CET PMC-230 User Manual


Add to my manuals
37 Pages

advertisement

CET PMC-230 User Manual | Manualzz

PMC-230

Single-Phase Multifunction Meter

User Manual

Version: V1.1

April 1, 2022

This manual may not be reproduced in whole or in part by any means without the express written permission from CET Electric Technology (CET).

The information contained in this Manual is believed to be accurate at the time of publication; however,

CET assumes no responsibility for any errors which may appear here and reserves the right to make changes without notice. Please consult CET or your local representative for latest product specifications.

Standards Compliance

DANGER

This symbol indicates the presence of danger that may result in severe injury or death and permanent equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.

CAUTION

This symbol indicates the potential of personal injury or equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.

I

CET Electric Technology

DANGER

Failure to observe the following instructions may result in severe injury or death and/or equipment damage.

Installation, operation and maintenance of the meter should only be performed by qualified, competent personnel that have the appropriate training and experience with high voltage and current devices. The meter must be installed in accordance with all local and national electrical codes.

Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the meter.

Before connecting the meter to the power source, check the label on top of the meter to ensure that it is equipped with the appropriate power supply, and the correct voltage and current input specifications for your application.

During normal operation of the meter, hazardous voltages are present on its terminal strips and throughout the connected potential transformers (PT) and current transformers (CT). PT and CT secondary circuits are capable of generating lethal voltages and currents with their primary circuits energized. Follow standard safety precautions while performing any installation or service work (i.e. removing

PT fuses, shorting CT secondaries, …etc).

Do not use the meter for primary protection functions where failure of the device can cause fire, injury or death. The meter should only be used for shadow protection if needed.

Under no circumstances should the meter be connected to a power source if it is damaged.

To prevent potential fire or shock hazard, do not expose the meter to rain or moisture.

Setup procedures must be performed only by qualified personnel familiar with the instrument and its associated electrical equipment.

DO NOT open the instrument under any circumstances.

II

CET Electric Technology

Limited warranty

CET Electric Technology (CET) offers the customer a minimum of 12-month functional warranty on the meter for faulty parts or workmanship from the date of dispatch from the distributor. This warranty is on a return to factory for repair basis.

CET does not accept liability for any damage caused by meter malfunctions. CET accepts no responsibility for the suitability of the meter to the application for which it was purchased.

Failure to install, set up or operate the meter according to the instructions herein will void the warranty.

Only CET’s duly authorized representative may open your meter. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

III

COM / Comm.

CT

DI / DO

FP

Imp. / Exp.

MB

MBPW

NER

NMI

PF

PPS

RMS

RTC

SCADA

SOE

T1 to T4

THD

TOU

UL

WAGES

CET Electric Technology

Glossary

= Communication

= Current Transformer

= Digital Input / Output

= Front Panel

= Import / Export

= Mega Byte

= Modbus Password

= National Electricity Rules

= National Measurement Institute

= Power Factor

= Pulse Per Second

= Root Mean Square

= Real-Time Clock

= Supervisory Control And Data Acquisition

= Sequence of Events

= Tariff 1 to Tariff 4

= Total Harmonics Distortion

= Time of Use

= Underwriters Laboratories Inc.

= Water, Air, Gas, Electricity and Steam

IV

CET Electric Technology

Table of Contents

Chapter 1 Introduction ........................................................................................................................................... 1

1.1 Overview ....................................................................................................................................................... 1

1.2 Features ........................................................................................................................................................ 1

1.3 PMC-230’s application in Power and Energy Management System ............................................................. 2

1.4 Getting More Information ............................................................................................................................ 2

Chapter 2 Installation ............................................................................................................................................. 3

2.1 Appearance ................................................................................................................................................... 3

2.2 Terminal Dimensions .................................................................................................................................... 3

2.3 Unit Dimensions ............................................................................................................................................ 4

2.4 Installations ................................................................................................................................................... 4

2.5 RS-485 Wiring ............................................................................................................................................... 5

2.6 Digital Input .................................................................................................................................................. 5

2.7 Pulse Output ................................................................................................................................................. 5

Chapter 3 Front Panel ............................................................................................................................................. 6

3.1 LCD Display ................................................................................................................................................... 6

3.1.1 LED Pulse Output ................................................................................................................................... 6

3.1.2 LCD Display Symbols .............................................................................................................................. 6

3.2 LCD Testing .................................................................................................................................................... 6

3.3 Display Modes ............................................................................................................................................... 6

3.4 Data Display .................................................................................................................................................. 7

3.5 Setup Configuration via the Front Panel ....................................................................................................... 8

3.5.1 Function of buttons ............................................................................................................................... 8

3.5.2 Setup Menu ........................................................................................................................................... 9

3.5.3 Configurations ...................................................................................................................................... 10

Chapter 4 Applications .......................................................................................................................................... 11

4.1 Inputs and Outputs ..................................................................................................................................... 11

4.1.1 Digital Inputs ........................................................................................................................................ 11

4.1.2 Energy Pulse / 1 PPS Output ................................................................................................................ 11

4.1.3 Disconnect Relay .................................................................................................................................. 11

4.2 Metering ..................................................................................................................................................... 11

4.2.1 Basic Measurements ............................................................................................................................ 11

4.2.2 Energy Measurements ......................................................................................................................... 11

4.2.3 Demands .............................................................................................................................................. 11

4.2.4 Harmonics ............................................................................................................................................ 12

4.3 Logs ............................................................................................................................................................. 12

4.3.1 Monthly Energy Log ............................................................................................................................. 12

4.3.2 SOE Log ................................................................................................................................................ 13

4.3.3 Data Recorder Log ................................................................................................................................ 13

4.4 Time of Use (TOU) ....................................................................................................................................... 14

Chapter 5 Modbus Map ........................................................................................................................................ 15

5.1 Basic Measurements ................................................................................................................................... 15

5.2 Real Time Energy Measurements ............................................................................................................... 16

5.3 DI Pulse Counter ......................................................................................................................................... 16

5.4 Harmonic Measurement ............................................................................................................................. 16

5.5 Demand Measurements ............................................................................................................................. 16

5.5.1 Present Demand .................................................................................................................................. 16

5.5.2 Max. Demand of This Month (Since Last Reset) .................................................................................. 16

5.5.3 Max. Demand of Last Month (Before Last Reset) ................................................................................ 17

5.5.4 Demand Data Structure ....................................................................................................................... 17

5.6 Logs ............................................................................................................................................................. 17

5.6.1 Monthly Energy Log ............................................................................................................................. 17

5.6.2 Data Recorder Log ................................................................................................................................ 17

5.6.3 SOE Log ................................................................................................................................................ 18

5.7 Device Setup ............................................................................................................................................... 20

5.7.1 Basic Setup ........................................................................................................................................... 20

V

CET Electric Technology

5.7.2 I/O Setup .............................................................................................................................................. 21

5.7.3 Communication Setup ......................................................................................................................... 21

5.8 TOU Setup ................................................................................................................................................... 21

5.8.1 Basic ..................................................................................................................................................... 21

5.8.2 Seasons ................................................................................................................................................ 22

5.8.3 Daily Profile .......................................................................................................................................... 22

5.8.4 Alternate Days ...................................................................................................................................... 23

5.9 Data Recorder Setup ................................................................................................................................... 23

5.10 Time .......................................................................................................................................................... 24

5.11 Remote Control ......................................................................................................................................... 25

5.12 Clear/Reset Control ................................................................................................................................... 25

5.13 Meter Information .................................................................................................................................... 25

Appendix A – Technical Specification .................................................................................................................. 27

Appendix B – Standards of Compliance .............................................................................................................. 28

Appendix C – Ordering Guide .............................................................................................................................. 29

Contact us ............................................................................................................................................................ 30

VI

CET Electric Technology

Chapter 1 Introduction

This manual explains how to use the PMC-230 Single-Phase Multifunction Meter.

This chapter provides an overview of the PMC-230 meter and summarizes many of its key features.

1.1

Overview

The PMC-230 Single-Phase Multifunction Meter is CET’s latest offer for the low voltage energy metering market featuring DIN rail mount, compact construction, 63A direct input with an internal UC3 Disconnect Relay compliant with Australia National Electricity Rules (NER) schedule 7.5 for the ability to disconnect/re-connect from the supply. The PMC-230 also complies with the IEC 62053-21 Class 1 kWh Accuracy Standard and has received the certificate of approval from the National Measurement Institute (NMI) of Australia for compliance with the M6-1 Electricity Meters, Part 1: Metrological and Technical Requirements. The PMC-230 provides 4MB

Log Memory for Data Recording, 3xDI for Status Monitoring or Pulse Counting, 1xLED Pulse Indicator and 1xSS

Pulse Output for Energy Pulsing. Further, the standard RS-485 port supporting Modbus RTU protocol with password protection allows the PMC-230 to become a vital component of an intelligent, multifunction monitoring solution for any Energy Management Systems.

Following is a list of typical applications for the PMC-230:

▪ DIN rail mount energy metering

Industrial, Commercial and Utility Substation Metering

Building, Factory and Process Automation

Sub-metering and Cost Allocation

▪ NMI compliant Energy Management

Contact CET Technical Support at [email protected]

should you require further assistance with your application.

1.2

Features

Ease of Use

▪ Easy to read LCD for both data viewing and configuration

Two LED indicators for Energy Pulsing and Disconnect Relay status

Password-protected setup via Front Panel or free PMC Setup software

Easy installation with DIN rail mounting, no tools required

Basic Measurements

▪ IEC 62053-21 Class 1 and NMI M6-1 Certified by UL

▪ Direct Input up to 63A without external CT

U, I, P, Q, S, PF, Frequency and Operating Time kWh and kvarh Imp./Exp and kVAh

Two TOU schedules, each providing

4 Seasons

12 Daily Profiles, each with 8 Periods in 15-minute interval

• 30 Holidays or Alternate Days

4 Tariffs, each providing kWh/kvarh Imp./Exp., kVAh

Demands and Max. Demands for U, I, P/Q/S with Timestamp for This Month & Last Month (or Since Last

Reset & Before Last Reset)

U and I THD

DI Counters, Front Panel & Communication Programming Counters

Disconnect Relay (Internal)

▪ UC3 compliant Disconnect Relay that can be activated locally from the Front Panel or remotely via communications

Energy Pulse Outputs

▪ 1 LED Energy Pulse Output on the Front Panel

▪ 1 Solid State Relay Energy Pulse Output

1

CET Electric Technology

Digital Inputs

▪ 3 channels for external status monitoring and pulse counting

Self-excited, internally wetted at 12VDC

1000Hz sampling

Data Recorder

One Data Recorder Log of 16 parameters

Recording Interval from 1 second to 40 days.

Configurable Depth (max. 65535) and Recording Offset

4MB Log Memory, capable of recording 16 parameters at 5-minute interval for 6 months

Available parameters: U, I, P, Q, S, PF, Freq., kWh Imp./Exp., kvarh Imp./Exp., Demands and Max. Demands for U, I, P/Q/S Total, DI Pulse Counters and Relay Status

Monthly Energy Log

▪ 12 historical monthly logs of kWh/kvarh Imp./Exp. and kVAh as well as kWh/kvarh Imp./Exp. and kVAh per Tariff

SOE Log

▪ 32 events time-stamped to ±1ms resolution

Communications

▪ Optically isolated RS-485 port at 1200 to 19,200 bps

▪ Modbus RTU protocol with configurable password protection

Real-time Clock

▪ Battery backed RTC @ 6ppm (≤0.5s/day)

▪ Battery Life > 10 years

System Integration

▪ Supported by our PecStar® iEMS and PMC Setup

▪ Easy integration into other Automation or SCADA systems via Modbus RTU protocol

1.3

PMC-230’s application in Power and Energy Management System

Figure 1-1 Typical Application

1.4

Getting More Information

Additional information is available from CET via the following sources:

▪ Visit www.cet-global.com

▪ Contact your local representative

▪ Contact CET directly via email or telephone

2

CET Electric Technology

Chapter 2 Installation

Caution

Installation of the PMC-230 should only be performed by qualified, competent personnel that have the appropriate training and experience with high voltage and current devices. The meter must be installed in accordance with all local and national electrical codes.

During the operation of the meter, hazardous voltages are present at the input terminals. Failure to observe precautions can result in serious or even fatal injury and equipment damage.

2.1

Appearance

2.2

Terminal Dimensions

Figure 2-1 Appearance

Figure 2-2 Terminal Dimensions

3

1

Terminal

Input (L, N)

2 Output (L’, N’)

3 Pulse Output (E+, E-)

4 RS-485 (D+, D-)

5 DI (DIC, DI1, DI2, DI3)

2.3

Unit Dimensions

CET Electric Technology

Terminal Dimensions

7.35mm x 9.6mm

Max. Wire Size

25.0mm

2

2.5mm x 2.8mm

1.5mm

Figure 2-3 Terminal Dimensions

2

Max. Torque

25.0 kgf.cm/M3

(21.7 lb-in)

4.5 kgf.cm/M3

(3.9 lb-in)

Front View

Unit: mm

Side View

Bottom View

2.4

Installations

The PMC-230 should be installed in a dry environment with no dust and kept away from heat, radiation and electrical noise source.

Installation steps:

▪ Before installation, make sure that the DIN rail is already in place

▪ Move the installation clip at the back of the PMC-230 downward to the “unlock” position

▪ Mount the PMC-230 on the DIN rail

▪ Push the installation clip upward to the “lock” position to secure the PMC-230 on to the DIN Rail

Figure 2-4 Installations

4

CET Electric Technology

2.5

RS-485 Wiring

The PMC-230 provides one standard RS-485 port that supports the Modbus RTU protocol. Up to 32 devices can be connected on an RS-485 bus. The overall length of the RS-485 cable connecting all devices should not exceed

1200m.

If the master station does not have an RS-485 port, an RS-232/RS-485 or USB/RS-485 converter with optically isolated outputs and surge protection should be used. The following figure illustrates the RS-485 connections on the PMC-230.

Figure 2-5 RS-485 Wiring

2.6

Digital Input

The following figure illustrates the Digital Input connections:

Figure 2-6 Digital Input

2.7

Pulse Output

The following figure illustrates the Solid State Relay connections for Energy Pulsing on the PMC-230 when the

DO Energy Pulse is programmed for kWh or kvarh pulsing:

Figure 2-7 Solid State Relay Connections for Energy Pulsing or 1 PPS (Pulse Per Second) Output

5

CET Electric Technology

Chapter 3 Front Panel

The meter’s Front Panel is used for both display and configuration purposes. The LCD display and the two buttons provide access to measurements, meter information and configuration.

Figure 3-1 Front Panel Display

3.1

LCD Display

3.1.1

LED Pulse Output

The PMC-230 comes standard with an LED Pulse Output on its Front Panel, which can be used for kWh/kvarh

Total energy pulsing by setting the LEd setup parameter via the Front Panel or LED Energy Pulse register via communications.

3.1.2

LCD Display Symbols

The following figure shows the LCD display symbols based on “

8

”.

Figure 3-2 LCD Display Symbols

3.2

LCD Testing

Pressing both the <  > and the < ▼ > buttons simultaneously for 2 seconds enters the LCD Test mode. During testing, all LCD segments are illuminated and will blink on and off three times before returning to the Data

Display mode.

3.3

Display Modes

The PMC-230 has a default display which can be set as one of two modes: Fixed mode which displays kWh Imp statically and Auto-Scroll mode which displays kWh/kvarh Imp./Exp. and kVAh as well as kWh Imp./Exp. per Tariff sequentially in 4 seconds interval. The Auto-Scroll setup parameter can only be enabled/disabled via

6

CET Electric Technology communications.

3.4

Data Display

In Data Display mode, pressing the < ▼ > button scrolls to the next parameter while pressing the <  > button toggles among Energy , Real-time Data and Counter menus.

Figure 3-3 Data Display

7

CET Electric Technology

3.5

Setup Configuration via the Front Panel

Pressing the <  > button for two seconds enters the Setup Configuration mode where the setup parameters can be changed. Upon completion, pressing the <  > button for two seconds returns to the Data Display mode.

3.5.1

Function of buttons

The two Front Panel buttons take on different meanings in the Setup Configuration mode and are described below:

<  > : Pressing this button for two seconds toggles between Data Display mode and Setup Configuration mode. Once inside the Setup Configuration mode and at the main menu, pressing this button selects a parameter for modification. Once selected, the parameter value blinks while it’s being changed. If the selected parameter is a numeric value, pressing this button shifts the cursor to the left by one position. When the cursor has reached the left-most digit, pressing this button again will save the new setting into memory. The parameter will also stop blinking once the value has been saved.

< ▼ > : Before an item is selected, pressing this button scrolls to the next setup parameter. If the selected parameter is a numeric value, pressing this button increments the selected digit. If the selected parameter is an enumerated value, pressing this button scrolls through the enumerated list.

Pressing the < ↩ > button will save the current enumerated value.

Making setup changes:

▪ Press the <  > button for two seconds to enter the Setup Configuration mode.

▪ Press the < ▼ > button to advance to the Password page.

▪ A correct password must be entered before changes are allowed. The factory default password is zero. Press the < ▼ > button to select the parameter for modification. Use the < ▼ > and <  > buttons to enter the correct password.

▪ Use the < ▼ > button to scroll to the desired parameter.

▪ Press the <  > button to select the parameter. Once selected, the parameter value will blink.

▪ Use the <  > and < ▼ > buttons to make modification to the selected parameter.

▪ Pressing the <  > button for two seconds to exit the Setup Configuration mode.

8

3.5.2

Setup Menu

CET Electric Technology

Figure 3-4 Setup Menu

9

CET Electric Technology

3.5.3

Configurations

The Setup Configurations mode provides access to the following setup parameters:

Label Parameters Description Option (value)

PROG

PW

Programming

Password

Setup Configuration Mode

Enter Password

/

0~9999

SET PW

DISC

PF

Id

Bd

Set Password

Disconnect

PF Convention

Unit ID

Baud Rate

Enter New Password

Switch the Disconnect Relay Off/On

PF Convention

COM Unit ID

Data rate in bits per second (bps)

0~9999

ON/OFF

1~247

IEC, IEEE, -IEEE

1200/2400/4800/

9600/19200

CFG nUM

PErIod

LEd do

CLr En

CLr dMd

COM Port

Configuration

# of Windows

Period

DO Energy Pulsing

Clear Energy

Clear Demand

LED Energy Pulsing

CLr DI Clear DI

Clr oT Clear Operating Time

CLr SoE

CLr Cnt

Clear SOE

Clear Counters

Set Date

Set Clock

FW

PROT

SN

Firmware Version

Firmware Date

Protocol

The left 5 digits

The right 5 digits

Data Format

Firmware Version

Firmware Version Date

Protocol Version

The left 5 digits of SN

The right 5 digits of SN

Table 3-1 Configuration

Clear running hours for device

Clear SOE

No. of Windows for Demand Calculation

Demand Period

Configure LED Energy Pulsing

Configure DO Energy Pulsing

Clear All Energy

Clear All Demand

Clear All DI counters

Enter the Current Date

Enter the Current Time

Clear both FP & COM Setup Counters

8N2/8O1/8E1/8N1

1~15

0~60 (min)

OFF/kWh/kvarh

OFF/kWh/kvarh

YES/No

YES/No

YES/No

YES/No

Yes/No

YES/No

YY-MM-DD

HH:MM:SS

For example, 10002 means the firmware version is V1.00.02.

YYMMDD e.g. 1.1 means V1.1

XXXXX

YYYYY

Default

/

0

-

ON

IEC

100

9600

/

/

/

/

/

8E1

1

5(min) kWh kWh

No

No

No

No

No

No

/

/

10

CET Electric Technology

Chapter 4 Applications

4.1

Inputs and Outputs

4.1.1

Digital Inputs

The PMC-230 comes standard with three self-excited Digital Inputs that are internally wetted at 12VDC. Digital

Inputs on the PMC-230 can be used in the following applications:

1)

2)

Status Input

Pulse Counting

The digital inputs are typically used for status monitoring which can help prevent equipment damage, improve maintenance, and track security breaches. The real-time statuses of the Digital Inputs are available through communications. Changes in

Digital Input status are stored as events in the SOE Log in 1 ms resolution.

Pulse counting is supported with programmable debounce and pulse weight to facilitate WAGES (Water, Air, Gas, Electricity and Steam) information collection.

The following table describes the DI Setup Parameters that can be programmed over communications:

Setup Parameter

DIx Function

DIx Debounce

DIx Pulse Weight

Each DI

Definition

can be configured as a Status Input or Pulse Counter. used when a DI is configured as a Pulse Counter.

Table 4-1 Digital Input Setup

Specifies the minimum duration the DI must remain in the Active or Inactive state before a DI state change is considered to be valid.

Specifies the incremental value for each received pulse. This is only

Options/Default*

0=Status Input

1=Pulse Counter*

1 to 9999 (ms)

20ms*

1* to 1,000,000

4.1.2

Energy Pulse / 1 PPS Output

The PMC-230 comes standard with one Front Panel LED Pulse Output and one Solid State Relay Output for kWh or kvarh Energy Pulsing. Energy Pulse Output is typically used for accuracy testing. Energy Pulsing is enabled by default and can be disabled from the Front Panel or through communications. The Pulse Constant is fixed at 1000 impulses per kWh or kvarh. If the DO Energy Pulsing ( do ) parameter is disabled, the PMC-230 will output a 1PPS signal with a pulse width of 500ms ± 0.5ms at the Energy Pulse Output terminals ( E+ , E) for the accuracy testing of its internal clock.

4.1.3

Disconnect Relay

The PMC-230 comes standard with one internal Disconnect Relay which can be manually operated via the Front

Panel or remotely controlled via communications to switch the load off or back on.

4.2

Metering

4.2.1

Basic Measurements

The PMC-230 provides real time measurements for I, U, P, Q, S, PF, Freq., U THD, I THD and Operating Time.

4.2.2

Energy Measurements

The PMC-230 provides Energy measurements for kWh, kvarh Import/Export and kVAh at a resolution of 0.01 kxh and a maximum value of 1,000,000.00 kxh. When the maximum value is reached, it will automatically roll over to zero. The energy measurements can be reset manually via the Front Panel or through communications as well as preset via communications.

4.2.3

Demands

Demand is defined as the average consumption over a fixed interval (usually 15 minutes) based on the sliding window method. The PMC-230 provides the Present Demand, Max. Demand for This Month (Since Last Reset) and Last Month (Before Last Reset) for I, U, P, Q and S. The Present Demand and Max. Demand measurements can be retrieved via communications, and its Setup Parameters can be configured via the Front Panel (except for the Self-Read Time parameter) and through communications.

The PMC-230 provides the following Demand Setup parameters:

Parameter

Period

Definition

1 to 60 minutes. For example, if the # of Sliding Windows is set as 1 and the Demand Period is 15, the demand cycle will be 1×15=15min.

# of Sliding

Windows

Number of Sliding Windows.

Options/Default*

1 to 60 minutes,

5*

1 to 15, 1*

11

CET Electric Technology

Self-Read

Time

The Self-Read Time allows the user to specify the time and day of the month for the Max. Demand Self-Read operation. The Self-Read Time supports three options:

A zero value means that the Self-Read will take place at 00:00 of the first day of each month.

A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read Time = Day x 100 + Hour

• where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.

A 0xFFFF value will disable the Self-Read operation and replace it with manual operation. A manual reset will cause the Max. Demand of This

Month to be transferred to the Max. Demand of Last Month and then reset. The terms This Month and Last Month will become Since Last

Reset and Before Last Reset .

Table 4-2 Demand Setup

0xFFFF*

4.2.4

Harmonics

The PMC-230 provides the U THD and I THD measurements which can be retrieved via the Front Panel or through communications. There are two methods for calculating the THD:

THDf: where I

1 represents the amplitude of the fundamental component and I n

represents the amplitude of the n th harmonic.

THDr: where the denominator represents the total RMS value and the numerator represents the RMS value of the harmonics from 2 nd to 8 th .

4.3

Logs

4.3.1

Monthly Energy Log

The PMC-230 stores the monthly energy data for the present month and the last 12 months. The Monthly Energy

Log Self-Read Time setup parameter allows the user to specify the time and day of the month for the Recorder’s self-read operation via communications. The Monthly Energy Logs are stored in the meter’s non-volatile memory and will not suffer any loss in the event of power failure, and they are stored on a First-in-First-out basis where the newest log will overwrite the oldest one.

The Monthly Energy Log Self-Read Time supports two options:

▪ A zero value means that the Self-Read will take place at 00:00 of the first day of each month.

▪ A non-zero value means that the Self-Read will take place at a specific time and day based on the formula:

Energy Self-Read Time = Day x 10 0 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00 pm on the 15 th day of each month.

The Monthly Energy Logs can be reset manually via communications.

The PMC-230 provides the following Energy data for the Present Month and the last 12 months:

Active Energy

Reactive Energy

Apparent Energy kWh Import/Export, Tariff 1 to Tariff 4 kWh Import/Export kvarh Import/Export, Tariff 1 to Tariff 4 kvarh Import/Export kVAh, Tariff 1 to Tariff 4 kVAh

Table 4-3 Energy Measurement for Monthly Energy Log

12

CET Electric Technology

4.3.2

SOE Log

The PMC-230’s SOE Log can store up to 32 events such as Power-on, Power-off, Digital Input Status changes,

Disconnect Relay Status changes, Self-diagnostics and Setup changes in its non-volatile memory. Each event record includes the event classification, its relevant parameter values and a timestamp in ±1ms resolution. The

SOE Log can be retrieved via communications for display. If there are more than 32 events, the newest event will replace the oldest one on a First-in-First-Out basis. The SOE Log can be reset through the Front Panel or via communications.

4.3.3

Data Recorder Log

The PMC-230 provides one Data Recorder capable of recording 16 parameters at a 5-min interval for 6 months.

The Data Recorder log is stored in the device’s non-volatile memory and will not suffer any loss in the event of a power failure.

The programming of the Data Recorder is only supported over communications. The Data Recorder provides the following setup parameters.

Parameters

Trigger Mode

Recording Mode

Value/Option

0=Disabled / 1=Triggered by Timer

0=Stop-When-Full / 1=First-In-First-Out

Default

1

1

Recording Depth 1 to 65535 (entry)

Recording Interval

Offset Time

1 to 3,456,000 seconds

Number of Parameters 0 to 16

0 to 43,200 seconds, 0 indicates no offset.

Parameter 1 to 16

See Table 5-28 Data Recorder Parameters

Table 4-4 Data Recorder Setup

See

60000

300s

0

14

Table 5-27 Data Recorder Setup

The Data Recorder Log is only operational when the values of Trigger Mode, Recording Depth, Recording Interval, and Number of Parameters are all non-zero.

The Recording Offset can be used to delay the recording by a fixed time from the Recording Interval. For example, if the Recording Interval parameter is set to 3600 (hourly) and the Recording Offset parameter is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour every hour, i.e. 00:05, 01:05, 02:05, etc. The value of the Recording Offset parameter should be less than the Recording Interval parameter.

The following formula can be used to calculate how many bytes would be required for the Data Recorder with n parameters where 0 ≤ n ≤ 16.

No. of Bytes per Record = n x 4 + Timestamp @ 8 bytes

With 16 parameters, the no. of bytes required = 16 x 4 + 8 = 72 bytes. It should be noted that the above calculation is used to illustrate the internal organization of the data storage and is only an approximation of the actual implementation. The following table defines the maximum Recording Depth can be set for the different number of parameters.

No. of Parameters

1

2

3

4

5

6

7

8

Max. Recording Depth

65535

65535

65535

65535

65535

65535

No. of Parameters

9

10

11

12

13

14

Max. Recording Depth

65535

65535

15

16

Table 4-5 Max. Recording Depth for Different No. of Parameters

65535

65535

65535

65535

65535

64400

60600

57200

13

CET Electric Technology

4.4

Time of Use (TOU)

TOU is used for Electricity Pricing that varies depending on the time of day, day of week, and season. The TOU system allows the user to configure an electricity price schedule inside the PMC-230 and accumulate energy consumption into different TOU tariffs based on the time of consumption. TOU programming is only supported through communications.

The TOU feature on PMC-230 supports two TOU schedules, which can be switched at a pre-defined time. Each

TOU schedule supports:

▪ Up to 4 Seasons

▪ 30 Holidays or Alternate Days

▪ 12 Daily Profiles, each with 8 periods in 15-minute interval

▪ 4 Tariffs

Each TOU Schedule has the following setup parameters and can only be programmed via communications:

Parameters

Daily Profile #

Season #

Alternate Days #

Day Types

Switching Time

Definition

Specify a daily rate schedule which can be divided into a maximum of 8 periods in 15-min intervals.

Up to 12 Daily Profiles can be programmed for each TOU schedule.

A year can be divided into a maximum of 4 seasons. Each season is specified with a Start Date and ends with the next season’s Start Date.

A day can be defined as an Alternate Day, such as May 1 st

Alternate Day is assigned a Daily Profile.

. Each

Specify the day type of the week. Each day of a week can be assigned a day type such as Weekday1, Weekday2, Weekday3 and Alternate Days. The Alternate Day has the highest priority.

Specify when to switch from one TOU schedule to another.

Writing 0xFFFFFFFF to this parameter disables switching between TOU schedules.

Table 4-6 TOU Setup

1 to 12, the first period starts at 00:00 and the last period ends at 24:00.

1 to 4, starting from

January 1

1 to 30.

Options st

Weekday1, Weekday2,

Weekday3 & Alternate

Days.

Format: YYYYMMDDHH

Default=0xFFFFFFFF

For each of the 4 Tariffs, the PMC-230 provides the kWh, kvarh Import/Export and kVAh measurement.

14

CET Electric Technology

Chapter 5 Modbus Map

This chapter provides a complete description of the Modbus register map ( Protocol Version 1.0

) for the PMC-

230 to facilitate the development of 3 rd party communications driver for accessing information on the PMC-230.

The PMC-230 supports the following Modbus functions:

1) Read Holding Registers (Function Code 0x03)

2) Force Single Coil (Function Code 0x05)

3) Preset Multiple Registers (Function Code 0x10)

For a complete Modbus Protocol Specification, please visit http:// www.modbus.org

.

The following table provides a description of the different data formats used for the Modbus registers. The PMC-

230 uses the Big Endian byte ordering system.

Format

UINT16/INT16

UINT32/INT32

Float

Description

Unsigned/Signed 16-bit Integer

Unsigned/Signed 32-bit Integer

IEEE 754 32-bit

Single Precision Floating Point Number

5.1

Basic Measurements

Register

0000

0002

0004

0006

0008

0010

0012

0014~0039

0040

0041

0042

0043

0044

0046

0048

Property

RO

RO

RO

RO

RO

RO

RO

--

RO

RO

RO

RO

RO

RO

RO

Description

U

I

P

Q

S

PF

Frequency

Reserved

FP Counter 1

Comm. Counter

DI Status 2

1

Disconnect Relay Status 3

Operating Time

SOE Log Pointer 4

Data Recorder Log Pointer 4

Table 5-1 Basic Measurements

Format

Float

Float

Float

Float

Float

Float

Float

--

UINT16

UINT16

UINT16

UINT16

UINT32

UINT32

UINT32

Scale x1

--

0~9999 x0.1

--

--

Unit

V

A kW kvar kVA

--

Hz

--

Hour

--

--

Notes:

1.

The FP Counter and Comm. Counter will be incremented every time some important setup parameters, which may affect the accuracy of Energy registers and DI Pulse Counters or the way they are calculated, are changed via the Front Panel or communications, respectively. The FP Counter is incremented every time a relevant setup parameter is changed via the Front Panel, while the Comm.

Counter is incremented every time a single packet is sent to change one or more relevant setup parameters through communications.

The following actions may trigger these counters to increment:

▪ Changing Setup Parameters: o DI setup parameters o LED Energy Pulse o DO Energy Pulse o Preset Energy Value o Demand Period and No. of Sliding Windows o TOU setup registers o Manual Time Set

▪ Clear Actions via the Front Panel: o Clear All Energy o Clear All Demand o Clear Operating Time o Clear All DI Counters

▪ Clear Actions via communications: o Clear Historical Monthly Energy (Register 9600) o Clear Real Time Energy (Register 9601) o Clear Monthly Energy Log of Present Month (Register 9602) o Clear All Energy Logs (Register 9603) o Clear Max. Demand Log of This Month (Register 9605) o Clear All Demand (Register 9606) o Clear Device Operating Time (Register 9607) o Clear All Data (Register9614) o Clear DI1 Counter (Register 9609) o Clear DI2 Counter (Register 9610) o Clear DI3 Counter (Register 9611) o Clear All DI Counters (Register 9612)

15

CET Electric Technology

2.

For the DI Status register, the bit values of B0 to B2 represent the states of DI1 to DI3, respectively, with “1” meaning Active (Closed) and “0” meaning Inactive (Open).

3.

For the Disconnect Relay Status register, the returned value “1” means Connected while “0” means Disconnected.

4.

The PMC-230 has one SOE Log and one DR Log. Each of these logs has a Log Pointer that indicates its current logging position. The range of the Log Pointer is between 0 and 0xFFFFFFFF, and it is incremented by one for every new log generated and will roll over to 0 if its current value is 0xFFFFFFFF. If a Clear Log is performed through the Front Panel or via communications, its Log Pointer will be reset to zero, and the SOE Log Pointer will be immediately incremented by one with a new “Clear SOE” event. When the SOE or DR Log Pointer is larger than the respective Log Depth, the latest 32 SOE logs or up to 65,535 DR Logs are stored on a FIFO basis.

5.2

Real Time Energy Measurements

Register

0500

0502

0504

0506

0508

0510

0512

0514

0516

0518

0520~0538

0540

0542

0544

0546

0548

Property

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Description Format kWh Import kWh Export kvarh Import kvarh Export kVAh kWh Import of T1 kWh Export of T1 kvarh Import of T1 kvarh Export of T1 kVAh of T1

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

… kWh Import of T4 kWh Export of T4 kvarh Import of T4

INT32

INT32

INT32

INT32 kvarh Export of T4 kVAh of T4

INT32

INT32

Table 5-2 Energy Measurements

Scale x0.01

Unit kWh kvarh kVAh kWh kvarh

… kWh kWh kvarh kVAh

5.3

DI Pulse Counter

Register

1200

1202

1204

Property

RW

RW

RW

Description

DI1 Pulse Counter

DI2 Pulse Counter

Format

INT32

INT32

DI3 Pulse Counter INT32

Table 5-3 DI Pulse Counter

Range/Unit

0 to 99,999,999

5.4

Harmonic Measurement

Register

1300

1302

Property

RO

RO

Description

I THD

Format

Float

U THD Float

Table 5-4 Harmonic Measurements

Scale/Unit x1, 0.1 means 10%

5.5

Demand Measurements

5.5.1

Present Demand

Register

3000

3002

3004

3006

3008

Property

RO

RO

RO

RO

RO

Scale x1

5.5.2

Max. Demand of This Month (Since Last Reset)

Register

3400~3405

3406~3411

3412~3417

3418~3423

3424~3429

Property

RO

RO

RO

RO

RO

Description

U

I

P

Q

S

Format

See

Table 5-8 Demand Data

Structure

Table 5-6 Max. Demand of This Month

Description

U

I

P

Q

Format

Float

Float

Float

Float

S Float

Table 5-5 Present Demand

Scale x1

Unit

U

A kW kvar kVA

Unit

U

A kW kvar kVA

16

CET Electric Technology

5.5.3

Max. Demand of Last Month (Before Last Reset)

Register

3600~3605

3606~3611

3612~3617

3618~3623

3624~3629

Property

RO

RO

RO

RO

RO

Description Format

U

I

P

Q

S

See

Table 5-8 Demand Data

Structure

Table 5-7 Max. Demand of Last Month

5.5.4

Demand Data Structure

+0

+1

+2

+3

+4~+5

Offset

High-order Byte

Low-order Byte

High-order Byte

Low-order Byte

High-order Byte

Low-order Byte

-

-

Format Description

Year - 2000 (0-37)

INT16

Month (1-12)

Day (1-31)

INT16

Hour (0-23)

Minute (0-59)

INT16

INT16

Float

Second (0-59)

Millisecond (0 to 999)

Record Value

Table 5-8 Demand Data Structure

Scale x1

Unit

U

A kW kvar kVA

5.6

Logs

5.6.1

Monthly Energy Log

Register

0980

0981

0982

0983

0984

0986

0988

0990

0992

0994

0996

0998

1000

1002

1004~1022

1024

1026

1028

1030

1032

Property

RW

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

Description

Month 1

High-order Byte: Year (0-37)

Low-order Byte: Month (1-12)

High-order Byte: Day (1-31)

Low-order Byte: Hour (0-23)

High-order Byte: Minute (0-59)

Low-order Byte: Second (0-59) kWh Import kWh Export kvarh Import kvarh Export kVAh

kWh Import of T1 kWh Export of T1 3

3 kvarh Import of T1 kvarh Export of T1

3

3 kVAh of T1 3

kWh Import of T4 kWh Export of T4

3

3 kvarh Import of T4

3

3 kvarh Export of T4 kVAh of T4 3

Table 5-9 Monthly Energy Log

Format

INT16

INT16

INT16

INT16

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

Scale

0 to 12

Unit

Time Stamp 2

HH:MM:SS) x0.01

(20YY/MM/DD kWh kvarh kVAh kWh kvarh kVAh

… kWh kvarh kVAh

Notes:

1.

This register represents the Month when it is read. To read the Monthly Energy Log, this register must be first written to indicate to the PMC-230 which log to load from memory. The range of this register is from 0 to 12, which represents the Present Month and the

Last 12 Months. For example, if the current month is 2016/10, “0” means 2016/10, “1” means 2016/09, “2” means 2016/08, ……”12” means “2015/10”.

2.

For each Monthly Energy Log, the time stamp shows the exact self-read time (20YY/MM/DD HH:MM:SS) when the log was recorded.

For the Monthly Energy Log of the Present Month, the time stamp shows the current time of the meter because the present month is not yet over.

3.

T1 to T4 means Tariff 1 to Tariff 4.

5.6.2

Data Recorder Log

Register

20000

Property

RW

20002

20003

RO

RO

Description

Data Recorder Index

High-order Byte: Year

Low-order Byte: Month

High-order Byte: Day

Format

UINT32

UINT16

UINT16

Note

See Note 1)

1 to 37 (Year-2000)

1 to 12

1 to 31

17

CET Electric Technology

20004

20005

20006~20007

20008~20009

20010~20011

20012~20013

20014~20015

20016~20017

20018~20019

20020~20021

20022~20023

20024~20025

20026~20027

20028~20029

20030~20031

20032~20033

20034~20035

20036~20037

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

Low-order Byte: Hour

High-order Byte: Minute

Low-order Byte: Second

Millisecond

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 5

Parameter 6

Parameter 7

Parameter 8

Parameter 9

Parameter 10

Parameter 11

Parameter 12

Parameter 13

Parameter 14

Parameter 15

Parameter 16

Table 5-10 Data Recorder

UINT16

UINT16

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

0 to 23

0 to 59

0 to 59

Note:

1) Writing a value n to the Data Recorder Index will load the nth Log into the buffer from memory, and the valid range of the DR Index is:

Between 1 and DR Log Pointer when DR Log Pointer ≤ DR Log Depth (see Section 5.9 for DR Log Depth)

Between DR Log Pointer - (DR Log Depth - 1) and DR Log Pointer when the DR Log Pointer > DR Log Depth

5.6.3

SOE Log

The SOE Log Pointer points to the current logging position within the SOE Log where the next event will be stored. The following formula is used to determine the starting register address of the SOE log referenced by a particular SOE Log Pointer value:

Register Address = 10000 + Modulo[(SOE Log Pointer-1)/32]*8

Register

10000~10007

10008~10015

10016~10023

10024~10031

……

10248~10255

Property

RO

RO

RO

RO

RO

Description

Event 1

Event 2

Event 3

Event 4

Event 32

Table 5-11 SOE Log

See

Format

Table 5-12 SOE Log

Data Structure

SOE Log Data Structure

Offset

+0

+1

+2

+3

+4

+5

+6

+7

Property

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

Description

High-order Byte: Event Classification

Low-order Byte: Sub-Classification

High-order Byte: Year

Low-order Byte: Month

High-order Byte: Day

Low-order Byte: Hour

High-order Byte: Minute

Low-order Byte: Second

Record Time: Millisecond

High-order Byte: Reserved

Low-order Byte: Status 1

High-order Word: Event Value (Float)

Low-order Word: Event Value (Float)

Table 5-12 SOE Log Data Structure

Unit

-

-

-

-

See Table 5-13 SOE

Classification

0-37 (Year-2000)

1 to 12

1 to 31

0 to 23

0 to 59

0 to 59

0 to 999

Notes:

1.

The value “1” means DI Inactive or Disconnect Relay Operated, while the value “2” means DI Active or Disconnect Relay Released.

18

CET Electric Technology

SOE Classification

Event

Classification

1=DI Changes

2=Relay Status

4=Self-diagnostic

5=Operations

Sub-

Classification

1

2

3

1

2

29

30

31

32

25

26

27

28

33

34

35

36

37

38

39

8

9

10

11 to 20

21

22

23

24

4

5

6

7

1

2

3

1

2

3

40

Note:

1.

The event values of Switch TOU Schedule are illustrated in the table below:

Record Value

1

Description

Switch Schedule 1 to Schedule 2 manually

Switch Schedule 2 to Schedule 1 manually 2

3

4

Switch Schedule 1 to Schedule 2 automatically

Switch Schedule 2 to Schedule 1 automatically

Table 5-14 TOU Switch Records

Status

1/2

1/2

1/2

1/2

1/2

0

0

0

0

0

0

0

--

0

0

0

0

0

0

0

0

0

0

Event

Value

0

0

0

0

0

0

0

0

0

0

0

0

--

0

0

0

0

0

0

0

0

0

0

Description

1=DI1 Inactive, 2=DI1 Active

1=DI2 Inactive, 2=DI2 Active

1=DI3 Inactive, 2=DI3 Active

1=Relay Operated, 2=Relay Released via Comm.

1=Relay Operated, 2=Relay Released via the

Front Panel

Flash Fault

FRAM Fault

System Parameters Fault

Power On

Power Off

Clear All Energy via Front Panel

Clear All Demand via Front Panel

Clear All DI Counters via Front Panel

Clear Operating Time via Front Panel

Clear SOE via Front Panel

Clear Setup Counters via Front Panel

Set Clock via Front Panel

Reserved

Setup Changes via Front Panel

Clear All Energy Logs via Comm.

Clear Real Time Energy via Comm.

Clear Historical Monthly Energy Log via Comm.

Clear Present Monthly Energy via Comm.

0

0

0

0

0

0

0

0

0

0

0

0

0 x=1 to 3

0

0

Clear Max. Demand of This Month via Comm.

Clear All Demand via Comm.

Clear All Data via Comm.

Clear SOE via Comm.

Clear DIx Counter via Comm.

Factory Restore via Comm.

Clear All DI Counters via Comm.

Clear Operating Time via Comm.

0

0

0

0

0

0

0

0

0

0

1 to 4

0

0

0

Setup Changes via Comm.

Preset Energy via Comm.

Preset TOU Energy via Comm.

Switch TOU Schedule 1

Clear Data Recorder via Comm.

Clear Setup Counters via Comm.

Set Clock via Comm.

0 0

Communication locked out for 15 minutes after

3 incorrect password attempts!

Table 5-13 SOE Classification

19

CET Electric Technology

5.7

Device Setup

5.7.1

Basic Setup

Register

6000

6001

6002

Property

WO

RW

RW

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Description

Comm. Authorization 1

PF Convention

THD Calculation 2

Current Threshold of Device

Operating Time

LED Energy Pulse

Demand Period

Format

UINT16

UINT16

UINT16

UINT16

Range, Default*

0~9999

0=IEC*, 1=IEEE, 2=-IEEE

0= THDf*, 1= THDr

1 to 1000 (x0.001 In), 4*

No. of Windows

Self-read Time 3

Monthly Energy Log Self-read

Time 4

Default Display 5

MBPW - Modbus Password 6

Comm. Password 6

Front Panel Password 6

UINT16 0=Disabled, 1=kWh*, 2=kvarh

UINT16 1 to 60 (min), 5*

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

Arm before execute

Time Zone 7

Table 5-15 Basic Setup

UINT16

UINT16

1 to 15, 1*

0xFFFF*

100

0=kWh Import*, 1=Auto-Scroll

0=Disabled*, 1=Enabled

0 to 9999, 9999*

0 to 9999, 0000*

0=Disabled*, 1=Enabled

0 to 32, 29 (GMT+10:00)*

Notes:

1.

The Comm. Authorization is the register to which the master software would be required to write the correct Comm. Password before it’s allowed to perform any Modbus Read/Write operations with the PMC-230, if the MBPW (Modbus Password) register is enabled. If the Comm. Password is correct, the master software will be able to communicate with the same PMC-230 continually until there is a period of inactivity of 60 seconds or longer. When this happens, the master software will have to write to the Comm. Authorization register again to re-gain access to the PMC-230. If an incorrect Comm. Password has been written to the Comm. Authorization register for 3 consecutive times, Modbus access will be locked out for approximately 15 minutes.

2.

There are two ways to calculate THD:

THDf: where I

1 represents the amplitude of the fundamental component and I n

represents the amplitude of the n th harmonic.

THDr: where the denominator represents the total RMS value and the numerator represents the RMS value of the harmonics from 2 nd to 8 th .

3.

The Self-Read Time applies to the Max. Demand Log and supports the following three options:

A zero value means that the Self-Read will take place at 00:00 of the first day of each month.

A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read Time = (Day x

100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00 pm on the 15th day of each month.

A 0xFFFF value means the automatic self-read operation is disabled and replaced with manual operation.

4.

The Monthly Energy Log Self-Read Time supports the following options:

A Zero value means that the Self-Read will take place at 00:00 of the first day of each month,

A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read Time = (Day x

100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00 pm on the 15th day of each month.

5.

Under Auto-Scroll mode, the kWh/kvarh Imp./Exp. and kVAh as well as kWh Imp./Exp. per Tariff are displayed sequentially in 4 seconds interval.

6.

The MBPW register is disabled by default and should be enabled if communication security is required.

7.

The following table lists the Time Zones supported:

Code Time Zone

0

1

GMT-12:00

GMT-11:00

2

3

4

5

6

7

GMT-10:00

GMT-09:00

GMT-08:00

GMT-07:00

GMT-06:00

GMT-05:00

Code

17

18

19

20

21

22

23

24

Time Zone

GMT+03:30

GMT+04:00

GMT+04:30

GMT+05:00

GMT+05:30

GMT+05:45

GMT+06:00

GMT+06:30

20

CET Electric Technology

8

9

10

11

12

13

14

15

16

GMT-04:00

GMT-03:30

GMT-03:00

GMT-02:00

GMT-01:00

GMT+00:00

GMT+01:00

GMT+02:00

GMT+03:00

25

26

27

28

29

30

31

32

Table 5-16 Time Zones

GMT+07:00

GMT+08:00

GMT+09:00

GMT+09:30

GMT+10:00

GMT+11:00

GMT+12:00

GMT+13:00

5.7.2

I/O Setup

Register

6200

6201

6202

6203

6204

6205

6206

6208

6210

6212

Property

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Description

DI1 Function

DI2 Function

DI3 Function

DI1 Debounce

DI2 Debounce

DI3 Debounce

DI1 Pulse Weight

DI2 Pulse Weight

Format

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT32

UINT32

DI3 Pulse Weight

DO Energy Pulse

UINT32

UINT16

Table 5-17 I/O Setup

Range, Default*

0=Status Input, 1=Pulse Counter*

0=Status Input, 1=Pulse Counter*

0=Status Input, 1=Pulse Counter*

1 to 9999ms, 20ms*

1 to 9999ms, 20ms*

1 to 9999ms, 20ms*

1 to 1,000,000, 1*

1 to 1,000,000, 1*

1 to 1,000,000, 1*

0=Disabled, 1=kWh*, 2=kvarh

5.7.3

Communication Setup

Register

6501

6502

Property

RW

RW

6503 RW

Description

Unit ID

Baud Rate

Format

UINT16

Range, Default*

1 to 247, 100*

UINT16 0=1200, 1=2400, 2=4800, 3=9600*, 4=19200,

COM Port

Data Format

UINT16 0=8N2, 1=8O1, 2=8E1*, 3=8N1

Table 5-18 Communication Setup

5.8

TOU Setup

5.8.1

Basic

Register Property

7000

7001

RO

RO

7002

7003

RO

RO

7004 RO

7005

7006

7008

7009

7010

7011

7012

7013

7014

7015

RO

RW

WO

RW

RW

RW

RW

RW

RW

RW

Description

Current Tariff 1

Current Season

Current Period

TOU Switch Time

Current Daily Profile

Current Day Type

1

Current TOU Schedule No

Switch TOU Manually

Format

UINT16

UINT16

Range, Default*

0=T1*, 1=T2, 2=T3, 3=T4

0* to 3 (Season #1 to #4)

UINT16 0* to 7 (Period #1 to #8)

UINT16 0* to 11 (Daily Profile #1 to #12)

UINT16

UINT16

UINT32

0=Weekday1*, 1=Weekday2

2=Weekday3, 3=Alternate Day

0=TOU #1*, 1=TOU #2

0xFFFFFFFF*

UINT16 Write 0xFF00 to manually switch the TOU schedule

Sunday Setup

Monday Setup

Tuesday Setup

Wednesday Setup

UINT16

UINT16

UINT16

UINT16

Thursday Setup

Friday Setup

Saturday Setup

UINT16

UINT16

UINT16

Table 5-19 TOU – Basic Setup

0*=Weekday1

1=Weekday2

2=Weekday3

Notes:

1) The following table illustrates the data structure for the TOU Switch Time. For example, 0x1003140C indicates a switch time of 12:00 pm on March 20 th , 2016. Writing 0xFFFFFFFF to this register disables the switching between TOU Schedule.

Byte 3

Year-2000 (0-37)

Byte 2

Month (1-12)

Byte 1

Day (1-31)

Table 5-20 TOU Switch Time Format

Byte 0

Hour (00-23)

21

CET Electric Technology

5.8.2

Seasons

The PMC-230 has two sets of Season setup parameters, one for each TOU. The Base Addresses for the two sets are 7100 and 8100, respectively, where the Register Address = Base Address + Offset. For example, the register address for TOU #1’s Season #2’s Start Date is 7100+4 = 7104.

Offset Property

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Description

Season #1: Start Date 1

Season #1: Weekday#1 Daily Profile

Season #1: Weekday#2 Daily Profile

Season #1: Weekday#3 Daily Profile

Format

UINT16

UINT16

UINT16

UINT16

Range/Note

0x0101

0 to 11

Season #2: Start Date UINT16

High-order Byte: Month

Low-order Byte: Day

Season #2: Weekday#1 Daily Profile

Season #2: Weekday#2 Daily Profile

Season #2: Weekday#3 Daily Profile

Season #3: Start Date

Season #3: Weekday#1 Daily Profile

Season #3: Weekday#2 Daily Profile

Season #3: Weekday#3 Daily Profile

UINT16

UINT16

UINT16

0 to 11

UINT16 See Season #2: Start Date

UINT16

UINT16

UINT16

0 to 11

Season #4: Start Date

Season #4: Weekday#1 Daily Profile

Season #4: Weekday#2 Daily Profile

Season #4: Weekday#3 Daily Profile

UINT16 See Season #2: Start Date

UINT16

UINT16

UINT16

Table 5-21 TOU – Seasons Setup

0 to 11

Notes:

1.

Start Date for Season #1 is Jan. 1 st and cannot be modified.

2.

Setting a Season’s Start Date as 0xFFFF terminates the TOU’s Season settings. All subsequent Seasons’ setup parameters will be ignored since the previous Season’s duration is from its Start Date to the end of the year.

3.

The Start Date of a particular Season must be later than the previous Season’s.

5.8.3

Daily Profile

The PMC-230 has two sets of Daily Profile setup parameters, one for each TOU.

Register Address

7200~7215

7216 ~ 7231

7232 ~ 7247

7248 ~ 7263

7264 ~ 7279

7280 ~ 7295

7296 ~ 7311

7312 ~ 7327

7328~7343

7344~7359

7360~7375

7376~7391

Property

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Description

Daily Profile #1

Daily Profile #2

Daily Profile #3

Daily Profile #4

Daily Profile #5

Daily Profile #6

Daily Profile #7

Daily Profile #8

Daily Profile #9

Daily Profile #10

Daily Profile #11

Daily Profile #12

Table 5-22 TOU #1 – Daily Profile Setup

Format

See Table 5-24 Daily Profile

Data Format

Register Address

8200~8215

8216~8359

8360~8375

8376~8391

Offset Property

+0 RW

+1

+2

+3

+4

+5

+6

+7

RW

RW

RW

RW

RW

RW

RW

Property

RW

RW

RW

RW

Description

Daily Profile #1

Daily Profile #11

Daily Profile #12

Table 5-23 TOU #2 – Daily Profile Setup

Description

Period #1 Start Time 1

Period #2

Start Time

Period #1 Tariff

High-order Byte: Hour

Low-order Byte: Min

Period #2 Tariff

Period #3 Start Time

Period #3 Tariff

Period #4 Start Time

Period #4 Tariff

Format

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

See

Format

Table 5-24 Daily Profile

Data Format

Note

0x0000

0=T1, …, 3=T4

0 ≤ Hour < 24

0=T1, …, 3=T4

See Period #2 Start Time

0=T1, …, 3=T4

Min = 0, 15, 30, 45

0=T1, …, 3=T4

See Period #2 Start Time

22

CET Electric Technology

+8

+9

+10

+11

+12

+13

+14

+15

RW

RW

RW

RW

RW

RW

RW

RW

Period #5 Start Time

Period #5 Tariff

Period #6 Start Time

Period #6 Tariff

Period #7 Start Time

Period #7 Tariff

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

Period #8 Start Time

Period #8 Tariff

UINT16

UINT16

Table 5-24 Daily Profile Data Format

See Period #2 Start Time

0=T1, …, 3=T4

See Period #2 Start Time

0=T1, …, 3=T4

See Period #2 Start Time

0=T1, …, 3=T4

See Period #2 Start Time

0=T1, …, 3=T4

Notes:

1) Daily Profile #1’s Period #1 Start Time is always 00:00 and cannot be modified.

2) Setting a Period’s Start Time as 0xFFFF terminates the Daily Profile’s settings. All later Daily Profile’ setup parameters will be ignored , and the previous Period’s duration is from its Start Time to the end of the day.

3) The minimum interval of a period is 15 minutes.

4) The Start Time of a particular Period must be later than the previous Period’s.

5.8.4

Alternate Days

Each Alternate Day is assigned a Daily Profile and has a higher priority than Season. If a particular date is set as an Alternate Day, its assigned Daily Profile will override the “normal” Daily Profile for this day according to the

TOU settings.

The PMC-230 has two sets of Alternate Days setup parameters, one for each TOU. The Base Addresses for the two sets are 7700 and 8700, respectively, where the Register Address = Base Address + Offset. For example, the register address for TOU #2’s Alternative Day #2’s Date is 8700+3 = 8703.

29

87

89

23

24

26

27

17

18

20

21

11

12

14

15

Offset Property

0 RW

2

3

RW

RW

5

6

8

9

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Description

Alternate Day #1 Date¹

Alternate Day #1 Daily Profile

Alternate Day #2 Date¹

Alternate Day #2 Daily Profile

Alternate Day #3 Date¹

Alternate Day #3 Daily Profile

Alternate Day #4 Date¹

Alternate Day #4 Daily Profile

Alternate Day #5 Date¹

Alternate Day #5 Daily Profile

Alternate Day #6 Date¹

Alternate Day #6 Daily Profile

Alternate Day #7 Date¹

Alternate Day #7 Daily Profile

Alternate Day #8 Date¹

Alternate Day #8 Daily Profile

Alternate Day #9 Date¹

Alternate Day #9 Daily Profile

Alternate Day #10 Date¹

Alternate Day #10 Daily Profile

Alternate Day #30 Date

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

Alternate Day #30 Daily Profile UINT16

Table 5-25 TOU – Alternate Days

Format

UINT32

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

UINT16

UINT32

Note

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

See Table 5-26

0 to 11

0 to 11

Notes:

1) The following table illustrates the data structure for the Date register:

Byte 3

Reserved

Byte 2 Byte 1

Year-2000 (0-37) Month (1-12)

Table 5-26 Date Format

Byte 0

Day (1-31)

When the Year and/or Month are set as 0xFF , it means the Alternate Day is repetitive by year and/or month, i.e. the same day of every year or every month is an Alternate Day.

5.9

Data Recorder Setup

Register Property

6600

6601

RW

RW

6602 RW

Description

Trigger Mode 1

Recording Mode

Recording Depth

1

1, 3

Format

UINT16

Range, Default*

0=Disabled, 1=Triggered by Timer*

UINT16 0=Stop-when-Full, 1=First-In-First-Out*

UINT16 0 to 65,535, 60000*

23

CET Electric Technology

6603

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

6617

6618

6619

6620

6621

6622

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

Recording Interval 1

Offset Time 2

Number of Parameters 1, 3

Parameter #1

Parameter #2

Parameter #3

Parameter #4

Parameter #5

Parameter #6

Parameter #7

Parameter #8

Parameter #9

Parameter #10

Parameter #11

UINT32

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

Parameter #12

Parameter #13

Parameter #14

UINT16

UINT16

UINT16

Parameter #15

Parameter #16

UINT16

UINT16

Table 5-27 Data Recorder Setup

1 to 3,456,000s, 300s*

0* to 43200s

0 to 16, 14*

8 (kWh Import)

9 (kWh Export)

10 (kvarh Import)

0 (Null)

0 (Null)

11 (kvarh Export)

23 (Disconnect Relay Status)

24 (DI1 Counter)

25 (DI2 Counter)

26 (DI3 Counter)

1 (U)

2 (I)

4 (P)

3 (Freq.)

13 (U Demand)

14 (I Demand)

Notes:

1.

Changing any of these Data Recorder setup registers will reset the Data Recorder.

2.

Recording Offset can be used to delay the recording by a fixed amount of time from the Recording Interval . For example, if the

Recording Interval is set to 3600 (hourly) and the Recording Offset is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour every hour, i.e. 00:05, 01:05, 02:05…etc. The value of the Recording Offset parameter should be less than the

Recording Interval parameter.

3.

Please refer to

Section 4.3.3 to configure the

Recording Depth and Number of Parameters .

4.

Please refer to the following table for a complete list of Data Recorder Parameters.

ID

0

1

2

Parameter

Null

U

I

Format

--

Float

Float

ID

9

10

11

Parameter kWh Export kvarh Import kvarh Export

Format

INT32

INT32

INT32

ID

18

19

20

Parameter

U Max Demand

I Max Demand kW Max Demand

Format

Float

Float

Float

3

4

5

6

7

8

Freq. kW kvar kVA

PF kWh Import

Float 12

Float 13

Float 14

Float 15

Float 16

INT32 17 kVAh

U Demand

I Demand kW Demand kvar Demand kVA Demand

INT32 21

Float 22 kvar Max Demand kVA Max Demand

Float

Float

Float 23 Disconnect Relay Status INT32

Float 24 DI1 Counter INT32

Float 25

Float 26

Table 5-28 Data Recorder Parameters

DI2 Counter

DI3 Counter

INT32

INT32

5.10

Time

There are two sets of Time registers supported by the PMC-230 – Year / Month / Day / Hour / Minute / Second

(Registers # 60000 to 60002) and UNIX Time (Register # 60004). When sending time to the PMC-230 over Modbus communications, care should be taken to only write one of the two Time register sets. All registers within a Time register set must be written in a single transaction. If registers 60000 to 60004 are being written to at the same time, both Time register sets will be updated to reflect the new time specified in the UNIX Time register set

(60004) and the time specified in registers 60000-60002 will be ignored. Writing to the Millisecond register

(60003) is optional during a Time Set operation. When broadcasting time, the function code must be set to 0x10

(Pre-set Multiple Registers). Incorrect date or time values will be rejected by the meter. In addition, attempting to write a Time value less than Jan 1, 2000, 00:00:00 will be rejected.

Register

60000 9000

60001

60002

60003

60004

~

60005

9001

9002

9003

9004

~

9005

Property

RW

RW

RW

RW

RW

Description

High-order Byte: Year

Low-order Byte: Month

High-order Byte: Day

Low-order Byte: Hour

High-order Byte: Minute

Low-order Byte: Second

Millisecond

UNIX Time

Format

UINT16

UINT16

UINT16

UINT16

UINT32

Note

0-37 (Year-2000)

1 to 12

1 to 31

0 to 23

0 to 59

0 to 59

0 to 999

0x386D4380 to 0x7FE8177F

The corresponding time is

2000.01.01 00:00:00 to

2037.12.31 23:59:59

(GMT+00:00 Time Zone)

Table 5-29 Time Registers

24

CET Electric Technology

Note:

1) The UNIX time in GMT+00:00 Time Zone should be used when writing the meter’s time. The meter will compute internally and display in Local Time based on the setting of the Time Zone setup register (#6014).

5.11

Remote Control

The Remote Control registers are implemented as both “Write-Only” Modbus Coil Registers (0XXXXX) and

Modbus Holding Registers (4XXXXX), which can be controlled with the Force Single Coil command (Function Code

0x05) or the Preset Multiple Hold Registers (Function Code 0x10). The PMC-230 does not support the Read Coils command (Function Code 0x01) because Remote Control registers are “Write-Only”. The Disconnect Relay Status register 0043 should be read instead to determine the current Disconnect Relay status.

The PMC-230 adopts the ARM before EXECUTE operation for the remote control of its Internal Disconnect Relay if this function is enabled through the Arm Before Execute Setup register (6013), which is disabled by default.

Before executing an OPEN or CLOSE command on the Disconnect Relay, it must be “Armed” first. This is achieved by writing the value 0xFF00 to the appropriate register to “Arm” a particular operation. The Relay will be

“Disarmed” automatically if an “Execute” command is not received within 15 seconds after it has been “Armed”.

If an “Execute” command is received without first having received an “Arm” command, the meter ignores the

“Execute” command and returns the 0x04 exception code.

Register

9100

9101

9102

9103

Property

WO

WO

WO

WO

Description

Arm Disconnect Relay Close

Execute Disconnect Relay Close

Arm Disconnect Relay Open

Execute Disconnect Relay Open

Table 5-30 Remote Control

Format Note

UINT16 Writing “0xFF00” to

UINT16

UINT16

UINT16 the register to perform the described action.

5.12

Clear/Reset Control

Register

9600

9601

9602

9603

9604

9605

9606

9607

9608

9609

9610

9611

9612

9613

9614

Property

WO

WO

WO

WO

WO

WO

WO

WO

WO

WO

WO

WO

WO

WO

WO

Description

Clear Historical Monthly Energy Log 1

Clear Real Time Energy 2

Clear Present Monthly Energy Log

Clear All Energy 3

Clear Setup Counters 4

Clear Max. Demand Log of This Month 5

Clear All Demand 6

Clear Device Operating Time

Clear SOE

Clear DI1 Pulse Counter

Clear DI2 Pulse Counter

Clear DI3 Pulse Counter

Clear All DI Pulse Counters

Clear Data Recorder Logs

Clear All Data 7

Table 5-31 Clear/Reset Control

Format

UINT16

Note

Writing “0xFF00” to the register execute the described action.

Notes:

1.

Writing 0xFF00 to the Clear Historical Monthly Energy Log register to clear the Monthly Energy Log of the Last 1 to 12 months, excluding the Present Monthly Energy Log.

2.

Writing 0xFF00 to the Clear Real Time Energy register to clear kWh, kvarh Import/Export and kVAh as well as the TOU kWh, kvarh

Import/Export and kVAh energy measurements.

3.

Writing 0xFF00 to the Clear All Energy register to clear the Energy measurements and all Monthly Energy logs (Present + 12 Historical).

4.

Writing 0xFF00 to the Clear Setup Counters to clear the Front Panel Setup Counter and COM Setup Counter.

5.

Writing 0xFF00 to the Clear Max. Demand of This Month register to clear the Max. Demand Log of This Month (Since Last Reset) when the Self-Read Time register is configured for automatic Self-Read operation. The Max. Demand of Last Month will not be cleared. If the

Self-Read Time register is configured for manual operation with a register value of 0xFFFF, the Max. Demand of This Month (Since Last

Reset) will be transferred to the Max. Demand of Last Month (Before Last Reset) and then cleared.

6.

Writing 0xFF00 to the Clear All Demand register to clear the Present Demand, Max. Demand of This/Last Month.

7.

Writing 0xFF00 to the Clear All Data register to clear All Energy (Energy Measurements and all Monthly Energy Logs), Setup Counters,

All Demands, Device Operating Time, SOE, DI Pulse Counters and Data Recorder Logs.

5.13

Meter Information

Register

60200~60219 9800~9819

60220

60221

9820

9821

Property

RO

RO

RO

Description

Meter model

Firmware Version

Format

UINT16

UINT16

Note

See Note 1)

e.g. 10000 shows the version is

V1.00.00

Protocol Version UINT16 e.g. 10 shows the version is V1.0

25

CET Electric Technology

60222

60223

60224

60225

9822

9823

9824

9825

RO

RO

RO

RO

Firmware Update

Date: Year-2000

Firmware Update

Date: Month

Firmware Update

Date: Day

UINT16

UINT16

UINT16

Serial Number UINT32

Table 5-32 Meter Information e.g. 140110 means January 10,

2014

Note:

1) The Meter Model Appears from registers 60200 to 60219 and contains the ASCII encoding od the string “PMC-230” as shown in the following table.

Register

60200

Value (Hex)

0x50

ASCII

P

60201

60202

60203

60204

60205

60206

60207-60219

0x4D

0x43

0x2D

0x32

0x33

0x30

0x20

Table 5-33 ASCII Code for “PMC-230”

M

C

-

2

3

0

Null

26

CET Electric Technology

Appendix A – Technical Specification

Voltage (Un)

Overrange (% Un)

Range

Burden

Measurement Inputs (L, N, L’, N’)

220VAC 230VAC

120%

95-264VAC

<3VA

115%

Current (Ib / Imax)

Starting Current

Minimum Current

Burden

Frequency

Power Supply

Maximum Wire Size

Torque for L, N Terminals

5A / 63A

0.4% Ib (20mA)

5% Ib (0.25A)

<3VA

50Hz/60Hz

Self-powered from 95 to 264VAC

25 mm 2

2.5 N.m

(4AWG)

Rated Load (Resistive)

Response Time

Short-time Overcurrents

Service Life (Mech./Elec.)

Rated Making Capacity @ 1.15Un and PF=1

Disconnect Relay

100A @ 250VAC

20ms

7000A (-10% to +0%) @ 60ms

100k/5k Operations

63A max.

Rated Breaking Capacity @ 1.15Un and PF=1 63A max.

Dielectric (AC Voltage)

4kV @ 1minute (Contact to Coil)

Insulation Resistance

2kV @ 1minute (Contact to Contact)

1000MΩ/500VDC

Type

Max. Load Voltage

Max. Forward Current

Maximum Wire Size

Torque for E+, E- Terminals

RS-485 (Modbus RTU)

Maximum Wire Size

Type

Sampling

Hysteresis

Operating Temp.

Storage Temp.

Humidity

Unit Dimensions

Mounting

IP Rating

Atmospheric pressure

Pollution Degree

Torque for RS-485 Terminals

SSR Pulse Output (E+, E-)

Optically Isolated Solid State Relay

80 VDC

50 mA

1.5 mm 2 (16AWG)

0.45 N.m

Communications (D+, D-)

Optically isolated @ 5kVrms

1.5mm

2 (16AWG)

0.45 N.m

Digital Inputs (DI1, DI2, DI3, DIC)

Dry Contact, 12VDC internally wetted

1000Hz

1ms minimum

Environmental Conditions

-25°C to +70°C

-40°C to +85°C

5% to 95% non-condensing

70kPa to 106kPa

2

Mechanical Characteristics

72(W)x68(D)x90(H)mm

DIN-Rail Mounting

IP51 (Front) IP30 (Body)

Accuracy

Parameters

Voltage

Current

P, Q, S kWh kvarh

PF

Frequency

Accuracy

±0.5%

±0.5%

±1.0%

IEC 62053-21 Class 1

IEC 62053-23 Class 2

±1.0%

±0.02Hz

240VAC

110%

Resolution

0.1V

0.001A

0.001kW/kvar/kVA

0.01kWh

0.01kvarh

0.001

0.01Hz

27

CET Electric Technology

Appendix B – Standards of Compliance

CE LVD 2014/35/EU

Safety Requirements

EN 61010-1: 2010

EN 61010-2-030: 2010

Electrical safety in low voltage distribution systems up to 1000Vac and 1500 Vdc

Insulation

AC voltage

Impulse voltage

IEC 61557-12: 2018 (PMD)

IEC 62052-11: 2003

IEC 62053-21: 2003

NMI M6-1

4kV @ 1 minute

12kV+0%, -15%, 1.2/50µs (NMI M6-1)

Electromagnetic Compatibility

EMC 2014/30/EU (EN 61326: 2013)

Electrostatic discharge

Radiated fields

Fast transients

Surges

Conducted disturbances

Magnetic Fields

V Dips, Interruptions & Variations

Spring hammer test

Vibration Test

Shock Test

NMI M6-1 of Australia

EN 61000-4-2: 2009

EN 61000-4-3: 2006+A1: 2008+A2: 2010

EN 61000-4-4: 2012

EN 61000-4-5: 2014+A1: 2017

EN 61000-4-6: 2014

EN 61000-4-8: 2010

EN 61000-4-11: 2004+A1: 2017

Mechanical Tests

IEC 62052-11: 2003

IEC 62052-11: 2003

IEC 62052-11: 2003

Revenue Metering Approval

Approval Mark: NMI 14/2/109

UL Ref. # R4789222180_NMI

28

CET Electric Technology

Appendix C – Ordering Guide

29

Contact us

CET Electric Technology Inc.

Email: [email protected]

Web: www.cet-global.com

CET Electric Technology

30

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement