JunosE™ Software for E Series™ Broadband Services Routers 14.1.x

JunosE™ Software for E Series™ Broadband Services Routers 14.1.x
JunosE™ Software
for E Series™ Broadband Services Routers
Quality of Service Configuration Guide
Release
14.1.x
Published: 2012-12-20
Copyright © 2012, Juniper Networks, Inc.
Juniper Networks, Inc.
1194 North Mathilda Avenue
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net
Juniper Networks, Junos, Steel-Belted Radius, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United
States and other countries. The Juniper Networks Logo, the Junos logo, and JunosE are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.
Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without notice.
Products made or sold by Juniper Networks or components thereof might be covered by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S. Patent Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051, 6,333,650, 6,359,479, 6,406,312,
6,429,706, 6,459,579, 6,493,347, 6,538,518, 6,538,899, 6,552,918, 6,567,902, 6,578,186, and 6,590,785.
JunosE™ Software for E Series™ Broadband Services Routers Quality of Service Configuration Guide
Release 14.1.x
Copyright © 2012, Juniper Networks, Inc.
All rights reserved.
Revision History
December 2012—FRS JunosE 14.1.x
The information in this document is current as of the date on the title page.
YEAR 2000 NOTICE
Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the
year 2038. However, the NTP application is known to have some difficulty in the year 2036.
END USER LICENSE AGREEMENT
The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks
software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at
http://www.juniper.net/support/eula.html. By downloading, installing or using such software, you agree to the terms and conditions
of that EULA.
ii
Copyright © 2012, Juniper Networks, Inc.
Abbreviated Table of Contents
About the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
Part 1
QoS on the E Series Router
Chapter 1
Quality of Service Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Part 2
Classifying, Queuing, and Dropping Traffic
Chapter 2
Defining Service Levels with Traffic Classes and Traffic-Class Groups . . . . 13
Chapter 3
Configuring Queue Profiles for Buffer Management . . . . . . . . . . . . . . . . . . . . 17
Chapter 4
Configuring Dropping Behavior with RED and WRED . . . . . . . . . . . . . . . . . . . 25
Chapter 5
Gathering Statistics for Rates and Events in the Queue . . . . . . . . . . . . . . . . 37
Part 3
Scheduling and Shaping Traffic
Chapter 6
QoS Scheduler Hierarchy Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 7
Configuring Rates and Weights in the Scheduler Hierarchy . . . . . . . . . . . . . . 51
Chapter 8
Configuring Strict-Priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Chapter 9
Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Chapter 10
Configuring Simple Shared Shaping of Traffic . . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter 11
Configuring Variables in the Simple Shared Shaping Algorithm . . . . . . . . . 85
Chapter 12
Configuring Compound Shared Shaping of Traffic . . . . . . . . . . . . . . . . . . . . 95
Chapter 13
Configuring Implicit and Explicit Constituent Selection for Shaping . . . . 103
Chapter 14
Monitoring a QoS Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Part 4
Creating a QoS Scheduler Hierarchy on an Interface with QoS
Profiles
Chapter 15
QoS Profile Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Chapter 16
Configuring and Attaching QoS Profiles to an Interface . . . . . . . . . . . . . . . . 125
Chapter 17
Configuring Shadow Nodes for Queue Management . . . . . . . . . . . . . . . . . . 143
Chapter 18
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles . . . . 149
Part 5
Interface Solutions for QoS
Chapter 19
Configuring an Integrated Scheduler to Provide QoS for ATM . . . . . . . . . . 153
Chapter 20
Configuring QoS for Gigabit Ethernet Interfaces and VLAN
Subinterfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Chapter 21
Configuring QoS for 802.3ad Link Aggregation Groups . . . . . . . . . . . . . . . . 177
Copyright © 2012, Juniper Networks, Inc.
iii
JunosE 14.1.x Quality of Service Configuration Guide
Chapter 22
Configuring QoS for L2TP Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Chapter 23
Configuring Interface Sets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Part 6
Managing Queuing and Scheduling with QoS Parameters
Chapter 24
QoS Parameter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Chapter 25
Configuring a QoS Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Chapter 26
Configuring Hierarchical QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Chapter 27
Configuring IP Multicast Bandwidth Adjustment with QoS Parameters . . 257
Chapter 28
Configuring the Shaping Mode for Ethernet with QoS Parameters . . . . . 269
Chapter 29
Configuring Byte Adjustment for Shaping Rates with QoS Parameters . . 279
Chapter 30
Configuring the Downstream Rate Using QoS Parameters . . . . . . . . . . . . 287
Part 7
Monitoring and Troubleshooting QoS
Chapter 31
Monitoring QoS on E Series Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Chapter 32
Troubleshooting QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Part 8
Index
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
iv
Copyright © 2012, Juniper Networks, Inc.
Table of Contents
About the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
E Series and JunosE Documentation and Release Notes . . . . . . . . . . . . . . . xxiii
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
E Series and JunosE Text and Syntax Conventions . . . . . . . . . . . . . . . . . . . . xxiii
Obtaining Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Documentation Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Requesting Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Self-Help Online Tools and Resources . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
Opening a Case with JTAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
Part 1
QoS on the E Series Router
Chapter 1
Quality of Service Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
QoS on the E Series Router Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
QoS Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
QoS Platform Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Interface Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
QoS Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
QoS Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Configuring QoS on the E Series Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
QoS References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Part 2
Classifying, Queuing, and Dropping Traffic
Chapter 2
Defining Service Levels with Traffic Classes and Traffic-Class Groups . . . . 13
Traffic Class and Traffic-Class Groups Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Best-Effort Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Traffic-Class Groups Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Configuring Traffic Classes That Define Service Levels . . . . . . . . . . . . . . . . . . . . . . 14
Configuring Traffic-Class Groups That Define Service Levels . . . . . . . . . . . . . . . . . 15
Monitoring Traffic Classes and Traffic-Class Groups for Defined Levels of
Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 3
Configuring Queue Profiles for Buffer Management . . . . . . . . . . . . . . . . . . . . 17
Queuing and Buffer Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Static Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Dynamic Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Copyright © 2012, Juniper Networks, Inc.
v
JunosE 14.1.x Quality of Service Configuration Guide
Color-Based Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Memory Requirements for Queue and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Guidelines for Managing Queue Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Guidelines for Configuring a Maximum Threshold . . . . . . . . . . . . . . . . . . . . . . 19
Guidelines for Configuring a Minimum Threshold . . . . . . . . . . . . . . . . . . . . . . 20
Guidelines for Managing Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Guidelines for Managing Buffer Starvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Configuring Queue Profiles to Manage Buffers and Thresholds . . . . . . . . . . . . . . . 22
Monitoring Queues and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 4
Configuring Dropping Behavior with RED and WRED . . . . . . . . . . . . . . . . . . . 25
Dropping Behavior Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
RED and WRED Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Configuring RED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Example: Configuring Average Queue Length for RED . . . . . . . . . . . . . . . . . . . . . . 28
Example: Configuring Dropping Thresholds for RED . . . . . . . . . . . . . . . . . . . . . . . 28
Example: Configuring Color-Blind RED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Configuring WRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Example: Configuring Different Treatment of Colored Packets for WRED . . . . . . . 32
Example: Defining Different Drop Behavior for Each Traffic Class for WRED . . . . 32
Example: Configuring WRED and Dynamic Queue Thresholds . . . . . . . . . . . . . . . 33
Monitoring RED and WRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chapter 5
Gathering Statistics for Rates and Events in the Queue . . . . . . . . . . . . . . . . 37
QoS Statistics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Rate Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Event Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Bulk Statistics Support for QoS Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Configuring Statistic Profiles for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Configuring Rate Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Configuring Event Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Clearing QoS Statistics on the Egress Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Clearing QoS Statistics on the Fabric Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Monitoring QoS Statistics for Rates and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Part 3
Scheduling and Shaping Traffic
Chapter 6
QoS Scheduler Hierarchy Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Scheduler Hierarchy Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Shaping Rates, Assured Rates, and Relative Weights in a Scheduler
Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Configuring a Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Configuring a Scheduler Profile for a Scheduler Node or Queue . . . . . . . . . . . . . . 48
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile . . . . . . 48
vi
Copyright © 2012, Juniper Networks, Inc.
Table of Contents
Chapter 7
Configuring Rates and Weights in the Scheduler Hierarchy . . . . . . . . . . . . . . 51
Rate Shaping and Port Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Configuring Rate Shaping for a Scheduler Node or Queue . . . . . . . . . . . . . . . . . . . 52
Configuring Port Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Static and Hierarchical Assured Rate Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Configuring an Assured Rate for a Scheduler Node or Queue . . . . . . . . . . . . . . . . 54
Configuring a Static Assured Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Configuring a Hierarchical Assured Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Changing the Assured Rate to an HRR Weight . . . . . . . . . . . . . . . . . . . . . . . . 55
Configuring the HRR Weight for a Scheduler Node or Queue . . . . . . . . . . . . . . . . 56
Chapter 8
Configuring Strict-Priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Strict-Priority and Relative Strict-Priority Scheduling Overview . . . . . . . . . . . . . . 57
Relative Strict-Priority Scheduling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Comparison of True Strict Priority with Relative Strict Priority Scheduling . . . . . . 59
Schedulers and True Strict Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Schedulers and Relative Strict Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Relative Strict Priority on ATM Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Oversubscribing ATM Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Minimizing Latency on the SAR Scheduler . . . . . . . . . . . . . . . . . . . . . . . . 61
HRR Scheduler Behavior and Strict-Priority Scheduling . . . . . . . . . . . . . . . . . 61
Zero-Weight Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Setting the Burst Size in a Shaping Rate . . . . . . . . . . . . . . . . . . . . . . . . . 62
Special Shaping Rate for Nonstrict Queues . . . . . . . . . . . . . . . . . . . . . . . 62
Configuring Strict-Priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Configuring Relative Strict-Priority Scheduling for Aggregate Shaping Rates . . . . 65
Chapter 9
Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Shared Shaper Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
How Shared Shaping Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Active Constituents for Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Guidelines for Configuring Simple and Compound Shared Shaping . . . . . . . . . . . 70
Shared Shaping and Individual Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Shared Shaping and Best-Effort Queues and Nodes . . . . . . . . . . . . . . . . . . . 70
ATM and Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Sharing Bandwidth with the SAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Shared Shaping and Low-CDV Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Logical Interface Traffic Carried in Other Queues . . . . . . . . . . . . . . . . . . . . . . 72
Traffic Starvation and Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Oversubscription and Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Burst Size and Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 10
Configuring Simple Shared Shaping of Traffic . . . . . . . . . . . . . . . . . . . . . . . . 75
Simple Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Bandwidth Allocation for Simple Shared Shaping . . . . . . . . . . . . . . . . . . . . . 75
Simple Shared Shaping on the Best-Effort Scheduler Node . . . . . . . . . . . . . 75
Copyright © 2012, Juniper Networks, Inc.
vii
JunosE 14.1.x Quality of Service Configuration Guide
Simple Shared Shaping for Triple-Play Networks . . . . . . . . . . . . . . . . . . . . . . 76
Configuring Simple Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Example: Simple Shared Shaping for ATM VCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Example: Simple Shared Shaping for ATM VPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Example: Simple Shared Shaping for Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Chapter 11
Configuring Variables in the Simple Shared Shaping Algorithm . . . . . . . . . 85
Simple Shared Shaping Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Simple Shared Shaper Algorithm Calculations . . . . . . . . . . . . . . . . . . . . . . . . 86
Variables of the Simple Shared Shaper Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 87
Guidelines for Controlling the Simple Shared Shaper Algorithm . . . . . . . . . . . . . 88
Configuring Simple Shared Shaper Algorithm Variables . . . . . . . . . . . . . . . . . . . . 89
Sample Process for Controlling the Simple Shared Shaper Algorithm . . . . . . . . . 90
Starting Video Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Stopping Video Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Chapter 12
Configuring Compound Shared Shaping of Traffic . . . . . . . . . . . . . . . . . . . . 95
Compound Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Supported Hardware for Compound Shared Shaping . . . . . . . . . . . . . . . . . . 95
Bandwidth Allocation for Compound Shared Shaping . . . . . . . . . . . . . . . . . . 96
Configuring Compound Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Example: Compound Shared Shaping for ATM VCs . . . . . . . . . . . . . . . . . . . . . . . . 98
Example: Compound Shared Shaping for ATM VPs . . . . . . . . . . . . . . . . . . . . . . . 100
Chapter 13
Configuring Implicit and Explicit Constituent Selection for Shaping . . . . 103
Constituent Selection for Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . 103
Types of Shared Shaper Constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Implicit Constituent Selection Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Implicit Bandwidth Allocation for Compound Shared Shaping . . . . . . . . . . . 107
Weighted Compound Shared Shaping Example . . . . . . . . . . . . . . . . . . 109
Configuring Implicit Constituents for Simple or Compound Shared Shaping . . . 110
Explicit Constituent Selection Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Explicit Shared Shaping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Explicit Weighted Compound Shared Shaping Example . . . . . . . . . . . . . . . . 112
Configuring Explicit Constituents for Simple or Compound Shared Shaping . . . . 115
Chapter 14
Monitoring a QoS Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Monitoring QoS Scheduling and Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Part 4
Creating a QoS Scheduler Hierarchy on an Interface with QoS
Profiles
Chapter 15
QoS Profile Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
QoS Profile Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Managing System Resources for Nodes and Queues . . . . . . . . . . . . . . . . . . . . . . . 121
Scaling Subscribers on the TFA ASIC with QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
viii
Copyright © 2012, Juniper Networks, Inc.
Table of Contents
Chapter 16
Configuring and Attaching QoS Profiles to an Interface . . . . . . . . . . . . . . . . 125
Supported Interface Types for QoS Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Configuring a QoS Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Attaching a QoS Profile to an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Attaching a QoS Profile to a Base Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Attaching a QoS Profile to an ATM VP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Attaching a QoS Profile to an S-VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Attaching a QoS Profile to a Port Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Munged QoS Profile Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Sample Munged QoS Profile Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Example: Port-Type QoS Profile Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Example: QoS Profile Attachment to Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Example: DiffServ Configuration with Multiple Traffic-Class Groups . . . . . . . . . . 137
Chapter 17
Configuring Shadow Nodes for Queue Management . . . . . . . . . . . . . . . . . . 143
Shadow Node Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Shadow Nodes and Scheduler Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Managing System Resources for Shadow Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 145
Configuring Shadow Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Example: Shadow Nodes over VLAN and IP Queues . . . . . . . . . . . . . . . . . . . . . . 147
Example: Shadow Nodes on the Same Traffic-Class Group . . . . . . . . . . . . . . . . 148
Example: Shadow Nodes on Different Traffic-Class Groups . . . . . . . . . . . . . . . . 148
Chapter 18
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles . . . . 149
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles . . . . . . . . . . 149
Part 5
Interface Solutions for QoS
Chapter 19
Configuring an Integrated Scheduler to Provide QoS for ATM . . . . . . . . . . 153
ATM Integrated Scheduler Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Backpressure and the Integrated Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 154
VP Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Integrating the HRR Scheduler and SAR Scheduler . . . . . . . . . . . . . . . . . . . . . . . 156
Per-Packet Queuing on the SAR Scheduler Overview . . . . . . . . . . . . . . . . . . . . . . 157
Operational QoS Shaping Mode for ATM Interfaces Overview . . . . . . . . . . . 158
ERX7xx Models, ERX14xx Models, and the ERX310 Router . . . . . . . . . . 158
E120 Router and E320 Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Guidelines for Configuring QoS over ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Configuring Default Integrated Mode for ATM Interface . . . . . . . . . . . . . . . . . . . . 162
Configuring Low-Latency Mode for Per-Port Queuing on ATM Interfaces . . . . . . 164
Configuring Low-CDV Mode for Per-Port Queuing on ATM Interfaces . . . . . . . . . 166
Configuring the QoS Shaping Mode for ATM Interfaces . . . . . . . . . . . . . . . . . . . . 169
Disabling Per-Port Queuing on ATM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Monitoring QoS Configurations for ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Copyright © 2012, Juniper Networks, Inc.
ix
JunosE 14.1.x Quality of Service Configuration Guide
Chapter 20
Configuring QoS for Gigabit Ethernet Interfaces and VLAN
Subinterfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Providing QoS for Ethernet Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
QoS Shaping Mode for Ethernet Interfaces Overview . . . . . . . . . . . . . . . . . . . . . . 172
Configuring the QoS Shaping Mode for Ethernet Interfaces . . . . . . . . . . . . . . . . . 173
Creating a QoS Interface Hierarchy for Bulk-Configured VLAN Subinterfaces
with RADIUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Monitoring QoS Configurations for Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Chapter 21
Configuring QoS for 802.3ad Link Aggregation Groups . . . . . . . . . . . . . . . . 177
QoS for 802.3ad Link Aggregation Interfaces Overview . . . . . . . . . . . . . . . . . . . . 177
Types of Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Munged QoS Profiles and Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
802.3ad Link Aggregation and QoS Parameters . . . . . . . . . . . . . . . . . . . . . . 179
QoS and Ethernet Link Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Active Link Failure and QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Administratively Disabling a Link and QoS . . . . . . . . . . . . . . . . . . . . . . . 179
Adding a New Link to the LAG and QoS . . . . . . . . . . . . . . . . . . . . . . . . . 179
Hashed Load Balancing for 802.3ad Link Aggregation Groups Overview . . . . . . 180
Sample Scheduler Hierarchy for Hashed Load Balancing . . . . . . . . . . . . . . . 180
Subscriber Load Balancing for 802.3ad Link Aggregation Groups Overview . . . . 180
S-VLANs and Subscriber Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
PPPoE over VLANs and Subscriber Load Balancing . . . . . . . . . . . . . . . . . . . . 181
PPPoE over Ethernet (No VLANs) and Subscriber Load Balancing . . . . . . . . 181
MPLS over LAG and Subscriber Load Balancing . . . . . . . . . . . . . . . . . . . . . . . 181
Sample Scheduler Hierarchy for Subscriber Load Balancing . . . . . . . . . . . . 182
Subscriber Allocation in 802.3ad Link Aggregation Groups . . . . . . . . . . . . . 183
Guidelines for Configuring QoS over 802.3ad Link Aggregation Groups . . . . . . . 184
Configuring the Scheduler Hierarchy for Hashed Load Balancing in 802.3ad Link
Aggregation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Enabling Default Subscriber Load Balancing for 802.3ad Link Aggregation
Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Configuring the Scheduler Hierarchy for Subscriber Load Balancing in 802.3ad
Link Aggregation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Configuring Load Rebalancing for 802.3ad Link Aggregation Groups . . . . . . . . . 187
Configuring Load–Rebalancing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Configuring the System to Dynamically Rebalance the LAG . . . . . . . . . . . . . 188
Monitoring QoS Configurations for 802.3ad Link Aggregation Groups . . . . . . . . 189
Chapter 22
Configuring QoS for L2TP Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Providing QoS for L2TP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Sample Scheduler Hierarchies for L2TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Configuring QoS for an L2TP Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Configuring QoS for an L2TP LNS Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Configuring QoS for an L2TP LAC Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Configuring QoS for Tunnel-Server Ports for L2TP LNS Sessions . . . . . . . . . . . . 196
x
Copyright © 2012, Juniper Networks, Inc.
Table of Contents
QoS and L2TP TX Speed AVP 24 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Logical Interfaces and Shared-Shaping Rates . . . . . . . . . . . . . . . . . . . . . . . . 197
Shaping Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Monitoring QoS Configurations for L2TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Chapter 23
Configuring Interface Sets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Interface Sets for QoS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Interface Set Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Architecture of Interface Sets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Interface Set Parents and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Sample Interface Columns and Scheduler Hierarchies . . . . . . . . . . . . . . . . . 201
Scheduling and Shaping Interface Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Configuring Interface Sets for Scheduling and Queuing . . . . . . . . . . . . . . . . . . . 203
Configuring Interface Supersets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Configuring an Interface Superset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Restricting an Interface Superset to an S-VLAN ID or an ATM VP . . . . . . . . 204
Configuring Interface Sets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Configuring an Interface Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Deleting an Interface Set from an Interface Superset . . . . . . . . . . . . . . . . . . 205
Adding Member Interfaces to an Interface Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Adding Interfaces to an Interface Set with the CLI . . . . . . . . . . . . . . . . . . . . 206
Adding Interfaces to an Interface Set with RADIUS . . . . . . . . . . . . . . . . . . . 206
Changing and Deleting Interface Members in an Interface Set . . . . . . . . . . . 207
Changing Interface Members with Upper-Layer Protocols in an Interface
Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Creating a QoS Parameter on an Interface Superset or Interface Set . . . . . . . . . 208
Configuring a QoS Parameter Definition for an Interface Superset or an
Interface Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Creating a QoS Parameter Instance for an Interface Superset . . . . . . . . . . 208
Creating a QoS Parameter Instance for an Interface Set . . . . . . . . . . . . . . . 209
Attaching a QoS Profile to an Interface Superset or an Interface Set . . . . . . . . . 209
Configuring a QoS Profile for an Interface Superset or an Interface Set . . . 209
Attaching a QoS Profile to an Interface Superset . . . . . . . . . . . . . . . . . . . . . 210
Attaching a QoS Profile to an Interface Set . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Deleting an Interface Superset or an Interface Set . . . . . . . . . . . . . . . . . . . . . . . . . 211
Deleting an Interface Superset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Deleting an Interface Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Example: Configuring Interface Sets for 802.3ad Link Aggregation Groups . . . . . 212
Part 6
Managing Queuing and Scheduling with QoS Parameters
Chapter 24
QoS Parameter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
QoS Parameter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
QoS Parameter Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
QoS Parameter Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Relationship Among QoS Parameters, Scheduler Profiles, and QoS Profiles . . . . 217
QoS Administrator Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
QoS Client Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Copyright © 2012, Juniper Networks, Inc.
xi
JunosE 14.1.x Quality of Service Configuration Guide
Chapter 25
Configuring a QoS Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Parameter Definition Attributes for QoS Administrators Overview . . . . . . . . . . . 219
Naming Guidelines for QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Interface Types and QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Controlled-Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Instance-Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Subscriber-Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Range of QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Applications and QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Scheduler Profiles and Parameter Expressions for QoS Administrators . . . . . . . 225
Referencing a Parameter Definition in a Scheduler Profile . . . . . . . . . . . . . . 225
Removing or Modifying a Scheduler Profile . . . . . . . . . . . . . . . . . . . . . . 225
Using Expressions for QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Operators and Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Specifying a Range in Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Configuring a Basic Parameter Definition for QoS Administrators . . . . . . . . . . . . 228
Parameter Instances for QoS Clients Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Global QoS Parameter Instance Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 230
QoS Parameters for Interfaces Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Creating Parameter Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Creating a Global Parameter Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Creating a Parameter Instance for an Interface . . . . . . . . . . . . . . . . . . . . . . . 231
Creating a Parameter Instance for an ATM VP . . . . . . . . . . . . . . . . . . . . . . . . 231
Creating a Parameter Instance for an S-VLAN . . . . . . . . . . . . . . . . . . . . . . . 232
Example: QoS Parameter Configuration for Controlling Subscriber
Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Procedure for QoS Administrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Procedure for QoS Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Monitoring the Subscriber Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Complete Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
QoS Administrator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
QoS Client Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Chapter 26
Configuring Hierarchical QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Hierarchical QoS Parameters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Guidelines for Configuring Hierarchical Parameters . . . . . . . . . . . . . . . . . . . . . . . 249
Configuring a Parameter Definition to Calculate Hierarchical Instances . . . . . . . 250
Example: QoS Parameter Configuration for Hierarchical Parameters . . . . . . . . . 251
Procedure for QoS Administrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Procedure for QoS Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Monitoring Hierarchical QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Complete Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
QoS Administrator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
QoS Client Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
xii
Copyright © 2012, Juniper Networks, Inc.
Table of Contents
Chapter 27
Configuring IP Multicast Bandwidth Adjustment with QoS Parameters . . 257
IP Multicast Bandwidth Adjustment for QoS Overview . . . . . . . . . . . . . . . . . . . . 257
Guidelines for Configuring IP Multicast Adjustment for QoS . . . . . . . . . . . . . . . . 259
Configuring a Parameter Definition for IP Multicast Bandwidth Adjustment . . . 259
Example: QoS Parameter Configuration for IP Multicast Bandwidth
Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Monitoring the Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Complete Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Chapter 28
Configuring the Shaping Mode for Ethernet with QoS Parameters . . . . . 269
Cell Shaping Mode Using QoS Parameters Overview . . . . . . . . . . . . . . . . . . . . . 269
Overriding the QoS Shaping Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Module Types and Capabilities for QoS Cell Mode Application . . . . . . . . . . 270
Cell Tax Adjustment Using QoS Cell Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Relationship with QoS Downstream Rate Application . . . . . . . . . . . . . . . . . . 271
Guidelines for Configuring the Cell Shaping Mode with QoS Parameters . . . . . . 271
Configuring a Parameter Definition to Shape Ethernet Traffic Using Cell
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment
for Cell Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Complete Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Chapter 29
Configuring Byte Adjustment for Shaping Rates with QoS Parameters . . 279
Byte Adjustment for ADSL and VDSL Traffic Overview . . . . . . . . . . . . . . . . . . . . 279
Byte Adjustment for Cell Shaping of ADSL Traffic Overview . . . . . . . . . . . . 279
Calculation and Example of Byte Adjustment for Cell Shaping . . . . . . 280
Byte Adjustment for Frame Shaping of VDSL Traffic Overview . . . . . . . . . . 281
System Calculation for Byte Adjustment of ADSL and VDSL Traffic . . . . . . . 281
Guidelines for Configuring Byte Adjustment of Cell and Frame Shaping Rates
Using QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Configuring a Parameter Definition to Adjust Cell Shaping Rates for ADSL
Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Configuring a Parameter Definition to Adjust Frame Shaping Rates for VDSL
Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Chapter 30
Configuring the Downstream Rate Using QoS Parameters . . . . . . . . . . . . 287
QoS Downstream Rate Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Downstream Rate and the Shaping Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
QoS Adaptive Mode and Downstream Rate . . . . . . . . . . . . . . . . . . . . . . . . . 288
Obtaining Downstream Rates from a DSL Forum VSA . . . . . . . . . . . . . . . . . 288
Guidelines for Configuring QoS Downstream Rate . . . . . . . . . . . . . . . . . . . . . . . 289
Configuring a Parameter Definition for QoS Downstream Rate . . . . . . . . . . . . . 289
Example: QoS Parameter Configuration for QoS Downstream Rate . . . . . . . . . . 291
Complete Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Part 7
Monitoring and Troubleshooting QoS
Chapter 31
Monitoring QoS on E Series Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Monitoring Service Levels with Traffic Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Monitoring Service Levels with Traffic-Class Groups . . . . . . . . . . . . . . . . . . . . . . 301
Copyright © 2012, Juniper Networks, Inc.
xiii
JunosE 14.1.x Quality of Service Configuration Guide
Monitoring Queue Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Monitoring Queue Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Monitoring Drop Profiles for RED and WRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Monitoring the QoS Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Monitoring the Configuration of Scheduler Profiles . . . . . . . . . . . . . . . . . . . . . . . . 313
Monitoring Shared Shapers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Monitoring Shared Shaper Algorithm Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Monitoring Forwarding and Drop Events on the Egress Queue . . . . . . . . . . . . . . . 317
Monitoring Forwarding and Drop Rates on the Egress Queue . . . . . . . . . . . . . . . 318
Monitoring Queue Statistics for the Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Monitoring the Configuration of Statistics Profiles . . . . . . . . . . . . . . . . . . . . . . . . 323
Monitoring the QoS Profiles Attached to an Interface . . . . . . . . . . . . . . . . . . . . . 324
Monitoring the Configuration of QoS Port-Type Profiles . . . . . . . . . . . . . . . . . . . 325
Monitoring the Configuration of QoS Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Monitoring the QoS Configuration of ATM Interfaces . . . . . . . . . . . . . . . . . . . . . . 328
Monitoring the QoS Configuration of IP Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 330
Monitoring the QoS Configuration of Fast Ethernet, Gigabit Ethernet, and
10-Gigabit Ethernet Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Monitoring the QoS Configuration of IEEE 802.3ad Link Aggregation Group
Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Monitoring the Configuration of QoS Interface Sets . . . . . . . . . . . . . . . . . . . . . . . 334
Monitoring the Configuration of QoS Interface Supersets . . . . . . . . . . . . . . . . . . 335
Monitoring the AAA Downstream Rate for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Monitoring QoS Parameter Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Monitoring QoS Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Chapter 32
Troubleshooting QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Troubleshooting Memory and Processor Use for Egress Queue Rate Statistics
and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Part 8
Index
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
xiv
Copyright © 2012, Juniper Networks, Inc.
List of Figures
Part 1
QoS on the E Series Router
Chapter 1
Quality of Service Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1: Traffic Flow Through an E Series Router . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Part 2
Classifying, Queuing, and Dropping Traffic
Chapter 4
Configuring Dropping Behavior with RED and WRED . . . . . . . . . . . . . . . . . . . 25
Figure 2: Packets Dropped as Queue Length Increases . . . . . . . . . . . . . . . . . . . . . 26
Figure 3: Color-Blind RED Drop Profile with Colorless Queue Profile . . . . . . . . . . . 29
Figure 4: Color-Blind RED Drop Profile with Color-Sensitive Queue Profile . . . . . . 29
Figure 5: Different Treatment of Colored Packets . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 6: Defining Different Drop Behavior for Each Queue . . . . . . . . . . . . . . . . . . 33
Figure 7: WRED and Dynamic Queue Thresholding . . . . . . . . . . . . . . . . . . . . . . . . 35
Part 3
Scheduling and Shaping Traffic
Chapter 6
QoS Scheduler Hierarchy Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 8: QoS Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chapter 7
Configuring Rates and Weights in the Scheduler Hierarchy . . . . . . . . . . . . . . 51
Figure 9: Port Shaping on an Ethernet Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 10: Hierarchical Assured Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Chapter 8
Configuring Strict-Priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 11: Sample Strict-Priority Scheduling Hierarchy . . . . . . . . . . . . . . . . . . . . . . 58
Figure 12: True Strict-Priority Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 13: Relative Strict-Priority Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 14: Tuning Latency on Strict-Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15: Sample Strict-Priority Scheduling Hierarchy . . . . . . . . . . . . . . . . . . . . . 64
Figure 16: Sample Relative Strict-Priority Scheduler Hierarchy . . . . . . . . . . . . . . . 66
Chapter 9
Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17: Implicit Constituent Selection for Compound Shared Shaper: Mixed
Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Chapter 10
Configuring Simple Shared Shaping of Traffic . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 18: Simple Shared Shaping over ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 19: Simple Shared Shaping over Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 20: VP Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 21: Hierarchical Simple Shared Shaping over Ethernet . . . . . . . . . . . . . . . . 82
Chapter 11
Configuring Variables in the Simple Shared Shaping Algorithm . . . . . . . . . 85
Copyright © 2012, Juniper Networks, Inc.
xv
JunosE 14.1.x Quality of Service Configuration Guide
Figure 22: Simple Shared Shaper Behavior Without Algorithm Controls . . . . . . . 85
Figure 23: Less Conservative Simple Shared Shaper Behavior . . . . . . . . . . . . . . . 86
Figure 24: More Liberal Simple Shared Shaper Behavior . . . . . . . . . . . . . . . . . . . . 86
Figure 25: Dynamic Rate When Video Flow Starts . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 26: Dynamic Rate When Video Flow Stops . . . . . . . . . . . . . . . . . . . . . . . . . 93
Chapter 12
Configuring Compound Shared Shaping of Traffic . . . . . . . . . . . . . . . . . . . . 95
Figure 27: VC Compound Shared Shaping Example . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 28: VP Compound Shared Shaping Example . . . . . . . . . . . . . . . . . . . . . . 100
Chapter 13
Configuring Implicit and Explicit Constituent Selection for Shaping . . . . 103
Figure 29: Implicit Constituent Selection for Compound Shared Shaper at
Best-Effort Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 30: Implicit Constituent Selection for Compound Shared Shaper at
Best-Effort Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 31: Weighted Shared Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 32: Implicit Constituent Selection for Compound Shared Shaper: Mixed
Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 33: Explicit Constituent Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 34: Case 1: Explicit Constituent Selection with Weighted Constituents . . . 113
Figure 35: Case 2: Explicit Constituent Selection with Weighted Constituents . . 114
Part 4
Creating a QoS Scheduler Hierarchy on an Interface with QoS
Profiles
Chapter 16
Configuring and Attaching QoS Profiles to an Interface . . . . . . . . . . . . . . . . 125
Figure 36: Munged Profile Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 37: Attaching QoS Profiles to ATM Subinterfaces . . . . . . . . . . . . . . . . . . . . 133
Figure 38: Attaching QoS Profile to ATM Interface and Subinterface . . . . . . . . . . 136
Figure 39: DiffServ Configuration with Multiple Traffic-Class Groups . . . . . . . . . 140
Figure 40: DiffServ Configuration Without Traffic-Class Groups . . . . . . . . . . . . . . 141
Chapter 17
Configuring Shadow Nodes for Queue Management . . . . . . . . . . . . . . . . . . 143
Figure 41: Phantom Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 42: Shadow Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Part 5
Interface Solutions for QoS
Chapter 19
Configuring an Integrated Scheduler to Provide QoS for ATM . . . . . . . . . . 153
Figure 43: Integrated ATM Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 44: Default Integrated Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 45: Low-Latency Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 46: Low-CDV Mode (per-VP CDVT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 47: Low-CDV Mode (per-VC CDVT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Chapter 21
Configuring QoS for 802.3ad Link Aggregation Groups . . . . . . . . . . . . . . . . 177
Figure 48: 802.3ad Link Aggregation Scheduler Hierarchy . . . . . . . . . . . . . . . . . . 180
Figure 49: Subscriber LoadBalanced Scheduler Hierarchy for Port 0 . . . . . . . . . . 182
Figure 50: Subscriber LoadBalanced Scheduler Hierarchy for Port 1 . . . . . . . . . . 183
Figure 51: Subscriber Allocation and Load Balancing . . . . . . . . . . . . . . . . . . . . . . 183
Chapter 22
xvi
Configuring QoS for L2TP Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Copyright © 2012, Juniper Networks, Inc.
List of Figures
Figure 52: LNS (Non-MLPPP) Scheduler Hierarchy . . . . . . . . . . . . . . .
Figure 53: LNS (MLPPP) QoS Scheduler Hierarchy . . . . . . . . . . . . . . .
Figure 54: LAC over Ethernet (Without VLANs) Scheduler Hierarchy .
Figure 55: LAC over Ethernet (With LANs) Scheduler Hierarchy . . . . .
Figure 56: LAC over ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 23
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
192
192
192
193
193
Configuring Interface Sets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 57: VLAN Interface Column with Interface Sets . . . . . . . . . . . . . . . . . . . . . 202
Figure 58: Scheduler Hierarchy with Nodes at Interface Set and Superset . . . . . 202
Part 6
Managing Queuing and Scheduling with QoS Parameters
Chapter 24
QoS Parameter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 59: Relationship of Parameter Definitions, Scheduler Profiles, and QoS
Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Chapter 25
Configuring a QoS Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 60: Physical Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 61: QoS Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Chapter 26
Configuring Hierarchical QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Figure 62: Hierarchical Parameters Scheduler Hierarchy . . . . . . . . . . . . . . . . . . . 251
Chapter 27
Configuring IP Multicast Bandwidth Adjustment with QoS Parameters . . 257
Figure 63: Scheduler Hierarchy with QoS Adjustment for IP Multicast . . . . . . . . . 261
Chapter 28
Configuring the Shaping Mode for Ethernet with QoS Parameters . . . . . 269
Figure 64: Byte Adjustment for VC1 and VC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Chapter 29
Configuring Byte Adjustment for Shaping Rates with QoS Parameters . . 279
Figure 65: Byte Adjustment Calculation for Ethernet and ATM
Encapsulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Copyright © 2012, Juniper Networks, Inc.
xvii
JunosE 14.1.x Quality of Service Configuration Guide
xviii
Copyright © 2012, Juniper Networks, Inc.
List of Tables
About the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
Table 1: Notice Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Table 2: Text and Syntax Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Part 1
QoS on the E Series Router
Chapter 1
Quality of Service Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 3: QoS Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 4: QoS Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Part 2
Classifying, Queuing, and Dropping Traffic
Chapter 3
Configuring Queue Profiles for Buffer Management . . . . . . . . . . . . . . . . . . . . 17
Table 5: Egress Memory and Region Size on ASIC Line Modules . . . . . . . . . . . . . . 19
Part 3
Scheduling and Shaping Traffic
Chapter 9
Shared Shaping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 6: Shared Shaper Terminology Used in This Chapter . . . . . . . . . . . . . . . . . . 68
Table 7: Comparison of Simple and Compound Shared Shaping . . . . . . . . . . . . . 69
Chapter 11
Configuring Variables in the Simple Shared Shaping Algorithm . . . . . . . . . 85
Table 8: Guidelines for Configuring Simple Shared Shaper Algorithm
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 9: Rising Edge Sample When Video Flow Starts . . . . . . . . . . . . . . . . . . . . . . 91
Table 10: Data When Video Flow Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Chapter 13
Configuring Implicit and Explicit Constituent Selection for Shaping . . . . 103
Table 11: Comparison of Implicit and Explicit Shared Shaping . . . . . . . . . . . . . . . 104
Table 12: Bandwidth Allocation for Case 1 Explicit Constituents . . . . . . . . . . . . . . 113
Table 13: Bandwidth Allocation for Case 2 Explicit Constituents . . . . . . . . . . . . . . 114
Part 4
Creating a QoS Scheduler Hierarchy on an Interface with QoS
Profiles
Chapter 16
Configuring and Attaching QoS Profiles to an Interface . . . . . . . . . . . . . . . . 125
Table 14: Interface Types and Supported Commands . . . . . . . . . . . . . . . . . . . . . . 125
Chapter 17
Configuring Shadow Nodes for Queue Management . . . . . . . . . . . . . . . . . . 143
Table 15: Shadow Node Consumption of Node and Queue Resources . . . . . . . . 146
Copyright © 2012, Juniper Networks, Inc.
xix
JunosE 14.1.x Quality of Service Configuration Guide
Part 5
Interface Solutions for QoS
Chapter 19
Configuring an Integrated Scheduler to Provide QoS for ATM . . . . . . . . . . 153
Table 16: qos-mode-port Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 17: Operational Shaping Modes for ERX7xx Models, ERX14xx Models, and
the ERX310 Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 18: Operational Shaping Modes for the E120 Router and E320 Router . . . 160
Chapter 20
Configuring QoS for Gigabit Ethernet Interfaces and VLAN
Subinterfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 19: Operational Shaping Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Chapter 21
Configuring QoS for 802.3ad Link Aggregation Groups . . . . . . . . . . . . . . . . 177
Table 20: Load Balancing Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 187
Chapter 23
Configuring Interface Sets for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 21: Interface Set Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Part 6
Managing Queuing and Scheduling with QoS Parameters
Chapter 24
QoS Parameter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 22: QoS Parameter Terminology Used in This Chapter . . . . . . . . . . . . . . . . 216
Chapter 25
Configuring a QoS Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 23: Attributes in Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 24: Sample Parameter Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 25: Valid and Invalid Parameter Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 26: Operators for Parameter Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Chapter 28
Configuring the Shaping Mode for Ethernet with QoS Parameters . . . . . 269
Table 27: Supported Interfaces for qos-shaping-mode and qos-cell-mode
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Table 28: Byte Adjustment for Subscribers VC1 and VC2 . . . . . . . . . . . . . . . . . . . 274
Chapter 29
Configuring Byte Adjustment for Shaping Rates with QoS Parameters . . 279
Table 29: Header Lengths for Ethernet Encapsulation . . . . . . . . . . . . . . . . . . . . 280
Table 30: Header Lengths for ATM Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . 281
Table 31: Byte Adjustment Values for Frame and Cell Shaping Modes . . . . . . . . 282
Chapter 30
Configuring the Downstream Rate Using QoS Parameters . . . . . . . . . . . . 287
Table 32: Access Loop Types and Resultant Shaping Mode . . . . . . . . . . . . . . . . 288
Table 33: Shaping Rate and Shaping Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Part 7
Monitoring and Troubleshooting QoS
Chapter 31
Monitoring QoS on E Series Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Table 34: show traffic-class Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Table 35: show traffic-class-group Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . 301
Table 36: show qos queue-thresholds Output Fields . . . . . . . . . . . . . . . . . . . . . 305
Table 37: show queue-profile Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Table 38: show drop-profile Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Table 39: show qos scheduler-hierarchy Output Fields . . . . . . . . . . . . . . . . . . . . 313
Table 40: show scheduler-profile Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 314
xx
Copyright © 2012, Juniper Networks, Inc.
List of Tables
Table 41: show qos shared-shaper Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . 315
Table 42: show qos shared-shaper-control Output Fields . . . . . . . . . . . . . . . . . . 317
Table 43: show egress-queue events Output Fields . . . . . . . . . . . . . . . . . . . . . . . 318
Table 44: show egress-queue rates Output Fields . . . . . . . . . . . . . . . . . . . . . . . . 321
Table 45: show fabric-queue Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Table 46: show statistics-profile Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Table 47: show qos interface-hierarchy Output Fields . . . . . . . . . . . . . . . . . . . . . 325
Table 48: show qos-profile Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Table 49: show interfaces atm Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Table 50: show ip interface Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Table 51: show interfaces Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Table 52: show interfaces lag members Output Fields . . . . . . . . . . . . . . . . . . . . 334
Table 53: show qos-interface-set Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . 335
Table 54: show qos-interface-superset Output Fields . . . . . . . . . . . . . . . . . . . . . 336
Table 55: show aaa qos downstream-rate Output Fields . . . . . . . . . . . . . . . . . . 337
Table 56: show qos-parameter Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Table 57: show qos-parameter-define Output Fields . . . . . . . . . . . . . . . . . . . . . 340
Copyright © 2012, Juniper Networks, Inc.
xxi
JunosE 14.1.x Quality of Service Configuration Guide
xxii
Copyright © 2012, Juniper Networks, Inc.
About the Documentation
•
E Series and JunosE Documentation and Release Notes on page xxiii
•
Audience on page xxiii
•
E Series and JunosE Text and Syntax Conventions on page xxiii
•
Obtaining Documentation on page xxv
•
Documentation Feedback on page xxv
•
Requesting Technical Support on page xxv
E Series and JunosE Documentation and Release Notes
For a list of related JunosE documentation, see
http://www.juniper.net/techpubs/software/index.html.
If the information in the latest release notes differs from the information in the
documentation, follow the JunosE Release Notes.
®
To obtain the most current version of all Juniper Networks technical documentation,
see the product documentation page on the Juniper Networks website at
http://www.juniper.net/techpubs/.
Audience
This guide is intended for experienced system and network specialists working with
Juniper Networks E Series Broadband Services Routers in an Internet access environment.
E Series and JunosE Text and Syntax Conventions
Table 1 on page xxiv defines notice icons used in this documentation.
Copyright © 2012, Juniper Networks, Inc.
xxiii
JunosE 14.1.x Quality of Service Configuration Guide
Table 1: Notice Icons
Icon
Meaning
Description
Informational note
Indicates important features or instructions.
Caution
Indicates a situation that might result in loss of data or hardware damage.
Warning
Alerts you to the risk of personal injury or death.
Laser warning
Alerts you to the risk of personal injury from a laser.
Table 2 on page xxiv defines text and syntax conventions that we use throughout the
E Series and JunosE documentation.
Table 2: Text and Syntax Conventions
Convention
Description
Examples
Bold text like this
Represents commands and keywords in text.
•
Issue the clock source command.
•
Specify the keyword exp-msg.
Bold text like this
Represents text that the user must type.
host1(config)#traffic class low-loss1
Fixed-width text like this
Represents information as displayed on your
terminal’s screen.
host1#show ip ospf 2
Routing Process OSPF 2 with Router
ID 5.5.0.250
Router is an Area Border Router
(ABR)
Italic text like this
Plus sign (+) linking key names
•
Emphasizes words.
•
Identifies variables.
•
Identifies chapter, appendix, and book
names.
Indicates that you must press two or more
keys simultaneously.
•
There are two levels of access: user and
privileged.
•
clusterId, ipAddress.
•
Appendix A, System Specifications
Press Ctrl + b.
Syntax Conventions in the Command Reference Guide
Plain text like this
Represents keywords.
terminal length
Italic text like this
Represents variables.
mask, accessListName
xxiv
Copyright © 2012, Juniper Networks, Inc.
About the Documentation
Table 2: Text and Syntax Conventions (continued)
Convention
Description
Examples
| (pipe symbol)
Represents a choice to select one keyword
or variable to the left or to the right of this
symbol. (The keyword or variable can be
either optional or required.)
diagnostic | line
[ ] (brackets)
Represent optional keywords or variables.
[ internal | external ]
[ ]* (brackets and asterisk)
Represent optional keywords or variables
that can be entered more than once.
[ level1 | level2 | l1 ]*
{ } (braces)
Represent required keywords or variables.
{ permit | deny } { in | out }
{ clusterId | ipAddress }
Obtaining Documentation
To obtain the most current version of all Juniper Networks technical documentation, see
the Technical Documentation page on the Juniper Networks Web site at
http://www.juniper.net/.
To download complete sets of technical documentation to create your own
documentation CD-ROMs or DVD-ROMs, see the Portable Libraries page at
http://www.juniper.net/techpubs/resources/index.html
Copies of the Management Information Bases (MIBs) for a particular software release
are available for download in the software image bundle from the Juniper Networks Web
site athttp://www.juniper.net/.
Documentation Feedback
We encourage you to provide feedback, comments, and suggestions so that we can
improve the documentation to better meet your needs. Send your comments to
[email protected], or fill out the documentation feedback form at
https://www.juniper.net/cgi-bin/docbugreport/. If you are using e-mail, be sure to include
the following information with your comments:
•
Document or topic name
•
URL or page number
•
Software release version
Requesting Technical Support
Technical product support is available through the Juniper Networks Technical Assistance
Center (JTAC). If you are a customer with an active J-Care or JNASC support contract,
Copyright © 2012, Juniper Networks, Inc.
xxv
JunosE 14.1.x Quality of Service Configuration Guide
or are covered under warranty, and need post-sales technical support, you can access
our tools and resources online or open a case with JTAC.
•
JTAC policies—For a complete understanding of our JTAC procedures and policies,
review the JTAC User Guide located at
http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.
•
Product warranties—For product warranty information, visit
http://www.juniper.net/support/warranty/.
•
JTAC hours of operation—The JTAC centers have resources available 24 hours a day,
7 days a week, 365 days a year.
Self-Help Online Tools and Resources
For quick and easy problem resolution, Juniper Networks has designed an online
self-service portal called the Customer Support Center (CSC) that provides you with the
following features:
•
Find CSC offerings: http://www.juniper.net/customers/support/
•
Search for known bugs: http://www2.juniper.net/kb/
•
Find product documentation: http://www.juniper.net/techpubs/
•
Find solutions and answer questions using our Knowledge Base: http://kb.juniper.net/
•
Download the latest versions of software and review release notes:
http://www.juniper.net/customers/csc/software/
•
Search technical bulletins for relevant hardware and software notifications:
https://www.juniper.net/alerts/
•
Join and participate in the Juniper Networks Community Forum:
http://www.juniper.net/company/communities/
•
Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/
To verify service entitlement by product serial number, use our Serial Number Entitlement
(SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/
Opening a Case with JTAC
You can open a case with JTAC on the Web or by telephone.
•
Use the Case Management tool in the CSC at http://www.juniper.net/cm/.
•
Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).
For international or direct-dial options in countries without toll-free numbers, see
http://www.juniper.net/support/requesting-support.html.
xxvi
Copyright © 2012, Juniper Networks, Inc.
PART 1
QoS on the E Series Router
•
Quality of Service Overview on page 3
Copyright © 2012, Juniper Networks, Inc.
1
JunosE 14.1.x Quality of Service Configuration Guide
2
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 1
Quality of Service Overview
The quality of service (QoS) feature enables your E Series router to distinguish traffic
with strict timing requirements from traffic that can tolerate delay, jitter, and loss.
QoS topics are discussed in the following sections:
•
QoS on the E Series Router Overview on page 3
•
QoS Audience on page 4
•
QoS Platform Considerations on page 4
•
QoS Terms on page 5
•
QoS Features on page 7
•
Configuring QoS on the E Series Router on page 8
•
QoS References on page 9
QoS on the E Series Router Overview
QoS is a suite of features that configure queuing and scheduling on the forwarding path
of the Juniper Networks E Series Broadband Services Routers. QoS provides a level of
predictability and control beyond the best-effort delivery that the router provides by
default. Best-effort service provides packet transmission with no assurance of reliability,
delay, jitter, or throughput.
QoS as developed for E Series routers conforms to the IETF Differentiated Services
(DiffServ) model (RFCs 2597 and 2598). DiffServ networks classify packets into one of
a small number of aggregated flows or traffic classes for which you can configure different
QoS characteristics. The Juniper Networks QoS architecture extends DiffServ to support
edge features such as high-density queuing.
The E Series router supports:
•
IETF architecture for differentiated services
•
Assured forwarding per-hop-behavior (PHB) groups
•
Expedited forwarding PHB groups
The router supports configurable queuing and scheduling. It has an application-specific
integrated circuit (ASIC) scheduler that supports thousands of queues in a hierarchical
Copyright © 2012, Juniper Networks, Inc.
3
JunosE 14.1.x Quality of Service Configuration Guide
round-robin (HRR) scheduler. The scheduler allows the router to allocate separate queues
for each forwarding interface. Separate queues enable fair access to buffers and
bandwidth for each subscriber connected to the router.
Allocating queues per interface allows an Internet service provider (ISP) to shape an
individual subscriber’s traffic flows to specified rates independent of the underlying Layer
2 network type.
Related
Documentation
•
Configuring QoS on the E Series Router on page 8
QoS Audience
This topic collection contains configuration information for two types of QoS users: QoS
administrators and QoS clients.
QoS administrators are responsible for implementing a QoS queuing architecture by
defining drop profiles, queue profiles, scheduler profiles, QoS profiles, and QoS parameter
definitions.
QoS clients are responsible for configuring services for individual subscribers by creating
parameter instances. The parameter instances that QoS clients can create depend on
the settings defined in parameter definitions by the QoS administrator.
Related
Documentation
•
QoS Parameter Audience on page 215
QoS Platform Considerations
QoS is supported on all E Series line modules except for the ES2 10G Uplink LM.
Figure 1 on page 4 shows the traffic flow through the router.
Figure 1: Traffic Flow Through an E Series Router
E Series router
For information about the modules supported on E Series routers:
•
See the ERX Module Guide for modules supported on ERX7xx models, ERX14xx models,
and the Juniper Networks ERX310 Broadband Services Router.
•
See the E120 and E320 Module Guide for modules supported on the Juniper Networks
E120 and E320 Broadband Services Routers.
Interface Specifiers
The majority of the configuration task examples in this topic collection use the slot/port
format to specify an interface. However, the interface specifier format that you use
depends on the router that you are using.
4
Copyright © 2012, Juniper Networks, Inc.
Chapter 1: Quality of Service Overview
For ERX7xx models, ERX14xx models, and ERX310 routers, use the slot/port format. For
example, the following command specifies an ATM interface on slot 0, port 1 of an ERX7xx
model, ERX14xx model, or ERX310 router.
host1(config)#interface gigabitEthernet 0/1
For E120 and E320 routers, use the slot/adapter/port format, which includes an identifier
for the bay in which the I/O adapter (IOA) resides. In the software, adapter 0 identifies
the right IOA bay (E120 router) and the upper IOA bay (E320 router); adapter 1 identifies
the left IOA bay (E120 router) and the lower IOA bay (E320 router). For example, the
following command specifies a10-Gigabit Ethernet interface on slot 5, adapter 0, port 0
of an E320 router.
host1(config)#interface tenGigabitEthernet 5/0/0
Related
Documentation
•
Interface Types and Specifiers.
QoS Terms
Table 3 on page 5 defines terms used in this discussion of QoS.
Table 3: QoS Terminology
Term
Description
Assured rate
Bandwidth guaranteed until the node below in the scheduler hierarchy
is oversubscribed.
Best effort
Network forwards as many packets as possible in as reasonable a
time as possible. This is the default per-hop behavior (PHB) for packet
transmission.
Best-effort queue
For a logical interface, the queue associated with the best-effort
traffic class for that logical interface,
Best-effort scheduler
node
The scheduler node associated with a logical interface and traffic
class group pair, and where the traffic class group contains the
best-effort traffic class. Also known as best-effort node.
CDV
Cell delay variation. Measures the difference between a cell’s
expected and actual transfer delay. Determines the amount of jitter.
CDVT
Cell delay variation tolerance. Specifies the acceptable tolerance of
CDV (jitter).
Effective weight
The result of a weight or an assured rate. Users configure the
scheduler node by specifying either an assured rate or a weight within
a scheduler profile. An assured rate, in bits per second, is translated
into a weight. The resultant weight is referred to as an effective
weight.
Copyright © 2012, Juniper Networks, Inc.
5
JunosE 14.1.x Quality of Service Configuration Guide
Table 3: QoS Terminology (continued)
6
Term
Description
Group node
A scheduler node associated with a {port interface, traffic-class
group} pair. Because the logical interface is the port, only one such
scheduler node can exist for each traffic-class group above the port.
This node aggregates all traffic for traffic classes in the group.
HAR
Hierarchical assured rate. Dynamically adjusts bandwidth for
scheduler nodes.
HRR
Hierarchical round-robin. Allocates bandwidth to queues in proportion
to their weights.
Latency
Delay in the transmission of a packet through a network from
beginning to end.
Proprietary QoS
Management Information
Base (MIB)
Supported on the E Series router.
Queue
First-in-first-out (FIFO) set of buffers that control packets on the
data path.
QoS port-type profile
Supplies the QoS information for forwarding interfaces stacked above
ports of the associated interface type.
QoS profile attachment
Applies the rules in the QoS profile to a specific interface.
Rate shaping
Allows you to throttle a queue to a specified rate.
RED
Random early detection congestion avoidance technique.
Scheduler hierarchy
A hierarchical, tree-like arrangement of scheduler nodes and queues.
The router supports up to three levels of scheduler nodes stacked
above a port. The port scheduler is at level 0, with two levels of
scheduler nodes at levels 1 and 2. A final level of queues is stacked
above the nodes.
Scheduler node
An element within the hierarchical scheduler that implements
bandwidth controls for a group of queues. Queues are stacked above
scheduler nodes in a hierarchy. The root node is associated with a
channel or physical port.
Shaping rate
Bandwidth in a queue or node can be throttled to a specified rate.
Shared shaper
constituent
All nodes and queues that are associated with a logical interface
that is being shared shaped are considered potential constituents of
the shared shaper.
Weight
Specifies the relative weight for queues in the traffic class.
WRED
Weighted random early detection congestion avoidance technique.
Copyright © 2012, Juniper Networks, Inc.
Chapter 1: Quality of Service Overview
QoS Features
Table 4 on page 7 describes the major QoS features supported on the E Series router.
Table 4: QoS Features
Feature
Description
Best effort
Default traffic class for packets being forwarded across the device.
Packets that are not assigned to a specific traffic class are assigned
to the best-effort traffic class.
Differentiated services
•
Assured forwarding—See RFC 2597.
•
Expedited forwarding—See RFC 2598.
Drop profile
Template that specifies active queue management in the form of
WRED behavior of an egress queue.
Port shaping
Shapes the aggregate traffic through a port or channel to a rate that
is less than the line or port rate.
QoS parameters
Creates a queuing architecture without the numeric subscriber rates
and weights in scheduler profiles. You then use the same QoS and
scheduler profiles across all subscribers who use the same services
but at different bandwidths, reducing the total number of QoS
profiles and scheduler profiles required.
QoS port-type profile
QoS profile that is automatically attached to ports of the
corresponding type if you do not explicitly attach a QoS profile.
QoS profile
Collection of QoS commands that specify queue profiles, drop
profiles, scheduler profiles, and statistics profiles in combination
with interface types.
Queue profile
Template that specifies the buffering and tail-dropping behavior of
an egress queue.
Rate shaping
Mechanism that throttles the rate at which an interface can transmit
packets.
Note: Rate shaping as presented in policy management in releases
before JunosE Release 4.0 is deprecated and converted to QoS
profiles and scheduler profiles.
Relative strict-priority
scheduling
Provides strict-priority scheduling within a shaped aggregate rate.
For example, it lets you provide 1 Mbps of aggregate bandwidth to
a subscriber, with up to 500 Kbps of the bandwidth for low-latency
traffic. If there is no strict-priority traffic, the low-latency traffic can
use up to the full aggregate rate of 1 Mbps.
Scheduler profile
Configures the bandwidth at which queues drain as a function of
relative weight, assured rate, and shaping rate.
Copyright © 2012, Juniper Networks, Inc.
7
JunosE 14.1.x Quality of Service Configuration Guide
Table 4: QoS Features (continued)
Feature
Description
Shared rate shaping
Mechanism for shaping a logical interface's aggregate traffic to a
rate when the traffic for that logical interface is queued through
more than one scheduler hierarchy.
Statistics profile
Template that specifies rate statistics and event-gathering
characteristics.
Strict-priority scheduling
Designates the traffic class (queue) that receives top priority for
transmission of its packets through a port. It is implemented with a
special strict-priority scheduler node that is stacked directly above
the port.
Traffic class
A chassis-wide grouping of queues and buffers that support
transmission of a designated set of traffic across the chassis, from
ingress line module, through the switch fabric, and onto the egress
line module.
The router supports up to eight traffic classes, and therefore up to
eight queues per logical interface.
Traffic-class group
Separate hierarchy of scheduler nodes and queues over a port. A
traffic-class group uses one level of the scheduler hierarchy, level 1.
Traffic classes belong to the default group unless they are specifically
assigned to a named group. All queues are stacked in a single
scheduler hierarchy above the physical port. When you configure a
traffic class inside a group, its queues are stacked separately. The
most common reason for creating separate scheduler hierarchies is
to implement strict priority scheduling for all queues in the group.
The router supports up to four traffic-class groups. A traffic class
cannot belong to more than one group.
WRED
Signals end-to-end protocols such as TCP that the router is
becoming congested along a particular egress path. The intent is to
trigger TCP congestion avoidance in a random set of TCP flows
before congestion becomes severe and causes tail dropping on a
large number of flows.
Configuring QoS on the E Series Router
Several of the tasks for configuring QoS on your E Series router are optional.
To configure QoS on your E Series router:
1.
Create and configure a traffic class.
See “Traffic Class and Traffic-Class Groups Overview” on page 13.
2. (Optional) Create one or more traffic-class groups.
See “Traffic Class and Traffic-Class Groups Overview” on page 13.
8
Copyright © 2012, Juniper Networks, Inc.
Chapter 1: Quality of Service Overview
3. (Optional) To configure nondefault buffer management, create a queue profile.
See “Queuing and Buffer Management Overview” on page 17.
4. (Optional) To configure RED or WRED, create a drop profile.
See “Dropping Behavior Overview” on page 25.
5. (Optional) To gather rate statistics, create a statistics profile.
See “QoS Statistics Overview” on page 37.
6. Configure a scheduler hierarchy with a scheduler profile.
See “Scheduler Hierarchy Overview” on page 45.
7. (Optional) Configure shaping:
•
Configure shaping and shared shaping using the scheduler profile.
See “Rate Shaping and Port Shaping Overview” on page 51, “Simple Shared Shaping
Overview” on page 75, and “Compound Shared Shaping Overview” on page 95.
•
Configure shaping rates independent of the QoS profile and scheduler profile using
QoS parameters.
See “Parameter Definition Attributes for QoS Administrators Overview” on page 219.
8. Create a QoS profile. QoS profiles reference queue, drop, statistics, and scheduler
profiles.
See “Queuing and Buffer Management Overview” on page 17.
9. Attach the QoS profile to one or more interfaces, or specify the profile as a QoS
port-type profile for a given interface type.
See “Queuing and Buffer Management Overview” on page 17.
QoS References
For more information about QoS, see the following resources:
•
RFC 2474—Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers (December 1998)
•
RFC 2475—An Architecture for Differentiated Services (December 1998)
•
RFC 2597—Assured Forwarding PHB Group (June 1999)
•
RFC 2598—An Expedited Forwarding PHB (June 1999)
•
RFC 2698—A Two Rate Three Color Marker (September 1999)
•
RFC 2990—Next Steps for the IP QoS Architecture (November 2000)
•
RFC 2998—A Framework for Integrated Services Operation over Diffserv Networks
(November 2000)
•
RFC 3246—An Expedited Forwarding PHB (Per-Hop Behavior) (March 2002)
•
RFC 3260—New Terminology and Clarifications for Diffserv (April 2002)
Copyright © 2012, Juniper Networks, Inc.
9
JunosE 14.1.x Quality of Service Configuration Guide
10
•
DSL Forum Technical Report (TR)-059—DSL Evolution - Architecture Requirements
for the Support of QoS-Enabled IP Services
•
Floyd, S., and Jacobson, V. Random Early Detection for Congestion Avoidance. IEEE/ACM
Transactions on Networking 1(4), August 1993
Copyright © 2012, Juniper Networks, Inc.
PART 2
Classifying, Queuing, and Dropping Traffic
•
Defining Service Levels with Traffic Classes and Traffic-Class Groups on page 13
•
Configuring Queue Profiles for Buffer Management on page 17
•
Configuring Dropping Behavior with RED and WRED on page 25
•
Gathering Statistics for Rates and Events in the Queue on page 37
Copyright © 2012, Juniper Networks, Inc.
11
JunosE 14.1.x Quality of Service Configuration Guide
12
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 2
Defining Service Levels with Traffic
Classes and Traffic-Class Groups
This chapter provides information for configuring traffic classes and traffic-class groups
on the E Series router.
QoS topics are discussed in the following sections:
•
Traffic Class and Traffic-Class Groups Overview on page 13
•
Configuring Traffic Classes That Define Service Levels on page 14
•
Configuring Traffic-Class Groups That Define Service Levels on page 15
•
Monitoring Traffic Classes and Traffic-Class Groups for Defined Levels of
Service on page 16
Traffic Class and Traffic-Class Groups Overview
A traffic class is a systemwide collection of buffers, queues, and bandwidth that you can
allocate to provide a defined level of service to packets in the traffic class.
A traffic class corresponds to what the IETF DiffServ working group calls a traffic class
in RFC 2597—Assured Forwarding PHB Group (June 1999).
Traffic classes are global to the router. Packets are:
•
Classified into a traffic class on ingress or egress by input policies
•
Queued on fabric queues that are specific to the traffic class
•
Queued on the egress line module on queues that are specific to the traffic class
•
Scheduled for transmission by the scheduler
Best-Effort Forwarding
The router has a default traffic class called best-effort. You cannot delete this class. You
can add the best-effort class to a traffic-class group. The router assigns packets to the
best-effort class in each of the following cases:
•
You do not create any other traffic classes.
•
Packets are not classified into a traffic class.
Copyright © 2012, Juniper Networks, Inc.
13
JunosE 14.1.x Quality of Service Configuration Guide
•
Packets arrive at an egress line module that has no queues allocated for their traffic
class.
Traffic-Class Groups Overview
You can put traffic classes into a group to create a hierarchy of scheduler nodes and
queues. Organizing traffic into multiple traffic-class groups enables you to manage and
shape traffic—by service class, for example—when the traffic classes are distributed
across different VCs. A traffic-class group contains one or more traffic classes, but a
particular traffic class can belong only to a single group—either the default group or one
named group.
You can configure an auto-strict group and up to three extended traffic-class groups.
You must put traffic classes that require strict-priority scheduling in the auto-strict group.
You can optionally put traffic classes that need a separate round robin (for example,
video) in an extended group.
A traffic class that is not contained in any named group is considered to belong to the
default group. Traffic classes are placed in the default traffic-class group when the
classes are configured—you can then move a class to another traffic-class group. When
you delete a traffic-class from a named group, the class is automatically moved to the
default traffic-class group. ATM VC nodes that are configured in the default group (which
is the factory default configuration) receive backpressure from the segmentation and
reassembly (SAR) feature in the default qos-mode-port node.
Traffic-class groups are global in scope by default. However, you might want to manage
certain traffic classes through particular line modules. If you have already created a
traffic-class group, you can subsequently specify a slot number to create a local instance
of the group that is restricted to the module occupying that slot. Characteristics configured
for the local group on the line module override those of the global group, for only that
line module. Traffic classes in a globally scoped traffic-class group cannot belong to any
other group. Traffic classes in a local traffic-class group cannot belong to any other group.
Related
Documentation
•
Configuring Traffic Classes That Define Service Levels on page 14
•
Configuring Traffic-Class Groups That Define Service Levels on page 15
Configuring Traffic Classes That Define Service Levels
The router supports up to eight global traffic classes. Each traffic class can appear in
only one traffic-class group. If not explicitly added to a traffic-class group, the traffic
class is considered to be ungrouped.
To configure a traffic class:
1.
Create a traffic class by assigning a name that represents the type of service and enter
Traffic Class Configuration mode.
host1(config)#traffic-class low-loss1
host1(config-traffic-class)#
The traffic class name can be up to 31 characters. It cannot include spaces.
14
Copyright © 2012, Juniper Networks, Inc.
Chapter 2: Defining Service Levels with Traffic Classes and Traffic-Class Groups
2. (Optional) Specify strict-priority scheduling across the fabric for queues in the traffic
class.
host1(config-traffic-class)#fabric-strict-priority
3. (Optional) For Juniper Networks ERX1440, E120 , and E320 Broadband Services
Routers, specify the relative weight for queues in the traffic class in the fabric.
host1(config-traffic-class)#fabric-weight 12
Fabric weight controls the bandwidth of fabric queues associated with the traffic
class. It does not control the weight of egress queues associated with the traffic class.
If multiple traffic classes are strict priority, the fabric weight determines which class
gets more bandwidth.
The weight value is in the range 1–63. The default is 8. Zero is not a valid weight.
Related
Documentation
•
Monitoring Traffic Classes and Traffic-Class Groups for Defined Levels of Service on
page 16
•
fabric-strict-priority
•
fabric-weight
•
traffic-class
Configuring Traffic-Class Groups That Define Service Levels
You can configure a traffic-class group and enter Traffic Class Group Configuration mode,
from which you can add classes to or delete classes from the group.
Each traffic class can appear in only one traffic-class group. If not explicitly added to a
traffic-class group, the traffic class is considered to be ungrouped.
To configure a traffic-class group:
1.
Create a traffic-class group by assigning a name that represents the type of service
and enter Traffic Class Group Configuration mode.
host1(config)#traffic-class-group assured slot 9 extended
host1(config-traffic-class-group)#
The traffic class name can be up to 31 characters. It cannot include spaces.
If you do not specify a keyword, the group is strict-priority by default.
You can use the auto-strict-priority keyword to explicitly configure a single traffic-class
group with strict-priority scheduling, regardless of the scheduler profile associated
with the group node.
You can use the extended keyword to configure up to three extended traffic-class
groups. Scheduling for these groups is determined by the scheduler profile associated
with the group node. If an explicitly configured strict-priority group exists, the scheduler
for the extended groups may not specify strict-priority scheduling.
Copyright © 2012, Juniper Networks, Inc.
15
JunosE 14.1.x Quality of Service Configuration Guide
Use the slot slotNumber option to associate a pre-existing global traffic-class group
with the module occupying that slot. Characteristics configured for the local group
on the line module override those of the global group.
2. Add traffic classes to the traffic-class group.
host1(config-traffic-class-group)#traffic-class low-latency-traffic-class
Related
Documentation
•
Configuring Traffic Classes That Define Service Levels on page 14
•
Monitoring Traffic Classes and Traffic-Class Groups for Defined Levels of Service on
page 16
•
traffic-class
•
traffic-class-group
Monitoring Traffic Classes and Traffic-Class Groups for Defined Levels of Service
To monitor traffic classes and traffic-class groups:
16
•
Monitoring Service Levels with Traffic Classes on page 300
•
Monitoring Service Levels with Traffic-Class Groups on page 301
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 3
Configuring Queue Profiles for Buffer
Management
This chapter provides information for configuring queue profiles for buffer management
on the E Series router.
QoS topics are discussed in the following sections:
•
Queuing and Buffer Management Overview on page 17
•
Memory Requirements for Queue and Buffers on page 19
•
Guidelines for Managing Queue Thresholds on page 19
•
Guidelines for Managing Buffers on page 20
•
Configuring Queue Profiles to Manage Buffers and Thresholds on page 22
•
Monitoring Queues and Buffers on page 24
Queuing and Buffer Management Overview
A queue is a set of first-in, first-out (FIFO) buffers that buffer packets on the data path.
QoS associates queues with a traffic class/interface pair. For example, if you create 4000
IP interfaces and configure each interface with four traffic classes, then 16,000 queues
are created. For specific information about the maximum number of QoS queues
supported, see JunosE Release Notes, Appendix A, System Maximums.
The E Series router dynamically manages the shared memory on egress line modules to
provide a good balance between sharing the memory among queues and protecting an
individual queue’s claim on its fair share of the egress memory.
When egress packet memory is in high demand and aggregate utilization of the packet
memory is high, queue lengths are set to lengths that strictly partition egress memory
into per-queue memory sections. This conservative buffer-management strategy reserves
a fair share of buffers for each queue, so that high bandwidth consumers cannot starve
out moderate traffic consumers by allocating all the shared memory resource for
themselves.
When egress packet memory is in low demand, a more liberal buffer management strategy
is used to provide active queues with more access to the shared memory resource.
Copyright © 2012, Juniper Networks, Inc.
17
JunosE 14.1.x Quality of Service Configuration Guide
The router dynamically varies queue lengths for all queues as the real-time demand on
the egress packet memory changes. You can configure limits to prevent the router from
setting queue lengths too low or too high.
Static Oversubscription
The router uses static oversubscription to vary queue thresholds based on the number
of queues currently configured, which is relatively static. Static oversubscription is based
on the assumption that, when a few queues are configured, many of the queues are likely
to be active at the same time. When a large number of queues are configured, fewer
queues are likely to be active at the same time.
When few queues are configured, buffer memory is strictly partitioned between queues
to ensure that buffers are available for all queues. As the number of configured queues
increases, buffer memory is increasingly oversubscribed to allow more buffer sharing.
Reserving buffer space for all queues when many are expected to be idle is unnecessary
and wasteful.
Dynamic Oversubscription
The router uses dynamic oversubscription to vary queue thresholds based on the amount
of egress buffer memory in use. The router divides egress buffer memory into eight regions.
The size of the region depends on the ASIC type. For more information, see “Memory
Requirements for Queue and Buffers” on page 19.
When buffer memory is in low demand, queues are given large amounts of buffer memory.
As the demand for buffer memory increases, queues are given progressively smaller
amounts of buffer memory.
Color-Based Thresholding
Packets within the router are tagged with a drop precedence:
•
Committed—Green
•
Conformed—Yellow
•
Exceeded—Red
When the queue fills above the exceeded threshold, the router drops red packets, but
still queues yellow and green packets. When the queue fills above the conformed drop
threshold, the router queues only green packets.
NOTE: All color-based thresholds vary in proportion to the dynamic queue
length.
Related
Documentation
18
•
Configuring Queue Profiles to Manage Buffers and Thresholds on page 22
•
Guidelines for Managing Queue Thresholds on page 19
•
Guidelines for Managing Buffers on page 20
Copyright © 2012, Juniper Networks, Inc.
Chapter 3: Configuring Queue Profiles for Buffer Management
•
RED and WRED Overview on page 26
Memory Requirements for Queue and Buffers
JunosE Software uses 128-byte buffers.
The egress memory available for queues available depends on the ASIC and the line
module. Table 5 on page 19 lists the egress memory.
Table 5: Egress Memory and Region Size on ASIC Line Modules
ASIC
Line Module
Egress Memory
(MB)
Region Size
(MB)
EFA
All EFA line modules
32
4
FFA
GE-2 and GE-HDE
64
8
OC48
128
16
ES2 4G LM
128
16
ES2 10G LM
96
12
TFA
Related
Documentation
•
Guidelines for Managing Queue Thresholds on page 19
•
Guidelines for Managing Buffers on page 20
•
ERX Module Guide and the E120 and E320 Module Guide
Guidelines for Managing Queue Thresholds
To prevent the router from setting queue thresholds too low or too high, you can specify
minimum and maximum queue thresholds. You can also specify the conformed length
and exceeded length as percentages of the committed length.
Guidelines for Configuring a Maximum Threshold
We recommend that you constrain queue thresholds using committed or conformed
threshold settings; any unused memory is redistributed to queues whose thresholds are
not constrained. This use of thresholds is analogous to the way that shaping rates
constrain bandwidth and cause bandwidth redistribution to unconstrained queues.
For example, voice queues are scheduled at strict priority; therefore, they require very
little buffering. Configuring a maximum queue threshold enables the system to allocate
more buffers to other queues in the system. Video queues are similar but because they
are higher bandwidth, they might require higher maximum committed thresholds.
You might want to limit latency of your multicast traffic by bounding the queue length
using a maximum committed threshold. The following example configures the multicast
Copyright © 2012, Juniper Networks, Inc.
19
JunosE 14.1.x Quality of Service Configuration Guide
queues so that the committed threshold never exceeds 20 KB, even when the egress
memory is lightly loaded. The forfeited buffers are allocated to other queues.
host1(config)#queue-profile multicast
host1(config-queue)#committed-length 0 20000
host1(config-queue)#exit
Be sure to include 0 in the syntax, or you will configure a minimum threshold.
Guidelines for Configuring a Minimum Threshold
Configuring a minimum threshold does not guarantee that a queue always obtains the
minimum buffer allocation. You can configure 1000 queues with a minimum of 1 MB
each, but the buffer memory is 32 MB or 128 MB, not 1 GB. In this case, the system moves
into higher operating regions (global utilization) if all these queues buffer traffic, until it
reaches 90 percent utilization. At that point, the thresholds must reduce to the reserved
percentages, and the queue thresholds drop from a high threshold to a very low one.
Queues are not guaranteed to obtain any buffering, and are buffered in the order in which
they are received.
You can configure a minimum committed threshold by specifying a value such as 1000
with the committed-length command:
host1(config)#queue-profile multicast
host1(config-queue)#committed-length 1000 20000
host1(config-queue)#exit
Related
Documentation
•
Memory Requirements for Queue and Buffers on page 19
•
Configuring Queue Profiles to Manage Buffers and Thresholds on page 22
Guidelines for Managing Buffers
Queue profiles enable you to manage queue thresholds and buffers to manage the
following common problems:
•
Queues that back up and consume too many buffers
•
Queues that cannot obtain buffers when they need them (called buffer starvation)
You can set the buffer weight to ensure that some sets of queues get higher thresholds
than others. Buffer weight is analogous to weight in a scheduler profile. It directs the
router to set the queue thresholds proportionately.
This feature provides graceful buffer allocation as the global utilization goes higher;
queues with more buffer weight always obtain more buffers, but they do not undergo a
dramatic drop in threshold when the system moves from region to region.
JunosE Software uses 128-byte buffers. When setting very small queue thresholds, keep
the following guidelines in mind:
20
Copyright © 2012, Juniper Networks, Inc.
Chapter 3: Configuring Queue Profiles for Buffer Management
•
Specifying a maximum queue length of 0 bytes disables queuing of packets on the
queue.
•
Specifying a maximum queue length of 1–128 bytes creates a single 128-byte buffer
for the queue.
•
Specifying a maximum queue length of 129–256 bytes creates two 128-byte buffers
for the queue.
•
Packets and cells consume at least one buffer.
For example, a 64-byte packet consumes a single 128-byte buffer. If you specify a
maximum queue length of 256 bytes, then either two packets of 64–128 bytes in length
or a single packet of 129–256 bytes can be queued.
For example, suppose a line module with 4000 IP interfaces is configured with four
queues per IP interface, corresponding to four traffic classes. Suppose that queues in
two of the traffic classes are configured with a buffer weight of 24 to increase burst
tolerance. The following example configures the video queue:
host1(config)#queue-profile video
host1(config-queue)#buffer-weight 24
host1(config-queue)#exit
host1(config)#
When the egress memory is fully loaded, dynamic oversubscription is 0 percent, and the
8000 queues with the default buffer weight strictly partition 25 percent of the 32-MB
memory, leaving 75 percent of the memory for the queues weighted 24 (corresponding
to the ratio 75 percent:25 percent, or 24:8). Therefore, these queues have committed
thresholds of 1 KB each, and queues with the buffer weight of 24 have committed
thresholds of 3 KB each. As the egress memory becomes progressively less loaded, all
the queue thresholds increase proportionally, based on dynamic oversubscription, but
the queues with buffer weight 24 are always set with thresholds three times larger than
the default thresholds.
Guidelines for Managing Buffer Starvation
Buffer starvation most commonly occurs when queues or nodes exist in a large round
robin, usually in the default traffic-class group. When the round robin congests, the queues
back up and require more buffers. The traffic in the round robin starts to burst based on
a single node or queue. After a packet is dequeued, the node or queue can wait for
thousands of other queues to dequeue a packet before it can dequeue again. During this
time, the queue backs up.
If you configure different scheduler profile weights or assured rates for nodes in a large
and congested round robin, the buffer starvation becomes apparent. The problem occurs
when the heavy weighted nodes wait their turn in the round robin and thousands of other
nodes dequeue. While the heavily weighted nodes wait, the system needs to buffer them.
However, all queues receive the same buffer allocation by default. If the system goes to
higher buffer regions, it starts dropping packets for all queues. When the heavy weight
node finally transmits, it dequeues all buffers, but it cannot dequeue the packets that
were dropped. You do not achieve the expected bandwidth based on scheduler profile
weights.
Copyright © 2012, Juniper Networks, Inc.
21
JunosE 14.1.x Quality of Service Configuration Guide
To manage buffer starvation, configure buffer weights on queues so they are in the same
ratio as the expected bandwidth for the queues. For example, if two queues have scheduler
weight (or assured-rate) in the ratio of 2:1, then set the buffer weights to the same ratio.
To manage buffer starvation, set the maximum-committed-threshold on queues that
do not need buffering, and increase the buffer-weight for the heavily weighted queues
in the round robin.
The system calculates the correct ratio for you. Issue the show egress queue rates
command to see the ratio:
host1# show egress-queue rates brief interface fastEthernet 9/0.2
traffic
forwarded aggregate minimum maximum
interface
class
rate
drop rate rate
rate
---------------------- ----------------------- --------- --------- ------- ------ip FastEthernet9/0.2
best-effort
0
0
25000 1000000
videoTrafficClass
0
0 375000 1000000
multicastTrafficClass
0
0 925000 1000000
internetTrafficClass
0
0
50000 1000000
Total:
0
0
Queues reported:
Queues filtered (under threshold):
Queues disabled (no rate period):
Queues disabled (no resources):
Total queues:
4
0
0
0
4
The minimum rate for each queue is the approximate rate the queue achieves if all
configured queues in the line module run infinite traffic. Configure the buffer weights in
proportion to the minimum rate displayed by the system.
Related
Documentation
•
Memory Requirements for Queue and Buffers on page 19
•
Configuring Queue Profiles to Manage Buffers and Thresholds on page 22
•
Monitoring Forwarding and Drop Rates on the Egress Queue on page 318
Configuring Queue Profiles to Manage Buffers and Thresholds
A queue profile controls the buffering and dropping behavior of a set of egress queues
by enabling you to set the buffer weight of the queue, the drop thresholds, and the
constraints on queue lengths.
Set the queue lengths as follows:
•
To oversubscribe buffer memory, set a minimum queue length.
NOTE: If the sum of the queue minimum lengths is greater than the amount
of egress buffer memory, then the egress buffer memory is oversubscribed.
•
22
To configure a minimal level of buffering or to limit the buffering in queues, set a
maximum queue length. For example, if you want to control latency by configuring
Copyright © 2012, Juniper Networks, Inc.
Chapter 3: Configuring Queue Profiles for Buffer Management
very small queues, set the maximum queue length to 256 bytes. The system queues
no more than 256 bytes.
If you do not set the queue lengths, the router varies the queue length dynamically in the
range 1 KB–7 MB.
1.
Create a queue profile and enter Queue Configuration mode.
host1(config)#queue-profile video
host1(config-queue)#
You can configure 16 queue profiles on an E Series router.
2. (Optional) Set the buffer weight of the queue.
host1(config-queue)#buffer-weight 16
Queues with a buffer weight of 16 are twice as long as queues with a buffer weight of
8. The range is 1–63; the default is 8.
3. (Optional) Set a minimum or maximum queue length for committed packets.
host1(config-queue)#committed-length 11000 15000
The range of minimum and maximum lengths is 0–1 GB. By default, there is no minimum
or maximum length. The color for committed packets is green.
4. (Optional) Set a minimum or maximum queue length for conformed packets.
host1(config-queue)#conformed-length 10000 14000
The range of minimum and maximum lengths is 0–1 GB. By default, there is no minimum
or maximum length. The color for conformed packets is yellow.
5. (Optional) Set a minimum or maximum queue length for exceeded packets.
host1(config-queue)#exceeded-length 9000 10000
The range of minimum and maximum lengths is 0–1 GB. By default, there is no minimum
or maximum length. The color for exceeded packets is red.
6. (Optional) Set the conformed drop threshold as a percentage of the committed
threshold.
host1(config-queue)#conformed-fraction 60
The range is 0–100 percent; the default is 50.
7. (Optional) Set the exceeded drop threshold as a percentage of the committed
threshold.
host1(config-queue)#exceeded-fraction 40
The range is 0–100 percent; the default is 25.
Related
Documentation
•
Queuing and Buffer Management Overview on page 17
•
Guidelines for Managing Queue Thresholds on page 19
Copyright © 2012, Juniper Networks, Inc.
23
JunosE 14.1.x Quality of Service Configuration Guide
•
Guidelines for Managing Buffers on page 20
•
Memory Requirements for Queue and Buffers on page 19
•
buffer-weight
•
committed-length
•
conformed-fraction
•
conformed-length
•
exceeded-fraction
•
exceeded-length
•
queue-profile
Monitoring Queues and Buffers
To monitor queues and buffers, see:
24
•
Monitoring Queue Thresholds on page 302
•
Monitoring Queue Profiles on page 305
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 4
Configuring Dropping Behavior with RED
and WRED
This chapter provides information for configuring dropping behavior using RED and WRED
on the E Series router.
QoS topics are discussed in the following sections:
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
•
Configuring RED on page 27
•
Example: Configuring Average Queue Length for RED on page 28
•
Example: Configuring Dropping Thresholds for RED on page 28
•
Example: Configuring Color-Blind RED on page 29
•
Configuring WRED on page 30
•
Example: Configuring Different Treatment of Colored Packets for WRED on page 32
•
Example: Defining Different Drop Behavior for Each Traffic Class for WRED on page 32
•
Example: Configuring WRED and Dynamic Queue Thresholds on page 33
•
Monitoring RED and WRED on page 35
Dropping Behavior Overview
Drop profiles control the dropping behavior of a set of egress queues. They define the
range within the queue where random early detection (RED) operates, the maximum
percentage of packets to drop, and sensitivity to bursts of packets. Weighted random
early detection (WRED) is an extension to RED that enables you to assign different RED
drop profiles to each color of traffic.
The purpose of RED and WRED is to signal end-to-end protocols, such as TCP, that the
router is becoming congested along a particular egress path. The intent is to trigger TCP
congestion avoidance in a random set of TCP flows before congestion becomes severe
and causes tail dropping on a large number of flows. Tail dropping can lead to TCP
slow-starts, and tail dropping on a large number of flows results in global synchronization.
Copyright © 2012, Juniper Networks, Inc.
25
JunosE 14.1.x Quality of Service Configuration Guide
By default, tail dropping occurs when the length of a queue exceeds a threshold. Drop
profiles allow you to employ active queue management by specifying RED and WRED
parameters to be applied to an egress queue.
Congestion of an egress queue occurs when the rate of traffic destined for the queue
exceeds the rate of traffic draining from the queue; the queue fills to its limit, and any
further traffic destined to it must be discarded until there is room in the queue. RED and
WRED monitor average queue length over time to detect incipient congestion.
You can combine drop profiles and queue profiles within a queue rule of a QoS profile
to specify up to 256 unique queuing behaviors within the router. You can then associate
these queuing behaviors in any combination with any of the egress queues.
Related
Documentation
•
Queuing and Buffer Management Overview on page 17
RED and WRED Overview
The scheduler maintains an average queue length for each queue configured for RED.
When a packet is enqueued, the current queue length is weighted into the average queue
length based on the average-length exponent in the drop profile.
•
Small exponent values weight the current queue length heavily, so the average queue
length is more responsive to transient bursts.
•
Large exponent values weight the current queue length lightly, so the average queue
length is less responsive to bursts.
When the average queue length exceeds the minimum threshold, RED begins randomly
dropping packets. While the average queue length increases toward the maximum
threshold, RED drops packets with increasing frequency, up to the maximum drop
probability. When the average queue length exceeds the maximum drop threshold, all
packets are dropped. Figure 2 on page 26 shows this behavior.
Figure 2: Packets Dropped as Queue Length Increases
26
Copyright © 2012, Juniper Networks, Inc.
Chapter 4: Configuring Dropping Behavior with RED and WRED
WRED is an extension of RED that allows you to assign different RED drop thresholds to
each color of traffic. The router assigns a color to each packet. Committed means green,
conformed means yellow, and exceeded means red. When the queue fills above the
exceeded threshold, the router drops red packets, but still queues yellow and green
packets. When the queue fills above the conformed drop threshold, the router queues
only green packets.
Related
Documentation
•
Configuring RED on page 27
•
Configuring WRED on page 30
Configuring RED
Each line module supports a default drop profile and 15 configurable drop profiles. You
can configure the default drop profile on all E Series line modules except for the ES2 10G
LM.
To configure RED:
1.
Create a drop profile and enter Drop Profile Configuration mode.
host1(config)#drop-profile internetDropProfile
host1(config-drop-profile)#
You can configure up to 16 drop profiles.
2. Set the average-length exponent, which specifies the exponent used to weight the
average queue length over time, controlling WRED responsiveness.
host1(config-drop-profile)#average-length-exponent 9
•
Specifying an average-length exponent enables the RED average queue length
computation.
•
A higher value smoothens out the average and slows WRED reaction to congestion
and decongestion, accommodating short bursts without dropping. Too large a value
can smooth the average to the point that WRED does not react at all.
•
A lower value speeds up WRED reaction. Too low a value can cause overreaction
to short bursts, dropping packets unnecessarily.
3. (Optional) Set the minimum and maximum threshold for committed traffic.
host1(config-drop-profile)#committed-threshold percent 30 90 4
4. (Optional) Set the minimum and maximum threshold for conformed traffic.
host1(config-drop-profile)#conformed-threshold percent 25 90 5
5. (Optional) Set the minimum and maximum threshold for exceeded traffic.
host1(config-drop-profile)#exceeded-threshold percent 20 90 6
The thresholds specify a linear relationship between average queue length and drop
probability.
You can express thresholds as either percentages of maximum queue size by including
the keyword percent, or as absolute byte values by omitting the keyword.
Copyright © 2012, Juniper Networks, Inc.
27
JunosE 14.1.x Quality of Service Configuration Guide
Related
Documentation
•
Configuring WRED on page 30
•
Monitoring RED and WRED on page 35
•
average-length-exponent
•
committed-threshold
•
conformed-threshold
•
drop-profile
•
exceeded-threshold
Example: Configuring Average Queue Length for RED
To enable calculation of average queue length, create a drop profile with a nonzero
average-length exponent, reference the drop profile within a QoS profile, and attach the
QoS profile to an interface.
The following drop profile enables the average queue length calculation, but does not
initiate RED dropping behavior:
host1(config)#drop-profile averageOnly
host1(config-drop-profile)#average-length-exponent 10
Related
Documentation
•
Configuring RED on page 27
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
Example: Configuring Dropping Thresholds for RED
You can specify different dropping behavior for committed (green), conformed (yellow),
and exceeded (red) packets by specifying a minimum queue threshold, maximum queue
threshold, and maximum drop probability for each color of traffic.
By default, conformed threshold and exceeded threshold take the same values as the
committed threshold. Therefore, if you specify only a committed threshold, conformed
and exceeded traffic is treated like committed traffic. Similarly, if you specify a conformed
threshold without an exceeded threshold, exceeded traffic is treated like committed
traffic.
The following drop profiles result in identical behavior:
host1(config)#drop-profile colorblind1
host1(config-drop-profile)#committed-threshold percent 30 90 5
host1(config-drop-profile)#exit
host1(config)#drop-profile colorblind2
host1(config-drop-profile)#committed-threshold percent 30 90 5
host1(config-drop-profile)#conformed-threshold percent 30 90 5
host1(config-drop-profile)#exit
28
Copyright © 2012, Juniper Networks, Inc.
Chapter 4: Configuring Dropping Behavior with RED and WRED
host1(config)#drop-profile colorblind3
host1(config-drop-profile)#committed-threshold percent 30 90 5
host1(config-drop-profile)#conformed-threshold percent 30 90 5
host1(config-drop-profile)#exceeded-threshold percent 30 90 5
Related
Documentation
•
Configuring RED on page 27
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
Example: Configuring Color-Blind RED
You can configure RED so that packets are dropped without regard to color. To do so,
you combine a drop profile that has a committed threshold configured with a queue
profile that specifies the same queue length for committed, conformed, and exceeded
packets, as shown in Figure 3 on page 29.
Figure 3: Color-Blind RED Drop Profile with Colorless Queue Profile
In the following example, the drop profile and queue profile combine to specify the
following:
•
When the average queue length is between 30 percent full (30 KB) and 90 percent
full (90 KB), up to 5 percent of the packets are randomly dropped regardless of their
color.
•
When the average queue length is greater than 90 percent, all packets are dropped
regardless of color.
host1(config)#drop-profile nocolor
host1(config-drop-profile)#c ommitted-threshold percent 30 90 5
host1(config-drop-profile)#exit
host1(config)#queue-profile colorless
host1(config-queue)#committed-length 100000 100000
host1(config-queue)#conformed-fraction 100
host1(config-queue)#exceeded-fraction 100
To achieve the same drop treatment for each color, you can specify color-blind RED in
combination with a color-sensitive queue profile, as shown in Figure 4 on page 29.
Figure 4: Color-Blind RED Drop Profile with Color-Sensitive Queue Profile
Copyright © 2012, Juniper Networks, Inc.
29
JunosE 14.1.x Quality of Service Configuration Guide
In the following example, the drop profile and queue profile combine to specify the
following:
•
•
When the average queue length is between 30 percent full (30 KB) and 90 percent
full (90 KB), up to 5 percent of the packets are dropped randomly. In this case, the
maximum queue length is 100 KB for green packets, 50 KB for yellow packets, and 25
KB for red packets. Therefore, the router randomly drops:
•
Red packets when the average queue length is between 7.5 KB and 22.5 KB
•
Yellow packets when the average queue length is between 15 KB and 45 KB
•
Green packets when the average queue length is between 30 KB and 90 KB
When the average queue length is greater than 90 percent of the maximum queue
length, all packets are dropped. Therefore, the router drops:
•
Red packets when the average queue length is greater than 22.5 KB
•
Yellow packets when the average queue length is greater than 45 KB
•
Green packets when the average queue length is greater than 90 KB
host1(config)#drop-profile colorblindRed
host1(config-drop-profile)#committed-threshold percent 30 90 5
host1(config-drop-profile)#exit
host1(config)#queue-profile colorSensitive
host1(config-queue)#committed-length 100000 100000
Related
Documentation
•
Configuring RED on page 27
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
Configuring WRED
The main difference between RED and WRED is that WRED deals with different colored
packets. The router assigns a color to each packet. Committed means green, conformed
means yellow, and exceeded means red.
Each line module supports a default drop profile and 15 configurable drop profiles.
WRED is not supported on the ES2 10G Uplink LM. On the ES2 10G LM, you must configure
WRED in one of the 15 configurable drop profiles; you cannot configure its default drop
profile.
To enable support for 32,000 subscribers with 128,000 QoS queues on ES2 10G ADV
LMs, scheduler memory enhancements have reduced the number of QoS rate counters
that are supported per egress queue from 7 to 5:
30
•
1 is used for forwarding events
•
3 are used for tail dropping behavior
•
1 is used for WRED functionality (an aggregate of all colors)
Copyright © 2012, Juniper Networks, Inc.
Chapter 4: Configuring Dropping Behavior with RED and WRED
Each line module supports a default drop profile and 15 configurable drop profiles. On
the ES2 10G ADV LM, you must configure WRED in one of the 15 configurable drop profiles;
you cannot configure its default drop profile. Queue rate statistics measure the forwarding
and drop rates of each queue in bits per second. Queue event statistics configure the
E Series router to count the number of times that forwarding or drop rates exceed a
specific threshold. To display information about the number of committed packets and
bytes dropped by WRED for ES2 10G ADV LMs, see the number displayed in the Dropped
by WRED committed field in the output of the show ip interface command. The Dropped
by WRED confirmed and Dropped by WRED exceeded fields always display a value of
zero because of the single counter being used for WRED functionality being calculated
and displayed in the Dropped by WRED committed field of the output.
To configure WRED:
1.
Create a drop profile and enter Drop Profile Configuration mode.
host1(config)#drop-profile internetDropProfile
host1(config-drop-profile)#
You can configure up to 16 drop profiles.
2. Set the average-length exponent, which specifies the exponent used to weight the
average queue length over time, controlling WRED responsiveness.
host1(config-drop-profile)#average-length-exponent 9
•
Specifying an average-length exponent enables the RED average queue length
computation.
•
A higher value smoothens out the average and slows WRED reaction to congestion
and decongestion, accommodating short bursts without dropping. Too large a value
can smooth the average to the point that WRED does not react at all.
•
A lower value speeds up WRED reaction. Too low a value can cause overreaction
to short bursts, dropping packets unnecessarily.
3. (Optional) Set the minimum and maximum threshold for committed traffic.
host1(config-drop-profile)#committed-threshold percent 30 90 4
4. (Optional) Set the minimum and maximum threshold for conformed traffic.
host1(config-drop-profile)#conformed-threshold percent 25 90 5
5. (Optional) Set the minimum and maximum threshold for exceeded traffic.
host1(config-drop-profile)#exceeded-threshold percent 20 90 6
The thresholds specify a linear relationship between average queue length and drop
probability.
You can express thresholds as either percentages of maximum queue size by including
the keyword percent, or as absolute byte values by omitting the keyword.
Related
Documentation
•
Configuring RED on page 27
•
Monitoring RED and WRED on page 35
Copyright © 2012, Juniper Networks, Inc.
31
JunosE 14.1.x Quality of Service Configuration Guide
•
average-length-exponent
•
committed-threshold
•
conformed-threshold
•
drop-profile
•
exceeded-threshold
Example: Configuring Different Treatment of Colored Packets for WRED
Figure 5 on page 32 shows a WRED drop profile that yields progressively more aggressive
drop treatment for each color. Exceeded traffic is dropped over a wider range and with
greater maximum drop probability than conformed or committed traffic. Conformed
traffic is dropped over a wider range and with greater maximum drop probability than
committed traffic.
The commands to configure this example are:
host1(config)#drop-profile wredColored
host1(config-drop-profile)#committed-threshold percent 30 90 3
host1(config-drop-profile)#conformed-threshold percent 25 90 5
host1(config-drop-profile)#exceeded-threshold percent 20 90 10
Figure 5: Different Treatment of Colored Packets
Related
Documentation
•
Configuring WRED on page 30
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
Example: Defining Different Drop Behavior for Each Traffic Class for WRED
You can define different dropping behaviors for each traffic class in the router. By doing
so, you can assign less aggressive drop profiles to higher-priority queues and more
aggressive drop profiles to lower-priority queues. Figure 6 on page 33 shows an example
that classifies packets into one of four traffic classes. Each traffic class has a different
queuing behavior, drop treatment, and scheduler treatment.
32
Copyright © 2012, Juniper Networks, Inc.
Chapter 4: Configuring Dropping Behavior with RED and WRED
Figure 6: Defining Different Drop Behavior for Each Queue
Related
Documentation
•
Configuring WRED on page 30
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
Example: Configuring WRED and Dynamic Queue Thresholds
RED typically operates on fixed-size queues, and you can configure the router to use
fixed-size queues. However, by default, the router employs dynamic queue thresholds
to provide a good balance between sharing the egress buffer memory between queues
and protecting an individual queue’s claim on its fair share of the egress memory.
Fixed-size queues become problematic as the number of configured queues scales into
the thousands, because allocating disjointed partitions of buffer memory to each queue
means the allocations become quite small, and most likely not all queues are
simultaneously active.
In general, you use queues as follows:
•
Fixed-size queues on core routers and core-facing interfaces where the number of
queues is relatively small (tens or hundreds, but not thousands).
•
Dynamic queues on edge-facing interfaces where the number of queues is relatively
large (thousands).
Copyright © 2012, Juniper Networks, Inc.
33
JunosE 14.1.x Quality of Service Configuration Guide
As shown in Figure 7 on page 35, queue lengths extend to oversubscribe memory when
aggregate memory utilization is low, and contract to strictly partition memory when
memory utilization is high. Dynamic thresholding enforces fairness when free buffers are
scarce and promotes sharing when buffers are plentiful. Dynamic queue thresholds are
discussed in “Queuing and Buffer Management Overview” on page 17. Figure 7 on page 35
illustrates WRED behavior with dynamic queue thresholding.
To configure WRED to run on queues whose limits dynamically expand and contract, use
the percent keyword when you configure thresholds in a drop profile. For example:
host1(config)#drop-profile internetDropProfile
host1(config-drop-profile)#average-length-exponent 9
host1(config-drop-profile)#committed-threshold percent 30 90 4
host1(config-drop-profile)#conformed-threshold percent 25 90 5
host1(config-drop-profile)#exceeded-threshold percent 20 90 6
34
Copyright © 2012, Juniper Networks, Inc.
Chapter 4: Configuring Dropping Behavior with RED and WRED
Figure 7: WRED and Dynamic Queue Thresholding
Related
Documentation
•
Configuring WRED on page 30
•
Dropping Behavior Overview on page 25
•
RED and WRED Overview on page 26
Monitoring RED and WRED
To monitor drop profiles, see:
•
Monitoring Drop Profiles for RED and WRED on page 306
Copyright © 2012, Juniper Networks, Inc.
35
JunosE 14.1.x Quality of Service Configuration Guide
36
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 5
Gathering Statistics for Rates and Events
in the Queue
This chapter provides information for configuring statistics profiles on the E Series router.
QoS topics are discussed in the following sections:
•
QoS Statistics Overview on page 37
•
Configuring Statistic Profiles for QoS on page 39
•
Configuring Rate Statistics on page 39
•
Configuring Event Statistics on page 40
•
Clearing QoS Statistics on the Egress Queue on page 42
•
Clearing QoS Statistics on the Fabric Queue on page 42
•
Monitoring QoS Statistics for Rates and Events on page 42
QoS Statistics Overview
Statistics profiles enable you to gather statistics for the rate at which packets are
forwarded out of a queue and for the rate at which committed, conformed, or exceeded
packets are dropped. Statistics profiles also enable you to use events to monitor the rate
statistics. You can then use show commands to view the results of the statistics gathering.
You can create up to 250 statistics profiles on the E Series Broadband Services Routers.
The profiles are referenced by a queue rule within a QoS profile.
Statistics cannot be collected on failover queues.
When you create a statistics profile, you specify the time period over which statistics are
gathered. To gather event statistics, you configure the thresholds for triggering rate-event
reporting.
•
Rate period—Time period, in seconds, over which statistics are gathered. For example,
a 30-second rate period results in rate statistics being gathered over 30-second time
segments.
•
Forwarding rate threshold—Threshold for forwarding rate events. A forwarding-rate
event is counted whenever the forwarding rate exceeds the specified threshold.
Copyright © 2012, Juniper Networks, Inc.
37
JunosE 14.1.x Quality of Service Configuration Guide
•
Committed drop threshold—Threshold above which committed drop rate events are
counted.
•
Conformed drop threshold—Threshold above which conformed drop rate events are
counted.
•
Exceeded drop threshold—Threshold above which exceeded drop rate events are
counted.
Rate Statistics
You can configure the E Series router to gather statistics for the rate at which queues
forward and drop packets.
Queue rate statistics measure the forwarding and drop rates of each queue in bits per
second. All bytes in the Layer 2 encapsulation are included in the rate calculation. For
example, rates for a queue on Ethernet include the Ethernet and VLAN encapsulations.
For ATM modules, you can optionally configure queue statistics and queue rates to
include the cell encapsulation and padding. Cell encapsulation and padding are referred
to as the cell tax. The QoS shaping mode that you set on ATM line modules determines
whether queue rate statistics include cell tax.
•
If the interface is configured with frame-based QoS shaping mode, the egress queue
measures frame rate statistics; an ATM cell tax is not included.
•
If the interface is configured with cell-based QoS shaping mode, the egress queue
measures cell rate statistics; cell rates include ATM Adaptation Layer 5 (AAL5)
encapsulation and cell padding.
•
If the interface is configured with byte adjustment, the egress queue measures rate
statistics that are adjusted to the byte adjustment value.
NOTE: If you change the QoS shaping mode value in the middle of a rate
period, the gathered rates are a mixture of cell- and frame-based rates for
that one rate period. The next rate period uses a rate based on the new
QoS shaping mode setting.
Event Statistics
You can configure the E Series router to count the number of times that forwarding or
drop rates exceed a specific threshold. Events can be useful when you are monitoring
service level agreements. For example, you might count the number of times that the
drop rate of a queue is nonzero.
Bulk Statistics Support for QoS Statistics
You can obtain queue-level QoS statistics for each logical interface by querying the SNMP
MIB. However, using SNMP to obtain queue-level statistics consumes significant network
bandwidth because SNMP polls large volumes of data frequently. As an alternative to
using the SNMP MIB, you can use the bulkstats statistics application.
38
Copyright © 2012, Juniper Networks, Inc.
Chapter 5: Gathering Statistics for Rates and Events in the Queue
The bulk statistics application provides components to configure and organize network
accounting data in a flexible manner. The application reduces the consumption of network
bandwidth by collecting queue-level statistics and periodically transferring the data to
a remote server. You can configure the bulk statistics schemas to export network
accounting data. In particular, the QoS schema supports the export of queue-level QoS
statistics on egress queues for various interface types.
Configuring QoS schemas helps service providers monitor their network and report
congestion and oversubscription by obtaining queue-level statistics and configuration
information for each logical interface.
For information about schemas and configuring a bulk statistics schema to export
queue-level QoS statistics for egress queues on the router, see JunosE System Basics
Configuration Guide, Chapter 4, Configuring SNMP.
Related
Documentation
•
Configuring Statistic Profiles for QoS on page 39
•
Monitoring the Configuration of Statistics Profiles on page 323
•
Troubleshooting Memory and Processor Use for Egress Queue Rate Statistics and
Events on page 341
Configuring Statistic Profiles for QoS
To begin to configure a statistics profile, enter Statistics Profile Configuration mode.
•
Issue the statistics-profile command from Global Configuration mode:
host1(config)#statistics-profile statpro-1
host1(config-statistics-profile)#
The router supports up to 250 statistics profiles.
Related
Documentation
•
Configuring Rate Statistics on page 39
•
Configuring Event Statistics on page 40
•
Monitoring QoS Statistics for Rates and Events on page 42
•
statistics-profile
Configuring Rate Statistics
To gather rate statistics:
1.
Create the statistics profile.
host1(config)#statistics-profile statpro-5
2. Set the length of time during which statistics are counted.
host1(config-statistics-profile)#rate-period 45
Rate period range is 1–43200 seconds.
Copyright © 2012, Juniper Networks, Inc.
39
JunosE 14.1.x Quality of Service Configuration Guide
3. Reference the statistics profile by a QoS profile.
host1(config)#qos-profile qospro-3
host1(config-qos-profile)#ip queue traffic-class tc1 scheduler-profile sp1
statistics-profile statpro-5
4. Attach the QoS profile to the appropriate interface.
host1(config)#interface gigabitEthernet 1/0
host1(config-subif)#qos-profile qospro-3
host1(config-subif)#exit
5. (Optional) Display the rate statistics.
host1#show egress-queue rates interface gigabitEthernet 1/0
Related
Documentation
•
Configuring Statistic Profiles for QoS on page 39
•
Configuring a QoS Profile on page 126
•
Monitoring QoS Statistics for Rates and Events on page 42
•
interface
•
qos-profile
•
queue
•
rate-period
•
statistics-profile
Configuring Event Statistics
To configure the router to count events on a queue, you configure the threshold above
which forwarding or drop events are counted.
A forwarding rate event occurs each time the forwarding rate exceeds the threshold
during the specified rate period.
A drop event occurs each time the number of packets dropped exceeds the threshold
during the specified rate period.
To gather event statistics:
1.
Create the statistics profile.
host1(config)#statistics-profile statpro-1
2. Set the length of time during which statistics are counted.
host1(config-statistics-profile)#rate-period 30
Rate period range is 1–43200 seconds.
3. (Optional) Set the threshold above which forwarding rate events are counted.
host1(config-statistics-profile)#forwarding-rate-threshold 10000000
40
Copyright © 2012, Juniper Networks, Inc.
Chapter 5: Gathering Statistics for Rates and Events in the Queue
Forwarding rate threshold range is 1–1073741824 bps; default is no threshold.
4. (Optional) Set a threshold for committed (green) packets.
host1(config-statistics-profile)#committed-drop-threshold 2000000
Drop rate threshold range is 1–1073741824 bps; default is no threshold.
5. (Optional) Set a threshold for conformed (yellow) packets.
host1(config-statistics-profile)#conformed-drop-threshold 4000000
Drop rate threshold range is 1–1073741824 bps; default is no threshold.
6. (Optional) Set a threshold for exceeded (red) packets.
host1(config-statistics-profile)#exceeded-drop-threshold 6000000
Drop rate threshold range is 1–1073741824 bps; default is no threshold.
7. Reference the statistics profile in a QoS profile.
host1(config)#qos-profile qospro-1
host1(config-qos-profile)#ip queue traffic-class tc1 scheduler-profile sp1
statistics-profile statpro-1
8. Attach the QoS profile to the appropriate interface.
host1(config)#interface gigabitEthernet 1/0
host1(config-subif)#qos-profile qospro-1
host1(config-subif)#exit
9. (Optional) Display the event statistics.
host1#show egress-queue events interface gigabitEthernet 1/0
Related
Documentation
•
Configuring Statistic Profiles for QoS on page 39
•
Configuring a QoS Profile on page 126
•
Monitoring QoS Statistics for Rates and Events on page 42
•
committed-drop-threshold
•
conformed-drop-threshold
•
exceeded-drop-threshold
•
forwarding-rate-threshold
•
qos-profile
•
queue
•
rate-period
•
statistics-profile
Copyright © 2012, Juniper Networks, Inc.
41
JunosE 14.1.x Quality of Service Configuration Guide
Clearing QoS Statistics on the Egress Queue
To clear statistics from the egress queue for the specified interface and traffic class:
•
Issue the clear egress-queue command.
host1#clear egress-queue atm 3/0 explicit traffic-class class15
Use the explicit keyword to clear queues only on the specified interface and not queues
stacked above the interface.
Related
Documentation
•
Monitoring QoS Statistics for Rates and Events on page 42
•
clear egress-queue
Clearing QoS Statistics on the Fabric Queue
To clear statistics from the fabric queue for the specified traffic class and egress slot:
•
Issue the clear fabric-queue command.
host1#clear fabric-queue traffic-class class15 egress-slot 3
By default, statistics for all traffic classes and all slots are cleared.
Related
Documentation
•
Monitoring QoS Statistics for Rates and Events on page 42
•
clear fabric-queue
Monitoring QoS Statistics for Rates and Events
To monitor statistics for rates and events in the queue:
42
•
Monitoring Forwarding and Drop Events on the Egress Queue on page 317
•
Monitoring Forwarding and Drop Rates on the Egress Queue on page 318
•
Monitoring Queue Statistics for the Fabric on page 322
•
Monitoring the Configuration of Statistics Profiles on page 323
Copyright © 2012, Juniper Networks, Inc.
PART 3
Scheduling and Shaping Traffic
•
QoS Scheduler Hierarchy Overview on page 45
•
Configuring Rates and Weights in the Scheduler Hierarchy on page 51
•
Configuring Strict-Priority Scheduling on page 57
•
Shared Shaping Overview on page 67
•
Configuring Simple Shared Shaping of Traffic on page 75
•
Configuring Variables in the Simple Shared Shaping Algorithm on page 85
•
Configuring Compound Shared Shaping of Traffic on page 95
•
Configuring Implicit and Explicit Constituent Selection for Shaping on page 103
•
Monitoring a QoS Scheduler Hierarchy on page 117
Copyright © 2012, Juniper Networks, Inc.
43
JunosE 14.1.x Quality of Service Configuration Guide
44
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 6
QoS Scheduler Hierarchy Overview
This chapter provides information for configuring the QoS scheduler hierarchy using
scheduler profiles on the E Series router.
QoS topics are discussed in the following sections:
•
Scheduler Hierarchy Overview on page 45
•
Configuring a Scheduler Hierarchy on page 47
•
Configuring a Scheduler Profile for a Scheduler Node or Queue on page 48
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
Scheduler Hierarchy Overview
The egress line module scheduler is an HRR scheduler. Figure 8 on page 46 is an example
of a QoS scheduler’s hierarchy.
As shown in Figure 8 on page 46, the queues feeding a physical port are organized in a
hierarchy. At each level in the hierarchy, the scheduler uses shaping rates, hierarchical or
assured rates, and relative weights to determine the allocated bandwidth:
•
The scheduler selects a first-level node based on the allocated bandwidth.
•
The scheduler then selects a second-level node from the group of nodes that are
stacked above the selected first-level node. This selection is also based on the allocated
bandwidth.
•
Finally, the scheduler selects a queue from the group of queues stacked above the
second-level node.
Copyright © 2012, Juniper Networks, Inc.
45
JunosE 14.1.x Quality of Service Configuration Guide
Figure 8: QoS Scheduler Hierarchy
Shaping Rates, Assured Rates, and Relative Weights in a Scheduler Hierarchy
The scheduler supports hierarchical and static assured rates, relative weights, and shaping
rates on all three levels of the hierarchy: first-level node, second-level node, and queue.
The bandwidth delivered from a given node or queue is a function of the shaping rate
and either the assured rate or relative weight:
•
When the scheduler is not congested, the shaping rates determine which node or queue
can claim the bandwidth. The shaping rate specifies the maximum bandwidth to the
node or queue.
•
When the scheduler is congested, either the hierarchical or static assured rate or the
weight specifies the minimum bandwidth.
•
If the scheduler is configured to use a static assured rate and the assured rate is
other than none (the default), it is used to determine the allocated bandwidth, and
the weight setting is ignored. If the assured rate is zero, the weight setting is used to
determine the bandwidth.
The static assured rate specifies the desired bandwidth. This rate is guaranteed until
the bandwidth becomes oversubscribed.
•
If the scheduler is configured to use hierarchical assured rate, the scheduler
dynamically adjusts the amount of allocated bandwidth for service delivery based
on the sum of the assured rates of all child nodes and queues.
•
The assured rate also specifies that if bandwidth is over- or undersubscribed, all
adjustments are made in proportion to the original assured-rate specification.
For example, if Node A is configured to receive 40 Mbps and Node B receives 20
Mbps, any available bandwidth above the subscribed total of 60 Mbps would be
allocated to the two nodes at the same 2-to-1 ratio. Similarly, if the bandwidth were
oversubscribed and only 30 Mbps were available, this amount would also be allocated
to the two nodes at the 2-to-1 ratio, with Node A getting 20 Mbps and Node B getting
10 Mbps.
46
Copyright © 2012, Juniper Networks, Inc.
Chapter 6: QoS Scheduler Hierarchy Overview
NOTE: For E Series ASIC modules, strict priority is supported only for a
single first-level scheduler node.
When determining the shaping rate, the system includes all bytes in Layer 2
encapsulations. The packets that are included in the rate depend on the Layer 2 node
that is specified in the QoS profile. For example, the shaping rate for an Ethernet node
includes bytes from the Ethernet and VLAN encapsulations.
Related
Documentation
•
Static and Hierarchical Assured Rate Overview on page 53
•
Rate Shaping and Port Shaping Overview on page 51
•
Shared Shaping Overview on page 67
•
Configuring a Scheduler Hierarchy on page 47
Configuring a Scheduler Hierarchy
When you configure a scheduler hierarchy, you configure the scheduler profile and assign
attributes.
To configure a scheduler hierarchy:
1.
Configure a scheduler profile.
See “Configuring a Scheduler Profile for a Scheduler Node or Queue” on page 48.
2. (Optional) Configure attributes in the scheduler profile.
•
Configure a shaping rate for rate shaping or port shaping.
See “Configuring Rate Shaping for a Scheduler Node or Queue” on page 52 or
“Configuring Port Shaping” on page 52.
•
Configure an assured rate.
See “Configuring an Assured Rate for a Scheduler Node or Queue” on page 54.
•
Configure the HRR weight.
See “Configuring the HRR Weight for a Scheduler Node or Queue” on page 56.
•
Configure shared shaping.
See “Configuring Simple Shared Shaping” on page 77 and “Configuring Compound
Shared Shaping” on page 96.
•
Configure implicit and explicit constituent selection.
See “Configuring Implicit Constituents for Simple or Compound Shared Shaping”
on page 110 and “Configuring Explicit Constituents for Simple or Compound Shared
Shaping” on page 115.
3. Reference the scheduler profile in a QoS profile and apply to an interface.
Copyright © 2012, Juniper Networks, Inc.
47
JunosE 14.1.x Quality of Service Configuration Guide
See “Configuring a QoS Profile” on page 126 and “Attaching a QoS Profile to an
Interface” on page 128.
Related
Documentation
•
Scheduler Hierarchy Overview on page 45
•
Parameter Definition Attributes for QoS Administrators Overview on page 219
Configuring a Scheduler Profile for a Scheduler Node or Queue
To create a scheduler profile for a scheduler hierarchy:
•
Create a scheduler profile by assigning a name that represents the type of service and
enter Scheduler Profile Configuration mode.
host1(config)#scheduler-profile sp-1mbs
host1(config-scheduler-profile)#
The router supports up to 1000 scheduler profiles.
Related
Documentation
•
Configuring Rate Shaping for a Scheduler Node or Queue on page 52
•
Configuring Port Shaping on page 52
•
Configuring an Assured Rate for a Scheduler Node or Queue on page 54
•
Configuring the HRR Weight for a Scheduler Node or Queue on page 56
•
Configuring Simple Shared Shaping on page 77
•
Configuring Compound Shared Shaping on page 96
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile
Expressions are combinations of constants and operators. You can specify some scheduler
profile attributes using an expression, such as the shaping rate. All operations within
expressions are performed using 64 bit unsigned math, resulting is a 32 bit, signed integer
value.
Expressions consist of both operators and operand values. Operators are mathematical
functions, and operand values are the inputs for the mathematical function. Operand
values can be an integer. You specify an expression consisting of an operand, followed
by zero or more [ operator, operand ] pairs.
You can specify bandwidth as a percentage and burst in milliseconds or bytes by using
expressions with the shaping-rate, shared-shaping-rate, assured-rate, and weight
commands.
When calculating constant shaping rates, use the following formula to translate burst
values from bytes to milliseconds (ms):
Time (ms) = [ (burstValueBytes * 8 bits/byte )/ Rate (bps) ] * 1000 (ms/s)
48
Copyright © 2012, Juniper Networks, Inc.
Chapter 6: QoS Scheduler Hierarchy Overview
Using this formula, a 2 Mbps service with a 500 KB burst yields 4 Mb per 2 seconds or
2000 ms:
[ (500000 * 8) / 2000000 ] * 1000 = 2000 ms
The shaping rate is calculated when the QoS profile is attached based on the parameter
instance. For example:
host1(config)# scheduler-profile sp-1mbs
(config-scheduler-profile)# shaping-rate video-bandwidth % 100 burst 2000 milliseconds
When the shaping rate for video-bandwidth is 2 Mbps, the burst value is calculated using
the following formula:
Burst Value (bits) = Rate (bps) * [ Time (ms) / 1000 (ms/s) ]
The burst value in bits is calculated as:
Burst Value (bits) = 2000000 * [ 2000 / 1000 ] = 4000000
The burst value in bytes is calculated as:
Burst Value (bytes) = 4000000 / 8 = 500000
Related
Documentation
•
Scheduler Profiles and Parameter Expressions for QoS Administrators on page 225
•
Configuring Rate Shaping for a Scheduler Node or Queue on page 52
•
Configuring Port Shaping on page 52
•
Configuring an Assured Rate for a Scheduler Node or Queue on page 54
•
Configuring the HRR Weight for a Scheduler Node or Queue on page 56
•
Configuring Simple Shared Shaping on page 77
•
Configuring Compound Shared Shaping on page 96
Copyright © 2012, Juniper Networks, Inc.
49
JunosE 14.1.x Quality of Service Configuration Guide
50
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 7
Configuring Rates and Weights in the
Scheduler Hierarchy
This chapter provides information for configuring shaping rates, assured rates, and weights
in the QoS scheduler hierarchy using scheduler profiles.
QoS topics are discussed in the following sections:
•
Rate Shaping and Port Shaping Overview on page 51
•
Configuring Rate Shaping for a Scheduler Node or Queue on page 52
•
Configuring Port Shaping on page 52
•
Static and Hierarchical Assured Rate Overview on page 53
•
Configuring an Assured Rate for a Scheduler Node or Queue on page 54
•
Configuring the HRR Weight for a Scheduler Node or Queue on page 56
Rate Shaping and Port Shaping Overview
Rate shaping throttles the rate at which queues transmit packets. Rate shaping is TCP
friendly; that is, it buffers packets that are above the rate, rather than dropping them.
Port shaping enables you to shape the aggregate traffic through a port or channel to a
rate that is less than the line or port rate. With port shaping, you can configure scheduler
nodes at the port level, as shown in Figure 9 on page 51.
Figure 9: Port Shaping on an Ethernet Module
Copyright © 2012, Juniper Networks, Inc.
51
JunosE 14.1.x Quality of Service Configuration Guide
The per-port shaping feature provides the ability to shape the output of a port.
Related
Documentation
•
Configuring Rate Shaping for a Scheduler Node or Queue on page 52
•
Configuring Port Shaping on page 52
•
VSAs for Dynamic IP Interfaces Overview
Configuring Rate Shaping for a Scheduler Node or Queue
The router supports 64,000 rate shapers per line module. Shaping rates are multiples
of 1 Kbps.
To configure a shaping rate for a scheduler node or queue:
1.
Create a scheduler profile.
host1(config)#scheduler-profile video
host1(config-scheduler-profile)#
2. Specify a shaping rate in the scheduler profile.
host1(config-scheduler-profile)#shaping-rate 128000 burst 32767 milliseconds
host1(config-scheduler-profile)#shaping-rate 5000 x 90
The range for the shaping rate is 1–1000000000 bps/Kbps; the default is the minimum
shaping rate (1 Kbps). You can set the shaping rate to vary from 1 bps to 1000 Gbps
(which is denoted by entering 1000000000 Kbps in the CLI for the shaping-rate
command). The router rounds the rate to the next higher 8 Kbps.
Use the operator and operandValue variables to configure a shaping rate with an
expression.
You can use the bps or kbps keywords to specify the unit of the shaping rate. By
default, the shaping rate is configured in bps.
Use the burst keyword to specify the catch-up number associated with the shaper;
the range is 0–522240. Specifying 0 enables the router to select an applicable default
value.
Use the milliseconds or bytes keywords to specify the unit of the burst size.
Related
Documentation
•
Rate Shaping and Port Shaping Overview on page 51
•
Configuring a Scheduler Profile for a Scheduler Node or Queue on page 48
•
scheduler-profile
•
shaping-rate
Configuring Port Shaping
To configure port-shaping:
1.
52
Configure the scheduler profile and the shaping rate.
Copyright © 2012, Juniper Networks, Inc.
Chapter 7: Configuring Rates and Weights in the Scheduler Hierarchy
host1(config)#scheduler-profile 80mbps
host1(config-scheduler-profile)#shaping-rate 80000000
host1(config-scheduler-profile)#exit
2. Configure a QoS profile, specify the node command, and reference the
scheduler-profile.
host1(config)#qos-profile 80mbps
host1(config-qos-profile)#ethernet node scheduler-profile 80mbps
host1(config-qos-profile)#exit
3. Attach the QoS profile to the port.
host1(config)#interface fastethernet 2/0
host1(config-if)#qos-profile 80mbps
The sample configuration shapes Fast Ethernet port 2/0 to a rate no higher than 80 Mbps.
Using the following configuration, you can shape the corresponding HDLC channel down
to 20 Mbps:
host1(config)#scheduler-profile 20mbps
host1(config-scheduler-profile)#shaping-rate 20000000
host1(config-scheduler-profile)#exit
host1(config)#qos-profile 20mbps
host1(config-qos-profile)#serial node scheduler-profile 20mbps
host1(config-qos-profile)#exit
host1(config)#interface serial 2/0:1/1
host1(config-if)#qos-profile 20mbps
Related
Documentation
•
Rate Shaping and Port Shaping Overview on page 51
•
Configuring a Scheduler Profile for a Scheduler Node or Queue on page 48
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
node
•
qos-profile
•
scheduler-profile
•
shaping-rate
Static and Hierarchical Assured Rate Overview
You can configure the effective weight of the scheduler node or queue by configuring a
static assured rate or a hierarchical assured rate (HAR). The JunosE hierarchical assured
rate (HAR) feature provides a more powerful and efficient method of configuring assured
rates than static assured rates.
When you use static assured rates, a queue is guaranteed to receive its assured rate only
when its parent node is configured with an assured rate that equals the sum of all its
child assured rates. Therefore, to ensure that a queue receives its specified assured rate,
you must frequently recalculate the assured rates on all parent nodes in the queue’s
hierarchy. This recalculation is necessary because of the number of scheduler nodes and
Copyright © 2012, Juniper Networks, Inc.
53
JunosE 14.1.x Quality of Service Configuration Guide
queues that may be dynamically created or deleted through applications such as
bandwidth-on-demand. Eventually, this complicated manual recalculation process
becomes unreasonable and virtually impossible.
HAR replaces the manual recalculation process by directing the router to dynamically
calculate the assured rate for a scheduler node based on the sum of the assured rates
of all its child nodes and queues. For example, you might use HAR to increase the effective
weight of an ATM-VC scheduler node when a video queue is created, and to later restore
the effective rate of the node when the video queue is deleted.
HAR is applicable only to level 1 and level 2 scheduler nodes, and is not applicable to
queues or ports. When you configure HAR, the changes take place immediately. When
you disable HAR, the scheduler node’s previous weight is restored.
Figure 10 on page 54 shows an application of HAR for VC nodes. In the example, VCs,
which are configured for HAR, are stacked over virtual path (VP) nodes. The VP nodes
are in turn stacked over an OC-3 ATM port. Each VC has a best-effort data queue, which
currently has an assured rate of 20 Kbps. The VCs share equal portions of their parent
VP's bandwidth. However, when the video queue is added to VC2, HAR enables VC2's
share of the VP bandwidth to increase in proportion to the 1-Mbps video queue that was
created. The bandwidth of sibling VC nodes, which have only a data queue, is decreased
in equal proportions.
Figure 10: Hierarchical Assured Rate
Related
Documentation
•
Configuring an Assured Rate for a Scheduler Node or Queue on page 54
•
Configuring the HRR Weight for a Scheduler Node or Queue on page 56
Configuring an Assured Rate for a Scheduler Node or Queue
You can configure the effective weight of the scheduler node or queue by configuring a
static assured rate or a hierarchical assured rate (HAR). HAR dynamically adjusts the
available bandwidth for a scheduler node based on the creation and deletion of other
scheduler nodes.
54
Copyright © 2012, Juniper Networks, Inc.
Chapter 7: Configuring Rates and Weights in the Scheduler Hierarchy
By default, the HRR weight is configured for the scheduler profile. If the assured rate
setting is other than none (the default), then the assured rate is used instead of the HRR
weight setting for the scheduler node or queue.
Tasks to configure an assured rate are:
•
Configuring a Static Assured Rate on page 55
•
Configuring a Hierarchical Assured Rate on page 55
•
Changing the Assured Rate to an HRR Weight on page 55
Configuring a Static Assured Rate
To configure a static assured rate:
1.
Create a scheduler profile.
host1(config)#scheduler-profile static
host1(config-scheduler-profile)#
2. Specify a numeric rate with the assured-rate command in the scheduler profile.
host1(config-scheduler-profile)#assured-rate 56000
host1(config-scheduler-profile)#assured-rate 50000 - 31000
You can specify the static assured rate value in bits per second or kilobits per second.
The range for the value is 25 Kbps to 10 Gbps. By default, no assured rate is configured.
NOTE: You can configure an assured rate of more than 1 Gbps only in
kilobits per second by using the kbps keyword.
Use the operator and operandValue variables to configure an assured rate with an
expression.
Configuring a Hierarchical Assured Rate
To specify that the HAR is used for scheduler nodes (HAR is not used for queues or ports):
1.
Create a scheduler profile.
host1(config)#scheduler-profile har
host1(config-scheduler-profile)#
2. Specify the hierarchical keyword with the assured-rate command in the scheduler
profile.
host1(config-scheduler-profile)#assured-rate hierarchical
Changing the Assured Rate to an HRR Weight
To change an assured rate to an HRR weight:
1.
Create a scheduler profile.
host1(config)#scheduler-profile static
host1(config-scheduler-profile)#
Copyright © 2012, Juniper Networks, Inc.
55
JunosE 14.1.x Quality of Service Configuration Guide
2. Delete the configured assured rate.
host1(config-scheduler-profile)#no assured-rate
The assured rate in the scheduler profile reverts to using the HRR weight specification.
Related
Documentation
•
Static and Hierarchical Assured Rate Overview on page 53
•
Configuring a Scheduler Profile for a Scheduler Node or Queue on page 48
•
Configuring the HRR Weight for a Scheduler Node or Queue on page 56
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
assured-rate
•
scheduler-profile
Configuring the HRR Weight for a Scheduler Node or Queue
By default, the HRR weight is configured for the scheduler profile. You can set a specific
HRR weight of the scheduler node or queue. The weight value is used when no assured
rate is set.
To configure a static weight:
1.
Create a scheduler profile.
host1(config)#scheduler-profile relative
host1(config-scheduler-profile)#
2. Specify the weight value.
host1(config-scheduler-profile)#weight 10
host1(config-scheduler-profile)#weight 800 - 200
The weight value is in the range 0–4080. The default weight is 8. Weight 0 (zero) is
a special weight that is used for relative strict-priority scheduling.
Use the operator and operandValue variables to configure a weight with an expression.
Related
Documentation
56
•
Static and Hierarchical Assured Rate Overview on page 53
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
Relative Strict-Priority Scheduling Overview on page 58
•
scheduler-profile
•
weight
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 8
Configuring Strict-Priority Scheduling
This chapter provides information for configuring strict-priority scheduling.
QoS topics are discussed in the following sections:
•
Strict-Priority and Relative Strict-Priority Scheduling Overview on page 57
•
Comparison of True Strict Priority with Relative Strict Priority Scheduling on page 59
•
Configuring Strict-Priority Scheduling on page 63
•
Configuring Relative Strict-Priority Scheduling for Aggregate Shaping Rates on page 65
Strict-Priority and Relative Strict-Priority Scheduling Overview
You can configure one or more strict-priority queues per interface. Strict-priority scheduling
is implemented with a special strict-priority scheduler node that is stacked directly above
the port. Queues stacked on top of the strict-priority scheduler node always get bandwidth
before other queues.
You can configure only one node at the first scheduler level as strict priority. If any node
or queue above the strict-priority node has packets, it is scheduled next. If multiple queues
above the strict-priority node have packets, the HRR algorithm selects which strict-priority
queue is scheduled next.
Figure 11 on page 58 illustrates an example of a QoS scheduler’s hierarchy.
Copyright © 2012, Juniper Networks, Inc.
57
JunosE 14.1.x Quality of Service Configuration Guide
Figure 11: Sample Strict-Priority Scheduling Hierarchy
One strict priority traffic-class group is called the auto-strict-priority group. The scheduler
nodes and queues in the auto-strict-priority group receive strict-priority scheduling. If
multiple queues above the strict-priority node have packets, the HRR algorithm selects
which strict-priority queue is scheduled next.
NOTE: If you configured traffic shaping through traffic shape profiles in JunosE
releases before Release 4.0, traffic shaping is replaced with the rate-shaping
feature, which is configured when you configure a scheduler profile.
Relative Strict-Priority Scheduling Overview
Relative strict-priority scheduling provides strict-priority scheduling within a shaped
aggregate rate. For example, it allows you to provide 1 Mbps of aggregate bandwidth to
a subscriber, with up to 500 Kbps of the bandwidth for low-latency traffic. If there is no
strict-priority traffic, the low-latency traffic can use up to the full aggregate rate of 1
Mbps.
Relative strict priority differs from true strict priority in that it can implement the aggregate
shaping rate for both strict and nonstrict traffic. With true strict priority, you can shape
the nonstrict or the strict traffic separately, but you cannot shape the aggregate to a
single rate.
The best application of relative strict priority is on Ethernet, where you can shape the
aggregate for each VLAN to a specified rate, and provision a strict and nonstrict queue
for each VLAN above the shaped VLAN node.
To use relative strict priority, you configure strict-priority queues above the VC or VLAN
scheduler node, thereby providing for strict-priority scheduling of the queues within the
VC or VLAN. You configure relative strict priority without using QoS traffic-class groups,
which causes strict-priority queues to appear in the same scheduler hierarchy as the
nonstrict queues.
58
Copyright © 2012, Juniper Networks, Inc.
Chapter 8: Configuring Strict-Priority Scheduling
Relative strict priority provides low latency only if you undersubscribe the port by shaping
all VCs on the port so that the sum of the shaping rates is less than the port rate. The
port will not become congested, and the latency caused by the round-robin behavior of
both the HRR and cell schedulers is nominal. In these undersubscribed conditions, the
latency of a strict-priority queue within each VC is calculated as if the VC were draining
onto a wire with bandwidth equal to the shaped rate.
Relative strict priority is carried out in the HRR scheduler on E Series ASIC line modules.
Related
Documentation
•
Comparison of True Strict Priority with Relative Strict Priority Scheduling on page 59
•
Configuring Strict-Priority Scheduling on page 63
•
Configuring Relative Strict-Priority Scheduling for Aggregate Shaping Rates on page 65
Comparison of True Strict Priority with Relative Strict Priority Scheduling
This section explains how the HRR and SAR schedulers handle true strict-priority and
relative strict-priority configurations.
Schedulers and True Strict Priority
In the strict-priority configuration in Figure 12 on page 59, the queues stacked above the
single strict priority scheduler node make up a round-robin separate from the nonstrict
queues. All strict queues are drained to completion first, and any residual bandwidth is
allocated to the nonstrict round-robin.
Figure 12: True Strict-Priority Configuration
Copyright © 2012, Juniper Networks, Inc.
59
JunosE 14.1.x Quality of Service Configuration Guide
This configuration provides low latency for the strict-priority queues, irrespective of the
state of the nonstrict queues. The worst-case latency for a strict packet caused by a
nonstrict packet is the propagation delay of a single large packet at the port rate. For a
1500 byte frame at OC3 rate, that latency is less than 100 microseconds.
Because the strict and nonstrict packets for a VC are scheduled in separate round robins,
the scheduler cannot enforce an aggregate rate for both of them.
Schedulers and Relative Strict Priority
In the relative strict-priority configuration in Figure 13 on page 60, the scheduler provides
relative strict-priority scheduling relative to the VC. If the port is not oversubscribed, the
VC round robin does not cause significant latency.
Figure 13: Relative Strict-Priority Configuration
This configuration provides a latency bound for the relative strict-priority queues. The
worst-case latency caused by a nonstrict packet is the propagation delay of a single
large packet at the VC rate. For a 1500 byte frame at a 2 Mbps rate, that delay is about
6 milliseconds.
This configuration provides for shaping the aggregate of nonstrict and relative strict
packets to a single rate, and it is consistent with the traditional ATM model. It does not
scale as well as true strict priority, because the nonstrict and relative strict traffic together
must not oversubscribe the port rate.
Relative Strict Priority on ATM Modules
You can use relative strict priority on any type of E Series line module; however, on ATM
line modules you have an alternative. On ATM line modules you can configure true
strict-priority queues in the HRR scheduler and shape the aggregate for the VC in the
SAR scheduler. VC backpressure affects only the nonstrict traffic for the VC. For this type
60
Copyright © 2012, Juniper Networks, Inc.
Chapter 8: Configuring Strict-Priority Scheduling
of configuration, you should shape the relative strict traffic for each VC in the HRR
scheduler to a rate that is less than the aggregate VC rate. This shaping prevents the VC
queue in the SAR scheduler from being congested with strict-priority traffic.
The major difference between relative and true strict priority on ATM line modules is that
relative strict priority shapes the aggregate for the VC to a pre–cell tax rate, whereas true
strict priority shapes the aggregate for the VC to a post–cell tax rate. For example, shaping
the VC to 1 Mbps in the HRR scheduler allows 1 Mbps of frame data, but cell tax adds
anywhere from 100 Kbps to 1 Mbps additional bandwidth, depending on packet size.
Shaping the VC to 1 Mbps in the SAR scheduler allows just 1 Mbps of cell bytes regardless
of packet size.
Oversubscribing ATM Ports
You cannot oversubscribe ATM ports and still achieve low latency with relative
strict-priority scheduling. There are several ways to ensure that ports are not
oversubscribed. The most common is to use a per-VC scheduler by configuring the HRR
scheduler with either ATM VP or VC node shaping (using the atm-vp node or atm-vc
node commands), and setting the sum of the shaping rates less than the port rate. In
these scenarios, the cell residency in the SAR scheduler is minimal, and cell scheduling
does not interfere with relative strict priority.
Minimizing Latency on the SAR Scheduler
There are two methods you can use to control latency on the SAR scheduler. In the first
method, you set the ATM QoS port mode to low-latency mode. In low-latency mode,
the HRR scheduler controls scheduling, buffering in the SAR scheduler is limited, and
latency caused by the SAR scheduler is minimized.
You can also use the default no qos-mode-port mode of SAR operation to minimize the
latency induced by the SAR. In this method, you set qos shaping-mode cell and shape
an OC-3 ATM port to 149 Mbps, or an OC-12 ATM port to 600 Mbps. By throttling the rate
at which the HRR scheduler delivers packets to the SAR, you bound SAR buffering and
latency. This approach retains the flexibility to configure different ATM QoS in the SAR,
including shaped VP tunnels, UBR+PCR, nrtVBR, and CBR services.
To set the SAR mode, use the qos-mode-port command. For more information about
operational modes on ATM interfaces, see “ATM Integrated Scheduler Overview” on
page 153.
NOTE: Controlling latency is not normally required. If you undersubscribe the
port rate in the HRR scheduler, you can obtain latency bounds without
modifying the SAR mode of operation.
HRR Scheduler Behavior and Strict-Priority Scheduling
The HRR scheduler does not offer native strict-priority scheduling above the first scheduler
level in the hardware; however, you can configure very large weights in the round robin
in the HRR scheduler to obtain approximate strict-priority scheduling. Note that under
conditions of low VC bandwidth and large packet sizes, latency and jitter increase because
Copyright © 2012, Juniper Networks, Inc.
61
JunosE 14.1.x Quality of Service Configuration Guide
of the inherent propagation delay of large packets over a small shaping rate. The following
sections describe additional configuration steps that will ensure that no more than a
single nonstrict packet can precede a strict-priority packet on the VC.
Zero-Weight Queues
To reduce latency and jitter, you can configure the relative strict-priority queue with a
weight of 0 (zero), which gives the queue a weight of 4080. When a packet arrives at a
zero-weighted queue, the queue remains in the active WRR until it is exhausted, whereas
competing queues must leave the active WRR because their weight credits are exhausted.
To completely drain the queue, configure the maximum burst size. The zero-weighted
queue is eventually alone in the active round robin and is effectively drained at strict
priority.
To configure more than one relative strict queue or node, simply configure a maximum
weight, and the two relative strict queues or nodes will share bandwidth fairly. You can
shape the nonstrict queue, as described in the next section, to keep latency bounded.
Also, configure only a few nonstrict nodes or queues to prevent additional latency and
jitter of the relative strict-priority traffic when the nodes or queues are in the round robin
and a packet arrives in the zero-weighted queue. The number of nonstrict frames that
precede a relative strict frame equals the number of nonzero weighted queues among
the sibling scheduler nodes.
Nonstrict queues must still exhaust their weight credits before they leave the active round
robin. The result is that occasionally more than one nonstrict frame may precede a relative
strict frame, causing more jitter than may be acceptable. You can eliminate this source
of latency by shaping the nonstrict queue to the aggregate rate with a burst size of 1.
Setting the Burst Size in a Shaping Rate
The burst value in a shaping rate determines the number of rate credits that can accrue
when the queue or scheduler node is held in the inactive round robin. When the queue is
back on the active list, the accrued credits allow the queue or node to catch up to the
configured rate, up to the burst value.
Normally, the burst size is several packet lengths to allow a queue deprived of bandwidth
because of congestion to catch up to its rate. Larger burst sizes allow more bursting to
allow the queue to attain its shaped rate under bursty congestion scenarios.
Special Shaping Rate for Nonstrict Queues
To remove additional jitter, you can configure the nonstrict queue with a special shaping
rate that causes the hardware to temporarily eject the queue from the active round robin
whenever it sends a frame. The result is that at most one nonstrict frame can precede a
relative strict-priority frame. The special shaping rate is the same rate as the aggregate
rate, but with a configured burst size of 1.
You can still configure a shaping rate for the zero-weighted queue or node. This is useful
for limiting starvation of the nonstrict traffic in the aggregate.
In Figure 14 on page 63, the VC node is shaped in the HRR scheduler to 1 Mbps to limit
the aggregate traffic for the subscriber. The relative strict traffic is shaped to 500 Kbps.
62
Copyright © 2012, Juniper Networks, Inc.
Chapter 8: Configuring Strict-Priority Scheduling
This shaping limits relative strict traffic to 500 Kbps, and prevents the relative strict-priority
traffic from starving out the nonstrict traffic.
The third shaper, on the nonstrict queue, is subtle. The rate is 1 Mbps, which allows the
nonstrict traffic to consume up to the full aggregate rate of the VC. But the burst size is
1, which causes the nonstrict queue to always yield to the relative strict-priority queue
after sending a packet. This burst size limits the number of nonstrict packets that can
precede a relative strict-priority packet to the minimum, one packet.
Figure 14: Tuning Latency on Strict-Priority Queues
Related
Documentation
•
Strict-Priority and Relative Strict-Priority Scheduling Overview on page 57
•
Configuring Strict-Priority Scheduling on page 63
Configuring Strict-Priority Scheduling
To configure strict-priority scheduling:
1.
Configure the traffic classes.
host1(config)#traffic-class Low-loss-1
host1(config-traffic-class)#exit
host1(config)#traffic-class Low-latency-1
host1(config-traffic-class)#exit
host1(config)#traffic-class Low-latency-2
host1(config-traffic-class)#exit
2. Configure the auto-strict-priority traffic-class group, and add the traffic classes that
must receive strict-priority scheduling to the group.
host1(config)#traffic-class-group Strict-priority auto-strict-priority
host1(config-traffic-class-group)#traffic-class Low-latency-1
host1(config-traffic-class-group)#traffic-class Low-latency-2
host1(config-traffic-class-group)#exit
3. Create a scheduler profile for strict-priority traffic and configure the shaping rate.
host1(config)#scheduler-profile strictPriorityBandwidth
host1(config-scheduler-profile)#shaping-rate 20000000
host1(config-scheduler-profile)#exit
4. Configure a QoS profile.
Copyright © 2012, Juniper Networks, Inc.
63
JunosE 14.1.x Quality of Service Configuration Guide
host1(config)#qos-profile Example-qos-profile
host1(config-qos-profile)#atm group default
host1(config-qos-profile)#atm group Strict-priority scheduler-profile
strictPriorityBandwidth
host1(config-qos-profile)#atm-vc node group default
host1(config-qos-profile)#atm-vc node group Strict-priority
host1(config-qos-profile)#atm-vc queue traffic-class best-effort
host1(config-qos-profile)#atm-vc queue traffic-class Low-loss-1
host1(config-qos-profile)#atm-vc queue traffic-class Low-latency-1
host1(config-qos-profile)#atm-vc queue traffic-class Low-latency-2
host1(config-qos-profile)#exit
5. Attach the QoS profile to an interface.
host1(config)#interface atm 2/0
host1(config-if)#qos-profile Example-qos-profile
host1(config-if)#exit
host1(config)#
This configuration creates the hierarchy shown in Figure 15 on page 64.
Figure 15: Sample Strict-Priority Scheduling Hierarchy
Related
Documentation
64
•
Strict-Priority and Relative Strict-Priority Scheduling Overview on page 57
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
group
•
node
•
qos-profile
•
queue
•
scheduler-profile
•
shaping-rate
•
strict-priority
•
traffic-class
•
traffic-class-group
Copyright © 2012, Juniper Networks, Inc.
Chapter 8: Configuring Strict-Priority Scheduling
Configuring Relative Strict-Priority Scheduling for Aggregate Shaping Rates
To configure relative strict priority scheduling for aggregate shaping rates:
1.
Create a scheduler profile for the strict-priority queue.
host1(config)# scheduler-profile relativeStrict
host1(config-scheduler-profile)# shaping-rate 500000
host1(config-scheduler-profile)# weight 0
host1(config-scheduler-profile)# exit
Configuring the weight of 0 reduces latency and jitter.
2. Create a scheduler profile for the nonstrict best-effort queue.
host1(config)# scheduler-profile be
host1(config-scheduler-profile)# shaping-rate 1000000 burst 1
host1(config-scheduler-profile)# weight 8
host1(config-scheduler-profile)# exit
TIP: If you need to impose a shaping rate on the nonstrict queues to meet
a functional requirement, you can specify a rate less than the aggregate
rate. The key is that the burst size must be one, or small. The burst size
determines the maximum-sized packet that can squeeze in front of a
relative strict-priority packet in the round robin.
3. Create a scheduler profile for the aggregate bandwidth.
host1(config)#scheduler-profile vcAggregate
host1(config-scheduler-profile)#shaping-rate 1000000
host1(config-scheduler-profile)#exit
4. Create a QoS profile, configure node shaping for each queue, and add each of the
queues to the QoS profile.
host1(config)# qos-profile relative-strict-aggregate
host1(config-qos-profile)# atm-vc node scheduler-profile vcAggregate
host1(config-qos-profile)# atm-vc queue traffic-class best-effort
scheduler-profile be
host1(config-qos-profile)# atm-vc queue traffic-class voice scheduler-profile
relativeStrict
host1(config-qos-profile)# exit
host1(config)#
This configuration creates the hierarchy shown in Figure 16 on page 66.
Copyright © 2012, Juniper Networks, Inc.
65
JunosE 14.1.x Quality of Service Configuration Guide
Figure 16: Sample Relative Strict-Priority Scheduler Hierarchy
Related
Documentation
66
•
Strict-Priority and Relative Strict-Priority Scheduling Overview on page 57
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
node
•
qos-profile
•
scheduler-profile
•
shaping-rate
•
weight
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 9
Shared Shaping Overview
This chapter provides information for configuring shared shaping of traffic on the E Series
router.
QoS topics are discussed in the following sections:
•
Shared Shaping Overview on page 67
•
Shared Shaper Terms on page 68
•
How Shared Shaping Works on page 69
•
Guidelines for Configuring Simple and Compound Shared Shaping on page 70
Shared Shaping Overview
In the JunosE Software QoS implementation, you configure a traffic-class group to create
a separate scheduler hierarchy. Traffic classes in a traffic-class group are queued through
a scheduler hierarchy dedicated to that group. QoS supports up to five user-configurable,
named traffic-class groups. Traffic classes that do not belong to any named group belong
to the default traffic-class group. With the factory default configuration, the best-effort
traffic class is in the default traffic-class group.
Shared shaping is a mechanism for shaping a logical interface's aggregate traffic to a
rate when the traffic for that logical interface is queued through more than one scheduler
hierarchy. For example, a service provider can configure QoS for voice, video, and data
traffic on a single ATM VC. The video traffic and the voice traffic are placed in separate
scheduler hierarchies from the data traffic to provision the low latency that is required
for voice traffic and the higher bandwidth that is required for video traffic.
In this scenario, the data traffic needs to be dynamically shaped so that its rate matches
the bandwidth available after the voice and video bandwidth requirements are met.
When less voice and video traffic is being forwarded, then the data traffic can expand to
fill the line rate.
When determining a shared shaping rate, the system includes all bytes in Layer 2
encapsulations. The packets that are included in the rate depend on the node specified.
For example, rates for an Ethernet node include the Ethernet and VLAN encapsulations.
Copyright © 2012, Juniper Networks, Inc.
67
JunosE 14.1.x Quality of Service Configuration Guide
Shared shaping is typically enabled on the access-facing line module, but you can enable
the feature for any interface type recognized by QoS, on any line module and any E Series
Broadband Services Routers.
Related
Documentation
•
Simple Shared Shaping Overview on page 75
•
Compound Shared Shaping Overview on page 95
Shared Shaper Terms
Table 6 on page 68 defines terms used in this discussion of shared shaping.
Table 6: Shared Shaper Terminology Used in This Chapter
Related
Documentation
68
•
Term
Description
Constituent
Scheduler node or queue associated with a logical interface.
A shared shaper is configured for a logical interface; all queues
and scheduler nodes associated with that logical interface are
constituents of the shared shaper.
Active constituent
Constituent that is monitored or controlled by the shared
shaper mechanism.
Inactive constituent
Constituent that is ignored by the shared shaper mechanism.
Inactive constituents can be indirectly controlled; for example,
queues stacked above a node that is an active constituent.
Shared Shaping
Mechanism for shaping a logical interface's aggregate traffic
to a rate when the traffic for that logical interface is queued
through more than one scheduler hierarchy.
Implicit shared shaper
Shared shaper where the system automatically selects the
active constituents. The system selects scheduler nodes as
active; queues above nodes remain inactive.
Explicit shared shaper
Shared shaper where you select the active constituents by
issuing the shared-shaping-constituent command in a
scheduler profile.
Compound shared shaping
Hardware-assisted mechanism that controls bandwidth for
all active constituents.
Simple shared shaping
Software-assisted mechanism that measures the rate of active
constituents, and shapes the rate of the best-effort node or
queue to the residual shared-shaping rate.
QoS Terms on page 5
Copyright © 2012, Juniper Networks, Inc.
Chapter 9: Shared Shaping Overview
How Shared Shaping Works
You can configure the shared-shaping rate on either the best-effort scheduler node or
the best-effort queue for the logical interface. The router also locates the queues in
named traffic-class groups that are associated with the logical interface and shapes
that set of queues to the shared rate. The shared-shaping rate is the total bandwidth for
the logical interface.
A typical configuration places the low-latency voice traffic in the auto-strict-priority
traffic-class group and video traffic in a separate extended traffic-class group. The data
traffic is usually queued in the best-effort traffic class in the default traffic-class group.
The constraints of both the legacy hierarchical scheduler and the shared shaper affect
the bandwidth of scheduler objects. The shared shaper limits the bandwidth even when
the port or VP is not congested. When the port or VP is congested, the legacy scheduler
is dominant. For example, when a heavily oversubscribed VP becomes congested, the
legacy hierarchical scheduler may limit the VP bandwidth to a lower rate, so that shared
shaping of excess bandwidth does not apply.
When determining the shared-shaping rate, the system includes all bytes in Layer 2
encapsulations. The packets that are included in the rate depend on the Layer 2 node
that is specified in the QoS profile. For example, the shaping rate for an Ethernet node
includes bytes from the Ethernet and VLAN encapsulations.
Two types of shared shaping are available, depending on your hardware. Simple shared
shaping can shape the best-effort node or queue associated with a logical interface to
a shared rate. Compound shared shaping is a hardware-assisted mode that controls
bandwidth for all scheduler objects associated with the subscriber logical interface.
Table 7 on page 69 compares the two types of shared shaping that are available.
Table 7: Comparison of Simple and Compound Shared Shaping
Shared Shaper
Advantages
Simple
•
Simple shared shaping is useful for triple-play configurations,
because it manages voice and video queues in addition to
data queues so that the shared rate cannot be exceeded.
•
You can use line modules that have any ASIC hardware.
•
Compound shared shaping is useful for triple-play
configurations, because it manages voice and video queues
in addition to data queues so that the shared rate cannot be
exceeded.
•
Compound shared shaping responds to changes in traffic
rates more rapidly than simple shared shaping, in the order
of milliseconds.
•
You can use line modules with the EFA2 ASIC or the TFA ASIC.
Compound
Copyright © 2012, Juniper Networks, Inc.
69
JunosE 14.1.x Quality of Service Configuration Guide
Active Constituents for Shared Shaping
When you specify a shared-shaping rate on a best-effort node or queue, QoS shapes the
aggregate of traffic for the logical interface that owns the best-effort queue or node.
QoS locates the queues and nodes owned by that logical interface and applies the shared
shaper to them. The nodes and queues owned by the interface are called the constituents
of the shared-shaper instance. For example, if the logical interface type is VC, the
constituents are all VC objects: VC nodes and VC queues. A shared-shaping rule in a
profile can apply to up to eight constituents.
Active constituents are actively controlled by the shared-shaper mechanism. Inactive
constituents are indirectly controlled. For example, when ATM VC queues are stacked
above an ATM VC node, the ATM VC node might be an active constituent. In this case,
the queues stacked above the node are shaped to the shared rate indirectly by the
hierarchical scheduler. If the ATM VC queues are the active constituents, then the ATM
VC node is inactive.
Related
Documentation
•
Simple Shared Shaping Overview on page 75
•
Compound Shared Shaping Overview on page 95
•
Constituent Selection for Shared Shaping Overview on page 103
Guidelines for Configuring Simple and Compound Shared Shaping
When you configure shared shaping, be sure to consider the following behaviors.
Shared Shaping and Individual Shaping
You can use both the shared-shaping-rate command and the shaping-rate command
in a single scheduler profile. For example, you can shape the best-effort node or queue
to accept less than the remainder of the shared-shaping rate as in the following
commands:
host1(config)#scheduler-profile shared-1mbps
host1(config-scheduler-profile)#shared-shaping-rate 1000000 simple
host1(config-scheduler-profile)#shaping-rate 500000
If you configure a shaping rate higher than the shared-shaping rate, the rate never exceeds
the shared rate, so the router issues the following error message:
% shaping-rate cannot be greater than the shared-shaping-rate
Although you can configure a shared-shaping rate and a shaping rate in the same
scheduler profile, the shaping rate must not exceed the shared-shaping rate. A scheduler
profile that includes a shaping rate must not contain a shared-shaping rate that specifies
a constituent as weighted.
Shared Shaping and Best-Effort Queues and Nodes
A scheduler profile that includes a shared-shaping rate cannot be associated with a
queue other than the best-effort queue or a node other than the best-effort node.
70
Copyright © 2012, Juniper Networks, Inc.
Chapter 9: Shared Shaping Overview
A scheduler profile that is referenced by nodes or queues that are not best effort cannot
be modified to include a shared-shaping rate command. A scheduler profile that includes
a shared-shaping rate command cannot be associated with a group node.
ATM and Shared Shaping
When you configure shared shaping with ATM, be sure to consider the following behaviors.
Sharing Bandwidth with the SAR
On ATM line modules, providers can use the SAR to implement bandwidth sharing for
VCs. When the SAR is operating in default mode (that is, when the no qos-mode-port
command is in effect), the SAR backpressures the VC node in the default traffic-class
group, but traffic that is queued through a named traffic-class group is unaffected by VC
backpressure. In the absence of voice and video traffic, the VC runs data traffic at the
shared rate. When voice and video traffic start streaming, the SAR backpressures just
the VC node in the default traffic-class group, thus sharing the bandwidth.
However, providers need to configure shared shaping on more than just ATM VCs. The
SAR cannot support shared shaping per virtual path on ATM, and there is no SAR on
Ethernet line modules. The shared shaper implemented in the HRR scheduler can support
shared shaping for all these different configurations.
Shared Shaping and Low-CDV Mode
JunosE releases before Release 6.0.0 implemented a carve-out scheduling model. If you
configured multiple scheduler nodes for a VC or VP, the router added together the shaping
rates for each scheduler node and shaped the corresponding VC or VP tunnel in the SAR
to the sum of the rates. This implementation forced a strict-priority carve-out model for
a logical interface, because the best-effort traffic cannot share unused bandwidth from
the strict-priority traffic-class group.
Beginning with JunosE Release 6.0.0, the router synchronizes the SAR rate for a VC or
VP to the shared-shaping rate for the best-effort scheduler node for the VC or VP, so
that the default behavior for low-CDV mode becomes shared shaping. Applying shared
shaping to the best-effort queue does not synchronize the rate for the corresponding VC
or VP in the SAR.
JunosE releases before Release 6.1.0 had a different behavior than the current shared
shaping model when multiple traffic-class groups were configured in low-CDV mode. In
those releases, the shaping rates of the VC nodes in each group were added together,
and the corresponding VC queue in the SAR was shaped to the sum. The same algorithm
was used for shaping VP tunnels in the SAR—the shaping rates of all VP nodes in the
hierarchical scheduler were added together to shape the VP tunnel in the SAR. This
behavior implements a carve-out model for scheduling into VPs and VCs and generally
is not as desirable as the shared shaping model supported in JunosE Release 6.1.0 and
later releases.
Beginning with JunosE Release 6.1.0, low-CDV mode causes SAR shaping of VCs and
VPs only when you specify the shared-shaping-rate command for the best-effort VC or
VP node in the HRR scheduler.
Copyright © 2012, Juniper Networks, Inc.
71
JunosE 14.1.x Quality of Service Configuration Guide
For more information about configuring low-CDV mode, see “ATM Integrated Scheduler
Overview” on page 153.
Logical Interface Traffic Carried in Other Queues
A shared shaper affects only the queues and nodes for a single interface. Queues
associated with other interfaces are not constrained by the shared shaper. This behavior
should cause no problems if you configure all queues for a single logical interface type.
However, if you configure queues for multiple interface types, you may have problems
with shared shaping.
For example, a shared shaper for VC 1 does not directly constrain the rate for a queue for
IP 1 unless that queue is stacked above a node for VC 1 in the scheduler hierarchy. If the
IP queue is stacked above a node for VC 1, then the shared shaper indirectly controls the
queue bandwidth through the VC 1 node. But if the IP 1 queue is not stacked above a VC
1 node, it is immune to the shared shaper, and the total bandwidth for VC 1 can exceed
the shared rate.
As another example, if a shared queue exists for VP 1 where VC 1 is contained within VP
1, the shared shaper for VC 1 does not constrain the bandwidth of a VP queue. The total
bandwidth for VC 1 can again exceed the shared rate.
Figure 17 on page 72 illustrates an example of mixed interface shaping and its implications
for implicit constituent selection for compound shared shaping.
Figure 17: Implicit Constituent Selection for Compound Shared Shaper: Mixed Interface Types
Traffic Starvation and Shared Shaping
Traffic in the strict-priority traffic-class group can starve out other traffic competing
within the shared shaper. You might want to configure an individual shaping rate for
strict-priority queues, thus reserving the remaining shared bandwidth for nonstrict traffic.
72
Copyright © 2012, Juniper Networks, Inc.
Chapter 9: Shared Shaping Overview
For example, the following scheduler profiles limit the subscriber's strict priority traffic
to 1.0 Mbps and limits the subscriber's aggregate traffic to 1.5 Mbps. If scheduler profile
strictOne specified a shaping rate greater than or equal to 1.5 Mbps, nonstrict traffic might
face starvation.
host1(config)#scheduler-profile strictOne
host1(config-scheduler-profile)#shaping-rate 1000000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile nonStrictOne
host1(config-scheduler-profile)#shared-shaping-rate 1500000
Oversubscription and Shared Shaping
Many providers configure voice and video queues that combine to oversubscribe the
shared rate. An external admission control agent, such as RADIUS, controls traffic flows
such that the offered load does not ever really oversubscribe the shared rate. The static
oversubscribed configuration on the router removes the need for the provider to signal
voice or video traffic to the router.
Burst Size and Shared Shaping
The burst size for constituents is typically shaped by the burst value that you specify in
the scheduler profile with the shared-shaping-rate command. You can override this
burst for a particular constituent by applying another scheduler profile to that constituent
and specifying the burst value with the shaping-rate command.
The following commands configure a VC shared shaper with two constituents, best effort
and voice. The best-effort constituent has a burst of 30000 and the voice constituent
has a burst of 16384.
host1(config)#scheduler-profile bestEffortBurst
host1(config-scheduler-profile)#shared-shaping-rate 1000000 burst 30000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile voiceBurst
host1(config-scheduler-profile)#shaping-rate 300000 burst 16384
host1(config-scheduler-profile)#exit
Configure the QoS profile that applies the scheduler profiles:
host1(config)#qos-profile burstExample
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc node group EF
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile
bestEffortBurst
host1(config-qos-profile)#atm-vc queue traffic-class voice scheduler-profile voiceBurst
Related
Documentation
•
Shared Shaper Terms on page 68
•
Configuring Simple Shared Shaping on page 77
•
Configuring Compound Shared Shaping on page 96
•
Configuring Implicit Constituents for Simple or Compound Shared Shaping on page 110
•
Configuring Explicit Constituents for Simple or Compound Shared Shaping on page 115
Copyright © 2012, Juniper Networks, Inc.
73
JunosE 14.1.x Quality of Service Configuration Guide
74
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 10
Configuring Simple Shared Shaping of
Traffic
This chapter provides information for configuring simple shared shaping of traffic on the
E Series router.
QoS topics are discussed in the following sections:
•
Simple Shared Shaping Overview on page 75
•
Configuring Simple Shared Shaping on page 77
•
Example: Simple Shared Shaping for ATM VCs on page 79
•
Example: Simple Shared Shaping for ATM VPs on page 81
•
Example: Simple Shared Shaping for Ethernet on page 82
Simple Shared Shaping Overview
Simple shared shaping shapes the best-effort node or queue associated with a logical
interface to a shared rate.
Bandwidth Allocation for Simple Shared Shaping
Once per second, the simple shared shaper calculates the combined rate of the voice
and video queues for the logical interface, and shapes the best-effort queue for the data
traffic to the shared rate minus the video and voice queue rates. The bandwidth for the
voice and video queues is determined by the configuration of the hierarchical scheduler.
The shared shaper does not actively manage the video and voice queues.
Simple Shared Shaping on the Best-Effort Scheduler Node
If you have a second traffic class for data in addition to the best-effort data traffic class,
configure shared shaping on the best-effort scheduler node. In this scenario, two weighted
queues are stacked above the best-effort scheduler node, one for the best-effort traffic
class and the other for the second data traffic class. If you configure the shared-shaping
rate on the best-effort queue, then the shared shaper can have a tendency to starve the
best-effort queue in favor of the second data queue. If you instead configure the
shared-shaping rate on the best-effort node, the hierarchical scheduler allocates
bandwidth between multiple data queues based on their relative weight and assured
rate.
Copyright © 2012, Juniper Networks, Inc.
75
JunosE 14.1.x Quality of Service Configuration Guide
If you are configuring VP shared shaping, configure shared shaping on the best-effort
scheduler node for the VP. Shaping the best-effort scheduler node for the VP has the
effect of shaping all the VC best-effort queues for that VP. This enables you to retain the
advantages of per-VC queuing in the hierarchical scheduler.
If you are configuring VC shared shaping and the SAR is operating in low-CDV mode, we
recommend you configure the shared-shaping rate on the best-effort scheduler node
for the VP or VC. The router sets the SAR shaper for the VC or VP to match the
shared-shaping rate on VC and VP nodes in the hierarchical scheduler; this is usually the
desired behavior. A shared shaper configured on the best-effort queue does not trigger
the matching shaper in the SAR.
Simple Shared Shaping for Triple-Play Networks
Simple shared shaping enables you to shape the logical interface to a single rate for
triple-play networks.
In Figure 18 on page 76, the AF traffic-class group contains the video traffic class. The EF
traffic-class group contains the voice traffic class. The best-effort and
better-than-best-effort traffic classes remain outside any traffic-class group. Because
the voice, video, and data queues are stacked in separate scheduler hierarchies, you must
use the shared shaper to shape the logical interface aggregate to a single rate.
In this example, VC 1 is configured for voice and data. VC 2 is configured for data and
video. VC 3 is configured for data, voice, and video. The shared shaper is configured on
the best-effort node or queue for VC 1; the corresponding voice queue for VC 1 shares the
configured rate.
Figure 18: Simple Shared Shaping over ATM
76
Copyright © 2012, Juniper Networks, Inc.
Chapter 10: Configuring Simple Shared Shaping of Traffic
In a typical triple-play network configuration over Ethernet, individual subscribers are
represented on the B-RAS by VLANs and DSLAMs by SVLANs. Figure 19 on page 77
illustrates how to shape the subscriber aggregate of voice, video, and data to a single
rate in Ethernet.
Figure 19: Simple Shared Shaping over Ethernet
Related
Documentation
•
Shared Shaping Overview on page 67
•
Configuring Simple Shared Shaping on page 77
•
Constituent Selection for Shared Shaping Overview on page 103
Configuring Simple Shared Shaping
This section explains how to configure the shared shaper by specifying a shared-shaping
rate for either the best-effort queue or the best-effort scheduler node for the logical
interface. The router locates the other queues associated with the logical interface and
shapes that set of queues to the shared rate.
You do not explicitly specify shared shaping on the other queues for the logical interface.
You can configure individual shaping rates on the other queues that are less than the
shared rate. These individual shapers have the effect of reserving some of the shared
bandwidth for the other queues.
Before you configure simple shared shaping:
•
Configure the traffic classes and traffic-class groups.
See “Configuring Traffic Classes That Define Service Levels” on page 14 and “Configuring
Traffic-Class Groups That Define Service Levels” on page 15.
To configure simple shared shaping:
1.
Create the scheduler profile.
Copyright © 2012, Juniper Networks, Inc.
77
JunosE 14.1.x Quality of Service Configuration Guide
host1(config)#scheduler-profile shared-1mbps
2. Configure the shared-shaping rate.
host1(config-scheduler-profile)#shared-shaping-rate 128000 burst 32767 simple
host1(config-scheduler-profile)#shared-shaping-rate 80000 + 53000
host1(config-scheduler-profile)#exit
The range for the shared-shaping rate is 1–1000000000 bps/Kbps; the default is the
minimum shaping rate (1 Kbps). You can set the shaping rate to vary from 1 bps to
1000 Gbps (which is denoted by entering 1000000000 Kbps in the CLI for the
shared-shaping-rate command).
Use the operator and operandValue variables to specify the shared shaping rate as an
expression.
Use the bps or kbps keywords to specify the unit of the shaping rate. By default, the
shaping rate is configured in bps.
Use the burst keyword to configure the catch-up number associated with the shaper;
the range is 0–522240 (0–510 KB). If you do not specify a burst value, the router
selects an applicable default value.
Use the milliseconds or bytes keywords to specify the unit of the burst size.
You can specify simple to shape data queue rates to the value of the shared rate
minus the combined voice and video traffic rate. By default, shared shaping is set to
auto. In this mode, the router selects the type of shared shaping that is applied
according to the type of line module. Compound shared shaping is
hardware-dependent. If you specify compound for line modules that do not support
it, an error message is generated and the router applies simple shared shaping.
3. Configure the QoS profile and reference the scheduler profile.
host1(config)#qos-profile subscriber-default-mode
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc node group AF
host1(config-qos-profile)#atm-vc node group EF
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile
shared-1mbps
host1(config-qos-profile)#exit
TIP: The scheduler profile that you configured with the shared-shaping
rate must be referenced in the best-effort queue or the best-effort
scheduler node.
4. Attach the profile to the interface.
host1(config)#interface atm 11/0.10
host1(config-subif)#qos-profile subscriber-default-mode
host1(config-scheduler-profile)#exit
Related
Documentation
78
•
Simple Shared Shaping Overview on page 75
•
Guidelines for Configuring Simple and Compound Shared Shaping on page 70
Copyright © 2012, Juniper Networks, Inc.
Chapter 10: Configuring Simple Shared Shaping of Traffic
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
Example: Simple Shared Shaping for ATM VCs on page 79
•
Example: Simple Shared Shaping for ATM VPs on page 81
•
Example: Simple Shared Shaping for Ethernet on page 82
•
node
•
qos-profile
•
queue
•
scheduler-profile
•
shared-shaping-rate
•
traffic-class
•
traffic-class-group
Example: Simple Shared Shaping for ATM VCs
The following commands configure a simple shared shaper for a VC, as shown in Figure
18 on page 76. In this example, the best-effort queue for logical interface VC 3 is shaped
to a shared rate of 1 Mbps. The voice and video queues for VC 3 share the 1 Mbps with
the best-effort traffic. The voice queue has first claim on the shared 1 Mbps, but only up
to its individual shaping rate of 200 Kbps. The video queue claims up to the next 300
Kbps. The best-effort queue obtains whatever bandwidth remains of the 1 Mbps after
the voice and video traffic have made their claims.
1.
Configure the traffic classes and traffic-class groups.
host1(config)#traffic-class voice
host1(config-traffic-class)#fabric-strict-priority
host1(config-traffic-class)#exit
host1(config)#traffic-class video
host1(config-traffic-class)#exit
host1(config)#traffic-class-group EF auto-strict-priority
host1(config-traffic-class-group)#traffic-class voice
host1(config-traffic-class-group)#exit
host1(config)#traffic-class-group AF extended
host1(config-traffic-class-group)#traffic-class video
host1(config-traffic-class-group)#exit
2. Configure the shared shaper.
host1(config)#scheduler-profile 200kbps
host1(config-scheduler-profile)#shaping-rate 200000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile 300kbps
host1(config-scheduler-profile)#shaping-rate 300000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile shared-1mbps
host1(config-scheduler-profile)#shared-shaping-rate 1000000 simple
Copyright © 2012, Juniper Networks, Inc.
79
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-scheduler-profile)#exit
host1(config)#qos-profile subscriber-default-mode
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc node group AF
host1(config-qos-profile)#atm-vc node group EF
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile
shared-1mbps
host1(config-qos-profile)#atm-vc queue traffic-class video scheduler-profile 300kbps
host1(config-qos-profile)#atm-vc queue traffic-class voice scheduler-profile 200kbps
host1(config-qos-profile)#exit
3. Delete the rule in the default port type profile that creates IP best-effort queues by
default.
host1(config)#qos-profile atm-default
host1(config-qos-profile)#no ip queue traffic-class best-effort
host1(config-qos-profile)#exit
4. Attach the profile to the ATM subinterface for VC 3.
host1(config)#interface atm 11/0.10
host1(config-subif)#qos-profile subscriber-default-mode
host1(config-scheduler-profile)#exit
The qos-profile subscriber-default-mode command shown in this example is appropriate
if you have configured the SAR to be in default mode (by issuing the no qos-mode-port
command). If this QoS profile is attached in low-CDV mode, the shaper is effective but
the CDV is not correctly bounded, because the VC is not reshaped in the SAR.
The following commands configure a QoS profile different from the one shown in the
previous example. In this example, the best-effort scheduler node for VC 3 is shaped to
a shared rate of 1 Mbps. The qos-profile subscriber-low-cdv-mode command is
appropriate if you configure the SAR in low-CDV mode (by issuing the qos-mode-port
low-cdv command). The VC is reshaped to 1 Mbps in the SAR. If this QoS profile is
attached in the SAR default mode, the 1-Mbps shaper is disabled by VC backpressure
from the SAR.
host1(config)#qos-profile subscriber-low-cdv-mode
host1(config-qos-profile)#atm-vc node scheduler-profile shared-1mbps
host1(config-qos-profile)#atm-vc node group AF
host1(config-qos-profile)#atm-vc node group EF
host1(config-qos-profile)#atm-vc queue traffic-class best-effort
host1(config-qos-profile)#atm-vc queue traffic-class video scheduler-profile 300kbps
host1(config-qos-profile)#atm-vc queue traffic-class voice scheduler-profile 200kbps
host1(config-qos-profile)#exit
Related
Documentation
80
•
Configuring Simple Shared Shaping on page 77
•
Simple Shared Shaping Overview on page 75
Copyright © 2012, Juniper Networks, Inc.
Chapter 10: Configuring Simple Shared Shaping of Traffic
Example: Simple Shared Shaping for ATM VPs
In the example shown in Figure 20 on page 81, VP 1 is shaped to a shared rate of 5 Mbps.
The shared shaper requires that voice and video traffic be carried in queues associated
with the logical interface, which in this scenario is the VP. VP-level queuing does not
guarantee fairness to the voice and video traffic for each VC, but fairness is not a major
issue because admission control guarantees that the voice and video queues do not
become congested.
This example assumes the same traffic class and traffic-class group configurations that
are used in “Example: Simple Shared Shaping for ATM VCs” on page 79.
Figure 20: VP Shared Shaping
The following set of commands configures the shared shaper in Figure 20 on page 81.
host1(config)#scheduler-profile 2mbps
host1(config-scheduler-profile)#shaping-rate 2000000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile 400kbps
host1(config-scheduler-profile)#shaping-rate 400000
(config-scheduler-profile)#exit
host1(config)#scheduler-profile shared-5mbps
host1(config-scheduler-profile)#shared-shaping-rate 5000000 simple
host1(config-scheduler-profile)#exit
host1(config)#qos-profile vp-subscriber1
host1(config-qos-profile)#atm-vp node scheduler-profile shared-5mbps
host1(config-qos-profile)#atm-vp node group AF
host1(config-qos-profile)#atm-vp node group EF
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile default
Copyright © 2012, Juniper Networks, Inc.
81
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-qos-profile)#atm-vp queue traffic-class video scheduler-profile 2mbps
host1(config-qos-profile)#atm-vp queue traffic-class voice scheduler-profile 400kbps
host1(config-qos-profile)#exit
In this example, the best-effort scheduler node for the VP is shaped to a shared rate of
5 Mbps. The EF and AF queues for the VP share the 5 Mbps with the best-effort traffic.
The EF queue has first claim on the shared 5 Mbps, but only up to its individual shaping
rate of 400 Kbps. The AF queue claims up to the next 2 Mbps. The VC-level best-effort
queues obtain whatever bandwidth remains of the 5 Mbps after the AF traffic and EF
traffic have made their claims. This QoS profile is appropriate for low-CDV mode. If the
provider configures a shapeless VP tunnel in the SAR, QoS sets the SAR shaper for the
VP to match the 5-Mbps shared-shaping rate, and the CDV is bounded for the VP tunnel.
Related
Documentation
•
Configuring Simple Shared Shaping on page 77
•
Simple Shared Shaping Overview on page 75
Example: Simple Shared Shaping for Ethernet
In a typical triple-play network configuration over Ethernet, individual subscribers are
represented on the B-RAS by VLANs and DSLAMs by SVLANs. In this example, the provider
shapes the subscriber aggregate of voice, video, and data to a single rate.
In this example, S-VLAN 0 has traffic in three traffic-class groups: the default group, the
TC1 traffic class in the G1 group, and the TC2 traffic class in the G2 traffic-class group.
Figure 21: Hierarchical Simple Shared Shaping over Ethernet
In Figure 21 on page 82, the S-VLANs labeled 1, 2, and 3 indicate the possible constituents
for S-VLAN 0. The active constituents for the simple shared shaper are the three nodes
for S-VLAN 0 in the three traffic-class groups.
NOTE: This example uses QoS parameters to configure shared shaping.
82
Copyright © 2012, Juniper Networks, Inc.
Chapter 10: Configuring Simple Shared Shaping of Traffic
1.
Configure the traffic classes and traffic-class groups.
host1(config)#traffic-class tc1
host1(config)#exit
host1(config)#traffic-class tc2
host1(config)#exit
host1(config)#traffic-class-group g1
host1(config-traffic-class-group)#traffic-class tc1
host1(config-traffic-class-group)#exit
host1(config)#traffic-class-group g2 extended
host1(config-traffic-class-group)#traffic-class tc2
host1(config-traffic-class-group)#exit
2. Configure the parameter definitions.
host1(config)#qos-parameter-define vlan-g1-max-rate
host1(qos-parameter-define)#controlled-interface-type vlan
host1(qos-parameter-define)#instance-interface-type vlan
host1(qos-parameter-define)#exit
host1(config)#qos-parameter-define svlan-g1-max-rate
host1(qos-parameter-define)#controlled-interface-type svlan
host1(qos-parameter-define)#instance-interface-type svlan
host1(qos-parameter-define)#instance-interface-type ethernet
host1(qos-parameter-define)#exit
host1(config)#qos-parameter-define vlan-max-rate
host1(qos-parameter-define)#controlled-interface-type vlan
host1(qos-parameter-define)#instance-interface-type vlan
host1(qos-parameter-define)#instance-interface-type svlan
host1(qos-parameter-define)#exit
host1(config)#qos-parameter-define svlan-max-rate
host1(qos-parameter-define)#controlled-interface-type svlan
host1(qos-parameter-define)#instance-interface-type svlan
host1(qos-parameter-define)#instance-interface-type ethernet
host1(qos-parameter-define)#exit
3. Configure the shared shaper by referencing parameter definitions in the shaping-rate
command.
host1(config)#scheduler-profile vlan-be
host1(config-scheduler-profile)#shared-shaping-rate vlan-max-rate simple
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile svlan-be
host1(config-scheduler-profile)# shared-shaping-rate svlan-max-rate simple
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile svlan-g1
host1(config-scheduler-profile)#shaping-rate svlan-g1-max-rate
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile vlan-g1
host1(config-scheduler-profile)#shaping-rate vlan-g1-max-rate
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile svlan-g2
host1(config-scheduler-profile)#shaping-rate svlan-max-rate % 50
Copyright © 2012, Juniper Networks, Inc.
83
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-scheduler-profile)#exit
4. Configure the QoS profile.
host1(config)#qos-profile svlan-4.1
host1(config-qos-profile)#vlan queue traffic-class best-effort
host1(config-qos-profile)#vlan node scheduler-profile vlan-be
host1(config-qos-profile)#svlan node scheduler-profile svlan-be
host1(config-qos-profile)#vlan queue traffic-class tc1
host1(config-qos-profile)#svlan node scheduler-profile svlan-g1 group g1
host1(config-qos-profile)#svlan queue traffic-class tc2
host1(config-qos-profile)#svlan node scheduler-profile svlan-g2 group g2
host1(config-qos-profile)#ethernet group g2 scheduler-profile default
5. Attach the QoS profile to the S-VLANs on Fast Ethernet interface 11/0.
host1(config)#interface fastEthernet 11/0
host1(config-if)#svlan 0 qos-parameter svlan-max-rate 4000000
host1(config-if)#svlan 0 qos-profile svlan-4.1
host1(config-if)#encapsulation vlan
host1(config-if)#exit
host1(config)#interface fastEthernet 11/0.1
host1(config-if)#svlan id 0 1
host1(config-if)#ip address 1.2.1.1 255.255.255.0
host1(config-if)#exit
host1(config)#interface fastEthernet 11/0.2
host1(config-if)#svlan id 0 2
host1(config-if)#ip address 1.3.1.1 255.255.255.0
host1(config-if)#exit
Related
Documentation
84
•
Configuring Simple Shared Shaping on page 77
•
Simple Shared Shaping Overview on page 75
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 11
Configuring Variables in the Simple Shared
Shaping Algorithm
This chapter provides information for configuring variables within the simple shared
shaper algorithm on the E Series router.
QoS topics are discussed in the following sections:
•
Simple Shared Shaping Algorithm Overview on page 85
•
Variables of the Simple Shared Shaper Algorithm on page 87
•
Guidelines for Controlling the Simple Shared Shaper Algorithm on page 88
•
Configuring Simple Shared Shaper Algorithm Variables on page 89
•
Sample Process for Controlling the Simple Shared Shaper Algorithm on page 90
Simple Shared Shaping Algorithm Overview
You can configure variables within the simple shared shaper algorithm to control the
minimum dynamic rate for all simple shared shapers on the router.
Configuring variables in the simple shared shaper algorithm is useful for IPTV
configurations. Without limiting the dynamic rate, best-effort data traffic can be starved
for a few seconds when a video stream starts. The minimum dynamic rate defined by
shared shaper algorithm variables applies to best-effort traffic only.
Figure 22 on page 85 shows a two-constituent simple shared shaper consisting of
best-effort and video traffic. The sum of the best-effort and video traffic is shaped to
the configured shared-shaping rate.
Figure 22: Simple Shared Shaper Behavior Without Algorithm Controls
Copyright © 2012, Juniper Networks, Inc.
85
JunosE 14.1.x Quality of Service Configuration Guide
When the video stream starts in the example displayed by Figure 22 on page 85, the
shared shaper reacts by drastically reducing best-effort traffic because it must avoid
saturating downstream queues. In some cases, best-effort traffic is throttled for a few
seconds. When the video stream stops, best-effort traffic can continually consume more
bandwidth, up to the shared-shaping rate.
By controlling the minimum dynamic rate in the simple shared shaper algorithm, you can
configure the less conservative simple shared shaping behavior displayed in Figure 23
on page 86. In this example, as the video traffic starts, the best-effort rate is reduced less
drastically, and best-effort traffic is not starved.
Figure 23: Less Conservative Simple Shared Shaper Behavior
You can also configure the more liberal simple shared shaper behavior that is displayed
in Figure 24 on page 86. In this example, the initial over-limit video traffic is ignored. When
the video traffic stops, the system immediately allows best-effort traffic to consume the
available bandwidth.
Figure 24: More Liberal Simple Shared Shaper Behavior
Simple Shared Shaper Algorithm Calculations
The simple shared shaper algorithm performs the following tasks to calculate the dynamic
rate:
1.
Calculates the new measured rate.
2. Calculates the virtual output queue length (VOQL).
3. Calculates the new dynamic rate.
4. Uses the larger value of the new dynamic rate (from Step 3) and a minimum dynamic
rate.
86
Copyright © 2012, Juniper Networks, Inc.
Chapter 11: Configuring Variables in the Simple Shared Shaping Algorithm
Related
Documentation
•
Variables of the Simple Shared Shaper Algorithm on page 87
•
Configuring Simple Shared Shaper Algorithm Variables on page 89
Variables of the Simple Shared Shaper Algorithm
The formulas the simple shared shaper uses contain values maintained by the simple
shared shaper algorithm, and variables that you configure.
The following factors are maintained by the simple shared shaper algorithm:
•
newMeasuredRate—Sum of bytes enqueued to non-best-effort constituent queues,
in bps.
•
oldDynamicRate—Dynamic shaping rate from the previous rate period, in
bits-per-second.
•
sharedShapingRate—Configured shared shaper rate, in bps. The shared shaping rate
is the total rate of all constituents of the shared shaper.
You can configure the following variables, which correspond to the commands described
in “Configuring Simple Shared Shaper Algorithm Variables” on page 89.
•
convergenceFactor—Controls the convergence of the dynamic shaping rate to the
calculated shaping rate, expressed as a percentage of the available bandwidth.
The default value of 50 percent causes the dynamic shaping rate to converge by half
of the available rate each period. For example, when the dynamic rate of a 5 Mbps
simple shared shaper is 1 Mbps, and the measured rate goes from 4 Mbps to 0 Mbps,
4 Mbps of bandwidth becomes available. The simple shared shaper converges from 1
Mbps to 5 Mbps by half of the available bandwidth per period. In this example, the
dynamic shaping rates for several periods are 1 Mbps, 3 Mbps, 4 Mbps, 4.5 Mbps, 4.75
Mbps, and so on.
•
maximumVOQL—Sets the maximum virtual output queue length (VOQL), expressed
in milliseconds (ms) of the shared shaping rate.
The default value of 4000 indicates that a 5 Mbps shared shaper does not allow the
VOQL to exceed 20 Mbps. Smaller values reduce the effect of the VOQL in the simple
shared shaper algorithm.
A maximum VOQL of 0 indicates that the shared shaper ignores the VOQL. This setting
is appropriate for configurations where exceeding the shared shaping rate for brief
periods of time does not cause downstream queuing.
•
minimumDynamicRate—Sets the minimum value for the dynamic shaping rate,
expressed as a percentage of the shared shaping rate. For example, a value of 25 for
a 20 Mbps shared shaper specifies that the dynamic shaping rates never be set to a
value less than 5 Mbps. The default value is 0.
•
reactionFactor—Controls how the simple shared shaper reacts to changing rates,
expressed as a percentage. The default value of 200 changes the algorithm to use
200 percent of the changing rate.
Copyright © 2012, Juniper Networks, Inc.
87
JunosE 14.1.x Quality of Service Configuration Guide
This section describes the algorithm tasks in detail.
1.
Calculate the new measured rate. The simple shared shaper uses the following formula
to calculate the new measured rate:
2. Calculate the VOQL. The simple shared shaper maintains a VOQL, which cannot
become less than zero, using the following formulas:
3. Calculate the new dynamic rate. Each rate period, the simple shared shaper calculates
the new dynamic rate (the shaping rate of the best-effort node or queue) using the
following formula. The system prevents the new dynamic rate from becoming less
than zero.
4. Determine the larger value of the new dynamic rate and the minimum dynamic rate.
The simple shared shaper determines the larger of the new dynamic rate and a
minimum dynamic rate, where the minimumDynamicRate is a fraction of the
shared-shaping rate, using the following formula:
Related
Documentation
•
Simple Shared Shaping Algorithm Overview on page 85
•
Sample Process for Controlling the Simple Shared Shaper Algorithm on page 90
Guidelines for Controlling the Simple Shared Shaper Algorithm
You can configure the simple shared shaper variables individually, but it is useful to use
configuration guidelines to determine how the variables work together to achieve a
desired behavior.
Table 8 on page 89 displays guidelines for configuring the most liberal shared shaper to
the most conservative shared shaper.
88
Copyright © 2012, Juniper Networks, Inc.
Chapter 11: Configuring Variables in the Simple Shared Shaping Algorithm
•
Most liberal—Appropriate when over-queuing is not a concern
•
Liberal—Appropriate when over-queuing is not a concern and a smoother rate
adjustments are desirable
•
Moderate—Default settings
•
Conservative—Appropriate when over-queuing is a major concern
•
Most conservative—Rarely appropriate.
Table 8: Guidelines for Configuring Simple Shared Shaper Algorithm
Variables
Related
Documentation
Control
Most
Liberal
Liberal
Moderate
Conservative
Most
Conservative
convergence-factor
0
25
50
75
99
maximum-voql
0
25
400
600
1000
reaction-factor
0
50
200
300
1000
•
Simple Shared Shaping Algorithm Overview on page 85
•
Configuring Simple Shared Shaper Algorithm Variables on page 89
Configuring Simple Shared Shaper Algorithm Variables
To configure the variables for all simple shared shapers on the router:
1.
Enter QoS Shared Shaper Control Configuration mode.
host1(config)#qos-shared-shaper-control
host1(config-qos-shared-shaper-control)#
2. (Optional) Configure the convergence factor for all simple shared shapers on the
router.
host1(config-qos-shared-shaper-control)#convergence-factor 25
The convergence factor determines how quickly the dynamic shaping rate converges
with the calculated dynamic shaping rate, and is expressed as a percentage of the
available bandwidth.
The range for the convergence factor is 0–99 percent, with 0 being the most liberal
and 99 the most conservative. The default value is 50.
3. (Optional) Configure the specify the reaction factor for all simple shared shapers on
the router.
host1(config-qos-shared-shaper-control)#reaction-factor 50
The reaction factor determines how the shared shaper reacts to changes in the
measured rate.
Copyright © 2012, Juniper Networks, Inc.
89
JunosE 14.1.x Quality of Service Configuration Guide
The range for the reaction factor is 0–1000; 0 is the most liberal and 1000 is the most
conservative. The default value is 200.
4. (Optional) Specify the minimum value of the dynamic shaping rate as a percentage
of the shared shaping rate for all simple shared shapers on the router.
host1(config-qos-shared-shaper-control)#minimum-dynamic-rate-percent 50
The range for the minimum dynamic rate value is 0–100 percent. The default value is
0.
5. (Optional) Configure a maximum value for the virtual output queue length (VOQL)
for all simple shared shapers on the router.
host1(config-qos-shared-shaper-control)#maximum-voql 25
The VOQL tracks the amount of data over queued between simple shared-shaper
rate periods.
The range for the maximum VOQL value is 0–10000 milliseconds (ms). The default
value is 4000.
Related
Documentation
•
Simple Shared Shaping Algorithm Overview on page 85
•
Variables of the Simple Shared Shaper Algorithm on page 87
•
Guidelines for Controlling the Simple Shared Shaper Algorithm on page 88
•
Sample Process for Controlling the Simple Shared Shaper Algorithm on page 90
•
Configuring Simple Shared Shaping on page 77
•
convergence-factor
•
maximum-voql
•
minimum-dynamic-rate-percent
•
qos-shared-shaper-control
•
reaction-factor
Sample Process for Controlling the Simple Shared Shaper Algorithm
The simple shared shaper in this example contains two constituents, best-effort and
video. The shared-shaping rate is 15 Mbps, and the video rate is 4 Mbps.
The example contains two parts: when the video flow is turned on, and then turned off.
NOTE: The rates in this example are approximate and for illustrative purposes
only. Your configuration might yield different results based on network
variables.
90
Copyright © 2012, Juniper Networks, Inc.
Chapter 11: Configuring Variables in the Simple Shared Shaping Algorithm
Starting Video Flow
Table 9 on page 91 lists the dynamic rate when the video flow is turned on for the five
classes of simple shared shaper variables. Results vary because the amount of video
measured in the first rising period is random, in the range 0–4 Mbps non-inclusive.
Table 9: Rising Edge Sample When Video Flow Starts
Period of Dynamic Rate, in Kbps
Control
1
2
3
4
5
6
7
8
9
10
Most
liberal
15000
13080
11000
11000
11000
11000
11000
11000
11000
11000
Liberal
15000
9542
8880
10470
10867
10972
10979
10994
10998
10994
Moderate
15000
6510
5606
8303
9651
10329
10628
10814
10967
10953
Conservative
15000
6022
1604
3953
5714
7038
7978
8733
9300
9735
Most
conservative
–
–
–
–
–
–
–
–
–
–
In this example, a liberal maximum VOQL value is ineffective because the 15 Mbps
shared-shaping rate is much higher than the 4 Mbps video rate. The video rate divided
by the shared shaping rate is 26.6 percent, so any value higher than this has no effect.
NOTE: The rates in this example represent approximate egress-queue
enqueue rates on an Ethernet line module; therefore, there is no ATM SAR or
downstream devices are not used. More liberal configurations can be
inappropriate when there might be queuing between the scheduler and the
destination. VLAN queuing is used, and saturation rates are offered.
The most liberal case heavily reduces VOQL and changes of rate, leading to a shared
shaper that quickly converges. The conservative configuration overreacts to VOQL and
the change of rate, and converges very slowly.
Figure 25 on page 92 shows a graph of the dynamic rate when the video flow starts.
Copyright © 2012, Juniper Networks, Inc.
91
JunosE 14.1.x Quality of Service Configuration Guide
Figure 25: Dynamic Rate When Video Flow Starts
Stopping Video Flow
Table 10 on page 92 lists the dynamic rate as the video flow stops for the five classes of
simple shared shaper controls. Results might vary because the amount of video measured
in the first falling period is random, in the range 0–4 Mbps non-inclusive.
Table 10: Data When Video Flow Stops
Period of Dynamic Rate, in Kbps
Control
1
2
3
4
5
6
7
8
9
10
Most
liberal
11000
12132
15000
15000
15000
15000
15000
15000
15000
15000
Liberal
11000
11584
14146
14786
14946
14986
14996
14999
14999
15000
Moderate
11000
11728
13364
14182
14591
14795
14897
14948
14974
14987
Conservative
10955
11278
12208
12906
13429
13822
14116
14337
14503
14701
Most
conservative
–
–
–
–
–
–
–
–
–
–
Figure 26 on page 93 shows a graph of the dynamic rate when the video flow stops.
92
Copyright © 2012, Juniper Networks, Inc.
Chapter 11: Configuring Variables in the Simple Shared Shaping Algorithm
Figure 26: Dynamic Rate When Video Flow Stops
Related
Documentation
•
Simple Shared Shaping Algorithm Overview on page 85
•
Variables of the Simple Shared Shaper Algorithm on page 87
•
Configuring Simple Shared Shaper Algorithm Variables on page 89
Copyright © 2012, Juniper Networks, Inc.
93
JunosE 14.1.x Quality of Service Configuration Guide
94
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 12
Configuring Compound Shared Shaping
of Traffic
This chapter provides information for configuring compound shared shaping of traffic
on the E Series router.
QoS topics are discussed in the following sections:
•
Compound Shared Shaping Overview on page 95
•
Configuring Compound Shared Shaping on page 96
•
Example: Compound Shared Shaping for ATM VCs on page 98
•
Example: Compound Shared Shaping for ATM VPs on page 100
Compound Shared Shaping Overview
Compound shared shaping is a hardware-assisted mode that can control bandwidth for
all scheduler objects associated with the subscriber logical interface. Thus it can manage
voice and video queues in addition to data queues, so that the shared rate cannot be
exceeded.
Compound shared shaping responds to changes in traffic rates more rapidly than simple
shared shaping, in the order of milliseconds.
Supported Hardware for Compound Shared Shaping
You can configure compound shared shaping on a line module with the EFA2 or TFA
hardware.
The EFA2 implementation is different from the EFA ASIC, which does not implement
compound shared shaping. Issue the show qos shared-shaper command to determine
whether compound shared shapers are supported for the line module. Contact your
Juniper Networks account representative for more information about line modules with
the EFA2 ASIC.
The TFA hardware is only available on the ES2 10G LM on the E120 and E320 Broadband
Services Routers.
If you configure a compound shared shaper on hardware that does not support it, the
CLI displays the following message:
Copyright © 2012, Juniper Networks, Inc.
95
JunosE 14.1.x Quality of Service Configuration Guide
host1config)#ERROR 02/08/2005 14:06:36 qos: line card in slot 11: EFA2 hardware not
installed. 1 compound shared shaper(s) converted to simple.
QoS automatically converts the compound shared shaper to a simple shared shaper.
NOTE: Compound shared shaping is not supported by the frame forwarding
ASIC (FFA).
Bandwidth Allocation for Compound Shared Shaping
The compound shared-shaper mechanism actively allocates the bandwidth it receives
from the hierarchical scheduler to each active constituent, based on its own rules,
independent of the hierarchical scheduler. Constituents are either priority constituents
or weighted constituents. These attributes are specified using the
shared-shaper-constituent command.
Compound shared-shaper scheduling allocates bandwidth as follows:
1.
Priority constituents consume as much of the shared bandwidth as they can, subject
to the bandwidth allocated to them by the hierarchical scheduler.
2. Priority constituents are ordered according to their priority.
3. The weighted constituents subdivide the remaining shared bandwidth in proportion
to their shared weights, again subject to the bandwidth allocated to them by the
hierarchical scheduler.
Related
Documentation
•
Shared Shaping Overview on page 67
•
Configuring Compound Shared Shaping on page 96
Configuring Compound Shared Shaping
Compound shared shaping requires that you set a shared-shaping rate in a scheduler
profile associated with a best-effort node or queue.
Before you configure compound shared shaping:
•
Configure the traffic classes and traffic-class groups.
See “Configuring Traffic Classes That Define Service Levels” on page 14 and “Configuring
Traffic-Class Groups That Define Service Levels” on page 15.
To configure compound shared shaping:
1.
Create the scheduler profile.
host1(config)#scheduler-profile compound
2. Configure the compound shared shaper.
host1(config-scheduler-profile)#shared-shaping-rate 128000 burst 32767 compound
explicit-constituents
96
Copyright © 2012, Juniper Networks, Inc.
Chapter 12: Configuring Compound Shared Shaping of Traffic
The range for the shared-shaping rate is 1000–1000000000 bps (1 Kbps–1000 Kbps);
the default is no shaping rate.
Use the operator and operandValue variables to specify the shared shaping rate as an
expression.
Burst is the catch-up number associated with the shaper; the range is 0–522240
(0–510 KB). Specifying 0 enables the router to select an applicable default value.
By default, shared shaping is set to auto, where the router selects the type of shared
shaping that is configured, depending on the line module. You must specify the
compound keyword to actively shape voice and video traffic so that the shared rate
cannot be exceeded, and shape data queue rates to the value of the shared rate minus
the combined voice and video traffic rate. An error message is generated if you specify
compound for line modules that do not support it, and the router applies simple
shared shaping.
3. Configure the QoS profile and reference the scheduler profile.
host1(config)#qos-profile compound
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc node group AF
host1(config-qos-profile)#atm-vc node group EF
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile
shared-1mbps
host1(config-qos-profile)#exit
TIP: The scheduler profile that you configured with the shared-shaping
rate must be referenced in the best-effort queue or the best-effort
scheduler node.
4. Attach the profile to the interface.
host1(config)#interface atm 11/0.10
host1(config-subif)#qos-profile subscriber-default-mode
host1(config-scheduler-profile)#exit
Related
Documentation
•
Compound Shared Shaping Overview on page 95
•
Guidelines for Configuring Simple and Compound Shared Shaping on page 70
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
Example: Compound Shared Shaping for ATM VCs on page 98
•
Constituent Selection for Shared Shaping Overview on page 103
•
node
•
qos-profile
•
queue
•
scheduler-profile
•
shared-shaping-rate
Copyright © 2012, Juniper Networks, Inc.
97
JunosE 14.1.x Quality of Service Configuration Guide
•
traffic-class
•
traffic-class-group
Example: Compound Shared Shaping for ATM VCs
Figure 27 on page 98 illustrates a typical DSL triple-play configuration, involving voice,
video, and data traffic. In this example, a total of 1 Mbps of bandwidth is allocated to
voice, video, and best-effort data traffic associated with the VC 1 logical interface.
The voice queue in the EF traffic-class group for VC 1 is a strict constituent that has first
claim on up to 200 Kbps of the shared bandwidth. The video queue in the AF traffic-class
group is a strict constituent that can claim up to 300 Kbps of the remaining 800–1000
Kbps of shared bandwidth. The best-effort queue for logical interface VC 1 is a strict
constituent that has the last claim to the remaining 500–1000 Kbps of shared bandwidth.
Figure 27: VC Compound Shared Shaping Example
To configure VC compound shared shaping:
1.
Configure the traffic classes, traffic-class groups, and additional scheduler profiles.
2. Configure the scheduler profile that defines the shared shaper and the profiles that
apply the legacy shaper.
host1(config)#scheduler-profile shared-1Mbps
host1(config-scheduler-profile)#shared-shaping-rate 1000000 burst 32768 auto
host1(config)#scheduler-profile 300Kbps
host1(config-scheduler-profile)#shaping-rate 300000
host1(config)#scheduler-profile 200Kbps
host1(config-scheduler-profile)#shaping-rate 200000
3. Configure the QoS profile.
98
Copyright © 2012, Juniper Networks, Inc.
Chapter 12: Configuring Compound Shared Shaping of Traffic
host1(config)#qos-profile vcSharedShaping
4. Create group nodes.
host1(config-qos-profile)#atm group AF scheduler-profile default
host1(config-qos-profile)#atm group EF scheduler-profile default
5. Create VC nodes for each group and for traffic in the default group.
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc node group AF
host1(config-qos-profile)#atm-vc node group EF
6. Create queues for the best-effort, video, and voice traffic. Apply the scheduler profile
that defines the shared-shaping rate to the best-effort queue. Apply the legacy shaper
profiles to the voice and video traffic queues.
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile
shared-1mbps
host1(config-qos-profile)#atm-vc queue traffic-class video scheduler-profile 300Kbps
host1(config-qos-profile)#atm-vc queue traffic-class voice scheduler-profile 200Kbps
host1(config-qos-profile)#exit
7. Attach the QoS profile to an ATM subinterface.
host1(config)#interface atm 11/0.1
host1(config-interface)#qos-profile vcSharedShaping
host1(config-interface)#exit
In this example, the constituents of the VC shared shaper are the VC 1 best effort node,
the VC 1 Group EF node, and the VC 1 Group AF node. The available bandwidth is strictly
allocated in the following order:
1.
VC 1 EF group node
2. VC 1 AF group node
3. VC 1 best effort node
To display the sample shared shaper configuration:
host1# show shared-shaper atm 11/0.1
shared current
shaping shaping
shaping
interface
rate
rate
resource
rate
---------------- ------- ------- ------------------------- ------atm-vc ATM11/0.1 1000000 compound best-effort atm-vc queue
atm-vc best-effort node
EF voice atm-vc queue
200000
AF video atm-vc queue
300000
atm-vc ATM11/0.2 1000000 compound best-effort atm-vc queue
atm-vc best-effort node
EF voice atm-vc queue
200000
AF video atm-vc queue
300000
Total shared shapers: 2
Total constituents:
8
Total failovers:
0
Related
Documentation
•
Configuring Compound Shared Shaping on page 96
Copyright © 2012, Juniper Networks, Inc.
99
JunosE 14.1.x Quality of Service Configuration Guide
•
Compound Shared Shaping Overview on page 95
Example: Compound Shared Shaping for ATM VPs
Figure 28 on page 100 shows a compound shared shaper for a VP interface. VP shared
shaping enables a shared shaper to apply to all the aggregate rates of all VCs within the
VP.
In this example, the VP is shaped to a compound shared rate of 5 Mbps. The voice traffic
gets strict priority scheduling for up to 400 Kbps of the shared rate on the VP. The video
traffic gets up to 2 Mbps of the remaining 4.6–5 Mbps on the VP. Finally, the data traffic
has the last claim to the remaining 2.6–3 Mbps of shared VP bandwidth.
This configuration enables data traffic to flow at 2.6 Mbps when voice and video are both
using their limit. When both voice and video are quiescent, data can flow at the full 5
Mbps shared rate.
The QoS profile used in this example is appropriate for low-CDV mode. If the provider
configures a shapeless VP tunnel in the SAR, QoS sets the SAR shaper for the VP to
match the 5 Mbps shared-shaping rate, and the CDV is bounded for the VP tunnel.
VP-level queuing does not guarantee fairness to the voice and video for each VC.
Figure 28: VP Compound Shared Shaping Example
To configure VP compound shared shaping:
1.
Configure the traffic classes, traffic-class groups, and additional scheduler profiles.
2. Configure the scheduler profile that defines the shared shaper and the profiles that
apply the legacy shaper.
host1(config)#scheduler-profile shared-5Mbps
100
Copyright © 2012, Juniper Networks, Inc.
Chapter 12: Configuring Compound Shared Shaping of Traffic
host1(config-scheduler-profile)#shared-shaping-rate 5000000 burst 32768 auto
host1(config-scheduler-profile)#exit
3. Configure the scheduler profile for AF (video) traffic.
host1(config)#scheduler-profile 2Mbps
host1(config-scheduler-profile)#shaping-rate 2000000
4. Configure the scheduler profile for EF (voice) traffic.
host1(config)#scheduler-profile 400Kbps
host1(config-scheduler-profile)#shaping-rate 400000
host1(config-scheduler-profile)#exit
5. Configure the QoS profile.
host1(config)#qos-profile vpSharedShaping
6. Create group nodes.
host1(config-qos-profile)#atm group AF scheduler-profile default
host1(config-qos-profile)#atm group EF scheduler-profile default
7. Create VP nodes for each group and for traffic in the default group. The scheduler
profile containing the shared-shaping rate is applied to the VP node that is in the
default group and contains the best-effort queue.
host1(config-qos-profile)#atm-vp node scheduler-profile shared-5Mbps
host1(config-qos-profile)#atm-vp node group AF scheduler-profile 2Mbps
host1(config-qos-profile)#atm-vp node group EF scheduler-profile 400Kbps
8. Create a VC node for the default group.
host1(config-qos-profile)#atm-vc node
9. Create queues for the best-effort, video, and voice traffic.
host1(config-qos-profile)#atm-vc queue traffic-class best-effort
host1(config-qos-profile)#atm-vc queue traffic-class AF
host1(config-qos-profile)#atm-vc queue traffic-class EF
host1(config-qos-profile)#exit
10. Attach the QoS profile to an ATM subinterface.
host1(config)#interface atm 11/0.1
host1(config-interface)#qos-profile vpSharedShaping
In this example, the constituents of the VP shared shaper are the VP 1 default group node,
the VP 1 Group EF node, and the VP 1 Group AF node. The available bandwidth is strictly
allocated in the following order:
1.
VP1 EF group node
2. VP1 AF group node
3. VP1 default group node
Related
Documentation
•
Configuring Compound Shared Shaping on page 96
•
Compound Shared Shaping Overview on page 95
Copyright © 2012, Juniper Networks, Inc.
101
JunosE 14.1.x Quality of Service Configuration Guide
102
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 13
Configuring Implicit and Explicit
Constituent Selection for Shaping
This chapter provides information for configuring implicit and explicit constituents on
the E Series router.
QoS topics are discussed in the following sections:
•
Constituent Selection for Shared Shaping Overview on page 103
•
Implicit Constituent Selection Overview on page 105
•
Configuring Implicit Constituents for Simple or Compound Shared Shaping on page 110
•
Explicit Constituent Selection Overview on page 111
•
Configuring Explicit Constituents for Simple or Compound Shared Shaping on page 115
Constituent Selection for Shared Shaping Overview
Shared shaping supports both implicit and explicit constituent selection. Implicit
constituent selection is the easier of the two methods and works well for most cases.
With implicit selection, you configure a shared-shaping rate on the best-effort node or
queue and QoS locates the other constituents automatically.
Use explicit constituent selection when you want to shape a subset of the interface traffic
to the shared rate. An example of this is when you want the sum of best-effort and voice
traffic to be shaped to the shared rate, but want video traffic to be exempt from the
shared-shaping rate.
Active constituents are selected either implicitly by QoS or explicitly by the user. Active
constituents of the simple shared shaper can be any node and queues in named
traffic-class groups. Active constituents of the compound shared shaper can be nodes
or queues. If you choose a node as an active constituent, queues above it are not active
constituents.
Inactive constituents are queues that are stacked above an active node or nodes stacked
below active queues. For both of these situations, the shared shaper controls the active
constituents, and the legacy scheduler indirectly controls the inactive constituents to
achieve the shared rate. The other case for inactive constituents is when you use explicit
constituent selection and some of the nodes and queues are explicitly not included in
the shared shaper.
Copyright © 2012, Juniper Networks, Inc.
103
JunosE 14.1.x Quality of Service Configuration Guide
To use implicit constituent selection, you specify only the shared-shaping rate and the
logical interface. The router identifies the constituents associated with the logical interface
type and their allocated bandwidth. This method is appropriate for the typical case where
the intent is to shape all subscriber queues to the shared rate.
If you want instead to shape a subset of the queues for a subscriber to the shared rate,
the explicit selection process is appropriate. Explicit selection is also useful when you
want queues as the active constituents instead of the node below them. By choosing
queues you can assign appropriate priority or weights.
Types of Shared Shaper Constituents
The shared-shaping-constituent command in a scheduler profile specifies constituents
and their attributes. The command has two aspects. For explicit constituent selection,
this command specifies the constituents. For the compound shared shaper only, this
command specifies scheduling attributes of shared shaping: the shared priority and the
shared weight.
A shared shaper can be one of the following four types:
•
Simple implicit—Constituents are best-effort node or queues, and all nodes and queues
in named traffic-class groups.
•
Simple explicit—The software selects constituents based on the
shared-shaping-constituent command. The weight and priority attributes of the
shared-shaping-constituent command are ignored, because the simple shared shaper
does not allocate bandwidth among constituents; instead it controls just the best-effort
queue or node.
•
Compound implicit—Constituents are selected automatically by the software. If a node
exists in a given traffic-class group, the node is active and the queues stacked above
it are inactive constituents. The shared-shaping-constituent command does not affect
constituent selection. However, if the command is present for a constituent that was
implicitly selected, the software configures that constituent with the shared priority
and shared weight as indicated.
•
Compound explicit—The software selects constituents based on the shared priority
and shared weight configured with the shared-shaping-constituent command. If no
attributes are specified, the software supplies a shared priority consistent with the
legacy scheduler configuration.
Table 11 on page 104 compares implicit and explicit shared shaping.
Table 11: Comparison of Implicit and Explicit Shared Shaping
104
Implicit Shared Shaping
Explicit Shared Shaping
•
•
To specify the logical interface for shared
shaping, associate a scheduler profile that
includes the shared-shaping-rate command
or the shared-shaping-rate simple command
with a best-effort node or queue.
To specify the logical interface for shared
shaping, associate a scheduler profile that
includes the shared-shaping-rate rate
explicit-constituents command or the
shared-shaping-rate rate simple
explicit-constituents command with a
best-effort node or queue.
Copyright © 2012, Juniper Networks, Inc.
Chapter 13: Configuring Implicit and Explicit Constituent Selection for Shaping
Table 11: Comparison of Implicit and Explicit Shared Shaping (continued)
Related
Documentation
Implicit Shared Shaping
Explicit Shared Shaping
•
Constituents consist of all nodes and queues
for the same logical interface type.
•
Constituents consist of all nodes and queues
for the same logical interface type.
•
Active constituents are automatically
selected from all constituents according to
the implicit shared shaping rules.
•
Active constituents are explicitly selected
from all constituents by association with a
scheduler profile that includes the
shared-shaper-constituent command.
•
If the scheduler profile associated with a
constituent does not include this command,
then the constituent is not active and is not
shaped by the shared shaper.
•
Implicit Constituent Selection Overview on page 105
•
Configuring Implicit Constituents for Simple or Compound Shared Shaping on page 110
•
Explicit Constituent Selection Overview on page 111
•
Configuring Explicit Constituents for Simple or Compound Shared Shaping on page 115
Implicit Constituent Selection Overview
The implicit selection process for simple and compound shared shaping are the same.
The process operates according to the following rules:
1.
The point at which the scheduler profile that contains a shared-shaping-rate command
is associated with a best-effort node or best-effort queue determines the logical
interface type that the shared shaper applies to. Logical interface types include IP,
VP, VC, VLAN, S-VLAN, and so on.
2. All nodes and queues for the same logical interface are potential constituents.
3. The best-effort node is selected if you configure node-based shared shaping. The
best-effort queue is selected if you configure queue-based shared shaping. If you
configure both, then the best-effort node is selected over the best-effort queue.
4. Non-best-effort queues are selected.
The implicit selection process for compound shared shaping operates according to the
following rules:
1.
The point at which the scheduler profile that contains a shared-shaping-rate command
is associated with a best-effort node or best-effort queue determines the logical
interface type that the shared shaper applies to. Logical interface types include IP,
VP, VC, VLAN, and S-VLAN.
2. All nodes and queues for the same logical interface are potential constituents.
3. Nodes are selected over queues.
Copyright © 2012, Juniper Networks, Inc.
105
JunosE 14.1.x Quality of Service Configuration Guide
For example, suppose a shared shaper is associated with a particular interface type.
A node for that interface type is present and has a queue for that interface type stacked
above it. The node is selected and becomes an active constituent; the queue is not
selected.
Now suppose a shared shaper is associated with a logical interface at the best-effort
node, and a second shared shaper is simultaneously associated with the same interface
at the best-effort queue. In this case, the node is selected as the constituent, because
nodes are selected over queues.
In Figure 29 on page 106, scheduler profile A includes a shared-shaping rule, and is
associated with the best-effort node for VC 2. The constituents are all the scheduler
objects associated with VC 2: VC 2 nodes and VC 2 queues. Nodes are selected over
queues, so the implicitly selected active constituents are the VC 2 default group node,
the VC 2 Group EF node, and the VC 2 Group AF node.
Figure 29: Implicit Constituent Selection for Compound Shared Shaper at Best-Effort Node
In Figure 30 on page 107, scheduler profile B is associated with the best-effort queue for
VC 3. This association indicates that the logical interface type being shared is VC. The
constituents are all the scheduler objects associated with VC 3: VC 3 nodes and VC 3
queues. Nodes are selected over queues, so the implicitly selected active constituents
for profile B’s shared shaper are the VC 3 default group queue, the VC 3 Group EF node,
and the VC 3 Group AF node. The VC 3 default group queue is selected instead of the VC
3 default group node because the shared shaper is associated with that best-effort
queue.
106
Copyright © 2012, Juniper Networks, Inc.
Chapter 13: Configuring Implicit and Explicit Constituent Selection for Shaping
Figure 30: Implicit Constituent Selection for Compound Shared Shaper at Best-Effort Queue
Figure 30 on page 107 illustrates other examples of implicit constituent selection. It does
not reflect typical configurations, but includes a mixture of interface types: IP, VC, and
VP. If only scheduler profile A is applied, the associated interface is VC 1. The selected
constituents then consist of the VC 1 best-effort node, the VC 1 TC voice queue, and the
VC 1 TC video queue.
If only scheduler profile B is applied, the associated interface is IP 1. The selected
constituents then consist of the IP 1 best-effort queue, the IP 1 TC voice queue, and the
IP 1 TC video queue.
If only scheduler profile C is applied, the associated interface is VP 1. The selected
constituents then consist of the VP 1 default group node, the VP 1 Group EF node, and
the VP 1 Group AF node.
Implicit Bandwidth Allocation for Compound Shared Shaping
After selecting the implicit constituents for compound shared shaping, the router places
the constituents in an order that determines how the constituents can claim a share of
the available shared bandwidth.
When it implements compound implicit shared shapers, the software selects attributes
for the active constituents consistent with the hierarchical scheduler.
•
Auto-strict nodes and queues have the highest priority.
•
Nodes and queues in extended traffic-class groups are next.
•
Nodes and queues in the default traffic-class group have the lowest priority.
For example, suppose a compound shared shaper has a rate of 2 Mbps. The shared
shaper has three active constituents: the best-effort node, a voice queue in the auto-strict
traffic-class group, and a video queue in an extended traffic-class group. For compound
Copyright © 2012, Juniper Networks, Inc.
107
JunosE 14.1.x Quality of Service Configuration Guide
implicit shared shaping, the shared shaper assigns the voice queue all the 2 MB, the video
queue the next priority, and the best-effort node the last priority. The voice queue is
unlikely to drop because it has highest priority in the hierarchical scheduler as well as
highest priority within its shared shaper. The video queue is less likely to drop, but you
must still take care that the hierarchical scheduler is provisioned to allocate the proper
assured bandwidth to video. The shared shaper can shape, or deny, bandwidth to its
constituents, but it cannot allocate assured bandwidth in the hierarchical scheduler.
The compound shared-shaper mechanism also works as follows. In the legacy scheduler,
weight and shaping rate are independent attributes that together determine bandwidth
allocation. The scheduler allocates bandwidth based on relative weights, and the shaper
can deny that bandwidth when the shaping rate is reached. With the shared shaper in
effect, two independent shaping rates must be satisfied for the queue or node to dequeue.
A deficit in either type of shaping bounds the bandwidth.
As a general way of predicting the scheduler behavior, if the physical port is congested
because many queues and nodes are competing in the hierarchical scheduler, the legacy
weights and shaping rates dominate the scheduler outcome. If the hierarchical scheduler
is not congested, a shared shaper configured for a logical interface dominates the outcome
for the traffic scheduled through that logical interface.
The compound shared shaper orders constituents, and allocates shared bandwidth to
them, according to the following rules:
1.
Strict constituents in the auto-strict-priority traffic-class group
For multiple strict-priority traffic-class groups, bandwidth allocation order is the same
order in which the additional strict traffic class groups were configured. You can issue
the show traffic-class-groups command to view this order.
2. Strict constituents in extended traffic-class groups
For multiple extended traffic class groups, bandwidth allocation order is the same
order in which the traffic class groups were configured. You can issue the show
traffic-class-groups command to view this order.
3. Strict constituents in the default group
4. Weighted constituents in the auto-strict-priority traffic class group
5. Weighted constituents in extended traffic class groups
6. Weighted constituents in the default group
By default, strict constituents transmit traffic at a rate up to the lesser of their
shared-shaping rate or the legacy shaping rate. Individual strict constituents can be
allocated any bandwidth value less than the shared rate. The sum of all constituent rate
credits does not have to be less than the shared rate. Individual constituent rates are not
capped, because a particular traffic class often does not exceed a limit because of
admission control, or because the class is policed at some point in the path.
Unlike strict constituents, which can consume bandwidth up to the legacy shaping rate
or the shared-shaping rate, weighted constituents share bandwidth with their peers solely
108
Copyright © 2012, Juniper Networks, Inc.
Chapter 13: Configuring Implicit and Explicit Constituent Selection for Shaping
in proportion to their shared-shaping-weight. A higher weight value grants the constituent
a greater proportion of the available bandwidth.
Although a shared shaper can be applied to up to eight constituents, only four of these
can be weighted constituents. If you configure more than four weighted constituents as
part of the same shared shaper, the first four are treated as weighted constituents but
the remainder are handled as strict constituents, generating a warning message.
Weighted Compound Shared Shaping Example
Weighted shared shaping is most useful for sharing bandwidth between traffic classes
carrying TCP data. Figure 31 on page 109 shows an application of weighted shared shaping
where weighted constituents span multiple traffic class groups, making them ineligible
for legacy weighted scheduling. Best-effort data and premium data constituents are
weighted.
g014385
Figure 31: Weighted Shared Shaping
Scheduler profile A specifies the shared-shaping rate of 1Mbps for the best-effort node,
which is associated with a VC logical interface. The node is further configured with a
weight of 1. Scheduler profile B specifies the VC 1 AF node as a weighted constituent with
a weight of 31.
The implicitly selected constituents of the shared shaper are the VC 1 best-effort node,
the VC 1 AF group node, and the VC 1 EF group node. Bandwidth is allocated as follows:
•
The VC 1 EF group node is strict and can transmit up to the shared-shaping rate of
1Mbps. Any remaining bandwidth is available to the remaining constituents.
•
The VC 1 AF group node is weighted with the VC 1 best-effort node. The sum of the
constituent weights is 32. With a weight of 31, the VC 1 AF group node can transmit
Copyright © 2012, Juniper Networks, Inc.
109
JunosE 14.1.x Quality of Service Configuration Guide
31/32nds of the available bandwidth when both constituents are competing for
bandwidth.
•
The VC 1 best-effort node is weighted with VC 1 AF group node. The sum of the
constituent weights is 32. With a weight of 1, the VC 1 best-effort node can transmit
1/32 of the available bandwidth when both constituents are competing for bandwidth.
Figure 32 on page 110 illustrates an example of mixed interface shaping and its implications
for implicit constituent selection for compound shared shaping.
Figure 32: Implicit Constituent Selection for Compound Shared Shaper: Mixed Interface Types
Related
Documentation
•
Configuring Implicit Constituents for Simple or Compound Shared Shaping on page 110
Configuring Implicit Constituents for Simple or Compound Shared Shaping
There are two types of implicit constituents:
•
Simple implicit—Constituents are best-effort node or queues, and all nodes and queues
in named traffic-class groups.
•
Compound implicit—Constituents are selected automatically by the software. If a node
exists in a given traffic-class group, the node is active and the queues stacked above
it are inactive constituents.
Before you configure implicit constituents:
•
Configure the traffic classes and traffic-class groups.
See “Configuring Traffic Classes That Define Service Levels” on page 14 and “Configuring
Traffic-Class Groups That Define Service Levels” on page 15.
To configure implicit constituents:
110
Copyright © 2012, Juniper Networks, Inc.
Chapter 13: Configuring Implicit and Explicit Constituent Selection for Shaping
1.
Create the scheduler profile.
host1(config)#scheduler-profile implicit
2. Configure the shared shaper.
To configure a simple shared shaper:
host1(config-scheduler-profile)#shared-shaping-rate 128000 bps
To configure a compound shared shaper:
host1(config-scheduler-profile)#shared-shaping-rate 128000 burst 32767 compound
3. (Optional) For compound shared shapers, specify the attributes for the constituent.
host1(config-scheduler-profile)#shared-shaping-constituent weight 28
Including this command does not affect how the system selects the compound implicit
constituent. If the command is present for a constituent that was implicitly selected,
the software configures that constituent using the strict-priority or weight attributes.
After you configure implicit constituents:
•
Configure the scheduler hierarchy with the best-effort nodes and queues.
See “Configuring a QoS Profile” on page 126.
Related
Documentation
•
Constituent Selection for Shared Shaping Overview on page 103
•
Implicit Constituent Selection Overview on page 105
•
scheduler-profile
•
shared-shaping-constituent
•
shared-shaping-rate
Explicit Constituent Selection Overview
If you want only a subset of the queues for a subscriber to be shaped to the shared rate,
then you must explicitly identify the desired constituents rather than accepting the
implicitly selected constituents.
For compound shared shaping, explicit selection is also useful when you want queues
as the active constituents instead of the node below them. By choosing queues you can
assign appropriate priority or weights.
In the set of nodes and queues for a logical interface, only scheduler objects associated
with a scheduler profile that includes a shared-shaping-constituent command are
considered constituents. Objects that are not explicitly selected are exempt from the
shared shaper.
To identify the constituents for simple shared shaping, include the explicit-constituents
keyword with the shared-shaping-rate simple command in a scheduler profile that you
associate with a best-effort node or queue to identify the logical interface.
Copyright © 2012, Juniper Networks, Inc.
111
JunosE 14.1.x Quality of Service Configuration Guide
NOTE: If you explicitly specify both a node and the queues stacked above
the node as constituents in a scheduler profile, compound shared shaping
uses the node as the constituent.
For compound shared shaping, omit the simple keyword. For a compound shared shaper,
you can further designate the explicit constituents as priority or weighted.
Explicit Shared Shaping Example
In Figure 33 on page 112, two scheduler profiles are applied to scheduler objects VC 1 best
effort node, VC 1 AF node, and VC 1 EF node. The shared-shaping-constituent command
in each profile specifies that the associated object is an explicit constituent of the shared
shaper.
Figure 33: Explicit Constituent Selection
In this example, the VC shared shaper has two explicit constituents, the VC 1 best effort
node and the VC 1 Group EF node. By default, these constituents are considered to be
strict constituents with a priority of 8.
If implicit selection rules are followed in this example, the association of the shared
shaper with the VC 1 best-effort node selects the VC 1 best effort node, the VC 1 Group
EF node, and the VC 1 Group AF node.
Explicit Weighted Compound Shared Shaping Example
Figure 34 on page 113 illustrates a case where scheduler profiles A, B, C, D, and E are
applied to scheduler objects.
112
Copyright © 2012, Juniper Networks, Inc.
Chapter 13: Configuring Implicit and Explicit Constituent Selection for Shaping
Figure 34: Case 1: Explicit Constituent Selection with Weighted Constituents
In Case 1, scheduler profile A associates the shared-shaping rate with the VLAN 1
best-effort queue. Table 12 on page 113 lists the explicit constituents of the shared shaper
and the bandwidth allocated to each constituent:
Table 12: Bandwidth Allocation for Case 1 Explicit Constituents
Explicit Constituent
Bandwidth Allocation
VLAN 1 TC voice1 queue
Strict constituent that can consume up to its legacy
shaping-rate.
VLAN 1 TC voice2 queue
Weighted constituent that shares bandwidth with its weighted
shared shaper siblings in a proportion of 4/10.
VLAN 1 TC video queue
Weighted constituent that shares bandwidth with its weighted
shared shaper siblings in a proportion of 3/10.
VLAN 1 TC data queue
Weighted constituent that shares bandwidth with its weighted
shared shaper siblings in a proportion of 2/10.
VLAN 1 TC best-effort queue
Weighted constituent that shared bandwidth with weighted
shared shaper siblings in a proportion of 1/10.
Figure 35 on page 114 illustrates another case where scheduler profiles B, X, Y, and Z are
applied to scheduler objects. Each profile assigns a weight to an explicit constituent.
Copyright © 2012, Juniper Networks, Inc.
113
JunosE 14.1.x Quality of Service Configuration Guide
Figure 35: Case 2: Explicit Constituent Selection with Weighted Constituents
In Case 2, scheduler profile B associates the shared-shaping rate with the best-effort
node for VLAN 1. Table 13 on page 114 lists the explicit constituents of the shared shaper
and the bandwidth allocated to each constituent:
Table 13: Bandwidth Allocation for Case 2 Explicit Constituents
Explicit Constituent
Bandwidth Allocation
VLAN 1 TC voice1 queue
Strict constituent that can consume up to its legacy
shaping-rate.
VLAN 1 TC voice2 queue
Weighted constituent that shares bandwidth with its weighted
shared shaper siblings in a proportion of 4/10.
VLAN 1 TC video queue
Weighted constituent that shares bandwidth with its weighted
shared shaper siblings in a proportion of 3/10.
Best-effort node for VLAN 1
Weighted constituent that shared bandwidth with weighted
shared shaper siblings in a proportion of 3/10.
NOTE: The node is selected as the constituent when both the
node and the queues stacked over node are specified in a
scheduler profile.
Related
Documentation
114
•
Configuring Explicit Constituents for Simple or Compound Shared Shaping on page 115
Copyright © 2012, Juniper Networks, Inc.
Chapter 13: Configuring Implicit and Explicit Constituent Selection for Shaping
Configuring Explicit Constituents for Simple or Compound Shared Shaping
You can specify explicit constituents and set the attributes of both implicit and explicit
shared-shaping constituents that determine how bandwidth is allocated to them.
There are two types of explicit constituents:
•
Simple explicit constituents—The software selects constituents based on the
shared-shaping-constituent command. The weight and priority attributes of the
shared-shaping-constituent command are ignored, because the simple shared shaper
does not allocate bandwidth among constituents; instead it controls just the best-effort
queue or node.
•
Compound explicit—The software selects constituents based on the configured shared
priority and shared weight in the shared-shaping-constituent command. If no attributes
are specified, the software supplies a shared priority consistent with the legacy
scheduler configuration. You can specify a constituent as strict (priority) or weighted.
Strict-priority constituents are allocated bandwidth ahead of weighted constituents.
Before you configure explicit constituents:
•
Configure the traffic classes and traffic-class groups.
See “Configuring Traffic Classes That Define Service Levels” on page 14 and “Configuring
Traffic-Class Groups That Define Service Levels” on page 15.
To configure explicit constituents:
1.
Create the scheduler profile.
host1(config)#scheduler-profile explicit
2. Configure the shared-shaper and specify that you do not want the router to identify
shared shaper constituents associated with the logical interface.
To configure a simple shared shaper:
host1(config-scheduler-profile)#shared-shaping-rate 128000 bps
To configure a compound shared shaper:
host1(config-scheduler-profile)#shared-shaping-rate 128000 burst 32767 compound
explicit-constituents
3. Specify the attributes for the explicit constituent.
host1(config-scheduler-profile)#shared-shaping-constituent weight 28
You can specify a constituent as strict (priority) or weighted. Strict-priority constituents
are allocated bandwidth ahead of weighted constituents.
You can optionally set a value that determines the precedence of a constituent among
its peers (strict or weighted) for claiming bandwidth.
For strict-priority constituents, the priority range is 1–8 and the default value is 8. A
lower value correlates to a higher claim.
Copyright © 2012, Juniper Networks, Inc.
115
JunosE 14.1.x Quality of Service Configuration Guide
For weighted constituents, the range is 1–31 and the default value is 8. The weights
of all sibling weighted constituents are added together. Then each weighted
constituent is allocated bandwidth according to the proportion of its weight to the
total.
Related
Documentation
116
•
Constituent Selection for Shared Shaping Overview on page 103
•
Explicit Constituent Selection Overview on page 111
•
scheduler-profile
•
shared-shaping-constituent
•
shared-shaping-rate
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 14
Monitoring a QoS Scheduler Hierarchy
This chapter provides information for configuring the QoS scheduler hierarchy using
scheduler profiles on the E Series router.
QoS topics are discussed in the following section:
•
Monitoring QoS Scheduling and Shaping on page 117
Monitoring QoS Scheduling and Shaping
To monitor QoS scheduling, see:
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring the Configuration of Scheduler Profiles on page 313
•
Monitoring Shared Shapers on page 315
•
Monitoring Shared Shaper Algorithm Variables on page 316
Copyright © 2012, Juniper Networks, Inc.
117
JunosE 14.1.x Quality of Service Configuration Guide
118
Copyright © 2012, Juniper Networks, Inc.
PART 4
Creating a QoS Scheduler Hierarchy on
an Interface with QoS Profiles
•
QoS Profile Overview on page 121
•
Configuring and Attaching QoS Profiles to an Interface on page 125
•
Configuring Shadow Nodes for Queue Management on page 143
•
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles on page 149
Copyright © 2012, Juniper Networks, Inc.
119
JunosE 14.1.x Quality of Service Configuration Guide
120
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 15
QoS Profile Overview
This chapter provides information for configuring an interface with QoS profiles on E Series
routers.
QoS topics are discussed in the following sections:
•
QoS Profile Overview on page 121
•
Managing System Resources for Nodes and Queues on page 121
•
Scaling Subscribers on the TFA ASIC with QoS on page 122
QoS Profile Overview
You create an interface hierarchy for QoS by configuring a QoS profile that specifies
queue profiles, drop profiles, statistics profiles, and scheduler profiles in combination
with interface types. A QoS profile specifies the queue, drop statistics gathering, and
scheduler configuration for a subtree of the interface hierarchy. The QoS profile controls
the way scheduler nodes, queues, and shadow nodes are bound to the interfaces above
its attachment point in the interface hierarchy.
You can attach a QoS profile to the interface at the base of the subtree hierarchy, an
ATM VP, or an S-VLAN. For example, a QoS profile attached to an ATM port specifies
queuing attributes for interfaces of all types that are stacked over the port.
Related
Documentation
•
Supported Interface Types for QoS Profiles on page 125
•
Configuring a QoS Profile on page 126
Managing System Resources for Nodes and Queues
The type of ASIC that each line module uses determines the system resources for nodes
and queues.
Line modules with the EFA ASIC hardware provide 85,000 descriptors that are shared
between all nodes and queues. Each line module supports a maximum of 49,000 nodes
or queues per line module.
Line modules with the FFA ASIC hardware provide 2000 level 1 nodes or queues and
64,000 level 2 nodes or queues. The ES2 4G LM provides 2000 level 1 nodes or queues
Copyright © 2012, Juniper Networks, Inc.
121
JunosE 14.1.x Quality of Service Configuration Guide
and 128,000 level 2 nodes or queues. The router implicitly creates the level 2 node. Each
line module supports a maximum of 64,000 nodes or queues per line module.
Line modules with the TFA ASIC hardware provide 96,000 descriptors that are shared
between all nodes and queues. Each line module supports a maximum of 64,000 nodes
or queues.
Related
Documentation
•
Scaling Subscribers on the TFA ASIC with QoS on page 122
•
Managing System Resources for Shadow Nodes on page 145
•
Memory Requirements for Queue and Buffers on page 19
•
ERX Module Guide and the E120 and E320 Module Guide
Scaling Subscribers on the TFA ASIC with QoS
The TFA ASIC on the ES2 10G LM supports a total of 32,000 nodes; however, it requires
that each queue stack above a node at both level 1 and level 2, and it cannot skip a level
in the scheduler hierarchy. The FFA ASIC also requires that each queue stack above a
node at both level 1 and 2, but it also offers more nodes, so the scheduler hierarchy
requirement is not as visible. The EFA ASIC does not require queues to stack above any
level.
Because the TFA ASIC cannot skip a level in the hierarchy and also offers a smaller
amount of nodes, scaling subscribers for triple-play configurations can exhaust node
resources. For example, the ethernet-default QoS profile specifies both an IP and a VLAN
node. Configuring 16,000 IP over VLAN subinterfaces consumes all 32,000 nodes, with
no node resources remaining for other traffic-class groups. By carefully configuring queues
on the TFA ASIC, you can scale up to 16,000 subscribers for multiple traffic-class groups
in a triple-play configuration.
To conserve nodes on the TFA ASIC, you could apply one of the following configurations:
•
If the configuration includes IP and VLANs, you can configure shapers within those
queues to control service throughout. For example, in a triple-play environment with
voice, video, and data service, you might want to limit the overall rate of traffic using
a shared shaper.
At the same time, you might want to individually restrict the maximum rate of each of
the services. To conserve node usage, attach shapers to the queue for each service,
and attach the shared shaper to the best-effort queue. These queues must be at level
3 in the scheduler hierarchy. Typically, aggregation nodes such as an S-VLAN are placed
at level 2. The VLAN queues then feed in to the S-VLAN nodes, which then feed to the
level 1 nodes below.
If you do not create a QoS hierarchy with queues at level 3, the system adds phantom
nodes to enforce this requirement. To display the hierarchy that is created for the
subscriber on the line module, issue the show qos scheduler-hierarchy command.
•
122
If the configuration includes S-VLANs, you could configure S-VLAN nodes in the default
traffic-class group. Combining S-VLAN and VLAN nodes uses fewer resources than
Copyright © 2012, Juniper Networks, Inc.
Chapter 15: QoS Profile Overview
when you combine IP and VLAN nodes. You can also configure additional S-VLAN
nodes in other traffic-class groups.
In non-default traffic-class groups, you can configure a group node and VLAN queues.
Although this apparently does not consume nodes, it does consume a hidden, phantom
node for each queue, to satisfy the level requirement of the TFA ASIC.
Alternatively, use group nodes and shadow nodes.
We recommend that you configure an Ethernet shadow node in the group with the
following QoS profile rule:
host1(config-qos-profile)#ethernet shadow-node group groupname
This rule stacks another node over the group node, so all VLAN queues are stacked above
the single shadow node. No nodes are consumed in the traffic-class group.
Related
Documentation
•
Managing System Resources for Shadow Nodes on page 145
•
For QoS system maximums, see JunosE Release Notes, Appendix A, System Maximums
•
Monitoring the QoS Profiles Attached to an Interface on page 324
Copyright © 2012, Juniper Networks, Inc.
123
JunosE 14.1.x Quality of Service Configuration Guide
124
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 16
Configuring and Attaching QoS Profiles to
an Interface
This chapter provides information for configuring and attaching QoS profiles to an
interface.
QoS topics are discussed in the following sections:
•
Supported Interface Types for QoS Profiles on page 125
•
Configuring a QoS Profile on page 126
•
Attaching a QoS Profile to an Interface on page 128
•
Munged QoS Profile Overview on page 130
•
Example: Port-Type QoS Profile Attachment on page 133
•
Example: QoS Profile Attachment to Port on page 135
•
Example: DiffServ Configuration with Multiple Traffic-Class Groups on page 137
Supported Interface Types for QoS Profiles
Each QoS profile command begins with a keyword that designates an interface type.
Table 14 on page 125 lists the interface types and the commands that you can use with
them.
Table 14: Interface Types and Supported Commands
Interface Type
Queue
Node
Group
Shadow
Node
atm
✓
✓
✓
✓
atm-vc
✓
✓
–
✓
atm-vp
✓
✓
–
✓
bridge
✓
✓
–
✓
ethernet
✓
✓
✓
✓
Copyright © 2012, Juniper Networks, Inc.
125
JunosE 14.1.x Quality of Service Configuration Guide
Table 14: Interface Types and Supported Commands (continued)
Related
Documentation
Interface Type
Queue
Node
Group
Shadow
Node
fr-vc
✓
✓
–
✓
ip
✓
✓
–
✓
ip-tunnel
✓
✓
–
✓
ipv6
✓
✓
–
✓
l2tp-session
✓
✓
–
✓
l2tp-tunnel
✓
✓
–
✓
lsp
✓
✓
–
✓
serial
✓
✓
✓
✓
server-port
✓
✓
✓
✓
svlan
✓
✓
–
✓
vlan
✓
✓
–
✓
•
Configuring a QoS Profile on page 126
•
Configuring Shadow Nodes on page 146
Configuring a QoS Profile
Before you configure a QoS profile:
•
Configure the traffic classes.
See “Configuring Traffic Classes That Define Service Levels” on page 14.
•
Configure the queuing hierarchy.
See “Configuring Queue Profiles to Manage Buffers and Thresholds” on page 22.
•
Configure the scheduler hierarchy and shaping with scheduler profiles.
See “Configuring a Scheduler Hierarchy” on page 47.
To configure a QoS profile:
1.
Create a QoS profile and enter QoS Profile Configuration mode.
host1(config)#qos-profile qosp-vc-queuing
host1(config-qos-profile)#
126
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
2. (Optional) Configure a group node for each interface.
host1(config-qos-profile)#atm group groupA scheduler-profile scheduler1
statistics-profile statpro-1
When you configure a group node, you can also reference a default or named
traffic-class group, a scheduler profile, or a statistics profile.
If you do not specify a traffic-class group, the group node defaults to the default group.
Each traffic class can belong to only one traffic-class group (either the default group
or a named group).
The router supports up to four traffic-class groups above a given port.
3. (Optional) Configure a scheduler node for interfaces.
host1(config-qos-profile)#atm node scheduler-profile scheduler1 group strict-priority
When you configure a scheduler node, you can also reference a default or named
traffic-class group and a scheduler profile.
The scheduler profile supplies a relative weight and potentially a shaping rate to be
applied at the scheduler node.
NOTE: You cannot associate a scheduler profile with a port-type interface
unless you also specify the strict-priority group.
4. (Optional) Configure a queue for interfaces in the specified traffic class.
host1(config-qos-profile)#atm queue traffic-class strict-priority scheduler-profile
scheduler1 queue-profile queue1 drop-profile drop1
When you configure a queue, you can include any of the following profiles:
•
The scheduler profile supplies a relative weight and potentially a shaping rate to
be applied at the queue.
•
The queue profile supplies threshold information for the queue if the router defaults
are not appropriate.
•
The drop profile supplies dropping behavior of a set of egress queues.
Each queue traffic class can appear in only one traffic-class group.
Related
Documentation
•
Attaching a QoS Profile to an Interface on page 128
•
Supported Interface Types for QoS Profiles on page 125
•
Configuring Shadow Nodes on page 146
•
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles on page 149
•
JunosE Broadband Access Configuration Guide
•
group
•
node
•
qos-profile
Copyright © 2012, Juniper Networks, Inc.
127
JunosE 14.1.x Quality of Service Configuration Guide
•
queue
Attaching a QoS Profile to an Interface
You can attach a QoS profile to the base of an interface hierarchy, to a specific ATM VP
or S-VLAN, or to a port type.
Tasks to attach a QoS profile include:
•
Attaching a QoS Profile to a Base Interface on page 128
•
Attaching a QoS Profile to an ATM VP on page 128
•
Attaching a QoS Profile to an S-VLAN on page 129
•
Attaching a QoS Profile to a Port Type on page 130
Attaching a QoS Profile to a Base Interface
You can attach a QoS profile to an interface at the base of an interface hierarchy. Interface
types below the attachment point cannot be referenced in the QoS profile.
To attach a profile to an interface:
1.
Enter Interface Configuration mode for the interface.
host1(config)#interface gigabitEthernet 2/0
2. Attach a QoS profile to the interface.
host1(config-if)#qos-profile qosp-ethernet-queuing
Attaching a QoS Profile to an ATM VP
You can associate a QoS profile with all the ports of a certain interface type.
You can attach a QoS profile to an ATM VP. The profile applies to all VCs in the VP; for
example, the profile specifies the scheduler hierarchy of scheduler nodes and queues for
all VCs, IP interfaces, and L2TP sessions stacked above the VP.
To attach a profile to an ATM VP:
1.
Enter Interface Configuration mode for the interface.
host1(config)#interface atm 1.0/1
2. Attach a QoS profile to the ATM VP.
host1(config-if)#atm-vp 50 qos-profile qosp-vp-strictbw
If you attempt to modify the QoS profile attached to an ATM VP that contains
nonbroadcast multiaccess (NBMA) or multipoint interfaces from profileA to profileB by
using the atm-vp qos-profile command for a specific VP on that interface, the command
is configured correctly and no error message is displayed in the CLI interface. However,
the shaping rate on the interfaces that are part of the ATM VP is not properly updated
128
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
with the shaping rate specified in profileB. Instead, the multipoint interfaces remain
configured with the shaping rate set in profileA.
To modify the QoS profile currently attached to ATM VPs that contain NBMA or multipoint
interfaces from another profile, you must first remove the QoS profile attached to the
interfaces by using the no atm-vp qos-profile command in Interface Configuration mode,
and then attach the new QoS profile to the interfaces by using the atm-vp qos-profile
command. This restriction exists because the mungeing of QoS profiles does not occur
correctly if any of the attributes of ATM VPs with multipoint interfaces are modified.
If you modify the QoS profile attached to a point-to-point ATM interface from profileA
to profileB by using the qos-profile command (or the atm-vp qos-profile command for
a specific VP on the ATM interface) in Interface Configuration mode, the shaping rate is
correctly configured on the interface and is modified with the value specified in profileB.
To modify the QoS profile attached to an ATM VP that contains an NBMA or a multipoint
interface from profileA to profileB, perform the following steps. These steps assume that
profileA and profileB have been previously configured on the router.
1.
Enter Interface Configuration mode for the ATM VP.
host1(config)#interface atm 1/0
2. Remove the QoS profile, profileA, currently attached to the ATM VP that contains the
NMBA interface.
host1(config-if)#no atm-vp 1 qos-profile profileA
3. Attach the new QoS profile, profileB, that you want to be attached to the ATM VP
that contains the NBMA interface.
host1(config-if)#atm-vp 1 qos-profile profileB
Attaching a QoS Profile to an S-VLAN
You can attach a QoS profile to the specified S-VLAN ID assigned to a VLAN subinterface
that is configured over an Ethernet interface.
The profile applies to all S-VLANs and VLANs in the interface stack; for example, the
profile specifies the hierarchy of scheduler nodes and queues for all VLANs, IP interfaces
stacked above the S-VLAN. However, you do not have to configure VLAN subinterfaces
over the S-VLAN before you attach the QoS profile to the S-VLAN.
1.
Specify the Ethernet interface and create the VLAN.
host1(config)#interface gigabitEthernet 3/0
host1(config-if)#encapsulation vlan
host1(config-if)#interface gigabitEthernet 3/0.1
2. Specify the S-VLAN ID.
host1(config-if)#svlan id 0 1
3. Attach the QoS profile to the S-VLAN.
host1(config-if)#svlan 1 qos-profile qosp-svlan-strictbw
Copyright © 2012, Juniper Networks, Inc.
129
JunosE 14.1.x Quality of Service Configuration Guide
Attaching a QoS Profile to a Port Type
By default, the router attaches a QoS port-type profile to all ATM, Ethernet, serial, or
server ports. The port-type profile supplies QoS information for all forwarding interfaces
stacked above all ports of the associated interface type.
Instead of using the default port-type profile, you can explicitly attach a QoS profile to
a port. The QoS profile overrides the default QoS port-type profile. The QoS profile
associates queue profiles, drop profiles, statistics profiles, and scheduler profiles with
interface types, and it applies to all interfaces stacked above ports of the associated
type.
To attach a QoS profile to a port type:
•
Issue the qos-port-type-profile command from Global Configuration mode:
host1(config)#qos-port-type-profile atm qos-profile strict-priority
The interface type can be: atm, ethernet, lag, serial, or server-port.
A profile attached to a port must specify a queue for each forwarding interface type
in the best-effort traffic class.
To restore the default port-type:
•
Issue the qos-port-type-profile command and specify the server-default QoS profile
from Global Configuration mode:
host1(config)#qos-port-type-profile server-port qos-profile server-default
Related
Documentation
•
Supported Interface Types for QoS Profiles on page 125
•
Configuring a QoS Profile on page 126
•
JunosE Broadband Access Configuration Guide
•
atm-vp qos-profile
•
atm vp-tunnel
•
encapsulation vlan
•
interface
•
qos-port-type-profile
•
qos-profile
•
svlan id
•
svlan qos-profile
Munged QoS Profile Overview
QoS profile attachments affect the queuing configuration of all the forwarding interfaces
stacked above the attachment point. The subtree of the interface hierarchy stacked
130
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
above the attachment point is the scope of the attachment. When multiple QoS profiles
are attached beneath a forwarding interface, the forwarding interface lies in the scope
of all the QoS profiles. Rules from all the QoS profiles are combined in a process called
mungeing. The set of rules used for a given forwarding interface is called the munged
QoS profile.
When a QoS profile is attached to an interface, the router searches the interface stack,
from the point of attachment down to the port interface at the base of the interface
hierarchy, to find all QoS profiles attached under that interface. The rules are combined
to form the munged QoS profile. The router reconfigures queues for all forwarding
interfaces in the scope of the attachment to conform to the munged profile.
The munge algorithm works as follows:
1.
Start with the rules in the QoS profile being attached.
2. Traverse down the stack of interfaces until another QoS profile attachment is found.
3. Add rules from the lower-attached QoS profile to the munged QoS profile. Conflicting
rules from the lower-attached QoS profile are not added: rules in higher-attached
QoS profiles override or eclipse rules in lower-attached QoS profiles.
4. Repeat Steps 2 and 3 until a port interface is reached at the bottom of the interface
stack.
a. If there is a QoS profile attached at the port, add the profile’s rules to the munged
QoS profile, and the munge algorithm is then complete.
b. If there is no QoS profile attached at the port, then locate the QoS profile indicated
in the qos-port-type-profile command that corresponds to the interface type of
the port. For example, if the port is an ATM interface, the default QoS port-type
profile for type ATM is named atm-default. Add the rules in the QoS port-type
profile to the munged QoS profile.
The entries in the QoS profile specified in the corresponding qos-port-type-profile
command have the lowest precedence.
After the munged QoS profile is complete, the router reprocesses the queues for all
forwarding interfaces in the scope of the attachment, adding, deleting, or modifying the
scheduler hierarchy as required by the munged QoS profile rules. Conflicting node rules
operate differently than this.
With conflicting node rules, the mungeing algorithm for QoS nodes start at the base of
the interface hierarchy (usually near the physical interface), instead of at the top of the
interface column. If a QoS profile is not attached to the port, nodes are added to the
interface column according to the QoS port-type profile. Nodes are subsequently added
from profiles that are attached higher in the interface column until all node rules from
the interface column have been added, or the maximum hierarchy of three nodes has
been reached. Higher level nodes cannot eclipse lower-attached nodes. For example, if
a QoS hierarchy is Ethernet node > Ethernet group node > VLAN node > queue, an IP
node from a higher-attached QoS profile cannot eclipse the VLAN node.
Copyright © 2012, Juniper Networks, Inc.
131
JunosE 14.1.x Quality of Service Configuration Guide
In Step 3, the router must decide which rules from a QoS profile conflict with rules already
contained within the munged QoS profile. Queue rules are identified by their {interface
type, traffic class} pair; two queue rules with the same interface type and traffic class
are deemed conflicting. Node rules are identified by their {interface type, traffic-class
group} pair; two node rules with the same interface type and traffic-class group are
deemed conflicting.
NOTE: The munge algorithm is modified when you configure QoS for 802.3ad
link aggregation interfaces.
Sample Munged QoS Profile Process
Figure 36 on page 132 shows the relationship between a port-attached QoS profile and
a QoS profile that is attached to the specific interface, ATM 11/0.2.
Figure 36: Munged Profile Example
The port-attached QoS profile on ATM 11.0 contains the following queue rule:
host1(config)#qos-profile atmPort
host1(config-qos-profile)#ip queue traffic-class priority-data scheduler-profile 64kbps
host1(config-qos-profile)#exit
All forwarding interfaces stacked above the port are within the scope of the attachment,
so all IP interfaces stacked above the port will be provisioned with a queue in the
priority-data traffic class, shaped to 64 Kbps.
The QoS profile attached at subinterface ATM 11/0.2 contains the following two rules:
host1(config)#qos-profile atmVc
host1(config-qos-profile)#ip queue traffic-class priority-data scheduler-profile 1mbps
host1(config-qos-profile)#ip queue traffic-class voice-over-ip
host1(config-qos-profile)#exit
The queue rule for {interface type IP, traffic-class priority-data} in the QoS profile that
is attached to ATM 11/0.2 effectively overrides the queue rule for the same interface type
and traffic class in the port-attached QoS profile on ATM11.0.
132
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
The second queue rule, which is for the voice-over-ip traffic-class, is not conflicting. In
this configuration, the provider has configured a 64 Kbps priority-data queue for each IP
interface stacked above the port. But the IP interface above the ATM 11/0.2 attachment
provides 1 Mbps for priority-data, and also has a second queue provisioned for VoIP.
NOTE: When a QoS profile is attached to an interface, the router first searches
to determine if a munged QoS profile already exists. If you modify an existing
QoS profile, the router automatically updates all munged QoS profiles that
are dependent on the modified profile.
Related
Documentation
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
Example: Port-Type QoS Profile Attachment
In this example, three ATM subinterfaces are configured on an ATM port:
•
ATM 11/0.1—QoS profile qp1 is attached
•
ATM 11/0.2—QoS profile qp2 is attached
•
ATM 11/0.3—No QoS profile is attached
The major ATM interface, 11/0, does not have a QoS profile explicitly attached. Therefore,
by default the atm-default QoS port-type profile is attached.
Figure 37: Attaching QoS Profiles to ATM Subinterfaces
To configure this example:
1.
Create and configure QoS profile qp1.
host1(config)#qos-profile qp-1
host1(config-qos-profile)#atm-vp node scheduler-profile sp1
host1(config-qos-profile)#atm-vc queue traffic-class tc1 scheduler-profile sp1
queue-profile qp1
host1(config-qos-profile)#atm-vc queue traffic-class tc2 scheduler-profile sp2
queue-profile qp2
host1(config-qos-profile)#atm-vc queue traffic-class tc3 scheduler-profile sp3
queue-profile qp3
host1(config-qos-profile)#atm-vc queue traffic-class tc4 scheduler-profile sp4
queue-profile qp4
Copyright © 2012, Juniper Networks, Inc.
133
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-qos-profile)#atm-vc queue traffic-class tc5 scheduler-profile sp5
queue-profile qp5
host1(config-qos-profile)#exit
2. Create and configure QoS profile qp2.
host1(config)#qos-profile qp2
host1(config-qos-profile)#atm-vp node scheduler-profile sp1
host1(config-qos-profile)#atm-vc queue traffic-class tc1 scheduler-profile sp1
queue-profile qp1
host1(config-qos-profile)#atm-vc queue traffic-class tc2 scheduler-profile sp2
queue-profile qp2
host1(config-qos-profile)#atm-vc queue traffic-class tc3 scheduler-profile sp3
queue-profile qp3
host1(config-qos-profile)#exit
3. Attach the QoS profiles to the ATM subinterfaces, as shown in Figure 37 on page 133.
host1(config)#interface atm 11/0.1
host1(config-subif)#qos-profile qp1
host1(config-subif)#exit
host1(config)#interface atm 11/0.2
host1(config-subif)#qos-profile qp2
host1(config-subif)#exit
4. Display the QoS interface hierarchy for ATM interface 11/0. This display shows all QoS
attachments above interface 11/0.
If no QoS profiles are attached above the specified interface, the router shows the
first attachment below the specified interface.
host1# show qos interface-hierarchy interface atm 11/0
[email protected] atm-vc ATM11/0.2:
qos
interface rule traffic
scheduler queue t-class
profile
type
type class
profile
profile group
--------------- ---- --------------- ------- [email protected]/0.2
atm-vp
node
[email protected]/0.2
atm-vc
queue
[email protected]/0.2
atm-vc
queue
[email protected]/0.2
atm-vc
queue
atm-default @atm ip
node
atm-default @atm atm-vc
node
atm-default @atm Bridge
node
atm-default @atm ipv6
node
atm-default @atm ip
queue
atm-default @atm atm
queue
atm-default @atm atm-vc
queue
atm-default @atm Bridge
queue
atm-default @atm ipv6
queue
[email protected] atm-vc ATM11/0.1:
qos
interface rule
profile
type
type
--------------- [email protected]/0.1
[email protected]/0.1
[email protected]/0.1
[email protected]/0.1
[email protected]/0.1
[email protected]/0.1
134
atm-vp
atm-vc
atm-vc
atm-vc
atm-vc
atm-vc
node
queue
queue
queue
queue
queue
tc1
tc2
tc3
best-effort
best-effort
best-effort
best-effort
best-effort
traffic
class
-------
tc1
tc2
tc3
tc4
tc5
sp1
sp1
sp2
sp3
default
default
default
default
default
default
default
default
default
default
qp1
qp2
qp3
default
default
default
default
default
default
default
default
default
scheduler
profile
---------
queue
t-class
profile group
------- -------
sp1
sp1
sp2
sp3
sp4
sp5
default
qp1
qp2
qp3
qp4
qp5
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
atm-default
atm-default
atm-default
atm-default
atm-default
atm-default
atm-default
atm-default
atm-default
@atm
@atm
@atm
@atm
@atm
@atm
@atm
@atm
@atm
ip
atm-vc
Bridge
ipv6
ip
atm
atm-vc
Bridge
ipv6
node
node
node
node
queue
queue
queue
queue
queue
best-effort
best-effort
best-effort
best-effort
best-effort
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
ATM subinterface 11/0.3 was not shown because no QoS profile is attached to it. You
can display the QoS interface hierarchy for subinterface 11/0.3 by specifying the
subinterface, as shown below. In this case, the QoS port-type profile, atm-default, is
attached (by default) to the ATM major interface, ATM 11/0, below ATM subinterface
11/0.3. Because no QoS profile is attached to this ATM subinterface, the QoS port-type
profile is applied.
The @atm in the qos profile column indicates that the row comes from a default QoS
port-type profile that is below the interfaces shown: subinterfaces ATM 11/0.2 and ATM
11/0.1 in this example.
You can explicitly show the ATM subinterface that has no explicit QoS profile attachment,
as shown below. In this case, [email protected] indicates the ATM major interface (11/0)
below the subinterface.
host1# show qos interface-hierarchy interface atm 11/0.3
[email protected] atm ATM11/0:
qos
interface rule traffic
scheduler
profile
type
type class
profile
--------------- ---- [email protected] ip
node
default
[email protected] atm-vc
node
default
[email protected] Bridge
node
default
[email protected] ipv6
node
default
[email protected] ip
queue best-effort
default
[email protected] atm
queue best-effort
default
[email protected] atm-vc
queue best-effort
default
[email protected] Bridge
queue best-effort
default
[email protected] ipv6
queue best-effort
default
queue t-class
profile group
------- ------default
default
default
default
default
default
default
default
default
Example: QoS Profile Attachment to Port
In Figure 38 on page 136, the major ATM interface, 11/0, has QoS profile qp1 explicitly
attached. The major ATM interface has three ATM subinterfaces configured:
•
ATM 11/0.1—No QoS profile is explicitly attached
•
ATM 11/0.2—QoS profile qp2 is attached
•
ATM 11/0.3—No QoS profile is explicitly attached
The qp1 profile overrides the QoS port-type profile, atm-default, on subinterfaces 1 and
3. It does not override profile qp2, which was explicitly attached to subinterface 2.
Copyright © 2012, Juniper Networks, Inc.
135
JunosE 14.1.x Quality of Service Configuration Guide
Figure 38: Attaching QoS Profile to ATM Interface and Subinterface
To configure this example:
1.
Create and configure QoS profile qp1.
host1(config)#qos-profile qp-1
host1(config-qos-profile)#atm-vp node scheduler-profile sp1
host1(config-qos-profile)#atm-vc queue traffic-class tc1 scheduler-profile sp1
queue-profile qp1
host1(config-qos-profile)#atm-vc queue traffic-class tc2 scheduler-profile sp2
queue-profile qp2
host1(config-qos-profile)#atm-vc queue traffic-class tc3 scheduler-profile sp3
queue-profile qp3
host1(config-qos-profile)#atm-vc queue traffic-class tc4 scheduler-profile sp4
queue-profile qp4
host1(config-qos-profile)#atm-vc queue traffic-class tc5 scheduler-profile sp5
queue-profile qp5
host1(config-qos-profile)#exit
2. Create and configure QoS profile qp2.
host1(config)#qos-profile qp2
host1(config-qos-profile)#atm-vp node scheduler-profile sp1
host1(config-qos-profile)#atm-vc queue traffic-class tc1 scheduler-profile sp1
queue-profile qp1
host1(config-qos-profile)#atm-vc queue traffic-class tc2 scheduler-profile sp2
queue-profile qp2
host1(config-qos-profile)#atm-vc queue traffic-class tc3 scheduler-profile sp3
queue-profile qp3
host1(config-qos-profile)#exit
3. Attach QoS profile qp1 to ATM interface 11/0.
host1(config)#interface atm 11/0
host1(config-if)#qos-profile qp1
host1(config-if)#exit
4. Attach QoS profile qp2 to ATM subinterface 11/0.2.
host1(config)#interface atm 11/0.2
host1(config-subif)#qos-profile qp2
host1(config-subif)#exit
host1(config)#exit
5. Display the QoS interface hierarchy for ATM 11/0.
host1#show qos interface-hierarchy interface atm 11/0
qos
interface rule
traffic
scheduler
136
queue
t-class
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
profile
type
type
--------------- [email protected]/0
atm
queue
[email protected]/0 atm-vp
node
[email protected]/0 atm-vc
queue
[email protected]/0 atm-vc
queue
[email protected]/0 atm-vc
queue
[email protected]/0 atm-vc
queue
[email protected]/0 atm-vc
queue
[email protected] atm-vc ATM11/0.2:
qos
interface rule
profile
type
type
--------------- [email protected]/0.2 atm-vp
node
[email protected]/0.2 atm-vc
queue
[email protected]/0.2 atm-vc
queue
[email protected]/0.2 atm-vc
queue
@ATM11/0
atm
queue
[email protected]/0
atm-vc
queue
[email protected]/0
atm-vc
queue
class
------best-effort
tc1
tc2
tc3
tc4
tc5
traffic
class
------tc1
tc2
tc3
best-effort
tc4
tc5
profile
--------default
sp1
sp1
sp2
sp3
sp4
sp5
profile group
------- ------default
default
qp1
qp2
qp3
qp4
qp5
scheduler
profile
--------sp1
sp1
sp2
sp3
default
sp4
sp5
queue t-class
profile group
------- ------default
qp1
qp2
qp3
default
qp4
qp5
Note that:
•
ATM best-effort queues are created on ATM interface @ATM11/0 and ATM 11/0.2.
•
ATM 11/0.2 subinterface has three queues (traffic classes tc1, tc2, and tc3) that come
from QoS profile qp2. Traffic class tc3 is defined in both QoS profile qp1 and qp2. The
QoS profile attached closest to the leaf node is used, however. Traffic class tc3 comes
from QoS profile qp2, which is attached to ATM subinterface ATM 11/0.2.
•
Queues for traffic classes tc4 and tc5 come from QoS profile qp1, which is attached
at the ATM major interface.
Example: DiffServ Configuration with Multiple Traffic-Class Groups
In this example configuration, a service provider offers three types of service: data,
video-on-demand, and voice. Each service has different QoS requirements. The data
users log in and can dynamically subscribe to video and voice services. The data service
is a best-effort service. The video service is a better than best effort service, which
corresponds to assured forwarding PHB. The voice service is a low-latency service, which
corresponds expedited forwarding PHB.
You can meet these varying traffic requirements by creating a traffic class group for each
of the three services. Creating groups enables you to apply QoS to the group nodes. For
example, you could specify the following:
•
The voice service gets low-latency, strict priority treatment through the fabric and on
egress. You configure an assured rate of 20 Mbps, and shape the traffic to 20 Mbps.
Each voice user is shaped to 1 Mbps to support up to 20 voice subscribers without
oversubscription. Call admission control ensures that there are no more than 20
simultaneous voice service subscribers. Unused bandwidth is divided among the video
and best-effort users.
•
The video service is scheduled by the HRR scheduler and gets the hierarchical assured
rate. You shape the video traffic to 50 Mbps. Each video service user is assured 1 Mbps,
Copyright © 2012, Juniper Networks, Inc.
137
JunosE 14.1.x Quality of Service Configuration Guide
and is shaped to 1 Mbps to support up to 50 video subscribers without oversubscription.
Call admission control ensures that there are no more than 50 simultaneous video
service subscribers. Unused bandwidth is divided among the best-effort users.
•
The best-effort data service is scheduled by the HRR scheduler and gets the bandwidth
left over from the voice and video services.
Configure this implementation as follows.
1.
Create the video and voice traffic classes. Assign the voice traffic class a strict-priority
treatment within the fabric. Manually creating a best-effort traffic class is superfluous
because the router creates this class by default.
host1(config)#traffic-class video
host1(config-traffic-class)#exit
host1(config)#traffic-class voice
host1(config-traffic-class)#fabric-strict-priority
host1(config-traffic-class)#exit
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
2. Create scheduler profiles for the assured forwarding, expedited forwarding, and
best-effort groups. Specify strict priority scheduling for the expedited forwarding
traffic and shape it to 20 Mbps.
host1(config)#scheduler-profile expeditedGroup
host1(config-scheduler-profile)#strict-priority
host1(config-scheduler-profile)#shaping-rate 20000000
host1(config-scheduler-profile)#assured-rate 20000000
host1(config-scheduler-profile)#exit
3. Assured traffic is not strict, so it is scheduled by the HRR scheduler. Shape the assured
traffic to 50 Mbps, and specify the hierarchical assured rate to give assured traffic
preferential treatment over best-effort traffic.
host1(config)#scheduler-profile assuredGroup
host1(config-scheduler-profile)#shaping-rate 50000000
host1(config-scheduler-profile)#assured-rate hierarchical
host1(config-scheduler-profile)#exit
4. Best effort traffic is also scheduled by the HRR scheduler. You do not apply any shaping
for this traffic because it simply gets the leftover bandwidth.
host1(config)#scheduler-profile bestEffortGroup
host1(config-scheduler-profile)#exit
5. Create scheduler profiles for the voice, video, and best-effort service classes. Shape
voice and video to 1 Mbps. Because you do not specify a shaping rate, the best-effort
traffic can borrow unused bandwidth.
host1(config)#scheduler-profile voice
host1(config-scheduler-profile)#shaping-rate 1000000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile video
host1(config-scheduler-profile)#shaping-rate 1000000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile best-effort
host1(config-scheduler-profile)#exit
138
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
6. Put the video traffic class into the assured-forwarding traffic-class group and specify
the group as strict priority. Put the voice traffic class into the expedited-forwarding
traffic-class group. Put the best-effort traffic class into the best-effort traffic-class
group.
host1(config)#traffic-class-group assured-forwarding auto-strict-priority
host1(config-traffic-class-group)#traffic-class video
host1(config-traffic-class-group)#exit
host1(config)#traffic-class-group expedited-forwarding extended
host1(config-traffic-class-group)#traffic-class voice
host1(config-traffic-class-group)#exit
host1(config)#traffic-class-group best-effort extended
host1(config-traffic-class-group)#traffic-class best-effort
host1(config-traffic-class)#exit
7. Create a QoS profile that contains the group rules for the assured-forwarding,
expedited-forwarding, and best-effort traffic-class groups.
host1(config)#qos-profile qpDiffServExample
host1(config-qos-profile)#ethernet group assured-fwd scheduler-profile assuredGroup
host1(config-qos-profile)#ethernet group expedited-fwd scheduler-profile
expeditedGroup
host1(config-qos-profile)#ethernet group best-effort scheduler-profile bestEffortGroup
host1(config-qos-profile)#ip node group assured-fwd scheduler-profile default
host1(config-qos-profile)#ip node group expedited-fwd scheduler-profile default
host1(config-qos-profile)#ip node group best-effort scheduler-profile default
host1(config-qos-profile)#ip queue traffic-class voice scheduler-profile voice
host1(config-qos-profile)#ip queue traffic-class video scheduler-profile video
host1(config-qos-profile)#ip queue traffic class best-effort scheduler-profile best-effort
host1(config-qos-profile)#exit
8. Attach the QoS profile to an Ethernet port.
host1(config)#interface fastEthernet 9/0
host1(config-if)#qos-profile qpDiffServExample
host1(config-if)#exit
Figure 39 on page 140 shows this configuration with 3 users: IP 1, IP 2, and IP 3.
•
IP 1 subscribes to data, video, and voice services.
•
IP 2 subscribes to data and video services.
•
IP 3 subscribes to data and voice services.
Copyright © 2012, Juniper Networks, Inc.
139
JunosE 14.1.x Quality of Service Configuration Guide
Figure 39: DiffServ Configuration with Multiple Traffic-Class Groups
The following set of commands configures the QoS profile detailed in Step 7 previously.
Each line in the profile is known as a profile rule. The numbers associated with each rule
correspond to the numbers in Figure 39 on page 140.
host1(config)#qos-profile qpDiffServExample
(1) (config-qos-profile)#ethernet group best-effort scheduler-profile bestEffortGroup
(2) (config-qos-profile)#ethernet group assured-fwd scheduler-profile assuredGroup
(3) (config-qos-profile)#ethernet group expedited-fwd scheduler-profile expeditedGroup
(4) (config-qos-profile)#ip node group best-effort scheduler-profile default
(5) (config-qos-profile)#ip node group assured-fwd scheduler-profile default
(6) (config-qos-profile)#ip node group expedited-fwd scheduler-profile default
(7) (config-qos-profile)#ip queue traffic-class voice scheduler-profile voice
(8) (config-qos-profile)#ip queue traffic-class video scheduler-profile video
(9) (config-qos-profile)#ip queue traffic class best-effort scheduler-profile best-effort
When you specify a group rule within an attached QoS profile, nodes and queue may be
attached to group nodes. If the qpDiffServExample QoS profile used in the preceding
example did not contain group rules, then the groups would exist with no attachments.
For example, the following set of commands configures the same QoS profile, but with
the group removed, as shown in Figure 40 on page 141.
host1(config)#qos-profile qpDiffServExample
host1(config-qos-profile)#ip node scheduler-profile default
host1(config-qos-profile)#ip queue traffic-class voice scheduler-profile voice
host1(config-qos-profile)#ip queue traffic-class video scheduler-profile video
host1(config-qos-profile)#ip queue traffic class best-effort scheduler-profile best-effort
In this case, the configuration creates the groups but does not place any of the traffic
classes into the groups. Figure 40 on page 141 shows that IP 1, IP 2, and IP 3 contain the
ungrouped traffic classes, data, video, and voice.
140
Copyright © 2012, Juniper Networks, Inc.
Chapter 16: Configuring and Attaching QoS Profiles to an Interface
Figure 40: DiffServ Configuration Without Traffic-Class Groups
Because the BE, AF, and EF groups have no queues, their scheduler attributes (weight,
assured rate, shaping rate) do not affect the HRR scheduler's distribution of bandwidth.
Copyright © 2012, Juniper Networks, Inc.
141
JunosE 14.1.x Quality of Service Configuration Guide
142
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 17
Configuring Shadow Nodes for Queue
Management
This chapter provides information for configuring shadow nodes on E Series routers.
QoS topics are discussed in the following sections:
•
Shadow Node Overview on page 143
•
Shadow Nodes and Scheduler Behavior on page 144
•
Managing System Resources for Shadow Nodes on page 145
•
Configuring Shadow Nodes on page 146
•
Example: Shadow Nodes over VLAN and IP Queues on page 147
•
Example: Shadow Nodes on the Same Traffic-Class Group on page 148
•
Example: Shadow Nodes on Different Traffic-Class Groups on page 148
Shadow Node Overview
The frame forwarding ASIC (FFA) and the 10-Gigabit Ethernet forwarding ASIC (TFA)
require that all queues be above the port scheduler node with two additional scheduler
nodes. The router implicitly creates phantom nodes when you do not specify two scheduler
nodes above the port interface. Phantom nodes cannot be monitored using show
commands.
Phantom nodes have the same weight as the associated queues and are not shaped,
which preserves the behavior of the queues as if they are at their original level.
Figure 41 on page 144 compares a scheduler hierarchy with and without phantom nodes.
Copyright © 2012, Juniper Networks, Inc.
143
JunosE 14.1.x Quality of Service Configuration Guide
Figure 41: Phantom Nodes
The first scheduler hierarchy displayed in Figure 41 on page 144 shows Queue A, Queue B,
and Node C at the same scheduler level and with the same weight of 8. They equally
share the bandwidth available to the level 1 node.
The second scheduler hierarchy in Figure 41 on page 144 shows the phantom nodes the
router added for Queue A and Queue B. It also shows the weight associated with Queue
A and Queue B. As the result, Phantom A, Phantom B, and Node C share the bandwidth
of the level 1 node. The phantom nodes do not change the behavior of Queue A and
Queue B.
Related
Documentation
•
Shadow Nodes and Scheduler Behavior on page 144
•
Configuring Shadow Nodes on page 146
Shadow Nodes and Scheduler Behavior
You can configure shadow nodes when you want to explicitly set the queues at the
required scheduler level for any line module with the EFA, EFA2, FFA, or TFA hardware.
Shadow nodes enable you to specify the weight and the shaping rate of the added node.
Shadow nodes can also conserve scheduler node resources.
You define the shadow node by referencing the shadow node in the QoS profile. Like
phantom nodes, the router creates shadow nodes only when the additional node is
required to meet the proper queue level.
The router creates shadow nodes after all the nodes and group nodes are created, and
only when a node of the same interface type has existed in the same group of the
scheduler hierarchy.
Shadow nodes can be configured for all interface types available for nodes.
NOTE: Shadow nodes ignore any shared-shaping rates in a scheduler profile.
144
Copyright © 2012, Juniper Networks, Inc.
Chapter 17: Configuring Shadow Nodes for Queue Management
Figure 42 on page 145 compares a scheduler hierarchy with and without shadow nodes.
Figure 42: Shadow Nodes
Unlike phantom nodes, shadow nodes can alter the behavior of the scheduler.
The first scheduler hierarchy in Figure 42 on page 145 shows VLAN interfaces A, B and C
stacked above the same S-VLAN interface. Interfaces A and B have the same scheduler
hierarchy (referencing qos-profile AB) and have a VLAN queue stacked directly above
the S-VLAN node. In this case, VLAN interfaces A, B and C share the same 33 percent
bandwidth available to the S-VLAN node.
Interface C has a VLAN queue stacked above a VLAN node and the S-VLAN node
(referencing qos-profile C).
Specifying a shadow node forces the VLAN queue to the proper scheduler level. The
second scheduler hierarchy in Figure 42 on page 145 shows the shadow node that is applied
after QoS profile AB-shadow is assigned to interfaces A and B. As a result, interfaces A
and B have 25 percent of the S-VLAN bandwidth and interface C has 50 percent of the
S-VLAN bandwidth.
The S-VLAN shadow node uses the same scheduler profile as the queue.
To provide interfaces A and B with the proper weight, configure the weight of the shadow
node to the sum of its queue weight. You can use hierarchical parameter instances and
weight expressions to configure an appropriate weight.
Related
Documentation
•
Supported Interface Types for QoS Profiles on page 125
•
Hierarchical QoS Parameters Overview on page 249
Managing System Resources for Shadow Nodes
Each ASIC hardware type provides different node and queue resources.
Level 1 queues stack directly above the port; level 2 queues stack above a node and the
port. The router implicitly creates the level 1 and level 2 queues.
Copyright © 2012, Juniper Networks, Inc.
145
JunosE 14.1.x Quality of Service Configuration Guide
Shadow node queues stack above a port node, a level 1 node, and a shadow node.
Therefore, the shadow node queue is at level 3. The router does not implicitly create any
nodes for the queues.
You can configure 64,000 level 1 queues using shadow nodes by specifying the group
and shadow node rules in the QoS profile. Each level 1 queue is stacked above the port,
the group node, and the shadow node; therefore, it requires 64,002 descriptors.
Table 15 on page 146 lists the number of nodes required to create a queue.
Table 15: Shadow Node Consumption of Node and Queue Resources
Required Nodes
Related
Documentation
Level 1
Queues
(at Port)
Level 2
Queues
(at Node)
Shadow
Node Queue
3
2
1
•
Managing System Resources for Nodes and Queues on page 121
•
Scaling Subscribers on the TFA ASIC with QoS on page 122
Configuring Shadow Nodes
Before you configure shadow nodes:
•
Configure the traffic classes.
See “Configuring Traffic Classes That Define Service Levels” on page 14.
•
Configure the queuing hierarchy.
See “Configuring Queue Profiles to Manage Buffers and Thresholds” on page 22.
•
Configure the scheduler hierarchy and shaping with scheduler profiles.
See “Configuring a Scheduler Hierarchy” on page 47.
To add a shadow node to a QoS profile:
1.
Create a QoS profile and enter QoS Profile Configuration mode.
host1(config)#qos-profile shadowNode
host1(config-qos-profile)#
2. Configure a scheduler node for each interface of the specified type.
host1(config-qos-profile)#atm node scheduler-profile default
3. Configure a shadow node for each interface of the specified type.
host1(config-qos-profile)#atm shadow-node scheduler-profile default
4. Configure a queue for interfaces in the specified traffic class.
host1(config-qos-profile)#atm queue traffic-class strict-priority scheduler-profile
scheduler1
146
Copyright © 2012, Juniper Networks, Inc.
Chapter 17: Configuring Shadow Nodes for Queue Management
5. (Optional) Configure a traffic-class group and reference a scheduler profile in the
QoS profile.
host1(config-qos-profile)#atm group default scheduler-profile default
The router creates the shadow node when the following conditions are met:
Related
Documentation
•
After all the nodes and group nodes are created.
•
If the queues are not at the required scheduler level.
•
When a node of the same interface type has existed in the same group of the scheduler
hierarchy.
•
Shadow Node Overview on page 143
•
Shadow Nodes and Scheduler Behavior on page 144
•
Managing System Resources for Shadow Nodes on page 145
•
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles on page 149
•
group
•
node
•
qos-profile
•
queue
•
shadow-node
Example: Shadow Nodes over VLAN and IP Queues
This example illustrates how and when the system creates shadow node after you
configure it.
In the first part, you specify an Ethernet node, an Ethernet group node, a VLAN node, a
VLAN shadow node, and an IP queue. Because the IP queue is at a proper scheduler level
without the shadow node, the system does not create a shadow node.
host1(config-qos-profile)#ethernet node
host1(config-qos-profile)#ethernet group default scheduler-profile default
host1(config-qos-profile)#vlan node
host1(config-qos-profile)#vlan shadow-node
host1(config-qos-profile)#ip queue traffic-class best-effort scheduler-profile default
In the second part, you specify an Ethernet node, a VLAN node, a shadow node, and a
VLAN queue. The system creates the shadow node so that the VLAN queue is at the
proper scheduler level.
host1(config-qos-profile)#ethernet node
host1(config-qos-profile)#vlan node
host1(config-qos-profile)#vlan shadow-node
host1(config-qos-profile)#vlan queue traffic-class best-effort scheduler-profile default
Copyright © 2012, Juniper Networks, Inc.
147
JunosE 14.1.x Quality of Service Configuration Guide
Example: Shadow Nodes on the Same Traffic-Class Group
This example demonstrates how to configure the shadow nodes on the same traffic-class
group.
You specify a VLAN node, an IP node, an IP video queue, and a best-effort Ethernet queue.
The system adds the Ethernet node, the VLAN node, the IP node, and the IP video queue
to the scheduler hierarchy. Even though the two queues belong to the same traffic-class
group, the Ethernet best-effort queue is stacked above the shadow node and the IP video
queue is stacked above the IP node.
host1(config-qos-profile)#ethernet node
host1(config-qos-profile)#ethernet shadow-node scheduler profile shadow
host1(config-qos-profile)#ethernet queue traffic-class best-effort scheduler-profile
default
host1(config-qos-profile)#vlan node
host1(config-qos-profile)#ip node
host1(config-qos-profile)#ip queue traffic-class video scheduler-profile default
Example: Shadow Nodes on Different Traffic-Class Groups
This example shows how to configure shadow nodes on different traffic-class groups.
After adding the voice queue in the auto-strict priority group named strict, the system
stacks the IP voice queue above the Ethernet port, the voice group, and the phantom
node.
host1(config-qos-profile)#ethernet node
host1(config-qos-profile)#ethernet shadow-node scheduler profile shadow
host1(config-qos-profile)#ethernet queue traffic-class best-effort scheduler-profile
default
host1(config-qos-profile)#vlan node
host1(config-qos-profile)#ip node
host1(config-qos-profile)#ip queue traffic-class video scheduler-profile default
host1(config-qos-profile)#ethernet group voice-group scheduler-profile strict
host1(config-qos-profile)#ip queue traffic-class voice scheduler-profile default
148
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 18
Monitoring a Scheduler Hierarchy on an
Interface with QoS Profiles
This chapter provides information for monitoring a scheduler hierarchy on an interface
with QoS profiles.
QoS topics are discussed in the following sections:
•
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles on page 149
Monitoring a Scheduler Hierarchy on an Interface with QoS Profiles
To monitor a scheduler hierarchy on an interface, see:
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the Configuration of QoS Port-Type Profiles on page 325
•
Monitoring the Configuration of QoS Profiles on page 326
•
Monitoring the Configuration of Scheduler Profiles on page 313
•
Monitoring QoS Parameter Instances on page 337
Copyright © 2012, Juniper Networks, Inc.
149
JunosE 14.1.x Quality of Service Configuration Guide
150
Copyright © 2012, Juniper Networks, Inc.
PART 5
Interface Solutions for QoS
•
Configuring an Integrated Scheduler to Provide QoS for ATM on page 153
•
Configuring QoS for Gigabit Ethernet Interfaces and VLAN Subinterfaces on page 171
•
Configuring QoS for 802.3ad Link Aggregation Groups on page 177
•
Configuring QoS for L2TP Sessions on page 191
•
Configuring Interface Sets for QoS on page 199
Copyright © 2012, Juniper Networks, Inc.
151
JunosE 14.1.x Quality of Service Configuration Guide
152
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 19
Configuring an Integrated Scheduler to
Provide QoS for ATM
This chapter provides information for configuring an integrated scheduler to provide QoS
for ATM.
QoS topics are discussed in the following sections:
•
ATM Integrated Scheduler Overview on page 153
•
Integrating the HRR Scheduler and SAR Scheduler on page 156
•
Per-Packet Queuing on the SAR Scheduler Overview on page 157
•
Guidelines for Configuring QoS over ATM on page 161
•
Configuring Default Integrated Mode for ATM Interface on page 162
•
Configuring Low-Latency Mode for Per-Port Queuing on ATM Interfaces on page 164
•
Configuring Low-CDV Mode for Per-Port Queuing on ATM Interfaces on page 166
•
Configuring the QoS Shaping Mode for ATM Interfaces on page 169
•
Disabling Per-Port Queuing on ATM Interfaces on page 169
•
Monitoring QoS Configurations for ATM on page 170
ATM Integrated Scheduler Overview
The E Series Broadband Services Router provides extended ATM QoS functionality
through its integrated scheduler. The integrated scheduler consists of two schedulers in
series—the hierarchical round robin (HRR) scheduler and the segmentation and
reassembly (SAR) scheduler.
The integrated scheduler enables you to configure QoS on your ATM networks using the
HRR scheduler that is used on all E Series ASIC-enabled line modules. In addition, you
can use the commercial SAR scheduler to configure traditional ATM cell-based QoS.
Copyright © 2012, Juniper Networks, Inc.
153
JunosE 14.1.x Quality of Service Configuration Guide
NOTE: The term HRR scheduler is used in this chapter to describe the
scheduling performed by the ASIC on the ATM line module. Although the
ASIC might differ depending on the ATM line module, the configuration and
performance of the HRR scheduler are the same. For example, the ERX7xx
models, ERX14xx models, and ERX310 Broadband Services router use the
egress forwarding ASIC (EFA); and the E120 and E320 Broadband Services
Routers use the frame forwarding ASIC (FFA) on the ES2 4G LM.
The HRR scheduler and the SAR scheduler work together as an integrated scheduler for
ATM traffic. The HRR scheduler is configured by default with per-VC and per-IP interface
scheduler nodes, and one best-effort class queue for each IP interface. The SAR scheduler
implements weighted round-robin scheduling with one queue per VC. The VC queues
are grouped into round robins based on the ATM service classes and the VP tunnels you
have configured.
In the default integrated mode, controlled by the ATM application, the SAR scheduler
controls the scheduling via the VC backpressure messages it sends to the HRR scheduler.
When the HRR scheduler receives a backpressure message from the SAR scheduler, the
HRR scheduler disables the node regardless of the node weight or shaping rate. When
the HRR scheduler receives a backpressure release, the scheduler node is reenabled.
Backpressure and the Integrated Scheduler
ATM packets are initially scheduled through the HRR scheduler and then sent to the SAR
scheduler, from where the cells are scheduled onto the circuit. If a SAR VC queue begins
to fill up, the SAR scheduler issues VC backpressure messages to the HRR scheduler. The
backpressure messages control the amount of traffic the HRR scheduler sends to the
SAR scheduler. The SAR scheduler can also exert port backpressure on the HRR scheduler.
In default integrated mode, the SAR sends VC backpressure messages as well as port
backpressure messages. Port backpressure messages are sent to the port node in the
hierarchical scheduler.
Backpressure is a critical mechanism that enables the two schedulers in series to operate
as a single integrated scheduler. Backpressure ensures that packets do not drain over
internal data paths at an unmanageable rate from the HRR scheduler to the SAR
scheduler. Without backpressure from the SAR scheduler, the HRR scheduler does not
detect congestion even if the SAR scheduler is completely saturated.
NOTE: The default QoS profile for ATM (atm-default) contains the atm-vc
node command, which creates the scheduler node that is required by the
SAR VC backpressure mechanism. If the SAR scheduler is operating in default
integrated mode, this command must be in QoS profiles that are attached
to ATM ports.
154
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
Figure 43 on page 155 shows the HRR and SAR schedulers working together to form the
integrated scheduler. When the SAR VC queues start to back up, the SAR exerts VC
backpressure to the corresponding VC node in the HRR scheduler.
VC backpressure affects only VC nodes that are in the default traffic-class group. As a
consequence, VC nodes that are in named traffic-class groups within the scheduler
hierarchy are not affected by VC backpressure.
Figure 43: Integrated ATM Scheduler
In a WAN field programmable gate array (FPGA), the backpressure to the IOA is generated
from the system packet interface (SPI4) first-in, first-out (FIFO) queue buffers that are
partially full. An intermediate FIFO exists between the SIO from the IOA and the SPI4 to
the storage router accelerator (SRA) or Internet eXchange processor (IXP). The SRA on
an ES2 10G line module is almost identical to the ES2 10G Uplink line module, with the
exception that the ES2 10G LM contains an SRA, its associated memory, and a utility
FPGA. When the intermediate FIFO becomes full to half its total capacity, it sets an
overflow that stops transmission of packets to the SPI4 and waits for the next End of
Packet (EOP) bit before sending the next packet. This mechanism sends an
out-of-sequence bit to the SPI4. Therefore, the intermediate FIFO becomes full to half
its total size always on systems that display SRA1 when the WAN status registers are
read.
Copyright © 2012, Juniper Networks, Inc.
155
JunosE 14.1.x Quality of Service Configuration Guide
The following enhancements have been made to the WAN FPGA:
•
The FIFO buffer has been enlarged by 4 times its previous size.
•
When the FIFO buffer is 5/8 full, backpressure is sent to the IOA.
•
When the FIFO buffer is 3/4 full, an overflow is set, an error is sent and an EOP is
generated before the stoppage of transmission of packets to the SPI4. This method
of processing causes the interface to receive a valid protocol.
•
The error registers in the WAN FPGA of ES2 10G ADV LMs are correctly adjusted with
the error data widths of the V5 serial input/output (SIO) status registers.
VP Shaping
VP shaping can be performed either in the SAR or by using the QoS shaping application
using QoS profiles. Configuring VP shaping in the SAR enables traffic to be sent out of
the port at a rate that closely matches strict ATM contract rates. SAR VP shaping is
configured for the physical port using the atm vp-tunnel command.
Related
Documentation
•
Integrating the HRR Scheduler and SAR Scheduler on page 156
•
Per-Packet Queuing on the SAR Scheduler Overview on page 157
Integrating the HRR Scheduler and SAR Scheduler
The proper integration of the two schedulers is an important element of the router’s ATM
QoS support. Three QoS port modes control integration of the two schedulers:
•
Default integrated QoS port mode—ATM application controls the scheduling facilities
of the SAR scheduler.
•
Low-latency QoS port mode—HRR scheduler controls the traffic rate.
•
Low-CDV QoS port mode—HRR scheduler and the SAR scheduler work together to
schedule traffic.
Improper configuration of the two schedulers might create an inefficient scenario in which
extra latency is introduced, or might cause the scheduler to underuse the link.
To configure integration of the schedulers, use the qos-mode-port commands listed in
Table 16 on page 156.
Table 16: qos-mode-port Commands
156
Command
Backpressure
SAR Buffering
Scheduling
no qos-mode-port (default integrated mode)
VC and port
significant
SAR
qos-mode-port low-cdv
port
normal
SAR and HRR
qos-mode-port low-latency
port
minimal
HRR
qos-mode-port
port
minimal
HRR
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
NOTE: For ERX7xx models, ERX14xx models, and the ERX310 router, the
qos-mode-port commands are valid only for the major interface on port 0.
To properly integrate the schedulers, make sure that the HRR and the SAR schedulers
shape packets at the same rate. If the HRR scheduler sends packets at a higher rate than
the SAR scheduler shapes them, the SAR scheduler can become congested and block
the entire port.
To manage the integration of the HRR and the SAR schedulers:
1.
Specify the cell-based shaping mode.
See “Configuring the QoS Shaping Mode for ATM Interfaces” on page 169.
2. Configure low-CDV QoS port mode to ensure that the HRR and SAR schedulers are
configured at the same rate.
See “Configuring Low-CDV Mode for Per-Port Queuing on ATM Interfaces” on page 166.
3. Configure the QoS application to control the SAR scheduler’s operation. In this mode
you configure both schedulers using scheduler profiles and QoS profiles. The E Series
router then ensures that VPs and VCs are shaped to the same rates in both schedulers.
NOTE: You can also use the QoS cell mode application with QoS
parameters to manage the integration of HRR and SAR schedulers.
Specifying the QoS cell mode application with the qos-parameter-define
command enables you to configure a port with either frame or cell shaping
mode and then configure the port for low-CDV port mode.
Related
Documentation
•
Scheduler Hierarchy Overview on page 45
•
QoS Profile Overview on page 121
•
QoS Parameter Overview on page 215
Per-Packet Queuing on the SAR Scheduler Overview
You can configure port queuing on the SAR scheduler, enabling per-packet rather than
per-circuit scheduling. Port queuing mode allows you to use more of the facilities of the
HRR scheduler, which are effectively disabled in default integrated mode, while at the
same time making the SAR scheduler more transparent. In port queuing mode, you use
the QoS application to configure the three levels of the HRR scheduler, including weighted
round robin, traffic shaping, and strict priority scheduling.
You can configure the following modes:
Copyright © 2012, Juniper Networks, Inc.
157
JunosE 14.1.x Quality of Service Configuration Guide
•
Default integrated mode—The ATM SAR scheduler does the scheduling. Both VC and
port backpressure are enabled, and the HRR scheduler does minimal scheduling. The
SAR scheduler performs significant buffering.
•
Low-latency mode—The HRR scheduler does the scheduling. All QoS configurations
are supported. VC backpressure is disabled, port backpressure is set as aggressive,
and the SAR scheduler does minimal buffering. This mode enables the lowest latency
for packets scheduled in the HRR scheduler with strict priority. Because the SAR
scheduler is running with minimal buffering, there is no head-of-line blocking.
•
Low-CDV mode—The HRR and SAR schedulers both perform scheduling; QoS
synchronizes the rates of the two schedulers. All QoS configurations are supported.
VC backpressure is disabled, and port backpressure is set to the default thresholds of
6 MB per OC3 port and 24 MB per OC12 port. In this mode, you can configure shaping
in both the SAR scheduler and the HRR scheduler; low-cdv mode works with cell
shaping mode only and enables relative weighted VCs and hierarchical shaping in the
HRR scheduler. The SAR scheduler performs normal buffering and can shape either
the VC or VP, but not both.
Operational QoS Shaping Mode for ATM Interfaces Overview
The E Series router enables you to shape ATM traffic based on either frames or cells. The
default frame shaping mode provides compatibility with previous versions of the E Series
software. When you use cell shaping mode to configure the shaping or policing rate, the
resulting traffic stream conforms exactly to the policing rates configured in downstream
ATM switches. Using cell shaping also reduces the number of packet drops in the ATM
network.
ATM policing is sensitive to cell delay variation tolerance (CDVT). If the cells on a particular
VC or VP arrive too closely spaced, an ATM switch might drop cells. However, the cell
scheduler reduces CDVT by ensuring cell spacing. The router enables you to use techniques
such as WRR on the HRR scheduler to achieve the proper packet scheduling. You use
the SAR scheduler in series with the HRR scheduler to even out cell bursts into smoother
per-VC and per-VP traffic profiles that bound CDVT. You accomplish this by using the
qos-shaping-mode cell command to configure the QoS shaping mode, and the
qos-mode-port low-cdv command to configure the port queuing mode.
The QoS shaping mode also determines how QoS statistics are reported. Frame shaping
reports QoS statistics such as transmitted bytes and dropped bytes based on bytes
within frames. Cell shaping reports the statistics in bytes within cells and also accounts
for cell encapsulation and padding overhead.
ERX7xx Models, ERX14xx Models, and the ERX310 Router
The ERX7xx models, ERX14xx models, and the ERX310 router use an operational shaping
mode that is based on the following two commands:
158
•
The QoS shaping mode you set with the qos-shaping-mode command on port 0 and
on the specific port
•
The port queuing mode you set with the qos-mode-port command on port 0
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
The router uses the following rules to determine the operational shaping mode used for
a port:
1.
If the specific port has a QoS shaping mode configured, the operational shaping mode
for that port is the same as the QoS shaping mode.
2. If the specific port has no QoS shaping mode configured, the operational shaping
mode is the same as the QoS shaping mode for port 0, if one is configured.
3. If both the specific port and port 0 have no QoS shaping mode configured, the
operational shaping mode is based on the port 0 queuing mode. If the port 0 queuing
mode (set by the qos-mode-port command) is low-cdv, the operational shaping
mode is cell; otherwise the operational shaping mode is frame.
Table 17 on page 159 lists the possible combinations of the two commands and the
resultant operational shaping mode.
Table 17: Operational Shaping Modes for ERX7xx Models, ERX14xx Models,
and the ERX310 Router
Rule
Rule
1
Rule
2
Rule
3
qos-shaping-mode
for the Specific Port
qos-shaping-mode
for Port 0
qos-mode-port
for Port 0
Operational
Shaping Mode
for the
Specific Port
Cell
Cell
low-cdv
Cell
Frame
Frame
low-latency or none
Frame
No shaping mode
Cell
low-cdv
Cell
No shaping mode
Frame
low-latency or none
Frame
No shaping mode
No shaping mode
low-cdv
Cell
No shaping mode
No shaping mode
low-latency or none
Frame
E120 Router and E320 Router
The E120 router and the E320 router use an operational shaping mode that is based on
the following two commands:
•
The QoS shaping mode you set with the qos-shaping-mode command on port 0 and
on the specific port
•
The port queuing mode you set with the qos-mode-port command on port 0 and on
the specific port
The E120 and E320 routers use the following rules to determine the operational shaping
mode used for a port:
Copyright © 2012, Juniper Networks, Inc.
159
JunosE 14.1.x Quality of Service Configuration Guide
1.
If the specific port has a QoS shaping mode configured, the operational shaping mode
for that port is the same as the QoS shaping mode.
2. If the specific port has no QoS shaping mode and a port queuing mode of low-cdv
configured, the operational shaping mode is cell.
3. If the specific port has no QoS shaping mode and no queuing mode configured, the
operational shaping mode for that port is the same as the port 0 QoS shaping mode.
4. If both the specific port and port 0 have no QoS shaping mode configured, the
operational shaping mode is based on the port 0 queuing mode. If the port 0 queuing
mode (set by the qos-mode-port command) is low-cdv, the operational shaping
mode is cell; otherwise the operational shaping mode is frame.
Table 18 on page 160 lists the possible combinations of the two commands and the
resultant operational shaping mode.
Table 18: Operational Shaping Modes for the E120 Router and E320 Router
qos-shaping-mode
for specific port
qos-mode-port
for Specific Port
qos-shaping-mode
for Port 0
qos-mode-port
for Port 0
Operational
Shaping
Mode for
Specific
Port
Cell
low-cdv
Any
Any
Cell
Frame
low-latency or
none
Any
Any
Frame
Rule
2
No shaping mode
low-cdv
Any
Any
Cell
Rule
3
No shaping mode
low-latency or
none
Frame
Any
Frame
No shaping mode
low-latency or
none
Cell
Any
Cell
No shaping mode
low-latency or
none
No shaping mode
low-cdv
Cell
No shaping mode
low-latency or
none
No shaping mode
low-latency or
none
Frame
Rule
Rule
1
Rule
4
Related
Documentation
160
•
Guidelines for Configuring QoS over ATM on page 161
•
Configuring Default Integrated Mode for ATM Interface on page 162
•
Configuring Low-Latency Mode for Per-Port Queuing on ATM Interfaces on page 164
•
Configuring Low-CDV Mode for Per-Port Queuing on ATM Interfaces on page 166
•
Configuring the QoS Shaping Mode for ATM Interfaces on page 169
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
Guidelines for Configuring QoS over ATM
This section provides general QoS configuration guidelines for ATM line modules. These
guidelines are applicable to all JunosE releases.
The SAR scheduler generates VC backpressure as a way to control the flow of packets
from the HRR scheduler to the SAR scheduler. The QoS port modes control integration
of the two schedulers.
In default integrated mode, each VC queue in the SAR generates backpressure for the
ATM VC node in the default traffic class group in the HRR. The backpressure throttles
the dequeue rate of the ATM VC node and the nodes and queues stacked above it in the
scheduler hierarchy. VC backpressure is disabled in low-latency QoS port mode and
low-cdv QoS port mode.
You can configure queues in default integrated mode in the HRR that are immune to VC
backpressure so that you can run voice and video applications. Queues and nodes in any
named traffic class group are not subject to VC backpressure.
In addition, ATM VP and ATM (port level) queues are not stacked above ATM VC nodes,
so queues are not subject to backpressure, regardless of the traffic class group.
Take care not to saturate SAR queues with too much traffic from the HRR, especially
when shaping VP tunnels or VCs in the SAR. You can accomplish this in several ways:
NOTE: These rules apply only to the default integrated mode. VC
backpressure is disabled in low-latency or low-cdv modes. You must account
for cell tax; to do this, use the qos-shaping-mode cell command for the line
module.
•
Use external admission control to guarantee that the sum of non-backpressured traffic
into the VC is less than the SAR shaping rate for the VC.
•
Shape the non-backpressured queues or nodes in the HRR, making the aggregate of
the non-backpressured traffic for a VC less than the VC rate.
•
In JunosE Release 6.0 and later, you can configure a shared shaper on the ATM VC
node in the default traffic class group. Configure the shared-shaping rate to be less
than or equal to the VC shaping rate in the SAR.
•
Special rules apply for VP tunnels shaped in the SAR. When shaping in the SAR,
configure ATM VP nodes in the HRR, and arrange that the aggregate traffic dequeued
from the HRR for that vp-tunnel is less than or equal to the VP tunnel shaping rate in
the SAR.
Use one of the following two techniques for VP tunnels shaped in the SAR:
•
Partition the SAR VP tunnel bandwidth across the ATM VP nodes in the different
traffic class groups in the HRR. For example, using a 4 Mbps VP tunnel, allocate 1
Mbps for the ATM VP node in the default traffic class group, 2 Mbps for the ATM VP
Copyright © 2012, Juniper Networks, Inc.
161
JunosE 14.1.x Quality of Service Configuration Guide
node in the video traffic class group, and 1 Mbps for the ATM VP node in the voice
traffic class group.
When using this technique, keep in mind that the different traffic classes cannot
share bandwidth.
•
Related
Documentation
In JunosE Release 6.1 and later, using the EFA2 ASIC, you can configure shared shaping
on the ATM VP nodes in the HRR to perform bandwidth sharing.
•
Integrating the HRR Scheduler and SAR Scheduler on page 156
•
Guidelines for Configuring Simple and Compound Shared Shaping on page 70
•
Configuring Default Integrated Mode for ATM Interface on page 162
•
Configuring Low-Latency Mode for Per-Port Queuing on ATM Interfaces on page 164
•
Configuring Low-CDV Mode for Per-Port Queuing on ATM Interfaces on page 166
•
Configuring the QoS Shaping Mode for ATM Interfaces on page 169
Configuring Default Integrated Mode for ATM Interface
In the default integrated mode, the SAR scheduler is the dominant scheduler, and it
backpressures the first-stage (HRR) scheduler per VC. Each VC buffers only a few hundred
bytes.
Figure 44 on page 163 shows the default integrated mode.
162
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
Figure 44: Default Integrated Mode
To configure default integrated mode:
1.
From the desired port, set the QoS port mode to default integrated mode.
host1(config)#interface atm 2/0
host1(config-if)#no qos-mode-port
TIP: For ATM interfaces on ERX7xx models, ERX14xx models, and the
ERX310 router, you must specify port 0.
2. Specify the VP shaping rate.
host1(config-if)#atm vp-tunnel 0 2000
TIP: Configuring an ATM VP tunnel sets a shaping rate in the SAR
scheduler. Before configuring an ATM VP tunnel, there must be no PVCs
with the same VPI that you are about to configure. Before using the atm
vp-tunnel command, remove any PVCs from the configuration. You can
reconfigure the PVCs after configuring the shapeless VP tunnel.
Copyright © 2012, Juniper Networks, Inc.
163
JunosE 14.1.x Quality of Service Configuration Guide
3. Specify the shaping rate for the ATM subinterface.
host1(config-if)#interface atm 2/0.5
host1(config-subif)#atm-pvc 5 0 5 aal5snap 768
Related
Documentation
•
Per-Packet Queuing on the SAR Scheduler Overview on page 157
•
Guidelines for Configuring QoS over ATM on page 161
•
atm vp-tunnel
•
interface atm
•
qos-mode-port
Configuring Low-Latency Mode for Per-Port Queuing on ATM Interfaces
In low-latency mode, the SAR scheduler backpressures the HRR scheduler per physical
port; each physical port buffers only a few kilobytes.
When you configure low-latency mode:
•
VC backpressure is disabled.
•
Port backpressure is enabled as aggressive.
•
SAR scheduler performs minimal buffering.
•
HRR scheduler is dominant.
This procedure creates the low-latency mode configuration shown in Figure 45 on page 164.
Figure 45: Low-Latency Mode
164
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
To configure low-latency mode with a strict-priority queue and a best-effort queue:
1.
Configure the traffic class.
host1(config)#traffic-class strict
host1(config-traffic-class)#exit
2. Set the traffic class in the traffic-class group.
host1(config)#traffic-class-group strict
host1(config-traffic-class-group)#traffic-class strict
host1(config-traffic-class-group)#exit
3. Define the scheduler profile for the traffic-class group.
host1(config)#scheduler-profile strict
host1(config-scheduler-profile)#strict-priority
host1(config-scheduler-profile)#exit
4. Configure the QoS profile with two ATM VC queues.
host1(config)#qos-profile low-latency-q-p
host1(config-qos-profile)#atm-vc node
host1(config-qos-profile)#atm-vc queue traffic-class best-effort
host1(config-qos-profile)#atm group strict scheduler-profile strict
host1(config-qos-profile)#atm-vc queue traffic-class strict
host1(config-qos-profile)#exit
5. From the desired port, set the QoS port mode to low latency.
host1(config)#interface atm 2/0
host1(config-if)#qos-mode-port low-latency
host1(config-if)#qos-profile low-latency-q-p
TIP: For ATM interfaces on ERX7xx models, ERX14xx models, and the
ERX310 router, you must specify port 0.
The qos-mode-port command:
Related
Documentation
•
Excludes non-UBR ATM QoS services on any VC on the ATM module; for example,
PCR, nrtVBR, and CBR
•
Cannot be used if shaping is currently configured on the SAR scheduler
•
Cannot be used with ATM VP tunnels with nonzero rates; however, can be used
with tunnels with rates of zero (shapeless tunnels).
•
Per-Packet Queuing on the SAR Scheduler Overview on page 157
•
Guidelines for Configuring QoS over ATM on page 161
•
interface atm
•
qos-mode-port
•
qos-profile
Copyright © 2012, Juniper Networks, Inc.
165
JunosE 14.1.x Quality of Service Configuration Guide
Configuring Low-CDV Mode for Per-Port Queuing on ATM Interfaces
In low-CDV mode, the HRR scheduler and the SAR scheduler operate in concert. In
low-CDV QoS port mode, QoS automatically configures the shaping rate of the VPs, VCs,
or both based on the QoS profile and the scheduler profile. Therefore, the QoS shaping
mode must be set to the cell mode. In low-CDV mode, the SAR scheduler converts
frame-atomic bursts of cells to CDVT-conformant streams of interleaved cells. There is
no VC backpressure, and the port backpressure is loose, so several megabytes of cells
can reside in the SAR buffer pool.
When you configure low-CDV mode:
•
QoS synchronizes the shaping rates for VPs and VCs in the HRR and SAR schedulers.
•
VC backpressure is disabled.
•
Port backpressure is set to default thresholds of 6 MB per OC3 port and 24 MB per
OC12 port.
•
SAR scheduler performs more buffering than in low-latency mode.
•
Use cell QoS shaping mode.
This procedure creates the low-CDV mode with per-VP CDVT configuration shown in
Figure 46 on page 166. Figure 47 on page 167 shows low-CDV mode with per-VC CDVT.
Figure 46: Low-CDV Mode (per-VP CDVT)
166
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
Figure 47: Low-CDV Mode (per-VC CDVT)
To configure low-CDV mode with a strict-priority queue and a best-effort queue:
1.
Configure the traffic class.
host1(config)#traffic-class strict
host1(config-traffic-class)#exit
2. Set the traffic class in the traffic-class group.
host1(config)#traffic-class-group strict
host1(config-traffic-class-group)#traffic-class strict
host1(config-traffic-class-group)#exit
3. Define the scheduler profiles for the traffic-class group.
host1(config)#scheduler-profile strict
host1(config-scheduler-profile)#strict-priority
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile 500k
host1(config-scheduler-profile)#shaping-rate 500000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile 1m
host1(config-scheduler-profile)#shaping-rate 1000000
host1(config-scheduler-profile)#exit
host1(config)#scheduler-profile 2m
host1(config-scheduler-profile)#shaping-rate 2000000
Copyright © 2012, Juniper Networks, Inc.
167
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-scheduler-profile)#exit
4. Configure per-VC CDVT by configuring QoS profile with ATM VC queues.
host1(config)#qos-profile low-cdv-q-p
host1(config-qos-profile)#atm-vc node scheduler-profile 1m
host1(config-qos-profile)#atm-vp node scheduler-profile 2m
host1(config-qos-profile)#atm-vc queue traffic-class best-effort
host1(config-qos-profile)#atm group strict scheduler-profile strict
host1(config-qos-profile)#atm-vc queue traffic-class strict scheduler-profile 500k
host1(config-qos-profile)#exit
5. Configure per-VP CDVT using shapeless VP tunnels that are used when the QoS
application controls SAR scheduler shaping and set the QoS port mode to low CDV.
host1(config)#interface atm 2/0
host1(config-if)#atm vp-tunnel 0 0
host1(config-if)#atm vp-tunnel 1 0
host1(config-if)#qos-mode-port low-cdv
host1(config-if)#qos-profile low-cdv-q-p
host1(config-subif)#interface atm 2/0.5
host1(config-subif)#atm pvc 5 0 5 aal5snap
host1(config-subif)#interface atm 2/0.6
host1(config-subif)#atm pvc 6 0 6 aal5snap
host1(config-subif)#interface atm 2/0.7
host1(config-subif)#atm pvc 7 1 7 aal5snap
host1(config-subif)#interface atm 2/0.8
host1(config-subif)#atm pvc 8 1 8 aal5snap
TIP: For ATM interfaces on ERX7xx models, ERX14xx models, and the
ERX310 router, you must specify port 0.
Configuring an ATM VP tunnel sets a shaping rate in the SAR scheduler.
Before configuring an ATM VP tunnel, there must be no PVCs with the
same VPI that you are about to configure. Before using the atm vp-tunnel
command, remove any PVCs from the configuration. You can reconfigure
the PVCs after configuring the shapeless VP tunnel.
The qos-mode-port command:
Related
Documentation
168
•
Excludes non-UBR ATM QoS services on any VC on the ATM module; for example,
PCR, nrtVBR, and CBR
•
Cannot be used if shaping is currently configured on the SAR scheduler
•
Cannot be used with ATM VP tunnels with nonzero rates; however, can be used
with tunnels with rates of zero (shapeless tunnels)
•
Per-Packet Queuing on the SAR Scheduler Overview on page 157
•
Guidelines for Configuring QoS over ATM on page 161
•
atm vp-tunnel
•
interface atm
Copyright © 2012, Juniper Networks, Inc.
Chapter 19: Configuring an Integrated Scheduler to Provide QoS for ATM
•
qos-mode-port
Configuring the QoS Shaping Mode for ATM Interfaces
In frame mode, SAR shaping is controlled by the ATM application. Shaping is based on
the number of bytes in the frame, without regard to cell encapsulation or padding
overhead; this is the default mode.
In cell mode, SAR shaping is controlled by the QoS application. Shaping is based on the
number of bytes in cells, and accounts for the ATM cell encapsulation and padding
overhead.
To configure the operational shaping mode for ATM interfaces:
1.
Configure the ATM interface.
host1(config)#interface atm 5/1
NOTE: For ATM interfaces on ERX7xx models, ERX14xx models, and the
ERX310 router, you must use port 0.
2. Configure the shaping mode and specify either frame or cell.
host1(config-if)#qos-shaping-mode cell
BEST PRACTICE: We recommend that you clear the statistics counters
whenever you change the QoS shaping mode. Otherwise, the statistics
contain a mixture of frame-based and cell-based values.
Related
Documentation
•
Per-Packet Queuing on the SAR Scheduler Overview on page 157
•
interface atm
•
qos-mode-port
•
qos-shaping-mode
Disabling Per-Port Queuing on ATM Interfaces
You can remove per-port queuing on ATM interfaces and restore the default integrated
mode setting.
When per-port queuing is disabled, both the VC and port backpressure are enabled. The
SAR scheduler performs significant buffering, and the HRR scheduler does minimal
scheduling. The atm-vc node command must appear in the QoS profile attached to the
ATM port.
To disable per-port queuing:
Copyright © 2012, Juniper Networks, Inc.
169
JunosE 14.1.x Quality of Service Configuration Guide
1.
Specify the ATM interface for which you want to disable per-port queuing.
host1(config)#interface atm 2/0
2. Disable per-port queuing on that interface.
host1(config-if)#no qos-mode-port
Related
Documentation
•
Configuring Default Integrated Mode for ATM Interface on page 162
•
interface atm
•
qos-mode-port
Monitoring QoS Configurations for ATM
To monitor QoS configurations for ATM:
170
•
Monitoring the QoS Configuration of ATM Interfaces on page 328
•
Monitoring the QoS Configuration of IP Interfaces on page 330
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the Configuration of QoS Port-Type Profiles on page 325
•
Monitoring the Configuration of QoS Profiles on page 326
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring Shared Shapers on page 315
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 20
Configuring QoS for Gigabit Ethernet
Interfaces and VLAN Subinterfaces
This chapter provides information for configuring QoS for Gigabit Ethernet interfaces
and VLAN subinterfaces.
QoS topics are discussed in the following sections:
•
Providing QoS for Ethernet Overview on page 171
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172
•
Configuring the QoS Shaping Mode for Ethernet Interfaces on page 173
•
Creating a QoS Interface Hierarchy for Bulk-Configured VLAN Subinterfaces with
RADIUS on page 174
•
Monitoring QoS Configurations for Ethernet on page 176
Providing QoS for Ethernet Overview
Managing the bandwidth of downstream ATM traffic to Ethernet interfaces is difficult
because of different layer 2 encapsulations and the ATM cell pad, trailer, and header.
The SAR scheduler is not available for Ethernet interfaces. However, you can still configure
the operational shaping mode to shape downstream ATM traffic based on either frames
or cells. Configuring cell-based shaping enables you to reduce packet drops in the Ethernet
network by adjusting shaping for the ATM cell pad, trailer, and header.
You can also use RADIUS to provide QoS on bulk-configured VLAN subinterfaces.
Related
Documentation
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172
•
Creating a QoS Interface Hierarchy for Bulk-Configured VLAN Subinterfaces with
RADIUS on page 174
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
Copyright © 2012, Juniper Networks, Inc.
171
JunosE 14.1.x Quality of Service Configuration Guide
QoS Shaping Mode for Ethernet Interfaces Overview
The SAR scheduler is not available for Ethernet interfaces. However, you can still configure
the operational shaping mode to shape ATM traffic based on either frames or cells by
issuing the qos-shaping-mode command.
Frame shaping mode is the default for Ethernet interfaces on all E Series Broadband
Services Routers. You can configure cell shaping mode for the following interfaces:
•
Gigabit Ethernet interfaces on the GE-2 line module and the GE-HDE line module on
ERX routers
•
Gigabit Ethernet and 10-Gigabit Ethernet interfaces on the ES2 4G LM on E120 and
E320 Broadband Services routers
•
10-Gigabit Ethernet interfaces on the ES2 10G LM on E120 and E320 routers
When you use cell shaping mode to configure the shaping or policing rate, the resulting
traffic stream conforms exactly to the policing rates configured in downstream ATM
switches. Using cell shaping also reduces the number of packet drops in the Ethernet
network.
The setting for port 0 provides the default shaping mode for all ports on the same I/O
module or IOA. Individual ports can have a specific shaping mode setting that overrides
the setting for port 0.
If you do not configure the QoS shaping mode for a port, the shaping mode is calculated
using the value for port 0 on the same I/O module or IOA. If the port's shaping mode is
configured, the system uses the port's shaping mode.
Table 19 on page 172 lists the possible combinations of the qos-shaping-mode command
and the resultant operational shaping mode.
Table 19: Operational Shaping Modes
172
qos-shaping-mode
for Port 0
qos-shaping-mode
for Other Ports
Operational
Shaping Mode
Cell
Cell
Cell
Frame
Frame
Frame
Cell
Frame
Frame
Frame
Cell
Cell
Frame
No shaping mode
Frame
Cell
No shaping mode
Cell
No shaping mode
No shaping mode
Frame
Copyright © 2012, Juniper Networks, Inc.
Chapter 20: Configuring QoS for Gigabit Ethernet Interfaces and VLAN Subinterfaces
To account for different layer 2 encapsulations, you can configure the byte adjustment
application using QoS parameters. The byte adjustment is calculated differently for
frame shaping mode than cell shaping mode.
NOTE: You can also use the QoS cell mode application with QoS parameters
to configure the shaping mode for a port.
Related
Documentation
•
Configuring the QoS Shaping Mode for Ethernet Interfaces on page 173
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
Configuring the QoS Shaping Mode for Ethernet Interfaces
You can configure the shaping mode for an Ethernet interface.
In frame mode, traffic shaping is controlled by the system. Shaping is based on the number
of bytes in the frame, without regard to cell encapsulation or padding overhead; this is
the default mode for all E Series routers.
In cell mode, shaping is controlled by the QoS application. Shaping is based on the number
of bytes in cells, and accounts for the ATM cell encapsulation and padding overhead.
This option is available only for Gigabit Ethernet interfaces configured on the GE-2 line
module, the GE-HDE line module, and the ES2 4G LM, and 10-Gigabit Ethernet interfaces
configured on the ES2 4G LM.
1.
Configure the Ethernet interface.
host1(config)#interface gigabitEthernet 6/0/0
2. Configure the shaping mode and specify frame or cell.
host1(config)#qos-shaping-mode cell
BEST PRACTICE: We recommend that you clear the statistics counters
whenever you change the QoS shaping mode. Otherwise, the statistics
contain a mixture of frame-based and cell-based values.
Related
Documentation
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172
•
interface gigabitEthernet
•
qos-shaping-mode
Copyright © 2012, Juniper Networks, Inc.
173
JunosE 14.1.x Quality of Service Configuration Guide
Creating a QoS Interface Hierarchy for Bulk-Configured VLAN Subinterfaces with
RADIUS
Bulk-configured VLAN subinterfaces are created dynamically, so you cannot apply a QoS
profile directly to a VLAN subinterface. Instead, you can use subscriber service profiles
and RADIUS to apply QoS profiles.
To create an interface hierarchy for bulk-configured VLAN subinterfaces:
1.
Configure the bulk-configured VLAN subinterface.
host1(config)#interface gigabitEthernet 6/0/0
host1(config-if)#encapsulation vlan
host1(config-if)#auto-configure vlan
host1(config-if)#vlan bulk-config BulkConfig
host1(config-if)#profile vlan bulk-config BulkConfig vlanBulkProfile
host1(config-if)#vlan bulk-config BulkConfig vlan-range 1 3600
2. Configure the profiles and service profile for the bulk-configured VLAN subinterfaces
and the IP upper-layer encapsulation.
host1(config-if)#profile vlanBulkProfile
host1(config-profile)#vlan auto-configure ip
host1(config-profile)#vlan profile ip ipProfile
host1(config-profile)#vlan service-profile vlanServiceProfile
host1(config-profile)#exit
host1(config-profile)#profile ipProfile
host1(config-profile)#ip unnumbered loopback 0
host1(config-profile)#exit
3. Configure an IP service profile.
host1(config)#ip service-profile vlanServiceProfile
host1(config-service-profile)#user-name "[email protected]"
host1(config-service-profile)#password 56789
host1(config-service-profile)#exit
TIP: Configure the service profile in the default virtual router or the virtual
router in which RADIUS is configured.
4. Access the RADIUS server and assign values for the RADIUS attributes necessary for
creating a QoS interface hierarchy, including the QoS profile name. For example:
•
Juniper VSA Qos-Profile-Name [26-26]—QoS profile name
•
(Optional) Juniper VSA Virtual-Router [26-1]—Virtual router name
•
(Optional) IETF VSA [22]—Framed-Route
5. Verify that the attributes are being used by RADIUS.
The highlighted output from this debug log message shows the QoS profile, virtual
router, and framed route attributes configured through RADIUS.
174
Copyright © 2012, Juniper Networks, Inc.
Chapter 20: Configuring QoS for Gigabit Ethernet Interfaces and VLAN Subinterfaces
DEBUG 06/17/2007 14:50:19 radiusSendAttributes: ACCESS-REQUEST attributes
(default)
DEBUG 06/17/2007 14:50:19 radiusSendAttributes:
username attr added:
[email protected]
DEBUG 06/17/2007 14:50:19 radiusSendAttributes: acct-session-id attr added: erx
GigabitEthernet 2/1.100:100:0004194348
DE BUG 06/17/2007 14:50:19 radiusSendAttributes:
user-password attr added:
<value withheld>
DEBUG 06/17/2007 14:50:19 radiusSendAttributes: calling-station-id attr added:
#ananke#E21#100
DEBUG 06/17/2007 14:50:19 radiusSendAttributes:
nas-port-type attr added:15
DEBUG 06/17/2007 14:50:19 radiusSendAttributes:
nas-port attr added:
553648228
DEBUG 06/17/2007 14:50:19 radiusSendAttributes:
nas-port-id attr added:
GigabitEthernet 2/1.100:100
DEBUG 06/17/2007 14:50:19 radiusSendAttributes:
nas-ip-address attr added:
172.26.27.50
DEBUG 06/17/2007 14:50:19 radiusSendAttributes:
nas-identifier attr added:
ananke
DEBUG 06/17/2007 14:50:19 radiusAttributes: USER ATTRIBUTES: ([email protected])
DEBUG 06/17/2007 14:50:19 radiusAttributes:
class attr: (binary data)
DEBUG 06/17/2007 14:50:19 radiusAttributes: total eap message attr length = 0
DEBUG 06/17/2007 14:50:19 radiusAttributes: framed route attr: 40.40.41.0/30 0.0.0.0
DEBUG 06/17/2007 14:50:19 radiusAttributes:
ingress policy name (vsa)
attr: test
DEBUG 06/17/2007 14:50:19 radiusAttributes:
ingress policy stats (vsa)
attr: 1
DEBUG 06/17/2007 14:50:19 radiusAttributes:
egress policy name (vsa) attr:
test
DEBUG 06/17/2007 14:50:19 radiusAttributes:
egress policy stats (vsa)
attr: 1
DEBUG 06/17/2007 14:50:19 radiusAttributes: qos profile name (vsa) attr: test
DEBUG 06/17/2007 14:50:19 radiusAttributes: virtual router name (vsa) attr: server
6. Verify that the interface was created in the default virtual router.
host1:server# show ip interface brief
Interface
IP-Address
Status
Protocol
-------------------- ---------------------------- ---------null0
255.255.255.255/32 up
up
loopback0
10.1.0.1/24
up
up
GigabitEthernet6/0.100 Unnumbered
up
up
Description
-------------
7. Verify that the framed route is installed.
host1:server# show ip route
Prefix/Length
Type
Next Hop
Dst/Met
Interface
------------------ --------- --------------- ---------- ----------------------10.1.0.0/24
Connect
10.1.0.1
0/0
loopback0
40.40.41.0/30 Access 0.0.0.0
3/2
GigabitEthernet6/0/0.100
TIP: When you initially create the user record for dynamic IP interfaces
using VSA [22], you might not know the next hop. In this case, specify the
value 0.0.0.0 for the next hop. The E Series router then assigns the
subinterface associated with the user as the next hop in the routing table.
8. Verify that the correct QoS profile is attached to the VLAN subinterface.
Copyright © 2012, Juniper Networks, Inc.
175
JunosE 14.1.x Quality of Service Configuration Guide
host1:server#show qos interface-hierarchy interface gigabitEthernet
6/0/0.100
[email protected] ip GigabitEthernet6/0/0.100:
t-class interface rule traffic scheduler queue
qos profile
group
type
type
class
profile profile
------------------------ ------- --------- ----- ------- --------- [email protected]/0/0.100 vlan
node default default
Related
Documentation
•
For information about bulk-configured VLAN subinterfaces, see JunosE Link Layer
Configuration Guide
•
Juniper Networks VSAs
•
Understanding Subscriber Management
•
auto-configure vlan
•
encapsulation vlan
•
interface gigabitEthernet
•
ip service-profile
•
profile
•
profile vlan bulk-config
•
vlan auto-configure
•
vlan bulk-config
•
vlan profile
•
vlan service-profile
•
show ip interface
•
show ip route
•
show qos interface-hierarchy
Monitoring QoS Configurations for Ethernet
To monitor Ethernet configurations for QoS:
176
•
Monitoring the QoS Configuration of Fast Ethernet, Gigabit Ethernet, and 10-Gigabit
Ethernet Interfaces on page 332
•
Monitoring the QoS Configuration of IP Interfaces on page 330
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the Configuration of QoS Port-Type Profiles on page 325
•
Monitoring the Configuration of QoS Profiles on page 326
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring Shared Shapers on page 315
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 21
Configuring QoS for 802.3ad Link
Aggregation Groups
This chapter provides information for configuring QoS for 802.3ad link aggregation groups.
QoS topics are discussed in the following sections:
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
•
Hashed Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
•
Subscriber Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
•
Guidelines for Configuring QoS over 802.3ad Link Aggregation Groups on page 184
•
Configuring the Scheduler Hierarchy for Hashed Load Balancing in 802.3ad Link
Aggregation Groups on page 185
•
Enabling Default Subscriber Load Balancing for 802.3ad Link Aggregation
Groups on page 185
•
Configuring the Scheduler Hierarchy for Subscriber Load Balancing in 802.3ad Link
Aggregation Groups on page 186
•
Configuring Load Rebalancing for 802.3ad Link Aggregation Groups on page 187
•
Monitoring QoS Configurations for 802.3ad Link Aggregation Groups on page 189
QoS for 802.3ad Link Aggregation Interfaces Overview
You can configure QoS for 802.3ad link aggregation interfaces. To ensure that QoS is
applied properly to the interface column, you configure the QoS profile using either a
hashed loadbalancing scheme or a subscriber loadbalancing scheme.
Types of Load Balancing
For hashed load balancing, you configure the scheduler hierarchy with Ethernet queues,
and the system replicates them on each link within the link aggregation group (LAG).
The system demultiplexes each packet to one of the active links in the LAG using a
random hash generated by fields in the packet header. For example, when an IP packet
is routed to a LAG, the hash algorithm is based on the IP Source Address and Destination
Address in the IP header.
For subscriber load balancing, you configure the scheduler hierarchy with IP, VLAN, and
S-VLAN queues and the system allocates them to individual ports in the LAG. The system
Copyright © 2012, Juniper Networks, Inc.
177
JunosE 14.1.x Quality of Service Configuration Guide
demultiplexes each packet to an active link based on the subinterface underlying the
egress interface. For example, when an IP packet is routed to an IP interface over a LAG,
the system binds the underlying VLAN, PPPoE, or MPLS subinterface to one of the active
links in the LAG. The packet is transmitted over the interface.
Most network operators configure QoS over 802.3ad LAGs using subscriber load balancing
to take advantage of subscriber class-based queuing (SCBQ) features. However,
configuring hashed load balancing is useful for achieving fine-grained distribution of
multicast VLAN traffic or for any high bandwidth VLAN that does not require shared
shaping.
To ensure that QoS is symmetrically applied to all the links, the router periodically
rebalances the traffic on the LAG. You can control the loadbalancing parameters.
If you configure hashed load balancing to specify the scheduler hierarchy with Ethernet
queues and enable the system to replicate them on each link within the LAG, traffic that
is transmitted through the LAG bundle might not be evenly distributed across all the
member interfaces in the LAG. For example, if a LAG bundle contains two Gigabit Ethernet
member interfaces, the traffic that is sent through the LAG bundle might not be equally
balanced between the two interfaces. This method of load balancing is expected. The
distribution depends on the capability of the router to distribute the traffic with an IP
source address/destination address hashing algorithm. Depending on the random nature
of the traffic, the traffic is distributed. The hashing algorithm validates the second and
fourth octets of the source and destination addresses. Depending on the traffic patterns,
the end result might be unevenly balanced use of the interfaces involved in the LAG.
The algorithm used by the router for forwarding over a LAG bundle might cause a
distribution of the traffic that is less then equal. The algorithm operates by creating eight
bins, numbered 0-7. There are always eight bins, regardless of the number of interfaces
in the bundle. The eight bins are distributed across the links based on an L2 channel
algorithm. Each link is allocated to one of the eight bins. When one of the links in the LAG
bundle fails, the traffic at that point is not equally distributed across the member links.
Whenever an odd number of links are present in a LAG interface, such an imbalanced
distribution occurs.
Munged QoS Profiles and Load Balancing
To determine whether to use hashed load balancing or subscriber load balancing, the
system munges a QoS profile for a subscriber.
In typical Ethernet configurations, the munged QoS profile for a given subscriber interface
comprises the accumulated rules of the QoS profiles attached below the subscriber
interface in the interface column. Rules in higher-attached QoS profiles override or eclipse
rules in lower-attached QoS profiles. For example, rules from specific interface
attachments such as a VLAN override those from attachments at S-VLANs or ports.
When applying QoS to LAGs, the system uses a modified algorithm to munge QoS profile
attachments. The system automatically builds the munged QoS profile using the rules
in the QoS profile attached at the LAG interface.
For example, the munged Qos profile for VLAN 0,0 consists of the munge of:
178
Copyright © 2012, Juniper Networks, Inc.
Chapter 21: Configuring QoS for 802.3ad Link Aggregation Groups
•
Attachment 1—QoS profile attached to the VLAN
•
Attachment 2—QoS profile attached to the S-VLAN
•
Attachment 3—QoS profile attached to the LAG
If there is no QoS profile attached to the LAG, the system locates the lag-default QoS
profile indicated in the qos-port-type-profile command.
If the resulting QoS profile specifies only Ethernet queues, the system uses the hash
algorithm to balance the links. If the resulting QoS profile specifies any VLAN, IP, or
L2TP-Session queues, then the system uses subscriber load balancing.
802.3ad Link Aggregation and QoS Parameters
You can create parameter instances for IEEE 803.ad LAG interfaces. A parameter instance
for LAG can control an Ethernet port or a node, but you cannot create parameter instances
for the Ethernet interfaces within the LAG.
For example, a LAG instance can specify a shaping rate of 100 Mbps on an Ethernet port
or a group node. The system shapes all Ethernet ports or group nodes to the same rate
within the LAG. Using load balancing, the system strives to balance the traffic each link
equally.
QoS and Ethernet Link Redundancy
You can configure Ethernet link redundancy for LAG interfaces. When you configure QoS
for those links, be sure to consider the following behaviors.
Active Link Failure and QoS
When an active link fails, traffic that is hashed-load balanced is redirected onto the
remaining active links in the LAG. Traffic that is hashed-load balanced might be lost on
the disabled link, but from the moment of switchover, traffic arriving from the fabric on
the egress line module is directed towards one of the remaining hashed load-balanced
queues.
Subscriber loadbalanced traffic takes more time to reestablish on active links because
of the amount of computation (approximately 3 ms per subscriber). During this time
period, traffic directed to the disabled link might be lost.
Administratively Disabling a Link and QoS
When a link is administratively disabled, the system immediately redirects traffic from
the link to other links in the LAG.
Adding a New Link to the LAG and QoS
When you add a new link to the LAG, the system immediately sends traffic that is
hashed-load balanced to the link. Traffic that is subscriber-load balanced moves to the
new link as new subscribers log in. The system automatically rebalances traffic to the
new link based on the load rebalance configuration for the LAG.
Related
Documentation
•
Hashed Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
Copyright © 2012, Juniper Networks, Inc.
179
JunosE 14.1.x Quality of Service Configuration Guide
•
Subscriber Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
•
Enabling Default Subscriber Load Balancing for 802.3ad Link Aggregation Groups on
page 185
•
Ethernet Link Redundancy Overview
•
Parameter Definition Attributes for QoS Administrators Overview on page 219
•
Munged QoS Profile Overview on page 130
•
ERX Module Guide and the E120 and E320 Module Guide
Hashed Load Balancing for 802.3ad Link Aggregation Groups Overview
To configure hashed load balancing, you configure a scheduler hierarchy with Ethernet
queues and the system replicates the queues for each link within the LAG. The system
shares the traffic equally across the links based on the distribution characteristics defined
in the hash algorithm.
Because all traffic is carried in Ethernet queues, per-subscriber QoS features such as
shared shaping for VLANs are not available.
Sample Scheduler Hierarchy for Hashed Load Balancing
Figure 48 on page 180 displays a sample 802.3ad link aggregation scheduler hierarchy
that uses hashed load balancing.
The Gigabit Ethernet interfaces are on the same line module and are members of a LAG.
The system dynamically balances traffic between the Ethernet queues on the two ports.
Figure 48: 802.3ad Link Aggregation Scheduler Hierarchy
Related
Documentation
•
Configuring Load Rebalancing for 802.3ad Link Aggregation Groups on page 187
Subscriber Load Balancing for 802.3ad Link Aggregation Groups Overview
To configure subscriber load balancing, you configure a scheduler hierarchy with nodes
and queues for IP, VLANs, and S-VLANs. The system distributes those nodes and queues
180
Copyright © 2012, Juniper Networks, Inc.
Chapter 21: Configuring QoS for 802.3ad Link Aggregation Groups
in the scheduler hierarchy over the ports within the LAG using a technique called
partitioning.
Ethernet queues used for hashed load balancing are always present in the scheduler
hierarchy.
To ensure that QoS is symmetrically applied to all the links, the router periodically
rebalances the load within the LAG using a hash algorithm. You can control the
loadbalancing parameters and configure the system to dynamically rebalance. Partitioning
the Scheduler Hierarchy
The system then partitions the scheduler hierarchy by binding the IP, VLAN, L2TP session,
and MPLS resources for each subscriber to a selected link within the LAG at the time the
subscriber interface is configured.
S-VLANs and Subscriber Load Balancing
The system clones S-VLAN nodes and queues on each link in the LAG. The system clone
S-VLANs so it can allocate subscribers that share a common S-VLAN ID to different links
within the LAG. S-VLAN nodes and queues are the only resources that are cloned; the
system always allocates nodes and queues for other interface types to a single selected
link.
Cloning S-VLAN nodes enables fine-grained load balancing within the LAG because
VLANs within the S-VLAN can be allocated to the link with the least traffic. However,
cloned S-VLANs can introduce anomalous scheduling behavior. A shaped S-VLAN node
within the LAG shapes traffic on a per-link basis. Shaping a LAG S-VLAN node to 2 Mbps
on a LAG with 2 links can enable up to 4 Mbps of traffic (2 Mbps per link).
Shared shaping on an S-VLAN within a LAG has the same behavior; the LAG S-VLAN
that is shared shaped to 10 Mbps on a LAG with 2 ports allows up to 20Mbps of traffic;
10 Mbps for each link.
PPPoE over VLANs and Subscriber Load Balancing
The system binds PPPoE subscribers stacked over a common VLAN to the same link
within the LAG. Because the underlying VLAN node is allocated to a single link, the system
allocates all traffic over that VLAN to that link.
PPPoE over Ethernet (No VLANs) and Subscriber Load Balancing
The system allocates subscribers to each link independently. There are no S-VLAN nodes
to clone, and no related VLAN nodes that require allocation on the same link.
MPLS over LAG and Subscriber Load Balancing
For QoS purposes, the system considers base tunnels as logical interfaces, but does not
consider stacked tunnels. The system assigns MPLS base tunnels stacked over VLANs
to the link to which the VLAN is assigned.
Copyright © 2012, Juniper Networks, Inc.
181
JunosE 14.1.x Quality of Service Configuration Guide
Sample Scheduler Hierarchy for Subscriber Load Balancing
Figure 49 on page 182 displays the scheduler hierarchy for the Gigabit Ethernet interface
in slot 3, port 0. Figure 50 on page 183 displays the scheduler hierarchy for the Gigabit
Ethernet interface in slot 3, port 1.
The Ethernet queues are shown in gray; they are not bound to a link in the LAG and are
replicated for each link in the LAG. These queues are used for subscribers with QoS
profiles that indicate Ethernet queues, and for traffic classes other than best-effort, traffic
class 1, and traffic class 2.
When partitioning the scheduler hierarchy that includes 1000 VLAN subinterfaces, the
system binds 500 of the subinterfaces to port 0, and binds another 500 to port 1. The
binding for a given VLAN subinterface is arbitrary.
The scheduler nodes for a given VLAN subinterface are always allocated to the same
port within the LAG. In this example, the scheduler nodes for VLAN 0,0 are all allocated
to Gigabit Ethernet interface in slot 3, port 0.
S-VLAN nodes and queues are cloned for each link in the LAG. S-VLAN nodes in each
traffic-class group are shown identically on both ports.
Figure 49: Subscriber LoadBalanced Scheduler Hierarchy for Port 0
182
Copyright © 2012, Juniper Networks, Inc.
Chapter 21: Configuring QoS for 802.3ad Link Aggregation Groups
Figure 50: Subscriber LoadBalanced Scheduler Hierarchy for Port 1
Subscriber Allocation in 802.3ad Link Aggregation Groups
You can configure upper-layer subinterfaces over a LAG interface, including VLANs,
PPPoE, and MPLS.
The system balances any upper-layer subinterfaces so that each active link in the LAG
carriers an equal number of upper-layer subinterfaces. For this purpose, the system
counts each upper-layer interface as a single subscriber, regardless of the number of
forwarding interfaces stacked above it.
Figure 51 on page 183 displays a sample allocation of subscribers. The interfaces shown
in this figure are member links of a LAG bundle that supports QoS.
Figure 51: Subscriber Allocation and Load Balancing
Copyright © 2012, Juniper Networks, Inc.
183
JunosE 14.1.x Quality of Service Configuration Guide
In an ideal QoS configuration, queues and nodes are stacked over a single port that
corresponds to a LAG, with the port bandwidth equal to the sum of the overall port
bandwidth.
However, the actual LAG behavior is different. No level 1 node or queue can exceed the
bandwidth of a link. The relative weighting of queues and nodes results in proportional
bandwidth allocation only within a link, but not across the entire LAG. Actual traffic might
not be evenly balanced across links in the LAG, resulting in latency and loss on one link,
while another link may be lightly loaded.
Even though relative weighting is different on a LAG, shaping and shared shaping in the
partitioned scheduler hierarchy operate in the same way as a typical Ethernet
configuration.
NOTE: You can enable the Ethernet interfaces for multiplexing of different
protocols over a single physical link by using the svlan ethertype 8100
command to specify the Ethertype of an S-VLAN. IEEE 802.1q compatibility
extends the frame format by adding a tag that contains a VLAN ID. This
feature enables multiplexing of different channels (VLANs) over the physical
link; each channel is able to multiplex different protocols.
Related
Documentation
•
Configuring Load Rebalancing for 802.3ad Link Aggregation Groups on page 187
•
VLAN Overview
•
svlan ethertype
Guidelines for Configuring QoS over 802.3ad Link Aggregation Groups
When you configure QoS over 802.3ad LAGs, be sure to consider the following behaviors:
184
•
QoS profiles cannot be attached to Ethernet ports if the port is a member of a LAG. In
typical QoS configurations, the Ethernet interface is considered the root of the interface
hierarchy. When you configure QoS for 802.3ad link aggregation, the LAG interface is
considered the root of the interface hierarchy.
•
You cannot configure hierarchical QoS for IP configured directly over a LAG interface.
•
You cannot obtain QoS information or statistics for IP interfaces stacked over a LAG
interface using any of the show commands for QoS. Instead, the show qos
scheduler-hierarchy command is designed to find the interface hierarchy rooted at
the specified interface and report all scheduler nodes and queues managed by those
interfaces. The typical defaults in QoS profiles such as ethernet-default and atm-default
specify the "ip queue traffic-class best-effort" rule, so those queues are reported in
the interface hierarchy. The lag-default QoS profile does not specify this rule by default.
•
Do not attach QoS profiles to IP or VLAN subinterfaces in a LAG that contain
downreferences (that is, rules for S-VLAN or Ethernet nodes or queues). QoS profiles
attached at subinterfaces above a LAG that also include downreference create an
Copyright © 2012, Juniper Networks, Inc.
Chapter 21: Configuring QoS for 802.3ad Link Aggregation Groups
asymmetric scheduler hierarchy. For example, one Ethernet port might be shaped and
not another.
Also, if the QoS profile specifies only Ethernet, then the traffic sent to the subinterface
might be only partially affected by the QoS profile, or not at all. The traffic can be
allocated to another port entirely.
Related
Documentation
•
Subscriber Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
•
Configuring the Scheduler Hierarchy for Subscriber Load Balancing in 802.3ad Link
Aggregation Groups on page 186
•
Configuring Load Rebalancing for 802.3ad Link Aggregation Groups on page 187
Configuring the Scheduler Hierarchy for Hashed Load Balancing in 802.3ad Link
Aggregation Groups
The type of load balancing that the system performs depends on the configuration of
the scheduler hierarchy in the QoS profile.
To configure the scheduler hierarchy for hashed load balancing:
1.
Configure a QoS profile.
host1(config)#qos-profile hashed-lag
2. Configure the nodes and queues, including an Ethernet queue.
host1(config-qos-profile)#ethernet queue traffic-class best-effort
host1(config-qos-profile)#ethernet queue traffic-class tc1
host1(config-qos-profile)#ethernet queue traffic-class tc2
3. Create the LAG interface and attach the QoS profile.
host1(config)#interface lag lg1
host1(config-if)#qos-profile hashed-lag
Related
Documentation
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
•
Hashed Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
•
interface lag
•
node
•
qos-profile
•
queue
Enabling Default Subscriber Load Balancing for 802.3ad Link Aggregation Groups
The factory default contents of the lag-default QoS profile include an Ethernet queue
and the best-effort traffic class.
Copyright © 2012, Juniper Networks, Inc.
185
JunosE 14.1.x Quality of Service Configuration Guide
When you use the lag-default QoS profile, the system automatically sends traffic to the
Ethernet queue and uses hash load balancing for the Ethernet queues.
To enable subscriber load balancing as the default behavior for all LAGs, issue the
following command:
host1(config)#qos-port-type-profile lag qos-profile ethernet-default
Related
Documentation
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
•
qos-port-type-profile
Configuring the Scheduler Hierarchy for Subscriber Load Balancing in 802.3ad Link
Aggregation Groups
The type of load balancing that the system performs depends on the configuration of
the scheduler hierarchy in the QoS profile.
To configure the scheduler hierarchy for subscriber load balancing:
1.
Configure the QoS profile.
host1(config)#qos-profile subscriber-lag
2. Configure the queues and nodes for VLANs and S-VLANs.
host1(config-qos-profile)#vlan queue traffic-class best-effort
host1(config-qos-profile)#vlan queue traffic-class tc1
host1(config-qos-profile)#vlan node scheduler-profile subscriber
host1(config-qos-profile)#svlan node scheduler-profile svlan
host1(config-qos-profile)#svlan node group g1 scheduler-profile svlan
3. Create the LAG interface and assign member interfaces.
host1(config)#interface lag lg1
host1(config-if)#member-interface gigabitEthernet 3/0
host1(config-if)#member-interface gigabitEthernet 3/1
4. Attach the QoS profile to the LAG interface.
host1(config-if)#qos-profile subscriber-lag
Related
Documentation
186
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
•
Subscriber Load Balancing for 802.3ad Link Aggregation Groups Overview on page 180
•
Enabling Default Subscriber Load Balancing for 802.3ad Link Aggregation Groups on
page 185
•
interface lag
•
member-interface
•
node
•
qos-profile
•
queue
Copyright © 2012, Juniper Networks, Inc.
Chapter 21: Configuring QoS for 802.3ad Link Aggregation Groups
Configuring Load Rebalancing for 802.3ad Link Aggregation Groups
You can configure the parameters that the system uses to rebalance the links in a LAG.
You can also configure the system to dynamically rebalance the links in the LAG.
Tasks to configure load rebalancing are:
•
Configuring Load–Rebalancing Parameters on page 187
•
Configuring the System to Dynamically Rebalance the LAG on page 188
Configuring Load–Rebalancing Parameters
To configure load–rebalancing parameters:
1.
Specify the LAG interface.
host1(config)#interface lag lg1
2. Configure parameters that guide the system to rebalance.
host1(config-if)#load-rebalance period 120 start-threshold 20 percent stop-threshold
100 percent maximum-improvement 300
This example specifies that the system rebalance within 120 seconds, can accept
imbalance in the LAG in the range 20–100 percent, and can move 300 subscribers to
other ports during that time.
Table 20 on page 187 describes the load balancing algorithm parameters that you can
configure.
Table 20: Load Balancing Algorithm Parameters
Keyword
Description
period
Specifies the time period for rebalancing. For example, a period of 120
specifies that rebalancing occurs once every 2 minutes.
start-threshold
Specifies the amount of imbalance in the LAG that triggers the algorithm
to start rebalancing. The default is 0 percent. Optionally, you can specify
one of the following units of measure:
•
percent—Specifies that the amount of imbalance is measured as a
percentage of the average load per link. The range is 0–100 percent.
For example, the average load per link in a LAG is 500. Specifying
start-threshold 5 percent indicates that the algorithm rebalances
any link that deviates from the average load per link by 25 (5 percent
of 500).
•
subscribers—Specifies that the amount of imbalance is measured by
the number of subscribers from the average subscriber count in the
LAG. The range is 0–10000.
For example, specifying start-threshold 20 subscribers indicates that
the algorithm rebalances any link with a subscriber count that differs
from the average subscriber count by more than 20.
Copyright © 2012, Juniper Networks, Inc.
187
JunosE 14.1.x Quality of Service Configuration Guide
Table 20: Load Balancing Algorithm Parameters (continued)
Keyword
Description
stop-threshold
Specifies the amount of imbalance in the LAG that triggers the algorithm
to stop rebalancing. The algorithm continues rebalancing until this value
is reached. The default is 0 percent. Optionally, you can specify one of
the following units of measure:
•
percent—Specifies that the amount of imbalance is measured as a
percentage of the average load per link. The range is 0–100 percent.
For example, the average load per link in a LAG is 500. Specifying the
stop-threshold 2 percent command indicates that the algorithm stops
within 10 of 500 (2 percent of 500). In this case, the algorithm stops
when the links are at 510 and 490.
•
subscribers—Specifies that the amount of imbalance is measured by
the number of subscribers. The range is 0–10000.
For example, specifying stop-threshold 100 subscribers indicates
that the algorithm continues until each link in the LAG is within 100
subscribers of the average subscriber count.
maximumimprovement
Specifies the maximum number of links to rebalance in the LAG per
period. The default is 100 percent. Optionally, you can specify one of the
following units of measure:
•
percent—Specifies that the maximum number of links is measured
as a percentage of the total links. The range is 0–100 percent.
For example, specifying maximum-improvement 1 percent indicates
that the algorithm rebalances 10 links per period (1 percent of 1000).
•
subscribers—Specifies that the maximum number of links is measured
by the number of subscribers. The range is 0–10000 subscribers.
For example, specifying maximum-improvement 40 subscribers
indicates that the algorithm rebalances 40 subscribers per period.
Configuring the System to Dynamically Rebalance the LAG
To configure the system to dynamically rebalance the LAG:
1.
Specify the LAG interface.
host1(config)#interface lag lg1
2. Issue the load balance command with no keywords:
host1(config-if)#load-rebalance
Related
Documentation
188
•
QoS for 802.3ad Link Aggregation Interfaces Overview on page 177
•
Enabling Default Subscriber Load Balancing for 802.3ad Link Aggregation Groups on
page 185
•
Configuring the Scheduler Hierarchy for Subscriber Load Balancing in 802.3ad Link
Aggregation Groups on page 186
•
interface lag
•
load-rebalance
Copyright © 2012, Juniper Networks, Inc.
Chapter 21: Configuring QoS for 802.3ad Link Aggregation Groups
Monitoring QoS Configurations for 802.3ad Link Aggregation Groups
To monitor Ethernet configurations for QoS:
•
Monitoring the QoS Configuration of Fast Ethernet, Gigabit Ethernet, and 10-Gigabit
Ethernet Interfaces on page 332
•
Monitoring the QoS Configuration of IEEE 802.3ad Link Aggregation Group Bundles on
page 334
•
Monitoring the QoS Configuration of IP Interfaces on page 330
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the Configuration of QoS Port-Type Profiles on page 325
•
Monitoring the Configuration of QoS Profiles on page 326
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring Shared Shapers on page 315
Copyright © 2012, Juniper Networks, Inc.
189
JunosE 14.1.x Quality of Service Configuration Guide
190
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 22
Configuring QoS for L2TP Sessions
This chapter provides information for configuring QoS for L2TP sessions.
QoS topics are discussed in the following sections:
•
Providing QoS for L2TP Overview on page 191
•
Sample Scheduler Hierarchies for L2TP on page 191
•
Configuring QoS for an L2TP Session on page 193
•
Configuring QoS for Tunnel-Server Ports for L2TP LNS Sessions on page 196
•
QoS and L2TP TX Speed AVP 24 Overview on page 197
•
Monitoring QoS Configurations for L2TP on page 198
Providing QoS for L2TP Overview
The JunosE Software supports QoS queues and scheduler nodes for L2TP session
interfaces. L2TP QoS provides per–L2TP session queuing and allows QoS profiles to be
dynamically attached to L2TP session interfaces on E Series Broadband Services Routers.
The routers can be configured as either an LAC or LNS.
The dynamic attachment process uses RADIUS and AAA, enabling a QoS profile to be
attached to a dynamic L2TP session interface when the newly created interface has the
QoS-Profile-Name [26-26] RADIUS VSA associated with it. L2TP QoS support gives you
the ability to shape tunneled users through L2TP interfaces.
L2TP QoS profiles are attached at the L2TP session interface, except on the LNS with
nonmultilink interfaces. On the LNS with nonmultilink interfaces, L2TP QoS profiles are
attached at the IP interface. The queues and scheduler node are built at the L2TP client
interface on the line module.
Related
Documentation
•
Configuring QoS for an L2TP Session on page 193
Sample Scheduler Hierarchies for L2TP
The figures in this section show the different scheduler hierarchies that you can build for
QoS over L2TP. The type of networking architecture in which the QoS profile is used
determines the actual hierarchy that is built.
Copyright © 2012, Juniper Networks, Inc.
191
JunosE 14.1.x Quality of Service Configuration Guide
Figure 52 on page 192 through Figure 56 on page 193 show scheduler hierarchies for different
networking architectures.
Figure 52: LNS (Non-MLPPP) Scheduler Hierarchy
Figure 53: LNS (MLPPP) QoS Scheduler Hierarchy
Figure 54: LAC over Ethernet (Without VLANs) Scheduler Hierarchy
192
Copyright © 2012, Juniper Networks, Inc.
Chapter 22: Configuring QoS for L2TP Sessions
Figure 55: LAC over Ethernet (With LANs) Scheduler Hierarchy
Figure 56: LAC over ATM
Related
Documentation
•
Configuring QoS for an L2TP Session on page 193
Configuring QoS for an L2TP Session
L2TP session interfaces have default QoS profiles and scheduler nodes. The default
configuration includes the following settings:
host1(config)# show qos-profile l2tp-session-default
t-class
interface
rule
traffic
scheduler queue
drop
statistics
group
type
type
class
profile profile profile profile
-------- ------------ ----- ----------- --------- ------- ------- ---------l2tp-session queue best-effort default
default default default
This topic provides general procedures for configuring QoS for an L2TP LNS session or
a LAC L2TP session. For both procedures, the resulting scheduler hierarchy depends on
the type of network architecture that you use.
•
Configuring QoS for an L2TP LNS Session on page 194
•
Configuring QoS for an L2TP LAC Session on page 195
Copyright © 2012, Juniper Networks, Inc.
193
JunosE 14.1.x Quality of Service Configuration Guide
Configuring QoS for an L2TP LNS Session
When you configure QoS for an LNS, you must modify the server-default QoS profile to
remove the best-effort traffic class rule from the IP interface type. This enables you to
create L2TP session queues, and is not required to provide QoS on an LAC.
Before you configure QoS for an L2TP LNS session:
•
Configure the traffic classes.
See “Configuring Traffic Classes That Define Service Levels” on page 14.
•
Configure the queuing hierarchy.
See “Configuring Queue Profiles to Manage Buffers and Thresholds” on page 22.
•
Configure the scheduler hierarchy and shaping with scheduler profiles.
See “Configuring a Scheduler Hierarchy” on page 47.
To configure QoS for an L2TP LNS session:
1.
Remove the best-effort traffic class rule from the IP interface type of the server-default
QoS profile.
host1(config)#qos-profile server-default
host1(config-qos-profile)#no ip queue traffic-class best-effort
host1(config-qos-profile)#exit
2. Create a traffic-class group, and enter Traffic Class Group Configuration mode. Add
the traffic class voice to the new group.
host1(config)#traffic-class-group tcGroup1
host1(config-traffic-class-group)#traffic-class voice
host1(config-traffic-class-group)#exit
3. Configure the QoS profile.
•
Create the QoS profile, and enter QoS Profile Configuration mode.
host1(config)#qos-profile l2tpQpro25
host1(config-qos-profile)#
•
Add queues for L2TP session interfaces to the QoS profile.
host1(config-qos-profile)#lt2p-session queue traffic-class best-effort
scheduler-profile 400k
host1(config-qos-profile)#lt2p-session queue traffic-class voice scheduler-profile
100k
host1(config-qos-profile)#exit
host1(config)#
4. Attach the QoS profile to the interface on which you have configured L2TP.
host1(config)#interface gigabitEthernet 6/0
host1(config-if)#qos-profile
5. (Optional) Verify the new QoS profile configuration.
194
Copyright © 2012, Juniper Networks, Inc.
Chapter 22: Configuring QoS for L2TP Sessions
host1(config)#show qos-profile l2tpQpro25
qos-profile l2tpQpro25:
t-class interface
rule
traffic
scheduler queue drop
statistics
group
type
type
class
profile profile profile profile
-------- ------------- -------- --------- ------- ------- ---------l2tp-session queue best-effort 400k
default default default
tcGroup1 l2tp-session queue voice
100k
default default default
Configuring QoS for an L2TP LAC Session
Before you configure QoS for an L2TP LAC session:
•
Configure traffic classes.
See “Configuring Traffic Classes That Define Service Levels” on page 14.
•
Configure the queuing hierarchy.
See “Configuring Queue Profiles to Manage Buffers and Thresholds” on page 22.
•
Configure the scheduler hierarchy and shaping with scheduler profiles.
See “Configuring a Scheduler Hierarchy” on page 47.
To configure QoS for an L2TP LAC session:
1.
Configure the QoS profile.
•
Create the QoS profile, and enter QoS Profile Configuration mode.
host1(config)#qos-profile l2tpQpro25
host1(config-qos-profile)#
•
Add queues for L2TP session interfaces to the QoS profile.
host1(config-qos-profile)#lt2p-session queue traffic-class best-effort
scheduler-profile 400k
host1(config-qos-profile)#lt2p-session queue traffic-class voice scheduler-profile
100k
host1(config-qos-profile)#exit
host1(config)#
2. Attach the QoS profile to the interface on which you have configured L2TP.
host1(config)#interface gigabitEthernet 6/0
host1(config-if)#qos-profile l2tpQpro25
3. (Optional) Verify the new QoS profile configuration.
host1(config)#show qos-profile l2tpQpro25
qos-profile l2tpQpro25:
t-class interface
rule
traffic
scheduler queue drop
statistics
group
type
type
class
profile profile profile profile
-------- ------------- --------- --------- ------- ------- ---------l2tp-session queue best-effort 400k
default default default
tcGroup1 l2tp-session queue voice
100k
default default default
Related
Documentation
•
Supported Interface Types for QoS Profiles on page 125
•
Sample Scheduler Hierarchies for L2TP on page 191
Copyright © 2012, Juniper Networks, Inc.
195
JunosE 14.1.x Quality of Service Configuration Guide
•
group
•
interface
•
qos-profile
•
queue
•
scheduler-profile
•
show qos-profile
•
traffic-class
Configuring QoS for Tunnel-Server Ports for L2TP LNS Sessions
You can configure QoS for a tunnel-service port that can be used as a dynamic interface
associated with an L2TP LNS session.
Before you configure QoS for a tunnel-server port:
•
Configure the dedicated or shared tunnel-server port.
See JunosE Physical Layer Configuration Guide.
NOTE: Dedicated and shared tunnel-server ports on the ES2 10G ADV LM
do not support QoS profiles on server-port interfaces and IP floating
interfaces (IP interfaces that stack over MPLS stacked tunnels). However,
you can configure QoS profiles for dedicated and shared tunnel-server
ports on ES2 10G ADV LMs on interfaces other than server-port interfaces
(such as ATM or Ethernet). On ES2 10G ADV LMs, you can also configure
QoS profiles for dedicated and shared tunnel-server ports for L2TP LNS
sessions only on interface types other than the server-port interface.
•
Configure the traffic classes.
See “Configuring Traffic Classes That Define Service Levels” on page 14.
•
Configure the queuing hierarchy.
See “Configuring Queue Profiles to Manage Buffers and Thresholds” on page 22.
•
Configure the scheduler hierarchy and shaping with scheduler profiles.
See “Configuring a Scheduler Hierarchy” on page 47.
To configure QoS for the tunnel-server port:
1.
Create the QoS profile.
host1(config)#qos-profile lns-tsport
2. Configure group nodes for the tunnel-server ports.
host1(config-qos-profile)#ip queue traffic-class best-effort scheduler-profile
business-data queue-profile data
196
Copyright © 2012, Juniper Networks, Inc.
Chapter 22: Configuring QoS for L2TP Sessions
host1(config-qos-profile)#ip queue traffic-class video scheduler-profile video
queue-profile video
host1(config-qos-profile)#ip queue traffic-class voice scheduler-profile voice
queue-profile voice
host1(config-qos-profile)#server-port group video
host1(config-qos-profile)#server-port group data
host1(config-qos-profile)#server-port group voice scheduler-profile strict-priority
3. Create and attach the QoS port-type profile for server ports.
host1(config)#qos-port-type-profile server-port qos-profile lns-tsport
Related
Documentation
•
Tunnel-Service and IPSec-Service Overview
•
group
•
interface
•
node
•
qos-port-type-profile
•
qos-profile
•
queue
•
scheduler-profile
•
traffic-class
•
tunnel-server
QoS and L2TP TX Speed AVP 24 Overview
You can configure the router to use QoS settings to calculate the transmit connect speed
of the subscriber’s access interface reported for an L2TP tunneled session. The router
reports the transmit connect speed in L2TP Transmit (TX) Speed AVP 24. During the
establishment of an L2TP tunneled session, the LAC sends AVP 24 to the LNS to convey
the transmit speed of the subscriber’s access interface.
Logical Interfaces and Shared-Shaping Rates
You can configure QoS to control the rate for any of the logical interfaces of the following
interface columns:
•
ATM 1483 subinterface over ATM VP over ATM interface
•
PPPoE subinterface over Ethernet interface
•
PPPoE subinterface over VLAN subinterface over Ethernet interface
For those logical interfaces with a rate controlled by QoS, QoS reports this configured
rate as the transmit connect speed for that interface. For the logical interfaces that do
not have a QoS-configured rate, QoS reports the speed of the underlying physical port
as the transmit connect speed.
Copyright © 2012, Juniper Networks, Inc.
197
JunosE 14.1.x Quality of Service Configuration Guide
For each logical interface, QoS determines the rate of the interface using either the
shaping rate or the shared-shaping rate, if one is configured. The numeric value of the
shaping rate or shared-shaping rate is determined as the result of a provider-specified
arithmetic expression in a scheduler profile. This expression can either be a constant
value, such as 1,000,000, or an expression using QoS parameters, with values supplied
by RADIUS or statically in non-volatile storage (NVS).
If the QoS profile or the QoS parameters are configured in RADIUS, these values are used
in computing the rate at the time of login. The system can subsequently modify the value
of parameters through change of authorization (CoA), Service Manager, or L2C.
Modifications are not reflected in the rate QoS reports because they might take place
after the LAC has sent the message that contains AVP 24.
Shaping Mode
When the QoS shaping mode is set to cell for an interface, QoS reports the ATM rate. In
cell mode, user-specified rates account for cell headers and trailers, which are ATM native
rates; therefore, QoS does not convert the rates for AVP 24.
Related
Documentation
•
Simple Shared Shaping Overview on page 75 and Compound Shared Shaping Overview
on page 95
•
QoS Parameter Overview on page 215
•
Configuring the Transmit Connect Speed Calculation Method
Monitoring QoS Configurations for L2TP
To monitor QoS configurations for L2TP:
198
•
Monitoring the QoS Configuration of Fast Ethernet, Gigabit Ethernet, and 10-Gigabit
Ethernet Interfaces on page 332
•
Monitoring the QoS Configuration of IEEE 802.3ad Link Aggregation Group Bundles on
page 334
•
Monitoring the QoS Configuration of IP Interfaces on page 330
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the Configuration of QoS Port-Type Profiles on page 325
•
Monitoring the Configuration of QoS Profiles on page 326
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring Shared Shapers on page 315
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 23
Configuring Interface Sets for QoS
This chapter describes how to configure a set of logical interfaces with the same
scheduling and queuing properties using interface sets.
QoS topics are discussed in the following sections:
•
Interface Sets for QoS Overview on page 199
•
Architecture of Interface Sets for QoS on page 200
•
Configuring Interface Sets for Scheduling and Queuing on page 203
•
Configuring Interface Supersets for QoS on page 204
•
Configuring Interface Sets for QoS on page 205
•
Adding Member Interfaces to an Interface Set on page 206
•
Creating a QoS Parameter on an Interface Superset or Interface Set on page 208
•
Attaching a QoS Profile to an Interface Superset or an Interface Set on page 209
•
Deleting an Interface Superset or an Interface Set on page 211
•
Example: Configuring Interface Sets for 802.3ad Link Aggregation Groups on page 212
Interface Sets for QoS Overview
This topic describes how to use interface sets to configure a set of logical interfaces with
the same scheduling and queuing properties.
Interface sets are supported for VLANs, ATM VCs, and IP.
You can use interface sets for various scenarios in a broadband access network. For
example, you can use an interface set to configure a local loop with a small number of
subscribers. Interface sets are also useful for grouping a large number of subscribers into
a particular service class or for defining traffic engineering aggregates for DSLAMs.
Interface Set Terms
Table 21 on page 200 lists the terminology used for interface sets
Copyright © 2012, Juniper Networks, Inc.
199
JunosE 14.1.x Quality of Service Configuration Guide
Table 21: Interface Set Terms
Term
Description
Interface set
Set of logical interfaces of the same type: VLAN, ATM VC, and IP.
An interface set shares a common parent interface.
Interface superset
Set of QoS interface sets and logical interfaces of the same type. A
superset shares a common parent interface.
Parent interface
Logical interface associated with a set. All members of an interface
set must be configured under this parent interface, or they cannot
join an interface set.
VLAN set
Interface set of VLAN subinterfaces.
VLAN superset
Interface superset that contains VLAN interface sets and VLAN
subinterfaces, stacked over a common Ethernet major interface.
ATM VC set
Interface set of ATM 1483 subinterfaces.
Restricted VLAN set
Interface set that is restricted to VLAN subinterfaces sharing a
common VLAN ID.
The parent of the interface set is an S-VLAN. The VLAN subinterfaces
that are members of the interface set must have the same S-VLAN
ID as the parent.
Spanning VLAN set
Interface set of VLAN subinterfaces that span S-VLANs.
The parent of the interface set is an Ethernet major interface. The
member VLAN subinterfaces can have different S-VLAN IDs.
Restricted ATM VC set
Interface set that is restricted to ATM VC subinterfaces sharing a
common VPI.
The parent of the interface set is a VPI. The ATM VC subinterfaces
that are members of the interface set must have the same VPI as
the parent.
Spanning ATM VC set
Interface set of ATM VC subinterfaces that span VPIs.
The parent of the interface set is an ATM major interface. The
member ATM VC subinterfaces can have different VPIs.
Related
Documentation
•
Architecture of Interface Sets for QoS on page 200
•
Configuring Interface Sets for Scheduling and Queuing on page 203
Architecture of Interface Sets for QoS
To configure groups of logical interfaces, you must configure both interface sets and
interface supersets.
200
Copyright © 2012, Juniper Networks, Inc.
Chapter 23: Configuring Interface Sets for QoS
When an interface is grouped in an interface set, the logical interface column is modified,
and interface set appears below the interface in the column. The interface superset
appears below the interface set.
Although interface sets enable you to configure more types of scheduler nodes, the
number of node and queue resources supported in the current scheduler hierarchy are
the same.
Interface Set Parents and Types
When configuring an interface set, you must assign a parent and the types of member
interfaces allowed in the set.
The parent of an interface set is an interface superset. The parent of the interface superset
can be any type of interface over which IP can be configured, including ATM VP, Gigabit
Ethernet, or 802.3ad LAG.
The parent of the interface superset controls the type of member interfaces you can
have in an interface set. Currently, member interface types include VLAN, ATM-VC, and
IP. For example, a interface superset with a Gigabit Ethernet or LAG parent interface can
only be the parent of interface set that contains VLAN and IP member interfaces. In
addition, all members of the interface set must have the same port.
Sample Interface Columns and Scheduler Hierarchies
Figure 57 on page 202 shows a sample interface column using interface sets and interface
supersets for VLANs.
Copyright © 2012, Juniper Networks, Inc.
201
JunosE 14.1.x Quality of Service Configuration Guide
Figure 57: VLAN Interface Column with Interface Sets
Figure 58 on page 202 shows a scheduler hierarchy with VLAN nodes at the interface set.
Figure 58: Scheduler Hierarchy with Nodes at Interface Set and Superset
Scheduling and Shaping Interface Sets
You can apply QoS to interface sets and interface supersets in the same way as a logical
interface.
202
Copyright © 2012, Juniper Networks, Inc.
Chapter 23: Configuring Interface Sets for QoS
Each interface set or interface superset can have a shared shaper applied to it. The
constituents of the shared shaper are the scheduler nodes and queues associated with
the interface set.
You can use QoS profiles and QoS parameters to manage the scheduling and shaping
in the interface set. When you attach a QoS profile to an interface set or an interface
superset, the QoS profile applies to all of the interfaces in the set and the superset.
You can create parameter instances for an interface set or a superset by specifying the
set or superset as a controlled-interface type and instance-interface type.
Related
Documentation
•
Interface Sets for QoS Overview on page 199
•
Configuring Interface Sets for Scheduling and Queuing on page 203
•
Managing System Resources for Nodes and Queues on page 121
Configuring Interface Sets for Scheduling and Queuing
There are a variety of tasks that you need to complete to configure a set of logical
interfaces for scheduling and queuing.
To configure a set of logical interfaces:
1.
Configure an interface superset.
See “Configuring Interface Supersets for QoS” on page 204.
2. Configure an interface set as members of the superset.
See “Configuring Interface Sets for QoS” on page 205.
3. Add interfaces as members of the interface set.
See “Adding Member Interfaces to an Interface Set” on page 206.
4. Configure the scheduler hierarchy on the interface superset or the interface set.
You can configure the scheduler hierarchy using one of the following methods:
•
Attach a QoS profile to an interface superset or an interface set. QoS profiles
reference queue, drop, statistics, and scheduler profiles.
See “Attaching a QoS Profile to an Interface Superset or an Interface Set” on page 209.
•
Create a QoS parameter instance on an interface superset or an interface set. QoS
parameter instances enable you to configure shaping rates independent of the QoS
profile and scheduler profile.
See “Creating a QoS Parameter on an Interface Superset or Interface Set” on page 208.
5. (Optional) Monitor the configuration of interface sets and supersets.
See “Monitoring the Configuration of QoS Interface Sets” on page 334 and “Monitoring
the Configuration of QoS Interface Supersets” on page 335.
Copyright © 2012, Juniper Networks, Inc.
203
JunosE 14.1.x Quality of Service Configuration Guide
Related
Documentation
•
Interface Sets for QoS Overview on page 199
Configuring Interface Supersets for QoS
Tasks to configure an interface superset for QoS include:
•
Configuring an Interface Superset on page 204
•
Restricting an Interface Superset to an S-VLAN ID or an ATM VP on page 204
Configuring an Interface Superset
To configure an interface superset that contains interface sets and logical interfaces:
1.
Create the interface superset.
host1(config)#qos-interface-super-set vlan-superset-shaping
2. Specify the parent interface for the superset.
host1(config-interface-superset)#qos-interface-parent interface tenGigabitEthernet
4/0/0
You can configure an Ethernet major interface, an ATM major interface, or a LAG for
the parent interface. You must define the parent before you add interface sets or
subinterfaces to the interface superset.
Restricting an Interface Superset to an S-VLAN ID or an ATM VP
When you configure interface supersets for VLANs or ATM VCs, the member interfaces
normally span different S-VLAN IDs or ATM VPs.
Optionally, you can restrict all interface members of a VLAN superset to a specific S-VLAN
ID, or all members of an ATM VC to a specific ATM VP.
To restrict the interface members of an interface superset:
1.
Specify the interface superset.
host1(config)qos-interface-superset residential-customers
2. Restrict the interfaces in the interface superset.
For VLAN supersets, restrict the VLAN subinterfaces to an S-VLAN ID:
host1(config-qos-interface-superset)#restricted interface tenGigabitEthernet 4/0/0
svlan id 2
For ATM VC supersets, restrict an ATM VC to an ATM VP:
host1(config-qos-interface-superset)#restricted interface atm 2/0/0 atm-vp 2
Related
Documentation
204
•
Configuring Interface Sets for QoS on page 205
•
Monitoring the Configuration of QoS Interface Supersets on page 335
•
qos-interface-superset
Copyright © 2012, Juniper Networks, Inc.
Chapter 23: Configuring Interface Sets for QoS
•
qos-interface-parent
•
restricted
Configuring Interface Sets for QoS
Interface sets are members of interface supersets. An interface set joins a superset when
it is defined with the superset as a parent.
Tasks to configure an interface set for QoS include:
•
Configuring an Interface Set on page 205
•
Deleting an Interface Set from an Interface Superset on page 205
Configuring an Interface Set
To configure an interface set:
1.
Configure the interface set.
host1(config)#qos-interface-set vlan-business
2. Specify the parent interface.
host1(config-interface-set)#qos-interface-parent vlan-superset
The parent must be an interface superset.
3. Set the member-interface type.
host1(config)#member-interface-type vlan
host1(config)#member-interface-type ip
You can specify vlan, atm-vc, or ip for the member-interface type.
If the parent interface superset is attached to an Ethernet major interface, the valid
interface types are vlan and ip.
If the parent interface superset is attached to an ATM major interface, the valid
interface types are atm-vc or ip.
Deleting an Interface Set from an Interface Superset
To delete an interface set from an interface superset:
1.
Specify the interface superset.
host1(config)#qos-interface-superset business-data
2. Delete the interface set from the interface superset.
host1(config-qos-interface-superset)#no qos-interface-set atm-vc-data
Related
Documentation
•
Configuring Interface Supersets for QoS on page 204
•
Monitoring the Configuration of QoS Interface Sets on page 334
•
member-interface-type
Copyright © 2012, Juniper Networks, Inc.
205
JunosE 14.1.x Quality of Service Configuration Guide
•
qos-interface-parent
•
qos-interface-set
•
restricted
Adding Member Interfaces to an Interface Set
You can add interfaces as members of an interface set using the CLI or RADIUS.
Tasks to add members to an interface set include:
•
Adding Interfaces to an Interface Set with the CLI on page 206
•
Adding Interfaces to an Interface Set with RADIUS on page 206
•
Changing and Deleting Interface Members in an Interface Set on page 207
•
Changing Interface Members with Upper-Layer Protocols in an Interface Set on page 207
Adding Interfaces to an Interface Set with the CLI
To add subscriber interfaces to the interface set:
1.
Specify the VLAN or ATM-VC subinterface you want to add to the interface set.
For VLAN subinterfaces:
host1(config)#interface gigabitEthernet 4/0/0.1
For ATM subinterfaces:
host1(config)#interface atm 2/0/0.1
host1(config-sub-if)#atm pvc 21 0 21 aal5snap
2. Configure the interface set as the parent of this interface.
host1(config-sub-if)#qos-interface-parent residential-customers
The interface type must match the member-interface type specified in the interface
set.
Adding Interfaces to an Interface Set with RADIUS
You can add interfaces to an interface set using the QoS-Interfaceset-Name RADIUS
VSA attribute [26-130].
This VSA is useful when configuring local loop topologies of interface sets in the network.
When the subscriber interface is created, the VSA supplies the interface name and the
subscriber interface. The system matches the subscriber interface with the
member-interface type that is specified in the interface set. Note that the VSA cannot
specify an interface superset.
When multiple subscribers exist in one interface set, such as PPPoE subscribers over the
same VLAN, they are joined with the first subscriber’s VSA. The system generates an
error message if one of the subscribers attempts to join another interface set using another
VSA.
206
Copyright © 2012, Juniper Networks, Inc.
Chapter 23: Configuring Interface Sets for QoS
Leaving an interface set is not supported from RADIUS. The interface leaves an interface
set when it is deleted or manually removed from the interface set through the CLI.
Changing and Deleting Interface Members in an Interface Set
If you want to move interface members in an interface set, we recommend that you
delete the interface member from the interface set before associating it with another
interface.
To move an interface member from an interface set to another interface set:
1.
Specify the subinterface associated with the member interface.
host1(config)#interface gigabitEthernet 4/0/0.1
2. Delete the member interface from the subinterface using the no version of the
command.
host1(sub-if)#no qos-interface-parent vlan-business
3. Configure the new interface set for the member interface.
host1(sub-if)#qos-interface-parent vlan-residential
Changing Interface Members with Upper-Layer Protocols in an Interface Set
When upper-layer protocols such as IP are configured on an interface set, moving an
interface member from one interface set to another interface set can cause problems
with the interface column in munged QoS profiles.
For example, moving an interface set to an upper layer binding causes the interface set
to appear below the subinterface level. If a QoS profile were attached to the VLAN
subinterface in this example, the munged QoS profile for all IP interfaces stacked above
the subinterface would change.
host1(config)#interface gigabitEthernet 4/0/0.1
host1(config-sub-if)#svlan id 3 1
host1(config-sub-if)#ip address 1.2.3.4/24
host1(config-sub-if)#qos-interface-parent vlan-business
Instead of moving the member interface, we recommend that you add an interface
member to an interface set at the subinterface rather than at the upper-layer binding.
For example:
host1(config)#interface gigabitEthernet 4/0/0.1
host1(config-sub-if)#svlan id 3 1
host1(config-sub-if)#qos-interface-parent vlan-business
host1(config-sub-if)#ip address 1.2.3.4/24
Related
Documentation
•
Juniper Networks VSAs
•
qos-interface-parent
Copyright © 2012, Juniper Networks, Inc.
207
JunosE 14.1.x Quality of Service Configuration Guide
Creating a QoS Parameter on an Interface Superset or Interface Set
Tasks to create a QoS parameter on an interface superset or an interface set include:
•
Configuring a QoS Parameter Definition for an Interface Superset or an Interface
Set on page 208
•
Creating a QoS Parameter Instance for an Interface Superset on page 208
•
Creating a QoS Parameter Instance for an Interface Set on page 209
Configuring a QoS Parameter Definition for an Interface Superset or an Interface Set
You can configure a parameter definition to recognize an interface superset or an interface
set as controlled-interface types and instance interface-types.
Controlled-interface types specify resources that the parameter instance can control.
Instance-interface types are the interface types to which the QoS client can apply a
parameter instance.
To specify an interface set or an interface superset in a QoS parameter definition:
1.
Specify the QoS parameter definition.
host1(config)#qos-parameter-define business
2. Configure the controlled-interface type and specify the interface set or the interface
superset.
host1(config-qos-parameter-define)#controlled-interface-type set
host1(config-qos-parameter-define)#controlled-interface-type superset
You can specify up to four controlled-interface types for each parameter definition.
3. Configure the instance-interface type and specify the interface set or the interface
superset.
host1(config-qos-parameter-define)#instance-interface-type set
host1(config-qos-parameter-define)#instance-interface-type superset
You can specify up to eight instance-interface types for each parameter definition.
Creating a QoS Parameter Instance for an Interface Superset
To create a QoS parameter instance for an interface superset:
1.
Specify the QoS interface superset.
host1(config)#qos-interface-superset vlan-superset
2. Create the QoS parameter instance.
host1(config-qos-interface-superset)#qos-parameter business-data
3. Attach the QoS profile.
host1(config-qos-interface-superset)#qos-profile vlan
208
Copyright © 2012, Juniper Networks, Inc.
Chapter 23: Configuring Interface Sets for QoS
Creating a QoS Parameter Instance for an Interface Set
To create a QoS parameter instance for an interface set:
1.
Specify the QoS interface set.
host1(config)#qos-interface-set vlan-set
2. Create the QoS parameter instance.
host1(config-qos-interface-set)#qos-parameter business-data
3. Attach the QoS profile.
host1(config-qos-interface-set)#qos-profile vlan
Related
Documentation
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring Shared Shapers on page 315
•
controlled-interface-type
•
instance-interface-type
•
qos-interface-set
•
qos-interface-superset
•
qos-parameter
•
qos-profile
Attaching a QoS Profile to an Interface Superset or an Interface Set
You can configure a QoS profile to manage the scheduler resources for an interface set
or an interface superset.
Tasks to attach a QoS profile to an interface set or an interface set include:
•
Configuring a QoS Profile for an Interface Superset or an Interface Set on page 209
•
Attaching a QoS Profile to an Interface Superset on page 210
•
Attaching a QoS Profile to an Interface Set on page 210
Configuring a QoS Profile for an Interface Superset or an Interface Set
To configure a QoS profile to manage the scheduler resources for an interface superset
or an interface set:
1.
Configure the QoS profile.
hos1(config)#qos-profile vlan
2. Specify an interface superset or an interface set as a queue.
For interface supersets:
Copyright © 2012, Juniper Networks, Inc.
209
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-qos-profile)#superset queue traffic-class video
For interface sets:
host1(config-qos-profile)#set queue traffic-class video
3. Specify an interface superset or an interface set as a node.
For interface supersets:
host1(config-qos-profile)#superset node scheduler-profile video
For interface sets:
host1(config-qos-profile)#set node scheduler-profile video
Attaching a QoS Profile to an Interface Superset
To attach a QoS profile to an interface superset:
1.
Specify the QoS interface superset.
host1(config)#qos-interface-superset vlan-superset
2. Attach the QoS profile.
host1(config-qos-interface-superset)#qos-profile business-data
Attaching a QoS Profile to an Interface Set
To attach a QoS profile to an interface set:
1.
Specify the QoS interface set.
host1(config)#qos-interface-superset vlan-set
2. Attach the QoS profile.
host1(config-qos-interface-set)#qos-profile business-data
Related
Documentation
210
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring Shared Shapers on page 315
•
node
•
qos-interface-set
•
qos-interface-superset
•
qos-profile
•
queue
Copyright © 2012, Juniper Networks, Inc.
Chapter 23: Configuring Interface Sets for QoS
Deleting an Interface Superset or an Interface Set
You can delete an interface superset or an interface set after configuration.
Tasks to delete an interface superset or an interface set include:
•
Deleting an Interface Superset on page 211
•
Deleting an Interface Set on page 211
Deleting an Interface Superset
You must remove the interface sets from an interface superset before you can delete
the interface superset. If the interface superset has a QoS profile attached or a QoS
parameter instance, all of these attachments are also deleted.
To delete an interface superset:
1.
Remove the interface sets from the interface superset.
host1(config)#qos-interface-superset business-data
host1(config-qos-interface-superset)#no qos-interface-set atm-vc-data
2. Delete the interface superset.
host1(config)#no qos-interface-superset business-data
Deleting an Interface Set
You must remove the members of an interface set before you can delete the interface
set. If the interface set has a QoS profile attached or a QoS parameter instance, all of
these attachments are also deleted.
To delete an interface set:
1.
Remove the interface set from the interface member.
host1(config)#interface gigabitEthernet 4/0/0.1
host1(sub-if)#no qos-interface-parent vlan-business
2. Delete the interface set.
host1(config)#no qos-interface-set vlan-business
Related
Documentation
•
Configuring Interface Supersets for QoS on page 204
•
Configuring Interface Sets for QoS on page 205
•
qos-interface-parent
•
qos-interface-set
•
qos-interface-superset
Copyright © 2012, Juniper Networks, Inc.
211
JunosE 14.1.x Quality of Service Configuration Guide
Example: Configuring Interface Sets for 802.3ad Link Aggregation Groups
This example shows how to configure interface sets to restrict a VLAN interface to a
specific link in an 802.3ad link aggregation group (LAG).
When the parent interface of an interface superset is a LAG, the children of the superset
are distributed to different links of the LAG using the load balancing scheme.
You can, however, specify the Ethernet physical port as the anchor of the interface
superset. When the link is up, the interface superset is attached to the specified Ethernet
port. When the link is down, the system chooses an available link. When the link comes
back up, the system moves the interface superset and its member back to the primary
link.
To restrict a VLAN interface to a specific link in the LAG:
1.
Configure the interface superset.
host1(config)#interface superset lag
2. Assign the parent interface as LAG.
host1(config)#qos-interface-parent interface lag
3. Restrict the interface superset to the Ethernet parent interface.
host1(config-interface-superset)#restricted interface gigabitEthernet 4/0/0
Related
Documentation
212
•
qos-interface-parent
•
qos-interface-superset
•
restricted
Copyright © 2012, Juniper Networks, Inc.
PART 6
Managing Queuing and Scheduling with
QoS Parameters
•
QoS Parameter Overview on page 215
•
Configuring a QoS Parameter on page 219
•
Configuring Hierarchical QoS Parameters on page 249
•
Configuring IP Multicast Bandwidth Adjustment with QoS Parameters on page 257
•
Configuring the Shaping Mode for Ethernet with QoS Parameters on page 269
•
Configuring Byte Adjustment for Shaping Rates with QoS Parameters on page 279
•
Configuring the Downstream Rate Using QoS Parameters on page 287
Copyright © 2012, Juniper Networks, Inc.
213
JunosE 14.1.x Quality of Service Configuration Guide
214
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 24
QoS Parameter Overview
This chapter provides information about quality of service (QoS) parameters.
QoS parameters are discussed in the following sections:
•
QoS Parameter Overview on page 215
•
QoS Parameter Audience on page 215
•
QoS Parameter Terms on page 216
•
Relationship Among QoS Parameters, Scheduler Profiles, and QoS Profiles on page 217
QoS Parameter Overview
Using QoS parameters, you can configure a queuing architecture without specifying the
numeric subscriber rates and weights in scheduler profiles. You then use the same QoS
and scheduler profiles across all subscribers who use the same services but at different
bandwidths, reducing the total number of QoS profiles and scheduler profiles required.
Using QoS parameters, you can specify the following attributes of a scheduler node or
queue without specifying the numeric value explicitly in the scheduler profile:
Related
Documentation
•
Shaping rate
•
Shared-shaping rate
•
Assured rate
•
Scheduler weight
•
QoS Parameter Audience on page 215
•
QoS Parameter Terms on page 216
QoS Parameter Audience
This topic collection contains QoS parameter configuration information for two types of
QoS users: QoS administrators and QoS clients.
QoS administrators are responsible for implementing a QoS queuing architecture by
defining the scheduler profiles and referencing them from QoS profiles. QoS administrators
Copyright © 2012, Juniper Networks, Inc.
215
JunosE 14.1.x Quality of Service Configuration Guide
also configure parameter definitions that control the parameters, interfaces, and ranges
of values that QoS clients, using QoS parameters, can assign.
QoS clients are responsible for configuring services for individual subscribers by creating
parameter instances. The parameter instances that QoS clients create depend on the
settings that the QoS administrator defined in parameter definitions. QoS clients can
use the CLI, Session and Resource Control (SRC), IP multicast bandwidth adjustment,
RADIUS, or Service Manager to manage these services.
Related
Documentation
•
QoS Parameter Overview on page 215
•
Relationship Among QoS Parameters, Scheduler Profiles, and QoS Profiles on page 217
QoS Parameter Terms
Table 22 on page 216 defines terms used in this discussion of QoS parameters.
Table 22: QoS Parameter Terminology Used in This Chapter
216
Term
Description
Downreference
QoS feature that controls a node or queue lower in the scheduler
hierarchy. For example, a QoS profile that is attached to an ATM
virtual circuit (ATM VC) modifies QoS settings on ATM virtual path
(VP) nodes. You cannot configure downreferences for QoS
parameters. We also recommend that you do not configure
downreferences for QoS profiles.
Explicit parameter
instance
Hierarchical parameter instance whose value is explicitly specified
by a client. This term is meaningful only when referring to hierarchical
parameter instances; non-hierarchical parameter instances are
always explicit.
Hierarchical parameter
Parameter with both explicit instances that are configured by a QoS
client, and with implicit instances that are automatically generated
for all controlled interfaces. The value for the implicit instance is the
sum of the explicit instances for interfaces stacked above the
controlled interface.
Implicit parameter
instance
Hierarchical parameter instance where the value is the sum of explicit
parameter instances on scheduler nodes and queues stacked above
them in the scheduler hierarchy.
Parameter definition
Definition of a parameter name and attributes that a QoS
administrator creates.
Parameter expression
Parameters used in conjunction with operators. Scheduler profiles
reference a parameter definition name within a parameter expression.
Parameter instance
Parameter name and value that a QoS client associates with a logical
interface.
Parameter value
32-byte unsigned integer value associated with a parameter instance.
Copyright © 2012, Juniper Networks, Inc.
Chapter 24: QoS Parameter Overview
Table 22: QoS Parameter Terminology Used in This Chapter (continued)
Related
Documentation
•
Term
Description
QoS administrator
Person responsible for implementing a QoS queuing architecture by
configuring QoS profiles, scheduler profiles, and parameter definitions.
QoS client
Person responsible for configuring services for individual subscribers
and setting rates for those services by using the parameter definitions
and QoS profiles that the QoS administrator configures. QoS clients
can use the CLI, SRC, Service Manager, IP multicast bandwidth
adjustment, or RADIUS.
For definitions of other common QoS terms, see QoS Terms on page 5
Relationship Among QoS Parameters, Scheduler Profiles, and QoS Profiles
Figure 59 on page 217 shows the relationship among the parameter definitions, scheduler
profiles, and QoS profiles that QoS administrators create. It also indicates how these
profiles control the parameter instances that QoS clients create.
Figure 59: Relationship of Parameter Definitions, Scheduler Profiles, and
QoS Profiles
The following sections describe the steps displayed in Figure 59 on page 217, based on
the tasks that the QoS administrator performs and those the QoS client performs.
QoS Administrator Tasks
Before the QoS client can specify settings for subscribers by using the QoS parameters
feature:
1.
The QoS administrator defines the attributes that the QoS client can modify by
configuring a parameter definition.
2. The QoS administrator specifies the parameter definition name in a scheduler profile.
3. The QoS administrator references the scheduler profile in a QoS profile rule.
Copyright © 2012, Juniper Networks, Inc.
217
JunosE 14.1.x Quality of Service Configuration Guide
QoS Client Tasks
After the QoS administrator defines parameter definitions:
1.
The QoS client creates a parameter instance and associates it with a logical interface.
2. The QoS client attaches a QoS profile to the logical interface.
Related
Documentation
218
•
QoS Parameter Audience on page 215
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 25
Configuring a QoS Parameter
This chapter provides information for configuring quality of service (QoS) parameters
on E Series routers.
QoS parameters are discussed in the following sections:
•
Parameter Definition Attributes for QoS Administrators Overview on page 219
•
Scheduler Profiles and Parameter Expressions for QoS Administrators on page 225
•
Configuring a Basic Parameter Definition for QoS Administrators on page 228
•
Parameter Instances for QoS Clients Overview on page 229
•
Creating Parameter Instances on page 231
•
Example: QoS Parameter Configuration for Controlling Subscriber Bandwidth on page 232
Parameter Definition Attributes for QoS Administrators Overview
As the QoS administrator, you can create a parameter definition that constrains how a
QoS client can create a parameter instance. When QoS clients create a parameter
instance, they work within the attributes that you have defined.
Table 23 on page 219 lists the parameter attributes that you can define for a parameter
definition.
Table 23: Attributes in Parameter Definitions
Parameter Data Setting
Description
Name
Name for the parameter.
Instance-interface type
Interface types to which the QoS client can apply a
parameter instance. The QoS administrator can specify up
to eight instance-interface types for each parameter
definition.
Controlled-interface type
Interface types that specify resources that the parameter
instance can control. The QoS administrator can specify up
to four controlled-interface types for each parameter
definition.
Copyright © 2012, Juniper Networks, Inc.
219
JunosE 14.1.x Quality of Service Configuration Guide
Table 23: Attributes in Parameter Definitions (continued)
Parameter Data Setting
Description
Subscriber-interface type
Subscriber interfaces to which QoS clients can apply
parameters obtained through RADIUS or profiles. The QoS
administrator can specify up to four subscriber-interface
types for each parameter definition.
Range
Valid range of values that a QoS client can specify.
Expression
Boolean that indicates whether the parameter uses implicit
parameter instances, which are the sum of explicit instances
of the parameter on all scheduler nodes or queues above
them in the scheduler hierarchy.
Application
Application that binds parameter instance to a specific
application, such as IP multicast bandwidth adjustment.
Naming Guidelines for QoS Parameters
You define the parameter name by issuing the qos-parameter-define command to enter
QoS Parameter Definition Configuration mode.
The naming guidelines for parameters differ from other QoS features such as QoS profiles
and scheduler profiles.
Parameter names must begin with a letter to avoid confusion with numbers and operators.
Because QoS clients reference this parameter name to create a parameter instance, we
recommend that you use a name that is descriptive.
Table 24 on page 220 lists some sample parameter names and descriptions.
Table 24: Sample Parameter Names
Parameter Name
Description
max-subscriber-bandwidth
Total bandwidth for a subscriber (average of
all services)
max-voice-bandwidth
Shaping rate for a subscriber voice queue
min-data-bw
Assured rate for a priority-data service queue
max-data-bw
Shaping rate for the same priority data
service queue as min-data-sw
In addition, parameter names cannot be the same as an arithmetic operator. Table 25
on page 221 lists examples of valid and invalid parameter names that use operators.
220
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
Table 25: Valid and Invalid Parameter Names
Valid Names
Invalid Names
n1
1
f+
1n
–
+
–
+foo
–
min
–
max
Parameter names are case-sensitive. For example, max-subscriber-bw and
max-Subscriber-bw are different parameter names.
Because the shaping rate and shared-shaping rates determine the maximum scheduler
rates, and the assured rate determines minimum scheduler rates, we recommend that
you use min or max operands in the parameter name.
Interface Types and QoS Parameters
You can specify the following attributes in a parameter definition to control the scope
of a parameter on interfaces:
•
Controlled-interface types
•
Instance-interface types
•
Subscriber-interface types
Controlled-Interface Types
Controlled-interface types specify interface types for queues and scheduler nodes that
a parameter instance can control. You can define up to four controlled-interface types
for each parameter definition by issuing the controlled-interface-type command in QoS
Parameter Definition Configuration mode. Examples of controlled interface types include
atm-vp (ATM virtual paths), atm-vc (ATM virtual circuits), and VLAN (virtual LANs).
For example, if you specify controlled-interface types of atm-vc and vlan, then you can
use the parameter instance to shape or weight an ATM VC or VLAN node. However,
because you did not specify ip, the system does not allow this parameter in a scheduler
profile that was referenced in a QoS profile with an ip node (for example, ip node
scheduler-profile test1).
Controlled-Interface Type Example
In this example, you configure a parameter definition for a scheduler hierarchy in which
a VLAN represents a subscriber. The parameter definition specifies that the parameter
controls VLAN nodes and queues and sets the maximum rate for any parameter instance.
Copyright © 2012, Juniper Networks, Inc.
221
JunosE 14.1.x Quality of Service Configuration Guide
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#exit
Then you reference the parameter definition within a scheduler profile.
host1(config)#scheduler-profile subscriber
host1(config-scheduler-profile)#shared-shaping-rate max-subscriber-bandwidth auto
host1(config-scheduler-profile)#exit
This scheduler profile can be referenced only by QoS profile VLAN rules. When a user
attempts to reference the scheduler profile using rules other than VLAN, an error message
is displayed. For example, a QoS profile rule cannot associate the scheduler profile with
an atm-vc rule, as shown in the following example:
host1(config-qos-profile)#atm-vc queue traffic-class best-effort scheduler-profile
subscriber
% scheduler-profile parameter's controlled-interface-types(s) do not control this
atm-vc qos-profile rule type
After you reference the parameter in a scheduler profile, you can reference the scheduler
profile from a QoS profile. In this example, you configure a vlan node for each subscriber
with a shared-shaping rate specified by the parameter max-subscriber-bandwidth.
host1(config)#qos-profile subscriber-triple-play
host1(config-qos-profile)#vlan queue traffic-class best-effort scheduler-profile subscriber
Instance-Interface Types
After you configure at least one controlled-interface type, you configure one or more
instance-interface types that specify the types of logical interfaces to which the QoS
client can apply the parameter. You can define up to eight instance-interface types for
each parameter definition by issuing the instance-interface-type command in QoS
Parameter Definition Configuration mode.
QoS clients cannot create a downreference for a parameter instance for instance-interface
types that is above the lowest controlled-interface type of the same family in the interface
stack.
NOTE: The guidelines are different for using instance-interface types with
hierarchical parameters. For more information, see “Scheduler Profiles and
Parameter Expressions for QoS Administrators” on page 225.
Instance-Interface Type Example
In the following example, you configure a parameter definition with a controlled-interface
type of VLAN. You then enable QoS clients to create a parameter instances at VLAN,
SVLAN, and Ethernet interfaces by configuring instance-interface types of vlan, svlan,
and ethernet.
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type svlan
222
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
host1(config-qos-parameter-define)#instance-interface-type ethernet
In the scheduler hierarchy, IP is above VLANs. If you attempt to configure an
instance-interface type for ip, an error message indicates that you cannot downreference
IP from VLANs.
host1(config-qos-parameter-define)#instance-interface-type ip
% instance-interface-type ip cannot stack above the lowest controlled-interface-type
Subscriber-Interface Types
Subscriber-interface types represent subscriber interfaces to which you can apply QoS
parameters obtained through RADIUS or SRC. You can define up to four
subscriber-interface types for each parameter definition by issuing the
subscriber-interface-type command in QoS Parameter Definition Configuration mode.
The following interface types are supported:
•
ip
•
l2tp-session
•
atm-vc
•
vlan
QoS clients cannot create a parameter instance for subscriber-interface types that is
above the lowest controlled-interface type of the same family in the interface stack.
If an interface profile contains a QoS parameter instance rule of
max-subscriber-bandwidth 1000000, the system searches the logical interface column,
starting at the top, and associates the parameter instance with the first interface with
the subscriber-interface type that it locates.
A RADIUS administrator can enter multiple QoS parameter name and value pairs when
configuring the RADIUS server with the Juniper Networks VSA [26-82]. This means that
the RADIUS can return multiple instances of the same VSA in a single request. For more
information about Juniper Networks VSA [26-82], see Juniper Networks VSAs.
Subscriber-Interface Type Example
In the following example, you configure a parameter definition with a controlled-interface
type and a subscriber-interface type of IP. These settings enable you to create QoS
parameter VSAs on an IP interface.
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type ip
host1(config-qos-parameter-define)#instance-interface-type ip
host1(config-qos-parameter-define)#subscriber-interface-type ip
Range of QoS Parameters
You can specify the range of values that the QoS client can enter for a parameter instance
by issuing the range command in QoS Parameter Definition Configuration mode.
Copyright © 2012, Juniper Networks, Inc.
223
JunosE 14.1.x Quality of Service Configuration Guide
In the following example, you specify that a QoS client can enter a value for the parameter
from 512 Kbps to 8 Mbps. The system does not accept values outside of this range.
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#range 512000 8192000
host1(config-qos-parameter-define)#exit
If the QoS client attempts to configure values outside of this range, a message is displayed.
host1(config)#interface fastEthernet 9/0.1
host1(config-subif)#qos-parameter max-subscriber-bandwidth 1000000
host1(config-subif)#exit
host1(config)#interface fastEthernet 9/0.1
host1(config-subif)#qos-parameter max-subscriber-bandwidth 200000
% parameter instance is out of range
You cannot create or modify an existing range if the change causes any explicit parameter
instance values to be outside the valid range. For example:
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#range 512000 8192000
host1(config-qos-parameter-define)#exit
host1(config)#interface fastEthernet 9/0.1
host1(config-subif)# ! This parameter instance is within the range of 512Kbps to 8Mbps.
host1(config-subif)#qos-parameter max-subscriber-bandwidth 1000000
host1(config-subif)#exit
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#range 2048000 8192000
% cannot modify a range when parameter instances exist with values outside the new
range
However, you can remove ranges by using the no range command.
NOTE: You can also define a range in parameter expressions when referencing
a parameter within a scheduler profile. For more information, see “Specifying
a Range in Expressions” on page 227.
Applications and QoS Parameters
You can associate a parameter definition with an application in the system by issuing
the application keyword with the qos-parameter-define command. The applications
that you can configure include:
224
•
IP Multicast Bandwidth Adjustment
•
QoS Cell Mode
•
Byte Adjustment (Cell and Frame)
•
QoS Downstream Rate
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
Related
Documentation
•
Configuring a Basic Parameter Definition for QoS Administrators on page 228
•
IP Multicast Bandwidth Adjustment for QoS Overview on page 257
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
QoS Downstream Rate Application Overview on page 287
Scheduler Profiles and Parameter Expressions for QoS Administrators
After you have created the parameter definition, you reference the parameter within a
scheduler profile. You can choose to use parameter expressions in the scheduler profile.
Referencing a Parameter Definition in a Scheduler Profile
You can reference a parameter in a scheduler profile as long as all parameters in the
scheduler profile share at least one controlled-interface type. Otherwise, a QoS profile
rule cannot reference the scheduler profile.
For example:
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#exit
host1(config)#scheduler-profile subscriber
host1(config-scheduler-profile)#shared-shaping-rate max-subscriber-bandwidth auto
When a scheduler profile references a parameter, the system implicitly assigns
controlled-interface types to the scheduler profile that are the same as the
controlled-interface types of all referenced parameters. The system validates scheduler
profile types using the QoS profile rules that refer to those scheduler profiles. For example,
if the parameter definition max-sub-bw has the controlled-interface types atm-vc and
ip, the scheduler profile cannot be referenced in QoS profile rules that have a type other
than atm-vc or ip.
Removing or Modifying a Scheduler Profile
You can modify a scheduler profile as long as the QoS profile rules that use the scheduler
profile are of the same type. All nodes and queues controlled by the scheduler profile
are adjusted to the new rate.
You can also remove a parameter reference from a scheduler profile. The system modifies
the nodes and queues that are controlled by the scheduler profile with the new rate.
Using Expressions for QoS Parameters
Expressions are combinations of parameter names, constants, and operators. You can
specify some scheduler profile attributes using an expression, such as the shaping rate.
All operations within expressions are performed using 64 bit unsigned math, resulting in
a 32 bit, signed integer value.
Copyright © 2012, Juniper Networks, Inc.
225
JunosE 14.1.x Quality of Service Configuration Guide
Expressions consist of both operators and operand values. Operators are arithmetic
functions, and operand values are the inputs for the mathematical function. Operand
values can be a parameter name or an integer. You specify an expression consisting of
an operand, followed by zero or more [ operator, operand ] pairs.
Simple parameter expressions are displayed in the following example. Simple parameter
expressions usually contain a constant rate or a single parameter name.
host1(config-scheduler-profile)#shaping-rate 10000000
host1(config-scheduler-profile)#shared-shaping-rate max-sub-bw auto
host1(config-scheduler-profile)#shaping-rate max-sub-be-bw
host1(config-scheduler-profile)#assured-rate assured-bw
More complicated parameter expressions are displayed in the following example.
Complicated parameter expressions contain combinations of constant rates, parameter
names, and operators.
host1(config-scheduler-profile)#shaping-rate max-sub-bw % 90
host1(config-scheduler-profile)#shared-shaping-rate max-data-bw + max-voice-bw +
max-video-bw auto
host1(config-scheduler-profile)#assured-rate min-data-bw % oversubscription-rate +
min-video-bw % oversubscription-rate
host1(config-scheduler-profile)#shared-shaping-rate 400000 - multicast-adjustment
burst 100 milliseconds auto
Operators and Precedence
Table 26 on page 226 lists the operators that QoS parameters support and the precedence
of the operator within the expression.
Table 26: Operators for Parameter Expressions
Operator
Description
Precedence
Examples
%
Percent in the range
1–100
1
max-subscriber-bw % 100
max-subscriber-bw % 10
*
Multiplication
1
5 * maxBandwidth
/
Division
1
maxBandwidth / 64000
+
Addition
2
max-subscriber-bw + 50000
max-subscriber-bw + l2c-rate
-
Subtraction
2
max-subscriber-bw - 50000
max-subscriber-bw - l2c-rate
min
Minimum
3
max-subscriber-bw min 50000
max-subscriber-bw min l2c-rate
226
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
Table 26: Operators for Parameter Expressions (continued)
Operator
Description
Precedence
Examples
max
Maximum
3
max-subscriber-bw max 50000
max-subscriber-bw max l2c-rate
Specifying a Range in Expressions
You can use the min and max operators to specify the allowable range of an expression
result.
For example, to specify a shaping rate at a minimum of 1 Mbps and a maximum of 5
Mbps, use the following expression:
host1(config)#scheduler-profile subscriber-rate
host1(config-scheduler-profile)#shaping-rate (( subscriber-rate max 1000000 ) min
5000000 )
Operations Using This Expression
Take the max of the subscriber-rate scheduler profile, or 1 Mbps, and name it x.
1.
2. Take the min of x and 5 Mbps.
Some of the examples are:
•
The value of the subscriber-rate scheduler profile is less than 1 Mbps, specifically
500,000.
•
The max of 500K and1 Mbps is 1 Mbps
•
The min of 1Mbps and 5 Mbps is 1 Mbps
Result—Made the subscriber-rate a minimum of 1 Mbps.
•
The value of the subscriber-rate scheduler profile is greater than 5 Mbps, specifically
6 Mbps.
•
The max of 6 Mbps and 1 Mbps is 6 Mbps
•
The min of 6 Mbps and 5 Mbps is 5 Mbps
Result—Made the subscriber-rate a maximum of 5 Mbps.
•
The value of the subscriber-rate scheduler profile is within the range of 1–5 Mbps,
specifically 3 Mbps.
•
The max of 3 Mbps and 1 Mbps is 3 Mbps
•
The min of 3 Mbps and 5 Mbps is 3 Mbps
Result—Maintained the subscriber-rate within the range of 1–5 Mbps.
Related
Documentation
•
Using Expressions for Bandwidth and Burst Values in a Scheduler Profile on page 48
•
Configuring a Basic Parameter Definition for QoS Administrators on page 228
Copyright © 2012, Juniper Networks, Inc.
227
JunosE 14.1.x Quality of Service Configuration Guide
Configuring a Basic Parameter Definition for QoS Administrators
This section describes how to configure an individual parameter definition and how to
associate it with an application.
Several of the following tasks are optional. Perform the required tasks and also any
optional tasks that you need for your QoS parameter configuration.
To configure a parameter definition:
1.
Create traffic classes.
host1(config)#traffic-class business-data
host1(config-traffic-class)#exit
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
host1(config)#traffic-class video
2. Create a parameter definition.
a. Specify the parameter definition name.
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#
b. Specify the logical interface types for the nodes and queues controlled by this
parameter.
host1(config-qos-parameter-define)#controlled-interface-type atm-vc
host1(config-qos-parameter-define)#controlled-interface-type vlan
You can specify up to four of the following controlled-interface types per parameter
definition: atm, atm-vc, atm-vp, bridge, ethernet, fr-vc, ip, ip-tunnel, ipv6,
l2tp-session, l2tp-tunnel, lsp, pppoe, serial, server-port, vlan.
c. Specify the set of logical interfaces types upon which a QoS client can create
instances of the parameter.
host1(config-qos-parameter-define)#instance-interface-type atm-vc
host1(config-qos-parameter-define)#instance-interface-type ip
You can specify up to four of the following controlled-interface types per parameter
definition: atm, atm-vc, atm-vp, bridge, ethernet, fr-vc, ip, ip-tunnel, ipv6, lag,
l2tp-session, l2tp-tunnel, lsp, pppoe, serial, server-port, svlan, vlan.
d. (Optional) Specify the set of interface types that a QoS client can assign to a
parameter instance to represent subscribers.
host1(config-qos-parameter-define)#subscriber-interface-type ip
You can specify up to four of the following subscriber-interface types: atm-vc, ip,
ipv6, l2tp-session, vlan.
e. (Optional) Define the range of values that a QoS client can assign to a parameter
instance.
host1(config-qos-parameter-define)#range 64000 8000000
228
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
3. Reference the parameter within a scheduler profile parameter expression and configure
an assured rate, shaping rate, shared-shaping rate, or weight.
host1(config)#scheduler-profile business-data
host1(config-scheduler-profile)#shaping-rate max-subscriber-bandwidth % 25
4. Add the scheduler profile to a QoS profile and configure the QoS profile.
host1(config)#qos-profile subscriber
host1(config-qos-profile)#atm-vc queue traffic-class business-data scheduler-profile
business-data
host1(config-qos-profile)#atm-vc queue traffic-class video scheduler-profile voice
host1(config-qos-profile)#atm-vc queue traffic-class voice scheduler-profile video
Related
Documentation
•
Parameter Definition Attributes for QoS Administrators Overview on page 219
•
Example: QoS Parameter Configuration for Controlling Subscriber Bandwidth on
page 232
•
Configuring a Scheduler Hierarchy on page 47
•
Configuring a QoS Profile on page 126
•
assured-rate
•
controlled-interface-type
•
instance-interface-type
•
node
•
qos-parameter-define
•
qos-profile
•
queue
•
range
•
scheduler-profile
•
shaping-rate
•
shared-shaping-rate
•
subscriber-interface-type
•
traffic-class
•
weight
Parameter Instances for QoS Clients Overview
The QoS administrator implements a QoS architecture for the provider based on QoS
profiles and parameter definitions. The QoS client creates the parameter instances and
attaches QoS profiles to logical interfaces. The QoS client can be a user accessing
parameters through CLI or through client software such as RADIUS or SRC.
Copyright © 2012, Juniper Networks, Inc.
229
JunosE 14.1.x Quality of Service Configuration Guide
As a QoS client, you can use QoS parameter instances to set the following attributes of
a node or queue:
•
Assured rate
•
Shaping rate
•
Shared-shaping rate
•
Scheduler weight
Global QoS Parameter Instance Overview
In the following example, a parameter instance is created in Global Configuration mode.
host1(config)#qos-parameter max-subscriber-bandwidth 8000000
When you create a parameter instance in Global Configuration mode, the value that you
set for a rate becomes the default value for the router. We recommend that you create
a global default value for a parameter instance to provide a minimal level of service by
default for the router.
QoS Parameters for Interfaces Overview
When you attach a parameter instance to an interface in Interface Configuration mode,
the default value for the chassis overrides the default value for the router. When attached
to subinterfaces, parameter instances override both interface and global configurations.
In the following example, a parameter instance is created on a Fast Ethernet interface
in Interface Configuration mode.
host1(config)#interface fastEthernet 9/0.2
host1(config-if)#qos-parameter max-subscriber-bandwidth 8000000
Parameter instances have hierarchical scope. The scope of a parameter instance is the
set of logical interfaces stacked above the interface upon which you create it. Any interface
stacked above the instance that is one of the controlled-interface types that are
configured in the parameter definition can have its nodes or queues controlled by that
instance. For example, a parameter named max-sub-bw might have logical interface
types of IP and l2tp-session; therefore, it controls rates only for nodes and queues
associated with those interface types.
For example, the scope of a parameter instance at a S-VLAN can be all VLANs stacked
above that particular S-VLAN. Scopes can overlap, for example, if a parameter instance
is created for both an S-VLAN and a VLAN. The most specific instance overrides the other
instances.
However, you cannot configure QoS parameter instances to downreference through the
interface stack. For example, you cannot create a parameter instance with an interface
type of ATM VP on an ATM1483 subinterface.
When you attach the parameter instance to an interface, it provides a default subscriber
bandwidth for terminated and tunneled subscribers that terminate over that interface.
To set parameter instances for a subscriber, a parameter instance is attached to a
subscriber interface such as a vlan or atm-vc. The QoS administrator defines the available
230
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
subscriber-interface types in the parameter definition. The parameter instance overrides
the QoS profile attachment lower down the interface stack, providing a subscriber-specific
value.
You can attach QoS profiles and QoS parameters to a logical interface in either order. If
a scheduler profile calls for a parameter and no parameter instance is defined, the system
behaves as if there is no shaping rate, shared-shaping rate, or assured rate for that node
or queue.
Related
Documentation
•
Creating Parameter Instances on page 231
•
IP Multicast Bandwidth Adjustment for QoS Overview on page 257
Creating Parameter Instances
You can create QoS parameter instances globally, for an interface, or for a subinterface.
Tasks to create parameter instances are:
•
Creating a Global Parameter Instance on page 231
•
Creating a Parameter Instance for an Interface on page 231
•
Creating a Parameter Instance for an ATM VP on page 231
•
Creating a Parameter Instance for an S-VLAN on page 232
Creating a Global Parameter Instance
To create a global parameter instance:
•
Create a parameter instance in Global Configuration mode.
host1(config)#qos-parameter max-subscriber-bandwidth 6000000
Creating a Parameter Instance for an Interface
To create a parameter instance for an interface:
1.
Specify an interface.
host1(config)#interface atm 11/0.1
host1(config)#interface gigabitEthernet 2/0
2. Specify the parameter name and the value.
host1(config-subif)#qos-parameter max-subscriber-bandwidth 6000000
Creating a Parameter Instance for an ATM VP
Use this procedure to attach a parameter instance to a VP on the interface. Optionally,
use the qos-profile keyword to attach a parameter instance to a QoS profile.
To create a parameter instance for an ATM VP:
1.
Configure the ATM VP.
Copyright © 2012, Juniper Networks, Inc.
231
JunosE 14.1.x Quality of Service Configuration Guide
host1(config)#interface atm 2/0
host1(config-if)#atm vp-tunnel 4
2. Do either of the following:
•
Attach the parameter instance to an ATM VP on the interface.
host1(config-if)#atm-vp 4 qos-parameter max-subscriber-bandwidth 375000
•
Attach the parameter instance and associate with the QoS profile.
host1(config-if)#atm-vp 4 qos-profile video qos-parameter
max-subscriber-bandwidth 375000
Creating a Parameter Instance for an S-VLAN
Use this procedure to attach a parameter instance to a specified S-VLAN ID on the
interface. Optionally, use the qos-profile keyword to attach a parameter instance to a
QoS profile.
To create a parameter instance for an S-VLAN:
1.
Specify the Ethernet interface and create the VLAN.
host1(config)#interface gigabitEthernet 3/0
host1(config-if)#encapsulation vlan
host1(config-if)#interface gigabitEthernet 3/0.1
2. Specify the S-VLAN ID.
host1(config-if)#svlan id 1 202
3. Attach the parameter instance to an S-VLAN ID on the interface.
host1(config-if)#svlan 202 qos-parameter max-subscriber-bandwidth 6000000
Related
Documentation
•
Parameter Instances for QoS Clients Overview on page 229
•
JunosE Broadband Access Configuration Guide
•
atm-vp qos-parameter
•
atm vp-tunnel
•
encapsulation vlan
•
interface
•
qos-parameter
•
svlan id
•
svlan qos-parameter
Example: QoS Parameter Configuration for Controlling Subscriber Bandwidth
The example in this section illustrates how to use parameters to control the minimum
and maximum bandwidth of a subscriber. The example includes procedures for both
QoS administrators and QoS clients.
232
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
Through QoS parameter definitions, the QoS administrator defines a QoS scheduler
hierarchy that corresponds to the physical network topology shown in Figure 60 on
page 233.
Figure 60: Physical Network Topology
The S-VLAN scheduler nodes correspond to the DSLAM in the physical network topology;
the VLAN scheduler nodes correspond to the subscribers.
Figure 61 on page 233 shows the QoS scheduler hierarchy that the QoS client creates when
configuring a different service for each subscriber.
Figure 61: QoS Scheduler Hierarchy
For Subscriber 1, the QoS client configures a basic best-effort data service, with a
maximum rate of 2 Mbps, and assigns a scheduler weight value of 1.
Copyright © 2012, Juniper Networks, Inc.
233
JunosE 14.1.x Quality of Service Configuration Guide
For Subscriber 2, the QoS client configures a basic triple-play service consisting of voice,
video, and best-effort data services. This service enables the subscriber to transmit up
to 6 Mbps of combined voice, video, and best-effort data traffic. The service limits video
traffic to 2 Mbps and enables low-latency bandwidth for one 100 Kbps voice call. The
QoS client then assigns this subscriber a scheduler weight value of 3, enabling this
subscriber to claim up to three times the bandwidth than the basic data service configured
for Subscriber 1.
For Subscriber 3, the QoS client configures an enhanced triple-play service consisting of
voice, video and best-effort data services. This enhanced triple-play service enables the
subscriber to transmit up to 8 Mbps of combined voice, video, and best-effort data traffic.
This service limits video traffic to 3 Mbps and enables low-latency bandwidth for up to
three 100 Kbps voice calls. The QoS client then assigns this subscriber a scheduler weight
value of 6, enabling this subscriber to claim up to six times the bandwidth of the basic
data service subscriber configured for Subscriber 1, and up to twice the bandwidth of the
basic triple-play subscriber configured for Subscriber 2.
Procedure for QoS Administrators
This section describes the procedures to configure the scheduler hierarchy shown in
Figure 61 on page 233 by using QoS parameters.
Configuring Traffic
Classes and Traffic
Class Groups
The QoS administrator configures traffic classes and traffic-class groups for best-effort
data, video, and voice services.
1.
Configure the traffic classes.
a. Configure the traffic class named best-effort.
b. Configure the traffic class named video.
c. Configure the traffic class named voice.
d. Enable the voice traffic class to provide a strict priority treatment throughout the
fabric.
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
host1(config)#traffic-class video
host1(config-traffic-class)#exit
host1(config)#traffic-class voice
host1(config-traffic-class)#fabric-strict-priority
host1(config-traffic-class)#exit
2. Configure a traffic-class group for low-latency expedited forwarding (EF) and add
the voice traffic class into the traffic-class group EF.
a. Configure the EF traffic-class group with strict-priority scheduling.
b. Add the voice traffic class to the traffic-class group.
host1(config)#traffic-class-group EF auto-strict-priority
host1(config-traffic-class-group)#traffic-class voice
host1(config-traffic-class-group)#exit
234
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
The remaining traffic classes, best-effort and video, remain in the default
traffic-class group.
Configuring the
Parameter Definitions
After configuring the traffic classes and traffic-class groups, the QoS administrator
configures the parameter definitions for Subscribers 1, 2, and 3.
1.
Configure a parameter definition for the maximum subscriber bandwidth.
a. Configure the parameter definition named max-subscriber-bandwidth.
b. Enable the parameter to control VLANs.
c. Enable the parameter to have instances created on VLAN subinterfaces.
d. Specify the valid range of this parameter as 512 Kbps–8 Mbps.
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#range 512000 8192000
host1(config-qos-parameter-define)#exit
2. Configure a parameter definition for a subscriber's weight in the hierarchical
round-robin (HRR) scheduler. This parameter is used to provide different scheduler
weights for each of the three service offerings.
a. Configure the parameter definition named subscriber-weight.
b. Enable the parameter to control VLANs.
c. Enable the parameter to have instances created on VLAN subinterfaces.
d. Specify the valid range of this parameter as 1–6.
host1(config)#qos-parameter-define subscriber-weight
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#range 1 6
host1(config-qos-parameter-define)#exit
3. Configure a parameter definition for the subscriber's maximum video bandwidth. By
creating a parameter instance on S-VLANs, the QoS administrator can specify a
subscriber's maximum video bandwidth for each DSLAM in the hierarchy.
a. Configure the parameter definition named max-subscriber-video-bandwidth.
b. Enable the parameter to control VLANs.
c. Enable the parameter to have instances created on both SVLAN and VLAN
subinterfaces.
d. Specify the valid range of this parameter as 1 Mbps–5 Mbps.
host1(config)#qos-parameter-define max-subscriber-video-bandwidth
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type svlan
host1(config-qos-parameter-define)#range 1000000 5000000
Copyright © 2012, Juniper Networks, Inc.
235
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-qos-parameter-define)#exit
4. Configure a parameter definition for the maximum number of 100 Kbps voice calls
supported for the subscriber.
a. Configure the parameter definition named max-100Kbps-voice-calls.
b. Enable the parameter to control VLANs.
c. Enable the parameter to have instances created on VLAN subinterfaces.
d. Specify the valid range of this parameter as 1–3.
host1(config)#qos-parameter-define max-100Kbps-voice-calls
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#range 1 3
host1(config-qos-parameter-define)#exit
Configuring the
Scheduler Profiles
The QoS administrator can then reference the parameter definitions within a scheduler
profile, which defines the shaping rates for the parameter.
1.
Configure a scheduler profile to specify the maximum bandwidth of the subscriber's
best-effort data.
a. Configure the scheduler profile named subscriber-best-effort.
b. Configure the shared-shaping rate by referencing the max-subscriber-bandwidth
parameter and choosing automatic shared shaping.
host1(config)#scheduler-profile subscriber-best-effort
host1(config-scheduler-profile)#shared-shaping-rate max-subscriber-bandwidth
auto
host1(config-scheduler-profile)#exit
2. Configure a scheduler profile to specify the maximum bandwidth of the subscriber's
video service.
a. Configure the scheduler profile named subscriber-video.
b. Configure the shaping rate by referencing the max-subscriber-video-bandwidth
parameter.
host1(config)#scheduler-profile subscriber-video
host1(config-scheduler-profile)#shaping-rate max-subscriber-video-bandwidth
host1(config-scheduler-profile)#exit
3. Configure a scheduler profile for the subscriber's weight within the HRR scheduler.
a. Configure the scheduler profile named subscriber-weight.
b. Configure the weight using the default for the subscriber-weight parameter.
host1(config)#scheduler-profile subscriber-weight
host1(config-scheduler-profile)#weight subscriber-weight
host1(config-scheduler-profile)#exit
4. Configure a scheduler profile for the subscriber's voice service.
a. Configure the scheduler profile named subscriber-voice.
236
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
b. Configure the shaping rate by referencing the max-100Kbps-voice-calls parameter
and multiplying it by 100 Kbps of voice calls.
host1(config)#scheduler-profile subscriber-voice
host1(config-scheduler-profile)#shaping-rate max-100Kbps-voice-calls * 100000
host1(config-scheduler-profile)#exit
Configuring the QoS
Profiles
By referencing the scheduler profiles within QoS profiles, the QoS administrator creates
the scheduler hierarchy. In this portion of the example, the QoS administrator configures
QoS profiles for the best-effort data and triple-play service offerings.
1.
Define a QoS profile for the best-effort data service.
a. Create the QoS profile named subscriber-data-service.
b. Create a node for S-VLAN subinterfaces.
c. Specify a node for VLAN subinterfaces and reference the subscriber-weight
scheduler profile.
d. Specify a queue for VLAN subinterfaces, referencing the best-effort traffic class
and the subscriber-best-effort scheduler-profile.
host1(config)#qos-profile subscriber-data-service
host1(config-qos-profile)#svlan node
host1(config-qos-profile)#vlan node scheduler-profile subscriber-weight
host1(config-qos-profile)#vlan queue traffic-class best-effort scheduler-profile
subscriber-best-effort
host1(config-qos-profile)#exit
The best-effort queue rule for VLAN subinterfaces refers to the
subscriber-best-effort scheduler profile. The scheduler profile refers to the
max-subscriber-bandwidth parameter that controls the maximum rate of this
subscriber's best-effort queue.
2. Define a QoS profile for the triple-play service and specify S-VLAN nodes and VLAN
nodes.
a. Create a QoS profile named subscriber-triple-play.
b. Specify a node for S-VLAN subinterfaces.
c. Specify a node for VLAN subinterfaces and reference the subscriber-weight
scheduler profile.
d. Specify a node for S-VLAN subinterfaces and reference the EF traffic-class group.
e. Specify a queue for VLAN subinterfaces, referencing the best-effort traffic class
and the subscriber-best-effort scheduler profile.
f. Specify a queue for VLAN subinterfaces, referencing the video traffic class and the
subscriber-video scheduler profile.
g. Specify a queue for VLAN subinterfaces, referencing the voice traffic-class and the
subscriber-voice scheduler profile.
host1(config)#qos-profile subscriber-triple-play
host1(config-qos-profile)#svlan node
Copyright © 2012, Juniper Networks, Inc.
237
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-qos-profile)#vlan node scheduler-profile subscriber-weight
host1(config-qos-profile)#svlan node group EF
host1(config-qos-profile)#vlan queue traffic-class best-effort scheduler-profile
subscriber-best-effort
host1(config-qos-profile)#vlan queue traffic-class video scheduler-profile
subscriber-video
host1(config-qos-profile)#vlan queue traffic-class voice scheduler-profile
subscriber-voice
host1(config-qos-profile)#exit
VLAN queues are used for each service. The VLAN queue rules reference scheduler
profiles that define the scheduler rates for the service.
3. Configure a QoS profile and attach to all Fast Ethernet, Gigabit Ethernet, and 10-Gigabit
Ethernet interfaces in the chassis.
a. Create a QoS profile named ethernet-default.
b. Remove the QoS profile rule for creating IP nodes.
c. Remove the IP queue for the best-effort traffic-class.
host1(config)#qos-profile ethernet-default
host1(config-qos-profile)#no ip node
host1(config-qos-profile)#no ip queue traffic-class best-effort
host1(config-qos-profile)#exit
4. Configure the Fast Ethernet interface and VLAN subinterfaces.
a. Configure the Fast Ethernet interface in slot 9, port 0.
b. Configure the VLAN major interface.
c. Configure the VLAN subinterface at slot 9, port 0, subinterface 1.
d. Assign an S-VLAN ID of 2 and a VLAN ID of 1 to the VLAN subinterface.
e. Assign an IP address to the VLAN subinterface.
f. Repeat Steps a–e to configure VLAN subinterfaces in slot 9, port 0, subinterface
2 and in slot 9, port 0, subinterface 3.
host1(config)# interface fastEthernet 9/0
host1(config-if)#encapsulation vlan
host1(config-if)#exit
host1(config)#interface fastEthernet 9/0.1
host1(config-subif)#svlan id 2 1
host1(config-subif)#ip address 192.1.1.1 255.255.255.0
host1(config)#interface fastEthernet 9/0.2
host1(config-subif)#svlan id 2 2
host1(config-subif)#ip address 192.2.1.1 255.255.255.0
host1(config-subif)#exit
host1(config)#interface fastEthernet 9/0.3
host1(config-subif)#svlan id 2 3
host1(config-subif)#ip address 192.3.1.1 255.255.255.0
host1(config-subif)#exit
238
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
Procedure for QoS Clients
This section describes procedures to create parameter instances for Subscribers 1, 2, and
3.
Creating a Global
Parameter Instance
The QoS client creates global parameter instances to provide a minimal level of default
service for the router. In this portion of the example, the QoS client configures 2 Mbps of
data traffic and configures a scheduler weight of 1 for Subscriber 1. For Subscribers 2 and
3, the QoS client then configures a maximum of 2 Mbps of video bandwidth and 1 voice
call.
To create a global parameter instance:
1.
Create a global parameter instance for max-subscriber-bandwidth with a value of
2000000.
2. Create a global parameter instance for subscriber-weight with a value of 1.
3. Create a global parameter instance for subscriber-video-bandwidth with a value of
2000000.
4. Create a global parameter instance for max-100Kbps-voice-calls with a value of 1.
host1(config)#qos-parameter max-subscriber-bandwidth 2000000
host1(config)#qos-parameter subscriber-weight 1
host1(config)#qos-parameter max-subscriber-video-bandwidth 2000000
host1(config)#qos-parameter max-100Kbps-voice-calls 1
Creating a Global
Parameter Instance for
Individual DSLAMs
Instead of creating global parameter instances, the QoS client can create different
parameter instances for the DSLAMs that correspond to the S-VLAN nodes shown in
Figure 61 on page 233. In this portion of the example, the QoS client creates 1 Mbps video
streams by default on DSLAM 1, rather than the 2Mbps global parameter instance.
1.
Specify the Fast Ethernet interface in slot 9, port 0.
2. Attach the QoS parameter max-subscriber-video-bandwidth to S-VLAN 1.
host1(config)#interface fastEthernet 9/0
host1(config-if)#svlan 1 qos-parameter max-subscriber-video-bandwidth 1000000
host1(config-if)#exit
Creating Parameter
Instances for
Subscribers
The QoS client creates a parameter instance for Subscribers 1, 2, and 3.
1.
Configure the basic-data service for Subscriber 1.
a. Specify the Fast Ethernet interface in slot 9, port 0.
b. Attach the QoS profile subscriber-data-service to the subscriber’s Fast Ethernet
interface.
host1(config)#interface fastEthernet 9/0.1
host1(config-subif)#qos-profile subscriber-data-service
host1(config-subif)#exit
Copyright © 2012, Juniper Networks, Inc.
239
JunosE 14.1.x Quality of Service Configuration Guide
This QoS profile references the scheduler profiles, which then reference the
parameter instances max-subscriber-bandwidth and subscriber-weight. These
global parameter instances are created with values 2 Mbps and 1.
2. Configure a basic triple-play service consisting of voice, video, and data services for
Subscriber 2.
a. Specify the Fast Ethernet interface in slot 9, port 0.
b. Create a parameter instance for max-subscriber-bandwidth, enabling the subscriber
to transmit up to 6 Mbps of combined voice, video, and data traffic.
c. Create a parameter instance for subscriber-weight with a value of 3. This value
enables the subscriber to claim up to three times the bandwidth of Subscriber 1,
with basic data service.
d. Create a parameter instance for max-subscriber-video-bandwidth, limiting video
traffic to 2 Mbps.
e. Create a parameter instance for max-100Kbps-voice-calls, enabling bandwidth
for one 100 Kbps voice call.
f. Attach the QoS profile subscriber-triple-play to the subscriber's interface.
host1(config)#interface fastEthernet 9/0.2
host1(config-if)#qos-parameter max-subscriber-bandwidth 6000000
host1(config-if)#qos-parameter subscriber-weight 3
host1(config-if)#qos-parameter max-subscriber-video-bandwidth 2000000
host1(config-if)#qos-parameter max-100Kbps-voice-calls 1
host1(config-if)#qos-profile subscriber-triple-play
host1(config-if)#exit
3. Configure a enhanced triple-play service consisting of voice, video, and data services
for Subscriber 3. Enable the subscriber to have twice as much bandwidth as Subscriber
2, with basic triple-play service.
a. Create a parameter instance for max-subscriber-bandwidth, enabling the subscriber
to transmit up to 8 Mbps of combined voice, video, and data traffic.
b. Create a parameter instance for subscriber-weight with a value of 6, enabling the
subscriber to claim up to six times the bandwidth of Subscriber 1, with basic data
service.
c. Create a parameter instance for max-subscriber-video-bandwidth, limiting video
traffic to 3 Mbps.
d. Create a parameter instance for max-100Kbps-voice-calls, enabling up to three
100 Kbps voice calls.
e. Attach the QoS profile subscriber-triple-play to the subscriber's interface.
host1(config)#interface fastEthernet 9/0.3
host1(config-if)#qos-parameter max-subscriber-bandwidth 8000000
host1(config-if)#qos-parameter subscriber-weight 6
host1(config-if)#qos-parameter max-subscriber-video-bandwidth 3000000
host1(config-if)#qos-parameter max-100Kbps-voice-calls 3
host1(config-if)#qos-profile subscriber-triple-play
host1(config-if)#exit
240
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
Monitoring the Subscriber Configuration
After completing the configuration, both the QoS administrator and the QoS client can
monitor it by issuing show commands.
1.
To display the traffic classes for best-effort, video, and voice, issue the show
traffic-class command.
host1#show traffic-class
traffic
class
----------best-effort
video
voice
fabric
weight
-----8
8
8
fabric
strict
priority
-------no
no
yes
2. To display the traffic-class group EF, issue the show traffic-class-group command.
host1#show traffic-class-group
traffic-class-group EF auto-strict-priority
traffic-class voice
3. To display the settings for all four QoS parameter definitions
(max-subscriber-bandwidth, subscriber-weight, max-subscriber-video-bandwidth,
and max-100Kbps-voice-calls), issue the show qos-parameter-define command.
host1#show qos-parameter-define
parameter name
-----------------------------max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
parameter name
-----------------------------max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
controlled instance
subscriber
interface
interface interface
types
types
types
---------- ----------- ---------vlan
vlan
<none>
vlan
vlan
<none>
vlan
vlan, svlan <none>
vlan
vlan
<none>
value range
properties
----------------- ---------512000 - 8192000 <none>
1 - 10
<none>
1000000 - 5000000 <none>
1 - 3
<none>
4. To display the shaping rates and burst for the four scheduler profiles
(subscriber-best-effort, subscriber-video, subscriber-weight, and subscriber-voice,
issue the show scheduler-profile command.
host1#show scheduler-profile
scheduler
---------------------default
subscriber-best-effort
subscriber-video
subscriber-weight
subscriber-voice
scheduler
Copyright © 2012, Juniper Networks, Inc.
shaping
shaping rate
burst
-------------------------------------<none>
<none>
<none>
<none>
max-subscriber-video-bandwidth
default
<none>
<none>
max-100Kbps-voice-calls * 100000
default
strict
assured
weight
priority
rate
241
JunosE 14.1.x Quality of Service Configuration Guide
---------------------default
subscriber-best-effort
subscriber-video
subscriber-weight
subscriber-voice
scheduler
---------------------default
subscriber-best-effort
subscriber-video
subscriber-weight
subscriber-voice
scheduler
---------------------default
subscriber-best-effort
subscriber-video
subscriber-weight
subscriber-voice
----------------8
8
8
subscriber-weight
8
-------------no
<none>
no
<none>
no
<none>
no
<none>
no
<none>
shared
shared
shaping
shaping
shared shaping rate
burst
constituent
---------------------------------------<none>
<none>
<none>
max-subscriber-bandwidth
default
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
shared
shaping mode
------------<none>
auto implicit
<none>
<none>
<none>
5. To display the settings for the QoS profile subscriber-triple-play, issue the show
qos-profile command.
host1#show qos-profile subscriber-triple-play
qos-profile subscriber-triple-play:
t-class interface rule
traffic
statistics
group
type
type
class
scheduler profile
profile
------- ------- ----- ----------- -----------------------------vlan
node
subscriber-weight
svlan
node
default
vlan
queue best-effort subscriber-best-effort
default
vlan
queue video
subscriber-video
default
EF
svlan
node
default
EF
vlan
queue voice
subscriber-voice
default
queue
drop
profile profile
------- -------
default default
default default
default default
6. To display the attachments on all QoS profiles, issue the show qos-profile references
command.
host1#show qos-profile references
qos profile
-------------------------------atm-default
serial-default
ethernet-default
server-default
subscriber-data-service
subscriber-triple-play
subscriber-triple-play
Port attachments:
Interface attachments:
Not attached:
242
attachment
-------------------------------------------(qos-port-type-profile)
(qos-port-type-profile)
(qos-port-type-profile)
(qos-port-type-profile)
vlan FastEthernet9/0.1
vlan FastEthernet9/0.2
vlan FastEthernet9/0.3
4
3
0
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
7. To display global and interface attachments on all of the QoS parameter instances,
issue the show qos-parameter references command.
host1#show qos-parameter references
interface
----------------------global
global
global
global
FastEthernet9/0.2
FastEthernet9/0.2
FastEthernet9/0.2
FastEthernet9/0.2
FastEthernet9/0.3
FastEthernet9/0.3
FastEthernet9/0.3
FastEthernet9/0.3
FastEthernet9/0 svlan 1
parameter name
-----------------------------max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
max-subscriber-video-bandwidth
value
------2000000
1
2000000
1
6000000
3
2000000
1
8000000
6
3000000
3
1000000
Global parameter instances:
4
Parameter instances reported: 13
8. To display the queue forwarding rates for the VLANs on the Fast Ethernet interface
in slot 9, port 0, issue the show egress-queue rates command.
host1#show egress-queue rates full interface fastEthernet 9/0
interface
-----------------------ethernet FastEthernet9/0
vlan FastEthernet9/0.1
vlan FastEthernet9/0.2
vlan FastEthernet9/0.3
traffic
forwarded aggregate minimum maximum
class
rate
drop rate rate
rate
----------- --------- --------- ------- --------best-effort
*
*
0 100000000
best-effort
*
*
0
2000000
best-effort
*
*
0
6000000
video
*
*
0
2000000
voice
*
* 100000
100000
best-effort
*
*
0
8000000
video
*
*
0
3000000
voice
*
* 300000
300000
Queues reported:
Queues filtered (under threshold):
* Queues disabled (no rate period):
**Queues disabled (no resources):
Total queues:
0
0
8
0
8
9. To display the shared-shaper settings for the VLANs on the Fast Ethernet interface
in slot 9, port 0, issue the show qos shared-shaper command.
host1#show qos shared-shaper interface fastEthernet 9/0
interface
------------vlan Eth9/0.1
vlan Eth9/0.2
vlan Eth9/0.3
Copyright © 2012, Juniper Networks, Inc.
shared
shaping shaping
other
resource
rate
rate
rate
------------------------- ------- ------- -----------vlan node
A vlan queue best-effort 2000000
2000000
vlan node
A vlan queue best-effort 6000000
6000000
A vlan queue video
2000000
A vlan queue EF voice
100000
vlan node
A vlan queue best-effort 8000000
8000000
243
JunosE 14.1.x Quality of Service Configuration Guide
A vlan queue video
A vlan queue EF voice
3000000
300000
Total shared shapers:
3
Total constituents:
10
Total shared shaper failovers: 0
Compound shared shapers are not supported.
10. To display the scheduler hierarchy for the Fast Ethernet interface in slot 9, port 0,
issue the show qos scheduler-hierarchy command.
host1# show qos scheduler-hierarchy interface fastEthernet 9/0
Scheduler hierarchy for the default traffic-class group
assured
shared rate
shaping shaping or
interface
resource
rate
rate
weight
-------------------- ---------------------------- ------- ------- -----ethernet Eth9/0
ethernet port
wgt 8
ethernet Eth9/0
ethernet queue
wgt 8
svlan Eth9/0 svlan 2
svlan node
wgt 8
vlan Eth9/0.1
vlan node
wgt 1
vlan Eth9/0.1
vlan queue best-effort
2000000 wgt 8
vlan Eth9/0.2
vlan node
wgt 3
vlan Eth9/0.2
vlan queue video
2000000
wgt 8
vlan Eth9/0.2
vlan queue best-effort
6000000 wgt 8
vlan Eth9/0.3
vlan node
wgt 6
vlan Eth9/0.3
vlan queue video
3000000
wgt 8
vlan Eth9/0.3
vlan queue best-effort
8000000 wgt 8
Scheduler hierarchy for traffic-class group EF
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
-------------------- ------------------------- ------- ------- ------ethernet Eth9/0
ethernet group node EF
wgt 8
svlan Eth9/0 svlan 2
svlan node EF
wgt 8
vlan Eth9/0.2
vlan queue EF voice 100000
wgt 8
vlan Eth9/0.3
vlan queue EF voice 300000
wgt 8
Complete Configuration Example
You can use the complete configuration examples provided for each of the configurations
in your own network. To customize the configuration example for your needs, copy the
text into a text editor, and modify it.
To use the example for immediate use, copy it to the local console or Telnet session from
which you access the router.
You can also save the example as a script (.scr) file that executes the commands as
though they were entered at the terminal. For information about executing .scr files, see
JunosE System Basics Configuration Guide.
QoS Administrator Configuration
From Global Configuration mode:
! Configure traffic classes and traffic-class groups.
traffic-class best-effort
244
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
exit
traffic-class video
exit
traffic-class voice
fabric-strict-priority
exit
traffic-class-group EF auto-strict-priority
traffic-class voice
exit
!Configure the max-subscriber-bandwidth parameter definition.
qos-parameter-define max-subscriber-bandwidth
controlled-interface-type vlan
instance-interface-type vlan
range 512000 8192000
exit
!Configure the subscriber-weight parameter definition.
qos-parameter-define subscriber-weight
controlled-interface-type vlan
instance-interface-type vlan
range 1 6
exit
!Configure the max-subscriber-video parameter definition.
qos-parameter-define max-subscriber-video-bandwidth
controlled-interface-type vlan
instance-interface-type vlan
instance-interface-type svlan
range 1000000 5000000
exit
!Configure the max-100Kbps-voice-calls parameter definition.
qos-parameter-define max-100Kbps-voice-calls
controlled-interface-type vlan
instance-interface-type vlan
range 1 3
exit
! Configure the subscriber-best-effort scheduler profile.
scheduler-profile subscriber-best-effort
shared-shaping-rate max-subscriber-bandwidth auto
exit
! Configure the subscriber-video scheduler profile.
scheduler-profile subscriber-video
shaping-rate max-subscriber-video-bandwidth
exit
! Configure the subscriber-weight scheduler profile.
scheduler-profile subscriber-weight
weight subscriber-weight
exit
! Configure the subscriber-voice scheduler profile.
scheduler-profile subscriber-voice
shaping-rate max-100Kbps-voice-calls * 100000
exit
! Configure the subscriber-data-service QoS profile.
qos-profile subscriber-data-service
svlan node
vlan node scheduler-profile subscriber-weight
vlan queue traffic-class best-effort scheduler-profile subscriber-best-effort
exit
Copyright © 2012, Juniper Networks, Inc.
245
JunosE 14.1.x Quality of Service Configuration Guide
! Configure the subscriber-triple-play QoS profile.
qos-profile subscriber-triple-play
svlan node
vlan node scheduler-profile subscriber-weight
svlan node group EF
vlan queue traffic-class best-effort scheduler-profile subscriber-best-effort
vlan queue traffic-class video scheduler-profile subscriber-video
vlan queue traffic-class voice scheduler-profile subscriber-voice
exit
! Configure the ethernet-default QoS profile.
qos-profile ethernet-default
no ip node
no ip queue traffic-class best-effort
exit
! Attach the QoS profile to the VLAN and S-VLAN subinterfaces.
interface fastEthernet 9/0
encapsulation vlan
exit
interface fastEthernet 9/0.1
svlan id 2 1
ip address 192.1.1.1 255.255.255.0
interface fastEthernet 9/0.2
svlan id 2 2
ip address 192.2.1.1 255.255.255.0
exit
interface fastEthernet 9/0.3
svlan id 2 3
ip address 192.3.1.1 255.255.255.0
exit
QoS Client Configuration
From Global Configuration mode:
! Configure the max-subscriber-bandwidth, subscriber-weight,
max-subscriber-video-bandwidth, and max-100Kbps-voice-calls global parameter
instances.
qos-parameter max-subscriber-bandwidth 2000000
qos-parameter subscriber-weight 1
qos-parameter max-subscriber-video-bandwidth 2000000
qos-parameter max-100Kbps-voice-calls 1
! Configure a global parameter instance for individual DSLAMs.
interface fastEthernet 9/0
svlan 1 qos-parameter max-subscriber-video-bandwidth 1000000
exit
! Configure the basic-data service for Subscriber 1.
interface fastEthernet 9/0.1
qos-profile subscriber-data-service
exit
! Configure the basic triple-play service for Subscriber 2.
interface fastEthernet 9/0.2
qos-parameter max-subscriber-bandwidth 6000000
qos-parameter subscriber-weight 3
qos-parameter max-subscriber-video-bandwidth 2000000
qos-parameter max-100Kbps-voice-calls 1
qos-profile subscriber-triple-play
246
Copyright © 2012, Juniper Networks, Inc.
Chapter 25: Configuring a QoS Parameter
exit
! Configure the enhanced triple-play service for Subscriber 3.
interface fastEthernet 9/0.3
qos-parameter max-subscriber-bandwidth 8000000
qos-parameter subscriber-weight 6
qos-parameter max-subscriber-video-bandwidth 3000000
qos-parameter max-100Kbps-voice-calls 3
qos-profile subscriber-triple-play
exit
Copyright © 2012, Juniper Networks, Inc.
247
JunosE 14.1.x Quality of Service Configuration Guide
248
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 26
Configuring Hierarchical QoS Parameters
This chapter provides information for configuring hierarchical quality of service (QoS)
parameters on E Series routers.
QoS parameters are discussed in the following sections:
•
Hierarchical QoS Parameters Overview on page 249
•
Guidelines for Configuring Hierarchical Parameters on page 249
•
Configuring a Parameter Definition to Calculate Hierarchical Instances on page 250
•
Example: QoS Parameter Configuration for Hierarchical Parameters on page 251
Hierarchical QoS Parameters Overview
You use hierarchical parameters in applications where you want the system to add
instances associated with child interfaces and associate the sum with a parent interface.
For example, to shape an S-VLAN to 50 percent of the sum of the shaping rates of the
VLANs stacked above the S-VLAN, you specify explicit instances of the parameter
associated with the VLANs, and the system creates an implicit instance of the parameter
associated with the S-VLAN. The parameter maintains the value of the sum of the explicit
instances.
The most common use of hierarchical parameters is in combination with the IP multicast
bandwidth adjustment application.
For example, you create a hierarchical parameter that controls a VLAN. The hierarchical
parameter has two explicit parameter instances on two IP interfaces, with values of
1 Mbps and 3 Mbps. Therefore, an implicit parameter instance is created at the VLAN
interface with a value of 4 Mbps.
Related
Documentation
•
Configuring a Parameter Definition to Calculate Hierarchical Instances on page 250
•
For information about the IP multicast bandwidth adjustment application, see IP
Multicast Bandwidth Adjustment for QoS Overview on page 257
Guidelines for Configuring Hierarchical Parameters
Use the following guidelines when specifying a hierarchical parameter:
Copyright © 2012, Juniper Networks, Inc.
249
JunosE 14.1.x Quality of Service Configuration Guide
•
You can specify only a subset of the instance-interface types that are supported for
non-hierarchical parameters. The following output lists the instance-interface types
that are supported:
host1(config)#qos-parameter-define hierarchical-parameter hierarchical
host1(config-qos-parameter-define)#instance-interface-type ?
atm-vc ATM Virtual Circuit (VC)
ip IP interface
ipv6 IP version 6 interface
l2tp-session L2tp session interface
vlan VLAN subinterface
•
You can specify only one instance-interface type per hierarchical parameter. For
example:
host1(config)#qos-parameter-define hierarchical-parameter hierarchical
host1(config-qos-parameter-define)#instance-interface-type ip
host1(config-qos-parameter-define)#instance-interface-type vlan
% only one instance-interface-type can be specified for a hierarchical parameter
•
Hierarchical instance-interface types cannot stack above the highest
controlled-interface type. For example:
host1(config)#qos-parameter-define hierarchical-parameter hierarchical
host1(config-qos-parameter-define)#controlled-interface-type ip
host1(config-qos-parameter-define)#instance-interface-type vlan
% hierarchical instance-interface-type vlan cannot stack above
controlled-interface-type ip
In contrast, a non-hierarchical instance-interface type cannot stack above the lowest
controlled-interface type (vlan). For example:
host1(config)#qos-parameter-define non-hierarchical-parameter
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type ip
% instance-interface-type ip cannot stack above the lowest controlled-interface-type
Related
Documentation
•
You must specify a subscriber-interface type that is identical to the instanceinterface
type that you specified.
•
Configuring a Parameter Definition to Calculate Hierarchical Instances on page 250
Configuring a Parameter Definition to Calculate Hierarchical Instances
You can configure hierarchical parameters for applications where you want the system
to add instances associated with child interfaces and associate the sum with a parent
interface.
Hierarchical parameters have explicit instances that are associated with the logical
interfaces of instance-interface types, as well as implicit instances that are associated
with the logical interfaces of controlled-interface types. The system computes the values
of an implicit instance as the sum of the values of the explicit instances stacked above
the implicit instance.
To configure a hierarchical QoS parameter definition:
250
Copyright © 2012, Juniper Networks, Inc.
Chapter 26: Configuring Hierarchical QoS Parameters
•
Include the hierarchical keyword with the qos-parameter-define command.
host1(config)#qos-parameter-define max-subscriber-bandwidth
host1(config-qos-parameter-define)#
Related
Documentation
•
Hierarchical QoS Parameters Overview on page 249
•
Configuring a Basic Parameter Definition for QoS Administrators on page 228
•
Configuring a Parameter Definition for IP Multicast Bandwidth Adjustment on page 259
•
Example: QoS Parameter Configuration for Hierarchical Parameters on page 251
•
qos-parameter-define
Example: QoS Parameter Configuration for Hierarchical Parameters
The example in this section illustrates how to configure hierarchical parameters for VLANs
and S-VLANs.
Figure 62 on page 251 shows the QoS scheduler hierarchy that the QoS client creates for
the VLANs and S-VLANs in the interface stack. The QoS client creates explicit parameter
instances using the parameter definition max-sub-bw to shape rates at the VLAN
subinterfaces 100 and 101.
An S-VLAN node is located below the two VLAN nodes in the interface stack. The QoS
client creates an implicit parameter instance by applying a shaper to the S-VLAN
subinterface 10 that equals the total rate at the VLANs (3072000).
Figure 62: Hierarchical Parameters Scheduler Hierarchy
Procedure for QoS Administrators
This section describes the procedures to configure the scheduler hierarchy shown in
Figure 62 on page 251 by using QoS parameters.
Copyright © 2012, Juniper Networks, Inc.
251
JunosE 14.1.x Quality of Service Configuration Guide
Configuring the
Parameter Definition
The QoS administrator configures the parameter definition for the maximum subscriber
bandwidth.
To configure a parameter definition for the maximum subscriber bandwidth:
1.
Configure the parameter definition named max-sub-bw.
2. Enable the parameter to control S-VLANs.
3. Enable the parameter to control VLANs.
4. Enable the parameter to have instances created on VLAN subinterfaces.
5. Specify that the QoS client can create the parameter instance for VLANs, which
represent subscribers.
host1(config)#qos-parameter-define max-sub-bw hierarchical
host1(config-qos-parameter-define)#controlled-interface-type svlan
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#instance-interface-type vlan
host1(config-qos-parameter-define)#subscriber-interface-type vlan
host1(config-qos-parameter-define)#exit
Configuring the
Scheduler Profiles
The QoS administrator can then reference the parameter definition within a scheduler
profile, which defines the shaping rates for the parameter.
1.
Configure a scheduler profile to shape the throughput the explicit QoS parameters
for VLANs.
a. Configure the scheduler profile named sp-shape-cvlan.
b. Configure the shaping rate by referencing the parameter max-sub-bw.
host1(config)#scheduler-profile sp-shape-cvlan
host1(config-scheduler-profile)#shaping-rate max-sub-bw
host1(config-scheduler-profile)#exit
2. Configure a scheduler profile to shape the S-VLAN throughput.
a. Configure the scheduler profile named sp-shape-svlan.
b. Configure the shaping rate by referencing the parameter max-sub-bw.
host1(config)#scheduler-profile sp-shape-svlan
host1(config-scheduler-profile)#shaping-rate max-sub-bw
host1(config-scheduler-profile)#exit
Configuring the QoS
Profiles
By referencing the scheduler profiles within QoS profiles, the QoS administrator creates
the scheduler hierarchy. In this portion of the example, the QoS administrator configures
QoS profiles for the VLAN and the S-VLAN.
1.
Configure the QoS profile for the VLAN interfaces.
a. Configure the QoS profile named qp-shape-cvlan.
b. Configure the VLAN queue and reference the best-effort traffic class.
c. Configure the VLAN node and reference the scheduler profile for shaping VLANs.
252
Copyright © 2012, Juniper Networks, Inc.
Chapter 26: Configuring Hierarchical QoS Parameters
host1(config)#qos-profile qp-shape-cvlan
host1(config-qos-profile)#vlan queue traffic-class best-effort
host1(config-qos-profile)#vlan node scheduler-profile sp-shape-cvlan
host1(config-qos-profile)#exit
2. Configure the QoS profile for the S-VLAN interface.
a. Configure the QoS profile named qp-shape-svlan.
b. Configure the S-VLAN node and reference the scheduler profile sp-shape-svlan.
host1(config)#qos-profile qp-shape-svlan
host1(config-qos-profile)#svlan node scheduler-profile sp-shape-svlan
host1(config-qos-profile)#exit
Procedure for QoS Clients
This section describes procedures to create parameter instances at VLAN subinterface
100 and VLAN subinterface 101.
1.
Create an explicit parameter instance at VLAN subinterface 100.
a. Specify the Gigabit Ethernet interface in slot 2, port 0.
b. Configure the VLAN major interface.
c. Configure the VLAN subinterface at slot 2, port 0, subinterface 100.
d. Assign an S-VLAN ID of 10 and a VLAN ID of 100 to the VLAN subinterface.
e. Attach the max-sub-bw QoS parameter to the subinterface with a value of
1024000.
f. Attach the qp-shape-cvlan QoS profile to the subinterface.
host1(config)#interface gigabitEthernet 2/0
host1(config-if)#encapsulation vlan
host1(config)#interface gigabitEthernet 2/0.100
host1(config-if)#svlan id 10 100
host1(config-if)#qos-parameter max-sub-bw 1024000
host1(config-if)#qos-profile qp-shape-cvlan
host1(config-if)#exit
2. Create an explicit parameter instance at VLAN subinterface 101.
a. Specify the VLAN subinterface 101 in slot 2, port 0.
b. Assign an S-VLAN ID of 10 and a VLAN ID of 101 to the VLAN subinterface.
c. Attach the max-sub-bw QoS parameter to the subinterface with a value of
2048000.
d. Attach the qp-shape-cvlan QoS profile to the subinterface.
host1(config-if)#interface gigabitEthernet 2/0.101
host1(config-if)#svlan id 10 101
host1(config-if)#qos-parameter max-sub-bw 2048000
host1(config-if)#qos-profile qp-shape-cvlan
host1(config-if)#exit
Copyright © 2012, Juniper Networks, Inc.
253
JunosE 14.1.x Quality of Service Configuration Guide
3. Create an implicit parameter instance at S-VLAN subinterface 10.
a. Specify the Gigabit Ethernet interface at slot 2, port 0.
b. Attach the qp-shape-svlan QoS profile to the node at S-VLAN subinterface 10.
host1(config)#interface gigabitEthernet 2/0
host1(config-if)#svlan 10 qos-profile qp-shape-svlan
Monitoring Hierarchical QoS Parameters
After completing the configuration, both the QoS administrator and the QoS client can
monitor it by issuing the show qos-parameter references command. To display the
information about hierarchical parameter instances, you must specify the Gigabit Ethernet
interface.
host1#show qos-parameter max-sub-bw references interface gigabitEthernet 2/0
interface
--------------------------GigabitEthernet2/0 svlan 10
GigabitEthernet2/0.100
GigabitEthernet2/0.101
parameter
name
---------max-sub-bw
max-sub-bw
max-sub-bw
Explicit parameter instances:
Hierarchical parameter instances:
IP multicast parameter instances:
Parameter instances reported:
value
------3072000
1024000
2048000
instance
Type
-----------hierarchical
explicit
explicit
2
1
0
3
Complete Configuration Example
You can use the complete configuration examples provided for each of the configurations
in your own network. To customize the configuration example for your needs, copy the
text into a text editor, and modify it.
To use the example for immediate use, copy it to the local console or Telnet session from
which you access the router.
You can also save the example as a script (.scr) file that executes the commands as
though they were entered at the terminal. For information about executing .scr files, see
JunosE System Basics Configuration Guide.
QoS Administrator Configuration
From Global Configuration mode:
! Configure the max-sub-bw QoS parameter definition.
qos-parameter-define max-sub-bw hierarchical
controlled-interface-type svlan
controlled-interface-type vlan
instance-interface-type vlan
subscriber-interface-type vlan
exit
! Configure the sp-shape-cvlan and sp-shape-svlan scheduler profiles.
scheduler-profile sp-shape-cvlan
shaping-rate max-sub-bw
254
Copyright © 2012, Juniper Networks, Inc.
Chapter 26: Configuring Hierarchical QoS Parameters
exit
scheduler-profile sp-shape-svlan
shaping-rate max-sub-bw
exit
! Configure the qp-shape-cvlan and qp-shape-svlan QoS profiles.
qos-profile qp-shape-cvlan
vlan queue traffic-class best-effort
vlan node scheduler-profile sp-shape-cvlan
exit
qos-profile qp-shape-svlan
svlan node scheduler-profile sp-shape-svlan
exit
QoS Client Configuration
From Global Configuration mode:
! Configure the QoS parameter max-sub-bw for VLAN subinterface 100.
interface gigabitEthernet 2/0
encapsulation vlan
interface gigabitEthernet 2/0.100
svlan id 10 100
qos-parameter max-sub-bw 1024000
qos-profile qp-shape-cvlan
exit
! Configure the QoS parameter max-sub-bw for VLAN subinterface 101.
interface gigabitEthernet 2/0.101
svlan id 10 101
qos-parameter max-sub-bw 2048000
qos-profile qp-shape-cvlan
! Attach the QoS profile to the S-VLAN subinterface 10.
interface gigabitEthernet 2/0
svlan 10 qos-profile qp-shape-svlan
Related
Documentation
•
Hierarchical QoS Parameters Overview on page 249
Copyright © 2012, Juniper Networks, Inc.
255
JunosE 14.1.x Quality of Service Configuration Guide
256
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 27
Configuring IP Multicast Bandwidth
Adjustment with QoS Parameters
This chapter provides information for configuring quality of service (QoS) parameters
on E Series routers.
QoS parameters are discussed in the following sections:
•
IP Multicast Bandwidth Adjustment for QoS Overview on page 257
•
Guidelines for Configuring IP Multicast Adjustment for QoS on page 259
•
Configuring a Parameter Definition for IP Multicast Bandwidth Adjustment on page 259
•
Example: QoS Parameter Configuration for IP Multicast Bandwidth
Adjustment on page 261
IP Multicast Bandwidth Adjustment for QoS Overview
You can associate the IP multicast bandwidth adjustment application (ip-multicast)
with a parameter definition. Before you begin, you must define a multicast bandwidth
map and the QoS adjustment for a virtual router.
You use the IP multicast bandwidth adjustment application to set the shared-shaping
rate for a subscriber when a downstream DSLAM is replicating a multicast frame for
multiple downstream transmissions on a subscriber circuit. In this case, the router does
not schedule the multicast traffic on a subscriber VLAN, but limits the scheduled
non-multicast traffic on the subscriber VLAN so that the total of non-multicast and
multicast traffic at the DSLAM is less than the subscriber shared-shaping rate.
To implement this, the IP multicast bandwidth adjustment application tracks the
bandwidth of multicast flows based on IGMP joins and leaves. When the QoS
administrator configures a QoS parameter with the IP multicast bandwidth adjustment
application, the application automatically configures an instance of that parameter for
each subscriber that is receiving multicast traffic. The value of the parameter instance
is equal to the multicast bandwidth for a subscriber at a specific time. The shared-shaping
rate of the VLAN node can be configured using a parameter expression such as
max-subscriber-bandwidth - ip-multicast-bandwidth.
In a typical IP multicast bandwidth adjustment configuration, the shaping rate or
shared-shaping rate is determined by calculating the total subscriber bandwidth of the
Copyright © 2012, Juniper Networks, Inc.
257
JunosE 14.1.x Quality of Service Configuration Guide
logical interface minus the ip-multicast bandwidth. To enable the IP multicast QoS
adjustment, you must:
•
Define a qos-parameter using the qos-parameter-define command with the application
ip-multicast and the hierarchical keyword.
host1(config)# qos-parameter-define ipm application ip-multicast hierarchical
host1(config-qos-parameter-define)#
•
Reference the ipm parameter within a scheduler profile. For example:
host1(config)#scheduler-profile totalSubscriberBw
host1(config-scheduler-profile)#shared-shaping-rate 10000000 - ipm auto
This scheduler profile contains an expression for the shared-shaping rate that limits
the shared-shaping rate to 10 Mbps less the rate of any IP multicast traffic.
•
Reference the scheduler profile within a QoS profile rule. For example:
host1(config)#qos-profile subscriber
host1(config-qos-profile)#vlan node scheduler-profile totalSubscriberBw
This QoS profile rule limits a subscriber with vlan to the rate specified in the
totalSubscriberBw scheduler profile.
QoS clients do not need to create a parameter instance to activate the IP multicast
bandwidth adjustment application. The system automatically creates explicit instances
based on IGMP joins and leaves.
When a subscriber logs in, the QoS scheduler hierarchy is created with the vlan configured
for shared shaping, based on the expression 1000000 - ipm. If no multicast traffic is
being transmitted, there is no ipm parameter instance with the vlan.
To calculate the subscriber bandwidth from the total subscriber bandwidth, you must
create a global parameter instance using the ip-multicast keyword and set the value to
0.
To ensure the system can locate an instance of the ipm parameter for subscribers that
are not receiving multicast traffic, you must create a global parameter with a value of 0:
host1(config)# qos-parameter ipm 0
If you do not create the global parameter instance, the expression result is undefined for
these subscribers and the shared shaping rate is not set.
By configuring a global parameter instance of 0, the value is applied to all the interfaces
that reference the parameter. QoS overrides the global ipm parameter instance with the
value specified in the bandwidth map for a specific IP interface on which IGMP joins.
Related
Documentation
258
•
Guidelines for Configuring IP Multicast Adjustment for QoS on page 259
•
JunosE Multicast Routing Configuration Guide
•
Scheduler Profiles and Parameter Expressions for QoS Administrators on page 225
Copyright © 2012, Juniper Networks, Inc.
Chapter 27: Configuring IP Multicast Bandwidth Adjustment with QoS Parameters
Guidelines for Configuring IP Multicast Adjustment for QoS
When you specify the IP multicast bandwidth adjustment application, the following
considerations apply:
•
You must specify a controlled-interface type.
•
You cannot specify any instance-interface types or subscriber-interface types. By
default, the system assigns a default instance-interface type of ip.
•
When you specify the IP multicast bandwidth adjustment application, the parameter
definition is hierarchical. You must specify the hierarchical keyword with the application
keyword.
•
The system prevents you from defining more than one parameter definition with the
ip-multicast application specified. For example:
host1(config)#qos-parameter-define vpShaper application ip-multicast hierarchical
host1(config-qos-parameter-define)#controlled-interface-type ip
host1(config-qos-parameter-define)#exit
host1(config)#qos-parameter-define bar application ip-multicast hierarchical
% there cannot be more than one parameter defined with this property
Related
Documentation
•
Parameter instances associated with the IP multicast bandwidth adjustment application
are not stored in non-volatile storage (NVS). (Parameter definitions are stored in NVS.)
Because the application is activated based on IGMP joins and leaves received on an
interface, the system removes the instances when you turn off or reset the router, then
re-creates it based on new messages received on an interface.
•
Configuring a Parameter Definition for IP Multicast Bandwidth Adjustment on page 259
Configuring a Parameter Definition for IP Multicast Bandwidth Adjustment
Before you configure a parameter definition for IP multicast bandwidth:
•
Define a multicast bandwidth map and the QoS adjustment for a virtual router.
See JunosE Multicast Routing Configuration Guide.
To associate a parameter instance with the IP multicast bandwidth adjustment
application:
1.
Configure traffic classes.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
2. Create a parameter definition.
a. Configure the QoS parameter name and the application.
host1(config)#qos-parameter-define ipm application ip-multicast hierarchical
Copyright © 2012, Juniper Networks, Inc.
259
JunosE 14.1.x Quality of Service Configuration Guide
b. Configure a controlled-interface type.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#exit
3. Create a parameter instance that globally defines the value of the IP multicast
adjustment as 0.
host1(config)#qos-parameter ipm 0
4. Reference the parameter within a scheduler profile parameter expression.
host1(config)#scheduler-profile vlan-subscriber
host1(config-scheduler-profile)#shared-shaping-rate 1000000 - ipm burst 50
milliseconds auto
host1(config-scheduler-profile)#exit
5. Add the scheduler profile to a QoS profile.
host1(config)#qos-profile vlan-subscriber
host1(config-qos-profile)#vlan queue traffic-class best-effort
host1(config-qos-profile)#vlan queue traffic-class voice scheduler-profile 192k
host1(config-qos-profile)#vlan node scheduler-profile vlan-subscriber
host1(config-qos-profile)#exit
6. Attach the parameter definition to a logical interface.
host1(config)#interface gigabitEthernet 7/0
host1(config-if)#encapsulation vlan
host1(config-if)#exit
host1(config)#interface gigabitEthernet 7/0.1
host1(config-if)#vlan id 200
host1(config-if)#qos-profile vlan-subscriber
host1(config-if)#ip address 1.1.1.1 255.255.255.0
After the QoS profile is attached to the interface, the IP multicast bandwidth adjustment
application begins to adjust rates based on IGMP joins and leaves received on that
interface.
Related
Documentation
260
•
IP Multicast Bandwidth Adjustment for QoS Overview on page 257
•
Example: QoS Parameter Configuration for IP Multicast Bandwidth Adjustment on
page 261
•
controlled-interface-type
•
encapsulation vlan
•
interface gigabitEthernet
•
node
•
qos-parameter-define
•
qos-profile
•
queue
•
scheduler-profile
•
shared-shaping-rate
Copyright © 2012, Juniper Networks, Inc.
Chapter 27: Configuring IP Multicast Bandwidth Adjustment with QoS Parameters
•
traffic-class
•
vlan id
Example: QoS Parameter Configuration for IP Multicast Bandwidth Adjustment
In this example, a QoS administrator configures a QoS parameter definition to associate
with the IP multicast bandwidth adjustment application.
The QoS administrator configures the parameter definition to perform the QoS adjustment
on an ATM VC subscriber. By specifying the ip-multicast keyword with the
qos-parameter-define command, the IP parameter instances are created when the
Internet Group Management Protocol (IGMP) joins and leaves.
When you specify a controlled-interface type for atm-vc, the system explicitly creates a
parameter instance at the ATM VC with a value that is equal to the sum of the IP
adjustments above this interface. This parameter value is referred by a scheduler profile
and a QoS profile to create the QoS scheduler hierarchy that adjusts the shared-shaping
rate when IGMP joins and leaves.
This subscriber has data, voice, and video service with total subscriber bandwidth of
10 Mbps. Voice traffic is shaped at 192 Kbps and belongs to the strict priority group. Video
traffic is provided by the IP multicast bandwidth adjustment application and its rate is
configured in the bandwidth map.
Figure 63 on page 261 shows the scheduler hierarchy built in this configuration.
Figure 63: Scheduler Hierarchy with QoS Adjustment for IP Multicast
Configuring Traffic
Classes and
Traffic-Class Groups
The QoS administrator configures the traffic classes and traffic-class groups for
best-effort data and voice services. The QoS administrator does not need to configure
a traffic class for the video service because it is transmitted through the IP multicast
connection.
Copyright © 2012, Juniper Networks, Inc.
261
JunosE 14.1.x Quality of Service Configuration Guide
1.
Configure the traffic classes.
a. Configure the traffic class named best-effort.
b. Configure the traffic class named voice.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
2. Configure a traffic-class group for low-latency expedited forwarding (EF) and add
the traffic class for voice service into the traffic-class group EF.
a. Configure the EF traffic-class group with strict-priority scheduling.
b. Add the traffic class voice to the traffic-class group.
host1(config)#traffic-class-group EF auto-strict-priority
host1(config-traffic-class-group)#traffic-class voice
host1(config-traffic-class-group)#exit
The remaining traffic class, best-effort, remains in the default traffic-class group.
Configuring the QoS
Parameter Definition
and Global Parameter
Instance
The QoS administrator configures the QoS parameter definition and specifies the IP
multicast bandwidth adjustment application. The QoS administrator must configure the
parameter as hierarchical.
The QoS scheduler hierarchy is constructed when the subscriber logs on. However,
because the parameter instance has not yet been created, the shared-shaping rate is
undefined (that is, there is no shaping rate).
Therefore, the QoS administrator creates a global parameter instance to shape the
subscriber to the desired bandwidth. The initial value is determined based on the
application; in this example, the QoS administrator specifies 0 as the default.
1.
Configure the QoS parameter definition ipm, associate it with the ip-multicast
application, and assign it as a hierarchical parameter.
2. Configure a controlled-interface type of atm-vc.
3. Configure the global parameter instance.
host1(config)#qos-parameter-define ipm application ip-multicast hierarchical
host1(config-qos-parameter-define)#controlled-interface-type atm-vc
host1(config-qos-parameter-define)#exit
host1(config)#qos-parameter ipm 0
Therefore, the initial shared-shaping rate is 10 Mbps (10 Mbps - ipm value of 0).
Reference the
Parameter Definition
Within a Scheduler
Profile
262
The QoS administrator configures the scheduler profile for the ATM VC subscriber and
configures the shared-shaping rate. When a scheduler profile references the parameter
instance, it enables the IP multicast bandwidth adjustment application to adjust the
subscriber bandwidth to account for the video traffic.
Copyright © 2012, Juniper Networks, Inc.
Chapter 27: Configuring IP Multicast Bandwidth Adjustment with QoS Parameters
The QoS administrator then configures the scheduler profile to shape voice traffic.
1.
Configure the scheduler profile for the ATM VC subscriber.
a. Configure the scheduler profile named vc-subscriber.
b. Configure the shared-shaping rate by referencing an expression to limit the
subscriber bandwidth to 10 Mbps.
host1(config)#scheduler-profile vc-subscriber
host1(config-scheduler-profile)#shared-shaping-rate 10000000 - ipm burst 50
milliseconds auto
host1(config-scheduler-profile)#exit
2. Configure the scheduler profile for shaping voice traffic.
a. Configure the scheduler profile named 192K.
b. Configure the shaping rate at 1920000.
host1(config)#scheduler-profile 192K
host1(config-scheduler-profile)#shaping rate 192000
host1(config-scheduler-profile)#exit
Adding the Scheduler
Profiles to a QoS
Profile
The IP multicast adjustment application is initialized when IGMP joins or leaves. The QoS
administrator specifies the scheduler hierarchy by using a QoS profile rule that refers to
a scheduler profile with a parameter expression.
1.
Create the QoS profile named ipm-adjusted.
2. Configure a queue for ATM VC subinterfaces with the best-effort traffic class.
3. Configure a queue for ATM VC subinterfaces with the voice traffic class and reference
the 192K scheduler profile.
4. Configure a node for ATM VC subinterfaces and reference the scheduler profile
vc-subscriber.
host1(config)#qos-profile ipm-adjusted
host1(config-qos-profile)#atm-vc queue traffic-class best-effort
host1(config-qos-profile)#atm-vc queue traffic-class voice scheduler-profile 192k
host1(config-qos-profile)#atm-vc node scheduler-profile vc-subscriber
host1(config-qos-profile)#exit
Attaching the
Parameter Definition
to an Interface
The QoS administrator creates a logical interface and attaches the parameter definition.
The scheduler hierarchy is created when the QoS administrator creates the interface.
1.
Configure the ATM interface in slot 2, port 0 as a point-to-point ATM interface.
2. Configure the ATM PVC with aal5snap encapsulation.
3. Attach the QoS profile vc-subscriber to the subinterface.
4. Configure the IP address for the ATM subinterface.
host1(config)#interface atm 2/0
host1(config-if)#interface atm 2/0.1 point-to-point
host1(config-subif)#atm pvc 100 0 100 aal5snap
Copyright © 2012, Juniper Networks, Inc.
263
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-subif)#qos-profile ipm-adjusted
host1(config-subif)#ip address 1.1.1.1 255.255.255.0
IP Multicast Bandwidth
Adjustment
When an IGMP join occurs, the IP multicast bandwidth adjustment application creates
the parameter instance ipm for the IP interface and the ATM VC subinterface. Because
the shared-shaping rate of the ATM VC references the ipm parameter, the rate is
recalculated. If the imp parameter has a value of 2 Mbps, the resulting shared-shaping
rate is 8 Mbps (10 Mbps - 2 = 8 Mbps).
When another IGMP join occurs, the IP multicast bandwidth adjustment application
recalculates the value for parameter ipm and configures it to another value (for example,
7 Mbps). The system readjusts the ipm at the ATM VC and readjusts the shared-shaping
rate. If the voice traffic is 100 Kbps, then the best-effort traffic is 2.9 Mbps.
When an IGMP leave occurs, the IP multicast bandwidth adjustment application configures
the ipm parameter instance with a new value and readjusts the shared-shaping rate.
Monitoring the Configuration
After completing the configuration, the QoS administrator can monitor it by issuing show
commands.
1.
To display the traffic classes for best-effort and voice, issue the show traffic-class
command.
host1#show traffic-class
traffic
class
----------best-effort
voice
fabric
weight
-----8
8
fabric
strict
priority
-------no
no
2. To display the traffic-class group, issue the show traffic-class-group command.
host1#show traffic-class-group
traffic-class-group EF auto-strict-priority
traffic-class voice
3. To display the scheduler profile settings for vc-subscriber and 192K, issue the show
scheduler-profile command.
host1#show scheduler-profile
shaping
shaping
scheduler
rate
burst
------------------------default
<none>
<none>
vc-subscriber
<none>
<none>
192k
192000
default
scheduler
------------default
vc-subscriber
192k
264
shared
shaping rate
-------------<none>
10000000 - ipm
<none>
weight
-----8
8
8
shared
shaping
burst
-------<none>
50 bytes
<none>
strict
assured
priority
rate
-------------no
<none>
no
<none>
no
<none>
shared
shaping
shared
constituent
shaping mode
------------------------<none>
<none>
<none>
simple implicit
<none>
<none>
Copyright © 2012, Juniper Networks, Inc.
Chapter 27: Configuring IP Multicast Bandwidth Adjustment with QoS Parameters
4. To display the attachments on all QoS profiles, including ipm-adjust, issue the show
qos-profile references command.
host1#show qos-profile references
qos profile
-------------------------------atm-default
serial-default
ethernet-default
server-default
ipm-adjust
Port attachments:
Interface attachments:
Not attached:
attachment
-------------------------------------------(qos-port-type-profile)
(qos-port-type-profile)
(qos-port-type-profile)
(qos-port-type-profile)
atm-vc ATM2/0.1
4
1
0
5. To display the settings for the ipm-adjust QoS profile, issue the show qos-profile
command.
host1#show qos-profile ipm-adjust
qos-profile ipm-adjust:
t-class interface rule traffic scheduler queue
drop
statistics
group
type
type class
profile
profile profile profile
------- --------- ----- ----------- ------------- ------- ------atm-vc
node
vc-subscriber
atm-vc
queue best-effort default default default default
EF
atm-vc
queue voice
192k
default default default
6. To display the settings for the ipm QoS parameter definition, issue the show
qos-parameter-define command.
host1#show qos-parameter-define
controlled
instance
parameter
interface
interface
name
types
types
--------- -------------- --------ipm
atm-vc
<none>
subscriber
interface
types
---------<none>
value
range
-----<none>
parameter
name
properties
--------- ------------------------------------ipm
ip-multicast-adjustment, hierarchical
7. To display global and interface attachments on the ipm QoS parameter instance,
issue the show qos-parameter references command.
host1#show qos-parameter references
parameter
interface
name
value
--------- --------- ------global
ipm
0
Global parameter instances:
1
Parameter instances reported: 1
host1#show qos-parameter references interface atm 1/0.1
parameter
instance
interface
name
value
Type
--------------- --------- ----- -----------atm-vc ATM1/0.1 ipm
200 hierarchical
ip ATM1/0.1
ipm
200 ip-multicast
Explicit parameter instances:
Hierarchical parameter instances:
Copyright © 2012, Juniper Networks, Inc.
0
1
265
JunosE 14.1.x Quality of Service Configuration Guide
IP multicast parameter instances:
Parameter instances reported:
1
2
8. To display the queue forwarding rates for the ATM VC and IP interfaces on the ATM
interface in slot 2, port 0, issue the show egress-queue rates command.
host1#show egress-queue rates interface atm 2/0.1
traffic
forwarded aggregate minimum maximum
interface
class
rate
drop rate rate
rate
--------------- ----------- --------- --------- ------- -------atm-vc ATM2/0.1 voice
0
0 192000
192000
ip ATM2/0.1
best-effort
0
0
0 10000000
Queues reported:
Queues filtered (under threshold):
* Queues disabled (no rate period):
**Queues disabled (no resources):
Total queues:
2
0
0
0
2
9. To display the shared shaper settings for the ATM VC on the ATM interface in slot 2,
port 0, issue the show qos shared-shaper command.
host1#show qos shared-shaper interface atm 2/0.1
shared
shaping shaping
other
interface
resource
rate
rate
rate
--------------- ------------------------ -------- ------- ------------atm-vc ATM2/0.1 A atm-vc node
10000000
10000000
A atm-vc queue EF voice
192000
Total shared shapers:
1
Total constituents:
2
Total shared shaper failovers: 0
Compound shared shapers are supported.
Complete Configuration Example
You can use the complete configuration examples provided for each of the configurations
in your own network. To customize the configuration example for your needs, copy the
text into a text editor, and modify it.
To use the example for immediate use, copy it to the local console or Telnet session from
which you access the router.
You can also save the example as a script (.scr) file that executes the commands as
though they were entered at the terminal. For information about executing .scr files, see
JunosE System Basics Configuration Guide.
From Global Configuration mode:
! Create the voice traffic class.
traffic-class voice
exit
traffic-class best-effort
exit
traffic-class-group EF auto-strict-priority
traffic-class best-effort
exit
! Create the ipm QoS parameter definition.
266
Copyright © 2012, Juniper Networks, Inc.
Chapter 27: Configuring IP Multicast Bandwidth Adjustment with QoS Parameters
qos-parameter-define ipm application ip-multicast hierarchical
controlled-interface-type atm-vc
exit
! Create a global parameter instance of the ipm QoS parameter.
qos-parameter ipm 0
! Configure the vc-subscriber and 192K scheduler profiles.
scheduler-profile vc-subscriber
shared-shaping-rate 10000000 - ipm burst 50 milliseconds auto
exit
scheduler-profile 192K
shaping-rate 192000
exit
! Add the scheduler profiles to the ipm-adjusted QoS profile.
qos-profile ipm-adjusted
atm-vc queue traffic-class best-effort
atm-vc queue traffic-class voice scheduler-profile 192k
atm-vc node scheduler-profile vc-subscriber
exit
! Attach the parameter definition to an interface.
interface atm 2/0.1 point-to-point
atm pvc 100 0 100 aal5snap
qos-profile ipm-adjusted
ip address 1.1.1.1 255.255.255
Related
Documentation
•
IP Multicast Bandwidth Adjustment for QoS Overview on page 257
Copyright © 2012, Juniper Networks, Inc.
267
JunosE 14.1.x Quality of Service Configuration Guide
268
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 28
Configuring the Shaping Mode for Ethernet
with QoS Parameters
This chapter provides information for configuring the shaping mode for Ethernet using
quality of service (QoS) parameters on E Series routers.
QoS parameters are discussed in the following sections:
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
•
Guidelines for Configuring the Cell Shaping Mode with QoS Parameters on page 271
•
Configuring a Parameter Definition to Shape Ethernet Traffic Using Cell Mode on page 272
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
Cell Shaping Mode Using QoS Parameters Overview
You can associate the QoS cell mode application (qos-cell-mode) with a parameter
definition for Ethernet interfaces configured on any E Series Broadband Services Routers.
Creating a parameter instance with the QoS cell mode application on a VLAN subinterface
enables the scheduler to perform cell mode shaping and scheduling for queues and
nodes associated with the controlled-interface types above the logical interface on which
you create the parameter instance.
Overriding the QoS Shaping Mode
The QoS cell mode application overrides the shaping mode specified at the port using
the qos-shaping-mode command.
The QoS cell mode application applies the shaping mode to all logical interfaces specified
in the controlled-interface type list above the logical interface on which you created the
parameter instance.
For example, all of the interfaces stacked above the Gigabit Ethernet interface configured
on slot 6, adapter 0, port 2 have cell shaping mode:
host1(config)#interface gigabitEthernet 6/0/2
host1(config-if)#qos-shaping-mode cell
Copyright © 2012, Juniper Networks, Inc.
269
JunosE 14.1.x Quality of Service Configuration Guide
The QoS administrator then applies frame shaping mode to the Gigabit Ethernet interface
configured on slot 6, adapter 0, port 2, subinterface 1 using the QoS cell mode application.
This parameter instance overrides the shaping mode configured at the port.
host1(config-if)#interface gigabitEthernet 6/0/2.1
host1(config-if)#qos-parameter cell-mode 0
Module Types and Capabilities for QoS Cell Mode Application
The QoS cell mode application is supported by all E Series routers. However, different
module types support the application.
Table 27 on page 270 lists the supported modules for the qos-shaping-mode cell command
and the qos-cell-mode application for parameters. It also describes how the cell mode
adjustment is performed by each module type.
Table 27: Supported Interfaces for qos-shaping-mode and qos-cell-mode
Commands
qos-shaping-mode
cell Command
qos-cell-mode
Application
Adjustment
Performed By
Ethernet interfaces on
ES2 4G LM and ES2
10G LM (E120 and
E320 Broadband
Services routers)
✓
✓
Internal cell-taxing
mechanism
Ethernet interfaces on
GE-2 and GE-HDE line
modules (ERX7xx
models, ERX14xx
models, and ERX310
routers)
✓
✓
Internal cell-taxing
mechanism
Ethernet interfaces on
ERX7xx models,
ERX14xx models, and
ERX310 routers
–
✓
Parameter expression
associated with
qos-cell-mode
application (See “Cell
Tax Adjustment Using
QoS Cell Mode” on
page 270.)
ATM interfaces on all
E Series routers
✓
–
Internal cell-taxing
mechanism
All other interface
types on all E Series
routers
–
–
–
Module Type
Cell Tax Adjustment Using QoS Cell Mode
The internal cell-taxing mechanism does not perform the cell mode adjustment on certain
interface types. On these interfaces, the system uses a parameter expression associated
with the qos-cell-mode application to determine whether the cell adjustment is required.
270
Copyright © 2012, Juniper Networks, Inc.
Chapter 28: Configuring the Shaping Mode for Ethernet with QoS Parameters
NOTE: Do not use the parameter expression on Ethernet interfaces configured
on the ES2 4G LM, GE-2 line module, or the GE-HDE line module.
For example, the subscriber-rate parameter represents the bandwidth of a subscriber.
The shaping rate for the parameter is calculated by referencing an expression that
represents the cell mode adjustment in a scheduler profile:
(config-scheduler-profile)# shaping-rate subscriber-rate - subscriber-rate * cell-mode
% 25
The subscriber-rate - subscriber-rate * cell-mode % 25 expression provides for an explicit
cell-tax factor of 25 percent when the subscriber local loop is transmitting cells. In cases
where the local loop is very-high-bit-rate digital subscriber line (VDSL), the second term
in the expression drops to 0.
Relationship with QoS Downstream Rate Application
ANCP dynamically controls the QoS cell mode application when you create parameter
instances for VLANs using both the QoS downstream rate application and the QoS cell
mode application.
ANCP controls QoS cell mode parameter instances at the VLAN subinterface only; the
protocol does not control parameter instances at the major Ethernet interface or S-VLAN
subinterface.
Related
Documentation
•
Configuring a Parameter Definition to Shape Ethernet Traffic Using Cell Mode on
page 272
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172
•
Scheduler Profiles and Parameter Expressions for QoS Administrators on page 225
•
QoS Downstream Rate Application Overview on page 287
Guidelines for Configuring the Cell Shaping Mode with QoS Parameters
When you specify the QoS cell mode application, the following considerations apply:
•
You can have only one parameter definition with the QoS cell mode application
configured.
•
You must specify a controlled-interface type.
•
You can specify only instance-interface types of atm, atm-vp, atm-vc, ethernet, svlan,
and vlan.
•
You can specify only the subscriber-interface type of vlan when you configure Qos cell
mode application on its own or with the byte adjustment application. When you
configure the QoS cell mode application with the QoS downstream rate application,
Copyright © 2012, Juniper Networks, Inc.
271
JunosE 14.1.x Quality of Service Configuration Guide
you must specify a subscriber-interface type. ANCP uses the subscriber-interface type
to determine the instance-interface type on which to dynamically create the parameter.
Related
Documentation
•
You can specify only 0 or 1 as the values for a parameter instance with the QoS cell
mode application configured. 0 indicates frame mode, and 1 indicates cell mode. You
cannot configure another range for the parameter definition using the range command.
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
•
Configuring a Parameter Definition to Shape Ethernet Traffic Using Cell Mode on
page 272
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
•
Scheduler Profiles and Parameter Expressions for QoS Administrators on page 225
•
QoS Downstream Rate Application Overview on page 287
Configuring a Parameter Definition to Shape Ethernet Traffic Using Cell Mode
To associate a parameter instance with the QoS cell mode application:
1.
Configure traffic classes.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
2. Create a parameter definition.
a. Configure the QoS parameter name and the application.
host1(config)#qos-parameter-define shaping-mode application qos-cell-mode
b. Configure a controlled-interface type.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
c. Configure an instance-interface type.
host1(config-qos-parameter-define)#instance-interface-type vlan
3. Create the parameter instance and configure the shaping mode.
When you create the parameter instance and configure the shaping mode, the value
of frame shaping mode is 0; the value for cell shaping mode is 1.
host1(config)#interface gigabitEthernet 6/0/2
host1(config-if)#encapsulation vlan
host1(config-if)#interface gigabitEthernet 6/0/2.1
host1(config-if)#vlan id 1
host1(config-if)#qos-parameter cell-mode 1
host1(config-if)#ip address 6.10.10.10 255.255.255.255
host1(config-if)#exit
host1(config)#interface gigabitEthernet 6/0/2
272
Copyright © 2012, Juniper Networks, Inc.
Chapter 28: Configuring the Shaping Mode for Ethernet with QoS Parameters
host1(config-if)#svlan 1 qos-parameter cell-mode 1
host1(config-if)#exit
host1(config)#interface gigabitEthernet 6/0/2
host1(config-if)#qos-parameter cell-mode 1
Related
Documentation
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
•
Scheduler Profiles and Parameter Expressions for QoS Administrators on page 225
•
QoS Downstream Rate Application Overview on page 287
•
controlled-interface-type
•
instance-interface-type
•
interface gigabitEthernet
•
ip address
•
qos-parameter
•
qos-parameter-define
•
scheduler-profile
•
svlan qos-parameter
•
traffic-class
•
vlan id
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping
The example in this section illustrates how to configure the byte adjustment application
to adjust the shaping rate for downstream ATM traffic from the customer premise
equipment (CPE) to Ethernet interfaces configured on an E320 router.
In this example, the QoS administrator manages the shaping rate using a combination
of the byte adjustment application and cell shaping mode to account for different layer
2 encapsulations and the ATM cell pad, header, and trailer.
Figure 64 on page 274 displays the Ethernet network to which the QoS administrator
applies the byte adjustment.
Copyright © 2012, Juniper Networks, Inc.
273
JunosE 14.1.x Quality of Service Configuration Guide
Figure 64: Byte Adjustment for VC1 and VC2
In Figure 64 on page 274, VLAN 1 and VLAN 2 map to the subscribers at VC1 and VC2.
The QoS administrator allocates a total of 10 Mbps of bandwidth for voice, video, and
data services to VC1, and 2 Mbps of bandwidth of data traffic for VC2.
Table 28 on page 274 lists the shaping rate and byte adjustment for both subscribers.
Table 28: Byte Adjustment for Subscribers VC1 and VC2
Configuring Traffic
Classes
VC1
VC2
Protocol
A3 encapsulation
A1 encapsulation
Byte Adjustment
-28
-2
Voice Bandwidth
1000000 bps
1000000 bps
Video Bandwidth
10000 bps
–
Data Bandwidth
8000000 bps
–
Total Bandwidth
–
1000000 bps
The QoS administrator configures the traffic classes and traffic-class groups for video
and voice services.
1.
Configure the traffic class named voice.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
2. Configure the traffic class named video.
host1(config)#traffic-class video
host1(config-traffic-class)#exit
Configuring the QoS
Parameter Definition
The QoS administrator configures a parameter definition and the byte adjustment
application. The QoS administrator then enables the QoS client to create a parameter
instance of the byte adjustment from VLAN interfaces. All interfaces above the VLAN
use the same byte adjustment value.
1.
274
Configure a parameter definition named byte-adjustment.
Copyright © 2012, Juniper Networks, Inc.
Chapter 28: Configuring the Shaping Mode for Ethernet with QoS Parameters
host1(config)#qos-parameter-define byte-adjustment application
qos-byte-adjustment
2. Define the controlled-interface types for vlan and ip to adjust the shaping rate for the
VLAN and IP queues.
a. Configure the controlled-interface type for VLAN.
b. Configure the controlled-interface type for IP.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
host1(config-qos-parameter-define)#exit
Configuring the QoS
Shaping Mode
The QoS administrator then configures the QoS shaping mode using the QoS cell mode
application. When you configure the QoS shaping mode to cell mode on port 0 of the
IOA, all ports on the IOA use the same value.
1.
Configure a parameter definition named cell-mode.
host1(config)#qos-parameter-define cell-mode application qos-cell-mode
2. Define the controlled-interface types for vlan and ip for the shaping mode.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
host1(config-qos-parameter-define)#exit
Reference the
Parameter Definition
Within a Scheduler
Profile
The QoS administrator configures the shaping rate and the shared-shaping rate within
scheduler profiles for the subscribers at VC1 and VC2.
1.
Configure the scheduler profile for the subscriber VC1.
a. Configure the scheduler profile named vc1.
b. Configure the shared-shaping rate of 10000000 with a burst of 10 milliseconds.
host1(config)#scheduler-profile vc1
host1(config-scheduler-profile)#shared-shaping-rate 10000000 burst 10
milliseconds
host1(config-scheduler-profile)#exit
2. Configure the scheduler profile for the voice service.
a. Configure the scheduler profile named voice.
b. Configure the shared-shaping rate of 100000 with a burst of 10 milliseconds.
host1(config)#scheduler-profile voice
host1(config-scheduler-profile)#shaping-rate 100000 burst 10 milliseconds
host1(config-scheduler-profile)#exit
3. Configure the scheduler profile for the video service.
a. Configure the scheduler profile named voice.
b. Configure the shared-shaping rate of 8000000 with a burst of 10 milliseconds.
host1(config)#scheduler-profile video
host1(config-scheduler-profile)#shaping-rate 8000000 burst 10 milliseconds
Copyright © 2012, Juniper Networks, Inc.
275
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-scheduler-profile)#exit
4. Configure the scheduler profile for the subscriber VC2.
a. Configure the scheduler profile named vc2.
b. Configure the shared-shaping rate of 1000000 with a burst of 10 milliseconds.
host1(config)#scheduler-profile vc2
host1(config-scheduler-profile)#shaping-rate 1000000 burst 10 m
host1(config-scheduler-profile)#exit
Adding the Scheduler
Profiles to a QoS
Profile
After configuring the scheduler profiles, the QoS administrator then configures QoS
profiles for subscribers VC1 and VC2.
1.
Configure the vc1 QoS profile with a shared-shaping rate of 10 Mbps.
a. Configure the QoS profile vc1.
b. Configure the vlan node and reference the scheduler profile vc1.
c. Configure the vlan queue and reference the voice traffic class and the voice
scheduler profile.
d. Configure the vlan queue and reference the video traffic class and the video
scheduler profile.
host1(config)#qos-profile vc1
host1(config-qos-profile)#vlan node scheduler-profile vc1
host1(config-qos-profile)#vlan queue traffic-class voice schedule-profile voice
host1(config-qos-profile)#vlan queue traffic-class video schedule-profile video
host1(config-qos-profile)#exit
2. Configure the vc2 QoS profile with a shaping rate of 1 Mbps.
a. Configure the QoS profile vc2.
b. Configure the vlan node and reference the scheduler profile vc2.
host1(config)#qos-profile vc2
host1(config-qos-profile)#vlan node scheduler-profile vc2
host1(config-qos-profile)#exit
Attaching the
Parameter Definition
to an Interface
The QoS administrator creates logical interfaces for VLAN1 and VLAN2 and attaches the
parameter definitions to them.
1.
Attach the parameter definition to VLAN1.
a. Configure the Gigabit Ethernet interface in slot 6, adapter 0, port 0.
b. Configure the VLAN major interface.
c. Configure the Gigabit Ethernet interface in slot 6, adapter 0, port 0, subinterface
1.
d. Assign VLAN ID of 1.
e. Create a parameter instance for byte-adjustment with a value of -28.
276
Copyright © 2012, Juniper Networks, Inc.
Chapter 28: Configuring the Shaping Mode for Ethernet with QoS Parameters
f. Create a parameter instance for cell-mode with a value of 1 (cell shaping mode).
g. Attach the QoS profile vc1 to the Gigabit Ethernet interface.
host1(config)#interface gigabitEthernet 6/0/0
host1(config-if)#encapsulation vlan
host1(config-if)#interface gigabitEthernet 6/0/0.1
host1(config-if)#vlan id 1
host1(config-if)#qos-parameter byte-adjustment -28
host1config-if)#qos-parameter cell-mode 1
host1(config-if)#qos-profile vc1
host1(config-if)#exit
2. Attach the parameter definition to VLAN2.
a. Specify the Gigabit Ethernet interface in slot 6, adapter 0, port 1.
b. Assign a VLAN ID of 2.
c. Create a parameter instance for byte-adjustment with a value of -2.
d. Create a parameter instance for cell-mode with a value of 1 (cell shaping mode).
e. Attach the QoS profile vc2 to the Gigabit Ethernet interface.
host1(config-if)#interface gigabitEthernet 6/0/1.1
host1(config-if)#vlan id 2
host1(config-if)#qos-parameter byte-adjustment -2
host1(config-if)#qos-parameter cell-mode 1
host1(config-if)#qos-profile vc2
host1(config-if)#exit
Complete Configuration Example
You can use the complete configuration examples provided for each of the configurations
in your own network. To customize the configuration example for your needs, copy the
text into a text editor, and modify it.
To use the example for immediate use, copy it to the local console or Telnet session from
which you access the router.
You can also save the example as a script (.scr) file that executes the commands as
though they were entered at the terminal. For information about executing .scr files, see
JunosE System Basics Configuration Guide.
From Global Configuration mode:
! Configure the traffic-classes for video and voice.
traffic-class voice
exit
traffic-class video
exit
! Create the byte-adjustment QoS parameter definition.
qos-parameter-define byte-adjustment application qos-byte-adjustment
controlled-interface-type vlan
controlled-interface-type ip
exit
Copyright © 2012, Juniper Networks, Inc.
277
JunosE 14.1.x Quality of Service Configuration Guide
! Create the cell-mode QoS parameter definition.
qos-parameter-define cell-mode application qos-cell-mode
controlled-interface-type vlan
controlled-interface-type ip
exit
! Configure the vc1 and vc2 scheduler profiles.
scheduler-profile vc1
shared-shaping-rate 10000000 burst 10 milliseconds
exit
scheduler-profile voice
shaping-rate 100000 burst 10 milliseconds
exit
scheduler-profile video
shaping-rate 8000000 burst 10 milliseconds
exit
scheduler-profile vc2
shaping-rate 1000000 burst 10 m
exit
! Add the scheduler profiles to the vc1 QoS profile.
qos-profile vc1
vlan node scheduler-profile vc1
vlan queue traffic-class voice schedule-profile voice
vlan queue traffic-class video schedule-profile video
exit
qos-profile vc2
vlan node scheduler-profile vc2
! Configure the byte adjustment for VLAN1 and VLAN2.
interface gigabitEthernet 6/0/0
encapsulation vlan
interface gigabitEthernet 6/0/0.1
vlan id 1
qos-parameter byte-adjustment -28
qos-parameter cell-mode 1
qos-profile vc1
interface gigabitEthernet 6/0/1.1
vlan id 2
qos-parameter byte-adjustment -2
qos-parameter cell-mode 1
qos-profile vc2
Related
Documentation
278
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 29
Configuring Byte Adjustment for Shaping
Rates with QoS Parameters
This chapter provides information for configuring byte adjustment with quality of service
(QoS) parameters on E Series routers.
QoS parameters are discussed in the following sections:
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
Guidelines for Configuring Byte Adjustment of Cell and Frame Shaping Rates Using
QoS Parameters on page 282
•
Configuring a Parameter Definition to Adjust Cell Shaping Rates for ADSL
Traffic on page 283
•
Configuring a Parameter Definition to Adjust Frame Shaping Rates for VDSL
Traffic on page 285
Byte Adjustment for ADSL and VDSL Traffic Overview
You can associate a parameter definition with a byte adjustment application to adjust
the shaping rates for ADSL and VDSL traffic on E Series Broadband Services Routers.
The byte adjustment differs for interfaces with cell shaping mode and frame shaping
mode. For ADSL traffic, JunosE Software supports a byte adjustment application
(qos-byte-adjustment) to adjust rates for cell shaping mode. For VDSL traffic, JunosE
Software supports a frame byte-adjustment application (qos-frame-byte-adjustment)
to adjust rates for frame shaping mode.
Frame is the default shaping mode for Ethernet interfaces on E Series routers. To configure
the cell shaping mode, issue the qos-shaping-mode command or by specifying the
qos-cell-mode application with a parameter definition.
Byte Adjustment for Cell Shaping of ADSL Traffic Overview
Managing the bandwidth of downstream ATM traffic to Ethernet interfaces is difficult
because of the different layer 2 encapsulations. To reduce the number of packet drops
in the Ethernet network, you can use the byte adjustment applications to account for the
different encapsulations.
Copyright © 2012, Juniper Networks, Inc.
279
JunosE 14.1.x Quality of Service Configuration Guide
To adjust the shaping rates to account for different layer 2 encapsulations as well as the
ATM cell pad, header, and trailer on interfaces, apply a parameter with the cell
byte-adjustment application (qos-byte-adjustment).
