Gemalto M2M GmbH QIPAC75 QuadBand GSM Module User Manual


Add to my manuals
118 Pages

advertisement

Gemalto M2M GmbH QIPAC75 QuadBand GSM Module User Manual | Manualzz

s

AC65/AC75

Siemens Cellular Engines

Version: 00.372

DocID: AC65/AC75_hd_v00.372

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Document Name:

Version:

Date:

AC65/AC75 Hardware Interface Description

00.372

DocId:

Status:

August 03, 2006

AC65/AC75_hd_v00.372

Confidential / Preliminary

General note

Product is deemed accepted by Recipient and is provided without interface to Recipient´s products.

The Product constitutes pre-release version and code and may be changed substantially before commercial release. The Product is provided on an “as is” basis only and may contain deficiencies or inadequacies. The Product is provided without warranty of any kind, express or implied. To the maximum extent permitted by applicable law, Siemens further disclaims all warranties, including without limitation any implied warranties of merchantability, fitness for a particular purpose and noninfringement of third-party rights. The entire risk arising out of the use or performance of the

Product and documentation remains with Recipient. This Product is not intended for use in life support appliances, devices or systems where a malfunction of the product can reasonably be expected to result in personal injury. Applications incorporating the described product must be designed to be in accordance with the technical specifications provided in these guidelines. Failure to comply with any of the required procedures can result in malfunctions or serious discrepancies in results. Furthermore, all safety instructions regarding the use of mobile technical systems, including GSM products, which also apply to cellular phones must be followed. Siemens AG customers using or selling this product for use in any applications do so at their own risk and agree to fully indemnify Siemens for any damages resulting from illegal use or resale. To the maximum extent permitted by applicable law, in no event shall Siemens or its suppliers be liable for any consequential, incidental, direct, indirect, punitive or other damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information or data, or other pecuniary loss) arising out the use of or inability to use the Product, even if Siemens has been advised of the possibility of such damages. Subject to change without notice at any time.

Copyright

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Copyright © Siemens AG 2006

AC65/AC75_hd_v00.372 Page 2 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Contents

0 Document History .........................................................................................................7

1 Introduction ...................................................................................................................9

1.1

Related Documents ...............................................................................................9

1.2

Terms and Abbreviations.....................................................................................10

1.3

Type Approval......................................................................................................13

1.3.1

SAR Requirements Specific to Portable Mobiles...................................15

1.4

Safety Precautions...............................................................................................16

2 Product Concept .........................................................................................................18

2.1

Key Features at a Glance ....................................................................................18

2.2

AC65/AC75 System Overview .............................................................................21

2.3

Circuit Concept ....................................................................................................22

3 Application Interface...................................................................................................23

3.1

Operating Modes .................................................................................................24

3.2

Power Supply.......................................................................................................26

3.2.1

Minimizing Power Losses ......................................................................26

3.2.2

Measuring the Supply Voltage V

BATT+

....................................................27

3.2.3

Monitoring Power Supply by AT Command ...........................................27

3.3

Power-Up / Power-Down Scenarios ....................................................................28

3.3.1

Turn on AC65/AC75...............................................................................28

3.3.1.1

Turn on AC65/AC75 Using Ignition Line IGT .........................................28

3.3.1.2

Configuring the IGT Line for Use as ON/OFF Switch ............................31

3.3.1.3

Turn on AC65/AC75 Using the VCHARGE Signal.................................32

3.3.1.4

Reset AC65/AC75 via AT+CFUN Command.........................................32

3.3.1.5

Reset or Turn off AC65/AC75 in Case of Emergency............................33

3.3.1.6

Using EMERG_RST to Reset Application(s) or External Device(s).......33

3.3.2

Signal States after Startup .....................................................................34

3.3.3

Turn off AC65/AC75...............................................................................36

3.3.3.1

Turn off AC65/AC75 Using AT Command .............................................36

3.3.3.2

Leakage Current in Power-Down Mode.................................................37

3.3.3.3

Turn on/off AC65/AC75 Applications with Integrated USB ....................38

3.3.4

Automatic Shutdown ..............................................................................39

3.3.4.1

Thermal Shutdown.................................................................................39

3.3.4.2

Deferred Shutdown at Extreme Temperature Conditions ......................40

3.3.4.3

Monitoring the Board Temperature of AC65/AC75 ................................40

3.3.4.4

Undervoltage Shutdown if Battery NTC is Present ................................40

3.3.4.5

Undervoltage Shutdown if no Battery NTC is Present ...........................41

3.3.4.6

Overvoltage Shutdown...........................................................................41

3.4

Automatic EGPRS/GPRS Multislot Class Change ..............................................42

3.5

Charging Control..................................................................................................43

3.5.1

Hardware Requirements ........................................................................43

3.5.2

Software Requirements .........................................................................43

3.5.3

Battery Pack Requirements ...................................................................44

3.5.4

Charger Requirements...........................................................................45

3.5.5

Implemented Charging Technique.........................................................46

3.5.6

Operating Modes during Charging.........................................................47

3.6

Power Saving.......................................................................................................49

3.6.1

Network Dependency of SLEEP Modes ................................................49

3.6.2

Timing of the CTSx Signal in CYCLIC SLEEP Mode 7..........................50

3.6.3

Timing of the RTSx Signal in CYCLIC SLEEP Mode 9..........................50

3.7

Summary of State Transitions (Except SLEEP Mode).........................................51

AC65/AC75_hd_v00.372 Page 3 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.8

RTC Backup ........................................................................................................52

3.9

SIM Interface .......................................................................................................53

3.9.1

Installation Advice..................................................................................54

3.10

Serial Interface ASC0 ..........................................................................................55

3.11

Serial Interface ASC1 ..........................................................................................57

3.12

USB Interface ......................................................................................................58

3.13

I 2 C Interface .........................................................................................................59

3.14

SPI Interface ........................................................................................................61

3.15

Audio Interfaces...................................................................................................63

3.15.1

Speech Processing................................................................................64

3.15.2

Microphone Circuit .................................................................................64

3.15.2.1

Single-ended Microphone Input .............................................................65

3.15.2.2

Differential Microphone Input .................................................................66

3.15.2.3

Line Input Configuration with OpAmp ....................................................67

3.15.3

Loudspeaker Circuit...............................................................................68

3.15.4

Digital Audio Interface (DAI) ..................................................................69

3.15.4.1

Master Mode ..........................................................................................70

3.15.4.2

Slave Mode ............................................................................................72

3.16

GPIO Interface.....................................................................................................74

3.16.1

Using the GPIO10 Pin as Pulse Counter ...............................................74

3.17

Control Signals ....................................................................................................75

3.17.1

Synchronization Signal ..........................................................................75

3.17.2

Using the SYNC Pin to Control a Status LED........................................76

3.17.3

Behavior of the RING0 Line (ASC0 Interface only)................................77

3.17.4

PWR_IND Signal ...................................................................................77

4 Antenna Interface........................................................................................................78

4.1

Antenna Diagnostic..............................................................................................79

4.2

Antenna Connector..............................................................................................80

5 Electrical, Reliability and Radio Characteristics......................................................82

5.1

Absolute Maximum Ratings .................................................................................82

5.2

Operating Temperatures......................................................................................83

5.3

Storage Conditions ..............................................................................................84

5.4

Reliability Characteristics.....................................................................................85

5.5

Pin Assignment and Signal Description...............................................................86

5.6

Power Supply Ratings .........................................................................................93

5.7

Electrical Characteristics of the Voiceband Part..................................................96

5.7.1

Setting Audio Parameters by AT Commands ........................................96

5.7.2

Audio Programming Model ....................................................................97

5.7.3

Characteristics of Audio Modes .............................................................98

5.7.4

Voiceband Receive Path........................................................................99

5.7.5

Voiceband Transmit Path.....................................................................100

5.8

Air Interface .......................................................................................................101

5.9

Electrostatic Discharge ......................................................................................102

6 Mechanics..................................................................................................................103

6.1

Mechanical Dimensions of AC65/AC75.............................................................103

6.2

Mounting AC65/AC75 to the Application Platform .............................................105

6.3

Board-to-Board Application Connector ..............................................................106

7 Sample Application...................................................................................................109

8 Reference Approval ..................................................................................................111

8.1

Reference Equipment for Type Approval...........................................................111

8.2

Compliance with FCC Rules and Regulations...................................................112

AC65/AC75_hd_v00.372 Page 4 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

9 Appendix....................................................................................................................113

9.1

List of Parts and Accessories ............................................................................113

9.2

Fasteners and Fixings for Electronic Equipment ...............................................115

9.2.1

Fasteners from German Supplier ETTINGER GmbH ..........................115

Tables

Table 1: Directives.................................................................................................................. 13

Table 2: Standards of North American type approval ............................................................ 13

Table 3: Standards of European type approval...................................................................... 14

Table 4: Requirements of quality............................................................................................ 14

Table 5: Overview of operating modes................................................................................... 24

Table 6: Signal states............................................................................................................. 34

Table 7: Temperature dependent behavior ............................................................................ 40

Table 8: Specifications of battery packs suitable for use with AC65/AC75 ............................ 45

Table 9: AT commands available in Charge-only mode......................................................... 47

Table 10: Comparison Charge-only and Charge mode.......................................................... 48

Table 11: State transitions of AC65/AC75 (except SLEEP mode) ......................................... 51

Table 12: Signals of the SIM interface (board-to-board connector) ....................................... 53

Table 13: DCE-DTE wiring of ASC0....................................................................................... 56

Table 14: DCE-DTE wiring of ASC1....................................................................................... 57

Table 15: Configuration combinations for the PCM interface................................................. 69

Table 16: Overview of DAI pin functions ................................................................................ 70

Table 17: Return loss in the active band ................................................................................ 78

Table 18: Values of the AT^SAD parameter <diag> and their meaning................................. 79

Table 19: Product specifications of Rosenberger SMP connector ......................................... 80

Table 20: Absolute maximum ratings ..................................................................................... 82

Table 21: Board temperature ................................................................................................. 83

Table 22: Ambient temperature according to IEC 60068-2 (without forced air circulation) .... 83

Table 23: Charging temperature ............................................................................................ 83

Table 24: Storage conditions.................................................................................................. 84

Table 25: Summary of reliability test conditions ..................................................................... 85

Table 26: Signal description ...................................................................................................87

Table 27: Power supply ratings .............................................................................................. 93

Table 28: Current consumption during Tx burst for GSM 850MHz and GSM 900MHz.......... 94

Table 29: Current consumption during Tx burst for GSM 1800MHz and GSM 1900MHz...... 95

Table 30: Audio parameters adjustable by AT command ...................................................... 96

Table 31: Voiceband characteristics (typical)......................................................................... 98

Table 32: Voiceband receive path.......................................................................................... 99

Table 33: Voiceband transmit path....................................................................................... 100

Table 34: Air Interface .......................................................................................................... 101

Table 35: Measured electrostatic values.............................................................................. 102

Table 36: Technical specifications of Molex board-to-board connector ............................... 106

Table 37: List of parts and accessories................................................................................ 113

Table 38: Molex sales contacts (subject to change) ............................................................ 114

AC65/AC75_hd_v00.372 Page 5 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Figures

Figure 1: AC65/AC75 system overview.................................................................................. 21

Figure 2: AC65/AC75 block diagram...................................................................................... 22

Figure 3: Power supply limits during transmit burst................................................................ 27

Figure 4: Position of the reference points BATT+ and GND .................................................. 27

Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT.............. 29

Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+ ....... 30

Figure 7: Timing of IGT if used as ON/OFF switch ................................................................ 31

Figure 8: Signal states during turn-off procedure ................................................................... 37

Figure 9: Battery pack circuit diagram.................................................................................... 44

Figure 10: Power saving and paging...................................................................................... 49

Figure 11: Timing of CTSx signal (if CFUN= 7)...................................................................... 50

Figure 12: Timing of RTSx signal (if CFUN = 9)..................................................................... 50

Figure 13: RTC supply from capacitor.................................................................................... 52

Figure 14: RTC supply from rechargeable battery ................................................................. 52

Figure 15: RTC supply from non-chargeable battery ............................................................. 52

Figure 16: Serial interface ASC0............................................................................................ 55

Figure 17: Serial interface ASC1............................................................................................ 57

Figure 18: USB circuit ............................................................................................................ 58

Figure 19: I2C interface connected to VCC of application ..................................................... 59

Figure 20: I2C interface connected to VEXT line of AC65/AC75 ........................................... 60

Figure 21: SPI interface.......................................................................................................... 61

Figure 22: Characteristics of SPI modes................................................................................ 62

Figure 23: Audio block diagram.............................................................................................. 63

Figure 24: Single ended microphone input............................................................................. 65

Figure 25: Differential microphone input ................................................................................ 66

Figure 26: Line input configuration with OpAmp .................................................................... 67

Figure 27: Differential loudspeaker configuration................................................................... 68

Figure 28: Master PCM interface Application......................................................................... 70

Figure 29: Master PCM timing, short frame selected ............................................................. 71

Figure 30: Master PCM timing, long frame selected .............................................................. 71

Figure 31: Slave PCM interface application ........................................................................... 72

Figure 32: Slave PCM timing, short frame selected ............................................................... 73

Figure 33: Slave PCM timing, long frame selected ................................................................ 73

Figure 34: SYNC signal during transmit burst ........................................................................ 75

Figure 35: LED Circuit (Example)........................................................................................... 76

Figure 36: Incoming voice/fax/data call .................................................................................. 77

Figure 37: URC transmission ................................................................................................. 77

Figure 38: Resistor measurement used for antenna detection .............................................. 79

Figure 39: Datasheet of Rosenberger SMP MIL-Std 348-A connector .................................. 81

Figure 40: Pin assignment (component side of AC65/AC75)................................................. 86

Figure 41: Audio programming model .................................................................................... 97

Figure 42: AC65/AC75 – top view ........................................................................................ 103

Figure 43: Dimensions of AC65/AC75 ................................................................................. 104

Figure 44: Molex board-to-board connector 52991-0808 on AC65/AC75............................ 107

Figure 45: Mating board-to-board connector 53748-0808 on application ............................ 108

Figure 46: AC65/AC75 sample application for Java............................................................. 110

Figure 47: Reference equipment for Type Approval ............................................................ 111

AC65/AC75_hd_v00.372 Page 6 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Preceding document: "AC75 Hardware Interface Description" Version 00.251

New document: "AC65/AC75 Hardware Interface Description" Version 00.372

Chapter What is new

Added new product: AC65 module Throughout document

1

1.3

1.3.1

1.4

3.5, 9

3.9

3.12

3.15.4.1

3.15.4.2

5.1

5.5

5.6

8.2

Added AC65 and general statement on difference between AC65 and AC75.

Updated list of standards.

Every portable mobile shall have an FCC Grant and IC Certificate of its own.

Added note on audio safety precautions.

Removed all information related to specific types of batteries and specific vendors.

Removed note on required restart of module after removing and reinserting a SIM card during operation.

Removed section describing USB modem installation. For installation details see [11].

Corrected description of master PCM timing with long or short frame selected.

Updated timing for slave mode of PCM interface (Figure 32 and Figure 33).

Added remark on SELV compliance.

Table 26: Modified RTC input voltage values (RTC Backup VDDLP).

Table 27: Different current consumption depending on whether autobauding enabled /

disabled.

Added FCC and IC identifiers for AC65. Changed notes on mobile and fixed devices, added note on portable mobiles.

9.1

Added AC65 incl. Siemens ordering numbers.

Preceding document: "AC75 Hardware Interface Description" Version 00.202

New document: "AC75 Hardware Interface Description" Version 00.251

Chapter What is new

3.3.4.4 to

3.3.4.6

Alert URCs for undervoltage and overvoltage do not need to enabled by the user.

9.1

Specified Siemens ordering numbers for AC75.

Preceding document: "AC75 Hardware Interface Description" Version 00.020

New document: "AC75 Hardware Interface Description" Version 00.202

Chapter What is new

3.3.2

3.3.1.1

New chapter: Signal States after Startup.

More detailed description of IGT timing depending on Power-down or Charge-only mode. Added further details on timing after power-up. Added alert message

“SHUTDOWN after Illegal PowerUp”

AC65/AC75_hd_v00.372 Page 7 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Chapter

9

3.3.1.2

3.3.4.1

3.3.4.2,

3.3.4.3

3.4

5.7

7

What is new

New chapter: Configuring the IGT Line for Use as ON/OFF Switch

Revised Table 7: Temperature dependent behavior.

Changed description.

Added new section.

Minor text change.

3.3.1.3,

3.5.6, 3.7

To change from Charge-only mode to Normal mode the IGT line must be pulled low for at least 1s and then released. High state of IGT lets AC75 enter Normal mode.

3.5.6, 3.7

Added transition from Charge-only to Normal mode by switching off Airplane mode.

3.6

Added chapter on power saving.

3.12

3.15.2.2

3.15.2.3

3.15.4

5.1

5.2

AC75 does not support generic USB 2.0 High Speed hubs.

Added remarks on VMIC behaviour.

Replaced remark on VMIC behaviour.

Added Table 15: Configuration combinations for the PCM interface

New maximum values for voltage at analog pins with VMIC on/off.

Specified operating board temperature.

Table 22: Temperature specified for charging is battery temperature (not ambient)

5.5

Specified internal pull-down resistors 330k Ω at TXD0, RXD0, TXD1, RXD1. Changed all V

IH min values from wrong row.

2.0 to 2.15V. Corrected overview table: USB_DP was listed in

New chapter: Electrical Characteristics of the Voiceband Part

Modified description for Java “System.out” in sample application.

New datasheet for recommended VARTA PoLiFlex® Lithium polymer battery.

AC65/AC75_hd_v00.372 Page 8 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

1 Introduction

This document applies to the following Siemens products:

• AC65

Module

The document describes the hardware of the AC65 and the AC75, both designed to connect to a cellular device application and the air interface. It helps you quickly retrieve interface specifications, electrical and mechanical details and information on the requirements to be considered for integrating further components.

The difference between both modules is that AC75 additionally features EGPRS. Please note that except for EGPRS specific statements, all information provided below applies to both module types.

Throughout the document, both modules are generally referred to as AC65/AC75.

[1]

AC65 AT Command Set 00.372

AC75 AT Command Set 00.372

[2]

AC65/AC75 Release Notes 00.372

[3] DSB75 Support Box - Evaluation Kit for Siemens Cellular Engines

[4] Application Note 02: Audio Interface Design for GSM Applications (AC65, AC75)

[5] Application Note 07: Rechargeable Lithium Batteries in GSM Applications

[6] Application Note 16: Upgrading Firmware on MC75, TC6x, AC65, AC75

[7] Application Note 17: Over-The-Air Firmware Update for TC65, AC65, AC75

[8] Application Note 22: Using TTY / CTM Equipment

[9] Application Note 26: Power Supply Design for GSM Applications

[10] Application Note 24: Application Developer’s Guide

[11] Application Note 32: Integrating USB into MC75, TC6x, AC65, AC75 Applications

[12] Multiplexer User's Guide

[13] Multiplex Driver Developer’s Guide for Windows 2000 and Windows XP

[14] Multiplex Driver Installation Guide for Windows 2000 and Windows XP

[15] Remote SAT User’s Guide for MC75, TC6x, AC65, AC75

[16] Java User’s Guide for TC65, AC65, AC75

[17] Java doc \wtk\doc\html\index.html

AC65/AC75_hd_v00.372 Page 9 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

1.2 Terms and Abbreviations

Abbreviation Description s

AGC

ANSI

ARFCN

ARP

Automatic Gain Control

American National Standards Institute

Absolute Radio Frequency Channel Number

Antenna Reference Point

ASC0 / ASC1 Asynchronous Controller. Abbreviations used for first and second serial interface of

AC65/AC75

BER

BTS

CB or CBM

CE

CHAP

CPU

Bit Error Rate

Base Transceiver Station

Cell Broadcast Message

Conformité Européene (European Conformity)

Challenge Handshake Authentication Protocol

Central Processing Unit

CSD

CTS

DAI dBm0

DCE

DCS 1800

Circuit Switched Data

Clear to Send

Digital Audio Interface

Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law

Data Communication Equipment (typically modems, e.g. Siemens GSM engine)

Digital Cellular System, also referred to as PCN

DSB

DSP

DSR

DTE

DTR

EFR

EIRP

Development Support Box

Digital Signal Processor

Data Set Ready

Data Terminal Equipment (typically computer, terminal, printer or, for example, GSM application)

Data Terminal Ready

Enhanced Full Rate

Equivalent Isotropic Radiated Power

ERP Effective Radiated Power

AC65/AC75_hd_v00.372 Page 10 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Abbreviation Description

ETS

FCC

FDMA

European Telecommunication Standard

Federal Communications Commission (U.S.)

Frequency Division Multiple Access

GMSK

GPIO

GPRS

GSM

Gaussian Minimum Shift Keying

General Purpose Input/Output

General Packet Radio Service

Global Standard for Mobile Communications s

I/O Input/Output

IMEI

ISO

ITU kbps

LED

Li-Ion / Li+

Li battery

Mbps

MMI

International Mobile Equipment Identity

International Standards Organization

International Telecommunications Union kbits per second

Light Emitting Diode

Lithium-Ion

Rechargeable Lithium Ion or Lithium Polymer battery

Mbits per second

Man Machine Interface

MS

MSISDN

NTC

OEM

Mobile Station (GSM engine), also referred to as TE

Mobile Station International ISDN number

Negative Temperature Coefficient

Original Equipment Manufacturer

PAP

PBCCH

PCB

PCL

PCM

PCN

PCS

PDU

PLL

AC65/AC75_hd_v00.372

Password Authentication Protocol

Packet Switched Broadcast Control Channel

Printed Circuit Board

Power Control Level

Pulse Code Modulation

Personal Communications Network, also referred to as DCS 1800

Personal Communication System, also referred to as GSM 1900

Protocol Data Unit

Phase Locked Loop

Page 11 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Abbreviation Description

PSK

PSU

R&TTE

RAM

Phase Shift Keying

Power Supply Unit

Radio and Telecommunication Terminal Equipment

Random Access Memory

RMS

RTC

RTS

Root Mean Square (value)

Real Time Clock

Request to Send

SAR

SELV

SIM

SMS

SPI

SRAM

TA

TDMA

TE

Specific Absorption Rate

Safety Extra Low Voltage

Subscriber Identification Module

Short Message Service

Serial Peripheral Interface

Static Random Access Memory

Terminal adapter (e.g. GSM engine)

Time Division Multiple Access

Terminal Equipment, also referred to as DTE

MC

ME

ON

RC

UART

URC

USB

USSD

Universal asynchronous receiver-transmitter

Unsolicited Result Code

Universal Serial Bus

Unstructured Supplementary Service Data

VSWR Voltage Standing Wave Ratio

Phonebook abbreviations

FD

LD

SIM fixdialing phonebook

SIM last dialing phonebook (list of numbers most recently dialed)

Mobile Equipment list of unanswered MT calls (missed calls)

Mobile Equipment phonebook

Own numbers (MSISDNs) stored on SIM or ME

Mobile Equipment list of received calls s

AC65/AC75_hd_v00.372 Page 12 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 is designed to comply with the directives and standards listed below. Please note that the product is still in a pre-release state and, therefore, type approval and testing procedures have not yet been completed.

Table 1: Directives

99/05/EC

89/336/EC

Directive of the European Parliament and of the council of 9

March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity (in short referred to as R&TTE Directive 1999/5/EC).

The product is labeled with the CE conformity mark

Directive on electromagnetic compatibility

73/23/EC Directive on electrical equipment designed for use within certain voltage limits (Low Voltage Directive)

Automotive EMC directive 95/94/EC

2002/95/EC Directive of the European Parliament and of the

Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)

Table 2: Standards of North American type approval

CFR Title 47

UL 60 950

Code of Federal Regulations, Part 22 and Part 24 (Telecommunications, PCS); US Equipment Authorization FCC

Product Safety Certification (Safety requirements)

RSS133 (Issue2)

Overview of PCS Type certification review board Mobile

Equipment Type Certification and IMEI control

PCS Type Certification Review board (PTCRB)

Canadian Standard

AC65/AC75_hd_v00.372 Page 13 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Table 3: Standards of European type approval s

3GPP TS 51.010-1 Digital cellular telecommunications system (Phase 2); Mobile

Station (MS) conformance specification

ETSI EN 301 511

V9.0.2

GCF-CC V3.21.0

Candidate Harmonized European Standard (Telecommunications series) Global System for Mobile communications (GSM);

Harmonized standard for mobile stations in the GSM 900 and

DCS 1800 bands covering essential requirements under article

3.2 of the R&TTE directive (1999/5/EC) (GSM 13.11 version 7.0.1

Release 1998)

Global Certification Forum - Certification Criteria

ETSI EN 301 489-1

V1.4.1

ETSI EN 301 489-7

V1.2.1 (2000-09)

Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters

(ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common Technical Requirements

Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum

Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems (GSM and DCS)

IEC/EN 60950-1

(2001)

Safety of information technology equipment (2000)

Table 4: Requirements of quality

IEC 60068

DIN EN 60529

Environmental testing

IP codes

AC65/AC75_hd_v00.372 Page 14 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

1.3.1 SAR Requirements Specific to Portable Mobiles

Mobile phones, PDAs or other portable transmitters and receivers incorporating a GSM module must be in accordance with the guidelines for human exposure to radio frequency energy. This requires the Specific Absorption Rate (SAR) of portable AC65/AC75 based applications to be evaluated and approved for compliance with national and/or international regulations.

Since the SAR value varies significantly with the individual product design manufacturers are advised to submit their product for approval if designed for portable use. For European and

US markets the relevant directives are mentioned below. It is the responsibility of the manufacturer of the final product to verify whether or not further standards, recommendations or directives are in force outside these areas.

Products intended for sale on US markets

Electromagnetic Fields (EMFs) from Mobile Telecommunication

Equipment (MTE) in the frequency range 30MHz - 6GHz

Products intended for sale on European markets

EN 50360 Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz - 3GHz)

IMPORTANT:

Manufacturers of portable applications based on AC65/AC75 modules are required to have their final product certified and apply for their own FCC Grant and IC Certificate related to the

specific portable mobile. See also Chapter 8.2.

AC65/AC75_hd_v00.372 Page 15 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The following safety precautions must be observed during all phases of the operation, usage, service or repair of any cellular terminal or mobile incorporating AC65/AC75. Manufacturers of the cellular terminal are advised to convey the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Siemens AG assumes no liability for customer’s failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions on the use of mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy.

The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close to the device. If in doubt about potential danger, contact the physician or the manufacturer of the device to verify that the equipment is properly shielded. Pacemaker patients are advised to keep their hand-held mobile away from the pacemaker, while it is on.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communications systems. Failure to observe these instructions may lead to the suspension or denial of cellular services to the offender, legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. Remember that interference can occur if it is used close to TV sets, radios, computers or inadequately shielded equipment.

Follow any special regulations and always switch off the cellular terminal or mobile wherever forbidden, or when you suspect that it may cause interference or danger.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for speakerphone operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

Speakerphones must be installed by qualified personnel. Faulty installation or operation can constitute a safety hazard.

AC65/AC75_hd_v00.372 Page 16 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

IMPORTANT!

SOS Cellular terminals or mobiles operate using radio signals and cellular networks. Because of this, connection cannot be guaranteed at all times under all conditions. Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls.

Remember, in order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency calls if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate those features before you can make an emergency call.

Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

Bear in mind that exposure to excessive levels of noise can cause physical damage to users! With regard to acoustic shock, the cellular application must be designed to avoid unintentional increase of amplification, e.g. for a highly sensitive earpiece. A protection circuit should be implemented in the cellular application.

AC65/AC75_hd_v00.372 Page 17 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

2.1 Key Features at a Glance

Feature

General

Frequency bands

GSM class

Output power

(according to

Release 99, V5)

Power supply

Ambient operating temperature according to IEC 60068-2

Implementation

Quad band: GSM 850/900/1800/1900MHz

Small MS

Class 4 (+33dBm ±2dB) for EGSM850

Class 4 (+33dBm ±2dB) for EGSM900

Class 1 (+30dBm ±2dB) for GSM1800

Class 1 (+30dBm ±2dB) for GSM1900

AC75 only:

Class E2 (+27dBm ± 3dB) for GSM 850 8-PSK

Class E2 (+27dBm ± 3dB) for GSM 900 8-PSK

Class E2 (+26dBm +3 /-4dB) for GSM 1800 8-PSK

Class E2 (+26dBm +3 /-4dB) for GSM 1900 8-PSK

The values stated above are maximum limits. According to

Release 99, Version 5, the maximum output power in a multislot configuration may be lower. The nominal reduction of maximum output power varies with the number of uplink timeslots used and amounts to 3.0dB for 2Tx, 4.8dB for 3Tx and 6.0dB for 4Tx.

3.3V to 4.5V

Normal operation -30°C to +75°C

Restricted operation -30°C / +85°C

Weight:

RoHS

GSM / GPRS / EGPRS features approx. 8.5g

All hardware components fully compliant with EU RoHS Directive

Data transfer GPRS

• Multislot Class 12

• Full PBCCH support

• Mobile Station Class B

• Coding Scheme 1 – 4

EGPRS (AC75 only)

• Multislot Class 10

• Mobile Station Class B

• Modulation and Coding Scheme MCS 1 – 9

AC65/AC75_hd_v00.372 Page 18 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Feature

SMS

Fax s

Implementation

CSD

• V.110, RLP, non-transparent

• 2.4, 4.8, 9.6, 14.4kbps

• USSD

PPP-stack for GPRS data transfer

• Point-to-point MT and MO

• Cell

• Text and PDU mode

• Storage: SIM card plus 25 SMS locations in mobile equipment

• Transmission of SMS alternatively over CSD or GPRS.

Preferred mode can be user defined.

Group 3; Class 1

• Half rate HR (ETS 06.20)

• Full rate FR (ETS 06.10)

• Enhanced full rate EFR (ETS 06.50/06.60/06.80)

• Adaptive Multi Rate AMR

Speakerphone operation (VDA), echo cancellation, noise suppression, DTMF, 7 ringing tones

Software

AT commands AT-Hayes GSM 07.05 and 07.07, Siemens

AT commands for RIL compatibility (NDIS/RIL)

Microsoft TM compatibility RIL / NDIS for Pocket PC and Smartphone

Java platform

JDK Version: 1.4.2_09

Java Virtual Machine with APIs for AT Parser, Serial Interface,

FlashFileSystem and TCP/IP Stack.

Major benefits: seamless integration into Java applications, ease of programming, no need for application microcontroller, extremely cost-efficient hardware and software design – ideal platform for industrial GSM applications.

The memory space available for Java programs is around 1.7 MB in the flash file system and around 400k RAM. Application code and data share the space in the flash file system and in RAM.

SIM Application Toolkit SAT Release 99

TCP/IP stack

IP addresses

Access by AT commands

IP version 6

SIM AC65/AC75 supports Remote SIM Access. RSA enables

AC65/AC75 to use a remote SIM card via its serial interface and an external application, in addition to the SIM card locally attached to the dedicated lines of the application interface. The connection between the external application and the remote SIM card can be a Bluetooth wireless link or a serial link.

The necessary protocols and procedures are implemented according to the “SIM Access Profile Interoperability Specification of the Bluetooth Special Interest Group”.

AC65/AC75_hd_v00.372 Page 19 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Feature

Firmware update

Real time clock

Implementation

Generic update from host application over ASC0, ASC1 or USB.

Over-the-air (OTA) firmware update is possible via SPI interface.

Interfaces

2 serial interfaces

USB Supports a USB 2.0 Full Speed (12Mbit/s) slave interface.

I 2 C I 2 C bus for 7-bit addressing and transmission rates up to 400kbps.

Programmable with AT^SSPI command.

Alternatively, all pins of the I²C interface are configurable as SPI.

SPI

Audio

SIM interface

Antenna

Serial Peripheral Interface for transmission rates up to 6.5 Mbps.

Programmable with AT^SSPI command.

If the SPI is active the I²C interface is not available.

• 2 analog interfaces (2 microphone inputs and 2 headphone outputs with microphone power supply)

• 1 digital interface (PCM)

Supported SIM cards: 3V, 1.8V

Module interface

Power on/off, Reset

• 50Ohms. External antenna can be connected via antenna connector. diagnostic

80-pin board-to-board connector

Power on/off

Reset

ASC0:

• 8-wire modem interface with status and control lines, unbalanced, asynchronous

• Fixed bit rates: 300 bps to 460,800 bps

• Autobauding: 1,200 bps to 460,800 bps

• RTS0/CTS0 and XON/XOFF flow control.

• Multiplex ability according to GSM 07.10 Multiplexer Protocol.

ASC1:

• 4-wire, unbalanced asynchronous interface

• Fixed bit rates: 300 bps to 460,800 bps

• RTS1/CTS1 and software XON/XOFF flow control

• Switch-on by hardware pin IGT

• Switch-off by AT command (AT^SMSO)

• Automatic switch-off in case of critical temperature and voltage conditions.

• Orderly shutdown and reset by AT command

• Emergency reset by hardware pin EMERG_RST and IGT.

Special features

Charging Supports management of rechargeable Lithium Ion and Lithium

Polymer batteries

Timer functions via AT commands

AC65/AC75_hd_v00.372 Page 20 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Feature

GPIO

Pulse counter

DAC output

Phonebook

Evaluation kit

DSB75

Implementation s

10 I/O pins of the application interface programmable as GPIO.

Programming is done via AT commands.

Alternatively, GPIO pin10 is configurable as pulse counter.

Pulse counter for measuring pulse rates from 0 to 1000 pulses per second.

If the pulse counter is active the GPIO10 pin is not available.

Digital-to-Analog Converter which can provide a PWM signal.

SIM and phone

DSB75 Evaluation Board designed to test and type approve

Siemens cellular engines and provide a sample configuration for application engineering.

2.2 AC65/AC75 System Overview

Antenna

Interface

Antenna

Diagnostic

AC65 / AC75

DAC

Application Interface

USB

1x

GPIO

Pulse

Counter

9 x

GPIO

SPI

I 2 C

SIM

ASC0

(modem)

ASC1

Digital

Audio

Analog

Audio

Charge

Power

Supply

USB

Host

SPI

Slave

I 2 C

Slave

UART Audio

Codec

User Application

Headphones or Headsets

Charging circuit

Charger

Figure 1: AC65/AC75 system overview

AC65/AC75_hd_v00.372 Page 21 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Figure 1 shows a block diagram of the AC65/AC75 module and illustrates the major

functional components:

Baseband block:

• Digital baseband processor with DSP

• Analog processor with power supply unit (PSU)

• Flash / SRAM (stacked)

• Application interface (board-to-board connector)

RF section:

• RF

• RF power amplifier

• RF front end connector

Antenna

Diagnostic

Front End

RF Power

Amplifier

Transceiver

NTC

AC65/AC75

3

26MHz

26MHz

Digital Baseband

Processer with DSP

D(0:15)

A(0:24)

RD; WR; CS; WAIT

SRAM

Flash

32.768kHz

Interface

RF - Baseband

RTC

CCIN

CCRST

CCIO

CCCLK

CCVCC

5

Measuring

Network

RF Control Bus

4 I / Q

REFCHG

TEMP2

BATTYPE

Analog

Controller with PSU

RESET

ADC

8

4

2

2

3

10

ASC(0)

ASC(1)

I2C/SPI

SPI

USB

GPIO

7 DAI

SYNC

6 SIM Interface

PWR_IND

VEXT

DAC_OUT

EMERG_RST

10

5

8

Audio analog

IGT

VDDLP

CHARGEGATE

VCHARGE

ISENSE

VSENSE

BATT_TEMP

BATT+

GND

Figure 2: AC65/AC75 block diagram

AC65/AC75_hd_v00.372 Page 22 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 is equipped with an 80-pin board-to-board connector that connects to the external application. The host interface incorporates several sub-interfaces described in the following chapters:

• Power supply - see Chapter 3.1

• Charger interface – see Chapter 3.5

• SIM interface - see Chapter 3.9

• Serial interface ASC0 - see Chapter 3.10

• Serial interface ASC1 - see Chapter 3.11

• Serial interface USB - see Chapter 3.12

• Serial interface I²C/SPI - see Chapter 3.13 and 3.14

• Two analog audio interfaces - see Chapter 3.15

• Digital audio interface (DAI) - see Chapter 3.15 and 3.15.4

• 10 lines GPIO interface – see Chapter 3.16

• Status and control lines: IGT, EMERG_RST, PWR_IND, SYNC - see Table 26

AC65/AC75_hd_v00.372 Page 23 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The table below briefly summarizes the various operating modes referred to in the following chapters.

Table 5: Overview of operating modes

Normal operation GSM / GPRS SLEEP Various power save modes set with AT+CFUN command.

Software is active to minimum extent. If the module was registered to the GSM network in IDLE mode, it is registered and paging with the BTS in SLEEP mode, too. Power saving can be chosen at different levels:

The NON-CYCLIC SLEEP mode (AT+CFUN=0) disables the AT interface. The CYCLIC SLEEP modes

AT+CFUN=7 and 9 alternatingly activate and deactivate the AT interfaces to allow permanent access to all AT commands.

Software is active. Once registered to the GSM network, paging with BTS is carried out. The module is ready to send and receive.

GSM TALK

GPRS IDLE

EGPRS IDLE

GPRS DATA

EGPRS DATA

Connection between two subscribers is in progress.

Power consumption depends on network coverage individual settings, such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.

Module is ready for GPRS/EGPRS data transfer, but no data is currently sent or received. Power consumption depends on network settings and GPRS/EGPRS configuration (e.g. multislot settings).

GPRS/EGPRS data transfer in progress. Power consumption depends on network settings (e.g. power control level), uplink / downlink data rates, GPRS configuration (e.g. used multislot settings) and reduction of maximum output power.

POWER DOWN Normal shutdown after sending the AT^SMSO command.

Only a voltage regulator is active for powering the RTC. Software is not active.

Interfaces are not accessible. Operating voltage (connected to BATT+) remains applied.

AC65/AC75_hd_v00.372 Page 24 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Airplane mode Airplane mode shuts down the radio part of the module, causes the module to log off from the GSM/GPRS network and disables all AT commands whose execution requires a radio connection.

Airplane mode can be controlled by using the AT commands AT^SCFG and

AT+CALA:

• With to enter the Airplane mode each time when switched on or reset.

• The parameter AT^SCFG=MEopMode/Airplane can be used to switch back and forth between Normal mode and Airplane mode any time during operation.

• Setting an alarm time with AT+CALA followed by AT^SMSO wakes the module up into Airplane mode at the scheduled time.

Charge-only mode Limited operation for battery powered applications. Enables charging while module is detached from GSM network. Limited number of AT commands is accessible. Charge-only mode applies when the charger is connected if the module was powered down with AT^SMSO.

Charge mode during normal operation

Normal operation (SLEEP, IDLE, TALK, GPRS/EGPRS IDLE, GPRS/EGPRS

DATA) and charging running in parallel. Charge mode changes to Charge-only mode when the module is powered down before charging has been completed.

See Table 11 for the various options proceeding from one mode to another.

AC65/AC75_hd_v00.372 Page 25 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 needs to be connected to a power supply at the B2B connector (5 pins each

BATT+ and GND).

The power supply of AC65/AC75 has to be a single voltage source at BATT+. It must be able to provide the peak current during the uplink transmission.

All the key functions for supplying power to the device are handled by the power management section of the analog controller. This IC provides the following features:

• Stabilizes the supply voltages for the GSM baseband using low drop linear voltage regulators.

• Switches the module's power voltages for the power-up and -down procedures.

• Delivers, across the VEXT pin, a regulated voltage for an external application. This voltage is not available in Power-down mode.

• SIM switch to provide SIM power supply.

3.2.1 Minimizing Power Losses

When designing the power supply for your application please pay specific attention to power losses. Ensure that the input voltage V

BATT+

never drops below 3.3V on the AC65/AC75 board, not even in a transmit burst where current consumption can rise to typical peaks of

2A. It should be noted that AC65/AC75 switches off when exceeding these limits. Any voltage drops that may occur in a transmit burst should not exceed 400mV.

The measurement network monitors outburst and inburst values. The drop is the difference of both values. The maximum drop (Dmax) since the last start of the module will be saved. In

IDLE and SLEEP mode, the module switches off if the minimum battery voltage (V batt reached. min) is

Example:

V

I min = 3.3V

Dmax = 0.4V

V batt

V batt min = V

I min + Dmax min = 3.3V + 0.4V = 3.7V

The best approach to reducing voltage drops is to use a board-to-board connection as recommended, and a low impedance power source. The resistance of the power supply lines on the host board and of a battery pack should also be considered.

Note: If the application design requires an adapter cable between both board-to-board connectors, use a flex cable as short as possible in order to minimize power losses.

AC65/AC75_hd_v00.372 Page 26 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Example: If the length of the flex cable reaches the maximum length of 100mm, this connection may cause, for example, a resistance of 30mΩ in the BATT+ line and

30mΩ in the GND line. As a result, a 2A transmit burst would add up to a total voltage drop of 120mV. Plus, if a battery pack is involved, further losses may occur due to the resistance across the battery lines and the internal resistance of the battery including its protection circuit.

Figure 3: Power supply limits during transmit burst

3.2.2 Measuring the Supply Voltage V

BATT+

The reference points for measuring the supply voltage V

BATT+

on the module are BATT+ and

GND, both accessible at a capacitor located close to the board-to-board connector of the module.

Reference point

BATT+

Reference point GND

Figure 4: Position of the reference points BATT+ and GND

3.2.3 Monitoring Power Supply by AT Command

To monitor the supply voltage you can also use the AT^SBV command which returns the value related to the reference points BATT+ and GND.

The module continuously measures the voltage at intervals depending on the operating mode of the RF interface. The duration of measuring ranges from 0.5s in TALK/DATA mode to 50s when AC65/AC75 is in IDLE mode or Limited Service (deregistered). The displayed voltage (in mV) is averaged over the last measuring period before the AT^SBV command was executed.

AC65/AC75_hd_v00.372 Page 27 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3 Power-Up / Power-Down Scenarios

In general, be sure not to turn on AC65/AC75 while it is beyond the safety limits of voltage

and temperature stated in Chapter 5.1. AC65/AC75 would immediately switch off after having

started and detected these inappropriate conditions. In extreme cases this can cause permanent damage to the module.

3.3.1 Turn on AC65/AC75

AC65/AC75 can be started in a variety of ways as described in the following sections:

• Hardware driven start-up by IGT line: starts Normal mode or Airplane mode (see Section

3.3.1.1)

• Software controlled reset by AT+CFUN command: starts Normal mode or Airplane mode

(see Section 3.3.1.4)

• Hardware driven start-up by VCHARGE line: starts charging algorithm and Charge-only

mode (see Section 3.3.1.3)

• Wake-up from Power-down mode by using RTC interrupt: starts Airplane mode

The option whether to start into Normal mode or Airplane mode depends on the settings made with the AT^SCFG command or AT+CALA. With AT+CALA, followed by AT^SMSO the module can be configured to restart into Airplane mode at a scheduled alarm time. Switching back and forth between Normal mode and Airplane mode is possible any time during operation by using the AT^SCFG command.

After startup or mode change the following URCs indicate the module’s ready state:

• “SYSSTART” indicates that the module has entered Normal mode.

• “^SYSSTART AIRPLANE MODE” indicates that the module has entered Airplane mode.

• “^SYSSTART CHARGE ONLY MODE” indicates that the module has entered the

Charge-only mode.

These URCs are indicated only if the module is set to a fixed bit rate, i.e. they do not appear if autobauding is enabled (AT+IPR≠0).

Detailed explanations on AT^SCFG, AT+CFUN, AT+CALA, Airplane mode and AT+IPR can

be found in [1].

3.3.1.1 Turn on AC65/AC75 Using Ignition Line IGT

When AC65/AC75 is in Power-down mode or Charge-only mode, it can be started to Normal mode or Airplane mode by driving the IGT (ignition) line to ground. This must be accomplished with an open drain/collector driver to avoid current flowing into this pin.

The module will start up when both of the following two conditions are met:

• The supply voltage applied at BATT+ must be in the operating range.

• The IGT line needs to be driven low for at least 400ms in Power-down mode or at least

2s in Charge-only mode. When released IGT goes high and causes the module to start.

Considering different strategies of host application design the figures below show two

approaches to meet this requirement: The example in Figure 5 assumes that IGT is activated

after BATT+ has already been applied. The example in Figure 6 assumes that IGT is held

low before BATT+ is switched on. In either case, to power on the module, ensure that low state of IGT takes at least 400ms (Power-down mode) or 2s (Charge-only mode) from the

moment the voltage at BATT+ is available. For Charge-only mode see also Chapter 3.5.6.

AC65/AC75_hd_v00.372 Page 28 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Assertion of CTS indicates that the module is ready to receive data from the host application.

In addition, if configured to a fixed bit rate (AT+IPR≠0), the module will send the URC

“^SYSSTART” or “^SYSSTART AIRPLANE MODE” which notifies the host application that the first AT command can be sent to the module. The duration until this URC is output varies with the SIM card and may take a couple of seconds.

Please note that no “^SYSSTART” or “^SYSSTART AIRPLANE MODE” URC will be generated if autobauding (AT+IPR=0) is enabled.

To allow the application to detect the ready state of the module we recommend using

hardware flow control which can be set with AT\Q or AT+ICF (see [1] for details). The default

setting of AC65/AC75 is AT\Q0 (no flow control) which shall be altered to AT\Q3 (RTS/CTS handshake). If the application design does not integrate RTS/CTS lines the host application shall wait at least for the “^SYSSTART” or “^SYSSTART AIRPLANE MODE” URC. However, if the URCs are neither used (due to autobauding) then the only way of checking the module’s ready state is polling. To do so, try to send characters (e.g. “at”) until the module is responding.

See also Chapter 3.3.2 “Signal States after Startup”

BATT+

IGT HiZ

PWR_IND

EMERG_RST

120ms

VEXT

TXD0/TXD1/RTS0/RST1/DTR0 (driven by the application)

CTS0/CTS1/DSR0/DCD0

Interface pins

Undefined ca. 500 ms

Defined

Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT

AC65/AC75_hd_v00.372 Page 29 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

BATT+

IGT

PWR_IND

HiZ s

EMERG_RST

120ms

VEXT

TXD0/TXD1/RTS0/RST1/DTR0 (driven by the application)

CTS0/CTS1/DSR0/DCD0

Undefined Defined

Interface pins ca. 500 ms

Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+

If the IGT line is driven low for less than 400ms the module will, instead of starting up, send only the alert message “SHUTDOWN after Illegal PowerUp” to the host application. The alert message appears on the serial interfaces ASC0 and ASC1 at a fixed bit rate of 115200bps. If other fixed bit rates or autobauding are set, the URC delivers only undefined characters. The message will not be indicated on the USB interface.

AC65/AC75_hd_v00.372 Page 30 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3.1.2 Configuring the IGT Line for Use as ON/OFF Switch

The IGT line can be configured for use in two different switching modes: You can set the IGT line to switch on the module only, or to switch it on and off. The switching mode is determined by the parameter “MEShutdown/OnIgnition” of the AT^SCFG command. This approach is useful for application manufacturers who wish to have an ON/OFF switch installed on the host device.

By factory default, the ON/OFF switch mode of IGT is disabled: at^scfg=meshutdown/onignition # Query the current status of IGT.

^SCFG: "MEShutdown/OnIgnition","off" # IGT can be used only to switch on

AC65/AC75.

OK

To configure IGT for use as ON/OFF switch:

IGT works as described in Section 3.3.1.1.

at^scfg=meshutdown/onignition,on

^SCFG: "MEShutdown/OnIgnition","on"

# Enable the ON/OFF switch mode of IGT.

# IGT can be used to switch on and off

AC65/AC75.

OK

We strongly recommend taking great care before changing the switching mode of the IGT line. To ensure that the IGT line works properly as ON/OFF switch it is of vital importance that the following conditions are met.

Switch-on condition: If the AC65/AC75 is off, the IGT line must be asserted for at least

400ms before being released. The module switches on after 400ms.

Switch-off condition: If the AC65/AC75 is on, the IGT line must be asserted for at least 1s before being released. The module switches off after the line is released.

The switch-off routine is identical with the procedure initiated by

AT^SMSO, i.e. the software performs an orderly shutdown as

described in Section 3.3.3.1.

Before switching off the module wait at least 2 seconds after startup.

ON OFF

~~~~

|________|

~~~~~~~~~~~~~

|________|

~~~~

| 0.4s | ≥ 2s | ≥ 1s |

Figure 7: Timing of IGT if used as ON/OFF switch

AC65/AC75_hd_v00.372 Page 31 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3.1.3 Turn on AC65/AC75 Using the VCHARGE Signal

As detailed in Section 3.5.6, the charging adapter can be connected regardless of the

module’s operating mode.

If the charger is connected to the charger input of the external charging circuit and the module’s VCHARGE pin while AC65/AC75 is off, and the battery voltage is above the

undervoltage lockout threshold, processor controlled fast charging starts (see Section 3.5.5).

AC65/AC75 enters a restricted mode, referred to as Charge-only mode where only the charging algorithm will be launched.

During the Charge-only mode AC65/AC75 is neither logged on to the GSM network nor are the serial interfaces fully accessible. To switch from Charge-only mode to Normal mode the ignition line (IGT) must be pulled low for at least 2 seconds. When released, the IGT line

goes high and causes the module to enter the Normal mode. See also Section 3.5.6.

3.3.1.4 Reset AC65/AC75 via AT+CFUN Command

To reset and restart the AC65/AC75 module use the command AT+CFUN. You can enter

AT+CFUN=,1 or AT+CFUN=x,1, where x may be in the range from 0 to 9. See [1] for details.

If configured to a fix baud rate (AT+IPR≠0), the module will send the URC “^SYSSTART” or

“^SYSSTART AIRPLANE MODE” to notify that it is ready to operate. If autobauding is enabled (AT+IPR=0) there will be no notification. To register to the network SIM PIN authentication is necessary after restart.

AC65/AC75_hd_v00.372 Page 32 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3.1.5 Reset or Turn off AC65/AC75 in Case of Emergency

Caution: Use the EMERG_RST pin only when, due to serious problems, the software is not responding for more than 5 seconds. Pulling the EMERG_RST pin causes the loss of all information stored in the volatile memory. Therefore, this procedure is intended only for use in case of emergency, e.g. if AC65/AC75 does not respond, if reset or shutdown via AT command fails.

The EMERG_RST signal is available on the application interface. To control the

EMERG_RST line it is recommended to use an open drain / collector driver.

The EMERG_RST line can be used to switch off or to reset the module. In any case the

EMERG_RST line must be pulled to ground for ≥10ms. Then, after releasing the

EMERG_RST line the module restarts if IGT is held low for at least 400ms. Otherwise, if IGT is not low the module switches off. In this case, it can be restarted any time as described in

Section 3.3.1.1.

After hardware driven restart, notification via “^SYSSTART” or “^SYSSTART AIRPLANE”

URC is the same as in case of restart by IGT or AT command. To register to the network SIM

PIN authentication is necessary after restart.

3.3.1.6 Using EMERG_RST to Reset Application(s) or External Device(s)

When the module starts up, while IGT is held low for 400ms, the EMERG_RST signal goes

low for 120ms as shown in Figure 5 and Figure 6. During this 120ms period, EMERG_RST

becomes an output which can be used to reset application(s) or external device(s) connected to the module.

After the 120ms period, i.e. during operation of the module, the EMERG_RST is an input.

Specifications of the input and output mode of EMERG_RST can be found in Table 26.

AC65/AC75_hd_v00.372 Page 33 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3.2 Signal States after Startup

Table 6 describes the various states each interface pin passes through after startup and

during operation.

As shown in Figure 5 and Figure 6 the pins are in undefined state while the module is

initializing. Once the startup initialization has completed, i.e. when CTS is high and the software is running, all pins are in defined state. The state of several pins will change again once the respective interface is activated or configured by AT command.

Table 6: Signal states

Signal name

SYNC

CCIN

CCRST during startup initialization

O

I, PU(100k)

Active state after configuration by AT command

GPIO SPI I 2 C DAI

L

I, PU(100k)

L

L

L

L

O

O

O

2.9V

CCIO

CCCLK

CCVCC

RXD0

TXD0

DSR0

RXD1

TXD1

CTS1

RTS1

SPIDI

SPICS

I2CDAT_SPIDO

I, PU

CTS0 L

RTS0 I, PU

DTR0 I,

DCD0 L

L

O

I, PD(330k)

O

I, PD(330k)

I

O

O

O

O H

I, PD(330k)

L

I, PD(330k)

I, PD(330k)

O

I, PD(330k)

I Tristate

I Tristate

I2CCLK_SPICLK

GPIO5 L

GPIO6 I

GPIO8 L

GPIO9 I

GPIO10 I

DAI0

DAI1

DAI2

I

I

I

DAI3

DAI4

DAI5

DAI6

I

I

I

I

For abbreviations, see below.

AC65/AC75_hd_v00.372

Tristate IO

Tristate IO

Tristate IO

Tristate IO

Tristate IO

O

Tristate O

Tristate

Tristate

Tristate

I

O

O

Tristate

Tristate

Tristate

I

I

I

Page 34 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Abbreviations used in Table 6:

L = Low output level

H = High output level

I = Input

O = Output s

PD = Pull down with min +15µA and max. +100µA

PD(…k) = Fix pull down resistor

PU = Pull up with min -15µA and max. -100µA

PU(…k) = Fix pull up resistor

AC65/AC75_hd_v00.372 Page 35 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3.3 Turn off AC65/AC75

AC65/AC75 can be turned off as follows:

• Normal shutdown: Software controlled by AT^SMSO command

• Automatic shutdown: Takes effect if board or battery temperature is out of range or if undervoltage or overvoltage conditions occur.

3.3.3.1 Turn off AC65/AC75 Using AT Command

The best and safest approach to powering down AC65/AC75 is to issue the AT^SMSO command. This procedure lets AC65/AC75 log off from the network and allows the software to enter into a secure state and safe data before disconnecting the power supply. The mode is referred to as Power-down mode. In this mode, only the RTC stays active.

Before switching off the device sends the following response:

^SMSO: MS OFF

OK

^SHUTDOWN

After sending AT^SMSO do not enter any other AT commands. There are two ways to verify when the module turns off:

• Wait for the URC “^SHUTDOWN”. It indicates that data have been stored non-volatile and the module turns off in less than 1 second.

• Also, you can monitor the PWR_IND pin. High state of PWR_IND definitely indicates that the module is switched off.

Be sure not to disconnect the supply voltage V

BATT+

before the URC “^SHUTDOWN” has been issued and the PWR_IND signal has gone high. Otherwise you run the risk of losing

data. Signal states during turn-off are shown in Figure 8.

While AC65/AC75 is in Power-down mode the application interface is switched off and must not be fed from any other source. Therefore, your application must be designed to avoid any current flow into any digital pins of the application interface, especially of the serial interfaces. No special care is required for the USB interface which is protected from reverse current.

AC65/AC75_hd_v00.372 Page 36 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

PWR_IND

VEXT

See note 1

CTS0/CTS1/DSR0/DTR0 s

TXD0/TXD1/RTS0/RTS1/DTR0 (driven by the application)

Defined Undefined

Interface pins

Figure 8: Signal states during turn-off procedure

Note 1: Depending on capacitance load from host application

3.3.3.2 Leakage Current in Power-Down Mode

The leakage current in Power-down mode varies depending on the following conditions:

• If the supply voltage at BATT+ was disconnected and then applied again without starting up the AC65/AC75 module, the leakage current ranges between 90µA and 100µA.

• If the AC65/AC75 module is started and afterwards powered down with AT^SMSO, then the leakage current is only 50µA.

Therefore, in order to minimize the leakage current take care to start up the module at least once before it is powered down.

AC65/AC75_hd_v00.372 Page 37 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.3.3.3 Turn on/off AC65/AC75 Applications with Integrated USB

In a Windows environment, the USB COM port emulation causes the USB port of

AC65/AC75 to appear as a virtual COM port (VCOM port). The VCOM port emulation is only present when Windows can communicate with the module, and is lost when the module shuts down. Therefore, the host application or Terminal program must be disconnected from the USB VCOM port each time the module is restarted.

Restart after shutdown with AT^SMSO:

After entering the power-down command AT^SMSO on one of the interfaces (ASC0, ASC1,

USB) the host application or Terminal program used on the USB VCOM port must be closed before the module is restarted by activating the IGT line.

Software reset with AT+CFUN=x,1:

Likewise, when using the reset command AT+CFUN=x,1 on one of the interfaces (ASC0,

ASC1, USB) ensure that the host application or Terminal program on the USB VCOM port be closed down before the module restarts.

Note that if AT+CFUN=x,1 is entered on the USB interface the application or Terminal program on the USB VCOM port must be closed immediately after the response OK is returned.

AC65/AC75_hd_v00.372 Page 38 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Automatic shutdown takes effect if:

• the AC65/AC75 board is exceeding the critical limits of overtemperature or undertemperature

• the battery is exceeding the critical limits of overtemperature or undertemperature

• undervoltage or overvoltage is detected

See Charge-only mode described in Section 3.5.6 for exceptions.

The automatic shutdown procedure is equivalent to the Power-down initiated with the

AT^SMSO command, i.e. AC65/AC75 logs off from the network and the software enters a secure state avoiding loss of data.

Alert messages transmitted before the device switches off are implemented as Unsolicited

Result Codes (URCs). The URC presentation mode varies with the condition, please see

Chapters 3.3.4.1 to 3.3.4.5 for details. For further instructions on AT commands refer to [1].

The board temperature is constantly monitored by an internal NTC resistor located on the

PCB. The NTC that detects the battery temperature must be part of the battery pack circuit

as described in 3.5.3 The values detected by either NTC resistor are measured directly on

the board or the battery and therefore, are not fully identical with the ambient temperature.

Each time the board or battery temperature goes out of range or back to normal, AC65/AC75 instantly displays an alert (if enabled).

• URCs indicating the level "1" or "-1" allow the user to take appropriate precautions, such as protecting the module from exposure to extreme conditions. The presentation of the

URCs depends on the settings selected with the AT^SCTM write command:

AT^SCTM=1: Presentation of URCs is always enabled.

AT^SCTM=0 (default): Presentation of URCs is enabled for 15 seconds time after start-up of AC65/AC75. After 15 seconds operation, the presentation will be disabled, i.e. no alert messages can be generated.

• URCs indicating the level "2" or "-2" are instantly followed by an orderly shutdown. The presentation of these URCs is always enabled, i.e. they will be output even though the factory setting AT^SCTM=0 was never changed.

The maximum temperature ratings are stated in Chapter 5.2. Refer to Table 7 for the

associated URCs.

AC65/AC75_hd_v00.372 Page 39 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 7: Temperature dependent behavior

Sending temperature alert (2min after AC65/AC75 start-up, otherwise only if URC presentation enabled)

^SCTM_A: 1

^SCTM_B: 1

Caution: Battery close to overtemperature limit.

Caution: Bboard close to overtemperature limit.

^SCTM_A: -1

^SCTM_B: -1

^SCTM_A: 0

^SCTM_B: 0

Caution: Battery close to undertemperature limit.

Caution: Board close to undertemperature limit.

Battery back to uncritical temperature range.

Board back to uncritical temperature range.

Automatic shutdown (URC appears no matter whether or not presentation was enabled)

^SCTM_A: 2 Alert: Battery equal or beyond overtemperature limit. AC65/AC75 switches off.

^SCTM_B: 2

^SCTM_A: -2

Alert: Board equal or beyond overtemperature limit. AC65/AC75 switches off.

Alert: Battery equal or below undertemperature limit. AC65/AC75 switches off.

Alert: Board equal or below undertemperature limit. AC65/AC75 switches off. ^SCTM_B: -2

3.3.4.2 Deferred Shutdown at Extreme Temperature Conditions

In the following cases, shutdown will be deferred if a critical temperature limit is exceeded:

• while an emergency call is in progress

• during a two minute guard period after power-up. This guard period has been introduced in order to allow the user to make an emergency call. The start of an emergency call extends the guard period until the end of the call. Any other network activity may be terminated by shutdown upon expiry of the guard time. The guard period starts again when the module registers to the GSM network the first time after power-up.

If the temperature is still out of range after the guard period expires or the call ends, the module switches off immediately (without another alert message).

CAUTION! Automatic shutdown is a safety feature intended to prevent damage to the module. Extended usage of the deferred shutdown functionality may result in damage to the module, and possibly other severe consequences.

3.3.4.3 Monitoring the Board Temperature of AC65/AC75

The AT^SCTM command can also be used to check the present status of the board.

Depending on the selected mode, the read command returns the current board temperature in degrees Celsius or only a value that indicates whether the board is within the safe or

critical temperature range. See [1] for further instructions.

3.3.4.4 Undervoltage Shutdown if Battery NTC is Present

In applications where the module’s charging technique is used and an NTC is connected to the BATT_TEMP terminal, the software constantly monitors the applied voltage. If the measured battery voltage is no more sufficient to set up a call the following URC will be presented:

^SBC: Undervoltage.

AC65/AC75_hd_v00.372 Page 40 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The message will be reported, for example, when you attempt to make a call while the voltage is close to the shutdown threshold of 3.2V and further power loss is caused during the transmit burst. In IDLE mode, the shutdown threshold is the sum of the module’s minimum supply voltage (3.2V) and the value of the maximum voltage drop resulting from earlier calls. This means that in IDLE mode the actual shutdown threshold may be higher than 3.2V. Therefore, to properly calculate the actual shutdown threshold application manufacturers are advised to measure the maximum voltage drops that may occur during transmit bursts.

To remind you that the battery needs to be charged soon, the URC appears several times before the module switches off.

This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur.

3.3.4.5 Undervoltage Shutdown if no Battery NTC is Present

The undervoltage protection is also effective in applications, where no NTC connects to the

BATT_TEMP terminal. Thus, you can take advantage of this feature even though the application handles the charging process or AC65/AC75 is fed by a fixed supply voltage.

Whenever the supply voltage falls below the value of 3.2V the URC

^SBC: Undervoltage appears several times before the module switches off.

This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur.

The overvoltage shutdown threshold is 100mV above the maximum supply voltage V

specified in Table 27.

BATT+

When the supply voltage approaches the overvoltage shutdown threshold the module will send the URC

^SBC: Overvoltage warning.

This alert is sent once.

When the overvoltage shutdown threshold is exceeded the module will send the URC

^SBC: Overvoltage shutdown, before it shuts down cleanly.

This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur.

Keep in mind that several AC65/AC75 components are directly linked to BATT+ and, therefore, the supply voltage remains applied at major parts of AC65/AC75, even if the module is switched off. Especially the power amplifier is very sensitive to high voltage and might even be destroyed.

AC65/AC75_hd_v00.372 Page 41 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.4 Automatic EGPRS/GPRS Multislot Class Change

Temperature control is also effective for operation in EGPRS Multislot Class 10 (AC75 only),

GPRS Multislot Class 10 and GPRS Multislot Class 12. If the board temperature rises close to the limit specified for normal operation 1 while data are transmitted over EGPRS or GPRS, the module automatically reverts

• from EGPRS Multislot Class 10 (2Tx slots) to EGPRS Multislot Class 8 (1Tx),

• from GPRS Multislot Class 12 (4Tx slots) to GPRS Multislot Class 8 (1Tx),

• from GPRS Multislot Class 10 (2Tx slots) to GPRS Multislot Class 8 (1Tx)

This reduces the power consumption and, consequently, causes the board’s temperature to decrease. Once the temperature drops by 5 degrees, AC65/AC75 returns to the higher

Multislot Class. If the temperature stays at the critical level or even continues to rise,

AC65/AC75 will not switch back to the higher class.

After a transition from EGPRS Multislot Class 10 to EGPRS Multislot Class 8 a possible switchback to EGPRS Multislot Class 10 is blocked for one minute. The same applies when a transition occurs from GPRS Multislot Class 12 or 10 to GPRS Multislot Class 8.

Please note that there is not one single cause of switching over to a lower Multislot Class.

Rather it is the result of an interaction of several factors, such as the board temperature that depends largely on the ambient temperature, the operating mode and the transmit power.

Furthermore, take into account that there is a delay until the network proceeds to a lower or, accordingly, higher Multislot Class. The delay time is network dependent. In extreme cases, if it takes too much time for the network and the temperature cannot drop due to this delay,

the module may even switch off as described in Section 3.3.4.1.

1

See Chapter 5.2 for temperature limits.

AC65/AC75_hd_v00.372 Page 42 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 integrates a charging management for rechargeable Lithium Ion and Lithium

Polymer batteries. You can skip this chapter if charging is not your concern, or if you are not using the implemented charging algorithm.

The following sections contain an overview of charging and battery specifications. Please

refer to [4] for greater detail, especially regarding requirements for batteries and chargers,

appropriate charging circuits, recommended batteries and an analysis of operational issues typical of battery powered GSM/GPRS applications.

AC65/AC75 has no on-board charging circuit. To benefit from the implemented charging management you are required to install a charging circuit within your application according to

the Figure 46.

Use the command AT^SBC, parameter <current>, to enter the current consumption of the host application. This information enables the AC65/AC75 module to correctly determine the end of charging and terminate charging automatically when the battery is fully charged. If the

<current> value is inaccurate and the application draws a current higher than the final charge current, either charging will not be terminated or the battery fails to reach its maximum voltage. Therefore, the termination condition is defined as: current consumption dependent on the operating mode of the ME plus current consumption of the external application. If used the current flowing over the VEXT pin of the application interface must be added, too.

The parameter <current> is volatile, meaning that the factory default (0mA) is restored each time the module is powered down or reset. Therefore, for better control of charging, it is recommended to enter the value every time the module is started.

See [1] for details on AT^SBC.

AC65/AC75_hd_v00.372 Page 43 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.5.3 Battery Pack Requirements

The charging algorithm has been optimized for rechargeable Lithium batteries that meet the

characteristics listed below and in Table 8. It is recommended that the battery pack you want

to integrate into your AC65/AC75 application is compliant with these specifications. This ensures reliable operation, proper charging and, particularly, allows you to monitor the battery capacity using the AT^SBC command. Failure to comply with these specifications might cause AT^SBC to deliver incorrect battery capacity values.

• Li-Ion or Lithium Polymer battery pack specified for a maximum charging voltage of 4.2V and a recommended capacity of 1000 to 1200mAh.

• Since charging and discharging largely depend on the battery temperature, the battery pack should include an NTC resistor. If the NTC is not inside the battery it must be in thermal contact with the battery. The NTC resistor must be connected between

BATT_TEMP and GND.

The B value of the NTC should be in the range: 10kΩ +5% @ 25°C, B

25/85

=3435K ± 3% (alternatively acceptable: 10kΩ +2% @ 25°C, B

25/50

= 3423K to B

= 3370K +3%). Please note that the NTC is indispensable for proper charging, i.e. the charging process will not start if no NTC is present.

• Ensure that the pack incorporates a protection circuit capable of detecting overvoltage

(protection against overcharging), undervoltage (protection against deep discharging) and overcurrent. Due to the discharge current profile typical of GSM applications, the circuit must be insensitive to pulsed current.

• On the AC65/AC75 module, a built-in measuring circuit constantly monitors the supply voltage. In the event of undervoltage, it causes AC65/AC75 to power down. Undervoltage thresholds are specific to the battery pack and must be evaluated for the intended model.

When you evaluate undervoltage thresholds, consider both the current consumption of

AC65/AC75 and of the application circuit.

• The internal resistance of the battery and the protection should be as low as possible. It is recommended not to exceed 150mΩ, even in extreme conditions at low temperature.

The battery cell must be insensitive to rupture, fire and gassing under extreme conditions of temperature and charging (voltage, current).

• The battery pack must be protected from reverse pole connection. For example, the casing should be designed to prevent the user from mounting the battery in reverse orientation.

• It is recommended that the battery pack be approved to satisfy the requirements of CE conformity.

Figure 9 shows the circuit diagram of a typical

to BATT+ to BATT_TEMP to GND battery pack design that includes the protection elements described above.

Protection Circuit

+ -

ϑ

NTC

Figure 9: Battery pack circuit diagram Battery cell Polyfuse

AC65/AC75_hd_v00.372 Page 44 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 8: Specifications of battery packs suitable for use with AC65/AC75

Battery type Rechargeable Lithium Ion or Lithium Polymer battery

Nominal voltage

Capacity

3.6V / 3.7V

Recommended: 1000mAh to 1200mAh

Minimum: 500mAh

NTC 10kΩ ± 5% @ 25°C approx. 5kΩ @ 45°C approx. 26.2kΩ @ 0°C

B value range: B (25/85)=3423K to B =3435K ± 3%

Overcharge detection voltage

Overdischarge detection voltage

Overdischarge release voltage

Overcurrent detection

Overcurrent detection delay time

Short detection delay time

Internal resistance

4.325 ± 0.025V

2.5V

2.6V

3 ± 0.5A

4 ~ 16ms

50µs

<130mΩ

Note: A maximum internal resistance of 150mΩ should not be exceeded even after 500 cycles and under extreme conditions.

For using the implemented charging algorithm and the reference charging circuit

recommended in [4] and in Figure 46, the charger has to meet the following requirements:

Output voltage:

Output current:

5.2Volts ±0.2V (stabilized voltage)

500mA

Chargers with a higher output current are acceptable, but please consider that only 500mA will be applied when a 0.3Ohms shunt

resistor is connected between VSENSE and ISENSE. See [4] for

further details.

AC65/AC75_hd_v00.372 Page 45 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.5.5 Implemented Charging Technique

If all requirements listed above are met (appropriate external charging circuit of application, battery pack, charger, AT^SBC settings) then charging is enabled in various stages depending on the battery condition:

Trickle charging:

• Trickle charge current flows over the VCHARGE line.

• Trickle charging is done when a charger is present (connected to VCHARGE) and the battery is deeply discharged or has undervoltage. If deeply discharged (Deep Discharge

Lockout at V

BATT+

= <2.5V) the battery is charged with 5mA, in case of undervoltage

(Undervoltage Lockout at V

BATT+

= 2.5…3.2V) it is charged with 30mA.

Software controlled charging:

• Controlled over the CHARGEGATE.

• Temperature conditions: 0°C to 45°C

• Software controlled charging is done when the charger is present (connected to

VCHARGE) and the battery voltage is at least above the undervoltage threshold.

Software controlled charging passes the following stages:

-

Power ramp: Depending on the discharge level of the battery (i.e. the measured battery voltage V

BATT+

) the software adjusts the maximum charge current for charging the battery. The duration of power ramp charging is very short (less than 30 seconds).

-

-

Fast charging: Battery is charged with constant current (approx. 500mA) until the battery voltage reaches 4.2V (approx. 80% of the battery capacity).

Top-up charging: The battery is charged with constant voltage of 4.2V at stepwise reducing charge current until full battery capacity is reached.

Duration of charging:

• AC65/AC75 provides two charging timers: a software controlled timer set to 4 hours and a hardware controlled timer set to 4.66 hours.

-

-

The duration of software controlled charging depends on the battery capacity and the level of discharge. Normally, charging stops when the battery is fully charged or, at the latest, when the software timer expires after 4 hours.

The hardware timer is provided to prevent runaway charging and to stop charging if the software is not responding. The hardware timer will start each time the charger is plugged to the VCHARGE line.

AC65/AC75_hd_v00.372 Page 46 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.5.6 Operating Modes during Charging

Of course, the battery can be charged regardless of the engine's operating mode. When the

GSM module is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode), it remains operational while charging is in progress (provided that sufficient voltage is applied).

The charging process during the Normal mode is referred to as Charge mode.

If the charger is connected to the charger input of the external charging circuit and the module’s VCHARGE pin while AC65/AC75 is in Power-down mode, AC65/AC75 goes into

Charge-only mode.

While the charger remains connected it is not possible to switch the module off by using the

AT^SMSO command or the automatic shutdown mechanism. Instead the following applies:

• If the module is in Normal mode and the charger is connected (Charge mode) the

AT^SMSO command causes the module to shut down shortly and then start into the

Charge-only mode.

• In Charge-only mode the AT^SMSO command is not usable.

• In Charge-only mode the module neither switches off when the battery or the module exceeds the critical limits of overtemperature or undertemperature.

In these cases you can only switch the module off by disconnecting the charger.

To proceed from Charge-only mode to another operating mode you have the following options, provided that the battery voltage is at least above the undervoltage threshold.

• To switch from Charge-only mode to Normal mode you have two ways:

-

Hardware driven: The ignition line (IGT) must be pulled low for at least 2 seconds.

-

When released, the IGT line goes high and causes the module to enter the Normal mode.

AT command driven: Set the command AT^SCFG=MEopMode/Airplane,off (please do so although the current status of Airplane mode is already “off”). The module will enter the Normal mode, indicated by the “^SYSSTART” URC.

• To switch from Charge-only mode to Airplane mode set the command

AT^SCFG=MEopMode/Airplane,on . The mode is indicated by the URC “^SYSSTART

AIRPLANE MODE”.

• If AT^SCFG=MEopMode/Airplane/OnStart,on is set, driving the ignition line (IGT) activates the Airplane mode. The mode is indicated by the URC “^SYSSTART

AIRPLANE MODE”.

Table 9: AT commands available in Charge-only mode

AT command Use

AT+CALA Set alarm time, configure Airplane mode.

AT+CCLK

AT^SBC

Set date and time of RTC.

Query status of charger connection.

AT^SBV

AT^SCTM

Monitor supply voltage.

Query temperature range, enable/disable URCs to report critical temperature ranges

Enable/disable parameters MEopMode/Airplane or MEopMode/Airplane/OnStart AT^SCFG

AC65/AC75_hd_v00.372 Page 47 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 10: Comparison Charge-only and Charge mode

How to activate mode Description of mode

Connect charger to charger input of host application charging circuit and module’s

VCHARGE pin while AC65/AC75 is

• operating, e.g. in IDLE or TALK mode

• in SLEEP mode

• Battery can be charged while GSM module remains operational and registered to the

GSM network.

• In IDLE and TALK mode, the serial interfaces are accessible. All AT commands can be used to full extent.

NOTE: If the module operates at maximum power level (PCL5) and GPRS Class 12 at the same time the current consumption is higher than the current supplied by the charger.

Connect charger to charger input of host application charging circuit and module’s

VCHARGE pin while AC65/AC75 is

• in Power-down mode

• Battery can be charged while GSM engine is deregistered from GSM network.

• Charging runs smoothly due to constant

• in Normal mode: Connect charger to the VCHARGE pin, then enter

AT^SMSO.

NOTE: While trickle charging is in current consumption.

• The AT interface is accessible and allows to use the commands listed below. progress, be sure that the host application is switched off. If the application is fed from the trickle charge current the module might be prevented from proceeding to software controlled charging since the current would not be sufficient.

AC65/AC75_hd_v00.372 Page 48 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Intended for power saving, SLEEP mode reduces the functionality of the AC65/AC75 to a minimum and thus minimizes the current consumption. Settings can be made using the

AT+CFUN command. For details see [1]. SLEEP mode falls in two categories:

• NON-CYCLIC SLEEP mode: AT+CFUN = 0

• CYCLIC SLEEP modes, AT+CFUN = 7 or 9.

The functionality level AT+CFUN=1 is where power saving is switched off. This is the default after startup.

NON-CYCLIC SLEEP mode permanently blocks the serial interface. The benefit of the

CYCLIC SLEEP mode is that the serial interface remains accessible and that, in intermittent wake-up periods, characters can be sent or received without terminating the selected mode.

This allows the AC65/AC75 to wake up for the duration of an event and, afterwards, to

resume power saving. Please refer to [1] for a summary of all SLEEP modes and the

different ways of waking up the module.

For CYCLIC SLEEP mode both the AC65/AC75 and the application must be configured to use hardware flow control. This is necessary since the CTSx signal is set/reset every 0.9-2.7

seconds in order to indicate to the application when the UART is active. Please refer to [1] for

details on how to configure hardware flow control for the AC65/AC75.

Note: Although not explicitly stated, all explanations given in this section refer equally to

ASC0 and ASC1, and accordingly to CTS0 and CTS1 or RTS0 and RTS1.

3.6.1 Network Dependency of SLEEP Modes

The power saving possibilities of SLEEP modes depend on the network the module is registered in. The paging timing cycle varies with the base station. The duration of a paging interval can be calculated from the following formula: t = 4.615 ms (TDMA frame duration) * 51 (number of frames) * DRX value .

DRX (Discontinuous Reception) is a value from 2 to 9, resulting in paging intervals from

0.47-2.12 seconds. The DRX value of the base station is assigned by the network operator.

In the pauses between listening to paging messages, the module resumes power saving, as

shown in Figure 10.

Paging Paging Paging Paging

Power Saving

0.47-2.12 s

Power Saving

0.47-2.12 s

Power Saving

0.47-2.12 s

Figure 10: Power saving and paging

The varying pauses explain the different potential for power saving. The longer the pause the less power is consumed.

AC65/AC75_hd_v00.372 Page 49 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.6.2 Timing of the CTSx Signal in CYCLIC SLEEP Mode 7

Figure 11 illustrates the CTSx signal timing in CYCLIC SLEEP mode 7 (CFUN=7).

Beginning of power saving

CTSx

2 s 0.9...2.7 s 0.9...2.7 s

Last character

AT interface disabled AT interface enabled

Figure 11: Timing of CTSx signal (if CFUN= 7)

With regard to programming or using timeouts, the UART must take the varying CTS inactivity periods into account.

3.6.3 Timing of the RTSx Signal in CYCLIC SLEEP Mode 9

In SLEEP mode 9 the falling edge of RTSx can be used to temporarily wake up the ME. In this case the activity time is at least the time set with AT^SCFG="PowerSaver/Mode9/

Timeout",<psm9to> (default 2 seconds). RTSx has to be asserted for at least a dedicated debounce time in order to wake up the ME. The debounce time specifies the minimum time period an RTSx signal has to remain asserted for the signal to be recognized as wake up signal and being processed. The debounce time is defined as 8*4.615 ms (TDMA frame duration) and is used to prevent bouncing or other fluctuations from being recognized as signals. Toggling RTSx while the ME is awake has no effect on the AT interface state, the regular hardware flow control via CTS/RTS is unaffected by this RTSx behaviour.

Power saving Wake up of ME

CTSx

2 s

RTSx

AT interface disabled

37 ms

Debounce Time

AT interface enabled

Figure 12: Timing of RTSx signal (if CFUN = 9)

AC65/AC75_hd_v00.372 Page 50 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.7 Summary of State Transitions (Except SLEEP Mode)

Table 11: State transitions of AC65/AC75 (except SLEEP mode)

The table shows how to proceed from one mode to another (grey column = present mode, white columns = intended modes)

Further mode ÎÎÎ POWER DOWN Normal mode

**)

Present mode

POWER DOWN mode

Normal mode

**)

AT^SMSO

Airplane/OnStart,off:

IGT >400 ms at low level, then release IGT

---

Connect charger to VCHARGE

AT^SMSO if charger is connected

If AT^SCFG=MeOpMode/

Airplane/OnStart,on:

IGT >400 ms at low level, then release IGT.

Regardless of AT^SCFG configuration: scheduled wake-up set with AT+CALA.

AT^SCFG=MeOpMode/

Airplane,on.

If AT^SCFG=MeOpMode/

Airplane/OnStart,on:

AT+CFUN=x,1 or EMERG_RST + IGT >400 ms.

Charge-only mode

*)

Disconnect charger

Airplane mode AT^SMSO

Hardware driven: If AT^SCFG=

MeOpMode/Airplane/OnStart,off:

IGT >2s at low level, then release

IGT

AT command driven: AT^SCFG=

MeOpMode/Airplane,off

--- AT^SCFG=MeOpMode/

Airplane,on.

If AT^SCFG=MeOpMode/

Airplane/OnStart,on: IGT >2s at low level

AT^SCFG=MeOpMode/

Airplane,off

AT^SMSO if charger is connected

---

*)

See Section 3.5.6 for details on the charging mode

**) Normal mode covers TALK, DATA, GPRS/EGPRS, IDLE and SLEEP modes

AC65/AC75_hd_v00.372 Page 51 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The internal Real Time Clock of AC65/AC75 is supplied from a separate voltage regulator in the analog controller which is also active when AC65/AC75 is in POWER DOWN status. An alarm function is provided to wake up AC65/AC75 to Airplane mode without logging on to the

GSM network.

In addition, you can use the VDDLP pin on the board-to-board connector to backup the RTC from an external capacitor or a battery (rechargeable or non-chargeable). The capacitor is charged by the BATT+ line of AC65/AC75. If the voltage supply at BATT+ is disconnected the RTC can be powered by the capacitor. The size of the capacitor determines the duration of buffering when no voltage is applied to AC65/AC75, i.e. the larger the capacitor the longer

AC65/AC75 will save the date and time.

A serial 1kΩ resistor placed on the board next to VDDLP limits the charge current of an empty capacitor or battery.

The following figures show various sample configurations. Please refer to Table 26 for the

parameters required.

BATT+

Baseband processor

PSU

B2B

1k

RTC

VDDLP

+

Figure 13: RTC supply from capacitor

BATT+

Baseband processor

RTC

PSU

1k

B2B

VDDLP

+

Figure 14: RTC supply from rechargeable battery

B2B

BATT+

Baseband processor

RTC

PSU

1k

VDDLP

+

+

Figure 15: RTC supply from non-chargeable battery

AC65/AC75_hd_v00.372 Page 52 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The baseband processor has an integrated SIM interface compatible with the ISO 7816 IC

Card standard. This is wired to the host interface (board-to-board connector) in order to be connected to an external SIM card holder. Six pins on the board-to-board connector are reserved for the SIM interface.

The SIM interface supports 3V and 1.8V SIM cards. Please refer to Table 26 for electrical

specifications of the SIM interface lines depending on whether a 3V or 1.8V SIM card is used.

The CCIN pin serves to detect whether a tray (with SIM card) is present in the card holder.

Using the CCIN pin is mandatory for compliance with the GSM 11.11 recommendation if the mechanical design of the host application allows the user to remove the SIM card during operation. To take advantage of this feature, an appropriate SIM card detect switch is required on the card holder. For example, this is true for the model supplied by Molex, which has been tested to operate with AC65/AC75 and is part of the Siemens reference equipment

submitted for type approval. See Chapter 8 for Molex ordering numbers.

Table 12: Signals of the SIM interface (board-to-board connector)

Signal Description

CCGND Separate ground connection for SIM card to improve EMC.

Be sure to use this ground line for the SIM interface rather than any other ground pin or plane on the module. A design example for grounding the SIM interface is shown in

Figure 46.

CCCLK Chipcard clock, various clock rates can be set in the baseband processor.

CCVCC SIM supply voltage.

CCIO Serial data line, input and output.

CCRST Chipcard reset, provided by baseband processor.

CCIN Input on the baseband processor for detecting a SIM card tray in the holder. If the SIM is removed during operation the SIM interface is shut down immediately to prevent destruction of the SIM. The CCIN pin is active low.

The CCIN pin is mandatory for applications that allow the user to remove the SIM card during operation.

The CCIN pin is solely intended for use with a SIM card. It must not be used for any other purposes. Failure to comply with this requirement may invalidate the type approval of

AC65/AC75.

Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SIM card during operation.

Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed a SIM card during operation.

AC65/AC75_hd_v00.372 Page 53 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The total cable length between the board-to-board connector pins on AC65/AC75 and the pins of the external SIM card holder must not exceed 100mm in order to meet the specifications of 3GPP TS 51.010-1 and to satisfy the requirements of EMC compliance.

To avoid possible cross-talk from the CCCLK signal to the CCIO signal be careful that both lines are not placed closely next to each other. A useful approach is using the CCGND line to shield the CCIO line from the CCCLK line.

To meet EMC requirements it is strongly recommended to add several capacitors as shown

in Figure 46. Take care to place the capacitors close to the SIM card holder.

AC65/AC75_hd_v00.372 Page 54 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.10 Serial Interface ASC0

AC65/AC75 offers an 8-wire unbalanced, asynchronous modem interface ASC0 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-

T V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data

bit or inactive state). For electrical characteristics please refer to Table 26.

AC65/AC75 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

• Port TXD @ application sends data to the module’s TXD0 signal line

• Port RXD @ application receives data from the module’s RXD0 signal line

GSM Module (DCE)

TXD0

RXD0

RTS0

CTS0

DTR0

DSR0

DCD0

RING0

TXD

RXD

RTS

CTS

DTR

DSR

DCD

RING

Application (DTE)

Figure 16: Serial interface ASC0

Features

• Includes the data lines TXD0 and RXD0, the status lines RTS0 and CTS0 and, in addition, the modem control lines DTR0, DSR0, DCD0 and RING0.

• ASC0 is primarily designed for controlling voice calls, transferring CSD, fax and GPRS data and for controlling the GSM engine with AT commands.

• Full Multiplex capability allows the interface to be partitioned into three virtual channels, yet with CSD and fax services only available on the first logical channel. Please note that when the ASC0 interface runs in Multiplex mode, ASC1 cannot be used. For more details

on Multiplex mode see [10].

• The DTR0 signal will only be polled once per second from the internal firmware of

AC65/AC75.

• The RING0 signal serves to indicate incoming calls and other types of URCs (Unsolicited

Result Code). It can also be used to send pulses to the host application, for example to

wake up the application from power saving state. See [1] for details on how to configure

the RING0 line by AT^SCFG.

• By default, configured for 8 data bits, no parity and 1 stop bit. The setting can be

changed using the AT command AT+ICF and, if required, AT^STPB. For details see [1].

• ASC0 can be operated at fixed bit rates from 300 bps to 460,800 bps.

• Autobauding supports bit rates from 1,200 to 460,800 bps.

• Autobauding is not compatible with multiplex mode.

• Supports RTS0/CTS0 hardware flow control and XON/XOFF software flow control.

AC65/AC75_hd_v00.372 Page 55 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Table 13: DCE-DTE wiring of ASC0

V.24 circuit

Pin function

103 TXD0

104 RXD0

105 RTS0

106 CTS0

108/2 DTR0

107 DSR0

109 DCD0

125 RING0

DCE

Signal direction

Input

Output

Input

Output

Input

Output

Output

Output

Pin function

TXD

RXD

RTS

CTS

DTR

DSR

DCD

RING s

DTE

Signal direction

Output

Input

Output

Input

Output

Input

Input

Input

AC65/AC75_hd_v00.372 Page 56 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.11 Serial Interface ASC1

The ASC1 interface is available as a 4-wire unbalanced, asynchronous modem interface

ASC1 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and

2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table

26.

AC65/AC75 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

• Port TXD @ application sends data to module’s TXD1 signal line

• Port RXD @ application receives data from the module’s RXD1 signal line

GSM Module (DCE) Application (DTE)

TXD1

RXD1

RTS1

CTS1

TXD

RXD

RTS

CTS

Figure 17: Serial interface ASC1

Features

• Includes only the data lines TXD1 and RXD1 plus RTS1 and CTS1 for hardware handshake.

• On ASC1 no RING line is available. The indication of URCs on the second interface

depends on the settings made with the AT^SCFG command. For details refer to [1].

• Configured for 8 data bits, no parity and 1 or 2 stop bits.

• ASC1 can be operated at fixed bit rates from 300 bps to 460,800 bps. Autobauding is not supported on ASC1.

• Supports RTS1/CTS1 hardware flow control and XON/XOFF software flow control.

Table 14: DCE-DTE wiring of ASC1

V.24 circuit

Pin function

103 TXD1

104 RXD1

105 RTS1

106 CTS1

DCE

Signal direction

Input

Output

Input

Output

Pin function

TXD

RXD

RTS

CTS

DTE

Signal direction

Output

Input

Output

Input

AC65/AC75_hd_v00.372 Page 57 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 supports a USB 2.0 Full Speed (12Mbit/s) device interface. It can be operated on a USB 2.0 Full Speed or High Speed root hub (a PC host), but not on a generic USB 2.0

High Speed hub which translates High Speed (480 Mbit/s/) to Full Speed (12 Mbit/s).

The USB port has different functions depending on whether or not Java is running. Under

Java, the lines may be used for debugging purposes (see [16] for further detail). If Java is not

used, the USB interface is available as a command and data interface and for downloading firmware.

The USB I/O-pins are capable of driving the signal at min 3.0V. They are 5V I/O compliant.

The USB host is responsible for supplying, across the VUSB_IN line, power to the module’s

USB interface, but not to other AC65/AC75 interfaces. This is because AC65/AC75 is designed as a self-powered device compliant with the “Universal Serial Bus Specification

Revision 2.0” 2 .

MCU

USB

Transceiver

3.2V

lin.

Regulator

5V

PSU

VUSB_IN

1.5kOhms

22Ohms

22Ohms

USB_DP

USB_DN

VBUS

GND

D+

D-

Host

Baseband controller

GSM module

Figure 18: USB circuit

To properly connect the module’s USB interface to the host a USB 2.0 compatible connector is required. For more information on how to install a USB modem driver and on how to

integrate USB into AC65/AC75 applications see [11].

2

The specification is ready for download on http://www.usb.org/developers/docs/

AC65/AC75_hd_v00.372 Page 58 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.13 I

2

C Interface

I 2 C is a serial, 8-bit oriented data transfer bus for bit rates up to 400kbps in Fast mode. It consists of two lines, the serial data line I2CDAT and the serial clock line I2CCLK.

The AC65/AC75 module acts as a single master device, e.g. the clock I2CCLK is driven by module. I2CDAT is a bi-directional line.

Each device connected to the bus is software addressable by a unique 7-bit address, and simple master/slave relationships exist at all times. The module operates as mastertransmitter or as master-receiver. The customer application transmits or receives data only on request of the module.

To configure and activate the I 2 C bus use the AT^SSPI command. If the I 2 C bus is active the two lines I2CCLK and I2DAT are locked for use as SPI lines. Vice versa, the activation of the

SPI locks both lines for I 2 C. Detailed information on the AT^SSPI command as well

explanations on the protocol and syntax required for data transmission can be found in [1].

The I 2 C interface can be powered from an external supply or via the VEXT line of

AC65/AC75. If connected to the VEXT line the I 2 C interface will be properly shut down when the module enters the Power-down mode. If you prefer to connect the I 2 C interface to an external power supply, take care that VCC of the application is in the range of V

VEXT

and that the interface is shut down when the PWR_IND signal goes high. See figures below as well

as Section 7 and Figure 46.

In the application I2CDAT and I2CCLK lines need to be connected to a positive supply voltage via a pull-up resistor.

For electrical characteristics please refer to Table 26.

GSM module Application

R p

R p

VCC w VEXT

I2CDAT

I2CCLK

GND

I2CDAT

I2CCLK

GND

Figure 19: I

2

C interface connected to VCC of application

AC65/AC75_hd_v00.372 Page 59 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

GSM module

VEXT s

Application

R p

R p

I2CDAT

I2CCLK

GND

I2CDAT

I2CCLK

GND

Figure 20: I

2

C interface connected to VEXT line of AC65/AC75

Note: Good care should be taken when creating the PCB layout of the host application: The traces of I2CCLK and I2CDAT should be equal in length and as short as possible.

AC65/AC75_hd_v00.372 Page 60 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The SPI (serial peripheral interface) is a synchronous serial interface for control and data transfer between the AC65/AC75 module and the connected application. Only one application can be connected to the module’s SPI. The interface supports transmission rates up to 6.5Mbit/s. It consists of four lines, the two data lines SPIDI/SPIDO, the clock line

SPICLK and the chip select line SPICS.

The AC65/AC75 module acts as a single master device, e.g. the clock SPICLK is driven by module. Whenever the SPICS pin is in a low state, the SPI bus is activated and data can be transferred from the module and vice versa. The SPI interface uses two independent lines for data input (SPIDI) and data output (SPIDO).

GSM module Application

SPIDI

SPIDO

SPICS

SPICLK

SPIDI

SPIDO

SPICS

SPICLK

Figure 21: SPI interface

To configure and activate the SPI bus use the AT^SSPI command. If the SPI bus is active the two lines I2CCLK and I2DAT are locked for use as I 2 C lines. Detailed information on the

AT^SSPI command as well explanations on the SPI modes required for data transmission

can be found in [1].

In general, SPI supports four operation modes. The modes are different in clock phase and clock polarity. The module’s SPI mode can be configured by using the AT command

AT^SSPI. Make sure the module and the connected slave device works with the same SPI mode.

Figure 22 shows the characteristics of the four SPI modes. The SPI modes 0 and 3 are the

most common used modes.

For electrical characteristics please refer to Table 26.

AC65/AC75_hd_v00.372 Page 61 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Clock phase

SPI MODE 0

SPICS

SPICLK

SPICS

SPICLK

SPIDO

SPIDI

SPIDO

SPIDI

Sample s

SPI MODE 1

Sample

SPICS

SPICLK

SPIDO

SPIDI

Sample

SPI MODE 2

SPICS

SPICLK

SPIDO

SPIDI

Sample

Figure 22: Characteristics of SPI modes

SPI MODE 3

AC65/AC75_hd_v00.372 Page 62 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 comprises three audio interfaces available on the board-to-board connector:

• Two analog audio interfaces, both with balanced or single-ended inputs/outputs.

• Serial digital audio interface (DAI) designed for PCM (Pulse Code Modulation).

This means you can connect up to three different audio devices, although only one interface can be operated at a time. Using the AT^SAIC command you can easily switch back and forth.

MICP1

MICN1

MUX

MUX

A

D

MICP2 MUX

MICN2

EPP1

EPN1

A

D

EPP2

EPN2

DSP Air

Interface

VMIC

AGND

DAI0

DAI1

DAI2

DAI3

DAI4

DAI5

DAI6

Digital

Audio

Interface

Figure 23: Audio block diagram

To suit different types of accessories the audio interfaces can be configured for different audio modes via the AT^SNFS command. The electrical characteristics of the voiceband part vary with the audio mode. For example, sending and receiving amplification, sidetone paths, noise suppression etc. depend on the selected mode and can be altered with AT commands

(except for mode 1).

Both analog audio interfaces can be used to connect headsets with microphones or speakerphones. Headsets can be operated in audio mode 3, speakerphones in audio mode 2. Audio mode 5 can be used for direct access to the speech coder without signal pre or post processing.

When shipped from factory, all audio parameters of AC65/AC75 are set to interface 1 and audio mode 1. This is the default configuration optimized for the Votronic HH-SI-30.3/V1.1/0 handset and used for type approving the Siemens reference configuration. Audio mode 1 has fix parameters which cannot be modified. To adjust the settings of the Votronic handset simply change to another audio mode.

AC65/AC75_hd_v00.372 Page 63 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The speech samples from the ADC or DAI are handled by the DSP of the baseband controller to calculate e.g. amplifications, sidetone, echo cancellation or noise suppression depending on the configuration of the active audio mode. These processed samples are passed to the speech encoder. Received samples from the speech decoder are passed to the DAC or DAI after post processing (frequency response correction, adding sidetone etc.).

Full rate, half rate, enhanced full rate, adaptive multi rate (AMR), speech and channel encoding including voice activity detection (VAD) and discontinuous transmission (DTX) and digital GMSK modulation are also performed on the GSM baseband processor.

AC65/AC75 has two identical analog microphone inputs. There is no on-board microphone supply circuit, except for the internal voltage supply VMIC and the dedicated audio ground line AGND. Both lines are well suited to feed a balanced audio application or a single-ended audio application.

The AGND line on the AC65/AC75 board is especially provided to achieve best grounding conditions for your audio application. As there is less current flowing than through other GND lines of the module or the application, this solution will avoid hum and buzz problems.

While AC65/AC75 is in Power-down mode, the input voltage at any MIC pin must not exceed

±0.3V relative to AGND (see also Chapter 5.1). In any other operating state the voltage

applied to any MIC pin must be in the range of +2.7V to -0.3V, otherwise undervoltage shutdown may be caused.

If VMIC is used to generate the MICP-pin bias voltage as shown in the following examples consider that VMIC is switched off (0V) outside a call. Audio signals applied to MICP in this case must not fall below -0.3V.

If higher input levels are used especially in the line input configuration the signal level must be limited to 600mV pp permanently.

outside a call, or AT^SNFM=,1 should be used to switch on VMIC

AC65/AC75_hd_v00.372 Page 64 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.15.2.1 Single-ended Microphone Input

Figure 24 as well as Figure 46 show an example of how to integrate a single-ended

microphone input.

V

Bias

R

A

R

A

C

F

R

VMIC

VMIC

MICPx

MICNx

GSM module

R

A

R

B

R

= typ. 2k

= typ. 5k

VMIC

= typ. 470Ohm

C k

C

F

= typ. 100nF

= typ. 22µF

V

MIC

= typ. 2.5V

V bias

= 1.0V … 1.6V, typ. 1.5V

C

K

R

B

AGND

Figure 24: Single ended microphone input

R

A

has to be chosen so that the DC voltage across the microphone falls into the bias voltage range of 1.0V to 1.6V and the microphone feeding current meets its specification.

The MICNx input is automatically self biased to the MICPx DC level. It is AC coupled via C

K to a resistive divider which is used to optimize supply noise cancellation by the differential microphone amplifier in the module.

The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R

VMIC

and C

F

).

This circuit is well suited if the distance between microphone and module is kept short. Due to good grounding the microphone can be easily ESD protected as its housing usually connects to the negative terminal.

AC65/AC75_hd_v00.372 Page 65 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.15.2.2 Differential Microphone Input

Figure 25 shows a differential solution for connecting an electret microphone.

R

A

C

F

R

VMIC

VMIC

MICPx

GSM module

R

A

= typ. 1k

R

VMIC

= 470Ohm

C

K

C

F

= typ. 100nF

= typ. 22µF

V

MIC

= typ. 2.5V

V bias

= 1.0V … 1.6V, typ. 1.5V

MICNx

V

Bias

R

A

C

K

AGND

Figure 25: Differential microphone input

The advantage of this circuit is that it can be used if the application involves longer lines between microphone and module.

While VMIC is switched off, the input voltage at any MIC pin should not exceed ±0.25V

relative to AGND (see also Chapter 5.1). In this case no bias voltage has to be supplied from

the customer circuit to the MIC pin and any signal voltage should be smaller than Vpp = 0.5V.

VMIC can be used to generate the MICP-pin bias voltage as shown below. In this case the bias voltage is only applied if VMIC is switched on.

Only if VMIC is switched on, can the voltage applied to any MIC pin be in the range of 2.4V to 0V. If these limits are exceeded undervoltage shutdown may be caused.

Consider that the maximum full scale input voltage is Vpp = 1.6V.

The behavior of VMIC can be controlled with the parameter micVccCtl of the AT command

AT^SNFM (see [1]):

• micVccCtl=2 (default). VMIC is controlled automatically by the module. VMIC is always switched on while the internal audio circuits of the module are active (e.g., during a call).

VMIC can be used as indicator for active audio in the module.

• micVccCtl=1. VMIC is switched on continuously. This setting can be used to supply the microphone in order to use the signal in other customer circuits as well. However, this setting leads to a higher current consumption in SLEEP modes.

• micVccCtl=0. VMIC is permanently switched off.

AC65/AC75_hd_v00.372 Page 66 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.15.2.3 Line Input Configuration with OpAmp

Figure 26 shows an example of how to connect an opamp into the microphone circuit.

~

C

K

C

K

R

A

R

A

VMIC

R

VMIC

MICPx

MICNx

GSM module

R

A

= typ. 47k

R

VMIC

= 470Ohm

C k

C

F

= typ. 100nF

= typ. 22µF

V

MIC

= typ. 2.5V

V bias

= typ. ½ V

MIC

= 1.25V

V

Bias

C

F

AGND

Figure 26: Line input configuration with OpAmp

The AC source (e.g. an opamp) and its reference potential have to be AC coupled to the

MICPx resp. MICNx input terminals. The voltage divider between VMIC and AGND is necessary to bias the input amplifier. MICNx is automatically self biased to the MICPx DC level.

The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R

VMIC gain are applied the filter is not necessary.

and C

F

). If a high input level and a lower

Consider that if VMIC is switched off, the signal voltage should be limited to Vpp = 0.5V and any bias voltage must not be applied. Otherwise VMIC can be switched on permanently by using AT^SNFM=,1. In this case the current consumption in SLEEP modes is higher.

If desired, MICNx via C

K

can also be connected to the inverse output of the AC source instead of connecting it to the reference potential for differential line input.

AC65/AC75_hd_v00.372 Page 67 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The GSM module comprises two analog speaker outputs: EP1 and EP2. Output EP1 is able to drive a load of 8Ohms while the output EP2 can drive a load of 32Ohms. Each interface

can be connected in differential and in single ended configuration. Figure 27 shows an

example of a differential loudspeaker configuration.

EPPx

Loudspeaker impedance

EPP1/EPN1

Z

L

= typ. 8Ohm

EPP2/EPN2

Z

L

= typ. 32Ohm

GSM module

EPNx

AGND

Figure 27: Differential loudspeaker configuration

AC65/AC75_hd_v00.372 Page 68 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.15.4 Digital Audio Interface (DAI)

The DAI can be used to connect audio devices capable of PCM (Pulse Code Modulation) or for type approval. The following chapters describe the PCM interface functionality.

The PCM functionality allows the use of a codec like for example the MC145483. This codec replaces the analog audio inputs and outputs during a call, if digital audio is selected by

AT^SAIC.

The PCM interface is configurable with the AT^SAIC command (see [1]) and supports the

following features:

-

-

-

Master and slave mode

Short frame and long frame synchronization

256 kHz or 512 kHz bit clock frequency

For the PCM interface configuration the parameters <clock>, <mode> and <framemode> of the AT^SAIC command are used. The following table lists possible combinations:

Table 15: Configuration combinations for the PCM interface

Configuration <clock>

Master, 256kHz, short frame 0

Master, 256kHz, long frame 0

Master, 512kHz, short frame 1

0

0

<mode>

0

Master, 512kHz, long frame 1 0

Slave, 256kHz, short frame 0 or 1

3

1

Slave, 256kHz, long frame 0 or 1 1

Slave, 512kHz, short frame 0 or 1 1

Slave, 512kHz, long frame 0 or 1 1

In all configurations the PCM interface has the following common features:

-

-

-

-

-

16 Bit linear

8 kHz sample rate the most significant bit MSB is transferred first

125 µs frame duration common frame sync signal for transmit and receive

1

0

<framemode>

0

1

0

1

0

1

3

In slave mode the BCLKIN signal is directly used for data shifting. Therefore, the clock frequency setting is not evaluated and may be either 0 or 1.

AC65/AC75_hd_v00.372 Page 69 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 16 shows the assignment of the DAI0…6 pins to the PCM interface signals. To avoid

hardware conflicts different pins are used as inputs and outputs for frame sync and clock signals in master or slave operation. The table shows also which pin is used for master or slave. The data pins (TXDAI and RXDAI) however are used in both modes. Unused inputs have to be tied to GND, unused outputs must be left open.

Table 16: Overview of DAI pin functions

Signal name on

B2B connector

Function for PCM Interface Input/Output

DAI2 FS (Frame sync) Master O

DAI6 nc I

To clock input and output PCM samples the PCM interface delivers a bit clock (BITCLK) which is synchronous to the GSM system clock. The frequency of the bit clock is 256kHz or

512kHz. Any edge of this clock deviates less than ±100ns (Jitter) from an ideal 256-kHz clock respective 512-kHz-clock.

The frame sync signal (FS) has a frequency of 8 kHz and is high for one BITCLK period before the data transmission starts if short frame is configured. If long frame is selected the frame sync signal (FS) is high during the whole transfer of the 16 data bits. Each frame has a duration of 125µs and contains 32 respectively 64 clock cycles.

PCM interface of the GSM module

BITCLK

FS

TXDAI

RXDAI

Codec bitclk frame sync

RX_data

TX_data

AC65/AC75_hd_v00.372

Figure 28: Master PCM interface Application

Page 70 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The timing of a PCM short frame is shown in Figure 29. The 16-bit TXDAI and RXDAI data

are transferred simultaneously in both directions during the first 16 clock cycles after the frame sync pulse. The duration of a frame sync pulse is one BITCLK period, starting at the rising edge of BITCLK. TXDAI data is shifted out at the next rising edge of BITCLK. RXDAI data (i.e. data transmitted from the host application to the module’s RXDAI line) is sampled at the falling edge of BITCLK.

125 µs

BITCLK

FS

TXDAI

RXDAI

BITCLK

FS

TXDAI

RXDAI

MSB 14

MSB 14

13 12

13 12

MSB 14 13 12

MSB 14 13 12

2

2

1

1

LSB

LSB

2

2

1

1

LSB

LSB

MSB

MSB

Figure 29: Master PCM timing, short frame selected

The timing of a PCM long frame is shown in Figure 30. The 16-bit TXDAI and RXDAI data

are transferred simultaneously in both directions while the frame sync pulse FS is high. For this reason the duration of a frame sync pulse is 16 BITCLK periods, starting at the rising edge of BITCLK. TXDAI data is shifted out at the same rising edge of BITCLK. RXDAI data

(i.e. data transmitted from the host application to the module’s RXDAI line) is sampled at the falling edge of BITCLK.

125 µs

MSB

MSB

Figure 30: Master PCM timing, long frame selected

AC65/AC75_hd_v00.372 Page 71 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

In slave mode the PCM interface is controlled by an external bit clock and an external frame sync signal applied to the BCLKIN and FSIN pins and delivered either by the connected codec or another source. The bit clock frequency has to be in the range of 256kHz -125ppm to 512kHz +125ppm.

Data transfer starts at the falling edge of FSIN if the short frame format is selected, and at the rising edge of FSIN if long frame format is selected. With this edge control the frame sync signal is independent of the frame sync pulse length.

TXDAI data is shifted out at the rising edge of BCLKIN. RXDAI data (i.e. data transmitted from the host application to the module’s RXDAI line) is sampled at the falling edge of

BCLKIN.

The deviation of the external frame rate from the internal frame rate must not exceed

±125ppm. The internal frame rate of nominal 8kHz is synchronized to the GSM network.

The difference between the internal and the external frame rate is equalized by doubling or skipping samples. This happens for example every second, if the difference is 125ppm.

The resulting distortion can be neglected in speech signals.

The pins BITCLK and FS remain low in slave mode.

Figure 31 shows the typical slave configuration. The external codec delivers the bit clock and

the frame sync signal. If the codec itself is not able to run in master mode as for example the

MC145483, a third party has to generate the clock and the frame sync signal.

AC75

BCLKIN

FSIN

TXDAI

RXDAI bitclk

Frame Sync

RX_data

TX_data

CODEC

Figure 31: Slave PCM interface application

The following figures show the slave short and long frame timings. Because these are edge controlled, frame sync signals may deviate from the ideal form as shown with the dotted lines.

AC65/AC75_hd_v00.372 Page 72 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

BCLKIN

FSIN

TXDAI

RXDAI

MSB 14 13 12

MSB 14 13 12

125 µs

BCLKIN

FSIN

TXDAI

RXDAI

MSB 14 13 12

MSB 14 13 12

2

2

1 LSB

1 LSB

MSB

Figure 32: Slave PCM timing, short frame selected

125 µs

2

2

1 LSB

1 LSB

MSB s

MSB

MSB

Figure 33: Slave PCM timing, long frame selected

AC65/AC75_hd_v00.372 Page 73 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The AC65/AC75 has 10 GPIOs for external hardware devices. Each GPIO can be configured for use as input or output. All settings are AT command controlled.

The GIPO related AT commands are the following: AT^SPIO, AT^SCPIN, AT^SCPOL,

AT^SCPORT, AT^SDPORT, AT^SGIO, AT^SSIO. A detailed description can be found in [1].

3.16.1 Using the GPIO10 Pin as Pulse Counter

The GPIO10 pin can be assigned two different functions selectable by AT command:

• The AT^SCPIN command configures the pin for use as GPIO.

• With AT^SCCNT and AT^SSCNT the pin can be configured and operated as pulse counter.

Both functions exclude each other. The pulse counter disables the GPIO functionality, and vice versa, the GPIO functionality disables the pulse counter. Detailed AT command

descriptions can be found in [1].

The pulse counter is designed to measure signals from 0 to 1000 pulses per second. It can be operated either in Limit counter mode or Start-Stop mode. Depending on the selected mode the counted value is either the number of pulses or the time (in milliseconds) taken to generate a number of pulses specified with AT^SCCNT.

In Limit counter mode, the displayed measurement result (URC “^SSCNT: <count>”) implies an inaccuracy <5ms. In Start-Stop mode, you can achieve 100% accuracy if you take care that no pulses are transmitted before starting the pulse counter (AT^SSCNT=0 or 1) and after closing the pulse counter (AT^SSCNT=3).

AC65/AC75_hd_v00.372 Page 74 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The synchronization signal serves to indicate growing power consumption during the transmit burst. The signal is generated by the SYNC pin. Please note that this pin can adopt three different operating modes which you can select by using the AT^SSYNC command: the mode AT^SSYNC=0 described below, and the two LED modes AT^SSYNC=1 or

AT^SSYNC=2 described in [1] and Section 3.17.2.

The first function (factory default AT^SSYNC=0) is recommended if you want your application to use the synchronization signal for better power supply control. Your platform design must be such that the incoming signal accommodates sufficient power supply to the

AC65/AC75 module if required. This can be achieved by lowering the current drawn from other components installed in your application.

The timing of the synchronization signal is shown below. High level of the SYNC pin indicates increased power consumption during transmission.

1 Tx 577 µs every 4.616 ms

2 Tx 1154 µs every 4.616 ms

Transmit burst

SYNC signal *)

Figure 34: SYNC signal during transmit burst

*) The duration of the SYNC signal is always equal, no matter whether the traffic or the access burst are active.

AC65/AC75_hd_v00.372 Page 75 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.17.2 Using the SYNC Pin to Control a Status LED

As an alternative to generating the synchronization signal, the SYNC pin can be configured to drive a status LED that indicates different operating modes of the AC65/AC75 module. To take advantage of this function the LED mode must be activated with the AT^SSYNC command and the LED must be connected to the host application. The connected LED can be operated in two different display modes (AT^SSYNC=1 or AT^SSYNC=2). For details

please refer to [1].

Especially in the development and test phase of an application, system integrators are advised to use the LED mode of the SYNC pin in order to evaluate their product design and identify the source of errors.

To operate the LED a buffer, e.g. a transistor or gate, must be included in your application. A sample circuit

is shown in Figure 35. Power consumption in the LED

mode is the same as for the synchronization signal

mode. For details see Table 26, SYNC pin.

Figure 35: LED Circuit (Example)

AC65/AC75_hd_v00.372 Page 76 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

3.17.3 Behavior of the RING0 Line (ASC0 Interface only)

The RING0 line is available on the first serial interface ASC0 (see also Chapter 3.10). The

signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code).

Although not mandatory for use in a host application, it is strongly suggested that you connect the RING0 line to an interrupt line of your application. In this case, the application can be designed to receive an interrupt when a falling edge on RING0 occurs. This solution is most effective, particularly, for waking up an application from power saving. Note that if the

RING0 line is not wired, the application would be required to permanently poll the data and status lines of the serial interface at the expense of a higher current consumption. Therefore, utilizing the RING0 line provides an option to significantly reduce the overall current consumption of your application.

The behavior of the RING0 line varies with the type of event:

• When a voice/fax/data call comes in the RING0 line goes low for 1s and high for another

4s. Every 5 seconds the ring string is generated and sent over the /RXD0 line.

If there is a call in progress and call waiting is activated for a connected handset or handsfree device, the RING0 line switches to ground in order to generate acoustic signals that indicate the waiting call.

4s

4s

RING0

Ring string

1s 1s

Ring string

Figure 36: Incoming voice/fax/data call

• All other types of Unsolicited Result Codes (URCs) also cause the RING0 line to go low, however for 1 second only.

Figure 37: URC transmission

RING0

1s

Ring string

URC

1s

PWR_IND notifies the on/off state of the module. High state of PWR_IND indicates that the module is switched off. The state of PWR_IND immediately changes to low when IGT is pulled low. For state detection an external pull-up resistor is required.

AC65/AC75_hd_v00.372 Page 77 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The RF interface has an impedance of 50Ω. AC65/AC75 is capable of sustaining a total mismatch at the antenna connector without any damage, even when transmitting at maximum RF power.

The external antenna must be matched properly to achieve best performance regarding radiated power, DC-power consumption, modulation accuracy and harmonic suppression.

Antenna matching networks are not included on the AC65/AC75 PCB and should be placed in the host application.

Regarding the return loss AC65/AC75 provides the following values in the active band:

Table 17: Return loss in the active band

State of module Return loss of module

Receive > 8dB

Transmit not applicable

Recommended return loss of application

> 12dB

> 12dB

AC65/AC75_hd_v00.372 Page 78 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The antenna diagnostic allows the customer to check the presence and the connection status of the antenna by using the AT^SAD command. A description of the AT^SAD

command can be found in [1].

To properly detect the antenna and verify its connection status the antenna feed point must have a DC resistance R

ANT

of 9k Ω (±3kΩ). Any lower or higher resistance from 1kΩ to 6kΩ or

12k Ω to 40kΩ gives an undefined result.

A positive or negative voltage drop (referred to as V disturb

) on the ground line may occur without having any impact on the measuring procedure and the measuring result. A peak deviation (V disturb

) of ≤ 0.8V from ground is acceptable.

V disturb

(peak) = ± 0.8V (maximum); f disturb

= 0Hz … 5kHz

Waveform: DC, sinus, square-pulse, peak-pulse (width = 100µs)

R disturb

= 5Ω

9k ±3k

Antenna connector

AC75

Figure 38: Resistor measurement used for antenna detection

5 Ohm

Table 18: Values of the AT^SAD parameter <diag> and their meaning

V disturb

Equivalent ranges

R

ANT

= 6k Ω…12kΩ

Antenna connection status indicated by AT^SAD <diag>

Normal operation, antenna connected (resistance at feed point as required)

<diag>=0

Antenna connector short-circuited to GND <diag>=1

Antenna connector is short-circuited to the supply voltage of the host application, for example the vehicle’s on-board power supply voltage

Antenna not properly connected, or resistance at <diag>=3 antenna feed point wrong or not present

R

ANT

= 0...1k

R

ANT

= 40k Ω...∞Ω

AC65/AC75_hd_v00.372 Page 79 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75 uses a subminiature coaxial antenna connector type SMP MIL-Std 348-A supplied from Rosenberger.

Table 19: Product specifications of Rosenberger SMP connector

Conditions Item

Material and finish

Center contact

Specification

Brass

0.8 µm gold plating over 2-4 µm NiP plating

Outer contact Brass

0.8 µm gold plating over 2-4 µm NiP plating

Dielectric PTFE

Electrical ratings

Nominal Impedance

Operating frequency

VSWR

Insertion loss

Center contact resistance

Outer contact resistance

Insulation resistance

50 Ω

DC – 2 GHz

1.10

≤ 0.1 dB x √ f/GHz max. 6 m Ω max. 2 m Ω

5 G Ω

Working voltage 335 V rms

Dielectric withstanding voltage 500 V rms

Mechanical ratings

Durability

Engagement force

Disengagement force

Center contact captivation

Axial retention force

Environmental ratings

Operating temperature

30 mating cycles

20-35 N

30-50 N

7 N min.

-65°C to +155°C

Manufacturer

Rosenberger Hochfrequenztechnik GmbH & Co.

POB 1260

D-84526 Tittmoning http://www.rosenberger.de

DC to 2 GHz at sea level at sea level

AC65/AC75_hd_v00.372 Page 80 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Figure 39: Datasheet of Rosenberger SMP MIL-Std 348-A connector

AC65/AC75_hd_v00.372 Page 81 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

5

s

Electrical, Reliability and Radio Characteristics

5.1 Absolute Maximum Ratings

The absolute maximum ratings stated in Table 20 are stress ratings under any conditions.

Stresses beyond any of these limits will cause permanent damage to AC65/AC75. The power supply shall be compliant with the SELV safety standard defined in EN60950. The

supply voltage must be limited according to Table 20.

Table 20: Absolute maximum ratings

Parameter Min Max Unit

Supply voltage BATT+

Voltage at digital pins in POWER DOWN mode

Voltage at digital pins in normal operation

-0.3

-0.3

-0.3

-0.3

5.5

0.3

3.05 or

VEXT+0.3

0.3

V

V

V

V Voltage at analog pins in POWER DOWN mode

Voltage at analog pins, VMIC on 4

Voltage at analog pins, VMIC off

4

Voltage at VCHARGE pin

Voltage at CHARGEGATE pin

-0.3

-0.3

5.5

5.5

V

V

USB_DP, USB_DN -0.3 3.5 V

4

For normal operation the voltage at analog pins with VMIC on should be within the range of 0V to 2.4V and with

VMIC off within the range of -0.25V to 0.25V.

AC65/AC75_hd_v00.372 Page 82 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 21: Board temperature

Parameter

Operating temperature range

Automatic shutdown

5

Temperature measured on AC65/AC75 board

Temperature measured at battery NTC

Min

-30

-30

-20

Typ

---

---

Max

+85

+90

+60

Table 22: Ambient temperature according to IEC 60068-2 (without forced air circulation)

Parameter

Operating temperature range

Restricted operation 6

Min

-30

Typ

+25

Max

+75

+85

Table 23: Charging temperature

Unit

°C

°C

Unit

°C

Parameter Min Typ Max Unit

Battery temperature for software controlled fast charging

(measured at battery NTC)

Note:

• See Chapter 3.3.4 for further information about the NTCs for on-board and battery

temperature measurement, automatic thermal shutdown and alert messages.

• When data are transmitted over EGPRS or GPRS the AC65/AC75 automatically reverts to a lower Multislot Class if the temperature increases to the limit specified for normal operation and, vice versa, returns to the higher Multislot Class if the temperature is back

to normal. For details see Chapter 3.4 “Automatic EGPRS/GPRS Multislot Class

Change”.

5 Due to temperature measurement uncertainty, a tolerance on the stated shutdown thresholds may occur. The possible deviation is in the range of ± 3°C at the overtemperature limit and ± 5°C at the undertemperature limit.

6

Restricted operation allows normal mode speech calls or data transmission for limited time until automatic thermal shutdown takes effect. The duration of emergency calls is unlimited because automatic thermal shutdown is deferred until hang up.

AC65/AC75_hd_v00.372 Page 83 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The conditions stated below are only valid for modules in their original packed state in weather protected, non-temperature-controlled storage locations. Normal storage time under these conditions is 12 months maximum.

Table 24: Storage conditions

Type

Air temperature: Low

Condition

-40

Humidity relative: Low

Air pressure: Low

Movement of surrounding air

Water: rain, dripping, icing and frosting

Radiation: Solar

10

70

1.0

Not allowed

1120

Unit Reference

°C ETS 300 019-2-1: T1.2, IEC 68-2-1 Ab

ETS 300 019-2-1: T1.2, IEC 68-2-2 Bb

% ---

ETS 300 019-2-1: T1.2, IEC 68-2-56 Cb

ETS 300 019-2-1: T1.2, IEC 68-2-30 Db kPa IEC TR 60271-3-1: 1K4

IEC TR 60271-3-1: 1K4 m/s IEC TR 60271-3-1: 1K4

--- ---

W/m

2

ETS 300 019-2-1: T1.2, IEC 68-2-2 Bb

ETS 300 019-2-1: T1.2, IEC 68-2-2 Bb

IEC TR 60271-3-1: 1C1L Chemically active substances

Mechanically active substances Not recommended

Vibration sinusoidal:

Not recommended

IEC TR 60271-3-1: 1S1

IEC TR 60271-3-1: 1M2

Shocks: mm m/s

2

Hz ms m/s 2

IEC 68-2-27 Ea

AC65/AC75_hd_v00.372 Page 84 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The test conditions stated below are an extract of the complete test specifications.

Table 25: Summary of reliability test conditions

Type of test

Vibration

Conditions

Frequency range: 10-20Hz; acceleration: 3.1mm amplitude

Frequency range: 20-500Hz; acceleration: 5g

Duration: 2h per axis = 10 cycles; 3 axes

Shock half-sinus Acceleration: 500g

Shock duration: 1msec

1 shock per axis

6 positions (± x, y and z)

Dry heat

Temperature change (shock)

Temperature: +70 ±2°C

Test duration: 16h

Humidity in the test chamber: < 50%

Low temperature: -40°C ±2°C

High temperature: +85°C ±2°C

Changeover time: < 30s (dual chamber system)

Test duration: 1h

Number of repetitions: 100

Damp heat cyclic High temperature: +55°C ±2°C

Low temperature: +25°C ±2°C

Humidity: 93% ±3%

Number of repetitions: 6

Test duration: 12h + 12h

Cold (constant exposure)

Temperature: -40 ±2°C

Test duration: 16h

Standard

DIN IEC 68-2-6

DIN IEC 68-2-27

EN 60068-2-2 Bb

ETS 300 019-2-7

DIN IEC 68-2-14 Na

ETS 300 019-2-7

DIN IEC 68-2-30 Db

ETS 300 019-2-5

DIN IEC 68-2-1

AC65/AC75_hd_v00.372 Page 85 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

5.5 Pin Assignment and Signal Description

The Molex board-to-board connector on AC65/AC75 is an 80-pin double-row receptacle. The

names and the positions of the pins can be seen from Figure 1 which shows the top view of

AC65/AC75.

1 GND GND 80

Not connected

Not connected

GND

GPIO10

GPIO8

SPIDI

GPIO7

GPIO6

GPIO5

I2CCLK_SPICLK

VUSB_IN

DAI5

ISENSE

DAI6

CCCLK

CCVCC

CCIO

CCRST

CCIN

CCGND

DAI4

DAI3

DAI2

DAI1

DAI0

BATT_TEMP

SYNC

RXD1

RXD0

TXD1

TXD0

VDDLP

VCHARGE

CHARGEGATE

GND

GND

GND

GND

GND

26

27

28

29

30

31

32

33

21

22

23

24

25

16

17

18

19

20

34

35

36

37

38

39

40

8

9

10

11

12

13

14

15

5

6

7

2

3

4

55

54

53

52

51

50

49

48

60

59

58

57

56

65

64

63

62

61

47

46

45

44

43

42

41

73

72

71

70

69

68

67

66

79

78

77

76

75

74

DAC_OUT

PWR_IND

Do not use

GPIO9

SPICS

GPIO4

GPIO3

GPIO2

GPIO1

I2CDAT_SPIDO

USB_DP

USB_DN

VSENSE

VMIC

EPN2

EPP2

EPP1

EPN1

MICN2

MICP2

MICP1

MICN1

AGND

IGT

EMERG_RST

DCD0

CTS1

CTS0

RTS1

DTR0

RTS0

DSR0

RING0

VEXT

BATT+

BATT+

BATT+

BATT+

BATT+

Figure 40: Pin assignment (component side of AC65/AC75)

AC65/AC75_hd_v00.372 Page 86 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Please note that the reference voltages listed in Table 26 are the values measured directly

on the AC65/AC75 module. They do not apply to the accessories connected.

Table 26: Signal description

Function

Power supply

Signal name IO Signal form and level

V

I

V

I typ = 3.8V

V

I min = 3.3V during Tx burst on board

I ≈ 2A, during Tx burst n Tx = n x 577µs peak current every

4.616ms

Comment

Five pins of BATT+ and GND must be connected in parallel for supply purposes because higher peak currents may occur.

Minimum voltage must not fall below 3.3V including drop, ripple, spikes.

Power supply

Charge

Interface

External supply voltage

I

V

I min = 1.015 * V

BATT+ max = 5.45V

Connect NTC with R

NTC

≈ 10k Ω @ 25°C to

ground. See Section 3.5.3 for B value of

NTC.

∆V

V

O

O

I max to V condition

BATT+ max = 5.5V max = 0.6mA

= +0.3V at normal

This line signalizes to the processor that the charger is connected.

If unused keep pin open.

Battery temperature measurement via NTC resistance.

NTC should be installed inside or near battery pack to enable proper charging and deliver temperature values.

If unused keep pin open.

ISENSE is required for measuring the charge current.

For this purpose, a shunt resistor for current measurement needs to be connected between ISENSE and VSENSE.

If unused connect pin to

VSENSE.

VSENSE must be directly connected to BATT+ at battery connector or external power supply.

Control line to the gate of charge FET

If unused keep pin open.

V

O

V

V

I

O

O

O min = 2.75V typ = 2.93V max = 3.05V max = -50mA

VEXT may be used for application circuits, for example to supply power for an I2C

If unused keep pin open.

Not available in Power-down mode. The external digital logic must not cause any spikes or glitches on voltage

VEXT.

AC65/AC75_hd_v00.372 Page 87 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Function

Power indicator

Signal name

Ignition IGT

Emergency reset

EMERG_RST

Power-on reset s

IO Signal form and level

V

OL

V

IL

V

OH

ON max = 0.4V at Imax = 2mA

Internal pull-up: R max = 0.8V at Imax = -150µA max = 4.5V (V

BATT+

~~~

|____|

I

~~~

≈ 30k Ω, C

)

Active Low

I Internal pull-up: R

I

V

IL

≈ 5k Ω max = 0.2V at Imax = -0.5mA

V

OH min = 1.75V

V

OH max = 3.05V

Signal

~~~

|______|

~~~

Pull down ≥ 10ms

O Internal pull-up: R

I

V

OL

≈ 5k Ω max = 0.2V at I = 2mA

V

OH min = 1.75V

V

OH max = 3.05V

I

≈ 10nF

≥ 400ms

Reset signal driven by the module:

Comment

PWR_IND (Power Indicator) notifies the module’s on/off state.

PWR_IND is an open collector that needs to be connected to an external pullup resistor. Low state of the open collector indicates that the module is on. Vice versa, high level notifies the Powerdown mode.

Therefore, the pin may be used to enable external voltage regulators which supply an external logic for communication with the module, e.g. level converters.

This signal switches the mobile on.

This line must be driven low by an open drain or open collector driver.

Reset or turn-off in case of emergency: Pull down and release EMERG_RST. Then, activating IGT for 400ms will reset AC65/AC75. If IGT is not activated for 400ms,

AC65/AC75 switches off.

Data stored in the volatile memory will be lost. For orderly software controlled reset rather use the

AT+CFUN command (e.g.

AT+CFUN=x,1).

This line must be driven by open drain or open collector.

If unused keep pin open.

Reset signal driven by the module which can be used to reset any application or device connected to the module. Only effective for

120ms during the assertion of

IGT when the module is about to start.

VEXT

EMRG_RST appr. 120ms

(see also Figure 5 and Figure 6)

AC65/AC75_hd_v00.372 Page 88 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Function

Synchronization

ASC0

Serial interface

ASC1

Serial interface

Signal name

SYNC

RTC backup VDDLP

RXD0

TXD0

CTS0

RTS0

DTR0

DCD0

DSR0

RING0

RXD1

TXD1

CTS1

RTS1 s

IO Signal form and level

O V

OL max = 0.3V at I = 0.1mA

V

OH min = 2.3V at I = -0.1mA

V

OH max = 3.05V n Tx = n x 577µs impulse each 4.616ms, with 180µs forward time.

Comment

There are two alternative options for using the SYNC pin: a) Indicating increased current consumption during uplink transmission burst.

Note that the timing of the signal is different during handover. b) Driving a status LED to indicate different operating modes of AC65/AC75. The

LED must be installed in the host application.

To select a) or b) use the

AT^SSYNC command.

If unused keep pin open.

If unused keep pin open.

O

I

O

I

I/O R

I

V

O

≈ 1kΩ max = 4.5V

V

BATT+

= 4.3V:

V

O

= 3.2V at I

O

= -500µA

V

BATT+

= 0V:

V

I

= 2.4V…4.5V at I max

= 25µA

O

I

O

V

OL max = 0.2V at I = 2mA

V

OH

V

OH min = 2.55V at I = -0.5mA max = 3.05V

I

I

O

O

O

V

IL max = 0.8V

V

IH min = 2.15V

V

IH max = VEXTmin + 0.3V = 3.05V

Internal pull-down at TXD0: R

I

Internal pull-down at RTS0: R

I

=330k Ω

=330k Ω

V

OL

V

OH

V

OH max = 0.2V at I = 2mA min = 2.55V at I = -0.5mA max = 3.05V

V

IL max = 0.8V

V

IH min = 2.15V

V

IH max = VEXTmin + 0.3V = 3.05V

Internal pull-down at TXD1: R

I

Internal pull-down at RTS1: R

I

=330k Ω

=330k Ω

Serial interface for AT commands or data stream.

If lines are unused keep pins open.

4-wire serial interface for AT commands or data stream.

If lines are unused keep pins open.

AC65/AC75_hd_v00.372 Page 89 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Function

SIM interface specified for use with 3V

SIM card

Signal name IO Signal form and level

R

V

I

IL max = 0.6V at I = -25µA

V

V

IH

O min = 2.1V at I = -10µA max = 3.05V

V

V

O

OL max = 0.25V at I = +1mA

V

OH

OH min = 2.5V at I = -0.5mA max = 2.95V

R

V

I

IL max = 0.75V

V

IL

V

IH

V

IH min = -0.3V min = 2.1V max = CCVCCmin + 0.3V = 3.05V

R

O

V

OL

V

≈ 100 Ω max = 0.3V at I = +1mA

V

OH

OH min = 2.5V at I = -0.5mA max = 2.95V

R

V

O

OL max = 0.3V at I = +1mA

V

V

OH

OH min = 2.5V at I = -0.5mA max = 2.95V

I

V

V

O

O

O

O typ = 2.85V max = 2.95V max = -20mA

SIM interface specified for use with

1.8V SIM card

SPI

Serial

Peripheral

Interface

V

I

V

IL max = 0.6V at I = -25µA

V

IH

O min = 2.1V at I = -10µA max = 3.05V

R

V

V

O

OL max = 0.25V at I = +1mA

V

OH

OH min = 1.45V at I = -0.5mA max = 1.90V

V

I

V

IL max = 0.45V

V

IH

IH min = 1.35V max = CCVCCmin + 0.3V = 2.00V

R

O

V

OL

V

≈ 100 Ω max = 0.3V at I = +1mA

V

OH

OH min = 1.45V at I = -0.5mA max = 1.90V

R

V

O

OL max = 0.3V at I = +1mA

V

V

OH

OH min = 1.45V at I = -0.5mA max = 1.90V

I

V

V

O

O

O

O typ = 1.80V max = 1.90V max = -20mA

SPIDI

I2CDAT_SPIDO

I2CCLK_SPICLK

SPICS

I

O

O

O

V

OL max = 0.2V at I = 2mA

V

OH

V

OH min = 2.55V at I = -0.5mA max = 3.05V

V

IL max = 0.8V

V

V

IH

IH min = 2.15V, max = VEXTmin + 0.3V = 3.05V s

Comment

CCIN = Low, SIM card holder closed

Maximum cable length or copper track 100mm to SIM card holder.

All signals of SIM interface are protected against ESD with a special diode array.

Usage of CCGND is mandatory.

CCIN = Low, SIM card holder closed

Maximum cable length or copper track 100mm to SIM card holder.

All signals of SIM interface are protected against ESD with a special diode array.

Usage of CCGND is mandatory.

If the Serial Peripheral

Interface is active the I

2

C interface is not available.

If lines are unused keep pins open.

AC65/AC75_hd_v00.372 Page 90 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Function

I

2

C interface

Signal name IO Signal form and level

I2CCLK _SPICLK O V

V

OL max = 0.2V at I = 2mA

V

OH min = 2.55V at I = -0.5mA

OH max = 3.05V

V

OL

V

IL max = 0.2V at I = 2mA max = 0.8V

V

IH min = 2.15V

V

IH max = VEXT min + 0.3V = 3.05V

USB

V

IN

IN max = 5.25V

General

Purpose

Input/Output

USB_DP I/O

V

CRS min = 1.5V, V

CRS max = 2.0V

Line to GND:

V

OH

V

OH

V

OH

V

OL

V

IH

V

IL max = 3.6V typ = 3.2V min = 3.0V at I=-0.5mA max = 0.2V at I=2mA min = 2.24V max = 0.96V

Driver Output Resistance

Z typ

= 32Ohm

Pullup at USB_DP R typ

=1.5kOhm

GPIO1 I/O

GPIO2 I/O

GPIO3 I/O

GPIO4 I/O

V

IL

IH max = 0.8V min = 2.15V,

GPIO6 I/O

GPIO7 I/O

GPIO8 I/O

GPIO9 I/O

GPIO10 I/O

pulse

~ |________| ~~~~~~~~~~~~~ |________| ~~~

| ≥ 450µs | ≥ 450µs |

Slew rate ≤ 1µs

Pulse rate: max. 1000 pulses per second

Comment

I

2

C interface is only available if the two pins are not used as

SPI interface.

I2CDAT is configured as

Open Drain and needs a pullup resistor in the host application.

According to the I 2 C Bus

Specification Version 2.1 for the fast mode a rise time of max. 300ns is permitted.

There is also a maximum

VOL=0.4V at 3mA specified.

The value of the pull-up depends on the capacitive load of the whole system (I2C

Slave + lines). The maximum sink current of I2CDAT and

I2CCLK is 4mA.

If lines are unused keep pins open.

All electrical characteristics according to USB

Implementers’ Forum, USB

2.0 Full Speed Specification.

Without Java: USB port

Under Java: Debug interface for development purposes.

If lines are unused keep pins open.

All pins which are configured as input must be connected to a pull-up or pull-down resistor.

If lines are unused (not configured) keep pins open.

Alternatively, the GPIO10 pin can be configured as a pulse counter for pulse rates from 0 to 1000 pulses per second.

AC65/AC75_hd_v00.372 Page 91 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Function

Digital

Analog

Converter

Signal name IO Signal form and level

V

V

V

OH min = 2.55V at I = -0.5mA

OH max = 3.05V

O

I

O

O

I

V

OL max = 0.2V at I = 2mA

V

V

OH

OH min = 2.55V at I = -0.5mA max = 3.05V

V

IL

V

IH max = 0.8V min = 2.15V s

Comment

PWM signal which can be smoothed by an external filter.

Use the AT^SWDAC command to open and configure the DAC_OUT output.

See Table 16 for details.

If unused keep pins open.

Digital Audio interface

DAI0

DAI1

DAI2

DAI3

DAI4

Analog

Audio interface

DAI6 I

AGND

V

O typ = 2.5V

V

O max = 2.6V

I max

= 2mA

Microphone supply for customer feeding circuits

Measurement conditions:

Audio mode: 6

Outstep 3

No load

Minimum differential resp. single ended load 27Ohms

The audio output can directly operate a 32-Ohmloudspeaker.

If unused keep pins open.

Measurement conditions:

Audio mode: 5

Outstep 4

No load

Minimum differential resp. single ended load 7.5Ohms

The audio output can directly operate an 8-Ohmloudspeaker.

If unused keep pins open.

1.1Vpp

At MICN1, apply external bias from 1.0V to

1.6V.

Measurement conditions:

Audio mode: 5

Balanced or single ended microphone or line input with external feeding circuit (using

VMIC and AGND).

If unused keep pins open.

1.1Vpp

At MICN2, apply external bias from 1.0V to

1.6V.

Measurement conditions:

Audio mode: 6

Analog Ground

Balanced or single ended microphone or line input with external feeding circuit (using

VMIC and AGND).

If unused keep pins open.

GND level for external audio circuits

AC65/AC75_hd_v00.372 Page 92 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

5.6 Power Supply Ratings

Table 27: Power supply ratings

Parameter Description

BATT+ Supply voltage

I

VDDLP

I

BATT+

Voltage drop during transmit burst

Voltage ripple

OFF State supply current

Average standby supply current 8

Conditions Min Typ Max Unit

Directly measured at reference point

TP BATT+ and TP GND, see chapter

3.2.2

Voltage must stay within the min/max values, including voltage drop, ripple, spikes.

3.3 3.8 4.5 V

Normal condition, power control level for P out max

Normal condition, power control level for P out max

@ f<200kHz

@ f>200kHz

RTC Backup @ BATT+ = 0V

POWER DOWN mode

7

400 mV

25

50

2 mV mV

µA

SLEEP mode

SLEEP mode

SLEEP mode

IDLE mode

@ DRX = 9

@ DRX = 5

@ DRX = 2

@ DRX = 2

3.7

9 mA

4.6

9

mA

7.0

9

mA

28

10 mA

7

Measured after module INIT (switch ON the module and following switch OFF); applied voltage on BATT+ (w/o

INIT) show increased POWER DOWN supply current.

8

Additional conditions:

- SLEEP and IDLE mode measurements started 5 minutes after switching ON the module or after mode transition

- Averaging times: SLEEP mode - 3 minutes; IDLE mode - 1.5 minutes

- Communication tester settings: no neighbor cells, no cell reselection

- USB interface disabled

9 Stated value applies to operation without autobauding (AT+IPR≠0).

10

Stated value applies to operation without autobauding (AT+IPR≠0). If autobauding is enabled (AT+IPR=0) average current consumption in IDLE mode is up to 43mA.

AC65/AC75_hd_v00.372 Page 93 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 28: Current consumption during Tx burst for GSM 850MHz and GSM 900MHz

Mode GSM call

Timeslot configuration

1Tx / 1Rx

RF power nominal 2W

(33dBm)

Radio output power reduction with

AT^SCFG, parameter <ropr>

<ropr> = 1 ... 3

Current characteristics

GPRS

Class 8

1Tx / 4Rx

2W

(33dBm)

<ropr> = 1 ... 3

GPRS Class10

2Tx / 3Rx

2W

(33dBm)

<ropr> = 1

GPRS Class 12

4Tx / 1Rx

1W

(30dBm)

<ropr> = 2 or 3

1W

(30dBm)

<ropr> = 1

EGPRS

Class 8

1Tx / 4Rx

0.5W

(27dBm)

<ropr> = 2 or 3

0.5W

(27dBm)

<ropr> = 1 ... 3

EGPRS Class 10

2Tx / 3Rx

0.5W

(27dBm)

<ropr> = 1 or 2

0.25W

(24dBm)

<ropr> = 3

Burst current

@ 50Ω antenna

(typ.)

Burst current

@ total mismatch peak

1.2A plateau

1.4A peak

1.2A plateau

1.1A peak

1.0A plateau

3.2A 3.2A 3.2A 2.7A 2.3A 1.9A 1.8A

1.5A plateau

1.8A peak

1.5A plateau

1.4A peak

1.2A plateau

330mA 360mA 540mA 475mA 680mA 600mA 370mA 450mA 400mA Average current

@ 50Ω antenna

(typ.)

Average current

@ total mismatch

510mA 540mA 905mA 780mA 1200mA 1000mA 395mA 525mA 450mA

AT parameters are given in brackets <...> and marked italic.

Statements on EGPRS apply to AC75 only.

AC65/AC75_hd_v00.372 Page 94 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 29: Current consumption during Tx burst for GSM 1800MHz and GSM 1900MHz

Mode GSM call

GPRS

Class 8

Timeslot configuration

1Tx / 1Rx

RF power nominal 1W

(30dBm)

Radio output power reduction with

AT^SCFG, parameter <ropr>

<ropr> = 1 ... 3

Current characteristics

1Tx / 4Rx

1W

(30dBm)

<ropr> = 1 ... 3

GPRS Class10

2Tx / 3Rx

1W

(30dBm)

<ropr> = 1

0.5W

(27dBm)

<ropr> = 2 or 3

GPRS Class 12

4Tx / 1Rx

0.5W

(27dBm)

<ropr> = 1

0.25W

(24dBm)

<ropr> = 2 or 3

EGPRS

Class 8

1Tx / 4Rx

0.4W

(26dBm)

<ropr> = 1 ... 3

EGPRS Class 10

2Tx / 3Rx

0.4W

(26dBm)

<ropr> = 1 or 2

0.2W

(23dBm)

<ropr> = 3

Burst current

@ 50Ω antenna

(typ.) peak

0.9A plateau

1.0A peak

0.9A plateau

0.9A peak

0.75A plateau

Burst current

@ total mismatch

Average current

@ 50Ω antenna

(typ.)

Average current

@ total mismatch

2.2A 2.2A 2.2A 1.75A 1.5A 1.25A 1.3A

1.0A plateau

1.3A peak

1.0A plateau

1.1A peak

0.95A plateau

295mA 330mA 430mA 380mA 520mA 470mA 360mA 445mA 420mA

360mA 395mA 650mA 540mA 800mA 670mA 410mA 545mA 470mA

AT parameters are given in brackets <...> and marked italic.

Statements on EGPRS apply to AC75 only.

AC65/AC75_hd_v00.372 Page 95 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

5.7

s

Electrical Characteristics of the Voiceband Part

5.7.1 Setting Audio Parameters by AT Commands

The audio modes 2 to 6 can be adjusted according to the parameters listed below. Each audio mode is assigned a separate set of parameters.

Table 30: Audio parameters adjustable by AT command

Parameter Influence to analogue amplifier gain of baseband controller before ADC

Range Gain range Calculation inCalibrate Digital attenuation of input signal after

ADC

0...32767 -∞...0dB 20 * log (inCalibrate/

32768) outCalibrate[n] n = 0...4 baseband controller after DAC

Digital attenuation of output signal after speech decoder, before summation of sidetone and DAC

Present for each volume step[n]

0...32767 -∞...+6dB 20 * log (2 * outCalibrate[n]/

32768) sideTone Digital attenuation of sidetone 0...32767 -∞...0dB 20 * log (sideTone/

32768)

Is corrected internally by outBbcGain to obtain a constant sidetone independent of output volume

Note: The parameters outCalibrate and sideTone accept also values from 32768 to 65535.

These values are internally truncated to 32767.

AC65/AC75_hd_v00.372 Page 96 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

5.7.2 Audio Programming Model

The audio programming model shows how the signal path can be influenced by varying the

AT command parameters. The parameters inBbcGain and inCalibrate can be set with

AT^SNFI. All the other parameters are adjusted with AT^SNFO.

Microphone feeding

VMIC

GSM module

MIC1

<inBbcGain> <inCalibrate>

<mic> A

D

Speech coder

MIC2

<sideTone>

RXDDAI

<io>

EP1

8Ohms

<ep>

<outBbcGain>

A

D Speech decoder

<outCalibrate [n]>

EP2

32 Ohms

TXDDAI

AT parameters are given in brackets <...> and marked red and italic.

Figure 41: Audio programming model

AC65/AC75_hd_v00.372 Page 97 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

5.7.3 Characteristics of Audio Modes

The electrical characteristics of the voiceband part depend on the current audio mode set with the AT^SNFS command. All values are noted for default gains e.g. all parameters of

AT^SNFI and AT^SNFO are left unchanged.

Table 31: Voiceband characteristics (typical)

5 6 Audio mode no.

AT^SNFS=

1 (Default settings, not adjustable)

Name

Purpose

Gain setting via AT command. Defaults: inBbcGain outBbcGain

Default audio interface

Default

Handset

DSB with

Votronic handset

Fix

5 (30dB)

1 (-6dB)

2

Basic

Handsfree

Siemens

Car Kit

Portable

Adjustable

2 (12dB)

2 (-12dB)

3 4

Headset User

Handset

Siemens

Headset

Adjustable

5 (30dB)

1 (-6dB)

DSB with individual handset

Adjustable

5 (30dB)

1 (-6dB)

Power supply VMIC ON ON

Sidetone

Volume control

Echo control

Echo canceller

Loss controller idle/full attenuation

Comfort noise generator

3dB / 6dB 4dB / 50dB 9dB / 18dB 3dB / 6dB

Plain

Codec 1

Direct access to speech coder

Adjustable

0 (0dB)

0 (0dB)

OFF

Plain

Codec 2

Direct access to speech coder

Adjustable

0 (0dB)

0 (0dB)

OFF

MIC input signal for

0dBm0

-10dBm0 f=1024 Hz

18mV

5.8mV

--12

95mV

---

12

14mV

18mV

5.8mV

400mV

126mV

400mV

126mV

EP output signal in mV rms. @ 0dBm0,

1024 Hz, no load

(default gain) /

@ 3.14 dBm0

475mV 70mV default @

270mV default @ max volume max volume

475mV default @ max volume

1.47V

Vpp = 6.2 V

1.47V

Sidetone gain at default settings

21.9dB -∞ dB 10.0dB 21.9dB -∞ dB -∞ dB

NOTE: With regard to acoustic shock, the cellular application must be designed to avoid sending false AT commands that might increase amplification, e.g. for a highly sensitive earpiece. A protection circuit should be implemented in the cellular application.

11 Audio mode 5 and 6 are identical. AT^SAIC can be used to switch mode 5 to the second interface. Audio mode

6 is therefore kept mainly for compatibility to earlier Siemens GSM products.

12

In audio modes with an active loss controller a continuous sine signal is attenuated by the idle attenuation after a few seconds. All input voltages are noted for the idle attenuation. If the idle attenuation is higher than 3 dB,

0dBm0 cannot be reached without clipping. In this case only the value for -10dBm0 is noted.

AC65/AC75_hd_v00.372 Page 98 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

5.7.4 Voiceband Receive Path

Test conditions:

• The values specified below were tested to 1kHz with default audio mode settings, unless otherwise stated.

• Default audio mode settings are: mode=5 for EPP1 to EPN1 and mode=6 for EPP2 to

EPN2, inBbcGain=0, inCalibrate=32767, outBbcGain=0, OutCalibrate=16384 (volume=4) or OutCalibrate=11585 (volume=3), sideTone=0.

Table 32: Voiceband receive path

Parameter

Maximum differential output voltage (peak to peak)

EPP1 to EPN1

Maximum differential output voltage (peak to peak)

EPP2 to EPN2

Nominal differential output voltage (peak to peak)

EPP1 to EPN1

Nominal differential output voltage (peak to peak)

EPP1 to EPN1

Output bias voltage

Output bias voltage

Differential output gain settings (gs) at 6dB stages

(outBbcGain)

Fine scaling by DSP

(outCalibrate)

Differential output load resistance

Differential output load resistance

Single ended output load resistance

Single ended output load resistance

Min Typ

6.2

4.0

4.2

Max Unit

V

V

Test condition / remark no load,

Audio Mode 5, Volume 4

@ 3.14 dBm0 (Full Scale)

Batt+ = 3.6V

32 Ω, no load

Audio Mode 6, Volume 3

13

@ 3.14 dBm0 (Full Scale)

4.2

4.3

V

V

8 Ω, no load,

Audio Mode 5, Volume 4

@ 0 dBm0 (Nominal level)

2.8

2.9

V

V

32 Ω, no load

Audio Mode 6, Volume 3

13

@ 0 dBm0 (Nominal level)

Batt+/2 V from EPP1 or EPN1 to AGND

-18

-∞

1.2

0

0

7.5 8

7.5 8

V dB dB

27 32 Ω

27 32 Ω from EPP2 or EPN2 to AGND

Set with AT^SNFO

Set with AT^SNFO

From EPP1 to EPN1

From EPP2 to EPN2

From EPP1 or EPN1 to AGND

From EPP2 or EPN2 to AGND

Absolute gain error -0.1 0.1 dB outBbcGain=2

Idle channel noise

14

-83 -75 dBm0p

Signal to noise and distortion

15

13 Full scale of EPP2/EPN2 is lower than full scale of EPP1/EPN1 but the default gain is the same. 3.14dBm0 will lead to clipping if the default gain is used.

14

The idle channel noise was measured with digital zero signal fed to decoder. This can be realized by setting outCalibrate and sideTone to 0 during a call.

15

The test signal is a 1 kHz, 0 dbm0 sine wave.

AC65/AC75_hd_v00.372 Page 99 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Parameter

Frequency Response 16

0Hz - 100Hz

200Hz

300Hz - 3350Hz

3400Hz

4000Hz

≥4400Hz gs = gain setting

Min

-0.2

Typ

-1.1

-0.7

-39

Max

-34

0.1

-75

Unit dB s

Test condition / remark

5.7.5 Voiceband Transmit Path

Test conditions:

• The values specified below were tested to 1kHz and default settings of audio modes, unless otherwise stated.

• Parameter setup: Audio mode=5 for MICP1 to MICN1 and 6 for MICP2 to MICN2, inBbcGain=0, inCalibrate=32767, outBbcGain=0, OutCalibrate=16384, sideTone=0

Table 33: Voiceband transmit path

Parameter

Full scale input voltage (peak to peak) for 3.14dBm0

Min

MICP1 to MICN1 or AGND, MICP2 to

MICN2 or AGND

Typ Max Unit Test condition / Remark

MICPx must be biased with

1.25V (VMIC/2)

MICPx must be biased with

1.25V (VMIC/2)

Nominal input voltage (peak to peak) for 0dBm0

MICP1 to MICN1 or AGND, MICP2 to

MICN2 or AGND

Input amplifier gain in 6dB steps

(inBbcGain)

Fine scaling by DSP (inCalibrate)

Microphone supply voltage VMIC

VMIC current

Idle channel noise

Signal to noise and distortion

Frequency response

16

0Hz - 100Hz

200Hz

300Hz - 3350Hz

3400Hz

4000Hz

≥4400Hz

0

-∞

2.4

70

-0.2

2.5

-82

77

-1.1

-0.7

-39

42

0

2.6

2

-76

-34

0.1

-75 dB Set with AT^SNFI dB

V mA dBm0p dB dB

Set with AT^SNFI

16

This is the frequency response from a highpass and lowpass filter combination in the DAC of the baseband chip set. If the PCM interface is used, this filter is not involved in the audio path. Audio mode 1 to 4 incorporate additional frequency response correction filters in the digital signal processing unit and are adjusted to their dedicated audio devices (see Table 31).

AC65/AC75_hd_v00.372 Page 100 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Test conditions: All measurements have been performed at T amb

= 25°C, V

BATT+ nom

= 4.0V.

The reference points used on AC65/AC75 are the BATT+ and GND contacts (test points are

shown in Figure 4).

Table 34: Air Interface

Parameter

Frequency range

Uplink (MS → BTS)

Frequency range

Downlink (BTS → MS)

RF power @ ARP with 50Ω load

Min Typ Max Unit

GSM 824 849 MHz

E-GSM 915 MHz

GSM

GSM

1710

1850

1785 MHz

1910 MHz

GSM 869 894 MHz

E-GSM 960 MHz

GSM

GSM

1805

1930

1880 MHz

1990 MHz

GSM 31 33 35 dBm

E-GSM 900

17

31 33 35 dBm

GSM 1800

18

28 30 32 dBm

Number of carriers

Duplex spacing

Multiplex, Duplex

Time slots per TDMA frame

TDMA / FDMA, FDD

8

Time slot duration 577 µs

Modulation GMSK

Receiver input sensitivity @ ARP

BER Class II < 2.4% (static input level)

GSM 850

E-GSM 900

-102

-102

-108

-108 dBm dBm

GSM 1800

GSM 1900

-102 -107

-102 -107 dBm dBm

17

Power control level PCL 5

18

Power control level PCL 0

AC65/AC75_hd_v00.372 Page 101 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

The GSM engine is not protected against Electrostatic Discharge (ESD) in general.

Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates a AC65/AC75 module.

Special ESD protection provided on AC65/AC75:

Antenna interface: one spark discharge line (spark gap)

SIM interface: clamp diodes for protection against overvoltage.

The remaining ports of AC65/AC75 are not accessible to the user of the final product (since they are installed within the device) and therefore, are only protected according to the

“Human Body Model” requirements.

AC65/AC75 has been tested according to the EN 61000-4-2 standard. The measured values can be gathered from the following table.

Table 35: Measured electrostatic values

Specification / Requirements

ETSI EN 301 489-7

ESD at SIM port

Contact discharge Air discharge

ESD at antenna port

± 4kV

± 4kV

± 8kV

± 8kV

Human Body Model (Test conditions: 1.5k

, 100pF)

ESD at all other interfaces ± 1kV ± 1kV

Note: Please note that the values may vary with the individual application design. For example, it matters whether or not the application platform is grounded over external devices like a computer or other equipment, such as the Siemens reference

application described in Chapter 8.

AC65/AC75_hd_v00.372 Page 102 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

6 Mechanics

s

6.1 Mechanical Dimensions of AC65/AC75

Figure 42 shows the top view of AC65/AC75 and provides an overview of the board's

mechanical dimensions. For further details see Figure 43.

Length: 55.00mm

Width:

Height:

33.90mm

3.15mm

Pin 1 Pin 80

Figure 42: AC65/AC75 – top view

AC65/AC75_hd_v00.372 Page 103 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

All dimensions in mm

AC65/AC75_hd_v00.372

Figure 43: Dimensions of AC65/AC75

Page 104 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

6.2 Mounting AC65/AC75 to the Application Platform

There are many ways to properly install AC65/AC75 in the host device. An efficient approach is to mount the AC65/AC75 PCB to a frame, plate, rack or chassis.

Fasteners can be M2 screws plus suitable washers, circuit board spacers, or customized screws, clamps, or brackets. In addition, the board-to-board connection can also be utilized to achieve better support. To help you find appropriate spacers a list of selected screws and

distance sleeves for 3mm stacking height can be found in Chapter 9.2.

When using the two small holes take care that the screws are inserted with the screw head on the bottom of the AC65/AC75 PCB. Screws for the large holes can be inserted from top or bottom.

For proper grounding it is strongly recommended to use large ground plane on the bottom of board in addition to the five GND pins of the board-to-board connector. The ground plane may also be used to attach cooling elements, e.g. a heat sink or thermally conductive tape.

To prevent mechanical damage, be careful not to force, bend or twist the module. Be sure it is positioned flat against the host device.

AC65/AC75_hd_v00.372 Page 105 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

6.3 Board-to-Board Application Connector

This section provides the specifications of the 80-pin board-to-board connector used to connect AC65/AC75 to the external application.

Connector mounted on the AC65/AC75 module:

Type: 52991-0808 SlimStack Receptacle

80 pins, 0.50mm pitch, for stacking heights from 3.0 to 4.0mm,

see Figure 44 for details.

Supplier: Molex www.molex.com

Table 36: Technical specifications of Molex board-to-board connector

Parameter

Electrical

Number of Contacts

Specification (80-pin B2B connector)

80

Contact spacing 0.5mm (.020")

Voltage 50V

Rated current 0.5A max per contact

Contact resistance

Insulation resistance

Dielectric Withstanding Voltage

Physical

Insulator material (housing)

50mΩ max per contact

> 100MΩ

500V AC (for 1 minute)

White glass-filled LCP plastic, flammability UL 94V 0

Contact material

Insertion force 1 st

Plating: Gold over nickel

Insertion force 30 th

Withdrawal force 1 st

>

Maximum connection cycles 30 (@ 70mΩ max per contact)

Mating connector types for the customer's application offered by Molex:

• 53748-0808 SlimStack Plug, 3mm stacking height,

see Figure 45 for details.

• 53916-0808 SlimStack Plug, 4mm stacking height

AC65/AC75_hd_v00.372 Page 106 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Figure 44: Molex board-to-board connector 52991-0808 on AC65/AC75

AC65/AC75_hd_v00.372 Page 107 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Figure 45: Mating board-to-board connector 53748-0808 on application

AC65/AC75_hd_v00.372 Page 108 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Figure 46 shows a typical example of how to integrate a AC65/AC75 module with a Java

application. Usage of the various host interfaces depends on the desired features of the application.

Audio interface 1 demonstrates the balanced connection of microphone and earpiece. This solution is particularly well suited for internal transducers. Audio interface 2 uses an unbalanced microphone and earpiece connection typically found in headset applications.

The charging circuit is optimized for the charging stages (trickle charging and software controlled charging) as well as the battery and charger specifications described in Chapter

3.5.

The PWR_IND line is an open collector that needs an external pull-up resistor which connects to the voltage supply VCC µC of the microcontroller. Low state of the open collector pulls the PWR_IND signal low and indicates that the AC65/AC75 module is active, high level notifies the Power-down mode.

If the module is in Power-down mode avoid current flowing from any other source into the module circuit, for example reverse current from high state external control lines. Therefore, the controlling application must be designed to prevent reverse flow.

If the I 2 C bus is active the two lines I2CCLK and I2DAT are locked for use as SPI lines. Vice versa, the activation of the SPI locks both lines for I 2 C. Settings for either interface are made by using the AT^SSPI command.

The internal pull-up resistors (Rp) of the I 2 C interface can be connected to an external power supply or to the VEXT line of AC65/AC75. The advantage of using VEXT is that when the module enters the Power-down mode, the I 2 CI interface is shut down as well. If you prefer to connect the resistors to an external power supply, take care that the interface is shut down when the PWR_IND signal goes high in Power-down mode.

The interfaces ASC0, ASC1 and USB have different functions depending on whether or not

Java is running. Without Java, all of them are used as AT interfaces. When a Java application is started, ASC0 and ASC1 can be used for CommConnection or/and

System.out, and the USB lines can be used for debugging or System.out.

The EMC measures are best practice recommendations. In fact, an adequate EMC strategy for an individual application is very much determined by the overall layout and, especially, the position of components. For example, mounting the internal acoustic transducers directly on the PCB eliminates the need to use the ferrite beads shown in the sample schematic.

However, when connecting cables to the module’s interfaces it is strongly recommended to add appropriate ferrite beads for reducing RF radiation.

Disclaimer

No warranty, either stated or implied, is provided on the sample schematic diagram shown in

Figure 46 and the information detailed in this section. As functionality and compliance with

national regulations depend to a great amount on the used electronic components and the individual application layout manufacturers are required to ensure adequate design and operating safeguards for their products using AC65/AC75 modules.

AC65/AC75_hd_v00.372 Page 109 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

AC65/AC75_hd_v00.372

Figure 46: AC65/AC75 sample application for Java

Page 110 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

8.1 Reference Equipment for Type Approval

The Siemens reference setup submitted to type approve AC65/AC75 consists of the following components:

• Siemens AC65/AC75 cellular engine

• Development Support Box DSB75

• SIM card reader integrated on DSB75

• U.FL-R-SMT antenna connector and U.FL-LP antenna cable

• Handset type Votronic HH-SI-30.3/V1.1/0 battery

• PC as MMI

Antenna or 50 Ω cable to system simulator

RS-232

DSB75

Antenna

Flex cable

100mm

GSM module

PC

SIM

Power supply

Li-Ion battery

Handset

Figure 47: Reference equipment for Type Approval

AC65/AC75_hd_v00.372 Page 111 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

8.2 Compliance with FCC Rules and Regulations

The FCC Equipment Authorization Certification for the Siemens reference application

described in Chapter 8.1 will be registered under the following identifiers:

FCC identifier QIPAC65 granted to Siemens AG and

FCC identifier QIPAC75

267W-AC75 granted to Siemens AG.

Manufacturers of mobile or fixed devices incorporating AC65/AC75 modules are authorized to use the FCC Grants and IC Certificates of the AC65/AC75 modules for their own final products according to the conditions referenced in these documents. In this case, the FCC label of the module shall be visible from the outside, or the host device shall bear a second label stating “Contains FCC ID QIP AC65” resp. “Contains FCC ID QIPAC75”.

IMPORTANT:

Manufacturers of portable applications incorporating AC65/AC75 modules are required to have their final product certified and apply for their own FCC Grant and IC Certificate related to the specific portable mobile. This is mandatory to meet the SAR requirements for portable

mobiles (see Chapter 1.3.1 for detail).

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

If the final product is not approved for use in U.S. territories the application manufacturer shall take care that the 850 MHz and 1900 MHz frequency bands be deactivated and that band settings be inaccessible to end users. If these demands are not met (e.g. if the AT interface is accessible to end users), it is the responsibility of the application manufacturer to always ensure that the application be FCC approved regardless of the country it is marketed in. The frequency bands can be set using the command

AT^SCFG="Radio/Band"[,<rbp>][, <rba>].

A detailed command description can be found in [1].

AC65/AC75_hd_v00.372 Page 112 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

9 Appendix

s

9.1 List of Parts and Accessories

Table 37: List of parts and accessories

Description

AC65

Supplier

Siemens

AC75 Siemens

Siemens Car Kit Portable Siemens

Ordering information

Standard module (Siemens IMEI)

Siemens ordering number: L36880-N8335-A100

Customer IMEI mode:

Siemens Ordering number: L36880-N8336-A100

Standard module (Siemens IMEI)

Siemens ordering number: L36880-N8330-A100

Customer IMEI mode:

Siemens Ordering number: L36880-N8331-A100

Siemens ordering number: L36880-N3015-A117

DSB75 Support Box

Votronic Handset

SIM card holder incl. push button ejector and slide-in tray

Board-to-board connector Molex

SMP Rosenberger antenna connector

Siemens

VOTRONIC

Molex

Hirose

Siemens ordering number: L36880-N8811-A100

Votronic HH-SI-30.3/V1.1/0

VOTRONIC

Entwicklungs- und Produktionsgesellschaft für elektronische Geräte mbH

Saarbrücker Str. 8

66386 St. Ingbert

Germany

Phone: +49-(0)6 89 4 / 92 55-0

Fax: +49-(0)6 89 4 / 92 55-88 e-mail: [email protected]

Ordering numbers: 91228

91236

Sales contacts are listed in Table 38.

Sales contacts are listed in Table 38.

Rosenberger Hochfrequenztechnik GmbH & Co.

POB 1260

84526 Tittmoning

Germany http://www.rosenberger.de

AC65/AC75_hd_v00.372 Page 113 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

Table 38: Molex sales contacts (subject to change)

Molex

For further information please click: http://www.molex.com/

Molex China Distributors

Beijing,

Room 1319, Tower B,

COFCO Plaza

No. 8, Jian Guo Men Nei

Street, 100005

Beijing

P.R. China

Phone: +86-10-6526-9628

Phone: +86-10-6526-9728

Phone: +86-10-6526-9731

Fax: +86-10-6526-9730

Molex Deutschland GmbH

Felix-Wankel-Str. 11

4078 Heilbronn-Biberach

Germany

Phone: +49-7066-9555 0

29

Email: [email protected]

Molex Singapore Pte. Ltd.

Jurong, Singapore

Phone: +65-268-6868

Fax: +65-265-6044

American Headquarters

Lisle, Illinois 60532

U.S.A.

Phone: +1-800-78MOLEX

Fax: +1-630-969-1352

Molex Japan Co. Ltd.

Yamato, Kanagawa, Japan

Phone: +81-462-65-2324

Fax: +81-462-65-2366

AC65/AC75_hd_v00.372 Page 114 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary s

9.2 Fasteners and Fixings for Electronic Equipment

This section provides a list of suppliers and manufacturers offering fasteners and fixings for electronic equipment and PCB mounting. The content of this section is designed to offer basic guidance to various mounting solutions with no warranty on the accuracy and sufficiency of the information supplied. Please note that the list remains preliminary although it is going to be updated in later versions of this document.

9.2.1 Fasteners from German Supplier ETTINGER GmbH

Sales contact: ETTINGER GmbH http://www.ettinger.de/main.cfm

Phone:

Fax:

+4981 04 66 23 – 0

+4981 04 66 23 – 0

The following tables contain only article numbers and basic parameters of the listed components. For further detail and ordering information please contact Ettinger GmbH.

Please note that some of the listed screws, spacers and nuts are delivered with the DSB75

Support Board. See comments below.

Article number: 05.71.038 Spacer - Aluminum /

Wall thickness = 0.8mm

Length 3.0mm

Material AlMgSi-0,5

For internal diameter

Internal diameter

M2=2.0-2.3 d = 2.4mm

External diameter

Vogt AG No.

4.0mm x40030080.10

AC65/AC75_hd_v00.372 Page 115 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Article number: 07.51.403 Insulating Spacer for M2

Self-gripping *)

Length 3.0mm s

Surface Black

Internal diameter 2.2mm

External diameter

Flammability rating

4.0mm

UL94-HB

*)

2 spacers are delivered with DSB75 Support Board

Article number: 05.11.209 Threaded Stud M2.5 - M2 Type E /

External thread at both ends

Length 3.0mm

Material Stainless steel X12CrMoS17

Thread 1 / Length M2.5 / 6.0mm

Thread 2 / Length

Width across flats

Recess yes

Type External / External

M2 / 8.0mm

5

AC65/AC75_hd_v00.372 Page 116 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Article number: 01.14.131 Screw M2 *)

DIN 84 - ISO 1207 s

Length 8.0mm

Thread

Head diameter

Head height

Type

M2

D = 3.8mm

1.30mm

Slotted cheese head screw

Article number: 01.14.141

*)

2 screws are delivered with DSB75 Support Board

Screw M2

DIN 84 - ISO 1207

Length 10.0mm

Thread

Head diameter

Head height

Type

M2

D = 3.8mm

1.30mm

Slotted cheese head screw

AC65/AC75_hd_v00.372 Page 117 of 118 2006-08-03

AC65/AC75 Hardware Interface Description

Confidential / Preliminary

Article number: 02.10.011 Hexagon Nut *)

DIN 934 - ISO 4032 s

Thread

Wrench size / Ø

Thickness / L

Type

M2

4

1.6mm

Nut DIN/UNC, DIN934

*)

2 nuts are delivered with DSB75 Support Board

AC65/AC75_hd_v00.372 Page 118 of 118 2006-08-03

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement

Table of contents