C191HM. Коммуникационный протокол ASCII. Справочное руководство (англ.)

C191HM. Коммуникационный протокол ASCII. Справочное руководство (англ.)
C191HM
POWERMETER AND HARMONIC
MANAGER
COMMUNICATIONS
ASCII Communications Protocol
REFERENCE GUIDE
Every effort has been made to ensure that the material herein is complete and accurate.
However, the manufacturer is not responsible for any mistakes in printing or faulty instructions
contained in this book. Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of
equipment, contact the manufacturer or your local representative or distributor.
This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise without the prior written permission of the manufacturer.
This revision is applicable to the C191HM instruments with firmware version 4.21 and later.
COPYRIGHT  1999, 2003
BG0281 Rev.A2
2
Table of Contents
1
2
3
4
GENERAL...................................................................................................... 4
ASCII FRAMING ........................................................................................... 5
EXCEPTION RESPONSES ........................................................................... 7
SPECIFIC ASCII REQUESTS........................................................................ 8
4.1 Basic Data .............................................................................................................................. 8
4.2 Basic Setup .......................................................................................................................... 10
4.3 Instrument Status ................................................................................................................. 10
4.4 Reset/Clear Functions.......................................................................................................... 11
4.5 Reset the Instrument (warm restart) .................................................................................... 11
4.6 Read Firmware Version Number.......................................................................................... 12
4.7 Extended Instrument Status ................................................................................................. 12
4.8 Analog Output Allocation...................................................................................................... 13
4.9 Digital Input Allocation.......................................................................................................... 15
4.10 Pulsing Setpoints................................................................................................................ 16
4.11 Min/Max Log....................................................................................................................... 16
4.12 Phase Harmonics ............................................................................................................... 17
5 DIRECT READ/WRITE REQUESTS............................................................ 19
5.1 General................................................................................................................................. 19
5.1.1 Long-Size Direct Read/Write............................................................................................. 19
5.1.2 Variable-Size Direct Read/Write ....................................................................................... 20
5.1.3 User Assignable Registers................................................................................................ 20
5.2 Extended Data Registers ..................................................................................................... 21
5.3 Basic Setup Registers .......................................................................................................... 26
5.4 User Selectable Options Setup ............................................................................................ 26
5.5 Communications Setup ........................................................................................................ 27
5.6 Alarm/Event Setpoints.......................................................................................................... 27
5.7 Relay Operation Control Registers ...................................................................................... 30
5.8 Instrument Options Registers............................................................................................... 31
5.9 Extended Status Registers................................................................................................... 31
5.10 Alarm Status Registers ...................................................................................................... 31
5.11 Reset/Synchronization Registers ....................................................................................... 32
3
1 GENERAL
This document specifies the ASCII serial communications protocol used to transfer data between a master
computer station and the C191HM. The document provides the complete information necessary to develop
third-party communications software capable of communication with the Series C191HM instruments.
All messages within the ASCII communications protocol are designed to consist only of printable
characters.
Additional information concerning communications operation, configuring the communications parameters
and communications connections is found in "Series C191HM Powermeters, Installation and Operation
Manual".
IMPORTANT
1. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active
power, and reactive power will be zeros, because they have no meaning. Only the total three-phase
power values can be used.
2. In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-to-neutral voltages.
In a 3-wire direct connection, harmonic voltages will represent line-to-neutral voltages as they appear
on the instrument's input transformers. In a 3-wire open delta connection, harmonic voltages will
comprise L12 and L23 line-to-line voltages.
4
2 ASCII FRAMING
The following specifies the ASCII message frame:
Field No.
Contents
Length, char
1
SYNC
(!)
1
2
Message
length
3
3
Slave
address
2
4
Message
type
1
5
Message
body
0 to 246
6
Check sum
1
7
Trailer
(CRLF)
2
SYNC
Synchronization character: one character '!' (ASCII 33), used for starting synchronization.
Message length
The length of the message including only number of bytes in fields #2, #3, #4 and #5. Contains three
characters between '006' and '252'.
Slave address
Two characters between '00' and '99'. The instrument with address '00' responds to requests with any
incoming address. For RS-422/RS-485 communications (multi-drop mode), this field must NEVER be zero.
Message type
One character representing the type of a host request. A list of the message types is shown in Tables 2-1
and 2-2. Note that they are case-sensitive.
Message body
Contains the message parameters in ASCII representation. All parameter fields have a fixed format. The
data fields vary in length depending on the data type. Unless otherwise indicated, the parameters should
be right justified and left-padded with zeros. Most parameters are represented in ASCII hexadecimal
notation, and in some cases (to provide compatibility with old instruments) a decimal representation is
preserved.
In a decimal notation, the parameters are transferred in a decimal representation as is, i.e., no conversion
is needed. When a value is between 0 and 1, a decimal point is placed in the data field. When the whole
value exceeds the field range, it is divided by 1000 and truncated to the right. A decimal point is placed
after the thousands to denote that the value has been truncated and must be multiplied by 1000 before it
will be processed.
In a hexadecimal notation, all parameters are whole binary numbers of a 1-byte, 2-byte or 4-byte length.
Each byte is transferred as two hexadecimal digits in ASCII notation (i.e., ASCII printable characters 0-9,
A-F are used to represent hexadecimal digits 0h-9h, 0ah-0fh). Each byte is transmitted high order digit first.
Each 2-byte and 4-byte parameter is transmitted high order bytes first. Negative numbers are transmitted
in 2-complement code.
To represent numbers between 0 and 1, a modulus method is used. Fractional numbers are divided by a
modulus and stored in the Powermeter as whole numbers. The modulus depends on the number of
decimal digits in the fractional part, i.e., on the value precision. The modulus is given in the form ×0.1,
×0.01 or ×0.001. For example, the frequency value of 50.01 Hz having the modulus of ×0.01 will be
received from the instrument as the whole number of 5001. To process the value received from the
instrument in this format, the value must be multiplied by the modulus. To write such a number to the
instrument, the number must be divided by the modulus.
Check sum
Arithmetic sum, calculated in a 2-byte word over fields #2, #3, #4 and #5 to produce a one-byte check sum
in the range of 22h to 7Eh (hexadecimal) as follows: [Σ(each byte - 22H)] mod 5CH + 22H
Trailer
Two ASCII characters CR (ASCII 13) and LF (ASCII 10).
5
NOTE
Fields #3 and #4 of the instrument response are always the same as those in the host request.
Table 2-1 Specific ASCII Requests
Message type
Char
ASCII Hex
0
30h
1
31h
2
32h
3
33h
4
34h
8
38h
9
39h
?
3Fh
B
42h
b
62h
D
44h
d
64h
G
47h
g
67h
H
48h
O
4Fh
Description
Read basic data registers
Read basic setup
Write basic setup
Read instrument status
Reset/clear functions
Reset the instrument
Read version number
Read extended status
Read analog output allocation
Write analog output allocation
Read digital input allocation
Write digital input allocation
Read pulsing setpoint
Write pulsing setpoint
Read phase harmonics
Read Min/Max log
Table 2-2 Direct Read/Write ASCII Requests
Message type
Char
ASCII Hex
A
41h
a
61h
X
58h
x
78h
6
Description
Long-size direct read
Long-size direct write
Variable-size direct read
Variable-size direct write
3 EXCEPTION RESPONSES
The instrument will send the following error codes in the message body in response to incorrect host
requests:
XK
XM XP
- the instrument is in programming mode
invalid request type or illegal operation
- invalid data address or data value, or data is not available
NOTE
When a check or framing error is detected, the instrument will not act on or respond to the master's
request.
7
4 SPECIFIC ASCII REQUESTS
4.1 Basic Data
Table 4-1 Read Request
Field
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Offset
0
4
8
12
17
22
27
33
39
45
49
53
57
63
67
73
78
82
88
94
100
106
112
118
124
130
136
28
29
30
31
32
33
34
142
148
153
158
163
165
171
35
36
37
38
39
40
41
42
177
181
185
189
193
197
201
209
43
215
44
221
8
Message type (ASCII)
0
Message body (decimal)
Request - no body
Response
Length
Parameter
Unit d
4
Voltage L1/L12 h
V/kV
4
Voltage L2/L21 h
V/kV
4
Voltage L3/L31 h
V/kV
5
Current L1
A
5
Current L2
A
5
Current L3
A
6
kW L1
kW/MW
6
kW L2
kW/MW
6
kW L3
kW/MW
4
Power factor L1
4
Power factor L2
4
Power factor L3
6
kW total
kW/MW
4
Power factor total
6
kWh import
MWh e
5
Neutral (unbalanced) current A
4
Frequency
Hz
6
kvar L1
kvar/Mvar
6
kvar L2
kvar/Mvar
6
kvar L3
kvar/Mvar
6
kVA L1
kVA/MVA
6
kVA L2
kVA/MVA
6
kVA L3
kVA/MVA
6
kvarh net
Mvarh e
6
kvar total
kvar/Mvar
6
kVA total
kVA/MVA
6
Maximum sliding window kW kW/MW
demand g
6
Accum. kW demand
kW/MW
5
Max. ampere demand L1
A
5
Max. ampere demand L2
A
5
Max. ampere demand L3
A
2
Status inputs (hex)
6
kWh export
MWh e
6
Maximum sliding window kVA kVA/MVA
demand g
4
Voltage THD L1/L12
%
4
Voltage THD L2/L23
%
4
Voltage THD L3
%
4
Current THD L1
%
4
Current THD L2
%
4
Current THD L3
%
8
kVAh
MVAh e
6
Present sliding window kW
kW/MW
demand g
6
Present sliding window kVA
kVA/MVA
demand g
4
PF at maximum KVA demand
Range c
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-.99 to 1.00 f
-.99 to 1.00 f
-.99 to 1.00 f
-Pmax to Pmax
-.99 to 1.00 f
0 to 99999.
0 to Imax
45.0 to 65.0
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-9999. to 99999.
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
0 to Imax
0 to Imax
0 to Imax
See Table 4-13
0 to 99999.
0 to Pmax
0.0 to 999.
0.0 to 999.
0.0 to 999.
0.0 to 999.
0.0 to 999.
0.0 to 999.
0 to 99999.99
0 to Pmax
0 to Pmax
0 to 1.00
45
46
47
225
229
233
4
4
4
Current TDD L1
Current TDD L2
Current TDD L3
%
%
%
0.0 to 99.9
0.0 to 99.9
0.0 to 99.9
Fields indicated by an N/A mark are padded with ASCII zeros.
c The parameter limits are as follows:
Imax (20% over-range) = 1.2 × CT primary current [A]
Direct wiring (PT Ratio = 1):
Vmax (690 V input option) = 828.0 V
Vmax (120 V input option) = 144.0 V
Pmax = (Imax × Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V]
Vmax (120 V input option) = 144 × PT Ratio [V]
Pmax = (Imax × Vmax × 3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
d When ASCII compatibility mode is disabled (see Section 5.5), voltages, currents and powers are
always transmitted with a decimal point at highest resolution available for the field. For direct wiring (PT
Ratio = 1), voltages are transmitted in volts, currents in amperes, and powers in kilowatts. For wiring via PT
(PT Ratio > 1), voltages are transmitted in kilovolts, currents in amperes, and powers in megawatts. When
the value is greater than the field width, the right most digits of the fractional part are truncated. For the
best available resolution, see Note d to Table 5-7.
When ASCII compatibility mode is enabled, the C191HM provides a fully downward-compatible response
using a lower resolution for voltages, currents and powers - the value is transmitted as a whole number
until the field is filled up, and then it is converted to higher units and transmitted with a decimal point (when
the value is greater than the field width, the right most digits of the fractional part will be truncated).
Voltages are transmitted in volts as whole numbers or in kilovolts with a decimal point, currents in amperes
as whole numbers, and powers in kilowatts as whole numbers or in megawatts with a decimal point.
e Energy readings are transmitted in MWh, Mvarh and MVAh units with a decimal point. If the energy
value exceeds the field resolution, the right-most digits are truncated. The energy roll value is user
selectable (see Section 5.4).
f For negative power factor, the minus sign is transmitted before a decimal point as shown in the table.
g To get block interval demand readings, set the number of demand periods equal to 1 (see Table 4-4).
h When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other
wiring mode, they will be line-to-line voltages.
9
4.2 Basic Setup
Table 4-2 Read Request
Message type (ASCII)
1
Message body (decimal)
Request
Field Offset Length
Parameter
1
0
3
Parameter identifier
Response
Field Offset Length
Parameter
1
0
3
Parameter identifier
2
3
4
Not used
3
7
6
Parameter value
Range
See Table 4-4
Range
See Table 4-4
Permanently set to 00.0
See Table 4-4
Table 4-3 Write Request
Message type (ASCII)
2
Message body (decimal)
Request/Response
Field Offset Length
Parameter
1
0
3
Parameter identifier
2
3
4
Not used
3
7
6
Parameter value
Range
See Table 4-4
Set to 00.0
See Table 4-4
Table 4-4 Basic Setup Parameters
Parameter
Wiring mode c
Identifier
W40
PT ratio
CT primary current
Power demand period
U14
I17
D11
The number of demand periods
Volt/ampere demand period
Averaging buffer size
Reset enable/disable
Nominal frequency
Maximum demand load current
F47
C12
S41
R42
Q51
Q52
Range
0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,
3 = 4LL3, 4 = 3OP3, 5 = 3LN3,
6 = 3LL3
1.0 to 6500.0
1 to 6500 A
1,2,5,10,15,20,30,60 min
255 = external synchronization d
1 - 15
0 to 1800 sec
8, 16, 32
0 = disable, 1 = enable
50, 60
0 to 6,500 A (0 = CT primary current)
c The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element)
4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings
3DIR2 - 3-wire direct connection using 2 CTs (2 element)
4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings
3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)
3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings
3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings
d Synchronization of power demand interval can be made through a digital input or via communications
using the Synchronize power demand interval command (see Table 5-23)
4.3 Instrument Status
This request is supported only for compatibility with older instruments. It allows to read the status of the
first four relays. To read the status of the all eight relays, use the extended status request (see Section 4.7)
or extended data registers (see Section 5.2).
10
Table 4-5 Read Request
Message type (ASCII)
3
Message body (hexadecimal)
Request - no body
Response
Field Offset Length
Parameter
Range
1
0
8
Not used
00000000
2
8
1
Not used
0
3
9
1
Relay status
See Table 4-6
Table 4-6 Relay Status
Bit
0
1
2
3
Description
Relay #4 status
Relay #3 status
Relay #2 status
Relay #1 status
Bit meaning: 0 = relay is energized, 1 = relay is not energized
4.4 Reset/Clear Functions
These operations can be also performed by using the direct write requests instead of the specific request
'4' (see Section 5.11).
Table 4-7 Write Request
Message type (ASCII)
4
Message body (hexadecimal)
Request/Response
Field Offset Length
Parameter
Range
1
0
1
Reset function
See Table 4-8
2
1
2
Target
See Table 4-8 (the field can be
omitted if it is equal to 0)
Table 4-8 Reset/Clear Functions
Function
1
2
Description
Clear total energy registers
Clear total maximum demand registers
3-4
5
Reserved
Clear event/time counters
6
7-F
Clear Min/Max log
Reserved
Target
0
0 = all maximum demands
1 = power demands
2 = volt/ampere demands
0 = all counters
1-4 = counter #1 - #4
0
4.5 Reset the Instrument (warm restart)
This request causes the instrument to perform full reset and restart, the same as when the instrument is
turned on. No response is expected.
11
Table 4-9 Write Request
Message type (ASCII)
8
Message body
Request - no body
Response - no response
4.6 Read Firmware Version Number
Table 4-10 Read Request
Message type (ASCII)
9
Message body (decimal)
Request - no body
Response
Field Offset Length
Parameter
1
0
3
Firmware version
300-399
Range
4.7 Extended Instrument Status
Table 4-11 Read Request
Message type (ASCII)
?
Message body (hexadecimal)
Request - no body
Response
Field Offset Length
Parameter
1
0
4
Relay status
2
4
4
Not used
3
8
4
Status inputs
4
12
4
Setpoints status
5
16
4
Log status
6
20
36
Not used
Table 4-12 Relay Status
Bit
0
1
2
3
4
5
6
7
8-15
Description
Relay #1 status
Relay #2 status
Relay #3 status
Relay #4 status
Relay #5 status
Relay #6 status
Relay #7 status
Relay #8 status
Not used (permanently set to 0)
Bit meaning: 0 = relay is not energized, 1 = relay is energized
Table 4-13 Status Inputs
Bit
0
1-15
Description
Status input
Not used (permanently set to 0)
Bit meaning: 0 = contact open, 1 = contact closed
12
See
0
See
See
See
0
Range
Table 4-12
Table 4-13
Table 4-14
Table 4-15
Table 4-14 Setpoints Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Description
Setpoint # 1 status
Setpoint # 2 status
Setpoint # 3 status
Setpoint # 4 status
Setpoint # 5 status
Setpoint # 6 status
Setpoint # 7 status
Setpoint # 8 status
Setpoint # 9 status
Setpoint # 10 status
Setpoint # 11 status
Setpoint # 12 status
Setpoint # 13 status
Setpoint # 14 status
Setpoint # 15 status
Setpoint # 16 status
Bit meaning: 0 = setpoint is released, 1 = setpoint is operated
Table 4-15 Log Status
Bit
0
1
2-15
Description
Reserved
New Min/Max log
Not used (permanently set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first
log record after the flag has been set)
4.8 Analog Output Allocation
Table 4-16 Read Request
Message type (ASCII)
B
Message body (hexadecimal)
Request
Field Offset Length
Parameter
1
0
2
Analog channel number
Response
Field Offset Length
Parameter
1
0
2
Analog channel number
2
2
4
Output parameter index
3
6
8
Zero scale (0/4 mA)
4
14
8
Full scale (20 mA)
Range
0
Range
0
See Table 4-18
See Table 4-18
See Table 4-18
Table 4-17 Write Request
Message type (ASCII)
b
Message body (hexadecimal)
Request/Response
Field Offset Length
Parameter
1
0
2
Analog channel number
2
2
4
Output parameter index
3
6
8
Zero scale (0/4 mA)
4
14
8
Full scale (20 mA)
Range
0
See Table 4-18
See Table 4-18
See Table 4-18
Except for the signed power factor (see Note 3 to Table 4-18), the output scale is linear within the value
range. The scale range will be inverted if the full scale specified is less than the zero scale.
13
Table 4-18 Analog Output Parameters
Parameter
None
None
Real-time values per phase
Voltage L1/L12 g
Voltage L2/L23 g
Voltage L3/L31 g
Current L1
Current L2
Current L3
Real-time total value
Total kW
Total kvar
Total kVA
Total PF f
Total PF Lag
Total PF Lead
Real-time auxiliary values
Frequency e
Average values per phase
Voltage L1/L12 g
Voltage L2/L23 g
Voltage L3/L31 g
Current L1
Current L2
Current L3
Average total values
Total kW
Total kvar
Total kVA
Total PF f
Total PF Lag
Total PF Lead
Average auxiliary values
Neutral current
Frequency e
Present demands
Accumulated kW demand (import)
Accumulated kVA demand
Data
index
Length
Unit d
Scale range c
0000h
4
0
0C00h
0C01h
0C02h
0C03h
0C04h
0C05h
8
8
8
8
8
8
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0
0
0
0
0
0
0F00h
0F01h
0F02h
0F03h
0F04h
0F05h
8
8
8
4
4
4
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
1002h
4
0.01Hz
0 to 10000
1100h
1101h
1102h
1103h
1104h
1105h
8
8
8
8
8
8
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0
0
0
0
0
0
1400h
1401h
1402h
1403h
1404h
1405h
8
8
8
4
4
4
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
1501h
1502h
8
4
0.01A
0.01Hz
0 to Imax
0 to 10000
160Fh
1611h
8
8
0.001kW/1kW
0.001kVA/1kVA
0 to Pmax
0 to Pmax
to
to
to
to
to
to
to
to
to
to
to
to
Vmax
Vmax
Vmax
Imax
Imax
Imax
Vmax
Vmax
Vmax
Imax
Imax
Imax
c For parameter limits, see Note c to Table 4-1.
d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A
units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted
in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
e The actual frequency range is 45.00 to 65.00 Hz
f The output scale for signed (bi-directional) power factor is symmetrical with regard to ±1.000 and is
linear from -0 to -1.000, and from 1.000 to +0 (note that -1.000 ≡ +1.000). Negative power factor is output
as [-1.000 minus measured value], and non-negative power factor is output as [+1.000 minus measured
value]. To define the entire range for power factor from -0 to +0, the scales would be specified as -0/0.
Because of the fact that negative zero may not be transmitted, the value of -0.001 is used to specify the
scale of -0, and both +0.001 and 0.000 are used to specify the scale of +0. To define the range of -0 to 0,
you must send -1/1 or -1/0 (considering the modulus of ×0.001).
g When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other
wiring mode, they will be line-to-line voltages.
14
4.9 Digital Input Allocation
Table 4-19 Read Request
Message type (ASCII)
D
Message body (hexadecimal)
Request
Field Offset Length
Parameter
Range
1
0
2
Digital input group ID
See Table 4-21
Response
Field Offset Length
Parameter
Range
1
0
2
Digital input group ID
See Table 4-21
2
2
2
Allocation mask
See Table 4-22
Table 4-20 Write Request
Message type (ASCII)
d
Message body (hexadecimal)
Request/Response
Field Offset Length
Parameter
Range
1
0
2
Digital input group ID
See Table 4-21
2
2
2
Allocation mask
See Table 4-22
Table 4-21 Digital Input Groups
Group ID
0
1
2
3
Description
Status inputs c
Pulse inputs c
Not used (read as 0) c
External synchronization pulse input
c Writing to these locations is ignored. No error will occur.
NOTE
When a digital input is allocated for the external synchronization pulse, it is automatically configured as a
pulse input, otherwise it is configured as a status input.
Table 4-22 Digital Inputs Allocation Mask
Bit number
0
1-15
Description
Digital input allocation status
Not used
Bit meaning: 0 = input not allocated, 1 = input allocated to the group
15
4.10 Pulsing Setpoints
Table 4-23 Read Request
Message type (ASCII)
G
Message body (hexadecimal)
Request
Field Offset Length
Parameter
1
0
2
Pulse output ID
Response
Field Offset Length
Parameter
1
0
2
Pulse output ID
2
2
2
Output parameter ID
3
4
4
For energy pulsing =
number of unit-hours per pulse,
otherwise - permanently set to 0
Range
0-7 (see Table 4-25)
Range
0-7 (see Table 4-25)
See Table 4-26
0-9999
Table 4-24 Write Request
Message type (ASCII)
g
Message body (hexadecimal)
Request/Response
Field Offset Length
Parameter
Range
1
0
2
Pulse output ID
0-7 (see Table 4-25)
2
2
2
Output parameter ID
See Table 4-26
3
4
4
For energy pulsing = number of unit- 0-9999
hours per pulse, otherwise - set to 0
Table 4-25 Pulse Outputs
Pulsing output ID
0
1
2
3
4
5
6
7
Output allocation
Relay #1
Relay #2
Relay #3
Relay #4
Relay #5
Relay #6
Relay #7
Relay #8
Table 4-26 Pulsing Output Parameters
Pulsing parameter ID
None
kWh import
kWh export
kvarh import
kvarh export
kvarh total (absolute)
kVAh total
Identifier
0
1
2
4
5
6
7
4.11 Min/Max Log
The Min/Max log read request is supported only for compatibility with other models of instruments.
Because the Min/Max log is not time stamped in the C191HM, this request yields only the Min/Max log
parameters which can be read directly via extended data registers (see Table 5-7).
16
Table 4-27 Read Request
Message type (ASCII)
O
Message body (hexadecimal)
Request
Field Offset Length
Parameter
Range
1
0
4
Start Min/Max parameter ID
See Table 5-7
2
4
2
The number of subsequent parameters to read 1-12
Response
Field Offset Length
Parameter
Range
1
0
2
The number of parameters in message
1-12
2
2
2
Log parameter #1
Second
0
3
4
2
Minute
0
4
6
2
Hour
0
5
8
2
Day
0
6
10
2
Month
0
7
12
2
Year
0
8
14
8
Parameter value
See Table 5-7
9
22
2
Log parameter #2
Second
0
10
24
2
Minute
0
11
26
2
Hour
0
12
28
2
Day
0
13
30
2
Month
0
14
32
2
Year
0
15
34
8
Parameter value
See Table 5-7
. . .
79
222
2
Log parameter #12
Second
0
80
224
2
Minute
0
81
226
2
Hour
0
82
228
2
Day
0
83
230
2
Month
0
84
232
2
Year
0
85
234
8
Parameter value
See Table 5-7
This request allows you to obtain the Min/Max log parameters. Up to 12 parameters can be read in one
packet from a single parameter group. The available Min/Max log parameters are listed in Table 5-7. The
time stamp is not available in the C191HM and is padded with zeros.
4.12 Phase Harmonics
Table 4-28 Read Request
Message type (ASCII)
H
Message body (decimal)
Request
Field Offset Length
Parameter
1
0
1
Channel ID
Response
Field Offset Length
Parameter
1
0
5
RMS value for the channel d, V/A
2
5
5
Fundamental frequency
3
10
5
%THD
4
15
5
Harmonic H01 (reference)
5
20
5
Harmonic H02
6
25
5
Harmonic H03
...
43
210
5
Harmonic H40
Range
1 - 6 (see Table 4-29)
Range
0 to Vmaxc/Imax
0 to 65.50
0.0 to 100.0
100.0
0.00 to 100.0
0.00 to 100.0
0.00 to 100.0
c Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in
other configurations.
d For RMS value representation, see Note d to Table 4-1.
17
Table 4-29 Harmonic Spectrum Channels
Channel ID
1
2
3
4
5
6
18
Voltage
Voltage
Voltage
Current
Current
Current
Description
L1/L12
L2/L23
L3
L1
L2
L3
5 DIRECT READ/WRITE REQUESTS
5.1 General
This chapter describes the instrument data locations that are addressed directly using data location
indexes. These locations can be accessed by using universal direct read/write requests instead of specific
ASCII requests. A data index is a 4-digit hexadecimal number, which actually comprises a two-digit data
group identifier followed by a two-digit location offset within a group. All data are transmitted in ASCII
hexadecimal notation. Negative numbers are transmitted in 2-complement code.
5.1.1 Long-Size Direct Read/Write
Table 5-1 Read Request
Field
1
2
Offset
0
4
Length
4
2
Field
1
2
3
...
31
Offset
0
2
10
...
234
Length
2
8
8
...
8
Message type (ASCII)
A
Message body (hexadecimal)
Request
Parameter
Start data index to read
The number of contiguous data items to read
Response
Parameter
Number of data items in the message
Data #1 value
Data #2 value
...
Data #30 value
Range
0000h - FFFFh
1-30 (01h - 1Eh)
Range
1-30 (01h - 1Eh)
Table 5-2 Write Request
Field
1
2
Offset
0
4
Length
4
8
Message type (ASCII)
a
Message body (hexadecimal)
Request/Response
Parameter
Data index to write
Data value to write
Range
0000h - FFFFh
In long-size direct read/write messages, all data items are read and written as long signed integers, which
are represented in messages by 8-digit hexadecimal numbers, regardless of the actual data size.
By using a long-size direct read request, up to 30 contiguous parameters can be read at once. A write
request allows for writing only one data location at a time.
19
5.1.2 Variable-Size Direct Read/Write
Table 5-3 Read Request
Field
1
2
Offset
0
4
Length
4
2
Field
1
2
3
...
60
Offset
0
2
Length
2
2/4/8
2/4/8
...
2/4/8
...
Message type (ASCII)
X
Message body (hexadecimal)
Request
Parameter
Start data index to read
The number of contiguous data items to read
Response
Parameter
Number of data items in the message
Data #1 value
Data #2 value
...
Data #60 value
Range
0000h - FFFFh
1-61 (01h - 3Dh)
Range
1-61 (01h - 3Dh)
Table 5-4 Write Request
Field
1
2
2
3
...
60
Offset
0
4
2
Field
1
2
Offset
0
4
...
Length
4
2
2/4/8
2/4/8
...
2/4/8
Length
4
2
Message type (ASCII)
x
Message body (hexadecimal)
Request
Parameter
Start data index to write
The number of contiguous data items to write
Data #1 value
Data #2 value
...
Data #60 value
Request
Parameter
Start data index written
The number of data items written
Range
0000h - FFFFh
1-61 (01h - 3Dh)
Range
0000h - FFFFh
1-61 (01h - 3Dh)
With variable-size direct read/write messages, data items are read and written as 2, 4 or 8-character
hexadecimal numbers. The actual data size is indicated for each data location. When written, the data
format should be exactly the same as indicated.
The number of parameters that can be read or written by a single read/write request depends on the size
of each data item. The total length of all parameters should not exceed 240 characters.
5.1.3 User Assignable Registers
The instrument contains 120 user assignable registers in the range of indexes 8000h to 8077h (see Table
5-5). You can map any of these registers to either register index, accessible in the instrument through
direct read/write requests. Registers that reside in different locations may be accessed by a single request
by re-mapping them to adjacent addresses in the user assignable registers area.
The actual indexes of the user assignable registers which are accessed via indexes 8000h to 8077h are
specified in the user assignable register map. It occupies indexes 8100h to 8177h (see Table 5-6), where
the map register 8100h should contain the actual index of the register accessed via assignable register
8000h, register 8101h should contain the actual index of the register accessed via assignable register
8001h, and so on. Note that the user assignable register indexes and the user register map indexes may
not be re-mapped.
20
Table 5-5 User Assignable Registers
Data index
(hex)
8000h
8001h
8002h
...
8077h
Register contents
User
User
User
...
User
Length
c
c
c
...
c
definable data 0
definable data 1
definable data 2
definable data 119
Direction
Range
c
c
c
c
c
c
c
c
c - depends on the mapped register
Table 5-6 User Assignable Register Map
Data index
(hex)
8100h
8101h
8102h
...
8177h
Register contents
Data
Data
Data
...
Data
Length
index for user data 0
index for user data 1
index for user data 2
4
4
4
...
4
index for user data 119
Direction
Range
R/W
R/W
R/W
0000h-FFFFh
0000h-FFFFh
0000h-FFFFh
R/W
0000h-FFFFh
To build your own register map, write to map registers (8100h to 8177h) the actual addresses you want to
read from or write to via the assignable area (8000h to 8077h). For example, if you want to read registers
0C00h (real-time voltage of phase A) and 1700h (kWh import) via indexes 8000h-8001h, do the following:
- write 0C00h to register 8100h
- write 1700h to register 8101h
Reading from registers 8000h-8001h will return the voltage reading in register 8000h, and the kWh reading
in register 8001h.
5.2 Extended Data Registers
Table 5-7 Extended Data Table
Parameter
None
None
Status inputs
Status inputs
Relays
Relay status
Event/time counters
Pulse counter #1
Pulse counter #2
Pulse counter #3
Pulse counter #4
Real-time values per phase
Voltage L1/L12 g
Voltage L2/L23 g
Voltage L3/L31 g
Current L1
Current L2
Current L3
kW L1
kW L2
kW L3
kvar L1
kvar L2
kvar L3
kVA L1
kVA L2
kVA L3
Data
index
Length
Direction
Unit
Range c
0000h
4
R
0
0600h
4
R
See Table 4-13
0800h
4
R
See Table 4-12
0A00h
0A01h
0A02h
0A03h
8
8
8
8
R/W
R/W
R/W
R/W
0
0
0
0
0C00h
0C01h
0C02h
0C03h
0C04h
0C05h
0C06h
0C07h
0C08h
0C09h
0C0Ah
0C0Bh
0C0Ch
0C0Dh
0C0Eh
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
to
to
to
to
99999
99999
99999
99999
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
21
Parameter
Power factor L1
Power factor L2
Power factor L3
Voltage THD L1/L12
Voltage THD L2/L23
Voltage THD L3
Current THD L1
Current THD L2
Current THD L3
K-Factor L1
K-Factor L2
K-Factor L3
Current TDD L1
Current TDD L2
Current TDD L3
Voltage L12
Voltage L23
Voltage L31
Real-time total values
Total kW
Total kvar
Total kVA
Total PF
Reserved
Reserved
Real-time auxiliary values
Reserved
Neutral current
Frequency f
Voltage unbalance
Current unbalance
Average values per phase
Voltage L1/L12 g
Voltage L2/L23 g
Voltage L3/L31 g
Current L1
Current L2
Current L3
kW L1
kW L2
kW L3
kvar L1
kvar L2
kvar L3
kVA L1
kVA L2
kVA L3
Power factor L1
Power factor L2
Power factor L3
Voltage THD L1/L12
Voltage THD L2/L23
Voltage THD L3
Current THD L1
Current THD L2
Current THD L3
K-Factor L1
K-Factor L2
K-Factor L3
Current TDD L1
Current TDD L2
Current TDD L3
Voltage L12
Voltage L23
Voltage L31
22
Data
index
0C0Fh
0C10h
0C11h
0C12h
0C13h
0C14h
0C15h
0C16h
0C17h
0C18h
0C19h
0C1Ah
0C1Bh
0C1Ch
0C1Dh
0C1Eh
0C1Fh
0C20h
Length
Direction
Unit
Range c
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
-999 to 1000
-999 to 1000
-999 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
10 to 9999
10 to 9999
10 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to Vmax
0 to Vmax
0 to Vmax
0F00h
0F01h
0F02h
0F03h
0F04h
0F05h
8
8
8
4
4
4
R
R
R
R
R
R
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
0
0
1000h
1001h
1002h
1003h
1004h
8
8
4
4
4
R
R
R
R
R
0.01A
0.01Hz
1%
1%
0
0
0
0
0
1100h
1101h
1102h
1103h
1104h
1105h
1106h
1107h
1108h
1109h
110Ah
110Bh
110Ch
110Dh
110Eh
110Fh
1110h
1111h
1112h
1113h
1114h
1115h
1116h
1117h
1118h
1119h
111Ah
111Bh
111Ch
111Dh
110Eh
110Fh
1120h
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
0 to 9999
10 to 9999
10 to 9999
10 to 9999
0 to 1000
0 to 1000
0 to 1000
0 to Vmax
0 to Vmax
0 to Vmax
to
to
to
to
Imax
10000
300
300
Parameter
Average total values
Total kW
Total kvar
Total kVA
Total PF
Reserved
Reserved
Average auxiliary values
Reserved
Neutral current
Frequency f
Voltage unbalance
Current unbalance
Present demands
Volt demand L1/L12 g
Volt demand L2/L23 g
Volt demand L3/L31 g
Ampere demand L1
Ampere demand L2
Ampere demand L3
Block kW demand
Reserved
Block kVA demand
Sliding window kW demand
Reserved
Sliding window kVA demand
Reserved
Reserved
Reserved
Accumulated kW demand
Reserved
Accumulated kVA demand
Predicted sliding window kW
demand
Reserved
Predicted sliding window kVA
demand
PF at maximum sliding window kVA
demand
Total energies
kWh import
kWh export
Reserved
Reserved
kvarh import
kvarh export
Reserved
Reserved
kVAh total
Phase energies
kWh import L1
kWh import L2
kWh import L3
kvarh import (inductive) L1
kvarh import (inductive) L2
kvarh import (inductive) L3
kVAh L1
kVAh L2
kVAh L3
L1/L12 phase voltage harmonics
Harmonic H01
Harmonic H02
...
Harmonic H40
Data
index
Length
Direction
1400h
1401h
1402h
1403h
1404h
1405h
8
8
8
4
4
4
R
R
R
R
R
R
1500h
1501h
1502h
1503h
1504h
8
8
4
4
4
R
R
R
R
R
1600h
1601h
1602h
1603h
1604h
1605h
1606h
1607h
1608h
1609h
160Ah
160Bh
160Ch
160Dh
160Eh
160Fh
1610h
1611h
1612h
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
1613h
1614h
8
8
1615h
Unit
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.01A
0.01Hz
1%
1%
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
Range c
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
0
0
0
0
0
0
0
to
to
to
to
Imax
10000
300
300
to
to
to
to
to
to
to
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
0.001kVA/1kVA
0.001kW/1kW
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
0.001kVA/1kVA
0
0 to Pmax
4
R
0.001
0 to 1000
1700h
1701h
1702h
1703h
1704h
1705h
1706h
1707h
1708h
8
8
8
8
8
8
8
8
8
R
R
R
R
R
R
R
R
R
kWh
kWh
to 108-1
to 108-1
kVAh
0
0
0
0
0
0
0
0
0
1800h
1801h
1802h
1803h
1804h
1805h
1806h
1807h
1808h
8
8
8
8
8
8
8
8
8
R
R
R
R
R
R
R
R
R
kWh
kWh
kWh
kvarh
kvarh
kvarh
kVAh
kVAh
kVAh
0
0
0
0
0
0
0
0
0
to
to
to
to
to
to
to
to
to
1900h
1901h
...
1927h
4
4
R
R
0.01%
0.01%
0 to 10000
0 to 10000
4
R
0.01%
0 to 10000
0.001kVA/1kVA
0.001kW/1kW
0.001kVA/1kVA
0.001kW/1kW
kvarh
kvarh
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to Pmax
to 108-1
to 108-1
to 108-1
108-1
108-1
108-1
108-1
108-1
108-1
108-1
108-1
108-1
23
Parameter
Data
index
Length
L2/L23 phase voltage harmonics
Harmonic H01
1A00h
4
Harmonic H02
1A01h
4
...
...
Harmonic H40
1A27h
4
L3 phase voltage harmonics
Harmonic H01
1B00h
4
Harmonic H02
1B01h
4
...
...
Harmonic H40
1B27h
4
L1 phase current harmonics
Harmonic H01
1C00h
4
Harmonic H02
1C01h
4
...
...
Harmonic H40
1C27h
4
L2 phase current harmonics
Harmonic H01
1D00h
4
Harmonic H02
1D01h
4
...
...
Harmonic H40
1D27h
4
L3 phase current harmonics
Harmonic H01
1E00h
4
Harmonic H02
1E01h
4
...
...
Harmonic H40
1E27h
4
Fundamental's (H01) real-time values per phase
Voltage L1/L12
2900h
8
Voltage L2/L23
2901h
8
Voltage L3/L31
2902h
8
Current L1
2903h
8
Current L2
2904h
8
Current L3
2905h
8
kW L1
2906h
8
kW L2
2907h
8
kW L3
2908h
8
kvar L1
2909h
8
kvar L2
290Ah
8
kvar L3
290Bh
8
kVA L1
290Ch
8
kVA L2
290Dh
8
kVA L3
290Eh
8
Power factor L1
290Fh
4
Power factor L2
2910h
4
Power factor L3
2911h
4
Fundamental's (H01) real-time total values
Total kW
2a00h
8
Total kvar
2a01h
8
Total kVA
2a02h
8
Total PF
2a03h
4
Minimum real-time values per phase (M)
Voltage L1/L12 g
2C00h
8
Voltage L2/L23 g
2C01h
8
Voltage L3/L31 g
2C02h
8
Current L1
2C03h
8
Current L2
2C04h
8
Current L3
2C05h
8
Minimum real-time total values (M)
Total kW
2D00h
8
Total kvar
2D01h
8
Total kVA
2D02h
8
Total PF e
2D03h
4
Minimum real-time auxiliary values (M)
Reserved
2E00h
8
Neutral current
2E01h
8
24
Direction
Unit
Range c
R
R
0.01%
0.01%
0 to 10000
0 to 10000
R
0.01%
0 to 10000
R
R
0.01%
0.01%
0 to 10000
0 to 10000
R
0.01%
0 to 10000
R
R
0.01%
0.01%
0 to 10000
0 to 10000
R
0.01%
0 to 10000
R
R
0.01%
0.01%
0 to 10000
0 to 10000
R
0.01%
0 to 10000
R
R
0.01%
0.01%
0 to 10000
0 to 10000
R
0.01%
0 to 10000
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0 to Vmax
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to Imax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to Pmax
0 to Pmax
-999 to 1000
-999 to 1000
-999 to 1000
R
R
R
R
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
-999 to 1000
R
R
R
R
R
R
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0
0
0
0
0
0
R
R
R
R
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to 1000
R
R
0.01A
0
0 to Imax
to
to
to
to
to
to
Vmax
Vmax
Vmax
Imax
Imax
Imax
Parameter
Data
index
Frequency f
2E02h
Minimum demands (M) - Reserved
Reserved
2F00h2F0Bh
Maximum real-time values per phase (M)
Voltage L1/L12 g
3400h
Voltage L2/L23 g
3401h
Voltage L3/L31 g
3402h
Current L1
3403h
Current L2
3404h
Current L3
3405h
Maximum real-time total values (M)
Total kW
3500h
Total kvar
3501h
Total kVA
3502h
Total PF e
3503h
Maximum real-time auxiliary values (M)
Reserved
3600h
Neutral current
3601h
Frequency f
3602h
Maximum demands (M)
Max. volt demand L1/L12 g
3700h
Max. volt demand L2/L23 g
3701h
Max. volt demand L3/L31 g
3702h
Max. ampere demand L1
3703h
Max. ampere demand L2
3704h
Max. ampere demand L3
3705h
Reserved
3706h
Reserved
3707h
Reserved
3708h
Max. sliding window kW demand
3709h
Reserved
370Ah
Max. sliding window kVA demand
370Bh
L1/L12 voltage harmonic angles
Harmonic H01 angle
6400h
Harmonic H02 angle
6401h
...
...
Harmonic H40 angle
6427h
L2/L23 voltage harmonic angles
Harmonic H01 angle
6500h
Harmonic H02 angle
6501h
...
...
Harmonic H40 angle
6527h
L3 voltage harmonic angles
Harmonic H01 angle
6600h
Harmonic H02 angle
6601h
...
...
Harmonic H40 angle
6627h
L1 current harmonic angles
Harmonic H01 angle
6800h
Harmonic H02 angle
6801h
...
...
Harmonic H40 angle
6827h
L2 current harmonic angles
Harmonic H01 angle
6900h
Harmonic H02 angle
6901h
...
...
Harmonic H40 angle
6927h
L3 current harmonic angles
Harmonic H01 angle
6a00h
Harmonic H02 angle
6a01h
...
...
Harmonic H40 angle
6a27h
Length
Direction
Unit
0.01Hz
Range c
4
R
0 to 10000
8
R
8
8
8
8
8
8
R
R
R
R
R
R
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0
0
0
0
0
0
8
8
8
4
R
R
R
R
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
-Pmax to Pmax
-Pmax to Pmax
0 to Pmax
0 to 1000
8
8
4
R
R
R
0.01A
0.01Hz
0
0 to Imax
0 to 10000
8
8
8
8
8
8
8
8
8
8
8
8
R
R
R
R
R
R
R
R
R
R
R
R
4
4
0
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
to
to
to
to
to
to
0.001kVA/1kVA
0
0
0
0
0
0
0
0
0
0
0
0
R
R
0.1 degree
0.1 degree
-1800 to 1800
-1800 to 1800
4
R
0.1 degree
-1800 to 1800
4
4
R
R
0.1 degree
0.1 degree
-1800 to 1800
-1800 to 1800
4
R
0.1 degree
-1800 to 1800
4
4
R
R
0.1 degree
0.1 degree
-1800 to 1800
-1800 to 1800
4
R
0.1 degree
-1800 to 1800
4
4
R
R
0.1 degree
0.1 degree
-1800 to 1800
-1800 to 1800
4
R
0.1 degree
-1800 to 1800
4
4
R
R
0.1 degree
0.1 degree
-1800 to 1800
-1800 to 1800
4
R
0.1 degree
-1800 to 1800
4
4
R
R
0.1 degree
0.1 degree
-1800 to 1800
-1800 to 1800
4
R
0.1 degree
-1800 to 1800
0.001kW/1kW
to
to
to
to
to
to
Vmax
Vmax
Vmax
Imax
Imax
Imax
Vmax
Vmax
Vmax
Imax
Imax
Imax
to Pmax
to Pmax
25
c For parameter limits, see Note c to Table 4-1
d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A
units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted
in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
e New absolute min/max value (lag or lead)
f The actual frequency range is 45.00 - 65.00 Hz
g When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other
wiring mode, they will be line-to-line voltages.
(M) These parameters are logged to the Min/Max log
5.3 Basic Setup Registers
Table 5-8 Basic Setup Registers
Parameter
Wiring mode c
Data
index
8600h
Length
Direction
4
R/W
PT ratio
CT primary current
Power demand period
8601h
8602h
8603h
4
4
4
R/W
R/W
R/W
Volt/ampere demand period
Averaging buffer size
Reset enable/disable
Reserved
The number of demand periods
Reserved
Reserved
Nominal frequency
Maximum demand load current
8604h
8605h
8606h
8607h
8608h
8609h
860Ah
860Bh
860Ch
4
4
4
4
4
4
4
4
4
R/W
R/W
R/W
R
R/W
R
R
R/W
R/W
Range
0 = 3OP2, 1 = 4LN3,
2 = 3DIR2, 3 = 4LL3,
4 = 3OP3, 5 = 3LN3,
6 = 3LL3
10 to 65000 × 0.1
1 to 6500 A
1,2,5,10,15,20,30,60 min
255 = external
synchronization d
1 to 1800 sec
8, 16, 32
0 = disable, 1 = enable
Read as 65535
1 to 15
Read as 65535
Read as 65535
50, 60 Hz
0 to 6500 A (0 = CT primary
current)
c For the wiring mode options, see Note to Table 4-4
d Synchronization of power demand interval can be made through a digital input or via communications
using the Synchronize power demand interval command (see Table 5-23)
5.4 User Selectable Options Setup
Table 5-9 User Selectable Options Registers
Parameter
Power calculation mode
Data
index
8700h
Length
Direction
4
R/W
Energy roll value c
8701h
4
R/W
Phase energy calculation mode
8702h
4
R/W
Range
0
1
0
1
2
3
4
0
=
=
=
=
=
=
=
=
using reactive power
using non-active power
1×104
1×105
1×106
1×107
1×108
disable, 1 = enable
c For short energy readings (see Table 4-1), the maximum roll value will be 1×108 for positive readings
and 1×107 for negative readings.
26
5.5 Communications Setup
Table 5-10 Communications Setup Registers
Parameter
Reserved
Reserved
Address
Baud rate
Data
index
8500h
8501h
8502h
8503h
4
4
4
4
R
R
R/W
R/W
Data format
8504h
4
R/W
Reserved
8505h8507h
8508h
4
R
4
R/W
ASCII compatibility mode
Length
Direction
Range
Read as 65535
Read as 65535
0 to 99
0 = 110 bps
1 = 300 bps
2 = 600 bps
3 = 1200 bps
4 = 2400 bps
5 = 4800 bps
6 = 9600 bps
7 = 19200 bps
0 = 7 bits/even parity
1 = 8 bits/no parity
2 = 8 bits/even parity
Read as 65535
0 = disabled, 1 = enabled (see Note d to
Table 4-1)
When changing the instrument address, baud rate or data format, the new communications parameters will
take effect 100 ms after the instrument responds to the master's request.
5.6 Alarm/Event Setpoints
Table 5-11 Setpoint Setup Locations
Setpoint number
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
Setpoint
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Setup indexes (hex)
8200h-8205h
8206h-820Bh
820Ch-8211h
8212h-8217h
8218h-821Dh
821Eh-8223h
8224h-8229h
822Ah-822Fh
8230h-8235h
8236h-820Bh
823Ch-8241h
8242h-8247h
8248h-824Dh
824Eh-8253h
8254h-8259h
825Ah-825Fh
Table 5-12 Setpoint Setup Registers
Parameter
Trigger ID
Action
Operate delay
Release delay
Operate limit
Release limit
Offset
+0
+1
+2
+3
+4
+5
Length
4
4
4
4
8
8
Direction
R/W
R/W
R/W
R/W
R/W
R/W
Range
See Table 5-13
See Table 5-14
0-9999 (×0.1 sec)
0-9999 (×0.1 sec)
See Table 5-13
see Table 5-13
1. The setpoint is disabled when its trigger parameter is set to NONE. To disable the setpoint, write zero
into this register.
27
2. When writing the setpoint registers (except in the event when the setpoint is to be disabled), it is
recommended to write all the setpoint registers using a single request, or to disable the setpoint before
writing into separate registers. Each written value is checked for compatibility with the other setpoint
parameters; if the new value does not conform to these, the request will be rejected.
3. Operate and release limits for the trigger parameters and their ranges are indicated in Table 5-13.
Limits indicated as N/A are read as zeros. When writing, they can be omitted or should be written as
zeros.
4. When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re-allocate
it for a setpoint will result in a negative response.
Table 5-13 Setpoint Triggers
Trigger parameter
Trigger
index (hex)
0000h
None
Status inputs
Status input ON
0600h
Status input OFF
8600h
Phase reversal
Positive phase rotation reversal e
8901h
Negative phase rotation reversal e
8902h
High/low real-time values on any phase
High voltage g
0E00h
Low voltage g
8D00h
High current
0E01h
Low current
8D01h
High voltage THD
0E07h
High current THD
0E08h
High K-Factor
0E09h
High current TDD
0E0Ah
High/low real-time auxiliary values
High frequency f
1002h
Low frequency f
9002h
High/low average values per phase
High current L1
1103h
High current L2
1104h
High current L3
1105h
Low current L1
9103h
Low current L2
9104h
Low current L3
9105h
High/low average values on any phase
High voltage g
1300h
Low voltage g
9200h
High current
0301h
Low current
8201h
High/low average total values
High total kW import
1406h
High total kW export
1407h
High total kvar import
1408h
High total kvar export
1409h
High total kVA
1402h
Low total PF lag
9404h
Low total PF lead
9405h
High/low average auxiliary values
High neutral current
1501h
High frequency f
1502h
Low frequency f
9502h
High present demands
High volt demand L1/L12 g
1600h
High volt demand L2/L23 g
1601h
28
Unit d
Range c
N/A
N/A
N/A
N/A
N/A
0.1V/1V
0.1V/1V
0.01A
0.01A
0.1%
0.1%
0.1
0.1%
0 to Vmax
0 to Vmax
0 to Imax
0 to Imax
0 to 9999
0 to 9999
10 to 9999
0 to 1000
0.01Hz
0.01Hz
0 to 10000
0 to 10000
0.01A
0.01A
0.01A
0.01A
0.01A
0.01A
0
0
0
0
0
0
to
to
to
to
to
to
Imax
Imax
Imax
Imax
Imax
Imax
0.1V/1V
0.1V/1V
0.01A
0.01A
0
0
0
0
to
to
to
to
Vmax
Vmax
Imax
Imax
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0
0
0
0
0
0
0
to
to
to
to
to
to
to
Pmax
Pmax
Pmax
Pmax
Pmax
1000
1000
0.01A
0.01Hz
0.01Hz
0 to Imax
0 to 10000
0 to 10000
0.1V/1V
0.1V/1V
0 to Vmax
0 to Vmax
Trigger parameter
High volt demand L3/L31 g
High ampere demand L1
High ampere demand L2
High ampere demand L3
High block kW demand
High block kVA demand
High sliding window kW demand
High sliding window kVA demand
High accumulated kW demand
High accumulated kVA demand
Predicted kW demand (import)
Predicted kVA demand
High voltage harmonics on any phase
High voltage harmonic H03
High voltage harmonic H05
High voltage harmonic H07
High voltage harmonic H09
High voltage harmonic H11
High voltage harmonic H13
High voltage harmonic H15
High voltage harmonic H17
High voltage harmonic H19
High voltage harmonic H21
High voltage harmonic H23
High voltage harmonic H25
High voltage harmonic H27
High voltage harmonic H29
High voltage harmonic H31
High voltage harmonic H33
High voltage harmonic H35
High voltage harmonic H37
High voltage harmonic H39
High current harmonics on any phase
High current harmonic H03
High current harmonic H05
High current harmonic H07
High current harmonic H09
High current harmonic H11
High current harmonic H13
High current harmonic H15
High current harmonic H17
High current harmonic H19
High current harmonic H21
High current harmonic H23
High current harmonic H25
High current harmonic H27
High current harmonic H29
High current harmonic H31
High current harmonic H33
High current harmonic H35
High current harmonic H37
High current harmonic H39
Trigger
index (hex)
1602h
1603h
1604h
1605h
1606h
1608h
1609h
160Bh
160Fh
1611h
1612h
1614h
Unit d
Range c
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kVA/1kVA
0.001kW/1kW
0.001kVA/1kVA
0.001kW/1kW
0.001kVA/1kVA
0.001kW/1kW
0.001kVA/1kVA
0
0
0
0
0
0
0
0
0
0
0
0
to
to
to
to
to
to
to
to
to
to
to
to
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
7201h
7202h
7203h
7204h
7205h
7206h
7207h
7208h
7209h
720Ah
720Bh
720Ch
720Dh
720Eh
720Fh
7210h
7211h
7212h
7213h
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
7301h
7302h
7303h
7304h
7305h
7306h
7307h
7308h
7309h
730Ah
730Bh
730Ch
730Dh
730Eh
730Fh
7310h
7311h
7312h
7313h
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0.01%
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
c For parameter limits, see Note c to Table 4-1
d When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A
units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted
in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
e The setpoint is operated when the actual phase sequence does not match the indicated phase rotation
f The actual frequency range is 45.00 - 65.00 Hz
29
g When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other
wiring mode, they will be line-to-line voltages.
Table 5-14 Setpoint Actions
Action
No action
Operate relay #1
Operate relay #2
Operate relay #3
Operate relay #4
Operate relay #5
Operate relay #6
Operate relay #7
Operate relay #8
Assert local alarm
Increment counter #1
Increment counter #2
Increment counter #3
Increment counter #4
Count operating time using counter
Count operating time using counter
Count operating time using counter
Count operating time using counter
#1
#2
#3
#4
ID (hex)
0000h
3000h
3001h
3002h
3003h
3004h
3005h
3006h
3007h
3200h
4000h
4001h
4002h
4003h
4400h
4401h
4402h
4403h
c
c
c
c
c This action converts a common event counter to the time counter which measures time at 0.1 hour
resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter
that counts time at 1-second resolution before the corresponding time counter is incremented.
5.7 Relay Operation Control Registers
These registers allow the user to manually override setpoint relay operations. Either relay may be manually
forced operated or released using commands sent via communications.
NOTES
1.
2.
A relay allocated as a pulsing relay may not be manually operated or released. When a relay is
allocated for pulsing, it automatically reverts to normal operation.
A relay is energized when forced operated, and is de-energized when forced released.
Table 5-15 Relay Operation Control Registers
Parameter
Relay
Relay
Relay
Relay
Relay
Relay
Relay
Relay
#1
#2
#3
#4
#5
#6
#7
#8
control
control
control
control
control
control
control
control
Data
index
8400h
8401h
8402h
8403h
8404h
8405h
8406h
8407h
status
status
status
status
status
status
status
status
Length
4
4
4
4
4
4
4
4
Table 5-16 Relay Operation Status
Operation status
Normal operation
Force operate
Force release
30
ID
0
1
2
Direction
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Range
See
See
See
See
See
See
See
See
Table
Table
Table
Table
Table
Table
Table
Table
5-16
5-16
5-16
5-16
5-16
5-16
5-16
5-16
5.8 Instrument Options Registers
Table 5-17 Instrument Options Registers
Parameter
Data
index
7F00h
7F01h
Options 1 register
Options 2 register
Length
4
4
Direction
R
R
Range
See Table 5-18
See Table 5-18
Table 5-18 Instrument Options
Options register
Options1
Options 2
Bit
0
1
2-5
6
7-8
9
10
11-12
13
14-15
0-2
3-6
7-15
Description
120V option
690V option
N/A
Analog output 0/4-20 mA
N/A
Relays option
Digital input option
N/A
ASCII compatibility mode enabled (see Table 5-10)
N/A
Number of relays - 1
Number of digital inputs - 1
N/A
5.9 Extended Status Registers
Table 5-19 Extended Status Registers
Parameter
Relay status
Reserved
Status inputs
Setpoint status
Log status
Data
index
7D00h
7D01h
7D02h
7D03h
7D04h
Length
4
4
4
4
4
Direction
R
R
R
R
R
Range
See Table 4-12
Read as 0000
See Table 4-13
See Table 4-14
See Table 4-15
5.10 Alarm Status Registers
Table 5-20 Alarm Status Registers
Parameter
Setpoint alarm status
Self-check alarm status
Data
index
7E00h
7E01h
Length
4
4
Direction
R/W
R/W
Range
see Table 5-21
see Table 5-22
The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1.
The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to
reset each alarm status bit separately by writing back the contents of the alarm register with a
corresponding alarm bit set to 0.
The self-check alarm register indicates possible problems with the instrument hardware or setup
configuration. The hardware problems are indicated by the appropriate bits which are set whenever the
instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are
indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, the
instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the
legal changes in the setup configuration since the instrument might implicitly change or clear other setups if
they are affected by the changes made.
31
Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt
status bit is also reset automatically when you change setup either via the front panel or through
communications.
Table 5-21 Setpoint Alarm Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Description
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Bit meaning: 1 = setpoint has been operated
Table 5-22 Self-check Alarm Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11-15
Description
Reserved
ROM error
RAM error
Watchdog timer reset
Sampling failure
Out of control trap
Reserved
Timing failure
Loss of power (power up)
External reset (warm restart)
Configuration corrupted
Reserved
5.11 Reset/Synchronization Registers
Table 5-23 Reset/Synchronization Registers
Action
Clear total energy registers
Clear total maximum demand
registers
Reserved
Clear event/time counters
Clear Min/Max log
Reserved
Synchronize power demand
interval c
Data
index
A000h
A001h
Length
4
4
Direction
Range
W
W
0
0 = all maximum demands
1 = power demands
2 = volt/ampere demands
A002h A003h
A004h
4
4
W
A005h
A006h A00Fh
A010h
4
4
W
0 = all counters
1-4 = counter #1 - #4
0
4
W
0
c 1) If the power demand period is set to External Synchronization (see Table 5-8), writing a zero to this
location will simulate an external synchronization pulse denoting the start of the next demand interval. The
synchronization requests should not follow in intervals of less than 30 seconds, or the request will be
32
rejected. This function is not permitted if the external synchronization is implemented by hardware, i.e., the
digital input is configured as an external synchronization pulse input.
2) If the power demand period is specified in minutes, writing a zero to this location provides
synchronization of the instrument's internal timer with the time of reception of the master's request. If the
time expired from the beginning of the current demand interval is more than 30 seconds, the new demand
interval starts immediately, otherwise synchronization is delayed until the next demand interval.
33
NOTES
34
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement