TF30 User`s manual

Add to my manuals
65 Pages

advertisement

TF30 User`s manual | Manualzz

TF 30 GPS Engine

Laipac Technology, Inc.

105 West Beaver Creek Rd. Unit 207 Richmond Hill Ontario L4B 1C6 Canada

Tel: (905) 762-1228 Fax: (905) 763-1737 http://www.laipac.com

Laipac Technology Inc.

Contents

1. Intr oduction to TF GPS ser ies . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TF30 GPS Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … … … … .8

Quick View on Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . … … … . … … … … .. . 9

TF30 . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3. Inter face Descr iption and Options. . . . . . . . . . … … … … … … … … .. .. .11

Phsical Diagram … … … … … … … … … … … … … … … … … … … … … … … .11

Pin Definition of the Digital Interface Connector. . . . . . . . . . . . . … … … . . .12

TF30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

Option Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14

TricklePower Option… … … … … … … … . . . . . . . . . . . . . . . . . . . . . . . . . . .. .14

RS-232 I/O Option … … … … … … … … … .. . . . . . . . . . . . . . . . . . . . . . . . . 15

4. SiRF Binar y Pr otocol Specification . … … … … … . . . . . . . . . . . . . . . . . .16

Protocol Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Transport Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Message Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Payload Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Payload Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Input Messages for SiRF Binary Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Initialize Data Source - Message I.D. 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Switch To NMEA Protocol - Message I.D. 129 . . . . . . . . . . . . . . . . . . . . . . . .19

Set Almanac – Message I.D. 130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Software Version – Message I.D. 132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Set DGPS Source – Message I.D. 133. (For TF10,100/200) . . . . . . . . . . . . . 22

Set Main Serial Port - Message I.D. 134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Mode Control - Message I.D. 136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

- 2 -

Laipac Technology Inc.

DOP Mask Control - Message I.D. 137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

DGPS Control - Message I.D. 138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Elevation Mask – Message I.D. 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Power Mask - Message I.D. 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Editing Residual– Message I.D. 141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Steady State Detection - Message I.D. 142 . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Static Navigation– Message I.D. 143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Poll Clock Status – Message I.D. 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Set DGPS Serial Port - Message I.D. 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Poll Almanac - Message I.D. 146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Poll Ephemeris - Message I.D. 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Flash Update - Message I.D. 148. . . . . . . . . . . . . . . . . . . . . . . . . . … … … … … 30

Set Ephemeris - Message I.D. 149. . . . . . . . . . . . . . . . . . . . . . . . . . … … … … .30

Switch Operating Modes - Message I.D. 150 . . . . . . . . . . . . . . . . . . . . . . . . . .31

Set Trickle Power Parameters - Message I.D. 151 . . . . . . . . . . . . . . . . . . . . . .31

Computation of Duty Cycle and On Time . . . . . . . . . . . . . . . . . . . . . . . . . . . ..32

Push-to-Fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..33

Poll Navigation Parameters - Message I.D. 152 . . . . . . . . . . . . . . . . . . . . . . . ..33

Set UART Configuration – Message I.D.165 … … … ... . . . . . . . . . . . . . . . . . ..34

Low Power Acquisition parameters - Message I.D. 167 . . . . . . . . . . . . . . . . . .36

Output Messages for SiRF Binary Protocol . . . . . . . . . . .. . . . . . . . . . . . . . . 36

Measure Navigation Data Out - Message I.D. 2 . . . . . . . . . . . . . . . . . . . . . . 37

Measured Tracker Data Out - Message I.D. 4 . . . . . . . . . . . . . . . . . . . . . . . . 39

Raw Tracker Data Out - Message I.D. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Software Version String (Response to Poll) - Message I.D. 6 . . . . . . . . . . . .. .41

Response: Clock Status Data - Message I.D. 7 . . . . . . . . . . . . . . . . . . . . . . . 41

50 BPS Data – Message I.D. 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

CPU Throughput – Message I.D. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Command Acknowledgment – Message I.D. 11 . . . . . . . . . . . . . . . . . . . . . . 43

Command NAcknowledgment – Message I.D. 12 . . . . . . . . . . . . . . . . . . . . . ..43

Visible List – Message I.D. 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Almanac Data - Message I.D. 14… … … … … … … … … … . . . . . . . . . . . . . . 45

Ephemeris Data (Response to Poll) – Message I.D. 15 . . . . . . . . . . . . . . . . . 46

OkToSend - Message I.D. 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 46

Navigation Parameters (Response to Poll) – Message I.D. 19 .. . . . . . . . . . .. 46

- 3 -

Laipac Technology Inc.

Nav. Lib. Measurement Data – Message I.D.28 … … … … … … … … … … … … .47

Nav. Lib. DGPS Data – Message I.D.29 … … … … … … … … … … … … … … … 50

Nav. Lib. SV State Data – Message I.D.30 … … … … … … … … … … … … … … .51

Nav. Lib. Intialization Data – Message I.D.31 ..… … … … … … … … … … … … .52

Development Data – Message I.D. 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

TricklePower Operation in DGPS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

GPS Week Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 54

NMEA Protocol in TricklePower Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . … 54

5. NMEA Input/Output Messages . . . . . . . … . . . . . . . . . . . . … … … … … . 56

NMEA Output Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

GGA — Global Positioning System Fixed Data. . . . . . . . . . . . . . . . . . . . . . . .56

GLL— Geographic Position - Latitude/Longitude . . . . . . . . . . . . . . . . . . . . . .57

GSA— GNSS DOP and Active Satellites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

GSV— GNSS Satellites in View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

RMC— Recommended Minimum Specific GNSS Data . . . . . . . . . . . . . . . . ..59

VTG— Course Over Ground and Ground Speed . . . . . . . . . . . . . . . . . . . . . . ..60

SiRF Proprietary NMEA Input Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Transport Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SiRF NMEA Input Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 61

SetSerialPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61

NaviagtionInitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … ..62

SetDGPSPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 62

Query/Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 63

LLANaviagtionInitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 64

Development Data On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .65

- 4 -

Laipac Technology Inc.

Tables

Table 3-1 Pin List of the 20- pin Digital Interface Connector of

TF30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Table 3-2 TricklePower Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . ..15

Table 4-1 SiRF Messages – Input Message . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 4-2 Initialize Data Source . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 19

Table 4-3 Reset Configuration Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19

Table 4-4 Switch To NMEA Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Table 4-5 Set Almanac message … … … … .. . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Table 4-6 Software Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 4-7 Set DGPS Source… … … … … … … … … … . . . . . . . . . . . . . . . . . . … 22

Table 4- 8 Set DGPS Source Selections… … … … … … … … … … … . . . . … … 22

Table 4- 9 Set DGPS Source Selections… … … … … … … … … … … … … … … ..22

Table 4- 10 Internal Beacon Serach Settings … … … … … .… … … … .. . . . . … 23

Table 4- 11 Set Main Serial Port … … … .… … … … … … … … … … … . . . . … .23

Table 4-12 Mode Control .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..24

Table 4- 13 Degraded Mode Byte Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 25

Table 4- 14 DOP Mask Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 25

Table 4- 15 DOP Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .25

Table 4- 16 DGPS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .26

Table 4- 17 DGPS Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 26

Table 4- 18 Elevation Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 26

Table 4- 19 Power Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .27

Table 4- 20 Static Navigation … … . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 27

Table 4- 21 Message ID 143 Description … … … … … ... . . . . . . . . . . . . . . . . … 28

Table 4- 22 Clock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .28

Table 4- 23 Set DGPS Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .29

Table 4- 24 Almanac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .29.

Table 4- 25 Ephemeris Message I.D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … … .29

Table 4- 26 Flash update … … … … … … … … … … .. . . . . . . . . . . . . . . . . . . . … .30

Table 4- 27 Ephemeris … … … … … … … … … .. . . . . . . . . . . . . . . . . . . . . . . . … .30

- 5 -

Laipac Technology Inc.

Table 4- 28 Switch Operating Mode I.D.150 . . . . . . . . . . . . . . . . . . . . . . . . . … 31

Table 4- 29 Set Trickle Power Parameters I.D.151 . . . . . . . . . . . . . . . . . . . . . ..32

Table 4- 30 Example of Selections for Trickle Power Mode of Operation . . . ..32

Table 4- 31 Trickle Power Mode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..32

Table 4- 32 Poll Receiver for Navigation Parameters . . . . . . . . . . . . . . . . . . . ..33

Table 4- 33 Set UART Configuration … … … … … … … … … … … … … … … . . .34

Table 4- 34 Set Message Rate … … … … … … … … … … … ... . . . . . . . . . . . . . . 35

Table 4- 35 Set Low Power Acquisition Parameters … … … … … … … … … . . .36

Table 4- 36 SiRF Messages – Output Message List… … … … … … … ..… … . . .36

Table 4- 37 Measured Navigation Data Out - Binary & ASCII Message Data

Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 4- 38 Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Table 4- 39 Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..39

Tab e 4- 40 Measured Tracker Data Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...40

Table 4- 41 TrktoNAVStruct.trk_status Field Definition. . . . . . . . . . . . . . . . . … 40

Table 4- 42 Software Version String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 41

Table 4- 43 Clock Status Data Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … .42

Table 4- 44 50 BPS Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 42

Table 4- 45 CPU Throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 43

Table 4- 46 Command Acknowledgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 43

Table 4- 47 Command Nacknowledgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 44

Table 4- 48 Visible List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..44

Table 4- 49 Almanac Data … … … … … … … … … … … ... . . . . . . . . . . . . . . . . . … 45

Table 4- 50 Ephemeris Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..46

Table 4- 51 Navigation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ..46

Table 4- 52 Measurement Data … … … . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ..48

Table 4- 53 Sync. Flag Fields … … … … … … … … … … … … … .. . . . . . . . . . .. … ..48

Table 4- 54 Detaied Description of the Measurement Data … … … .. . . . . . . .. … ..49

Table 4- 55 Detaied Description of the Measurement Data

(Conti.) … … … … … … … … … … ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . … 50

Table 4- 56 Measurement Data … … … … … … … .. . . . . . . . . . . . . . . . . . . . . .. … ..50

Table 4- 57 SV State Data … … … … … … ... . . . . . . . . . . . . . . . . . . . . . . . . . .. … … 51

Table 4- 58 Measurement Data … … … … … .. . . . . . . . . . . . . . . . . . . . . . . . . .. … … 52

Table 4- 59 Development Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … ..55

Table 4- 60 NMEA Data Rates Under Trickle Power Operation. . . . . . . . . . . . … ..55

- 6 -

Laipac Technology Inc.

Table 5-1 NMEA-0183 Output Messages .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . .56

Table 5-2 GGA Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .56

Table 5-3 Position Fix Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 5-4 GLL Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 5-5 GSA Data Format . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Table 5-6 Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 5-7 Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 5-8 GSV Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .58

Table 5-9 RMC Data Format . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . ..59

Table 5-10 VTG Data Format . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . 60

Table 5-11 Set Serial Port Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 5-12 Navigation Initialization Data Format. . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 5-13 Reset Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Table 5-14 Set DGPS Port Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .63

Table 5-15 Query/Rate Control Data Format (See example 1.) . . . . . . . . . . . .. . .64

Table 5-16 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 64

Table 5-17 LLA Navigation Initialization Data Format . . . . . .. . .. . . . . . . . . . . .65

Table 5-18 Reset Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Table 5-19 Development Data On/Off Data Format . . . . . . . . . . . .. . .. . . . . . . . .65

- 7 -

Laipac Technology Inc.

Chapter 1 Intr oduction to TF30 GPS Receiver

TF30 GPS Receiver Module

Featur es

‧ Ultra miniature size (30 x 40 mm)

‧ 12 Channel “All-in-vie w ” GPS C/ A and carrier

‧ Inte grated powerful 16-bit ARM7 TDMI CPU core

‧ 8 GPIO pins left for tremendous embedded applications

‧ Suppo rt WAAS signal

‧ Fast Cold/Wa rm/ Hot S tart T TFF time of 45/ 38/8 sec

‧ Fast re acquisition time of 0.1 sec

‧ Degra ded mod e sol ution enables during short blockage

situation

‧ Enhanced sensitivity un der weak sa tellite sign als

‧Single satell ite tra cking capability

‧ Dual multipath rejection

‧ NMEA 0183 ver 2.2 GGA, GLL, GSA, GSV, RMC, a nd VTG

‧ SiRF binary protoc ol output

‧On-bo ard Real-time RTCM SC-104 differ en tial

‧ 1 P PS (one pulse per sec ond) signal

‧ Two serial ports with TTL level ( RS-232 optional)

‧ TricklePower function (power saving)

‧ Full shield des ign to withs tand extern al EMI inte rfer ences

Based on the SiRF starII

TM

chip set, TF30 is a compact 12 -channel “ALL-in-

View” GPS. TF30 GPS receiver offers not only superior performance (integrated po werful ARM7 TDMI CPU core), bu t also high reliability at very competitive compac t price in the market. With its delica te miniature size (30 x 40 mm ) and flexibili ty for eight GPIO pins extension, TF30 GPS receiver mod ule is suitable for all embedded app lication s such as s handh eld, wireless , leisure, navigation , emergency call, and loca tion identification . Besides, its un iqu e full shield design

(refer to the photo sho wn abo ve) will efficiently withstand all external EMI or RFI inter ference si gnals.

Quick View on Specifications

Channel, Frequency 12 Channel L1 C/A

Position/Velocity 25 m CEP/0.1 m/s without SA

Time Accuracy 1 us synchronized to GPS time

Acceleration 4 g., max.

Jerk 20 meters /sec.

3

max.

- 8 -

Laipac Technology Inc.

Max Altitude

Time to First Fix

18,000 meters max.

45/38/8/0.1 sec (Cold/Warm/Hot

Start)

0.1 sec (Reacquisition)

Update Rate 1/sec

Receiver Sensitivity -175dBW

Map Datum

Input Voltage

WGS-84

3.3V DC

Current (Avg.)

Serial Comm.

50 mA

4800 baud (default)

Protocol Messages NMEA 0183 v2.2, SiRF Binary

RTCM SC-104 v2.0 type 1,2,9

Dimensions

Operating Temp

Storage Temp

Integrated 16-bit ARM7 TDMI

8 GPIO pins

30 x 40 x 7 mm

Full Shield design

-10°C to +70°C

-40°C to +85°C

Chapter 2 Specifications

TF30

1. Electrical Characteristics

1.1 General

1.2 Accuracy

1.3 DGPS Accuracy

1.4 Datum

1.5 Acquisition Rate

1.6 Dynamic Condition

Frequency

C/A code

Channels

Position

Velocity

Time

Position

Velocity

WGS-84

Reacquisition

Cold start

Warm start

Hot start

Altitude

Velocity

Acceleration

Jerk

L1,1575.42MHz

1.023 MHz chip rate

12

25 meters CEP without SA

0.1 meters/second, without SA

1 microsecond synchronized to GPS time

1 to 5 meters, typical

0.05 meters/second, typical

0.1 sec., average

45 sec., average

38 sec., average

8 sec., average

18,000 meters (60,000 Feet) max.

515 meters/sec.(1000 Knots) max.

4 g., max.

20 meters/sec.

3

max.

- 9 -

Laipac Technology Inc.

1.7 Power

1.8 External Reset

1.9 Serial Port

1.10 Time-1PPS Pulse

2.1Temperature

Main Power

Supply Current, continuous

Supply Current,

TricklePower mode

Backup Power

Backup Current

Active low input

Electrical interface

Protocol

NMEA output

DGPS protocol

Level

Pulse duration

Time reference

Measurements

2. Environmental Characteristics

Operating range

Storage range

3.3 Vdc± 10%

~ 150 mA

~ 50 mA

+2.5V to 3.1V

10µA typical

Two full duplex serial communication(TTL level or EIA RS-232 level ( optional ))

Design-in binary and NMEA-0183,

Version 2.20 with a baud rate selection

GGA,GLL,GSA,GSV,RMC, and VTG

(on customer request) Default six NMEA

(Baud Rate :4800)

RTCM SC-104, version 2.00, type 1,2 and

9

WAAS Supported

TTL

100 ms

At the pulse positive edge

Aligned to GPS second, ± 1µ sec.

- 10 ℃ to + 70 ℃

- 40 ℃ to + 85 ℃

2.2 Physical characteristics

3. Antenna

4.CPU Throughput

5.RF Interference

Dimension

Antenna connector

Interface connector

40 X 30 mm, thickness less then 7 mm

MMCX type

20-pin ( 2X 6) low profile socket, 1mm

8-pin ( 2X 4) JTAG, 1mm ( optional )

Passive or Active Antenna

GPS Signal Processor &

Software

Integrated 16-bit,50 MHz ARM7TDMI

CPU core & 1M DRAM memory

90% CPU throughput available for user tasks

It is assembled with full shield case design to withstand the highest possible interference

- 10 -

Laipac Technology Inc.

Chapter 3 Inter face and Options

This chapter describes the pin definitions of the interface connector and flexible options of TF30.

Physical Diagr am

LATERAL VIEW

BOTTOM VIEW

- 11 -

Laipac Technology Inc.

Pin Definition of the Digital Inter face Connector

TF30

Table 3-1 Pin List of the 20- pin Digital Interface Connector of TF30

Pin #

1

2

13

14

15

16

17

18

19

20

9

10

11

12

5

6

7

8

3

4

Name

VCC

TXA

RXA

TXB

RXB

TIMEMARK

BAT

GPIOA

RESET

RESERVED

GROUND

BOOTSEL

GPIOB

GPIOC

GPIOD

GPIOE

GPIOF

GPIOG

GPIOH

GROUND

Description

+3.3V +- 10% DC Power Input

Host Serial Data Output A

Host Serial Data Input A

Aux. Serial Data Output B

Aux. Serial Data Input B (DGPS)

1PPS Time Mark Output

Battery Backup Power Input

General Purpose Input/Output

Reset, Active Low

Reserved

Ground

Internal/External Boot selective

General Purpose Input/Output

General Purpose Input/Output

General Purpose Input/Output

General Purpose Input/Output

General Purpose Input/Output

General Purpose Input/Output

General Purpose Input/Output

Ground

※The Host Serial Data I/O is nominally a CMOS logical high +3.3VDC.

※The Host Serial Data Input A (Pin# 3) suggest to an active high(ex.100KΩserial to + Vcc)

when not used.

VCC (+3.3V DC Power Input)

This is the main DC power supply for a +3.3V powered TF30 board.

TXA

This is the main transmit channel and is used to output navigation and measurement data

RXA

This is the main receiver channel and is used to receive software commands to the

TF30 board

- 12 -

Laipac Technology Inc.

TXB

For user’s application (not currently used).

RXB

This is the auxiliary receive channel and is used to input differential corrections to the TF30 board to enable DGPS navigation.

Timemar k

This pin provides one pulse-per-second output from TF30 board, which is synchronized to GPS time. This is not available in TricklePower mode.

BAT

This is the battery backup input that powers the SRAM and RTC when main power is removed. Typical current draw is 10uA.

Without an external backup battery or supercap, TF30 will execute a cold start after every power on. To achieve the faster start-up offered by a hot or warm start, a battery backup must be connected. To maximize battery lifetime, the battery voltage should not exceed the supply voltage and should be between 2.5V and 3.1V.

.

GPIOA

The pin is connected to the digital interface connector for custom applications

RESET

This pin provides an active-low reset input to the TF30 board. It causes the

TF30 board to reset and start searching for satellites. If not utilized, it may be left open.

GND

GND provides the ground for the TF30 board.

BOOTSEL

Internal/External Boot selective.

GPIOB - GPIOH

These pins are connected to the digital interface connector for custom applications

- 13 -

Laipac Technology Inc.

Option Descr iptions

Tr icklePower Option

The design of TF30 includes all the functionality necessary to implement the -

TricklePower mode of operation. In this mode, the lowest average power dissipation is achieved by powering down the board (after a position is determined) in such a manner that when it is turned back on it can re-compute a position fix in the shortest amount of time. The standard TricklePower operates in three states:

(1) Tr acking State

In this state, the board is fully powered, tracking satellites and gathering data.

This time in this state is selectable via SiRFdemo demo software from 200-900ms.

After this time the measurements to calculate a position are ready.

(2) CPU State

In this state, the GRF1/LX (RF IC) has been turned off (by the control signal) removing the clock to the GSP1/LX (Baseband ASIC). Without a clock, the GSP1/LX is effectively powered down (although the RTC keeps running). The CPU is kept running to process the GPS data until a position fix is determined and the result has been transmitted by the serial communication interface.

(3) Tr ickle State

In this state, the CPU is in a low power standby state and the receiver clocks are off with only the RTC clock active. After a set amount of time, the RTC generates a

NMI signal to wakeup the Hitachi microprocessor and set the receiver back to the tracking state. The default time for each TricklePower state (and the approximate current consumed) is shown below in Table 3-3. For example, the TricklePower duty cycle (20%), the average receiver power dissipation is approximately 165mW (50mA

@ 3.3v) while maintaining a one-second update rate.

- 14 -

Laipac Technology Inc.

Table 3-2 TricklePower Power Consumption

State

Tracking

CPU

Trickle

Time

220mS

360mS

420mS

+3.3V Current

145mA

40mA

0.5mA

Note: Table 3-2 does not include the external antenna power consumption.

RS-232 I/O Option

TF30 allows populating an RS-232 driver. Customers can make request for I/O of TTL Level (5V) or RS-232 Level (12V).

- 15 -

Laipac Technology Inc.

Chapter 4 SiRF Binar y Pr otocol Specification

The serial communication protocol is designed to include:

Reliable transport of messages

Ease of implementation

Efficient implementation

Independence from payload

Pr otocol Layer s

Tr anspor t Message

Star t

Sequence

0xA0

1

,

0xA2

Payload

Length Payload

Two-bytes

(15-bits)

Payload

Up to 2

10

–1

(<1023)

1.

0xYY denotes a hexadecimal byte value. 0xA0 equals 160.

Message

Checksum

Two-bytes

(15-bits)

End

Sequence

0xB0,

0xB3

Tr anspor t

The transport layer of the protocol encapsulates a GPS message in two start characters and two stop characters. The values are chosen to be easily identifiable and such that they are unlikely to occur frequently in the data. In addition, the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte

(15-bit) check sum. The values of the start and stop characters and the choice of a 15bit values for length and check sum are designed such that both message length and check sum can not alias with either the stop or start code.

Message Validation

The validation layer is of part of the transport, but operates independently. The byte count refers to the payload byte length. Likewise, the check sum is a sum on the payload.

Payload Length

The payload length is transmitted high order byte first followed by the low byte.

High Byte

< 0x7F

Low Byte

Any value

- 16 -

Laipac Technology Inc.

Even though the protocol has a maximum length of (2

15

-1) bytes practical considerations require the SiRF GPS module implementation to limit this value to a smaller number. Likewise, the SiRF receiving programs (e.g., SiRFdemo) may limit the actual size to something less than this maximum.

Payload Data

The payload data follows the payload length. It contains the number of bytes specified by the payload length. The payload data may contain any 8-bit value. Where multi-byte values are in the payload data neither the alignment nor the byte order are defined as part of the transport although SiRF payloads will use the big-endian order.

Checksum

The check sum is transmitted high order byte first followed byte the low byte. This is the so-called big-endian order.

High Byte

< 0x7F

Low Byte

Any value

The check sum is 16-bit checksum of the bytes in the payload data. The following pseudo code defines the algorithm used.

Let message to be the array of bytes to be sent by the transport.

Let msgLen be the number of bytes in the message array to be transmitted.

Index = first

checkSum = 0

while index < msgLen

checkSum = checkSum + message[index] checkSum = checkSum AND (2

10

-1).

Input Messages for SiRF Binar y Pr otocol

Note – All input messages are sent in BINARY format.

Table 4-1 lists the message list for the SiRF input messages.

- 17 -

Laipac Technology Inc.

Table 4- 1 SiRF Messages - Input Message List

0 x 92

0 x 93

0 x 94

0 x 95

0 x 96

0 x 97

0 x 98

0 x A5

0 x A6

0 x A7

Hex

0 x 80

0 x 81

0 x 82

0 x 84

0 x 85

0 x 86

0 x 88

0 x 89

0 x 8A

0 x 8B

0 x 8C

0 x 8D

0 x 8E

0 x 8F

0 x 90

0 x 91

146

147

148

149

150

151

152

165

166

167

139

140

141

142

143

144

145

ASCII

128

129

130

132

133

134

136

137

138

Name

Initialize Data Source

Switch to NMEA Protocol

Set Almanac (upload)

Software Version (Poll)

Set DGPS Source Control

Set Main Serial Port

Mode Control

DOP Mask Control

DGPS Mode

Elevation Mask

Power Mask

Editing Residual (Not implemented)

Steady-State Detection (Not implemented)

Static Navigation

Poll Clock Status

Set DGPS Serial Port

Poll Almanac

Poll Ephemeris

Flash Update

Set Ephemeris (upload)

Switch Operating Mode

Set Trickle Power Parameters

Poll Navigation Parameters

Set UART Configuration

Set Message Rate

Low Power Acquisition Parameters

Initialize Data Sour ce - Message I.D. 128

Table 4-2 contains the input values for the following example:

Warm start the receiver with the following initialization data: ECEF XYZ

(-2686727 m, -4304282 m, 3851642 m), Clock Offset (75,000 Hz), Time of Week

(86,400 s), Week Number (924), and Channels (12). Raw track data enabled, Debug data enabled.

Example:

A0A20019— Start Sequence and Payload Length

80FFD700F9FFBE5266003AC57A000124F80083D600039C0C33— Payload

0A91B0B3— Message Checksum and End Sequence

- 18 -

Laipac Technology Inc.

Table 4- 2 Initialize Data Source

Name

Message ID

ECEF X

ECEF Y

ECEF Z

Clock Offset

Time of Week

Week Number

Channels

Reset Config.

Payload Length: 25 bytes

Bytes

1

4

4

4

2

1

4

4

1

Binar y (Hex)

Scale Example

Units

80

FFD700F meters

FFBE5266 meters

003AC57A meters

*100

000124F8 Hz

0083D600 seconds

039C

0C

33

Descr iption

ASCII 128

Range 1-12

See table Table 4-3

Table 4- 3 Reset Configuration Bitmap

Bit Descr iption

0 Data valid flag— set warm/hot start

1 Clear ephemeris— set warm start

2 Clear memory— set cold start

3 Factory Reset

4 Enable raw track data (YES=1, NO=0)

5 Enable debug data for SiRF binary protocol (YES=1, NO=0)

6 Enable debug data for NMEA protocol (YES=1, NO=0)

7 Reserved (must be 0)

Note – If Nav Lib data is ENABLED then the resulting messages are enabled.

Clock Status (MID 7), 50 BPS (MID 8), Raw DGPS (17), NL Measurement Data

(MID 28), DGPS Data (MID 29), SV State Data (MID 30), and NL Initialize Data

(MID 31). All messages are sent at 1 Hz and the baud rate will be automatically set to

57600.

Switch To NMEA Pr otocol - Message I.D. 129

Table 4-4 contains the input values for the following example:

Request the following NMEA data at 4800 baud:

GGA – ON at 1 sec, GLL – OFF, GSA - ON at 5 sec,

GSV – ON at 5 sec, RMC-OFF, VTG-OFF

Example:

A0A20018— Start Sequence and Payload Length

8102010100010501050100010001000100010001000112C0— Payload

- 19 -

Laipac Technology Inc.

016AB0B3— Message Checksum and End Sequence

Table 4- 4 Switch To NMEA Protocol

Name

Message ID

Mode

GGA Message

1

Checksum 2

GLL Message

Checksum

GSA Message

Checksum

GSV Message

Checksum

RMC Message

Checksum:

VTG Message

Checksum

Unused Field

Unused Field

Unused Field

Unused Field

Unused Field

Unused Field

Unused Field

Unused Field

Baud Rate

Bytes

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

Binar y(Hex)

Scale Example Units

81

02

01

01

00

1/s

1/s

ASCII 129

Descr iption

See Chapeter 5 for format.

Se Chapeter 5 for format.

01

05

01

05

01

1/s

1/s

See Chapeter 5 for format.

See Chapeter 5 for format.

1/s See Chapeter 5 for format.

01

00

01

00

01

12C0

00

01

00

01

00

01

00

1/s See Chapeter 5 for format.

Recommended value.

Recommended value.

Recommended value.

Recommended value.

Recommended value.

Recommended value.

Recommended value.

Recommended value.

38400,

19200,9600,4800,2400

Payload Length: 24 bytes

1. A value of 0x00 implies NOT to send message, otherwise data is sent at 1 message every X seconds requested (i.e., to request a message to be sent every 5 seconds, request the message using a value of

0x05.) Maximum rate is 1/255s.

2. A value of 0x00 implies the checksum NOT transmitted with the message (not recommended). A value of 0x01 will have a checksum calculated and transmitted as part of the message (recommended).

Note – In Trickle Power mode, update rate is specified by the user. When you switch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the Trickle Power Update rate AND the NMEA update rate (i.e.

Trickle Power update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds, (2 X 5 = 10)).

- 20 -

Laipac Technology Inc.

Set Almanac – Message I.D. 130

This com mand en ables the u ser to up load an alman ac TF30

Example:

A0A20380 – Start Sequence and Payload Length

82xx

… … … … … … … . – Payload

xxxxB0B3 – Message Checksum and End Sequence

Table 4-5 Set Almanac message

Name Bytes

Message ID 1

Almanac 896

Binar y (Hex)

Scale Example

Payload Length: 897 bytes

82

00

Units Descr iption

ACSII 130

Reserved

The almanac data is stored in the code as a 448 element array of INT16 values.

These 448 elements are partitioned as 32 x 14 elements where the 32 represents the satellite number minus 1 and the 14 represents the number of INT16 values associated with this satellite. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps

Softwar e Ver sion – Message I.D. 132

Table 4-6 contains the input values for the following example:

Poll the software version

Example:

A0A20002— Start Sequence and Payload Length

8400— Payload

0084B0B3— Message Checksum and End Sequence

Table 4- 6 Software Version

Name Bytes

Message ID 1

TBD 1

Payload Length: 2 bytes

Binar y (Hex)

Scale Example

84

00

Units Descr iption

ACSII 132

Not used

- 21 -

Laipac Technology Inc.

Set DGPS Sour ce – Message I.D. 133

available are:

External RTCM Data ( any ser ial port)

WAAS (subject to WAAS satellite a vailab ility)

Internal D GPS beacon receiver

Example 1: Set the D GPS sour ce to E xte rnal RTCM Data

A0A200007— Start Sequ ence and P a yload Length

0087B0 B3— Checksum and End Seq uen ce

Table 4-7 Set DGPS Source

Name Bytes

Binar y (Hex)

Scale Example Units Descr iption

Message ID 1 85 de cimal 133

DGPS Sour ce 1 02 See Table 4-9 – DGPS

Sou rce Selec tion s

Internal Beacon

Freq uen cy

Internal Beacon

Bit Rate

4 00000000 Hz Internal Beacon Se arch

Sett ings

1 00 BPS Internal Beacon Se arch

Sett ings

Pa yload Length: 7 bytes

Example2: Set the D GPS sour ce to Int ernal DGPS Beacon R ece (Current ly

TF30 is not supported)

Search Frequency 310000, Bit Rate 200

A0A200007— Start Sequence and Payload Length

85030004BAF0C802— Payload

02FEB0B3— Checksum and End Sequence

Table 4 - 8 DGPS Source Selection (Example 2)

Name

Internal Beacon

Frequency

Bytes Scale Hex

Message I.D.

1

DGPS Source 1

4

85

03

Units Decimal Descr iption

133 Message Identification.

3 See Table 4-9 DGPS

Source Selections.

0004BAF0 HZ 310000 See Table 4-9 Internal

Beacon Search Settings .

Internal Beacon

Bit Rate

1 C8 BPS 200 See Table 4-10 Internal

Beacon Search Settings.

- 22 -

Laipac Technology Inc.

Table 4- 9 Set DGPS Source Selections

DGPS

None

WAAS

External RTCM

Data

Internal DGPS 3

Beacon Receiver

User software 4

1

2

Hex Decimal Descr iption

0 0 DGPS corrections will not be used (even if available).

1

2

3

Uses WAAS Satellite (subject to availability).

External RTCM input source (i.e., Coast Guard

Beacon).

Internal DGPS beacon receiver.

4 Corrections provided using a interface module routine in a customer user application

Table 4- 10 Internal Beacon Search Settings

Search Type

Frequency

Auto Scan

Full Frequency

Scan

Full Bit Rate

Scan

Specific Search

Scan

0

0

1

Bit Rate

2

0

Descr iption

Auto scanning of all frequencies and bit rates are performed.

None Zero Auto scanning of all frequencies and specified bit rate are performed.

None Zero 0 Auto scanning of all bit rates and specified frequency are performed.

None Zero None Zero Only the specified frequency and bit rate search are performed.

1. Frequency Range is 283500 to 325000 Hz.

2.Bit Rate selection is 25, 50, 100 and 200 BPS.

Set Main Ser ial Por t - Message I.D. 134

Table 4-11 contains the input values for the following example:

Set Main Serial port to 9600,n,8,1.

Example:

A0A20009— Start Sequence and Payload Length

860000258008010000

— Payload

0134B0B3— Message Checksum and End Sequence

Table 4- 11 Set Main Serial Port

Binar y (Hex)

Name Bytes Scale Example Units

Message ID 1 86

Descr iption

Decimal 134

- 23 -

Laipac Technology Inc.

Baud 4

Data Bits

Stop Bit

Parity

Pad

1

1

1

1

Payload Length: 9 bytes

00002580

08

01

00

00

38400,19200,9600,4800,2400,

1200

8,7

0,1

None=0, Odd=1, Even=2

Reserved

Mode Contr ol - Message I.D. 136

Table 4-12 contains the input values for the following example:

3D Mode = Always, Alt Constraining = Yes, Degraded Mode = clock then

direction, TBD=1, DR Mode = Yes, Altitude = 0, Alt Hold Mode = Auto, Alt

Source =Last Computed, Coast Time Out = 20, Degraded Time Out=5, DR Time

Out = 2, Track Smoothing = Yes

Example:

A0A2000E— Start Sequence and Payload Length

88010101010100000002140501

— Payload

00A9B0B3— Message Checksum and End Sequence

Table 4-12 Mode Control

Name

Message ID

3D Mode

Binar y (Hex)

Bytes

Scale Example

Units

1

1

88

01

Alt Constraint 1

Degraded Mode 1

TBD

DR Mode

1

1

01

01

01

01

Altitude

Alt Hold Mode

Alt Source

Coast Time Out

Degraded Time

Out

DR Time Out

Track

Smoothing

2

1

1

1

1

1

1

Descr iption

ASCII 136

1 (always true=1)

YES=1, NO=0

See Table 4-13

Reserved

YES=1, NO=0

0000 meters

00

02 range -1,000 to 10,000

Auto=0, Always=1,Disable=2

Last Computed=0,Fixed to=1

14 Seconds 0 to 120

05 Seconds 0 to 120

01

01

Seconds 0 to 120

YES=1, NO=0

Payload Length: 14 bytes

- 24 -

Laipac Technology Inc.

Table 4- 13 Degraded Mode Byte Value

Byte Value

0

1

2

3

4

Descr iption

Use Direction then Clock Hold

Use Clock then Direction Hold

Direction (Curb) Hold Only

Clock (Time) Hold Only

Disable Degraded Modes

DOP Mask Contr ol - Message I.D. 137

Table 4-14 contains the input values for the following example:

Auto Pdop/Hdop, Gdop =8 (default), Pdop=8, Hdop=8

Example:

A0A20005— Start Sequence and Payload Length

8900080808— Payload

00A1B0B3— Message Checksum and End Sequence

Table 4- 14 DOP Mask Control

Name

Binar y (Hex)

Bytes

Scale Example

Units

Message ID 1

DOP Selection 1

89

00

GDOP Value

PDOP Value

HDOP Value

1

1

1

08

08

08

Payload Length: 5 bytes

Descr iption

ASCII 137

See Table 4-15

Range 1 to 50

Range 1 to 50

Range 1 to 50

Table 4- 15 DOP Selection

Byte Value

0

1

2

3

4

Descr iption

Auto PDOP/HDOP

PDOP

HDOP

GDOP

Do Not Use

DGPS Contr ol - Message I.D. 138

Table 4-16 contains the input values for the following example:

- 25 -

Laipac Technology Inc.

Set DGPS to exclusive with a time out of 30 seconds.

Example:

A0A20003— Start Sequence and Payload Length

8A011E— Payload

00A9B0B3— Message Checksum and End Sequence

Table 4- 16 DGPS Control

Name

Message ID

DGPS Selection

DGPS Time Out

Bytes

1

1

1

Payload Length: 3 bytes

Binar y (Hex)

Scale Example

8A

Units Descr iption

ASCII 138

01 See Table 4-17

1E seconds Range 0 to 255

Table 4- 17 DGPS Selection

Byte Value

0

1

2

Auto

Exclusive

Never Use

Descr iption

Note – Configuration of the DGPS mode using MID 138 only applies to RTCM corrections received from an external RTCM source or internal or external beacon. It does not apply to WAAS operation.

Elevation Mask – Message I.D. 139

Table 4-18 contains the input values for the following example:

Set Navigation Mask to 15.5 degrees (Tracking Mask is defaulted to 5 degrees).

Example:

A0A20005— Start Sequence and Payload Length

8B0032009B— Payload

0158B0B3— Message Checksum and End Sequence

Table 4- 18 Elevation Mask

Name

Message ID

Tracking Mask

Navigation Mask

Binar y (Hex)

Bytes Scale Example Units

1

2

2

Descr iption

*10

8B

0032 degrees

ASCII 139

Not currently used

*10 009B degrees Range -20.0 to 90.0

- 26 -

Laipac Technology Inc.

Pa yload Length: 5 bytes

Power Mask - Message I.D. 140

Table 4-19 con tains the inpu t value s for the following example:

Navigation mask to 33 dB Hz (tracki ng default value of 28)

Example:

A0A2000 3— Start Sequ ence and P a yload Length

8C1C21— Payload

00 C9B0B3— Message Ch ecksum and End Sequ ence

Table 4- 19 Power Mask

Binar y (Hex)

Name Bytes

Scale Example

Units Descr iption

Message ID 1 8C ASCII 140

Track ing Mask 1 1C dBHz Not cu rrent ly implem ented

Navigation Mask 1 21 dBHz Range 20 to 50

Pa yload Length: 3 bytes

Editing Residual– Message I.D. 141

Note – Not implemented current ly.

Steady State Detection -Message I.D. 142

Note – Not implemented current ly.

Static Navigation– Message I.D. 143

This command allows the user to enable or disable navigatio TF30.

Example:

A0A20002 – Start Sequence and Payload Length

8F01 – Payload

xxxxB0B3 – Message Checksum and End Sequence

Table 4- 20 Static Navigation

Name

Message ID

Binar y (Hex)

Bytes Scale Example Units

1 8F

Descr iption

ASCII 143

- 27 -

Laipac Technology Inc.

Static Navigation

Flag

1

Payload Length: 2 bytes

Table 4- 21 Message ID 143 Description

Name

Message ID

Static Navigation Flag

01 degrees ASCII 1

Descr iption

Message ID number

Valid values:

1: enable static navigation

0: disable static navigation

Poll Clock Status – Message I.D. 144

Table 4-22 contains the input values for the following example:

Poll the clock status.

Example:

A0A20002— Start Sequence and Payload Length

9000— Payload

0090B0B3— Message Checksum and End Sequence

Table 4- 22 Clock Status

Binar y (Hex)

Name Bytes Scale Example Units

Message ID 1

TBD 1

90

00

Payload Length: 2 bytes

ACSII 144

Not used

Descr iption

Set DGPS Ser ial Por t - Message I.D. 145

Table 4-23 contains the input values for the following example:

Set DGPS Serial port to 9600,n,8,1.

Example:

A0A20009— Start Sequence and Payload Length

910000258008010000— Payload

013FB0B3— Message Checksum and End Sequence

- 28 -

Laipac Technology Inc.

Tab e 4- 23 Set DGPS Serial Port

Binar y (Hex)

Name Bytes

Scale Example

Units Descr iption

Message ID 1 91 ASCII 14 5

Baud 4 00002580 38400,19200,9600,4800,2400,120 0

Data Bits 1 08 8, 7

Stop Bit 1 01 0, 1

Parity 1 00 Non e= 0, Odd= 1, Even= 2

Pad 1 00 Reserved

Pa yload Length: 9 bytes

Note – Sett ing the DGPS se rial port usi ng MID 145 will e ffect Com B on ly regardl ess of the port being used to com mun icTF 30.

Poll Almanac - Message I.D. 146

Table 4-24 contains the input values for the following example:

Poll for the Almanac.

Example:

A0A20002— Start Sequence and Payload Length

9200— Payload

0092B0B3— Message Checksum and End Sequence

Table 4- 24 Almanac

Name

Message ID

TBD

Bytes

1

1

Payload Length: 2 bytes

Binar y (Hex)

Scale Example

92

00

Units

ASCII 146

Reserved

Descr iption

Poll Ephemer is - Message I.D. 147

Table 4-25 contains the input values for the following example:

Poll for Ephemeris Data for all satellites.

Example:

A0A20003— Start Sequence and Payload Length

930000— Payload

0092B0B3— Message Checksum and End Sequence

- 29 -

Laipac Technology Inc.

Table 4- 25 Ephemeris Message I.D.

Name

Message ID

Sv I.D.

1

TBD

Bytes

1

1

1

Payload Length: 3 bytes

Binar y (Hex)

Scale Example

93

00

00

Units Descr iption

ASCII 147

Range 0 to 32

Not used

1. A value of 0 requests all available ephemeris records, otherwise the ephemeris of the Sv I.D. is requested.

Flash Update - Message I.D. 148

This command allows the user to command the Evaluation Receiver to go into internal boot mode without setting the boot switch. Internal boot mode allows the user to re-flash the embedded code in the receiver.

Note – It is highly recommended that all hardware designs should still provide access to the boot pin in the event of a failed flash upload.

Example:

A0A20001 – Start Sequence and Payload Length

94 – Payload

0094B0B3 – Message Checksum and End Sequence

Table 4- 26 Flash update

Name

Message ID

Bytes

1

Payload Length: 1 bytes

Binar y (Hex)

Scale Example

94

Units

ASCII 148

Descr iption

Set Ephemer is – Message I.D. 149

This command enables the user to upload an ephemeris file to the Evaluation

Receiver.

Example:

A0A2005B – Start Sequence and Payload Length

95… … … … … … … . – Payload

xxxxB0B3 – Message Checksum and End Sequence

Table 4-27 Ephemeris

Name

Message ID

Ephemeris

Binar y (Hex)

Bytes Scale Example Units

1

90

95

00

ASCII 149

Reserved

Descr iption

- 30 -

Laipac Technology Inc.

data

Payload Length: 91 bytes

The ephemeris data for each satellite is stored as a two dimensional array of [3][15]

UNIT16 elements. The 3 represents three separate sub-frames. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps .

Switch Oper ating Modes - Message I.D. 150

Table 4-28 contains the input values for the following example:

Sets the receiver to track a single satellite on all channels.

Example:

A0A20007— Start Sequence and Payload Length

961E510006001E— Payload

0129B0B3— Message Checksum and End Sequence

Table 4- 28 Switch Operating Mode I.D.150

Name

Message ID

Mode

SvID

Period

Bytes

1

2

2

2

Binar y (Hex)

Scale Example Units

ASCII 150

Descr iption

96

1E51

0006

0=normal,

1E51=Testmode1,

1E52=Testmode2,

1E53= not supported

Satellite to Track

001E seconds Duration of Track

Payload Length: 7 bytes

Set Tr ickle Power Par ameter s - Message I.D. 151

Table 4-29 contains the input values for the following example:

Sets the receiver into low power Modes.

Example: Set receiver into Trickle Power at 1 hz update and 200 ms On Time.

A0A20009— Start Sequence and Payload Length

97000000C8000000C8— Payload

0227B0B3— Message Checksum and End Sequence

- 31 -

Laipac Technology Inc.

Table 4- 29 Set Trickle Power Parameters I.D.151

Name

Message ID

Push To Fix Mode

Duty Cycle

Bytes

4

Scale Example

1

2

2 *10

Binar y (Hex)

97

0000

00C8

Units

%

Descr iption

ASCII 151

ON = 1, OFF = 0

% Time ON. A duty cycle of 1000 (100%) means operation continuous

000000C8 msec range 200 - 500 ms Milli Seconds On

Time

Payload Length: 9 bytes

Note- On time of 700, 800, 900 msec are invalid if update rate of 1 second is selected.

Computation of Duty Cycle and On Time

The Duty Cycle is the desired time to be spent tracking.The On Time is the duration of each tracking period (range is 200 - 900 ms). To calculate the TricklePower update rate as a function of Duty cycle and On Time, use the following formula:

Off Time = On Time - (Duty Cycle * On Time)

Duty Cycle

Update rate = Off Time + On Time

Note – It is impossible to enter On Time of 900 ms.

Following are some examples of selections:

Table 4- 30 Example of Selections for Trickle Power Mode of Operation

Mode On Time (ms) Duty Cycle (% )

Continuous 1000 100

Trickle Power 200

Trickle Power 200

Trickle Power 300

Trickle Power 500

20

10

10

5

1

2

3

Update Rate(1/Hz)

1

10

Table 4- 31 Trickle Power Mode Settings

On Time

(ms)

200

1

Y

1

2

Y

3

Y

4

Y

Update Rate (sec)

5

Y

6

Y

7 8 9

Y Y Y

10

Y

- 32 -

Laipac Technology Inc.

300

400

500

600

700

800

900

Y

Y

Y

Y

N

N

N

1.Y = Yes (Mode supported)

Y

Y

Y

Y

Y

Y

Y

2. N = No (Mode NOT supported)

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y Y Y

Y Y Y

Y Y Y

Y Y Y

Y Y Y

Y Y Y

Y Y Y

Y

Y

Y

Y

Y

Y

Y

Push-to-Fix

In this mode the receiver will turn on every 30 minutes to perform a system update consisting of a RTC calibration and satellite ephemeris data collection if required (i.e., a new satellite has become visible) as well as all software tasks to support SnapStart in the event of an NMI. Ephemeris collection time in general takes 18 to 30 seconds.

If ephemeris data is not required then the system will re-calibrate and shut down. In either case, the amount of time the receiver remains off will be in proportion to how long it stayed on:

Off period = On Period*(1-Duty Cycle)

Duty Cycle

The off period has a possible range between 10 and 7200 seconds. The default is

1800 seconds.

Poll Navigation Par ameter s - Message I.D. 152

Table 4-32 contains the input values for the following example:

Example: Poll receiver for current navigation parameters.

A0A20002— Start Sequence and Payload Length

9800— Payload

0098B0B3— Message Checksum and End Sequence

Table 4-32 Poll Receiver for Navigation Parameters

Name

Message ID

Reserved

Bytes

1

1

Payload Length: 2 bytes

Binar y (Hex)

Scale Example

98

00

Units Descr iption

ASCII 152

Reserved

- 33 -

Laipac Technology Inc.

Set UART Configur ation - Message I.D. 165

Table 4-33 contains the input values for the following example:

Example: Set port 0 to NMEA with 9600 baud, 8 data bits, 1 stop bit, no parity.

Set port 1 to SiRF binary with 57600 baud, 8 data bits, 1 stop bit, no parity. Do not configure ports 2 and 3.

Example:

A0A20031— Start Sequence and Payload Length

A50001010000258008010000000100000000E1000801000000FF0505000000000000000000FF05050

00000000000000000

— Payload

0452B0B3— Message Checksum and End Sequence

Message ID

Port

In Protocol

1

Out Protocol 1

Baud Rate

2 4

Data Bits

3 1

Stop Bits

4

Parity

5

1

1

Reserved

Reserved

Port

1

1

1

1

1

1

In Protocol 1

Out Protocol 1

Baud Rate

Data Bits

4

1

Stop Bits

Parity

Reserved

Reserved

Port

1

1

1

1

1

In Protocol 1

Out Protocol 1

Baud Rate

Data Bits

4

1

Stop Bits

Parity

Reserved

1

1

1

Table 4- 33 Set UART Configuration

Name Bytes Binar y (Hex)

Scale Example

A5

00

01

01

00002580

08

01

00

01

00

00

00

FF

00

00

01

00

00

0000E100

08

05

05

00000000

00

00

00

00

Units Descr iption

ASCII 165

For UART 0

For UART 0

For UART 0 (Set to in protocol)

For UART 0

For UART 0

For UART 0

For UART 0

For UART 0

For UART 0

For UART 1

For UART 1

For UART 1

For UART 1

For UART 1

For UART 1

For UART 1

For UART 1

For UART 1

For UART 2

For UART 2

For UART 2

For UART 2

For UART 2

For UART 2

For UART 2

For UART 2

- 34 -

Laipac Technology Inc.

Reserved

Port

In Protocol 1

Out Protocol 1

1

1

Baud Rate

Data Bits

Stop Bits

4

1

1

Parity

Reserved

Reserved

1

1

1

Payload Length: 49 bytes

00

FF

05

05

00000000

00

00

00

00

00

For UART 2

For UART 3

For UART 3

For UART 3

For UART 3

For UART 3

For UART 3

For UART 3

For UART 3

For UART 3

1. 0 = SiRF Binary, 1 = NMEA, 2 = ASCII, 3 = RTCM, 4 = User1, 5 = No Protocol.

2. Valid values are 1200, 2400, 4800, 9600, 19200, 38400, and 57600.

3. Valid values are 7 and 8.

4. Valid values are 1 and 2.

5. 0 = None, 1 = Odd, 2 = Even.

Set Message Rate - Message I.D. 166

Table 4-34 contains the input values for the following example:

Set message ID 2 to output every 5 seconds starting immediately.

Example:

A0A20008— Start Sequence and Payload Length

A601020500000000— Payload

00AEB0B3— Message Checksum and End Sequence

Table 4-34 Set Message Rate

Name Bytes

Message ID

Send Now

1

MID to be set 1

1

1

Update Rate 1

Reserved 1

Reserved 1

Reserved

Reserved

1

1

Payload Length: 8 bytes

Binar y (Hex)

Scale Example

A6

01

02

05

00

00

00

00

Units

sec

1. 0 = No, 1 = Yes, if no update rate the message will be polled.

Descr iption

ASCII 166

Poll message

Range = 1 - 30

Not used

Not used

Not used

Not used

- 35 -

Laipac Technology Inc.

Low Power Acquisition Par ameter s - Message I.D. 167

Table 4-35 contains the input values for the following example:

Set maximum off and search times for re-acquisition while receiver is in low power.

Example:

A0A20019— Start Sequence and Payload Length

A7000075300001D4C000000000000000000000000000000000— Payload

02E1B0B3— Message Checksum and End Sequence

Table 4- 35 Set Low Power Acquisition Parameters

Name

Message ID

Max Off Time

Max Search

Time

Push-To-Fix period

Bytes

1

4

4

4

Binar y (Hex) Units Descr iption

Scale Example

A7

00007530 ms

0001D4C

0 ms

0000003C sec

ASCII 167

Maximum time for sleep mode

Max. satellite search time

Push-To-Fix cycle period

Output Messages for SiRF Binar y Pr otocol

Note – All output messages are received in BINARY format. SiRFdemo interprets the binary data and saves it to the log file in ASCII format.

Table 4-36 lists the message list for the SiRF output messages.

Table 4- 36 SiRF Messages - Output Message List

Hex ASCII

0 x 02 2

Name

Measured Navigation Data

0 x 03

0 x 04

3

4

True Tracker Data

Measured Tracking Data

Descr iption

Position, velocity, and time

Not Implemented

Satellite and C/No information

0 x 05 5 Raw Tra ck Data TF30 not supported

0 x 06 6 SW Version Receiver software

0 x 07 7 Clock Status Current clock status

0 x 08

0 x 09

8 50 BPS Subframe Data

9 Throughput

Standard ICD format

Navigation complete data

0 x 0A 10 Error ID Error coding for message failure

0 x 0B 11 Command Acknowledgment Successful request

- 36 -

Laipac Technology Inc.

0 x 0C 12 Command Nacknowledgment Unsuccessful request

0 x 0D 13 Visible List

0 x 0E 14 Almanac Data

Auto Output

Response to Poll

0 x 0F 15 Ephemeris Data

0 x 10 16 Test Mode 1

0 x 11 17 Differential Corrections

0 x 12 18 OkToSend

0 x 13 19 Navigation Parameters

Response to Poll

For use with SiRFtest

1

(Test mode 1)

Received from DGPS broadcast

CPU ON / OFF (Trickle Power)

Response to Poll

0 x 14 20 Test Mode 2 Additional test data (Test mode 2)

0 x 1C 28 Nav. Lib. Measurement Data Measurement Data

0 x 1D 29 Nav. Lib. DGPS Data

0 x 1E 30 Nav. Lib. SV State Data

Differential GPS Data

Satellite State Data

0 x 1F 31 Nav. Lib. Initialization Data Initialization Data

0 x FF 255 Development Data Various status messages

1. SiRFtest is product testing software tool.

Measur e Navigation Data Out - Message I.D. 2

Output Rate: 1 Hz

Table 4-37 lists the binary and ASCII message data format for the measured navigation data

Example:

A0A20029— Start Sequence and Payload Length

0

2FFD6F78CFFBE536E003AC00400030104A00036B039780E3

0612190E160F0400000000000

0— Payload

09BBB0B3— Message Checksum and End Sequence.

Table 4- 37 Measured Navigation Data Out - Binary & ASCII Message Data Format

Name

Message ID

X-position

Y-position

Z-position

X-velocity

Y-velocity

Z-velocity

Mode 1

DOP

2

Mode 2

Bytes

1

4

4

4

2

2

2

1

1

1

Binar y (Hex)

Scale Example Units

02

*8

FFD6F78C

FFBE536E

003AC004

00 m m m m/s

*8

*8

*5

03

01

04

A

00 m/s m/s

Bitmap

1

Bitmap

3

ASCII (Decimal)

Scale Example

2

Vx÷ 8

-2689140

-4304018

3850244

0

Vy÷ 8

0.375

Vz÷ 8

0.125

÷ 5

4

2.0

0

- 37 -

Laipac Technology Inc.

GPS Week

GPS TOW

SVs in Fix

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

CH 7

CH 8

CH 9

CH 10

CH 11

CH 12

Payload Length: 41 bytes

1

1

1

1

1

1

1

1

1

1

1

1

1

2

4

036B

*100 039780E3 seconds

16

0F

04

00

06

12

19

0E

00

00

00

00

00

1.For further information, go to Table 4-38.

÷ 100

875

602605.79

2. Dilution of precision (DOP) field contains value of PDOP when position is obtained using 3D

solution and HDOP in all other cases.

3. For further information, go to Table 4-39.

22

15

4

0

6

18

25

14

0

0

0

0

0

Note – The measurement of GPS Week item is expressed with ICD GPS week format (between 0 and 1023)

Note – Binary units scaled to integer values need to be divided by the scale value to receive true decimal value (i.e., decimal X vel

= binary X vel

/

8).

Table 4- 38 Mode 1

Bit

Bit(s)

Name

7 6

DGPS DOP-

Mask

5 4 3 2 1 0

ALTMODE TPMODE PMODE

Bit(s)

Name

Name

PMODE Position mode

Value

0

Descr iption

No navigation solution

4

5

6

1

2

3

1 satellite solution

2 satellite solution

3 satellite solution

>3 satellite solution

2D point solution (Least square)

3D point solution (Least square)

- 38 -

Laipac Technology Inc.Laipac Technology Inc.

TPMODE Trickle power

ALTMOD

E

DOPMAS

K

DGPS mode

Altitude mode

DOP mask status

DGPS status

1

0

1

3

0

1

2

1

0

7

0

Dead reckoning

Full power position

Trickle power position

No altitude hold

Altitude used from filter

Altitude used from user

Forced altitude (from user)

DOP mask not exceeded

DOP mask exceeded

No DGPS position

DGPS position

Table 4-39 Mode 2

Mode 2

Hex ASCII

0 x 00 0

0 x 01

0 x 02

0 x 04

0 x 08

0 x 10

1

2

4

8

16

0 x 20 32

0 x 40 64

0 x 80 128

Descr iption

Solution not validated

DR sensor data

Validated (1), Unvalidated (0)

If set, Dead Reckoning (Time Out)

If set, Output Edited by UI (i.e., DOP Mask exceeded)

Reserved

Reserved

Reserved

Reserved

Measur ed Tr acker Data Out - Message I.D. 4

Output Rate: 1 Hz

Table 4-38 lists the binary and ASCII message data format for the measured tracker data.

Example:

A0A200BC— Start Sequence and Payload Length

04036C0000937F0C0EAB46003F1A1E1D1D191D1A1A1D1F1D59423F1A1A..

.— Payload

****B0B3— Message Checksum and End Sequence

- 39 -

Laipac Technology Inc.

Table 4- 40 Measured Tracker Data Out

Name

Message ID

GPS Week

GPS TOW

Chans

1st Svid

Azimuth

Elev

State

C/No 1

C/No 2

C/No 3

C/No 4

C/No 5

C/No 6

C/No 7

C/No 8

C/No 9

C/No 10

2nd SVid

Azimuth

Bytes

1

2

4

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

Elev

State

C/No 1

C/No 2

1

2

1

1

Payload Length: 188 bytes

Binar y (Hex)

Scale Example

04

036C s*100 0000937F

Az*[2/3]

El*2

Az*[2/3]

0C

0E

AB

46

003F

1A

1E

1D

1D

19

1D

1A

1A

1D

1F

1D

59

El*2 42

3F

1A

1A

1.For further information, go to Table 4-41

Units

None s deg deg

Bitmap 1 deg deg

Bitmap 1

ASCII (Decimal)

Scale Example

4 s÷ 100

876

37759

÷ (2/3)

÷ 2

12

14

256.5

35

÷ (2/3)

÷ 2

0 x BF

26

30

29

29

25

29

26

26

29

31

29

89

66

63

26

63

Note – The measurement of GPS Week item is expressed with ICD GPS week format (between 0 and 1023)

Note – Message length is fixed to 188 bytes with nontracking channels reporting zero values.

Table 4-41 TrktoNAVStruct.trk_status Field Definition

Field Definition

ACQ_SUCCESS

DELTA_CARPHASE_VALI

D

Hex

Value

0x0001 Set, if acq/reacq is done successfully

0x0002

Descr iption

Set, Integrated carrier phase is valid

BIT_SYNC_DONE 0x0004 Set, Bit sync completed flag

SUBFRAME_SYNC_DONE 0x0008 Set, Subframe sync has been done

- 40 -

Laipac Technology Inc.

CARRIER_PULLIN_DONE 0x0010 Set, Carrier pullin done

CODE_LOCKED

ACQ_FAILED

GOT_EPHEMERIS

0x0020 Set, Code locked

0x0040 Set, Failed to acquire S/V

0x0080 Set, Ephemeris data available

Note – When a channel is fully locked and all data is valid, the status shown is 0 x BF.

Raw Tr acker Data Out - Message I.D. 5

Not implementedfor TF30.

Softwar e Ver sion Str ing (Response to Poll) - Message I.D. 6

Output Rate: Response to polling message

Example:

A0A20015— Start Sequence and Payload Length

0606312E322E30444B495431313920534D0000000000— Payload

0382B0B3— Message Checksum and End Sequence

Table 4- 42 Software Version String

Name

Message ID

Character

Bytes

1

20

Payload Length: 21 bytes

Binar y (Hex)

Scale Example

Units

06

1

1. 06312E322E30444B495431313920534D0000000000

ASCII (Decimal)

Scale Example

6

Note – Convert to symbol to assemble message (i.e., 0 x 4E is ‘N’). These are low priority task and are not necessarily output at constant intervals.

Response: Clock Status Data - Message I.D. 7

Output Rate: 1 Hz or response to polling message

Example:

A0A20014— Start Sequence and Payload Length

0703BD021549240822317923DAEF— Payload

0598B0B3— Message Checksum and End Sequence

- 41 -

Laipac Technology Inc.

Table 4- 43 Clock Status Data Message

Name

Message ID

GPS Week

GPS TOW

Svs

Clock Drift

Clock Bias

Estimated GPS

Time

Payload Length: 20 bytes

Bytes

1

2

4

1

4

4

4

Binar y (Hex)

Scale Example Units

07

03BD

*100 002154924 s

08

2231 Hz

7923 nanosec

DAEF millisec

ASCII (Decimal)

Scale Example

7

957

÷

100

349494.12

8

74289

128743715

349493999

Note – The mersurement of GPS week item is with Extended GPS week (=ICD

GPS week + 1024)

50 BPS Data – Message I.D.

8

Output Rate: As available (12.5 minute download time)

Example:

A0A2002B— Start Sequence and Payload Length

08xxxxxx— Payload xxxxB0B3— Message Checksum and End Sequence

Table 4- 44 50 BPS Data

Name

Message ID

Channel

Sv I.D

Word[10]

Bytes

1

1

1

40

Binar y (Hex)

Scale Example

08

Units

Payload Length: 43 bytes per subframe (5 subframes per page)

ASCII (Decimal)

Scale Example

8

Note – Data is logged in ICD format (available from www.navcen.uscg.gov

). The

ICD specification is 30-bit words. The output above has been stripped of parity to give a 240 bit frame instead of 300 bits.

- 42 -

Laipac Technology Inc.

CPU Thr oughput – Message I.D. 9

Output Rate:1 Hz

Example:

A0A20009— Start Sequence and Payload Length

09003B0011001601E5— Payload

0151B0B3— Message Checksum and End Sequence

Table 4- 45 CPU Throughput

Name

Message ID

SegStatMax

SegStatLat

AveTrkTime

Last MS

Bytes

1

2

2

2

2

Payload Length: 9 bytes

Binar y (Hex)

Scale Example Units

09

*186 003B millisec

*186

*186

60011

60016

01E5 millisec millisec millisec

Command Acknowledgment – Message I.D. 11

Output Rate: Response to successful input message

This is successful almanac (message ID 0x92) request example:

A0A20002— Start Sequence and Payload Length

0B92— Payload

009DB0B3— Message Checksum and End Sequence

ASCII (Decimal)

Scale Example

9

÷

186

÷

186

÷

186

.3172

.0914

.1183

485

Table 4- 46 Command Acknowledgment

Name

Message ID

Ack. I.D.

Bytes

1

1

Payload Length: 2 bytes

Binar y (Hex)

Scale Example Units

0B

92

ASCII (Decimal)

Scale Example

11

146

Command NAcknowledgment – Message I.D. 12

Output Rate: Response to rejected input message

This is an unsuccessful almanac (message ID 0x92) request example:

A0A20002— Start Sequence and Payload Length

- 43 -

Laipac Technology Inc.

0C92— Payload

009EB0B3— Message Checksum and End Sequence

Table 4- 47 Command Nacknowledgment

Name

Message ID

Nack. I.D.

Bytes

1

1

Payload Length: 2 bytes

Binar y (Hex)

Scale Example

Units

0C

92

ASCII (Decimal)

Scale Example

12

146

Visible List – Message I.D. 13

Output Rate: Updated approximately every 2 minutes

Note – This is a variable length message. Only the number of visible satellites are reported (as defined by Visible Svs in Table 4-48). Maximum is 12 satellites.

Example:

A0A2002A— Start Sequence and Payload Length

0D080700290038090133002C… xxxxxxxxxxxxxxxxx— Payload xxxxB0B3— Message Checksum and End Sequence

Table 4- 48 Visible List

Name

Message ID

Visible Svs

CH 1 – Sv

I.D.

CH 1 – Sv

Azimuth

CH 1 – Sv

Elevation

CH 2 – Sv

I.D.

CH 2 – Sv

Azimuth

CH 2 – Sv

Elevation

Bytes

1

1

1

2

2

1

2

2

Payload Length: Variable

Binar y (Hex)

Scale Example Units

0D

08

10

002A

0038

09

0133

002C degrees degrees degrees degrees

ASCII (Decimal)

Scale Example

13

8

16

42

56

9

307

44

- 44 -

Laipac Technology Inc.

Almanac Data - Message I.D. 14

Output Rate: Response to poll

Example:

A0A203A1— Start Sequence and Payload Length

0E01*************— Payload

****B0B3— Message Checksum and End Sequence

Table 4- 49 Almanac Data

Message I.D.

Sv I.D.

Almanac week and

Status

Name

Almanac data

Package checksum

Binar y (Hex)

Bytes Scale Example

1

1

2

0E

01 Satellite PRN Number

1

1101 First 10 bits is the Almanac week.Next 5 bits have a zero

24 … value. Last bit is 1.

This information is taken from the 50BPS navigation message broadcast by the satellite. This

2 information is the last 8 words in the 5th subframe but with the parity removed.

2

4CA1 This is the checksum of the preceding data in the payload. It is calculated by arranging the previous 26 bytes as 13 halfwords and then summing them.

3

Payload Length: 30 bytes

1. Each satellite almanac entry is output in a single message.

2. There are 25 possible pages in subframe 5. Pages 1 through 24 contain satellite specific almanac information which is output as part of the almanac data. Page 25 contains health status flags and the almanac week number.

3. This checksum is not used for serial I/O data integrity. It is used internally for ensuring that almanac information is valid.

Note – The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-

2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps .

- 45 -

Laipac Technology Inc.

Ephemer is Data (Response to Poll) – Message I.D. 15

The ephemeris data that is polled from the receiver is in a special SiRF format based on the ICD- GPS -200 format for ephemeris data.

OkToSend - Message I.D. 18

Output Rate: Trickle Power CPU on/off indicator

Example:

A0A20002— Start Sequence and Payload Length

1200— Payload

0012B0B3— Message Checksum and End Sequence

Table 4- 50 Ephemeris Data

Name

Message I.D.

Send Indicator

1

Payload Length: 2 bytes

Binar y (Hex)

Bytes Scale Example Units

1 12

1 00

ASCII (Decimal)

Scale

1.0 implies that CPU is about to go OFF, OkToSend==NO, 1 implies CPU has just come ON,

Example

12

00

OkToSend==YES

Navigation Par ameter s (Response to Poll) – Message I.D. 19

Output Rate:1 Response to Poll

Example:

A0A20018— Start Sequence and Payload Length

130100000000011E3C0104001E004B1E00000500016400C8— Payload

022DB0B3— Message Checksum and End Sequence

Table 4- 51 Navigation Parameters

Name

Message ID

Reserved

Altitude Hold Mode

Altitude Hold Source

Altitude Source Input

Degraded Mode

1

Bytes

Binar y (Hex)

Scale Example

13

1

1

2

1

4

1

00

00

0000

01

Units

meters

ASCII

(Decimal)

Scale Example

19

0

0

0

1

- 46 -

Laipac Technology Inc.

Degraded Timeout

DR Timeout

Track Smooth Mode

Static Navigation

3SV Least Squares

Reserved

DOP Mask Mode

2

Navigation Elevation

Mask

Navigation Power Mask

Reserved

DGPS Source

DGPS Mode

3

DGPS Timeout

Reserved

LP Push-to-Fix

LP On-time

LP Interval

LP User Tasks Enabled

LP User Task Interval

LP Power Cycling

Enabled

LP Max. Acq. Search

Time

LP Max. Off Time

Reserved

Reserved

Payload Length: 65 bytes

1. See Table 4-13.

2. See Table 4-14.

3. See Table 4-15

4

4

1

4

1

1

4

1

1

1

1

4

1

4

1

1

1

1

1

2

4

4

4

4

1E

3C

01

04

00

1E seconds seconds seconds

30

60

1

4

0

30

Navigation Libr ar y Measurement Data - Message I.D. 28

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20038— Start Sequence and Payload Length

1C00000660D015F143F62C4113F42FF3FBE95E417B235C468C6964B8FBC5

82415CF1C375301734.....03E801F400000000— Payload

1533B0B3— Message Checksum and End Sequence

- 47 -

Laipac Technology Inc.

Table 4- 52 Measurement Data

Binar y (Hex)

Name Bytes

Message I.D.

Channel

Time Tag

Satellite ID

GPS Software Time

Pseudo-range

Carrier Frequency

Scale Example

1C

00

000660D0

15

F143F62C

4113F42F

F3FBE95E

417B235C

468C6964

Carrier Phase

Time in Track

Sync Flags

C/No 1

C/No 2

C/No 3

C/No 4

C/No 5

C/No 6

C/No 7

C/No 8

C/No 9

C/No 10

Delta Range Interval

Mean Delta Range Time

Extrapolation Time

Phase Error Count

Low Power Count

Payload Length: 56 bytes

B8FBC582

415CF1C3

7530

17

34

03E801F4

01F4

0000

00

00

Tabl e 4- 53 Sync Flag Fields

Bit Fields

[0]

[2:1]

Description

Coherent Integration Time

0 = 2ms

1 = 10ms

Synch State

00 = Not aligned

01 = Consistent code epoch alignment

10 = Consistent data bit alignment

11 = No millisecond errors

Units

ms ms m ms dB-Hz dB-Hz dB-Hz dB-Hz dB-Hz dB-Hz dB-Hz dB-Hz dB-Hz dB-Hz m ms ms

ASCII

(Decimal)

Scale Example

2.4921113

696e+005

2.1016756

638e+007

1.6756767

578e+004

4.4345542

262e+004

10600

23

43

43

43

43

43

43

43

43

43

43

1000

500

0

0

- 48 -

Laipac Technology Inc.

[4:3] Autocorrelation Detection State

00 = Verified not an autocorrelation

01 = Testing in progress

10 = Strong signal, autocorrelation detection not run

11 = Not used

Tabl e 4- 54 Detailed Description of the Measurement Data

Name Descr iption

Message I.D.

Message I.D. number.

Channel

Time Tag

Receiver channel number for a given satellite being searched or tracked.

This is the Time Tag in milliseconds of the measurement block in the receiver software time.

Satellite ID Satellite or Space Vehicle (SV) I.D. number or Pseudo-random

Noise (PRN) number.

GPS Software

Time

This is GPS Time or Time of Week (TOW) estimated by the software in milliseconds.

Pseudo-range This is the generated pseudo range measurement for a particular SV.

Carrier

Frequency

This is can be interpreted in two ways:

1) The delta-pseudo range normalized by the reciprocal of the delta pseudo range measurement interval.

2) The frequency from the AFC loop. If, for example, the delta pseudo range interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta-pseudo range computation.

Carrier Phase This is the integrated carrier phase given in meters.

Time in Track The Time in Track counts how long a particular SV has been in track. For any count greater than zero (0), a generated pseudo range is present for a particular channel. The length of time in track is a measure of how large the pull-in error may be.

Sync Flags This byte contains two a two bit fields that report the integration inter-val and sync value achieved for a particular channel.

1)Bit 0: Coherent Integration Interval (0 = 2 milliseconds, 1 =

10 milli- seconds)

2) Bits: (1 2) = Synchronization

3) Bit: (2 1)

Value: {0 0} Not Aligned

Value: {0 1} Consistent Code Epoch Alignment

Value: {1 0} Consistent Data Bit Alignment

Value: {1 1} No Millisecond Errors

- 49 -

Laipac Technology Inc.

Tabl e 4- 55 Detailed Description of the Measurement Data (Continued)

Name

C/No 1

C/No 2

C/No 3

C/No 4

C/No 5

C/No 6

Descr iption

This array of Carrier To Noise Ratios is the average signal power in dB-Hz for each of the 100-millisecond intervals in the previous second or last epoch for each particular SV being track in a channel.First 100 millisecond measurement

Second 100 millisecond measurement

Third 100 millisecond measurement

Fourth 100 millisecond measurement

Fifth 100 millisecond measurement

Sixth 100 millisecond measurement

C/No 7

C/No 8

C/No 9

C/No 10

Seventh 100 millisecond measurement

Eighth 100 millisecond measurement

Ninth 100 millisecond measurement

Tenth 100 millisecond measurement

Delta Range

Interval

Mean Delta Range

Time

This is the delta-pseudo range measurement interval for the preceding second. A value of zero indicated that the receiver has an AFC measurement or no measurement in the Carrier

Frequency field for a particular channel.

This is the mean calculated time of the delta-pseudo range interval in milliseconds measured from the end of the interval backwards Extrapolation Time This is the pseudo range extrapolation time in milliseconds, to reach the common Time tag value.

Phase Error Count This is the count of the phase errors greater than 60 Degrees measured in the preceding second as defined for a particular channel.

Low Power Count This is the low power measurements for signals less than 28 dB-

Hz in the preceding second as defined for a particular channel

Navigation Libr ar y DGPS Data - Message I.D. 29

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A2001A— Start Sequence and Payload Length

1D000F00B501BFC97C673CAAAAAB3FBFFE1240A0000040A00000-Payload

0956B0B3— Message Checksum and End Sequence

Table 4- 56 Measurement Data

Name

Message I.D.

Bytes

1

Binar y (Hex)

Scale Example

1D

Units

ASCII

(Decimal)

Scale Example

- 50 -

Laipac Technology Inc.

Satellite ID

IOD

Source

1

Pseudo-range Correction

Pseudo-range rate

Correction

Correction Age

Reserved

Reserved

Payload Length: 26 bytes

2

2

1

4

4

4

4

4

000F

00B5

01

BFC97C67

3CAAAAAB

3FBFFE12 ms m/s s

1. 0 = Use no corrections, 1 = Use WAAS channel, 2 = Use external source, 3 = Use Internal Beacon, 4

= Set DGPS Corrections

Navigation Libr ar y SV State Data - Message I.D. 30

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20053— Start Sequence and Payload Length

1E15....2C64E99D01....408906C8— Payload

2360B0B3— Message Checksum and End Sequence

Table 4- 57 SV State Data

Name Bytes

8

8

8

8

8

8

4

1

8

8

1

1

8

4

Binar y (Hex)

Units

s m m m m/s m/s m/s s

/s

ASCII

(Decimal)

Scale Example

Message I.D.

Satellite ID

GPS Time

Position X

Position Y

Position Z

Velocity X

Velocity Y

Velocity Z

Clock Bias

Clock Drift

Ephemeris Flag

1

Reserved

Ionospheric Delay

Payload Length: 83 bytes

Scale Example

1E

15

2C64E99D

01

408906C8 m

744810909

1

1082721992

1. 0 = no valid SV state, 1 = SV state calculated from ephemeris, 2 = Satellite state calculated from almanac

- 51 -

Laipac Technology Inc.

Navigation Libr ar y Initialization Data - Message I.D. 31

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20054— Start Sequence and Payload Length

1F....00000000000001001E000F....00....000000000F....00....02....043402....

....02— Payload

0E27B0B3— Message Checksum and End Sequence

Table 4- 58 Measurement Data

Name Bytes

Binar y (Hex)

Scale Example

1E

Units

ASCII

(Decimal)

Scale Example

Message I.D.

Reserved

Altitude Mode

1

Altitude Source

Altitude

Degraded Mode

2

Degraded Timeout

Dead-reckoning Timeout

Reserved

Track Smoothing Mode

3

Reserved

Reserved

Reserved

Reserved

DGPS Selection

4

DGPS Timeout

Elevation Nav. Mask

Reserved

Reserved

Reserved

Reserved

Reserved

Static Nav.Mode

5

Reserved

Position X

Position Y

Position Z

6

Position Init. Source

GPS Time

1

2

1

2

1

2

2

2

8

8

1

2

8

2

2

1

1

2

8

1

4

1

1

1

1

2

2

2

1

00

00

00000000

01

001E

000F

00

00

02

0

0

0

1

30

15

0

0

2

- 52 -

Laipac Technology Inc.

GPS Week

Time Init. Source

Drift

Drift Init. Source

8

7

Payload Length: 84 bytes

2

1

8

1

0434

02

02

1076

2

2

1. 0 = Use last know altitude 1 = Use user input altitude 2 = Use dynamic input from external source

2. 0 = Use direction hold and then time hold 1 = Use time hold and then direction hold 2 = Only use direction hold 3 = Only use time hold 4 = Degraded mode is disabled

3. 0 = True 1 = False

4. 0 = Use DGPS if available 1 = Only navigate if DGPS corrections are available 2 = Never use DGPS corrections

5. 0 = True 1 = False

6. 0 = ROM position 1 = User position 2 = SRAM position 3 = Network assisted position

7. 0 = ROM time 1 = User time 2 = SRAM time 3 = RTC time 4 = Network assisted time

8. 0 = ROM clock 1 = User clock 2 = SRAM clock 3 = Calibration clock 4 = Network assisted clock

Development Data – Message I.D. 255

Output Rate: Receiver generated

Example:

A0A2****— Start Sequence and Payload Length

FF**************— Payload

****B0B3— Message Checksum and End Sequence

Table 4- 59 Development Data

Name

Message ID

Binar y (Hex)

Bytes

Scale Example Units

1 FF

Payload Length: Variable

ASCII (Decimal)

Scale Example

255

Note – MID 255 is output when SiRF binary is selected and development data is enabled. The data output using MID 255 is essential for SiRF assisted troubleshooting support.

- 53 -

Laipac Technology Inc.

Additional Infor mation

Tr icklePower Oper ation in DGPS Mode

When in TricklePower mode, serial port DGPS corrections are supported. The CPU goes into sleep mode but will wake up in response to any interrupt. This includes

UART’s. Messages received during the TricklePower ‘off’ period are buffered and processed when the receiver awakens for the next TricklePower cycle.

GPS Week Repor ting

Since Aug, 22, 1999, the GPS week roll from 1023 weeks to 0 weeks is in accordance with the ICD-GPS-200 specifications. To maintain roll over compliance,

SiRF reports the ICD GPS week between 0 and 1023. If the user needs to have access to the Extended GPS week (ICD GPS week + 1024) this information is available through the Clock Status Message (007) under the Poll menu.

NMEA Pr otocol in Tr icklePower Mode

The NMEA standard is generally used in continuous update mode at some predefined rate. This mode is perfectly compatible with all SiRF TricklePower and

Push-to-Fix modes of operations. There is no mechanism in NMEA that indicates to a host application when the receiver is on or in standby mode. If the receiver is in standby mode (chip set OFF, CPU in standby), then no serial communication is possible for output of NMEA data or receiving SiRF proprietary NMEA input commands. To establish reliable communication, the user must repower the receiver and send commands while the unit is in full-power mode (during start-up) and prior to reverting to TricklePower operation. Alternatively, the host application could send commands (i.e., poll for position) repeatedly until the request has been completed.

In Trickle-Power mode, the user is required to select an update rate (seconds between data output) and On Time (milli-seconds the chipset is on). When the user changes to NMEA mode, the option to set the output rate for each of the selected

NMEA messages is also required. These values are multiplied by the TricklePower update rate value as shown in Table 4-58.

- 54 -

Laipac Technology Inc.

Table 4- 60 NMEA Data Rates Under Trickle Power Operation

Power Mode Continuous Tr ickle Power Tr ickle Power Tr ickle Power

Update Rate 1 every second 1 every second

1 every 5 seconds

1 every 8 seconds

On Time 1000 2000 4000 6000

NMEA Update

Rate

Message

Output Rate

1 every second

1 every second

1 every 5 seconds

1 every 5 seconds

1 every 2 seconds

1 every 10 seconds

1 every 5 seconds

Note – The On Time of the chip set has no effect on the output data rates.

1 every 40 seconds

- 55 -

Laipac Technology Inc.

Chapter 5 NMEA Input/Output Messages

TF30 m a y also o utp ut data in NM EA-0183 format as defined by th e

National Marine Elec tronics Asso ciation (NMEA), St and ar d For Inte rfacing Marine

Electronic D evice s, Ver sion 2. 20, J anua ry 1, 1 997. Refer to Chapter 4 for det ailed inst ruc tions .

NMEA Output Messages

TF 30 ou tp ut s th e fol lowing m essa ges as s hown in Table 5 -1:

Tabl e 5- 1 NMEA-0183 Ou tput Messag es

NMEA Recor d

GGA

GLL

GSA

GSV

RMC

VTG

Descr iption

Global positioning syste m fixed data

Geog raphic position - latitu de/longitude

GNSS DOP and active satellites

GNSS satellites in view

Recomm ended minimum specific GNSS data

Course over g round a nd g round spee d

GGA — Global Positioning System Fixed Data

Table 5-2 contains the values for the following example:

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

Tabl e 5- 2 GGA Data Format

Name

Message ID

UTC Time

Latitude

N/S Indicator

Longitude

E/W Indicator

Position Fix Indicator

Satellites Used

HDOP

MSL Altitude

1

Example

$GPGGA

161229.487

3723.2475

N

12158.3416

W

1

07

1.0

9.0

Units

meters

Descr iption

GGA protocol header hhmmss.sss

ddmm.mmmm

N=north or S=south dddmm.mmmm

E=east or W=west

See Table 5-3

Range 0 to 12

Horizontal Dilution of Precision

- 56 -

Laipac Technology Inc.

Units

Geoid Separation

1

Units

Age of Diff. Corr.

Diff. Ref. Station ID

Checksum

<CR> <LF>

M

M

0000

*18

1.Values are WGS84 ellipsoid heights.

meters meters meters second Null fields when DGPS is not used

End of message termination

Tabl e 5- 3 Position Fix Indicator

Value

0

1

2

3

Descr iption

Fix not available or invalid

GPS SPS Mode, fix valid

Differential GPS, SPS Mode, fix valid

GPS PPS Mode, fix valid

GLL— Geogr aphic Position - Latitude/Longitude

Table 5-4 contains the values for the following example:

$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

Tabl e 5- 4 GLL Data Format

Name

Message ID

Latitude

N/S Indicator

Example

$GPGLL

3723.2475

N

Longitude

E/W Indicator

Checksum

<CR> <LF>

12158.3416

W

UTC Position 161229.487

Status A

*2C

Units Descr iption

GLL protocol header ddmm.mmmm

N=north or S=south dddmm.mmmm

E=east or W=west hhmmss.sss

A=data valid or V=data not valid

End of message termination

GSA— GNSS DOP and Active Satellites

Table 5-5 contains the values for the following example:

$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5*33

- 57 -

Laipac Technology Inc.

Tabl e 5- 5 GSA Data Format

Name

Message ID

Mode 1

Mode 2

Satellite Used

1

Satellite Used

1

.... ....

Satellite Used

1

PDOP

HDOP

VDOP

Checksum

<CR> <LF>

Example

$GPGSA

A

3

07

02

1.8

1.0

1.5

*33

1. Satellite used in solution.

Units Descr iption

GSA protocol header

See Table 5-6

See Table 5-7

Sv on Channel 1

Sv on Channel 2

Sv on Channel 12

Position Dilution of Precision

Horizontal Dilution of Precision

Vertical Dilution of Precision

End of message termination

Tabl e 5- 6 Mode 1

Value

Descr iption

M Manual— forced to operate in 2D or 3D mode

A 2Dautomatic— allowed to automatically switch 2D/3D

Tabl e 5- 7 Mode 2

Value

1

2

3

Fix Not Available

2D

3D

Descr iption

GSV— GNSS Satellites in View

Table 5-8 contains the values for the following example:

$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71

$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Tabl e 5- 8 GSV Data Format

Name

Message ID

Number of

Messages

1

Message

Number

1

Satellites in

Example Units

$GPGSV

2

1

07

Descr iption

GSV protocol header

Range 1 t o 3

Range 1 t o 3

- 58 -

Laipac Technology Inc.

View

Satellite ID

Elevation

Azimuth

SNR (C/No)

.... ....

Satellite ID

Elevation

Azimuth

SNR (C/No)

Checksum

<CR> <LF>

07

79

048

42

27

27

138

42

*71 dBHz

Channel 1 (Range 1 to 32) degrees Channel 1 (Maximum 90) degrees Channel 1 (True, Range 0 to 359)

Range 0 to 99, null when not tracking

Channel 4 (Range 1 to 32) degrees Channel 4 (Maximum 90) degrees dBHz

Channel 4 (True, Range 0 to 359)

Range 0 to 99, null when not tracking

End of message termination

1.Depending on the number of satellites tracked multiple messages of GSV data may be required.

RMC— Recommended Minimum Specific GNSS Data

Table 5-9 contains the values for the following example:

$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

Tabl e 5- 9 RMC Data Format

Name

Message ID

UTC Time

Status

Latitude

N/S Indicator

Longitude

E/W Indicator

Speed Over

Ground

Course Over

Ground

Date

Magnetic

Variation

1

Checksum *10

<CR> <LF>

Example Units

$GPRMC

161229.487

A

3723.2475

N

12158.3416

W

0.13

309.62

120598 knots degrees degrees

Descr iption

RMC protocol header hhmmss.sss

A=data valid or V=data not valid ddmm.mmmm

N=north or S=south dddmm.mmmm

E=east or W=west

True

Ddmmyy

E=east or W=west

End of message termination

1.All “course over ground” data are geodetic WGS84 directions.

- 59 -

Laipac Technology Inc.

VTG— Cour se Over Ground and Gr ound Speed

Table 5-10 contains the values for the following example:

$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

Tabl e 5- 10 VTG Data Format

Name

Message ID

Course

Reference

Course

Reference

Speed

Units

Speed

Units

Checksum

<CR> <LF>

Example Units

$GPVTG

309.62

Descr iption

VTG protocol header degrees Measured heading

T

M

0.13

True degrees Measured heading

Magnetic

1 knots Measured horizontal speed

N

0.2

K

*6E knots km/hr Measured horizontal speed

Kilometers per hour

End of message termination

1. All “course over ground” data are geodetic WGS84 directions.

SiRF Pr opr ietar y NMEA Input Messages

NMEA input messages are provided to allow you to control the Evaluation Unit while in NMEA protocol mode. The Evaluation Unit may be put into NMEA mode by sending the SiRF Binary protocol message “Switch To NMEA Protocol - Message I.D.

129” using a user program or using Sirfdemo.exe and selecting Switch to NMEA

Protocol from the Action menu. If the receiver is in SiRF Binary mode, all NMEA input messages are ignored. Once the receiver is put into NMEA mode, the following messages may be used to command the module.

Tr anspor t Message

Star t Sequence

$PSRF<MID>

1

Payload

Data

2

Checksum

*CKSUM

3

End Sequence

<CR> <LF>

4

1.Message Identifier consisting of three numeric characters. Input messages begin at MID 100.

2.Message specific data. Refer to a specific message section for <data>...<data> definition.

- 60 -

Laipac Technology Inc.

3.CKSUM is a two-hex character checksum as defined in the NMEA specification. Use of checksums is required on all input messages.

4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex

0D 0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

Note – All fields in all proprietary NMEA messages are required, none are optional.

All NMEA messages are comma delimited.

SiRF NMEA Input Messages

Message MID

1

Set Serial Port

Descr iption

100 Set PORT A parameters and protocol

Navigation Initialization 101 Parameters required for start using X/Y/Z

Set DGPS Port 102 Set PORT B parameters for DGPS input

Query/Rate Control

LLA Navigation

Initialization

103 Query standard NMEA message and/or set output rate

104 Parameters required for start using Lat/Lon/Alt

2

Development Data

On/Off

105 Development Data messages On/Off

1. Message Identification (MID).

2. Input coordinates must be WGS84.

SetSer ialPor t

This command message is used to set the protocol (SiRF Binary or NMEA) and/or the communication parameters (baud, data bits, stop bits, parity). Generally, this command is used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and then the Evaluation Unit restarts using the saved parameters.

Table 5-11 contains the input values for the following example:

Switch to SiRF Binary protocol at 9600,8,N,1

$PSRF100,0,9600,8,1,0*0C

Tabl e 5- 11 Set Serial Port Data Format

Name Example Units

Message ID $PSRF100

Protocol 0

Descr iption

PSRF100 protocol header

0=SiRF Binary, 1=NMEA

- 61 -

Laipac Technology Inc.

Baud 9600 4800, 9600, 19200, 38400

DataBits 8 8,7

1

StopBits 1 0,1

Parity 0 0=None, 1=Odd, 2=Even

Checksum *0C

<CR> <LF> End of message termination

1.Only valid for 8 data bits, 1stop bit, and no parity.

NaviagtionInitialization

This command is used to initialize the module for a warm start, by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the

TF30 to search for the correct satellite signals at the correct signal parameters.

Correct initialization parameters enable TF30 to acquire signals quickly.

Table 5-12 contains the input values for the following example:

Start using known position and time.

$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7F

Tabl e 5- 12 Navigation Initialization Data Format

Name Example Units Descr iption

Message ID $PSRF101 PSRF101 protocol header

ECEF X -2686700 meters X coordinate position

ECEF Y -4304200 meters Y coordinate position

ECEF Z 3851624 meters Z coordinate position

ClkOffset 96000 Hz Clock Offset of TF 30

1

TimeOfWeek 497260 seconds

WeekNo 921

ChannelCount

ResetCfg

Checksum

12

3

*7F

GPS Time Of Week

GPS Week Number

Range 1 to 12

See Table 5-13

<CR> <LF> End of message termination

1. Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.

Tabl e 5- 13 Reset Configuration

Hex Descr iption

0x01 Data Valid— Warm/Hot Starts=1

0x02 Clear Ephemeris— Warm Start=1

0x04 Clear Memory— Cold Start=1

- 62 -

Laipac Technology Inc.

SetDGPSPor t

This command is used to control Serial Port B which is an input-only serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. The default communication parameters for PORT B are 9600 baud, 8 data bits, stop bit, and no parity. If a DGPS receiver is used which has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and then the receiver restarts using the saved parameters.

Table 5-14 contains the input values for the following example:

Set DGPS Port to be 9600,8,N,1.

$PSRF102,9600,8,1,0*12

Tabl e 5- 14 Set DGPS Port Data Format

Name Example Units

Message ID $PSRF102

Baud

DataBits

StopBits

9600

8

1

Parity

Checksum

<CR> <LF>

0

*12

Descr iption

PSRF102 protocol header

4800, 9600, 19200, 38400

8,7

0,1

0=None, 1=Odd, 2=Even

End of message termination

Quer y/Rate Control

This command is used to control the output of standard NMEA messages GGA,

GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 5-15 contains the input values for the following examples:

1. Query the GGA message with checksum enabled

$PSRF103,00,01,00,01*25

2. Enable VTG message for a 1 Hz constant output with checksum enabled

$PSRF103,05,00,01,01*20

- 63 -

Laipac Technology Inc.

3. Disable VTG message

$PSRF103,05,00,00,01*21

Tabl e 5- 15 Query/Rate Control Data Format (See example 1.)

Name Example Units

Message ID $PSRF103

Msg 00

Mode

Rate

CksumEnabe

Checksum

<CR> <LF>

01

00

01

*25 seconds

Descr iption

PSRF103 protocol header

See Table 5-16

0=SetRate, 1=Query

Output— off=0, max=255

0=Disable Checksum, 1=Enable Checksum

End of message termination

Table 5- 16 Messages

Value

0

1

4

5

2

3

Descr iption

GGA

GLL

GSA

GSV

RMC

VTG

Note – In Trickle Power mode, update rate is specified by the user. When you witch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the Trickle Power Update rate AND the NMEA update rate (i.e.

Trickle Power update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds, (2 X 5 = 10)).

LLANaviagtionInitialization

This command is used to initialize the module for a warm start, by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 5-17 contains the input values for the following example:

Start using known position and time.

$PSRF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37

- 64 -

Laipac Technology Inc.

Table 5- 17 LLA Navigation Initialization Data Format

Name

Message ID

Lat

Lon

Alt

ClkOffset

TimeOfWeek

WeekNo

ChannelCount

ResetCfg

Checksum

<CR> <LF>

Example Units Descr iption

$PSRF104

37.3875111 degrees Latitude position (Range 90 to -90)

-121.97232 degrees Longitude position (Range 180 to -180)

0 meters

PSRF104 protocol header

Altitude position

Hz Clock Offset of the Evaluation Unit

1

95000

237759

922 seconds GPS Time Of Week

GPS Week Number

12

3

*37

Range 1 to 12

See Table 5-18

End of message termination

1.Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.

Tabl e 5- 18 Reset Configuration

Hex Descr iption

0x01 Data Valid— Warm/Hot Starts=1

0x02 Clear Ephemeris— Warm Start=1

0x04 Clear Memory— Cold Start=1

Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables the user to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

Table 5-19 contains the input values for the following examples:

1. Debug On

$PSRF105,1*3E

2. Debug Off

$PSRF105,0*3F

Tabl e 5- 19 Development Data On/Off Data Format

Name Example

Message ID $PSRF105

Debug

Checksum

<CR> <LF>

1

*3E

Units Descr iption

PSRF105 protocol header

0=Off, 1=On

End of message termination

- 65 -

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement

Table of contents