Serial Communication REVO-CL

Add to my manuals
12 Pages

advertisement

Serial Communication REVO-CL | Manualzz

USER’S MANUAL

Rev. 09/2014

00009

REVO CL

Serial Communication

Manual

CD Automation S.r.l.

Via Picasso 34/36 - 20025 – Legnano (MI) – ITALY

Tel +39 0331 577479 – Fax +39 0331 579479

E-Mail: [email protected]

- WEB: www.cdautomation.com

1 RS485 Serial Port

The serial communication port RS485 is available on the Command.

On this port may be done a network up to 127 REVO M.

From 35 to 45A From 60 to 210A

Terminal

A+

B-

Description

RS485 A

RS485 B

Terminal M1

11

12

Description

RS485 A

RS485 B

From 280 to 700A

S9 Terminal S12 Terminal

14 7

13 8

Description

RS485 A

RS485 B

2 MODBUS communication

The serial communication port of the thyristor unit is two-wire RS485 type.

This port use an half-duplex system.

When a Unit must transmit active the transmission line, and when there are not units in transmission the outputs are fixed to high impedance.

The serial communication port allows to communicate between the thyristor units and a MASTER device (ex. an computer or a terminal). The cable must be rated for use to data transfer

2.1 MODBUS RTU Protocol

The communication is based on the standard industrial MODBUS RTU with the following restrictions:

 The Baud rate can be 4800-9600-19200 Baud (Standard 19200).

 The Preset Multiple Registers (Funct. 16) is limited to the writing of a single parameter for message.

The following MODBUS functions are supported:

Function

03

16

Description

Read Holding Registers (max 13 reg.)

Preset Multiple Registers (max 1 reg.)

The unit support the Broadcast messages:

It' possible send a Broadcast messages using the address 0, all the units respond at the message without sending back any reply.

2.2 Message Format

The transmission format is a 1 bit start, 8 date bit, and 1 bit stop with no parity verification.

Each message terminate after a said time of "time out", equal at 3.5 time of a character transmission, where there are not transitions on the transmission line.

The first Byte of each message is always the address of the unit that is a value from 1 to 255 or 0 for the broadcast messages, the second is always the function number, and the rest of the message depends of the function demand.

When a Slave receive an message, the unit send an answer with the same structure but with the information demanded.

Each message is followed by CRC (Cyclic Redundancy Check) with two byte. The CRC identify the incongruity situations of the message, in this case the receiver ignore the message.

The CRC is calculated in accordance with a formula that imply a recursive division of the data by a polynomial.

The polynomial divisor is:

2 16 + 2 15 + 2 2 + 1(Hex 18005) but is modified in two ways:

 Since the bits order are reversed, then the binary pattern is also reversed, and the most significant bit (MSB) is the right-most bit.

 Since interest only the remainder, the right-most bit could be discarded.

Therefore, the polynomial divisor has value: Hex A001

Normal bit order:

Most significant bit Least significant bit

Most significant Byte Least significant Byte

Reversed bit order:

Least significant bit Most significant bit

Least significant Byte Most significant Byte

N.B.: With the reversed bit order, also the CRC16 returns the with the reversed bit order

The following flow-diagram show how to organize the CRC 16 bit.

C Language CRC 16 Example static short CRC16 (unsigned char *p_first,unsigned char *p_last)

{ unsigned int crc=0xffff; short j; for (;p_first<=p_last;p_first++)

{ crc ^= *p_first; for(j=8;j>0;j--)

}

{ if(crc & 0x0001)

{ crc = crc >> 1; crc ^= 0xA001;

}

else

{ crc = crc >> 1;

}

}

return (crc);

}

2.3 Read Holding Registers

This function reads the instantaneous value of a specified number of parameters (max 13 parameters) from an address.

The message is composed by 8 Byte: one Byte is for the address, one for the function (03 Hex), two Byte for the first parameter to read, two Byte for the total number of parameters to read and finally two Byte for the CRC:

Address

Unit

Function

3

3Hex

Address of the First

Parameter

HI LO

N° of the Parameter

HI LO LO

CRC 16

HI

The answer is an echo of the first two Byte (address and function), one byte with the number of following byte to exclusion of the CRC, the demanded values and finally two Byte for the CRC:

Address

Unit

Function

3

3Hex

N° of

Byte

First

Parameter

Value

HI LO …

Last parameter value

HI LO

CRC 16

LO HI

2.4 Preset Multiple Registers

This function could write only a parameter for each message.

The message is composed by 11 Byte: one Byte for the address, one for the function (10 Hex), two

Byte for first parameter to write, two Bytes for the N° of parameters, fixed to 1 (0001 Hex), one

Byte with the number of following Bytes, fixed to 2 (02 Hex), two Byte for the CRC:

Address

Unit

Function

16

10Hex

Address of the

First Parameter

HI LO

N° of the

Parameter

0 1

N° of

Byte

2

Value to write

HI LO

CRC 16

LO HI

The answer is an echo of the first two Byte (address and function), two Byte for first written parameter, two Byte with the N° of parameters, fixed to 1 (0001 Hex), two Byte for the CRC:

Address

Unit

Function

16

10Hex

Address of the

First Parameter

HI LO

N° of the

Parameter

0 1 LO

CRC 16

HI

2.5 Error and exception responses

If a message contains an altered character, if fails the CRC, or if the received message contains a syntax error (for example the number of the byte or of the words is not correct), then the unit will ignore the message.

If the received message is correct but contains a not valid value, the unit will send an answer of exception (5 byte):

Address Unit Function Error Code CRC 16

LO HI

The byte with the function number, represent the function number of the message that has caused the error with the first Bit set to 1 (ex. the function 3 becomes 0x83) The error code could be one of the followings:

Error Code

1

2

3

Name

ILLEGAL FUNCTION

ILLEGAL DATA

ADDRESS

ILLEGAL DATA VALUE

Cause

Function not supported.

Address out of range.

Attempt to write invalid or action not carried out.

NOTE: If you write a parameter's value equal at his actual value this is a valid transaction and don't cause an error.

2.6 Address Configuration

The thyristor unit is assigned a unique device address by the user in the range 1 (default) to

127 using the parameter P115  in the Hardware menu. This address is used to recognise the messages queries to her assigned.

The thyristor unit does not respond at the messages queries that don't have the same assigned address.

The thyristor unit will also accept global messages (Broadcast) sends at the address 0. No responses are returned for globally addressed queries.

3 Parameters List

Average voltage Output

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

  Vout

10

Par.

Type

R

Current Output

Par.

Display

Par.

Name

Address

DEC

 A

Par.

Type

R

Power Output

11

Par.

Display

Par.

Name

Address

DEC

 

P

Par.

Type

R

Status Table

Par.

Display

Par.

Name

12

Address

DEC

  P013

13

Par.

Type

R

HA

Address

HEX

HB

Address

HEX

HC

Address

HEX

HD

V

UM

A

UM

%

UM

DI

Default

Value

UM

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

1023

Default

Value

UM

Min

Value

DEC

0

0

Max

Value

DEC

Min

Value

UM

1023

1023

0

0

Max

Value

UM

Sample Values and Note

102,3 for size from 30 to 90A

1023 for size from 120 to 700A

Default

Value

UM

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

100,0

Default

Value

UM

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1 0

Max

Value

UM

Sample Values and Note

1 Bit 0 = 1 → Short circuit on SCR

Bit 0 = 0 → NO Short circuit on SCR

Bit 1 = 1 → Load Failure (HB Alarm)

Bit 1 = 0 → NO Load Failure (HB Alarm)

Bit 2 = 1 → Output signal ON

Bit 2 = 0 → Output signal Off

Bit 3 = 1 → HB Calibration in progress

Bit 3 = 0 → NO HB Calibration in progress

Bit 4 = 1 → Current Limit active

Bit 4 = 0 → Current Limit Not Active

Bit 5 = 1 → Heat sink over temperature

Bit 5 = 0 → NO Heat sink over temperature

Bit 6 = 1 → not used.

Bit 6 = 0 → not used.

Bit 7 = 1 → not used.

Bit 7 = 0 → not used.

Bit 8 = 1 → Digital input 1



Bit 8 = 0 → Digital input 1





Bit 9 = 1 → Digital input 2



Bit 9 = 0 → Digital input 2





Command Table

Par.

Display

Par.

Name

Address

DEC

Address

HEX

  P014 14

HE

UM

SW

Par.

Type

R/W

Digital Set Point

Par.

Display

Par.

Name

Address

DEC

Address

HEX

 

SP

15

Par.

Type

R/W

Maximum Output

Par.

Display

Par.

Name

Address

DEC



OutN 16

Par.

Type

R/W

Current Limit

Par.

Display

Par.

Name

Address

DEC

HF

Address

HEX

H10

Address

HEX

UM

Default

Value

UM

% 100,0

UM

%

UM

 

CL

Par.

Type

R/W

17 H11

Firing Mode Selection

Par.

Display

Par.

Name

Address

DEC

Address

HEX

 

Fir

Par.

Type

R/W

18

%

UM

H12 Sw

Default

Value

UM

100

Default

Value

UM

0,0

Default

Value

UM

20*

Default

Value

UM

0

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1 0

Max

Value

UM

Sample Values and Note

1 Bit 0 = 1 → not used.

Bit 0 = 0 → not used.

Bit 1 = 1 → Setpoint Digital

Bit 1 = 0 → Setpoint Analog

Bit 2 = 1 → Enable

*

Bit 2 = 0 → Disable

*

Bit 3 = 1 → Reset HB Alarm

Bit 4 = 1 → Current Limit Setting in Digital

Via Panel/ RS485

Bit 4 = 0 → Current Limit Analog

*

Only with DI1 or DI2 not setted as enable

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

Sample Values and Note

100,0 Input 4mA P015  = (0) 0%

Input 12mA P015  = (512) 50%

Input 20mA P015  = (1024) 100%

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

255 0

Max

Value

UM

100

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

100,0

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1024 0

Max

Value

UM

Sample Values and Note

1024 4= Phase Angle



20=Soft Start + Phase Angle



35=Delay Triggering + Burst Firing



Feed Back Selection

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM

  Feed

19

H13 Sw

Par.

Type

R/W

Burst Firing Cycles number

1*

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM



BF_n 20

Par.

Type

R/W

Delay Triggering

H14 N.

Cyc

4*

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM

  dt 22 H16

Par.

Type

R/W

Soft Start – Ramp Up

° 1

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM

  rP_u

23

Par.

Type

R/W

Proportional Band

Par.

Display

Par.

Name

Address

DEC

H17 sec 255

Address

HEX

UM

Default

Value

UM

 

Pb 26 H1A % 17

Par.

Type

R/W

Integral Time

Par.

Display

Par.

Name

Address

DEC

  ti

Par.

Type

R/W

27

Address

HEX

H1B

UM

%

Default

Value

UM

20

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1024 0

Max

Value

UM

Sample Values and Note

1024 0 = V2



1 = NO Feed Back



32 = Voltage V

64 = Current I

128 = Power V X I

Min

Value

DEC

1

Max

Value

DEC

Min

Value

UM

255 1

Max

Value

UM

Sample Values and Note

255 Only with Fir = DelayTrigg. + Burst Firing

Min

Value

DEC

1

Max

Value

DEC

Min

Value

UM

255 1

Max

Value

UM

Sample Values and Note

255 Only with Fir = DelayTrigg. + Burst Firing

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

255 0

Max

Value

UM

Sample Values and Note

255 Only with Fir = Phase Angle

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

255 1

Max

Value

UM

255

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

255 0

Max

Value

UM

255

HB Delay

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM

  HB_d 28

Par.

Type

R/W

HB Sensitivity

H1C sec 20

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM



Hb_s 29

Par.

Type

R/W

Baud Rate

H1D % 100

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM



bAud 30

Par.

Type

R/W

Address

H1E SW 2

Par.

Display

Par.

Name

Address

DEC

Par.

Type

R/W

  Cdi1

32

Address

HEX

UM

  Addr

31

Par.

Type

R/W

H1F Add

Digital Input 1 Configuration

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

1

Default

Value

UM

H20 SW

Default

Value

UM

1

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

255 0

Max

Value

UM

255

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

100 0

Max

Value

UM

100

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

3 0

Max

Value

UM

Sample Values and Note

3 0 = 4800 baud

1 = 9600 baud

2 = 19200 baud

3= 38400 baud

Min

Value

DEC

1

Max

Value

DEC

Min

Value

UM

255 1

Max

Value

UM

255

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

3 0

Max

Value

UM

Sample Values and Note

3 0 = Enable



1= NA

2 = Change To V FeedBack



3 = L/R Enable



4 = Change Firing PA/xx



Digital Input 2 Configuration

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM

  Cdi2

33

H21 SW 1

Par.

Display

Par.

Name

Address

DEC

Address

HEX

Par.

Type

R/W

Digital Output 1 Configuration

UM

Default

Value

UM



Cdo1 34 H22 SW 0

Par.

Type

R/W

Operative Load Voltage

Par.

Display

Par.

Name

Address

DEC

Address

HEX

UM

Default

Value

UM

  V_oP

37 H25 V 229

Par.

Type

R/W

Load Nominal Current

Par.

Display

Par.

Name

Address

DEC

Address

HEX

  A_Lo

38

Par.

Type

R/W

TA Size

Par.

Display

Par.

Name

Address

DEC



 Ct

Par.

Type

R

39

H26

Address

HEX

H27

UM

A

Default

Value

UM

UnitType

Current

UM

A

Default

Value

UM

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

3 0

Max

Value

UM

Sample Values and Note

3 0 = Enable



1= NA

2 = Change To V FeedBack



3 = L/R Enable



4 = Change Firing PA/xx



Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

3 0

Max

Value

UM

Sample Values and Note

3 0 = Enable HB SCR



1 = Disable HB



2 = Disable SCR



3 = Disable HB SCR



4= Enable HB SCR



5 = Enable SCR Alarm



6 =Enable HBAlarm



7=Disable HB SCR Current Limit



Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

1023

Min

Value

DEC

0

0

Max

Value

DEC

Min

Value

UM

1023

1023

0

0

Max

Value

UM

Sample Values and Note

102,3 for size from 30 to 90A

1023 for size from 120 to 700A

Min

Value

DEC

0

0

Max

Value

DEC

Min

Value

UM

1023

1023

0

0

Max

Value

UM

Sample Values and Note

102,3 for size from 30 to 90A

1023 for size from 120 to 700A

Decimal Point Position

Par.

Display

Par.

Name

Address

DEC

Address

HEX

  dP 40

Par.

Type

R

Max Voltage of Unit

H28

Par.

Display

Par.

Name

Address

DEC

Address

HEX



 NU 41 H29

UM

UM

V

Par.

Type

R

Auxiliary Voltage

Par.

Display

Par.

Name

Address

DEC



Au_V 43

Par.

Type

R/W

Input type

Par.

Display

Par.

Name

Address

DEC



A-Ln 44

Par.

Type

R/W

Address

HEX

H2B

Address

HEX

UM

V

UM

H2C SW

Default

Value

UM

Default

Value

UM

Default

Value

UM

0

Default

Value

UM

1

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1 0

Max

Value

UM

Sample Values and Note

1 0 = XXXX

1 = XXX . X

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

1023

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

1023 0

Max

Value

UM

1023

Min

Value

DEC

0

Max

Value

DEC

Min

Value

UM

3 0

Max

Value

UM

Sample Values and Note

3 1 = 0-10 Vdc



2 = 4-20 mA



3= 0-20 mA



advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement