LMX2581 Wideband Frequency Synthesizer with Integrated VCO 1 Features 3 Description

Sample &
Buy
Product
Folder
Support &
Community
Tools &
Software
Technical
Documents
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
LMX2581 Wideband Frequency Synthesizer with Integrated VCO
1 Features
3 Description
•
•
•
•
•
•
•
The LMX2581 is a low noise wideband frequency
synthesizer that integrates a delta-sigma fractional N
PLL, multiple core VCO, programmable output
divider, and two differential output buffers. The VCO
frequency range is from 1880 to 3760 MHz and can
be sent directly to the output buffers or divided down
by even values from 2 to 38. Each buffer is capable
of output power from -3 to +12 dBm at 2700 MHz.
Integrated low noise LDOs are used for superior
noise immunity and consistent performance.
1
•
•
•
•
•
•
•
•
•
•
Output Frequency from 50 to 3760 MHz
Input Clock Frequency up to 900 MHz
Phase Detector Frequency up to 200 MHz
Supports Fractional and Integer Modes
–229 dBc/Hz Normalized PLL Phase Noise
–120.8 dBc/Hz Normalized PLL 1/f Noise
–137 dBc/Hz VCO Phase Noise @ 1 MHz offset
for a 2.5 GHz Carrier
100 fs RMS Jitter in Integer Mode
Programmable Fractional Modulator Order
Programmable Fractional Denominator
Programmable Output Power up to +12 dBm
Programmable 32 Level Charge Pump Current
Programmable Option to Use an External VCO
Digital Lock Detect
3-Wire Serial Interface and Readback
Single Supply Voltage from 3.15 V to 3.45 V
Supports Logic Levels down to 1.6 V
This synthesizer is a highly programmable device and
it enables the user to optimize its performance. In
fractional mode, the denominator and the modulator
order are programmable and can be configured with
dithering as well. The user also has the ability to
directly specify a VCO core or entirely bypass the
internal VCO. Finally, many convenient features are
included such as power down, Fastlock, auto mute,
and lock detection. All registers can be programmed
through a simple 3 wire interface and a read back
feature is also available.
The LMX2581 operates on a single 3.3 V supply and
comes in a 32 pin 5.0 mm × 5.0 mm WQFN package.
2 Applications
•
•
•
•
Device Information(1)
Wireless Infrastructure (UMTS, LTE, WiMax,
Multi-Standard Base Stations)
Broadband Wireless
Test and Measurement
Clock Generation
PART NUMBER
PACKAGE
LMX2581
WQFN (32)
BODY SIZE (NOM)
5.00 mm × 5.00 mm
(1) For all available packages, see the orderable addendum at
the end of the datasheet.
4 Simplified Schematic
Vtune
Multiple
Core VCO
RFin
MUX
Fractional
N Divider
Vcc
I
Charge
Pump
CPout
LD
RFoutA
RFoutB
Vcc
OSCin
MUX
Output
Divider
MUXout
MUX
2X
MUX
R
Divider
DATA
Serial Interface
Control
CLK
LE
CE
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
Table of Contents
1
2
3
4
5
6
7
Features ..................................................................
Applications ...........................................................
Description .............................................................
Simplified Schematic.............................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8
1
1
1
1
2
4
6
Absolute Maximum Ratings ..................................... 6
Handling Ratings....................................................... 6
Recommended Operating Conditions....................... 6
Thermal Information .................................................. 6
Electrical Characteristics........................................... 7
Timing Requirements, MICROWIRE Timing............. 9
Typical Characteristics ............................................ 10
Detailed Description ............................................ 12
8.1
8.2
8.3
8.4
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
12
12
13
26
8.5 Programming........................................................... 27
8.6 Register Maps ......................................................... 29
9
Application and Implementation ........................ 43
9.1 Application Information............................................ 43
9.2 Typical Applications ................................................ 43
9.3 Do's and Don'ts ....................................................... 47
10 Power Supply Recommendations ..................... 47
10.1 Supply Recommendations .................................... 47
10.2 Regulator Output Pins........................................... 48
11 Layout................................................................... 49
11.1 Layout Guidelines ................................................. 49
11.2 Layout Example .................................................... 49
12 Device and Documentation Support ................. 50
12.1
12.2
12.3
12.4
12.5
Device Support ....................................................
Documentation Support .......................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
50
50
50
50
50
13 Mechanical, Packaging, and Orderable
Information ........................................................... 50
5 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision F (March 2014) to Revision G
Page
•
Added "over operating free-air temperature range (unless otherwise noted)" in Absolute Maximum Ratings and
Recommended Operating Conditions. ................................................................................................................................... 6
•
Added footnotes to HBM, CDM, and MM in Handling Ratings table...................................................................................... 6
•
Moved explanations of Typical Characteristics plots from plot footnotes to Feature Description section............................ 13
•
Moved Impact of Temperature on VCO Phase Noise into Feature Description section. ..................................................... 14
•
Added some description of modulator noise floor and Table 4. .......................................................................................... 16
•
Changed -89 to -83 in Table 11............................................................................................................................................ 24
•
Moved "Triggering Registers" to "Register Maps" section. .................................................................................................. 29
•
Changed order of subsections in Application and Implementation section.......................................................................... 43
•
Changed -- inverted color scheme of Figure 23, Figure 24, and Figure 25 to enhance readability..................................... 45
•
Added links for Device and Documentation Support . Added links to Application Note AN-1879 (SNAA062)
throughout the document...................................................................................................................................................... 50
Changes from Revision E (Novmeber 2013) to Revision F
Page
•
Added data sheet structure and organization. Added, updated, or renamed the following sections: Device
Information Table, Application and Implementation; Power Supply Recommendations; Layout; Device and
Documentation Support; Mechanical, Packaging, and Ordering Information......................................................................... 1
•
Changed Clarified that typical PLL noise metrics are measured at max charge pump gain. ............................................... 7
•
Added Typical Characteristics curves. ................................................................................................................................ 10
•
Changed Recommendation for OSC_FREQ bit for input frequencies > 64 MHz ............................................................... 34
•
Added Application and Implementation section with schematic........................................................................................... 43
•
Added Power Supply Recommendations ............................................................................................................................. 47
•
Added Layout ...................................................................................................................................................................... 49
2
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
Changes from Revision D (April 2013) to Revision E
Page
•
Changed -- Output Power upgraded from 5 dBm to 7.3 dBm for OUTx_PWR = 15. ........................................................... 7
•
Added output power spec for OUT_PWR = 45. .................................................................................................................... 7
•
Changed Fvco = 1.9 GHz: 10 kHz: –84.8 to –85.4; 100 kHz: –113.7 to –114.5; 1 MHz: –136.7 to –137............................. 8
•
Changed Fvco = 2.2 GHz: 40 MHz: –155.2 to –156.1. ......................................................................................................... 8
•
Changed Fvco = 2.7 GHz: 100 kHz: –111.1 to –112.2; 1 MHz: –135.5 to –136.0; 10 MHz: –152.9 to –153.1; 40
MHz: –154.6 to –155. ............................................................................................................................................................ 8
•
Changed Fvco = 3.3 GHz: 10 kHz: –77.9 to –79; 100kHz: –108 to –108.6; 1 MHz: –132.4 to –132.6; 10 MHz:
–151.5 to –152; 40 MHz: –153.6 to –155. ............................................................................................................................. 8
•
Added updates on using 0–Delay Mode .............................................................................................................................. 20
•
Added more information on how to use readback. .............................................................................................................. 23
•
Changed SPURS: Fpd spur for Fpd = 100 MHz upgraded from –71 to –81 dBc. Improvement due to better board
layout. ................................................................................................................................................................................... 24
•
Changed -- Fixed PLL_R[7:0] box drawn incorrectly in the register map. ........................................................................... 29
•
Added updates to the applications section on impact of OUTx_PWR.
Updates to the application section regarding dithering were added. ................................................................................... 43
Changes from Revision C (April 2013) to Revision D
Page
•
Added Typical spur specifications to Electrical Characteristics.............................................................................................. 7
•
Changed -- Updates to the programming section were made regarding programming recommendations,
clarifications to the register map, and more details for the programming word descriptions. ............................................. 27
•
Added More information to the applications section regarding fractional spurs .................................................................. 43
Changes from Revision B (October 2013) to Revision C
•
Page
Changed data sheet style from National to TI format............................................................................................................. 1
Changes from Revision A (August 2012) to Revision B
•
Page
Added information about resistor and inductor pull-up. ....................................................................................................... 20
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
3
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
6 Pin Configuration and Functions
VccFRAC
GND
MUXout
OSCin
VccDIG
GND
BUFEN
LD
32
31
30
29
28
27
26
25
32-Pin
DAP Package
(Top View)
CLK
1
24
VregVCO
DATA
2
23
VbiasCOMP
LE
3
22
VrefVCO
CE
4
Top Down View
21
GND
0 (DAP)
13
14
15
16
RFoutB+
RFoutB-
VccBUF
VccVCO
12
GND
17
RFoutA-
18
8
RFoutA+
7
GND
11
CPout
Fin
VbiasVCO
9
Vtune
19
10
20
6
GND
5
VccPLL
FLout
VccCP
Pin Functions
PIN
4
TYPE
DESCRIPTION
NUMBER
NAME
0
DAP
GND
The DAP should be grounded.
1
CLK
Input
MICROWIRE Clock Input. High Impedance CMOS input.
2
DATA
Input
MICROWIRE Data. High Impedance CMOS input.
3
LE
Input
MICROWIRE Latch Enable. High Impedance CMOS input.
4
CE
Input
Chip Enable Pin.
5
FLout
Output
Fastlock Output. This can switch in an external resistor to the loop filter during locking to
improve lock time.
6
VccCP
Supply
Charge Pump Supply.
7
CPout
Output
Charge Pump Output.
8
GND
GND
Ground for the Charge Pump.
Ground for the N and R divider.
9
GND
GND
10
VccPLL
Supply
11
Fin
Input
12
RFoutA+
Output
Differential divided output. For single-ended operation, terminate the complimentary side
with a load equivalent to the load at this Pin.
13
RFoutA-
Output
Differential divided output. For single-ended operation, terminate the complimentary side
with a load equivalent to the load at this pin.
14
RFoutB+
Output
Differential divided output. For single-ended operation, terminate the complimentary side
with a load equivalent to the load at this pin.
15
RFoutB-
Output
Differential divided output. For single-ended operation, terminate the complimentary side
with a load equivalent to the load at this pin.
16
VccBUF
Supply
Supply for the Output Buffer.
17
VccVCO
Supply
Supply for the VCO.
18
GND
GND
Supply for the PLL.
High frequency input pin for an external VCO. Leave Open or Ground if not used.
Ground Pin for the VCO. This can be attached to the regular ground. Ensure a solid trace
connects this pin to the bypass capacitors on pins 19, 23, and 24.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
Pin Functions (continued)
PIN
TYPE
DESCRIPTION
NUMBER
NAME
19
VbiasVCO
Output
20
Vtune
Input
VCO tuning voltage input. See the functional description regarding the minimum
capacitance to put at this pin.
21
GND
GND
VCO ground.
22
VrefVCO
Output
VCO capacitance. Place a capacitor to GND (Preferably close to Pin 18). This value should
be between 5% and 10% of the capacitance at pin 24. Recommended value is 1 µF.
23
VbiasCOMP
Output
VCO bias voltage temperature compensation circuit. Place a minimum 10 µF capacitor to
GND (Preferably close to Pin 18). If it is possible, use more capacitance to slightly improve
VCO phase noise.
24
VregVCO
Output
VCO regulator output. Place a minimum 10 µF capacitor to GND (Preferably close to Pin
18). If it is possible, use more capacitance to slightly improve VCO phase noise.
25
LD
Output
Multiplexed output that can perform lock detect, PLL N and R counter outputs, Readback,
and other diagnostic functions.
26
BUFEN
Input
Enable pin for the RF output buffer. If not used, this can be overwritten in software.
Bias circuitry for the VCO. Place a 2.2 µF capacitor to GND (Preferably close to Pin 18).
27
GND
GND
Digital Ground.
28
VccDIG
Supply
Digital Supply.
29
OSCin
Input
30
MUXout
Output
31
GND
GND
Ground for the fractional circuitry.
32
VccFRAC
Vcc
Supply for the fractional circuitry.
Reference input clock.
Multiplexed output that can perform lock detect, PLL N and R counter outputs, Readback,
and other diagnostic functions..
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
5
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
7 Specifications
7.1 Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
Vcc
Power Supply Voltage
-0.3
3.6
V
VIN
Input Voltage to Pins other than Vcc Pins
-0.3
(Vcc + 0.3)
V
TL
Lead Temperature (solder 4 sec.)
+260
°C
TJ
Junction Temperature
+150
°C
VOSCin
Voltage on OSCin (Pin29)
(1)
≤1.8 with Vcc Applied
≤1 with Vcc=0
Vpp
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
7.2 Handling Ratings (1)
TSTG
Storage Temperature Range
Electrostatic
Discharge
VESD
(1)
(2)
(3)
(4)
MIN
MAX
UNIT
-65
150
°C
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all
pins (2)
2500
Charged device model (CDM), per JEDEC specification JESD22C101, all pins (3)
1250
Machine Model (MM) (4)
250
V
This device should only be assembled in ESD free workstations.
JEDEC document JEP155 states that 2500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 1250-V CDM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V MM allows safe manufacturing with a standard ESD control process.
7.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
Vcc
Power Supply Voltage
TJ
Junction Temperature
TA
Ambient Temperature
MIN
TYP
MAX
3.15
3.3
3.45
V
125
°C
85
°C
-40
UNIT
7.4 Thermal Information
THERMAL METRIC (1)
DAP
32 PINS
RθJA
Junction-to-ambient thermal resistance
30
RθJC(bot)
Junction-to-case (bottom) thermal resistance
4
(1)
6
UNIT
°C/W
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
7.5 Electrical Characteristics
(3.15 V ≤ Vcc ≤ 3.45 V, -40°C ≤ TA ≤ 85 °C; except as specified. Typical values are at Vcc = 3.3 V, 25 °C.)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
CURRENT CONSUMPTION
ICC
Entire Chip Supply
Current
One Output Enabled
OUTx_PWR = 15
ICCCore
Supply Current Except
Output Buffers and VCO Divider Disabled.
for Output Buffers
ICCRFout
Additive Current for
EachOutput Buffer
ICCVCO_DIV
ICCPD
178
mA
134
mA
OUTx_PWR = 15
44
mA
Additive VCO Divider
Current
VCO Divider Enabled
20
mA
Power Down Current
Device Powered Down
(CE Pin = LOW)
7
mA
OSCin REFERENCE INPUT
fOSCin
OSCin Frequency
Range
Doubler Enabled
5
250
Doubler Disabled
5
900
vOSCin
OSCin Input Voltage
AC Coupled
0.4
1.7
SpurFoscin
Oscin Spur
Foscin = 100 MHz, Offset = 100 MHz
MHz
Vpp
-81
dBc
PLL
Phase Detector
Frequency
fPD
200
Gain = 1X
110
Gain = 2X
220
MHz
KPD
Charge Pump Gain
PNPLL_1/f_Norm
Normalized PLL 1/f
Noise
(1)
Gain =31X
Normalized to 1 GHz carrier and 10 kHz Offset
PNPLL_FOM
PLL Figure of Merit
(Normalized Noise
Floor)
Gain =31X.
Normalized to PLL1 and fPD=1Hz
fRFin
External VCO Input
Pin Frequency
Internal VCOs Bypassed
(OUTA_PD=OUTB_PD=1)
0.5
2.2
GHz
pRFin
External VCO Input
Pin Power
Internal VCOs Bypassed
(OUTA_PD=OUTB_PD=1)
0
+8
dBm
SpurFpd
Phase Detector Spurs Fpd = 25 MHz
(2)
Fpd = 100 MHz
...
Gain = 31X
(1)
µA
...
3410
–120.8
dBc /Hz
–229
dBc /Hz
–85
–81
dBc
OUTPUTS
pRFoutA+/pRFoutB+/H2RFoutX+/(1)
(2)
(3)
(4)
Output Power Level (3) Inductor Pull-Up
(3)
Fout=2.7 GHz
Second Harmonic
(4)
Fout = 2.7 GHz
OUTx_PWR=15
7.3
OUTx_PWR=45
12
OUTx_PWR=15
–25
dBm
dBc
The PLL noise contribution is measured using a clean reference and a wide loop bandwidth and is composed into 1/f and flat
components. PLL_Flat = PLL_FOM + 20*log(Fvco/Fpd)+10*log(Fpd / 1Hz). PLL_1/f = PLL_1/f_Norm + 20*log(Fvco / 1GHz) 10*log(Offset/10kHz). Once these two components are found, the total PLL noise can be calculated as PLL_Noise = 10*log(
10PLL_Flat/10) + 10PLL_1/f / 10 )
The spurs at the offset of the phase detector frequency are dependent on many factors, such as he phase detector frequency.
The output power is dependent of the setup and is also programmable. Consult the Applications section for more information.
The harmonics vary as a function of frequency, output termination, board layout, and output power setting.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
7
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
Electrical Characteristics (continued)
(3.15 V ≤ Vcc ≤ 3.45 V, -40°C ≤ TA ≤ 85 °C; except as specified. Typical values are at Vcc = 3.3 V, 25 °C.)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCO
fVCO
KVCO
ΔTCL
tVCOCal
Before the VCO Divider
VCO Gain
Allowable
Temperature Drift
(5)
VCO Calibration Time
(6)
Vtune = 1.3 Volts
VCO not being recalibrated
fOSCin = 100 MHz
fPD = 100 MHz
Full Band Change 1880 — 3760
MHz
fVCO = 1.9 GHz
Core 1
fVCO = 2.2 GHz
Core 2
PNVCO
VCO Phase Noise
(OUTx_PWR =15)
fVCO = 2.7 GHz
Core 3
fVCO = 3.3 GHz
Core 4
(5)
(6)
8
All VCO Cores
Combined
1880
3760
Core 1
12 to 24
Core 2
15 to 30
Core 3
20 to 37
Core 4
21 to 37
MHz/V
Fvco ≥2.5 GHz
–125
+125
Fvco < 2.5 GHz
–100
+125
No Preprogramming
140
With Preprogramming
10
°C
us
10 kHz Offset
–85.4
100 kHz Offset
–114.5
1 MHz Offset
–137.0
10 MHz Offset
–154.2
40 MHz Offset
–156.7
10 kHz Offset
–84.6
100 kHz Offset
–114.1
1 MHz Offset
–137.5
10 MHz Offset
–154.5
40 MHz Offset
–156.1
10 kHz Offset
–81.7
100 kHz Offset
–112.2
1 MHz Offset
–136.0
10 MHz Offset
–153.1
40 MHz Offset
–155.0
10 kHz Offset
–79.0
100 kHz Offset
–108.6
1 MHz Offset
–132.6
10 MHz Offset
–152.0
40 MHz Offset
–155.0
dBc /Hz
dBc /Hz
dBc /Hz
dBc /Hz
Continuous tuning range over temperature refers to programming the device at an initial temperature and allowing this temperature to
drift WITHOUT reprogramming the device. This change could be up or down in temperature and the specification does not apply to
temperatures that go outside the recommended operating temperatures of the device.
VCO digital calibration time is the amount of time it takes for the VCO to find the correct frequency band when switching to a new
frequency. After the correct frequency band is found , the remaining error is typically less than 1 MHz and then the PLL settles the rest
of the error in an analog manner. Pre-programming refers to specifying a band that is close to the final (<20 MHz), which greatly
improves the VCO calibration time.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
Electrical Characteristics (continued)
(3.15 V ≤ Vcc ≤ 3.45 V, -40°C ≤ TA ≤ 85 °C; except as specified. Typical values are at Vcc = 3.3 V, 25 °C.)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Vcc
V
0.4
V
DIGITAL INTERFACE (DATA, CLK, LE, CE, MUXout, BUFEN, LD)
VIH
High-Level Input
Voltage
VIL
Low Level Input
Voltage
IIH
High-Level Input
Current
VIH = 1.75 V
–5
5
µA
IIL
Low-Level Input
Current
VIL = 0 V
–5
5
µA
VOH
High-Level Output
Voltage
IOH = -500 µA
VOL
Low-Level Output
Voltage
IOL = -500 µA
1.4
2
V
0
0.4
V
7.6 Timing Requirements, MICROWIRE Timing
MIN
TYP
MAX
UNIT
tES
Clock to Enable Low Time
See Figure 1
35
ns
tCS
Data to Clock Set Up Time
See Figure 1
10
ns
tCH
Data to Clock Hold Time
See Figure 1
10
ns
tCWH
Clock Pulse Width High
See Figure 1
25
ns
tCWL
Clock Pulse Width Low
See Figure 1
25
ns
tCES
Enable to Clock Set Up Time
See Figure 1
10
ns
tEWH
Enable Pulse Width High
See Figure 1
10
ns
MSB
DATA
D27
LSB
D26
D25
D24
D23
D0
A3
A2
A1
A0
CLK
tCES
tCS
tCH
tCWH
tCWL
tES
LE
tEWH
Figure 1. Serial Data Input Timing
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
9
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
7.7 Typical Characteristics
Modeled Flat Noise
Actual Measurement
Modeled Flicker Noise
Modeled Total Noise
-90
Phase Noise (dBc/Hz)
-95
-100
-105
-110
-115
-120
-125
-130
1x100
1x101
Offset (kHz)
1x102
6
5
4
3
2
1
1x103
1
Phase Noise (dBc/Hz)
-100
-120
Fvco = 2000 MHz, VCO 1
Fvco = 2200 MHz, VCO 2
Fvco = 2700 MHz, VCO 3
Fvco = 3300 MHz, VCO 4
1x103
1x104
1x105
1x106
Offset (Hz)
5
1x107
7
9 11 13 15 17 19 21 23 25 27 29 31
Charge Pump Gain Setting (CPG)
D001
Figure 3. KPD Impact on PLL Noise Metrics
-80
-140
3
D001
Figure 2. Measurement of PLL Figure of Merit and
Normalized 1/f Noise
Phase Noise (dBc/Hz)
Relative Normalized Flicker Noise
Relative Figure of Merit
7
0
-135
1x10-1
-160
1x102
8
Relative Phase Noise to Maximum Charge Pump Gain (dB)
-85
1x108
-80
-84
-88
-92
-96
-100
-104
-108
-112
-116
-120
-124
-128
-132
-136
-140
-144
-148
-152
-156
-160
1x103
Fvco = 2000 MHz, VCO 1
Fvco = 2200 MHz, VCO 2
Fvco = 2700 MHz, VCO 3
Fvco = 3300 MHz, VCO 4
1x104
D001
Figure 4. Closed Loop Noise for Narrower Bandwidth Filter
1x105
1x106
Offset (Hz)
1x107
1x108
D001
Figure 5. Closed Loop Noise for Wider Bandwidth
4000
-150
3750
-152
3500
3250
Frequency (MHz)
Phase Noise (dBc/Hz)
-154
-156
-158
3000
2750
2500
-160
2250
-162
2000
0
200
400
600 800 1000 1200 1400 1600 1800 2000
Output Frequency (MHz)
D001
Figure 6. VCO Output Divider Noise Floor vs. Frequency
10
VCO_SEL=VCO3, VCO_CAPCODE=127
VCO_SEL=VCO4, VCO_CAPCODE=15
1750
-164
Submit Documentation Feedback
0
20
40
60
80
100
Time (us)
120
140
160
D001
Figure 7. VCO Digital Calibration Time
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
Typical Characteristics (continued)
10
1000
50 ohm Resistor
18 nH Inductor
700
500
400
Magnitude of Input Impedance (ohms)
8
Power (dBm)
6
4
2
300
200
100
70
50
40
30
0
Pull-Up Component
None
51 ohm Resistor
18 nH Inductor
20
-2
0
500
1000
1500 2000 2500 3000
Output Frequency (MHz)
3500
10
1E+8
4000
2E+8 3E+8
D001
Figure 8. Single-Ended Output Power vs. Frequency
5E+8 7E+8 1E+9
Frequency (Hz)
2E+9 3E+94E+9
D001
Figure 9. Impedance of RFoutX Pins
400
5
Real
Magnitude
Imaginary
350
0
300
250
-5
Impedance (ohms)
Sensitivity (dBm)
200
-10
-15
-20
150
100
50
0
-50
-25
-100
25C, Buffer On
25C, Buffer Off
-40 C Buffer Off
85C, Buffer Off
-30
-150
-200
-250
-35
0
500
1000
1500 2000 2500
Frequency (MHz)
3000
3500
600
-12.5
500
-15
400
-17.5
300
Impedance (ohm)
700
-10
-20
-22.5
-25
-27.5
2E+9
Frequency (Hz)
3E+9
4E+9
D001
Figure 11. Impedance of External VCO Input (Fin) Pin
-7.5
Real
Magnitude
Imag
200
100
0
-100
-30
-200
OSCin Doubler Enabled
OSCin Doubler Disabled
-32.5
-35
100
1E+9
D001
Figure 10. Sensitivity for External VCO Input (Fin) Pin
Sensitivity (dBm)
0
4000
-300
-400
200
300
400 500 600 700
Frequency (MHz)
800
900
1000
D001
Figure 12. OSCin Input Sensitivity
0
100
200
300
400 500 600 700
Frequency (MHz)
800
900 1000
D001
Figure 13. OSCin Input Impedance
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
11
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8 Detailed Description
8.1 Overview
The LMX2581 is a synthesizer, consisting of a reference input and R divider, phase detector and charge pump,
VCO and high frequency fractional (N) divider, and two programmable output buffers. The device requires
external components for the loop filter and output buffers, which are application dependent.
Based on the oscillator input frequency (fOSC), PLL R divider value (PLL_R), PLL N Divider Value (PLL_N),
Fractional Numerator (PLL_NUM), Fractional Denominator (PLL_DEN), and VCO divider value (VCO_DIV), the
output frequency of the LMX2581 (fOUT) can be determined as follows:
fOUT = fOSC x OSC_2X / PLL_R x (PLL_N + PLL_NUM / PLL_DEN) / VCO_DIV
(1)
8.2 Functional Block Diagram
Multiple Core VCO
Programmable
Capacitor Array
(256 Values)
Digital
Control
RFin
Varactor
Diode
Vtune
4 Switchable VCO Cores
N Divider
MUX
I
4/5 Prescaler
Charge
Pump
CPout
LD
RFoutA
RFoutB
MUX
Output
Divider
Compensation
MUXout
MUX
2X
OSCin
MUX
R
Divider
DATA
Serial Interface
Control
CLK
LE
CE
12
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.3 Feature Description
8.3.1 Typical Performance Characteristics
8.3.1.1 Phase Noise Typical Performance Plot Explanations
Figure 2 shows 2700 MHz output and a 100 MHz phase detector frequency. The modeled noises (Flat, Flicker,
and Total) are calculated from the normalized -229 dBc/Hz figure of merit and the -120.8 dBc/Hz normalized 1/f
noise from the electrical table. After 200 kHz, the loop filter dynamics cause the noise to increase sharply.
Figure 3 shows the relative changes with the normalized PLL noise and figure of merit as a function of charge
pump gain. The PLL phase noise changes as a function of the charge pump gain.
Figure 4 shows the phase noise for a filter optimized for spurs with a 20 MHz phase detector and running in
fractional mode with strong dithering. Due to the narrower loop bandwidth, the impact of the VCO phase noise
inside the loop bandwidth is in the 1 to 10 kHz region.
In Figure 5, the loop filter was optimized for RMS jitter. This was in fractional mode with a phase detector of 200
MHz and uses the First Order Modulator.
In Figure 6, the output divider noise floor only applies when the output divider is not bypassed and depends
mainly on output frequency, not the actual divide value.
8.3.1.2 Other Typical Performance Plot Characteristics Explanations
Figure 7 shows a frequency change of 1880 MHz to 3760 MHz with Fosc = Fpd = 100 MHz. If the VCO3 is
selected as the starting VCO with VCO_CAPCODE=127, digital calibration time is closer to 115 µs. If VCO4 is
selected as the starting VCO with VCO_CAPCODE=15, the calibration time is greatly shortened to something of
the order of 5 µs.
Figure 8 was measured with a board with very short traces. Only one of the differential outputs is routed.
In Figure 9, the output impedance is mainly determined by the pull-up component used at lower frequencies. For
the resistor, it is 51 Ω up to about 2 GHz, where the impedance of the device starts to dominate. For the inductor
it increases with frequency and then reaches a resonance frequency before coming down. These behaviors are
specific to the pull-up component. These impedance plots match the conditions that were used to measure
output power.
In Figure 12, the OSCin input sensitivity for a sine wave. The voltage has no impact and the temperature only
has a slight impact. Enabling the doubler limits the performance
In Figure 13, For lower frequencies, the magnitude of the OSCin input impedance can be considered high
relative to 50 Ω. At higher frequencies, it is not as high and a resistive pad may be better than a simple shunt 50
Ω resistor for matching.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
13
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
Feature Description (continued)
8.3.2 Impact of Temperature on VCO Phase Noise
The phase noise specifications for the VCO in Electrical Characteristics are for a narrow loop bandwidth at room
temperature. If the temperature is changed, Table 1 gives an approximation on how the VCO phase noise is
impacted. For instance, if one was to lock the PLL at -40°C and then measure the phase noise at 1 MHz offset,
the phase noise would typically be of the order of 2 dB better than if it was locked and measured at 25°C. If the
PLL is locked at -40°C and then the temperature was to drift to 85°C, then the phase noise at 1 MHz offset would
typically be about 2 dB worse than it would be if it was locked and measured at 25°C. These numbers are only
approximations and may change between devices and over VCO cores slightly.
Table 1. Approximate Change in VCO Phase Noise vs. Temperature and Temperature Drift in dB
STARTING
TEMPERATURE
-40°C
25°C
85°C
OFFSET
FINAL
TEMPERATURE
10 kHz
100 kHz
1 MHz
10 MHz
40 MHz
-40°C
-2
-1
-2
-2
0
25°C
-1
0
0
-1
0
85°C
-3
2
2
-0
0
-40°C
-1
-1
0
-1
0
25°C
These are all zero because all measurements are relative to this row.
85°C
-3
2
2
0
0
-40°C
-4
-2
-2
0
0
25°C
-1
0
0
-2
0
85°C
-2
2
2
0
0
8.3.3 OSCin INPUT and OSCin Doubler
The OSCin pin is driven with a single-ended signal which is used as a frequency reference. Before the OSCin
frequency reaches the phase detector, it may be doubled with the OSCin doubler and/or divided with the PLL R
divider.
Because the OSCin signal is used as a clock for the VCO calibration, the OSC_FREQ word needs to be
programmed correctly and a proper signal needs to be applied at the OSCin pin at the time of programming the
R0 register in order for the VCO calibration to properly work. Higher slew rates tend to yield the best fractional
spurs and phase noise, so a square wave signal is best for OSCin. If using a sine wave, higher frequencies tend
to yield better phase noise and fractional spurs due to their higher slew rates. The OSCin pin has high
impedance, so for optimal performance, it is recommended to use either a shunt resistor or resistive pad to make
sure that the impedances looking towards and away from the device input are both close to 50 Ω.
8.3.4 R Divider
The R divider divides the OSCin frequency down to the phase detector frequency. With this device, it is possible
to use both the doubler and the R divider at the same time.
8.3.5 PLL N Divider And Fractional Circuitry
The N divider includes fractional compensation and can achieve any fractional denominator (PLL_DEN) from 1 to
4,194,303. The integer portion, PLL_N, is the whole part of the N divider value and the fractional portion,
PLL_NUM / PLL_DEN, is the remaining fraction. PLL_N, PLL_NUM, and PLL_DEN are software programmable.
So in general, the total N divider value, N, is determined by: N = PLL_N + PLL_NUM / PLL_DEN. The order of
the delta sigma modulator is programmable from integer mode to third order. There are also several dithering
modes that are also programmable. In order to make the fractional spurs consistent, the modulator is reset any
time that the R0 register is programmed.
14
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.3.5.1 Programmable Dithering Levels
If used appropriately, dithering may be used to reduce sub-fractional spurs, but if used inappropriately, it can
actually create spurs and increase phase noise. Table 2 provides guidelines for the use of dithering based on the
fractional denominator, after the fraction is reduced to lowest terms.
Table 2. Dithering Recommendations
FRACTION
DITHERING
RECOMMENDATION
Fractional Numerator = 0
Disable Dithering
This is often the worst case for spurs, which can actually be turned into
the best case by simply disabling dithering. This will have performance
that is similar to integer mode.
Equivalent Denominator < 20
Disable Dithering
These fractions are not well randomized and dithering will likely create
phase noise and spurs.
Equivalent Denominator is not
divisible by 2 or 3
Disable Dithering
There will be no sub-fractional spurs, so dithering is likely not to be very
effective
Equivalent Denominator > 200
and is divisible by 2 or 3
Consider Dithering
COMMENTS
Dithering may help reduce the sub-fractional spurs, but understand it may
degrade the PLL phase noise.
In general, dithering is likely to cause more harm than good for poorly randomized fractions like 1/2. There are
situations when dithering does make sense and when it is used, it is recommended to adjust the PFD_DLY word
accordingly to compensate for this.
8.3.5.2 Programmable Delta Sigma Modulator Order
The fractional modulator order is programmable, which gives the opportunity to better optimize phase noise and
spurs. Theoretically, higher order modulators push out phase noise to farther offsets, as described in Table 3.
Table 3. Choosing the Fractional Modulator Order
MODULATOR ORDER
APPLICATIONS
Integer Mode
(Order = 0)
If the fractional numerator is zero, it is best to run the device in integer mode to minimize phase noise
and spurs.
First Order Modulator
When the equivalent fractional denominator is 6 or less, the first order modulator theoretically has lower
phase noise and spurs, so it always makes sense in these situations. When the fractional denoninator is
between 6 and about 20, consider using the first order modulator because the spurs might be far
enough outside the loop bandwidth that they will be filtered. The first order modulator also does not
create any sub-fractional spurs or phase noise.
2nd and 3rd Order Modulators
The choice between 2nd and 3rd order modulator tends to be a little more application specific. If the
fractional denominator is not divisible by 3, then the 2nd and 3rd order modulators will have spurs in the
same offsets, so the 3rd is generally better for spurs. However, if stronger levels of dithering is used, the
3rd order modulator will create more close-in phase noise than the 2nd order modulator
Figure 14 and Figure 15 give an idea of the theoretical impact of the delta sigma modulator order on the shaping
of the phase noise and spurs. In terms of phase noise, this is what one would theoretically expect if strong
dithering was used for a well-randomized fraction. Dithering can be set to different levels or even shut off and the
noise can be eliminated. In terms of spurs, they can change based on fraction, but they will theoretically pushed
out to higher phase detector frequencies. However, one must be aware that these are just THEORETICAL
graphs and for offsets that on the order of less than 5% of the phase detector frequency, other factors can
impact the noise and spurs. In Figure 14, the curves all cross at 1/6th of the phase detector frequency and that
this transfer function peaks at half of the phase detector frequency, which is assumed to be well outside the loop
bandwidth. Figure 15 shows the impact of the phase detector frequency on the modulator noise.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
15
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
-50
Theoretical Gain for Noise and Spurs (dB)
-60
-70
-80
-90
-100
-110
-120
-130
-140
1st Order Modulator
2nd Order Modulator
3rd Order Modulator
-150
1x106 2x106
5x106 1x107 2x107
Offset (Hz)
5x107 1x108 2x108
D001
Figure 14. Theoretical Delta Sigma Noise Shaping for a 100 MHz Phase Detector Frequency
-50
Theoretical Gain for Noise and Spurs (dB)
-60
-70
-80
-90
-100
-110
-120
-130
Fpd=10MHz
Fpd=100 MHz
Fpd=200 MHz
-140
-150
1x106 2x106
5x106 1x107 2x107
Offset (Hz)
5x107 1x108 2x108
D001
Figure 15. Theoretical Delta Sigma Noise Shaping for 3rd Order Modulator
For lower offsets, the actual noise added by the delta sigma modulator may be higher than the theoretical values
shown due to nonlinearity of the phase detector. This noise floor can vary with the modulator order, phase
detector frequency, and PFD_DLY word setting as shown in the following table, which shows the phase noise at
10 kHz offset for a frequency close to 2801 MHz with a well randomized fraction and strong dithering. The phase
noise in integer mode is also shown for comparison purposes.
16
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
Table 4. Impact of PFD_DLY, Modulator Order, and Phase Detector Frequency on Modulator Noise Floor
INTEGER
PFD_
DLY
Fpd=
25 MHz
Fpd=
50MHz
0
-106.7
-109.5
-111.4
1
-106.2
-108.8
-110.6
2
-106.0
-108.3
3
-106.0
4
-105.6
5
2nd ORDER MODULATOR
Fpd=
Fpd=
100 MHz 200 MHz
Fpd=
25 MHz
Fpd=
50MHz
Fpd=
Fpd=
100 MHz 200 MHz
-111.0
-106.3
-108.8
-110.6
-110.9
-106.5
-108.4
-110.1
-109.7
-110.1
-105.6
-108.3
-108.2
-109.4
-109.9
-105.3
-107.7
-109.4
-110.0
-105.1
-105.5
-107.6
-108.8
-110.1
6
-105.1
-107.3
-108.5
7
-104.8
-106.8
-108.2
3rd ORDER MODULATOR
Fpd=
25 MHz
Fpd=
50MHz
Fpd=
Fpd=
100 MHz 200 MHz
-111.0
-84.4
-87.5
-90.1
-110.0
-88.3
-91.3
-93.6
-98.5
-109.2
-110.1
-92.9
-96.1
-98.1
-102.8
-107.9
-109.2
-109.8
-99.2
-101.8
-102.6
-105.4
-107.5
-108.7
-109.3
-103.0
-105.4
-105.8
-106.2
-105.6
-107.4
-108.6
-109.0
-101.4
-104.0
-103.7
-105.5
-109.3
-104.6
-107.0
-107.8
-109.1
-98.4
-101.6
-102.7
-102.9
-105.9
-104.6
-106.2
-107.4
-108.7
-97.1
-100.6
-102.1
-100.2
-93.8
8.3.6 PLL Phase Detector and Charge Pump
The phase detector compares the outputs of the R and N dividers and generates a correction current
corresponding to the phase error. This charge pump current is software programmable to many different levels.
The phase detector frequency, fPD, can be calculated as follows:
fPD = fOSCin × OSC_2X / R
(2)
The charge pump outputs a correction current into the loop filter, which is implemented with external
components. The gain of the charge pump is programmable to 32 different levels with the CPG word and the
PFD_DLY word can adjust the minimum on time that the charge pump comes on for.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
17
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.3.7 External Loop Filter
The LMX2581 requires an external loop filter which is application-specific and can be configured by consulting
LMX2581 Tools and Software). For the LMX2581, it matters what impedance is seen from the Vtune pin looking
outwards. This impedance is dominated by the component C3_LF for a third order filter or C1_LF for a second
order filter (R3_LF=C3_LF=0). If there is at least 3.3 nF for the capacitance that is shunt with this pin, the VCO
phase noise will be close to the best it can be. If there is less, the VCO phase noise in the 100k to 1MHz region.
In cases where 3.3 nF might restrict the loop bandwidth to be too narrow, it might make sense to violate this
restriction a little and sacrifice some VCO phase noise in order to get a wider loop bandwidth.
R3_LF
Vtune
C3_LF
LMX2581
CPout
C2_LF
C1_LF
R2_LF
Figure 16. Typical Loop Filter
10
Component
1 nF
3.3 nF
330 pF
Phase Noise Degradation (dB)
8
6
4
2
0
-2
1x103
1x104
1x105
1x106
Offset (Hz)
1x107
5x107
D001
Figure 17. Vtune Capacitor Impact on VCO Phase Noise
18
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.3.8 Low Noise, Fully Integrated VCO
The VCO takes the voltage from the loop filter and converts this into a frequency. The VCO frequency is related
to the other frequencies and divider values as follows: fVCO = fPD × N = fOSCin × OSC_2X × N / R. The VCO is
fully integrated, including the tank circuitry.
In order to the reduce the VCO tuning gain and therefore improve the VCO phase noise performance, the
internal VCO is actually made of VCO cores working as one. These cores starting from lowest frequency to
highest frequency are VCO 1, VCO 2, VCO 3, and VCO 4. Each VCO core has 256 different frequency bands.
Band 255 is the lowest frequency and Band 0 is the highest This creates the need for frequency calibration in
order to determine the correct VCO core and correct frequency band in that VCO core. The frequency calibration
routine is activated any time that the R0 register is programmed with the NO_FCAL bit equal to zero. In order for
this frequency calibration to work properly, the OSC_FREQ word needs to be set to the correct setting. The
VCO_SEL word allows the user to suggest a particular VCO core for the device to choose, which is useful for
optimizing fractional spurs and minimizing lock time.
Table 5. Approximate (NOT Ensured) VCO Core Frequency Ranges
VCO CORE
APPROXIMATE FREQUENCY RANGE
VCO 1
1800 to 2270 MHz
VCO 2
2135 to 2720 MHz
VCO 3
2610 to 3220 MHz
VCO 4
3075 to 3800 MHz
8.3.8.1 VCO Digital Calibration
When the frequency is changed, the digital VCO goes through the following VCO calibration:
1. Depending on the status of the VCO_SEL word, the starting VCO core is selected.
2. The algorithm starts counting at the default band in this core as determined by the VCO_CAPCODE value.
3. The VCO increments or decrements the CAPCODE based on the what the actual VCO output is compared
to the target VCO output.
4. Repeat step 3 until either the VCO is locked or the VCO is at VCO_CAPCODE = 0 or 255
5. If not locked, then choose the next appropriate VCO if possible and return to step 3. If not possible, the
calibration is terminated.
A good starting point is to set VCO_SEL = 2 for VCO 3 and set VCO_SEL_MODE = 1 to start at the selected
core. If there is the potential of switching the VCO from a frequency above 3 GHz directly to a frequency below
2.2 GHz, VCO_SEL_MODE can not be set to 0. In this case, VCO_SEL_MODE can still be set to 1 to select a
starting core, but the starting core specified by VCO_SEL can not be VCO 4.
The digital calibration time can be improved dramatically by giving the VCO guidance regarding which VCO core
and which VCO_CAPCODE to start using. Even if the wrong VCO core is chosen, which could happen near the
boundary of two cores, the calibration time is improved. For situations where the frequency change is small, the
device can be programmed to automatically start at the last VCO core used. For applications where the
frequency change is relatively small, the best VCO calibration time can often be achieved by setting the
VCO_SEL_MODE to choose the last VCO core that was used.
8.3.9 Programmable VCO Divider
The VCO divider can be programmed to even values from 2 to 38 as well as bypassed by either one or both of
the RFout outputs. When the zero delay mode is not enabled, the VCO divider is not in the feedback path
between the VCO and the PLL and therefore has no impact on the PLL loop dynamics. After this programmable
divider is changed, it may be beneficial to reprogram the R0 register to recalibrate the VCO. The frequency at the
RFout pin is related to the VCO frequency and divider value, VCO_DIV, as follows:
fRFout = fVCO / VCO_DIV
(3)
When this divider is enabled, there will be some far-out phase noise contribution to the VCO noise.
When changing to a VCO_DIV value of 4, either from a state of VCO_DIV=2 or OUTx_MUX = 0, it is necessary
to program VCO_DIV first to a value of 6, then to a value of 4. This holds for no other VCO_DIV value and is not
necessary if the VCO frequency (but not VCO_DIV) is changing.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
19
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.3.10 0–Delay Mode
When the VCO divider is used, an ambiguous phase relationship is created between the OSCin and RFout pins.
0–Delay mode can be enabled to eliminate this ambiguity.
When this mode is used, special care needs to be taken because it does interfere with the VCO calibration if not
done correctly. The correct way to use 0–Delay mode is as follows:
1. If N is not divisible by VCO_DIV, reduce the phase detector frequency to make it so.
2. Program as normal and lock the PLL.
3. Program the NO_FCAL =1.
4. Program 0_DLY = 1. This will cause the PLL to lose lock.
5. Program the PLL_N value with PLL_N* / VCO_DIV, where PLL_N* is the original value.
6. The PLL should now be locked in zero delay mode.
8.3.11 Programmable RF Output Buffers
The output states of the RFoutA and RFoutB pins are controlled by the BUFEN pin as well as the BUFEN_DIS
programming bit. If the pin is powered up, then output power can be programmed to various levels with the
OUTx_PWR words.
Table 6. Output States of the RFoutA and RFoutB Pins
OUTA_PD
OUTB_PD
BUFEN_DIS
BUFEN PIN
OUTPUT STATE
1
X
X
Powered Down
0
X
Powered Up
Low
Powered Down
High
Powered Up
0
1
8.3.11.1 Choosing the Proper Pull-Up Component
The first decision is to whether to use a resistor or inductor for a pull up.
• The resistor pull-up involves placing a 50 Ω resistor to the power supply on each side, which makes the
output impedance easy to match and close to 50 Ω. However, it is a higher current for the same output
power, and the maximum possible output power is more limited. For this method, the OUTx_PWR setting
should be kept about 30 or less (for a 3.3-V supply) to avoid saturation. The resistive pull-up is also
sometimes more desirable when the output frequency is lower.
• The inductor pull-up involves placing an inductor to the power supply. This inductor should look like high
impedance at the frequency of interest. This method offers higher output power for the same current and
higher maximum output power. The output power is about 3 dB higher for the same OUTx_PWR setting than
the resistor pull-up. Since the output impedance will be very high and poorly matched, it is recommended to
either keep traces short or to AC couple this into a pad for better impedance matching.
If an output is partially used or unused:
• If the output is unused, then power it down in software. No external components are necessary.
• If only one side of the differential output is used, include the pull-up component and terminate the unused
side, such that the impedance as seen by this pin looks similar to the impedance as seen by the used side.
20
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.3.11.2 Choosing the Best Setting for the RFoutA_PWR and RFoutB_PWR Words
Table 7 shows the impact of the RFoutX_PWR word on the output power and current RELATIVE to a setting of
RFoutX_PWR = 15. The choice of pull-up component has an impact on the output power, but not much impact
on the output current. The relative noise floor measurements are made without the VCO divider engaged.
Table 7. Impact of the RFoutX_PWR Word on the Output Power and Current
OUTx_PWR
RELATIVE
CURRENT
(mA)
RESISTIVE PULL-UP
INDUCTOR PULL-UP
RELATIVE OUTPUT
POWER (dB)
RELATIVE NOISE
FLOOR (dB)
RELATIVE OUTPUT
POWER (dB)
RELATIVE NOISE
FLOOR (dB)
0
−16
− 9.0
+ 4.0
− 9.0
+ 2.5
5
− 11
− 4.6
+ 0.7
− 4.6
+ 0.5
10
−5
−2.0
+ 0.9
−2.0
- 0.1
15
0
0
0
0
0
20
+5
+ 1.4
+ 0.7
+ 1.5
- 0.6
25
+10
+ 2.1
+ 1.6
+ 2.8
- 1.1
30
+15
+ 2.4
+ 1.6
+ 3.9
- 1.0
35
+20
+ 2.2
+ 1.6
+ 4.8
- 0.9
40
+25
+ 1.9
+ 3.2
+ 5.4
+ 0.2
45
+30
+ 1.4
+ 5.6
+6.0
+ 2.0
For a resistive pull-up, a setting of 15 is optimal for noise floor and a setting if 30 is optimal for output power.
Settings above 30 are generally not recommended for a resistive pull-up. For an inductor pull-up, a setting of 30
is optimal for noise floor and a setting of 45 is optimal for output power. These settings may vary a little based on
output frequency, supply voltage, and loading of the output, but the above table gives a fairly close indication of
what performance to expect.
8.3.12 Fastlock
The LMX2581 includes the Fastlock™ feature that can be used to improve the lock times. When the frequency is
changed, a timeout counter is used to engage the Fastlock for a programmable amount of time. During the time
the device is in Fastlock, the FLout pin changes from high impedance to low, thus switching in the external
resistor R2pLF in parallel with R2_LF.
Vtune
Charge
Pump
CPout
C2_LF
Fastlock
Control
FLout
C1_LF
R2pLF
R2_LF
Table 8. Normal Operation vs. Fastlock
PARAMETER
NORMAL OPERATION
Charge Pump Gain
CPG
FASTLOCK
FL_CPG
FLout Pin
High Impedance
Grounded
Once the loop filter values and charge pump gain are known for normal operation, they can be determined for
Fastlock operation as well. In normal operation, one can not use the highest charge pump gain and still use
Fastlock because there will be no larger current to switch in. The resistor and the charge pump current are
changed simultaneously so that the phase margin remains the same while the loop bandwidth is multiplied by a
factor of K as shown in Table 9:
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
21
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
Table 9. Fastlock Configuration
PARAMETER
SYMBOL
CALCULATION
Charge Pump Gain in Fastlock
FL_CPG
Typically use the highest value.
Loop Bandwidth Multiplier
K
K=sqrt(FL_CPG/CPG)
External Resistor
R2pLF
R2 / (K-1)
8.3.13 Lock Detect
The LMX2581 offers two circuits to detect lock, Vtune and Digital Lock Detect, which may be used separately or
in conjunction. Digital Lock Detect gives a reliable indication of lock/unlock if programmed correctly with the one
exception, which occurs when the PLL is locked to a valid OSCin signal and then the OSCin signal is abruptly
removed. In this case, digital lock detect can sometimes still indicate a locked state, but Vtune Lock detect will
correctly indicate an unlocked state. Therefore, for the most reliable lock detect, it is recommended to use these
in conjunction, because each technique's drawback is covered by the other one. Note that because the
powerdown mode powers down the lock detect circuitry, it is possible to get a high lock detect indication when
the device is powered down. The details of the two respective methods are described below in the Vtune Lock
Detect and Digital Lock Detect (DLD) sections.
8.3.13.1 Vtune Lock Detect
This style of lock detect only works with the internal VCO. Whenever the tuning voltage goes below the threshold
of about 0.5 V, or above the threshold of about 2.2 V, the internal VCO will become unlocked and the Vtune lock
detect will indicate that the device is unlocked. For this reason, when the Vtune lock detect says the PLL is
unlocked, one can be certain that it is unlocked.
8.3.13.2 Digital Lock Detect (DLD)
This lock detect works by comparing the phase error as presented to the phase detector. If the phase error plus
the delay as specified by the PFD_DLY word outside the tolerance as specified by DLD_TOL, then this
comparison would be considered to be an error, otherwise passing. At higher phase detector frequencies, it may
be necessary to adjust the DLD_ERR_CNT and DLD_PASS_CNT. The DLD_ERR_CNT specifies how may
errors are necessary to cause the circuit to consider the PLL to be unlocked. The DLD_PASS_CNT multiplied by
8 specifies how many passing comparisons are necessary to cause the PLL to be considered to be locked and
also resets the count for the errors. The DLD_ERR_CNT and DLD_PASS_CNT values may be decreased to
make the circuit more sensitive, but if lock detect is made too sensitive, chattering can occur and these values
should be increased.
8.3.14 Part ID and Register Readback
8.3.14.1 Uses of Readback
The LMX2581 allows any of its registers to be read back, which could be useful for the following applications
below.
• Register Readback
– By reading back the register values, it can be confirmed that the correct information was written. In
addition to this, Register R6 has special diagnostic information that could potentially be useful for
debugging problems.
• Part ID Readback
– By reading back the part ID, this information may be used by whatever device is programming the
LMX2581 to identify this device and know what programming information to send. In addition to this, the
BUFEN and CE pins may be used to create 4 unique part ID values. Although these pins can impact the
device, they may be overridden in software. It is not necessary to have the device programmed in order to
do part ID Readback.
22
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
The procedure for doing this Readback is in the Serial Data Readback Timing section. Depending on the settings
for the ID(R0[31]) and RDADDR (R6[8:5]), information a different bit stream will be returned as shown in
Table 10.
Table 10. Uses of Readback
ID
BUFEN PIN
0
1
CE PIN
READBACK CODE
X
X
Readback register defined by
RDADDR.
0
0
0x 00000500
0
1
0x 00000510
1
0
0x 00000520
1
1
0x 00000530
8.3.14.2 Serial Timing for Readback
Readback is done through the the MUXout (or LD) pin with the same clock that is used to clock in the data.
•
•
•
•
Choose either the MUXout (or LD) pin for reading back data and program the MUXOUT_SELECT (or
LD_SELECT) to readback mode.
Bring the LE pin from low to high to start the readback at the MSB.
After the signal to the CLK pin goes high, the data will be ready at the readback pin 10 ns afterwards. It is
recommended to read back the data on the falling edge of the clock. Technically, the first bit actually
becomes ready after the rising edge of LE, but it still needs to be clocked out.
The address being clocked out will all be 1's.
Because the CLK pin is both used to clock in data and clock out data, special care needs to be taken to ensure
that erroneous data is not being clocked in during readback. There are two approaches to deal with this. The first
approach is to actually send valid data during readback. For this approach, R6 is a recommended register and
the approach is shown in Figure 18:
MSB
LSB
D27
MUXout
D26
D25
D24
D23
D0
1
1
1
D27
1
LSB
DATA
D27
D26
D25
D24
D23
D0
A3
A2
A1
A0
CLK
tCS
tCES
tCWH
tCH
tES
tCWL
LE
tEWH
Figure 18. Timing for Readback
A second approach is to hold LE high during readback so that the clock pulses do not clock data into the part,
but still function for readback purposes. Figure 19 demonstrates this method:
MSB
D27
MUXout
LSB
D26
D25
D24
D23
D0
1
1
1
1
LSB
CLK
tCWH
tCES
tCWL
LE
Figure 19. Timing for Readback, Holding LE High
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
23
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.3.15 Optimization of Spurs
The LMX2581 offers several programmable features for optimizing fractional spurs. In order to get the best out of
these features, it makes sense to understand the different kinds of spurs as well as their behaviors, causes, and
remedies. Although optimizing spurs may involve some trial and error, there are ways to make this process more
systematic. Texas Instruments offers tools for information and tools for fractional spurs such as Application Note
AN-1879 (SNAA062), the Clock Design Tool, and this datasheet.
8.3.15.1
Phase Detector Spur
The phase detector spur occurs at an offset from the carrier equal to the phase detector frequency, fPD. To
minimize this spur, considering using a smaller value for PFD_DLY, smaller value for CPG_BLEED, and a lower
phase detector frequency. In some cases where the loop bandwidth is very wide relative to the phase detector
frequency, some benefit might be gained from using a narrower loop bandwidth or adding poles to the loop filter,
but otherwise the loop filter has minimal impact. Bypassing at the supply pins and board layout can also have an
impact on this spur, especially at higher phase detector frequencies.
8.3.15.2 Fractional Spur - Integer Boundary Spur
This spur occurs at an offset equal to the difference between the VCO frequency and the closest integer channel
for the VCO. For instance, if the phase detector frequency is 100 MHz and the VCO frequency was 2703 MHz,
then the integer boundary spur would be at 3 MHz offset. This spur can be either PLL or VCO dominated. If it is
PLL dominated, then the following table shows that decreasing the loop bandwidth and some of the
programmable fractional words may impact this spur. If the spur is VCO dominated, then reducing the loop filter
will not help, but rather reducing the phase detector and having a good slew rate and signal integrity at the
OSCin pin will help. Regardless of whether it is PLL or VCO dominated, the VCO core does impact this spur.
Table 11. Typical Integer Boundary Spur Levels
FRACTIONAL INTEGER BOUNDARY SPURS
PLL DOMINATED
VCO CORE
InBandSpur
Metric
VCO 1
FORMULA
-33
VCO 2
-25
VCO 3
-37
VCO 4
-34
VCO DOMINATED
VCOXtalkSpur
METRIC
-89
InBandSpur
+ PLL_Transfer_Function(Offset)
- 20 × log(VCO_DIV)
-83
-99
-87
FORMULA
VCOXtalkSpur
+VCO_Transfer_Function(Offset)
+ 20 × log(fPD)
- 20 × log(Offset / 1MHz)
It is common practice to benchmark a fractional PLL spurs by choosing a worst case VCO frequency and use
this as a metric. However, one should be cautions that this is only a metric for the integer boundary spur. For
instance, suppose that one was to compare two devices by using an 100 MHz phase detector frequency, tune
the VCO to 2000.001 MHz, and measure the integer boundary spur at 1 kHz. If one part was to have better
spurs at this frequency, this does not necessarily mean that the spurs would be better at a channel farther from
an integer boundary, like 2025.001 MHz.
8.3.15.3 Fractional Spur - Primary Fractional Spurs
These spurs occur at multiples of fPD / PLL_DEN and are not the integer boundary spur. For instance, if the
phase detector frequency is 100 MHz and the fraction is 3/100, the primary fractional spurs would be at
1,2,4,5,6,...MHz. These are impacted by the loop filter bandwidth and modulator order. If a small frequency error
is acceptable, then a larger equivalent fraction may improve these spurs. For instance, if the fraction is 53/200,
expressing this as 530,000 / 2,000, 001. This larger unequivalent fraction pushes the fractional spur energy to
much lower frequencies that hopefully is not so critical.
8.3.15.4 Fractional Spur - Sub-Fractional Spurs
These spurs appear at a fraction of fPD / PLL_DEN and depend on modulator order. With the first order
modulator, there are no sub-fractional spurs. The second order modulator can produce 1/2 sub-fractional spurs if
the denominator is even. A third order modulator can produce sub-fractional spurs at 1/2,1/3, or 1/6 of the offset,
depending if it is divisible by 2 or 3. For instance, if the phase detector frequency is 100 MHz and the fraction is
3/100, no sub-fractional spurs for a first order modulator or sub-fractional spurs at multiples of 1.5 MHz for a 2nd
or 3rd order modulator would be expected.
24
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
Aside from strategically choosing the fractional denominator and using a lower order modulator, another tactic to
eliminate these spurs is to use dithering and express the fraction in larger equivalent terms (that is,
1000000/4000000 instead of 1/4). If a small frequency error is acceptable, also consider a larger unequivalent
fraction like (1000000,4000000). However, dithering can also add phase noise, so if dithering is used, this needs
to be managed with the various levels it has and the PFD_DLY word to get the best possible performance.
8.3.15.5 Summary of Spurs and Mitigation Techniques
Table 12 gives a summary of the spurs discussed so far and techniques to mitigate them.
Table 12. Spurs and Mitigation Techniques
SPUR TYPE
OFFSET
Phase Detector
fPD
WAYS to REDUCE
1.
2.
3.
Reduce Phase Detector Frequency
Decrease PFD_DLY
Decrease CPG_BLEED
TRADE-OFF
Although reducing the phase detector
frequency does improve this spur, it
also degrades phase noise.
Methods for PLL Dominated Spurs
1. Avoid the worst case VCO frequencies if possible.
2.
3.
4.
5.
Integer Boundary
fVCO mod fPD
Strategically choose which VCO core to use if
possible.
Reducing the loop bandwidth may
Ensure good slew rate and signal integrity at the degrade the total integrated noise if the
OSCin pin
bandwidth is too narrow.
Reduce the loop bandwidth or add more filter poles
for out of band spurs
Experiment with modulator order, PFD_DLY, and
CPG_BLEED
Methods for VCO Dominated Spurs
1. Avoid the worst case VCO frequencies if possible.
2. Strategically choose which VCO core to use if
possible.
3. Reduce Phase Detector Frequency
4. Ensure good slew rate and signal integrity at the
OSCin pin
5. Make the impedance looking outwards from the
OSCin pin close to 50 Ω.
Primary
Fractional
Sub-Fractional
Reducing the phase detector may
degrade the phase noise and also
reduce the capacitance at the Vtune
pin.
Decreasing the loop bandwidth too
much may degrade in-band phase
noise. Also, larger unequivalent
fractions only sometimes work
fPD / PLL_DEN
1.
2.
3.
Decrease Loop Bandwidth
Change Modulator Order
Use Larger Unequivalent Fractions
fPD / PLL_DEN / k
k=2,3, or 6
1.
2.
3.
4.
5.
Use Dithering
Use Larger Equivalent Fractions
Dithering and larger fractions may
Use Larger Unequivalent Fractions
increase phase noise.
Reduce Modulator Order
Eliminate factors of 2 or 3 in denominator (see AN1879, SNAA062)
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
25
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.4 Device Functional Modes
8.4.1 Full Synthesizer Mode
In this mode, the internal VCO is enabled. When combined with an external reference and loop filter, this mode
provides a complete signal source.
8.4.2 External VCO Mode
The LMX2581 allows the user to use an external VCO by using the Fin pin and selecting the external VCO mode
for the MODE word. Because this is software selectable, the user may have a setup that switches between the
external and internal VCO. Because the Fin pin is close to the RFoutA and RFoutB pins, some care needs to be
taken to minimize board crosstalk when both an external VCO and an output buffer is used. If only one output
buffer is required, it is recommended to use the RFoutB output because it is physically farther from the Fin pin
and therefore will have less board related crosstalk. When using external VCO with a different characteristic, it
may be necessary to change the phase detector polarity (CPP).
8.4.3 Powerdown Modes
The LMX2581 can be powered down either fully or partially with the PWDN_MODE word or the CE pin. The two
types of powerdown are in the following table.
Table 13. LMX2581 Powerdown Modes
POWERDOWN STATE
DESCRIPTION
Partial Powerdown
VCO, PLL, and Output buffers are powered down, but the LDOs are kept powered up to
reduce the time it takes to power the device back up.
Full Powerdown
VCO, PLL, Output Buffers, and LDOs are all powered down.
When coming out of a full powerdown state, it is necessary to do the initial power-on programming sequence
described in later sections. If coming out of a partial powerdown state, it is necessary to do the sequence for
switching frequencies after initialization, that is described in later sections.
26
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.5 Programming
The LMX2581 is programmed using several 32-bit registers. A 32-bit shift register is used as a temporary register
to indirectly program the on-chip registers. The shift register consists of a data field and an address field. The last
LSB bits, ADDR[3:0], form the address field, which is used to decode the internal register address. The
remaining 28 bits form the data field DATA[27:0]. While LE is low, serial data is clocked into the shift register
upon the rising edge of clock (data is programmed MSB first). When LE goes high, data is transferred from the
data field into the selected register bank.
8.5.1 Serial Data Input Timing
There are several programming considerations (see Figure 20):
• A slew rate of at least 30 V/us is recommended for the CLK, DATA, and LE signals
• The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE
signal, the data is sent from the shift registers to an actual counter.
• The LE pin may be held high after programming and this will cause the LMX2581 to ignore clock pulses.
• The CLK signal should not be high when LE transitions to low.
• When CLK and DATA lines are shared between devices, it is recommended to divide down the voltage to the
CLK, DATA, and LE pins closer to the minimum voltage. This provides better noise immunity.
• If the CLK and DATA lines are toggled while the in VCO is in lock. As is sometimes the case when these lines
are shared with other parts, the phase noise may be degraded during the time of this programming.
MSB
DATA
D27
LSB
D26
D25
D24
D23
A3
D0
A2
A1
A0
CLK
tCES
tCS
tCH
tCWH
tCWL
tES
LE
tEWH
Figure 20. Serial Data Input Timing
8.5.2 Recommended Initial Power on Programming Sequence
When the device is first powered up, the device needs to be initialized and the ordering of this programming is
very important. After the following sequence is complete, the device should be running and locked to the proper
frequency.
1. Apply power to the device and ensure the Vcc pins are at the proper levels.
2. Ensure that a valid reference is applied to the OSCin pin
3. Program register R5 with RESET (R5[4]) =1
4. Program registers R15,R13,R10,R9,R8,R7,R6,R5,R4,R3,R2,R1, and R0
5. Wait 20 ms
6. Program the R0 register again OR do the recommended sequence for changing frequencies.
8.5.3 Recommended Sequence for Changing Frequencies
The recommended sequence for changing frequencies is as follows:
1. (optional) If the OUTx_MUX State is changing, program Register R5
2. (optional) If the VCO_DIV state is changing, program Register R3. See VCO_DIV[4:0] — VCO Divider Value
if programming a to a value of 4.
3. (optional) If the MSB of the fractional numerator or charge pump gain is changing, program register R1
4. (Required) Program register R0
Although not necessary, it is also acceptable to program the R0 register a second time after this programming
sequence. It is not necessary to program the initial power on sequence to change frequencies.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
27
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
Programming (continued)
8.5.4 Triggering Registers
The action of programming certain registers may trigger special actions as shown in Table 14.
Table 14. Triggering Registers
28
REGISTER
CONDITIONS
ACTIONS TRIGGERED
WHY THIS IS DONE
R5
RESET = 1
The registers are reset by the power on reset circuitry
All Registers are reset to power on when power is initially applied. The RESET bit allows the
default values. This takes less than 1 user the option to perform the same functionality of the
us. The reset bit is self-clearing.
power-on reset through software.
R0
NO_FCAL = 0
—Starts the Frequency Calibration
—Engages Fastlock (If FL_TOC>0)
This activates the frequency calibration, which chooses the
correct VCO core and also the correct frequency band
within that core. This is necessary whenever the frequency
is changed. If it is desired that the R0 register be
programmed without activating this calibration, then the
NO_FCAL bit can be set to zero. If the fastlock timeout
counter is programmed to a nonzero value, then this action
also engages fastlock.
R0
NO_FCAL = 1
—Engages Fastlock (If FL_TOC>0)
This engages fastlock, which may be used to decrease the
lock time in some circumstances.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6 Register Maps
Table 15. Register Map
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
DATA[27:0]
R15
0
R13
0
0
0
0
0
1
DLD_ERR_CNT[3:0]
0
0
0
0
1
1
1
1
1
1
DLD_
TOL
[2:0]
DLD_PASS_CNT[9:0]
2
1
0
ADDRESS[3:0]
1
1
VCO
_
CAP
_
MAN
1
0
0
0
0
0
1
0
0
0
VCO_CAPCODE[7:0]
1
1
1
1
0
1
1
0
1
R10
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
1
0
1
0
R9
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
1
R8
0
0
1
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
1
0
0
0
LD_
PINMODE[2:0]
0
1
1
1
uWI
RE_
LOC
K
0
1
1
0
RES
ET
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
R7
0
R6
0
R5
0
FL_SELECT
[4:0]
0
0
0
0
0
0
1
0
0
0
R2
0
0
OSC
_2X
0
CPP
1
OUT
_LD
EN
FRAC_
DITHER
[1:0]
BUF
EN_
DIS
OSC_FREQ[2:0]
0
0
0
0
LD_SELECT
[4:0]
1
0
0
VCO_
SEL_
MODE
[1:0]
OUTB_
MUX
[1:0]
FL_CPG[4:0]
VCO_DIV[4:0]
OUTB_PWR[5:0]
OUTA
_MUX
[1:0]
0_
DLY
LD_
INV
0
RDADDR[3:0]
MODE
[1:0]
0
PWDN_MODE
[2:0]
CPG_BLEED[5:0]
OUT
B
_PD
OUTA_PWR[5:0]
PLL_DEN[21:0]
VCO_
SEL
[1:0]
CPG[4:0]
ID
MUXOUT_SELECT
[4:0]
FL_TOC[11:0]
0
R0
0
FL_
FRC
E
R3
R1
FL_
INV
MUXOUT_
PINMODE
[2:0]
RD_DIAGNOSTICS[19:0]
PFD_DLY
[2:0]
R4
FL_PINMODE
[2:0]
MUX
_
INV
NO_
FCA
L
PLL_NUM[21:12]
PLL_N[11:0]
FRAC_
ORDER
[2:0]
PLL_R[7:0]
PLL_NUM[11:0]
OUT
A
_PD
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
29
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.6.1 Programming Word Descriptions
8.6.1.1 Register R15
The programming of register R15 is only necessary when one wants to change the default value of
VCO_CAPCODE for improving the VCO calibration time or use the VCO_CAP_MAN bit for diagnostic purposes.
8.6.1.1.1
VCO_CAP_MAN — Manual VCO Band Select
This bit determines if the value of VCO_CAPCODE is just used as a starting point for the initial frequency
calibration or if the VCO is forced to this value. If this is forced, it is only for diagnostic purposes.
VCO_CAP_MAN
IMPACT of VCO_CAPCODE
0
VCO_CAPCODE value is initial starting point for VCO digital calibration.
1
VCO_CAPCODE value is forced all the time. For diagnostic purposes only.
8.6.1.1.2 VCO_CAPCODE[7:0] — Capacitor Value for VCO Band Selection
This word selects the VCO tank capacitor value that is initially used when VCO calibration is run or that is forced
when VCO_CAP_MAN is set to one. The lower values correspond to less capacitance, which corresponds to a
higher VCO frequency for a given VCO Core. If this word is not programmed, it is defaulted to 128.
VCO_CAPCODE
VCO TANK CAPACITANCE
VCO FREQUENCY
0
Minimum
Highest
...
...
...
255
Maximum
Lowest
8.6.1.2 Register R13
Register R13 gives access to words that are used for the digital lock detect circuitry.
8.6.1.2.1 DLD_ERR_CNT[3:0] - Digital Lock Detect Error Count
This is the amount of phase detector comparisons that may exceed the tolerance as specified in DLD_TOL
before digital lock indicates an unlocked state. The recommended default is 4 for phase detector frequencies of
80 MHz or below; higher frequencies may require the user to experiment to optimize this value.
8.6.1.2.2 DLD_PASS_CNT[9:0] - Digital Lock Detect Success Count
This value multiplied by 8 is the amount of phase detector comparison within the tolerance specified by
DLD_TOL and adjusted by DLD_ERR_CNT that are necessary to cause the digital lock to indicate a locked
state. The recommended value is 32 for phase detector frequencies of 80 MHz or below; higher frequencies may
require the user to experiment and optimize this value based on application.
8.6.1.2.3 DLD_TOL[2:0] — Digital Lock Detect
This is the tolerance that is used to compare with each phase error to decide if it is a success or a fail. Larger
settings are generally recommended, but they are limited by several factors such as PFD_DLY, modulator order,
and especially the phase detector frequency.
DLD_TOL
30
PHASE ERROR TOLERANCE (ns)
TYPICAL PHASE DETECTOR FREQUENCY
0
1
Fpd > 130 MHz
1
1.7
80 MHz < Fpd ≤ 130 MHz
2
3
60 MHz < Fpd ≤ 80 MHz
3
6
45 MHz < Fpd ≤ 60 MHz
4
10
30 MHz <Fpd ≤ 45 MHz
5
18
Fpd ≤ 30 MHz
6–7
Reserved
n/a
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.3 Registers R10, R9, and R8
These registers control functions that are not disclosed to the user and the power on default values are not
optimal. Therefore these registers need to be programmed to the values specified in the register map for proper
operation.
8.6.1.4 Register R7
This register has words that control status pins, which would be LD, MUXout, and FLout
8.6.1.4.1 FL_PINMODE[2:0], MUXOUT_PINMODE[2:0], and LD_PINMODE[2:0] — Output Format for Status Pins
These words control the state of the output pin.
FL_PINMODE
MUXOUT_PINMODE
LD_PINMODE
OUTPUT TYPE
0
TRI-STATE
(Default for LD_PINMODE)
1
Push-Pull
(Default for MUXOUT_PINMODE)
2
Open Drain
3
High Drive Push-Pull
(Can drive 5 mA for an LED)
4
High Drive Open Drain
5
High Drive Open Source
6,7
Reserved
8.6.1.4.2 FL_INV, MUX_INV, LD_INV - Inversion for Status Pins
The logic for the LD and MUXOUT pins can be inverted with these bits.
FL_INV
MUX_INV
LD_INV
PIN STATUS
0
Normal Operation
1
Inverted
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
31
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.4.3
www.ti.com
FL_SELECT[4:0], MUXOUT_SELECT[4:0], LD_SELECT[4:0] — State for Status Pins
This word controls the output state of the MUXout, LD, and FLout pins. Note that during fastlock, the
FL_SELECT word is ignored.
FL_SELECT
MUXOUT_SELECT
LD_SELECT
32
OUTPUT
0
GND
1
Digital Lock Detect (Based on Phase Measurement)
2
Vtune Lock Detect (Based on tuning voltage)
3
Lock Detect (Based on Phase Measurement AND tuning voltage)
4
Readback (Default for MUXOUT_SELECT)
5
PLL_N divided by 2
6
PLL_N divided by 4
7
PLL_R divided by 2
8
PLL_R divided by 4
9
Analog Lock Detect
10
OSCin Detect
11
Fin Detect
12
Calibration Running
13
Tuning Voltage out of Range
14
VCO calibration fails in the low frequency direction.
15
VCO Calibration fails in the high frequency direction.
16-31
Reserved
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.5 Register R6
8.6.1.5.1 RD_DIAGNOSTICS[19:0] — Readback Diagnostics
This word is contains several pieces of information that may be read back for debug and diagnostic purposes.
RD_DIAGNOISTICS[19:8]
19
18
17
16
15
OSCIN_DETECT
VCO_DETECT
[14:11]
10
9
8
Reserved
CAL_
RUNNING
VCO_RAIL_
HIGH
VCO_RAIL_
LOW
VCO_SELECT
FIN_DETECT
7
6
5
4
3
2
1
0
Reserved
VCO_TUNE_
HIGH
VCO_TUNE_
VALID
FLOUT_ON
DLD
LD_PIN
STATE
CE_PIN
STATE
BUFEN_PIN
STATE
RD_DIAGNOISTICS[7:0]
WORD NAME
MEANING if VALUE is ONE
VCO_ SELECT
This is the VCO that the device chose to use. 0 = VCO 1, 1 = VCO 2, 2 = VCO 3, 3 = VCO 4
FIN_DETECT
Indicates transitions at the Fin pin have been detected. This could either be the VCO signal or self-oscillation of the
Fin pin in the even that no signal is present. This bit needs to be manually reset by programing register R5 with
R5[30] = 1, and then again with bit R5[30]=0
OSCIN_DETECT
Indicates transitions at the OSCin pin have been detected. This could either be a signal at the OSCin pin or selfoscillation at the OSCin pin in the event no signal is present . This bit needs to be manually reset by programming
R5 with R5[29] = 1 and then again with R5[29] = 0.
CAL_RUNNING
Indicates that some calibration in the part is currently running.
VCO_RAIL_HIGH
Indicates that the VCO frequency calibration failed because the VCO would need to be a higher frequency than it
could achieve.
VCO_RAIL_LOW
Indicates that the VCO frequency calibration failed because the VCO would need to be a lower frequency than it
could achieve.
VCO_TUNE_HIGH
Indicates that the VCO tuning voltage is higher than 2.4 volts and outside the allowable range.
VCO_TUNE_VALID
Indicates that the VCO tuning voltage is inside then allowable range.
FLOUT_ON
Indicates that the FLout pin is low.
DLD
Indicates that the digital lock detect phase measurement indicates a locked state. This does not include any
consideration of the VCO tuning voltage.
LD_PINSTATE
This is the state of the LD Pin.
CE_PINSTATE
This is the state of the CE pin.
BUFEN_PINSTATE
This is the state of the BUFEN pin.
8.6.1.5.2 RDADDR[3:0] — Readback Address
When the ID bit is set to zero, this word designates which register is read back from. When the ID bit is set to
one, the unique part ID identifying the device as the LMX2581 is read back.
ID
RDADDR
INFORMATION READ BACK
1
Don't Care
Part ID
0
Register R0
1
Register R1
...
...
15 (default)
Register R15
0
8.6.1.5.3 uWIRE_LOCK - Microwire lock
uWIRE_LOCK
MICROWIRE
0
Normal Operation
1
Locked out – All Programming except to the uWIRE_LOCK bit is ignored
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
33
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.6.1.6 Register R5
8.6.1.6.1 OUT_LDEN — Mute Outputs Based on Lock Detect
When this bit is enabled, the RFoutA and RFoutB pins are disabled if the PLL digital lock detect circuitry
indicates that the PLL is in the unlocked state.
OUT_LDEN
PLL DIGITAL LOCK DETECT STATUS
RFoutA / RFoutB PINS
0
Don't Care
Normal Operation
1
Locked
Normal Operation
1
Unlocked
Powered Down
8.6.1.6.2 OSC_FREQ[2:0] — OSCin Frequency for VCO Calibration
This word should be set to in accordance to the OSCin frequency BEFORE the doubler. It is critical for running
internal calibrations for this device.
OSC_FREQ
OSCin FREQUENCY
0
fOSCin < 64 MHz
1
64 ≤ fOSCin < 128 MHz
2
128 ≤ fOSCin < 256 MHz
3
256 ≤ fOSCin < 512 MHz
4
512 ≤ fOSCin
≥5
Reserved
8.6.1.6.3 BUFEN_DIS - Disable for the BUFEN Pin
This pin allows the BUFEN pin to be disabled. This is useful if one does not want to pull this pin high or use it for
the readback ID.
8.6.1.6.4
BUFEN_DIS
BUFEN PIN
0
Impacts Output buffers
1
Ignored.
VCO_SEL_MODE — Method of Selecting Internal VCO Core
This word allows the user to choose how the VCO selected by the VCO_SEL word is treated. Note setting 0
should not be used if switching from a frequency above 3 GHz to a frequency below 2.2 GHz.
VCO_SEL_MODE
VCO SELECTION
0
VCO core is automatically selected based on the last one that was used. If none was used before, it chooses
the lowest frequency VCO core.
1
VCO selection starts at the value as specified by the VCO_SEL word. However, if this is invalid, it will choose
another VCO.
2
VCO is forced to the selection as defined by the VCO_SEL word, regardless of whether it is valid or not. Note
that this mode is not ensured and is only included for diagnostic purposes.
3
Reserved
8.6.1.6.5 OUTB_MUX — Mux for RFoutB
This word determines whether RFoutB is the VCO frequency, the VCO frequency divided by VCO_DIV, or the fin
frequency.
OUTB_MUX
34
RFoutB FREQUENCY
0
fVCO
1
fVCO / VCO_DIV
2
fFin
3
Reserved
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.6.6 OUTA_MUX — Mux for RFoutA
This word determines whether RFoutA is the VCO frequency, the VCO frequency divided by VCO_DIV, or the fin
frequency.
OUTA_MUX
RFoutA FREQUENCY
0
fVCO
1
fVCO / VCO_DIV
2
fFin
3
Reserved
8.6.1.6.7 0_DLY - Zero Delay Mode
When this mode is enabled, the VCO divider is put in the feedback path of the PLL so that the delay from input
to output of the device will be deterministic.
0_DLY
PHASE DETECTOR INPUT
0
Direct VCO or Fin signal.
1
Channel Divider output.
8.6.1.6.8 MODE[1:0] — Operating Mode
This word determines in what mode the device is run.
MODE
OPERATIONAL MODE
PLL
VCO
FIN PIN
0
Full Chip Mode
Powered Up
Powered Up
Powered Down
1
PLL Only Mode
Powered Up
Powered Down
Powered Down
2,3
Reserved
Reserved
Reserved
Reserved
8.6.1.6.9 PWDN_MODE - Powerdown Mode
This word powers the device up and down. Aside from the traditional power up and power down, there is the
partial powerdown that powers down the PLL and VCO, but keeps the LDOs powered up to allow the device to
power up faster.
PWDN_MODE
CE Pin
0
X
Powered Up
1
X
Full Powerdown
2
X
Reserved
3
X
Partial Powerdown
4
5
6
7
DEVICE STATUS
Low
Full Powerdown
High
Powered Up
X
Reserved
Low
Partial Powerdown
High
Powered Up
Low
Full Powerdown
High
Partial Powerdown
8.6.1.6.10 RESET - Register Reset
When this bit is enabled, the action of programming register R5 resets all registers to their default power on reset
status, otherwise the words in register 5 may be programmed without resetting all the registers.
RESET
ACTION of PROGRAMMING REGISTER R5
0
Registers and state machines are operational.
1
Registers and state machines are reset, then this reset is automatically released.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
35
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.6.1.7 Register R4
8.6.1.7.1 PFD_DLY[2:0] — Phase Detector Delay
This word controls the minimum on time for the charge pump. The minimum setting often yields the best phase
detector spurs and integer mode PLL phase noise. Higher settings may be useful in reducing the delta sigma
noise of the modulator when dithering is enabled. These settings are not generally recommended if the phase
detector frequency exceeds 130 MHz. If unsure, program this word to zero.
PFD_DLY
PULSE WIDTH
WHEN RECOMMENDED
0
370 ps
Default
Use with a 2nd order modulator , when
dithering is disabled, or when the phase
detector frequency is >130 MHz.
1
760 ps
2
1130 ps
3
1460 ps
4
1770 ps
5
2070 ps
6
2350 ps
7
2600 ps
Consider these settings for a 3rd order
modulator when dithering is used.
8.6.1.7.2 FL_FRCE — Force Fastlock Conditions
This bit forces the fastlock conditions on, provided that the FL_TOC word is greater than zero.
FL_FRCE
FASTLOCK TIMEOUT COUNTER
FASTLOCK
0
Disabled
>0
Fastlock engaged as long as timeout counter is
counting down
0
1
0
Invalid State
>0
Always Engaged
8.6.1.7.3 FL_TOC[11:0] — Fastlock Timeout Counter
This word controls the timeout counter used for fastlock.
FL_TOC
FASTLOCK TIMEOUT COUNTER
COMMENTS
0
Disabled
Fastlock Disabled
1
2 x Reference Cycles
2
2 x 2 x Reference cycles
...
4095
36
Fastlock engaged as long as timeout counter is
counting down
2 x 4095 x Reference cycles
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.7.4 FL_CPG[4:0] — Fastlock Charge Pump Gain
This word determines the charge pump current that is active during fastlock.
FL_CPG
FASTLOCK CURRENT STATE
0
TRI-STATE
1
1X
2
2X
..
...
31
31X
8.6.1.7.5 CPG_BLEED[5:0]
The CPG bleed word is for advanced users who want to get the lowest possible integer boundary spur. The
impact of this word is on the order of 2 dB. For users who do not care about this, the recommendation is to
default this word to zero.
USER TYPE
FRAC_ORDER
CPG
CPG BLEED RECOMMENDATION
Basic User
X
X
0
<2
X
0
X
< 4X
0
4X ≤ CPG < 12X
2
12X ≤ CPG
4
Advanced User
>1
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
37
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.6.1.8 Register R3
8.6.1.8.1 VCO_DIV[4:0] — VCO Divider Value
This word determines the value of the VCO divider. Note that the this divider may be bypassed with the
OUTA_MUX and OUTB_MUX words.
VCO_DIV
VCO DIVIDER VALUE
0
2
1
4
2
6
3
8
4
10
...
...
18
38
20 - 31
Invalid State
8.6.1.8.2 OUTB_PWR[5:0] — RFoutB Output Power
This word controls the output power for the RFoutB output.
OUTB_PWR
RFoutB POWER
0
Minimum
...
...
47
Maximum
48 – 63
Reserved
8.6.1.8.3 OUTA_PWR[5:0] — RFoutA Output Power
This word controls the output power for the RFoutA output.
OUTA_PWR
RFout POWER
0
Minimum
...
...
47
Maximum
48 – 63
Reserved.
8.6.1.8.4 OUTB_PD — RFoutB Powerdown
This bit powers down the RFoutB output.
OUTB_PD
RFoutB
0
Normal Operation
1
Powered Down
8.6.1.8.5 OUTA_PD — RFoutA Powerdown
This bit powers down the RFoutA output.
38
OUTA_PD
RFoutA
0
Normal Operation
1
Powered Down
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.9 Register R2
8.6.1.9.1 OSC_2X — OSCin Doubler
This bit controls the doubler for the OSCin frequency.
OSC_2X
OSCin DOUBLER
0
Disabled
1
Enabled
8.6.1.9.2 CPP - Charge Pump Polarity
This bit sets the charge pump polarity. Note that the internal VCO has a negative tuning gain, so it should be set
to negative gain with the internal VCO enabled.
CPP
CHARGE PUMP POLARITY
0
Positive
1
Negative (Default)
8.6.1.9.3 PLL_DEN[21:0] — PLL Fractional Denominator
These words control the denominator for the PLL fraction. Note that 0 is only permissible in integer mode.
PLL
_
DEN
PLL_DEN[21:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4194
303
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
39
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.6.1.10 Register R1
8.6.1.10.1 CPG[4:0] — PLL Charge Pump Gain
This word determines the charge pump current that used during steady state operation.
CPG
CHARGE PUMP CURRENT STATE
0
TRI-STATE
1
1X
2
2X
..
...
31
31X
Note that if the CPG setting is 400 µA or lower, then the CPG_BLEED word needs to be set to 0.
8.6.1.10.2 VCO_SEL[1:0] - VCO Selection
These words allow the user to specify which VCO the frequency calibration starts at. If uncertain, program this
word to 0 to start at the lowest frequency VCO core. A programming setting of 3 (VCO 4) should not be used if
switching to a frequency below 2.2 GHz.
VCO_SEL
VCO SELECTION
0
VCO 1
(Lowest Frequency)
1
VCO 2
2
VCO 3
3
VCO 4
(Highest Frequency)
8.6.1.10.3 FRAC_ORDER[2:0] — PLL Delta Sigma Modulator Order
This word sets the order for the fractional engine.
FRAC_ORDER
MODULATOR ORDER
0
Integer Mode
1
1st Order Modulator
2
2nd Order Modulator
3
3rd Order Modulator
4-7
Reserved
8.6.1.10.4 PLL_R[7:0] — PLL R divider
This word sets the value that divides the OSCin frequency.
PLL_R
40
PLL_R DIVIDER VALUE
0
256
1
1 (bypass)
...
...
255
255
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
8.6.1.11 Register R0
Register R0 controls the frequency of the device. Also, unless disabled by setting NO_FCAL = 1, the action of
writing to the R0 register triggers a frequency calibration for the internal VCO.
8.6.1.11.1 ID - Part ID Readback
When this bit is set, the part ID indicating the device is an LMX2581 is read back from the device. Consult the
Feature Description for more details.
ID
READBACK MODE
0
Register
1
Part ID
8.6.1.11.2 FRAC_DITHER[1:0] — PLL Fractional Dithering
This word sets the dithering mode. When the fractional numerator is zero, it is recommended, although not
required, to set the FRAC_DITHER mode to disabled for the best possible spurs. Doing this shuts down the
fractional circuitry and eliminates fractional spurs for these frequencies. This is the reason why the
FRAC_DITHER word is in the R0 register, so that it can be set correctly for every frequency if this setting
changes.
FRAC_DITHER
DITHERING MODE
0
Weak
1
Medium
2
Strong
3
Disabled
8.6.1.11.3 NO_FCAL — Disable Frequency Calibration
Normally, when the R0 register is written to, a frequency calibration for the internal VCO is triggered. However,
this feature may be disabled. If the frequency is changed, then this frequency calibration is necessary for the
internal VCO.
NO_FCAL
VCO FREQUENCY CALIBRATION
0
Done upon write to R0 Register
1
Not done on write to R0 Register
8.6.1.11.4 PLL_N - PLL Feedback Divider Value
This is the feedback divider value for the PLL. There are some restrictions on this depending on the modulator
order.
PLL_N
PLL_N[11:0]
<7
Invalid state
7
Possible only in integer mode or with a 1st order modulator
8-9
Possible in integer mode, 1st order modulator, or 2nd order modulator
10-13
Possible only in integer mode, 1st order modulator, 2nd order modulator, or 3rd order modulator
14
0
0
0
0
0
0
0
0
1
1
1
0
...
...
...
...
...
...
...
...
...
...
...
...
...
4095
1
1
1
1
1
1
1
1
1
1
1
1
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
41
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
8.6.1.11.5 PLL_NUM[21:12] and PLL_NUM[11:0] — PLL Fractional Numerator
These words control the numerator for the PLL fraction.
PLL
_
NU
M
PLL_NUM[21:12]
PLL_NUM[11:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4095
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
4096
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4194
303
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
42
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The LMX2581 can be used in a broad class of applications. In general, they tend to fall in the categories where
the output frequency is a nicely related input frequency and those that require fractional mode. The following
schematic generally applies to most applications.
9.2 Typical Applications
Figure 21. Typical Schematic
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
43
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
Typical Applications (continued)
9.2.1 Clocking Application
When the output and input frequencies are nicely related, the LMX2581 can often achieve this in integer mode.
In integer mode, fractional spurs and noise are much less of a concern, so higher phase detector frequency and
wider loop bandwidth are typically used for optimal phase noise performance.
9.2.1.1 Design Requirements
For this example, consider a design for a fixed 1500 MHz output clock to be generated from a 100 MHz input
clock. Good close in phase noise and maximizing the output power are desired in this particular example
9.2.1.2 Detailed Design Procedure
For this kind of application, the design goal is typically to minimize the jitter.
44
PARAMETER
VALUE
Fout
1500 MHz
This parameter was given.
Fosc
100 MHz
This parameter was given.
Fpd
200 MHz
Choose a highest possible phase detector frequency. There are no fractional spurs and
this increases the value of C1
Fvco
3000 MHz
The VCO needs to be a multiple of 1500 MHz, which restricts it to be 3000 MHz.
Kpd
31x
Loop Bandwidth
256 kHz
Phase Margin
50 deg
OUT_A_PWR
45
C1
1 nF
C2
6.8 nF
R2
270 Ω
Pull-Up Component
18 nH Inductor
REASON for CHOOSING
This maximizes the C1 capacitor and also the phase noise
Theoretically, optimal jitter is obtained by choosing the loop bandwidth to the frequency
where the open loop PLL and closed loop VCO noise are equal, which would be about
250 kHz. The phase margin is typically chosen around 70 degrees, but is chosen to be
50 degrees to increase the value of the C1 capacitor to be at least 1 nF to reduce VCO
phase noise degradation.
This yields the maximum output power.
Calculated with TI clock design software
This gives maximum output power.
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
9.2.1.3 Application Curves
Figure 22 is an example of the performance that one might see for an application like this. The achieved results
show an output power of about 14 dBm (single-ended) and a jitter from 100 Hz to 10 MHz of 100 fs. Note that
the output power is higher than +12 dBm as claimed in the electrical specifications because this is at a lower
frequency than 2.7 GHz.
-80
PLL Simulation
Measurement
VCO & Output Divider Simulation
Loop Bandwidth
Phase Noise (dBc/Hz)
-100
-120
-140
-160
1x102 2x102
5x102 1x103 2x103
5x103 1x104 2x104
5x104 1x105 2x105
Offset (Hz)
5x105 1x106 2x106
5x106 1x107 2x107
5x107 1x108
Figure 22. Measured Data and Loop Bandwidth Choice
Figure 23. Measured Plot
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
45
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
9.2.2 Fractional PLL Application
For applications where the output frequency is not always related nicely to the input frequency, lowering the loop
bandwidth and reducing the phase detector frequency can often improve spurs at the cost of in-band phase
noise.
9.2.2.1 Design Requirements
Consider generating 1880 to 3760 MHz from a 100 MHz input frequency with a channel spacing of 200 kHz. This
is the situation similar that was used for the EVM board.
9.2.2.2 Detailed Design Procedure
PARAMETER
VALUE
Fout
1880 - 3760 MHz
This parameter was given.
Fosc
100 MHz
This parameter was given.
Fpd
25 MHz
By trial and error and experimenting with the clock design tool, we see that this
gives a good trade-off between the integer boundary spur and phase noise.
Loop Bandwidth
28.7 KHz
Kpd
31x
C1_LF
1.8 nF
C2_LF
56 nF
C3_LF
Open
C4_LF
3.3 nF
R2_LF
390 Ω
R3_LF
270 Ω
R4_LF
0Ω
OUT_A_PWR
30
Pull-Up Component
18 nH Inductor
REASON for CHOOSING
This is around where the PLL and VCO noise meet. The VCO is at 2700 MHz
Choose the highest charge pump gain to maximize the capacitor next to the VCO.
The loop filter can be calculated with the clock design tool. Note that we need to
keep the loop bandwidth not too wide so that the capacitor next to the VCO is
larger. Also, it is put in C4_LF spot, not C3_LF spot. Both are electrically
equivalent, but layoutwise, C4_LF makes more sense. See the board layout in
sections to come.
This combination of pull-up component and output power settings yields optimal
noise floor.
9.2.2.3 Application Curves
Figure 25. Fractional Channel 2703 MHz
Figure 24. Integer Channel
46
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
9.3 Do's and Don'ts
CATEGORY
Output Pull-Up
Components
DO
DON'T
Place pull-up components close
to RFoutA and RFoutB
•
Fractional Spurs •
•
•
Dithering
•
Go through a Via before getting
to the pull-up component.
•
Take advantage of TI tools
that can simulate these.
Read the section on spurs to
better understand them.
•
Use a systematic process to
optimize them
Assume that raising the
phase detector frequency
always improves the integer
boundary spur.
Fractional spurs can have more than one
Assume that changing the mechanism, especially the integer boundary spur.
loop bandwidth will always
impact integer boundary
spurs.
Understand the trade-offs
and when it is appropriate to
use.
Use on simple fractions .
Combine
with
larger
equivalent fractions.
•
VbiasCOMP
and VbiasVCO
Put as much capacitance as
possible, up to 32 µF
•
WHY
The output impedance is determined by this
component and if it is far away, there will be loss in
output power.
Dithering is very effective in eliminating some
spurs, but useless for eliminating others. Dithering
adds PLL phase noise, so it should be only used
for appropriate situations.
Use less than 10 µF of
capacitance
This capacitance impacts the VCO phase noise.
Ignore capacitor de-rating
factors.
10 Power Supply Recommendations
10.1 Supply Recommendations
Low noise regulators are generally recommended for the supply pins. It is OK to have one regulator supply the
part, although it is best to put individual bypassing as shown in the Layout Guidelines for the best spur
performance. The most noise sensitive components are the pull-up components for the output buffers since
supply noise here will directly go to the output. For purposes of bypassing, below is how the current consumption
is approximately distributed through each pin. For this table, default mode is with internal VCO mode with one
output buffer powered up with OUTx_PWR=15. External VCO mode assumes the VCO divider and output buffers
are off.
Table 16. Current Consumption by Pin
CONDITION
DEFAULT MODE
DEFAULT MODE
with VCO DIVIDER
ENABLED
EXTERNAL VCO MODE
with OUTPUT BUFFER
DISABLED
VccCP
12
12
12
Pin 10
VccPLL
28
28
48
Pin 16
VccBUF
23
43
1
Pin 17
VccVCO
83
83
14
PIN NUMBER
PIN NAME
Pin 6
Pin 28
VccDIG
10
10
10
Pin 32
VccFRAC
<<1
<<1
<<1
n/a
Output Pull-Up
Component
22
22
0
178
198
85
TOTAL
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
47
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
10.2 Regulator Output Pins
The recommendation for the VregVCO and VbiasCOMP pins is a minimum of one 10 µF capacitor, but more
capacitance is better. These pins have a bias voltage of about 2.5 V, which means that capacitors of smaller
case size and voltage ratings can actually have far less capacitance the labeled value of the capacitor. If there is
insufficient capacitance on these pins, then the VCO phase noise may be degraded. This degradation may vary
with frequency and how insufficient the capacitance is, but for example, bench tests show a degradation of about
5 dB at 20 KHz offset for a 3 GHz carrier if these capacitors are reduced to 4.7 µF.
6
Phase Noise Relative to Using 32 uF (dB)
4.7uF
10uF
5
4
3
2
1
0
-1
1x103
1x104
1x105
Offset (Hz)
1x106
1x107
D001
Figure 26. Impact of VregVCO and VbiasCOMP Capacitor on VCO Phase Noise
48
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
LMX2581
www.ti.com
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
11 Layout
11.1 Layout Guidelines
For the Layout of the LMX2581, the pull-up component for the output buffers should be as close to the chip as
possible in order to get the most possible output power.
The following layout guidelines apply. The designators match those shown in the applications schematic.
1. RFoutA & B Pull-Up Components: The pull-up components are close. If using only one output, these
components can be made even closer for an improvement in output power
2. Ground for VbiasVCO and VbiasCOMP: There is a solid connection for the ground between the VbiasVCO
and VbiasCOMP pins and pin 18. This minimizes the VCO phase noise.
3. Loop Filter: One loop filter capacitor is next to the VCO. The charge pump output and Vtune input are on
opposite sides of the chip. Although one can not get the whole loop filter close to the chip without
compromising the grounding for the VbiasVCO and VbiasCOMP pins, it is possible to get the highest order
loop filter capacitor there. Also, for the vias used, keep the ground plane far away so it does not couple spur
energy into the VCO input.
11.2 Layout Example
Figure 27. LMX2581 Layout Example
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
49
LMX2581
SNAS601G – AUGUST 2012 – REVISED SEPTEMBER 2014
www.ti.com
12 Device and Documentation Support
12.1 Device Support
Texas Instruments has several software tools available at :
• See Codeloader to understand how to program the LMX2581 and the EVM board.
• See Clock Design Tool for designing loop filters, simulating phase noise, and simulating spurs on the
LMX2581.
• See the EVM Board instructions, SNAU136, for typical measured data, detailed measurement conditions, and
a complete design.
• See Clock Architect for designing and simulating the LMX2581 and understanding how it might work with
other devices.
12.2 Documentation Support
12.2.1 Related Documentation
See also "AN-1879 Fractional N Frequency Synthesis" (SNAA062).
12.3 Trademarks
All trademarks are the property of their respective owners.
12.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.5 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
50
Submit Documentation Feedback
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: LMX2581
PACKAGE OPTION ADDENDUM
www.ti.com
5-Sep-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LMX2581SQ/NOPB
ACTIVE
WQFN
RTV
32
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-3-260C-168 HR
-40 to 85
X2581
LMX2581SQE/NOPB
ACTIVE
WQFN
RTV
32
250
Green (RoHS
& no Sb/Br)
CU SN
Level-3-260C-168 HR
-40 to 85
X2581
LMX2581SQX/NOPB
ACTIVE
WQFN
RTV
32
4500
Green (RoHS
& no Sb/Br)
CU SN | Call TI
Level-3-260C-168 HR
-40 to 85
X2581
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
5-Sep-2014
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Mar-2016
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
LMX2581SQ/NOPB
WQFN
RTV
32
LMX2581SQE/NOPB
WQFN
RTV
LMX2581SQX/NOPB
WQFN
RTV
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
1000
178.0
12.4
5.3
5.3
1.3
8.0
12.0
Q1
32
250
178.0
12.4
5.3
5.3
1.3
8.0
12.0
Q1
32
4500
330.0
12.4
5.3
5.3
1.3
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Mar-2016
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LMX2581SQ/NOPB
WQFN
RTV
32
1000
213.0
191.0
55.0
LMX2581SQE/NOPB
WQFN
RTV
32
250
213.0
191.0
55.0
LMX2581SQX/NOPB
WQFN
RTV
32
4500
367.0
367.0
35.0
Pack Materials-Page 2
MECHANICAL DATA
RTV0032A
SQA32A (Rev B)
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated