Using the TPS92660EVM User's Guide

User's Guide
SLVU818 – January 2013
Using the TPS92660EVM
Abstract
1
2
3
4
5
6
7
8
Contents
Introduction .................................................................................................................. 2
Description ................................................................................................................... 2
2.1
Typical Applications ................................................................................................ 2
2.2
TPS92660 Features ............................................................................................... 2
Electrical Performance Specifications .................................................................................... 2
Schematic .................................................................................................................... 4
Test Setup ................................................................................................................... 5
5.1
Recommended Test Equipment ................................................................................. 5
5.2
Recommended Test Set Up ...................................................................................... 5
5.3
List of Test Points .................................................................................................. 5
5.4
Trim LED Current Using I2C Adapter ............................................................................ 6
Performance Data and Typical Characteristic Curves ................................................................. 8
6.1
Efficiency ............................................................................................................ 8
6.2
Line Regulation ..................................................................................................... 9
6.3
Switch Node Voltage and LED Current Ripple Waveforms ................................................. 10
6.4
Analog to PWM Dimming Waveforms ......................................................................... 10
6.5
Start-Up and Shut-down Waveforms .......................................................................... 12
TPS92660EVM PCB Layout ............................................................................................. 13
Bill of Materials (BOM) .................................................................................................... 14
List of Figures
1
2
3
4
5
6
7
8
9
10
11
12
13
14
................................................................................................
TPS92660EVM Recommended Test Set Up............................................................................
USB Interface Adapter GUI ................................................................................................
TPS92660EVM Efficiency with 10 LEDs .................................................................................
TPS92660EVM Buck Converter Current Line Regulation with 8 LEDs ..............................................
TPS92660EVM Linear Regulator Current Line Regulation with 4 LEDs ............................................
TPS92660EVM Buck Converter Switching Voltage and LED Current .............................................
TPS92660EVM Buck Converter PWM Dimming, SADJ = 1.25 V...................................................
TPS92660EVM Buck Converter PWM Dimming, SADJ = 0.25 V...................................................
TPS92660EVM Linear Regulator PWM Dimming, LADJ = 1.25 V .................................................
Buck Converter Start-Up Waveform ....................................................................................
Buck Converter Shut-Down Waveform .................................................................................
TPS92660EVM Top Layer and Top Overlay (Top View).............................................................
TPS92660EVM Bottom Layer and Bottom Overlay (Bottom View) .................................................
TPS92660EVM Schematic
4
5
7
8
9
9
10
10
11
11
12
12
13
13
List of Tables
1
TPS92660EVM Buck Converter Electrical Performance Specifications ............................................. 2
2
TPS92660EVM Linear Regulator Electrical Performance Specifications ............................................ 3
3
Test Points Functions
......................................................................................................
SLVU818 – January 2013
Submit Documentation Feedback
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
5
1
Introduction
1
www.ti.com
4
Buck Converter Current Trim Values ..................................................................................... 7
5
Linear Regulator Current Trim Values
6
TPS92660EVM Bill of Materials ......................................................................................... 14
...................................................................................
8
Introduction
The TPS92660EVM evaluation module (EVM) is a DC LED driver which can drive two strings of LEDs.
The LED currents can be trimmed through an I2C interface in the IC.
2
Description
The EVM consists of one non-synchronous constant current buck converter with input voltage up to 80
VDC and one constant current linear regulator with input voltage up to 60 VDC. The buck converter uses
the constant on time control scheme to control the average LED current. The linear regulator regulates the
LED current by adjusting the drain to source voltage drop across a MOSFET. Both LED currents can be
trimmed by the I2C interface. LED current PWM dimming is achieved by applying analog voltage or PWM
signal on the SADJ and LADJ pins. Reference to the TPS92660 data sheet for details (SLUSBC2).
2.1
Typical Applications
•
•
•
2.2
TPS92660 Features
•
•
•
•
•
•
•
•
•
3
Professional lighting
Industrial and commercial lighting
General illumination
Drive two strings of LEDs for color mixing
I2C LED current trim to adjust the LED brightness
Analog to PWM dimming and PWM to PWM dimming
Output overvoltage protection
MOSFET short protection
Input undervoltage lockout
3.0 V reference voltage
Enable on and off
Thermal shutdown
Electrical Performance Specifications
Table 1 andTable 2 present the electrical performance specifications of the TPS92660 EVM.
Table 1. TPS92660EVM Buck Converter Electrical Performance Specifications
Parameter
Test Conditions
MIN
TYP
MAX
UNITS
20
48
80
V
Input Characteristics
Voltage range
Input current
0.55
A
No-load input
current
6
mA
Output Characteristics
Output voltage, VOUT 10 LEDs
30
33
36
V
Output load current,
IOUT
760
808
840
mA
Output current ripple At VIN = 48 V
20
mApp
Output overvoltage
40
V
Systems Characteristics
2
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
Electrical Performance Specifications
www.ti.com
Table 1. TPS92660EVM Buck Converter Electrical Performance Specifications (continued)
Parameter
Test Conditions
MIN
TYP
MAX
UNITS
Switching frequency
330
kHz
Full load efficiency
95
%
Table 2. TPS92660EVM Linear Regulator Electrical Performance Specifications
Parameter
Test Conditions
MIN
TYP
MAX
UNITS
0
30
60
V
Input Characteristics
Voltage range
Input current
20
mA
No-load input
current
0
mA
Output Characteristics
Output voltage, VOUT 8 to 10 LEDs
20
24
28
V
Output load current,
IOUT
19
20
21
mA
Systems Characteristics
Full load efficiency
80
SLVU818 – January 2013
Submit Documentation Feedback
%
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
3
Schematic
4
www.ti.com
Schematic
Figure 1 is the EVM schematic.
Figure 1. TPS92660EVM Schematic
4
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
Test Setup
www.ti.com
5
Test Setup
5.1
Recommended Test Equipment
Voltage Source:
Multimeters:
Output Load1:
Output Load2:
I2C Adapter:
Two DC power supplies with an output voltage range of up to 80 VDC
Three digital multimeters
4 to 10 LEDs in series (Each LED is capable of handling up to 1A current)
4 to 10 LEDs in series (Each LED is capable of handling up to 100mA current)
Texas Instruments USB-to-GPIO interface adapter EVM (
http://www.ti.com/tool/usb-to-gpio. )
Personal Computer ( Windows XP with .NET version 1.1 )
Computer:
5.2
Recommended Test Set Up
See Figure 2
PC
USB
Cable
TI USB Interface Adapter
+
DC Source 1
J3
AMP
Meter
J1
LED Load1
J5
AMP Meter
±
TPS92660EVM
TP4
AMP Meter
TP2
±
DC Source 2
TP3
TP1
+
LED Load2
Figure 2. TPS92660EVM Recommended Test Set Up
5.3
List of Test Points
Table 3 contains the test points, their names, and a description of each.
Table 3. Test Points Functions
Test Points
Name
Description
J1-1
VIN1
Input voltage #1 positive-side connection
J1-2
GND
Input voltage #1 negative-side connection
J2-1
LADJ
Linear regulator current-adjust connection
SLVU818 – January 2013
Submit Documentation Feedback
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
5
Test Setup
www.ti.com
Table 3. Test Points Functions (continued)
Test Points
Name
Description
J2-2
SADJ
Buck converter current-adjust connection
I2C interface connection
J3
J5
LED1
LED string #1 connection
TP1
VIN2+
Input voltage #2 positive-side connection
TP2
GND
Input voltage #2 negative-side connection
TP3
LED2+
LED string #2 anode connection
TP4
LED2–
LED string #2 cathode connection
TP5
LED1+
LED string #1 anode test point
TP6
LED1–
LED string #1 cathode test point
TP7
Buck converter switch-node test point
TP8
Buck converter gate-drive test point
TP9
Input voltage #1 UVLO test point
TP10
Constant ON time timing capacitor test point
TP11
TP12
5.4
Linear regulator current sense test point
GND
Ground test point
Trim LED Current Using I2C Adapter
Download the USB Interface Adapter GUI software from http://www.ti.com/tool/usb-to-gpio.
Open the file USB SAA GUI.exe. The USB Interface Adapter GUI window as shown in Figure 3 appears
on the PC.
Enter 40 in the Device Address field.
Trim the buck converter current by entering 01 in the Cmd field and by entering hex number 00 to 3F to
trim current. See Table 4 for the trim range.
Trim the linear regulator current by entering 02 in the Cmd field and by entering hex number 00 to 0F to
trim current. See Table 5 for the trim range.
6
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
Test Setup
www.ti.com
Figure 3. USB Interface Adapter GUI
Table 4. Buck Converter Current Trim Values
Cmd
Current Change
Cmd
Current
Change
Cmd
Current
Change
Cmd
Current
Change
3f
–20.0%
2f
–10.0%
1f
0%
0f
10.0%
3e
–19.4%
2e
–9.38%
1e
0.625%
0e
10.6%
3d
–18.8%
2d
–8.75%
1d
1.25%
0d
11.3%
3c
–18.1%
2c
–8.13%
1c
1.88%
0c
11.9%
3b
–17.5%
2b
–7.50%
1b
2.50%
0b
12.5%
3a
–16.9%
2a
–6.88%
1a
3.13%
0a
13.1%
39
–16.3%
29
–6.25%
19
3.75%
09
13.8%
38
–15.6%
28
–5.63%
18
4.38%
08
14.4%
37
–15.0%
27
–5.00%
17
5.00%
07
15.0%
36
–14.4%
26
–4.38%
16
5.63%
06
15.6%
SLVU818 – January 2013
Submit Documentation Feedback
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
7
Performance Data and Typical Characteristic Curves
www.ti.com
Table 4. Buck Converter Current Trim Values (continued)
35
–13.8%
25
–3.75%
15
6.25%
05
16.3%
34
–13.1%
24
–3.13%
14
6.88%
04
16.9%
33
–12.5%
23
–2.50%
13
7.50%
03
17.5%
32
–11.9%
22
–1.88%
12
8.13%
02
18.1%
31
–11.3%
21
–1.25%
11
8.75%
01
18.8%
30
–10.6%
20
–0.625%
10
9.38%
00
19.4%
Table 5. Linear Regulator Current Trim Values
6
Cmd
Current
Change
Cmd
Current
Change
Cmd
Current
Change
Cmd
Current
Change
0f
–25.0%
0b
–12.5%
07
0%
03
12.5%
0e
–21.9%
0a
–9.38%
06
3.13%
02
15.6%
0d
–18.9%
09
–6.25%
05
6.25%
01
18.9%
0c
–15.6%
08
–3.13%
04
9.38%
00
21.9%
Performance Data and Typical Characteristic Curves
Figure 4 through Figure 12 present typical performance curves for TPS92660EVM.
6.1
Efficiency
100
99
98
Efficiency (%)
97
96
95
94
93
92
91
90
89
88
40
50
60
70
Input Voltage (V)
80
C001
Figure 4. TPS92660EVM Efficiency with 10 LEDs
8
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
Performance Data and Typical Characteristic Curves
www.ti.com
6.2
Line Regulation
0.85
0.84
LED Current (A)
0.83
0.82
0.81
0.8
0.79
0.78
0.77
45
50
55
60
65
70
75
80
Input Voltage (V)
C002
Figure 5. TPS92660EVM Buck Converter Current Line Regulation with 8 LEDs
21
20.8
LED Current (mA)
20.6
20.4
20.2
20
19.8
19.6
19.4
19.2
19
16
20
24
28
32
36
40
44
48
52
Input Voltage (V)
56
60
C003
Figure 6. TPS92660EVM Linear Regulator Current Line Regulation with 4 LEDs
SLVU818 – January 2013
Submit Documentation Feedback
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
9
Performance Data and Typical Characteristic Curves
6.3
www.ti.com
Switch Node Voltage and LED Current Ripple Waveforms
Figure 7. TPS92660EVM Buck Converter Switching Voltage and LED Current
6.4
Analog to PWM Dimming Waveforms
Figure 8. TPS92660EVM Buck Converter PWM Dimming, SADJ = 1.25 V
10
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
Performance Data and Typical Characteristic Curves
www.ti.com
Figure 9. TPS92660EVM Buck Converter PWM Dimming, SADJ = 0.25 V
Figure 10. TPS92660EVM Linear Regulator PWM Dimming, LADJ = 1.25 V
SLVU818 – January 2013
Submit Documentation Feedback
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
11
Performance Data and Typical Characteristic Curves
6.5
www.ti.com
Start-Up and Shut-down Waveforms
Figure 11. Buck Converter Start-Up Waveform
Figure 12. Buck Converter Shut-Down Waveform
12
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
TPS92660EVM PCB Layout
www.ti.com
7
TPS92660EVM PCB Layout
Figure 13 and Figure 14 show the TPS92660EVM printed-circuit board
Figure 13. TPS92660EVM Top Layer and Top Overlay (Top View)
Figure 14. TPS92660EVM Bottom Layer and Bottom Overlay (Bottom View)
SLVU818 – January 2013
Submit Documentation Feedback
Using the TPS92660EVM
Copyright © 2013, Texas Instruments Incorporated
13
Bill of Materials (BOM)
8
www.ti.com
Bill of Materials (BOM)
Table 6 is the BOM according to the schematic shown in Figure 1.
Table 6. TPS92660EVM Bill of Materials
QTY
REFDES
Description
MFR
Part Number
3
C1, C2, C10
CAP, CERM, 2.2uF, 100V, +/-10%, X7R, 1210
STD
STD
3
C3, C5, C6
CAP, CERM, 1uF, 16V, +/-10%, X7R, 0805
STD
STD
2
C4, C7
CAP, CERM, 0.22uF, 16V, +/-10%, X7R, 0603
STD
STD
1
C9
CAP, CERM, 1000pF, 100V, +/-10%, X7R, 0805
STD
STD
1
D1
Diode, Schottky, 100V, 150mA, SOD-123
Diodes Inc
BAT46W-7-F
1
D2
Diode, Schottky, 150V, 2A, SMA
STMicroelectronics
STPS2150A
1
L1
Inductor, Shielded Drum Core, Ferrite, 56uH, 2.7A, 0.0802 Coilcraft
ohm, SMD
MSS1278T563MLB
1
Q1
MOSFET, N-CH, 100V, 4.5A, SOIC-8
Fairchild
Semiconductor
FDS3692
1
Q2
MOSFET, N-CH, 100V, 1.7A, SOT223
Diodes Inc
ZXMN10A11GTA
1
R1
RES, 154k ohm, 1%, 0.125W, 0805
STD
STD
1
R2
RES, 9.53k ohm, 1%, 0.125W, 0805
STD
STD
1
R3
RES, 10.0 ohm, 1%, 0.125W, 0805
STD
STD
2
R4,R5
RES, 0.50 ohm, 1%, 0.5W, 1206
STD
STD
1
R6
RES, 10.0 ohm, 1%, 0.25W, 1206
STD
STD
1
R7
RES, 15.4k ohm, 1%, 0.125W, 0805
STD
STD
1
R8
RES, 1.00k ohm, 1%, 0.125W, 0805
STD
STD
1
R9
RES, 51.1k ohm, 1%, 0.125W, 0805
STD
STD
Texas Instruments
TPS92660PWP
1
14
U1
2
Two String LED Driver with I C Current Trim
Using the TPS92660EVM
SLVU818 – January 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
REGULATORY COMPLIANCE INFORMATION
As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.
For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.
General Statement for EVMs including a radio
User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant
Caution
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.
FCC Interference Statement for Class A EVM devices
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.
Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de
l'utilisateur pour actionner l'équipement.
Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à
l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.
Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
【Important Notice for Users of this Product in Japan】
】
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan
If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:
1.
2.
3.
Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,
Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or
Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.
Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
http://www.tij.co.jp
【ご使用にあたっての注】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1.
2.
3.
電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
実験局の免許を取得後ご使用いただく。
技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。
日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.
Your Sole Responsibility and Risk. You acknowledge, represent and agree that:
1.
2.
3.
4.
You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.
You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even
if the EVM should fail to perform as described or expected.
You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.
Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.
Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.
Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated