CPM296/RPM096. Коммуникационный протокол DNP3. Справочное руководство (англ.)

CPM296/RPM096. Коммуникационный протокол DNP3. Справочное руководство (англ.)
PM296/RPM096 POWER QUALITY ANALYZERS
COMMUNICATIONS
DNP3-2003 Communications Protocol
REFERENCE GUIDE
Every effort has been made to ensure that the material herein is complete and accurate. However, the
manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book.
Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of equipment,
contact the manufacturer or your local representative or distributor.
This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the manufacturer.
REVISION HISTORY
Rev.A6 (F/W Versions 2.26.3/2.36.3 and 2.27.2/2.37.2 or later):
Added point AI:43 for DC Voltage (see Table 3-1).
Added BO Object 10 Variation 1 (see Tables 3-32, A-1).
Added points BC:4 and BC:5 for kvarh imp/exp energy counters (see Tables 3-1, 3-11).
Rev.A5 (F/W Versions 2.26.2/2.36.2 and 2.27.2/2.37.2 or later):
For revision changes, see Sections “DNP Options Setup” and “DNP Event Setpoints Setup”.
Rev.A4 (F/W Versions 2.26/2.36 and 2.27/2.37 or later):
The revision complies with the requirements of the DNP3-2003 Intelligent Electronic Device (IED) Certification
Procedure.
BG0293 Rev. A6
2
Table of Contents
GENERAL ........................................................................................................................... 4
DNP PROTOCOL ............................................................................................................... 5
Introduction....................................................................................................................... 5
PM296/RPM096 Deviation from Standard ....................................................................... 5
DNP Implementation ........................................................................................................ 5
Scaling Analog Input and Analog Input Change Event Objects....................................... 7
PM296/RPM096 REGISTERS ............................................................................................ 8
Basic Data Registers ........................................................................................................ 8
Basic Setup Registers ...................................................................................................... 9
User Selectable Options Setup ...................................................................................... 10
Communications Setup .................................................................................................. 11
DNP Options Setup ........................................................................................................ 12
DNP Event Setpoints Setup ........................................................................................... 13
Freeze Requests on Binary Counter Objects................................................................. 14
Resetting Energy, Demands, Counters and Min/Max Log............................................. 15
Status Registers ............................................................................................................. 16
Alarm Status Registers................................................................................................... 16
Extended Data Registers ............................................................................................... 17
Analog Output Setup ...................................................................................................... 23
Analog Expander Channels Allocation Registers .......................................................... 25
Digital Inputs Allocation Registers.................................................................................. 26
Pulsing Setpoints Registers ........................................................................................... 26
Relay Operation Control................................................................................................. 27
Pulse Counter Setup ...................................................................................................... 28
Class 0 Point Assignment .............................................................................................. 29
APPENDIX A DNP APPLICATION MESSAGES............................................................ 30
APPENDIX B DNP DEVICE PROFILE............................................................................ 32
3
1 GENERAL
GENERAL
This document specifies a subset of the DNP3-2000 serial communications protocol used to transfer
data between a master computer station and the PM296/RPM096 Power Quality Analyzers. The
document provides all necessary information for developing third-party communications software
capable of communicating with the PM296/RPM096.
Additional information concerning communications operation, configuration of communications
parameters, and communications connections is found in the PM296/RPM096 Installation and
Operation Manual.
IMPORTANT
1.
2.
4
The voltage parameters throughout the protocol can represent line-to-neutral or line-to-line voltages
depending on the wiring mode selected in the instrument. When the 4LN3 or 3LN3 wiring mode is
selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line
voltages. In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-toneutral voltages. In a 3-wire direct connection, harmonic voltages will represent line-to-neutral
voltages as they appear on the instrument's input transformers. In a 3-wire open delta connection,
harmonic voltages will comprise L12 and L23 line-to-line voltages.
In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active
power, and reactive power will be zero, because they have no meaning. Only the total three-phase
power values can be used.
2 DNP PROTOCOL
DNP PROTOCOL
Introduction
DNP3-2000 (Distributed Network Protocol) is an open standard designed by Harris Control Division.
DNP defines a command-response method of communicating digital information between a master and
slave device. Detailed information regarding DNP3-2000 is available in the “Basic 4 Document Set”
which can obtain from the DNP USER GROUP. This document describes a LEVEL 2 DNP3-2000
communication protocol implemented between a master station and a slave PM296/RPM096
instrument.
PM296/RPM096 Deviation from Standard
The PM296/RPM096 does not support unsolicited requests or hardware collision avoidance.
The data link layer differs from the Basic 4 specifications because of the master-slave relationship
between devices. When the Powermeter receives a request, no further requests can be sent until the
Powermeter makes the appropriate response.
DNP Implementation
Overview
The PM296/RPM096, like most devices, retrieves regular analog and binary data from the instrument by
executing a directed (non-broadcast) Read request.
Binary-Output-Status objects and Analog-Output-Status objects are sent with flags that always indicate
ONLINE.
A Binary-Output-Status object that indicates the current state of a control digital point (relay) uses
remote forced data as well as local forced data bits. The value of a state bit indicates the current state of
the digital output point.
The PM296/RPM096 executes the parameter clear function and demands resets using the DirectOperate (or SBO/Operate or Direct-Operate-No-Acknowledge) command to specified points of the
Control-Relay-Output-Block object.
Issuing the Direct-Operate (or SBO/Operate or Direct-Operate-No-Acknowledge) command to
appropriative points of the Analog-Output-Block object can change the setup parameters. The DNP
functions Write, Cold-Restart and Delay Measurement are also supported by the PM296/RPM096.
Refer to Appendix A for specific requests and responses. Appendix B contains the standard DNP
Device Profile Document.
The Powermeter attempts to respond with the same object variation and qualifier as those in the
request. Exceptions to this rule include changing variation 0 to a specific variation and changing qualifier
code 6 to 1.
If the Powermeter receives an invalid request, it sets the internal indication to the error code. The
following internal indication bits are supported:
Octet
Position
Bit
Position
0
0
0
7
0
0
4
5
1
5
Description
Set when a request received with a broadcast destination address. Cleared after next response.
Device restart - set when the instrument powers up or after executing Cold Restart, cleared by writing
zero to object 80.
Time-synchronization required from the master. Cleared when master sets the time.
Set when the instrument is in the Local state (is being programmed via the front panel). Cleared when
the instrument is in the Remote state.
Set when the current configuration in the instrument is corrupted. May also be set as a result of the
legal changes in the setup configuration whenever another setup is affected by the changes made.
Cleared when either setup is reloaded.
5
Class 0 Response
The PM296/RPM096 DNP implementation supports a wide variety of messages. The most common
method to extract DNP static object information is to issue a Read Class-0 request.
There is an option for assigning objects to be polled via Class 0 requests. When this option is used, the
Class 0 response includes all static object points specified by the Class 0 Point Assignment Setup
Registers (see Table 3-30). By default, the following points are specified by the Class 0 Point
Assignment setup: 32 first Analog Input points from Table 3-1, 12 Analog Output points from Table 3-2,
2 Binary Input points represented Status Inputs and 2 Binary Input points represented Relay Status (see
Table 3-13).
Object Point Mapping and Event Objects
The PM296/RPM096 has a special mapping mechanism allowing you to map either static object point
onto predefined point range. A total of 64 points are available for mapping. DNP static objects can be
accessed directly by using the dedicated object point number. DNP event objects can be generated and
accessed only through a mapping mechanism.
You can map any of the 64 mapping points to either Analog Input, Binary Input or Binary Counter object
point. By default those are factory mapped to the first 64 points of the Analog Input object: 43 points
from the Basic Data Registers (see Table 3-1) and last 21 mapping points are filled with the repeated
AI:0 from the same table. To re-map these, you must define the required number of points for each
allowable DNP object in the DNP Options Setup (see Table 3-8), and then configure each point
individually to be polled as an event source, via the DNP Event Setpoints Setup (see Table 3-9). For any
mapped static object point, you can enable a corresponding event object point. Note that any changes
made to the DNP Options Setup cause a reset of the DNP Event Options Setup points to their defaults.
All event options are disabled by default. Since a mapped static point is configured to create DNP Event
objects, events are generated for this point as its value or state changes. Two different scan time rates
are used for polling events:
- 200 ms for Binary Counter and Analog Input points;
- 50 ms for Binary Input points.
The memory consumption for keeping events depends on the event objects variation (DNP object size).
The maximum buffer size (MBS) per DNP Event Object/ Event Class is 612 byte. The maximum number
of events that the instrument can hold can be calculated as follows:
Maximum Events Number = MBS / (DNP Event Object Size + 1)
For example, the instrument can hold up to 51 measures of the 32-bit Analog Change Event With Time
Object: (612 / 12) or up to 76 measures of the 8-bit Binary Change Event With Time Object: (612 / 8).
To suppress mapping, explicitly set all registers that specify the number of the Analog Input, Binary
Input and/or Binary Counter objects to 0. In this case PM296/RPM096 supports Static Operation Polling
only.
DNP Address
The instrument on a DNP link must have a unique address. The PM296/RPM096 allows one of 256
addresses to be selected. The selectable addresses have a range of 0-255. DNP uses the address
65535 for broadcast function. Note that a broadcast request never generates a DNP response.
Transaction Timing
To allow the master to switch the communication link, the Powermeter minimum response time must be
at least 3.5-character time (depending on the baud rate) and at least 5 ms. Table 2-1 shows the actual
response time measured at 9600 bps.
Table 2-1 Response Time
Number of
Parameters
1
5
10
43 (Object 30:3)
Typical response time, ms
10
15
21
45
Maximum response time, ms
12
16
22
62
Note that Direct-Operate (Direct-Operate-No-Acknowledge) requests for reset/clear registers and
setpoint changing are immediately confirmed.
6
Scaling Analog Input and Analog Input Change Event Objects
With the Analog-Input and Analog-Input-Change-Event objects, any of variations 1 through 4 can be
used. Variations specified in the tables in Section 3 show those that should be used to read a full-range
value without a possible over-range error when no scaling is used to accommodate the value to the
requested object size.
When over-range occurs, a positive value is reported as 32767 and a negative value as -32768, with the
over-range bit being set to 1 in the flag octet if variation 2 is requested. To avoid over-range errors when
variation 2 or 4 is required, a liner scaling may be used (see Section DNP Options Setup) to scale 32-bit
analog readings to 16-bit Analog Input objects. By default, scaling is disabled.
When scaling is enabled, either analog input requested with variation 2 or 4 will be scaled to the range
of -32768 to 32767 for bi-directional parameters (such as power and power factor), and to the range of 0
to 32767 for single-ended positive parameters (voltage, current, frequency, etc.). To get a true reading,
the reverse conversion should be done using the following formula:
Y = ((X – DNP_LO) × (HI - LO)) /(DNP_HI – DNP_LO) + LO
where:
Y
X
LO, HI
DNP_LO
-
DNP_HI
-
the true reading in engineering units
the raw input data in the range of DNP_LO – DNP_HI
the data low and high scales in engineering units (specified for each Analog-Input point, see Section 3)
DNP low conversion scale: DNP_LO = -32768 for a point with a negative LO scale, DNP_LO = 0 for
a point with a zero or positive LO scale
DNP high conversion scale: DNP_HI = 32767
EXAMPLE
Suppose you have read a value of 201 for point 3 that contains a current reading (see Table 3-1). If your instrument
has CT primary current set to 5000 A, then the current high scale is HI = 2×5000 = 10000, and in accordance with
the above formula, the current reading in engineering units will be as follows:
(201 - 0) × (10000 - 0)/(32767 - 0) + 0 = 61A
7
3 PM296/RPM096 Registers
PM296/RPM096 Registers
Basic Data Registers
These registers are used to retrieve a predefined set of the data measured by the Powermeter. All
electrical parameters are averaged values over the specified number of real-time measurements.
Table 3-1 Basic Data Parameters
Object/Var. 5 Parameter
30:3
Voltage L1/L12 4
30:3
Voltage L2/L23 4
30:3
Voltage L3/L31 4
30:3
Current L1
30:3
Current L2
30:3
Current L3
30:3
kW L1
30:3
kW L2
30:3
kW L3
30:3
kvar L1
30:3
kvar L2
30:3
kvar L3
30:3
kVA L1
30:3
kVA L2
30:3
kVA L3
30:4
Power factor L1
30:4
Power factor L2
30:4
Power factor L3
30:4
Total Power factor
30:3
Total kW
30:3
Total kvar
30:3
Total kVA
30:3
Neutral (unbalanced) current
30:4
Frequency
30:3
Maximum sliding window kW demand 3
30:3
Accumulated kW demand
30:3
Maximum sliding window kVA demand 3
30:3
Accumulated kVA demand
30:3
Maximum ampere demand L1
30:3
Maximum ampere demand L2
30:3
Maximum ampere demand L3
30:3
Present sliding window kW demand 3
30:3
Present sliding window kVA demand 3
30:4
PF (import) at maximum kVA demand
30:4
Voltage THD L1/L12
30:4
Voltage THD L2/L23
30:4
Voltage THD L3
30:4
Current THD L1
30:4
Current THD L2
30:4
Current THD L3
30:4
Current TDD L1
30:4
Current TDD L2
30:4
Current TDD L3
30:4
DC Voltage 6
20:5
kWh import
20:5
kWh export
20:5
kvarh net
Object/Point
AI:0
AI:1
AI:2
AI:3
AI:4
AI:5
AI:6
AI:7
AI:8
AI:9
AI:10
AI:11
AI:12
AI:13
AI:14
AI:15
AI:16
AI:17
AI:18
AI:19
AI:20
AI:21
AI:22
AI:23
AI:24
AI:25
AI:26
AI:27
AI:28
AI:29
AI:30
AI:31
AI:32
AI:33
AI:34
AI:35
AI:36
AI:37
AI:38
AI:39
AI:40
AI:41
AI:42
AI:43
BC:0
BC:1
BC:2
Unit 2
V
V
V
A
A
A
kW
kW
kW
kvar
kvar
kvar
kVA
kVA
kVA
0.001
0.001
0.001
0.001
kW
kvar
kVA
A
0.01Hz
kW
kW
kVA
kVA
A
A
A
kW
kVA
20:5
20:5
20:5
20:5
BC:3
BC:4
BC:5
BC:6-15
kVAh
kvarh
kvarh
kVAh
kvarh import
kvarh export
Reserved
AI indicates Analog-Input point, BC - Binary Counter point.
1 The parameter limits are as follows:
8
%
%
%
%
%
%
%
%
%
0.01V
kWh
kWh
kvarh
Value range 1
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
-999 to 1000
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Imax
0 to 10000
0 to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
0 to Imax
0 to Imax
0 to Imax
0 to Pmax
0 to Pmax
0 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to 999900
0 to 999,999,999
0 to 999,999,999
-999,999,999 to
999,999,999
0 to 999,999,999
0 to 999,999,999
0 to 999,999,999
0
Imax (100% over-range) = 2 × CT primary current [A]
Imax aux (100% over-range) = 2 × Auxiliary CT primary current [A/mA]
Direct wiring (PT Ratio = 1):
Vmax (690 V input option) = 828.0 V
Vmax (120 V input option) = 144.0 V
Pmax = (Imax × Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
NOTE: Pmax is rounded to whole kilowatts. If Pmax is greater than 9,999,000 W, it is truncated to 9,999,000 W.
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V]
Vmax (120 V input option) = 144 × PT Ratio [V]
Pmax = (Imax × Vmax × 3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
2
3
4
5
6
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
To get block interval demand readings, set the number of demand periods equal to 1 (see Table 3-2).
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
Variations specified in the table show those that should be used to read a full-range value without a possible
over-range error when no scaling is used to accommodate the value to the requested object size (see Section
2).
Available starting with F/W Versions 2.26.3/2.36.3 and 2.27.2/2.37.2 or later.
Basic Setup Registers
These registers are used to access the basic setup parameters. In the event that the modulus field is
not equal to 1, the value received from the Powermeter must be multiplied by the modulus. When
written, such a number should be divided by the modulus. The basic setup registers (Object 40,
Variation 2) are assigned to Class 0 by default.
Table 3-2 Basic Setup Registers
Object/
Variation
40:2 (read)
41:2 (write)
40:1
41:1
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:2
41:2
40:1
40:2
41:2
40:2
41:2
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(write)
(read)
(read)
(write)
(read)
(write)
Parameter
PT ratio
Object/
Range
Point
AO:0
0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,
3 = 4LL3, 4 = 3OP3, 5 = 3LN3,
6 = 3LL3
AO:1
10 to 65000 x 0.1
CT primary current
AO:2
1 to 10000 A
Power demand period
AO:3
Volt/ampere demand period
AO:4
1,2,5,10,15,20,30,60 min
255 = external synchronization
0 to 1800 sec
Averaging buffer size
AO:5
8, 16, 32
Reset enable/disable
AO:6
0 = disable, 1 = enable
Auxiliary CT primary current
AO:7
1 to 10000 A
The number of demand periods
AO:8
1 to 15
Thermal demand time constant
AO:9
10 to 36000 x 0.1sec
The number of pre-event waveform
cycles
Nominal frequency
AO:10
1 to 8
AO:11
50, 60 Hz
Maximum demand load current
AO:12
0 to 10000 A (0 = CT primary current)
Reserved
DC voltage offset 2
AO:13
AO:14
Read as 65535
0 to 9999 (default 0)
DC voltage full scale 2
AO:15
0 to 9999 (default 20,100 or 300)
Wiring mode 1
9
Object/
Variation
40:2 (read)
41:2 (write)
Parameter
The number of waveform cycles to log
Object/
Range
Point
AO:16
0 to 2560,
0 = auto-select
AO indicates Analog-Output-Status (Read) and Analog-Output-Block (Write) points.
1 The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element)
4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings
3DIR2 - 3-wire direct connection using 2 CTs (2 element)
4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings
3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)
3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings
3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings
2 To get true DC voltage readings, set the offset to zero and the full scale to 20, 100 or 300 V according to your
order.
User Selectable Options Setup
Table 3-3 User Selectable Options Registers
Object/
Variation
Parameter
Range
Object/
Point
40:2
41:2
40:2
41:2
(read)
(write)
(read)
(write)
Power calculation mode
AO:92
Energy roll value
AO:93
40:2
41:2
40:2
41:2
(read)
(write)
(read)
(write)
Phase energy calculation mode
AO:94
Analog output option
AO:95
40:2 (read)
41:2 (write)
Analog expander output 1
AO:96
40:2 (read)
Battery option
AO:97
0 = none
1 = 0-20 mA
2 = 4-20 mA
0 = none
1 = 0-20 mA
2 = 4-20 mA
0-battery OFF,
40:2 (read)
40:2 (read)
Reserved
Thermal demand option
AO:98
AO:99
0-disabled, 1-enabled
1
0 = using reactive power,
1 = using non-active power
0 = 1×104
1 = 1×105
2 = 1×106
3 = 1×107
4 = 1×108
5 = 1×109
0 = disabled, 1 = enabled
3 = 0-1 mA
4 = ±1 mA
3 = 0-1 mA
4 = ±1 mA
1-battery ON
Do not enable the analog expander output if the analog expander is not connected to the instrument, otherwise
the computer communications will become garbled.
The registers shown in Table 3-4 are used to retrieve the firmware version number and instrument
options.
Table 3-4 Firmware and Instrument Option Registers
Object/
Variation
30:4
30:4
30:3
30:3
30:4
Parameter
Firmware build number 1
Firmware version number
Instrument option 1
Instrument option 2
Active serial port number
Object/
Point
AI:1023
AI:1024
AI:1025
AI:1026
AI:1027
Read/
Write
Read
Read
Read
Read
Read
Range
0-65535
0-65535
See Table 3-5
See Table 3-5
0 = Port 1, 1 = Port 2
AI indicates Analog-Input points. Scaling mechanism is not supported for these registers.
1 Available starting with F/W Versions 2.26.2/2.36.2 and 2.27.1/2.37.1 or later.
10
Table 3-5 Instrument Options
Options
point
Options 1
(AI:1025)
Bit
number
0
1
2-3
4
5
6
7
8
9
10
11
12-13
14
15
0-2
3-6
7-8
9-10
11-12
13-15
Options 2
(AI:1026)
Description
120V option
690V option
Reserved
100% current over-range
Reserved
Analog output 0/4-20 mA
Analog output 0-1 mA
Analog output ±1 mA
Relays option
Digital inputs option
Auxiliary current option
Reserved
Analog expander output ±1 mA
Reserved
Number of relays - 1
Number of digital inputs - 1
Number of analog outputs -1
Reserved
DC voltage input option: 01=20V, 10=100V, 11=300V
Reserved
Communications Setup
These registers are used to access the communications setup parameters.
NOTE
When changing the instrument address, baud rate or data format, the new communications parameters will take
effect 100 ms after the instrument responds to the master’s request.
Table 3-6 Communications Setup Registers
Comm.
Port
Port #1
Port #2
Object/
Variation
40:2 (read)
41:2 (write)
40:2
41:2
40:2
41:2
40:2
41:2
(read)
(write)
(read)
(write)
(read)
(write)
Interface
Object/
Range
Point
AO:64
0 = ASCII
1 = Modbus RTU
2 = DNP3.0
AO:65
0 = RS-232, 1 = RS-422, 2 = RS-485
Address
AO:66
0 to 255
Baud rate
AO:67
40:2
41:2
40:2
41:2
(read)
(write)
(read)
(write)
Data format
AO:68
Incoming flow
control
(handshaking)
AO:69
40:2 (read)
41:2 (write)
Outgoing flow
control (RTS/DTR)
AO:70
40:2 (read)
41:2 (write)
Protocol
AO:80
40:2
41:2
40:2
41:2
40:2
41:2
Interface
AO:81
4 = 2400 bps
0 = 110 bps
5 = 4800 bps
1 = 300 bps
6 = 9600 bps
2 = 600 bps
7 = 19200 bps
3 = 1200 bps
1 = 8 bits/no parity
2 = 8 bits/even parity
0 = no handshaking
1 = software handshaking (XON/XOFF protocol)
2 = hardware handshaking (CTS protocol)
0 = RTS signal not used
1 = RTS permanently asserted (DTR mode)
2 = RTS asserted during the transmission
0 = ASCII
1 = Modbus RTU
2 = DNP3.0
1 = RS-422, 2 = RS-485
Address
AO:82
0 to 255
Baud rate
AO:83
Data format
AO:84
Reserved
AO:85
0 = 110 bps
1 = 300 bps
2 = 600 bps
3 = 1200 bps
1 = 8 bits/no parity
2 = 8 bits/even parity
Read as 65535
(read)
(write)
(read)
(write)
(read)
(write)
40:2 (read)
41:2 (write)
40:1 (read)
Parameter
Protocol
4
5
6
7
=
=
=
=
2400 bps
4800 bps
9600 bps
19200 bps
11
AO indicates Analog-Output points.
DNP Options Setup
This section describes the general DNP setup registers related to DNP timing and events processing.
The following static objects generate the corresponding DNP change events:
Table 3-7 DNP Static, Frozen and Event objects
Static Object
Name
Single-Bit Binary Input
Binary Input With Status
32-bit:
Binary Counter
Binary Counter Without Flag
16-bit:
Binary Counter
Binary Counter Without Flag
32-bit:
Frozen Counter
Frozen Counter Without Flag
Frozen Counter With Time of Freeze
16-bit:
Frozen Counter
Frozen Counter Without Flag
Frozen Counter With Time of Freeze
32-bit:
Analog Input
Analog Input Without Flag
16-bit:
Analog Input
Analog Input Without Flag
Change Object
Obj.
Name
var.
01:1
Binary Input Change Without Time
01:2
Binary Input Change With Time
32-bit:
20:1
Counter Change Event Without Time
20:5
Counter Change Event With Time
16-bit
20:2
Counter Change Event Without Time
20:6
Counter Change Event With Time
Obj.
var.
02:1
02:2
22:1
22:5
22:2
22:6
21:1
21:9
21:5
21:2
21:10
21:6
30:1
30:3
30:2
30:4
32-bit:
Analog
Analog
16-bit:
Analog
Analog
Change Event Without Time
Change Event With Time
32:1
32:3
Change Event Without Time
Change Event With Time
32:2
32:4
The following registers are used to access the DNP Options Setup parameters. The value range of
points 32 to 41 reflects the elements number of the corresponding DNP object/variation list described
above. For instance, the default value for the frozen Binary Counter is the Frozen Counter Without Flag
obj21var10.
Table 3-8 DNP Options Setup Registers
Object/
Variation
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:1 (read)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
12
Parameter
Binary Input Static
Object/
Point
AO:32
Range
0 to 1, 0 by default
Binary Input Change
AO:33
0 to 1, 1 by default
Binary Counter
AO:34
0 to 3, 3 by default
Frozen Binary Counter
AO:35
0 to 5, 4 by default
Reserved
AO:36
Binary Counter Change Event
AO:37
0 to 3, 2 by default
Analog Input
AO:38
0 to 3, 3 by default
Reserved
AO:39
Reserved
AO:40
Analog Input Change Event
AO:41
0 to 3, 2 by default
Reserved
DNP Scaling
AO:42-43
AO:44
Read as 65535
0 = scaling is OFF, 1 = scaling is ON
Number mapped points for the Analog
Input objects 1
Number mapped points for the Binary
Input objects 1
Number mapped points for the Binary
Counter objects 1
AO:45
0 to 64 (default 64/40/32) 2
AO:46
0 to 64 (default 0) 2
AO:47
0 to 64 (default 0) 2
Object/
Variation
40:2 (read)
41:2 (write)
40:2 (read)
41:2 (write)
40:2 (read)
40:2 (read)
41:2 (write)
Parameter
Select/Operate Timeout
Object/
Point
AO:48
Multi Fragment Interval
AO:49
Reserved
Time Sync Period
AO:50-52
AO:53
Range
2 to 30 seconds (the default 10
seconds)
50 to 500 ms (the default 50 ms)
Read as 65535
1 to 86400 seconds (the default 86400
sec)
AO indicates Analog-Output points.
1 The sum of the mapped points cannot exceed the total number of the DNP map space. If the total number of the
mapped points equals 0, the report-by-exception mode is not supported.
2
The total number of the event setpoints is limited to:
64 with F/W 2.26.2/2.36.2 or later,
40 with F/W 2.27.2/2.37.2 or later,
32 with older F/W revisions.
The Analog Input variation defines the default variation of the Analog Input object that is selected when
no specific variation is requested for the Analog Input object by a master station, with the Analog Input
object requests using Qualifier code 06 (variation 0). By default it is set to the 16-bit Analog Input object
without flag (object 30, variation 4).
The DNP Scaling is used to control the scaling mechanism. The scaling is turned ON if this parameter is
set to 1. By default this parameter is set to 0 and scaling is OFF. Choosing 32-bit Analog Input objects
(object 30, variation 1, 3) disables this parameter.
The DNP map space contains 64 event definition register groups (see Table 3-9), which may describe
up to 64 points of the static objects: Analog Input, Binary Input and Binary Counter. The points 0 to 42 of
the Analog Input object (see Table 3-1) are mapped by the default. The default map does not contain
the Binary Input and Binary Counter objects. To re-map the current setting, the user must write new
values into points 45-47 of the Analog Output object. If the new values of these parameters are
accepted by PM296/RPM096, the new content of the event definition register groups is created
automatically. All registers of this group are described below (see Table 3-9). Note here that for every
mapped point the object type and sequence number from the range 0 to (number of points - 1) are
defined automatically. The type of object cannot be changed manually and is defined from the DNP
Options Setup Registers only.
The Select Before Operate command causes the PM296/RPM096 to start a timer. The Operate
command must be received correctly before the value specified by the Select/Operate Timeout
parameter expires.
The PM296/RPM096 requests time syncs when the time specified by the Time Sync Period parameter
has elapsed. The bit 4 of the first octet of the internal indication word is set. The master synchronizes
the time by writing the DNP Time and Date object to the meter.
DNP Event Setpoints Setup
These registers are used to define the DNP Event Setpoints for generating events.
Table 3-9 DNP Event Setpoints Registers
Event No. Object/Var
Register contents
#0 40:2(read)
DNP point number
41:2(write)
40:1(read)
Dead band
41:1(write)
40:2(read)
Control field
41:2(write)
…
…
#63 2 40:2(read)
41:2(write)
40:2(read)
41:2(write)
40:2(read)
41:2(write)
1
Object/Point
Range/scale
AO:896
Any actual DNP point number of
the selected object 1
AO:897
9
0 to 4.3 × 10
AO:898
See Table 3-10
…
…
DNP point number
AO:1085
Threshold/Deadband
AO:1086
Any actual DNP point number of
the selected object 1
-2147483848 to 2147483647 (not
used for BI change events)
Control field
AO:1087
See Table 3-10
Analog Input (AI), Binary Input (BI) or Binary Counter (BC).
13
2
The total number of the event setpoints is limited to:
64 with F/W 2.26.2/2.36.2 or later,
40 with F/W 2.27.2/2.37.2 or later,
32 with older F/W revisions.
Table 3-10 DNP Event Control Field
Bits
0-1 DNP object
2
3-4
5-6
7
8-9
Name
Object change event scan
Not used
DNP event poll class
Event log on an event 1,2
Threshold/Deadband relation
Range
0 = none, 1 = AI change event, 2= BI change event, 3=
BC change event
0 = disabled, 1 = enabled
0 = Class 1, 1 = Class 2, 2 = Class 3
0 = disabled, 1 = enabled
0 = Delta, 1 = More than (over threshold) 1, 3 = Less
than (under threshold) 1
10-15 Not used
1
2
Available with F/W Versions 2.26.2/2.36.2 and 2.27.2/2.37.2 or later.
The source of the DNP events recorded to the device Event log is identified as the general Setpoint #17.
Either an operating threshold, or deadband should be specified to generate events for numeric (AI and
BC) objects, using one of the three allowable relations:
1. Delta – a new event is generated when the absolute value of the difference between the last
reported value of the point and its current value exceeds the specified deadband value.
2. More than (Over) - a new event is generated when the point value rises over the specified threshold,
and then when the point value returns below the threshold taking into consideration a predefined
hysteresis.
3. Less than (Under) - a new event is generated when the point value drops below the specified
threshold, and then when the point value returns above the threshold taking into consideration a
predefined hysteresis.
A hysteresis for the point return threshold is 0.05 Hz for frequency and 2% of the operating threshold for
all other points.
The scan time for binary input change events is 50 ms with a timestamp precision at +/-10 ms. The scan
time for analog input and binary counter change events is 200 ms.
Freeze Requests on Binary Counter Objects
Acceptable object variation and qualifier combinations included in the device response are specified in
Table 3-7. The Immediate Freeze, Immediate Freeze-No Acknowledgement, Freeze and Clear,
Freeze and Clear-No Acknowledgement DNP commands can be applied to all Binary Counters
objects supported by the PM296/RPM096. These registers are used to access the Frozen Binary
Counters.
Table 3-11 Frozen Binary Counters
Object/Variation
(See Table 3-7)
Total energies
21:10
21:10
21:10
21:10
21:10
21:10
21:10
Pulse counters
21:10
21:10
21:10
21:10
21:10
21:10
21:10
21:10
21:10
21:10
21:10
14
Parameter
Object/Point
Unit
Value range
kWh import
kWh export
kvarh net
kVAh total
kvarh import 1
kvarh export 1
Reserved
FBC:0
FBC:1
FBC:2
FBC:3
FBC:4
FBC:5
FBC:6-15
kWh
kWh
kvarh
kVAh
kvarh
kvarh
0 to 999,999,999
0 to 999,999,999
-999,999,999 to 999,999,999
0 to 999,999,999
0 to 999,999,999
0 to 999,999,999
0
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
FBC:35328
FBC:35329
FBC:35330
FBC:35331
FBC:35332
FBC:35333
FBC:35334
FBC:35335
FBC:35336
FBC:35337
FBC:35338
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
0
0
0
0
0
0
0
0
0
0
0
counter
counter
counter
counter
counter
counter
counter
counter
counter
counter
counter
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
to
to
to
to
to
to
to
to
to
to
to
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
Object/Variation
(See Table 3-7)
21:10
21:10
21:10
21:10
21:10
Total energies
21:10
21:10
21:10
21:10
21:10
21:10
21:10
21:10
21:10
1
Parameter
Pulse
Pulse
Pulse
Pulse
Pulse
counter
counter
counter
counter
counter
#12
#13
#14
#15
#16
Object/Point
Unit
Value range
to
to
to
to
to
109-1
109-1
109-1
109-1
109-1
FBC:35339
FBC:35340
FBC:35341
FBC:35342
FBC:35343
n/a
n/a
n/a
n/a
n/a
0
0
0
0
0
kWh import
kWh export
kWh net
kWh total
kvarh import
kvarh export
kvarh net
FBC:38656
FBC:38657
FBC:38658
FBC:38659
FBC:38660
FBC:38661
FBC:38662
kWh
kWh
kWh
kWh
kvarh
kvarh
kWh
0 to 999,999,999
0 to 999,999,999
-109+1 to109-1
0 to 999,999,999
0 to 999,999,999
0 to 999,999,999
kvarh total
kVAh total
FBC:38663
FBC:38664
kvarh
kVAh
9
9
- 10 +1 to 10 -1
0 to 999,999,999
0 to 999,999,999
Available starting with F/W Versions 2.26.3/2.36.3 and 2.27.2/2.37.2 or later.
FBC - indicates Frozen-Binary-Counter points.
Warning
Any attempt to issue a freeze and clear (or freeze and clear - No acknowledgement) to object 20
variation 0 using function code 0x09 (or 0x10) and the data qualifier 0x06 causes all counters
specified in this manual to be reset to zero.
Resetting Energy, Demands, Counters and Min/Max Log
The energy value can be reset to zero by issuing the Direct-Operate (or SBO/Operate or DirectOperate-No-Acknowledge) command using the Control-Relay-Output-Block object to point 0. The
request must use the operation Pulse-On. Issuing the same parameters and Direct-Operate (or
SBO/Operate or Direct-Operate-No-Acknowledge) command to points 1-3 can reset the maximum
demands.
Table 3-12 Reset/Clear Registers
Object/
Var.
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
10:2
12:1
Register function
Clear total energy registers
Clear total maximum demand registers (all
demands)
Clear power demands
Clear volt/ampere demands
Reserved
Clear pulse counters (all counters)
Clear pulse counters 1-8
Clear Min/Max log
Reserved
Clear pulse counters 9-16
Object/
Point
BO:0
CROB:0
BO:1
CROB:1
BO:2
CROB:2
BO:3
CROB:3
BO:4-11
CROB:4-11
BO:12
CROB:12
BO:13-20
CROB:13-20
BO:21
CROB:21
BO:22-29
CROB:22-29
BO:30-37
CROB:30-37
Read/
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Description
Return zero
PULSE ON
Return zero
PULSE ON
Return zero
PULSE ON
Return zero
PULSE ON
Return zero
Return zero
PULSE ON
Return zero
PULSE ON
Return zero
PULSE ON
Return zero
PULSE ON
Return zero
PULSE ON
BO indicates Binary Output Status. CROB indicates Control-Relay-Output-Block point.
The following restriction should be noted when using object 12 to control the listed points.
Š The Count byte is ignored. The Control Code byte is checked for the following:
- Pulse On (1) is valid for all points; other codes are invalid and will be rejected.
Š The On Time and Off Time fields are ignored.
Š The status byte in the response will reflect the success or failure of the control operation:
- Request Accepted (0) will be returned if the command was accepted;
- Request not Accepted due to Formatting Errors (3) will be returned if the Control Code byte was incorrectly
formatted or if an invalid code was present in the command;
15
- Control Operation not Supported for this Point (4) will be returned if the Control Point was out of control (for
instance, reset is disabled via Basic Setup).
Issuing the same parameters and Direct-Operate (or SBO/Operate or Direct-Operate-No-Acknowledge)
command to point 12-16 can clear the Pulse Counters.
Issuing the same parameters and Direct-Operate (or SBO/Operate or Direct-Operate-No-Acknowledge)
command to point 21 can reset the Min/Max log.
Status Registers
These registers are used to retrieve the status of digital input/output points (hardware or software)
from the instrument.
Table 3-13 Status Registers (Read)
Object/Var.
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
01:1
Description
Relay #1 status
Relay #2 status
Relay #3 status
Relay #4 status
Relay #5 status
Relay #6 status
Reserved
Status input #1
Status input #2
Status input #3
Status input #4
Status input #5
Status input #6
Status input #7
Status input #8
Status input #9
Status input #10
Status input #11
Status input #12
Reserved
Reserved
Battery status
Reserved
Object/Point
BI:0
BI:1
BI:2
BI:3
BI:4
BI:5
BI:6-15
BI:16
BI:17
BI:18
BI:19
BI:20
BI:21
BI:22
BI:23
BI:24
BI:25
BI:26
BI:27
BI:28-31
BI:32-47
BI:48
BI:49-63
Bit meaning
0 = released, 1 = operated
0 = released, 1 = operated
0 = released, 1 = operated
0 = released, 1 = operated
0 = released, 1 = operated
0 = released, 1 = operated
Not used (permanently set to
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
0 = open, 1 = closed
Not used (permanently set to
Not used (permanently set to
0 = low, 1 = normal
Not used (permanently set to
0)
0)
0)
0)
BI indicates Single-Bit Binary-Input points (Read).
Alarm Status Registers
These registers are used to retrieve the status alarm parameters from the instrument.
NOTE
The PM296/RPM096 provides a self-check alarm register.
The self-check alarm points indicate possible problems with the instrument hardware or setup
configuration. The hardware problems are indicated by the appropriate points, which are set whenever
the instrument fails self-test diagnostics, or in the event of loss of power. The dedicated binary point
indicates the setup configuration problems, which is set when either configuration register is
corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit
may also be set as a result of the legal changes in the setup configuration since the instrument might
implicitly change or clear other setups if they are affected by the changes made.
Issuing the Direct-Operate (or SBO/Operate or Direct-Operate-No-Acknowledge) command using the
Control-Relay-Output-Block object (with the code operation Latch-Off) to points from range 64 to 75
can reset hardware fault points. The configuration corrupt status point is also reset automatically when
you change setup either via the front panel or through communications.
Table 3-14 Alarm Status Registers
Object/Var.
10:2(read)
12:1(write)
16
Description
Self-check Alarm Register
Reserved
Object/Point
B0:64
CROB:64
Bit meaning
1 = alarm has been asserted
0 = alarm hasn’t been asserted
Reading returns 0
Object/Var.
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
Description
ROM error
Object/Point
B0:65
CROB:65
RAM error
B0:66
CROB:66
Watchdog timer reset
B0:67
CROB:67
Sampling failure
B0:68
CROB:68
Out of control trap
B0 :69
CROB:69
Reserved
BI :70
CROB:70
Timing failure
B0 :71
CROB:71
Loss of power (power up)
B0:72
CROB:72
External reset (Cold Restart) 1
B0:73
CROB:73
Configuration corrupted 1
B0:74
CROB:74
Time synchronization required 1 B0:75
CROB:75
Low battery 2
B0:76
CROB:76
Reserved
77-79
77-79
Bit meaning
Reading returns 0
Reading returns 0
BO indicates Binary-Output-Status (Read) or Control-Relay-Output Block (Write) points.
1 These self-check alarms are doubled with the corresponding internal indication bits.
2 Available starting with F/W Versions 2.26.3/2.36.3 and 2.27.2/2.37.2 or later.
The following restrictions should be noted when using object 12 to control the listed points:
Š The Count byte is ignored.
Š The Control Code byte is checked:
- Latch Off is valid for all points; other codes are invalid and will be rejected.
Š The On Time and Off Time fields are ignored.
Š The status byte in the response will reflect the success or failure of the control operation:
- Request Accepted (0) will be return if the command was accepted;
- Request not Accepted due to Formatting Errors (3) will be returned if the Control Code byte was incorrectly
formatted or if an invalid Code was present in the command.
Extended Data Registers
These registers are used to retrieve any data measured by the instrument. A list of the extended data
parameters, their points and value ranges are shown in Table 3-15.
Table 3-15 Extended Data Registers
Obj/Var 7
Parameter
30:4
None
Special inputs
30:4
Voltage disturbance 6
30:4
Phase rotation
BI:33024
BI:33025
%
0 to 100
0=ERR, 1=POS,
2=NEG
Status inputs
01:1
Status
01:1
Status
01:1
Status
01:1
Status
01:1
Status
01:1
Status
input
input
input
input
input
input
#1
#2
#3
#4
#5
#6
BI:34304
BI:34305
BI:34306
BI:34307
BI:34308
BI:34309
n/a
n/a
n/a
n/a
n/a
n/a
0/1
0/1
0/1
0/1
0/1
0/1
01:1
01:1
01:1
01:1
01:1
01:1
input
input
input
input
input
input
#7
#8
#9
#10
#11
#12
BI:34310
BI:34311
BI:34312
BI:34313
BI:34314
BI:34315
n/a
n/a
n/a
n/a
n/a
n/a
0/1
0/1
0/1
0/1
0/1
0/1
Status
Status
Status
Status
Status
Status
Object/Point
AI:32768
n/a
Unit2
Value, range 1
Comment
0
17
Obj/Var 7
01:1
Reserved
Parameter
Relay status
01:1
Relay #1 status
01:1
Relay #2 status
01:1
Relay #3 status
01:1
Relay #4 status
01:1
Relay #5 status
01:1
Relay #6 status
01:1
Reserved
Pulse counters
20:5
Pulse counter #1
20:5
Pulse counter #2
20:5
Pulse counter #3
20:5
Pulse counter #4
20:5
Pulse counter #5
20:5
Pulse counter #6
20:5
Pulse counter #7
20:5
Pulse counter #8
20:5
Pulse counter #9
20:5
Pulse counter #10
20:5
Pulse counter #11
20:5
Pulse counter #12
20:5
Pulse counter #13
20:5
Pulse counter #14
20:5
Pulse counter #15
20:5
Pulse counter #16
Real-time values per phase
30:3
Voltage L1/L12 5
30:3
Voltage L2/L23 5
30:3
Voltage L3/L31 5
30:3
Current L1
30:3
Current L2
30:3
Current L3
30:3
kW L1
30:3
kW L2
30:3
kW L3
30:3
kvar L1
30:3
kvar L2
30:3
kvar L3
30:3
kVA L1
30:3
kVA L2
30:3
kVA L3
30:4
Power factor L1
30:4
Power factor L2
30:4
Power factor L3
30:4
Voltage THD L1/L12
30:4
Voltage THD L2/L23
30:4
Voltage THD L3
30:4
Current THD L1
30:4
Current THD L2
30:4
Current THD L3
30:4
K-Factor L1
30:4
K-Factor L2
30:4
K-Factor L3
30:4
Current TDD L1
30:4
Current TDD L2
30:4
Current TDD L3
30:3
Voltage L12
30:3
Voltage L23
30:3
Voltage L31
Real-time low values on any phase
30:3
Low voltage 5
30:3
Low current
30:3
Low kW
30:3
Low kvar
18
Object/Point
BI:34316n/a
34319
Unit2
Value, range 1
0/0
BI:34816
BI:34817
BI:34818
BI:34819
BI:34820
BI:34821
BI:3482234831
n/a
n/a
n/a
n/a
n/a
n/a
n/a
0/1
0/1
0/1
0/1
0/1
0/1
0/0
BC:35328
BC:35329
BC:35330
BC:35331
BC:35332
BC:35333
BC:35334
BC:35335
BC:35336
BC:35337
BC:35338
BC:35339
BC:35340
BC:35341
BC:35342
BC:35343
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AI:35840
AI:35841
AI:35842
AI:35843
AI:35844
AI:35845
AI:35846
AI:35847
AI:35848
AI:35849
AI:35850
AI:35851
AI:35852
AI:35853
AI:35854
AI:35855
AI:35856
AI:35857
AI:35858
AI:35859
AI:35860
AI:35861
AI:35862
AI:35863
AI:35864
AI:35865
AI:35866
AI:35867
AI:35868
AI:35869
AI:35870
AI:35871
AI:35872
0.1V/1V
0.1V/1V
0.1V/1V
0.01A/1A
0.01A/1A
0.01A/1A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
10 to 9999
10 to 9999
10 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to Vmax
0 to Vmax
0 to Vmax
AI:36096
AI:36097
AI:36098
AI:36099
0.1V/1V
0.01A/1A
0.001kW/1kW
0.001kvar/1kvar
0 to Vmax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
Comment
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
109-1
×0.001
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
Obj/Var 7
Parameter
30:3
Low kVA
30:4
Low PF Lag
30:4
Low PF Lead
30:4
Low voltage THD
30:4
Low current THD
30:4
Low K-Factor
30:4
Low current TDD
30:4
Low L-L voltage
Real-time high values on any phase
30:3
High voltage 5
30:3
High current
30:3
High kW
30:3
High kvar
30:3
High kVA
30:4
High PF Lag
30:4
High PF Lead
30:4
High voltage THD
30:4
High current THD
30:4
High K-Factor
30:4
High current TDD
30:4
High L-L voltage
Real-time total values
30:3
Total kW
30:3
Total kvar
30:3
Total kVA
30:4
Total PF
30:4
Total PF Lag
30:4
Total PF Lead
30:3
Total kW import
30:3
Total kW export
30:3
Total kvar import
30:3
Total kvar export
30:3
3-phase average voltage 5
30:3
3-phase average L-L voltage
30:3
3-phase average current
Real-time auxiliary values
30:3
Auxiliary current
30:3
Neutral current
30:4
Frequency 3
30:4
Voltage unbalance
30:4
Current unbalance
30:3
DC voltage
Average values per phase
30:3
Voltage L1/L12 5
30:3
Voltage L2/L23 5
30:3
Voltage L3/L31 5
30:3
Current L1
30:3
Current L2
30:3
Current L3
30:3
kW L1
30:3
kW L2
30:3
kW L3
30:3
kvar L1
30:3
kvar L2
30:3
kvar L3
30:3
kVA L1
30:3
kVA L2
30:3
kVA L3
30:4
Power factor L1
30:4
Power factor L2
30:4
Power factor L3
30:4
Voltage THD L1/L12
30:4
Voltage THD L2/L23
30:4
Voltage THD L3
30:4
Current THD L1
30:4
Current THD L2
Object/Point
AI:36100
AI:36101
AI:36102
AI:36103
AI:36104
AI:36105
AI:36106
AI:36107
Unit2
0.001kvar/1kvar
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
Value, range 1
-Pmax to Pmax
0 to 1000
0 to 1000
0 to 9999
0 to 9999
10 to 9999
0 to 1000
0 to Vmax
AI:36352
AI:36353
AI:36354
AI:36355
AI:36356
AI:36357
AI:36358
AI:36359
AI:36360
AI:36361
AI:36362
AI:36363
0.1V/1V
0.01A/1A
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
0 to Vmax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to 1000
0 to 1000
0 to 9999
0 to 9999
10 to 9999
0 to 1000
0 to Vmax
AI:36608
AI:36609
AI:36610
AI:36611
AI:36612
AI:36613
AI:36614
AI:36615
AI:36616
AI:36617
AI:36618
AI:36619
AI:36620
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.1V/1V
0.1V/1V
0.01A/1A
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
0 to 1000
0 to 1000
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Vmax
0 to Vmax
0 to Imax
AI:36864
AI:36865
AI:36866
AI:36867
AI:36868
AI:36869
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
to Imax aux
to Imax
to 10000
to 300
to 300
to999900
×0.01
×0.01
AI:37120
AI:37121
AI:37122
AI:37123
AI:37124
AI:37125
AI:37126
AI:37127
AI:37128
AI:37129
AI:37130
AI:37131
AI:37132
AI:37133
AI:37134
AI:37135
AI:37136
AI:37137
AI:37138
AI:37139
AI:37140
AI:37141
AI:37142
0.1V/1V
0.1V/1V
0.1V/1V
0.01A/1A
0.01A/1A
0.01A/1A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
×0.001
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.1
Comment
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.001
×0.001
×0.001
×0.01
19
Obj/Var 7
Parameter
30:4
Current THD L3
30:4
K-Factor L1
30:4
K-Factor L2
30:4
K-Factor L3
30:4
Current TDD L1
30:4
Current TDD L2
30:4
Current TDD L3
30:3
Voltage L12
30:3
Voltage L23
30:3
Voltage L31
Average low values on any phase
30:3
Low voltage 5
30:3
Low current
30:3
Low kW
30:3
Low kvar
30:3
Low kVA
30:4
Low PF Lag
30:4
Low PF Lead
30:4
Low voltage THD
30:4
Low current THD
30:4
Low K-Factor
30:4
Low current TDD
30:4
Low L-L voltage
Average high values on any phase
30:3
High voltage 5
30:3
High current
30:3
High kW
30:3
High kvar
30:3
High kVA
30:4
High PF Lag
30:4
High PF Lead
30:4
High voltage THD
30:4
High current THD
30:4
High K-Factor
30:4
High current TDD
30:4
High L-L voltage
Average total values
30:3
Total kW
30:3
Total kvar
30:3
Total kVA
30:4
Total PF
30:4
Total PF Lag
30:4
Total PF Lead
30:3
Total kW import
30:3
Total kW export
30:3
Total kvar import
30:3
Total kvar export
30:3
3-phase average voltage 5
30:3
3-phase average L-L voltage
30:3
3-phase average current
Average auxiliary values
30:3
Auxiliary current
30:3
Neutral current
30:4
Frequency 3
30:4
Voltage unbalance
30:4
Current unbalance
30:3
DC voltage
Present demands
30:3
Volt demand L1/L12 5
30:3
Volt demand L2/L23 5
30:3
Volt demand L3/L31 5
30:3
Ampere Demand L1
30:3
Ampere Demand L2
30:3
Ampere Demand L3
30:3
kW import block demand
30:3
kvar import block demand
20
Object/Point
AI:37143
AI:37144
AI:37145
AI:37146
AI:37147
AI:37148
AI:37149
AI:37150
AI:37151
AI:37152
Unit2
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
Value, range 1
0 to 9999
10 to 9999
10 to 9999
10 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to Vmax
0 to Vmax
0 to Vmax
AI:37376
AI:37377
AI:37378
AI:37379
AI:37380
AI:37381
AI:37382
AI:37383
AI:37384
AI:37385
AI:37386
AI:37387
0.1V/1V
0.01A/1A
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
0 to Vmax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to 1000
0 to 1000
0 to 9999
0 to 9999
10 to 9999
0 to 1000
0 to Vmax
AI:37632
AI:37633
AI:37634
AI:37635
AI:37636
AI:37637
AI:37638
AI:37639
AI:37640
AI:37641
AI:37642
AI:37643
0.1V/1V
0.01A/1A
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
0 to Vmax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to 1000
0 to 1000
0 to 9999
0 to 9999
10 to 9999
0 to 1000
0 to Vmax
AI:37888
AI:37889
AI:37890
AI:37891
AI:37892
AI:37893
AI:37894
AI:37895
AI:37896
AI:37897
AI:37898
AI:37899
AI:37900
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.1V/1V
0.1V/1V
0.01A/1A
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
0 to 1000
0 to 1000
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Vmax
0 to Vmax
0 to Imax
AI:38144
AI:38145
AI:38146
AI:38147
AI:38148
AI:38149
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
to
to
to
to
to
to
Imax aux
Imax
10000
300
300
999900
AI:38400
AI:38401
AI:38402
AI:38403
AI:38404
AI:38405
AI:38406
AI:38407
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kvar/1kvar
0
0
0
0
0
0
0
0
to
to
to
to
to
to
to
to
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Comment
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.001
×0.001
×0.001
×0.01
×0.01
×0.01
Obj/Var 7
Parameter
30:3
kVA block demand
30:3
kW import demand sliding window
30:3
kvar import demand sliding window
30:3
kVA demand sliding window
30:4
kW import thermal demand
30:4
kvar import thermal demand
30:4
kVA thermal demand
30:3
kW import accumulated demand
30:3
kvar import accumulated demand
30:3
kVA accumulated demand
30:3
kW import predicted sliding window
demand
30:3
kvar import predicted sliding window
demand
30:3
kVA predicted sliding window demand
30:4
PF (import) at maximum sliding
window kVA demand
30:3
kW export block demand
30:3
kvar export block demand
30:3
kW export sliding window demand
30:3
kvar export sliding window demand
30:3
kW export accumulated demand
30:3
kvar export accumulated demand
30:3
kW export predicted sliding window
demand
30:3
kvar export predicted sliding window
demand
30:3
kW export thermal demand
30:3
kvar export thermal demand
Total energies
20:5
kWh import
20:5
kWh export
20:5
kWh net
20:5
kWh total
20:5
kvarh import
20:5
kvarh export
20:5
kvarh net
20:5
kvarh total
20:5
kVAh total
Minimum real-time values per phase (M)
30:3
Voltage L1/L12 5
30:3
Voltage L2/L23 5
30:3
Voltage L3/L31 5
30:3
Current L1
30:3
Current L2
30:3
Current L3
30:3
kW L1
30:3
kW L2
30:3
kW L3
30:3
kvar L1
30:3
kvar L2
30:3
kvar L3
30:3
kVA L1
30:3
kVA L2
30:3
kVA L3
30:4
Power factor L1
30:4
Power factor L2
30:4
Power factor L3
30:4
Voltage THD L1/L12
30:4
Voltage THD L2/L23
30:4
Voltage THD L3
30:4
Current THD L1
30:4
Current THD L2
30:4
Current THD L3
30:4
K-Factor L1
30:4
K-Factor L2
30:4
K-Factor L3
Object/Point
AI:38408
AI:38409
AI:38410
AI:38411
AI:38412
AI:38413
AI:38414
AI:38415
AI:38416
AI:38417
AI:38418
Unit2
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kar
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kar
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001kW/1kW
0
0
0
0
0
0
0
0
0
0
0
Value, range 1
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
AI:38419
0.001kvar/1kvar
0 to Pmax
AI:38420
AI:38421
0.001kVA/1kVA
0.001
0 to Pmax
0 to 1000
AI:38422
AI:38423
AI:38424
AI:38425
AI:38426
AI:38427
AI:38428
0.001kW/1kW
0.001kvar/1kvar
0.001kW/1kW
0.001kvar/1kvar
0.001kW/1kW
0.001kvar/1kvar
0.001kW/1kW
0
0
0
0
0
0
0
AI:38429
0.001kvar/1kvar
0 to Pmax
AI:38428
AI:38429
0.001kW/1kW
0.001kvar/1kvar
0 to Pmax
0 to Pmax
BC:38656
BC:38657
BC:38658
BC:38659
BC:38660
BC:38661
BC:38662
BC:38663
BC:38664
kWh
kWh
kWh
kWh
kvarh
kvarh
kWh
kvarh
kVAh
0 to 999,999,999
0 to 999,999,999
-109+1to109-1
0 to 999,999,999
0 to 999,999,999
0 to 999,999,999
-109+1to 109-1
0 to 999,999,999
0 to 999,999,999
AI:44032
AI:44033
AI:44034
AI:44035
AI:44036
AI:44037
AI:44038
AI:44039
AI:44040
AI:44041
AI:44042
AI:44043
AI:44044
AI:44045
AI:44046
AI:44047
AI:44048
AI:44049
AI:44050
AI:44051
AI:44052
AI:44053
AI:44054
AI:44055
AI:44056
AI:44057
AI:44058
0.1V/1V
0.1V/1V
0.1V/1V
0.01A/1A
0.01A/1A
0.01A/1A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
10 to 9999
10 to 9999
10 to 9999
to
to
to
to
to
to
to
Comment
×0.001
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
×0.001
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
21
Obj/Var 7
Parameter
30:4
Current TDD L1
30:4
Current TDD L2
30:4
Current TDD L3
30:3
Voltage L12
30:3
Voltage L23
30:3
Voltage L31
Minimum real-time total values (M)
30:3
Total kW
30:3
Total kvar
30:3
Total kVA
30:4
Total PF 4
30:4
Total PF lag
30:4
Total PF lead
Minimum real-time auxiliary values (M)
30:3
Auxiliary current
30:3
Neutral current
30:4
Frequency 3
30:4
Voltage unbalance
30:4
Current unbalance
30:3
DC voltage
Minimum demands (M)
30:4
Reserved
Maximum real-time values per phase (M)
30:3
Voltage L1/L12 5
30:3
Voltage L2/L23 5
30:3
Voltage L3/L31 5
30:3
Current L1
30:3
Current L2
30:3
Current L3
30:3
kW L1
30:3
kW L2
30:3
kW L3
30:3
kvar L1
30:3
kvar L2
30:3
kvar L3
30:3
kVA L1
30:3
kVA L2
30:3
kVA L3
30:4
Power factor L1
30:4
Power factor L2
30:4
Power factor L3
30:4
Voltage THD L1/L12
30:4
Voltage THD L2/L23
30:4
Voltage THD L3
30:4
Current THD L1
30:4
Current THD L2
30:4
Current THD L3
30:4
K-Factor L1
30:4
K-Factor L2
30:4
K-Factor L3
30:4
Current TDD L1
30:4
Current TDD L2
30:4
Current TDD L3
30:3
Voltage L12
30:3
Voltage L23
30:3
Voltage L31
Maximum real-time total values (M)
30:3
Total kW
30:3
Total kvar
30:3
Total kVA
30:4
Total PF 4
30:4
Total PF lag
30:4
Total PF lead
Maximum real-time auxiliary values (M)
30:3
Auxiliary current
22
Object/Point
AI:44059
AI:44060
AI:44061
AI:44062
AI:44063
AI:44064
Unit2
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0
0
0
0
0
0
AI:44288
AI:44289
AI:44290
AI:44291
AI:44292
AI:44293
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to 1000
0 to 1000
0 to 1000
AI:44544
AI:44545
AI:44546
AI:44547
AI:44548
AI:44549
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
AI:44800AI:44816
Value, range 1
to 1000
to 1000
to 1000
to Vmax
to Vmax
to Vmax
to Imax aux
to Imax
to 10000
to 300
to 300
to999900
×0.001
×0.001
×0.001
×0.01
×0.01
×0.01
0
AI:46080
AI:46081
AI:46082
AI:46083
AI:46084
AI:46085
AI:46086
AI:46087
AI:46088
AI:46089
AI:46090
AI:46091
AI:46092
AI:46093
AI:46094
AI:46095
AI:46096
AI:46097
AI:46098
AI:46099
AI:46100
AI:46101
AI:46102
AI:46103
AI:46104
AI:46105
AI:46106
AI:46107
AI:46108
AI:46109
AI:46110
AI:46111
AI:46112
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
10 to 9999
10 to 9999
10 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to Vmax
0 to Vmax
0 to Vmax
AI:46336
AI:46337
AI:46338
AI:46339
AI:46340
AI:46341
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to 1000
0 to 1000
0 to 1000
AI:46592
Comment
×0.1
×0.1
×0.1
0
×0.001
×0.001
×0.001
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.001
×0.001
×0.001
Obj/Var 7
Parameter
30:3
Neutral current
30:4
Frequency 3
30:4
Voltage unbalance
30:4
Current unbalance
30:3
DC voltage
Maximum demands (M)
30:3
Max. volt demand L1/L12 5
30:3
Max. volt demand L2/L23 5
30:3
Max. volt demand L3/L31 5
30:3
Max. ampere demand L1
30:3
Max. ampere demand L2
30:3
Max. ampere demand L3
30:4
Reserved
30:4
Reserved
30:4
Reserved
30:3
Max. kW import sliding window
demand
30:3
Max. kvar import sliding window
demand
30:3
Max. kVA sliding window demand
30:4
Max. kW import thermal demand
30:4
Max. kvar import thermal demand
30:4
Max. kVA thermal demand
30:3
Max. kW export sliding window
demand
30:3
Max. kvar export sliding window
demand
30:3
Max. kW export thermal demand
30:3
Max. kvar export thermal demand
Object/Point
AI:46593
AI:46594
AI:46595
AI:46596
AI:46597
Unit2
0.01A
0.01Hz
1%
1%
0.01V
AI:46848
AI:46849
AI:46850
AI:46851
AI:46852
AI:46853
AI:46854
AI:46855
AI:46856
AI:46857
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0
0
0
0
0
0
0
0
0
0
AI:46858
0.001kvar/1kvar
0 to Pmax
AI:46859
AI:46860
AI:46861
AI:46862
AI:46863
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001kW/1kW
0
0
0
0
0
AI:46864
0.001kvar/1kvar
0 to Pmax
AI:46865
AI:46866
0.001kW/1kW
0.001kvar/1kvar
0 to Pmax
0 to Pmax
0
0
0
0
0
Value, range 1
to Imax
to 10000
to 300
to 300
to999900
to
to
to
to
to
to
Comment
×0.01
×0.01
×0.01
Vmax
Vmax
Vmax
Imax
Imax
Imax
to Pmax
to
to
to
to
to
Pmax
Pmax
Pmax
Pmax
Pmax
1
For the parameter limits, see Note1 to Table 3-1.
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1V units, currents in 0.01A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01A units, and powers in 1 kW/kvar/kVA units.
3 The actual frequency range is 45.00 - 65.00 Hz.
4 New absolute min/max value (lag or lead).
5 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
6 Operate limit for the voltage disturbance trigger specifies the voltage deviation allowed in percentage of
nominal (full scale) voltage, which refers to line-to-line voltage in 3OP2 and 3OP3 wiring modes, and lineto-neutral voltage in other modes. The nominal voltage is 120 × PT Ratio VRMS for instruments with the
120 V input option, 380 × PT Ratio VRMS for instruments with the 690 V input option.
7 Variations specified in the table show those that should be used to read a full-range value without a
possible over-range error when no scaling is used to accommodate the value to the requested object size
(see Section 2).
(M) These parameters are logged to the Min/Max log.
2
Analog Output Setup
These registers are used to obtain or change the allocation of the internal multiplexed analog output
channels. For the output parameters that can be selected see Table 3-18.
Table 3-16 Analog Output Allocation Registers
Channel
Channel #1
Channel #2
Points
192-194
195-197
Table 3-17 Analog Channel Allocation Registers
Channel
#1
Object/Var
40:2(read)
41:2(write)
40:1(read)
41:1(write)
Register contents
Output parameter ID
Object/
Point
AO:192
Zero scale (0/4 mA)
AO:193
Range/scale
see Table 3-18
23
Channel
Object/Var
40:1(read)
41:1(write)
40:2(read)
41:2(write)
40:1(read)
41:1(write)
40:1(read)
41:1(write)
#2
Register contents
Full scale (20/1 mA)
Object/
Point
AO:194
Output parameter ID
AO:195
Zero scale (0/4 mA)
AO:196
Full scale (20/1 mA)
AO:197
Range/scale
see Table 3-18
NOTES
1.
Except for the signed power factor (see Note 3 to Table 3-18), the output scale is linear within the value
range. The scale range will be inverted if the full scale specified is less than the zero scale.
2.
For bi-directional analog output (±1 mA), the zero scale corresponds to the center of the scale range (0 mA)
and the direction of current matches the sign of the output parameter. For signed (bi-directional) values, such
as powers and signed power factor, the scale is always symmetrical with regard to 0 mA, and the full scale
corresponds to +1 mA output for positive readings and to -1 mA output for negative readings. For these, the
zero scale (0 mA output) is permanently set in the instrument to zero for all parameters except of signed
power factor for which it is set to 1.000. In the write request, the zero scale is ignored. No error will occur
when you attempt to change it. Unsigned parameters are output within the current range 0 to +1 mA and can
be scaled using both zero and full scales as in the event of single-ended analog output.
Table 3-18 Analog Output Parameters
Parameter
None
Real-time values per phase
Voltage L1/L12 5
Voltage L2/L23 5
Voltage L3/L31 5
Current L1
Current L2
Current L3
Voltage THD L1/L12
Voltage THD L2/L23
Voltage THD L3
Current THD L1
Current THD L2
Current THD L3
K-Factor L1
K-Factor L2
K-Factor L3
Current TDD L1
Current TDD L2
Current TDD L3
Voltage L12
Voltage L23
Voltage L31
Real-time total values
Total kW
Total kvar
Total kVA
Total PF 4
Total PF lag
Total PF lead
Real-time auxiliary values
Auxiliary current
Neutral current
Frequency 3
DC voltage
Average values per phase
Voltage L1/L12 5
Voltage L2/L23 5
Voltage L3/L31 5
Current L1
Current L2
Current L3
24
ID
0
Unit 2
n/a
Scale range 1
0
3072
3073
3074
3075
3076
3077
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
10 to 9999
10 to 9999
10 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to Vmax
0 to Vmax
0 to Vmax
3840
3841
3842
3843
3844
3845
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
×0.001
×0.001
×0.001
4096
4097
4098
4899
0.01A/mA
0.01A
0.01Hz
0.01V
0
0
0
0
to
to
to
to
Imax aux
Imax
10000
999900
×0.01
×0.01
4352
4353
4354
4355
4356
4357
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0
0
0
0
0
0
to
to
to
to
to
to
Vmax
Vmax
Vmax
Imax
Imax
Imax
Modulus
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
×0.1
Parameter
Voltage L12
Voltage L23
Voltage L31
Average total values
Total kW
Total kvar
Total kVA
Total PF 4
Total PF lag
Total PF lead
3-phase average voltage 5
3-phase average L-L voltage
3-phase average current
Average auxiliary values
Auxiliary current
Neutral current
Frequency 3
Present demands
Accumulated kW import demand
Accumulated kvar import demand
Accumulated kVA demand
Accumulated kW export demand
Accumulated kvar export demand
ID
4358
4359
4360
Unit 2
0.1V/1V
0.1V/1V
0.1V/1V
Scale range 1
0 to Vmax
0 to Vmax
0 to Vmax
5120
5121
5122
5123
5124
5125
5126
5127
5128
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
0.1V/1V
0.1V/1V
0.01A
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
0 to Vmax
0 to Vmax
0 to Imax
5376
5377
5378
0.01A/mA
0.01A
0.01Hz
0 to Imax aux
0 to Imax
0 to 10000
5647
5648
5649
5658
5659
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kvar
0
0
0
0
0
to
to
to
to
to
Modulus
×0.001
×0.001
×0.001
×0.01
Pmax
Pmax
Pmax
Pmax
Pmax
1
For the parameter limits, see Note 1 to Table 3.1.
2
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1V units, currents in 0.01A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01A units, and powers in 1 kW/kvar/kVA units.
The actual frequency range is 45.00 to 65.00 Hz
3
4
The output scale for signed (bi-directional) power factor is symmetrical with regard to ±1.000 and is linear from
-0 to -1.000, and from 1.000 to +0 (note that -1.000 ≡ +1.000). Negative power factor is output as [-1.000
minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To define
the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because a negative zero
may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both +0.001 and 0.000 are
used to specify the scale of +0. To define the range of -0 to 0, you must send -1/1 or -1/0 (considering the
modulus of ×0.001).
5
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode
they will be line-to-line voltages.
Analog Expander Channels Allocation Registers
These registers are used to obtain or change the allocation of the analog expander channels. For the
output parameters that can be selected see Table 3-18.
Table 3-19 Analog Expander Allocation Registers
Channel
Channel #1
Channel #2
Channel #3
Channel #4
Channel #5
Channel #6
Channel #7
Channel #8
Points
256-258
259-261
262-264
265-267
268-270
271-273
274-276
277-279
Channel
Channel #9
Channel #10
Channel #11
Channel #12
Channel #13
Channel #14
Channel #15
Channel #16
Points
280-282
283-285
286-288
289-291
292-294
295-297
298-300
301-303
Table 3-20 Analog Expander Channel Allocation Registers
Channel
#1
Object/
Var.
40:2(read)
41:2(write)
40:1(read)
41:1(write)
40:1(read)
41:1(write)
...
Register contents
Output parameter ID
Object/
Range/scale
Point
AO:256
See Table 3-18
Zero scale (0/4 mA)
AO:257
Full scale (20 mA)
AO:258
25
Channel
#16
Object/
Var.
40:2(read)
41:2(write)
40:1(read)
41:1(write)
40:1(read)
41:1(write)
Register contents
Output parameter ID
Object/
Range/scale
Point
AO:301
see Table 3-18
Zero scale (0/4 mA)
AO:302
Full scale (20 mA)
AO:303
NOTE
Settings you made for analog expander outputs will not be in effect until the analog expander output is globally
enabled. To activate the analog expander output, set the analog expander option to the enabled state in the user
selectable options setup (see Table 3-3).
Digital Inputs Allocation Registers
These registers are used to obtain or change the digital inputs allocation available in your instrument.
Table 3-21 Digital Inputs Allocation Registers
Object/
Var.
40:2(read)
41:2(write)
40:2(read)
41:2(write)
40:2(read)
41:2(write)
40:2(read)
41:2(write)
40:2(read)
41:2(write)
1
Register contents
Status inputs allocation mask 1
Object/
Point
AO:130
Range
See Table 3-22
Pulse inputs allocation mask
AO:131
See Table 3-22
Not used 1
AO:132
Read as 0
External demand synchronization input mask
AO:133
See Table 3-22
Time synchronization input mask
AO:134
See Table 3-22
Writing to these locations is ignored. No error will occur.
NOTES
1.
2.
All digital inputs that are not allocated as pulse inputs will be automatically configured as status inputs.
A digital input allocated for the external demand synchronization pulse or time synchronization pulse
will be automatically configured as a pulse input.
Table 3-22 Digital Inputs Allocation Mask
Bit number
0
1
2
3
4
5
6
7
8
9
10
11
12-15
Description
Digital input # 1 allocation status
Digital input # 2 allocation status
Digital input # 3 allocation status
Digital input # 4 allocation status
Digital input # 5 allocation status
Digital input # 6 allocation status
Digital input # 7 allocation status
Digital input # 8 allocation status
Digital input # 9 allocation status
Digital input # 10 allocation status
Digital input # 11 allocation status
Digital input # 12 allocation status
N/A (read as 0)
Bit meaning: 0 = input not allocated, 1 = input allocated to the group
Pulsing Setpoints Registers
These registers are used to obtain or change the setup of the pulsing output for any of two relays.
NOTE
Allocating a relay as a pulsing relay will unconditionally disable all setpoints associated with this relay. If a relay was
manually operated or released, it will automatically revert to normal operation.
26
Table 3-23 Pulsing Setpoints
Relay
Relay
Relay
Relay
Relay
Relay
Relay
Registers
#1
#2
#3
#4
#5
#6
768-769
770-771
772-773
774-775
776-777
778-779
Table 3-24 Pulsing Setpoint Registers
Object/
Var.
40:2(read)
41:2(write)
40:2(read)
41:2(write)
…
40:2(read)
41:2(write)
40:2(read)
41:2(write)
Register contents
Output parameter ID
Object/
Point
AO:768
Number of unit-hours per pulse
AO:769
…
Output parameter ID
…
AO:778
Number of unit-hours per pulse
AO:779
Range
See Table 3-25
0-9999 for energy pulsing,
otherwise write 0.
…
See Table 3-25
0-9999 for energy pulsing,
otherwise write 0.
Table 3-25 Pulsing Output Parameters
Pulsing parameter
None
KWh import
KWh export
KWh total (absolute)
Kvarh import (inductive)
Kvarh export (capacitive)
Kvarh total (absolute)
KVAh
Start power demand interval
Identifier
0
1
2
3
4
5
6
7
8
Relay Operation Control
These points allow the user to manually override relay operation normally operated via alarm setpoints.
NOTE
A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for
pulsing, it automatically reverts to normal operation.
Table 3-26 Relay Operation Control Registers
Object/
Var.
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
10:2(read)
12:1(write)
Register contents
Relay #1 Force operate/Force release/Normal
Relay #2 Force operate/Force release/Normal
Relay #3 Force operate/Force release/Normal
Relay #4 Force operate/Force release/Normal
Relay #5 Force operate/Force release/Normal
Relay #6 Force operate/Force release /Normal
Object/
Point
BO:80
CROB:80
BO:81
CROB:81
BO:82
CROB:82
BO:83
CROB:83
BO:84
CROB:84
BO:85
CROB:85
State Range
0/1 = state OFF/ON
0/1 = state OFF/ON
0/1 = state OFF/ON
0/1 = state OFF/ON
0/1 = state OFF/ON
0/1 = state OFF/ON
The following restrictions should be noted when using object 12 to control the listed points:
Š The Count byte is ignored.
Š The Control Code byte is checked:
- Pulse On, Pulse Off, Latch On, Latch Off are valid for all points; others Codes are invalid and will be
rejected;
27
- Clear sub-field is valid; others sub-fields are ignored.
Š The On Time specifies in ms the amount of time the digital point is to be turned on. The minimal value
of the On Time is 500 ms and the actual value may differ from the specified value by up to 50 ms.
Š The Off Time specifies in ms the amount of time the digital point is to be turned off. The minimal value
of the Off Time is 500 ms and the actual value may differ from the specified value by up to 50 ms.
Š The Status byte in the response will reflect the success or failure of the control operation:
- Request Accepted (0) will be return if the command was accepted;
- Request not Accepted due to Formatting Errors (3) will be returned if the Control Code byte was
incorrectly formatted or an invalid Code was present in the command;
- Control Operation not Supported for this Point (4) will be returned if the Control Point was out of
control (for instance, a relay is allocated for pulsing via Basic Setup).
To manually operate relays 1-6, use the Direct-Operate (or SBO/Operate or Direct-Operate-NoAcknowledge) command to points 80-85 of the Control-Relay-Output-Block object with the Control Code
value Latch On. To manually release relays 1-6, use the Direct-Operate (or SBO/Operate or DirectOperate-No-Acknowledge) command to point 80-85 of the Control-Relay-Output-Block object with the
Control Code value Latch Off. To revert relays 1-6 to normal operation, use the Direct-Operate (or
SBO/Operate or Direct-Operate-No-Acknowledge) command to the correspondent point of the ControlRelay-Output-Block object with the Control Code value Null Operation and Clear sub-field set to 1.
Pulse Counter Setup
Table 3-27 Pulse Counter Registers
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Setup registers (see Table 3-28)
832-833
834-835
836-837
838-839
840-841
842-843
844-845
846-847
848-849
850-851
852-853
854-855
856-857
858-859
860-861
862-863
Table 3-28 Pulse Counter Setup Registers
Object/
Var.
40:2(read)
41:2(write)
40:2(read)
41:2(write)
…
40:2(read)
41:2(write)
40:2(read)
41:2(write)
Register contents
Object/
Point
AO:832
See Table 3-29
Scale factor (number of units per input
pulse)
…
Associated digital input ID
AO:833
1-9999
…
AO:862
…
See Table 3-29
Scale factor (number of units per input
pulse)
AO:863
1-9999
Associated digital input ID
Table 3-29 Pulsing Output Parameters
Discrete input
Not allocated
Digital input #1
Digital input #2
Digital input #3
Digital input #4
Digital input #5
Digital input #6
Digital input #7
28
Input ID
0
1
2
3
4
5
6
7
Range
Digital
Digital
Digital
Digital
Digital
input
input
input
input
input
Discrete input
#8
#9
#10
#11
#12
Input ID
8
9
10
11
12
Class 0 Point Assignment
These registers are used to obtain or change the assignment of the DNP Read objects to the Class 0
polling response.
Table 3-30 Class 0 Assignment Register Groups
Groups
Group #1
Group #2
…
Group #32
Points
1152-1154
1155-1157
…
1245-1247
Table 3-31 Class 0 Point Assignment Setup Registers
Group
Object/
Var.
#1 40:1(read)
41:1(write)
40:1(read)
41:1(write)
40:1(read)
41:1(write)
#2 40:1(read)
41:1(write)
40:1(read)
41:1(write)
40:1(read)
41:1(write)
…
#32 40:1(read)
41:1(write)
40:1(read)
41:1(write)
40:1(read)
41:1(write)
Register Contents
DNP Object and Variation
Object/
Point
AO:1152
Range/scale
See Table 3-32
DNP Point number
AO:1153
0 - 65535
Number of the DNP points
AO:1154
DNP Object and Variation
AO:1155
≥1 if Point number is
correct
See Table 3-32
DNP Point number
AO:1156
0 - 65535
Number of the DNP points
AO:1157
…
DNP Object and Variation
…
AO:1245
≥1 if Point number is
correct
…
See Table 3-32
DNP Point number
AO:1246
0 - 65535
Number of the DNP points
AO:1247
≥1 if Point number is
correct
Table 3-32 DNP Read Objects for Class 0
No.
Object & Variation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Analog Input 30:01
Analog Input 30:02
Analog Input 30:03
Analog Input 30:04
Analog Output 40:01
Analog Output 40:02
Binary Input 01:01
Binary Input 01:02
Binary Output 10:01 2
Binary Output Status 10:02
Binary Counter 20:01
Binary Counter 20:02
Binary Counter 20:05
Binary Counter 20:06
Frozen Counter 21:01
Frozen Counter 21:02
Frozen Counter 21:05
Frozen Counter 21:06
Frozen Counter 21:09
Frozen Counter 21:10
Code
Hexadecimal
Decimal1
0x1E01
7681
0x1E02
7682
0x1E03
7683
0x1E04
7684
0x2801
10241
0x2802
10242
0x0101
257
0x0101
258
0x0A01
2561
0x0A02
2562
0x1401
5121
0x1402
5122
0x1405
5125
0x1406
5126
0x1501
5377
0x1502
5378
0x1505
5381
0x1506
5382
0x1509
5385
0x150A
5386
1 The decimal value is calculated as follow: Object * 256 + Variation. For instance, Analog Input object 30, variation 03: 30 *
256 + 3 = 7683.
2
Available with F/W Versions 2.26.3/2.36.3 and 2.27.2/2.37.2 or later.
29
Appendix A DNP Application Messages
APPENDIX A DNP Application Messages
The Powermeter is a DNP IED responding to external DNP Master requests. Table A-1 describes the
PM296/RPM096 application level responses to external requests, including object variations,
functions, codes and qualifiers supported by the instrument. The object and formats are detailed in the
DNP Basic 4 Documentation Set.
Table A-1 Application Responses
Obj Var
OBJECT
Description
01
01
01
02
02
02
10
10
10
12
12
20
0
1
2
0
1
2
0
1
2
1
1
0
Single Bit Binary Input
Single Bit Binary Input
Binary Input with Status
Binary Input Change
Binary Input Change without Time
Binary Input Change with Time
Binary Output
Binary Output 4
Binary Output Status
Control Relay Output Block
Control Relay Output Block
Binary Counter
20
20
20
20
21
21
21
21
21
21
21
22
22
22
22
22
30
30
30
30
30
32
32
32
32
32
40
40
40
41
41
41
41
50
60
1
2
5
6
0
1
2
5
6
9
10
0
1
2
5
6
0
1
2
3
4
0
1
2
3
4
0
1
2
1
2
1
2
1
1
32-bit Binary Counter
16-bit Binary Counter
32-bit Binary Counter without flag
16-bit Binary Counter without flag
Frozen Counter
32-bit Frozen Counter
16-bit Frozen Counter
32-bit Frozen Counter with time of freeze
16-bit Frozen Counter with time of freeze
32-bit Frozen Counter without flag
16-bit Frozen Counter without flag
Counter Change Event
32-bit Counter Change Event without Time
16-bit Counter Change Event without Time
32-bit Counter Change Event with Time
16-bit Counter Change Event with Time
Analog Input (responds like 30:3)
32-bit Analog Input
16-bit Analog Input
32-bit Analog Input without flag
16-bit Analog Input without flag
Analog Change Event
32-bit Analog Change Event without Time
16-bit Analog Change Event without Time
32-bit Analog Change Event with Time
16-bit Analog Change Event with Time
Analog Output Status (responds like 40:1)
32-bit Analog Output Status
16-bit Analog Output Status
32-bit Analog Output Block
16-bit Analog Output Block
32-bit Analog Output Block
16-bit Analog Output Block
Time and Date 1
Class 0
30
REQUEST
Func. Code Qual.
Code
1
B
1
A
1
A
1
06
1
07,08
1
07,08
1
B
1
A
1
A
3,4,5
A
6
A
B
1,
B
7,9,
B
8,10
1
A
1
A
1
A
1
A
1
B
RESPONSE
Func.
Qual.
Code
Code
129
01
129
C
129
C
129
17,28
129
17,28
129
17,28
129
01
129
C
129
C
129
C
None N/A
01
129
N/R
129
N/A
129
129
C
129
C
129
C
129
C
129
01
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3,4,5
3,4,5
6
6
1,2
1
129
129
129
129
129
129
129
129
129
129
129
129
129
129
129
129
129
129
129
129
None
None
129
129
06
07,08
07,08
07,08
07,08
B
A
A
A
A
06
07,08
07,08
07,08
07,08
B
A
A
A
A
A
A
A
B
17
17
17
17
17
01
C
C
C
C
17
17
17
17
17
01
C
C
C
C
N/A
N/A
C
01
Obj Var
60
60
60
80
N/A
N/A
1
2
3
4
2
3
4
1
N/A
N/A
OBJECT
Description
Class 1
Class 2
Class 3
Internal indication 2
Cold Restart 3 (responds by Object 52:2)
Delay Measurement (responds by Object 52:2)
REQUEST
Func. Code Qual.
Code
1
06,07,08
1
06,07,08
1
06,07,08
2
D
13
N/A
23
N/A
RESPONSE
Func.
Qual.
Code
Code
129
17
129
17
129
17
129
129
07
129
07
For this object, the quantity specified in the request must be exactly 1or an index of 0, as there is only one
instance of this object defined in the instrument.
For this object, the qualifier code must specify an index 7 only.
Responds with time object 50 variation 2 indicating time until instrument availability.
Available with F/W Versions 2.26.3/2.36.3 and 2.27.2/2.37.2 or later.
Qualifier Hex Codes for each category:
A - 00,01,03,04,07,17,27,08,18,28
B - 06 only
N/A - Not Available, N/R- Null Response.
C - Qualifier echo
D - 00,01,03,04,17,27,18,28
31
Appendix B DNP Device Profile
Appendix B DNP Device Profile
DNP3-2000
DEVICE PROFILE DOCUMENT
This document must be accompanied by a table having the following headings:
Object Group
Request Function Codes
Response Function Codes
Object Variation
Request Qualifiers
Response Qualifiers
Object Name (optional)
Vendor Name: SATEC Ltd.
Device Name: Powermeter PM296/RPM096
Highest DNP Level Supported:
Device Function:
For Requests
† Master
L2
„ Slave
For Responses L2
Instrument supports READ of each object using either all points (Qualifier = 6) or specific
points using qualifier defined in Basic 4 Documentation Set: 00, 01, 03, 04, 07, 17, 27,
08, 18, 28. Control Relay Block requires specific parameters described in this manual.
Treats range field of qualifier 07 and 08 to mean point range [0..N-1].
Maximum Data Link Frame Size
(octets):
Transmitted
292
Received
292
Maximum Application Fragment Size (octets):
Transmitted
2048
Received
249
Maximum Data Link Re-tries:
Maximum Application Layer Re-tries:
„ None
„ None
† Fixed at____________________
† Configurable, range ____ to _______
† Configurable, range ___ to_____
(Fixed is not permitted)
Requires Data Link Layer Confirmation:
„ Never
† Always
† Sometimes
If 'Sometimes', when? ______________________________
† Configurable
If 'Configurable', how? ______________________________
Requires Application Layer Confirmation:
† Never
† Always (not recommended)
„ When reporting Event Data (Slave devices only)
† When sending multi-fragment responses (Slave devices only)
† Sometimes
If 'Sometimes', when? ______________________________
† Configurable
If 'Configurable', how? ______________________________
Timeouts while waiting for:
Data Link Confirm
32
„ None † Fixed at ________ † Variable † Configurable
Complete Appl.
Fragment
„ None † Fixed at ________ † Variable † Configurable
Application Confirm † None „ Fixed at _5 sec__ † Variable † Configurable
Complete Appl.
Response
„ None † Fixed at ________ † Variable † Configurable
Others
Timeouts between fragments of the multi-fragment responses. Configurable:
50-500 ms (50 ms by default).
___________________________________________________________________
Attach explanation if 'Variable' or 'Configurable' was checked for any timeout
Sends/Executes Control Operations:
WRITE Binary Outputs
„ Never † Always
† Sometimes
† Configurable
SELECT/OPERATE
† Never „ Always
† Sometimes
† Configurable
DIRECT OPERATE
† Never „ Always
† Sometimes
† Configurable
NO ACK
† Never „ Always
† Sometimes
† Configurable
Count > 1
„ Never † Always
† Sometimes
† Configurable
Pulse On
† Never † Always
„ Sometimescf† Configurable
Pulse Off
„ Never † Always
† Sometimes
Latch On
† Never † Always
„ Sometimesd † Configurable
Latch Off
† Never † Always
„ Sometimese † Configurable
Queue
„ Never † Always
† Sometimes
Clear Queue
† Never † Always
„ Sometimesf † Configurable
DIRECT OPERATE -
† Configurable
† Configurable
♦ Select timeout period is configurable : 2s to 30s
c used to activate the Reset function associated with points 0 to 37
d e f used to control Relays associated with points 80 to 85
e used to reset the self-check alarm registers associated with points 64 to 75
Maximum number of CROB (object 12, variation 1) objects supported in a single
message ___1_____.
Maximum number of analog output (object 41, any variation) objects supported in a
single message ___3_____.
… Pattern Control Block and Pattern Mask (object 12, variations 2 and 3, respectively)
supported. If so, describe any restrictions.
… CROB (object 12) and analog output (object 41) permitted together in a single
message.
Reports Binary Input Change Events
when no specific variation requested:
† Never
† Only time-tagged
† Only non-time-tagged
„ Configurable to send both, one or the
other (attach explanation)
Reports time-tagged Binary Input Change
Events when no specific variation
requested:
† Never
„ Binary Input Change With Time
† Binary Input Change With Relative
Time
† Configurable (attach explanation)
33
Sends Unsolicited Responses:
Sends Static Data in Unsolicited
Responses:
„ Never
„ Never
† Configurable (attach explanation)
† When Device Restarts
† When Status Flags Change
† Only certain objects
† Sometimes (attach explanation)
No other options are permitted.
† ENABLE/DISABLE UNSOLICITED
Function codes supported
Default Counter Object/Variation:
Counters Roll Over at:
† No Counters Reported
† No Counters Reported
† Configurable (attach explanation)
† Configurable (attach explanation)
„ Default Object
20
† 16 Bits
5
† 32 Bits
Default Variation
† Point-by-point list attached
„ Other Value Counters
-999999999 to 99999999 (point 2)
0 to 9999999 (points 0,1,3)
† Point-by-point list attached
Sends Multi-Fragment Responses: „ Yes
34
† No
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement