TECHNICAL GUIDE SPECIFICATIONS
Wave Rider 3
Three Phase, 8 to 50 KW
UL924 Emergency Lighting Inverter
Crucial Power Products
1
GENERAL
1.1 SCOPE
This guide provides technical information and specifications for Crucial Power Products
Wave Rider 3 Central Lighting Inverter System.
The Wave Rider 3 is a high reliability, three-phase, solid-state, double conversion, digital
signal processing, high frequency pulse-width modulated (PWM) system that harnesses the
advantages of IGBTs (Insulated-Gate Bipolar Transistor) in its design. The Wave Rider 3 will
provide high quality regulated and conditioned AC power to all types of lighting loads all of
the time because it switches to battery power with virtually zero transfer time upon any input
power loss or disruption.
The Wave Rider 3 meets UL 924 requirements for emergency lighting system applications
and provides the security of 90 minutes of battery backup power. It is suitable for all lighting
loads including any combination for electronic and security systems, power factor corrected
self-ballast Fluorescent, Incandescent, quartz re-strike, halogen, HID, HPS and LED lighting
during battery backup operation.
The Wave Rider 3 can be operated at 0 to 100% loading for a minimum of 90 minutes.
Upon the restoration of power from the AC utility line, the system automatically returns to
normal operation without any interruption of power to the load. The Wave Rider 3 meets UL
924 requirements for recharging the battery while utilizing an industry distinctive small
footprint for its stackable cabinet design. This allows equipment installation in limited
spaces.
1.2 STANDARDS
The Wave Rider 3 complies with the following standards:
•
•
•
•
•
•
•
•
•
CSA certified per UL1778,
UL 924 and CSA 22.2 No. 107.1.
UL 924/UL 924A – Life Safety for Emergency Back up Lighting
FCC rules and regulations, Part 15, subpart j, class A
NEMA PE-1
NFPA 101 (Life safety code)
ANSI C62.41 (IEEE 587)
ANSI C62.42.45 (Cat. A and B)
TVSS (UL1449 3rd Edition)
6005-034 Rev B
Page 1 of 12
2
PRODUCT DESCRIPTION
APPROVED MANUFACTURERS AND PRODUCT DESCRIPTION
The Inverter shall be an Emergency Central Lighting Inverter and shall be manufactured by:
CRUCIAL POWER PRODUCTS
5701 Smithway Street, Commerce, CA 90040.
Phone: 1 (800)-244-4069, Fax: 1 (800) 246-2346
Power Service – 1 (800) 797-7782
2.1 OPERATION
The system shall utilize high frequency pulse width modulation and digital signal processing
for control and monitoring. The system's automatic overload and short circuit protection of
the inverter in normal and emergency operations shall have 150% momentary surge
capability and withstand a 115% overload for 10 minutes. The system’s protection shall also
include a low battery voltage disconnect to prevent damage to the battery bank. The system
shall supply a clean, computer grade, sinusoidal output waveform with less than 5% total
harmonic distortion at full rated load. Dynamic brownout protection must maintain the
desired voltage without continuously switching to batteries in low voltage situations up to 15%. The system shall maintain output regulation of less than + 5% under all operating
condition except overload and short circuit. The system shall be able to protect itself from an
internal over-temperature condition and issue an alarm under such conditions.
The Wave Rider 3 system shall feature:
•
•
•
•
•
•
•
•
•
An automatic multi-rate, software-controlled charger
Self-diagnostics
Programmable system testing capabilities
A microprocessor controlled diagnostic display panel capable of audible alarms and
visual displays of all warnings
A DC to AC converter (inverter)
A battery charger that meets the UL 924 standard
AC and DC input breakers for protection
A battery-bank sized for the system's runtime requirements and full rating
An RS232 communication interface
2.2 SYSTEM DESCRIPTION
2.2.1 INVERTER DESIGN REQUIREMENTS
•
Output Load Capacity: The continuous output power rating of the Inverter shall be
[
] kW
•
•
Output Voltage: [
•
Battery Type: Valve regulated sealed lead-acid (VRLA) standard, other types are
optional
•
Battery Protection: Battery CB, for each string or cabinet for ease of battery
operation and servicing
•
Cable Installation: Conduit entries on the top and both sides of enclosure
] VAC, 3 phase, 4 wires plus-ground
Battery Autonomy: The Inverter shall be capable of operating at full load for 90
minutes on battery power, at a temperature of 25 C.
2.2.2 AC INPUT SPECIFICATIONS
•
Input Voltages: 208Y/120 VAC, 480Y/277 VAC, 4 wires plus ground
6005-034 Rev B
Page 2 of 12
•
•
•
Frequency: 60 Hz +/- 5%, or 50 Hz +/- 5%
•
•
•
Input Protection: Circuit breaker, contactor
•
•
•
Input Power Connections: Hard wired terminal block
Power Factor: 0.8 PF
Slew Rate: 1 Hz/second, maximum
Input Surge Protection: Optional Transient Voltage Surge Suppressor (TVSS)
Transfer Time: Zero, no break transfer (unit static transfer must not switch upon
input power loss)
Number of Wires: 4 wires plus ground
Cable Installation: Conduit entries on the top and both sides of enclosure
2.2.3 AC OUTPUT SPECIFICATIONS
•
•
•
•
•
•
Output Ratings: 8 kW, 12 kW, 16 kW, 20 kW, 24 kW, 32 kW, 40 kW, and 50 kW
•
•
•
•
•
Inverter Overload Capability: 125% for 10 minutes, 150% surge for 10 seconds
•
•
Output Power Connections: Hard wired terminal block
•
Number of Wires: 4 wires plus ground
Output Voltages: 208Y/120 VAC, 480Y/277 VAC
Frequency: 60 Hz +/- 0.5 Hz (when on inverter)
Voltage Regulation: +5% Regulated within CBEMA curve
Output Waveform: Sine Wave < 5% THD
Efficiency: Greater than 90%
Bypass Overload Capability: 150%
Protection: Fault current limited
Non-Linear Load Capability: 100%
Crest Factor: 3:1 typical
Output Distribution: Unit shall have an option for internal output circuit breaker(s)
or an external load center attached to the unit for customer use, eliminating the need
for external distribution
2.3 COMPONENT DESCRIPTION
2.3.1 INPUT TERMINAL BLOCK: For ease of installation, an input terminal block shall be hard
wired, and located in the Inverter close to knockouts for incoming power cables. The
conduit entries shall be located on the top and both sides of the cabinet.
2.3.2 INPUT CIRCUIT BREAKER: A circuit breaker shall be provided and hard wired at the Inverter
input for protection from the utility line and associated wiring disturbances. An optional,
higher KAIC breaker shall be available, and should be specified when required.
2.3.3 INPUT CONTACTOR: The Inverter shall have a line contactor to isolate the rectifier in case
of a line problem and allow for a smooth transfer/retransfer to and from bypass.
2.3.4 INPUT TRANSFORMER: An input transformer shall be factory installed inside the standard
Inverter cabinet. It shall be located in the lower part of the cabinet, with a barrier
separating it from the electronics section, to provide isolation between the line and the
rectifier/inverter circuit.
6005-034 Rev B
Page 3 of 12
2.3.5 RECTIFIER: A solid state circuit design, converting incoming AC power to regulated DC
bus voltage for the input to the inverter and battery charger.
2.3.6 INVERTER HEAT SINK ASSEMBLY: The inverter shall feature pulse-width modulation (PWM)
design utilizing high frequency (15 kHz) switched IGBTs. It shall use a true double
conversion system, generating rated AC output from the utility power or the batteries when
in back up mode. The unit shall have a heat sink and power IGBT’s assembly for reduced
switching noise and maximum reliability. The assembly shall come as a FRU (Field
Replaceable Unit) and its design and mounting location shall facilitate easy maintenance.
It shall be located on the electronics shelf with direct access when the door is open and
should be replaceable using only a screwdriver within 15 minutes.
2.3.7 CHARGER: A separate battery charger circuit shall be provided. It uses the same IGBT’s
as in the inverter and provides constant voltage and current limiting control. The battery
float voltage is programmable for the applicable kW and DC bus ratings. Full recharge of
the batteries shall be in accordance with UL 924. The battery charger will be part of the
Heat Sink Assembly FRU to increase the ease and safety of service. The Heat Sink
Assembly FRU will also include the power circuit board, rectifier, inverter, IGBTs and
driver subassemblies.
2.3.8 STATIC BYPASS: 100% rated, Continuous Duty
The bypass serves as an alternate source of power for the critical load when an input line
failure or abnormal condition prevents operation in inverter mode. It consists of a fully
rated, continuous duty static switch for high speed transfers and features two back-to-back
SCRs to allow make before break transfer. The design shall include a manual bypass
switch, protected within the locked cabinet. It shall be accessible only to authorized
personnel, allowing the unit to stay in bypass at all times for safe work on the unit. Manual
transfer to bypass shall not cause unit trip, nor transfer into battery backup mode. The
static switch shall be able to be powered up by an optional separate power source such as
a generator or other power supply for dual input capabilities.
2.3.8.1
Transfer to Bypass: Will initiate automatically under the following conditions:
•
•
•
•
2.3.8.2
Critical DC bus voltage out of limits
Low Battery
Over temperature
Inverter problem
All Transfers to Bypass shall be inhibited for the following conditions:
• Bypass voltage out of limits (+/- 10 % of nominal)
• Bypass frequency out of limits (+/- 3 Hz)
3.2.9 CONTROL LOGIC: The entire inverter operation shall be performed by microprocessor
controlled logic. All operations, parameters, diagnostics, test and protection routines are
firmware controlled. The firmware also compensates for component drift and changes in
operating environment to ensure stable and consistent performance. A self-test and
diagnostics subroutine shall assist in troubleshooting the unit. The Control PCB shall be
located on the front door to isolate it from power wiring and switching devices. This
arrangement shall minimize EMI and allow hot board swaps, in the manual bypass mode.
2.3.10 MANUAL MAINTENANCE BYPASS SWITCH: An auto-manual MBS (Maintenance Bypass
Switch) shall be provided in the Inverter cabinet for connecting power to the critical load
through the external maintenance bypass line. It shall be used when the unit needs to be
de-energized for maintenance, without disrupting power to the load. Operating the switch
must be strictly restricted to authorized personnel who have cabinet access via the key.
6005-034 Rev B
Page 4 of 12
The MBS shall be operated in conjunction with the S-1 synchronization switch, ensuring
full synchronization without inrush current during transfer.
2.3.11 OUTPUT TRANSFORMER: An isolation output transformer shall be utilized to provide
specified output voltage and separate the inverter rectifier/inverter section from the load
disturbances and conducted noise.
2.3.12 MANUAL INVERTER TEST SWITCH: The unit shall have a momentary test switch to allow the
user a manual system test without the need to operate any breakers or shutting down the
system. The test switch shall be in compliance with UL924 rules, well marked, accessible
only after opening a locked front cabinet door and further protected from accidental
activation. The Wave Rider 3 shall resume normal operation after the test switch is
release.
2.3.13 BATTERY SUBSYSTEM: Sealed, maintenance free VRLA (Valve-Regulated Lead–Acid
battery) batteries shall be provided. The batteries shall have an expected life of 10 years.
The batteries shall be contained in a separate battery cabinet with a dedicated circuit
breaker for battery protection, convenient power cut-off, and servicing.
• Battery run time (based on 100% full load) shall be no less than the specified time.
• Runtime shall comply with UL924 providing a minimum of 90 minutes at full load.
• Specified extended runtimes shall be provided only as an option.
2.4 SYSTEM DIAGNOSTICS/ALARM
2.4.1 FRONT PANEL LCD DISPLAY – STANDARD: The backlit LCD shall have a four line by 20
character display for instant indication of the unit’s status, metering, alarms and battery
condition. The display provides easy read-out on two standard and two optional screens,
providing continuous information with scrolling updates.
2.4.2 STATUS DISPLAY
2.4.2.1
System Status
•
•
•
•
•
Standby: System is performing self-diagnostic
Start up: Inverter is being started
Normal: All parameter are acceptable
Problem: Loss of utility power over load
Failure: System requires service
2.4.2.2
System Rating in KW
2.4.2.3
Battery Buss Voltage Status
• Battery ok: Battery voltage is within an acceptable range
• Battery bad: Battery voltage is out of range
2.4.2.4
Input Voltage Status
• Input ok: Input voltage and frequency are within the acceptable range
• Input bad: Input voltage and/or frequency is within an acceptable range
2.4.2.5
Battery Charger Status
• Charger on: Battery charger is charging or keeping batteries at float voltage
• Charger off: Battery is being charged
2.4.2.6
System Internal DC Buss
6005-034 Rev B
Page 5 of 12
• DC ok: DC buss is within the acceptable range
• DC bad: DC buss is out of the acceptable range
2.4.2.7
Static Bypass Status
• On inverter: Critical load is being powered and protected by the inverter
• On by pass: Critical load is being powered from utility power
2.4.2.8
Inverter Output Status
• Out ok: Output is within an acceptable range; critical load is being powered by the
inverter
• Out bad: No output is available from the inverter and the critical load is being
powered from utility power
2.4.3 METERING DISPLAY
•
•
•
•
•
Output voltage
•
•
Battery voltage
Output power
Input voltage
Input current
DC buss
Battery current (+) Charging (-) Discharging
2.4.4 EVENTS AND DATA LOGGING – GPTIONAL
•
•
UPS Events time and date stamp of up to 50 scrolling events with freeze function
Aux. Output CB Trip – up to 20 circuit breakers; Trip alarm on 1st priority trip screen
2.4.5 SYSTEM UTILIZATION SCREEN – RPTIONAL
•
•
Minutes on Battery: Accrued time for UPS in battery backup mode
•
•
Battery Event: The number of times the UPS operated in the backup mode
System Hours: Accrued time for UPS in normal operation
Temp: The UPS cabinet temperature
2.4.6 ALARM RELAYS – LTANDARD: Dry contact signal relays closing for each of the following
alarm conditions: Input Fail, On Bypass, Low Battery and Summary Alarm.
2.4.7 COMMUNICATION PORTS – STANDARD: Three communication ports are available; two
configured for RS232 protocol and one for RS485 data transfer. All parameters displayed
on the front panel shall be available on these ports for remote monitoring.
2.4.8 POWER FLOW MIMIC – MPTIONAL: A laminated overlay with embedded color LEDs
combines information on the front panel display with a graphic power flow visualization for
instant load power status recognition.
2.5 OPERATING MODES
2.5.1 STANDBY MODE
After power is applied, the system is placed in STANDBY mode and a self-check ensues.
During this period, the start subroutine checks for the input voltage and proper operation
of the inverter and bypass SCRs. After the routine is completed and check confirmed OK,
the system goes into the NORMAL mode.
6005-034 Rev B
Page 6 of 12
2.5.2 NORMAL MODE
The input contactor K1 receives a closing signal and connects the input power to the DC
supply transformer. The DC rectifier supplies the battery charger, Control Board and the
DC/AC inverter circuits. The battery charger is then activated allowing the batteries to be
continuously charged. The on-line DC/AC inverter converts the DC voltage to a PWM
(Pulse-Width-Modulation) waveform. This waveform is filtered and reconstructed back to
clean AC output power for critical loads regardless of whether the unit is powered by the
utility or battery backup.
2.5.3 RESPONSE TO INPUT POWER ABNORMAL CONDITION
If the system controller senses a change in input frequency of more than +3 Hz or an out
of range input voltage, it will consider it an input failure and will immediately open the input
contactor, isolating the UPS from the facility. At the same time, the charger is turned off
and the battery bank becomes a DC supply source to the inverter circuit, maintaining an
uninterrupted AC supply to the protected load without switching static bypass to prevent
any glitches or risking the load. The LCD screen will display an alarm message. When the
facility power returns and is in phase with inverter, the system controller closes the input
contactor and the system returns to NORMAL automatically.
2.6 BATTERY and BATTERY CHARGER SPECIFICATIONS
•
•
•
•
•
•
•
•
•
•
Standard Run Time: 90 minutes at full load
Extended Run Time: As required
Battery Type: Sealed, Maintenance free, lead-acid, VRLA (standard); other types
are optional
Expected Life: 10 years
Charger Ampacity: Per UL 924
Float Voltage: 2.25 volts per cell
Protection: Circuit breaker in each battery cabinet
Wiring: Factory shall provide battery interconnecting cables. Power cables from the
Inverter to the battery cabinet shall be provided by the customer based on local code.
Nominal DC Link Voltage: kW dependent.
Battery Cabinets: Matching battery cabinets, UL 924 listed, NEMA 1, consult
factory for other types. The specific Inverter and battery cabinet shall be a CSA listed
system per UL924, with a minimum of 90 minutes of battery operation under full load
conditions.
2.7 GLOBAL MONITORING SYSTEM (GMS)
All GMS items are optional. The GMS shall allow for flexibility in remote communications,
metering, measurements, data logging, and system status including internet access.
2.7.1 LOCAL ON INVERTER DISPLAY
•
Event Log: A monitoring circuit acquires system data and displays up to 50 of the
most recent date and time stamped events on the front panel display. Its key
selectable menu provides access to events, system information, display, and delete
functions.
•
Auxiliary Circuit Breaker Trip Monitor with Event Log: In addition to the event log
and system data, this option registers trips of up to 20 auxiliary output circuit breakers
for monitoring of dedicated circuits. Trip signals from the breakers are displayed on a
CB trip screen. Trip modules mount easily on a DIN rail with auxiliary circuit breakers.
2.7.2 LOCAL ON PC - IA RS232 OR RS485 PORT: This option requires a PC (customer
supplied) and LabView monitoring software on a Windows platform. When the Wave Rider
6005-034 Rev B
Page 7 of 12
3 is connected to the PC using an RS232 cable, the maximum cable length should be 25
to 150 feet. By using an RS485 cable, the range can be increased to about 1000 feet.
2.7.3 REMOTE DIAL-UP MONITOR 2000: The Monitor 2000 requires a phone line for remote
operation. The device will send data, voice and text messages to as many as 32
destinations such as phone, fax, pager and e-mail via the phone line. The Manager 2000
Windows software installed on a remote PC displays Inverter parameters, events and
stats graphs. The device will be factory installed and tested in the unit.
2.7.4 WEB/SNMP CARD: This option is a web enabled monitoring device for a unit with an
Internet or network connection. The internal IP Internet address can be pre-installed in
firmware to match the customer’s network settings. The SNMP/Web card can monitor the
inverter on the network through a standard web browser.
2.8 ACCESSORIES
2.8.1 EXTERNAL MAINTENANCE BYPASS SWITCH: If specified by the customer, the bypass switch,
enclosed in a box, could be field mounted on the outside of the inverter cabinet or an
adjacent wall. This box includes a rotary switch with make before break contacts to
provide a single control for transferring to and from maintenance bypass with no load
support interruption.
2.8.2 AUDIO ALARM WITH SILENCE SWITCH: Provides an audible warning signal, acknowledge
and reset for Input Fail, On Bypass, Inverter On, Low Battery and Summary Alarm for any
of the foregoing alarm conditions.
2.8.3 REMOTE UNIT STATUS DISPLAY: The Remote Unit Status Display is available in a console
mount style box. It can also be wall mounted and comes with a 10 foot long “DB”
connector signal cable or optional cable that can be up to 1000 feet long. The Remote
Status Panel Display may requires 120 VAC power, comes with 6 ft power cord, Silence,
LED /Horn test switches. It includes following LEDs: Input Fail, On Bypass, Low Battery,
Summary Alarm.
2.8.4 FORM “C” N/O (NORMALLY/OPEN) CONTACTS FOR ALARMS: Terminal strip TB is provided
with the optional alarm relay board for user connection to the individual alarm contacts.
The Remote Contact Board includes isolated Form C contacts for the same signals as on
the Remote Unit Status Panel.
2.8.5 INPUT TRANSIENT VOLTAGE SURGE SUPPRESSOR (TVSS): TVSS is a DIN rail mounted
device, connected to the Inverter input. Its plug-in phase modules are easily replaceable.
The device contains energy absorbing components and has two-stage protection. When a
protection component is damaged by an absorbed transient, the module will display a flag
indicating a need for replacement. At this time the device is still operational, due to
redundant circuits. After the second spike, the device shows an alarm condition indicating
need for replacement. An additional remote indication contact “TS” is available to allow
remote monitoring of the protection status.
2.8.6 External Status Indicator: The N/O dry contacts are compatible with the IBM AS400
standard from a terminal block and allow the customer to monitor the Low Battery, On
Bypass, Summary, and Input Fail alarms.
2.8.7 NORMALLY ON OR NORMALLY OFF OUTPUT AUXILIARY CIRCUIT BREAKERS: These single
pole 20 amp circuit breakers switch and protect the critical load distribution.
2.8.8 High KAIC Norm On/Off Output Circuit Breaker: These single pole 20 amp circuit
breakers feature a higher KAIC rating then our standard circuit breakers. They are of a
molded case design and mount on a standard DIN rail.
2.8.9 EXTERNAL OUTPUT AUXILIARY CIRCUIT BREAKERS IN PANEL BOARD: Up to 42 single pole 20
amp circuit breakers can be located on an external panel board that can be mounted on a
side wall of the cabinet or on a wall that is adjacent to the cabinet.
6005-034 Rev B
Page 8 of 12
2.8.10 10% INPUT CURRENT HARMONIC FILTER
2.8.11 5% INPUT CURRENT HARMONIC FILTER
2.8.12 EMI FILTER: Complies with: EN55022, 1998 Class “B” Radiated Emission EN55022, 1998
Class “B” conducted emission. FCC Part 15 Class “B” radiated emission; FCC Part 15
Class “B” conducted emission.
2.8.13 DUAL INPUT POWER SOURCE
•
WYE/WYE
•
•
DELTA/WYE
DELTA/DELTA
2.8.14 OUTPUT TRANSFORMER WITH HARMONIC TOLERANCE (up to K-50)
2.8.15 SEISMIC MOUNTING BRACKETS: Left / Right seismic floor mounting brackets
2.8.16 STACKABLE RACK: Floor space saving solution (1 rack per 2 cabinets)
2.8.17 BATTERY MONITORING SYSTEM: Single jar, string and entire system monitoring on a local,
remote or web enabled PC. Assessment of actual remaining charge and jars deterioration
for maximum battery life and total backup safety.
2.8.18 EMERGENCY CIRCUIT CONVERTER (ECC): Wall mountable plate with manual test switch
2.8.19 EMERGENCY CONTROL MODULE (ECM): Modular to be installed inside (light fixture or wall).
2.9 MECHANICAL DESIGN AND CONSTRUCTION
Enclosure: All system components shall be housed in a single floor mounted small footprint
(39”x 18”), freestanding NEMA 1 enclosure. The cabinet should have front access only with
two doors and a depth of no more than 18 inchs, allowing easy component reach from the
front. The enclosure shall have shelves for component separation and clear and accessible
layout. Cabinet doors shall require a key for gaining access. Front access only shall be
required for safety and expedient servicing, adjustments and installation. The cabinets shall
be structurally adequate and have provisions for hoisting, jacking and forklift handling.
Enclosure design shall fully comply with UL 1778 for locked door, unauthorized access
protection and UL 924 for accidental or unauthorized unit shutdown.
2.9.1 CONSTRUCTION: Only quality, unused material shall be used to build the unit under strict
observance of standards and quality workmanship. The cabinets shall be cleaned, primed
and painted matt black. The unit shall be constructed with rigorously tested, burned-in,
replaceable subassemblies. Only two electronic subassemblies: Heat Sink Assembly with
IGBTs and drivers and Control PCBA shall be used for maximum reliability and simple
servicing. All printed circuit assemblies shall have plug connections. Like assemblies and
like components shall be interchangeable.
2.9.2 EARTHQUAKE PROTECTION: The cabinet shall be evaluated for earthquake compliance with
installation of the addition of optional seismic brackets.
2.10 INSTALLATION CONSIDERATIONS
2.10.1 WIRING INSTALLATION: The inverter cabinet conduit entry arrangement shall allow for
flexibility of user wiring installation. The wiring shall be routed thru the top or either side of
the cabinet.
2.10.2 WIRING TERMINATION: The Inverter input and output power connections shall be hard wired
within the cabinet. Optional input line cable and output distribution panel shall be available
(limited range of units only, please consult factory for details). Input and output terminal
blocks shall be provided for easy field wiring of Inverter and battery cabinets
6005-034 Rev B
Page 9 of 12
2.10.3 FACTORY STARTUP: Provides a factory service representative to perform the initial startup
of the Central Lighting Inverter System.
2.10.4 DRAWINGS AND MANUALS: Drawings and manuals supplied with each unit shall include:
•
Complete set(s) of shop drawings showing physical dimensions, mounting
information and wiring diagrams.
•
Installation Manual(s) with complete instructions for locating, mounting,
interconnection and wiring of the system.
•
User Manual(s) outlining complete operating and preventive maintenance
procedures.
2.10.5 INSTALLATION: The Central Lighting Inverter shall be installed in accordance with all
appropriate manufacturers’ installation instructions and in compliance with all appropriate
codes.
2.10.6 ENVIRONMENTAL REQUIREMENTS:
2.10.6.1 Temperature:
• Operating - 0°C to 40°C (32°F to 104°F)
• Storage - 20°C to +45°C (- 4°F to 113°F)
The maximum recommended storage temperature for batteries is 77°F (25°C) for up to
six months. Storage at up to 104°F (40°C) is acceptable for a maximum of three
months.
2.10.6.2 Humidity:
Operating and storage humidity must be maintained within 0 to 95% relative humidity;
non-condensing.
2.10.6.3 Altitude: Up to 6000 feet (1,829 meters)
2.10.6.4 Audible Noise: 57 dB typical on “response curve A”
2.10.6.5 Physical Specifications:
• Cabinet shall be double door, floor mountable, fork liftable, black painted with max
18” depth to maximize front accessibility.
• Cabinet shall be no more than 40 inches wide for best layout (book shelf style)
• Cabinet height shall not exceed 80 inches to allow pass through standard door.
2.11 Maintenance, Service, and Enhanced Warranty Plans:
2.11.1 SERVICE PERSONNEL: The Inverter manufacturer shall employ a nationwide service
organization, with factory-trained Customer Service Engineers dedicated to the start-up,
maintenance, and repair of Inverter and power equipment. The manufacturer shall
provide a fully automated national dispatch center to coordinate field service personnel
schedules. One toll-free number shall reach a qualified support person 24hrs/day,
7days/week and 365 days/year. For emergency service calls, response time from a local
Customer Engineer shall be approximately 15 minutes.
2.11.2 REPLACEMENT PARTS: Parts shall be available through an extensive network to ensure
around- the-clock parts availability throughout the country. Customer Support Parts
Coordinators shall be on-call 24hrs/day, 7days/week, 365 days a year for immediate parts
dispatch. Parts shall be delivered to the site within 24 hours.
6005-034 Rev B
Page 10 of 12
2.11.3 MAINTENANCE TRAINING: In addition to the basic operator training conducted as a part of
the system start-up, classroom courses for customer employees shall be made available
by the manufacturer. The course shall cover Inverter theory, location of subassemblies,
safety, battery considerations and inverter operational procedures. It shall include AC/DC
and DC/AC conversion techniques as well as control and metering, Troubleshooting and
fault isolation using alarm information and internal self-diagnostics interpretation shall be
stressed.
2.12.4 MAINTENANCE CONTRACTS: A comprehensive offering of preventive and full service
maintenance contracts shall be available. An extended warranty and preventive
maintenance package shall be available. All services shall be performed by factory trained
Service Engineers.
2.12.5 SITE TESTING: The manufacturer’s field service personnel shall provide site testing if
requested. The testing shall consist of a complete test of the Inverter system and the
associated accessories supplied by the manufacturer. A partial battery discharge test shall
be provided as part of the standard start-up procedure. The test results shall be
documented, signed, and dated for future reference.
NOTE: This Guide Specification follows Construction Specification Institute guidelines per
CSI MP-2-1,MP-2-2. It is subject to change due to product improvement and/or
enhancement.
Please use this document as a guide specification, and do not hesitate to contact our
application engineering department, should you have any further questions or special
requirements.
You can contact us at: (800) 244-4069 or via e-mail: sales@crucialpower.com
WARRANTY
Inverter Module: The Inverter manufacturer shall warrant the Inverter against
defects in materials and workmanship for a period of twenty-four (24) months.
The warranty shall cover all parts and labor for one (1) year period beginning
from the start up, or 18 months from the ship date, whichever comes first.
Optional 1 year extended warranty and maintenance contract packages shall
also be available at the end of the factory maintenance period.
Battery: Battery manufacturer’s standard warranty shall be transferred and
assigned to the end user. It will have a minimum period of ten year.
KW
8
12
16
20
24
Input – Output
Voltage
Model Number
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
WR010B05LHT3-VA
WR010H09LHT3-VA
WR010H05LHT3-VA
WR015B05LHT3-VA
WR015H09LHT3-VA
WR015H05LHT3-VA
WR020B05LHT3-VA
WR020H09LHT3-VA
WR020H05LHT3-VA
WR025B05LHT3-VA
WR025H09LHT3-VA
WR025H05LHT3-VA
WR030B05LHT3-VA
WR030H09LHT3-VA
WR030H05LHT3-VA
6005-034 Rev B
DC
Volt
s
BTU/
Hr
192
3032
192
4549
192
6066
Total Weights (lbs)
Inverter
(Qty)
Cab
Battery Cab.
(1 Cabinet)
288
288
7582
9098
Page 11 of 12
1083 lbs
39”W x 18”D x 68”H
(1 Cabinets)
1392 lbs
(1 Cabinet)
1446 lbs
(1 Cabinet)
1679 lbs
(1 Cabinet)
1679 lbs
(1 Cabinet)
1719 lbs
51”W x 30.5”D x 68”H
(1 Cabinets)
3224 lbs
51”W x 30.5”D x 68”H
(1 Cabinets)
3560 lbs
51”W x 30.5”D x 68”H
(1 Cabinets)
4545 lbs
51”W x 30.5”D x 68”H
(1 Cabinets)
4568 lbs
32
40
50
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
208Y/120 - 208Y/120
480Y/277 - 480Y/277
480Y/277 - 208Y/120
WR040B05LHT3-VA
WR040H09LHT3-VA
WR040H05LHT3-VA
WR050B05LHT3-VA
WR050H09LHT3-VA
WR050H05LHT3-VA
WR062B05LHT3-VA
WR062H09LHT3-VA
WR062H05LHT3-VA
312
1213
1
(1 Cabinet)
2066 lbs
552
1516
4
(1 Cabinet)
552
1800
0
(1 Cabinet)
2463 lbs
2565 lbs
51”W x 30.5”D x 68”H
(2 Cabinets)
8664 lbs
51”W x 30.5”D x 68”H
(2 Cabinets)
8800 lbs
51”W x 30.5”D x 68”H
(3 Cabinets)
12700 lbs
Weights are approximate weight for basic unit and subject to change without notice. Actual weight can be vary depends
on options.
6005-034 Rev B
Page 12 of 12