STM32F401xB STM32F401xC ARM Cortex-M4 32b MCU+FPU, 105 DMIPS, Features

STM32F401xB STM32F401xC ARM Cortex-M4 32b MCU+FPU, 105 DMIPS, Features
STM32F401xB STM32F401xC
ARM Cortex-M4 32b MCU+FPU, 105 DMIPS,
256KB Flash/64KB RAM, 10 TIMs, 1 ADC, 11 comm. interfaces
Datasheet - production data
Features
• Core: ARM® 32-bit Cortex™-M4 CPU with
FPU, Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 84 MHz,
memory protection unit, 105 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
• Memories
– Up to 256 Kbytes of Flash memory
– Up to 64 Kbytes of SRAM
• Clock, reset and supply management
– 1.7 V (PDR OFF) or 1.8 V (PDR ON) to
3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
• Power consumption
– Run: 137 µA/MHz (peripheral off)
– Stop (Flash in Stop mode, fast wakeup
time): 42 µA typ @ 25 °C;
65 µA max @25 °C
– Stop (Flash in Deep power down mode,
slow wakeup time): down to 10 µA [email protected]
25 °C; 28 µA max @25 °C
– Standby: 2.4 µA @25 °C / 1.7 V without
RTC; 12 µA @85 °C @1.7 V
– VBAT supply for RTC: 1 µA @25 °C
• 1×12-bit, 2.4 MSPS A/D converter: up to 16
channels
• General-purpose DMA: 16-stream DMA
controllers with FIFOs and burst support
• Up to 10 timers: up to six 16-bit, two 32-bit
timers up to 84 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input, two watchdog
timers (independent and window)
September 2013
This is information on a product in full production.
UFQFPN48
(7 × 7 mm)
WLCSP49
(3 x 3 mm)
LQFP100 (14 × 14 mm)
LQFP64 (10 × 10 mm)
FBGA
UFBGA100
(7 x 7 mm)
• Debug mode
– Serial wire debug (SWD) & JTAG
interfaces
– Cortex-M4 Embedded Trace Macrocell™
• Up to 81 I/O ports with interrupt capability
– All IO ports 5 V tolerant
– Up to 78 fast I/Os up to 42 MHz
• Up to 11 communication interfaces
– Up to 3 × I2C interfaces (1Mbit/s,
SMBus/PMBus)
– Up to 3 USARTs (2 x 10.5 Mbit/s, 1 x
5.25 Mbit/s), ISO 7816 interface, LIN, IrDA,
modem control)
– Up to 4 SPIs (up to 42 Mbits/s at fCPU = 84
MHz), SPI2 and SPI3 with muxed fullduplex I2S to achieve audio class accuracy
via internal audio PLL or external clock
– SDIO interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar
Table 1. Device summary
Reference
STM32F401xB
STM32F401xC
DocID024738 Rev 2
Part number
STM32F401CB, STM32F401RB, STM32F401VB
STM32F401CC, STM32F401RC, STM32F401VC
1/130
www.st.com
Contents
STM32F401xB STM32F401xC
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
3
2/130
Compatibility with STM32F4 family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
ARM® Cortex™-M4 with FPU core with embedded Flash and SRAM . . . 15
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 15
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 16
3.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 18
3.10
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.12
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14.1
Internal power supply supervisor enabled . . . . . . . . . . . . . . . . . . . . . . . 19
3.14.2
Internal power supply supervisor disabled . . . . . . . . . . . . . . . . . . . . . . . 20
3.14.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.4
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.5
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.6
Regulator ON/OFF and internal power supply supervisor availability . . 24
3.15
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25
3.16
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.1
Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DocID024738 Rev 2
STM32F401xB STM32F401xC
Contents
3.18.3
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.4
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.5
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.19
Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.20
Universal synchronous/asynchronous receiver transmitters (USART) . . 29
3.21
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.22
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.23
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.24
Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 31
3.25
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 31
3.26
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.28
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.29
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.30
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2
VCAP1/VCAP2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . . 62
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 63
6.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 63
DocID024738 Rev 2
3/130
4
Contents
7
STM32F401xB STM32F401xC
6.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.7
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 83
6.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 88
6.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.20
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.23
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.24
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 111
6.3.25
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1
7.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
7.1.1
WLCSP49, 7 x 7 mm, 0.4 mm pitch wafer level chip size package . . . 114
7.1.2
UFQFPN48, 7 x 7 mm, 0.5 mm pitch package . . . . . . . . . . . . . . . . . . 116
7.1.3
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package . . . . . . . . 119
7.1.4
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package . . . . . . 122
7.1.5
UFBGA100, 7 x 7 mm, 0.5 mm pitch package . . . . . . . . . . . . . . . . . . 125
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F401xB/STM32F401xC features and peripheral counts . . . . . . . . . . . . . . . . . . . . . 11
Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 24
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32F401xB/STM32F401xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32F401xB/STM32F401xC register boundary addresses . . . . . . . . . . . . . . . . . . . . . . 52
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 61
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 62
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 63
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD =1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) - VDD @ 1.8V . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical and maximum current consumption in run mode, code with data processing
running from flash memory (ART accelerator enabled except prefetch) . . . . . . . . . . . . . . 67
Typical and maximum current consumption in run mode, code with data processing
running from flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical and maximum current consumptions in Stop mode - VDD=1.8V . . . . . . . . . . . . . . 69
Typical and maximum current consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical and maximum current consumption in Standby mode - VDD=1.8V . . . . . . . . . . . . 69
Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . 70
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 70
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Low-power mode wakeup timings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DocID024738 Rev 2
5/130
6
List of tables
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
6/130
STM32F401xB STM32F401xC
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMS characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
EMI characteristics for WLCSP49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
EMI characteristics for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 107
ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 107
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP49, wafer level chip size package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 115
UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 116
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 120
LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 123
UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DocID024738 Rev 2
STM32F401xB STM32F401xC
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM32F401xB/STM32F401xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 20
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . . 23
Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . 24
STM32F401xB/STM32F401xC WLCSP49 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32F401xB/STM32F401xC UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32F401xB/STM32F401xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32F401xB/STM32F401xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32F401xB/STM32F401xC UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typical VBAT current consumption (LSE and RTC ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 104
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 109
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 109
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP49 wafer level chip size package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
WLCSP49 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DocID024738 Rev 2
7/130
8
List of figures
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
8/130
STM32F401xB STM32F401xC
UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
UFQFPN48 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 119
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP64 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 122
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
LQPF100 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Recommended PCB design rules for pads (0.5 mm-pitch BGA) . . . . . . . . . . . . . . . . . . . 126
UFBGA100 package top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DocID024738 Rev 2
STM32F401xB STM32F401xC
1
Introduction
Introduction
This datasheet provides the description of the STM32F401xB/STM32F401xC line of
microcontrollers.
The STM32F401xB/STM32F401xC datasheet should be read in conjunction with the
STM32F401xx reference manual.
The reference manual is available from the STMicroelectronics website www.st.com. It
includes all information concerning Flash memory programming.
For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming
manual (PM0214) available from www.st.com.
DocID024738 Rev 2
9/130
54
Description
2
STM32F401xB STM32F401xC
Description
The STM32F401XB/STM32F401XC device family is based on the high-performance ARM®
Cortex™-M4 32-bit RISC core operating at a frequency of up to 84 MHz. Its Cortex-M4 with
FPU core features a Floating point unit (FPU) single precision which supports all ARM
single-precision data-processing instructions and data types. It also implements a full set of
DSP instructions and a memory protection unit (MPU) which enhances application security.
STM32F401xB/STM32F401xC devices incorporate high-speed embedded memories (Flash
memory up to 256 Kbytes, up to 64 Kbytes of SRAM), and an extensive range of enhanced
I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB
bus matrix.
All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers
including one PWM timer for motor control, two general-purpose 32-bit timers. They also
feature standard and advanced communication interfaces.
•
Up to three I2Cs
•
Up to four SPIs
•
Two full duplex I2S peripherals. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
•
Three USARTs
•
SDIO interface
•
USB 2.0 OTG full speed interface
Refer to Table 2: STM32F401xB/STM32F401xC features and peripheral counts for the
peripherals available for each part number.
The STM32F401xB/STM32F401xC devices operate in the –40 to +105 °C temperature
range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
These features make the STM32F401xB/STM32F401xC microcontrollers suitable for a
wide range of applications:
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
•
Mobile phone sensor hub
Figure 3 shows the general block diagram of the device family.
10/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Description
Table 2. STM32F401xB/STM32F401xC features and peripheral counts
Peripherals
Flash memory in Kbytes
SRAM in
Kbytes
Timers
STM32F401xB
STM32F401xC
128
256
System
64
Generalpurpose
7
Advancedcontrol
1
SPI/ I2S
4/2 (full
duplex)
3/2 (full duplex)
Communication I2C
interfaces
USART
SDIO
3
3
-
1
-
USB OTG FS
GPIOs
12-bit ADC
Number of channels
1
1
36
50
81
36
50
81
1
10
16
10
Maximum CPU frequency
16
84 MHz
Operating voltage
1.7 to 3.6 V
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Operating temperatures
Package
4/2 (full
duplex)
3/2 (full duplex)
Junction temperature: –40 to + 125 °C
WLCSP49
UFQFPN48
LQFP64
UFBGA100
LQFP100
DocID024738 Rev 2
WLCSP49
UFQFPN48
LQFP64
UFBGA100
LQFP100
11/130
54
Description
2.1
STM32F401xB STM32F401xC
Compatibility with STM32F4 family
The STM32F401xB/STM32F401xC is fully software and feature compatible with the
STM32F4 family (STM32F42x, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F401xB/STM32F401xC can be used as drop-in replacement but some slight
changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP100 package
STM32F401
41
42
43
44
45
46
47
48
49
50
PB11 not available anymore
Replaced by V CAP1
58
57
56
55
54
53
52
51
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VCAP1
VSS
VDD
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
41
42
43
44
45
46
47
48
49
50
58
57
56
55
54
53
52
51
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP1
VDD
STM32F405/STM32F415 line
STM32F407/STM32F417 line
STM32F427/STM32F437 line
STM32F429/STM32F439 line
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VSS VDD
VSS VDD
MS31467V2
12/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Description
Figure 2. Compatible board design for LQFP64 package
STM32F401
PB11
VCAP1
VDD
PB2
PB10
46
45
44
43
42
41
40
39
38
37
36
35
34
33
28 29 30 31 32
VDD
VCAP2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VDD
VSS
53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
PB11 not available anymore
36
Replaced by VCAP1
35
34
33
28 29 30 31 32
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VDD
VSS
PB2
PB10
VCAP1
VSS
VDD
53 52 51 50 49
48
47
PC12
PC11
PC10
PA15
PA14
PC12
PC11
PC10
PA15
PA14
STM32F405/STM32F415 line
VCAP increased to 4.7 μf
ESR 1 Ω or below 1
VSS VDD
VSS VDD
MS31468V2
DocID024738 Rev 2
13/130
54
Description
STM32F401xB STM32F401xC
Figure 3. STM32F401xB/STM32F401xC block diagram
JTAG & SW
ETM
MPU
NVIC
D-BUS
DMA2
8 Streams
FIFO
DMA1
8 Streams
FIFO
Flash
up to
256 KB
SRAM 64 KB
AHB2 84 MHz
USB
OTG FS
AHB1 84 MHz
Power managmt
Voltage
regulator
3.3 to 1.2 V
VDD
@VDD
@VDDA
PA[15:0]
PB[15:0]
GPIO PORT A
GPIO PORT B
PC[15:0]
GPIO PORT C
PD[15:0]
GPIO PORT D
FIFO
S-BUS
ACCEL/
CACHE
FPU
PHY
ARM Cortex-M4
84 MHz
I-BUS
AHB bus-matrix 7S4M
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
TRACECLK
TRACED[3:0]
RC HS
POR
reset
RC LS
Int
PLL1&2
Supply
supervision
POR/PDR
BOR
PVD
DP
DM
ID, VBUS, SOF
VDD = 1.7 to 3.6 V
(PDR OFF)
1.8 to 3.6 V
VSS (PDR ON)
VCAP
VDDA, VSSA
NRST
@VDDA @VDD
PE[15:0]
GPIO PORT E
PWR
interface
GPIO PORT H
4 compl. channels TIM1_CH1[1:4]N,
4 channels TIM1_CH1[1:4]ETR,
BKIN as AF
SDIO / MMC
AWU
Backup register
STAMP1
TIM2
32b
4 channels, ETR as AF
TIM3
16b
4 channels, ETR as AF
TIM4
16b
LS
AHB/APB2 AHB/APB1
4 channels, ETR as AF
TIM5
32b
4 channels
smcard
TIM9
16b
1 channel as AF
TIM10
16b
smcard
USART1
irDA
RX, TX, CK as AF
smcard
USART6
irDA
MOSI, MISO,
SCK, NSS as AF
MOSI, MISO,
SCK, NSS as AF
16b
APB2 60MHz
SPI1
SPI4
RX, TX as AF
CTS, RTS as AF
SP2/I2S2
MOSI/SD, MISO/SD_ext, SCK/CK
NSS/WS, MCK as AF
SP3/I2S3
MOSI/SD, MISO/SD_ext, SCK/CK
NSS/WS, MCK as AF
WWDG
APB1
30MHz
APB1 42
MHz
(max)
TIM11
RX, TX, CK,
CTS, RTS as AF
USART2 irDA
APB2 84 MHz
1 channel as AF
VDDREF_ADC
ALARM_OUT
TIM1 / PWM 16b
2 channels as AF
16 analog inputs
OSC32_IN
OSC32_OUT
DMA1
EXT IT. WKUP
FIFO
D[7:0]
CMD, CK as AF
XTAL 32 kHz
RTC
LS
DMA2
VBAT = 1.65 to 3.6 V
@VBAT
CRC
up to 81 AF
OSC_IN
OSC_OUT
WDG 32K
HCLK
APB2CLK
APB1CLK
AHB2PCLK
AHB1PCLK
PH[1:0]
XTAL OSC
4- 16MHz
Reset &
clock
MANAGT
control
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
USART
2MBps
Temperature
sensor
ADC1
IF
@VDDA
MS31144V2
1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 42 MHz.
14/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Functional overview
3
Functional overview
3.1
ARM® Cortex™-M4 with FPU core with embedded Flash and
SRAM
The ARM Cortex-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 with FPU 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F401xB/STM32F401xC family is compatible with all ARM tools and software.
Figure 3 shows the general block diagram of the STM32F401xB/STM32F401xC family.
Note:
Cortex-M4 with FPU is binary compatible with Cortex-M3.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 105 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 84 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
DocID024738 Rev 2
15/130
54
Functional overview
STM32F401xB STM32F401xC
The MPU is optional and can be bypassed for applications that do not need it.
3.4
Embedded Flash memory
The devices embed a Flash memory of up to 256 Kbytes available for storing programs and
data.
3.5
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6
Embedded SRAM
All devices embed:
•
Up to 64 Kbytes of system SRAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states
16/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
3.7
Functional overview
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 4. Multi-AHB matrix
S1
S2
S3
S4
DMA_P2
GP
DMA2
DMA_MEM2
DMA_MEM1
DMA_PI
S-bus
GP
DMA1
S5
M0
ICODE
M1 DCODE
ACCEL
S0
D-bus
I-bus
ARM
Cortex-M4
Flash
256 kB
M2
SRAM1
64 Kbytes
M3
AHB
periph1
APB1
M4
AHB
periph2
APB2
Bus matrix-S
MS31420V1
3.8
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
DocID024738 Rev 2
17/130
54
Functional overview
STM32F401xB STM32F401xC
The DMA can be used with the main peripherals:
3.9
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
SD/SDIO/MMC host interface
•
ADC
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the
Cortex™-M4 with FPU.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.10
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected
to the 16 external interrupt lines.
3.11
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 84 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
18/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Functional overview
buses is 84 MHz while the maximum frequency of the high-speed APB domains is 84 MHz.
The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.12
Boot modes
At startup, boot pins are used to select one out of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using either USART1(PA9/10), USART2(PD5/6), USB OTG FS in device mode (PA11/12)
through DFU (device firmware upgrade), I2C1(PB6/7), I2C2(PB10/3), I2C3(PA8/PB4),
SPI1(PA4/5/6/7), SPI2(PB12/13/14/15) or SPI3(PA15, PC10/11/12).
For more detailed information on the bootloader, refer to Application Note: AN2606.
3.13
Power supply schemes
•
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and PDR_ON pins.
•
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
3.14
Power supply supervisor
3.14.1
Internal power supply supervisor enabled
This feature is available for VDD operating voltage range 1.8 V to 3.6 V
The internal power supply supervisor is enabled by holding PDR_ON high.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
DocID024738 Rev 2
19/130
54
Functional overview
STM32F401xB STM32F401xC
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.14.2
Internal power supply supervisor disabled
This feature is available only on packages featuring the PDR_ON pin.The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 5: Power supply supervisor
interconnection with internal reset OFF.
Figure 5. Power supply supervisor interconnection with internal reset OFF
VDD
External VDD power supply supervisor
Ext. reset controller active when
VDD < 1.7 V
PDR_ON
NRST
Application reset
signal (optional)
VDD
MS31383V3
1. The PRD_ON pin is only available in the WLCSP49 and UFBGA100 packages.
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 6).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
20/130
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
•
The brownout reset (BOR) circuitry must be disabled
•
The embedded programmable voltage detector (PVD) is disabled
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
DocID024738 Rev 2
STM32F401xB STM32F401xC
Functional overview
Figure 6. PDR_ON control with internal reset OFF
V DD
PDR = 1.7 V
time
Reset by other source than
power supply supervisor
NRST
PDR_ON
PDR_ON
time
MS19009V6
3.14.3
Voltage regulator
The regulator has four operating modes:
•
•
3.14.4
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
•
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
•
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
•
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost)
Depending on the package, one or two external ceramic capacitors should be connected on
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the LQFP100 and
UFBGA100 packages.
DocID024738 Rev 2
21/130
54
Functional overview
STM32F401xB STM32F401xC
All packages have the regulator ON feature.
3.14.5
Regulator OFF
The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG
pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode
allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 14: General operating
conditions.
The two 2.2 µF VCAP ceramic capacitors should be replaced by two 100 nF decoupling
capacitors. Refer to Figure 18: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
Figure 7. Regulator OFF
V12
External VCAP_1/2 power
Application reset
supply supervisor
Ext. reset controller active signal (optional)
when VCAP_1/2 < Min V12
VDD
PA0
VDD
NRST
BYPASS_REG
V12
VCAP_1
VCAP_2
ai18498V3
22/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Functional overview
The following conditions must be respected:
Note:
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 8).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 9).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
The minimum value of V12 depends on the maximum frequency targeted in the application
Figure 8. Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization
VDD
PDR = 1.7 V
V12
Min V12
VCAP_1/VCAP_2
time
NRST
time
MSv31179V1
1. This figure is valid whatever the internal reset mode (ON or OFF).
DocID024738 Rev 2
23/130
54
Functional overview
STM32F401xB STM32F401xC
Figure 9. Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization
VDD
PDR = 1.7 V
VCAP_1/VCAP_2
V12
Min V12
time
NRST
PA0 asserted externally
time
MSv31180V1
1. This figure is valid whatever the internal reset mode (ON or OFF).
3.14.6
Regulator ON/OFF and internal power supply supervisor availability
Table 3. Regulator ON/OFF and internal power supply supervisor availability
Package
Regulator ON
Regulator OFF
Power supply
supervisor ON
Power supply
supervisor OFF
UFQFPN48
Yes
No
Yes
Yes
WLCSP49
Yes
No
Yes
PDR_ON set to VDD
Yes
PDR_ON external
control(1)
LQFP64
Yes
No
Yes
No
LQFP100
Yes
No
Yes
No
Yes
PDR_ON set to VDD
Yes
PDR_ON external
control (1)
UFBGA100
Yes
Yes
BYPASS_REG set to BYPASS_REG set to
VSS
VDD
1. Refer to Section 3.14: Power supply supervisor
24/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
3.15
Functional overview
Real-time clock (RTC) and backup registers
The backup domain includes:
•
The real-time clock (RTC)
•
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.16: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.16
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
DocID024738 Rev 2
25/130
54
Functional overview
STM32F401xB STM32F401xC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/
tamper/ time stamp events).
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG
reset, a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp
event occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.17
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note:
26/130
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
DocID024738 Rev 2
STM32F401xB STM32F401xC
3.18
Functional overview
Timers and watchdogs
The devices include one advanced-control timer, seven general-purpose timers and two
watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control and general-purpose timers.
Table 4. Timer feature comparison
Counter Counter Prescaler
Timer type Timer
resolution type
factor
Max
Max
DMA
Capture/
Complementary interface timer
request compare
output
clock
clock
generation channels
(MHz) (MHz)
AdvancedTIM1
control
16-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
Yes
84
84
TIM2,
TIM5
32-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
No
42
84
TIM3,
TIM4
16-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
No
42
84
TIM9
16-bit
Up
Any integer
between 1
and 65536
No
2
No
84
84
TIM10,
TIM11
16-bit
Up
Any integer
between 1
and 65536
No
1
No
84
84
General
purpose
3.18.1
Advanced-control timers (TIM1)
The advanced-control timer (TIM1) can be seen as three-phase PWM generators
multiplexed on 4 independent channels. It has complementary PWM outputs with
programmable inserted dead times. It can also be considered as a complete generalpurpose timer. Its 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, it has the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 supports independent DMA request generation.
DocID024738 Rev 2
27/130
54
Functional overview
3.18.2
STM32F401xB STM32F401xC
General-purpose timers (TIMx)
There are seven synchronizable general-purpose timers embedded in the
STM32F401xB/STM32F401xC devices (see Table 4 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F401xB/STM32F401xC include 4 full-featured general-purpose timers:
TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit autoreload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on
a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4
independent channels for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input capture/output compare/PWMs on the largest
packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10 and TIM11
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10 and TIM11 feature one independent channel, whereas TIM9 has two
independent channels for input capture/output compare, PWM or one-pulse mode
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured
general-purpose timers. They can also be used as simple time bases.
3.18.3
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.18.4
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.18.5
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
28/130
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
DocID024738 Rev 2
STM32F401xB STM32F401xC
3.19
Functional overview
Inter-integrated circuit interface (I²C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus
frequency can be increased up to 1 MHz. For more details about the complete solution,
please contact your local ST sales representative. They support the 7/10-bit addressing
mode and the 7-bit dual addressing mode (as slave). A hardware CRC
generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 5).
Table 5. Comparison of I2C analog and digital filters
Pulse width of
suppressed spikes
3.20
Analog filter
Digital filter
≥ 50 ns
Programmable length from 1 to 15 I2C peripheral clocks
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed three universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART6).
These three interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The USART2 interface communicates at up to
5.25 bit/s.
USART1 and USART2 also provide hardware management of the CTS and RTS signals,
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller.
DocID024738 Rev 2
29/130
54
Functional overview
STM32F401xB STM32F401xC
Table 6. USART feature comparison
USART Standard Modem
SPI
LIN
irDA
name features (RTS/CTS)
master
Smartcard
(ISO 7816)
Max. baud rate Max. baud rate
in Mbit/s
in Mbit/s
(oversampling (oversampling
by 16)
by 8)
APB
mapping
USART1
X
X
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
USART2
X
X
X
X
X
X
2.62
5.25
APB1
(max.
42 MHz)
USART6
X
N.A
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
3.21
Serial peripheral interface (SPI)
The devices feature up to four SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1 and SPI4 can communicate at up to 42 Mbits/s, SPI2 and
SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.22
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.23
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for the CPU.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
30/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Functional overview
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
3.24
Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.25
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
3.26
•
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
4 bidirectional endpoints
•
8 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
DocID024738 Rev 2
31/130
54
Functional overview
3.27
STM32F401xB STM32F401xC
Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4 or TIM5 timer.
3.28
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.29
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.30
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F401xB/STM32F401xC through a small number of ETM pins to an external
hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using
any high-speed channel available. Real-time instruction and data flow activity can be
recorded and then formatted for display on the host computer that runs the debugger
software. TPA hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
32/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
4
Pinouts and pin description
Pinouts and pin description
Figure 10. STM32F401xB/STM32F401xC WLCSP49 pinout
A
VDD
VSS
BOOT0
PB4
PB3
PA15
PA14
B
VBAT
PDR
_ON
PB8
PB5
PA13
VDD
VSS
C
PC14
PC15
PB9
PB6
PA12
PA10
PA11
D
PH0
PH1
PC13
PB7
VSS
PA9
PA8
E
NRST
VSSA
VREF-
PA2
PA3
PB10
PB12
PB15
F
VDDA
VREF+
PA0
PA5
PA6
PA7
VDD
PB14
G
PA1
PA4
PB0
PB1
PB2
VCAP1
PB13
MS31495V1
1. The above figure shows the package bump side.
DocID024738 Rev 2
33/130
54
Pinouts and pin description
STM32F401xB STM32F401xC
PA15
PA14
PA13
PC15-OSC32_OUT
4
33
PA12
PH0-OSC_IN
5
32
PA11
PH1-OSC_OUT
6
31
PA10
NRST
7
30
PA9
VSSA/VREF-
8
29
PA8
VDDA/VREF+
9
28
PB15
PA0
10
27
PB14
PA1
11
26
PB13
PA2
12
13
15
16
17
18
19
20
21 22
23
25
24
PB12
14
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
VCAP1
VSS
VDD
42
41
40
PB3
34
43
PB4
3
44
PB5
PC14-OSC32_IN
PC13
45
PB6
VSS
46
PB7
35
48
1
47
VBAT
PB8
2
PB9
VDD
VSS
37
36
VDD
38
PA3
BOOT0
Figure 11. STM32F401xB/STM32F401xC UFQFPN48 pinout
39
UFQFPN48
MS31150V2
1. The above figure shows the package top view.
34/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Pinouts and pin description
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PA3
VSS
VDD
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREFVDDA/VREF+
PA0
PA1
PA2
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
VCAP1
VSS
VDD
VBAT
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VSS
Figure 12. STM32F401xB/STM32F401xC LQFP64 pinout
MS31149V2
1. The above figure shows the package top view.
DocID024738 Rev 2
35/130
54
Pinouts and pin description
STM32F401xB STM32F401xC
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 13. STM32F401xB/STM32F401xC LQFP100 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD
VSS
VCAP2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VCAP1
VSS
VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
PH0/OSC_IN
PH1/OSC_OUT
NRST
PC0
PC1
PC2
PC3
VDD
VSSA/VREFVREF+
VDDA
PA0
PA1
PA2
MS31151V2
1. The above figure shows the package top view.
36/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Pinouts and pin description
Figure 14. STM32F401xB/STM32F401xC UFBGA100 pinout
2
1
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
PC13
PE5
ANTI_TAMP
PE0
VDD
PB5
PD2
PD0
PC11
C
D
E
PC14
OSC32_IN
PE6
PC15
VBAT
OSC32_OUT
VCAP2
PA10
VSS
PA9
PA8
PC9
BYPASS_REG
PC8
PC7
PC6
F
PH0
OSC_IN
VSS
VSS
VSS
G
PH1
VDD
OSC_OUT
VDD
VDD
H
PC0
NRST
PDR_ON
PD15
PD14
PD13
J
VSSA
PC1
PC2
PD12
PD11
PD10
K
VREF-
PC3
PA2
PA5
PC4
L
VREF+
PA0
WKUP
PA3
PA6
PC5
PB2
M
VDDA
PA1
PA4
PA7
PB0
PB1
PD9
PB11
PB15
PB14
PB13
PE8
PE10
PE12
PB10
VCAP1
PB12
PE7
PE9
PE11
PE13
PE14
PE15
MS33152V1
1. This figure shows the package top view
DocID024738 Rev 2
37/130
54
Pinouts and pin description
STM32F401xB STM32F401xC
Table 7. Legend/abbreviations used in the pinout table
Name
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin name
S
Supply pin
I
Input only pin
I/O
Input/ output pin
FT
5 V tolerant I/O
B
Dedicated BOOT0 pin
NRST
Bidirectional reset pin with embedded weak pull-up resistor
Pin type
I/O structure
Notes
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
-
1
B2
PE2
I/O FT
-
SPI4_SCK, TRACECLK,
EVENTOUT
-
-
-
-
2
A1
PE3
I/O FT
-
TRACED0, EVENTOUT
-
-
-
-
3
B1
PE4
I/O FT
-
SPI4_NSS, TRACED1,
EVENTOUT
-
-
-
-
4
C2
PE5
I/O FT
-
SPI4_MISO, TIM9_CH1,
TRACED2, EVENTOUT
-
-
-
-
5
D2
PE6
I/O FT
-
SPI4_MOSI, TIM9_CH2,
TRACED3, EVENTOUT
-
-
-
-
-
D3
VSS
S
-
-
-
-
-
-
-
-
C4
VDD
S
-
-
-
-
1
B7
1
6
E2
VBAT
S
-
-
-
-
2
D5
2
7
C1
PC13ANTI_TAMP
38/130
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions
Alternate functions
I/O FT (2) (3) EVENTOUT,
DocID024738 Rev 2
Additional
functions
RTC_TAMP1,
RTC_OUT, RTC_TS
STM32F401xB STM32F401xC
Pinouts and pin description
WLCSP49
LQFP64
LQFP100
UFBGA100
3
C7
3
8
D1
PC14/
OSC32_IN
(PC14)
I/O FT
4
C6
4
9
E1
PC15/
OSC32_OUT
(PC15)
I/O FT
-
-
-
10
F2
VSS
S
-
-
-
-
-
-
-
11
G2
VDD
S
-
-
-
-
5
D7
5
12
F1
PH0/ OSC_IN
(PH0)
I/O FT
(4)
EVENTOUT
OSC_IN
6
D6
6
13
G1
PH1/
OSC_OUT
(PH1)
I/O FT
(4)
EVENTOUT
OSC_OUT
7
E7
7
14
H2
NRST
I/O FT
-
EVENTOUT
-
-
-
8
15
H1
PC0
I/O FT
-
EVENTOUT
ADC1_IN10
-
-
9
16
J2
PC1
I/O FT
-
EVENTOUT
ADC1_IN11
-
-
10
17
J3
PC2
I/O FT
-
SPI2_MISO, I2S2ext_SD,
EVENTOUT
ADC1_IN12
-
-
11
18
K2
PC3
I/O FT
-
SPI2_MOSI/I2S2_SD,
EVENTOUT
ADC1_IN13
-
-
-
19
-
VDD
I/O FT
-
EVENTOUT
8
E6
12
20
-
VSSA/VREF-
S
-
-
-
-
-
-
-
-
J1
VSSA
S
-
-
-
-
-
-
-
-
K1
VREF-
S
-
-
-
-
9
-
13
-
-
VDDA/VREF+
S
-
-
-
-
-
-
-
21
L1
VREF+
S
-
-
-
-
-
F7
-
22
M1
VDDA
S
-
-
-
-
10
F6
14
23
L2
PA0/WKUP
(PA0)
I/O FT
(5)
11
G7 15
24
M2
PA1
I/O FT
12
E5
25
K3
PA2
I/O FT
16
Notes
UQFN48
Pin name
(function
after reset)(1)
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
(2) (3)
(4)
(2) (3)
(4)
Alternate functions
Additional
functions
EVENTOUT
OSC32_IN
EVENTOUT
OSC32_OUT
-
USART2_CTS,
TIM2_CH1/TIM2_ETR,
TIM5_CH1, EVENTOUT
ADC1_IN0, WKUP
-
USART2_RTS, TIM2_CH2,
TIM5_CH2, EVENTOUT
ADC1_IN1
-
USART2_TX, TIM2_CH3,
TIM5_CH3, TIM9_CH1,
EVENTOUT
ADC1_IN2
DocID024738 Rev 2
39/130
54
Pinouts and pin description
STM32F401xB STM32F401xC
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
13
E4
17
26
L3
PA3
-
-
18
27
-
VSS
S
-
-
-
-
-
-
19
28
-
VDD
S
-
-
-
-
-
-
-
-
E3
BYPASS_
REG
I
FT
-
-
-
I/O FT
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
-
Alternate functions
USART2_RX, TIM2_CH4,
TIM5_CH4, TIM9_CH2,
EVENTOUT
Additional
functions
ADC1_IN3
14
G6 20
29
M3
PA4
I/O FT
-
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK, EVENTOUT
ADC1_IN4
15
F5
21
30
K4
PA5
I/O FT
-
SPI1_SCK,
TIM2_CH1/TIM2_ETR,
EVENTOUT
ADC1_IN5
16
F4
22
31
L4
PA6
I/O FT
-
SPI1_MISO, TIM1_BKIN,
TIM3_CH1, EVENTOUT
ADC1_IN6
17
F3
23
32
M4
PA7
I/O FT
-
SPI1_MOSI, TIM1_CH1N,
TIM3_CH2, EVENTOUT
ADC1_IN7
-
-
24
33
K5
PC4
I/O FT
-
EVENTOUT
ADC1_IN14
-
-
25
34
L5
PC5
I/O FT
-
EVENTOUT
ADC1_IN15
18
G5 26
35
M5
PB0
I/O FT
-
TIM1_CH2N, TIM3_CH3,
EVENTOUT
ADC1_IN8
19
G4 27
36
M6
PB1
I/O FT
-
TIM1_CH3N, TIM3_CH4,
EVENTOUT
ADC1_IN9
20
G3 28
37
L6
PB2/BOOT1
(PB2)
I/O
B
-
EVENTOUT
-
-
-
-
38
M7
PE7
I/O FT
-
TIM1_ETR, EVENTOUT
-
-
-
-
39
L7
PE8
I/O FT
-
TIM1_CH1N, EVENTOUT
-
-
-
-
40
M8
PE9
I/O FT
-
TIM1_CH1, EVENTOUT
-
-
-
-
41
L8
PE10
I/O FT
-
TIM1_CH2N, EVENTOUT
-
-
-
-
42
M9
PE11
I/O FT
-
SPI4_NSS, TIM1_CH2,
EVENTOUT
-
-
-
-
43
L9
PE12
I/O FT
-
SPI4_SCK, TIM1_CH3N,
EVENTOUT
-
-
-
-
44
M10
PE13
I/O FT
-
SPI4_MISO, TIM1_CH3,
EVENTOUT
-
40/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Pinouts and pin description
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
-
45
M11
PE14
I/O FT
-
SPI4_MOSI, TIM1_CH4,
EVENTOUT
-
-
-
-
46
M12
PE15
I/O FT
-
TIM1_BKIN, EVENTOUT
-
21
E3
29
47
L10
PB10
I/O FT
-
SPI2_SCK/I2S2_CK,
I2C2_SCL, TIM2_CH3,
EVENTOUT
-
-
-
-
-
K9
PB11
I/O FT
-
EVENTOUT
-
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Alternate functions
Additional
functions
22
G2 30
48
L11
VCAP1
S
-
-
-
-
23
D3
31
49
F12
VSS
S
-
-
-
-
24
F2
32
50
G12
VDD
S
-
-
-
-
25
E2
33
51
L12
PB12
I/O FT
-
SPI2_NSS/I2S2_WS,
I2C2_SMBA, TIM1_BKIN,
EVENTOUT
-
26
G1 34
52
K12
PB13
I/O FT
-
SPI2_SCK/I2S2_CK,
TIM1_CH1N, EVENTOUT
-
27
F1
35
53
K11
PB14
I/O FT
-
SPI2_MISO, I2S2ext_SD,
TIM1_CH2N, EVENTOUT
-
28
E1
36
54
K10
PB15
I/O FT
-
SPI2_MOSI/I2S2_SD,
TIM1_CH3N, EVENTOUT
RTC_REFIN
-
-
-
55
-
PD8
I/O FT
-
EVENTOUT
-
-
-
-
56
K8
PD9
I/O FT
-
EVENTOUT
-
-
-
-
57
J12
PD10
I/O FT
-
EVENTOUT
-
-
-
-
58
J11
PD11
I/O FT
-
EVENTOUT
-
-
-
-
59
J10
PD12
I/O FT
-
TIM4_CH1, EVENTOUT
-
-
-
-
60
H12
PD13
I/O FT
-
TIM4_CH2, EVENTOUT
-
-
-
-
61
H11
PD14
I/O FT
-
TIM4_CH3, EVENTOUT
-
-
-
-
62
H10
PD15
I/O FT
-
TIM4_CH4, EVENTOUT
-
-
-
37
63
E12
PC6
I/O FT
-
I2S2_MCK, USART6_TX,
TIM3_CH1, SDIO_D6,
EVENTOUT
-
-
-
38
64
E11
PC7
I/O FT
-
I2S3_MCK, USART6_RX,
TIM3_CH2, SDIO_D7,
EVENTOUT
-
DocID024738 Rev 2
41/130
54
Pinouts and pin description
STM32F401xB STM32F401xC
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
39
65
E10
PC8
I/O FT
-
USART6_CK, TIM3_CH3,
SDIO_D0, EVENTOUT
-
-
-
40
66
D12
PC9
I/O FT
-
I2S_CKIN, I2C3_SDA,
TIM3_CH4, SDIO_D1,
MCO_2, EVENTOUT
-
29
D1
41
67
D11
PA8
I/O FT
-
I2C3_SCL, USART1_CK,
TIM1_CH1, OTG_FS_SOF,
MCO_1, EVENTOUT
-
30
D2
42
68
D10
PA9
I/O FT
-
I2C3_SMBA, USART1_TX,
TIM1_CH2, EVENTOUT
OTG_FS_VBUS
31
C2
43
69
C12
PA10
I/O FT
-
USART1_RX, TIM1_CH3,
OTG_FS_ID, EVENTOUT
-
32
C1
44
70
B12
PA11
I/O FT
-
USART1_CTS, USART6_TX,
TIM1_CH4, OTG_FS_DM,
EVENTOUT
-
33
C3
45
71
A12
PA12
I/O FT
-
USART1_RTS, USART6_RX,
TIM1_ETR, OTG_FS_DP,
EVENTOUT
-
34
B3
46
72
A11
PA13 (JTMSSWDIO)
I/O FT
-
JTMS-SWDIO, EVENTOUT
-
-
-
-
73
C11
VCAP2
S
-
-
-
-
35
B1
47
74
F11
VSS
S
-
-
-
-
36
-
48
75
G11
VDD
S
-
-
-
-
-
B2
-
-
-
VDD
S
-
-
-
-
37
A1
49
76
A10
PA14 (JTCKSWCLK)
I/O FT
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Alternate functions
Additional
functions
-
JTCK-SWCLK, EVENTOUT
-
-
38
A2
50
77
A9
PA15 (JTDI)
I/O FT
-
JTDI, SPI1_NSS,
SPI3_NSS/I2S3_WS,
TIM2_CH1/TIM2_ETR, JTDI,
EVENTOUT
-
-
51
78
B11
PC10
I/O FT
-
SPI3_SCK/I2S3_CK,
SDIO_D2, EVENTOUT
-
-
-
52
79
C10
PC11
I/O FT
-
I2S3ext_SD, SPI3_MISO,
SDIO_D3, EVENTOUT
-
-
-
53
80
B10
PC12
I/O FT
-
SPI3_MOSI/I2S3_SD,
SDIO_CK, EVENTOUT
-
-
-
-
81
C9
PD0
I/O FT
-
EVENTOUT
-
42/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Pinouts and pin description
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
-
82
B9
PD1
I/O FT
-
EVENTOUT
-
-
-
54
83
C8
PD2
I/O FT
-
TIM3_ETR, SDIO_CMD,
EVENTOUT
-
-
-
-
84
B8
PD3
I/O FT
-
SPI2_SCK/I2S2_CK,
USART2_CTS, EVENTOUT
-
-
-
-
85
B7
PD4
I/O FT
-
USART2_RTS, EVENTOUT
-
-
-
-
86
A6
PD5
I/O FT
-
USART2_TX, EVENTOUT
-
-
-
-
87
B6
PD6
I/O FT
-
SPI3_MOSI/I2S3_SD,
USART2_RX, EVENTOUT
-
-
-
-
88
A5
PD7
I/O FT
-
USART2_CK, EVENTOUT
-
A8
PB3
(JTDO-SWO)
-
JTDO-SWO, SPI1_SCK,
SPI3_SCK/I2S3_CK,
I2C2_SDA, TIM2_CH2,
EVENTOUT
-
A7
PB4
(NJTRST)
-
NJTRST, SPI1_MISO,
SPI3_MISO, I2S3ext_SD,
I2C3_SDA, TIM3_CH1,
EVENTOUT
-
-
39
40
A3
A4
55
56
89
90
I/O FT
I/O FT
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Alternate functions
Additional
functions
41
B4
57
91
C5
PB5
I/O FT
-
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
I2C1_SMBA, TIM3_CH2,
EVENTOUT
42
C4
58
92
B5
PB6
I/O FT
-
I2C1_SCL, USART1_TX,
TIM4_CH1, EVENTOUT
-
43
D4
59
93
B4
PB7
I/O FT
-
I2C1_SDA, USART1_RX,
TIM4_CH2, EVENTOUT
-
44
A5
60
94
A4
BOOT0
45
B5
61
95
A3
PB8
I
B
-
-
VPP
I/O FT
-
I2C1_SCL, TIM4_CH3,
TIM10_CH1, SDIO_D4,
EVENTOUT
-
-
46
C5
62
96
B3
PB9
I/O FT
-
SPI2_NSS/I2S2_WS,
I2C1_SDA, TIM4_CH4,
TIM11_CH1, SDIO_D5,
EVENTOUT
-
-
-
97
C3
PE0
I/O FT
-
TIM4_ETR, EVENTOUT
-
-
-
-
98
A2
PE1
I/O FT
-
EVENTOUT
-
47
A6
63
99
-
VSS
S
-
-
DocID024738 Rev 2
-
-
43/130
54
Pinouts and pin description
STM32F401xB STM32F401xC
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Notes
Additional
functions
FT
-
-
-
-
-
-
UFBGA100
-
LQFP100
S
LQFP64
VDD
WLCSP49
-
UQFN48
Pin type
Alternate functions
I
Pin name
(function
after reset)(1)
-
B6
-
-
H3
PDR_ON
48
A7
64 100
I/O structure
Pin Number
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F401xx reference manual .
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode),
then PA0 is used as an internal Reset (active low)
44/130
DocID024738 Rev 2
Table 9. Alternate function mapping
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PA0
-
TIM2_CH1/
TIM2_ETR
TIM5_CH1
-
-
-
-
USART2_CTS
-
-
-
-
-
-
-
EVENT
OUT
PA1
-
TIM2_CH2
TIM5_CH2
-
-
-
-
USART2_RTS
-
-
-
-
-
-
-
EVENT
OUT
PA2
-
TIM2_CH3
TIM5_CH3
TIM9_CH1
-
-
-
USART2_TX
-
-
-
-
-
-
-
EVENT
OUT
PA3
-
TIM2_CH4
TIM5_CH4
TIM9_CH2
-
-
USART2_RX
-
-
-
-
-
-
-
EVENT
OUT
PA4
-
-
-
-
-
SPI1_NSS
SPI3_NSS/
I2S3_WS
USART2_CK
-
-
-
-
-
-
-
EVENT
OUT
PA5
-
TIM2_CH1/
TIM2_ETR
-
-
-
SPI1_SCK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA6
-
TIM1_BKIN
TIM3_CH1
-
-
SPI1_MISO
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA7
-
TIM1_CH1N
TIM3_CH2
-
-
SPI1_MOSI
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA8
MCO_1
TIM1_CH1
-
-
I2C3_SCL
-
-
USART1_CK
-
-
OTG_FS_SOF
-
-
-
-
EVENT
OUT
PA9
-
TIM1_CH2
-
-
I2C3_SMBA
-
-
USART1_TX
-
-
OTG_FS_VBU
S
-
-
--
-
EVENT
OUT
PA10
-
TIM1_CH3
-
-
-
-
-
USART1_RX
-
-
OTG_FS_ID
-
-
-
-
EVENT
OUT
PA11
-
TIM1_CH4
-
-
-
-
-
USART1_CTS
USART6_TX
-
OTG_FS_DM
-
-
-
-
EVENT
OUT
PA12
-
TIM1_ETR
-
-
-
-
-
USART1_RTS
USART6_RX
-
OTG_FS_DP
-
-
-
-
EVENT
OUT
PA13
JTMS_
SWDIO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA14
JTCK_
SWCLK
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA15
JTDI
TIM2_CH1/
TIM2_ETR
-
-
-
SPI1_NSS
SPI3_NSS/
I2S3_WS
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 2
Port A
Port
SDIO
45/130
Pinouts and pin description
AF00
STM32F401xB STM32F401xC
.
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PB0
-
TIM1_CH2N
TIM3_CH3
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB1
-
TIM1_CH3N
TIM3_CH4
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB3
JTDO-SWO
TIM2_CH2
-
-
-
SPI1_SCK
SPI3_SCK/
I2S3_CK
-
-
I2C2_SDA
-
-
-
-
-
EVENT
OUT
PB4
JTRST
-
TIM3_CH1
-
-
SPI1_MISO
SPI3_MISO
I2S3ext_SD
-
I2C3_SDA
-
-
-
-
-
EVENT
OUT
PB5
-
-
TIM3_CH2
-
I2C1_SMBA
SPI1_MOSI
SPI3_MOSI/
I2S3_SD
-
-
-
-
-
-
-
-
EVENT
OUT
PB6
-
-
TIM4_CH1
-
I2C1_SCL
-
-
USART1_TX
-
-
-
-
-
-
-
EVENT
OUT
PB7
-
-
TIM4_CH2
-
I2C1_SDA
-
-
USART1_RX
-
-
-
-
-
-
-
EVENT
OUT
PB8
-
-
TIM4_CH3
TIM10_CH1
I2C1_SCL
-
-
-
-
-
-
-
SDIO_D4
-
-
EVENT
OUT
PB9
-
-
TIM4_CH4
TIM11_CH1
I2C1_SDA
SPI2_NSS/
I2S2_WS
-
-
-
-
-
-
SDIO_D5
-
-
EVENT
OUT
PB10
-
TIM2_CH3
-
-
I2C2_SCL
SPI2_SCK/
I2S2_CK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB12
-
TIM1_BKIN
-
-
I2C2_SMBA
SPI2_NSS/
I2S2_WS
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB13
-
TIM1_CH1N
-
-
-
SPI2_SCK/
I2S2_CK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB14
-
TIM1_CH2N
-
-
-
SPI2_MISO
I2S2ext_SD
-
-
-
-
-
-
-
-
EVENT
OUT
PB15
RTC_REFIN
TIM1_CH3N
-
-
-
SPI2_MOSI/
I2S2_SD
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 2
Port B
Port
SDIO
STM32F401xB STM32F401xC
AF00
Pinouts and pin description
46/130
Table 9. Alternate function mapping (continued)
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PC0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC2
-
-
-
-
-
SPI2_MISO
I2S2ext_SD
-
-
-
-
-
-
-
-
EVENT
OUT
PC3
-
-
-
-
-
SPI2_MOSI/
I2S2_SD
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC6
-
--
TIM3_CH1
-
-
I2S2_MCK
-
-
USART6_TX
-
-
-
SDIO_D6
-
-
EVENT
OUT
PC7
-
TIM3_CH2
-
-
-
I2S3_MCK
-
USART6_RX
-
-
-
SDIO_D7
-
-
EVENT
OUT
PC8
-
-
TIM3_CH3
-
-
-
-
-
USART6_CK
-
-
-
SDIO_D0
-
-
EVENT
OUT
PC9
MCO_2
-
TIM3_CH4
-
I2C3_SDA
I2S_CKIN
-
-
-
-
-
-
SDIO_D1
-
-
EVENT
OUT
PC10
-
-
-
-
-
-
SPI3_SCK/
I2S3_CK
-
-
-
-
-
SDIO_D2
-
-
EVENT
OUT
PC11
-
-
-
-
-
I2S3ext_SD
SPI3_MISO
-
-
-
-
-
SDIO_D3
-
-
EVENT
OUT
PC12
-
-
-
-
-
-
SPI3_MOSI/
I2S3_SD
-
-
-
-
-
SDIO_CK
-
-
EVENT
OUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 2
Port C
Port
SDIO
47/130
Pinouts and pin description
AF00
STM32F401xB STM32F401xC
Table 9. Alternate function mapping (continued)
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PD0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD2
-
-
TIM3_ETR
-
-
-
-
-
-
-
-
-
SDIO_
CMD
-
-
EVENT
OUT
PD3
-
-
-
-
-
SPI2_SCK/
I2S2_CK
-
USART2_
CTS
--
-
-
-
-
-
-
EVENT
OUT
PD4
-
-
-
-
-
-
-
USART2_
RTS
-
-
-
-
-
-
EVENT
OUT
PD5
-
-
-
-
-
-
-
USART2_TX
-
-
-
-
-
-
-
EVENT
OUT
PD6
-
-
-
-
-
SPI3_MOSI/
I2S3_SD
-
USART2_RX
-
-
-
-
-
-
-
EVENT
OUT
PD7
-
-
-
-
-
-
-
USART2_CK
-
-
-
-
-
-
-
EVENT
OUT
PD8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD12
-
-
TIM4_CH1
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD13
-
-
TIM4_CH2
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD14
-
-
TIM4_CH3
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD15
-
-
TIM4_CH4
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 2
Port D
Port
SDIO
STM32F401xB STM32F401xC
AF00
Pinouts and pin description
48/130
Table 9. Alternate function mapping (continued)
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PE0
-
-
TIM4_ETR
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE1
-
TIM1_CH2N
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE2
TRACECLK
-
-
-
-
SPI4_SCK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE3
TRACED0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE4
TRACED1
-
-
-
-
SPI4_NSS
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE5
TRACED2
-
-
TIM9_CH1
-
SPI4_MISO
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE6
TRACED3
-
-
TIM9_CH2
-
SPI4_MOSI
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE7
-
TIM1_ETR
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE8
-
TIM1_CH1N
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE9
-
TIM1_CH1
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE10
-
TIM1_CH2N
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE11
-
TIM1_CH2
-
-
-
SPI4_NSS
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE12
-
TIM1_CH3N
-
-
-
SPI4_SCK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE13
-
TIM1_CH3
-
-
-
SPI4_MISO
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE14
-
TIM1_CH4
-
-
-
SPI4_MOSI
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE15
-
TIM1_BKIN
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 2
Port E
Port
SDIO
49/130
Pinouts and pin description
AF00
STM32F401xB STM32F401xC
Table 9. Alternate function mapping (continued)
AF00
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
Port H
Port
SDIO
Pinouts and pin description
50/130
Table 9. Alternate function mapping (continued)
DocID024738 Rev 2
STM32F401xB STM32F401xC
STM32F401xB STM32F401xC
5
Memory mapping
Memory mapping
The memory map is shown in Figure 15.
Figure 15. Memory map
Reserved
0xE010 0000 - 0xFFFF FFFF
Cortex-M4 internal
peripherals
0xE000 0000 - 0xE00F FFFF
0xDFFF FFFF
Reserved
0x5004 0000
0x5003 FFFF
AHB2
Reserved
0xFFFF FFFF
0xE000 0000
0xDFFF FFFF
512-Mbyte
block 7
Cortex-M4's
internal
peripherals
0x5000 0000
0x4002 6800 - 0x4FFF FFFF
0x4002 67FF
AHB1
512-Mbyte
block 6
Not used
0xC000 0000
0xBFFF FFFF
0x4002 0000
Reserved
0x4001 4C00 - 0x4001 FFFF
0x4001 4BFF
Reserved
0x6000 0000
0x5FFF FFFF
APB2
512-Mbyte
block 2
Peripherals
0x4000 0000
0x3FFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
0x1FFF FFFF
512-Mbyte
block 0
Code
0x0000 0000
Reserved
0x2001 0000 - 0x3FFF FFFF
SRAM (64 KB aliased
by bit-banding)
0x2000 0000 - 0x2000 FFFF
Reserved
0x1FFF C008 - 0x1FFF FFFF
Option bytes
0x1FFF C000 - 0x1FFF C007
Reserved
System memory
0x1FFF 0000 - 0x1FFF 7A0F
0x4001 0000
0x4000 7400 - 0x4000 FFFF
0x4000 73FF
0x1FFF 7A10 - 0x1FFF BFFF
Reserved
0x0804 0000 - 0x1FFE FFFF
Flash memory
0x0800 0000 - 0x0803 FFFF
Reserved
0x0004 0000 - 0x07FF FFFF
Aliased to Flash, system
memory or SRAM depending
on the BOOT pins
Reserved
APB1
0x0000 0000 - 0x0003 FFFF
0x4000 0000
MS31496V1
DocID024738 Rev 2
51/130
54
Memory mapping
STM32F401xB STM32F401xC
Table 10. STM32F401xB/STM32F401xC register boundary addresses
Bus
Cortex-M4
AHB2
AHB1
52/130
Boundary address
Peripheral
0xE010 0000 - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0x5004 0000 - 0xDFFF FFFF
Reserved
0x5000 0000 - 0x5003 FFFF
USB OTG FS
0x4002 6800 - 0x4FFF FFFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0x4002 5000 - 0x4002 4FFF
Reserved
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0x4002 3400 - 0x4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2000 - 0x4002 2FFF
Reserved
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 1400 - 0x4002 1BFF
Reserved
0x4002 1000 - 0x4002 13FF
GPIOE
0x4002 0C00 - 0x4002 0FFF
GPIOD
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
0x4001 4C00- 0x4001 FFFF
Reserved
DocID024738 Rev 2
STM32F401xB STM32F401xC
Memory mapping
Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)
Bus
APB2
Boundary address
Peripheral
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
TIM10
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
SPI4
0x4001 3000 - 0x4001 33FF
SPI1
0x4001 2C00 - 0x4001 2FFF
SDIO
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
TIM8
0x4001 0000 - 0x4001 03FF
TIM1
0x4000 7400 - 0x4000 FFFF
Reserved
DocID024738 Rev 2
53/130
54
Memory mapping
STM32F401xB STM32F401xC
Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)
Bus
APB1
54/130
Boundary address
Peripheral
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6000 - 0x4000 6FFF
Reserved
0x4000 5C00 - 0x4000 5FFF
I2C3
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 4800 - 0x4000 53FF
Reserved
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
I2S3ext
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
I2S2ext
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 1000 - 0x4000 27FF
Reserved
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0800 - 0x4000 0BFF
TIM4
0x4000 0400 - 0x4000 07FF
TIM3
0x4000 0000 - 0x4000 03FF
TIM2
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
Figure 16. Pin loading conditions
MCU pin
C = 50 pF
MS19011V2
DocID024738 Rev 2
55/130
112
Electrical characteristics
6.1.5
STM32F401xB STM32F401xC
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 17. Input voltage measurement
MCU pin
VIN
MS19010V2
56/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
6.1.6
Electrical characteristics
Power supply scheme
Figure 18. Power supply scheme
VBAT
VBAT =
1.65 to 3.6V
GPIOs
IN
VCAP_1
VCAP_2
VDD
1/2/...4/ 5
VSS
1/2/...4 / 5
6 × 100 nF
+ 1 × 4.7 μF
Level shifter
OUT
2 × 2.2 μF or 1 × 4.7 μF
VDD
Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers)
Power
switch
IO
Logic
Kernel logic
(CPU, digital
& RAM)
Voltage
regulator
Flash memory
BYPASS_REG
PDR_ON
VDD
VDDA
VREF
100 nF
+ 1 μF
Reset
controller
100 nF
+ 1 μF
VREF+
VREF-
ADC
Analog:
RCs,
PLL,..
VSSA
MS31488V1
1. To connect PDR_ON pin, refer to Section 3.14: Power supply supervisor.
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
3. VCAP_2 pad is only available on LQFP100 and UFBGA100 packages.
4. VDDA=VDD and VSSA=VSS.
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
DocID024738 Rev 2
57/130
112
Electrical characteristics
6.1.7
STM32F401xB STM32F401xC
Current consumption measurement
Figure 19. Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 11. Voltage characteristics
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
–0.3
4.0
Input voltage on FT pins(2)
VSS–0.3
VDD+4.0
Input voltage on any other pin
VSS–0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
VIN
|ΔVDDx|
|VSSX −VSS|
VESD(HBM)
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
58/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 12. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)(1)
160
Σ IVSS
(1)
-160
Total current out of sum of all VSS_x ground lines (sink)
IVDD
Maximum current into each VDD_x power line (source)
(1)
100
IVSS
Maximum current out of each VSS_x ground line (sink)(1)
-100
Output current sunk by any I/O and control pin
IIO
25
Output current sourced by any I/O and control pin
Total output current sunk by sum of all I/O and control pins
ΣIIO
-25
(2)
ΣIINJ(PIN)
Injected current on FT pins
mA
120
Total output current sourced by sum of all I/Os and control pins(2)
IINJ(PIN) (3)
Unit
-120
(4)
–5/+0
Injected current on NRST and B pins (4)
Total injected current (sum of all I/O and control pins)(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 13. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Value
Unit
–65 to +150
°C
125
°C
Maximum junction temperature
6.3
Operating conditions
6.3.1
General operating conditions
Table 14. General operating conditions
Symbol
fHCLK
Parameter
Internal AHB clock frequency
Conditions
Min
Typ
Max
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x01
0
-
60
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x10
0
-
84
fPCLK1
Internal APB1 clock frequency
0
-
42
fPCLK2
Internal APB2 clock frequency
0
-
84
DocID024738 Rev 2
Unit
MHz
59/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 14. General operating conditions (continued)
Symbol
VDD
Parameter
Standard operating voltage
Analog operating voltage
(ADC limited to 1.2 M
(2) samples)
VDDA
(3)
VBAT
Conditions
Analog operating voltage
(ADC limited to 2.4 M
samples)
V12
Regulator OFF: 1.2 V external Max. frequency 60 MHz.
voltage must be supplied on
Max. frequency 84 MHz.
VCAP_1/VCAP_2 pins
-
2.4
2.4
-
3.6
1.65
-
3.6
1.14
1.2
1.2
1.26
1.32
2 V ≤ VDD ≤ 3.6 V
–0.3
-
5.5
VDD ≤ 2 V
–0.3
-
5.2
0
-
5.5
-
-
625
-
-
385
-
-
313
-
-
465
-
-
323
–40
-
85
–40
-
105
–40
-
105
–40
-
125
6 suffix version
–40
-
105
7 suffix version
–40
-
125
WLCSP49
Maximum allowed package
LQFP64
power dissipation for suffix 7(7)
LQFP100
UFBGA100
Ambient temperature for 6
suffix version
Maximum power dissipation
Ambient temperature for 7
suffix version
Maximum power dissipation
Junction temperature range
1.8(1)
1.1
UFQFPN48
TJ
3.6
Low power dissipation
Low power dissipation
(8)
(8)
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
power supply supervisor disabled).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
5. Tested in production
6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
60/130
Unit
V
VOS[1:0] bits in PWR_CR register = 0x10
1.20(5) 1.26 1.32(5)
Max frequency 84 MHz
Input voltage on B pin
TA
-
VOS[1:0] bits in PWR_CR register = 0x01
1.08(5) 1.14 1.20(5)
Max frequency 60 MHz
V12
PD
Max
Must be the same potential as VDD(4)
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2
pins
VIN
Typ
(1)
1.8
Backup operating voltage
Input voltage on RST and FT
pins(6)
Min
DocID024738 Rev 2
mW
°C
STM32F401xB STM32F401xC
Electrical characteristics
Table 15. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
VDD =1.8 to
2.1 V(4)
Conversion
time up to
1.2 Msps
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
VDD = 2.7 to
3.6 V(6)
Conversion
time up to
2.4 Msps
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Possible
Flash
memory
operations
Clock output
frequency on
I/O pins(3)
84 MHz with 4
wait states
– No I/O
up to 30 MHz
compensation
8-bit erase
and program
operations
only
22 MHz
84 MHz with 3
wait states
– No I/O
up to 30 MHz
compensation
16-bit erase
and program
operations
24 MHz
84 MHz with 3
wait states
– I/O
compensation up to 48 MHz
works
16-bit erase
and program
operations
84 MHz with 2
wait states
– up to
84 MHz
when VDD =
– I/O
3.0 to 3.6 V
compensation
– up to
works
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
20 MHz
(5)
30 MHz
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 56: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
power supply supervisor disabled).
5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of
D- and D+ pins will be degraded between 2.7 and 3 V.
DocID024738 Rev 2
61/130
112
Electrical characteristics
6.3.2
STM32F401xB STM32F401xC
VCAP1/VCAP2 external capacitors
Stabilization for the main regulator is achieved by connecting 2 external capacitor CEXT to
the VCAP1 and VCAP2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT
capacitors are replaced by a single capacitor.
CEXT is specified in Table 16.
Figure 20. External capacitor CEXT
C
ESR
R Leak
MS19044V2
1. Legend: ESR is the equivalent series resistance.
Table 16. VCAP1/VCAP2 operating conditions(1)
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor with available
VCAP1 and VCAP2 pins
2.2 µF
ESR
ESR of external capacitor with available VCAP1 and
VCAP2 pins
<2Ω
CEXT
Capacitance of external capacitor with a single VCAP
pin available
4.7 µF
ESR
ESR of external capacitor with a single VCAP pin
available
<1Ω
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
6.3.3
Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 17. Operating conditions at power-up / power-down (regulator ON)
Symbol
tVDD
62/130
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
DocID024738 Rev 2
Unit
µs/V
STM32F401xB STM32F401xC
6.3.4
Electrical characteristics
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator OFF)(1)
Symbol
tVDD
tVCAP
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 and VCAP_2 rise time rate
Power-up
20
∞
VCAP_1 and VCAP_2 fall time rate
Power-down
20
∞
Unit
µs/V
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Note:
This feature is only available for UFBGA100 package.
6.3.5
Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 19. Embedded reset and power control block characteristics
Symbol
Conditions
Programmable voltage
detector level selection
VPVD
VPVDhyst
Parameter
(2)
VPOR/PDR
Min
Typ
Max
PLS[2:0]=000 (rising edge)
2.09
2.14
2.19
PLS[2:0]=000 (falling edge)
1.98
2.04
2.08
PLS[2:0]=001 (rising edge)
2.23
2.30
2.37
PLS[2:0]=001 (falling edge)
2.13
2.19
2.25
PLS[2:0]=010 (rising edge)
2.39
2.45
2.51
PLS[2:0]=010 (falling edge)
2.29
2.35
2.39
PLS[2:0]=011 (rising edge)
2.54
2.60
2.65
PLS[2:0]=011 (falling edge)
2.44
2.51
2.56
PLS[2:0]=100 (rising edge)
2.70
2.76
2.82
PLS[2:0]=100 (falling edge)
2.59
2.66
2.71
PLS[2:0]=101 (rising edge)
2.86
2.93
2.99
PLS[2:0]=101 (falling edge)
2.65
2.84
3.02
PLS[2:0]=110 (rising edge)
2.96
3.03
3.10
PLS[2:0]=110 (falling edge)
2.85
2.93
2.99
PLS[2:0]=111 (rising edge)
3.07
3.14
3.21
PLS[2:0]=111 (falling edge)
2.95
3.03
3.09
-
100
-
Falling edge
1.60(1)
1.68
1.76
Rising edge
1.64
1.72
1.80
PVD hysteresis
Power-on/power-down
reset threshold
DocID024738 Rev 2
Unit
V
mV
V
63/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 19. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
-
40
-
mV
Falling edge
2.13
2.19
2.24
Rising edge
2.23
2.29
2.33
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
Rising edge
2.53
2.59
2.63
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
Rising edge
2.85
2.92
2.97
-
100
-
mV
0.5
1.5
3.0
ms
InRush current on
voltage regulator poweron (POR or wakeup from
Standby)
-
160
200
mA
InRush energy on
voltage regulator power- VDD = 1.8 V, TA = 105 °C,
on (POR or wakeup from IRUSH = 171 mA for 31 µs
Standby)
-
-
5.4
µC
VPDRhyst(2)
PDR hysteresis
VBOR1
Brownout level 1
threshold
VBOR2
VBOR3
VBORhyst
(2)
TRSTTEMPO
(2)(3)
IRUSH(2)
ERUSH
(2)
Conditions
BOR hysteresis
POR reset timing
V
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design, not tested in production.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
6.3.6
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
64/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in input mode with a static value at VDD or VSS (no load).
•
All peripherals are disabled except if it is explicitly mentioned.
•
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 15: Features depending on the operating power supply range).
•
The voltage scaling is adjusted to fHCLK frequency as follows:
–
Scale 3 for fHCLK ≤ 60 MHz
–
Scale 2 for 60 MHz < fHCLK ≤ 84 MHz
•
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
•
External clock is 4 MHz and PLL is on when fHCLK is higher than 25 MHz.
•
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
Table 20. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD =1.8V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals
disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
Unit
TA= 25 °C
TA=85 °C
TA=105 °C
20.0
21
22
23(4)
60
14.5
15
16
17
40
10.4
11
12
13
20
5.5
6
7
8
84
10.9
11
13
14(4)
60
8.0
9
10
11
40
5.8
6
7
8
20
3.2
4
5
6
mA
1. Based on characterization, not tested in production unless otherwise specified
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
4. Tested in production
DocID024738 Rev 2
65/130
112
Electrical characteristics
STM32F401xB STM32F401xC
.
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM
Symbol
Parameter
Conditions
Typ
84
External clock,
all peripherals
enabled(2)(3)
IDD
Max(1)
fHCLK
(MHz)
Supply current
in Run mode
External clock,
all peripherals
disabled(3)
Unit
TA= 25 °C
TA=85 °C
TA=105 °C
20.2
21
22
23
60
14.7
15
16
18
40
10.7
11
12
13
20
5.7
6
7
8
84
11.2
12
13
14
60
8.2
9
10
11
40
6.1
7
8
9
20
3.4
4
5
6
mA
1. Based on characterization, not tested in production unless otherwise specified
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
Table 22. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) - VDD @ 1.8V
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
TA =
25 °C
TA =
85 °C
TA =
105 °C
22.2
23
24
25
60
14.5
15
16
17
40
10.7
11
12
13
30
8.6
9
10
11
20
7.0
8
9
10
84
11.5
12
13
14
60
7.7
8
9
10
40
5.6
6
7
8
30
4.5
5
6
7
20
3.8
5
6
7
Unit
mA
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
66/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 23. Typical and maximum current consumption in run mode, code with data processing
running from flash memory (ART accelerator enabled except prefetch)
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
TA =
25 °C
TA =
85 °C
TA =
105 °C
22.5
23
24
25
60
14.8
16
17
18
40
11.0
12
13
14
30
8.9
10
11
12
20
7.3
8
9
10
84
11.8
13
14
15
60
7.9
9
10
11
40
5.8
7
8
9
30
4.8
6
7
8
20
4.0
5
6
7
Unit
mA
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
.
Table 24. Typical and maximum current consumption in run mode, code with data processing
running from flash memory (ART accelerator disabled)
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
84
30.6
32
34
35
60
21.4
22
24
25
40
15.6
16
17
18
30
12.7
13
14
15
20
10.0
11
12
13
84
19.9
21
23
25
60
14.6
15
16
17
40
10.4
11
12
13
30
8.6
9
10
11
20
6.7
7
8
9
Unit
mA
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
DocID024738 Rev 2
67/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch)
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
TA =
25 °C
TA =
85 °C
TA =
105 °C
31.8
33
35
36
60
21.8
22
23
24
40
16.0
17
18
19
30
12.9
14
15
16
20
10.4
11
12
13
84
21.2
22
23
24
60
15.0
16
17
18
40
10.9
12
13
14
30
8.8
10
11
12
20
7.1
8
9
10
Unit
mA
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Table 26. Typical and maximum current consumption in Sleep mode
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Sleep mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
TA =
25 °C
TA =
85 °C
TA =
105 °C
16.2
17
18
19
60
10.7
11
12
13
40
8.3
9
10
11
30
6.8
7
8
9
20
5.9
6
7
8
84
5.2
6
7
8
60
3.6
4
5
6
40
2.9
3
4
5
30
2.6
3
4
5
20
2.6
3
4
5
Unit
mA
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
68/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 27. Typical and maximum current consumptions in Stop mode - VDD=1.8V
Symbol
Conditions
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
Parameter
Typ
Max(1)
TA =
25 °C
TA =
TA = TA =
105 °
25 °C 85 °C
C
Main regulator usage
109
135
440
Low power regulator usage
41
65
310 530(2)
72
95
345
12
36
260 510(2)
9
27
230
IDD_STOP Flash in Deep power
Main regulator usage
down mode, all oscillators
Low power regulator usage
OFF, no independent
Low power low voltage regulator usage
watchdog
Unit
650
530
µA
460
1. Data based on characterization, not tested in production.
2. Tested in production
Table 28. Typical and maximum current consumption in Stop mode
Max(1)
Typ
Symbol
Conditions
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
Parameter
TA = Unit
TA = TA =
105 °
25 °C 85 °C
C
TA =
25 °C
Main regulator usage
111
140
450
670
Low power regulator usage
42
65
330
560
73
100
360
560
12
36
270
520
10
28
230
470
IDD_STOP Flash in Deep power
Main regulator usage
down mode, all oscillators
Low power regulator usage
OFF, no independent
Low power low voltage regulator usage
watchdog
µA
1. Data based on characterization, not tested in production.
Table 29. Typical and maximum current consumption in Standby mode - VDD=1.8V
Typ(1)
Symbol
IDD_STBY
Parameter
Conditions
Supply current in Low-speed oscillator (LSE) and RTC ON
Standby mode
RTC and LSE OFF
TA =
25 °C
2.4
1.8
Max(2)
TA = TA =
25 °C 85 °C
4.0
(3)
3.0
Unit
TA =
105 °C
12.0
24.0
11.0
23.0(3)
µA
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Based on characterization, not tested in production unless otherwise specified.
3. Tested in production
DocID024738 Rev 2
69/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 30. Typical and maximum current consumption in Standby mode
Typ(1)
Symbol
IDD_STBY
Parameter
Conditions
Supply current in Low-speed oscillator (LSE) and RTC ON
Standby mode RTC and LSE OFF
Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
2.8
5.0
14.0
28.0
13.0
27.0(3)
2.1
4.0
(3)
µA
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Based on characterization, not tested in production unless otherwise specified.
3. Tested in production
Table 31. Typical and maximum current consumptions in VBAT mode
Max(2)
Typ
Symbol
TA =
85 °C
TA = 25 °C
Conditions(1)
Parameter
VBAT = VBAT= VBAT =
1.8 V 2.4 V 3.3 V
Backup
Low-speed oscillator (LSE) and RTC ON
IDD_VBAT domain supply
RTC and LSE OFF
current
TA =
105 °C Unit
VBAT = 3.6 V
0.66
0.76
0.97
3.0
5.0
0.1
0.1
0.1
2.0
4.0
µA
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Based on characterization, not tested in production.
Figure 21. Typical VBAT current consumption (LSE and RTC ON)
3
IDD_VBAT (μA)
2.5
2
1.65V
1.7V
1.8V
2V
2.4V
2.7V
3V
3.3V
3.6V
1.5
1
0.5
0
0°C
25°C
55°C
85°C
105°C
Temperature
MS30490V1
70/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 33: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DocID024738 Rev 2
71/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 32. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDD = 3.3 V
C = CINT(2)
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
IDDIO
I/O switching
current
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
I/O toggling
frequency (fSW)
2 MHz
0.05
8 MHz
0.15
25 MHz
0.45
50 MHz
0.85
60 MHz
1.00
84 MHz
1.40
2 MHz
0.10
8 MHz
0.35
25 MHz
1.05
50 MHz
2.20
60 MHz
2.40
84 MHz
3.55
2 MHz
0.20
8 MHz
0.65
25 MHz
1.85
50 MHz
2.45
60 MHz
4.70
84 MHz
8.80
2 MHz
0.25
8 MHz
1.00
25 MHz
3.45
50 MHz
7.15
60 MHz
11.55
2 MHz
0.32
8 MHz
1.27
25 MHz
3.88
50 MHz
12.34
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP100 package pin (pad removal).
72/130
DocID024738 Rev 2
Typ
Unit
mA
STM32F401xB STM32F401xC
Electrical characteristics
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
At startup, all I/O pins are in analog input configuration.
•
All peripherals are disabled unless otherwise mentioned.
•
The ART accelerator is ON.
•
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
•
HCLK is the system clock at 84 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
•
–
with all peripherals clocked off
–
with only one peripheral clocked on
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 33. Peripheral current consumption
Peripheral
AHB1
(up to 84MHz)
APB1
(up to 42MHz)
AHB2
(up to 84MHz)
IDD (typ)
GPIOA
1.55
GPIOB
1.55
GPIOC
1.55
GPIOD
1.55
GPIOE
1.55
GPIOH
1.55
CRC
0.36
DMA1
20.24
DMA2
21.07
TIM2
11.19
TIM3
8.57
TIM4
8.33
TIM5
11.19
PWR
0.71
USART2
3.33
I2C1/2/3
3.10
SPI2(1)
2.62
SPI3(1)
2.86
I2S2
1.90
I2S3
1.67
WWDG
0.71
OTG_FS
23.93
DocID024738 Rev 2
Unit
µA/MHz
µA/MHz
µA/MHz
73/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 33. Peripheral current consumption (continued)
Peripheral
IDD (typ)
TIM1
5.71
TIM9
2.86
TIM10
1.79
TIM11
2.02
(2)
ADC1
2.98
SPI1
1.19
USART1
3.10
USART6
2.86
SDIO
TBD
SPI4
1.31
SYSCFG
0.71
APB2
(up to 84MHz)
Unit
µA/MHz
1. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6
mA for the analog part.
6.3.7
Wakeup time from low-power modes
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
•
For Stop or Sleep modes: the wakeup event is WFE.
•
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 34. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP(2)
tWUSTOP(2)
tWUSTDBY(2)(3)
Min(1)
Typ(1)
Max(1)
Unit
Wakeup from Sleep mode
-
4
6
CPU
clock
cycle
Wakeup from Stop mode, usage of main regulator
-
13.5
14.5
Wakeup from Stop mode, usage of main regulator, Flash
memory in Deep power down mode
-
105
111
Wakeup from Stop mode, regulator in low power mode
-
21
33
Wakeup from Stop mode, regulator in low power mode,
Flash memory in Deep power down mode
-
113
130
Wakeup from Standby mode
-
314
407
Parameter
µs
µs
1. Based on characterization, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY maximum value is given at –40 °C.
74/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
6.3.8
Electrical characteristics
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 54. However, the recommended clock input
waveform is shown in Figure 22.
The characteristics given in Table 35 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 35. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
-
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
tr(HSE)
tf(HSE)
Cin(HSE)
ns
OSC_IN rise or fall
time(1)
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
IL
V
OSC_IN Input leakage current
VSS ≤ VIN ≤ VDD
-
-
10
-
5
-
pF
45
-
55
%
-
-
±1
µA
1. Guaranteed by design, not tested in production.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 54. However, the recommended clock input
waveform is shown in Figure 23.
The characteristics given in Table 36 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
DocID024738 Rev 2
75/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 36. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1)
-
-
50
OSC32_IN input capacitance(1)
-
5
-
pF
30
-
70
%
-
-
±1
µA
Cin(LSE)
DuCy(LSE)
IL
V
ns
Duty cycle
VSS ≤ VIN ≤ VDD
OSC32_IN Input leakage current
1. Guaranteed by design, not tested in production.
Figure 22. High-speed external clock source AC timing diagram
VHSEH
90 %
10 %
VHSEL
tr(HSE)
tf(HSE)
tW(HSE) t
tW(HSE)
THSE
External
clock source
fHSE_ext
OSC_IN
IL
STM32F
ai17528
76/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Figure 23. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE) t
TLSE
fLSE_ext
External
clock source
STM32F
ai17529
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 37. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 37. HSE 4-26 MHz oscillator characteristics(1)
Symbol
fOSC_IN
RF
IDD
Parameter
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
Feedback resistor
-
200
-
kΩ
VDD=3.3 V,
ESR= 30 Ω,
CL=5 pF @25 MHz
-
450
-
VDD=3.3 V,
ESR= 30 Ω,
CL=10 pF @25 MHz
-
530
-
Startup
-
-
1
mA/V
VDD is stabilized
-
2
-
ms
HSE current consumption
Conditions
Gm_crit_max Maximum critical crystal gm
tSU(HSE(2)
Startup time
µA
1. Guaranteed by design, not tested in production.
2. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
DocID024738 Rev 2
77/130
112
Electrical characteristics
STM32F401xB STM32F401xC
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
8 MH z
resonator
CL2
fHSE
OSC_IN
REXT(1)
Bias
controlled
gain
RF
STM32F
OSC_OU T
ai17530
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 38. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RF
Feedback resistor
-
18.4
-
MΩ
IDD
LSE current consumption
-
-
1
µA
Startup
-
-
0.56
µA/V
VDD is stabilized
-
2
-
s
Gm_crit_max Maximum critical crystal gm
tSU(LSE)
(2)
startup time
1. Guaranteed by design, not tested in production.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Note:
78/130
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Figure 25. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
32.768 kH z
resonator
RF
Bias
controlled
gain
STM32F
OSC32_OU T
CL2
ai17531
6.3.9
Internal clock source characteristics
The parameters given in Table 39 and Table 40 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 39. HSI oscillator characteristics (1)
L
Symbol
fHSI
Parameter
Conditions
Frequency
User-trimmed with the RCC_CR
register(2)
ACCHSI
Accuracy of the HSI
oscillator
Factorycalibrated
TA = –40 to 105 °C(3)
TA = –10 to 85
TA = 25 °C
°C(3)
Min
Typ
Max
Unit
-
16
-
MHz
-
-
1
%
–8
-
4.5
%
–4
-
4
%
–1
-
1
%
tsu(HSI)(2)
HSI oscillator
startup time
-
2.2
4
µs
IDD(HSI)(2)
HSI oscillator
power consumption
-
60
80
µA
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production
3. Based on characterization, not tested in production
DocID024738 Rev 2
79/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 26. ACCHSI versus temperature
0.06
0.04
ACCHSI
0.02
0
-40
0
25
5
8
105
125
TA (°C)
-0.02
-0.04
Min
Max
Typica
-0.06
-0.08
MS30492V1
1. Based on characterisation results, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 40. LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)
(3)
IDD(LSI)(3)
Parameter
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
80/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Figure 27. ACCLSI versus temperature
50
max
40
avg
min
Normalized deviati on (%)
30
20
10
0
-10
-20
-30
-40
-45
-35
-25
-15
-5
5
15
25
35
45
Temperat ure (°C)
55
65
75
85
95
105
MS19013V1
6.3.10
PLL characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
Table 41. Main PLL characteristics
Symbol
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
tLOCK
PLL lock time
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
24
-
84
MHz
-
48
75
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
-
25
-
-
±150
-
-
15
-
-
±200
-
RMS
Cycle-to-cycle jitter
System clock
84 MHz
Jitter(3)
peak
to
peak
RMS
peak
to
peak
Period Jitter
DocID024738 Rev 2
µs
ps
81/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 41. Main PLL characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
Unit
mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Based on characterization, not tested in production.
Table 42. PLLI2S (audio PLL) characteristics
Symbol
Parameter
Min
Typ
Max
0.95(2)
1
2.10
-
-
216
192
-
432
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
90
-
peak
to
peak
-
±280
-
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-
90
-
WS I2S clock jitter
Cycle to cycle at 48 KHz
on 1000 samples
-
400
-
IDD(PLLI2S)(4)
PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
IDDA(PLLI2S)(4)
PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
fPLLI2S_IN
PLLI2S input clock(1)
fPLLI2S_OUT
PLLI2S multiplier output clock
fVCO_OUT
PLLI2S VCO output
tLOCK
PLLI2S lock time
Conditions
Cycle to cycle at
12.288 MHz on
48 KHz period,
N=432, R=5
Master I2S clock jitter
(3)
Jitter
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Based on characterization, not tested in production.
82/130
DocID024738 Rev 2
Unit
MHz
µs
ps
mA
STM32F401xB STM32F401xC
6.3.11
Electrical characteristics
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 49: EMI characteristics for WLCSP49). It is available only on the
main PLL.
Table 43. SSCG parameters constraint
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
KHz
md
Peak modulation depth
0.25
-
2
%
-
215
-
MODEPER * INCSTEP
-
−1
1. Guaranteed by design, not tested in production.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × PLLN )
As a result:
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2
DocID024738 Rev 2
15
– 1 ) × 240 ) = 2,002%(peak)
83/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 28 and Figure 29 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 28. PLL output clock waveforms in center spread mode
Frequency (PLL_OUT)
md
F0
md
tmode
Time
2xtmode
ai17291
Figure 29. PLL output clock waveforms in down spread mode
Frequency (PLL_OUT)
F0
2xmd
tmode
Time
2xtmode
ai17292
6.3.12
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 44. Flash memory characteristics
Symbol
IDD
84/130
Parameter
Supply current
Conditions
Min
Typ
Max
Write / Erase 8-bit mode, VDD = 1.8 V
-
5
-
Write / Erase 16-bit mode, VDD = 2.1 V
-
8
-
Write / Erase 32-bit mode, VDD = 3.3 V
-
12
-
DocID024738 Rev 2
Unit
mA
STM32F401xB STM32F401xC
Electrical characteristics
Table 45. Flash memory programming
Symbol
tprog
Word programming time
tERASE16KB Sector (16 KB) erase time
tERASE64KB Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(2)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.3
2.6
Program/erase parallelism
(PSIZE) = x 32
-
1
2
Program/erase parallelism
(PSIZE) = x 8
-
4
8
Program/erase parallelism
(PSIZE) = x 16
-
2.75
5.5
Program/erase parallelism
(PSIZE) = x 32
-
2
4
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.7
-
3.6
V
Parameter
Mass erase time
Programming voltage
µs
ms
ms
s
s
1. Based on characterization, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
Table 46. Flash memory programming with VPP voltage
Symbol
Parameter
tprog
Double word programming
tERASE16KB
Sector (16 KB) erase time
tERASE64KB
Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
Conditions
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
Mass erase time
Programming voltage
DocID024738 Rev 2
Min(1)
Typ
Max(1)
Unit
-
16
100(2)
µs
-
230
-
-
490
-
-
875
-
-
1.750
-
s
2.7
-
3.6
V
ms
85/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 46. Flash memory programming with VPP voltage (continued)
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(3)
Cumulative time during
which VPP is applied
1. Guaranteed by design, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 47. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix
versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle
(2)
at TA = 105 °C
10 kcycles(2) at TA = 55 °C
10
Unit
kcycles
Years
20
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.
6.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins
until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2
standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
86/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 48. EMS characteristics for LQFP100 package
Parameter
Conditions
Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 84 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 84 MHz, conforms to
IEC 61000-4-4
4A
Symbol
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, on QFP packages and PDR_ON on CSP49.
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than
50 mm on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
DocID024738 Rev 2
87/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 49. EMI characteristics for WLCSP49
Symbol
Parameter
Conditions
Monitored
frequency band
Max vs.
[fHSE/fCPU]
Unit
25/84 MHz
SEMI
Peak level
VDD = 3.3 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz
-6
30 to 130 MHz
-6
130 MHz to 1 GHz
-10
SAE EMI Level
1.5
-
Max vs.
[fHSE/fCPU]
Unit
dBµV
Table 50. EMI characteristics for LQFP100
Symbol
Parameter
Conditions
Monitored
frequency band
25/84 MHz
SEMI
6.3.14
Peak level
VDD = 3.3 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz
18
30 to 130 MHz
23
130 MHz to 1 GHz
12
SAE EMI Level
3.5
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
88/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 51. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
2
2000
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESD STM5.3.1
Unit
V
II
500
1. Based on characterization results, not tested in production.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 52. Electrical sensitivities
Symbol
LU
6.3.15
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 53.
DocID024738 Rev 2
89/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 53. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on BOOT0 pin
–0
NA
Injected current on NRST pin
–0
NA
Injected current on PE2, PE6, PH1, PC0,
PC1, PC2, PC3, PD6, PD7, PB3, PB4,
PB5, PB6, PB7, PB8, PB9, PE0, PE1,
PDR_ON
–0
NA
Injected current on any other FT pin
–5
NA
Injected current on any other pins
–5
+5
Unit
mA
1. NA = not applicable.
Note:
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 54 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 54. I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage
VIH
Input high level voltage
VIL
(1)
VIH(1)
Input low level voltage
Conditions
Min
Typ
Max
TTL compliant
2.7 V ≤ VDD ≤ 3.6 V
-
-
0.8
2.0
-
-
-
-
0.3VDD
0.7VDD
-
-
-
200
-
5% VDD(3)
-
-
VSS ≤ VIN ≤ VDD
-
-
±1
VIN = 5 V
-
-
3
CMOS compliant
1.7 V ≤ VDD ≤ 3.6 V
Input high level voltage
I/O Schmitt trigger voltage hysteresis(2)
Vhys
Ilkg
90/130
IO FT Schmitt trigger voltage
hysteresis(2)
I/O input leakage current (4)
I/O FT input leakage current
(5)
DocID024738 Rev 2
Unit
V
mV
µA
STM32F401xB STM32F401xC
Electrical characteristics
Table 54. I/O static characteristics (continued)
Symbol
RPU
Parameter
Weak pull-up equivalent
resistor(6)
Conditions
All pins
except for
PA10
VIN = VSS
PA10
RPD
Weak pull-down
equivalent resistor(7)
All pins
except for
PA10
VIN = VDD
PA10
CIO
(8)
I/O pin capacitance
Min
Typ
Max
30
40
50
8
11
15
30
40
50
8
11
15
-
5
-
Unit
kΩ
pF
1. Tested in production.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 53: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 53: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8.
Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 12).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
DocID024738 Rev 2
91/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Table 55. Output voltage characteristics(1)
Symbol
Parameter
VOL(2)
Output low level voltage for an I/O pin
VOH(4)
Output high level voltage for an I/O pin
VOL (2)
Output low level voltage for an I/O pin
VOH (4)
Output high level voltage for an I/O pin
VOL(2)(5) Output low level voltage for an I/O pin
VOH(4)(5) Output high level voltage for an I/O pin
Conditions
Min
Max
CMOS port(3)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
-
1.3
VDD–1.3
-
-
0.4
VDD–0.4
-
TTL port(3)
IIO =+ 8mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
VOL(2)(5) Output low level voltage for an I/O pin
VOH
(4)(5)
IIO = +6 mA
2 V < VDD < 2.7 V
Output high level voltage for an I/O pin
Unit
V
V
V
V
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not
exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to
drive an LED).
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
4. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
5. Based on characterization data, not tested in production.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 30 and
Table 56, respectively.
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 56. I/O AC characteristics(1)(2)(3)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(4)
00
92/130
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
Min
Typ
Max
CL = 50 pF, VDD > 2.70 V
-
-
2
CL = 50 pF, VDD > 1.7 V
-
-
2
CL = 10 pF, VDD > 2.70 V
-
-
TBD
CL = 10 pF, VDD > 1.7 V
-
-
TBD
-
-
TBD
-
-
TBD
CL = 50 pF, VDD = 1.7 V to
3.6 V
DocID024738 Rev 2
Unit
MHz
ns
STM32F401xB STM32F401xC
Electrical characteristics
Table 56. I/O AC characteristics(1)(2)(3) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(4)
01
Typ
Max
CL = 50 pF, VDD > 2.70 V
-
-
25
CL = 50 pF, VDD > 1.7 V
-
-
12.5
CL = 10 pF, VDD > 2.70 V
-
-
50(5)
CL = 10 pF, VDD > 1.7 V
-
-
TBD
tf(IO)out
Output high to low level fall
time
CL = 50 pF, VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
tr(IO)out
Output low to high level rise
time
CL = 50 pF, VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 40 pF, VDD > 2.70 V
-
-
50(5)
CL = 40 pF, VDD > 1.7 V
-
-
25
CL = 10 pF, VDD > 2.70 V
-
-
100(5)
CL = 10 pF, VDD > 1.7 V
-
-
TBD
fmax(IO)out Maximum frequency(4)
10
tf(IO)out
Output high to low level fall
time
CL = 40 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
tr(IO)out
Output low to high level rise
time
CL = 40 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 30 pF, VDD > 2.70 V
-
-
100(5)
CL = 30 pF, VDD > 1.7 V
-
-
50(5)
CL = 10 pF, VDD > 2.70 V
-
-
100(5)
CL = 10 pF, VDD > 1.7 V
-
-
TBD
Fmax(IO)out Maximum frequency(4)
11
-
Min
tf(IO)out
Output high to low level fall
time
CL = 20 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
tr(IO)out
Output low to high level rise
time
CL = 20 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
tEXTIpw
Pulse width of external signals
detected by the EXTI
controller
10
-
-
Unit
MHz
ns
MHz
ns
MHz
ns
ns
1. Based on characterization data, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F401xx reference manual for a description
of the GPIOx_SPEEDR GPIO port output speed register.
3. TBD stands for “to be defined”.
4. The maximum frequency is defined in Figure 30.
5. For maximum frequencies above 50 MHz, the compensation cell should be used.
DocID024738 Rev 2
93/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 30. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
EXTERNAL
OUTPUT
ON 50pF
tr(IO)out
tf(IO)out
T
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by 50pF
ai14131
6.3.17
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 54).
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 57. NRST pin characteristics
Symbol
VIL(NRST)(1)
Parameter
NRST Input low level voltage
VIH(NRST)(1) NRST Input high level voltage
VIL(NRST)
(1)
NRST Input low level voltage
VF(NRST)(1)
VNF(NRST)
(1)
TNRST_OUT
Typ
Max
TTL ports
2.7V ≤ VDD ≤ 3.6V
-
-
0.8
2
-
-
-
-
0.3VDD
0.7VDD
-
-
-
200
-
mV
30
40
50
kΩ
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal Reset source
20
-
-
µs
NRST Schmitt trigger voltage
hysteresis
Weak pull-up equivalent resistor(2)
RPU
Min
CMOS ports
1.7V ≤ VDD ≤ 3.6V
VIH(NRST)(1) NRST Input high level voltage
Vhys(NRST)
Conditions
VIN = VSS
NRST Input filtered pulse
NRST Input not filtered pulse
Generated reset pulse duration
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
94/130
DocID024738 Rev 2
Unit
V
STM32F401xB STM32F401xC
Electrical characteristics
Figure 31. Recommended NRST pin protection
VDD
External
reset circuit(1)
NRST(2)
RPU
Internal Reset
Filter
0.1 μF
STM32Fxxx
ai14132c
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 57. Otherwise the reset is not taken into account by the device.
6.3.18
TIM timer characteristics
The parameters given in Table 58 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 58. TIMx characteristics(1)(2)
Symbol
tres(TIM)
Conditions(3)
Min
Max
Unit
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
84 MHz
1
-
tTIMxCLK
11.9
-
ns
1
-
tTIMxCLK
11.9
-
ns
Parameter
Timer resolution time
AHB/APBx prescaler>4,
fTIMxCLK = 84 MHz
fEXT
ResTIM
tCOUNTER
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 84 MHz
0
fTIMxCLK/2
MHz
0
42
MHz
Timer resolution
-
16/32
bit
0.0119
780
µs
-
65536 ×
65536
tTIMxCLK
-
51.1
S
16-bit counter clock
period when internal clock fTIMxCLK = 84 MHz
is selected
Maximum possible count
tMAX_COUNT
with 32-bit counter
fTIMxCLK = 84 MHz
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design, not tested in production.
3. The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise
TIMxCLK >= 4x PCLKx.
DocID024738 Rev 2
95/130
112
Electrical characteristics
6.3.19
STM32F401xB STM32F401xC
Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 59. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, please contact your local ST sales representative.
Table 59. I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
µs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
µs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
µs
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
96/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Figure 32. I2C bus AC waveforms and measurement circuit
V DD_I2C
V DD_I2C
RP
RP
STM32Fxx
RS
I²C bus
SDA
RS
SCL
S T AR T REPEATED
S T AR T
S T AR T
tsu(STA)
SD A
tf(SDA)
tr(SDA)
th(STA)
tsu(SDA)
th(SDA)
tw(SCLL)
SCL
tr(SCL)
tw(SCLH)
tf(SCL)
tw(STO:STA)
S TOP
tsu(STO)
ai14979c
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 60. SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x8019
300
0x8021
200
0x8032
100
0x0096
50
0x012C
20
0x02EE
1. RP = External pull-up resistance, fSCL =
I2 C
speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
DocID024738 Rev 2
97/130
112
Electrical characteristics
STM32F401xB STM32F401xC
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 61 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 61. SPI dynamic characteristics(1)
Symbol
Parameter
Master mode, SPI1/4,
2.7 V < VDD < 3.6 V
fSCK
SPI clock frequency
1/tc(SCK)
Duty(SCK)
Conditions
Slave mode, SPI1/4,
2.7 V < VDD < 3.6 V
Master mode, SPI1/2/3/4,
1.7 V < VDD < 3.6 V
Slave mode, SPI1/2/3/4,
1.7 V < VDD < 3.6 V
Duty cycle of SPI clock
Slave mode
frequency
tw(SCKH)
SCK high and low time
tw(SCKL)
Min
-
MHz
-
30
50
70
%
Master mode, SPI presc = 2,
2.7 V < VDD < 3.6 V
TPCLK−0.5
TPCLK
TPCLK+0.5
ns
Master mode, SPI presc = 2,
1.7 V < VDD < 3.6 V
TPCLK−2
TPCLK
TPCLK+2
ns
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2TPCLK
th(SI)
ta(SO)(2)
tdis(SO)(3)
98/130
Data input hold time
ns
ns
Master mode
6.5
-
-
ns
Slave mode
2.5
-
-
ns
Master mode
2.5
-
-
ns
Slave mode
4
-
-
ns
0
-
4TPCLK
ns
Slave mode, SPI1/4,
2.7 V < VDD < 3.6 V
0
-
7.5
ns
Slave mode, SPI1/2/3/4 and
1.7 V < VDD < 3.6 V
0
-
16.5
ns
Data output access time Slave mode, SPI presc = 2
Data output disable time
21
4TPCLK
th(MI)
-
21
Slave mode, SPI presc = 2
tsu(SI)
Unit
42
NSS setup time
Data input setup time
Max
42
tsu(NSS)
tsu(MI)
Typ
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 61. SPI dynamic characteristics(1) (continued)
Symbol
Parameter
tv(SO)
th(SO)
Conditions
Data output valid/hold
time
Data output valid time
tv(MO)
th(MO)
Data output hold time
Min
Typ
Max
Unit
Slave mode (after enable edge),
SPI1/4 and 2.7 V < VDD < 3.6 V
-
11
13
ns
Slave mode (after enable edge),
SPI2/3, 2.7 V < VDD < 3.6 V
-
12
16.5
ns
Slave mode (after enable edge),
SPI1/4, 1.7 V < VDD < 3.6 V
-
15.5
19
ns
Slave mode (after enable edge),
SPI2/3, 1.7 V < VDD < 3.6 V
-
18
20.5
ns
Master mode (after enable edge),
SPI1/4, 2.7 V < VDD < 3.6 V
-
-
2.5
ns
Master mode (after enable edge),
SPI1/2/3/4, 1.7 V < VDD < 3.6 V
-
-
4.5
ns
Master mode (after enable edge)
0
-
-
ns
1. Data based on characterization results, not tested in production.
2. The minimum value of this timing corresponds to the minimum time to drive the output, and the maximum value to
maximum time to validate the data.
3. The minimum value of this timing corresponds to the minimum time to invalidate the output and the maximum value to the
maximum time to put the data in Hi-Z.
Figure 33. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
M SB IN
B I T1 IN
LSB IN
th(SI)
ai14134c
DocID024738 Rev 2
99/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 34. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
tc(SCK)
th(NSS)
tw(SCKH)
tw(SCKL)
CPHA=1
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(SO)
tr(SCK)
tf(SCK)
BI T6 OUT
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
Figure 35. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
SCK Input
tc(SCK)
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
tv(MO)
B I T1 OUT
LSB OUT
th(MO)
ai14136
100/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 62 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 62. I2S dynamic characteristics(1)
Symbol
Parameter
fMCK
I2S Main clock output
fCK
I2S clock frequency
DCK
Conditions
Min
Max
Unit
256x8K
256xFs(2)
MHz
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
-
I2S clock frequency duty cycle Slave receiver
tv(WS)
WS valid time
Master mode
0
6
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
1
-
th(WS)
WS hold time
Slave mode
0
-
Master receiver
7.5
-
Slave receiver
2
-
Master receiver
0
-
Slave receiver
0
-
Slave transmitter (after enable edge)
-
27
Master transmitter (after enable edge)
-
20
Master transmitter (after enable edge)
2.5
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
th(SD_ST)
Data input setup time
Data input hold time
Data output valid time
tv(SD_MT)
th(SD_MT)
Data output hold time
MHz
%
ns
1. Data based on characterization results, not tested in production.
2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency).
Note:
Refer to the I2S section of RM0090 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
DocID024738 Rev 2
101/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 36. I2S slave timing diagram (Philips protocol)(1)
tc(CK)
CK Input
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 37. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
SDreceive
LSB
LSB transmit
th(SD_MR)
tsu(SD_MR)
receive(2)
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
102/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
USB OTG full speed (FS) characteristics
This interface is present in USB OTG FS controller.
Table 63. USB OTG FS startup time
Symbol
tSTARTUP(1)
Parameter
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 64. USB OTG FS DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USB_FS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
1.3
-
2.0
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(4)
-
-
0.3
VOH
Static output level high
RL of 15 kΩ to VSS(4)
2.8
-
3.6
17
21
24
0.65
1.1
2.0
Output
levels
RPD
PA11, PA12
(USB_FS_DM/DP)
VIN = VDD
PA9 (OTG_FS_VBUS)
RPU
PA11, PA12
(USB_FS_DM/DP)
VIN = VSS
1.5
1.8
2.1
PA9 (OTG_FS_VBUS)
VIN = VSS
0.25
0.37
0.55
V
V
V
kΩ
1. All the voltages are measured from the local ground potential.
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers.
Note:
When VBUS sensing feature is enabled, PA9 should be left at their default state (floating
input), not as alternate function. A typical 200 µA current consumption of the embedded
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 when the feature is enabled.
DocID024738 Rev 2
103/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 38. USB OTG FS timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
tr
tf
ai14137
Table 65. USB OTG FS electrical characteristics(1)
Driver characteristics
Symbol
Parameter
Rise time(2)
tr
tf
Fall
trfm
time(2)
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
Rise/ fall time matching
VCRS
Output signal crossover voltage
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
6.3.20
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 66 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 66. ADC characteristics
Symbol
VDDA
VREF+
Parameter
Power supply
Positive reference voltage
Conditions
Min
Typ
Max
Unit
1.8(1)
-
3.6
V
(1)
-
VDDA
V
0.6
15
18
MHz
VDDA = 2.4 to 3.6 V
0.6
30
36
MHz
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
17
1/fADC
0 (VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
kΩ
-
-
6
kΩ
-
4
7
pF
VDDA − VREF+ < 1.2 V
(1)
fADC
fTRIG(2)
VAIN
RAIN(2)
ADC clock frequency
External trigger frequency
VDDA = 1.8
to 2.4 V
Conversion voltage range(3)
External input impedance
See Equation 1 for
details
RADC(2)(4) Sampling switch resistance
CADC(2)
104/130
Internal sample and hold
capacitor
DocID024738 Rev 2
1.8
STM32F401xB STM32F401xC
Electrical characteristics
Table 66. ADC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
-
0.100
µs
-
-
3(5)
1/fADC
-
-
0.067
µs
-
-
2(5)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
tlat(2)
Injection trigger conversion
latency
fADC = 30 MHz
tlatr(2)
Regular trigger conversion
latency
fADC = 30 MHz
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
fADC = 30 MHz
Total conversion time
(including sampling time)
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
Sampling rate
fS(2)
(fADC = 30 MHz, and
tS = 3 ADC cycles)
1/fADC
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-
300
500
µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-
1.6
1.8
mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2:
Internal power supply supervisor disabled).
2. Based on characterization, not tested in production.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
Equation 1: RAIN max formula
R AIN
( k – 0,5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
DocID024738 Rev 2
)
105/130
112
Electrical characteristics
STM32F401xB STM32F401xC
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 67. ADC accuracy at fADC = 18 MHz(1)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Typ
Max(2)
±3
±4
±2
±3
±1
±3
±1
±2
±2
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Based on characterization, not tested in production.
Table 68. ADC accuracy at fADC = 30 MHz(1)
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA − VREF < 1.2 V
Typ
Max(2)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Based on characterization, not tested in production.
Table 69. ADC accuracy at fADC = 36 MHz(1)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Typ
Max(2)
±4
±7
±2
±3
±3
±6
±2
±3
±3
±6
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Based on characterization, not tested in production.
106/130
DocID024738 Rev 2
Unit
LSB
STM32F401xB STM32F401xC
Electrical characteristics
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to-noise and distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.3
10.4
-
bits
64
64.2
-
64
65
-
-67
-72
-
dB
1. Data based on characterization results, not tested in production.
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to noise and distortion ratio
SNR
Signal-to noise ratio
THD
Total harmonic distortion
fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.6
10.8
-
bits
66
67
-
64
68
-
-70
-72
-
dB
1. Data based on characterization results, not tested in production.
Note:
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
DocID024738 Rev 2
107/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 39. ADC accuracy characteristics
[1LSB IDEAL =
V REF+
4096
(or
V DDA
4096
depending on package)]
EG
4095
4094
4093
(2)
ET
(3)
7
(1)
6
5
EO
4
EL
3
ED
2
1L SBIDEAL
1
0
1
2
3
456
7
V SSA
4093 4094 4095 4096
VDDA
ai14395c
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 40. Typical connection diagram using the ADC
STM32F
VDD
RAIN(1)
Sample and hold ADC
converter
VT
0.6 V
RADC(1)
AINx
VAIN
Cparasitic
VT
0.6 V
IL±1 µA
12-bit
converter
CADC(1)
ai17534
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
108/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 41 or Figure 42,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 41. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F
V REF+
(See note 1)
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF(See note 1)
ai17535
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
Figure 42. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA
(See note 1)
1 µF // 10 nF
VREF–/VSSA
(See note 1)
ai17536
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
DocID024738 Rev 2
109/130
112
Electrical characteristics
6.3.21
STM32F401xB STM32F401xC
Temperature sensor characteristics
Table 72. Temperature sensor characteristics
Symbol
Parameter
TL(1)
Avg_Slope
(1)
V25(1)
tSTART(2)
TS_temp
(3)(2)
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
-
mV/°C
Voltage at 25 °C
-
0.76
-
V
Startup time
-
6
10
µs
10
-
-
µs
ADC sampling time when reading the temperature (1 °C accuracy)
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
Table 73. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V
0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V
0x1FFF 7A2E - 0x1FFF 7A2F
6.3.22
VBAT monitoring characteristics
Table 74. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
4
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
(1)
Er
TS_vbat(2)(2)
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.23
Embedded reference voltage
The parameters given in Table 75 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 75. Embedded internal reference voltage
Symbol
VREFINT
TS_vrefint(1)
110/130
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
-
10
-
-
µs
ADC sampling time when reading the
internal reference voltage
DocID024738 Rev 2
STM32F401xB STM32F401xC
Electrical characteristics
Table 75. Embedded internal reference voltage (continued)
Symbol
Parameter
Min
Typ
Max
Unit
VDD = 3V ± 10mV
-
3
5
mV
Temperature coefficient
-
-
30
50
ppm/°C
Startup time
-
-
6
10
µs
Internal reference voltage spread over
the temperature range
VRERINT_s(2)
TCoeff(2)
tSTART
Conditions
(2)
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production
Table 76. Internal reference voltage calibration values
6.3.24
Symbol
Parameter
Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V
0x1FFF 7A2A - 0x1FFF 7A2B
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 77 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 43. SDIO high-speed mode
tf
tr
tC
tW(CKH)
tW(CKL)
CK
tOV
tOH
D, CMD
(output)
tISU
tIH
D, CMD
(input)
ai14887
DocID024738 Rev 2
111/130
112
Electrical characteristics
STM32F401xB STM32F401xC
Figure 44. SD default mode
CK
tOVD
tOHD
D, CMD
(output)
ai14888
Table 77. Dynamic characteristics: SD / MMC characteristics(1)
Symbol
Parameter
fPP
Conditions
Min
Typ
Max
Unit
Clock frequency in data transfer mode
0
-
48
MHz
-
SDIO_CK/fPCLK2 frequency ratio
-
-
8/3
-
tW(CKL)
Clock low time
fpp = 48MHz
8.5
9
-
tW(CKH)
Clock high time
fpp = 48MHz
8.3
10
-
ns
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU
Input setup time HS
fpp = 48MHz
3.5
-
-
tIH
Input hold time HS
fpp = 48MHz
0
-
-
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time HS
fpp = 48MHz
-
4.5
7
tOH
Output hold time HS
fpp = 48MHz
3
-
-
ns
CMD, D inputs (referenced to CK) in SD default mode
tISUD
Input setup time SD
fpp = 24MHz
1.5
-
-
tIHD
Input hold time SD
fpp = 24MHz
0.5
-
-
ns
CMD, D outputs (referenced to CK) in SD default mode
tOVD
Output valid default time SD
fpp =24MHz
-
4.5
6.5
tOHD
Output hold default time SD
fpp =24MHz
3.5
-
-
ns
1. Data based on characterization results, not tested in production.
6.3.25
RTC characteristics
Table 78. RTC characteristics
112/130
Symbol
Parameter
-
fPCLK1/RTCCLK frequency ratio
Conditions
Any read/write operation
from/to an RTC register
DocID024738 Rev 2
Min
Max
4
-
STM32F401xB STM32F401xC
Package characteristics
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID024738 Rev 2
113/130
128
Package characteristics
7.1.1
STM32F401xB STM32F401xC
WLCSP49, 7 x 7 mm, 0.4 mm pitch wafer level chip size package
Figure 45. WLCSP49 wafer level chip size package outline
e1
F
A1 ball location
7
1
A
G
Detail A
e2 E
e
G
A
A2
e
Bump side
Side view
A3
Front view
Bump
D
A1
eee Z
b
E
A1 orientation
reference
Note 2
Detail A
(rotated 90 °)
Wafer back side
1. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
2. Bump position designation per JESD 95-1, SPP-010.
114/130
DocID024738 Rev 2
Seating plane
Note 1
A0VA_ME_V1
STM32F401xB STM32F401xC
Package characteristics
Table 79. WLCSP49, wafer level chip size package mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.175
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
(2)
-
0.025
-
-
0.0010
-
(3)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
2.930
2.965
3.000
0.1154
0.1167
0.1181
E
2.930
2.965
3.000
0.1154
0.1167
0.1181
e
-
0.400
-
-
0.0157
-
e1
-
2.400
-
-
0.0945
-
A3
b
e2
-
2.400
-
-
0.0945
-
F
-
0.2825
-
-
0.0111
-
G
-
0.2825
-
-
0.0111
-
aaa
-
0.100
-
-
0.0039
-
bbb
-
0.100
-
-
0.0039
-
ccc
-
0.100
-
-
0.0039
-
ddd
-
0.050
-
-
0.0020
-
eee
-
0.050
-
-
0.0020
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Marking of samples
Figure 46. WLCSP49 package top view
a
A
B
D
C
E
F
a – PIN1-REF
A – Marking area
B – Assembly plant
C – Diffusion traceability plant
D – Country of origin
E – Assembly year
F – Assembly week
MSv32167V1
DocID024738 Rev 2
115/130
128
Package characteristics
7.1.2
STM32F401xB STM32F401xC
UFQFPN48, 7 x 7 mm, 0.5 mm pitch package
Figure 47. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline
Pin 1 indentifier
laser marking area
D
A
E
E
T
ddd
A1
Seating
plane
b
e
Detail Y
D
Exposed pad
area
Y
D2
1
L
48
C 0.500x45°
pin1 corner
R 0.125 typ.
Detail Z
E2
1
48
Z
A0B9_ME_V3
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
Table 80. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
116/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Package characteristics
Table 80. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 48. UFQFPN48 recommended footprint
7.30
6.20
48
37
1
36
5.60
0.20
7.30
5.80
6.20
5.60
0.30
12
25
13
0.55
24
0.50
5.80
0.75
A0B9_FP_V2
1. Dimensions are in millimeters.
DocID024738 Rev 2
117/130
128
Package characteristics
STM32F401xB STM32F401xC
Marking of samples
Figure 49. UFQFPN48 package top view
A
B
C
E
a
D
F G
a - PIN1-REF
A - Marking area
B - Marking area
C - Assembly plant
D - Diffusion traceability plant
E - Country of origin
F - Assembly year
G - Assembly week
MS32168V1
118/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package
Figure 50. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline
c
A1
A
SEATING
PLANE
C
A2
0.25 mm
GAUGE PLANE
ccc C
A1
K
L
D
L1
D1
D3
33
48
32
49
64
PIN 1
IDENTIFICATION
E
E1
b
E3
7.1.3
Package characteristics
17
16
1
e
5W_ME_V2
1. Drawing is not to scale.
DocID024738 Rev 2
119/130
128
Package characteristics
STM32F401xB STM32F401xC
Table 81. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.60
-
-
0.0630
A1
0.05
-
0.15
0.0020
-
0.0059
A2
1.35
1.40
1.45
0.0531
0.0551
0.0571
b
0.17
0.22
0.27
0.0067
0.0087
0.0106
c
0.09
-
0.20
0.0035
-
0.0079
D
-
12.00
-
-
0.4724
-
D1
-
10.00
-
-
0.3937
-
E
-
12.00
-
-
0.4724
-
E1
-
10.00
-
-
0.3937
-
e
-
0.50
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.45
0.60
0.75
0.0177
0.0236
0.0295
L1
-
1.00
-
-
0.0394
-
Number of pins
N
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 51. LQFP64 recommended footprint
48
33
0.3
0.5
49
32
12.7
10.3
10.3
17
64
1.2
16
1
7.8
12.7
ai14909c
1. Dimensions are in millimeters.
120/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Package characteristics
Marking of samples
Figure 52. LQFP64 package top view
a - PIN1-REF
A - Marking area
A
B - Marking area
B
C - Assembly plant
C
E
a
D - Diffusion traceability plant
D
F
G
E - Country of origin
H
F - Testing and finishing plant
G - Assembly year
H - Assembly week
MS32169V1
DocID024738 Rev 2
121/130
128
Package characteristics
7.1.4
STM32F401xB STM32F401xC
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
Figure 53. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline
c
A1
A
A2
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
L
D
A1
K
ccc C
L1
D1
D3
51
75
50
100
26
PIN 1
1
IDENTIFICATION
E
E3
E1
b
76
25
e
1L_ME_V4
1. Drawing is not to scale.
122/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
Package characteristics
Table 82. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
-
-
1.6
-
-
0.063
A1
0.05
-
0.15
0.002
-
0.0059
A2
1.35
1.4
1.45
0.0531
0.0551
0.0571
b
0.17
0.22
0.27
0.0067
0.0087
0.0106
c
0.09
-
0.2
0.0035
-
0.0079
D
15.8
16
16.2
0.622
0.6299
0.6378
D1
13.8
14
14.2
0.5433
0.5512
0.5591
D3
-
12
-
-
0.4724
-
E
15.8
16
16.2
0.622
0.6299
0.6378
E1
13.8
14
14.2
0.5433
0.5512
0.5591
E3
-
12
-
-
0.4724
-
e
-
0.5
-
-
0.0197
-
L
0.45
0.6
0.75
0.0177
0.0236
0.0295
L1
-
1
-
-
0.0394
-
K
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
0.08
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 54. LQFP100 recommended footprint
75
51
76
50
0.5
0.3
16.7
14.3
100
26
1.2
1
25
12.3
16.7
ai14906c
1. Dimensions are in millimeters.
DocID024738 Rev 2
123/130
128
Package characteristics
STM32F401xB STM32F401xC
Marking of samples
Figure 55. LQPF100 package top view
a - PIN1-REF
A - Marking area
A
B - Marking area
B
C
F
D
C - Assembly plant
D - BE sequence
E
G
H
I
E - Diffusion traceability plant
F - Country of origin
G - Testing and finishing plant
a
H - Assembly year
I - Assembly week
MS32170V1
124/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
7.1.5
Package characteristics
UFBGA100, 7 x 7 mm, 0.5 mm pitch package
Figure 56. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package outline
Z Seating plane
ddd Z
A4 A3 A2
A1 A
E1
e
A1 ball
A1 ball
identifier index area
F
X
E
A
F
D1
D
e
Y
M
12
1
BOTTOM VIEW
Øb (100 balls)
Ø eee M Z Y X
Ø fff M Z
TOP VIEW
A0C2_ME_V3
Table 83. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package
mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
0.080
0.130
0.180
0.0031
0.0051
0.0071
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
6.950
7.000
7.050
0.2736
0.2756
0.2776
D1
5.450
5.500
5.550
0.2146
0.2165
0.2185
E
6.950
7.000
7.050
0.2736
0.2756
0.2776
E1
5.450
5.500
5.550
0.2146
0.2165
0.2185
e
-
0.500
-
-
0.0197
-
F
0.700
0.750
0.800
0.0276
0.0295
0.0315
ddd
-
-
0.100
-
-
0.0039
DocID024738 Rev 2
125/130
128
Package characteristics
STM32F401xB STM32F401xC
Table 83. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package
mechanical data (continued)
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 57. Recommended PCB design rules for pads (0.5 mm-pitch BGA)
Pitch
0.5 mm
D pad
0.27 mm
Dsm
0.35 mm typ (depends on
the soldermask registration
tolerance)
Solder paste
0.27 mm aperture diameter
Dpad
Dsm
ai15495
1. Non solder mask defined (NSMD) pads are recommended.
2. 4 to 6 mils solder paste screen printing process.
Marking of samples
Figure 58. UFBGA100 package top view
A
a - PIN1-REF
A - Marking area
B
B - Marking area
C
D
C - Assembly plant
D - Diffusion traceability plant
E
F
G
E - Country of origin
F - Assembly year
a
G - Assembly week
MS32171V1
126/130
DocID024738 Rev 2
STM32F401xB STM32F401xC
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 14: General operating conditions on page 59.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 84. Package thermal characteristics
Symbol
ΘJA
7.2.1
Parameter
Value
Thermal resistance junction-ambient
UFQFPN48
32
Thermal resistance junction-ambient
WLCSP49
52
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
50
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
42
Thermal resistance junction-ambient
UFBGA100
TBD
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
DocID024738 Rev 2
127/130
128
Ordering information scheme
8
STM32F401xB STM32F401xC
Ordering information scheme
Table 85. Ordering information scheme
Example:
STM32 F 401 C C T 6
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
401: 401 family
Pin count
C = 48/49 pins
R = 64 pins
V = 100 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
H = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
Packing
TR = tape and reel
No character = tray or tube
128/130
DocID024738 Rev 2
xxx
STM32F401xB STM32F401xC
9
Revision history
Revision history
Table 86. Document revision history
Date
Revision
23-Jul-2013
1
Initial release.
2
Updated product status to production data
Added I2C 1 MBit/s in Features
Updated Figure 1: Compatible board design for LQFP100 package
Added notes and revised the main function after reset columnin
Table 8: STM32F401xB/STM32F401xC pin definitions.
Replaced ‘I2S2_CKIN’ signal name with ‘I2S_CKIN’ and added
EVENTOUT alternate function in Table 8:
STM32F401xB/STM32F401xC pin definitions and Table 9: Alternate
function mapping
Updated Section 3.27: Analog-to-digital converter (ADC)
Updated the reference of VESD(CDM) in Table 51: ESD absolute
maximum ratings
Updated Section 3.19: Inter-integrated circuit interface (I²C), including
Table 5: Comparison of I2C analog and digital filters
Removed first sentence (“Unless otherwise specified...”) in I2C
interface characteristics
Changed the order of the tables in Section 6.3.6: Supply current
characteristics
Modified the “SDA and SCL rise time” fast mode I2C minimum value in
Table 59: I2C characteristics
Updated Figure 32: I2C bus AC waveforms and measurement circuit
and Table 60: SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C =
3.3 V)
Replaced “Marking of engineering samples” sections with “Marking of
samples” sections, and added Marking of samples section for package
UFGBA100 in Section 7: Package characteristics
06-Sep-2013
Changes
DocID024738 Rev 2
129/130
129
STM32F401xB STM32F401xC
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
130/130
DocID024738 Rev 2
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement