NS 3472 / NPD

STAAD III/ISDS
S TA A D . P r o
NS 3472 / NPD
NS 3472 / NPD
September 2001
1994
STEEL DESIGN - CODE CHECK
DESIGN PARAMETER
THEORY MANUAL
TABULATED RESULTS
2
STAAD.Pro / NS3472 / NPD
TABLE OF CONTENTS
1
2
3
4
5
6
7
8
Introduction ....................................................................................................................3
Basis for code checking..................................................................................................4
2.1
General ...................................................................................................................4
2.2
Calculation of Forces and Bending Moments ........................................................4
2.3
Members with Axial Forces ...................................................................................4
2.4
Members with Axial Force and Bending Moments ...............................................5
2.5
Lateral Buckling .....................................................................................................5
2.6
Von Mises Yield Criterion .....................................................................................5
2.7
Material Factor and nominal stresses .....................................................................5
2.8
Code checking according to NPD ..........................................................................6
2.9
Aluminium Check ..................................................................................................6
Stability check according to NS 3472 ............................................................................9
3.1
General description.................................................................................................9
3.2
Determination of βz and βy ..................................................................................10
3.2.1
Lateral sidesway not prevented, NS 12.3 ....................................................10
3.2.2
Lateral sidesway prevented, NS 12.3 ...........................................................10
3.3
Lateral buckling....................................................................................................10
3.4
Stability check of pipe members ..........................................................................12
3.5
Angle profiles type RA (reverse angle)................................................................13
3.6
Stability check of members with tapered section ................................................14
3.7
Lateral buckling for tension members..................................................................14
Stability check according to NPD ................................................................................15
4.1
Buckling of pipe members ...................................................................................15
4.1.1
Interaction with local buckling, NPD 3.2.3..................................................15
4.2
Calculation of buckling resistance of cylinders....................................................16
4.3
Elastic buckling resistance for un-stiffened, closed cylinders..............................17
4.4
Stability requirements...........................................................................................18
4.5
Column buckling, NPD 3.4.9 ...............................................................................18
Yield check...................................................................................................................19
5.1
Double symmetric wide flange profile .................................................................20
5.2
Single symmetric wide flange profile and tapered section...................................22
5.3
Pipe profile ...........................................................................................................24
5.4
Tube profile ..........................................................................................................26
5.5
Channel profile.....................................................................................................28
5.6
Angle profile type RA (reverse angle) .................................................................30
5.7
Rectangular massive box (prismatic) ...................................................................34
Tubular joint check, NPD 3.5.......................................................................................36
6.1
Static strength of tubular joints ............................................................................36
Tabulated results / TRACKs ........................................................................................40
References ....................................................................................................................41
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
1
3
Introduction
This user manual presents a description of the design basis, parameters and theory applied
to STAAD.Pro for performing code checks according to NS 3472 ref. [1] and NPD ref. [5].
The code checks include:
- stability check (buckling)
- lateral buckling check
-
yield check (von Mises)
stability check including local plate buckling of un-stiffened
according to NPD
pipe walls
The code check is available for the following cross-section types:
- wide flange profiles (HEA, HEB, IPE etc.)
- pipe (OD xx ID xx)
- tube (RHS, HUP)
- channel
- angle type
- rectangular massive box (prismatic)
- user table (wide flange, I-sections, tapered I, tube, channel and RA angle)
The code check is not available for the following cross-section types:
- Double angles
- Tapered tubes
- Prismatic sections with too few section parameters defined
- Other sections that are not in the ‘available’ list above
Please note the following:
- NS 3472 and NPD code checking covered in this document are available through
two separate STAAD.Pro Code check packages.
- This document is not a lecture in use of NS 3472 or NPD. This document explains
how, and which parts of, the Norwegian steel codes that have been implemented in
STAAD.Pro.
- When L-sections are used, the Code Check requires RA angle definition.
- Weld design is not included in the Norwegian code checks.
- The prismatic section defined in the code check (rectangular massive box) is not
identical to the general prismatic profile defined in the STAAD.Pro analysis
package.
EDR does not accept any liability for loss or damage from or in consequence for use of the
program.
Nomenclature:
NS
- refers to NS 3472 ref. [1]
NS2 - refers to NS 3472 ref. [6]
NPD - refers to NPD94 ref. [5]
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
4
2
STAAD.Pro / NS3472 / NPD
Basis for code checking
2.1
General
This section presents general information regarding the implementation of the Norwegian
codes of practice for structural steel design. This manual describes the procedures and
theory used for both NS and NPD.
In general NS is used for all cross sections and shapes listed in section 1 of this manual. An
exception is the treatment and check of pipe members in framed structures. NS does not
give specific details about the treatment of pipes. Section 3.4 explains how this is adopted
when NS is selected for code checking.
The NPD however have a more thorough check of pipe members, and consider the effect
of local buckling of the pipe wall in conjunction with the stability check. In addition, the
NPD code gives joint capacity formulae for brace to chord connections for pipe members.
The design philosophy and procedural logistics are based on the principles of elastic
analysis and ultimate limit state design. Two major failure modes are recognized:
- failure by overstressing
- failure by stability considerations
The following sections describe the salient features of the design approach. Members are
proportioned to resist the design loads without exceeding the characteristic stresses or
capacities and the most economic section is selected on the basis of the least weight
criteria. It is generally assumed that the user will take care of the detailing requirements
like the provision of stiffeners and check the local effects like flange buckling, web
crippling, etc.
The user is allowed complete control over the design process through the use of the
parameters listed in Table 2.1. Default values of parameters will yield reasonable results in
most circumstances. However, the user should control the design and verify results
through the use of the design parameters.
2.2
Calculation of Forces and Bending Moments
Elastic analysis method is used to obtain the forces and moments for design. Analysis is
done for the primary loading conditions and combinations provided by the user. The user is
allowed complete flexibility in providing loading specifications and using appropriate load
factors to create necessary load combinations.
2.3
Members with Axial Forces
For tension only members, axial tension capacity is checked for the ultimate limit stress.
For compression members, axial compression capacity is checked in addition to lateral
buckling and ultimate limit stress. The largest slenderness ratio (λ) shall not be greater
than 250 according to NS 11.7 Stability is checked as per the procedure of NS 12.3. The
buckling curves of NS fig. 3 have been incorporated into the STAAD.Pro code check. The
coefficient α (as per NS Table 10) can be specified in both directions through the use of
parameters CY and CZ. In the absence of parameters CY and /or CZ, default α- value will
be according to NS table 11.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
5
2.4
Members with Axial Force and Bending Moments
For compression members with bending, interaction formulae of NS table 12.3.4.2 are
checked for appropriate loading situation. All compression capacities are calculated per the
procedure of NS 12.3.
The equivalent moment factor β is calculated using the procedure of NS table 12. Two
different approaches are used depending upon whether the members can sway or not.
Conditions for sidesway and transverse loading can be specified through the use of
parameters SSY and SSZ. For members that cannot sway, without transverse loading,
coefficients β are calculated and proper dimensioning moments are used in the interaction
formulae.
2.5
Lateral Buckling
Lateral torsional buckling is checked as per the procedure of NS 12.3.4. The procedure for
calculation of ideal buckling moment for sections with two axis of symmetry has been
implemented. The coefficient can be provided by the user through the use of parameter
CB. In the absence of CB, a value of 1.0 will be used. Torsional properties for crosssections (torsional constant and warping constant) are calculated using formulae from NS
3472. This results in slightly conservative estimates of torsional parameters. The program
will automatically select the maximum moment in cases where Mvd is less than Mzd.
2.6
Von Mises Yield Criterion
Combined effect of axial, bending, horizontal/vertical shear and torsional shear stress is
calculated at 13 sections on a member and up to 9 critical points at a section. The worst
stress value is checked against yield stress divided by appropriate material factor.
The von Mises calculates as:
σj =
(σ
x
+ σ by + σ bz
)
2
(
+3τ x +τ y +τz
)
2
≤
fy
γm
2.7
Material Factor and nominal stresses
The design resistances are obtained by dividing the characteristic material strength by the
material factor.
NS 3472:
NPD:
The material factor default value is 1.10. Other values may be input with
fy
the MF parameter. The nominal stresses should satisfy σj ≤
= fd
γm
(
)
The general requirement is ∑ S Fi γ fi ≤ Rk / (γ m ⋅ γ mk ( S ))
according to
NPD 3.1.1. For stability the NPD 3.1.1 and 3.1.3 requires that the structural
coefficient is considered.
fk
Sd ≤ f kd =
γ m ⋅ γ mk ( Sd )
where
Sd
fk
fkd
γm
= reference stress or load effect resultant
= characteristic capacity
= design capacity
= material coefficient
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
6
STAAD.Pro / NS3472 / NPD
γmk
= structural coefficient
γm is default set to 1.10.
γmk shall be equal to 1.0 for frames. For pipe members γmk is a function of
the reduced slenderness. In the STAAD.Pro implemented NPD code this is
calculated automatically.
2.8
Code checking according to NPD
The following parts of Chapter 3 in the NPD guidelines have been implemented.
a)
b)
c)
d)
Control of nominal stresses. (NPD 3.1.2).
Buckling of pipe members in braced frames, including interaction with local shell
buckling (NPD 3.2.2, 3.2.3).
Buckling of un-stiffened closed cylindrical shells, including interaction with overall
column buckling (NPD 3.4.4, 3.4.6, 3.4.7 and 3.4.9).
Joint capacity check for gap as well as for overlap joints (NPD 3.5.2).
Check b) provides the unity check based on the beam-column buckling interaction
formulae in NPD 3.2.2. The interaction between global and local buckling due to axial load
and hydrostatic pressure is accounted for through computation of an axial characteristic
capacity to replace the yield stress inn the beam-column buckling formulae.
Note that check b) handles members subjected to axial loads, bending moments and
hydrostatic pressure. In other words, check b) assumes that stresses resulting from shear
and torsion are of minor importance, e.g. in jacket braces.
Check c) provides the unity check based on the stability requirement for un-stiffened
cylindrical shells subjected to axial compression or tension, bending, circumferential
compression or tension, torsion or shear. The unity check refers to the interaction formulae
in NPD 3.4.4.1. The stability requirement is given in NPD 3.4.7.
2.9
Aluminium Check
STAAD.Pro performs stability check on aluminium alloys according to buckling curve in
ECCS (European recommendation for aluminium alloy structures1978). It is possible to
select heat-treated or non heat-treated alloy from the parameter list in the STAAD.Pro
input file.
For heat-treated use CY=CZ=0.1590, and for non heat-treated use CY=CZ=0.2420.
Tracks 1.0 and 9.0 print buckling curve H for heat- treated, and buckling curve N for nonheat-treated. The yield check is the same as for steel.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
7
Table 2.1 Design parameters
STAAD.Pro
STEEL DESIGN- CODE CHECK
PARAMETER
NAME
BEAM
CODE
CY
CZ
BY
BZ
FYLD
MF
UNL
CB
SSY
SSZ
CMY
CMZ
DEFAULT
VALUE
DESCRIPTION
0.0
Parameter BEAM 1.0 ALL tells the
Note: must be program to calculate von Mises at 13
set to 1.0
sections along each member, and up to 8
points at each section. (Depends on what
kind of shape is used.)
none
NS3472 for NS, NPD for NPD
(NOR may also be used for both)
Default see
Buckling curve coefficient, α about local
NS 3472
z-axis (strong axis). Represent the a, a0, b,
c, d curve.
1.0
Buckling length coefficient, β, for weak
axis buckling (y-y) (NOTE: BY > 0.0)
1.0
Buckling length coefficient, β, for strong
axis buckling (z-z) (NOTE: BZ > 0.0)
235
Yield strength of steel, fy (St37)
[N/mm2 ]
1.1 (NS3472)
Material factor / Resistance factor, γm
1.15
(NPD)
Member
Effective length for lateral buckling
length
calculations (specify buckling length).
Distance between fork supports or
between effective side supports for the
beam
1.0
Lateral buckling coefficient, Ψ.
Used to calculate the ideal buckling
moments, Mvi
0.0 = No sidesway. β calculated.
0.0
> 0.0 = Sidesway in local y-axis weak
axis β=SSY
0.0
0.0 = No sidesway. β calculated.
> 0.0 = Sidesway in local z-axis strong
axis β=SSYβ=SSY
1.0
Water depth in meters for hydrostatic
pressure calculation for pipe members
0.49
CLAUDE
REFERENCE
Sec. NS 12.2.2
Fig. NS 3
Sec. NS 12.2
NS Table 11
Fig. NS 3
Sec. NS 12.3
Fig. NS 3
Sec. NS 12.3
Tab. NS 3
Sec. NS 10.4.2
Sec. NPD 3.1
Sec. NS 12.3
Sec. NS2 A5.5.2
Fig. NS2 A5.5.2a)-e)
Sec. NS 12.3.4
Tab. NS 12
Sec. NPD 3.2.1.4
Sec. NS 12.3.4
Tab. NS 12
Sec NPD 3.2.1.4
Valid for the NPD
code only
αLT for sections in connection with lateral Sec. NS 12.3.4
Fig. NS 6.
buckling
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
8
STAAD.Pro / NS3472 / NPD
TRACK
0.0
RATIO
1.0
DMAX
100.0
[cm]
0.0
[cm]
DMIN
0.0 = Supress critical member stresses.
1.0 = Print all critical member
stresses, i.e. DESIGN VALUES
2.0 = Print von Mises stresses.
9.0 = Large output, 1 page for
each member.
See section 7 and Appendix A for
complete list of available TRACKs and
print examples.
Permissible ratio of the actual to Sec. NS 12.3.4.2
allowable stresses.
Maximum allowable depth of steel
section.
Minimum allowable depth of steel
section.
The parameter CMY will, when given with negative value, define an inside pressure in
pipe members. The pressure corresponds to given water depth in meters.
The parameter CB defines the φ value with respect to calculation of the ideal lateral
buckling moment for single symmetric wide flange profiles, ref. NS app. 5.2.2.
EXAMPLE:
(Used at the end
of the input file)
* Code check according to NS3472
UNIT MMS NEWTON
PARAMETERS
CODE NS3472
BEAM 1.0 ALL
FYLD 340 ALL
MF 1.10 ALL
CY 0.49 MEMB 1
CZ 0.49 MEMB 1
BY 0.9 MEMB 1
BZ 0.7 MEMB 1
SSY 1.42 MEMB 1
SSZ 1.45 MEMB 1
CB 0.9 MEMB 1
RATIO 1.0 ALL
TRACK 9.0 ALL
UNIT KNS METER
LOAD LIST 1
CHECK CODE MEMB 1
FINISH
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
3
9
Stability check according to NS 3472
3.1
General description
The stability check is based on the assumption that both ends of the member are structural
nodes. Buckling lengths and results for member with joints between the structural nodes
have to be evaluated in each separate case.
Effects from local buckling or external hydrostatic pressure on pipes and tubes are not
included.
The general stability criteria is: (ref. NS 12.3)
Buckling :
Lateral buckling :
i
z, y
nmax + kz ⋅ mz + ky ⋅ my ≤ 1
n
+ kLT ⋅
χy
+ ky ⋅ my ≤ 1
Nf
n
χ min
1 − µi ⋅
kLT
χ LT
n
nmax
ki
mz
n
1 − µ LT ⋅
 λi
λi
λ1
Nd
≤ 1.5
χ i ⋅ γm
n
χ y ⋅ γm
≤ 1.0
Nkd.i
χi
Nd
)
λ1
ii
)
E
π⋅
fy

