C191HM. Коммуникационный протокол Modbus. Справочное руководство (англ.)

C191HM. Коммуникационный протокол Modbus. Справочное руководство (англ.)

C191HM

POWERMETER AND HARMONIC

MANAGER

COMMUNICATIONS

Modbus Communications Protocol

REFERENCE GUIDE

Every effort has been made to ensure that the material herein is complete and accurate.

However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation.

For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the manufacturer.

This revision is applicable to the C191HM instruments with firmware version 4.21 and later.

Modbus is a trademark of Modicon, Inc.

COPYRIGHT

2000, 2003

BG0282 Rev.A3

2

Table of Contents

1 GENERAL...................................................................................................... 4

2 MODBUS FRAMING...................................................................................... 5

2.1 Transmission Mode ................................................................................................................ 5

2.2 The RTU Frame Format......................................................................................................... 5

2.3 Address Field ......................................................................................................................... 5

2.4 Function Field......................................................................................................................... 5

2.5 Data Field ............................................................................................................................... 5

2.6 Error Check Field ................................................................................................................... 6

3 MODBUS MESSAGE FORMATS.................................................................. 7

3.1 Function 03 - Read Multiple Registers................................................................................... 7

3.2 Function 04 - Read Multiple Registers................................................................................... 7

3.3 Function 06 - Write Single Register ....................................................................................... 7

3.4 Function 16 - Write Multiple Registers ................................................................................... 8

3.5 Function 08 - Loop-back Communications Test .................................................................... 8

3.6 Exception Responses ............................................................................................................ 9

4 PROTOCOL IMPLEMENTATION................................................................ 10

4.1 Modbus Register Addresses ................................................................................................ 10

4.2 Data Formats........................................................................................................................ 10

4.2.1 16-bit Integer Format......................................................................................................... 10

4.2.2 32-bit Modulo 10000 Format ............................................................................................. 12

4.2.3 32-bit Long Integer Format................................................................................................ 12

4.3 User Assignable Registers................................................................................................... 12

5 POWERMETER REGISTERS DESCRIPTION ............................................ 13

5.1 Basic Data Registers............................................................................................................ 13

5.2 Basic Setup .......................................................................................................................... 14

5.3 User Selectable Options Setup ............................................................................................ 14

5.4 Communications Setup ........................................................................................................ 15

5.5 Reset/Synchronization Registers ......................................................................................... 15

5.6 Instrument Status ................................................................................................................. 16

5.7 Extended Status ................................................................................................................... 16

5.8 Extended Data Registers ..................................................................................................... 18

5.9 Analog Output Setup ............................................................................................................ 24

5.10 Digital Input Allocation........................................................................................................ 25

5.11 Alarm/Event Setpoints........................................................................................................ 25

5.12 Pulsing Setpoints................................................................................................................ 28

5.13 Relay Operation Control..................................................................................................... 28

5.14 Min/Max Log....................................................................................................................... 29

3

1 GENERAL

This document specifies a subset of the Modbus serial communications protocol used to transfer data between a master computer station and the C191HM. The document provides the complete information necessary to develop third-party communications software capable of communication with the Series

C191HM Powermeters. Additional information concerning communications operation, configuring the communications parameters, and communications connections is found in "C191HM Powermeter and

Harmonic Manager, Installation and Operation Manual".

IMPORTANT

1. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used.

2. In the 4LN3, 3LN3 and 4LL3 wiring modes, harmonic voltages will be line-to-neutral voltages; in other modes, they will be line-to-line voltages, and voltage THD will not account for multiples of the third harmonic. In the 3OP2 and 3OP3 wiring modes, voltage THD will be given only for phases L12 and

L23.

3. Most of the advanced features are configured using multiple setup parameters that can be accessed in some contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers.

2 MODBUS FRAMING

2.1 Transmission Mode

The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8-bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the instrument communications. The data format is shown in the following table.

Table 2-1 RTU Data Format

Field

Start bit

Data bits c

Parity (optional)

Stop bit

No. of bits

1

8

1

1 c Least significant bit first

2.2 The RTU Frame Format

Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message.

The receiving device monitors the elapsed time between receptions of characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is defined below.

The maximum query and response message length is 256 bytes including check characters.

RTU Message Frame Format

T1 T2 T3 Address

8 bits

Function

8 bits

Data

N * 8 bits

CRC Check

16 bits

T1 T2 T3

2.3 Address Field

The address field contains a user assigned address (1-247) of the instrument that is to receive a message.

Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions 06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a response. In the C191HM, the broadcast mode is supported only for register addresses

287-294 and 301-302 (reset energies and maximum demands) and 3404-3415 (reset/clear registers).

2.4 Function Field

The function field contains a function code that tells the instrument what action to perform. Function codes used in the protocol are shown below in Table 2-2.

Table 2-2 Modbus Function Codes

Code

(decimal)

03

04

06

16

08

Meaning in Modbus

Read holding registers

Read input registers

Preset single register

Preset multiple registers

Loop-back test

Action

Read multiple registers

Read multiple registers

Write single register

Write multiple registers

Communications test

NOTE

Broadcast mode available only for functions code 06 and 16.

2.5 Data Field

The data field contains information needed by the instrument to perform a specific function, or data collected by the instrument in response to a query.

IMPORTANT

Fields composed of two bytes are sent in the order high byte first, low byte second.

5

2.6 Error Check Field

The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.

The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by x16

1 expressed as a binary number

(11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepted message) is appended to the message

(MSB first) as the two CRC check bytes. The resulting message including CRC, when divided by the same polynomial (x16 + x15 + x2 + 1) at the receiver will give a zero remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic is performed modulo two (no carries).

The device used to serialize the data for transmission will send the conventional LSB or right-most bit of each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend.

For convenience, and since there are no carries used in the arithmetic, let's assume while computing the

CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder.

This yields 1010 0000 0000 0001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation or bit order of characters external to the CRC calculations.

The step by step procedure to form the CRC-16 check bytes is as follows:

1.

2.

Load a 16-bit register with all 1's.

Exclusive OR the first 8-bit byte with the low order byte of the 16-bit register, putting the result in the

16-bit register.

3. Shift the 16-bit register one bit to the right.

4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010 000 000

0001 with the 16-bit register.

4b. If the bit shifted out to the right is zero, return to step 3.

5.

6.

Repeat steps 3 and 4 until 8 shifts have been performed.

Exclusive OR the next 8-bit byte with the 16-bit register.

7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register and shifted 8 times.

8. When the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by the high order byte.

For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.

6

3 MODBUS MESSAGE FORMATS

3.1 Function 03 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.

Request

Instrument

Address

1 byte

Starting Address

Word Count

Function

(03)

1 byte

Starting

Address

2 bytes

Word Count

2 bytes

Address of the first register to be read

The number of contiguous words to be read

Error Check

2 bytes

Response

Instrument

Address

1 byte

Function

(03)

1 byte

Byte

Count

1 byte

Data

Word 1

2 bytes

...

...

The byte count field contains quantity of bytes to be returned.

Data

Word N

2 bytes

Error

Check

2 bytes

3.2 Function 04 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can be used instead of function 03.

Request

Instrument

Address

1 byte

Starting Address

Word Count

Function

(04)

1 byte

Starting

Address

2 bytes

Word Count

2 bytes

Address of the first register to be read

The number of contiguous words to be read

Response

Instrument

Address

1 byte

Function

(04)

1 byte

Byte

Count

1 byte

Data

Word 1

2 bytes

...

...

Data

Word N

2 bytes

The byte count field contains quantity of bytes to be returned.

Error Check

2 bytes

Error

Check

2 bytes

3.3 Function 06 - Write Single Register

This command allows the user to write the contents of a data register in any data table where a register can be written.

Request

Instrument

Address

1 byte

Function

(06)

1 byte

Starting

Address

2 bytes

Data

Word

2 bytes

Starting Address

Address of the register to be written

Data

Data to be written to the register

Response

The normal response is the retransmission of the write request.

Error check

2 bytes

7

3.4 Function 16 - Write Multiple Registers

This request allows the user to write the contents of multiple contiguous registers to a single data table where registers can be written.

Request

Instrument

Address

1 byte

Data Word 1

2 bytes

Starting Address

Word Count

Byte Count

Response

Instrument

Address

1 byte

Function

(16)

1 byte

...

...

Address of the first register to be written

The number of contiguous words to be written

The number of bytes to be written

Function

(16)

1 byte

...

...

Starting

Address

2 bytes

...

...

Starting

Address

2 bytes

Word Count Byte Count

2 bytes

Data Word N

2 bytes

Word

Count

1 word

Error Check

2 bytes

Error

Check

2 bytes

1 byte

3.5 Function 08 - Loop-back Communications Test

The purpose of this request is to check the communications link between the specified instrument and PC.

Request

Instrument

Address

1 byte

Function

(08)

1 byte

Diagnostic

Code (0)

2 bytes

Data

2 bytes

Error

Check

2 bytes

Diagnostic Code

Designates action to be taken in Loop-back test. The protocol supports only

Diagnostic Code 0 - return query data.

Data

Query data. The data passed in this field will be returned to the master through the instrument. The entire message returned will be identical to the message transmitted by the master, field-per-field.

Response

Instrument

Address

1 byte

Function

(08)

1 byte

Diagnostic

Code (0)

2 bytes

Data

2 bytes

The normal response is the re-transmission of a test message.

Error

Check

2 bytes

8

3.6 Exception Responses

The instrument sends an exception response when errors are detected in the received message. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.

Exception Response

Instrument

Address

1 byte

Function (high order bit is set to 1)

1 byte

Exception response codes:

Exception

Code

1 byte

Error Check

2 byte

01

- Illegal

02

- Illegal data address

03

- Illegal data value

06

- Busy, rejected message. The message was received without errors, but the instrument is being programmed from the keypad (only for requests accessing setup registers).

NOTE

When the character framing, parity, or redundancy check detects a communication error, processing of the master's request stops. The instrument will not act on or respond to the message.

9

4 PROTOCOL IMPLEMENTATION

4.1 Modbus Register Addresses

The C191HM Modbus registers are referred to by using addresses in the range of 0 to 65535. From within the Modbus applications, the C191HM Modbus registers can be accessed by simulating holding registers of the Modicon 584, 884 or 984 Programmable Controller, using a 5-digit “4XXXX” or 6-digit “4XXXXX” addressing scheme. To map the C191HM register address to the range of the Modbus holding registers, add a value of 40001 to the C191HM register address. When a register address exceeds 9999, use a 6digit addressing scheme by adding 400001 to the C191HM register address.

4.2 Data Formats

The C191HM uses three data formats to pass data between a master application and the instrument: a 16bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer

format.

4.2.1 16-bit Integer Format

A 16-bit data is transmitted in a single 16-bit Modbus register as unsigned (UINT16) or signed (INT16) integer (whole) numbers without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16-bit register format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.

Non-scaled data

The data will be presented exactly as retrieved by the communications program from the instrument. The value range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.

LIN3 (Linear) Scaling

This conversion maps the raw data received by the communications program in the range of 0-9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the formula:

Engineerin g _ Units _ Value

=

Raw _ Data ×

9999

( HI − LO )

+

LO where:

Engineering_Units_Value - the true value in engineering units

Raw_Data

LO, HI

- the raw input data in the range of 0 - 9999

- the data low and high scales in engineering units

When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the corresponding registers.

CONVERSION EXAMPLES

1. Voltage readings

a) Assume device settings (690V input, direct wiring): PT ratio = 1.

Voltage engineering scales (see Note 1 to Table 5-1 ):

HI = Vmax = 828.0 × PT ratio = 828.0 × 1 = 828.0V

LO = 0V

If the raw data reading is 1449 then the voltage reading in engineering units will be as follows:

Volts reading = 1449 × (828.0 - 0)/9999 + 0 = 120.0V b) Assume device settings (wiring via PT): PT ratio = 14,400V : 120V = 120.

Voltage engineering scales:

HI = Vmax = 144.0 × PT ratio = 144 × 120 = 17,280V

LO = 0V

10

If the raw data reading is 8314 then the voltage reading in engineering units will be as follows:

Volts reading = 8314 × (17,280 - 0)/9999 + 0 = 14,368V

2. Current readings

Assume device settings: CT primary current = 200A; current input overload = 120% (6A).

Current engineering scales:

HI = Imax = CT primary current × 1.2 = 200.00 × 1.2 = 240.00A

LO = 0A

If the raw data reading is 250 then the current reading in engineering units will be as follows:

Amps reading = 250 × (240.00 - 0)/9999 + 0 = 6.00A

3. Power readings

a) Assume device settings (690V input, direct wiring): wiring configuration 4LN3; PT = 1; CT primary current = 200A.

Active Power engineering scales:

HI = Pmax = Vmax × Imax × 3 = 828.0 × (200.00 × 1.2) × 3 = 596,160W = 596.160kW

LO = -Pmax = -596.160kW

If the raw data reading is 5500 then the power reading in engineering units will be as follows:

Watts reading = 5500 × (596.160 - (-596.160))/9999 + (-596.160) = 59.682kW

If the raw data reading is 500 then the power reading in engineering units will be as follows:

Watts reading = 500 × (596.160 - (-596.160))/9999 + (-596.160) = -536.538kW b) Assume device settings (wiring via PT): wiring configuration 4LL3; PT = 120; CT primary current = 200A.

Active Power engineering scales:

HI = Pmax = Vmax × Imax × 2 = (144 × 120) × (200.00 × 1.2) × 2/1000 = 8294kW

LO = -Pmax = -8294kW

If the raw data reading is 5500 then the power reading in engineering units will be as follows:

Watts reading = 5500 × (8294 - (-8294))/9999 + (-8294) = 830kW

If the raw data reading is 500 then the power reading in engineering units will be as follows:

Watts reading = 500

×

(8294 - (-8294))/9999 + (-8294) = -7465kW

4. Power Factor readings

Power factor engineering scales:

HI = 1.000.

LO = -1.000.

If the raw data reading is 8900 then the power factor in engineering units will be as follows:

Power factor reading = 8900 × (1.000 - (-1.000))/9999 + (-1.000) = 0.78

Decimal Scaling

Decimal pre-scaling is used to accommodate fractional numbers to an integer register format. Fractional numbers pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100.

Whenever a data register contains a fractional number, the register measurement unit is given with a multiplier

×

0.1,

×

0.01 or

×

0.001, showing an actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier.

11

4.2.2 32-bit Modulo 10000 Format

The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo 10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register contains the value/10000. To get the true energy reading, the high order register value should be multiplied by 10,000 and added to the low order register.

4.2.3 32-bit Long Integer Format

In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned

(UINT32) or signed (INT32) long integer (whole) numbers. The first register contains the low-order word

(lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is -2,147,483,648 to 2,147,483,647.

A 32-bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional numbers to an integer format as described above (see Decimal Scaling in Section 4.2.1).

4.3 User Assignable Registers

The C191HM contains the 120 user assignable registers in the address range of 0 to 119 (see Table 4-1), any of which you can map to either register address accessible in the instrument. Registers that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.

The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the user assignable register map (see Table 4-2). This map occupies addresses from 120 to 239, where map register 120 should contain the actual address of the register accessed via assignable register 0, register 121 should contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable register addresses and the map register addresses may not be re-mapped.

To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses

.

For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 7576/7577 (kWh import, long word) via registers 0-2, then do the following:

- write 7576 to register 120

- write 7577 to register 121

- write 7136 to register 122

Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.

Table 4-1 User Assignable Registers

Register contents Address Type Direction Range

User definable data 0

User definable data 1

User definable data 2

User definable data 119

0

1

2

119

INT16

INT16

INT16

INT16 c c c c c c c c

… … c - depends on the mapped register

Table 4-2 User Assignable Register Map

Register contents

Register address for user data 0

Register address for user data 1

Register address for user data 2

Address

120

121

122

Type

UINT16

UINT16

UINT16

Direction

R/W

R/W

R/W

Range

240 to 9999

240 to 9999

240 to 9999

Register address for user data 119 239

UINT16

R/W 240 to 9999

12

5 POWERMETER REGISTERS DESCRIPTION

5.1 Basic Data Registers

Table 5-1 Basic Data Registers

Parameter Register Type R/W Unit

d

Voltage L1/L12 h

256

Voltage L2/L23 h

257

Voltage L3/L31 h

258

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2

259

260

261

262

263

264

265

266

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0.001kW/1kW

0.001kvar/1kvar

0.001kvar/1kvar kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

Total power factor

Total kW

Total kvar

Total kVA

Neutral current

Frequency

Max. sliding window kW demand g

Accumulated kW demand

Max. sliding window kVA demand g

Accumulated kVA demand

Max. ampere demand L1

Max. ampere demand L2

Max. ampere demand L3 kWh import (low) kWh import (high) kWh export (low) kWh export (high)

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

0.001kvar/1kvar

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA

0.001

0.001

0.001

0.001

0.001kW/1kW

0.001kvar/1kvar

0.001kVA/1kVA

0.01A

0.01Hz

0.001kW/1kW

0.001kW/1kW

0.001kVA/1kVA

0.001kVA/1kVA

0.01A

0.01A

0.01A

1kWh

10,000 kWh

1kWh

10,000 kWh

+kvarh net (low) e

+kvarh net (high) e

-kvarh net (low) f

-kvarh net (high) f

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3/L31

Current THD L1

Current THD L2

Current THD L3 kVAh (low) kVAh (high)

Present sliding window kW demand g

293

294

295

296

297

298

299

300

301

302

303

UINT16 R/W

UINT16 R/W

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R/W

UINT16 R/W

UINT16 R

Present sliding window kVA demand

PF at maximum kVA siding window g

304 UINT16 R

305 UINT16 demand

Current TDD L1

Current TDD L2

Current TDD L3

306

307

308

UINT16 R

UINT16 R

UINT16 R

1kvarh

10,000 kvarh

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

1kVAh

10,000 kVAh

0.001kW/1kW

0.001kVA/1kVA

0.001

0.1%

0.1%

0.1% c The parameter limits are as follows:

Imax

(20% over-range) = 1.2

×

CT primary current [A]

Scale

c

Low

Con-

High version

-Pmax

-Pmax

-Pmax

0

45.00

-Pmax

-Pmax

-Pmax

0

0

0

0

-Pmax

0

0

0

0

0

0

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-1.000

-1.000

-1.000

-1.000

0

0

0

0

0

0

0

0

0

0

0

0

0

-Pmax Pmax

-Pmax Pmax

-1.000

9999

999

999.9

999.9

999.9

999.9

999.9

999.9

9999

9999

100.0

100.0

100.0

Pmax

Imax

Imax

Imax

9999

9999

9999

9999

Pmax

Pmax

Pmax

Imax

65.00

Pmax

Pmax

Pmax

Imax

Imax

Imax

Pmax

Pmax

Pmax

Pmax

Pmax

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

Pmax

Pmax

Pmax

Pmax

LIN3

LIN3

LIN3

LIN3

1.000

1.000

LIN3

LIN3

1.000 LIN3

1.000 LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

NONE

NONE

NONE

NONE

NONE

NONE

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

NONE

NONE

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13

Direct wiring (PT Ratio = 1):

Vmax

(690 V input option) = 828.0 V

Vmax

(120 V input option) = 144.0 V

Pmax

= (Imax

×

Vmax

×

3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3

Pmax

= (Imax

×

Vmax

×

2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3, 3LL3 or 2LL1

Wiring via PTs (PT Ratio > 1):

Vmax

(690 V input option) = 144

×

PT Ratio [V]

Vmax

(120 V input option) = 144

×

PT Ratio [V]

Pmax

= (Imax

×

Vmax

×

3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3

Pmax

= (Imax

×

Vmax

×

2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3, 3LL3 or 2LL1 d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units. e

Positive readings of kvarh net f Negative readings of kvarh net g To get block interval demand readings, specify the number of demand periods equal to 1 (see Table 5-2) h When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

NOTE

Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of registers 287-294 and 301-302 causes reset of all accumulated energies.

5.2 Basic Setup

Table 5-2 Basic Setup Registers

Parameter

Wiring mode

PT ratio c

CT primary current

Power demand period

Register

2304

2305

2306

2307

Volt/ampere demand period

Averaging buffer size

2308

2309

Reset enable/disable

Reserved

2310

2311

The number of demand periods 2312

Reserved

Reserved

Nominal frequency

Maximum demand load current

2313

2314

2315

2316

Type R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R

UINT16 R/W

UINT16 R

UINT16 R

UINT16 R/W

UINT16 R/W

Range

0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,

3 = 4LL3, 4 = 3OP3, 5 = 3LN3, 6 = 3LL3,

7 = 2LL1

10 to 65000 × 0.1

1 to 6500 A

1,2,5,10,15,20,30,60 min,

255 = external synchronization d

0 to 1800 sec

8, 16, 32

0 = disable, 1 = enable

Read as 65535

1 to 15

Read as 65535

Read as 65535

50, 60 Hz

0 to 6500 A (0 = CT primary current) c The wiring mode options are as follows:

3OP2 - 3-wire open delta using 2 CTs (2 element)

4LN3 - 4-wire WYE using 3 PTs (3 element), line-to-neutral voltage readings

3DIR2 - 3-wire direct connection using 2 CTs (2 element)

4LL3 - 4-wire WYE using 3 PTs (3 element), line-to-line voltage readings

3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)

3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line-to-neutral voltage readings

3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line-to-line voltage readings

2LL1 - 2-wire line-to-line connection using 1 PT (1 element) d Synchronization of power demand interval can be made through a digital input or via communications using the

Synchronize power demand interval command (see Table 5-5).

5.3 User Selectable Options Setup

Table 5-3 User Selectable Options Registers

Parameter

Power calculation mode

Register

2376

Type R/W

UINT16 R/W

Range

0 = using reactive power,

1 = using non-active power

14

Parameter Register Type R/W

Energy roll value c

2377

Phase energy calculation mode 2378 UINT16 R/W

Range

1 = 1 × 105

2 = 1 × 106

3 = 1 × 107

4 = 1 × 108

0 = disable, 1 = enable c

For short energy registers (see Table 5-1), the maximum roll value will be 1

×

108 for positive readings and 1

×

107 for negative readings.

5.4 Communications Setup

Table 5-4 Communications Setup Registers

Parameter

Baud rate

Data format

Register

2347

2348

Type

UINT16

UINT16

R/W

R/W

R/W

Range

Read as 65535

Read as 65535

1 to 247

0 = 110 bps

1 = 300 bps

2 = 600 bps

3 = 1200 bps

4 = 2400 bps

5 = 4800 bps

6 = 9600 bps

7 = 19200 bps

1 = 8 bits/no parity

2 = 8 bits/even parity

When changing the instrument address, baud rate or data format, the new communications parameters will take effect

100 ms after the instrument responds to the master's request.

5.5 Reset/Synchronization Registers

Table 5-5 Reset/Synchronization Registers

Register function

Clear total energy registers

Clear total maximum demand registers

Register

3404

3405

Type

UINT16

UINT16

R/W

W 0

W

Reset value

0 = all maximum demands

1 = power demands

2 = volt/ampere demands

Clear event/time counters 3408

UINT16

Clear Min/Max log 3409

UINT16

UINT16

Synchronize power demand interval c 3420

UINT16

W 0 = all counters

1-4 = counter #1 - #4

W 0

W 0 c 1) If the power demand period is set to External Synchronization (see Table 5-2), writing a zero to this location will simulate an external synchronization pulse denoting the start of the next demand interval. The synchronization requests should not follow in intervals of less than 30 seconds, or the request will be rejected. This function is not permitted if the external synchronization is implemented by hardware, i.e., the digital input is configured as an external synchronization pulse input.

2) If the power demand period is specified in minutes, writing a zero to this location provides synchronization of the instrument's internal timer with the time of reception of the master's request. If the time expired from the beginning of the current demand interval is more than 30 seconds, the new demand interval starts immediately, otherwise synchronization is delayed until the next demand interval.

15

5.6 Instrument Status

Table 5-6 Instrument Status Registers

Parameter

Instrument reset register c

Reserved

Relay status

Reserved

Status inputs

Firmware version number

Instrument options 1

Instrument options 2

Register

2560

2561

2562

2563

2564

2565

2566

2567

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R

R

R

R

R

R

R

Read as 0

See Table 5-7

Read as 0

See Table 5-11

0-65535

Range

0 (when read)

65535 (when written) = reset the instrument

See Table 5-8

See Table 5-8 c

Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.

Table 5-7 Relay Status

Bit number

0

1

2

3

4

5

6

7

8-15

Description

Relay #8 status

Relay #7 status

Relay #6 status

Relay #5 status

Relay #4 status

Relay #3 status

Relay #2 status

Relay #1 status

Not used (permanently set to 0)

Bit meaning: 0 = relay is energized, 1 = relay is not energized

Table 5-8 Instrument Options

Options register Bit Description

Options1 0 option

690V

Reserved

6 Analog output 0/4-20 mA

Reserved

9

10 Digital input option

11-15

Options 2 0-2

3-6

Number of relays - 1

Number of digital inputs - 1

5.7 Extended Status

Table 5-9 Extended Status Registers

Register description

Relay status

Register

3452

Reserved

Status inputs

3453

3454

Setpoints status

Log status

3455

3456

Reserved 3457-

Setpoint alarm status

3473

3474

Self-check diagnostics 3475

Reserved 3476-

3485

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R

R/W

R

R

R

R

R

R/W

R/W

R

Value range

See Table 5-10

Read as 0

See Table 5-11

See Table 5-12

See Table 5-13

Read as 0

See Table 5-14

See Table 5-15

Read as 0

16

Table 5-10 Relay Status

Bit

0

1

2

3

4

5

6

7

8-15

Relay #1 status

Relay #2 status

Relay #3 status

Relay #4 status

Relay #5 status

Relay #6 status

Description

Relay #7 status

Relay #8 status

Not used (permanently set to 0)

Bit meaning: 0 = relay is not energized, 1 = relay is energized

Table 5-11 Status Inputs

Bit Description

1-15 Not used (permanently set to 0)

Bit meaning: 0 = contact open, 1 = contact closed

Table 5-12 Setpoints Status

Bit

4

5

6

7

8

0

1

2

3

9

10

11

12

13

14

15

Description

Setpoint # 1 status

Setpoint # 2 status

Setpoint # 3 status

Setpoint # 4 status

Setpoint # 5 status

Setpoint # 6 status

Setpoint # 7 status

Setpoint # 8 status

Setpoint # 9 status

Setpoint # 10 status

Setpoint # 11 status

Setpoint # 12 status

Setpoint # 13 status

Setpoint # 14 status

Setpoint # 15 status

Setpoint # 16 status

Bit meaning: 0 = setpoint is released, 1 = setpoint is operated

Table 5-13 Log Status

Bit Description

0 Reserved

1 New Min/Max Log

2-15 Not used (permanently set to 0)

Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)

Table 5-14 Setpoint Alarm Status

Bit Description

#2

#3

3 Alarm

#5

#6

#7

#8

8 Alarm

#10

#11

#12

#13

17

Bit

#14

14 Alarm

Description

Bit meaning: 1 = setpoint has been operated

The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1.

The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to 0.

Table 5-15 Self-check Diagnostics

Bit

0 Reserved

Description

1 Reserved

2 RAM

3 error

Watchdog timer reset failure exception

6 Reserved

7 Software

8 exception

Loss of power (power up)

9 External reset (warm restart) corrupted

11-15 Reserved

The self-check diagnostics register indicates possible problems with the instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits, which are set whenever the instrument fails self-test diagnostics, or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit, which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made.

Hardware fault bits can be reset by writing zero to the self-check diagnostics register. The configuration corrupt status bit is also reset automatically when you change setup either via the front panel or through communications.

5.8 Extended Data Registers

The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups, which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section 2.9 for information on the user assignable registers.

Along with the register address, the table shows for each data item its point identifier (ID). This is a one word containing a data group ID in the high byte and the parameter offset in a group in the low byte. Point

IDs are used to specify input or output parameters whenever a data parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.

Table 5-16 Extended Data Registers

Parameter

None

None

Status inputs

Status inputs

(see Table 5-11)

Relays

Relay status

(see Table 5-10)

UINT16

Reg. Conv.

6896

6976

INT32 Point

ID

R/W Unit

d

Range/Scale

c

Low High

0 0

0

0

3

3

18

Parameter UINT16

Reg. Conv.

Event/time counters

Counter #1

Counter #2

Counter #3

Counter #4

Real-time values per phase

7056

7057

7058

7059

7060

7061

7062

7063

INT32 Point

ID

R/W

Voltage L1/L12 h

7136

Voltage L2/L23 h

7137

13312-13313

LIN3

Voltage L3/L31

Current L1 h

7138

7139 LIN3

13316-13317

13318-13319 0x0C03 R

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2

7140

7141

7142

7143

7144

7145

7146

7147

7148

7149

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13320-13321

13322-13323

13324-13325

13326-13327

13328-13329

13330-13331

13332-13333

13334-13335

13336-13337

13338-13339

0x0C04 R

0x0C05 R

0x0C06 R

0x0C07 R

0x0C08 R

0x0C09 R

0x0C0A R

0x0C0B R

0x0C0C R

0x0C0D R kVA L3

Power factor L1

Power factor L2

Power factor L3

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3/L31

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

Real-time total values

7150

7151

7152

7153

7154

7155

7156

7157

7158

7159

7160

7161

7162

7163

7164

7165

7166

7167

7168

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13340-13341

13342-13343

13344-13345

13346-13347

13348-13349

13350-13351

13352-13353

13354-13355

13356-13357

13358-13359

13360-13361

13362-13363

13364-13365

13366-13367

13368-13369

13372-13373

13374-13375

13376-13377

0x0C0E R

0x0C0F R

0x0C10 R

0x0C11 R

0x0C12 R

0x0C13 R

0x0C14 R

0x0C15 R

0x0C16 R

0x0C17 R

0x0C18 R

0x0C19 R

0x0C1A R

0x0C1B R

0x0C1C R

0x0C1E R

0x0C1F R

0x0C20 R

Total kW

Total kvar

Total kVA

Total PF

Real-time auxiliary values

7256

7257

7258

7259

LIN3

LIN3

LIN3

LIN3

13696-13697

13698-13699

13700-13701

13702-13703

0x0F00 R

0x0F01 R

0x0F02 R

0x0F03 R

Unit

0.1V/1V

0.1V/1V

0.1V/1V d

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0.001kW/1kW

0.001kvar/1kvar

0.001kvar/1kvar

0.001kvar/1kvar

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA

0.001

0.001

0.001

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0.1

0.1%

0.1%

0.001kW/1kW

0.001kvar/1kvar

0.001kVA/1kVA

0.001

0 99999

0 99999

0 99999

0 99999

0

Range/Scale

Low

0

0

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

0

0

-1.000

0

0

0

0

0

-1.000

-1.000

0

0

1.0

1.0

1.0

0

0

0

0

0

0

Imax

Imax

Imax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

1.000

1.000

1.000

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax c

High

-Pmax Pmax

-Pmax

0

-1.000

Pmax

Pmax

1.000

Neutral current

Frequency e

7297 LIN3 13826-13827

7298

0x1001 R 0.01A

0x1002

0

0.01Hz

Voltage unbalance

Current unbalance

7299

7300

LIN3

LIN3

13830-13831

13832-13833

0x1003 R

0x1004 R

1%

1%

0

0

Average values per phase

Voltage L1/L12 h

7336

Voltage L2/L23

Voltage L3/L31

Current L1

Current L2 h h

7337

7338

7339

7340

LIN3

LIN3

LIN3

13954-13955

13958-13959

13960-13961

0x1103 R

0x1104 R

Current L3 kW L1 kW L2 kW L3 kvar L1

7341

7342

7343

7344

7345

LIN3

LIN3

LIN3

LIN3

LIN3

13962-13963

13964-13965

13966-13967

13968-13969

13970-13971

0x1105 R

0x1106 R

0x1107 R

0x1108 R

0x1109 R

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0.001kW/1kW

0.001kvar/1kvar

0

0

0

-Pmax

-Pmax

-Pmax

-Pmax

Imax

100.00

300

300

Imax

Imax

Imax

Pmax

Pmax

Pmax

Pmax

19

Parameter

kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3/L31

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

Average total values

Total kW

Total kvar

Total kVA

Total PF

Average auxiliary values

7456

7457

7458

7459

UINT16

Reg. Conv.

7355

7356

7357

7358

7359

7360

7361

7362

7363

7364

7346

7347

7348

7349

7350

7351

7352

7353

7354

7365

7366

7367

7368

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

14012-14013

14014-14015

14016-14017

INT32

13972-13973

13974-13975

13976-13977

13978-13979

13980-13981

13982-13983

13984-13985

13986-13987

13988-13989

13990-13991

13992-13993

13994-13995

13996-13997

13998-13999

14000-14001

14002-14003

14004-14005

14006-14007

14008-14009

LIN3

LIN3

LIN3

LIN3

14336-14337

14338-14339

14340-14341

14342-14343

Point

ID

R/W

0x110A R

0x110B R

0x110C R

0x110D R

0x110E R

0x110F R

0x1110 R

0x1111 R

0x1112 R

0x1113 R

0x1114 R

0x1115 R

0x1116 R

0x1117 R

0x1118 R

0x1119 R

0x111A R

0x111B R

0x111C R

0x111E R

0x111F R

0x1120 R

0x1401 R

0x1402 R

0x1403 R

0.1%

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0.1

0.1%

0.1%

Unit

d

0.1V/1V

0.1V/1V

0.1V/1V

0.001kvar/1kvar

0.001kvar/1kvar

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA

0.001

0.001

0.001

0.1%

0.001kvar/1kvar

0.001kVA/1kVA

0.001

Range/Scale

Low

1.0

1.0

1.0

0

0

0

0

0

0

0

-Pmax

-Pmax

0

0

0

-1.000

-1.000

-1.000

0

0

0

0

0

-Pmax

0

-1.000 c

High

Pmax

Pmax

Pmax

Pmax

Pmax

1.000

1.000

1.000

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

Pmax

Pmax

1.000

Neutral current

Frequency e

7497 LIN3 14466-14467

7498

0x1501 R 0.01A

0x1502

0

0.01Hz

Voltage unbalance

Current unbalance

7499

7500

LIN3

LIN3

14470-14471

14472-14473

0x1503 R

0x1504 R

1%

1%

0

0

Present demands

Volt demand L1/L12 h

7536

Volt demand L2/L23

Volt demand L3/L31

Ampere demand L1

Ampere demand L2 h h

7537

7538

7539

7540

LIN3

LIN3

LIN3

14594-14595

14598-14599

14600-14601

0x1603 R

0x1604 R

Ampere demand L3

Block kW demand

7541

7542

LIN3

LIN3

14602-14603

14604-14605

0x1605 R

0x1606 R

0.01A

0.01A

0.01A

0.001kW/1kW

Imax

100.00

300

300

0

0

0

0

0 Vmax

0 Vmax

0 Vmax

Imax

Imax

Imax

Pmax

Block kVA demand 7544

Sliding window kW demand 7545

LIN3 14608-14609 0x1608 R

LIN3 14610-14611 0x1609

0.001kVA/1kVA 0

R 0.001kW/1kW 0

Reserved 7546

Sliding window kVA demand 7547 LIN3 14614-14615

Reserved 7548

0x160B R 0.001kVA/1kVA

R

0

14618-14619

Reserved 7550

Accumulated kW demand

(import)

Pmax

Pmax

Pmax

0

Pmax

Accumulated kVA demand

Predicted sliding window kW demand (import)

Reserved 7555

Predicted sliding window kVA

14630-14631

R 0.001kVA/1kVA 0 demand

PF at maximum kVA sliding

7553 LIN3 14626-14627 0x1611 R

7554 LIN3 14628-14629 0x1612

0.001kVA/1kVA 0

R 0.001kW/1kW 0 window demand

Total energies

kWh import 7576

7577

Pmax

Pmax

Pmax

0 108-1

20

Parameter

kWh export g

7578

7579

14722-14723

Reserved 7580

7581

14724-14725

Reserved 7582

7583

14726-14727 kvarh import 7584

7585 kvarh export g

7586

14728-14729

14730-14731

7587

Reserved 7588

7589

14732-14733

Reserved 7590

7591

14734-14735 kVAh total 7592

7593

14736-14737

Phase energies

UINT16

Reg. Conv.

INT32 Point

ID

R/W

0x1701 R

0x1702 R

0x1703 R

0x1704 R

0x1705 R

0x1706 R

0x1707 R

0x1708 R

Unit

kWh kvarh kvarh kVAh d

Range/Scale

Low

0

0

0

0

0

0

0

0

0

0

0

0 c

High

108-1

108-1

108-1

108-1 kWh import L1 kWh import L2 kWh import L3 kvarh import L1 kvarh import L2 kvarh import L3 kVAh total L1 kVAh total L2 kVAh total L3

7616

7617

7618

7619

7620

7621

7622

7623

7624

7625

7626

7627

7628

7629

7630

7631

7632

7633

0 108-1

0 108-1

0 108-1

0 108-1

0 108-1

0 108-1

0 108-1

0 108-1

0 108-1

L1/L12 voltage harmonics

Harmonic H01

Harmonic H40

L2/L23 voltage harmonics

7656 LIN3 14976-14977 0x1900 R 0.01% 0 100.00

Harmonic H02 7657 LIN3 14978-14979

... ...

0x1901 R 0.01% 0 100.00

7695 LIN3 14054-14055 0x193E R 0.01% 0 100.00

Harmonic H01

Harmonic H02

7696

7697

LIN3

LIN3

15104-15105

15106-15107

0x1A00 R

0x1A01 R

0.01%

0.01%

0

0

100.00

100.00

... ...

Harmonic H40 7735 LIN3 15182-15183

...

0x1A3E R 0.01% 0 100.00

L3 voltage harmonics

Harmonic H01

Harmonic H40

L1 current harmonics

7736 LIN3 15232-15233 0x1B00 R 0.01% 0 100.00

Harmonic H02 7737 LIN3 15234-15235

... ...

0x1B01 R 0.01% 0 100.00

7775 LIN3 15310-15311 0x1B3E R 0.01% 0 100.00

Harmonic H01

Harmonic H02

7776

7777

LIN3

LIN3

15360-15361

15362-15363

0x1C00 R

0x1C01 R

0.01%

0.01%

0

0

100.00

100.00

... ...

Harmonic H40 7815 LIN3 15438-15439

...

0x1C3E R 0.01% 0 100.00

L2 current harmonics

Harmonic H01 7816 LIN3 0 100.00

Harmonic H02 7817 LIN3 15490-15491 0x1D01

... ...

Harmonic H40 7855 LIN3 15566-15567

...

0x1D3E R 0.01%

0

0

100.00

100.00

L3 current harmonics

Harmonic H01

Harmonic H02

7856

7857

LIN3

LIN3

15616-15617

15618-15619

... ...

0x1E00 R

0x1E01 R

0.01%

0.01%

...

0

0

100.00

100.00

21

Parameter

Harmonic H40

UINT16

Reg. Conv.

7895 LIN3

INT32

15694-15695

Point

ID

0x1E3E R

R/W

Fundamental's (H01) real-time values per phase

Voltage L1/L12 i

8296

Voltage L2/L23 i

8297

Voltage L3/L31 i

8298

17026-17027

LIN3

Current L1

Current L2

Current L3 kW L1 kW L2

8299

8300

8301

8302

8303

LIN3

LIN3

LIN3

LIN3

LIN3

17030-17031

17032-17033

17034-17035

17036-17037

17038-17039

0x2903 R

0x2904 R

0x2905 R

0x2906 R

0x2907 R kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

8304

8305

8306

8307

8308

8309

8310

8311

8312

8313

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

17040-17041

17042-17043

17044-17045

17046-17047

17048-17049

17050-17051

17052-17053

17054-17055

17056-17055

17058-17059

0x2908 R

0x2909 R

0x290A R

0x290B R

0x290C R

0x290D R

0x290E R

0x290F R

0x2910 R

0x2911 R

Fundamental's (H01) real-time total values

Total kW 8336 LIN3

Total kvar

Total kVA

8337

8338

LIN3

LIN3

Total PF 8339 LIN3

Minimum real-time values per phase (M)

17152-17153

17154-17155

17156-17157

17158-17159

0x2A00 R

0x2A01 R

0x2A02 R

0x2A03 R

Voltage L1/L12 h

8416

Voltage L2/L23 h

8417

17408-17409

LIN3

Voltage L3/L31

Current L1 h

8418

8419 LIN3

17412-17413

17414-17415 0x2C03 R

Current L2

Current L3

8420

8421

LIN3

LIN3

17416-17417

17418-17419

0x2C04 R

0x2C05 R

Minimum real-time total values (M)

Total kW

Total kvar

Total kVA

8456

8457

8458

LIN3

LIN3

LIN3

17536-17537

17538-17539

17540-17541

Total PF f

8459

Minimum real-time auxiliary values (M)

Reserved 8496

Neutral current 8497 LIN3 17666-17667

Frequency e

8498

Maximum real-time values per phase (M)

0x2D00 R

0x2D01 R

0x2D02 R

0x2E01 R

0.01%

0.01A

0.01A

0.01A

0.001

0.001

0.001

0.001

0.01A

0.01A

0.01A

0.01A

Unit

d

0.001kW/1kW

0.001kW/1kW

0.001kW/1kW

0.001kvar/1kvar

0.001kvar/1kvar

0.001kvar/1kvar

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA

0.001kW/1kW

0.001kvar/1kvar

0.001kVA/1kVA

0.001kW/1kW

0.001kvar/1kvar

0.001kVA/1kVA

0

0

0

0

0

0

0

Range/Scale

c

Low

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-Pmax

-1.000

-1.000

-1.000

High

100.00

Imax

Imax

Imax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

1.000

1.000

1.000

-Pmax Pmax

-Pmax

0

-1.000

0

0

0

Pmax

Pmax

1.000

Imax

Imax

Imax

-Pmax Pmax

-Pmax

0

0

Pmax

Pmax

Imax

Voltage L1/L12 h

8736

Voltage L2/L23 h

8737

Voltage L3/L31 h

8738

18434-18435

LIN3

Current L1

Current L2

Current L3

8739

8740

8741

LIN3

LIN3

LIN3

18438-18439

18440-18441

18442-18443

0x3403 R

0x3404 R

0x3405 R

Maximum real-time total values (M)

Total kW

Total kvar

Total kVA

8776

8777

8778

LIN3

LIN3

LIN3

18560-18561

18562-18563

18564-18565

Total PF f

8779

0x3501 R

0x3502 R

0.01A

0.01A

0.01A

0.001kvar/1kvar

0.001kVA/1kVA

0

0

0

-Pmax

0

Imax

Imax

Imax

Pmax

Pmax

Maximum real-time auxiliary values (M)

Neutral current

Frequency e

8817 LIN3 18680-18681

8818

0x3601 R 0.01A

0x3602

0

0 Imax

100.00

Maximum demands (M)

Max. volt demand L1/L12 h

8856 LIN3 18816-18817 0x3700 R

Max. volt demand L2/L23 h

8857 LIN3 18818-18819 0x3701 R

Max. volt demand L3/L31 h

8858 LIN3 18820-18821 0x3702 R

Max. ampere demand L1

Max. ampere demand L2

Max. ampere demand L3

8859

8860

8861

LIN3

LIN3

LIN3

18822-18823

18824-18825

18826-18827

0x3703 R

0x3704 R

0x3705 R

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0

0

0

0

0

0

Vmax

Vmax

Vmax

Imax

Imax

Imax

22

Parameter

Harmonic H01 angles

Harmonic H02 angles

UINT16

Reg. Conv.

10656

10657

L2/L23 voltage harmonic angles

LIN3

LIN3

INT32 Point

ID

R/W Unit

d

... ...

Harmonic H40 angles 10695 LIN3

...

Range/Scale

c

Low High

18828-18829

Reserved 8863

Reserved 8864

Max. sliding window kW demand (import)

Reserved 8866

Max. sliding window kVA

18836-18837

R 0.001kVA/1kVA 0 demand

L1/L12 voltage harmonic angles

Pmax

Pmax

-180.0 180.0

-180.0 180.0

-180.0 180.0

Harmonic H01 angles

Harmonic H02 angles

10696

10697

LIN3

LIN3

...

Harmonic H40 angles 10735

L3 voltage harmonic angles

LIN3

-180.0 180.0

-180.0 180.0

-180.0 180.0

Harmonic H01 angles

Harmonic H02 angles

10736

10737

LIN3

LIN3

... ...

Harmonic H40 angles 10775 LIN3

...

Harmonic H01 angles

Harmonic H02 angles

... ...

Harmonic H40 angles

10856

10857

10895

LIN3

LIN3

LIN3

...

-180.0 180.0

-180.0 180.0

-180.0 180.0

L1 current harmonic angles

Harmonic H01 angles

Harmonic H40 angles

L2 current harmonic angles

10816

10855

LIN3 -180.0 180.0

Harmonic H02 angles 10817 LIN3 25099-25091 0x6401

... ... ...

-180.0 180.0

LIN3 -180.0 180.0

-180.0 180.0

-180.0 180.0

-180.0 180.0

L3 current harmonic angles

Harmonic H01 angles 10896 LIN3 -180.0 180.0

Harmonic H02 angles 25346-25347 0x6401

... ...

Harmonic H40 angles

10897

10935

LIN3

LIN3

... degree

-180.0 180.0

-180.0 180.0 c For the parameter limits, see note c to Table 5-1. d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01

A units, and powers in 1 kW/kvar/kVA units. e The actual frequency range is 45.00 - 65.00 Hz. f Absolute min/max value (lag or lead). g The exported energy registers are read as positive unsigned long (32-bit) integers. h When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages. i When the 4LN3, 4LL3 or 3LN3 wiring mode is selected, the harmonic voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages. The line-to-line harmonic voltages in the 3DIR2, 3LL3 and 2LL1 wiring modes, and the L31 harmonic voltage in the 3OP2 and 3OP3 wiring modes will be calculated accurately if the voltages are balanced.

(M) These parameters are logged to the Min/Max log

23

5.9 Analog Output Setup

Table 5-17 Analog Output Allocation Registers

Channel #1

Channel Registers (see Table 5-18)

3148-3150

Table 5-18 Analog Channel Allocation Registers

Parameter

Output parameter ID

Zero scale (0-4 mA)

Full scale (1/20 mA)

Offset

+0

+1

+2

Type

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

Range

See Table 5-19

See Table 5-19

See Table 5-19

Except for the signed power factor (see Note 3 to Table 5-19), the output scale is linear within the value range. The scale range will be inverted if the full scale specified is less than the zero scale.

Table 5-19 Analog Output Parameters

Output parameter

None

None

Real-time values per phase

Point

ID

Type Unit

0 UINT16 d

Voltage L1/L12 g

0x0C00

Voltage L2/L23 g

0x0C01

Voltage L3/L31 g

0x0C02

Current L1

Current L2

Current L3

0x0C03 UINT16 0.01A

0x0C04 UINT16 0.01A

0x0C05 UINT16 0.01A

Scale

Low

c

High

0

0

0

Imax

Imax

Imax

Real-time total values

Total kW

Total kvar

Total kVA

Total PF Lead

Real-time auxiliary values

0x0F00 UINT16 0.001kW/1kW -Pmax

0x0F01 UINT16 0.001kvar/1kvar -Pmax

0x0F02 UINT16 0.001kVA/1kVA 0

Pmax

Pmax

Pmax

Total PF f

0x0F03

Total PF Lag 0x0F04 UINT16 0.001 0 1.000

0x0F05 UINT16 0.001 0 1.000

Frequency e

0x1002

Con- version

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

Average values per phase

Voltage L1/L12 g

0x1100

Voltage L2/L23 0.1V/1V

Voltage L3/L31 g

0x1102

Current L1

Current L2 g

0x1101

0x1103 UINT16 0.01A

0x1104 UINT16 0.01A

0

0

Current L3

Average total values

0x1105 UINT16 0.01A 0

Imax

Imax

Imax

LIN3

LIN3

LIN3

Total kW

Total kvar

0x1400 UINT16 0.001kW/1kW -Pmax

0x1401 UINT16 0.001kvar/1kvar -Pmax

Pmax

Pmax

LIN3

LIN3

Total kVA

Total PF f

0x1402 UINT16 0.001kVA/1kVA 0

0x1403

Total PF Lag

UINT16

0x1404 UINT16 0.001 0

Pmax

1.000

1.000

LIN3

LIN3

Total PF Lead 0x1405 UINT16 0.001 0 1.000 LIN3

Average auxiliary values

Neutral current 0x1501 UINT16 0.01A 0

Frequency e

0x1502

Present demands

Accumulated kW demand (import) 0x160F UINT16 0.001kW/1kW

Accumulated kVA demand

0

0x1611 UINT16 0.001kVA/1kVA 0

Imax

Pmax

Pmax

LIN3

LIN3

LIN3 c For parameter limits, see note c to Table 5-1. d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01

A units, and powers in 1 kW/kvar/kVA units. e The actual frequency range is 45.00 to 65.00 Hz

24

f The output scale for signed (bi-directional) power factor is symmetrical with regard to

±

1.000 and is linear from -0 to

-1.000, and from 1.000 to +0 (note that -1.000

+1.000). Negative power factor is output as [-1.000 minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To define the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because of the fact that negative zero may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both +0.001 and 0.000 are used to specify the scale of +0. To define the range of -0 to 0, you must send -0.001/0.001 or -0.001/0. g When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

5.10 Digital Input Allocation

Table 5-20 Digital Input Allocation Registers

Parameter

Status inputs allocation c

Pulse inputs allocation c

Not used c

External synchronization pulse input allocation

Register

3292

3293

3294

3295

Type R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W c Writing to these locations is ignored. No error will occur.

Range

See Table 5-21

See Table 5-21

Read as 0

See Table 5-21

NOTE

When a digital input is allocated for the external synchronization pulse, it is automatically configured as a pulse input, otherwise it is configured as a status input.

Table 5-21 Digital Input Allocation Mask

Bit

0

1-15

Description

Digital input allocation status

Not used (read as 0)

Bit meaning: 0 = input is not allocated, 1 = input is allocated to the group

5.11 Alarm/Event Setpoints

Table 5-22 Setpoint Registers

Setpoint

Setpoint #1

Setpoint #2

Setpoint #3

Setpoint #4

Setpoint #5

Setpoint #6

Setpoint #7

Setpoint #8

Setpoint #9

Setpoint #10

Setpoint #11

Setpoint #12

Setpoint #13

Setpoint #14

Setpoint #15

Setpoint #16

Setup registers (see Table 5-23)

2576-2583

2584-2591

2592-2599

2600-2607

2608-2615

2616-2623

2624-2631

2632-2639

2640-2647

2648-2655

2656-2663

2664-2671

2672-2679

2680-2687

2688-2695

2696-2703

Table 5-23 Setpoint Setup Registers

Parameter

Trigger parameter ID

Offset

+0

Type R/W

UINT16 R/W

Operate delay

Release delay

+2

+3

UINT16 R/W

UINT16 R/W

Range

See Table 5-24

See Table 5-25

0-9999 ( × 0.1 sec)

0-9999 ( × 0.1 sec)

25

Parameter

Operate limit

Release limit

Offset

+4, +5

+6, +7

Type R/W

INT32 R/W

INT32 R/W

Range

See Table 5-24

See Table 5-24

1.

2.

3.

4.

The setpoint is disabled when its trigger parameter is set to NONE. To disable the setpoint, write zero into this register.

When writing the setpoint registers (except the event when the setpoint is to be disabled), it is recommended to write all the setpoint registers using a single request, or disable the setpoint before writing into separate registers.

Each value being written is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected.

Operate and release limits for the trigger parameters and their conversion scales are indicated in Table 5-24. Each limit value occupies two contiguous registers, the first of which (low word) contains the limit value, and the second

(high word) is reserved for long parameters. This register is always read as zero. When written, its value is ignored.

Limits indicated in Table 5-24 by a N/A mark are read as zeros. When writing, they can be omitted or should be written as zeros.

5.

When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re-allocate it for a setpoint will result in a negative response.

Table 5-24 Setpoint Trigger Parameters

Trigger parameter

None

None

Status inputs

Status input ON

Status input OFF

Phase reversal

Trigger

ID

0x0600

0x8600

Type

UINT16

UINT16

Unit

0 UINT16 d

Limit/scale

Low

N/A

N/A

High version

N/A

N/A c

Positive phase rotation reversal e

0x8901

Negative phase rotation reversal e

0x8902 UINT16

High/low real-time values on any phase

High voltage g

0x0E00

Low voltage

High current g

0x8D00

0x0E01 UINT16 0.01A 0 Imax

Low current

High voltage THD

High current THD

High K-Factor

High current TDD

0x8D01

0x0E07

0x0E08

0x0E09

0x0E0A

UINT16 0.01A

UINT16 0.1%

UINT16 0.1%

UINT16 0.1

UINT16 0.1%

0

0

0

1.0

0

Imax

999.9

999.9

999.9

100.0

Con-

NONE

NONE

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

High/low real-time auxiliary values

High frequency f

0x1002

Low frequency f

0x9002

High/low average values per phase

High current L1

High current L2

High current L3

Low current L1

Low current L2

Low current L3

0x1103

0x1104

0x1105

0x9103

0x9104

0x9105

High/low average values on any phase

UINT16 0.01A

UINT16 0.01A

UINT16 0.01A

UINT16 0.01A

UINT16 0.01A

UINT16 0.01A

0

0

0

0

0

0

High voltage g

0x1300

Low voltage g

0x9200

High current

Low current

High L-L voltage

0x1301

0x9201

0x130B

UINT16 0.01A

UINT16 0.01A

UINT16 0.1V/1V

Low L-L voltage

High/low average total values

0x920B UINT16 0.1V/1V

High total kW import

High total kW export

High total kvar import

High total kvar export

High total kVA

Low total PF Lag

Low total PF Lead

0x1406

0x1407

0x1408

0x1409

0x1402

0x9404

0x9405

0

0

0

0

UINT16 0.001kW/1kW

UINT16 0.001kW/1kW

-Pmax

-Pmax

UINT16 0.001kvar/1kvar -Pmax

UINT16 0.001kvar/1kvar -Pmax

UINT16 0.001kVA/1kVA 0

UINT16 0.001

UINT16 0.001

0

0

Imax

Imax

Imax

Imax

Imax

Imax

Imax

Imax

Vmax

Vmax

Pmax

Pmax

Pmax

Pmax

Pmax

1.000

1.000

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

26

Trigger parameter

High/low average auxiliary values

High neutral current

High frequency f

0x1501 UINT16 0.01A

0x1502

0

UINT16

Imax

0.01Hz

LIN3

0

Low frequency f

0x9502

High present demands

High volt demand L1/L12 g

0x1600

High volt demand L2/L23 g

0x1601

High volt demand L3/L31

High ampere demand L1 g

0x1602

0x1603

0.1V/1V

UINT16 0.01A 0

High ampere demand L2

High ampere demand L3

High block kW demand (import)

High block kVA demand

0x1604

0x1605

0x1606

0x1608

High sliding window kW demand (import) 0x1609

UINT16 0.01A

UINT16 0.01A

UINT16 0.001kW/1kW

0

0

0

UINT16 0.001kVA/1kVA 0

UINT16 0.001kW/1kW 0

High sliding window kVA demand 0x160B UINT16 0.001kVA/1kVA 0

0.001kW/1kW 0

Imax

Imax

Imax

LIN3

LIN3

LIN3

Pmax

Pmax

Pmax

LIN3

LIN3

LIN3

Pmax LIN3

Pmax LIN3

High accumulated kVA demand

High predicted kW demand (import) 0x1612

High predicted kVA demand

0x1611

0x1614

UINT16 0.001kVA/1kVA 0

0.001kW/1kW

UINT16 0.001kVA/1kVA 0

Pmax

0 Pmax

Pmax

LIN3

LIN3

LIN3

High voltage harmonics on any phase

High voltage harmonic H03

High voltage harmonic H05

High voltage harmonic H07

High voltage harmonic H09

High voltage harmonic H11

High voltage harmonic H13

High voltage harmonic H15

High voltage harmonic H17

High voltage harmonic H19

High voltage harmonic H21

High voltage harmonic H23

High voltage harmonic H25

High voltage harmonic H27

High voltage harmonic H29

High voltage harmonic H31

High voltage harmonic H33

High voltage harmonic H35

High voltage harmonic H37

High voltage harmonic H39

High current harmonics on any phase

High current harmonic H03

High current harmonic H05

High current harmonic H07

High current harmonic H09

High current harmonic H11

High current harmonic H13

High current harmonic H15

High current harmonic H17

High current harmonic H19

High current harmonic H21

High current harmonic H23

High current harmonic H25

High current harmonic H27

High current harmonic H29

High current harmonic H31

High current harmonic H33

High current harmonic H35

High current harmonic H37

High current harmonic H39

Trigger

ID

0x7200

0x7201

0x7202

0x7203

0x7204

0x7205

0x7206

0x7207

0x7208

0x7209

0x720A

0x720B

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

0x720C

0x720D UINT16

0x720E

UINT16 0.01%

0.01%

UINT16 0.01%

0x720F

0x7210

0x7211

0x7212

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

0x7300

0x7301

0x7302

0x7303

0x7304

0x7305

0x7306

0x7307

0x7308

0x7309

0x730A

0x730B

0x730C

0x730D

0x730E

0x730F

0x7310

0x7311

0x7312

Type Unit

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01%

UINT16 0.01% d

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Limit/scale

Low

c

Con-

High version

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3

100.00 LIN3 c For parameter limits, see note c to Table 5-1. d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01

A units, and powers in 1 kW/kvar/kVA units. e The setpoint is operated when the actual phase sequence does not match the indicated phase rotation.

27

f The actual frequency range is 45.00 - 65.00 Hz. g When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

Table 5-25 Setpoint Actions

Action ID

No action

Operate relay #1

Operate relay #2

Operate relay #3

Operate relay #4

Operate relay #5

Operate relay #6

Operate relay #7

Operate relay #8

0

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007

Assert local alarm

Increment counter #1

Increment counter #2

0x3200

0x4000

0x4001

Increment counter #3

Increment counter #4

0x4002

0x4003

Count operating time using counter #1 c

0x4400

Count operating time using counter #2 c

0x4401

Count operating time using counter #3 c

0x4402

Count operating time using counter #4 c

0x4403 c This action converts a common event counter to the time counter, which measures time at 0.1-hour resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter which counts time at

1-second resolution before the corresponding time counter is incremented.

5.12 Pulsing Setpoints

Table 5-26 Pulsing Registers

Relay

Relay #1

Relay #2

Relay #3

Relay #4

Relay #5

Relay #6

Relay #7

Relay #8

Setup registers (see Table 5-27)

2892-2893

2894-2895

2896-2897

2898-2899

2900-2901

2902-2903

2904-2905

2906-2907

Table 5-27 Pulsing Setup Registers

Parameter

Output parameter ID

Number of unit-hours per pulse

Offset

+0

+1

Type R/W

UINT16 R/W

UINT16 R/W

Table 5-28 Pulsing Output Parameters

Pulsing parameter

None kWh import kWh export kvarh import kvarh export kvarh total (absolute) kVAh total

ID

0

1

2

4

5

6

7

Range

See Table 5-28

1-9999

5.13 Relay Operation Control

These registers allow the user to manually override setpoint relay operations. Either relay may be manually forced operated or released using commands sent via communications.

28

NOTES

1. A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for pulsing, it automatically reverts to normal operation.

2. A relay is energized when forced operated, and is de-energized when forced released.

Table 5-29 Relay Operation Control Registers

Parameter

Relay #1 control status

Relay #2 control status

Relay #3 control status

Relay #4 control status

Relay #5 control status

Relay #6 control status

Relay #7 control status

Relay #8 control status

Register

3244

3245

3246

3247

3248

3249

3250

3251

Type R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

Table 5-30 Relay Operation Status

Operation status

Normal operation

Force operate

Force release

Value

0

1

2

Range

See Table 5-30

See Table 5-30

See Table 5-30

See Table 5-30

See Table 5-30

See Table 5-30

See Table 5-30

See Table 5-30

5.14 Min/Max Log

The Min/Max log registers are supported only for compatibility with other models of instruments. Because the Min/Max log is not time stamped in the C191HM, reading these registers returns you only values of the

Min/Max log parameters which you can read directly via extended data registers (see Table 5-16).

Table 5-31 Min/Max Log Windows Registers

Min/Max log window

Min/Max log window #1

Min/Max log window #2

Min/Max log window #3

Min/Max log window #4

Min/Max log window #5

Min/Max log window #6

Min/Max log window #7

Min/Max log window #8

Min/Max log window #9

Min/Max log window #10

Min/Max log window #11

Min/Max log window #12

Registers (see Table 5-32)

4174-4181

4182-4189

4190-4197

4198-4205

4206-4213

4214-4221

4222-4229

4230-4237

4238-4245

4246-4253

4254-4261

4262-4269

Table 5-32 Min/Max Log Window Registers

Parameter Offset Type R/W

Second +0

Minute +1 UINT16 R

Hour

Day

Month

+2

+3

+4

UINT16

UINT16

UINT16

R

R

R

Year +5

Parameter value c

+6, +7 UINT32 R

0

0

0

0

Range

See Table 5-16 c The Min/Max parameter value can be read in one or two registers depending on the value type. For the value length and conversion scales, refer to Table 5-16. The time stamp is not available in the C191HM and is read as zeros.

Table 5-33 Min/Max Log Mapping Register

Parameter

Min/Max log start parameter ID for window #1

Register

4172

Type

UINT16

R/W

R/W

Range

See Table 5-16

29

From 1 to 12 adjacent Min/Max log records can be read at a time via the Min/Max log windows. The starting window #1 can be mapped to any Min/Max log parameter listed in Table 5-16 by writing the parameter ID to the Min/Max log mapping register. This must be written before reading the Min/Max log windows. Note that through Min/Max log windows, you can read only adjacent parameters within the same

Min/Max log data group. Reading parameters outside of the selected Min/Max log data group will return zero.

30

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project