RADIATION HARDENED POWER MOSFET SURFACE MOUNT (LCC-18) Product Summary

RADIATION HARDENED POWER MOSFET SURFACE MOUNT (LCC-18) Product Summary
PD-90881D
IRHE9130
JANSR2N7389U
100V, P-CHANNEL
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (LCC-18)
REF: MIL-PRF-19500/630
®
™
RAD-Hard HEXFET
MOSFET TECHNOLOGY
Product Summary
Part Number Radiation Level
IRHE9130
100K Rads (Si)
RDS(on)
0.30Ω
ID
-6.5A
QPL Part Number
JANSR2N7389U
IRHE93130
0.30Ω
-6.5A
JANSF2N7389U
300K Rads (Si)
International Rectifier’s RAD-Hard TM HEXFET ®
MOSFET technology provides high performance
power MOSFETs for space applications. This
technology has over a decade of proven performance
and reliability in satellite applications. These devices
have been characterized for both Total Dose and
Single Event Effects (SEE). The combination of low
Rdson and low gate charge reduces the power losses
in switching applications such as DC to DC converters
and motor control. These devices retain all of the
well established advantages of MOSFETs such as
voltage control, fast switching, ease of paralleling
and temperature stability of electrical parameters.
LCC-18
Features:
n
n
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Surface Mount
Light Weight
ESD Rating: Class 1B per MIL-STD-750,
Method 1020
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Pckg. Mounting Surface Temp.
Weight
Units
-6.5
-4.1
-26
25
0.2
±20
165
-6.5
2.5
-22
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (for 5s)
0.42 (Typical)
g
For footnotes refer to the last page
www.irf.com
1
09/04/14
IRHE9130
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
BVDSS
Parameter
Min
Drain-to-Source Breakdown Voltage
-100
∆BV DSS /∆T J Temperature Coefficient of Breakdown —
Voltage
RDS(on)
Static Drain-to-Source
—
On-State Resistance
—
VGS(th)
Gate Threshold Voltage
-2.0
g fs
Forward Transconductance
2.5
IDSS
Zero Gate Voltage Drain Current
—
—
Typ Max Units
—
—
V
-0.112
—
V/°C
—
—
—
—
—
—
0.30
0.35
-4.0
—
-25
-250
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.1
-100
100
45
10
25
30
50
70
70
—
Ciss
C oss
C rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
1200
290
76
—
—
—
Ω
V
S
µA
nA
nC
ns
nH
pF
Test Conditions
VGS = 0 V, ID = -1.0mA
Reference to 25°C, ID = -1.0mA
VGS = -12V, ID = -4.1A
„
VGS = -12V, ID = -6.5A
VDS = VGS, ID = -1.0mA
VDS = -15V, IDS = -4.1A „
VDS = -80V,VGS = 0V
VDS = -80V
VGS = 0V, TJ = 125°C
VGS = -20V
VGS = 20V
VGS = -12V, ID = -6.5A
VDS = -50V
VDD = -50V, ID = -6.5A,
VGS = -12V, RG = 7.5Ω
Measured from the center of
drain pad to center of source pad
VGS = 0V, VDS = -25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
trr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
-6.5
-26
-3.0
250
0.74
Test Conditions
A
V
ns
µC
Tj = 25°C, IS = -6.5A, VGS = 0V Ã
Tj = 25°C, IF = -6.5A, di/dt ≤ -100A/µs
VDD ≤ -50V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJPCB
Junction-to-Case
Junction-to-PC Board
Min Typ Max
—
—
—
19
5.0
—
Units
°C/W
Test Conditions
Solder to a copper clad PC Board
Note: Corresponding Spice and Saber models are available on International Rectifier Website.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHE9130
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source Ã
On-State Resistance (TO-3)
Static Drain-to-Source Ã
On-State Resistance (LCC-18)
Diode Forward Voltage Ã
100K Rads(Si)1
Min
Max
300K Rads (Si)2 Units
Min
Max
-100
- 2.0
—
—
—
—
—
- 4.0
-100
100
-25
0.259
-100
-2.0
—
—
—
—
—
-5.0
-100
100
-25
0.259
—
0.30
—
0.30
—
-3.0
—
-3.0
Test Conditions
VGS = 0V, ID = -1.0mA
VGS = VDS , ID = -1.0mA
VGS = -20V
VGS = 20 V
VDS= -80V, VGS = 0V
VGS = -12V, ID = -4.1A
V
nA
µA
Ω
Ω
VGS = -12V, ID = -4.1A
V
VGS = 0V, IS = -6.5A
1. Part number IRHE9130 (JANSR2N7389U)
2. Part number IRHE93130 (JANSF2N7389U)
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Typical Single Event Effect Safe Operating Area
Ion
Cu
Br
I
LET
MeV/(mg/cm2))
28
36.8
59.8
Range
VDS(V)
(µm) @VGS=0V @VGS=5V @VGS=10V @ VGS=15V @VGS=20V
43
-100
-100
-100
-70
-60
39
-100
-100
-70
-50
-40
32.6
-60
—
—
—
—
Energy
(MeV)
285
305
343
-120
-100
VDS
-80
Cu
Br
I
-60
-40
-20
0
0
5
10
15
20
VGS
Fig a. Typical Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHE9130
100
Pre-Irradiation
100
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
10
-5.0V
1
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
TOP
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
TOP
20µs PULSE WIDTH
TJ = 25 °C
1
10
10
-5.0V
1
100
-VDS , Drain-to-Source Voltage (V)
20µs PULSE WIDTH
TJ = 150 °C
1
10
100
-VDS , Drain-to-Source Voltage (V)
100
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
Fig 2. Typical Output Characteristics
-I D , Drain-to-Source Current (A)
Fig 1. Typical Output Characteristics
TJ = 25 ° C
TJ = 150 ° C
10
1
V DS = -50V
20µs PULSE WIDTH
5
6
7
8
9
-VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
10
ID = -6.5A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
20
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1500
-VGS , Gate-to-Source Voltage (V)
C, Capacitance (pF)
2000
IRHE9130
Ciss
1000
Coss
500
Crss
0
1
10
VDS =-80V
VDS =-50V
VDS =-20V
16
12
8
4
0
100
ID = -6.5
FOR TEST CIRCUIT
SEE FIGURE 13
0
20
30
40
50
60
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
-II D , Drain Current (A)
-ISD , Reverse Drain Current (A)
10
QG , Total Gate Charge (nC)
-VDS , Drain-to-Source Voltage (V)
10
TJ = 150 ° C
1
10
100us
1ms
1
10ms
TJ = 25 ° C
V GS = 0 V
0.1
0.2
1.0
1.8
2.6
3.4
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
4.2
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
1
10
100
1000
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHE9130
Pre-Irradiation
7.0
VGS
-ID , Drain Current (A)
6.0
D.U.T.
RG
5.0
-
+
V DD
VGS
4.0
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
3.0
Fig 10a. Switching Time Test Circuit
2.0
td(on)
1.0
0.0
RD
V DS
tr
t d(off)
tf
VGS
10%
25
50
75
100
125
TC , Case Temperature ( °C)
150
90%
VDS
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHE9130
L
D.U.T
RG
-20V
VGS
400
IAS
tp
VDD
A
DRIVER
0.01Ω
15V
Fig 12a. Unclamped Inductive Test Circuit
I AS
EAS , Single Pulse Avalanche Energy (mJ)
VDS
ID
-2.9A
-4.1A
BOTTOM -6.5A
TOP
300
200
100
0
25
50
75
100
125
Starting TJ , Junction Temperature ( °C)
150
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V(BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
-12V
QGS
.2µF
.3µF
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
50KΩ
-12V
12V
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHE9130
Pre-Irradiation
Footnotes:
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD = -25V, starting TJ = 25°C, L= 7.8mH
Peak IL = -6.5A, VGS = -12V
 ISD ≤ -6.5A, di/dt ≤ -430A/µs,
VDD ≤ -100V, TJ ≤ 150°C
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
-12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with VDS Bias.
-80 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — LCC-18
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd. El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 09/2014
8
www.irf.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement