Epson LX-850 Specifications

LX-810/850
TECHNICAL MANUAL
EPSON
NOTICE
“ All rights reserved. Reprc~duction of any part of this manual in any from
whatsoever without SEIKO EPSON’s express written permission is forbidden.
● The contents of this manual are subject to change without notice.
- All efforts have been made to ensure the accuracy of the contents of this manual.
However, should any errors be detected, SEIKO EPSON would greatly appreciate
being informed of them.
“ The above notwithstanding SEIKO EPSON can assume no responsibility for any
errors in this manual or the consequences thereof.
9 Copyright 1989 by SEIKO EPSON CORPORATION
Nagano, Japan
I
REV.-A
PRECAUTIONS
Precautionary notations throughout the text are categorized relative to 1) personal injury, and 2) damage
to equipment:
DANGER
Signals a precaution which, if ignored, could result in serious or fatal personal
injury. Great caution should be exercised in performing procedures preceded by
a DANGER headings.
WARNING
Signals a precaution which, if ignored, could result in damage to equipment.
The precautionary measures itemized below should always be observed when performing repair/maintenance procedures.
DANGER
1.
ALWAYS DISCONNECT THE F’RODUCT FROM BOTH THE POWER SOURCE AND THE
H O S T C O M P U T E R BEFORE P E R F O R M I N G A N Y M A I N T E N A N C E O R R E P A I R
PROCEDURE.
2. NO WORK SHOULD BE PERFC)RMED ON THE UNIT BY PERSONS UNFAMILIAR WITH
BASIC SAFETY MEASURES AS DICTATED FOR ALL ELECTRONICS TECHNICIANS IN
THEIR LINE OF WORK.
3. WHEN PERFORMING TESTING AS DICTATED WITHIN THIS MANUAL, DO NOT
CONNECT THE UNIT TO A POWER SOURCE UNTIL INSTRUCTED TO DO SO. WHEN
THE POWER SUPPLY CABLE MUST BE CONNECTED, USE EXTREME CAUTION IN
WORKING ON POWER SUPPLY AND OTHER ELECTRONIC COMPONENTS.
WARNING
1.
REPAIRS ON EPSON PRODUCT SHOULD BE PERFORMED ONLY BY AN EPSON
CERTIFIED REPAIR TECHNICIAN.
2. MAKE CERTAIN THAT THE SOURCE VOLTAGE IS THE SAME AS THE RATED
VOLTAGE, LISTED ON THE SERIAL NUMBER/RATING PLATE. IF THE EPSON PRODUCT HAS A PRIMARY-AC RATING DIFFERENT FROM THE AVAILABLE POWER
SOURCE, DO NOT CONNECT IT TO THE POWER SOURCE.
3. ALWAYS VERIFY THAT THE EP’SON PRODUCT HAS BEEN DISCONNECTED FROM THE
POWER SOURCE BEFORE REMOVING OR REPLACING PRINTED CIRCUIT BOARDS
AND/OR INDIVIDUAL CHIPS.
4. IN ORDER TO PROTECT SENSITIVE /.LP CHIPS AND CIRCUITRY, USE STATIC
DISCHARGE EQUIPMENT, SUCH AS ANTI-STATIC WRIST STRAPS, WHEN ACCESSING INTERNAL COMPONENTS.
5. REPLACE MALFUNCTIONING COMPONENTS ONLY WITH THOSE COMPONENTS
RECOMMENDED BY THE MANUFACTURER; INTRODUCTION OF SECOND-SOURCE
ICS OR OTHER NONAPPROVED COMPONENTS MAY DAMAGE THE PRODUCT AND
VOID ANY APPLICABLE EPSON WARRANTY.
ii
REV.-A
PREFACE
This manual describes functions, theory of electrical and mechanical
operations, maintenance, and repair of the LX-8 10/850.
The instructions and procedures included herein are intended for the
experienced repair technician, and attention should be given to the
precautions on the preceding page. The chapters are organized as follows:
Chapter 1 -
Provides a general product overview, lists specifications,
and illustrates the main components of the printer.
Chapter 2 -
Describes the theory of printer operation.
Chapter 3 -
Discusses the options
Chapter 4 -
Includes a step-by-step guide for product disassembly,
assembly, and adjustment.
Chapter 5 Chapter 6 -
Provides Epson-approved techniques for troubleshooting.
Describes preventive maintenance techniques and lists
lubricants and adhesives required to service the equipment.
●
The contents of this manual are subject to change without notice.
iv
REVISION TABLE
REVISION
I A
IMar
DATE ISSUED
27,
CHANGE DOCUMENT
I
1989
1st issue
I
I
E
fy,
-...,,.;
....
v
REV.-A
TABLE OF CONTENTS
CHAPTER 1.
CHAPTER 2.
CHAPTER 3.
CHAPTER 4.
CHAPTER 5.
CHAPTER 6.
APPENDIX
GENERAL DESCRIPTION
OPERATING PRINCIPLES
OPTIONAL EQUIPMENTS
DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT
TROUBLESHOOTING
MAINTENANCE
vi
REV.-A
CHAPTER 1
GENERAL DESCRIPTION
1.1
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..... .1-1
....
1.2
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .1-3
..
.
1.2.1 Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
1.2.2 Firmware Specifications (ESC/P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
1-12
1.3
INTERFACE OVER\fl EW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
DIP SWITCH AND JUMPER SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
1.4.1 DIP Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15
1.4.2 Jumper Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
1.5
SELECTYPE FUNC1’ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
1.6
SHEET LOADING AND SHEET EJECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
1.7
TEAR-OFF FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8
OPERATING INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
1.6
1-17
1.8.1
...
Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-18
1.8.2
Hexadecimal Dump Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
1.8.3
Buzzer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8.4
Printer Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
1.8.5
. -21
Adjust Lever Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
MAIN COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-20
1-22
1.6.1
TAMA Boarld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-23
.
1.6.2
TAPNL-W Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
1.6.3
TA Filter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
.
1.6.4
Printer Mechanism (M-3D1 O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
1.6.5
Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-25
LIST OF FIGURES
Figure 1-1.
Exterior View of the LX-810/850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Figure 1-2.
.
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
Figure 1-3.
. -6
Cut-Sheet Printing Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1-4.
Printing Area for Continuous Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Figure 1-5.
Roll Paper Printing Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-8
Figure 1-6.
Data Transmission Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Figure 1-7.
.
Self-Test Printout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-18
Figure 1-8.
Hexadecimal Dump Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
,-i :
REV.-A
Figure 1-9.
Lever Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
.
Figure 1-10. LX-810/850 Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
Figure 1-11. TAMA Main Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
....
Figure 1-12. TAPNL-VV Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
...
Figure 1-13. TA Filter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
. -24
Figure 1-14. Model-3Dl O Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
..
Figure 1-15. Housing . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-24
LIST OF TABLES
Table 1-1.
interface Options ....................................................................m
l-l
Table 1-2.
Optional Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1-1
Table 1-3.
Cut-Sheet Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .1-4
.
Table 1-4.
Continuous Paper Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
..
Table 1-5.
Roll Paper Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
.
Table 1-6.
Envelope Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-5
..
Table 1-7.
Label Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Table 1-8.
printing Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Table 1-9.
...
Character Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1o
Table 1-10. Column Width (maximum characters/line) . . . . . . . . . . . . . . . . . . . . 1-11
Table 1-11. Connector Pin Assignments and Signal Functions ..... 1-12
Table 1-12. Printer Select/Deselect Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
. -15
Table 1-13. Settings for DIP Switch 1 (SW 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1-14. Settings for DIP Switch 2 (SW 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Table 1-15. International Character Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Table 1-16. Lever Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-21
f:-?
.
REV.-A
1.1
FEATURES
The LX-8 10/850 is a small, light-weight, low-cost, advanced paper handling printer comparable to the
LX-800. Its main features are:
1. Advanced paper handling: Auto backout and cut sheet loading
2. Expanded ESC/P-code printing, implemented as a standard feature
3. Printing speeds:
200 cps (high speed draft)
1 5 0 CpS (dri~ft 10 cpi)
1 8 0 CpS (dri~ft 12 cpi)
4. Optional 8100 series interface
5. Clear, easy-to-read printing with a standard EPSON font
6. Two built-in NLQ (Near Letter Quality) fonts (Roman and Saris Serif)
7. Control panel switch selection of Draft, Roman, or Saris Serif font
8. Control panel switch selection of normal or condensed printing
9. Control panel mode settingd are saved in non-volatile memory
10.
Easy handling of cut sheets with the optional cut-sheet feeder (CSF)
The LX-8 10/850 is equipped with the standard EPSON 8-bit parallel interface. Various interface options
enable users to print data from a variety of computers. Table 1-1 lists the interface options, Table 1-2
lists the optional units available for the LX-8 10/850, and Figure 1-1 shows an exterior view of the
LX-8 10/850.
Tablo 1-1. Interface Options
I
Description
Model
Enter faceboard
Intelligent serial interface board
Intelligent IE:EE-488 interface board
NOTE: Refer to the “Optional Interface Technical Manual” for details.
Table 1-2. Optional Units
Model
C8061 2*
C80006”
I
Description
Single bin cut sheet feeder
Pull tractor unit
8310
Roll paper holder
8750
Ribbon cartridge (Black)
1-1
REV.-A
Figure 1-1. Exterior View of the LX-81 0/850
,.
1-2
’
REV.-A
1.2 S P E C I F I C A T I O N S
This section describes LX-8 10/850 prinlter specifications.
1.2.1 Hardware Specifications
Printing Method
Serial, impact, dot matrix
Pin Configuration
9 wires (diameter 0.29mm)
#1
#2
#3
()
()
( )
#4 < >
#5 < >
#6
t
0.29mm
!
t
0.35mm (1 /72”)
f
( )
#7
#8
#9
Figure 1-2. Pin Configuration
Feeding Method
Friction feed, tractor feed (push tractor: standard, pull tractor: optional)
When handling paper, note the following precautions described below
Friction Feed Precautions:
1. Do not use continuous paper.
2. Do not use a single sheet shorter than 182mm or longer than 3 6 4 m m .
3. Do not perform any reverse paper feed within 8.5mm from the top, or 22mm from the bottom.
4. Do not perform reverse feed greater than 1/6 inch after the paper end is detected.
5. Use the pull-out unit.
6. Do not use multi-part single sheet forms.
Tractor Feed Precautions:
1. Release the friction feed mechanism.
2. Joining of copying paper must be by line or dotted pasting.
3. Copy paper must be a carbon-less, multi-part paper.
1-3
REV.-A
a. Push Tractor Feed
1. Use the pull-out unit.
2. Do not perform reverse feeding greater than 1/6 inch.
3. After paper end detection, accuracy of paper feed cannot be assured and reverse feeding cannot
be performed.
b. Push Pull Feed
1. Remove the pull-out unit and attach the pull tractor unit.
2. Do not loosen the paper between the platen and pull tractor unit.
3. Adjust precisely the horizontal position of the pull and push tractor.
4. Do not perform reverse feeding greater than 1/6 inch.
5. Do not perform reverse feeding after the paper end is detected.
c. Pull Tractor Feed
1. Remove the pull-out unit and attach the pull tractor unit.
1/6 inch, 1/’8 inch, or programmable in units of 1/216 inch
Line Spacing
Paper Insertion
From rear
Paper-Feed Speed
Approximately 95 ins/line (1/6 inch line feeding)
Approximately 75 ins/line (1/6 inch in page feed)
Paper Specifications See Table 1-3 through 1-6
Table 1-3. Cut-Sheet Specifications
182 mm to 257 mm (7.15 in. to 10.1 in.)
182 mm to 364 mm (7.15 in. to 14.3 in.)
0.065 mm to 0.14 mm (0.0025 in. to 0.0055 in.)
14 lb. to 24 lb. (52.3 g/mz to 90 g/m2)
Width
Length
Thickness
Si_k&lL
Table 1-4. Continuous Paper Specifications
Width
Copies
Quality
Total Thickness
Weight
101 mm to 254 mm (4.0 in. to 10.0 in.)
3 sheets (1 original and 2 copies)
Plain paper
0.065 mm to 0.25 mm (0.0025 in. to 0.01 in.)
1 sheet - 14 lb. to 22 lb., (52.3 g/m2 to 82 g/m2)
3 sheets -- 12 lb. to 15 lb., (40 g/mz to 58.2 g/m2) each
Table 1-5. Roll Paper Specifications
Width
Weight
Quality
Thickness
216 mm & 3 mm (8.5 in. & 0.12 in.)
14 lb. to 17 lb. (45 kg to 55 kg)
Plain paper
0.07 mm to C).09 mm (0.0028 in. to 0.0035 in.)
1-4
REV.-A
Table 1-6. Envelope Specifications
92
Size
No.6 (166 Imm x
Quality
Bond paper, Plain paper, Air mail
Thickness
0.16 mm to
0.52
mm), No. 10 (240 mm x 104 mm)
mm (0.0063 in. to 0.0197 in.)
Difference of thickness within printing area must be less
than 0.25 rnm (0.0098 in.).
Weight
NOTES: “
.
*
12 lb. to 24 lb. (45 g/m2 to 91 g/m2)
Envelope printing is only available at normal temperature.
Keep the long side of the envelope horizontal at setting.
Set the left of a No.6 envelope at the setting mark of the sheet guide.
Table 1-7. Label Specifications
Size
2 1/2 in. X 15/16 in. (63.5 mm X 23.8 mm)
Weight
55Kg (68 g/m2)
Thickness
O.19 mm (0.0075 in.) max.
Thickness excluding the base paper must be equal to or less than 0.12
mm (0.0075 in.).
NOTES: “
Label printing is only available at normal temperature.
●
Labels must be a fanfold type.
●
For printing labels on pressure sensitive paper, the following conditions must be met: (1)
jointed by dotted or line pasting. (2) total thickness is equal to or less than 0.3mm (0.01 18
inch). (3) 5 degree C to 35 degree C and 10’%0 to 80’ZO RH.
1-5
REV.-A
p)
. ..
Printing Area
The figures below show the printing area for cut sheets.
4=
182-257 mm(7. 2-10.1 “ )
*
*1 )
Printable
*1 )
area
8.5rnrY
0.33 “ or mt “e
—\ —
i
P
r
r
ABC
XYZ
-
7
I
n
,7 ““
3../
t
a
b
364mm max. I
14.3 “ max. ~
a
r
e
a
—
●
—
L
- XYZ
- l
ABC —
1 ) At least 3.0 mm (O. 12 in.) when the paper width is less than 229 mm (9 in.); at least 24 mm (0.9
in.) when the paper width is 257 mm ( 10.1 in.)
●
Printing is possible approx. 28 mm from the paper’s detected bottom edge; the 13.5 mm value
~.=
(lowest print position) is for reference only. Paper feed accuracy can not be assured within 22 mm ~
(0.87 in.) of either the top or bottom edge.
Figure 1 -:3. Cut-Sheet Printing Area
1-6
REV.-A
4.0 “ -10.0 “ ,101 mm-254mm
I
I
*1) 1A
Printable
o
0
0
0
area
0
0
0
0
+
9mm,0.35 “
or more
+
9mm,0.35 “
or mqre
t
Printable
area
● 1) 13
0
Printable area
1
o
0
4ABC
0
0
-0- - - - - - - - - - - - - - - - - - - - - - - - - - - 0
0
0
0
ABC
0
0
0
0
0
0
0
0
I *2)
t
0
0
0
0
0
)(YZ
0
0
0
0
- - - - - - - - - - - - - - - 00
0
0
0
XYZ
0
0
i
0
0
0
0
0
0
4
mm or greater for paper widths of 101 - 242 mm (4 - 9.5. in.)
26 mm or greater for paper widths of 254 mm (10 in.)
*2) 13 mm or greater for paper widths of 101 - 242 mm (4 -9.5 in.)
24 mm or greater for paper widths of 254 mm (1 O in.)
Figure 1-4. Printing Area for Continuous Paper
1-7
REV.-A
2‘1 6mm(8.5 “)* 3mm(0. 12 “ )
I
3rnm
min.
‘1
I
3 m m
2 0 3 . 2 m m
m i n .
I
(printable area)
—
I
50m
m i n
T
AEIC
XYZ
1
60m
—
Figure 1-3. Roll Paper Printing Area
Ink Ribbon
Type:
8750 Ribbon Cartridge
Color:
Black
Reliability:
3 million characters at 14 dots/character
Reliability
Mean Cycles Between
3
million lines (excluding printhead)
Failure (MCBF):
Mean Time Between
4000 POH (2!5% duty)
Failure (MTBF):
,
,,:
f..
”,.
Life of Printhead
200 million :;trokes\wire
Safety Approval
Safety Standards
UL478 (U.S. version)
CSA22.2 #;!20 (Canada version)
VDE0806 (TIJV) (European version)
Radio Frequency
Interference (RFI)
FCC class B (U.S. version)
VDE 0871 (Self-certification)( EurOPean version)
1-8
REV.-A
Electrical
Specifications
Power Conditions
120 VAC & 10% (120V version)
Frequency Range
49.5 to 60.!5 Hz
Power Consumption
28W (Draft self-test)
insulation Resistance
10 Mgohms
Dielectric
(At 50 or 60 Hz, between the AC line and chassis)
2 2 0 / 2 4 0 VAC + 10% (220/240V v e r s i o n )
Strength
min. (Between AC Line and Chassis)
120V Version
1 KV AC (rmslminute) or 1250V AC (rms/second)
220/240V Version
1.5KV AC (rms\l O minutes) or 1250V AC (rms\second)
Environmental
Conditions
Temperature
5 to 35 degrees C (41 to 95 degrees F) -operating
–30 to 60 degrees C (-22 to 149 degrees F) -storage
Humidity
10 to 80 YO RH (no condensation) –operating
5 to 85 % FIH (no condensation) -storage
Resistance to Shock
1 G, within 1 mS -operating
2 G, within 1 mS -storage
Resistance to Vibration
0.25 G, 55 Hz max. -operating
0.50 G, 55 Hz max. -storage
Physical Specifications
Weight
5.75 Kg
Dimensions
418 mm (Width) X 339 mm (Depth) X 141 mm(Height),
excluding knobs and paper guides
1-9
REV.-A
1.2.2 Firmware Specifications (ESC/P)
ESWPTM level ESC/P-81
Control Code
(EPSON Standard Code for Printers)
Bi-directional
Printing Direction
Uni-directional
printing with logic seeking (text)
(left to right) printing (Bit-image)
4 K bytes
Input data buffer
96 ASCII characters
Character Set
96 Italic characters
32 International characters (13 countries)
32 International Italic characters
96 IBM Graphics characters
EPSON NLQ Roman
Font
EPSON NLQ Saris Serif
EPSON Draft
Printing Speed
See Table 1.8
,,. :.,
{/-.
Table 1-8. Printing Speed
Type of Letters
Print Speed [cps)
200
150
High Speed Draft
Pica
Elite
180
75
Double-Width
75
Emphasized
Double-Width Emphasizecl
37
128
Condensed
Double-Width condensed
Double-Width
64
90
150
25
30
Elite
Condensed Elite
NLQ Pica
NLQ Elite
Dot-matrix Format
9 X $J Text mode (Draft)
Character Size
See Table 1-9
18 X 20 Text mode (NLQ)
Table 1-9. Character Size
Type of Letters
Width ( m m )
Height (mm)
3.1
Pica
Elite
2.1
1.7
Condensed
Double-Width Pica
1.05
3.1
3.1
4.2
3.1
Double-Width Elite
Double-Width Condensed
3.4
3.1
2.1
0.85
3.1
2.1
4.2
3.1
3.1
Depends On Pitch
1.6
Condensed Elite
Emphasized
Double-Width
Emphasized
Super/Subscript
1-10
3.1
REV.-A
Printing Columns
See Table 1-10
Table
1-10. Column Width (maximum characters/line)
Type of Letters
Column Width (CPL)
Column/inch (cpi)
80
96
137
40
40
48
68
160
80
10
12
17
5
5
6
8.5
20
10
Pica
Elite
Condensed
Double-Width Pica
Double-Width emphasized
Double-Width Elite
Double-Width Condensed
(Condensed Elite
Emphasized
I
1-11
REV.-A
1.3 INTERFACE OVERVIEW
The standard 8-bit parallel interface provided with this printer meets the specifications described below.
Data Format
8-bit parallel
Synchronization
By STROBE pulse
Handshaking
By BUSY and ACKNLG signal
Signal Level
TTL-compatible
Adaptable Connector
57-30360 (amphanol)
or equivalent
Data Transmission Timing See Figure 1-6
BUSY
,/[
A
{
,/,,
.
ACKNLG
DATA
STROBE
o.5#s
min.
min.
Figure 1-6. Data Transmission Timing
Table 1-11 shows the connector pin assignments and signal functions of the 8-bit parallel interface.
Table 1-11. Connector Pin Assignments and Signal Functions
Pin No.
Signal Name
Return Pin No.
DIR
1
STRORE
19
In
Functional
Description
Strobe pulse to read the input data. Pulse width must
be more than 0.5,us. Input data is latched at falling edge
of this signal.
2
DATA 1
20
3
4
5
6
7
8
9
DATA 2
DATA 3
DATA 4
DATA 5
DATA 6
DATA 7
DATA 8
21
22
23
24
25
26
27
In
[n
In
In
In
In
In
In
10
ACKNLG
28
out
This pulse indicates data is received and ready to
accept next data.
Pulse width is 121.M approx.
11
BUSY
29
out
“HIGH” indecates printer cannot accept next data.
12
PE
30
out
“HIGH” indicates paper-out.
This signal is effective only when ERROR signal is
“LOW”.
13
SLCT
—
out
Always “HIGH” output. (Pulled up to +5V through
3.3kohms register.)
Parallel input data to the printer.
“HIGH” level means data “ 1“.
“LOW” level means data “O”.
1-12
REV.-A
Table 1-11. Connector Pin Assignments and Signal Functions (Cont.)
Pin No.
Signal Name
Return Pin No.
DIR
Functional Description
14
AUTOFEED-XT
—
In
if “LOW” when the printer is initialized, a line feed is
automatically performed by input of “CR” code. (Auto
LF)
15
Not used
16
GND
17
Chassis GND
Ground for twisted-pair grounding
—
—
Chassis ground level of printer
Not used
18
9 to 3 0
GND
Grounds for twisted-pair grounding
In
Pulse (Width: 50#s min., active “LOW”) input for printer
initialization.
out
“LOW” indicates some error is occurred in the printer.
—
—
Ground for twisted-pair grounding
34
—
—
Not used
35
—
out
Always “HIGH”. (Pulled up to +5V through 3.3 Kohms
register.)
31
I NIT
32
ERROR
33
GND
36
SLCT-IN
16
—
In
If “LOW” when prinater is initialized, the DC1/DC3
control is disabled.
NOTES: 1. “DIR” refers to the direction of the signal flow as viewed from the printer.
2. “Return” denotes a twisted-pair return line.
3. The cable used must be shielded to prevent noise.
4. All interface conditions are based on TTL levels. Both the rise and fall times of all signals
must be less than 0.2 us.
5. The AUTO FEED-XT signal c:an be set LOW by DIP switch 2-4.
6. The SELECT-IN signal can ble set LOW by jumper 1.
7. Printing tests, including interface circuit tests, can be performed without using external
equipment by setting DATA 1-8 of the interface connector to certain codes and connecting
the ACKNLG signal to the STROBE signal.
1-13
REV.-A
T a b l e 1 - 1 2 s h o w s P r i n t e r S e l e c t / D e s e l e c t (DC l/DC3) controL including relations amon9 ON-LINE, c!
. .
SELECT-IN input, DC l/DC3 and interface signals.
Table 1-12. Printer Select/Deselect Control
ACKNLG
SLCT-IN
Dcl/Dc3
ERROR
OFF-LINE
HIGH/LOW
DC l/DC3
LOW
HIGH
No pulse
Disable
ON-LINE
HIGH
DC 1
HIGH
LOW/HIGH
(During data
entry)
Pulse output
after entry
Enable(Normal
Process)
DC3
HIGH
LOW/HIGH
(During data
entry)
Pulse output
after entry
Enable (Waits
DC 1. See Note
2)
DC 1
HIGH
LOW/HIGH
(During data
entry)
Pulse output
after entry
DC3
HIGH
LOW/HIGH
(During data
entry)
Pulse output
after entry
LOW
BUSY
DATA ENTRY
ON-LINE SW
Enable (Normal process)
NOTES: 1. In Table 1-12, it is assumed that no ERROR status exists other than that attributable to the
OFF-LINE mode.
2, Once the printer has been put in the deselected state by the DC3 code, the printer will
not revert to the selected state unless the DC 1 code is input again. (In the deselected state,
the printer ignores input data until the DC 1 code is received.)
3. The DC 1 and DC3 codes are enabled only when the SLCT-IN signal (Input Connector No.36
for the parallel interface unit) is HIGH and printer power is initialized.
4. if the SLCT-IN signal is LOW when the printer is initialized, DC1/DC3 printer select/deselect control is invalidated, and these control codes are ignored.
5. If the SLCT-IN signal is HIGH and is not set to LOW by jumper 1 when the printer is
initialized, the printer starts from the selected (DC 1 ) state.
1-14
1.4 DIP SWITCH AND JUNIPER SETTINGS
This section describes DIP switch settings for the LX-8 10/850 printer.
1.4.1 DIP Switch Settings
The two DIP switches are located on the side of the printer and function as shown in Tables 1-13 through
1-15. Note that the status of the DIP switc:hes is read only at power on or upon receipt of the I NIT signal.
Table 1-13. Settings for D!P Switch 1 (SW1)
Description
No.
2
Shape of Zero
3
Table Selection (note)
10 cpi
I
OFF
I
0
0
OFF
Graphics
Italics
OFF
I
4 I Tear Off
Fectory Setting
OFF
ON
12 cpi
I
1 I Character Pitch
I
Invalid
Valid
E ‘ ‘ “gh
I
OFF
:’
Normal
See Table 1-15
When the DIP switch is set for the Italic table, at power on printer defaults to ESC 7 table. When
the switch is set for the Graphic table, at power on it defaults to ESC 6 table.
Table 1-14. Settings for DIP Switch 2 (SW2)
Description
No.
1
Page length
ON
.-
12
in.
OFF
Factory Setting
11 in.
OFF
OFF
2
Cut-Sheet Feeder (CSF) Mode
On
off
3
l-inch skip
On
off
OFF
4
AUTO FEED XT Signal Internally Fixed or ~t
Fixed to LOW
Depends On External Signal
OFF
Table 1-15. International Character Set Selection
1-6
1-7
1-8
Country
1-6
1-7
1-8
Country
On
I On I
On
U.S.A
Off
] On I
On
Denmark 1
1.4.2 Jumper Setting
Jumper 1 (user-selectable) is located on the TAMA board. If the jumper is connected, the SLCT-IN signal
is fixed to LOW, and DC 1 /DC3 printer select control is ignored.
1-15
REV.-A
1.5
SELECTYPE F U N C T I O N
SelecType allows the user to choose fonts and the printing mode easily. This function provides for
selection of Draft, Roman, or Saris Serif fonts and selection of normal printing or condensed printing
modes. SelecType is effective only when the printer is ON LINE and not printing.
To select Roman or Saris Serif, press the NLQ button. A buzzer sounds when the NLQ button is pressed.
When it sounds twice, the Roman font is selected. When it sounds three times, the Saris Serif font is
selected.
To select the Draft font, press the DRAFT button. The buzzer will sound once, indicating that the DRAFT
font is selected.
To set for condensed printing when the printer is in the print mode, press the CONDENSED button once
(the buzzer will sound once), and the printer will enter the condensed print mode.
T O cancel condensed printing, press the CONDENSED button again. After YOU press the button, the ,. ~ ,.
‘g,,,
buzzer sounds twice to tell you that condensed printing is cancelled.
1.6 SHEET LOADING AND SHEET EJECTION
The release lever enables disengaging of the push tractor unit drive mechanism. The printer therefore
provides some improved paper-handling functions through combination of the release-lever and
LOAD/EJECT control panel switch.
Cut Sheet Loading And Ejection
To load a sheet of paper, position the paper release lever back, place the sheet along the paper guide,
and press the LOAD/EJECT switch. This loads the paper to the top-of-form position.
Pressing the LOAD/EJECT switch after the paper has been loaded will cause the paper to be ejected.
Continuous Paper Loading And Ejection (Back-out)
To load fanfold paper, move the paper release Iever forward, and insert the paper into the push tractor.
Pressing the LOAD/EJECT switch will then cause paper to be automatically loaded to the top-of-form
~:,
L. .,.
position. Pressing the LOAD/EJECT switch after the fanfold paper has been loaded will cause the printer
to eject the paper backward from the push tractor. To back out several pages, press the LOAD/EJECT
switch several times (reverse feed is performed on a page-by-page basis).
The ON-LINE LED
will
flash only when the paper is loaded and the ON-LINE switch pressed. This indicates
that the printer has entered “Top-of-form adjust” mode, and that the user may adjust the top-of-form
position, as well as the loading positions for subsequent forms. Adjustment is made using the FORM
FEED button,
which will increment the paper forward, and the LINE FEED switch, which will increment the paper in
reverse. (The minimum feed amount is 2/216 inch).
When cut sheet is used, the adjusted Top-of-form position will be lost when the printer is re-initialized,
and the Top-of from will be reset to the default value. When continuous paper is used, however, the
memory of the adjusted Top-of-form position will be retained even after printer initialization.
1-16
REV.-A
1.7 T E A R - O F F FUNCTION
The Tear-Off function can be enabled by making the appropriate DIP switch setting, and will operate
when the release-lever is set to the tractor position. In such a case, if the input data buffer is empty
and the printer is ON-LINIE, the paper will automatically be fed to the tear-off position, and the ON-LINE
LED will flash to indicate that the FORM FEED and LINE FEED switches are now available to perform
micro-adjustment. The user may then adjust the paper to the tear-off position. This position becomes
the new tear-off position default, and will remain valid even if the printer is reset and reinitialized, and
regardless of whether the main power has been interrupted. When new data are input to the printer,
the paper will automatically be returned to its original position, and printing will then start. Paper having
been advanced to the tear-off position will also be returned to its original position if the ON-LINE switch
is pressed (switching the printer from ON-LINE to OFF-LINE).
1-17
REV.-A
1.8 OPERATING
INSTRUCTIONS
This section describes the self-test, hexadecimal d u m p
functions, error states, printer initialization, and
buzzer operation.
1.8.1
Self-Test
To begin printing the self-test in the Draft mode, turn the printer ON while pressing the LIN E-FEED button.
To begin printing the self-test using the hlLQ mode (Near Letter Quality), press FORM FEED and hold
it down, then turn the printer power ON.
Self-test printing can be stopped or started by pressing ON-LINE (ON-LINE indicator is not lit). To finish
the self-test, stop the printing by pressing the ON-LINE switch then turn OFF the printer power.
The firmware revision number is printed as the first line of the self-test, and subsequently, current DIP
switch settings are printed.
i&,””
Xxxxxxxx
Character
10 CPI
Spacing
1-1 OFF
Shape of Zero
O (Unalashed )
1-2 OFF
CG Table
Italics
1-3 oFF
Short Tear-off
Valid
1-4 oFF
Draft Print Speed
High
1-5 oFF
Country
U.S.A.
1-6 ON 1-7 ON 1-6 ON
Page Length
11 inch
2-1 OFF
CSF Mode
Invalid
2-2 OFF
Skip Perforation
None
2-3 OFF
Auto LF
Depend on I/F
2-4 OFF
! “U$%&” ( )*+, -. /0123456789: ; <=>%ABCDEFGHIJKIMNOPQRSTUVWKY Z[\l ‘–’ abcdefshijklmno
! “FF$.%&” ( )*+, -. /0123456769: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWX YZ[\l ‘-’ abcdefghijklmnop
“’P$%&” ( )*+, -. /01234567.99: ; <=>?@ABCDEFGHIJKMINOPQRSTTJVWX YZ[\l‘–“abcdefgbijklmopq
#$%&” ( )*+, - ./0123456769: ; <=>?3ABCDEFOHIJKLMNOPQRS3’WJWX YZC\I ‘-=abcdefg~ijklmmopqr
$%&” ( )*+, -. /0123456769: ; <=>?6%W,CDEFGHIJKLMNOPQRSTUVWX YZ [\] abcdefghijklmnopqre
%&’ ( )*+, -. /0123456789: ; <=>?@ASCD8FGHI JKLMNoPQRSTUVWK YZ [ \ 1‘– abcdef ghij klmnopqrat
&” ( ) *+, -./0 123456789: : <.>?@tABCDEFGHI JKLMNOPQRS’fUVWXYZ [ \ 1‘–. abcdefghld klmnopqratu
. ( )*+, -. /0123456769, ; <=>?@ABCDEFGHIJKU4NOPQRSTUVWK YZ [\ ]:-yabcdef giij klmnopqratuv
( )%+, -. /0123456789: ; <=>?@ABCDEFGHIJK LMNOPQRSTUVW XY Z [\] ‘-” abcdefghi.lklmnopqratuvw
)*+ ,-. /o12345678g : ; <=>?@ABCDEFGHIJKLMNOPQRSTOVWX YZ[\l ‘-” abcdef ghl.lklnmopqrstuvwx
r+, -. /012345.5789: ; <=>?@ABCDEFOmlIJKLMNOPQRSTOVWX
YZ 1 \ 1‘_ abcdefghijklmnopqratuwxY
+ ,- ./0 123456769: ; <=>? QABCDEFGHIJKLMNOPQRSTUVWXY Z[\l ” abcdefghijklmnopqretuvwxYz
.-./0123456769: ;<=>?@ABCDEFGHIJKMOPQRSmXYZ[\l--`abcdefshijkl~0MrStU-YZ{
-./0123456769: ;<=>7@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\l
‘–’abcdefghijklmnopqrstuvwxYz(
:
./0123456789: :<=>?@ABCDEFGHIJK~OPQRSWXYZ[\l---abcdefghijklmonrstuwyz(
;}
/0123456769: ;<=>?@ABCDEFGHIJKIJlNOPQRSTWWX YZ[\l-–”abcdefghi$klmnopqretuvwxYz{ ~}0123458789: ;<=>?@ABCDEFGHIJKLKNOPQRSTUVWX YZr\l- ‘abcdefghi~klmnopmstuvwwz{ :}123456789: ;<.>?@ABCDEFGHIJKNNOPQRS~~YZ[i]:-=abcdefg~ij~lmopq~etuwyz{ :}- !
23458789: ;<=>?IPABCDEFGHIJKLHN3PQRSTUVWX YZ[\]-–’nbcdefghijklmnopqretuvwxyz{ ;?- !“
3456789: ;<=>?SIABCDEFGHIJKUINOPQRSTW!4K YZ[\]-_’abcdefghijklmnopqrstuvwxyz{ ;)- !“#
456769: ;<=>?@ABCDEFGHIJKU!NOP,WS TUVWXYZ[\]--’abcdefghijklmnopqretuvwxyz{
;}- !“#$
56789: ;<=>?@ABCDEFGHIJKLMNOPQRSTWVWX YZ[\l--abcdefghijklmnopqrotuwyz{ ;}- !“#S.%
6789: :<=>?@ABCDEFGHIJKLtlNOPQESTUVWX YZ[\l--’abcdef8hijklmnopqretuwxYz{ !}- !“#$Z4
769: ;<=>?@ABCDEFGHIJKLJlNOPQR31’UV!4K YZ[\l ”–’abcdefghijklumopqrntuvwxYz{ 1}- !“#SXd”
89: ;<=>?@ABcDEFGHIJKLrlNoPQRs17JVw’n Z[\l-–’abcdefghijklmnopqratuvwxYz{ 1}- !“#$XA’(
9: ;<.>?@ABCDEFGHIJKLMNOPQRSTUWXYZ[\] “–’abcdefghijklmnopqrstuvwxyz{ t}- !“#3Xd-()
:;c.>?9ABCDEFGHIJKUlNOPQRSTUW4XYZ[\] ‘–.abcdefghijklmnopqretuv’wxyz( ;}- {“#S=-()~
;<=>?@ABCDEFGHIJKl14NOPQRSTtIVWXYZ[\] ‘–. abcdefghijklmnopqratuvwxyz{ ;}- !“#SXA”f)*+
<=>?@ABCDKFGHIJK~NOpQRs~ YZ[\l--’abcdefghijklmnopqrstuvwxyz( :}- !“#$X&-()*+,
=>?13ABCDEFGHIJKLM?40PQRS TUTWXYZ[\l --’abcdefghijklmnopqratuvwxyz{ :}- !“#$Xd”()*+,>?@ABCDEFGHIJKLJ4NOpQRSTUVWXYZ[\] ‘-. abcdefghijklmnopqretuvwxyz{ 1}- !“#$%&”()*+,-.
?@ABCDEFGHIJKLllNOPQRSTUVWKY Z[\]”-’abcdefghijklmnopqrstuvwxyz( ~}- !“#$xA”()*+,-./
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] “-. abcdefghijklmnopqretu..’wxyz{ ;}- ?“#$x&’()*+,-./O
ABCDEFGHIJKLMNOPQRSTUVWX YZ[\]”-’ abcdefghijklmnopqretuwyz( 1}- !-S$Xd-()*+.-./Ol
BCDEFGHIJKLMNOPQRSTUVWXYZ[\l ‘-. abcdefghijklmnopqrstuvwxyz{ !}- !“#s%&”OX+,-./Oli?
CDEFGHIJKLMNOPQRSTUVWX YZ[\l--’abcdefghijklmnopqratuvwxyz( ;}- .I’’#$XA ”()*+,-./Ol23
DEFGHIJKL4fNOPQRSTW.WKY Z[\l--’abcdefghijklmnopqrstuvwxyz( ;}- !“#$X&-()*+,- ./OlZ34
EFGHIJKLtiNOPQRS’fU%?4X YZ[\l ”–’abcdeft!hi3klmnowr8tuvwxyz{ !)- ?“#sx&-OX+.-. /O12345
FGHIJKMINOFQFiSTWWXY Z[<l:_=abcdef~ijklmii~~ituwyz( ~j: r“#$X&” ()*+,-./Ol23456
GHIJKLMNOPQESTWWXY Z[\l ”-’abcdefghijklmnopqrc.tuvuxyz( )}- !“#$Xd” ()*.,-./Ol234567
HIJKLHNOPQRSTUVWX YZ[\l ”-’abcdefghijklmnopqrstuvwxyz( ~}- !-#s%&-OZ+,- ./O12345676
IJKLMNOPQRSTWWXY Z[\l--’ abcdefghijklmnopqretuvwxyz( 1}- !“#$x&” ()*+,- ./Ol23458789
JKLM140PQRSTWWKY Z[\l--’ abcdefghijklmnopqrstuvwxyz( 1}- ?“#sx.4’()*+, -./Ol23456789:
KLMNOPQRSTUVWXY Z[\l-–’abcdefghijklmmopqratuwxyz(
!}- !“#SXd” ()*+.- ./O123456769: ;
LMNOPQRS1’UWX YZ[\]--’abcdefghijklmnopqrstuvwxyz{ ;)- !“#$X&- OX+,-. /OZZ345S789: ;<
MNOPQRSTUV!4X YZ[\]-_” abcdefghijklmnopqretuvwxyz{ 1}- ! ,,#SX&-OX+,- ./OLZ34567S9:;<=
NOPQRSTUVWKY Z[\]-–’abcdefghijklmnopqratuvwxyz{ :}- !,,#$x’&-(),+, -./0123456789:;<=>
OPQRSTUVWX YZ[\l-–’abcdefghijklmnopqr6tu%wxyz{ ;}- ! ,,#$x&.OX+,- ./OIZ3456789:;<=>?
PQRSTUVWKYZ[\l -_”abcdefghijklmmopqrotuvwxyz{ ;}- !“#$X&-()*+, -./O123456789: ;<=>?@
QRSTUVWXYZ[\l --’abcdefghijklmnopqrstuvwxyz{ 1}- !“#$Xd’()*+, -./Ol23456789: ;<=>?.9A
RSTUVWXYZ[\l --’abcdefahlklmnocarstuwxyz(z( !?- !’”#s.&4”()*+. -./Ol23456789: :<=>?@AB
STUVWXYZ[il:-=abcdefgiiijklmno:a;stuvwxy;{ ~i; !“#ti’()*+,~ .>01234567, 9: ;<=>WABC
TUVWXYZ[\l --’abcdefghijklmnopZrstuvwxyz{ ;}- !“#w&”()*+,./Ol2345678: : ; <=> IWABCD
WWXYZ[\l ”_’abcdefghijklmnonratuvwxyz{ 1}- !-X$X& -()*+. -./OlZ3456789 ; <=>?W4ECDE
VWXYZ[\]–-’abcdefghijklmnoaratuvwxyz(z( ;}- !“#$X&o (]Jr+,- ./o1234567sg: <=>?WBC7DEF
Figure l-7. Self-Test Printout
1-18
REV.-A
1.8.2 Hexadecimal Dump Function
The printer enters the HEX-DUMP mode when it is powered on while the LINE-FEED and FORM-FEED
buttons are pressed down.
In the HEX-DUMP mode, the hexadecimal representation of the input data is printed out, along with
corresponding ASCII characters. This function is valuable for checking the data the printer has received
from the host. If input data is a control code rather than a character code, a period (.) is printed in the
ASCII column.
r),<{ ,:! r?,..,.<),,:, !“IC.,,IC:,
,,($,, , IL “,’.: ,..
I/J. .,1”1
Clllal,’’rr:.rv 1, .
, ,,,,,,, ,., ..,
“ . .
(:;
<::~ f:i.c<at,i,cms (1+
/1,, ) ,, .,
1. .::.:
:[i.’r
fYI,r 1,1..IIw r [:m.t..
:1. ,, A SIH:::E!:’I I...(]fi
D
I IN!:< {+141) !Wlx r’ K..
JE[:: 1’:l,
(.)11 ,...
‘11::.AI,V [.) F’1,” l’,
:1. .,7
1.11.1!:: ! :1’
Al .I’blr; ‘1’ bl!’;’l’F:ll [::’1’T1’)
1.1%, ,.
1. ,,0,,
i. j.
!.,,, . ,
,,
L;,,.1 1’, !’:1.,, ?.(:,, .1:,>$ t
20
61)
<!,8
’74
7:!
f,i::
.’!(:
61. m
. [ . 20 6(::
‘7.! .
fd /,[:: 6:? fi:j
;’?() 4(:) <,:1 41:,’
;., O
m
6:1.
‘7:;
:!()
‘7:!
(,2
61.
‘;?:$ 61.;
Figure 1-8. Hexadecimal Dump Function
1-19
REV.-A
1.8.3 Buzzer Operation
The buzzer sounds under the following conditions:
BEL code:
The buzzer sounds for 0.1 second when a BEL code is input.
Carriage trouble:
Beeps 6 times, pausing briefly after 3rd beep.
Paper-out:
Beeps 20 times, pausing briefly after every 4 beeps.
Abnormal voltage:
Beeps 5 times, pausing after every beep.
Incorrect RAM:
(SRAM) Beeps 8 times, pausing briefly after every 2 beeps. (Inside CPU)
Beeps indefinitely until power OFF.
Recognition of panel operation:
Beeps 1 or 2 or 3 times in setting print mode.
Factory setting:
Beeps once when the value under micro-adjusting is equal to the
factory-set value.
Sheet ejection failure (in CSF mode):
Beeps 20 times, pausing briefly after every 4 beeps.
Illegal paper releaselunrelease:
Beeps continuously when the paper release lever is changed when the
paper is in the paper path. Beeps until the lever is changed again or the
paper is completely out of the path.
1-20
.- .*
$,”.
REV.-A
1.8.4 Printer Initialization
The printer is initialized when:
1 ) AC power is turned on
2) The INIT signal is input
Here is a brief summary of the initialization sequence.
a) Return the printhead to the Ieftmclst position.
b) Set ON LINE mode.
c) Clear the print buffer and input buffer.
d) Set the line spacing to 1/6 inches.
e) Set the page length to 11 or 12 inches according to the DIP switch setting.
f) Clear all vertical tab positions.
9) Set the horizontal tab position at 13-column intervals.
h) Set the print mode according to tlhe DIP switch setting and the non-volatile memory setting of
the control panel.
1.8.5 Adjust Lever Operation
The adjust lever must be set to the proper position according to the paper of paper you are using. Refer
to Table 1-16 and Figure 1-9 below.
Table 1-16. Lever Position
Paper
Lever Position
●
2nd step
Cut sheet, continuous paper (non copy, 1 + 1 copy)
3rd step
Continuous paper (1 +2 copies)
4th step
Label
4th to 7th step
Envelope
If printing density becomes Ii!ghter, set the adjust lever position one step narrower.
2’ndl position
m
/
o
4’th position
FL
o
u
pi,
f;’-’ )}‘
t,
II /
~Adjust Lever
I <.41 I
I l..
““~ ~“
l’.$..;/’
I
7
Figure 1-9. Lever Position
1-21
REV.-A
1.6 M A I N C O M P O N E N T S
The main components of the LX-8 10/850 printer are designed for easy removal and replacement to
maintain/repair the printer.
The main components are:
1 ) TAMA board: Main control board. The CPU on this board controls all main functions.
2) TAPNL-W control panel: Control panel.
3) TA filter unit: Transformer and filter board.
4) M-3D 10: Printer mechanism.
MA board
...
t..
TA
Filter
Unit
—
Figure 1-10. 1.X-81 0/850 Component Layout
1-22
Printer
Mechanis
M-3D 10
REV.-A
1.6.1 TAMA Board
The use of the ~PD78 10HG CPU simplifies the main control board circuit design.
. PROM (3C)
-SRAM (3D)
Gate Array
E05430 (3B)
- CPU
LPD78 10HG
(2C)
Figure 1-II 1. TAMA Main Control Board
1.6.2 TAPNL-W Control Panel
The TAPNL-W control panel is the LX-8 10/850 control panel which contains the indicator LEDs and
switches.
Figure 1-12. TAPNL-W Control Panel
1-23
REV.-A
1.6.3 TA Filter Unit
The TA filter unit contains a power cord ( 120V Version) or AC inlet (220/240V Version), power switch
fuse, filter circuit, and power transformer.
(220V Version)
(120V Version)
(240V Version)
Figure 1-13. TA Filter Unit
1.6.4 Printer Mechanism (M-3D1O)
The M-3D 10 printer mechanism was developed specifically for the LX-8 10/850 printer. Its components
include:
Carriage motor
Carriage
mechanism
Paper feed motor
Paper feed mechanism
Ribbon feed mechanism
Printhead
Sensors
Figure 1-14. Nlodel-3Dl O Printer Mechanism
1-24
-.
REV.-A
1.6.5 Housing
The LX-8 10/850 housing consists of the upper and lower cases. The upper case houses the control
panel. The lower case houses the printer mechanism and the main control board.
f:igure 1-15. Housing
1-25
REV.-A
CHAPTER 2
PRINCIPLES OF OPERATION
2.1
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1
2.1.1 Connector Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.2 Outline of Printer Mechanism Operation . . . . . . . . . . . . . . . . . . . . . . 2-3
2.1.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4
2.1.2.2 Mc~tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7
2.1.2.3 Printhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.1.3 Circuit Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2
. . . .N
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
PRINCIPLES OF OPERATIO
2.2.1 Power Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.2.1.1 TA Filter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-11
2.2.1.2 + 12V DC Power Supply Circuit . . . . . . . . . . . . . . . . . . . . 2-12
2.2.1.3 +2!4V DC Power Supply Circuit . . . . . . . . . . . . . . . . . . . . 2-13
2.2.1.4 +5A/ DC Power Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . 2-19
2.2.2 Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-20
.
2.2.2.1 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-20
. -21
2.2.2.2 Operation at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2.2.3 Power-off Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
.
2.2.3 Carriage Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-22
2.2.3.1 Carriage Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2.2.3.2 Carriage Motor Specification . . . . . . . . . . . . . . . . . . . . . . . . . .2-22
2.2.3.3 Carriage Motor Drive Circuit
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
2.2.3.4 Carriage Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .2-24
2.2.3.5 Carriage Motor Software Control ................. 2-32
.
2.2.4 Paper Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-35
2.2.4.1 Paper Feed Mechanism Operation ................ 2-35
2.2.4.2 Paper-Feed Motor Specifications ................... 2-36
2.2.4.3 Paper-Feed Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . 2-37
2.2.4.4 Paper-Feed Motor Software Control ............. 2-38
2.2.5 Printhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-39
2.2.5.1 Printhead Printing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
2.2.5.2 Printhead Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
2.2.5.3 Printhead Drive Circuit Block Diagram ....... 2-40
2.2.5.4 Gate Array E05A30 Operation in Printhead
Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
2-i
REV.-A
2.2.5.5 Printhead Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
2.2.5.6 Printhead Software Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
2.2.6 Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
2.2.7 EEPROM Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .2-45
2.2.8 Ribbon-Feed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
LIST OF FIGURES
Figure 2-2.
Cable Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Printer Mechi~nisrn Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3
Figure 2-3.
Paper-End Sensor Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4.
Paper-End Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-4
..
Figure 2-5.
Home-Position Sensor Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-5
.
2-5
Home-Position Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
Release Sensor Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-6
Figure 2-1.
Figure 2-6.
Figure 2-7.
Release Sensor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2-6
...
....
Figure 2-9. Printhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2-8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure 2-10. TAMA Board Block Diagram
Figure 2-11. Power Supply Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Figure 2-12. Transformer Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Figure 2-8.
Figure 2-13. + 12V DC Power Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Figure 2-14. +24V DC Power SupPly Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Figure 2-15. Rectifier and Smoothing Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Figure 2-16. +24DC Switching Regulator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2-17. Voltage Feedback Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2-18. Over-Current Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2-19. Output Transistor Drvie Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-14
2-15
2-16
2-17
Figure 2-20. Chopping Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-18
Figure 2-21. +5V DC Power Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Figure 2-22. Reset Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-20
Figure 2-23. RESET Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .2-20
Figure 2-24. Carriage Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Figure 2-25. Carriage Drive Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
Figure 2-26. Carriage Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Figure 2-27. SLA 7020M Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Figure 2-28. Phase Data Input Circuit (2-2 Phase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Figure 2-29. Phase Signal Timing Chart (2-2 Phase) . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Figure 2-30. Phase Data Input Circuit (l-2 Phase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Figure 2-31. Phase Signal Timing Chart (l-2 Phase) . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Figure 2-32. Reference Voltage Generation Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Figure 2-33. Constant Current Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
Figure 2-34. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
Figure 2-35. Carriage Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
Z.ii
p
,,
.., ,.,
REV.-A
Figure 2-36. Home-PositionSeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
Figure 2-37. Printing Area and Printing Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Figure 2-38. Friction-Feed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
Figure 2-39. Push Tractor Feed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-36
Figure 2-40. Paper-Feed Motor Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-37
Figure 2-41. Paper-Feed Motor Drive Timing Chart . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38
Figure 2-42. Printhead Printing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Figure 2-43. Printhead Drive Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
Figure 2-44. Printhead Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-47
. -41
Figure 2-45. Printhead Driving Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
.
Figure 2-46. Print Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-42
Figure 2-47. A/D Converter (+24V VDC Line Monitor) Circuit ..... 2-42
Figure 2-48. Relationship between Head Driver Voltage and
Print Driving Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Figure 2-49. Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
Figure 2-50. EEPROM Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
.
Figure 2-51. Ribbon-Feed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-46
LIST OF TABLES
Table 2-1. Board Connecl:or Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Table 2-2. Voltage Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
..
Table 2-3. Reference Voll:age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Table 2-4. Phase-Excitation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Table 2-5. Drive Sequence (2-2 Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Table 2-6. Drive Sequence (l-2 Excitation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Table 2-7. Excitation Sequence (Clockwise : Paper Feeds
.
Forward) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38
Table 2-8. Ribbon-Feed Gear Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2-46
Z.iii
REV.-A
2.1 O V E R V I E W
This chapter describes the signals at the connectors linking the primary components of the LX-8 10/850.
These components include the printer mechanism and control circuits. The chapter also describes the
operation of the printer’s circuitry and /printer mechanism.
2.1.1 Connector Summary
The interconnection of the primary components is illustrated in Figure 2-1. Table 2-1 summarizes the
functions, sizes, and types of the connectors shown in the figure.
Table 2-’1. Board Connector Summary
Board
CN 1
TAMA
Board
Function
Connector
Host l/F (Parallel)
Pins
Reference Table
36
1-11
A-8
CN2
Optional I/F Board
26
CN3
Control Panel
10
A-9
CN4
Release Lever
2
A-1 O
CN5
CR Motor and PF Motor
12
A-1 1
CN6
PE Signal
2
A-12
A-13
:
CN7
Home Position Signal
2
CN8
Head
12
A-1 4
CN9
AC Power Input
4
A-15
DC Power Input (OEM)
4
A-16
CN 10
2-1
REV.-A
FiiEElr
Model 3D 10 Printer Mechanism
Board
CR motor
Release
PF motor
PE
HOME
HEAd
—
,
Control
Panel
12Pin
2Pin
1 OPin
TAMA Board
2Pin
II
c E
: 5
.5 co
c
m
,zn
“’?
,.
TA
co
ii~
-u
n
36 Pin
.5 m
L z
- u
m
L
J
Paralel l/F
[
Optional l/F
)
‘
(OEM)
Filter Unit
r–––––––n
I
I
I
I
Transformer
1
/ \
I
Filter
Board
1
‘
Power Input I
I
I
1
I
l-l
Optional
Interface
I
I
I
I
Board
t:
L
AC”IN
I Parallel l/F j Specific l/F I
~-..
., .,. ,.
l----------~ ----------i
I
L’
I
: 5
“:
n
HOST COMPUTER I
NOTE: CR = carriage.
PF = paper feed.
HP = home position.
PE = paper end.
Figure 2-1. Cable Connections
2-2
REV.-A
2.1.2 Outline of Printer Mechanism Operation
The Model 3D 10 is a 9-pin serial dot matrix printer. Because the frame and many of the components
are of plastic, the mechanism is lightweight. A block diagram of the printer mechanism is shown in
Figure 2-2.
&
zw
f
5:
::
~.::
U
m
$
(0
A
u
a --(>
NE
=0
0+
Ku
v<
~~
u
1
~
2’:.$.:
~:
$
CW = clockwise; CCW= counterclockwise.
HP = home position; PE= paper end.
Figure 2-2. Printer Mechanism Block Diagram
2-3
REV.-A
2.1.2.1 Sensors
The printer mechanism is equipped with the following sensors:
Paper-End (PE) Sensor
Home-Position (HP) Sensor
Friction/Tractor Sensor
Paper-End Sensor (PE sensor)
Figures 2-3 and 2-4 show the paper-end sensor. This sensor switch is ON when no paper is in place
(e.g., when the paper supply has run out).
“Paper-out” ~ ON ~ LOW
Paper present ~ OFF + HIGH
~Jq~
Platen
Paper guide
“..
,-
o
Paper-End Sensor
/
‘“Paper-out”
c~
/
Paper
o
/
“Paper present”
Figure 2-3. Paper-End Sensor Mechanism
+5V
&&.
R96
IK
7A’
Figure 2-4. Paper-End Sensor Circuit
2-4
.
~.
REV.-A
Home-Position Sensor (HP sensor)
Figures 2-5 and 2-6 show the home-position sensor. The sensor switch is ON when the carriage is at
the home position.
Home position + ON -+ LOIA/
Other positions + OFF - HIGH
This sensor determines the reference pcxsition for the carriage drive,
age guide shaft
iage
Figure 2-5. Home-Position Sensor Mechanism
+5V
4
<o—————u
CN7-1
R97
J
-
IK
Figure 2-6. Home-Position Sensor Circuit
2-5
HOME
REV.-A
:$-2!
+.
Friction/Tractor Sensor
The release sensor senses the position of the release lever in order to detect whether tractor feed or
friction feed is in effect.
Release Lever Position : Front + F:riction Feed + OFF + HIGH level
Release Lever Position : Rear -+ Tractor Feed ~ ON ~ LOW level
Rear
/
Front
\
?“’”\ i,
~.
ease Lever
w
< Friction/Tractor
Sensor
~
Figure 2-7’. Release Sensor Mechanism
+5V
4
oJKL-=
r’
R95
IK
Figure :2-8. Release Sensor Circuit
2-6
REV.-A
2.1.2.2 Motors
This printer has the following motors:
Carriage motor (step motor)
Paper-feed motor (step motor)
Carriage Motor
The carriage motor is used to move the carriage right and left along the platen. This unit employs a
4-phase, 48-step motor using either 1-2
or 2-2 Phase excitation. An open-loop system is Used for control.
Paper-Feed Motor
Paper feed is also driven by a 4-phase 48-step motor operating with 2-2 phase excitation. Each phase
switch causes the paper to advance by advanced 1/2 16“ for each phase switch. The gate array controls
the motor through an open loop.
2.1.2.3 Printhead
Figure 2-9 shows the dot-wire operation.
When the head-driving coil is energizecl, the dot wire is pushed out. The dot wire strikes the ribbon,
causing the ribbon to impact the paper, thereby printing a dot.
/Ribbon
Platen
Dot
‘Core
Figure 2-9. Printhead
2-7
REV.-A
,. h,
2.1.3
Circuit
f.
Overview
Figure 2-10 shows a block diagram of the TAMA
board circuitry.
r h‘3”)’
PROM
32KB
RAM
8KB/32KB
(3C)
--7rmm
ADDRESS BUS (UPPER BYTEI
i PD78 10HG
(2 c)
XWl
DATA/ADDRESS BUS (LOWER BYTE)
~Q=
A[)DRESS
ADDRESS
,LE
DECODER
LATCH
I
I
GA E05A30 (36)
J
EEPROM
(1 c)
B
I
CONTROL PANEL
CONTROL PANEL
LED DRIVE
+
24VDC +5VDC
t
t
+ 12vDC
t,
‘Usir+km+=l
CG = character generator; GA = gate array.
Figure 2-10. TAMA Board Circuit Block Diagram
The circuit consists mainly of the following ICS:
●
~PD7810HG CPU (2C)
The ~PD78 10HG executes the program in the PROM (3C) and controls all of the printer operations,
Upon receiving the RESET signal, the CPIJ begins program execution from address OOOOH.
......
<-.,’.,
●
P R O M (3C)
The PROM includes the control program (firmware) and character generators.
“ SRM 2064C (3D)
The SRM 2064C SRAM is external melmory for the CPU. It is used as an input data buffer and line buffer
for expanding data, and as working area for the program.
2-8
REV.-A
●
E05A30 gate array (3B)
The E05A30 functions are as follows
1. Parallel l/F
2. Address decoder
3. Data address multiplexer
4. PF motor control
5. CR motor control
6. Control panel LED drive
7. Printhead drive control
●
EEPROM (lC)
The EEPROM has a 256-bit memory, and remembers the current paper position.
Other control circuits are as follows:
‘ Paper feed motor drive circuit
The paper feed motor drive circuit drive:; the paper feed motor. The paper feed motor is a 4 phase-step
motor. The rotation of the motor (position and speed) is controlled by outputting the phase switching
signal by the E05A30 gate array.
●
Carriage motor drive circuit
The carriage motor drive circuit drives the carriage motor. The carriage motor is a 4 phase-step motor.
The rotation of the motor (position and speed) is controlled by outputting the phase switching signal
by the E05A30 gate array.
●
Power supply circuit
The circuit converts the AC power source to the DC voltages required by the unit. Specifically, the circuit
converts the AC power to +24, +5, and + 12 V DC.
2-9
REV.-A
2.2
PRINCIPLES OF OPERATION
This section describes the operation of each component.
2.2.1 Power Supply Circuit
The electrical power required by this mechanism is developed using the TA Filter Unit (which combines
a filter and a power transformer) and the TAMA board. The AC input passes first through the filter circuit,
where line noise is removed, and is then set to the transformer, where it is stepped down into two
separate voltages: AC 26V and AC 12V. “The transformer output is sent to the power circuits on the
TAMA board, which converts the power to the DC voltages (see below) required for operation.
Table 2!-2. Voltage Applications
Purpose
Voltage
+5 v
Logic circuit voltage
Holding voltage for paper feed motor
Others
+24 V
Carriage motor drive voltage
Paper-feed motor drive voltage
Printhead drive voltage
+12V
Voltage for the optional l/F
A block diagram of the power supply circuit is shown in Figure 2-11.
TA Filter Unit
I TAMA B o a r d
*
Step26VAC
down
Trans-- .
I
former
I
.
w
12VAC
Full-wave
~;jtifier
—
smo~thiflg
—
Circuit
I
~ +24 VDC
+24
Regulator
Circuit
I
I
~ +5 vDC
+5
Regulator
C i rc uit
E +12 VDC
y-l
rectifier
I ~n~oothing
I Circuit
I
Figure 2-11. Power Supply Circuit Block Diagram
2-1o
REV.-A
2.2.1.1 TA Filter Unit
The filter board and the transformer are integrated into a single unit. This unit also incorporates the
power switch and the inlet for the incolming AC cable.
The incoming AC power passes first through the over-current protection fuse (F 1 ) and the power switch,
and then into the filter circuit comprised of C 1, C2, C3, and L 1. This circuits removes
the noise on the
AC input line, and also serves to present noise generated within the printer from running through the
AC line.
The transformer steps down the incoming AC power into 26 VAC and 12 VAC outputs. To prevent
overheating, a temperature fuse is incorporated into the transformer.
Figure 2-12 illustrates the design of the! circuit.
FI
Power SW
.
o
CN1
red 26VAC
C2
AC INPUT
-—L
—
LI
C3
—
—
a=
cl
‘
blue 12VAC
F1 :
125V, 1.25A (120V Version)
250V, 0.63A (220V Version)
250V, 0.63A (240V Version)
Figure 2-12. Transformer Circuit
2-11
REV.-A
2.2.1.2 + 12V DC Power Supply Circuit:
As Figure 2-13 shows, a half-wave rectifying circuit is used to convert the incoming 12VAC voltage
to + 12VDC.
The 12V output is used only for the option l/F board (via the CN2 connector on the TAMA board). The
TAMA board itself does not utilize this voltage.
,f\c12
e
D3
EMO IZW
m
AC2 ~
T
T
D + 12V
Figure 2-13. + 12V DC Power Supply Circuit
g“:,
. . ... .
2-12
REV.-A
2.2.1.3 +24V DC Power Supply Circuit
The incoming AC + 26V is full-wave rectified by diode bridge DB 1, generating a DC voltage of about
36V. This voltage is converted by the switching regulator (uPC494C) to +24V DC.
Figure 2-14 illustrates the circuit design.
F2
MQ1-3. 15A
+4
DB1
RBA406B
c 1:%4
R17
6.1
K
cl
6
6800U
12 cl
50V
~
:Vcc
26VAC
INPUT
~
e +24vDC
F
.--1
ZD1 ,
HZS ,
20-2
—
C4
7
k
;6
!200#
15V
GND
oc RT C T
o
4?; K
3
O.o?p
film
I
+ GP
*R2 0.1 2W
Figure 2-14. +24V DC Power Supply Circuit
Rectifier And Smoothing Circuit
When the AC + 26V is full-wave rectified by diode bridge DB 1, and the result is smoothed by the action
of electrolytic capacitor C 1, a voltage of about + 36V DC is generated. This voltage, after passing
over-current protector fuse F2, is supplied to transistors Q4 and Q 1.
When the power comes on, the potential at the collector side of Q4 increases. When the voltage reaches
about 20V, Zener breakdown occurs at ZD 1, so that a potential difference is generated between the
collector and base of Q4. This causes 04 to come ON, so that an operating bias is supplied to the
switching regulator.
Note that because the switching regulator does not begin to operate immediately following power on,
Q 1 will also remain off during this time, so that the +36V input will not be output to the +24V line.
MQ 1-3. 15A
4
DB 1
26VAC INPUT
36VDC
+24V VDC
AAM
FIBA406B
1
1
1
C)4
Cl 384
+
I
I
1
1
I
R17
5.1 K
1
I
I
Q
1
13A
I
Frb’+a*b
L,
a c R T C T I;t 1;- D .T. C R. O F. 8 lh- 1~+
Figure 2-15. Rectifier and Smoothing Circuit
2-13
REV.-A
., . +..,,
,.
f.
.
Switching Regulator Circuit
When the voltage is supplied from the rectifying circuit, a 27 KHz switching pulse based on the external
C3-R 10 circuit is created. At the same time, the standard voltage regulator outputs 5V, which is supplied,
as a comparative voltage, to the negative terminal of error amplifier EA 1. Immediately after power comes
on, + 24V is not yet being generated, so that EA 1 output will be LOW, and the switching control circuit
will output a switching signal to the base of internal transistor Qx. External transistors Q3, Q2, and Q 1
will operate, and a 36V DC switching pulse will be output.
The output pulse passes through the smoothing circuit, which converts it to a direct voltage. As
explained below, this voltage is then returned, via a feedback circuit, to the positive terminal of EA1.
EA1 output is thus controlled so that +:24V is always maintained.
L
12
Vref
C4
I
2W
Switching
Control
I [<
Qx
0. l/A
R14
3.3K
/
7 GND
O.c.l osc ~I 4
13 6
5
—
5 4
—— —
14 3
4
-
,R6
200K
f:,
. .
R9
5.1 K
?
0.1 2W
Figure 2-16. +I!4VDC Switching Regulator Circuit
2-14
REV.-A
Feedback Circuit
A voltage switching circuit is formed by RI 1, R 12, and R16, and the potential of the +24V output
voltage is fed back to PPC494C.
The line between R 12 and R 16 feeds back to the positive terminal of EA 1 in the PPC494C, where it
is compared against the standard + 5V voltage. The electric potential of the feedback line becomes
the same as the standard potential at 24.3V, as shown by the equation below. If the voltage exceeds
24.3V, the EA1 output goes HIGH, the (3N time of the switching pulse drops, the switching duty is
lowered, and, as a result, the +24V potential drops. This action is repeated in order to maintain a stable
voltage of +24V.
5 V X ( R l 1 + R 1 2 + R 1 6 ) = 24 a v
(RI 1 + R12)
+24V line
Vref(+ 5V)
RI 6
1 9.6K
R12
4.75 K
RI 1
316
i
Figure 2-17. Voltage Feedback Circuit
2-15
REV.-A
Over-Current Protection Circuit
Error amplifier EA2, in the KPC494, detects over-current caused either by abnormal operation, or by
abnormality in the 24V line at the time of power up. Current-detecting resistor R2 is set at the EA2’s
positive terminal (pin 16), and the current, converted to a voltage value, is monitored. The negative
terminal of the EA2 is connected to the dividing circuit for the standard voltage (+ 5V) and the 24V
output.
Immediately after power enters the circuit, and until the time that 24V output begins, the voltage at
the negative terminal of EA2 is about 19.2 mV:
Vxl = (RI 1 X 5V)/(R7+R 1 1).
After 24V output begins, the voltage at the terminal is about 0.31 V:
VX2 = (R1 1 X 24 V)/(Rl 1 +Rl 2+R 16).
;.., .,
4
In order for the positive terminal of EA2 to generate the same conditions, the lx current, immediately
—
after power up, is about 192 mA (11 = 19.2mV/R 1 ). During operation, the lx current is about 3.1A
(12=0.3 I/RI).
Accordingly, this circuit is furnished so that, in the event of the problems listed below, it will halt 24V
switching, in order to prevent the propagation of damage.
When, at the time of power up, abnormality in Q 1 or elsewhere causes excessive current leak to the
24V output line.
When excessive current leak occurs during operation due to abnormality in the motor or the dot head.
Vref
R12
R16
4.75KI 9.6K
+
~g R7
;“ 82K
+24V
line
?75’
Figure 2-18, Over-Current Protection Circuit
2-16
P’
,\ .-.,
REV.-A
Switching Pulse Output
The output of the error amplifier in KPC494C is determined by the difference between the output pulse
of the internal oscillating circuit and the feedback voltage from the + 24V output. The feedback voltage
changes according to printer operation (i.e., printer load). The output of the error amplifier acts to
minimize this change, however, by responding as indicated in Figure 2-19.
Operation Low feedback voltage: Amplifier ON time increases (supply voltage increase)
High feedback voltage: Amplifier ON time decreases (supply voltage decreases)
v
I
1(
II
1
Im_IL’ ’ ompara’or
Figure 2-19. output Transistor Drive Waveform
2-17
REV.-A
Chopping Circuit
A chopper circuit consisting of diode D 1 and coil L1 is utilized at the output stage. If Q1 in ON, the
coil acts as a resistor, and suppresses vic)lent current surges. When Q 1 goes OFF, the stored energy
in the coil generates a reverse starting current, and current flows via D 1. Thus, the circuit works as a
current stabilizer.
0.4Y3VV
~~
K
NCNC
4
. -
1
T
3:30
1o11
(3A)
UPC494C
LP40 l~!126SD
D 1:’33
R14
9 3 . 3 K
El
2
IN+ ;N D. T. CR. O F. IN-IN+
B 11
ZBF503
-OITA
El
R13
1.5K
2W
Q3
C1815
R15
330
,1::--Lr
TrQ 1 Emitter i~
OFF
~~
OFF
ON
OFF
T
1<
R16
19. 6K
1%
~fq
TrQ 1 Emitter Current
Oiode D 1 Current
Current at chock coil
——————————————-—-———————-
Figure 2-20. Chopping Circuit
2-18
T
3::
2200/1
., ‘:!
c
-,
REV.-A
2.2.1.4 +5V DC Power Supply Circuit
The +5VDC is generated by the switching and step-down action that Q6 applies to the 24VDC supplied
from the 24V power circuit.
Immediately following power up, VI of SR 1 will be LOW, so that Q6 will be ON. Therefore, + 24V will
be supplie, via Q6, to the chopper circuit (D2, L2) and the smoothing circuit (C7). When the charge in
C7 reaches 5V, however, SR 1 brings VI into a high-impedance condition, and Q6 goes OFF. Thereafter,
based on this 5V charge, Q6 will switch ON when the voltage drops, and switch off when the voltage
rises to a certain level. This intermittent action will generate a stable + 5V voltage.
The chopper circuit provided at the output stage acts, just as with the 24V voltage, to stabilize the
current.
R31 serves to control the 5V output at a slightly higher (about 5 mV) level, so as to prevent voltage
drop to due switching delay.
* +24V
L2
Q6
B1 151
R18 ::
2 2 <“
LP201-2R550
~ +5V
SR1
78L05A
R19
82
+~’1
C26~
470p
film
R37
2K
1 C27
-0.1 P
1
D2
R16
ERB81 1 9 . f [
-004
B2
Z13F503
-III 1 TA
Figure 2-2’1. +5V DC Power Supply Circwit
2-19
C7
4701J
10V
+
7
—
REV.-A
2.2.2 Reset Circuit
This circuit generates the signal that initializes the printer, and is made by monitoring the + 5 and + 24V
voltages when the power is switched ON and OFF.
The reset signal line is connect to the CF’U and gate array 3B. Figure 2-22 shows the reset circuit.
Q5
A1015
MA 165
+5V+
R57
10K
RESET
R36
3.9K
+- 24v~
MA4036-M
Figure 2-22. Reset Circuit
2.2.2.1 Power-on Reset
As Figure 2-23 indicates, a rising -+ 24V pulse occurs first, after which a + 5V rising pulse o c c u r s .
Immediately after power up, the positive side of C 18 is LOW, which acts to maintain the output condition
of the reset signal.
The + 24VDC is connected to Q5 to provide the Zener bias current. Because the Zener voltage is 3.6V,
the base of Q5 becomes 3.6V. Q5 will be ON when the following voltage is added to the Q5 emitter:
(Zener voltage) +(Voltage decrease along the easy-flow direction of the P-N junction) = 4.2V
When Q5 is ON, the voltage of the + 5V line is output to the Q5 collector.
POWER SW
+24V
+ 5V
RESET
Figure 2-23. RESET Output
2-20
REV.-A
2.2.2.2 Operation at Reset
The reset signal causes the following operations to occur.
1. The printhead carriage moves to the left-side home position.
2. The printer enters the ON-LINE mode.
3. The print buffer and input buffer are cleared.
4. The line spacing is set to 1/6 inch, and the page length is set, depending on the DIP switch setting,
to either 11 or 12 inches.
5. Vertical tabs are cleared.
6. Horizontal tabs are set for every 8 cc)lumns (columns 8,1 6,24...)
7. The print mode is set according to DIP switch setting and the contents of EEPROM.
EEPROM ( 1 C) stores the previously set c)perating modes and conditions, such as font and position of
fanfold paper.
2.2.2.3 Power-off Reset
When the + 5V potential drops,Q5 goes off, the energy stored in the electrolytic condesner is released
via D 15 and R82, and the reset condition is entered.
2-21
REV.-A
,:;>
,., .
f
2.2.3 Carriage Operation
This section describes the carriage operation.
2.2.3.1 Carriage Mechanism
The carriage mechanism includes the printhead,
the carriage, the timing belt, the carriage motor, and
the platen. Figure 2-24 shows the carriage mechanism.
The timing belt is connected to the bottclm of the carriage. The belt is driven by the carriage motor
and moved via the belt-driven pulley. The printhead
is mounted on the carriage, and the entire unit is
moved right and left along the carriage guide shaft and plate.
Left
,
L, :,
,. , .
Timing B
t: Driving Pulley
Carriage Gu
Figure 2!-24. Carriage Mechanism
{;,:
2.2.3.2 Carriage Motor Specifications
Carriage motor specifications are as follclws:
4-phase, 48-pole step motor
Type
Drive Voltage
24 V * 10%
Coil Resistance
11 ohms &7% at 25 degrees C
Current
Driving: 0.36 A & IO%(Typical) (Super Draft or Draft Printing)
0.28 A & IO%(Typical) (NLQ Printing)
Holding: 0.09 A & 10%
2-22
REV.-A
2.2.3.3 Carriage Drive Circuit Block Diagram
Figure 2-25 shows a block diagram of the carriage motor drive circuit. In this circuit, the phase switching
for the carriage motor is directly executed not by the CPU, but by the gate array (3 B), which acts on
CPU phase da
the
. SLA702( vl drives the carriage motor with a stabilized current.
n
GA
CPU
SLA
7020M
E05A30
(3B)
t PD78 10HG
( 1A)
(2C)
Data
Phase Data~
-
M
‘o
Figure 2-25. Carriage Drive Circuit Block Diagram
REV.-A
2.2.3.4 Carriage Motor Drive Circuit
This unit utilizes an SLA7020M IC for the step motor drive. This IC causes the motor to be driven at
the specified current. The IC utilizes a MOSFET power element, so that heat generation is low, and there
is no need to use a radiator board. The current value is determined by the value of the external voltage
input.
Within the IC, the AB (Ax) phase and the CD (BE) phase are completely differentiated, and create
identical circuits.
For convenience, only the AB (Ax) circuit is explained below. Figure 2-26 shows the carriage motor
drive circuit. Figure 2-27 shows the SLA7020M circuit diagram.
+5V
GA
E05A30
(3 B)
t
R59
47K
4
C~A
CRB
CRC
CRD
R61
47K
5
INA
OUTA
INB
OUT~
CR A
CR 8
OUTB
CR C
OUTS
CR D
5
14
6
2
TDA
11
TDB
7
cl 5 470p
( 1A)
3
7
13
4
9
t -
Clo
820v
REFA
RSA
VS
REFB GNDA
RSB
GNDB
SLA7020M
470p 500V x4
3
8
4
12
+ C25
10X
– 50V
R29
1.0
2% 2W
R30
1.0
2% 2W
D4
EK03W
EKOffi
I
GP
+5V
A
CPU
!LPD78 10H G 4
( 2 C) PA3
PA4 5
6
PA5
I
R52 6.8K
R53 6.8K
Vvv
R51 6.8K
*VV
t
I
I
I
I
T
Figure 2-26. Carriage Motor Drive Circuit
2-24
+24V
Phase X
I
● F24V
(
r
——— ———.——
5
6
8T
I
I
I
I
I
1)
I
I
—
$ !1
——.—.—
2
——
+5V
+5V
R30
1.0
R59
47K
D5
4
3
C15
470p
P
A
t
Gp
NOTE: Phase CD is equivalent to the above.
Figure 2-27. SLA7020M Circuit Diagram
CRA
REV.-A
SLA7020M Phase Signal Input Circuit
Although most step-motor control IC’S input 4-phase data directly, the SLA7020M requires a special
type of phase data.
In the case of 2-2 phase excitation:
Figure 2-28 shows the excitation signal input circuit.
The A-phase-side excitation signal input is via a single line. The output is divided among non-inverted
A-phase output and A-phase output passed through an inverter. Therefore, the A-phase output side will
be ON when the excitation input signal is HIGH. The A-phase output side will be ON when the excitation
input signal is LOW.
Figure 2-29 shows the timing chart for 2-2 phase excitation.
PhoseA
output
output
Figure 2-28. Phase Data Input Circuit (2-2 Phase)
TdA
Input
Phase A
I
Phase~
I
8
I
1
1
I
r
1
J
1
1
2’3
1
I
1
1
4
1
1
1
I
,
I
1
1
I
#
1
2
1
1
1
3
I
1
i
I
I
4’
Figure 2-29. Phase Signal Timing Chart (2-2 Phase)
2-26
REV.-A
In the case of 1-2 phase excitation:
Figure 2-30 shows the excitation signal input circuit. When the Td terminal is LOW, the SLA702M can
cut off the output current. By using this function, the unaltered 2-phase excitation signal can cause the
1-2 phase excitation to be on 3/8ths of the time, which is a suitable value.
Figure 2-31 shows the timing chart.
““’’’-r’”’
Figure 2-30. Phase Data Input Circuit (l-2 Phase)
INA
input
TdA
I
l
l
I
l
l
I l l
I l l
;;
I I
,
.
4 —
ii
d
t
II
—
h
~
I
—1111
PhaseA
a
-
—
i ~ ~ ~
;;
;
1!11
;;
I
I 1 I
QI 11213141516171
1,,,11111
Figure 2-31. Phasa Signal Timing Chart (l-2 Phase)
2-27
REV.-A
Reference Voltage Generation Circuit
Figure 2-32 shows the reference voltage generation circuit and Table 2-3 shows the reference voltage.
The reference voltage generation circuit is shown in Figure 2-32, the reference voltages are shown in
Table 2-3. The SLA7020M drives the stepping motor based on current proportional to the reference
voltages set here. There are four stages of reference voltage values (motor drive current values), and
these are switched to correspond to the drive speed of the motor.
+5V
CPU
LLPD78 10HG
(2 c ) ~A3
PA4 v
PA5
4
q,y
5
R 5 3 6.8K
Vvv
R 5 1 6.8K
6
A
Z R47
* 5.49K
1%
~ Vref
E R46
“ 100
1%
n7
Figure 2-32. Reference Voltage Generation Circuit
Table 2-3. Reference Voltage
PA5
I
H
]
H
L
H
PA4
I
PA3
I
H\Ll
I
I
L
H
H
I
I
Reference Voltage
0.634 V
I
0.359 v
HI
0.280 V
H
0.089 V
H
,.
2-28
REV.-A
Constant Current Drive Circuit
The constant current drive circuit is shown in Figure 2-33 (for A-phase only), and the waveforms for
each part are shown in Figure 2-34. In Figure 2-33, the reference voltage is indicated by Vref; this voltage
determines the peak current through resistance R30. Resistance R59 and capacitance C 15 determine
the OFF time of the chopper.
vcc= +24V
t
II
1
IOFF 1
!
b
c)
+-l +
I
.
/1
,
I @ RSA
COMP1
1
C15
470p
J
Gp
“
i ION
RS=
R30
lsll w
D5
Gp
Gp
Figure 2-33. Constant Current Control Circuit
2-29
Vref
L
1
REV.-A
0{
WWF
I
VRS
I
-.-.-- - - - - - - - - - - - - - - ?------ - - - - - - - 1
Vb
VT
Q
{
0VG
0{
0{
o~
---------
:
.-.-J---------.---
, ------ : ----- . : - . ---- s ----------------------#,
:
1
---- ;-----------------
0
8 0
,
1
Zvcc --- ~;
—
‘4
VG
VF
,
1
; 1P
. --- , L ----------,
.
,
km
I
o
,
t
IWF
t
I
*
i
t
1
o
------
#- - - - - - -
----------------
I
t
o{
,
,
,
I
t
b ------
1
F
I
0
I
t
Icc
o
,
- - - - - - - - - - - - - - - - - - - - - - - - ..
- - - - - .------ .------
, - - - - - - -------- -
,
1
1
[
4
I
1,
to
tl
t2
A
t3
Figure 2-34. Waveforms
The circuit’s constant current control process is shown above.
Peak current detection (to-t 1)
(1)
When excitation input IN goes ON, so does MOS FET Q 1. The A-coil excitation current ION then
flows along route –.
(2)
As ION increases, so does the voltage at R30.
(3)
When R30 voltage exceeds Vref, COMP 1 inverts, and the T D voltage falls to near zero.
(4)
When V TD drops below the COMP2 threshold voltage, COMP2 inverts.
(5)
COMP2 inversion causes Q1 gate voltage to go LOW, and Q1 goes OFF.
Chopper off time (t l-t2)
(6)
When Q1 goes OFF, reverse potential is generated in the motor coil, causing the coil current
route to switch from ION to IO F F.
2-30
.p
. .,
REV.-A
(7)
IOFF flow then causes current flow in R30 to change direction. COMP1 feedback voltage VRS
(V-) thereby drops below VREF, and COMP1 again inverts.
(8)
COMP 1 output stages are formed by an open collector circuit. As a result of the inversion in
step (7), COMP 1 output goes HIGH, so that TD voltage VTD gradually rises, in line with the time
constant determined by resistance R59 and capacitance C 15.
(9)
The MOS FET gate voltage is maintained at OFF until the value of the TD voltage reaches the
COMP2 reference voltage of 2V.
The period above, during which VTD is rising from OV to 2V, is equivalent to T O F F .
Chopper on time (t2-t3)
(1 o)
When T D voltage VTD reaches the COMP2 reference value (2 V), COMP2 inverts, and Q 1 goes
on.
(1 1) r When Q1 goes on, the current flow switches from IOFF to IO N.
(12)
On the basis of the time content of motor coil A, loN, after a certain delay, gradually rises in
(13)
As ION increases, R30 potential VRS also increases. Until the value of VRS reaches that of VREF,
response to power source voltage Vcc.
Q1 remains on, supplying current I O N from the power source to the motor.
The period in which VRS advances toward VTD is equivalent to TO N.
2-31
REV.-A
2.2.3.5 Carriage Motor Software Control
This section describes the carriage motor software control.
Excitation System
The excitation system is determined by the firmware and is executed in accordance with the carriage
speed, as shown in Table 2-4. The motor drive sequence for each excitation system is shown in Tables
2-5 and 2-6.
Table 2-4. Phase-Excitation Method
Carriage Speed
Phase-Excitation Method
1 2 0 0 PPS
2-2 Phase
900 PPS
2-2 Phase
900 PPS
1-2 Phase
.,: .,, .,
$,’,
‘-,,..-
Table 2-5. Drive Sequence (2-2 Excitation)
ICR DIRECTION I
L
I
Left -+ Right
Right ~ Left
Step No.
Phase A
Phase B
Phase C
Phase D
Phase A
Phase B
Phase C
Phase D
1
ON
OFF
ON
OFF
ON
OFF
OFF
ON
2
ON
OFF
OFF
ON
ON
OFF
ON
OFF
3
OFF
ON
OFF
ON
OFF
ON
ON
OFF
4
OFF
ON
ON
OFF
OFF
ON
OFF
ON
Table 2-6. Drive Sequence (l-2 Excitation)
.+?,
g
Right ~ Left
Left -+ Right
CR DIRECTION
Step No.
Phase A
Phase B
Phase C
Phase D
Phase A
Phase B
Phase C
Phase D
1
ON
OFF
OFF
ON
ON
OFF
ON
OFF
2
ON
OFF
OFF
OFF
ON
OFF
OFF
OFF
3
ON
OFF
ON
OFF
ON
OFF
OFF
ON
4
OFF
OFF
ON
OFF
OFF
OFF
OFF
ON
5
OFF
ON
ON
ON
OFF
OFF
ON
ON
6
OFF
ON
OFF
OFF
OFF
ON
OFF
OFF
7
OFF
ON
OFF
ON
OFF
ON
ON
OFF
8
OFF
OFF
OFF
ON
OFF
OFF
ON
OFF
2-32
REV.-A
Because the carriage is driven by a step motor, the printing direction can be changed at any time, and
the carriage can be stopped at any position. Carriage motor control is effected by an open-loop system
which switches the phases in accordance with the set speeds.
-f-e’’Jw-JL&aau
(phase switching
1
II
1
Itc 1 “ tcz “
Holding
lA
1
1
t(constant)
1
t
1
#
;~;
“tc28 ;
o r tc14 ;
1
I
-
1
1
I
I
1
:4
+D28
‘“1
I
or
;
t014 #
w
Acceleration
area
(Accelerating)
“
Prlntln area
(constan !s p e e d )
“
Deceleration “
area
(Deceierat ing)
Figure 2-35. Carriage Motor Control
Home-Position Seek
The control that causes the carriage to move to the home position when the power is turned on is called
home-position seek. Figure 2-36 shows the home-position seek operation.
When power is applied, the printer executes 2-2 phase excitation for 20 or 30 ms (regardless of the
phase switching timing) and checks the HOME signal. The result of this check determines whether the
starting position should be 1 or 2. The carriage enters the home position only once during the
initialization.
CR Movable Area
k
I
Printing
I Home
i
>
Area
I
I
I
<
<
I
II
4step a
P
I
Ii
1’
I
I
I
2steps=
End of
Home
Position
seek
.— –--t ———.
——
— ——
——
——— ——— ————-1 —
I
Constant
I
<
I
\
Constant
+
> Deceieation
i’
Acceleration
Acceleration
Figure 2-36. Home-Position Seek
2-33
REV.-A
Printing Area
The printing area is defined as starting 26 phase switching times following the home position.
1
II
I
--JvLODJm-J_
i...-
Acceleration Area 4- Printing Area
Figure 2-37. Printing Area and Printing Timing
Abnormal Carriage Operation
This unit does not employ a print timing signal (PTS) sensor and cannot detect abnormal carriage
operation. There will therefore be no error recognition if, for example, the carriage movement is blocked
or otherwise affected by an external force. An error will only occur if the HOME signal while the printhead
is in the printing area, in which case the carriage will stop.
,f+
. ,.
2-34
REV.-A
2,2.4 Paper Feed
This section describes the paper-feed operation.
2.2.4.1 Paper Feed Mechanism Operation
Friction feeding is used for cut sheets, and push tractor feeding is used for fanfold paper.
Friction-Feed Operation
The paper is held against the platen by paper-feed rollers. The paper-feed motor rotates the platen gear,
via the paper-feed reduction gear, in the direction shown in Figure 2-38. Because of the friction between
the paper-feed rollers and the platen, the rotation of the platen gear causes the paper to be fed. The
feeding direction is indicated by the arrow in the Figure.
The paper is held against the platen by the spring force of the paper-feed rollers, and can be released
by shifting the paper-release lever forward.
,aper~nsionRo>-+e::sheet)
@~{’aperTe~~~~~~~con.ear
&
Paper Feed Motor
Pinion Gear
‘0
. ...
. A
Figure 2-38. Friction-Feed Operation
2-35
/
Paoer Feed Motor
REV.-A
K<::;*
‘3:, ‘
Push Tractor Feed Operation
When the push tractor unit is used, the paper is set such that its holes mesh with the tractor pins along
the tractor belt. The paper feed motor is driven and, via the pinion on the motor shaft, rotates the gears
in the direction shown in Figure 2-39, rotating the tractor belts. This causes the paper advances in the
direction indicated by the arrow. When push tractor feeding is used, the pressure of the paper feed
rollers against the platen is released by moving the paper release lever to its forward setting.
/-- . . P a p e r
‘..
,/’
/
Paper Tension Roller
\
(Continuous)
\
/
/“”
“
Push Tractor
““L,
w
y.;.~p
.
ff’
~>TractOrReductiOn
fJJJf+’
e
;
c
Paper Tension Roller Gear
o
.,.- #
>’*. “ $
. .. .. ~
‘a
P
e
Gear’
r
Feed Reduction Gear
, Paper Feed Motor Pinion Gear
Paper Tension
Roller Transmission Gear
Paper Feed Motor
Fiaure 2-39. Push Tractor Feed Operation
2.2.4.2 Paper-Feed Motor Specifications
Paper-feed motor specifications are as follows:
Type
4-phase, 48-pole step motor
Drive Voltage
24 VDC & 1 0 %
Coil Resistance
40 ohms ~7Y0 at 25 degrees C
Phase Excitation
2-2 phase
Current
Maximum, 1.1 A (Rush Current, 26.4 VDC)
Driving: 0.30 A (Typ., 480pps, 24VDC)
Holding: 0.06 A A 20 mA
Driving Frequency
480 PPS
2-36
REV.-A
2.2.4.3 Paper-Feed Motor Drive Circuit
The paper-feed motor drive circuit is shown in Figure 2-40. The paper-feed motor is a step motor which
can utilize 2-2 phase excitation. When the paper-feed signal PC2 is set to HIGH, Q20 and Q 16 are turned
on, and +24 V is supplied to the motor. When the paper-feed motor is not driven, + 5 V is supplied,
via resistor R42 and diode D6, to hold the motor.
‘n
+24V
CPU
flPD78 10HG
(2C)
PC2
R36
R44
5.6K
+5V
&
R42
EMD! W 39 l/2W
10
R45
5.6K
V4V v
19
1
A
9
RI 16
33K
GA
E0530
(3 B)
12
8
11
R87 3.3K
7
PFA
9
PFB
10
PFC
PFD
R89 3.3K
v V4V
R86 3.3K
V“VAV
11
PFCOM
h
777
8
PFCOM
R88 3.3K
VAVAV
T
GP
Figure 2-40. Paper-Feed Motor Drive Circuit
2-37
PF A
PF B
PF C
PF D
REV.-A
2.2.4.4 Paper-Feed Motor Software Control
The paper feed motor is a 48-pole step motor and is open-loop controlled. When 2-2 phase excitation
is used to drive the motor, each step feeds the paper a distance of 1/2 16th inch.
Table 2-7 shows the paper-feed motor excitation system.
Table 2-7. Excitation Sequence (Clockwise: Paper Feeds Forward)
Step No.
Phase A
Phase B
Phase C
Phase D
o
ON
OFF
ON
OFF
1
ON
OFF
OFF
ON
2
OFF
ON
OFF
ON
3
OFF
ON
ON
OFF
NOTE: If the paper-feed motor is driven counterclockwise, the paper is fed in reverse.
Figure 2-41 shows the paper-feed motor drive timing chart.
1
A
I
1!1
ICI
!
IC2 ! IC3 ! IC4 ! t !
Figure 2-41. Paper-Feed Motor Drive Timing Chart
NOTE: If there are less than 10 steps, the speed will not change.
2-38
REV.-A
2.2.5 Printhead
This section describes the printhead operation.
2.2.5.1 Printhead Printing Operation
The dot-wire operation during printing is as follows. When the head-driving coil for a dot wire is
energized, the actuating plate, which is engaged to one end of the dot wire, is attracted to the iron core,
and drives the dot wire toward the platen. The dot wire forcefully pushes both ribbon and paper against
the platen, causing a dot to be printed.
When the head-driving coil is deenergized, the actuating plate spring causes the actuating plate to return
to its initial position. After striking the platen, the dot wire also returns to its initial position, partly in
response to the impact energy, and partly as a result of the wire-resetting spring. The dot wire then
remains engaged to the actuating plate until it is driven again. Figure 2-42 illustrates the printhead
printing operation.
Platen
Ribbon Mask
Dot Wire
Wtre Resetting Spring
Stopper
~~
>
4’
L)j
(]
Ribbon
Actuating Plate
-
UIXl
Paper
J
B,r’’nc”re
%q [~HeacJDrwmgCo,l
Act;ating Plate Spring
F i g u r e 2 - 4 2 . Printhead
2.2.5.2 Printhead
Printhead
Printing Operation
Specifications
specifications are as follows:
Solenoids
9 solenoids
Wire Diameter
0.29 mm
Drive Voltage
24 VDC + 1 0 %
Coil Resistance
19.2 & 1.0 ohms at 25 degrees C
2-39
REV.-A
2.2.5.3 Printhead Drive Circuit Block Diagram
Gate array E05A30 is used as an 8-bit + l-bit data latch.
The CPU determines the pulse width for the head-wire drive pulses from gate array E05A30 by
monitoring the printhead drive power (+24 V line).
GA
E05A30
(3B)
CPU
~ PD78 10HG
(2C)
Pri nthead
D rive
C i rc u it
Pri ntherd
--N
DATA
3
--l/
......
‘i_
FIRE
●
I
Figure 2-43. Printhead Drive Circuit Block Diagram
2.2.5.4 Gate Array E05A30 Operation in Printhead Drive Circuit
The E05A30 gate array includes circuitry to interface the CPU and the printhead.
The data is output to the printhead
in the following sequence:
1. Print data is expanded in the image buffer as dot patterns. The CPU outputs the dot patterns to the
E05A30.
2. The data for pins 1 through 8 of the printhead is latched by HD 1 trough HD8 of the E05A30. (MMIO
OCO06H
write operation)
3. The data for pin 9 of the printhead is latched by HD9 of the E05A30. (MMIO OCO05H
write operation)
4. After data latching, the printhead drive pulse width signal ~ is output from the CPU’s event counter.
When the signal is LOW, the gate array will be open, so that the data from HD1 through HD9 will
be output.
2-40
REV.-A
2.2.5.5 Printhead Drive Circuit
The drive pulse width is adjusted using CPU port PC6.
+24V
J
8
11
GA
HD1 6 3
E05A30
(3 B)
HD2 6 2 R21,,, I K
D1647 Q7
R20,,, IK
5
D1647 Q9
9
*
D1647 Q8
HD3 61 R22,kh 1 K
HD5 5 9
HD6 58
HD7
HD8
HD9
D1647 Q13
R26&,, IK
3
R28,,, 1 K
1
D1647 QI 1
R25,,, 1 K
R27,,, 1 K
10
D1647 Q12
R24,,, IK
‘
2
3
D1647 Q1O
HD4 6 0 R23A,, 1 K
12
2
4
+’GP
I
Figure 2-44. Printhead Drive Circuit
I
J
[
I
1
I
1J
20V
0.5 m s
Figure 2-45. Printhead Driving Waveforms
2-41
0 HDCOM
I
O HD1
o HD2
o HD3
0
HD4
0 HD5
0 HD6
0 HD7
0 HD8
0 HD9
CN8
HEAD
REV.-A
#r?,
.*
-..
2.2.5.6 Printhead Software Control
During operation at 900 PPS, one print cycle is performed at each phase switching step, so as to meet
the specifications of the printhead
(solenoid drive frequency: 900 Hz).
The drive pulse width is adjusted by using an A/D converter (Figure 2-47) to detect the drive voltage,
and is kept within the area outlined by the oblique lines in Figure 2-47.
Specif icat ion
of Pr inthead
iI
II
Ii
Head Prive
Pulse
$:q:&J1-n—rL
900PP
I
I
I
I
I
.
I
~
1
Figure 2-46. Print Timing
+24V
I
L
J ;(‘
+24V
ZD3 ,
MZS4 .7 MB2-1 TJ
C20
0. l/A
AVREF
+5V
43
R84 ~ MA105
32
— C21
R108
1.65~ 4 7 0”
<)
CUP
/L PD7 810HG
(2C)
3
AVCC
AN5
3
AVSS
+’
Figure 2-47. A/D Converter (+24 VDC Line Monitor) Circuit
2-42
45C
(425)
05
400
Drive Pulse
Width
350
(ils)
5)
I
I
1
1
1
1
I
t
;)
t
1
300
1
1
1
22.0
(21 .6)
1
1
I
1
I
t
1
1
1
1
1
I
1
o
I
23.0
24.0
1
1
1
1
1
25.0
26.0
(26.4)
Drive Voltage (VDC)
Figure 2-48. Relationship between Head Driver Voltage and Print Driving Pulse Width
REV.-A
2.2.6 Host Interface
The host interface circuit is shown in Figure 2-49. STROBE pulses from the host computer pass through
the low-pass filter, consisting of R72 and C 12, and flow into the STROBE terminal.
These pulses latch the parallel data and set the BUSY signal HIGH, so that subsequent data transfer
is inhibited.
At this time, the CPU, by reading address OCO02H,
can detect whether the data from the computer
are latched in the gate array. When the CPU determines that data have been latched, it proceeds to
read the data. After the data have been read, the gate array automatically resets its busy signal.
s
x
c1
>>
Z
z
(A)a
xl
.4
w
L
-1
$?
-!:.,:;
T
0)
-
-
Figure 2-49, Host Interface
2-44
REV.-A
2.2.7 EEPROM Circuit
The EEPROM stores in its memory the current feed position of continuously fed paper, as well as the
current panel settings. This memory is retained even after power is shut off.
EEPROM can memorize the current position of continuously fed paper, so that this information can be
maintained even if power goes off.
Figure 2-50 shows the EEPROM circuit. Note that this is external to the CPU’s memory space.
EEPROM is selected when CPU port PC5 goes HIGH. Once EEPROM has been selected, the data to be
sent is set in CPU port PB 1, and is fed bit-by-bit to the EEPROM in line with rising pulses from CPU port
PC4’S clock. Data are read, bit-by-bit, in line with falling clock pulses.
The EEPROM receives commands to indicate whether to read or write data, and to indicate addresses.
CPU
g PD78 10HG
(2C)
ER59256
( 1 c)
DI
DO
Cs
7- TEST
CLK
3
10
4
9
22
‘
1
2
RI 19
33K
21
PB 1
PBO
PC5
PC4
R120
33K
777
Figure 2-50. EEPROM Circuit
2-45
REV.-A
2.2.8 Ribbon-feed Mechanism
The ribbon-feed mechanism consists of the ribbon cartridge and the ribbon-feed section. The
ribbon-driving gear is always driven counterclockwise (regardless of the timing belt direction) via the
gear trains shown in Table 2-8.
Table 2-8. Ribbon-Feed Gear Train
Direction of M o v e m e n t o f
Gear Train
Carriage
Belt-driven pulley -+ Platen gear (1)
Left to right (arrow o)
+ Platen gear (2)
+ Ribbon-driving gear
Belt-driven pulley -+ Platen gear (1)
Right to left (arrow ~)
+ Platen gear (3) --+ Platen gear (4)
Ribbon-driving gear
Figure 2-51 shows the ribbon-feed mechanism. The inked ribbon is held in the cartridge case between
the ribbon-feed and the ribbon-pressure roller mounted on the ribbon-driving gear. The ribbon
configuration is such that the ribbon can feed endlessly.
The ribbon-driving gear drives the rollers, which causes the ribbon to be fed.
To prevent ribbon slack, a ribbon-breaking spring is attached at the exit of the cartridge case. A ribbon
mask is installed to prevent the ribbon from staining the paper.
Ribbon Feed Roller
Ribbon Pressure Roller=
b
\~
Ribbon Transmission Gear ~
f
Planet Gear @,
Ribbon Br“caking
Spring
Planei Gear @
Ribbon Driving Gear _
$9
\\\\b
-#’@&$&T
Figure 2-51. Ribbon-Feed Mechanism
2-46
t>;
REV.-A
CHAPTER 3
OPTIONAL EQUIPMENT
3.1 INTERFACE OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .3-1
...
3.1.1 Model 8143 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
.
3.2 CUT SHEET FEEDER C80612* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4
..
3.2.1 Cut Sheet Feeder C80612* Specifications .................. 3-5
3.2.1.1 General Specifications . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . 3-5
3.2.1.2 Paper Specifications . . . . . . . . . . . . . . . . . . . .. . ., . . ..,, . . . ..0....,, 3-5
3.2.1.3 Printable Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-6
. -7
3.2.1.4 Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.2 Cut Sheet Feeder Operating Principles . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.2.2.1 Mechanism Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
.
3.2.3 Cut Sheet Feeder Disassembly and Reassembly ....... 3-10
3.2.4 Cut Sheet Feeder Preventive Maintenance ................. 3-1 4
3.2.4.1 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. 3-14
3.2.4.2 Lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .3-14
..
3.3 PULL TRACTOR C80006* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .3-16
3.3.1
Pull Tractor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-16
..
3.3.2
Pull Tractor Disassembly and Reassembly ................... 3-1 7
LIST OF FIGURES
Figure 3-1.
LX-81 0/850 with Cut Sheet Feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4
Figure 3-2.
...
Printing Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6
Figure 3-3.
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3-7
....
Figure 3-4.
Cut Sheet Feeder Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Figure 3-5.
..
Side Cover Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-11
Figure 3-6.
Paper Loading Roller Shaft Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Figure 3-7.
E-Ring Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-12
...
Figure 3-8.
Shaft Holder Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-12
..
Figure 3-9.
Hopper Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-13
..
Figure 3-10, Lubrication Point (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-14
..
..
Figure 3-11. Lubrication Point (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-15
..
Figure 3-12. Push-Pull Feed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Figure 3-13. Removal of Sprocket’s Intermediate Gear
and Relation Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
3-i
REV.-A
Figure 3-14. Removal of Sprocket Mounting Plate L . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Figure 3-15. Removal of Sprocket Mounting Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Figure 3-16. Direction of Paper Guide Roller Removal . . . . . . . . . . . . . . . . . . . . . . 3-18
$“ h
“$.
Figure 3-17. Direction for Insertion of Sprocket Wheels ................. 3-19
LIST OF TABLES
Table 3-1. Optional Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-1
..
Table 3-2. Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3-2
..
Table 3-3. DIP Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
...
Table 3-4. Bit Rate Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
..
Table 3-5. DIP Switch Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-9
. -10
Table 3-6. Tools for Assembly or Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 3-7. Lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
.......
&
REV.-A
3.1 INTERFACE OPTIONS
The LX-8 10/850 is able to utilize the Model 8100 series optional interfaces. The main interfaces are
listed in Table 3-1.
Table 3-1. Optional Interfaces
~ I
Cat.
No.
Description
I
RS-232C
Current Loop
Buffer Size
Flag Control
X-O N\OFF
Control
Max. Bit Rates
(bps)
None
2K/8K
o
0
19200
Buffer Size
Function
Listen Only
Operation
Address
Operation
8143
8148
IEEE-488
(GP4B)
I
--4
I
AH, L, DC
2K/8K
8165
1
o
0
NOTE: For details, refer to the “Optional Interface Technical Manual.”
3.1.1 Model 8143 Serial Interface Operation
With the RS-232C and a 20mA neutral current loop, the printer is able to support the optional Model
8143 interface.
Specifications
Synchronization
Asynchronous
Bit rate
75 to 19200 bps
●
Word length
Start bit
1 bit
Data bits
7 or 8 bits
Parity bit
Odd, Even, or None ‘
Stop bit
1 bit or more
●
Signal level
RS-232C
Mark = logical “1” (–3 to –27 V)
Space = logical “O” (+3 to +27 V)
Current loop
Mark = logical “l” (current ON)
Space = logical “O” (current off)
Handshaking
By REV signal or X-ON/OFF code
(Signal polarity can be inverted by jumper setting.)
“ Selectable by DIP switch.
NOTE: If the parallel interface cable is connected, disconnect it before using the 8143 board, as parallel
interface input is used to read jumper settings and DIP switch status.
3-1
c?,:.
REV.-A
Jumper Settings
Table 3-2. Jumper Settings
Function
J1
ON: “TTY TXD” is brought to -t- 12V through 470 ohm register.
J2
ON: “TTY TXD RET” is connected to signal ground.
J3
ON: “TTY RXD” is brought to + 12V through 470 ohm register.
J4
ON: ‘“TTY RXD RET” is connected to signal ground.
J5
ON: “DTR and DCD” are brought to 12V through 4.7 Kohm register.
ON
JRC
ON
Current loop level
RS-232C level
Select input signal level
JC
OFF
OFF
ON
MARK (RS-232C)
ON
OFF
SPACE (Current loop)
OFF
JNOR
Select input Data entry
JREV
JF
Current loop level
ON
Output REV flag
Select TTY TXD function
JX
OFF
OFF
output X- O N/ X - O F F
ON
signal
DIP Switch Settings
Table 3-3. DIP Switch Settings
DIP SW No.
Function
ON
OFF
See Table 3-4
1-1 (JB3)
Bit rate selection
1-2 (J8/7)
Data length selection
1-3 (JB 1)
Bit rate selection
See Table 3-4
1-4 (JB2)
Bit rate selection
See Table 3-4
1-5 (JO/E)
Parity selection
1-6 (JPDS)
Parity selection
1-7 (P/s)
8143 selection
7 bits
EVEN
8 bits
ODD
See Table 3-4
Enabled
3-2
Disabled
REV.-A
Table 3-4. Bit Rate Settings
Bit Rata
(bps)
SW1-7
(JB4)
Swl-1
(JB3)
SW1-4
(JB2)
SW1-3
(JB1 )
Bit Rata
(bps)
SW1-7
(JB4)
Swl-1
(JB3)
SW1-4
(JB2)
SW1-3
(JB1 )
75
ON
ON
ON
ON
1800
OFF
ON
ON
ON
110
ON
ON
ON
OFF
2400
OFF
ON
ON
OFF
134.5
ON
ON
OFF
ON
4800
OFF
ON
OFF
ON
150
ON
ON
OFF
OFF
9600
OFF
ON
OFF
OFF
200
ON
OFF
ON
ON
19200
OFF
OFF
ON
OFF
300
ON
OFF
OFF
ON
19200
OFF
OFF
ON
OFF
600
ON
OFF
OFF
ON
19200
OFF
OFF
OFF
OFF
1200
ON
OFF
OFF
OFF
19200
OFF
OFF
OFF
OFF
NOTE: For current loop operation, a data transfer rate greater than 1200bps cannot be guaranteed.
Handshaking Timing
When the amount of buffer space for input data becomes 256 bytes, the printer indicates that it is “not
ready to receive data” by outputting the X-OFF code and/or REV signal (polarity can be selected by
jumper setting). When the available buffer space becomes 528 bytes, the printer indicates that it is
“ready to receive data” by outputting the X-ON code and/or changing the REV signal.
Error Handling
An asterisk (*) is printed when a parity error is detected. Other errors (e.g., “overrun error” and “framing
error”) are ignored.
3-3
REV.-A
3.2 CUT SHEET FEEDER C80612*
The LX-8 10/850 printer can use C806 12* cut sheet feeder. This cut sheet feeder has the following
features:
1. Cut sheets may be handled in the same way as fanfold paper.
2. Sheets may be manually inserted.
3. The feeder is easily mounted and dismounted from the printer.
4. The feeder requires no electrical connection to the printer.
5. The feeder is extremely reliable.
6. A high level of performance can be achieved.
Figure 3-1. LX-81 0/850 with Cut Sheet Feeder
3-4
REV.-A
3.2.1 Cut Sheet Feeder C80612* Specifications
This section details the operating specifications for Cut Sheet Feeder C806 12*.
3.2.1.1 General
Specifications
For paper weight of:
Hopper Capacity:
64 g/m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .185 sheets maximum
90 g/m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 sheets maximum
NOTE: If the weight of the paper differs from the above, total thickness must be less than 0.59 inches
(15mm).
64 g/m2 paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 sheets maximum
Stacker Capacity:
. . sheets maximum
90 g/m2 paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
MCBF (Mean Cycles Between Failures): 100,000 cycles
Reliability:
Environmental requirements:
Operating temperature range - +5 to 35 deg. C
Storage temperature range - –30 to 65 deg. C
Operating humidity range - 15% to 80% (with no condensation)
Storage humidity range - 5% to 85% (with no condensation)
3.2.1.2 Paper Specifications
Cut sheet paper must be in new condition. It must not be curled or curved, and must be free of surface
and edge damage.
Paper type and quality: Plain bond, typewriter or PPC quality paper with a minimum wood pulp content
NOTE: Paper with higher wood content, and very light and very heavy paper, must be operationally
tested prior to regular use. Paper with a textllred embossed, glossy, or hammered surface must
also be so tested.
Paper width and length:
Width - 182 mm (7.17 inches) to 216 mm (8.50 inches)
Length – 257 mm (10.1 inches) to 364 mm (1 4.3 inches)
(0.0039 inches)
Paper thickness:
0.07 mm (0.0028 inches) to 0.1 mm
Paper weight:
64 g\m2 to 90 glmz (17 lb to 24 lb)
Angular deviation:
Below &O.5 mm (0.02 inches)
Recommended conditions for paper storage:
Temperature:
Humidity:
+ 18 to 22 deg. C
40% to 60%
3-5
REV.-A
,,p,
‘$-....
3.2.1.3 Printing Area
See Figure 3-2.
3mrn(0.i 2’”)
min.
8.5mm(0..33”)
min.
I
A
Printable
area
XYZ
ABC
{
/,
/
),/
/
XYZ
ABC
1
3mm(0.i 2“)
min.
Printable area
13.5mm(0.53”)
approx.
Figure 3-2. Printing Area
NOTES: The printable length is approximately 22mm (0.87 inches) less than the actual page length.
Paper feed accuracy can not be assured within 22mm (0.87 inches) from either top or bottom
edge.
3-6
REV.-A
3.2.1.4 Dimensions and Weight
444 mm (1 7.5 inches) (Width) X 434 mm (1 7.1 inches) (Depth) X 416 m m
Dimensions:
(1 6.4 inches) (Height) (including paper feed knob)
NOTE: Dimensions were measured with the cut sheet feeder mounted on the printer.
/
Figure 3-3. Dimensions
Weight Approx.
1.1 kg (excluding covers)
3-7
REV.-A
‘+
C
..
3.2.2 Cut Sheet Feeder Operating Principles
The cut sheet feeder is driven by firmware incorporated in the printer. The feeder need not be
electronically connected to the printer.
Cut sheet feeder mode can be selected either by DIP switch or by command.
Selection by DIP switch
The cut sheet mode is selected by the DIP switch setting.
Table 3-5. DIP Switch Selection
DIP Switch
Function
ON
OFF
2-2
Cut Sheet Feeder M o d e
Valid
Invalid
*
$.
k
After the cut sheet feeder has been mounted on the printer, the following command can be used. “-’
Selection by comman’d
Command:
ESC EM
Format:
CHR$(27); CHR$(25);
“n”
where “n” signifies the following
n=o
Cancels the CSF mode
n=4
Specifies the CSF mode
n=R
Ejects a sheet
NOTE: This command should be input when paper is loaded.
.$-:
. ,,, .
3-8
REV.-A
3.2.2.1 Mechanism Operation
Paper is loaded between the paper holder and the paper loading rollers. When the paper feed motor
rotates in reverse, the gears, via the pinion on the motor’s shaft, rotate in the direction of the white
arrows (see Figure 3-4), and friction causes the paper to advance to the paper guide. When the paper
comes into contact with the platen, the rotation of the paper feed motor changes to the forward
direction, and the gears rotate in the direction indicated by the black arrows. Friction causes the paper
to advance between the platen and the paper feed rollers. As it advances, the paper is further guided
by the paper ejecting rollers. Figure 3-4 illustrates the feed operation.
Paper (Cut Sheet)
\
/
Lever A
mission A
k
\
\
\
\
@t
rT
\
\
7t
~Driving Transmission
Gear B
d
/
Paper Feed’ Roller
Tractor
Reduction
Gear
n(ii?
Illf
0’
‘ / /’
Platen
Gear
E#j’::::d/w
Pa~er Feed Motor
Paper Feed Motor
Pinion Gear
Figure 3-4. Cut Sheet Feeder Operation
3-9
REV.-A
f..:
.*.-.
3.2.3 Cut Sheet Feeder Disassembly and Reassembly
This section describes the procedure for removing the hopper unit of the C806 12’ cut sheet feeder.
Unless otherwise specified, reassembly is performed by reversing the sequence. The diagrams in Figure
A-2 1, which are provided as reference for disassembly and reassembly, show an exploded view of the
parts configuration.
The required tools are listed in Table 3-6.
Table 3-6. Tools for Assembly or Disassembly
Availability
Part No.
Philips screwdriver No.2
o
B743800200
E-ring holder #6
o
B740800800
Designation
o: Commercially available
CAUTION
;
---
For safety, gloves should be worn during disassembly and assembly.
Dismount the cut sheet feeder from the printer before starting disassembly.
Do not allow oil or grease to contaminate the paper path. If contamination does occur, wipe it away
with alcohol.
WARNING
If it is necessary to replace one of the paper loading rollers, both right and left rollers must be replaced
at the same time.
‘. . . . .
3-1o
REV.-A
1. Remove side covers L and R.
Side cover (R)
Side cover (L) .,.
+
Figure 3-5. Side Cover Removal
2. Remove the E-ring (6) on the paper loading roller shaft, and then remove the shaft.
E-ring (6)
,
\
Paper Loading Shaft
Figure 3-6. Paper Loading Roller Shaft Removal
3-11
REV.-A
$!:?.,
..... .
3. Remove the 2 E-rings (6) on the paper support shaft.
E-ring (6)
.
Figure 3-7. E-Ring Removal
4. Remove the shaft holder fastening the paper support shaft to frame L.
= Shaft Holder
Frame
Figure 3-8. Shaft Holder Removal
3-12
E-ring (6)
REV.-A
5. Remove the E-ring (6) on the paper support shaft (See Figure 3-9)
6. Lift, together, the hopper unit and the paper support shaft.
Paper Loading Roller
Shaft Holder
e
@l
E-ring (6)
support
ection
I
Figure 3-9. Hopper Unit Removal
3-13
REV.-A
.,..,, :,
f“
3.2.4 Cut Sheet Feeder Preventive Maintenance
The cut sheet feeder C806 12* is well designed and requires only a minimum of preventive maintenance,
as follows:
a) General cleaning of the device.
b) Checking the mechanical functions.
3.2.4.1 Cleaning
a) Brush off all paper dust.
b) Check the surfaces of the paper loading and paper ejecting rollers.
NOTE: If one of the paper loading rollers is damaged, or if wear is uneven, both rollers must be replaced.
WARNING
*. ,.
$:
Regularly check the shafts of the paper loading and paper ejecting rollers. If the printer fails to move
the paper, open the right side cover and check the gear wheels for wear or damage.
3.2.4.2 Lubrication
EPSON recommends that the points indicated in Figures 3-10 and 3-11 be lubricated with EPSON O-3
and G-1 4 (see Table 3-7). These lubricants have been thoroughly tested and have been found to fully
comply with the needs of the cut sheet feeder.
Table 3-7. Lubricants
Classification
Designation
Capacity
Availability
Part No.
Oil
o-3
40 cc
E
B7 10300001
Grease
G-1 4
40 g
E
B701 400001
E: EPSON exclusive product
.$.-.
*
.
- ,., .
Lubricate the paper support shaft and the paper holder shaft using a cloth moistened with O-3.
Left ~
(
—
Cloth -
m R,,,
/
\
Paper’ SuppOr’t
J
Paper Support Shaft
Pager Hol;~r Shaft
Figure 3-10. Lubrication Point (1)
3-14
Paper Support
REV.-A
Figure 3-11. Lubrication Point (2)
3-15
REV.-A
3.3
PULL TRACTOR C80006*
g!:
..
The optional pull tractor C80006* provides optimu,m continuous paper handling. The pull tractor is
especially useful with continuous multipart forms and labels.
3.3.1 Pull Tractor Operation
When using the push-pull feed method, set the paper holes onto the pins along the sprocket wheel,
and also onto the tractor pins along the tractor belt. The paper-feed motor is driven, via the pinion on
the motor’s shaft, to rotate the gears in the direction shown in Figure 3-12. The gears, in turn, rotate
the sprocket wheels and tractor belt, advancing the paper in the direction indicated by the arrow.
Shifting the release lever forward moves the feed rollers away from the platen and releases the feed.
Paper (Continuous)
/’”
.-
/“’”%.
*
\
Push Tractor
r
\[
Xw
ion
ed
n
Gear
Paper Feed Motor
Figure 3-12. Push-Pull Feed Operation
3-16
REV.-A
3.3.2 Pull Tractor Disassembly and Reassembly
1. Remove the catch fastening the sprocket reduction gear to spocket mounting plate R. Then remove
the Reduction gear.
2. From the sprocket shaft, remove the E-ring (6), the sprocket gear, the sprocket gear spring, and the
washer.
3. Remove the E-ring (6) on the inside of mounting plate R.
ear
g (6)
Figure 3-13. Removal of Sprocket’s Intermediate Gear and Related Parts
4. Pull to remove the sprocket shaft and the sprocket support shaft from mounting plate L.
Figure 3-14. Removal of Sprocket Mounting Plate L
3-17
REV.-A
5. Remove the E-ring (6) from the sprocket shaft, then remove sprocket mounting plate R.
(@-ring’”
Sprocket
Mounting Plate R
Figure 3-15. Removal of Sprocket Mounting Plate.
6. From the sprocket shaft and the sprocket guide shaft, pull and remove sprocket set R, the paper guide
roller, and sprocket set L. In separating the paper guide roller, pull in the same direction as the side
on which the T-shaped notch is located. (When reassembling, insert from the same side.)
Sprocket Shaft
o
Paper-Guide Roller’
Figure 3-16. Direction of Paper Guide Roller Removal
,.”’
3-18
REV.-A
Reassembly
1. Insertion of the paper guide roller onto the sprocket shaft should be in the direction indicated in
Figure 3-17.
2. When inserting the sprocket roller into the sprocket shaft, the marked sides of both wheels should
face to the left, and the markings should be analogously positioned.
Shaft
er portion goes on
side.)
Marks to ‘be Matched
Figure 3-17. Direction for Insertion of Sprocket Wheels
3-19
REV.-A
CHAPTER 4
DISASSEMBLY, ASSEMBLY, AND
ADJUSTMENT
.
4.1 GENERAL REPAIR INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
.
4.2 DISASSEMBLY AND REASSEMBLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3
4.2.1 Printhead Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
..
..
4.2.2 Removal of Casing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-5
4.2.2.1 Upper Casing Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.2.2.2 Control Panel (TAPNL) Removal . . . . . . . . . . . . . . . . . . . . 4-7
4.2.3 Removal of Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-8
..
.
4.2.3.1 TAMA Board Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
.
4.2.3.2 TA Filter Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-9
.
4.2.4 Removal of Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-10
4.2.4.1 Removal of Platen Unit and Paper Guide ... 4-10
4.2.4.2 Removal of Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . 4-13
4.2.5 Disassembly of Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
4.2.5.1 Removal of The Paper-Feed Mechanism ..... 4-14
4.2.5.2 Removal of Paper-Feed Motor, Release Lever, and
Release/Tractor Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
4.2.5.3 Removal of Paper-End Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
4.2.5.4 Disassembly of Platen Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
4.2.5.5 Removal of Carriage Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
4.2.5.6 Removal of Carriage Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -22
4.2.5.7 Removal of Home-Position Sensor ................ 4-24
4.2.5.8 Disassembly of Ribbon-Feed Mechanism .... 4-24
4.2.5.9 Disassembly of The Tractor Unit ................... 4-25
....
4 . 3 A D J U S T M E N T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
4.3.1
..
Platen Gap Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-27
LIST OF FIGURES
Figure 4-1.
Paper Tension Unit Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3
.
Figure 4-2.
Printhead Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Figure 4-3.
Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-5
....
Figure 4-4.
..
Push Tractor Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-5
4:i
REV.-A
Figure 4-5.
.
Upper Casing Removal-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Figure 4-6.
..
Upper Casing Removal-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Figure 4-7.
Control Panel FFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Figure 4-8.
.
Control Panel Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-7
Figure 4-9.
..
TAMA Board Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8
Figure 4-10. TA Filter Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Figure 4-11. Printer Mechanism Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Figure 4-12. Removal of Paper Tension Unit Cover . . . . . . . . . . . . . . . . . . . . . . . . . . .4 -10
Figure 4-13. Paper Tension Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Figure 4-14. GND Spring Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11
Figure 4-15. Platen Unit Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-12
Figure 4-16. Rear View of Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Figure 4-17. Printer Mechanism Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
Figure 4-18. Removal of Paper Feed Rollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-14
.
Figure 4-19. Removal of Paper Guide Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-15
Figure 4-20. Mounting Direction for Paper Guide Plate ................... 4-1 5
.
Figure 4-21. Removal of Paper-Feed Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-16
Figure 4-22. Spring and Gear Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 4-16
Figure 4-23. Removal of The Release Lever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
Figure 4-24. Removal of Release/Tractor Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
.
Figure 4-25. Removal of Paper-End Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18
.
..
Figure 4-26. Platen Unit Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
. -19
Figure 4-27. Bottom View of Printer Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4-28. Removal of Carriage Guide Shaft Ground Plate ......... 4-19
Figure 4-29. Removal of Carriage Guide Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. -20
.
Figure 4-30. Removal of Carriage Guide Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-20
Figure 4-31. Carriage Guide Shaft and Head Adjust Lever ............. 4-21
.
Figure 4-32. Carriage Motor Frame Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22
..
Figure 4-33. Removal of Carriage Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
Figure 4-34. Removal of Home-Position Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
.
Figure 4-35. Removal of Ribbon Gear Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-24
Figure 4-36. Removal of Tractor Frame L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .4-25
.
Figure 4-37. Extraction of Tractor Set L, Paper Support,
and Tractor Set R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
..
Figure 4-38. Tractor Phase Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
..
Figure 4-39. Removal of Ribbon Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
....
Figure 4-40. Platen Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
Figure 4-41. Carriage Guide Shaft Lever Movement . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
,.
d.ii
REV.-A
Figure 4-42. Platen Gap Adjustment Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
LIST OF TABLES
...
Table 4-1. Repair Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
..
Table 4-2. Measuring Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
Table 4-3. Abbreviations for Small Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Table 4-4. Form and Abbreviated Part Name of Screw . . . . . . . . . . . . . . . . . . . . 4-2
4-iii
REV.-A
4.1 GENERAL REPAIR INFORMATION
This chapter describes the procedures for removing, replacing, and adjusting the main components
of the LX-8 10/850.
CAUTION
● Prior to beginning any of these procedures, be certain that the AC power cord is disconnected.
● To help prevent hands from being cut by the printer mechanism or sharp plate edges, wear
gloves when performing these procedures.
WARNING
. The printer mechanism, boards, and other parts are sometimes held in place with plastic clips
rather than screws. Be careful not to damage these clips when removing them.
Tables 4-1 and 4-2 list tools and measuring instruments recommended for carrying out disassembly
and repair.
Table 4-1. Repair Tools
Description
Brush No. 1
Brush No. 2
Cleaning Brush
Round-nose pliers
Diagonal cutting nipper
Tweezers
Electric soldering iron
E-ring holder #2.5
E-ring holder #5
Philips screwdriver No. 2
Screwdriver No. O
Thickness gauge (0.44)
Thickness gauge (0.47)
●
Type
Pert No.
0
0
o
o
o
o
o
o
o
0
0
o
o
B74 1400200
B74 1400100
B74 1600100
B740400100
B740500100
B64 1000100
B7402OO1OO
B740800400
B740800700
B743800200
B743800300
NOTES: 1. (*) indicates the tool used to attach the (2.3 mm) E-ring.
2. o = Commercially available
Table 4-2. Measuring Instruments
Description
Oscilloscope
Tester
Slide calipers
Muitimeter
Logic Analyzer
NOTE:
A = Required; B = Recommended
4-1
Specification
Class
50 MHz
A
A
A
B
B
REV.-A
To ensure optimal performance of the printer, be sure, following reassembly and adjustment, to @
.,
lubricate, apply adhesive, clean, and maintain, according to the procedures described in Chapter 6.
In referring to small parts, this manual utilizes the abbreviations listed in Table 4-3.
Table 4-3. Abbreviations for Small Parts
Part Name
Abbreviation
CBB
Cross-recessed Bind B-tight screw head
CB(0)
Cross-recessed head, Bind screw with Outside toothed lock
washer
Table 4-4 correlates the screw forms with the abbreviated ‘part names.
Table 4-4. Form and Abbreviated Part Name of Screw
Body
Head
,~ormal
1.~ross–recessed heat
Washer
(essamblad)
1.~lain washer
@
!.~ap tight
~tight
2. —
SLotted head
2.~utside toothed
lock washer
e
~tight
mo
l.~apping
mo
JiMwf!3a
~russ
b
4-2
... ”-’
s.~pring washer
REV.-A
4.2
DISASSEMBLY AND REASSEMBLY
This chapter details the disassembly procedures for the LX-8 10/850.As a rule, reassembly is performed
by simply reversing the procedures; a number of special notes, however, are provided under the heading
“Notes for Reassembly.” When a disassembly or reassembly procedure requires that an adjustment
be performed, the adjustment is described under the heading, “Required Adjustment.” Be sure to
perform these adjustments as indicated.
WARNING
● Be sure that you have read Section 4. 1,“General Repair Information,” before performing
disassembly.
. Be sure that paper and ribbon cartridge are removed before disassembly.
The disassembly procedure detailed below is in the following sequence:
(1)
Removal of the printhead
(2)
Removal of the casings
(3)
Removal of the circuit boards
(4)
Removal of the printer mechanism unit
(5)
Disassembly of the printer mechanism
Exploded diagrams of the LX-8 10/850 and of the printer mechanism are provided in Figures A-18 and
A- 19.
4.2.1 Printhead Removal
1. Remove the printer cover, and confirm that paper and ribbon cartridge have been removed.
2. Open the cover of the paper tension unit.
Figure 4-1. Paper Tension Unit Cover
4-3
REV.-A
3. Unlock the two levers securing the printhead
~~
to the carriage by pulling them down. Then lift and f
:-.
remove the printhead.
Figure 4-2. Printhead Removal
4. Disconnect the head cable from the connector on the printhead.
NOTE
● For the European version of the printer, a net is mounted on the printhead.
p
-. ,. ,
Figure 4-3. Net
4-4
REV.-A
4.2.2 Removal of Casing
This section details the procedure for removing the upper casing and the control panel (TAPNL).
4.2.2.1 Upper Casing Removal
1. Remove the sheet guide unit, printer cover, and paper feed knob.
2. Push in the two notches securing the push tractor to the printer mechanism, and remove the push
tractor from the printer mechanism.
Figure 4-4. Push Tractor Removal
3.
Insert a standard screwdriver into each of the two holes at the front of the lower casing, and gently
push (see Figure 4-5) to unlock the notches.
I
The notch can be unlocked by pushing” ;t
in the direction shown by the arrow using
the screwdriver.
Figure 4-5. Upper
Casing Removal -1
4-5
REV.-A
4. While lifting the upper casing, disconnect the cable of the control panel (TAPNL) from connector
,:: ,
f?
.’
CN3 on the TAMA board. Then remove the upper casing.
Figure 4-6. Upper Casing Removal -2
NOTE FOR REASSEMBLY:
Before reassembling the upper casing, prepare the FFC (Flat Flexible Cable) that connects the Contol
Panel and TAMA Board in such a way that it can be connected to the Panel Cable Shield Plate. Refer
Figure 4-7,
$-:
. . . ,,Control
Panel
Figure 4-7. Control Panel FFC
.,, .
4-6
REV.-A
4.2.2.2 Control Panel (TAPNL) Removal
1. Remove the upper casing (as described in the previous Section).
2. Turn the upper casing over, push in the two notches on the casing that are securing the control panel
to it, and remove the control panel.
anel
Figure 4-8. Control Panel Removal
4-7
REV.-A
4.2.3 Removal of Circuit Boards
This section describes the procedure for removing the TAMA Board and the TA filter unit.
4.2.3.1 TAMA Board Removal
1. Remove the upper casing (refer to Section 4.2.2. 1). The following connectors on the TAMA board,
which are connecting it to external components, should be disconnected: CN4 (red), CN5 (white),
CN6 (black),CN7
(white), CN8 FFC (Flexible Flat Cable), and CN9 (white).
WARNING
Do not pull roughly on the connectors, or you may damage the board. Remove them by pulling
gently while at the same time holding the board.
CN4
CBB (M3 X 6)
CB(0) (’M3 X 12)
CN5
CN6
CN9
CN7
CN8
/
TAMA Board
Figure 4-9. TAMA Board Removal
3. Remove the CB(0) (M3 x 12) screws and the CBB (M3 x 6) screws which are securing the TAMA board
to the base plate and the lower casing.
4. Loosen the four bent tabs on the lower casing which are securing it to the TAMA board. Then remove
the TAMA board.
WARNING
Be careful not to bend the tabs too far, and when pushing the tabs, be careful not to break them
or to cause damage to components on the TAMA board.
.,
4-8
REV.-A
4.2.3.2 TA Filter Unit Removal
1. Remove the upper casing (refer to Section 4.2.2.1).
2. Disconnect connector CN9 at the TAMA board. This connector connects the TA filter unit.
3. Remove the CB(0) (M3 x 6) screws securing the frame GND wire.
4. Remove the CBB (M3 x 12) screws and CB(0) (M3 x 6) screws securing the filter unit, and then remove
the unit.
. CB(0)
(M3 X 6)
cJ19
CBil
(M3 X 12)
cd(o)
TA‘ Filter
(M3 X 6) unit
Figure 4-10. TA Filter Unit Removal
4-9
CB6
CB(0)
(M3 X 12) (M3 X 6)
REV.-A
4.2.4 Removal of Printer Mechanism
This section describes the removal of the platen unit, paper guide shaft, and printer mechanism. The
platen unit and paper guide are removed first in order to enable quick and easy removal of the printer
mechanism.
;., ’
., . .
Figure 4-11. Printer Mechanism Removal
4.2.4.1 Removal of Platen Unit and Paper Guide
1. Remove the upper casing (refer to Section 4.2. 1.1).
2. Remove the cover of the paper tension unit.
@ Opent the Cover
@ Pull out
cover
Figure 4-12. Removal of Paper Tension Unit Cover
4-10
.
;.
.
REV.-A
3. Remove the paper tension unit.
Figure 4-13. Paper Tension Unit Removal
4. Remove the GND spring.
GND spring
Figure 4-14. GND Spring Removal
4-11
REV.-A
5. Turn the shaft holders at the left and right sides of the platen unit as shown in Figure 4-15. Lift and
g,}:!
~’-.
remove the platen unit.
ten
\ Shaft Holder
a.
b.
Use a screwdriver to push the shaft holder outward.
Turn the shaft holder counterclockwise.
Figure 4-15. Platen Unit Removal
~,.
...
.:, J.
6. Disconnect the cable from CN6 on the TAMA board.
7. Unlock the two notches of the paper guide by pushing them forward from the rear side of the printer
mech anism. Remove the paper guide.
PaDer Guide
f“’:,,,,
Tab
Figure 4-16. Rear View of Printer Mechanism
REQUIRED ADJUSTMENT
Following reinstallation or replacement of the platen unit, if problems occur (such as non-uniformity
of print density), adjust the platen gap. Platen gap adjustment is detailed in Section 4.3.1.
4-12
REV.-A
4.2.4.2 Removal of Printer Mechanism
1. Remove the platen unit and paper guide (refer to Section 4.2.4.1, immediately above).
2. Disconnect the cables from the following connectors on the TAMA board: CN4 (red), CN5 (white),
CN7 (white), and CN8 (flexible flat cable, or “FFC). Refer to Figure 4-9.
3. With a screwdriver, push and loosen the six tabs securing the printer mechanism to the lower casing.
For easiest removal, follow the procedure below.
WARNING
Be sure to push the tabs GENTLY, so as not to damage the lower casing or printer mechanism.
Figure 4-17. Printer Mechanism Removal
a. Loosen tabs 1 and 2, and lift the left side of the frame about 1 cm above the lower casing.
b. Loosen tab 3, and raise the left side further, so that it is about 3 cm above the lower casing.
c. Loosen tab 4,5, and 6 and remove the printer mechanism.
4-13
REV.-A
4.2.5 Disassembly of Printer Mechanism
This section details the removal of components from the printer mechanism. Figure A-1 9 shows an
exploded diagram of the printer mechanism, offering a view of the various components. Table A-1 7
lists the components by name. COMPONENT NAME LIST.
4.2.5.1 Removal of The Paper-Feed Mechanism
1. Remove the printer mechanism (refer to Section 4.2.4).
2. Remove the three paper-feed rollers from the frame.
Paoer-feed rollers
Figure 4-18. Removal of Paper Feed Rollers
4-14
REV.-A
3. Loosen the two tabs securing the paper guide plate and spacer to the frame, and lift and remove
the plate.
Spacer
Figure 4-19. Removal of Paper Guide Plate
NOTES FOR REASSEMBLY
When remounting the paper guide plate and spacer to the frame, refer to Figure 4-20 for the mounting
direction.
Figure 4-20. Mounting Direction for Paper Guide Plate
4-15
REV.-A
4.2.5.2 Removal of Paper-Feed Motor, Release Lever, and Release /Tractor Sensor
1. Remove the printer mechanism (refer to Section 4.2.4).
2. Disconnect the motor cable from the paper-feed motor.
3. Loosen the two bent tabs on the frame which are securing the paper-feed motor, and remove the
paper-feed motor.
Frame
(R)
P a p e r feed M o t o r
Bent tabs
Figure 4-21. Removal of Paper-Feed Motor
4. Remove the tractor reduction gear spring, the tractor reduction gear, and the paper feed reduction
gear.
Frame (R)
I
Geal
ng
Paper Fe~d Reduction Gear
Figure 4-22. Spring and Gear Removal
4-16
REV.-A
5. From the inside of the frame, push the notch of the release lever outward. Remove the release Iever.
Lever
Figure 4-23. Removal of The Release Lever
6. Push the two notches securing the release/tractor sensor, and remove the sensor.
Frame
//
Push
4
%
,,
,’
;L\/
Release/trector Sensor
-, ‘ /
Push
c
%*
Figure 4-24. Removal of Release/Tractor Sensor
4-17
REV.-A
4.2.5.3 Removal of Paper-End Sensor
1. Remove the platen unit and paper guide (refer to Section 4.2.4. 1).
2. Loosen the tab securing the paper guide. Using point A (refer to the Figure below) as a fulcrum, rotate
the sensor in the direction indicated by the arrow, and remove it in the direction shown by the a r r o w
below.
~<.
Notch
(Cross-section of Paper Guide)
Figure 4-25. Removal of Paper-End Sensor
4.2.5.4 Disassembly of Platen Unit
1. Remove the platen unit (refer to Section 4.2.4.1)
2. Remove the left shaft holder.
3. Pull out the platen gear on the right side of the platen unit.
4. Remove the E-ring from the platen, and pull out the right shaft holder and the flat spring.
NOTES FOR REASSEMBLY:
When reassembling the platen unit, refer to Figure 4-26 and be sure that the flat spring and shaft holder
are installed correctly. Be sure that the gap between the platen and the platen gear is adequate.
Flat Spring
p
,.
Figure 4-26. Platen Unit Reassembly
4-18
REV.-A
4.2.5.5 Removal of Carriage Unit
1. Remove the printer mechanism (refer to Section 4.2.4).
2. Remove the printhead and disconnect the head cable.
3. Turn the printer mechanism upside-down, and manually move the carriage unit until it is at the cut-out
section of the carriage motor frame. The joint of the carriage unit and timing belt should be visible
through the cut-out.
Figure 4-27. Bottom View of Printer Mechanism
4. Using round-nose pliers, detach the timing belt from the carriage unit. Be careful not to cause any
damage.
5. Lift portion A (see Figure 4-28) of the carriage guideshaft’s ground plate, so as to free the plate from
the notch on the carriage motor frame. Slide the plate so that it can be removed from the frame
(through the cutout at portion B of the plate).
Carriage Guide
IB
Shaft Ground
Plate
, Carriage Motor Frame
Carriage Guide
Shaft Ground Plate
w
Figure 4-28. Removal of Carriage Guide Shaft Ground Plate
4-19
REV.-A
c
..h
,,,
6. Turn the printer mechanism over so that it is again face up. Rotate the lever on the left side of the
-1
...
carriage guide shaft counterclockwise, and pull it out through cutout A. Rotate the lever on the right
side of the guide shaft clockwise, and remove it in the same way.
Frame
A
o
/
Carriage Gu!de
Shaft Lever (Left)
Q
,)
1
\
%.
@
~
P
.A:
Figure 4-29. Removal of Carriage Guide Shaft
tin.’
7. Push the notch on the frame that is securing the carriage guide plate, and slide the plate to remove
it.
Plate
a
..F, -..
~
,,
Figure 4-30. Removal of Carriage Guide Plate
8. Lift and remove the carriage unit, the carriage guide shaft, and the head adjust lever.
4-20
REV.-A
NOTES FOR REASSEMBLY
1. When reinstalling, position the carriage guide shaft and the head adjust lever as shown in Figure
4-31.
Guide Shaft
Figure 4-31. Carriage Guide Shaft and Head Adjust Lever
2. The lever for the left side of the guide shaft is gray in color; the lever for the right side is black. Slide
each lever onto the appropriate side of the shaft.
3. When connecting the head cable, be sure to pass it correctly through the FFC guide on the frame.
REQUIRED ADJUSTMENT
Following reassembly of the carriage unit, adjust the platen gap. Platen gap adjustment is detailed
in Section 4.3.1.
4-21
REV.-A
4.2.5.6 Removal of Carriage Motor
1. Perform Steps 1 to 5 of Section 4.2.5.4.
2. Disconnect the motor cable from the carriage motor. Disconnect the lead wire of the home-position
sensor from the molded clip at the bottom of the frame. (Refer to Figure 4-32.)
3, With a screwdriver, loosen the four tabs securing the carriage motor frame to the chassis frame.
Remove the carriage motor frame.
—... . . . . %4*Y
.
Tabs
f. “
Carriage Motor Tabs
Connector
Figure 4-32. Carriage Motor Frame Removal
4! Remove the belt tension spring from the carriage motor frame. Remove the E-type (3.2) retaining
ring on the carriage motor side, then remove the
Plain washer,
belt pulley shaft holder, belt pulley,
and timing belt.
, Retaining E-Ring (3.2)
@“, Plain Washer
,?*.:%.,
.“f
-.
Y’
\
\
Belt Pulley
\,
*&
Carnage Motor Frame
0
X
Carriage
Motor
Belt Tension
+
x Spring
k
Figure 4-33. Removal of Carriage Motor
5‘. Remove the carriage motor by moving it in the direction shown by the arrow above.
4-22
.’
REV.-A
NOTES FOR REASSEMBLY:
The following applies to E-ring reattachment:
● When attaching a ring to the left pulley shaft, set it so that its opening faces left.
● When attaching a ring to the right pulley shaft, set it so that its opening faces right.
O Use tweezers to check that the attached retaining rings are firmly in place and will not not move.
4-23
REV.-A
..,:,
p
4.2.5.7 Removal of Home-Position Sensor
1. Remove the carriage motor frame. Follow Steps 1 to 3 of Section 4.2.5.6.
2. Push in the notch securing the home-position sensor, and remove the sensor from the carriage motor
frame.
Carriage
Motor F r a m e
\
Home Position Sensor
/
Figure 4-34. Removal of Home-Position Sensor
4.2.5.8 Disassembly of Ribbon-Feed Mechanism
1. Remove the printer mechanism (refer to Section 4.2.4.2).
2. Turn the printer mechanism upside-down, and use a screwdriver to slightly loosen the four bent tabs
securing the ribbon gear cover. Only loosen the tabs slightly, and do not yet remove the cover. If
the cover is removed while the printer mechanism is upside-down, the gears will scatter.
Tab
(Bottom view of printer mechanism)
Figure 4-35. Removal of Ribbon Gear Cover
3. Turn the printer mechanism over so that it is again face up, then lift and remove the ribbon gear
cover.
4-24
REV.-A
4.2.5.9 Disassembly of The Tractor Unit
1. Remove the E-ring on the tractor shaft.
2. Pull and remove the tractor shaft from the tractor frame.
3. Pull and remove the sprocket guide shaft from the tractor frame.
T
Tractor Frame (L)
Q
Y
LLJ”
‘Am
‘?;cke’’uide
\
A
Tractor Shaft
Figure 4-36. Removal of Tractor Frame L
4. Remove tractor set L, the paper support, and tractor set R from the tractor and sprocket guide shafts.
Tractor Set L
,
.
.
Paper Support
Tractor Set R
..
Figure 4-37. Extraction of Tractor Set L, Paper Support, and Tractor Set R
4-25
REV.-A
NOTES FOR REASSEMBLY
----
When reassembling, align the phases as shown below.
/’
,4
‘,, ’-,
Figure 4-38. Tractor Phase Alignment
4-26
REV.-A
4.3
ADJUSTMENT
This section describes the adjustment procedures necessary when the LX-8 10/850 printer is
reassembled or when parts are reinstalled or replaced. These procedures are necessary to ensure the
correct operation of the printer.
4.3.1
Platen Gap Adjustment
Following the removal of the carriage guide shaft or carriage guide shaft levers, or if printing is abnormal,
the gap between the platen and the print head should be adjusted.
1. Remove the printer mechanism (refer to Section 4.2.4).
2. Install the paper guide and the platen unit onto the printer mechanism.
3. Remove the printhead. Using tweezers, remove the ribbon mask. Remove the mask by pulling it
slightly forward, then lifting.
/
Ribbon Mask
1
+
Figure 4-39. Removal of Ribbon Mask
4. Reinstall the printhead.
5. Set the head adjust lever to the position nearest the platen.
6. Set the release lever to the release position.
7. Manually move the carriage to column 10.
8. Adjust the platen so that the gap between the head and the platen allows unimpeded insertion of
the 0.44-mm gap gauge, but does not allow insertion of the 0.47-mm gap gauge.
WARNING
When positioning the carriage guide shaft lever, be sure that tabs A and B do not both enter the
notch at the same time. The design is such that neither of the tabs can enter if the other tab is
entered.
4-27
REV.-A
0.4!5 & 0.01 m m
--
\
Printhead
Platen
Figure 4-40. Platen Gap
Adjust Lever
\
Carriage Guid
Shaft Lever (L
Frame (Left Side)
Figure 4-41. Carriage Guide Shaft Lever Movement
Carriage guide shaft (left):
Clockwise rotation widens gap.
Counterclockwise rotation narrows gap.
Carriage guide shaft (right): Clockwise rotation narrows gap.
Counterclockwise rotation widens the gap.
Perform gap adjustment at the 10th and 70th column positions, and also at the center of the platen.
The gaps at all three positions should match.
A
A
a
@
$
Figure 4-42. Platen Gap Adjustment Position
4-28
REV.-A
CHAPTER 5
TROUBLESHOOTING
5.1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1.
5.2 UNIT REPLACEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1
....
5.3 UNIT REPAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-10
.
5.3.1 TAMA Control Board Unit Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-11
.
5.3.2 Printer Mechanism Unit Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-18
LIST OF FIGURES
Figure 5-1.
..
Printhead Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-6
LIST OF TABLES
Table 5-1.
.
Unit Replacement Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1
Table 5-2.
Symptom and Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. -2
Table 5-3.
..
TAMA Board Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Table 5-4.
..
TAMA Board Unit Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Table 5-5.
.
Printer Mechanism Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-18
5-i
REV.-A
5.1 GENERAL
Troubleshooting is based on the idea that error symptoms vary according to the defective component.
Troubleshooting may involve either unit replacement or unit repair, each of which is treated separately
below.
First try to determine the defective unit by referring to section 5.2. The flowcharts in the section should
help you to isolate the defective unit. Then refer to section 5.3 for instructions for further checking and
for replacement. Section 5.3 lists, for various symptoms, the potentially defective unit(s) that may
account for them. In addition, the section mentions the appropriate waveforms and resistance values
that should be checked for.
If trouble occurs in the printer mechanism, refer to section 5.3.3, which specifies procedures for
identifying defective components, and the replacements, adjustments, and lubrication which should
be carried out.
5.2
UNIT REPLACEMENT
This section correlates symptoms with the potentially defective units that may be causing them. The
unit numbers are listed in Table 5-1.
Table 5-1. Unit Replacement Numbers
Name of Unit
TA Filter Unit
TA Filter Unit
TA Filter Unit
TAMA Board
TAPNL-W
Model-3Dl O
Model-3D10 (TUV)
Printhead
Printhead (TUV)
Fuse (Fl) (120V)
Fuse (Fl) (220/240V)
Description
I
Filter and Transformer (120V)
Filter and Transformer (220V)
Filter and Transformer (240V)
Main Board
Control Panel
Printer Mechanism
Printer Mechanism
125V, 1.25A
250V, 0.63A
5-1
I
Unit No.
Y463504000
Y463506000
Y463507000
Y46320 1000
Y46350 1000
Y463590000
Y463590 100
F425 100000
F425200000
X50206 1050
X502063030
REV.-A
Table 5-2. Symptom and Reference Pages
CC;,
&
L,:..
Problem
Symptom
Reference Page
Printer Fails to Operate with
Power Switch ON
. Carriage does not move.
● Control panel indicator lamp does not light.
5-3
Abnormal Carriage Operation
● Carriage moves away from home position at power
ON.
● The carriage correctly returns to the home position,
but the printer then fails to enter READY mode.
5-4
Faulty Printing
During Self-Test, but Carriage
Operation is Normal
● No printing at all.
● Faulty printing—some of the dots are not printed.
5-5
Abnormal Paper Feed
● No paper is fed.
● Irregular paper feed, and variation in the separations between lines.
5-7
Abnormal Control
Panel Operation
● When the LF or FF switch is activated in OFF-LINE
mode, no paper if fed.
. No operation mode is set from the control panel.
● ON-LINE or OFF-LINE mode cannot be activated.
5-8
● Carriage operates normally at power ON, and
self-test is correctly executed.
Print data from the computer, however, are not
printed correctly.
5-9
Faulty Printing in ON-LINE
Mode
,.,,
~.
~,
.
’
,.
5-2
(1) Printer Fails to Operate with Power Switch ON
9
START
No
F 1 on the TA filter
Use correct AC
input voltage.
- END
Yes
Replace the fuse.
Yes
Measure the output
voltage from power
circuit on TAMA
boa rd.
I
No
Yes
m
T7
END
v
Replace the TAMA board
or TA filter unit.
END
REV.-A
(2) Abnormal Carriage Operation
I
connectors CN5,
Yes
connecting the SAMA circuit
Secure
connectors
No
Yes
4
move to the home
Replace
the printer
mechanism.
Yes
;.
+.. .
Yes
No
-
Replace the TAMA
circuit board.
*
5-4
REV.-A
(3) Faulty Printing during Self-Test, but Carriage Operation is Normal
*
No
connector between the printer
mechanism and TAMA circuit
board correctly connected
Yes
Measure the printhead
resistance. (Fig.5- 1 )
•
Reinsert then correctly
I
B
Replace the printhead.
*
●
V*I
*
5-5
No
REV.-A
Printhead
o
#l
o
# 2
o
# 3
o
# 4
o
# 5
O
~6
o
# 7
O
.8
0
# 9
( Wire assignment)
#7x5
I
t
Coil Resistance:
19.2 A 1.9 Q at 25°C
(8etween each dot wire and common.)
C O M . x19#18
#“ 1 # 3
#2#4#6
( Terminal assignment)
Figure 5-1. Printhead Resistance
5-6
REV.-A
(4) Abnormal Paper Feed (but normal printing)
START
No
~per’T;e;hLo
+>
N
rotate smoothly when
-/
Set the paper
correct I y.
o
Replace the Printer
mechanism.
turned manually w“th
‘Dower OFF? )
&
Yes
Yes
Replace the TAMA
circuit borad.
v
T7
END
END
5-7
REV.-A
(5) Abnormal Control Panel Operation
connector CN3
between the control
No
Reinsert connector
CN3 correctly
No
4
No
Replace the TAMA
circuit board?
Yes
Replace the
control panel.
Replace the control
Replace the TAMA
circuit board?
[
5-8
REV.-A
(6) Faulty Printing in ON-LINE Mode
NOTE: [t is assumed here that the host computer is operating normally.
a
START
Perform self-test.
No
Refer to other
troubleshooting
ite ms.
No
Replace the TAMA
circuit bord.
5-9
REV.-A
5.3
UNIT REPAIR
This section indicates the points to be checked in response to problems, and the measures to be taken
based on the result of the check. Utilize the checkpoints to determine and correct defective components.
Tables 5-4 and 5-5, below, are divided into the five following columns:
●
Problem:
Indicates the problem
●
Symptom:
Indicates potential condition which may be underlying the problem. You must check
to see which if any of the symptoms apply.
‘ Cause:
●
Checkpoint:
Indicates the potential cause of the problem.
Perform this check to determine whether the problem is the result of the cause listed
at left.
●
Solution:
Indicates the repair that will correct the fault.
t
------
5-10
REV.-A
5.3.1 TAMA Control Board Unit Repair
The following chart shows the main components on the TAMA board.
Table 5-3. TAMA Board Parts List
Location
Parts Name
Description
Parts No.
2C
KPD7810HG
CPU
X400078 101
3B
E05A30
Gate Array
Y463800001
3D
SRAM2064C-15
SRAM
X400 120642
1A
SLA7020M
Step Motor Driver
X440070200
IC
ER59256
EEPROM
X400592560
3A
~Pc494c
Switching Regulator IC
X440064940
SRI
NJ M78L05
Switching Regulation IC
X440078058
Q1
2SD 1833C4
60V, 5.OA, 3 0 W
X303 183309
Q2
2SA935T103
80V, 700mA, 750mW
X300093509
2SC 18 15-TPE2
50V, 150mA, 400mW
X302 181509
2SC1 384
50V, 1.OA, 1 . O W
X302 138400
2SA 10 15-TPE2
50V, 150mA, 400mW
X300 101509
2SB 1151
–60V, –5.OA, 2 0 W
X301 115100
Q3, Q20, Q25
Q4
25, Q17, Q18, Q 19
Q6
Q7 -Q15
2SD 1647C3
60V, 2.OA, 2 5 W
X303 164709
Q16
2SB 1093-T
80V, 1.5A, 1.OW
X30 1109309
121, Q22, Q23, Q24 2SD 1843-T
60V, 1.OA, 1 0 W
X303 184309
5-11
REV.-A
Table 5-4. TAMA Board Unit Repair
,= ,.
%,”
f“, “,.,
.-m..
5-12
REV.-A
Table 5-4. TAMA Board Unit Repair (Continued)
Check point
Problem
Symptom
Cause
rhe printer
The CPU is
rhe reset
Check the Voltage Waveforms at the
~oes not op-
not
:ircuit is not
+ 24V and for the RESET signal.
?rate at all.
Dperating.
]perating.
Solution
~eplace Q5.
selection of
Check pin 54 of IC 2C for a changing
~eplace
:ontrol ROM
signal HIGH/LOW.
C3C.
s abnormal.
IAM is
leplace
Iefective.
C3D.
5-13
REV.-A
Table 5-4. TAMA Board Unit Repair (Continued)
Check point
Cause
Solution
Problem
Symptom
The printer
The CPU is
The CPU is
Check for oscillator signal at either pin
Replace
does not op-
not
defective.
31 or pin 32 of the C P U .
CPU.
Srate at al 1.
operating
+
~v
-.
.:
-. .
5-14
REV.-A
Table 5-4. TAMA Board Unit Repair (Continued)
Problem
Symptom
Check point
Cause
Solution
rhe Carriage The Carriage
IC 3B or IC
At IC 1A, check the input signal at pin 5
Replace 3B
)perates
does not op-
IA is
and the output waveform at pin 1
or 1A.
]bnormally.
crate at all
defective.
Pin 1
Pin 5
+
I
50 v
Carriage op-
The refer-
5V
+
21r s
Check transistor Q 17, Q18 and Q19.
Replace
eration is un- ence Volt-
Q17, Q18 or
stable (lack
Q19.
of torque)
age generating circuit is
faulty.
5-15
REV.-A
Table 5-4. TAMA Board Unit Repair (Continued)
5-16
REV.-A
Table 5-4. TAMA Board Unit Repair (Continued)
Problem
‘aper is not
Symptom
The paper
‘ed normally. feed pitch is
Check point
Cause
Solution
The IC 3B or At Q21 - Q24, check the base waveform
Replace
transistor
Q21 - Q24.
abnormal
Q21, Q22,
(open-phase)
Q23 and
Q24
defective.
and collector waveform.
or IC3B.
+
~
Ba se
+1
-m+
Col Iect or
-m+ +tH- -H+t +,
\
— v
5V 2 Ov
The paper
Q16 OR
does not
Q20 is
feed, or the
defective
m
2m s
m
Tex
Check transistor Q 16 or Q20.
Replace Q16
or Q20
feed pitch is
abnormal
(lack of
torque).
‘rinting in
Data corrup-
IC 3B is
)N-LINE
tion occurs
defective.
node is
when the
]bnormal.
parellel in-
Check the input\output signals of IC 3B.
3B.
terface is
{
Replace IC
used.
5-17
REV.-A
5.3.2 Printer Mechanism Repair
,F:’:
+.-
For detailed procedures for replacing or adjusting parts, refer to Sections 4.3 (“Disassembly and
Reassembly”) and 4.4 (“Adjustment”).
If a problem or system recurs following an attempted repair, refer back to the Tables above to try to
find other potential causes.
Table 5-5. Printer Mechanism Repair
Problem
The carriage
motor fails to
operate.
The carriage does
not operate
normally at power
ON (when the
carriage has been
manually centered
prior to power
ON.)
Self-test printing
does not execute.
Symptom
The carriage
motor completely
fails to activate at
power ON.
The carriage
motor rotates, but
the carriage does
not move.
Cause
Foreign
substances are
lodged in the
gears or e!swhere
Checkpoint
Solution
Manually move the timing
belt to see if this causes
the motor to rotate.
Remove any
foreign
substances.
in the mechanism.
Measure the coil resistance
of the motor. The resis-
carriage motor.
The carriage
motor is defective.
tance should be about 11
ohms.
The belt pulley is
defective.
Check for broken or worn
pulley.
Replace the belt
pulley.
The timing belt is
defective.
Check that the timing belt
is correctly inserted into
the bottom of the carriage.
Reinsert the
timing belt.
Check for a broken timing
belt.
Replace the
timing belt.
Replace the
The carriage
moves leftwards a
little, then stops.
The carriage
movement is not
smooth.
Check whether the carriage
moves smoothly when
moved manually.
Clean and
lubricate.
The carriage
moves to the left
end, then stops.
The home
position sensor is
defective.
Use a tester to check the
the home position sensor.
Replace the home
position sensor.
The carriage
moves, but no
printing is
performed.
The common
wires of the
printhead FFC are
disconnected.
Check the connector for
the common wires of the
printhead FFC.
Replace the FFC.
Printing stops
before the page
end.
The paper guide
plate is not
correctly
positioned.
Check whether the paper
guide plate is mounted in
the right position.
l.>
,p
. .
5-18
Reset the paper
guide plate.
REV.-A
Table 5-5. Printer Mechanism Repair (Continued)
Problem
Self-test
printing is
abnormal.
‘aper feed is
jefective.
Symptom
Checkpoint
Cause
Solution
Measure the coil resistance of the printhead.
The normal value is approx. 19.2 ohms
Replace the
printhead
Check whether the dot wire broken.
Replace the
printhead
The printhead
The printing
is too light, or is defective.
the print
The platen
density is not
gap is not
uniform.
properly
adjusted.
Check whether the tip of the dot wire is not
worn.
Replace the
printhead
Set the gap adjust lever to the second
position, and check the gap between the tip
of the printhead and the platen.
The appropriate value is 0.45mm.
Adjust the
gap. Refer to
section 4.3.1,
“Platen gap
adjustment”’.
Printing is
performed,
but the paper
is not fed, or
is not fed
uniformly.
Foreign
substances
are lodged in
the paper
path.
Perform a visual check of the paper path.
Remove any
foreign
substances.
The paper
feed motor is
not driving
the gear
correctly.
Check that no foreign substance is lodged
~etween the gears, and that the gears are not
aroken or worn.
“ Remove the
foreign
substance.
● Replace
the
paper feed
reduction
gear.
● Replace
the
platen
gear.
The paper
feed motor is
defective.
tleasure the coil resistance of the paper feed
notor.
rhe appropriate value is approx. 40 ohms.
Replace the
paper feed
motor.
A particular
dot fails to
print.
The printhead
is defective.
5-19
REV.-A
Table 5-5. Printer Mechanism Repair (Continued)
Problem
Ribbon feed
is defective.
Symptom
Cause
Checkpoint
Solution
The ribbon is
The ribbon
not fed.
cartridge is
Dismount the ribbon cartridge, rotate its knob
manually, and check whether the ribbon
ribbon
defective.
feeds normally.
cartridge.
Foreign
Check whether the ribbon driving gear
rotates when the carriage is moved manually.
substances
are caught in
the gears.
Replace the
Remove any
foreign
substance.
Replace the
ribbon feed
mechanism.
‘aper
)ecomes
;tained.
‘rinting
:ontinues
)ast the end
)f paper, or
vhen no
~aper is in
}Iace.
The ribbon
feeds
properly only
with the
carriage
moving in
one direction
(i.e. fails to
feed when
the carriage
moves in the
other
direction).
The planetary
lever is
defective.
Move the carriage manually, and check
whether the planetary lever turns in reverse
and engages the gear.
Replace the
ribbon feed
mechanism.
Ink stains
appear on
areas where
there is
printing.
The ribbon
mask is not
correctly
positioned.
Check whether the ribbon mask is in the
correct position.
Reset the
ribbon mask.
The platen
gap is
adjusted.
Set the gap to the second position, and
check the gap between the tip of the .
printhead and the platen.
The appropriate value is 0.45mm.
Adjust the
gap. Refer to
section 4.3.1,
“Platen Gap
Adjustment”.
The paper
end sensor is
defective.
Check the paper end sensor switch.
Replace the
paper end
sensor.
Printing is
continues
past the end
of paper.
5-20
REV.-A
CHAPTER 6
MAINTENANCE
..
6.1 PREVENTIVE MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1
6.2 LUBRICATION AND ADHESIVE APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . .6-1
LIST OF FIGURES
Figure 6-1.
Correct Adhesive Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Figure 6-2.
LX-81 0/850 Lubrication Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. -3
LIST OF TABLES
Table 6-1.
.
Lubrication and Adhesive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Table 6-2.
..
Lubrication Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
Table 6-3.
.
Adhesive Application Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
6-i
REV.-A
Proper maintenance assures optimal and long-term printer performance and and minimizes the
occurrence of malfunctions.
6.1 PREVENTIVE MAINTENANCE
The case exterior should be regularly cleaned with alcohol. Occasionally vacuum clean the interior of
the mechanism to remove accumulated dirt, dust, and paper particles.
After the unit has been cleaned, check that it is adequately lubricated (refer to Section 6.2, below). Before
returning the printer to the customer, inspect the springs, paper-feed rollers, and the basic operation
of the unit.
WARNING
Be sure to disconnect the printer from the power supply before maintenance. Do not apply thinner,
trichloroethylene, or ketone-based solvents to any of the printer’s plastic components.
6.2
LUBRICATION AND ADHESIVE APPLICATION
EPSON recommends lubrication at the points illustrated in Figure 6-2. Table 2 provides a list of these
points, and the recommended lubricant to be used for each. The lubricants-EPSON O-2, EPSON G-20,
EPSON G-26, and EPSON G-37–have all been thoroughly tested and fully meet the needs of this printer.
(Table 6-1 lists details of these lubricants.)
Before applying any lubricant, make sure that the part to be lubricated is clean. Do not apply excess
lubrication, as this can potentially cause damage.
Following its disassembly or replacement, adhesive must be applied to the part indicated in Table 6-3.
EPSON recommends application of Neji lock #2 (G) adhesive to the point illustrated in Figure 6-1. When
applying the adhesive, be careful that no excess overflows onto nearby parts.
Table 6-1. Lubrication and Adhesive
Type
Oil
Grease
Grease
Grease
Adhesive
I
Name
o-2
G-20
G-26
G-37
I
Capacity
I
Availability
Parts No.
40CC
E
B7 10200001
40gm
E
B702000001
40gm
E
B702600001
40gm
E
B703700001
E
B730200200
Neji lock #2
(G)
E: EPSON-exclusive product
6-1
REV.-A
Table 6-2. Lubrication Points (Refer to Figure 6-2)
Ref. No.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(lo)
(11)
Lubricant
Lubrication Points
Shaft which sets paper feed reduction
Contact portion of sub paper re!ease lever and paper release lever,
Oil pad
G-26
G-26
o-2
Carriage guide shaft (at both left and right sides of carriage)
G-26
Carriage guide plate (the portion that contact the carriage)
Platen gear
Belt pulley gear
G-26
G-26
Ribbon transmission gear
Paper tension roller shaft
G-26
G-26
G-26
G-26
G-26
Gear portion of the ribbon gear
(12)
Shaft which sets the ribbon gears
Paper feed roller shaft
G-37
(13)
(14)
Contact portion of tractor frame L and tractor shaft.
Contact portion of GND spring and platen shaft
G-20
G-26
NOTE: Lubrication is necessary when assembling.
Table 6-3. Adhesive Application Point (Refer to Figure 6-1.)
Adhesive Application Point
No. of Points
Where the timing belt engages the carriage.
1
<To Timing Belt>
Figure 6-1. Correct Adhesive Application
6-2
REV.-A
Figure 6-2. LX-81 0/850 Lubrication Points
6-3
REV.-A
APPENDIX
A.1 INTEGRATED CIRCUITS WITHIN THE LX-810/850 . . . . . . . . . . . . . . A-1
A.1.l CPU PPD781OHG (2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
A.1.2 E05A30 (3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
A.1.3 2064C SRAM (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9
A.1.4 ER59256 (lC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 O
A.1.5 SLA7020M (1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 1
A.1.6 PPC494C (3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 2
A.2 EXPLODED DIAGRAMS AND SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 3
LIST OF FIGURES
Figure A-1.
. -2
KPD781 0/781 1 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
Figure A-2.
pPD781 0/781 1 HG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-3
Figure A-3.
OP Code Fetch Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-6
.
Figure A-4.
..
Memory Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
Figure A-5.
..
Memory Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
Figure A-6.
..
E05A30 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Figure A-7.
2064C Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9
Figure A-8.
. -9
2064C SRAM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
Figure A-9.
.. O
ER59256 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
. O
Figure A-10. ER59256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-1
Figure A-1 1. SLA 7020M Case Outline Drawing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 1
Figure A-1 2. SLA 7020M Functional Equivalent Circuit . . . . . . . . . . . . . . . . . A-11
Figure A-1 3. KPC494C Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 2
3
.
Figure A-14. TA Filter Unit Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Figure A-1 5. TAPNL-W Board Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-14
5
.
Figure A-1 6. TAMA Board Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Figure A-1 7. TAMA Board Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 7
9
.
Figure A-1 8. LX-81 0/850 Exploded Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Figure A-1 9. Model-3Dl O Printer Mechanism
Exploded Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . A-20
Figure A-20. Pull Tractor C80006* Exploded Diagram . . . . . . . . . . . . . . . . . . . . A-21
Figure A-21. Cut Sheet Feeder C80612* Exploded Diagram . . . . . . . . . A-22
Figure A-22. LX-81 0/850 Case Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24
A-i
REV.-A
LIST OF TABLES
Table A-1.
..
TAMA Board ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1
Table A-2.
pPD 7810 Mode Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .A-4
Table A-3.
KPD 7811 PF Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .A-4
.
Table A-4.
KPD 7810 PF Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .A-4
.
Table A-5.
KPD 781 0/781 1 Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-5
.
Table A-6.
E05A30 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-8
...
Table A-7.
2064C Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . A-9
Table A-8.
CN2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-9.
CN3 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-1 O. CN4 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-1 1. CN5 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-1 2. CN6 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-1 3. CN7 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-1 4. CN8 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
Table A-1 5. CN9 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-1 8
.. 8
Table A-1 6. CN 10 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1
.
Table A-1 7. Part No. Reference Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-23
#,,.
,$ :
A-ii
REV.-A
This appendix provides detailed information about the integrated circuits, signal functions, capabilities,
and other aspects of the LX-8 10/850 printer components.
A.1 INTEGRATED CIRCUITS WITHIN THE LX-810/850
Table A-1 shows TAMA board ICS.
Table A-1. TAMA Board ICS
Location
I
Name of IC
Type
I
2C
KPD7810HG
3B
E05A30
3D
2064C
RAM 8 K x 8 bit
IC
ER59256
EEP-ROM
1A
SLA7020M
Step motor driver
3A
~Pc494c
Pulse width modulation control
CPU 15 MHz
A-1
REV.-A
A.1.l CPU /APD7810HG (2c)
The pPD78 10/781 1 HG is comprised of an 8-bit timer counter, an 8-bit A/D converter, 256 bytes of
RAM, and a serial interface. A system can easily be constructed with this IC. The main features of this
IC are listed below.
O 256 bytes of built-in RAM (addresses FFOOH-FFFFH)
0 4096 bytes mask ROM (addresses O-OFFFH) for the 7811 CPU
O Direct addressing of up to 64K
O 8-bit A\D converter
O 158 instructions
O 0.8 ~s instruction cycle (15 MHz)
O 16-bit event counter
O Two 8-bit timer counters
O 3 external and 8 internal interrupts (6 priority levels and 6 interrupt addresses)
O General purpose serial interface (asynchronous, synchronous, and 1/0 modes)
O 1/0 line (781 1 :40-bit 1/0 port; 78 10:24-bit edge detection, 4 inputs)
....
-=,
‘U2
O Zero cross detection
O Standby function
O Built-in clock pulse circuit
O NMOS
Figures A-1 and A-2 illustrate the 780 1/78 11 HG microprocessor; Tables A-2 through A-5 describe its
function.
PAO
PA 1
PA2
PA3
PA4
PA5
PA6
PA7
PBO
PB1
PB2
PB3
PB4
PBS
PB6
PB7
Pco
Pc 1
PC2
PC3
PC4
PC5
PC6
PC7
ml
INT 1
MOOE 1
l?:?:;
x2
xl
v Ss
— ~—
— ;
63 —
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
3
62
61
60
59
58
57
56
—
—
—
—
—
—
—
—
2: —
;
6
7
8
9
10
11
12
13
14
Is
16
17
1s
53 —
52 —
51 —
50 —
49 —
48 —
47 —
46 —
45 —
44 —
43 —
42 —
41 —
—
:: —
38 —
37 —
36 —
35 —
34 —
33 —
;:
21
22
23
24
;:
27
28
29
30
:;
Vcc
VDIJ
PD7
PD6
PD5
PD4
PD3
P132
?01
PDO
PF7
PF6
PF5
PF 4
PF3
PF2
PF 1
PFO
ALE
G
m
AV CC
VARCF
A
A
A
A
N
N
N
N
7
6
5
4
A N 3
A N 2
AN1
ANO
AV
SS
Figure A-1. wPD781 0/781 1 Pin Diagram
A-2
REV.-A
cm
u+”
0$
\, o
A
0:
+
b
o
L
n\
n.
\
PORT D
m
o
r.
v
PORT C
I
0
b
~
m
n.
L
I
0
II
PORT B
H
PORT A
J
1
I
m
I
I
=7
(
ID
H
Q
!7
v
m
0
x
C-4
x
Figure A-2. KPD781 0/7811 HG Block Diagram
A-3
<,”>
* -:;
Table A-2. PPD781 O Mode Setting
Mode O
Mode 1
Externa! Memory
o
0
4K, addresses O to OFFF
o
1 (Note)
16K, addresses O to 3FFF
1 (Note)
1 (Note)
64K, addresses O to OFFF
Table A-3. vPD781 1 PF Operation
I
PF5
I
PF4
I
Port
Port
Port
Port
Port
Port
Port
256 bytes (max.)
Port
Port
Port
Port
AB 11
AB 10
AB9
AB8
4K (max.)
Port
AB 15
AB13
A B 1 2
AB1 1 AB1O
A B 1 4 I AB13 I A B 1 2 I AB1 1 I AB1O I
I
PF1
AB9
AB9
I
PFO
External Memory
Port
/
PF2
I
PF6
Port
PF3
I
PF7
AB8
I 16K (max.)
AB8
I 60K (max.)
Table A-4. pPD781 O PF Operation
Mode 1 Mode O
PF7
PF6
PF5
PF4
PF3
PF2
PFI
PFO
External Memory
o
0
Port
Port
Port
Port
AB 11
AB 10
AB9
AB8
4K bytes (max.)
o
1
Port
Port
AB 13
AB 12
AB 11
AB 10
AB9
AB8
16K bytes (max.)
1
1
AB 15
AB 14
AB 13
AB 12
AB 11
AB 10
AB9
AB8
64K bytes (max.)
A-4
. .,
{,;’
‘
REV.-A
Table A-5. NPD7810/7811 Port Functions
Pin
Signal
Direction
Descriptions
1-8
PAO-7
In/Out
Port A 8-bit 1/0 with output latch. 1/0 possible with mode A (MA) register.
Output HIGH.
9-16
PBO-7
In/Out
Port B 8-bit 1/0 with output latch. 1/0 possible with mode B (MB) register.
Output HIGH.
17-24
PCO-7
In/Out
Port C 8-bit 1/0 with output latch. Port/control mode can be set by mode
control C (MCC) register. Output HIGH.
25
NMI
In
Non-maskable interrupt of the edge trigger (trailing edge).
26
INT 1
In
Maskable interrupt input of the edge trigger (leading edge). Also used
as the AC input zero cross detecting terminal.
27,29
MODE
1,0
In/Out
28
RESET
In
LOW reset
30,31
X2,X1
...
Crystal connection for built-in clock pulse. When clock pulses are
supplied externally, input must be to X 1.
32
Vss
...
Supply voltage, Vss, OV
33
AVSS
.
Analog Vss
34-41
ANO-7
In
8 analog inputs of the AID converter. AN7-4 can be used as the input
terminals to detect the leading edge and to set the test flag upon
detection of the trailing edge.
42
VAref
In
Reference voltage.
43
AVCC
...
Analog Vcc
44
RD
out
Read strobe. LOW at the read machine cycle and at reset, HIGH at other
times.
45
WR
out
Write strobe. LOW during the write machine cycle and at reset, HIGH
at other times.
46
ALE
out
Address latch enable. Latches the lower B address bits to access external
memory.
47-54
PFO-7
Port F
781 1: Port bit-by-bit 1/0 possible by mode F register. In extension mode
gradual address output assignment is possible in accordance with the
size of external memory. See Table A-3.
78 10: By setting mode O and 1, assignment to the address bus (AB 15-8)
can be made in accordance with the size of the external memory. The
remaining terminals can be used as 1/0 ports.
See Table A-4.
55-62
PDO-7
Port D
781 1: Port bit-by-bit 1/0 possible. In extension mode, PD7-O acts as the
781 1: O = LOW and 1 = HIGH
7810 modes set according to external memory (see Table A-2).
multiplexed address/data bus (AD7-0).
78 10: Multiplexed address\data bus to access external memory.
63
VD
D
. .
Supply
voltage,
VD D +5V
6 4
Vcc
...
Supply
voltage,
Vcc +5V
A-5
REV.-A
CPU Timing
Refer to Figures A-3 through A-5 for CPU timing diagrams. Three oscillations define one state. The OP
f“?
%.<.
code fetch requires four states. During T 1 to T3, program memory is read, and instructions are
interpreted during T4. Address bus lines 15-8 are output from T 1 to T4. Address bus lines 7-O (PD7-0)
are used in the multiplex mode. The address is latched during T 1 at the ALE signal. Since the memory
addressed is enabled after disengaging the driver (AD7-0), ~ is output from T 1 -T3, fetched at T3, and
processed internally at T4. The ALE and RD signals are executed from T1 -T3, and the OP code fetch
for these two signals is performed at T4. The WR signal is output from the middle of T 1 to the beginning
of T3. The address and ALE timing is the same as that for memory read; however, following address
output, AD7-O (PD7-0) are not disabled, and write data is output at AD7-O at the beginning of T1 and
at the end of T3.
NOTE: When PD7-O are set to the multiplexed address/data bus (AD7-0) and PF7-O to the address bus
(AB7-0), the RD and WR signals in the machine cycle are HIGH when memory is not being
accessed.
CLOCK
r
ALE
AB15 -8
(PF7 -O)
Y
AD7 - 0
(PD7 -01
x
x
ADDRESS
A D D R E S S }- --- ~
OP COOE
k---c
m
Figure A-3. OP Code Fetch Timing
T1
T 3
T 2
CLOCK
ALE
\
AB15 -8
(PF7 -O)
x
AD7 - 0
(PD7 -O)
x
/
ADDRESS
A D D R E S S
m
x
}- - -
\
c
)
Figure A-4. Memory Read Timing
CLOCK
ALE ~
AB15 -8
(PF7 -O)
x
AD7 -0
(PD7 -O)
x
x
ADDRESS
x x
~~
ADDRESS
WRITE DATA
/
Figure A-5. Memory Write Timing
A-6
x
,.>..
;? :
.,
REV.-A
A.1.2 E05A30 (3B)
This gate array was newly developed for this printer. Its functions are as follows:
1. Parallel l/F
2. Address decoder
3. Control panel LED drive
4. Data address multiplexer
5. PF motor control
6. CR motor control
7. Printhead drive
Figure A-6 shows the E05A30 pin diagram. Table A-6 shows pin functions for the E05A30.
HD7 ~
1
HD8 ~ 2
62 ~ HD2
HD9 ~ 3
CRA O - - - - 4
61 ~ HD3
CRB ~ 5
60 ------O HD4
CRC ~ 6
59 ~ HD5
CRD O - - - - - 7
58
HD6
PFA O - - - - 8
57
FIRE
PF8 ~ 9
56 ~ DB7
PFC ~
10
55
PFD O - - - -
11
54 - - - - o DB5
8USY O-----
12
53 - - - - o DB4
PE ~
13
52 ~ DB3
ERR ~ 14
51 ~ DB2
RESIN O-----
DB6
50 - - - - O DB1
15
DBO
Vss ~ 16
49
I NIT ~ 17
48 ~ Vss
RDYLP ~
47 ~ ALE
18
46
R S T O U T O - - - - - 19
RAMCS
STRB ~ 2 0
45 ----O~R
DATA1 ~ 21
44 ~ RD
DATA2 ~ 2 2
43 ~ AB7
DATA3 o - - - - 2 3
42 ~ AB6
DATA4 o - - - - - 2 4
41 ---’-O AB5
DATA5 ~ 2 5
40 - - - - o AB4
DATA6 ~ 2 6
39 ~ AB3
DATA7 ~ 2 7
38 - - - o AB2
DATA8
o - - - 28
37 ~ AB1
Al 4 ~ 29
36 ~ ABO
Al 5 ~ 30
35 ~ PELP
34 ~ ACK
ONLLP ~ 31
33 ~
Es o - - - 32
Vdd
Figure A-6. E05A30 Pin Diagram
A-7
REV.-A
*,.,,
“+ . .
Table A-6. E05A30 Pin Functions
Pin No.
Signal
1/0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
HD7
HD8
HD9
CRA
Function
PFB
o
0
0
0
0
0
0
0
0
PFC
PFD
0
0
PF motor phase C
BUSY
0
0
0
Parallel l/F BUSY
CRB
CRC
CRD
PFA
PE
ERR
RESIN
Vss
INIT
RDYLP
RSTOUT
STRB
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
A14
Al 5
ONLLP
Vss
I
I
o
0
I
I
I
I
I
I
I
I
I
I
I
o
Printhead drive 7
Printhead drive 8
Printhead drive 9
CR motor phase A
CR motor phase B
CR molor phase C
CR motor phase D
PF motor phase A
PF motor phase B
PF motor phase D
Parallel l/F PAPER END
Parallel l/F ERROR
RESET signal input
Power supply
Parallel l/F INIT
READY LED
RESET output
Parallel l/F STROBE
Parallel l/F DATA 1
Parallel l/F DATA 2
Parallel l/F DATA 3
Parallel l/F DATA 4
Parallel l/F DATA 5
Parallel l/F DATA 6
Parallel l/F DATA 7
Parallel l/F DATA 8
Address 14
Address 15
ON LINE LED
Power supply
A-8
Pin No.
Signal
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Vdd
ACK
PELP
ABO
AB 1
AB2
AB3
A94
AB5
AB6
AB7
FD
WR
RAMCS
ALE
Vss
DBO
DB 1
DB2
DB3
DB4
DB5
DB6
DB7
FIRE
HD6
HD5
HD4
HD3
HD2
HD 1
Vdd
1/0
o
0
0
0
0
0
0
0
0
0
I
I
o
I
—
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
I
o
0
0
0
0
0
Function
GND
Parallel l/F ACKNLG
PE LED
Address O
Address 1
Address 2
Address 3
Address 4
Address 5
Address 6
Address 7
READ
WRITE
RAM select
Address latch enable
Powre supply
DATA bus O
DATA bus 1
DATA bus 2
DATA bus 3
DATA bus 4
DATA bus 5
DATA bus 6
DATA bus 7
Head driving pulse
Head data 6 output
Haed data 5 output
Head data 4 output
Head data 3 output
Head data 2 output
Head data 1 output
GND
REV.-A
A.1.3 2(964C
SRAM (3D)
The 2064C is an 8K-byte CMOS static RAM. The 2064C has low power consumption, and its
input\ output level is compatible with the TTL ICS. Figure A-7 shows the 2064C pin diagram, and Figure
A-8 shows a block diagram for the 2064C static RAM.
Features
Capacity of 8192 words X 8 bits
TTL compatible 1/0
Power supply +5 VDC
Functions
AO - Al 2 :
Input address
WE
: Write enable
m
: Output enable
CSI,CS2 : C h i p s e l e c t
DO - D7 : Input/Output data
: No connection
NC
NcnvQQ
iE
A12 2
27=
A7 3
26 CS2
A6 4
25
“
AO
Al
A3
A4
A5
A6
Al
A8
A9
ad
AIO
A 3 7
Al
F
d
:
z
~
:
:
o
Memory
Cell
512 X 16 X.2
i
=
$
:
?
:
!6 X8
a
4
R O W Gale
1
!
CS1 ( )’- CSI.CS2
20KI
Array
512
[
21AI0
9
9
All
A12
b
A 2 8
:
&2
A8
1
,8
Control
CS2 ( * Log, c
19D7
AO1O
I
E( * SK
Control
1806
u
lnput(Qutp. f Buffe,
WE-( * Logic
—
00 01 02
D1503
VSS14
Figure A-7. 2064C Pin Diagram
!
03 04 05 06 07
Figure A-8. 2064C SRAM Block Diagram
Table A-7. 2064C Truth Table
7
Csl
H
CS2
x
L
OE
—
WE
AO-A12
L
H
x
L
H
H
L
H
H
H
Stable
Stable
Stable
L
L
NOTES: 1. X = HIGH or LOW
2.- = HIGH, LOW or High impedance
A-9
DATA 1/0
High impedance
MODE
Wait
High impedance
Wait
Input data
Output data
Read
Write
High impedance
Output disable
REV.-A
<:;,
.$:
A . 1 . 4 ER59256 (lC)
The ER59256 is a 256-bit nonvolatile CMOS RAM containing 16 words x 16 bits, and the data can
be transferred serially over the data bus.
The ER59256 uses a compact and low-priced 8-pin package. Each bit of RAM is paired with a bit in
the nonvolatile electrically programmable ROM (EEPROM) for backup. Data is transferred between the
RAM and EEPROM upon receiving an instruction, STORE signal , or RECALL signal from the processor.
The nonvolatile data is stored in the EEPROM. The data in the RAM is read/written independently of
the data stored in the EEPROM. The ER59256 requires only a signal 5V power supply.
All inputs are ITL level inputs.
CE
Sx
DI
n
DO
I
CE
1
5
Vcc
2
6
STORE
3
7
R
4
8
I
E
C
VSS
SK
DI
DO
A RECALL
L L
STORE
Vcc
Vss
CHIP ENABLE
SERIAL CLOCK
SERIAL DATA IN
SERIAL DATA OUT
RECALL
STORE
+5V
GROUND
Figure A-9. ER59256 Pin Diagram
EEPROM
/r/i I
/
~
D
m
CE
s?+— -
ERASE/WRITE
PROTECTION
[
I
I
I
]
STORE
RECALL
ROW
DECODER
ii~
Instruction
Decoder
1
.
Y.’
Stored RAM
~
ERASE/WRITE
PROTECTION
Clock
Generator
+1
I
,
Figure A-1 O. ER59256 Block Diagram
A-1 O
STORE
-b-+
I/
REV.-A
A.1.5 SLA7020M (1A)
The SLA7020M ia a two-circuit, 4-phase step motor driver for unipolar
constant current driving.
&
I 2 3 4 5 6 78 91011 ! 2131415
Figure A-1 1. SLA7020M Case Outline Drawing
Qvcc
M
.$
~
~r2
J-C2
~
Figure A-1 2. SLA7020M Functional Equivalent Circuit
A-1 1
AA
REV.-A
A.1.6 pPC494C (3A)
The ~PC494C is pulse width modulation control. The block diagram is shown in Figure A-13 s h o w s
Low Voltage
Reference
I
I
I
.*..
z.
I
I
Figure A-1 3. wPC494C Block Diagram
A-1 2
‘
REV.-A
A.2 EXPLODED DIAGRAMS AND SCHEMATICS
The exploded and schematic diagrams shown in Figures A-1 4 to A-22 are provided as additional
reference.
FI
Power SW
CN 1
0
r e d 26VAC
C2
AC INPUT
-—L
—
L1
C3
.—
4=
cl
‘
Figure A-1 4. TA Filter Unit Circuit Diagram
A-13
blue 12VAC
REV.-A
I
1I
1F
R
I
200Q
()
(I
Swl
4
SW2
3
SW3
2
SW4
10
[n!
)
LED2
,)
<b
GND
ONLINE SW
FF SW
o
LF SW
d~ LQ/EJ
BZI
, GREEN
o
GREEN
0
8
LED3
7
LED4
6
9
‘w
BUZZER
READY LP
o
o
0
ONLINE L P
PE LP
+5V
Figure A-1 5. TAPNL-W Board Circuit Diagram
., .,..
.r
. ‘..
. . . ..
A-1 4
REV.-A
u
r
Ey
●
“%’g
Ei3’
:L__4-4
a
Figure A-1 6. TAMA Board Component Layout
A-1 5