual of MGSW-28240F Managed switch command to the Web server directing it to fetch and transmit the requested web page. The other main standard that controls how the World Wide Web works is HTML, which covers how web pages are formatted and displayed.

Any Web server machine contains, in addition to the web page files it can serve, an HTTP daemon, a program that is designed to wait for HTTP requests and handle them when they arrive. The Web browser is an HTTP client, sending requests to server machines. An HTTP client initiates a request by establishing a Transmission Control Protocol (TCP) connection to a particular port on a remote host (port 80 by default). An HTTP server listening on that port waits for the client to send a request message.

HTTPS

HTTPS is an acronym for

H ypertext

T ransfer

P rotocol over

S ecure Socket Layer. It is used to indicate a secure HTTP connection.

HTTPS provide authentication and encrypted communication and is widely used on the World Wide Web for security-sensitive communication such as payment transactions and corporate logons.

HTTPS is really just the use of Netscape's Secure Socket Layer (SSL) as a sublayer under its regular HTTP application layering. (HTTPS uses port 443 instead of HTTP port 80 in its interactions with the lower layer, TCP/IP.)

SSL uses a 40-bit key size for the RC4 stream encryption algorithm, which is considered an adequate degree of encryption for commercial exchange.

I

ICMP

ICMP is an acronym for

I nternet

C ontrol

M essage

P rotocol. It is a protocol that generated the error response, diagnostic or routing purposes. ICMP messages generally contain information about routing difficulties or simple exchanges such as time-stamp or echo transactions. For example, the PING command uses ICMP to test an Internet connection.

IEEE 802.1X

IEEE 802.1X is an IEEE standard for port-based Network Access Control. It provides authentication to devices attached to a LAN port, establishing a point-to-point connection or preventing access from that port if authentication fails. With 802.1X, access to all switch ports can be centrally controlled from a server, which means that authorized users can use the same credentials for authentication from any point within the network.

IGMP

IGMP is an acronym for

I nternet

G roup

M anagement

P rotocol. It is a communications protocol used to manage the membership of Internet Protocol multicast groups. IGMP is used by IP hosts and adjacent multicast routers to establish multicast group memberships. It is an integral part of the IP multicast specification, like ICMP for unicast connections.

IGMP can be used for online video and gaming, and allows more efficient use of resources when supporting these uses.

329

User’s Manual of MGSW-28240F Managed switch

IGMP Querier

A router sends IGMP Query messages onto a particular link. This router is called the Querier.

IMAP

IMAP is an acronym for

I nternet

M essage

A ccess

P rotocol. It is a protocol for email clients to retrieve email messages from a mail server.

IMAP is the protocol that IMAP clients use to communicate with the servers, and SMTP is the protocol used to transport mail to an IMAP server.

The current version of the Internet Message Access Protocol is IMAP4. It is similar to Post Office Protocol version 3

(POP3), but offers additional and more complex features. For example, the IMAP4 protocol leaves your email messages on the server rather than downloading them to your computer. If you wish to remove your messages from the server, you must use your mail client to generate local folders, copy messages to your local hard drive, and then delete and expunge the messages from the server.

IP

IP is an acronym for

I nternet

P rotocol. It is a protocol used for communicating data across a internet network.

IP is a "best effort" system, which means that no packet of information sent over it is assured to reach its destination in the same condition it was sent. Each device connected to a Local Area Network (LAN) or Wide Area Network (WAN) is given an Internet Protocol address, and this IP address is used to identify the device uniquely among all other devices connected to the extended network.

The current version of the Internet protocol is IPv4, which has 32-bits Internet Protocol addresses allowing for in excess of four billion unique addresses. This number is reduced drastically by the practice of webmasters taking addresses in large blocks, the bulk of which remain unused. There is a rather substantial movement to adopt a new version of the Internet Protocol, IPv6, which would have 128-bits Internet Protocol addresses. This number can be represented roughly by a three with thirty-nine zeroes after it. However, IPv4 is still the protocol of choice for most of the Internet.

IPMC

IPMC is an acronym for

IP M ulti

C ast.

IP Source Guard

IP Source Guard is a secure feature used to restrict IP traffic on DHCP snooping untrusted ports by filtering traffic based on the DHCP Snooping Table or manually configured IP Source Bindings. It helps prevent IP spoofing attacks when a host tries to spoof and use the IP address of another host.

330

User’s Manual of MGSW-28240F Managed switch

L

LACP

LACP is an IEEE 802.3ad standard protocol. The

L ink

A ggregation

C ontrol

P rotocol allows bundling several physical ports together to form a single logical port.

LLDP

LLDP is an IEEE 802.1ab standard protocol.

The

L ink

L ayer

D iscovery

P rotocol(LLDP) specified in this standard allows stations attached to an IEEE 802 LAN to advertise, to other stations attached to the same IEEE 802 LAN, the major capabilities provided by the system incorporating that station, the management address or addresses of the entity or entities that provide management of those capabilities, and the identification of the stations point of attachment to the IEEE 802 LAN required by those management entities. The information distributed via this protocol is stored by its recipients in a standard Management

Information Base (MIB), making it possible for the information to be accessed by a Network Management System

(NMS) using a management protocol such as the Simple Network Management Protocol (SNMP).

LLDP-MED

LLDP-MED is an extension of IEEE 802.1ab and is defined by the telecommunication industry association (TIA-1057).

LOC

LOC is an acronym for

L oss

O f

C onnectivity and is detected by a MEP and is indicating lost connectivity in the network.

Can be used as a switch criteria by EPS

M

MAC Table

Switching of frames is based upon the DMAC address contained in the frame. The switch builds up a table that maps

MAC addresses to switch ports for knowing which ports the frames should go to (based upon the DMAC address in the frame). This table contains both static and dynamic entries. The static entries are configured by the network administrator if the administrator wants to do a fixed mapping between the DMAC address and switch ports.

The frames also contain a MAC address (SMAC address), which shows the MAC address of the equipment sending the frame. The SMAC address is used by the switch to automatically update the MAC table with these dynamic MAC addresses. Dynamic entries are removed from the MAC table if no frame with the corresponding SMAC address have been seen after a configurable age time.

MEP

MEP is an acronym for

M aintenance

E ntity

E ndpoint and is an endpoint in a Maintenance Entity Group (ITU-T Y.1731).

MD5

331

User’s Manual of MGSW-28240F Managed switch

MD5 is an acronym for

M essage-

D igest algorithm

5

. MD5 is a message digest algorithm, used cryptographic hash function with a 128-bit hash value. It was designed by Ron Rivest in 1991. MD5 is officially defined in RFC 1321 - The

MD5 Message-Digest Algorithm.

Mirroring

For debugging network problems or monitoring network traffic, the switch system can be configured to mirror frames from multiple ports to a mirror port. (In this context, mirroring a frame is the same as copying the frame.)

Both incoming (source) and outgoing (destination) frames can be mirrored to the mirror port.

MLD

MLD is an acronym for

M ulticast

L istener

D iscovery for IPv6. MLD is used by IPv6 routers to discover multicast listeners on a directly attached link, much as IGMP is used in IPv4. The protocol is embedded in ICMPv6 instead of using a separate protocol.

MVR

Multicast VLAN Registration (MVR) is a protocol for Layer 2 (IP)-networks that enables multicast-traffic from a source

VLAN to be shared with subscriber-VLANs. The main reason for using MVR is to save bandwidth by preventing duplicate multicast streams being sent in the core network, instead the stream(s) are received on the MVR-VLAN and forwarded to the VLANs where hosts have requested it/them (Wikipedia).

N

NAS

NAS is an acronym for Network Access Server. The NAS is meant to act as a gateway to guard access to a protected source. A client connects to the NAS, and the NAS connects to another resource asking whether the client's supplied credentials are valid. Based on the answer, the NAS then allows or disallows access to the protected resource. An example of a NAS implementation is IEEE 802.1X.

NetBIOS

NetBIOS is an acronym for

Net work

B asic

I nput/

O utput

S ystem. It is a program that allows applications on separate computers to communicate within a Local Area Network (LAN), and it is not supported on a Wide Area Network (WAN).

The NetBIOS giving each computer in the network both a NetBIOS name and an IP address corresponding to a different host name, provides the session and transport services described in the Open Systems Interconnection (OSI) model.

NFS

NFS is an acronym for

N etwork

F ile

S ystem. It allows hosts to mount partitions on a remote system and use them as though they are local file systems.

332

User’s Manual of MGSW-28240F Managed switch

NFS allows the system administrator to store resources in a central location on the network, providing authorized users continuous access to them, which means NFS supports sharing of files, printers, and other resources as persistent storage over a computer network.

NTP

NTP is an acronym for

N etwork

T ime

P rotocol, a network protocol for synchronizing the clocks of computer systems.

NTP uses UDP (datagrams) as transport layer.

O

OAM

OAM is an acronym for

O peration

A dministration and

M aintenance. It is a protocol described in ITU-T Y.1731 used to implement carrier Ethernet functionality. MEP functionality like CC and RDI is based on this.

Optional TLVs.

An LLDP frame contains multiple TLVs. For some TLVs it is configurable if the switch includes the TLV in the LLDP frame. These TLVs are known as optional TLVs. If an optional TLV is disabled the corresponding information is not included in the LLDP frame.

OUI

OUI is the organizationally unique identifier. An OUI address is a globally unique identifier assigned to a vendor by

IEEE. You can determine which vendor a device belongs to according to the OUI address which forms the first 24 bits of an MAC address.

P

PCP

PCP is an acronym for Priority Code Point. It is a 3-bit field storing the priority level for the 802.1Q frame. It is also known as User Priority.

PD

PD is an acronym for

P owered

D evice. In a PoE> system the power is delivered from a PSE (power sourcing equipment) to a remote device. The remote device is called a PD.

333

User’s Manual of MGSW-28240F Managed switch

PHY

PHY is an abbreviation for Physical Interface Transceiver and is the device that implement the Ethernet physical layer

(IEEE-802.3).

PING

Ping is a program that sends a series of packets over a network or the Internet to a specific computer in order to generate a response from that computer. The other computer responds with an acknowledgment that it received the packets. Ping was created to verify whether a specific computer on a network or the Internet exists and is connected.

Ping uses Internet Control Message Protocol (ICMP) packets. The Ping Request is the packet from the origin computer, and the Ping Reply is the packet response from the target.

Policer

A policer can limit the bandwidth of received frames. It is located in front of the ingress queue.

POP3

POP3 is an acronym for

P ost

O ffice

P rotocol version 3. It is a protocol for email clients to retrieve email messages from a mail server.

POP3 is designed to delete mail on the server as soon as the user has downloaded it. However, some implementations allow users or an administrator to specify that mail be saved for some period of time. POP can be thought of as a "store-and-forward" service.

An alternative protocol is Internet Message Access Protocol (IMAP). IMAP provides the user with more capabilities for retaining e-mail on the server and for organizing it in folders on the server. IMAP can be thought of as a remote file server.

POP and IMAP deal with the receiving of e-mail and are not to be confused with the Simple Mail Transfer Protocol

(SMTP). You send e-mail with SMTP, and a mail handler receives it on your recipient's behalf. Then the mail is read using POP or IMAP. IMAP4 and POP3 are the two most prevalent Internet standard protocols for e-mail retrieval.

Virtually all modern e-mail clients and servers support both.

PPPoE

PPPoE is an acronym for Point-to-Point Protocol over Ethernet. It is a network protocol for encapsulating Point-to-Point

Protocol (PPP) frames inside Ethernet frames. It is used mainly with ADSL services where individual users connect to the ADSL transceiver (modem) over Ethernet and in plain Metro Ethernet networks (Wikipedia).

Private VLAN

In a private VLAN, communication between ports in that private VLAN is not permitted. A VLAN can be configured as a private VLAN.

334

User’s Manual of MGSW-28240F Managed switch

PTP

PTP is an acronym for Precision Time Protocol, a network protocol for synchronizing the clocks of computer systems.

Q

QCE

QCE is an acronym for

Q oS

C ontrol

E ntry. It describes QoS class associated with a particular QCE ID.

There are six QCE frame types: Ethernet Type, VLAN, UDP/TCP Port, DSCP, TOS, and Tag Priority. Frames can be classified by one of 4 different QoS classes: "Low", "Normal", "Medium", and "High" for individual application.

QCL

QCL is an acronym for

Q oS

C ontrol

L ist. It is the list table of QCEs, containing QoS control entries that classify to a specific QoS class on specific traffic objects.

Each accessible traffic object contains an identifier to its QCL. The privileges determine specific traffic object to specific

QoS class.

QL

QoS

QL In SyncE this is the Quality Level of a given clock source. This is received on a port in a SSM indicating the quality of the clock received in the port.

QoS is an acronym for

Q uality o f

S ervice. It is a method to guarantee a bandwidth relationship between individual applications or protocols.

A communications network transports a multitude of applications and data, including high-quality video and delay-sensitive data such as real-time voice. Networks must provide secure, predictable, measurable, and sometimes guaranteed services.

Achieving the required QoS becomes the secret to a successful end-to-end business solution. Therefore, QoS is the set of techniques to manage network resources.

QoS class

Every incoming frame is classified to a QoS class, which is used throughout the device for providing queuing, scheduling and congestion control guarantees to the frame according to what was configured for that specific QoS class. There is a one to one mapping between QoS class, queue and priority. A QoS class of 0 (zero) has the lowest priority.

335

User’s Manual of MGSW-28240F Managed switch

R

RARP

RARP is an acronym for

R everse

A ddress

R esolution

P rotocol. It is a protocol that is used to obtain an IP address for a given hardware address, such as an Ethernet address. RARP is the complement of ARP.

RADIUS

RADIUS is an acronym for

Re mote

A uthentication

D ial In

U ser

S ervice. It is a networking protocol that provides centralized access, authorization and accounting management for people or computers to connect and use a network service.

RDI

RDI is an acronym for

R emote

D efect

I ndication. It is an OAM functionality that is used by a MEP to indicate defect detected to the remote peer MEP

Router Port

A router port is a port on the Ethernet switch that leads switch towards the Layer 3 multicast device.

RSTP

S

SAMBA

In 1998, the IEEE with document 802.1w introduced an evolution of STP: the

R apid

S panning

T ree

P rotocol, which provides for faster spanning tree convergence after a topology change. Standard IEEE 802.1D-2004 now incorporates

RSTP and obsoletes STP, while at the same time being backwards-compatible with STP.

Samba is a program running under UNIX-like operating systems that provides seamless integration between UNIX and

Microsoft Windows machines. Samba acts as file and print servers for Microsoft Windows, IBM OS/2, and other SMB client machines. Samba uses the Server Message Block (SMB) protocol and Common Internet File System (CIFS), which is the underlying protocol used in Microsoft Windows networking.

Samba can be installed on a variety of operating system platforms, including Linux, most common Unix platforms,

OpenVMS, and IBM OS/2.

Samba can also register itself with the master browser on the network so that it would appear in the listing of hosts in

Microsoft Windows "Neighborhood Network".

SHA

SHA is an acronym for

S ecure

H ash

A lgorithm. It designed by the National Security Agency (NSA) and published by the NIST as a U.S. Federal Information Processing Standard. Hash algorithms compute a fixed-length digital representation (known as a message digest) of an input data sequence (the message) of any length.

336

User’s Manual of MGSW-28240F Managed switch

Shaper

A shaper can limit the bandwidth of transmitted frames. It is located after the ingress queues.

SMTP

SMTP is an acronym for

S imple

M ail

T ransfer

P rotocol. It is a text-based protocol that uses the Transmission Control

Protocol (TCP) and provides a mail service modeled on the FTP file transfer service. SMTP transfers mail messages between systems and notifications regarding incoming mail.

SNAP

The SubNetwork Access Protocol (SNAP) is a mechanism for multiplexing, on networks using IEEE 802.2 LLC, more protocols than can be distinguished by the 8-bit 802.2 Service Access Point (SAP) fields. SNAP supports identifying protocols by Ethernet type field values; it also supports vendor-private protocol identifier.

SNMP

SNMP is an acronym for

S imple

N etwork

M anagement

P rotocol. It is part of the Transmission Control Protocol/Internet

Protocol (TCP/IP) protocol for network management. SNMP allow diverse network objects to participate in a network management architecture. It enables network management systems to learn network problems by receiving traps or change notices from network devices implementing SNMP.

SNTP

SNTP is an acronym for

S imple

N etwork

T ime

P rotocol, a network protocol for synchronizing the clocks of computer systems. SNTP uses UDP (datagrams) as transport layer.

SPROUT

S tack

P rotocol using

ROU ting

T echnology. An advanced protocol for almost instantaneous discovery of topology changes within a stack as well as election of a master switch. SPROUT also calculates parameters for setting up each switch to perform shortest path forwarding within the stack.

SSID

S ervice

S et

Id entifier is a name used to identify the particular 802.11 wireless LANs to which a user wants to attach. A client device will receive broadcast messages from all access points within range advertising their SSIDs, and can choose one to connect to based on pre-configuration, or by displaying a list of SSIDs in range and asking the user to select one (wikipedia).

SSH

SSH is an acronym for

S ecure

SH ell. It is a network protocol that allows data to be exchanged using a secure channel between two networked devices. The encryption used by SSH provides confidentiality and integrity of data over an insecure network. The goal of SSH was to replace the earlier rlogin, TELNET and rsh protocols, which did not provide strong authentication or guarantee confidentiality (Wikipedia).

SSM

SSM In SyncE this is an abbreviation for Synchronization Status Message and is containing a QL indication.

337

User’s Manual of MGSW-28240F Managed switch

STP

S panning

T ree

P rotocol is an OSI layer-2 protocol which ensures a loop free topology for any bridged LAN. The original STP protocol is now obsolete by RSTP.

SyncE

SyncE Is an abbreviation for Synchronous Ethernet. This functionality is used to make a network 'clock frequency' synchronized. Not to be confused with real time clock synchronized (IEEE 1588).

T

TACACS+

TACACS+ is an acronym for

T erminal

A ccess

C ontroller

A ccess

C ontrol

S ystem

P lus. It is a networking protocol which provides access control for routers, network access servers and other networked computing devices via one or more centralized servers. TACACS+ provides separate authentication, authorization and accounting services.

Tag Priority

Tag Priority is a 3-bit field storing the priority level for the 802.1Q frame.

TCP

TCP is an acronym for

T ransmission

C ontrol

P rotocol. It is a communications protocol that uses the Internet Protocol

(IP) to exchange the messages between computers.

The TCP protocol guarantees reliable and in-order delivery of data from sender to receiver and distinguishes data for multiple connections by concurrent applications (for example, Web server and e-mail server) running on the same host.

The applications on networked hosts can use TCP to create connections to one another. It is known as a connection-oriented protocol, which means that a connection is established and maintained until such time as the message or messages to be exchanged by the application programs at each end have been exchanged. TCP is responsible for ensuring that a message is divided into the packets that IP manages and for reassembling the packets back into the complete message at the other end.

Common network applications that use TCP include the World Wide Web (WWW), e-mail, and File Transfer Protocol

(FTP).

TELNET

TELNET is an acronym for

Tel etype

Net work. It is a terminal emulation protocol that uses the Transmission Control

Protocol (TCP) and provides a virtual connection between TELNET server and TELNET client.

TELNET enables the client to control the server and communicate with other servers on the network. To start a Telnet session, the client user must log in to a server by entering a valid username and password. Then, the client user can enter commands through the Telnet program just as if they were entering commands directly on the server console.

338

User’s Manual of MGSW-28240F Managed switch

TFTP

TFTP is an acronym for

T rivial

F ile

T ransfer

P rotocol. It is transfer protocol that uses the User Datagram Protocol (UDP) and provides file writing and reading, but it does not provides directory service and security features.

Toss

Toss is an acronym for

T ype o f

S ervice. It is implemented as the IPv4 Toss priority control. It is fully decoded to determine the priority from the 6-bit Toss field in the IP header. The most significant 6 bits of the Toss field are fully decoded into 64 possibilities, and the singular code that results is compared against the corresponding bit in the IPv4

ToS priority control bit (0~63).

TLV

TLV is an acronym for

T ype

L ength

V alue. A LLDP frame can contain multiple pieces of information. Each of these pieces of information is known as TLV.

TKIP

TKIP is an acronym for

T emporal

K ey

I ntegrity

P rotocol. It used in WPA to replace WEP with a new encryption algorithm. TKIP comprises the same encryption engine and RC4 algorithm defined for WEP. The key used for encryption in TKIP is 128 bits and changes the key used for each packet.

U

UDP

UDP is an acronym for

U ser

D atagram

P rotocol. It is a communications protocol that uses the Internet Protocol (IP) to exchange the messages between computers.

UDP is an alternative to the Transmission Control Protocol (TCP) that uses the Internet Protocol (IP). Unlike TCP, UDP does not provide the service of dividing a message into packet datagrams, and UDP doesn't provide reassembling and sequencing of the packets. This means that the application program that uses UDP must be able to make sure that the entire message has arrived and is in the right order. Network applications that want to save processing time because they have very small data units to exchange may prefer UDP to TCP.

UDP provides two services not provided by the IP layer. It provides port numbers to help distinguish different user requests and, optionally, a checksum capability to verify that the data arrived intact.

Common network applications that use UDP include the Domain Name System (DNS), streaming media applications such as IPTV, Voice over IP (VoIP), and Trivial File Transfer Protocol (TFTP).

UPnP

UPnP is an acronym for

U niversal

P lug and

P lay. The goals of UPnP are to allow devices to connect seamlessly and to simplify the implementation of networks in the home (data sharing, communications, and entertainment) and in corporate environments for simplified installation of computer components

339

User’s Manual of MGSW-28240F Managed switch

User Priority

User Priority is a 3-bit field storing the priority level for the 802.1Q frame.

V

VLAN

A method to restrict communication between switch ports. VLANs can be used for the following applications:

VLAN unaware switching:

This is the default configuration. All ports are VLAN unaware with Port VLAN ID 1 and members of VLAN 1. This means that MAC addresses are learned in VLAN 1, and the switch does not remove or insert VLAN tags.

VLAN aware switching:

This is based on the IEEE 802.1Q standard. All ports are VLAN aware. Ports connected to

VLAN aware switches are members of multiple VLANs and transmit tagged frames. Other ports are members of one

VLAN, set up with this Port VLAN ID, and transmit untagged frames.

Provider switching:

This is also known as Q-in-Q switching. Ports connected to subscribers are VLAN unaware, members of one VLAN, and set up with this unique Port VLAN ID. Ports connected to the service provider are VLAN aware, members of multiple VLANs, and set up to tag all frames. Untagged frames received on a subscriber port are forwarded to the provider port with a single VLAN tag. Tagged frames received on a subscriber port are forwarded to the provider port with a double VLAN tag.

VLAN ID

VLAN ID is a 12-bit field specifying the VLAN to which the frame belongs.

Voice VLAN

Voice VLAN is VLAN configured specially for voice traffic. By adding the ports with voice devices attached to voice

VLAN, we can perform QoS-related configuration for voice data, ensuring the transmission priority of voice traffic and voice quality.

W

WEP

WEP is an acronym for

W ired

E quivalent

P rivacy. WEP is a deprecated algorithm to secure IEEE 802.11 wireless networks. Wireless networks broadcast messages using radio, so are more susceptible to eavesdropping than wired networks. When introduced in 1999, WEP was intended to provide confidentiality comparable to that of a traditional wired network (Wikipedia).

Wi-Fi

Wi-Fi is an acronym for

Wi reless

Fi delity. It is meant to be used generically when referring of any type of 802.11 network, whether 802.11b, 802.11a, dual-band, etc. The term is promulgated by the Wi-Fi Alliance.

340

User’s Manual of MGSW-28240F Managed switch

WPA

WPA is an acronym for

W i-Fi

P rotected

A ccess. It was created in response to several serious weaknesses researchers had found in the previous system , Wired Equivalent Privacy (WEP). WPA implements the majority of the IEEE 802.11i standard, and was intended as an intermediate measure to take the place of WEP while 802.11i was prepared. WPA is specifically designed to also work with pre-WPA wireless network interface cards (through firmware upgrades), but not necessarily with first generation wireless access points. WPA2 implements the full standard, but will not work with some older network cards (Wikipedia).

WPA-PSK

WPA-PSK is an acronym for

W i-Fi

P rotected

A ccess -

P re

S hared

K ey. WPA was designed to enhance the security of wireless networks. There are two flavors of WPA: enterprise and personal. Enterprise is meant for use with an IEEE

802.1X authentication server, which distributes different keys to each user. Personal WPA utilizes less scalable

'pre-shared key' (PSK) mode, where every allowed computer is given the same passphrase. In PSK mode, security depends on the strength and secrecy of the passphrase. The design of WPA is based on a Draft 3 of the IEEE 802.11i standard (Wikipedia)

WPA-Radius

WPA-Radius is an acronym for

W i-Fi

P rotected

A ccess - Radius (802.1X authentication server). WPA was designed to enhance the security of wireless networks. There are two flavors of WPA: enterprise and personal. Enterprise is meant for use with an IEEE 802.1X authentication server, which distributes different keys to each user. Personal WPA utilizes less scalable 'pre-shared key' (PSK) mode, where every allowed computer is given the same passphrase. In PSK mode, security depends on the strength and secrecy of the passphrase. The design of WPA is based on a Draft 3 of the IEEE 802.11i standard (Wikipedia)

WPS

WPS is an acronym for

W i-Fi

P rotected

S etup. It is a standard for easy and secure establishment of a wireless home network. The goal of the WPS protocol is to simplify the process of connecting any home device to the wireless network (Wikipedia).

WRED

WRED is an acronym for

W eighted

R andom

E arly

D etection. It is an active queue management mechanism that provides preferential treatment of higher priority frames when traffic builds up within a queue. A frame's DP level is used as input to WRED. A higher DP level assigned to a frame results in a higher probability that the frame is dropped during times of congestion.

WTR

WTR is an acronym for

W ait

T o

R estore. This is the time a fail on a resource has to be 'not active' before restoration back to this (previously failing) resource is done.

341

advertisement

Related manuals

advertisement

Table of contents