 2

0.5 ⋅  1 + α ⋅ λ − 0.2 + λ 
(
φ
()
(

0.15 ⋅ λy ⋅ β M − 1 ≤ 0.9
) ()
ref. NS Tab. 10 & 11
α
1
φLT +
( )
2

2
φLT − λLT
2



0.5 ⋅  1 + α ⋅ λ .LT − 0.4 + λ .LT 
 W z ⋅ fz
λLT
M cr
(
) (
M cr
M vio
CLAUDE
(
µ LT
Lki
2
2
φ − λ
χ LT
φLT
)

λi ⋅ 2 ⋅ β Mi − 4 ≤ 0.9
µi
1
φ+
min χ z , χ y
β M ref. NS Tab. 12
λi
χi
(
χ min
ψ ⋅ M vio
π
L
)
ψ
α
ref. NS sec. 12.3.4.1
ref. NS2 A5.5.2 a)-d)
2
⋅ E ⋅ Iz ⋅ G ⋅ IT ⋅ 1 +
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
π
2
L
⋅
E ⋅ Cw
G ⋅ IT
10
3.2
STAAD.Pro / NS3472 / NPD
Determination of β z and β y
3.2.1 Lateral sidesway not prevented, NS 12.3
Code check input parameters SSZ and SSY must be given values > 0.0 for beams with
movable end joints and beams with transverse loads between joints. The parameter equals
the equivalent moment factor β ref. NS sec. 12.3.4.2 and Tab. 12.
βy=SSY
βz=SSZ
3.2.2 Lateral sidesway prevented, NS 12.3
Code check input parameters SSZ and SSY ≡ 0 for beams with unmovable end joints
without transverse loads between joints. The equivalent moment factor β (for z and y) is
calculated dependant on moment distributions as shown in Fig. 3.1.
Figure 3.1 β for different moment distributions
3.3
Lateral buckling
The Ideal lateral buckling moment is calculated according to NS2 A5.5.2
M vi = ψ ⋅ M vio
E
= ψ ⋅ 195
.
L
I y ⋅ Ix
π 2 ⋅ 2.6 Cw
1+
concern double symmetric
L2 I x
cross sections where ψ is given in NS fig. A5.5.2, (input parameter CB), L =
member length for lateral buckling (input parameter UNL), Cw and Ix , see section
5. For single symmetric cross sections, the ideal lateral buckling moment is
π 2 EI y 5a rx
5a r
M vix = φ ⋅
( 2 + − ys ) 2 + C 2 − ( 2 + x − ys ) where
2
L
π
π
3
3
2
C + 0,039 L I T
C2 = w
and a is distance from profile CoG to point where the load
Iy
is acting, assumed to be on top flange. The φ parameter (ref NS fig. A5.5.2.g) is
controlled by the input parameter CB.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
11
12
STAAD.Pro / NS3472 / NPD
3.4
Stability check of pipe members
The stability criteria applied for members with pipe cross section is:
2
2










N
Mz
My


+ 
IR =
+
 ≤ 1.0

N kd


N 
N 

 M d  1 −
 
 M d  1 − N  
N Ezd  



Eyd  

where
 N
N 
N

= max of 
,
N kd
 N kzd N kyd 
M z and M y is given in NS 5.4.2.
For the print output option TRACK 9.0 KE ≡ 1.0 and Mvd ≡ Md
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
13
3.5
Angle profiles type RA (reverse angle)
The axial contribution to the total interaction ratio is checked according to the modified
EECS-method, see NS A5.4.
The stability criterion is:
N
+
N kd
IR =
My

M yd  1 −

N
= max of
N kd


N Eyd 
+
N
Mz

M zd  1 −



N Ezd 
≤ 10
.
N
 N
N 


,
 N kzd N kyd 
N kyd and Nkzd are found from NS 3472 fig. 5.4.la C-curve
for y- and z-axis respectively.
λ
eff
= 0.60 + 0.57λ
for λ ≤ 2
λ
eff
=λ
for λ >
λ=
λk
π
λk =
lk
i
i=
I
A
2
fy
E
Possible lateral buckling effects and torsional buckling (NS A5.4.5) is not included in the
code check. This has to be evaluated by the user separately.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
14
STAAD.Pro / NS3472 / NPD
3.6
Stability check of members with tapered section
Stability of members with tapered cross section is calculated as described in section 3.1.
The cross section properties used in the formulae are calculated based on the average
profile height. (I.e. Iz, Iy values are taken from the middle of the member.)
3.7
Lateral buckling for tension members
When compressive stress caused by large bending moment about strong axis is greater than
tension stress from axial tension force, lateral buckling is considered as defined below.
σa =
N
A
σbz =
+ Mz
Wz
(+ tension , - compression)
for σa + σb ≥ 0 (tension)
Mwarp = 0
Mwarp =  σa + σbz  Wz for σa + σb < 0 (compression)
IR =
M warp
M vd
+
M y ,max
M yd
CLAUDE
≤ 10
.
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
4
15
Stability check according to NPD
4.1
Buckling of pipe members
Tubular beam-columns subjected to compression and lateral loading or end moments shall
be designed in accordance with NPD 3.2.2
σ cγ mk + Βσ b * +
(B σ ) + (B σ )
2
z
bz
y
by
2
≤
fy
γm
where
σc =
γmk
N
= axial compressive stress
A
= structural coefficient
1
1− µ
B
= bending amplification factor =
Bz
By
B is the larger of Bz and By
= bending amplification factor about the Z-axis
= bending amplification factor about the Y-axis
µ=
σc
fE
π 2E 2
fE = 2 i
lk
i=
I
A
lk = kl
k = effective length factor
 fy

f 
σ b * = σ c  − 1  1 − k 
 fk
 γ m fE 
fk = characteristic buckling capacity according to NS fig. 5.4.1a, curve A.
4.1.1 Interaction with local buckling, NPD 3.2.3
If the below conditions are not satisfied, the yield strength will be replaced with
characteristic buckling stress given in NPD 3.4.
a) members subjected to axial compression and external pressure
d
E
≤ 0,5
t
fy
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
16
STAAD.Pro / NS3472 / NPD
b) members subjected to axial compression only
d
E
≤ 0,1
t
fy
4.2
Calculation of buckling resistance of cylinders
The characteristic buckling resistance is defined in accordance with NPD 3.4.4
fy
fk =
1+ λ
4
where
2
λ =
σj =
f y  σ ao σb 0 σ p 0
τ 
+
+
+


σ j  f ea f eb f ep f eτ 
(σ
+ σ b ) − (σ a + σ b )σ p + σ p 2 + 3τ 2
2
a
 0
σa 0 = 
− σ a
σa ≥ 0
σ a 〈0
 0
σb0 = 
− σ b
σb ≥ 0
σ b 〈0
σ p0 =
σp ≥ 0
σ p 〈0
0
σp
σa = design axial stress in the shell due to axial forces (tension positive)
σb = design bending stress in the shell due to global bending moment (tension
positive)
σp = σΘ = design circumferential stress in the shell due to external pressure (tension
positive)
τ = design shear stress in the shell due to torsional moments and shear force.
fea, feb, fep and feι are the elastic buckling resistances of curved panels or circular
cylindrical shells subjected to axial compression forces, global bending moments,
lateral pressure, and torsional moments and/or shear forces respectively.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
17
4.3
Elastic buckling resistance for un-stiffened, closed cylinders
The elastic buckling resistance for un-stiffened closed cylinders according to NPD 3.4.6 is:
π 2E  t 
fe = k
 
12(1 − v 2 )  l 
2
where k is a buckling coefficient dependent on loading condition, aspect ratio, curvature,
boundary conditions, and geometrical imperfections. The buckling coefficient is:
 pξ 
k = ψ 1+  
ψ 
2
The values of ψ, ζ and p are given in Table 4.1 for the most important loading cases.
Table 4.1 Buckling coefficients for un-stiffened cylindrical shells
p
ψ
ζ
−0 ,5
Axial stress
1
0,702 Z
r 

0,5 1 +

 150t 
−0 ,5
Bending
1
0,702Z
r 

0,5 1 +


300t 
3/4
Torsion and shear force
5,34
0,856Z
0,6
0,6
Lateral pressure
4
1,04 Z
0,6
Hydrostatic pressure
2
1,04 Z
The curvature parameter is defined by
12
Ζ=
1 − v2
rt
For long shells the elastic buckling resistance against shear stresses is independent of shell
1
r
length. For cases with 〉3,85
the elastic buckling resistance may be taken as:
r
t
f eτ
 t
= 0,25Ε  
 r
3/ 2
For long shells and pressure vessels, the elastic buckling resistance against uniform lateral
pressure is independent of length.
l
r
For cases with 〉2,25 , the elastic buckling resistance may be taken as:
r
t
2
 t
f ep = 0,25Ε  
 r
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
18
STAAD.Pro / NS3472 / NPD
4.4
Stability requirements
The stability requirement for curved panels and un-stiffened cylindrical shells subjected to
axial compression or tension, bending, circumferential compression or tension, torsion or
shear is given by NPD 3.4.7:
σj ≤ fkd
where the design buckling resistance is
f kd =
fk
γ m⋅γ mk
4.5
Column buckling, NPD 3.4.9
For long cylindrical shells it is possible that interaction between shell buckling and overall
column buckling may occur because second-order effects of axial compression alter the
stress distribution as compared to that calculated from linear theory. It is necessary to take
this effect into account in the shell buckling analysis when the reduced slenderness of the
cylinder as a column exceeds 0,2 according to NPD 3.4.4.1.
σb shall be increased by an additional compressive stress which may be taken as:
 fy 
f 
∆σ = Βσ a  − 1  1 − k  + ( Β − 1)σ b
fe 
 fk

where
Β=
λ=
1
1− µ
fy
fe
π 2Ε
fe = 2
λ
λ = slenderness of the cylinder as a column.
B, σa, σb and µ are calculated in accordance with NPD 3.2.2.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
5
19
Yield check
The yield check is performed at member ends and at 11equally spaced intermediate
sections along the member length.
At each section the following forces are applied:
Fx max. axial force along member
Fy actual shear in local y-direction at section
Fz actual shear in local z-direction at section
Mx max. torsional moment along member
My actual bending about local y-axis at section
Mz actual bending about local z-axis at section
For all profiles other than angle sections absolute values of the stresses are used. For
double symmetric profiles there will always be one stresspoint.
The stresses are calculated in several stress points at each member section. At each stress
point the von Mises stress is checked as follows:
fy
γm
where σtot =σx +σby+σbz and σp stress from hydrostatic pressure
σj =
(
σtot 2 + σ p 2 − σ tot ⋅ σ p + 3 τ x + τ y + τ z
CLAUDE
)
2
≤
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
20
STAAD.Pro / NS3472 / NPD
5.1
Double symmetric wide flange profile
The von Mises stress is checked at 4 stress points as shown in figure below.
y
2
1
3
dA
h
z
4
1
h
2
h
s
t
b
Section properties
Ax , Ix , Iy and Iz are taken from STAAD.Pro database
Ay = h ⋅ s
2
Az = b ⋅ t ⋅ 2
3
Cw =
(h − t ) 2 b 3t
24
Applied in STAAD.Pro print option PRINT MEMBER STRESSES
Fy
F
τy =
,τ z = Z
Ay
Az
Ay and Az are not used in the code check
ref. NS app. C3
Ty = dA⋅z
Tz = dA⋅y
General stress calculation
σ = σx + σby + σbz =
τ = τx + τy + τz =
CLAUDE
Fx M y
M
z+ z y
+
Ax
Iy
Iz
V y Tz Vz Ty
Mx
c+
+
Ix
Izt
I yt
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
21
Stress calculation at selected stress points
Point
no.
1
2
3
4
σx
σ by
Fx
Ax
Fx
Ax
My b
⋅
Iy 2
Mz h
⋅
Iz 2
Mx t
Ix
0
Mz h
⋅
Iz 2
Mx t
Ix
Fy
Fx
Ax
Fx
Ax
0
Mz
h1
IZ
Mx s
Ix
Fy
0
Mx s
Ix
0
σ bz
τx
τy
τz
0
0
Iz
Iz
Fy
(bth
Iz
2
bth2
2t
Fz tb 2
I y 8t
bth2
s
0
+ 0.5h12 s)
0
s
In general wide flange profiles are not suitable for large torsional moments. The reported
torsional stresses are indicative only. For members with major torsional stresses a separate
evaluation has to be carried out. Actual torsional stress distribution is largely dependent on
surface curvature at stress point and warping resistance.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
22
STAAD.Pro / NS3472 / NPD
5.2
Single symmetric wide flange profile and tapered section
The von Mises stress is checked at 9 stress points as shown in figure below.
y
b
t
3
1
2
4
dA
h
1
h
2
z
h
5
h
s
6
8
9
3
h
4
t1
7
b1
Section properties
Ax , Ix , Iy and Iz are taken from STAAD.Pro database, except for tapered sections where
these values are calculated for each section checked. (I.e. Iz, Iy values are taken from the
middle of the member.)
Ay = h ⋅ s
Applied in STAAD.Pro print option PRINT MEMBER STRESSES
Fy
2
F
Az = (b ⋅ t + b1 ⋅ t1 )
τy =
,τ z = Z
3
Ay
Az
Ay and Az are not used in the code check
b t ⋅ b t ⋅ ( h − t / 2 − t1 / 2) 2
ref. NS app. C3
Cw =
12(b 3 t + b13 t 1 )
3
3
1 1
Ty = dA⋅z
Tz = dA⋅y
General stress calculation
σ = σx + σby + σbz =
τ = τx + τy + τz =
CLAUDE
Fx M y
M
z+ z y
+
Iz
Ax
Iy
V y Tz Vz Ty
Mx
c+
+
Ix
Izt
I yt
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
23
Stress calculation at selected stress points
Point
no.
1
2
3
4
5
6
7
8
9
σx
Fx
Ax
Fx
Ax
Fx
Ax
Fx
Ax
Fx
Ax
Fx
Ax
Fx
Ax
Fx
Ax
Fx
Ax
-
σ by
σ bz
τx
τy
τz
My b
Iy 2
Mz
h2
Iz
Mx
t
Ix
0
0
0
Mz
h2
Iz
Mx
t
Ix
My b
Iy 2
Mz
h2
Iz
Mx
t
Ix
0
0
0
Mz
h1
IZ
Mx
s
Ix
Fy bt (h1 + t / 2)
s
Iz
0
0
0
Mx
s
Ix
Iz
bt ( h1 + t / 2)
2t
Fy
(bt (h +t/2)+05h s)
Iz
s
1
Fz tb 2
I y 8t
2
1
0
Mz
h3
IZ
Mx
s
Ix
Fy b1t1 (h3 + t1 / 2)
s
Iz
0
M y b1
Iy 2
- M z h4
Iz
Mx
t
Ix 1
0
0
0
- M z h4
Iz
Mx
t
Ix 1
- M z h4
Iz
Mx
t
Ix 1
0
-
Fy
M y b1
Iy 2
-
Fy
Iz
b1t1 (h3 + t1 / 2)
2 t1
0
Fz t1b 2
I y 8t1
0
In general wide flange profiles are not suitable for large torsional moments. The reported
torsional stresses are indicative only. For members with major torsional stresses a separate
evaluation has to be carried out. Actual torsional stress distribution is largely dependent on
surface curvature at stress point and warping resistance.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
24
STAAD.Pro / NS3472 / NPD
5.3
Pipe profile
The von Mises stress is checked in 3 stress points as shown in figure below.
y
2
3
t
r
1
z
d
D
Section properties
d = D - 2t
r = 0.5 ( D-t )
α = tan-1
Ax =
π
4
Mz
My
(D2-d2)
Ay = Az = 0.5Ax
Ix = 2Iz =
π
(D4-d4)
32
Iy = Iz =
π
(D4-d4)
64
Note!
In the STAAD.Pro analysis package slightly different values are used for Ay , Az and Ix ,
however this has insignificant influence on the force distribution.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
AY
= Az
Ix
=
25
= 0.6Ax
2πR3t
Stress calculation at selected stress points
Point
no.
1
σx
Fx
Ax
My
2
Fx
Ax
Fx
Ax
0
3
σby
Iy
⋅r
σb =
CLAUDE
σbz
τx
τy
0
MT
⋅r
Ix
Fy
Mz
⋅r
Iz
MT
⋅r
Ix
M y2 + M z2
Iz
r
τz
0
0.5 Ax
MT
⋅r
Ix
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
0
τ=
Fz
0.5 Ax
Fy2 + Fz2
0.5 Ax
26
STAAD.Pro / NS3472 / NPD
5.4
Tube profile
Tube sections are rectangular or quadratic hollow uniform profiles. Critical stress is
checked at 5 locations as shown in figure below.
y
4 3
5
2
h
1
h
2
1
h
z
t
b1
b2
b
Section properties
Ax , Ix , Iy and Iz are taken from STAAD.Pro database.
Ay = 2ht
Az = 2⋅
2
bt
3
Similar as for wide flange profiles, see sec. 5.2
Ay and AZ are not used in code checks.
b 2 h 2 t ( h − b)
Cw =
24 ( h + b)
2
ref. NS app. C3.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
27
Stress calculation at selected stress points
Point no.
1
2
3
4
5
σx
σby
Fx
Ax
My
Fx
Ax
My
Fx
Ax
My
Fx
Ax
My
Fx
Ax
Iy
Iy
Iy
Iy
b2
σbz
τx
(
0
Mx h − t
)(b − t )
I x (h + b − 2t )
b2
Mz
Iz
b2
Mz
Iz
h2
b1
Mz
Iz
h2
Mz
Iz
h2
0
τy
h1
(
Mx h − t
2
Fy bth2 + th1
Iz
)(b − t )
I x (h + b − 2t )
(
Mx h − t
)(b − t )
I x (h + b − 2t )
(
Mx h − t
)(b − t )
I x (h + b − 2t )
(
Mx h − t
)(b − t )
Fy
Iz
2t
bth2
2t
Fy 2b2 th2
2t
Iz
Fy 2b1th2
2t
Iz
0
I x (h + b − 2t )
The general stress formulation is given in sec. 5.2.
CLAUDE
τz
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
0
Fz 2h1tb2
2t
Iy
Fz 2h2 tb2
2t
Iy
Fz htb2
I y 2t
Fz htb2 + tb12
2t
Iy
28
STAAD.Pro / NS3472 / NPD
5.5
Channel profile
For channel profiles the von Mises stress is checked at 6 locations as shown in figure
below.
y
4 3
2
1
t
5
h
h
2
1
z
6
h
s
b1
b
2
e
b
Cross section properties
Ax , Sy , Sz , Ix , Iy and Iz are taken from STAAD.Pro database.
Ay = 2ht
Similar as for wide flange profiles,
see sec. 5.2
2
Az = 2 ⋅ bt
3
Iy
e = bSy
x = h-t
y = b-
Cw =
Ay and Az are not used in code checks
s
2
(
)
ref. [4] tab. 21, case 1
( xs + 6 yt )
2 3
x y t 2 xs + 3 yt
12
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
29
Stress calculations at selected stress points.
Point no.
σx
1
Fx
Ax
2
3
4
5
6
σby
My
σbz
(b-e)
Iy
0
Fx
Ax
Fx
Ax
My
Fx
Ax
My
Iy
Iy
Fx
Ax
My
Fx
Ax
My
Iy
Iy
b1
b2
b2
b2
τx
Mz
Iz
h2
Mx
Ix
t
Mz
Iz
h2
Mx
Ix
t
Mz
Iz
h2
Mx
Ix
t
Mz
Iz
h2
Mx
Ix
t
Mz
Iz
0
h1
Mx
Ix
Mx
Ix
0
0
(b − e)t ⋅ h2
Iz
t
Fy
(b − s)th2
Iz
t
Fz
Iy
Fz
Iy
Fy
(b − 0.5s)th2
Iz
t
Fy
Iz
Fy
Iz
The general stress formulation is given in sec. 5.2.
CLAUDE
τz
Fy
s
s
τy
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
Fz
Iy
bth2
s
bth2 + 0.5sh
s
2
t
(b − S )t{0.5(b + s) − e}
t
 5   s  
 b −  t 0.5 b +  − e 
 2   2 
t
Fz
Iy
2
1
0.5(b − e) t
b 
bt  − e
2 
s
0
30
STAAD.Pro / NS3472 / NPD
5.6
Angle profile type RA (reverse angle)
For angle profiles the von Mises check is checked at 8 stress points as shown in figure
below.
k
y
i
t
7
Z7
Y7
Z8
Mz
Z5
h
h
e
1
6
Y6
CoG
Y1
w
5
Y2
Y3
Y5
8
d
z
t
Y4
4
2 Z3 3
1
g
j
Shear
centre
b
Z1
Z4
u
My
Axes y and z are principal axes.
Axes u and w are local axes.
Cross section properties
Ax , Ix , Iy and Iz are taken from STAAD.Pro database
Ay =
2
ht
3
Applied in STAAD.Pro print option PRINT MEMBER STRESSES
Az =
2
bt
3
τy =
h2
=
Fx
F
,τ z = z
Ay
Az
and AZ are not used in the code check.
0.5 h1 + t
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
f
=
h1-e
d
=
th1h2 + 0.5t 2b
Ax
g
=
t 2 h1 + tb 2
2 Ax
Iu
=
h1t 3
tb 3
b

+ htk 2 +
+ tb − g
2

12
12
Iw
=
th13
bt 3
2
2
+ h1t ( h2 − d ) +
+ bt ( d − 0.5t )
12
12
Iuw
=
α
=
2
1

d − t

kt 2
2
g2 − j2 −
e −f
2
2
(
)
(
2
)
 2I uw 
0.5 tan-1 

 Iu − Iw 
Section forces
The section forces from the STAAD.Pro analysis are about the principle axis y and z.
The second moment of area (Ty Λ TZ):
Ty = A Z
Tz = A Y
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
31
32
STAAD.Pro / NS3472 / NPD
Stress calculation at selected stress points
Point no.
σx
1
Fx
Ax
2
3
4
5
6
7
8
σby
M y Z1
−
Iy
Fx
Ax
0
Fx
Ax
My Z3
Iy
My Z4
Fx
Ax
Iy
Fx
Ax
M y Z5
Fx
Ax
0
Fx
Ax
Fx
Ax
Iy
−
My Z7
Iy
M y Z8
Iy
σbz
τx
τy
τw
−
M z Y1
Iz
Mx
t
Ix
0
0
−
M z Y2
Iz
Mx
t
Ix
Fy Tz
Fz Ty
−
MzY3
Iz
Mx
t
Ix
Izt
Fy Tz
I yt
Fz Ty
−
MzY4
Iz
Mx
t
Ix
Izt
Fy Tz
I yt
Fz Ty
Izt
Fy Tz
I yt
Fz Ty
Izt
Fy Tz
I yt
Fz Ty
Izt
Fy Tz
I yt
Fz Ty
Izt
I yt
0
0
M z Y5
Iz
Mx
t
Ix
MzY6
Iz
Mx
t
Ix
MzY7
Iz
Mx
t
Ix
0
Mx
t
Ix
An additional torsional moment is calculated based on:
MT = Fy Z4
MT = Fz Y4
This torsion moment is included in Mx if Fy and FZ exist.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
33
Beta-rotation of equal & unequal legged angles
(Note: the order of the joint numbers in the member incidence command specifies the
direction of the local x-axis.)
y
w
Local coordinates
α
z
Y
u
Y
ß=270°-α
Z
360°-α
180°-α
ß=270°-α
360°-α
90°-α
90°-α
180°-α
Z
X
ß= 180°-α
Y
Z
90°-α
360°-α
ß=270°-α
X
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
X
34
STAAD.Pro / NS3472 / NPD
5.7
Rectangular massive box (prismatic)
Code check of the general purpose prismatic cross section defined in the STAAD.Pro
analysis package is not available. The prismatic section is assumed to be a rectangular
massive box and the von Mises stress is checked at 3 locations as shown in figure below.
y
3
1
2
h
z
Note that ‘b’ may not be
much greater than ‘h’.
If that is the case, define
the member with h>b and
o
Beta angle 90 instead.
b
Section properties
Ax , Ay , Az , Ix , Iy , Iz , b and h are given by the user, see STAAD.Pro Reference
Manual, sec. 5.19.2
(b = ZD , h = YD)
Cw =
1 b (h − b)
24 2
h+b
2
2 2
h b
ref. NS app. C3.
General stress calculation
σ = σx + σby + σbz =
Fx M y
M
+
z+ z y
Ax
Iy
Iz
2
V
V
c
τ = τx + τy + τz = τx,max   + y + z
 b
Ay Az
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
τx,max =
(
M x 1.5h + 0.9b
2 2
o.5h b
35
)
ref. [4] tab. 20, case 4 at midpoint the largest side i.e. point 2
Stress calculation at selected stress points
Point no.
σx
My
1
Fx
Ax
My
2
Fx
Ax
3
Fx
Ax
CLAUDE
σby
σbz
b
2
Iy
Mz
Iz
0
h
2
τ x ,max
b
b
2
τy
τz
0
0
2
+ h
2
Fy
b
2
Iy
τx
0
Mz
Iz
τ x,max
h
2
τx,max
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
b
h
Ay
0
0
Fz
Az
2
2
36
6
STAAD.Pro / NS3472 / NPD
Tubular joint check, NPD 3.5
For pipe members, punching shear capacity is checked in accordance with the NPD
sections 3.5.1 to 3.5.2, except 3.5.2.4. The chord is defined as the member with the greater
diameter in the joint. If the diameters are the same the programme selects the member with
the greater thickness of the two. The chord members must be collinear by 5 degrees.
The punching shear run sequence is performed in two steps. The programme will first
identify all tubular joints and classify them as T type joints (TRACK99). The joints to be
checked will be listed in a file specified in the CODE NPD parameter list, below called
GEOM1. This file is used as input in the second run. The file is an editable ACSII file
saved under the file name given in the CODE NPD parameter. The TRACK parameter is
then set to 98 which directs the program to read from the file GEOM1 file and use it as
input to the second run, i.e. the joint capacity checking. The programme will check the
capacity for both chord members entering the joint. The local y and z moments will be
transformed into the plane defined by the joint itself and the far end joints of the brace and
chord, defined as in- and out-of plane moments.
The ASCII file should be edited to reflect the correct classification of the joints, gap, can or
stub dimensions, yield stress and other geometric options if required. The programme will
not change the brace or chord definition if this is changed or modified in the input file
GEOM1. See Appendix A page xx for GEOM1 example file.
Joint classification parameters in the file GEOM1 are:
KO
KG
TY
X
K joint overlapped
K joint with gap
T or Y joint
X joint
Input example for the classification run.
*CLASSIFICATION OF JOINTS, TRACK 99
UNITS MM NEWTON
PARAMETER
CODE NPD GEOM1
FYLD 350 ALL
TRACK 99 ALL
BEAM 1.0 ALL
CHECK CODE ALL
6.1
Static strength of tubular joints
The basic consideration is the chord strength. The required chord wall thickness shall be
determined when the other dimensions are given.
The following symbols are used:
T
t
R
r
Θ
D
= Cord wall thickness
= Brace wall thickness
= Outer radius of chord
= Outer radius of brace
= Angle between chord and considered brace
= Outer diameter of chord
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
37
d
a
= Outer diameter of brace
= Gap (clear distance) between considered brace and nearest load-carrying brace
measured along chord outer surface
ß
= r/R
γ
= R/T
g
= a/D
= Yield stress
fy
= Factor
Qf
Qg = See table 6.1
Qu = See table 6.1
Qßd = See table 6.1
N
= Design axial force in brace
MIP = Design in-plane bending moment in brace
MOP = Design out-of plane bending moment in brace
Nk = Characteristic axial load capacity of brace (as governed by the chord strength)
MOPk = Characteristic out-of-plane bending moment capacity of brace (as governed by the
chord strength)
σax = Design axial stress in chord
σIP = Design in-plane bending stress in chord
σOP = Design out-of-plane bending stress in chord
This section gives design formulae for simple tubular joints without overlap and without
gussets, diaphragms or stiffeners. Tubular joints in a space frame structure shall satisfy:
N≤
Nk
γm
where
N k = Qu Qf
f yT 2
sinΘ
Qu is given in Table 6.1. Qf is a factor to account for the nominal longitudinal stress in the
chord.
Qf = 1,0 − 0,03γA2 where
A2 =
σ ax 2 + σ IP 2 + σ OP 2
0,64 f y 2
Table 6.1 Values for Qu
Type of joint and geometry
T and Y
X
Axial
2,5+19ß
(2,7+13ß)Qß
K
0,90(2+21ß)Qg
CLAUDE
Type of load in brace member
In-plane bending
Out-of-plane bending
5,0 γ β
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
3.2
1 − 0.81β
38
Qβ =
STAAD.Pro / NS3472 / NPD
0,3
for ß > 0,6
β (1 − 0,833β )
Qβ = 1,0
for ß ≤ 0,6
Qg = 1,8 − 0,1a / T
for γ ≤ 20
Qg = 1,8 − 4 g
for γ > 20
but in no case shall Qg be taken as less than 1,0.
When β ≥ 0,9, Qf is set to 1,0. This is also applicable for moment loading. For cases with
tension in the chord, Qf is set to 1.0. This is also applicable for moment loading.
The brace end moments shall be accounted for in the following cases:
a) Out-of-plane bending moment when β > 0,85
b) When the brace acts as a cantilever
c) When the rotational stiffness of the connection is considered in the determination of
effective buckling length, and / or the structural coefficient γmk = 1.00 for the beamcolumn design of the brace or chord. See Section 3.1.3.
The characteristic capacity of the brace subjected to in-plane bending moment shall be
determined by:
Μ IPk = Qu Qf
Qf
df y T 2
sin Θ
where Qu is given in Table 6.1 and
= 1,0 - 0,045γA2
The characteristic capacity of the brace subjected to out-of-plane bending moment shall be
determined by:
Μ OPk = Qu Qf
df y T 2
sin Θ
where Qu is given in Table 6.1 and
Qf = 1,0 - 0,021γA2
For combined axial and bending loads in the brace, the following interaction equation
should be satisfied:
2
Ν  Μ IP 
Μ
1
 + OP ≤
+
Ν k  Μ IPk 
Μ OPk γ m
For overlapping tubular joints without gussets, diaphragms, or stiffeners, the total load
component normal to the chord, NN, shall not exceed
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
ΝN =
39
2 f y t w l2
Ν k l1
sin Θ +
γm l
3γ m
where (see NPD fig. 3.10)
ll
l
Nk
tw
l2
= circumference for that portion of the brace in contact with the chord
(actual length)
= circumference of brace contact with chord, neglecting presence of
overlap
= characteristic axial load capacity of brace
= the lesser of the throat thickness of the overlapping weld or the thickness t of the
thinner brace
= length as shown in NPD fig. 3.10
The above formula for the capacity of overlapping joints is valid only for K joints, where
compression in a brace is essentially balanced by tension in brace(s) in the same side of the
joint.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
40
7
STAAD.Pro / NS3472 / NPD
Tabulated results / TRACKs
This section presents a table with the various TRACKs available with respect to print out
from the code check. Example prints and explanation to the information / heading given on
the print out is given in Appendix A.
Table 7.1 Available TRACKs
TRACK no.
0
1
2
3
9
99
98
49
31
32
Description
Brief print of member utilizations (2 lines for each member) sorted with
highest utilized members first
Based on TRACK 3 with additional information regarding stability factors
and capacities
Simple print of stresses, incl von Mises stress
Brief print of member utilizations (2 lines for each member)
Comprehensive print with detailed information about member and member
utilization(one page for each member)
Used in connection with tubular joint check according to NPD. This
TRACK identifies tubular joints to be checked and classifies all members
entering the joint as T connection
Used in connection with tubular joint check according to NPD. This
TRACK performs the joint capacity check
Prints member end forces for members entering each joint (at the end of
the member connected to the joint)
Prints maximum and minimum member end forces (axial force defines
max and min) at member end 1
Prints maximum and minimum member end forces (axial force defines
max and min) at member end 2
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
Appendix A
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
41
42
STAAD.Pro / NS3472 / NPD
Tracks for member code checking
TRACK = 0.0
NS3472 (VERSION 96016.00)
UNITS ARE KNS AND
METE
MEMB
FX
MYs
MYm
MYe
MYb
RATIO LOAD
TABLE
MZs
MZm
MZe
MZb
COND
DIST
===============================================================================
21
154.18 C
1.8
.5
.7
.8
1.00
11
FAIL PIP 300X10
-185.5
-98.5
10.3
116.0
VMIS
.00
84
.28 T
-211.1
313.7
191.6
311.7
1.00
11
TUBRHSBEAM
-764.7
-1666.4
777.1
1666.4
VMIS
.57
99
783.66 C
.4
.2
.0
.2
.92
11
PRISHANGOFF
2480.6
1240.8
.0
1488.8
STAB
.00
111
299.78 T
-13.2
-17.5
21.8
18.4
.86
11
PIP 600X15
-426.9
262.5
-951.8
400.3
VMIS 3.46
125
310.50 T
-21.8
-24.3
26.9
24.8
.82
11
PIP 600X30
951.8
1350.4
-1749.0
1430.1
VMIS 2.00
133
2690.57 C
.0
5.4
-10.8
6.5
.74
11
PIP 600X30
.0
589.8
-1179.7
707.8
VMIS 1.15
31
164.29 C
.8
-.6
1.9
.8
.71
11
PIP 300X10
13.0
71.3
-128.6
82.9
VMIS 2.17
123
699.97 C
-7.6
-6.5
5.4
6.7
.62
11
PIP 600X15
-618.4
-541.7
465.0
557.0
VMIS
.00
SYMBOL
MEMB
FX
MYs
MYm
MYe
MYb
RATIO
LOAD
TABLE
MZs
MZm
MZe
MZb
COND
DIST
DESCRIPTION TRACK 0.0
-
Member number
Axial force in the member (T= tension, C=compression)
Start moment about y-axis
Mid moment about y-axis
End moment about y-axis
Buckling moment about y-axis
Interaction ratio
The critical load case number
Section type (HE, IPE, TUBE etc.)
Start moment about z-axis
Mid moment about z-axis
End moment about z-axis
Buckling moment about z-axis
Critical condition
Distance from the start of the member to the critical section
NB! Myb and Mzb are the design moments used for max unity ratio.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
UNIT
kN
kNm
kNm
kNm
kNm
kNm
kNm
kNm
kNm
m
STAAD.Pro / NS3472 / NPD
43
TRACK = 1.0
NS3472 (VERSION 96016.00)
UNITS ARE KNS AND
METE
MEMB
FX
MYs
MYm
MYe
MYb
RATIO LOAD
TABLE
MZs
MZm
MZe
MZb
COND
DIST
===============================================================================
111
299.78 T
-13.2
-17.5
21.8
18.4
.86
11
PIP 600X15
-426.9
262.5
-951.8
400.3
VMIS 3.46
|-------------------------------------------------------------------------|
| CURVE St A Wk A Beta Z
.80
Beta Y
.80
FYLD= 345. N/MM2 |
| NKYD=.827E+4 KN
NKZD=.827E+4 KN
NEYD=.271E+6 KN
NEZD=.271E+6 KN
|
| MYD =.118E+4 KNM MZD =.118E+4 KNM MVD =.118E+4 KNM LAMBDA=
13.37
|
| STRONG IR = .000 WEAK IR = .000
VON MISES = .860 LATBUCK= .786
|
|-------------------------------------------------------------------------|
112
377.68 T
-13.8
-11.8
9.8
12.2
.28
13
PIP 600X15
224.1
-17.7
259.5
103.8
VMIS 2.83
|-------------------------------------------------------------------------|
| CURVE St A Wk A Beta Z
.80
Beta Y
.80
FYLD= 345. N/MM2 |
| NKYD=.827E+4 KN
NKZD=.827E+4 KN
NEYD=.405E+6 KN
NEZD=.405E+6 KN
|
| MYD =.118E+4 KNM MZD =.118E+4 KNM MVD =.118E+4 KNM LAMBDA=
10.94
|
| STRONG IR = .000 WEAK IR = .000
VON MISES = .276 LATBUCK= .185
|
|-------------------------------------------------------------------------|
113
11.61 T
-18.4
-16.4
14.3
16.8
.27
11
PIP 600X15
-43.3
132.9
-309.1
168.2
LATB 3.46
|-------------------------------------------------------------------------|
| CURVE St A Wk A Beta Z
.80
Beta Y
.80
FYLD= 345. N/MM2 |
| NKYD=.827E+4 KN
NKZD=.827E+4 KN
NEYD=.271E+6 KN
NEZD=.271E+6 KN
|
| MYD =.118E+4 KNM MZD =.118E+4 KNM MVD =.118E+4 KNM LAMBDA=
13.37
|
| STRONG IR = .000 WEAK IR = .000
VON MISES = .267 LATBUCK= .275
|
|-------------------------------------------------------------------------|
114
366.02 C
-13.2
-11.3
9.3
11.6
.45
11
PIP 600X15
-224.8
120.9
-466.5
190.0
VMIS 2.83
|-------------------------------------------------------------------------|
| CURVE St A Wk A Beta Z
.80
Beta Y
.80
FYLD= 345. N/MM2 |
| NKYD=.827E+4 KN
NKZD=.827E+4 KN
NEYD=.405E+6 KN
NEZD=.405E+6 KN
|
| MYD =.118E+4 KNM MZD =.118E+4 KNM MVD =.118E+4 KNM LAMBDA=
10.94
|
| STRONG IR = .206 WEAK IR = .206
VON MISES = .452 LATBUCK= .000
|
|-------------------------------------------------------------------------|
SYMBOL
DESCRIPTION TRACK 1.0
CURVE St
CURVE Wk
Beta Z
Beta Y
FYLD
NKYD
NKZD
NKD
NEYD
NEZD
MYD
MZD
MVD
LAMBDA
- Buckling curve about Strong axis
- Buckling curve about Weak axis
- Buckling length factor about z-axis
- Buckling length factor about y-axis
- Allowable yield strength
- Factored buckling strength/ resistance about y-axis
- Factored buckling strength/ resistance about z-axis
- Axial capacity
- Euler buckling resistance for compression members about y- axis
- Euler buckling resistance for compression members about z-axis
- Moment capacity about y-axis
- Moment capacity about z-axis
- Lateral buckling moment
STRONG IR
WEAK IR
VON MISES
LATBUCK
- Interaction Ratio for buckling about strong axis
- Interaction Ratio for buckling about weak axis
- Interaction Ratio for von Mises
- Interaction Ratio for lateral buckling
-
λ=
Lk
i
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
UNIT
N/mm2
kN
kN
kN
kN
kN
kNm
kNm
kNm
44
STAAD.Pro / NS3472 / NPD
TRACK = 2.0
NS3472 (VERSION 96016.00)
UNITS ARE mm AND
N
MEMB
Sx
Sby
Sbz
Stot
Spmx
Svm
LOAD
TABLE
Ty
Tz
Tto
Spmn
POINT
DIST
===============================================================================
111
10.87 T
242.0
.0
252.9
.0 257.90
11
PIP 600X15
28.9
.0
.3
.0
3
3.46
112
13.70 T
66.0
.0
79.7
.0
82.70
13
PIP 600X15
12.4
.0
.3
.0
3
2.83
113
.42 T
78.7
.0
79.1
.0
80.18
11
PIP 600X15
7.4
.0
.2
.0
3
3.46
114
13.28 C
118.6
.0
131.9
.0 135.52
11
PIP 600X15
17.7
.0
.3
.0
3
2.83
115
68.71 C
18.8
.0
87.5
.0
87.66
11
PIP 200X8
1.0
.0
2.3
.0
3
.00
116
66.13 T
37.9
.0
104.0
.0 105.91
11
PIP 200X8
1.1
.0
10.3
.0
3
5.13
117
63.29 T
47.5
.0
110.8
.0 110.84
11
PIP 200X8
1.7
.0
.4
.0
3
.00
118
85.64 C
39.8
.0
125.4
.0 125.43
11
PIP 200X8
1.2
.0
.2
.0
3
6.20
119
90.54 C
21.4
.0
111.9
.0 111.96
14
PIP 200X8
1.0
.0
.6
.0
3
.00
120
94.89 T
24.7
.0
119.6
.0 119.61
14
PIP 200X8
1.2
.0
.3
.0
3
5.23
121
79.98 C
43.7
.0
123.6
.0 123.68
11
PIP 200X8
1.3
.0
.2
.0
3
6.20
SYMBOL
MEMB
Sx
Sby
Sbz
Stot
Spmx
Spmn
Svm
Ty
Tz
Tto
TABLE
POINT
LOAD
DIST
DESCRIPTION TRACK 2.0
-
Member number
Axial stress in the member (T= tension, C=compression)
Stress from moment about y-axis
Stress from moment about z-axis
Sum of Sx + Sby + Sbz
Currently not in use
Currently not in use
von Mises stress
Stress from shear force in y direction
Stress from shear force in z direction
Total shear stress used in von Mises calculation
Section type (HE, IPE, TUBE etc.)
Location in cross section with max von Mises stress
Governing load condition
Distance from the start of the member to the critical section
UNIT
N/mm2
N/mm2
N/mm2
N/mm2
N/mm2
N/mm2
N/mm2
N/mm2
m
Note:
Do not use TRACK = 2.0 in connection with the SELECT OPTIMIZED or SELECT
MEMBER / ALL commands.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
45
TRACK = 3.0
NS3472 (VERSION 96016.00)
UNITS ARE KNS AND
METE
MEMB
FX
MYs
MYm
MYe
MYb
RATIO LOAD
TABLE
MZs
MZm
MZe
MZb
COND
DIST
===============================================================================
111
299.78 T
-13.2
-17.5
21.8
18.4
.86
11
PIP 600X15
-426.9
262.5
-951.8
400.3
VMIS 3.46
112
377.68 T
-13.8
-11.8
9.8
12.2
.28
13
PIP 600X15
224.1
-17.7
259.5
103.8
VMIS 2.83
113
11.61 T
-18.4
-16.4
14.3
16.8
.27
11
PIP 600X15
-43.3
132.9
-309.1
168.2
LATB 3.46
114
366.02 C
-13.2
-11.3
9.3
11.6
.45
11
PIP 600X15
-224.8
120.9
-466.5
190.0
VMIS 2.83
115
331.57 C
-4.1
.3
-2.0
1.7
.33
11
PIP 200X8
-.5
1.0
-2.5
1.3
STAB
.00
116
319.14 T
-1.9
-.6
-3.3
1.4
.35
11
PIP 200X8
-.4
3.7
-7.8
4.5
VMIS 5.13
117
305.44 T
.0
-.3
.5
.3
.37
11
PIP 200X8
10.6
-.8
9.9
5.3
VMIS
.00
118
413.31 C
.1
-.3
.6
.3
.50
11
PIP 200X8
4.4
-1.1
8.8
4.6
STAB 6.20
119
436.94 C
-4.5
.2
-2.1
1.9
.41
14
PIP 200X8
-1.6
.0
-1.7
.7
STAB
.00
120
457.92 T
-3.7
-.7
-5.1
2.0
.40
14
PIP 200X8
1.7
-.2
2.1
.8
VMIS 5.23
121
385.99 C
-.2
-.1
.0
.1
.48
11
PIP 200X8
6.0
-.8
9.7
5.0
STAB 6.20
SYMBOL
MEMB
FX
MYs
MYm
MYe
MYb
RATIO
LOAD
TABLE
MZs
MZm
MZe
MZb
COND
DIST
DESCRIPTION TRACK 3.0
-
Member number
Axial force in the member (T= tension, C=compression)
Start moment about y-axis
Mid moment about y-axis
End moment about y-axis
Buckling moment about y-axis
Interaction ratio
The critical load case number
Section type (HE, IPE, TUBE etc.)
Start moment about z-axis
Mid moment about z-axis
End moment about z-axis
Buckling moment about z-axis
Critical condition
Distance from the start of the member to the critical section
TRACK 3: Member results sorted by member number.
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
UNIT
kN
kNm
kNm
kNm
kNm
kNm
kNm
kNm
kNm
m
46
STAAD.Pro / NS3472 / NPD
TRACK = 9.0
Member in tension:
DETAILS FOR CODECHECK ACCORDING TO NS3472
(VERSION 96016.00)
MEMBER NO
:
111
MEMBER TYPE
: PIPE
SECTION PIP 600X15
GOVERING LOADCASE
:
11
MEMBER PROPERTY
--------------Ax
:
275.7
Ay
:
137.8
Az
:
137.8
Ix
: 236010.1
Iy
: 118005.0
Iz
: 118005.0
MATERIAL DATA
--------------E
:
204960.
Fy
:
344.966
FORCES
--------------Fx
:
299.78 T
Msz
:
-426.86
Mmz
:
262.48
Mez
:
-951.82
LATERAL BUCKLING
-------Mlatbuck:
670.43
Mvd
: 1179.90
IRtot
:
.786
YIELD CHECK
----------STRESS : NEW MMS
STRESS AT POINT :
3
sigax :
10.873
sigb
:
242.016
tau
:
28.914
tors
:
.305
sige
:
257.904
IR
:
.860
UNITS CM
iy
iz
Sy
Sz
Iw
Lw
:
:
:
:
:
:
20.7
20.7
3933.5
3933.5
.0
345.9
UNITS NEWTON MMS
Gamma :
1.150
Fd
:
299.970
UNITS KNEWTON METERS
Msy
Mmy
Mey
:
:
:
FORCES: KNEW METERS
FORCES AT SECTION
3.459
Fx
:
299.778 T
Fy
:
398.539
Fz
:
2.505
Mx
:
2.398
My
:
21.838
Mz
: -951.695
Governing interaction ratio
CLAUDE
-13.176
-17.508
21.840
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
.860
STAAD.Pro / NS3472 / NPD
47
Member in compression:
DETAILS FOR CODECHECK ACCORDING TO NS3472
(VERSION 96016.00)
MEMBER NO
:
114
MEMBER TYPE
: PIPE
SECTION PIP 600X15
GOVERING LOADCASE
:
11
MEMBER PROPERTY
--------------Ax
:
275.7
Ay
:
137.8
Az
:
137.8
Ix
: 236010.1
Iy
: 118005.0
Iz
: 118005.0
UNITS CM
iy
iz
Sy
Sz
Iw
Lw
MATERIAL DATA
--------------E
:
204960.
Fy
:
344.966
lamfy :
76.577
BUCKLING PARAMETERS
------------------STRONG AXIS
L
:
2.829
beta :
.800
lambda:
10.939
lambb :
.143
curve :
A
Fk/Fy :
1.000
Nkd
: 8269.398
NEd
:405254.700
Md
: 1179.903
KE
:
1.000
Factor:
.999
FORCES
--------------STRONG AXIS
Fx
:
366.025 C
Ms
: -224.840
Mm
:
120.851
Me
: -466.542
beta
:
-.482
m
:
.407
Mb
:
189.989
IRx
:
.044
IRm
:
.161
IRtot :
.206
YIELD CHECK
----------STRESS : NEW MMS
STRESS AT POINT :
sigax :
13.276
sigb
:
118.618
tau
:
17.729
tors
:
.260
sige
:
135.525
IR
:
.452
:
:
:
:
:
:
20.7
20.7
3933.5
3933.5
.0
282.9
UNITS NEWTON MMS
Gamma
:
1.150
Fd
:
299.970
Gamma mk:
1.000
UNITS KNEWTON METERS
WEAK AXIS
LATERAL BUCKLING
L
:
2.829
L
:
2.829
beta :
.800
ny
:
1.000
lambda:
10.939
n
:
1.500
lambb :
.143
Mvd
: 1179.903
curve :
A
Fk/Fy :
1.000
Nkd
: 8269.398
NEd
:405254.700
Md
: 1179.903
1/KE :
1.000
Factor:
.999
UNITS KNEWTON METERS
WEAK AXIS
Fx
:
Ms
:
Mm
:
Me
:
beta :
m
:
Mb
:
IRx
:
IRm
:
IRtot :
3
366.025 C
-13.205
-11.253
9.300
.704
.882
11.643
.044
.161
.206
FORCES: KNEW METERS
FORCES AT SECTION
2.829
Fx
:
366.025 C
Fy
:
244.366
Fz
:
-1.380
Mx
:
2.044
My
:
9.299
Mz
: -466.480
Governing interaction ratio
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
.452
48
STAAD.Pro / NS3472 / NPD
Member in compression (pipe - NPD):
DETAILS FOR CODECHECK ACCORDING TO NPD94
(VERSION 96016.00)
MEMBER NO
:
1
MEMBER TYPE
: PIPE
762x 19 mm
GOVERING LOADCASE
:
2
UNITS [properties: cm][stesses:new mms][forces:kn
-- PROPERTIES -D/t
:
40.0
Iy Iz : 306983.8
Ly
Ax
:
444.6
Sy Sz :
8057.3
Lz
Ay Az :
222.3
iy iz :
26.3
By
Ix
: 613967.7
Z
: 124263.4
Bz
-- MATERIAL -E
:
209979.
lamfy :
91.
Fy
Fd
:
:
366.
318.
me]
:
:
:
:
Gamma m :
Gamma mk:
-- SHELL BUCKLING --- Section npd 3.4.6.1 -fea :
2984.5 feb :
3076.4 fet :
528.2 fep :
-- Section npd 3.4.4.1 -La :
.350 Lb :
.345 Lt :
.632 Lp :
Ga :
1.047 Gb :
1.045 Gt :
1.135 Gp :
Fk :
365.952
-- Section npd 3.4.7 -Sigj:
278.7 SECT:
1.0 Irshell
.876
-- Section npd 3.4.9.2 -Bendingmoment stress in 3.4.4.1 increased by dsigb :
d/t
40.0 >
12.0 interaction npd 3.2.3 a
-- BEAM COLUMN BUCKLING --- Section npd 3.4.4.1 -La :
.350 Lb :
.345 Lt :
.632 Lp :
Ga :
1.047 Gb :
1.045 Gt :
1.135 Gp :
Fa :
249.6 Sect:
1.0
-- Section ns3472 5.4.1 -lbz :
67.872 lbbz:
.745 crvz: A
FkFy z:
lby :
78.404 lbby:
.860 crvy: A
FkFy y:
-- Section npd 3.2.2 -SIGa :
162.6
SIGby :
8.2
SIGbz :
fE
:
337.131
B
:
1.932
By
:
1.932
Bz
:
SIGb* :
26.3
SIGbuc:
266.4
Irb
:
-- Section npd 3.2.2.1 (ns3472 5.4.2) -z axis
y axis
Fx
: 7231.114 C
Fx
: 7231.114 C
Ms
:
-87.503
Ms
:
28.677
Mm
: -154.416
Mm
:
36.766
Me
: -297.803
Me
:
87.503
beta
:
-.294
beta :
-.328
m
:
.482
m
:
.469
Mb
:
259.566
Mb
:
66.179
-- Section npd 3.1.2 -Stress at point :
3
Forces at section 30.748
sigax :
162.614
Fx
: 7231.114 C
sigb
:
38.519
Fy
:
46.293
tau
:
2.156
Fz
:
12.386
tors
:
.000
Mx
:
.000
sigp
:
30.166
My
:
87.491
sige
:
187.912
Mz
: -297.764
Irj fy :
.590
HSpres:
1.508
Governing interaction ratio
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
1.227
3074.8
3074.8
.7
.6
1.150
1.000
131.2
1.670
1.250
91.430
1.670
1.250
.826
.759
32.2
1.566
1.227
STAAD.Pro / NS3472 / NPD
49
Tracks for joint capacity code checking
TRACK = 99
$JOINT
1020
1020
2010
2010
2000
2000
1020
1020
2000
2000
3010
3010
3010
3010
2000
2000
2010
2010
3000
3000
3010
3010
2210
2210
2210
2210
3200
3200
3200
3200
2200
2200
BRACE
1016
1016
1016
1016
1017
1017
1018
1018
2015
2015
2015
2015
3015
3015
2005
2005
2005
2005
3005
3005
3005
3005
1215
1215
2215
2215
2215
2215
3215
3215
2205
2205
CHORD
1015
1017
1010
2010
1000
2000
1015
1017
1000
2000
2010
3010
2010
3010
1000
2000
1010
2010
2000
3000
2010
3010
1210
2210
1210
2210
2200
3200
2200
3200
1200
2200
D
420.
420.
500.
500.
500.
500.
420.
420.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
500.
CLAUDE
T
15.
15.
20.
20.
20.
20.
15.
15.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
d
400.
400.
400.
400.
420.
420.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
400.
t
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
10.
10.
10.
10.
10.
10.
10.
10.
15.
15.
15.
15.
15.
15.
15.
15.
10.
10.
GAP
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
FYc
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
340.
FYb THETA
340. 90.
340. 90.
340. 45.
340. 45.
340. 45.
340. 45.
340. 90.
340. 90.
340. 40.
340. 40.
340. 40.
340. 40.
340. 40.
340. 40.
340. 90.
340. 90.
340. 90.
340. 90.
340. 90.
340. 90.
340. 90.
340. 90.
340. 45.
340. 45.
340. 40.
340. 40.
340. 40.
340. 40.
340. 40.
340. 40.
340. 90.
340. 90.
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
TW THETAT
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
JTYPE
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
TY
50
STAAD.Pro / NS3472 / NPD
TRACK = 98
NPD 94 TUBULAR JOINT CHECK (VERSION 96016.00)
UNITS ARE mm
JOINT
CHORD
Dc
Tc
BRACE
db
tb
TYPE LOAD
RATIO
===============================================================================
1020
1015
420.0
15.0
1016
400.0
15.0
TY
3
.143
1020
1017
420.0
15.0
1016
400.0
15.0
TY
3
.143
2010
1010
500.0
20.0
1016
400.0
15.0
TY
3
.049
2010
2010
500.0
20.0
1016
400.0
15.0
TY
3
.048
2000
1000
500.0
20.0
1017
420.0
15.0
TY
3
.548
2000
2000
500.0
20.0
1017
420.0
15.0
TY
3
.586
1020
1015
420.0
15.0
1018
400.0
15.0
TY
3
.099
1020
1017
420.0
15.0
1018
400.0
15.0
TY
3
.099
2000
1000
500.0
20.0
2015
400.0
15.0
TY
3
.450
2000
2000
500.0
20.0
2015
400.0
15.0
TY
3
.481
3010
2010
500.0
20.0
2015
400.0
15.0
TY
3
.527
3010
3010
500.0
20.0
2015
400.0
15.0
TY
3
.498
3010
2010
500.0
20.0
3015
400.0
15.0
TY
3
.338
3010
3010
500.0
20.0
3015
400.0
15.0
TY
3
.320
2000
1000
500.0
20.0
2005
400.0
10.0
TY
3
.107
2000
2000
500.0
20.0
2005
400.0
10.0
TY
3
.113
2010
1010
500.0
20.0
2005
400.0
10.0
TY
3
.177
2010
2010
500.0
20.0
2005
400.0
10.0
TY
3
.170
3000
2000
500.0
20.0
3005
400.0
10.0
TY
3
.168
3000
3000
500.0
20.0
3005
400.0
10.0
TY
3
.167
3010
2010
500.0
20.0
3005
400.0
10.0
TY
3
.183
3010
3010
500.0
20.0
3005
400.0
10.0
TY
3
.174
2210
1210
500.0
20.0
1215
400.0
15.0
TY
3
.945
2210
2210
500.0
20.0
1215
400.0
15.0
TY
3
.518
2210
1210
500.0
20.0
2215
400.0
15.0
TY
3
1.146
2210
2210
500.0
20.0
2215
400.0
15.0
TY
3
.617
3200
2200
500.0
20.0
2215
400.0
15.0
TY
3
.575
3200
3200
500.0
20.0
2215
400.0
15.0
TY
3
.579
3200
2200
500.0
20.0
3215
400.0
15.0
TY
3
.232
3200
3200
500.0
20.0
3215
400.0
15.0
TY
3
.234
2200
1200
500.0
20.0
2205
400.0
10.0
TY
3
.183
2200
2200
500.0
20.0
2205
400.0
10.0
TY
3
.177
2210
1210
500.0
20.0
2205
400.0
10.0
TY
3
1.402
2210
2210
500.0
20.0
2205
400.0
10.0
TY
3
.262
3200
2200
500.0
20.0
3205
400.0
10.0
TY
3
.210
3200
3200
500.0
20.0
3205
400.0
10.0
TY
3
.212
3210
2210
500.0
20.0
3205
400.0
10.0
TY
3
.223
3210
3210
500.0
20.0
3205
400.0
10.0
TY
3
.223
2000
1000
500.0
20.0
1315
400.0
15.0
TY
3
.522
2000
2000
500.0
20.0
1315
400.0
15.0
TY
3
.558
2000
1000
500.0
20.0
2315
400.0
15.0
TY
3
.463
2000
2000
500.0
20.0
2315
400.0
15.0
TY
3
.495
3200
2200
500.0
20.0
2315
400.0
15.0
TY
3
.519
3200
3200
500.0
20.0
2315
400.0
15.0
TY
3
.523
3200
2200
500.0
20.0
3315
400.0
15.0
TY
3
.309
3200
3200
500.0
20.0
3315
400.0
15.0
TY
3
.311
2200
1200
500.0
20.0
2305
400.0
10.0
TY
3
.259
2200
2200
500.0
20.0
2305
400.0
10.0
TY
3
.238
2000
1000
500.0
20.0
2305
400.0
10.0
TY
3
.154
2000
2000
500.0
20.0
2305
400.0
10.0
TY
3
.171
3200
2200
500.0
20.0
3305
400.0
10.0
TY
3
.163
3200
3200
500.0
20.0
3305
400.0
10.0
TY
3
.164
3000
2000
500.0
20.0
3305
400.0
10.0
TY
3
.159
3000
3000
500.0
20.0
3305
400.0
10.0
TY
3
.159
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
Special prints (not code check)
TRACK = 49
NS3472 JOINT OUTPUT (VERSION 95015.01.)
UNITS ARE KNS AND
METE
JOINT LOAD MEMBER
FX
FY
FZ
MZ
MY
MZ
===============================================================================
1
12
1
46.8C
142.0
156.0
72.3
38.8
-31.7
8
9.5C
51.6
-13.0
4.4
-28.2
-109.4
107
193.5T
33.8
-146.5
10.6
-181.7
27.3
2
12
1
46.8C
-140.7
-156.0
-72.3
88.8
-83.9
2
110.8C
22.7
-.1
-.2
-11.8
82.0
9
156.1T
118.0
-64.0
1.9
-76.9
-72.5
3
12
2
110.8C
22.2
.1
.2
11.4
-82.8
3
47.3C
-140.1
-158.7
-68.3
-86.7
84.2
10
158.6T
117.8
63.5
-1.4
75.3
-68.0
4
12
3
47.3C
141.3
158.7
68.3
-43.1
30.9
4
19.1C
51.6
13.0
-4.4
26.9
-107.4
108
192.9T
-34.3
-139.6
-16.2
-175.6
-26.5
5
12
4
19.1C
-44.8
-13.0
4.4
30.3
-104.8
5
1.2T
47.4
119.8
-69.3
43.3
-16.8
109
92.2C
-11.8
-138.9
-13.0
-174.1
12.4
6
12
5
1.2T
-48.6
-119.8
69.3
54.7
-22.4
6
64.6T
-22.6
278.3
278.5
149.3
21.1
10
158.6T
-71.2
-63.5
1.4
204.0
-347.8
7
12
6
64.6T
-22.3
279.4
279.2
-151.5
-20.5
7
.7T
-49.1
-123.3
65.1
-53.0
22.4
9
156.1T
-71.4
64.0
-1.9
-204.5
-344.3
8
12
7
.7T
47.8
123.3
-65.1
-47.8
17.2
8
9.5C
-44.8
13.0
-4.4
-29.2
-102.8
110
92.6C
12.4
-132.8
18.7
-167.8
-12.8
9
12
11
218.4T
81.6
27.7
75.1
2.3
-94.9
18
101.5T
48.6
-3.1
-7.8
-8.7
-101.8
107
200.7T
-33.8
146.5
-10.6
-201.5
-115.7
111
549.0T
-169.9
3.6
3.4
20.5
221.7
115
333.3C
.3
2.2
-.2
3.9
-1.0
117
40.2C
1.1
.0
.1
.1
-2.5
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
51
52
STAAD.Pro / NS3472 / NPD
TRACK = 31
MAX MIN OUTPUT FOR END NO:
UNITS ARE KNS AND
METE
1
MEMBER LOAD
FX
FY
FZ
MZ
MY
MZ
===============================================================================
1
11
67.6C
153.8
155.2
71.9
38.2
-61.3
16
-116.3T
60.0
-3.7
.1
1.2
-181.9
11
67.6C
153.8
155.2
71.9
38.2
-61.3
10
.9C
.1
.0
.0
.0
-.1
13
48.0C
142.0
156.0
72.3
38.8
-31.6
16
-116.3T
60.0
-3.7
.1
1.2
-181.9
13
48.0C
142.0
156.0
72.3
38.8
-31.6
1
3.0C
36.3
.3
-.2
-.1
9.0
14
1.1C
96.6
77.1
41.7
39.2
-58.8
3
-12.4T
29.1
45.2
24.7
-23.1
30.2
4
-81.9T
7.5
-2.6
.1
-.6
103.1
16
-116.3T
60.0
-3.7
.1
1.2
-181.9
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
STAAD.Pro / NS3472 / NPD
53
TRACK = 32
MAX MIN OUTPUT FOR END NO:
UNITS ARE KNS AND
METE
2
MEMBER LOAD
FX
FY
FZ
MZ
MY
MZ
===============================================================================
1
11
67.6C
-152.5
-155.2
-71.9
88.7
-64.0
16
-116.3T
-58.7
3.7
-.1
-4.2
133.4
10
.9C
-.1
.0
.0
.0
.1
11
67.6C
-152.5
-155.2
-71.9
88.7
-64.0
16
-116.3T
-58.7
3.7
-.1
-4.2
133.4
13
48.0C
-140.8
-156.0
-72.3
88.8
-84.0
1
3.0C
-35.4
-.3
.2
-.2
20.3
13
48.0C
-140.8
-156.0
-72.3
88.8
-84.0
13
48.0C
-140.8
-156.0
-72.3
88.8
-84.0
2
14.7C
-56.0
-91.8
-42.8
-52.3
31.6
16
-116.3T
-58.7
3.7
-.1
-4.2
133.4
4
-81.9T
-7.5
2.6
-.1
2.7
-97.0
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY
54
STAAD.Pro / NS3472 / NPD
8
References
[1]
NS 3472 3.utg. 2001
Prosjektering av stålkonstruksjoner
Beregning og dimensjonering
[2]
STAAD.Pro Technical Reference Manual, Release 2002
[3]
NS 3472 1.utg. 1973
Prosjektering av stålkonstruksjoner
Beregning og dimensjonering
[4]
Roark &Young`s 5th edition
[5]
NPD utg. 1994
Veiledning om utforming, beregning og dimensjonering av stålkonstruksjoner. Sist
endret 1. oktober 1993.
[6]
NS 3472 2.utg.1984
Prosjektering av stålkonstruksjoner
Beregning og dimensjonering
CLAUDE
Revision November 2003
Engineering Data Resources a.s
MONETS ALLÉ 5, 1338 SANDVIKA, NORWAY