When you apply a parameter with the qos-byte-adjustment application to an interface
with frame shaping mode, you adjust shaping rates to account for different layer 2
encapsulations only.
Calculation and Example of Byte Adjustment for Cell Shaping
The system counts the bytes transmitted to track the shaping rate. Instead of counting
the actual packet size, the system uses the CPE packet size. You can configure the byte
adjustment so that the shaping rate matches the CPE bandwidth.
By default, the byte adjustment is set to 0. If the overhead between the access node and
CPE is 0, you do not need to configure the byte adjustment value.
Figure 65 on page 280 displays an example of an Ethernet encapsulation and an ATM
encapsulation.
Figure 65: Byte Adjustment Calculation for Ethernet and ATM
Encapsulations
Table 29 on page 280 lists the header lengths for the Ethernet encapsulation, which
represents the CPE protocol overhead. The hierarchy is PPPoE over S-VLAN over Ethernet.
Table 29: Header Lengths for Ethernet Encapsulation
280
Header
Number of Bytes
EnetHeader
14 bytes (6-SA, 6-DA, 2-ethertype)
Vstack
8 bytes (2-vmanTci, 2-ethertype,
2-vlanTci, 2-ethertype)
PppoeHeader
6 bytes (1-version/type, 1-code,
2-session id, 2-length)
Ppp
2 bytes (2-protocol id)
FCS
4 bytes
Copyright © 2012, Juniper Networks, Inc.
Chapter 29: Configuring Byte Adjustment for Shaping Rates with QoS Parameters
Table 29: Header Lengths for Ethernet Encapsulation (continued)
Header
Number of Bytes
Total
34 bytes
Table 30 on page 281 lists the header lengths for the ATM encapsulation, which represents
the B-RAS protocol overhead. The interface stack is PPPoA over ATM 1483 with LLC
Mux. The ATM AAL5 trailer is considered cell tax and is not part of the byte adjustment
calculation.
Table 30: Header Lengths for ATM Encapsulation
Header
Number of Bytes
ATM AAL5 LLC
4 bytes
PPP
2 bytes (2-protocol id)
Total
6 bytes
The byte adjustment calculation for these encapsulations is:
Byte Adjustment for Frame Shaping of VDSL Traffic Overview
Packet fragmentation can occur at a DSLAM because of the associated segment header
that is added for VDSL2 in frame mode. Because the segment header is not included in
the ANCP rate report, the forwarding rate on an E Series router can be higher than the
DSLAM rate, which can result in packet loss.
You can use a QoS parameter expression with the frame byte-adjustment application
to reduce the forwarding rate so that it matches the rate at the DSLAM. To adjust rates
for interfaces with frame shaping mode, apply the frame byte-adjustment application
(qos-frame-byte-adjustment).
When you apply a parameter with the qos-byte-adjustment application to an interface
with frame shaping mode, you adjust shaping rates to account for different layer 2
encapsulations only.
System Calculation for Byte Adjustment of ADSL and VDSL Traffic
You can create parameter instances for the cell byte-adjustment application and the
frame byte-adjustment application on the same system. The system performs the byte
adjustment calculation based on the shaping mode specified. The byte adjustment can
have both a positive and negative value.
Table 31 on page 282 lists the final byte adjustment value that the system uses depending
on the configured shaping mode and the value that you configured for the byte adjustment
applications.
Copyright © 2012, Juniper Networks, Inc.
281
JunosE 14.1.x Quality of Service Configuration Guide
Table 31: Byte Adjustment Values for Frame and Cell Shaping Modes
Related
Documentation
Shaping Mode
on Port 0
Configured
qos-frame-byte-adjustment
Value
Configured
qos-byte-adjustment
Value
Final Byte
Adjustment
Value
Cell
Any value
-4
-4
Cell
Any value
Undefined
0
Frame
Undefined
Undefined
0
Frame
8
-4
8
Frame
Undefined
8
8
•
Configuring a Parameter Definition to Adjust Cell Shaping Rates for ADSL Traffic on
page 283
•
Configuring a Parameter Definition to Adjust Frame Shaping Rates for VDSL Traffic on
page 285
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
•
QoS Downstream Rate Application Overview on page 287
Guidelines for Configuring Byte Adjustment of Cell and Frame Shaping Rates Using
QoS Parameters
When you specify the cell or frame byte-adjustment application, the following
considerations apply:
282
•
You can have only one QoS parameter definition with the cell byte-adjustment
application (qos-byte-adjustment) configured.
•
You can only have one QoS parameter definition with the frame byte-adjustment
application (qos-frame-byte-adjustment) configured.
•
You can specify only instance-interface types of lag, ethernet, svlan, and vlan.
•
You can specify only an subscriber-interface type of vlan.
•
The available range for parameters with the byte adjustment application is -32–63.
You cannot configure another range using the range command.
•
We recommend that you apply the byte adjustment parameter at the lowest interface
column so that upper interfaces automatically have the parameter.
•
On the ES2 10G LM, the shaping rate adjustment is performed more efficiently by the
TFA ASIC than ASICS on other modules. The TFA ASIC performs an internal adjustment
Copyright © 2012, Juniper Networks, Inc.
Chapter 29: Configuring Byte Adjustment for Shaping Rates with QoS Parameters
of 4 bytes. The maximum byte adjustment value that you can configure is 59. When
you configure a byte adjustment value greater than 59 in a QoS parameter, the system
automatically resets the value to 59.
Related
Documentation
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
Configuring a Parameter Definition to Adjust Cell Shaping Rates for ADSL Traffic on
page 283
•
Configuring a Parameter Definition to Adjust Frame Shaping Rates for VDSL Traffic on
page 285
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172 and Cell Shaping
Mode Using QoS Parameters Overview on page 269
Configuring a Parameter Definition to Adjust Cell Shaping Rates for ADSL Traffic
You can adjust shaping rates to account for different layer 2 encapsulations as well as
the ATM cell pad, header, and trailer on interfaces with cell shaping mode using the
qos-byte-adjustment application.
NOTE: When you apply a parameter with the qos-byte-adjustment
application to an interface with frame shaping mode, you adjust shaping
rates to account for different layer 2 encapsulations only.
To associate a parameter instance with the byte adjustment application:
1.
Configure the traffic classes.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
2. Create a parameter definition.
a. Configure the QoS parameter name and the application.
host1(config)#qos-parameter-define byteadjust1 application qos-byte-adjustment
b. Configure a controlled-interface type.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
c. Configure an instance-interface type.
host1(config-qos-parameter-define)#instance-interface-type vlan
3. Do one of the following:
•
Configure the shaping mode by issuing the qos-shaping-mode command.
Copyright © 2012, Juniper Networks, Inc.
283
JunosE 14.1.x Quality of Service Configuration Guide
Frame shaping mode is the default for Ethernet interfaces on all E Series routers.
You can only set the cell shaping mode for Gigabit Ethernet and 10-Gigabit Ethernet
interfaces configured on the GE-2 line module, the GE-HDE line module, and the
ES2 4G LM.
•
Configure the shaping mode by specifying the QoS cell mode application with a
parameter definition.
host1(config)#qos-parameter-define cell-mode application qos-cell-mode
4. Attach the parameter definition to a logical Ethernet interface.
In this example, parameter instances are created for both the byte adjustment and
QoS cell mode applications.
host1(config)#interface gigabitEthernet 7/0
host1(config-if)#encapsulation vlan
host1(config-if)#exit
host1(config)#interface gigabitEthernet 7/0.1
host1(config-if)#vlan id 1
host1(config-if)#qos-parameter byteadjustment -16
host1(config-if)#qos-parameter cell-mode 1
host1(config-if)#ip address 1.1.1.1 255.255.255.0
Related
Documentation
284
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
Guidelines for Configuring Byte Adjustment of Cell and Frame Shaping Rates Using
QoS Parameters on page 282
•
Example: QoS Parameter Configuration for QoS Cell Mode and Byte Adjustment for
Cell Shaping on page 273
•
Configuring a Parameter Definition to Adjust Frame Shaping Rates for VDSL Traffic on
page 285
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
•
controlled-interface-type
•
encapsulation vlan
•
instance-interface-type
•
ip address
•
node
•
qos-parameter
•
qos-parameter-define
•
qos-profile
•
queue
•
traffic-class
•
vlan id
Copyright © 2012, Juniper Networks, Inc.
Chapter 29: Configuring Byte Adjustment for Shaping Rates with QoS Parameters
Configuring a Parameter Definition to Adjust Frame Shaping Rates for VDSL Traffic
Packet fragmentation can occur at a DSLAM because of the associated segment header
that is added for VDSL2 in frame shaping mode. Because the segment header is not
included in the ANCP rate report, the forwarding rate on an E Series router can be higher
than the DSLAM rate, which can result in packet loss.
You can use a QoS parameter expression with the frame byte-adjustment application
to reduce the forwarding rate so that it matches the VDSL downstream rate at the DSLAM.
You can also configure the cell mode application to account for ADSL downstream traffic
that is also being received.
To configure a QoS parameter definition to adjust frame shaping rates and manage
packet fragmentation:
1.
Configure the QoS parameter definition to accept downstream shaping rate
instantiation from ANCP.
host1(config)#qos-parameter-define ancp-downstream application
qos-downstream-rate
2. Configure the QoS parameter definition for the frame byte-adjustment application
to adjust the packet header.
host1(config)#qos-parameter-define frame-byte application
qos-frame-byte-adjustment
You can also configure the qos-byte-adjustment application with a different value.
3. Create the QoS parameter definition for the cell mode application to track the
subscriber DSL type.
host1(config)#qos-parameter-define sp-qos-cell-mode application qos-cell-mode
The ADSL type corresponds to cell mode and VDSL corresponds to frame mode.
4. Configure the parameter expression to reduce the shaping rate to account for packet
fragmentation.
In the following expression, the adjustment is applied to traffic with frame shaping
mode only. The byte adjustment value is 8 and the shaping rate is reduced by 2 percent.
host1(config)#scheduler-profile service-provider-business
host1(config-scheduler-profile)# shaping-rate ancp-downstream - (ancp-downstream
% 2 * (1 - sp-qos-cell-mode))
TIP: To determine the expression value and the byte adjustment required,
you must account for the actual segmentation header overhead added
by the DSLAM. DSLAMs have different segmentation header overheads.
If the user packet size changes, you must change the expression value and
the byte adjustment value.
Copyright © 2012, Juniper Networks, Inc.
285
JunosE 14.1.x Quality of Service Configuration Guide
5. To ensure that the router handles the byte adjustment value consistently for VDSL
and ADSL networks, apply the QoS parameter for frame shaping mode globally.
host1(config)#qos-parameter frame-byte 8
NOTE: The ancp-downstream rate and sp-qos-cell-mode QoS parameters
are dynamically applied to QoS by ANCP.
Related
Documentation
286
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
qos-parameter
•
qos-parameter-define
•
qos-profile
•
scheduler-profile
•
shaping-rate
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 30
Configuring the Downstream Rate Using
QoS Parameters
This chapter provides information for configuring quality of service (QoS) parameters
on E Series routers.
QoS parameters are discussed in the following sections:
•
QoS Downstream Rate Application Overview on page 287
•
Guidelines for Configuring QoS Downstream Rate on page 289
•
Configuring a Parameter Definition for QoS Downstream Rate on page 289
•
Example: QoS Parameter Configuration for QoS Downstream Rate on page 291
QoS Downstream Rate Application Overview
You can associate the QoS downstream rate (qos-downstream-rate) application with
a parameter definition. The QoS downstream rate application enables you to shape the
downstream rate of VLANs and ATM VCs based on parameter instances that are created
dynamically by the Access Node Control Protocol (ANCP), also known as the layer 2
control (L2C) protocol, or the Actual-Data-Rate-Downstream [26-130] DSL Forum
vendor-specific attribute (VSA). The values of the parameter instances track the
bandwidth of the local loop that is communicated by ANCP or the [26-130] VSA.
Downstream Rate and the Shaping Mode
After you configure a parameter definition with the QoS downstream rate application,
you can configure the shaping mode for the VLAN or ATM VC. For ATM VCs, use the
qos-shaping-mode command.
For VLANs, you can use the QoS cell mode application with QoS parameters to perform
a cell mode adjustment. ANCP creates instances of the parameter based on the DSL
type of the local loop associated with the VLAN.
VLANs configured on the ES2 4G LM on the E120 and E320 Broadband Services routers
use an internal cell-taxing mechanism to perform the cell mode adjustment. For VLANs
configured on all other E Series Broadband Services Routers, you must also configure a
parameter expression to configure the cell mode adjustment.
Copyright © 2012, Juniper Networks, Inc.
287
JunosE 14.1.x Quality of Service Configuration Guide
QoS Adaptive Mode and Downstream Rate
After you create the parameter definition, you must enable QoS adaptive mode for ANCP
by issuing the qos-adaptive-mode command. ANCP uses this setting to dynamically
create the parameter instances for the QoS downstream rate application and, if
applicable, the QoS cell mode application. It also uses the setting to determine the value
that the system uses when recalculating the shaping rate.
For example, if you created a parameter definition with the QoS cell mode application,
ANCP configures parameter instances associated with a value of 0 to indicate a
frame-oriented DSL types such as VDSL2. ANCP configures cell-oriented DSL types such
as ADSL with a value of 1.
Table 32 on page 288 lists the DSL types, interface type, and resultant shaping modes
that ANCP configures when creating a parameter instance for the QoS cell mode
application.
Table 32: Access Loop Types and Resultant Shaping Mode
Access Loop
Type
Access Loop
Interface Type
Shaping Mode
ADSL1
ATM
Cell
ADSL2
ATM
Cell
ADSL2+
ATM
Cell
VDSL1
ATM
Cell
VDSL2
Ethernet
Frame
SDSL/SHDSL
ATM
Cell
Obtaining Downstream Rates from a DSL Forum VSA
You can configure the QoS downstream rate application to shape VLANs or ATM VCs
based on downstream rates obtained from the Actual-Data-Rate-Downstream [26-130]
DSL Forum vendor-specific attribute (VSA).
Related
Documentation
288
•
Configuring a Parameter Definition for QoS Downstream Rate on page 289
•
Example: QoS Parameter Configuration for QoS Downstream Rate on page 291
•
QoS Shaping Mode for Ethernet Interfaces Overview on page 172 and
•
Cell Shaping Mode Using QoS Parameters Overview on page 269
•
Byte Adjustment for ADSL and VDSL Traffic Overview on page 279
•
Configuring the QoS Shaping Mode for ATM Interfaces on page 169
•
DSL Forum VSAs
Copyright © 2012, Juniper Networks, Inc.
Chapter 30: Configuring the Downstream Rate Using QoS Parameters
Guidelines for Configuring QoS Downstream Rate
When you specify the QoS downstream rate application, the following considerations
apply:
Related
Documentation
•
You can have only one parameter definition with the QoS downstream rate configured.
•
You must specify a controlled-interface type.
•
You must configure a subscriber-interface-type. ANCP uses the subscriber-interface
type to determine the instance-interface type on which to dynamically create the
parameter.
•
Access loops can synchronize after the user has logged in. The business logic depends
on the rate that is reported in the Access-Request message. We recommend that
service providers use RADIUS Connect-Info attribute [77] as the default value for their
business logic. When the ANCP rate information is not present, the system uses the
default QoS parameter instance (which can be defined globally or per VLAN). The
advisory transmit speed configurable per VLAN is reported to the RADIUS Connect-Info
attribute [77]. Ensure that the value of the default QoS parameter is aligned with the
value in RADIUS Connect-Info attribute 77.
•
QoS Downstream Rate Application Overview on page 287
•
Configuring a Parameter Definition for QoS Downstream Rate on page 289
•
Example: QoS Parameter Configuration for QoS Downstream Rate on page 291
•
Configuring the RADIUS Connect-Info Attribute on the LNS
Configuring a Parameter Definition for QoS Downstream Rate
To associate a parameter instance with the QoS downstream rate application:
1.
Configure traffic classes.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
host1(config)#traffic-class best-effort
host1(config-traffic-class)#exit
2. Create a parameter definition for the QoS downstream rate application.
a. Configure the QoS parameter name and the application.
host1(config)#qos-parameter-define downstreamVLAN application
qos-downstream-rate
b. Configure controlled-interface types.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
c. Configure subscriber-interface types.
host1(config-qos-parameter-define)#subscriber-interface-type vlan
Copyright © 2012, Juniper Networks, Inc.
289
JunosE 14.1.x Quality of Service Configuration Guide
3. Do one of the following:
•
For VLANs, configure the shaping mode by creating a parameter definition with the
QoS cell mode application. Ensure that you specify a subscriber-interface type.
See “Configuring a Parameter Definition to Shape Ethernet Traffic Using Cell Mode”
on page 272.
•
For ATM VCs, configure the shaping mode by issuing the qos-shaping-mode
command.
See “Configuring the QoS Shaping Mode for ATM Interfaces” on page 169.
4. Enable QoS adaptive mode for the system by issuing the qos-adaptive-mode
command in L2C Configuration mode.
host1(config)#l2c
host1(config-l2c)#qos-adaptive-mode
5. Enable the QoS downstream rate application to use downstream rates obtained from
the Actual-Data-Rate-Downstream [26-130] DSL Forum VSA.
host1(config)#aaa qos downstream-rate
6. Configure the scheduler profile for the shaping rate.
host1(config)#scheduler-profile vlan1
host1(config-scheduler-profile)#shared-shaping-rate downstreamVLAN * 5 auto
7. Configure the QoS profile for the shaping rate.
host1(config)#qos-profile vlan1
host1(config-qos-profile)#vlan node scheduler-profile vlan1
8. Attach the QoS profile to a logical Ethernet interface.
ANCP or AAA dynamically creates the parameter instances for the QoS downstream
rate application, and if applicable, the QoS cell mode application; therefore, you do
not need to specify them.
host1(config)#interface gigabitEthernet 6/0/2
host1(config-if)#encapsulation vlan
host1(config-if)#interface gigabitEthernet 6/0/2.1
host1(config-if)#vlan id 1
host1(config-if)#qos-profile vlan1
host1(config-if)#ip address 6.10.10.10 255.255.255.255
For more information about configuring ANCP (L2C) parameters, see JunosE IP Services
Configuration Guide.
Related
Documentation
290
•
Example: QoS Parameter Configuration for QoS Downstream Rate on page 291
•
DSL Forum VSAs
•
aaa qos downstream-rate
•
controlled-interface-type
•
encapsulation vlan
•
instance-interface-type
Copyright © 2012, Juniper Networks, Inc.
Chapter 30: Configuring the Downstream Rate Using QoS Parameters
•
ip address
•
node
•
qos-parameter
•
qos-adaptive-mode
•
qos-parameter-define
•
qos-profile
•
queue
•
shared-shaping-rate
•
subscriber-interface-type
•
traffic-class
•
vlan id
Example: QoS Parameter Configuration for QoS Downstream Rate
This example illustrates how to use parameters to control the downstream rate obtained
from ANCP.
In this example, the subscribers on the 0.1 access loop are configured on VLAN1. They
subscribe to voice, video, and data traffic with a bandwidth of 10 Mbps. Subscribers on
the 1.1 access loop are configured on VLAN2, and subscribe to 1 Mbps of data traffic.
Table 33 on page 291 lists the shaping mode and shaping rate information received by
the QoS downstream rate application upon access loop synchronization. The parameter
instances are created with these values.
Table 33: Shaping Rate and Shaping Mode
Configuring Traffic
Classes
VLAN1
VLAN2
Shaping mode
Cell
Cell
Shaping rate
10000000 bps
100000 bps
The QoS administrator configures the traffic classes for voice and video services.
1.
Configure the traffic class named voice.
host1(config)#traffic-class voice
host1(config-traffic-class)#exit
2. Configure the traffic class named video.
host1(config)#traffic-class video
host1(config-traffic-class)#exit
Copyright © 2012, Juniper Networks, Inc.
291
JunosE 14.1.x Quality of Service Configuration Guide
Configuring the QoS
Parameter Definition
for QoS Downstream
Rate
The QoS administrator configures a parameter definition for the QoS downstream rate
application. Using subscriber-interface types, the QoS administrator then enables ANCP
to create parameter instances of the QoS downstream rate application.
1.
Configure a parameter definition named ancpVlan.
host1(config)#qos-parameter-define ancpVlan application qos-downstream-rate
2. Define the controlled-interface types for vlan and ip to adjust the shaping rate for the
VLAN and IP queues.
a. Configure the controlled-interface type for VLAN.
b. Configure the controlled-interface type for IP.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
3. Define the subscriber-interface types for vlan and ethernet.
host1(config-qos-parameter-define)#subscriber-interface-type vlan
host1(config-qos-parameter-define)#subscriber-interface-type ethernet
host1(config-qos-parameter-define)#exit
Configuring the QoS
Parameter Definition
for QoS Cell Mode
The QoS administrator then configures the QoS shaping mode using the QoS cell mode
application. Using subscriber-interface types, the QoS administrator then enables ANCP
to create parameter instances using the QoS cell mode application.
1.
Configure a parameter definition named cellmodeVlan.
host1(config)#qos-parameter-define cellmodeVlan application qos-cell-mode
2. Define the controlled-interface types for vlan and ip for the shaping mode.
host1(config-qos-parameter-define)#controlled-interface-type vlan
host1(config-qos-parameter-define)#controlled-interface-type ip
host1(config-qos-parameter-define)#exit
3. Define the subscriber-interface types for vlan and ethernet.
host1(config-qos-parameter-define)#subscriber-interface-type vlan
host1(config-qos-parameter-define)#subscriber-interface-type ethernet
host1(config-qos-parameter-define)#exit
Enabling QoS Adaptive
Mode
The QoS administrator enables QoS adaptive mode for ANCP.
1.
Enter Layer 2 Control Configuration mode.
host1(config)#l2c
2. Enable QoS adaptive mode for the system.
host1(config-l2c)#qos-adaptive-mode
Reference the
Parameter Definition
Within a Scheduler
Profile
292
The QoS administrator configures the shaping rate and the shared-shaping rate within
scheduler profiles for the VLAN1 and VLAN2 subscribers.
1.
Configure the scheduler profile for the subscriber vlan1.
Copyright © 2012, Juniper Networks, Inc.
Chapter 30: Configuring the Downstream Rate Using QoS Parameters
a. Configure the scheduler profile named vlan1.
b. Configure the shared-shaping rate by referencing the ancpVlan parameter with a
burst of 10 milliseconds.
host1(config)#scheduler-profile vlan1
host1(config-scheduler-profile)#shared-shaping-rate ancpVlan burst 10
milliseconds auto
host1(config-scheduler-profile)#exit
2. Configure the scheduler profile for the voice service.
a. Configure the scheduler profile named voice.
b. Configure the shaping rate of 100000 with a burst of 10 milliseconds.
host1(config)#scheduler-profile voice
host1(config-scheduler-profile)#shaping-rate 100000 burst 10 milliseconds
host1(config-scheduler-profile)#exit
3. Configure the scheduler profile for the video service.
a. Configure the scheduler profile named video.
b. Configure the shaping rate of 8000000 with a burst of 10 milliseconds.
host1(config)#scheduler-profile video
host1(config-scheduler-profile)#shaping-rate 8000000 burst 10 milliseconds
host1(config-scheduler-profile)#exit
4. Configure the scheduler profile for the subscriber vlan2.
a. Configure the scheduler profile named vlan2.
b. Configure the shaping rate by referencing the ancpVlan parameter with a burst of
10 milliseconds.
host1(config)#scheduler-profile vlan2
host1(config-scheduler-profile)#shaping-rate ancpVlan burst 10 milliseconds
host1(config-scheduler-profile)#exit
Adding the Scheduler
Profiles to a QoS
Profile
After configuring the scheduler profiles, the QoS administrator then configures QoS
profiles for the VLAN1 and VLAN2 subscribers.
1.
Configure the vlan1 QoS profile with a shared-shaping rate that matches the
downstream rate.
a. Configure the QoS profile named vlan1.
b. Configure the vlan node and reference the scheduler profile vlan1.
c. Configure the vlan queue and reference the voice traffic class and the voice
scheduler profile.
d. Configure the vlan queue and reference the video traffic class and the video
scheduler profile.
host1(config)#qos-profile vlan1
host1(config-qos-profile)#vlan node scheduler-profile vlan1
host1(config-qos-profile)#vlan queue traffic-class voice scheduler-profile voice
Copyright © 2012, Juniper Networks, Inc.
293
JunosE 14.1.x Quality of Service Configuration Guide
host1(config-qos-profile)#vlan queue traffic-class video scheduler-profile video
host1(config-qos-profile)#exit
2. Configure the vlan2 QoS profile with a shaping rate of 1 Mbps.
a. Configure the QoS profile named vlan2.
b. Configure the vlan node and reference the scheduler profile vlan2.
host1(config)#qos-profile vlan2
host1(config-qos-profile)#vlan node scheduler-profile vlan2
host1(config-qos-profile)#exit
Attaching the QoS
Profile to an Interface
The QoS administrator creates logical interfaces for VLAN1 and VLAN2 and attaches the
QoS profiles to them. As the subscribers log in, ANCP creates the parameter instances
for cellmodeVlan and ancpVlan using RADIUS VSAs.
1.
Attach the vlan1 QoS profile to VLAN1.
a. Configure the Gigabit Ethernet interface in slot 6, adapter 0, port 0.
b. Configure the VLAN major interface.
c. Configure the Gigabit Ethernet interface in slot 6, adapter 0, port 0, subinterface
1.
d. Assign VLAN ID of 1.
e. Attach the QoS profile vc1 to the interface.
host1(config)#interface gigabitEthernet 6/0/0
host1(config-if)#encapsulation vlan
host1(config-if)#interface gigabitEthernet 6/0/0.1
host1(config-if)#vlan id 1
host1(config-if)#qos-profile vlan1
host1(config-if)#exit
2. Attach the vlan2 QoS profile to VLAN2.
a. Specify the Gigabit Ethernet interface in slot 6, adapter 0, port 1.
b. Assign a VLAN ID of 2.
c. Attach the QoS profile vlan2 to the interface.
host1(config-if)#interface gigabitEthernet 6/0/1.1
host1(config-if)#vlan id 2
host1(config-if)#qos-profile vlan2
host1(config-if)#exit
Complete Configuration Example
You can use the complete configuration examples provided for each of the configurations
in your own network. To customize the configuration example for your needs, copy the
text into a text editor, and modify it.
To use the example for immediate use, copy it to the local console or Telnet session from
which you access the router.
294
Copyright © 2012, Juniper Networks, Inc.
Chapter 30: Configuring the Downstream Rate Using QoS Parameters
You can also save the example as a script (.scr) file that executes the commands as
though they were entered at the terminal. For information about executing .scr files, see
JunosE System Basics Configuration Guide.
From Global Configuration mode:
! Configure the traffic-classes for video and voice.
traffic-class voice
exit
traffic-class video
exit
! Create the ancpVlan QoS parameter definition.
qos-parameter-define ancpVlan application qos-downstream-rate
controlled-interface-type vlan
controlled-interface-type ip
instance-interface-type vlan
instance-interface-type ethernet
exit
! Create the cellmodeVlan QoS parameter definition.
qos-parameter-define cellmodeVlan application qos-cell-mode
controlled-interface-type vlan
controlled-interface-type ip
instance-interface-type vlan
instance-interface-type ethernet
exit
! Enable QoS adaptive mode for ANCP.
l2c
qos-adaptive-mode
exit
! Configure the vlan1 and vlan2 scheduler profiles.
scheduler-profile vlan1
shared-shaping-rate ancpVlan burst 10 milliseconds auto
exit
scheduler-profile voice
shaping-rate 100000 burst 10 milliseconds
exit
scheduler-profile video
shaping-rate 8000000 burst 10 milliseconds
exit
scheduler-profile vlan2
shaping-rate ancpVlan burst 10 milliseconds
exit
! Add the scheduler profiles to the vlan1 and vlan2 QoS profiles.
qos-profile vlan1
vlan node scheduler-profile vlan1
vlan queue traffic-class voice scheduler-profile voice
vlan queue traffic-class video scheduler-profile video
exit
qos-profile vlan2
vlan node scheduler-profile vlan2
exit
! Configure the QoS downstream rate adjustment for VLAN1 and VLAN2.
interface gigabitEthernet 6/0/0
encapsulation vlan
interface gigabitEthernet 6/0/1.1
Copyright © 2012, Juniper Networks, Inc.
295
JunosE 14.1.x Quality of Service Configuration Guide
vlan id 1
qos-profile vlan1
exit
interface gigabitEthernet 6/0/1.1
vlan id 2
qos-profile vlan2
exit
Related
Documentation
296
•
QoS Downstream Rate Application Overview on page 287
Copyright © 2012, Juniper Networks, Inc.
PART 7
Monitoring and Troubleshooting QoS
•
Monitoring QoS on E Series Routers on page 299
•
Troubleshooting QoS on page 341
Copyright © 2012, Juniper Networks, Inc.
297
JunosE 14.1.x Quality of Service Configuration Guide
298
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 31
Monitoring QoS on E Series Routers
This chapter provides information for monitoring specific QoS configurations.
NOTE: The E120 and E320 Broadband Services Routers output for monitor
and show commands is identical to output from other E Series routers, except
that the E120 and E320 router output also includes information about the
adapter identifier in the interface specifier (slot/adapter/port).
QoS topics are discussed in the following sections:
•
Monitoring Service Levels with Traffic Classes on page 300
•
Monitoring Service Levels with Traffic-Class Groups on page 301
•
Monitoring Queue Thresholds on page 302
•
Monitoring Queue Profiles on page 305
•
Monitoring Drop Profiles for RED and WRED on page 306
•
Monitoring the QoS Scheduler Hierarchy on page 307
•
Monitoring the Configuration of Scheduler Profiles on page 313
•
Monitoring Shared Shapers on page 315
•
Monitoring Shared Shaper Algorithm Variables on page 316
•
Monitoring Forwarding and Drop Events on the Egress Queue on page 317
•
Monitoring Forwarding and Drop Rates on the Egress Queue on page 318
•
Monitoring Queue Statistics for the Fabric on page 322
•
Monitoring the Configuration of Statistics Profiles on page 323
•
Monitoring the QoS Profiles Attached to an Interface on page 324
•
Monitoring the Configuration of QoS Port-Type Profiles on page 325
•
Monitoring the Configuration of QoS Profiles on page 326
•
Monitoring the QoS Configuration of ATM Interfaces on page 328
•
Monitoring the QoS Configuration of IP Interfaces on page 330
•
Monitoring the QoS Configuration of Fast Ethernet, Gigabit Ethernet, and 10-Gigabit
Ethernet Interfaces on page 332
Copyright © 2012, Juniper Networks, Inc.
299
JunosE 14.1.x Quality of Service Configuration Guide
•
Monitoring the QoS Configuration of IEEE 802.3ad Link Aggregation Group
Bundles on page 334
•
Monitoring the Configuration of QoS Interface Sets on page 334
•
Monitoring the Configuration of QoS Interface Supersets on page 335
•
Monitoring the AAA Downstream Rate for QoS on page 336
•
Monitoring QoS Parameter Instances on page 337
•
Monitoring QoS Parameter Definitions on page 339
Monitoring Service Levels with Traffic Classes
Purpose
Action
Display information about traffic classes.
To display information about all traffic classes:
host1#show traffic-class
traffic
class
----------best-effort
best-effort
tc1
tc2
tc3
tcs4
tcs5
fabric
weight
-----8
8
8
8
8
8
8
fabric
strict
priority
-------no
no
no
no
no
yes
yes
To display the number of times that a QoS profile references the traffic class:
host1#show traffic-class brief
traffic-class best-effort referenced 17 times in qos-profiles
To display a list of QoS profiles and traffic-class groups that reference the traffic class:
host1#show traffic-class references
traffic-class best-effort
Referenced by QoS profiles:
atm-default
serial-default
ethernet-default
server-default
Referenced by traffic class groups:
None
Meaning
Table 34 on page 300 lists the show traffic-class command output fields.
Table 34: show traffic-class Output Fields
300
Field Name
Field Description
traffic class
Name of the traffic class
fabric weight
Weight of the queue in the fabric
fabric strict priority
Setting strict-priority queues in the fabric
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 34: show traffic-class Output Fields (continued)
Related
Documentation
Field Name
Field Description
Referenced by QoS profiles
QoS profiles that reference this traffic class
Referenced by traffic class groups
Traffic-class groups that reference this traffic class
•
Configuring Traffic Classes That Define Service Levels on page 14
•
show traffic-class
Monitoring Service Levels with Traffic-Class Groups
Purpose
Action
Display the name of a traffic-class group and the classes in the group.
To display the traffic classes in a traffic-class group:
host1#show traffic-class-group
traffic-class-group assured-fwd
traffic-class video
traffic-class-group assured-fwd slot 11
traffic-class video
traffic-class voice
To display the number of times each traffic-class group is referenced by a profile:
host1#show traffic-class-group brief
traffic-class-group g2 referenced
traffic-class-group g3 referenced
traffic-class-group g4 referenced
traffic-class-group g1 referenced
1
1
0
0
time in qos-profiles
time in qos-profiles
times in qos-profiles
times in qos-profiles
To display a list of profiles and QoS profiles that reference the traffic-class group:
host1#show traffic-class-group references
traffic-class-group g2
Referenced by QoS profiles:
profile1
traffic-class-group g3
Referenced by QoS profiles:
None
Meaning
Table 35 on page 301 lists the show traffic-class-group command output fields.
Table 35: show traffic-class-group Output Fields
Field Name
Field Description
traffic-class group
Name of the traffic-class group
traffic-class
Name of the traffic class
Referenced in qos-profiles
Number of times group is referenced by QoS profiles
Copyright © 2012, Juniper Networks, Inc.
301
JunosE 14.1.x Quality of Service Configuration Guide
Table 35: show traffic-class-group Output Fields (continued)
Related
Documentation
Field Name
Field Description
Referenced by QoS profiles
QoS profiles that reference this traffic class
•
Configuring Traffic-Class Groups That Define Service Levels on page 15
•
show traffic-class-group
Monitoring Queue Thresholds
Purpose
Display the color-based thresholds for queues on each egress slot.
Showing queue thresholds by queue profile shows buffer memory information for each
queue profile and, within that profile, shows the thresholds for each region.
In addition, showing queue thresholds by region organizes the buffer memory information
by queue region and, within each region, shows the buffer allocations for each queue
profile.
Action
To display the color-based queue thresholds for each of the 2000 video queues when
8000 total queues are configured:
host1#show qos queue-thresholds egress-slot 9 queue-profile video
queue-profile video 2000 queues
region
-----0
1
2
3
4
5
6
7
egress
memory
----------0MB - 4MB
4MB - 8MB
8MB - 12MB
12MB - 16MB
16MB - 20MB
20MB - 24MB
24MB - 28MB
28MB - 32MB
exceeded
length
-------34944
24448
14080
7040
5248
1280
1152
896
conformed
length
--------69888
48896
28032
14080
10496
2560
2176
1792
committed
length
--------139648
97792
55936
28032
20992
5120
4224
3456
total
committed
memory
--------279296000
195584000
111872000
56064000
41984000
10240000
8448000
6912000
As shown, when all of the egress memory in use is between 0 MB and 4 MB, each video
queue can queue 139,648 bytes of committed traffic. Because the default conformed
fraction is 50 percent and the default exceeded fraction is 25 percent, half of the
committed length, or 69,888 bytes, can be queued before conformed traffic is dropped,
and one quarter of the committed length, or 34,944 bytes, can be queued before exceeded
traffic is dropped. While memory fills, the video queues are given progressively smaller
amounts of memory. For example, when 28 to 32 MB of buffer memory is in use, each
video queue is limited to 3456 bytes. While memory fills beyond the last region, all frames
are dropped except control traffic, until the queues are drained and memory usage falls
back into one of the regions.
302
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
To display the router’s memory management:
host1#show qos queue-thresholds egress-slot 9 region 0
region 0 (0MB - 4MB) oversubscription 3330%
queue-profile
------------default
video
multicast
internet
exceeded
length
-------34944
34944
34944
34944
conformed
length
--------69888
69888
69888
69888
committed
length
--------139648
139648
139648
139648
queue
count
----2000
2000
2000
2000
total
committed
memory
--------279296000
279296000
279296000
279296000
Static and dynamic oversubscription determines that when 8000 queues are configured
and 0–4 MB of egress buffer memory is in use, memory is oversubscribed by 3330 percent.
If significantly fewer queues are configured, there is less oversubscription. This example
illustrates static oversubscription.
Because all of the queues in Example 2 use default queue profiles, all queues have the
same lengths. Each queue is allocated 139,648 bytes of committed buffer memory when
operating within this region. This allocation allows active queues to burst traffic by using
memory that is unused by quiescent queues. This example illustrates dynamic
oversubscription, which is based on the assumption that when a large number of queues
is configured, only a fraction of the queues is active at a given time. While more queues
become active, memory fills and spills into another region. When this occurs, queues are
given progressively smaller queue limits.
In memory regions 1 through 5, queue limits are progressively reduced. In region 6, memory
is strictly partitioned among queues.
To display oversubscription in region 6:
host1#show qos queue-thresholds egress-slot 9 region 6
region 6 (24MB - 28MB) oversubscription 100%
queue-profile
------------default
video
multicast
internet
exceeded
length
-------1152
1152
1152
1152
conformed
length
--------2176
2176
2176
2176
committed
length
--------4224
4224
4224
4224
queue
count
----2000
2000
2000
2000
total
committed
memory
--------8448000
8448000
8448000
8448000
Oversubscription is 100 percent. When 24–28 MB of the memory is in use, there is no
oversubscription of egress buffer memory; 32 MB of the 32-MB memory is allocated. In
Example 3, each of the 8000 egress queues is given a queue of 4224 bytes, for a total
of 16 MB.
If memory continues to fill into region 7, egress buffer memory is undersubscribed, allowing
control traffic to flow within the router. As shown in Example 4, when operating in region
7, only 80 percent of the 32-MB memory is allocated.
To display oversubscription in region 7:
host1#show qos queue-thresholds egress-slot 9 region 7
region 7 (28MB - 32MB) oversubscription 80%
total
Copyright © 2012, Juniper Networks, Inc.
303
JunosE 14.1.x Quality of Service Configuration Guide
queue-profile
------------default
video
multicast
internet
exceeded
length
-------896
896
896
896
conformed
length
--------1792
1792
1792
1792
committed
length
--------3456
3456
3456
3456
queue
count
----2000
2000
2000
2000
committed
memory
--------6912000
6912000
6912000
6912000
Region 7 has 2000 IP users, each with four queues. Each of the four queues use
default queue profiles.
To display the queue thresholds in the multicast queue profile:
host1#show qos queue-thresholds egress-slot 9 queue-profile multicast
queue-profile multicast 2000 queues
total
egress
exceeded conformed committed committed
region
memory
length
length
length
memory
------ ----------- -------- --------- --------- --------0
0MB - 4MB
5120
10112
20096
40192000
1
4MB - 8MB
5120
10112
20096
40192000
2
8MB - 12MB
5120
10112
20096
40192000
3
12MB - 16MB
5120
10112
20096
40192000
4
16MB - 20MB
5120
10112
20096
40192000
5
20MB - 24MB
1280
2560
10112
20224000
6
24MB - 28MB
1152
2176
4224
8448000
7
28MB - 32MB
896
1792
3456
6912000
The multicast queue profile is configured with a committed length of 10,000 minimum
and 20,000 maximum. When in regions 0–4, these queues would normally get more
memory than the 20,000 byte maximum requested. In this case, the queue is limited to
the maximum, and any excess memory is redistributed to other queues. Region 5 does
not have enough memory to honor the 20,000-byte maximum requested.
Although a 20,000 byte maximum was requested, the router provisions memory in 128
byte blocks, rounded up or down per each request; 20,096 bytes is 157 blocks of 128
bytes.
In region 6, memory is strictly partitioned, and neither the minimum nor maximum request
is honored. Instead, each multicast queue is given a fair share of the queue length so that
aggressive bandwidth consumers cannot starve out moderate traffic consumers.
In region 7, memory is underprovisioned to allow queues to drain and to avoid starvation
that occurs when egress buffer memory fills completely.
To display the queue thresholds for video queues:
host1#show qos queue-thresholds egress-slot 9 region 0
region 0 (0MB - 4MB) oversubscription 3330%
queue-profile
------------default
video
multicast
internet
304
exceeded
length
-------33664
67328
5120
33664
conformed
length
--------67328
134656
10112
67328
committed
length
--------134656
269184
20096
134656
queue
count
----2000
2000
2000
2000
total
committed
memory
--------269312000
538368000
40192000
269312000
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
You can configure video queues with a buffer weight of 16 and Internet and multicast
queues with a buffer weight of 8 to ensure that video queues get to queue twice as much
traffic as Internet and multicast queues.
Meaning
Table 36 on page 305 lists the show qos queue-thresholds command output fields.
Table 36: show qos queue-thresholds Output Fields
Related
Documentation
Field Name
Field Description
queue profile
Name of the queue profile
region
Egress buffer memory region
egress memory
Amount of memory in each region
exceeded length
Amount of exceeded traffic that can be queued at
this egress memory usage
conformed length
Amount of conformed traffic that can be queued at
this egress memory usage
committed length
Amount of committed traffic that can be queued at
this egress memory usage
total committed memory
Amount of committed memory allocated to the queue
•
Configuring Queue Profiles to Manage Buffers and Thresholds on page 22
•
show qos queue-thresholds
Monitoring Queue Profiles
Purpose
Action
Display information about queue profiles and references to queue profiles.
To display information about all queue profiles:
host1#show queue-profile
committed
queue
length:
profile
min, max
--------------default
0, <none>
conformed
length:
min, max
--------0, <none>
exceeded
length:
min, max
--------0, <none>
fraction:
conformed,
buffer
exceeded
weight
---------- -----50, 25
8
To display the number of times that a QoS profile references a queue profile:
host1#show queue-profile brief
queue-profile default referenced 31 times in qos-profiles
To display a list of QoS profiles that reference the queue profile:
host1#show queue-profile references
queue-profile default
Referenced by QoS profiles:
Copyright © 2012, Juniper Networks, Inc.
305
JunosE 14.1.x Quality of Service Configuration Guide
atm-default
serial-default
ethernet-default
server-default
Meaning
Table 37 on page 306 lists the show queue-profile command output fields.
Table 37: show queue-profile Output Fields
Related
Documentation
Field Name
Field Description
queue profile
Name of the queue profile
committed length
Greater queue length than the length of the
conformed or exceeded length
conformed length
A queue length that is less than the committed length
but greater than the exceeded length
exceeded length
A queue length less than the conformed length which
is less than the committed length
conformed fraction
Percentage of the total queue that can be occupied
before conformed packets are dropped
exceeded fraction
Percentage of the total queue that can be occupied
before exceeded packets are dropped
buffer weight
Weight of the queue
•
Configuring Queue Profiles to Manage Buffers and Thresholds on page 22
•
show queue-profile
Monitoring Drop Profiles for RED and WRED
Purpose
Action
Display information about drop profiles and references to drop profiles.
To display information about all drop profiles:
host1#show drop-profile
drop
profile
------default
drop1
drop2
drop3
drop4
drop5
drop6
306
Average
length
exponent
-------0
10
10
10
10
0
10
committed
threshold:
min,
max,
max drop prob
----------------0, <none>, <none>
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, <none>, <none>
conformed
threshold:
min,
max,
max drop prob
----------------0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
exceeded
threshold:
min,
max,
max drop prob
----------------0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
0, <none>, <none>
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
drop7
drop8
drop9
drop10
drop11
drop12
drop13
drop14
drop15
10
10
10
10
10
10
10
10
10
10%, 90%, 5%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0, 750000, 80%
0,
0,
0,
0,
0,
0,
0,
0,
0,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
0,
0,
0,
0,
0,
0,
0,
0,
0,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>,
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
<none>
To display information about drop profiles in condensed format:
host1#show drop-profile brief
To display the QoS profiles that reference the drop profile:
host1#show drop-profile rates1 references
Meaning
Table 38 on page 307 lists the show drop-profile command output fields.
Table 38: show drop-profile Output Fields
Related
Documentation
Field Name
Field Description
drop profile
Name of the drop profile
Average length exponent
Exponent used to weight the average queue length
over time, controlling WRED responsiveness
committed threshold
Minimum and maximum committed queue thresholds
and maximum drop probability
conformed threshold
Minimum and maximum conformed queue thresholds
and maximum drop probability
exceeded threshold
Minimum and maximum exceeded queue thresholds
and maximum drop probability
•
Configuring RED on page 27
•
Configuring WRED on page 30
•
show drop-profile
Monitoring the QoS Scheduler Hierarchy
Purpose
Display information about the QoS scheduler hierarchy, including interfaces, resources,
and shaping rates on a particular interface. Phantom nodes are not displayed in the
output for this command.
If you do not specify the traffic-class-group keyword, the output displays information
for the default traffic-class group.
Copyright © 2012, Juniper Networks, Inc.
307
JunosE 14.1.x Quality of Service Configuration Guide
Action
To display the scheduler hierarchy for a particular interface:
host1# show qos scheduler-hierarchy interface fastEthernet 9/0
Scheduler hierarchy for the default traffic-class group
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
-------------------- ---------------------------- ------- ------- ------ethernet Eth9/0
ethernet port
wgt 8
ethernet Eth9/0
ethernet queue
wgt 8
svlan Eth9/0 svlan 2
svlan node
wgt 8
vlan Eth9/0.1
vlan node
wgt 1
vlan Eth9/0.1
vlan queue best-effort
2000000
wgt 8
vlan Eth9/0.2
vlan node
wgt 3
vlan Eth9/0.2
vlan queue video
2000000
wgt 8
vlan Eth9/0.2
vlan queue best-effort
6000000
wgt 8
vlan Eth9/0.3
vlan node
wgt 6
vlan Eth9/0.3
vlan queue video
3000000
wgt 8
vlan Eth9/0.3
vlan queue best-effort
8000000
wgt 8
Scheduler hierarchy for traffic-class group EF
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
-------------------- ------------------------- ------- ------- ------ethernet Eth9/0
ethernet group node EF
wgt 8
svlan Eth9/0 svlan 2
svlan node EF
wgt 8
vlan Eth9/0.2
vlan queue EF voice 100000
wgt 8
vlan Eth9/0.3
vlan queue EF voice 300000
wgt 8
To display the scheduler hierarchy from the specified interface down to the port, then
up from the specified interface:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0.2 level 0
Scheduler hierarchy for the default traffic-class group
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
-------------------- ---------------------------- ------- ------- ------ethernet Eth9/0
ethernet port
wgt 8
svlan Eth9/0 svlan 2
svlan node
wgt 8
vlan Eth9/0.2
vlan node
wgt 3
vlan Eth9/0.2
vlan queue video
2000000
wgt 8
vlan Eth9/0.2
vlan queue best-effort
6000000
wgt 8
Scheduler hierarchy for the default traffic-class group
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
-------------------- ------------------------- ------- ------- ------ethernet Eth9/0
ethernet port
wgt 8
ethernet Eth9/0
ethernet group node EF
wgt 8
svlan Eth9/0 svlan 2
svlan node EF
wgt 8
vlan Eth9/0.2
vlan queue EF voice 100000
wgt 8
308
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
To display the QoS scheduler hierarchy for a specified interface rather than those stacked
above the interface:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0.2 explicit
Scheduler hierarchy for the default traffic-class group
interface
------------vlan Eth9/0.2
vlan Eth9/0.2
vlan Eth9/0.2
assured
shared
rate
shaping shaping
or
resource
rate
rate
weight
---------------------------- ------- ------- ------vlan node
wgt 3
vlan queue video
2000000
wgt 8
vlan queue best-effort
6000000
wgt 8
Scheduler hierarchy for traffic-class group EF
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
------------- ------------------------- ------- ------- ------vlan Eth9/0.2
vlan queue EF voice 100000
wgt 8
To display the scheduler hierarchy of a specific traffic-class group or the default
traffic-class group:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0
traffic-class-group EF
Scheduler hierarchy for traffic-class group EF
assured
shared
rate
shaping shaping
or
interface
resource
rate
rate
weight
-------------------- ------------------------- ------- ------- ------ethernet Eth9/0
ethernet group node EF
wgt 8
svlan Eth9/0 svlan 2
svlan node EF
wgt 8
vlan Eth9/0.2
vlan queue EF voice 100000
wgt 8
vlan Eth9/0.3
vlan queue EF voice 300000
wgt 8
To display a summary of the scheduler profiles stacked above the specified interface:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0 summary
Total number of nodes:
Level 0 nodes:
Level 1 nodes:
Level 2 nodes:
Level 3 nodes:
Total number of queues:
Level 0 queues:
Level 1 queues:
Level 2 queues:
Level 3 queues:
7
1
2
4
0
8
0
1
0
7
To display information about a specified interface in condensed format:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0 brief
Scheduler hierarchy for the default traffic-class group
interface
resource
-------------------- ---------------------------ethernet Eth9/0
ethernet port
ethernet Eth9/0
ethernet queue
Copyright © 2012, Juniper Networks, Inc.
309
JunosE 14.1.x Quality of Service Configuration Guide
svlan Eth9/0 svlan 2
vlan Eth9/0.1
vlan Eth9/0.1
vlan Eth9/0.2
vlan Eth9/0.2
vlan Eth9/0.2
vlan Eth9/0.3
vlan Eth9/0.3
vlan Eth9/0.3
svlan node
vlan node
vlan queue
vlan node
vlan queue
vlan queue
vlan node
vlan queue
vlan queue
best-effort
video
best-effort
video
best-effort
Scheduler hierarchy for traffic-class group EF
interface
resource
-------------------- ------------------------ethernet Eth9/0
ethernet group node EF
svlan Eth9/0 svlan 2
svlan node EF
vlan Eth9/0.2
vlan queue EF voice
vlan Eth9/0.3
vlan queue EF voice
To display the scheduler level, scheduler profile that controls QoS behavior of the
scheduler nodes and queues, and the burst associated with shaping rates:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0 full | include
subscriber-best-effort
vlan Eth9/0.1
vlan Eth9/0.2
vlan Eth9/0.3
subscriber-best-effort
subscriber-best-effort
subscriber-best-effort
2000000 default
6000000 default
8000000 default
To display the QoS scheduler hierarchy using a filter as an alternative to using the level
keyword:
host1#show qos scheduler-hierarchy interface fastEthernet 9/0 full | include
level 2
vlan Eth9/0.1
vlan node
level 2
vlan Eth9/0.2
vlan node
level 2
vlan Eth9/0.3
vlan node
level 2
svlan Eth9/0 svlan 2
svlan node EF
level 2
To display the QoS scheduler hierarchy for an interface set:
host1#show qos scheduler—hierarchy qos-interface-set vlanset1
Scheduler hierarchy for the default traffic-class group
assured
shared
shaping
interface
resource
rate
shaping
rate
rate
or
weight
----------------- ---------------------------- ------- --------- ------ethernet Eth1/0/0 ethernet port
superset cluster
set vlanset1
310
superset node
set node
wgt 8
800000000
wgt 8
300000000
wgt 8
vlan Eth1/0/0.1
vlan queue best-effort
wgt 8
vlan Eth1/0/0.2
vlan queue best-effort
wgt 8
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Scheduler hierarchy for traffic-class group EF
assured
shared
shaping
interface
resource
rate
shaping
rate
or
rate
weight
----------------- ------------------------- --------- ------- ------ethernet Eth1/0/0 ethernet port
wgt 8
ethernet Eth1/0/0
wgt 8
superset cluster
set vlanset1
ethernet group node EF
superset node EF
100000000
wgt 8
set queue EF EF
wgt 8
Scheduler hierarchy for traffic-class group AF
assured
shared
shaping
interface
resource
rate
shaping
rate
rate
or
weight
----------------- ---------------------- --------- ------- ------ethernet Eth1/0/0 ethernet port
superset cluster
set vlanset1
superset node AF
wgt 8
100000000
wgt 8
set node AF
wgt 8
vlan Eth1/0/0.1
vlan queue AF AF
wgt 8
vlan Eth1/0/0.2
vlan queue AF AF
wgt 8
To display the QoS scheduler hierarchy for an interface superset:
host1#show qos scheduler—hierarchy qos-interface-superset cluster
Scheduler hierarchy for the default traffic-class group
assured
shared
shaping
interface
resource
rate
shaping
rate
rate
or
weight
----------------- ---------------------------- ------- --------- -------
Copyright © 2012, Juniper Networks, Inc.
311
JunosE 14.1.x Quality of Service Configuration Guide
ethernet Eth1/0/0 ethernet port
superset cluster
set vlanset1
wgt 8
superset node
set node
800000000
wgt 8
300000000
wgt 8
vlan Eth1/0/0.1
vlan queue best-effort
wgt 8
vlan Eth1/0/0.2
vlan queue best-effort
wgt 8
set vlanset2
vlan Eth1/0/0.3
set node
wgt 8
vlan queue best-effort
wgt 8
Scheduler hierarchy for traffic-class group EF
assured
shared
shaping
interface
resource
rate
shaping
rate
rate
or
weight
----------------- ------------------------- --------- ------- ------ethernet Eth1/0/0 ethernet port
wgt 8
ethernet Eth1/0/0
wgt 8
superset cluster
ethernet group node EF
superset node EF
100000000
wgt 8
set vlanset1
set queue EF EF
wgt 8
set vlanset2
set queue EF EF
wgt 8
Scheduler hierarchy for traffic-class group AF
assured
shared
shaping
interface
resource
shaping
rate
rate
rate
or
weight
----------------- ---------------------- --------- ------- ------ethernet Eth1/0/0 ethernet port
superset cluster
set vlanset1
vlan Eth1/0/0.1
312
superset node AF
set node AF
vlan queue AF AF
wgt 8
100000000
wgt 8
wgt 8
wgt 8
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
vlan Eth1/0/0.2
set vlanset2
vlan Eth1/0/0.3
Meaning
vlan queue AF AF
wgt 8
set node AF
wgt 8
vlan queue AF AF
wgt 8
Table 39 on page 313 lists the show qos scheduler-hierarchy command output fields.
Table 39: show qos scheduler-hierarchy Output Fields
Related
Documentation
Field Name
Field Description
interface
Type of interface
resource
Traffic resource associated with the logical interface
shaping rate
Individual shaping rate of a traffic resource in bits per
second
shared shaping rate
Configured shared-shaping rate in bits per second
assured rate or weight
Configured assured rate in bits per second or
configured weight
•
Configuring a Scheduler Hierarchy on page 47
•
Configuring Simple Shared Shaping on page 77
•
Configuring Compound Shared Shaping on page 96
•
Configuring Interface Sets for QoS on page 205
•
Configuring Interface Supersets for QoS on page 204
•
show qos scheduler-hierarchy
Monitoring the Configuration of Scheduler Profiles
Purpose
Display information about scheduler profiles. If you do not specify the scheduler profile
name, data for all scheduler profiles is displayed.
You can display the values that you configured using a QoS parameter for assured rate,
shaping rate, and shared-shaping rate.
Action
To display information about all scheduler profiles:
host1#show scheduler-profile
shaping
scheduler
rate
burst
------------------default
<none>
32767
wf100
128000
32767
spSV25
5000000
32767
videoHar
<none>
32767
Copyright © 2012, Juniper Networks, Inc.
weight
-----8
20
40
8
strict
priority
-------no
no
no
no
assured rate
-----------<none>
75000
64000
hierarchical
313
JunosE 14.1.x Quality of Service Configuration Guide
To display the number of times that a QoS profile references the scheduler profile:
host1#show scheduler-profile brief
scheduler-profile default referenced 39 times in qos-profiles
scheduler-profile wf100 referenced 1 time in qos-profiles
scheduler-profile spSV25 referenced 2 times in qos-profiles
To display a list of QoS profiles that reference the scheduler profile:
host1#show scheduler-profile references
scheduler-profile default
Referenced by QoS profiles:
atm-default
serial-default
ethernet-default
server-default
scheduler-profile wf100
Referenced by QoS profiles:
ipV610
scheduler-profile spSV25
Referenced by QoS profiles:
qospro25
Meaning
Table 40 on page 314 lists the show scheduler-profile command output fields.
Table 40: show scheduler-profile Output Fields
Related
Documentation
314
Field Name
Field Description
scheduler
Name of the scheduler profile
shaping rate
Maximum bandwidth, in bits per second, provided to
a node or queue
burst
Catch-up number associated with the shaper
weight
HRR weight of a node or queue
strict priority
Status of strict priority, yes or no
assured rate
Desired bandwidth, in bits per second, provided to a
node or queue, or the keyword, hierarchical, to indicate
that HAR is used
Referenced by QoS profiles
QoS profiles that reference this profile
•
Configuring a Scheduler Hierarchy on page 47
•
Configuring Simple Shared Shaping on page 77
•
Configuring Compound Shared Shaping on page 96
•
show scheduler-profile
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Monitoring Shared Shapers
Purpose
Display information about the configured shared shapers.
The best-effort queue is listed as the first resource for shared shapers that are queue
controlled. The best-effort scheduler node is listed as the first resource for shared shapers
that are node controlled.
Action
To display information about configured shared shapers for a specific interface:
host1#show qos shared-shaper interface atm 11/0
shared
shaping shaping
other
interface
resource
rate
rate
rate
----------------- --------------------------- ------- ------- ----------atm-vc ATM11/0.10 A atm-vc node
500000
500000
atm-vc queue best-effort
atm-vc node EF
A atm-vc queue EF voice
100000
atm-vc node AF
A atm-vc queue AF video
200000
atm-vc ATM11/0.11 A atm-vc node
500000
500000
atm-vc queue best-effort
atm-vc node EF
A atm-vc queue EF voice
100000
atm-vc node AF
A atm-vc queue AF video
200000
Total shared shapers:
2
Total constituents:
12
Total shared shaper failovers: 0
Compound shared shapers are not supported
To display information about configured shared shapers for a specific L2TP session:
host1#show qos shared-shaper l2tp-session session1
To display information about the interface at the root of the scheduler hierarchy located
on the tunnel-service interface or at the same hierarchy for LNS GRE tunnel traffic:
host1#show qos shared-shaper tunnel-server 6/0
To display information about the shared shapers for an interface set:
host1#show qos shared-shaper qos-interface-set gigEbusiness
To display information about the shared shapers for an interface superset:
host1#show qos shared-shaper qos-interface-superset allservices
Meaning
Table 41 on page 315 lists the show qos shared-shaper command output fields.
Table 41: show qos shared-shaper Output Fields
Field Name
Field Description
interface
Type of interface
resource
Traffic resource associated with the logical interface
Copyright © 2012, Juniper Networks, Inc.
315
JunosE 14.1.x Quality of Service Configuration Guide
Table 41: show qos shared-shaper Output Fields (continued)
Related
Documentation
Field Name
Field Description
shared shaping rate
Configured shared-shaping rate in bits per second
shaping rate
Individual shaping rate of a traffic resource in bits per
second
other rate
Actual current shaping rate in bits per second
Total shared shapers
Total number of shared shapers
Total constituents
Total number of resource constituents for all shared
shapers
Total number of shared shapers
that are disabled (in failover
mode) due to lack of resources
Total number of shared shapers that are disabled (in
failover mode) due to lack of resources
Compound shared shapers are
[not] supported
Indication of whether compound shared shapers are
supported; determined by installed hardware
•
Configuring a Scheduler Hierarchy on page 47
•
Configuring Simple Shared Shaping on page 77
•
Configuring Compound Shared Shaping on page 96
•
Configuring Interface Sets for QoS on page 205
•
Configuring Interface Supersets for QoS on page 204
•
show qos shared-shaper
Monitoring Shared Shaper Algorithm Variables
Purpose
Action
Display information about the user-configurable variables for controlling the simple
shared shaper algorithm.
To display information about all variables:
host1#show qos-shared-shaper-control
control
control name
value
units
---------------------------------------maximum voql
400
milliseconds
reaction factor
75
percent
convergence factor
50
percent
minimum dynamic rate
0
percent
Meaning
316
Table 42 on page 317 lists the show qos shared-shaper-control command output fields.
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 42: show qos shared-shaper-control Output Fields
Related
Documentation
Field Name
Field Description
control name
Name of the simple shared shaper control
control value
Value of the simple shared shaper control; default
values are displayed if none specified
units
Expressed units for the value of the simple shared
shaper control
•
Configuring Simple Shared Shaper Algorithm Variables on page 89
•
show qos-shared-shaper-control
Monitoring Forwarding and Drop Events on the Egress Queue
Purpose
Action
Display information about forwarding and drop event counts on the egress queue.
To display events for a specific interface:
host1# show egress-queue events interface gigabitEthernet 1/0
committed conformed
traffic forwarded
drop
drop
interface
class
events
events
events
---------------------- ------- --------- --------- --------ip GigabitEthernet1/0
tc1
132
0
0
tc2
132
132
0
tc3
6
0
132
tc4
0
0
0
exceeded
drop
events
--------0
0
0
132
rate
period
count
--------132
132
132
132
To display events for an L2TP session:
host1#show egress-queue events l2tp-session session1
To display events for a tunnel interface, specify the interface at the root of the scheduler
hierarchy located on the tunnel-service interface or at the same hierarchy for LNS GRE
tunnel traffic:
host1#show egress-queue events tunnel-server 6/0
To display events for queues only on the specified interface and not stacked above the
interface:
host1#show egress-queue events gigabitEthernet 1/0 explicit
To display the sum of events for the queues bound to interfaces that are stacked above
the specified interface:
host1#show egress-queue events gigabitEthernet 1/0 summary
To display events for queues belonging to a specific traffic class:
host1#show egress-queue events gigabitEthernet 1/0 traffic-class voice
Copyright © 2012, Juniper Networks, Inc.
317
JunosE 14.1.x Quality of Service Configuration Guide
To filter output based on the number of events that exceed the specified value.
host1#show egress-queue events gigabitEthernet 1/0 event-exceeding committed
host1#show egress-queue events gigabitEthernet 1/0 event-exceeding conformed
host1#show egress-queue events gigabitEthernet 1/0 event-exceeding exceeded
host1#show egress-queue events gigabitEthernet 1/0 event-exceeding forwarded
Meaning
Table 43 on page 318 lists the show egress-queue events command output fields.
Table 43: show egress-queue events Output Fields
Related
Documentation
Field Name
Field Description
interface
Name of the interface
traffic class
Name of the traffic class
forwarded events
Number of forwarded rate events
committed drop events
Number of committed drop events
conformed drop events
Number of conformed drop events
exceeded drop events
Number of exceeded drop events
rate period count
Time frame during which events are counted
(in seconds)
•
Configuring Event Statistics on page 40
•
show egress-queue events
Monitoring Forwarding and Drop Rates on the Egress Queue
Purpose
Display information about forwarding and drop rates on the egress queue. The show
egress-queue rates command is useful even if no statistics profiles are configured. You
can view information about all of the queues even if statistics gathering has not been
enabled.
The minimum rate for the queue is the minimum rate at which a node or queue can
transmit when all other nodes and queues compete for bandwidth. The system determines
the minimum rates by the weight and assured rate configured in a scheduler profile, and
are subject to shaping rate and shared-shaping rate configured.
The maximum rate is the maximum rate at which a node or queue can transmit when
there are no other nodes or queues competing for bandwidth. The system calculates the
maximum rate as the minimum of all shaping rates, shared-shaping rates, and the port
rate from the node or queue down to the port.
For example, if a scheduler column configured over a Fast Ethernet port consists of a
VLAN queue that has been shaped to 5 Mbps over a VLAN node that has been shaped
to 8 Mbps, over an S-VLAN node which is not shaped, then:
318
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Action
•
The VLAN queue that is shared-shaped to 5 Mbps has a maximum rate of 5 Mbps.
•
The VLAN node that is shaped to 8 Mbps has a maximum rate of 8 Mbps.
•
The S-VLAN node which is not shaped has a maximum rate of 100 Mbps.
•
The Fast Ethernet port with a bandwidth of 100 Mbps has a maximum rate of 100 Mbps.
To display rate statistics only for queues that have queue rate statistics enabled:
host1# show egress-queue rates brief interface fastEthernet 9/0.2
traffic
forwarded aggregate minimum maximum
interface
class
rate
drop rate rate
rate
---------------------- ----------------------- --------- --------- ------- ------ip FastEthernet9/0.2
best-effort
0
0
25000 1000000
videoTrafficClass
0
0 375000 1000000
multicastTrafficClass
0
0 925000 1000000
internetTrafficClass
0
0
50000 1000000
Total:
0
0
Queues reported:
Queues filtered (under threshold):
Queues disabled (no rate period):
Queues disabled (no resources):
Total queues:
4
0
0
0
4
To display rate statistics by color rather than as an aggregate of all colors:
host1# show egress-queue rates color interface gigabitEthernet 1/0
traffic
forwarded
committed
interface
class
rate
drop rate
---------------------- ------- ------------ -----------ip GigabitEthernet1/0
tc1
14645184
0
tc2
11950400
2706400
tc3
9960792
0
tc4
7967200
0
Queues reported:
4
Queues filtered (under threshold): 0
Queues disabled (no rate period):
1
Queues disabled (no resources):
0
Total queues:
5
conformed
drop rate
-----------0
0
4707200
0
exceeded
drop rate
-----------0
0
0
6705600
To display rate statistics all of the configured queues, along with the minimum and
maximum rates for the queues, even when statistics gathering has not been enabled:
host1#show egress-queue rates full interface atm 11/0
traffic
forwarded aggregate
minimum
maximum
interface
class
rate
drop rate
rate
rate
---------------------- ----------------------- --------- --------------- —-----ip ATM11/0.1
best-effort
*
*
24979
30000000
tc1
0
0 14987510
30000000
tc2
0
0
9991673
30000000
tc3
0
0
4995836
30000000
ip ATM11/0.2
best-effort
*
*
19980
20000000
tc1
0
0 11988011
20000000
tc2
0
0
7992007
20000000
Queues reported:
5
Queues filtered (under threshold): 0
* Queues disabled (no rate period):
2
**Queues disabled (no resources):
0
Total queues:
7
Copyright © 2012, Juniper Networks, Inc.
319
JunosE 14.1.x Quality of Service Configuration Guide
To display rate statistics based on an S-VLAN:
host1# show egress-queue rates interface gigabitEthernet 11/0 svlan 0
traffic
interface
class
------------------------------------------svlan GigabitEthernet 11/0 svlan 0 tc1
0
vlan GigabitEthernet 11/0.1
tc1
ip GigabitEthernet 11/0.1
best-effort
vlan GigabitEthernet 11/0.2
tc2
ip GigabitEthernet 11/0.2
best-effort
interface
--------------------------------svlan GigabitEthernet 11/0 svlan 0
vlan GigabitEthernet 11/0.1
ip GigabitEthernet 11/0.1
vlan GigabitEthernet 11/0.2
ip GigabitEthernet 11/0.2
Queues reported:
Queues filtered (under threshold):
* Queues disabled (no rate period):
**Queues disabled (no resources):
Total queues: 5
forwarded
rate
--------0
0
0
0
0
aggregate
drop rate
--------0
0
0
0
minimum
rate
--------166666666
166666666
0
0
0
maximum
rate
---------1000000000
1000000000
1000000000
1000000000
1000000000
5
0
0
0
In the output of this command, the aggregate of all drop rates—WRED, tail, and forwarding
events—is displayed in the aggregate drop rate field. You cannot distinguish among the
counters used for different drop rates from the output of this command. As a result, for
ES2 10G ADV LMs, you cannot identify the counters used for committed, conformed, and
exceeded packet dropping by WRED functionality from the value displayed in this field.
View the value displayed for the Dropped by WRED committed field in the output of the
show ip interface command to know the cumulative number of committed, conformed,
and exceeded packets dropped by WRED for ES2 10G ADV LMs.
To display rate statistics for the previous or current rate period:
host1#show egress-queue rates previous interface gigabitEthernet 11/0 svlan
0
host1#show egress-queue rates current interface gigabitEthernet 11/0 svlan
0
To display rate statistics for an L2TP session:
host1#show egress-queue rates l2tp session session1
To display rate statistics for a tunnel interface, specify the interface at the root of the
scheduler hierarchy located on the tunnel-service interface or at the same hierarchy for
LNS GRE tunnel traffic:
host1#show egress-queue rates tunnel-server 6/0
To display rate statistics for queues bound to the specified interface:
host1#show egress-queue rates interface gigabitEthernet 11/0 svlan 0 explicit
320
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
To display the sum of all rates of queues bound to interfaces that are stacked above the
specified interface.
host1#show egress-queue rates interface gigabitEthernet 11/0 svlan 0 summary
To display rate statistics for queues belonging to a specific traffic class:
host1#show egress-queue rates interface gigabitEthernet 11/0 svlan 0 traffic-class voice
To filter output based on the number of queues with rates that exceed the specified
value.
host1#show egress-queue rates gigabitEthernet 1/0 rate-exceeding committed
host1#show egress-queue rates gigabitEthernet 1/0 rate-exceeding conformed
host1#show egress-queue rates gigabitEthernet 1/0 rate-exceeding exceeded
host1#show egress-queue rates gigabitEthernet 1/0 rate-exceeding forwarded
Meaning
Table 44 on page 321 lists the show egress-queue rates command output fields.
Table 44: show egress-queue rates Output Fields
Field Name
Field Description
interface
Name of the interface
traffic class
Name of the traffic class
forwarded rate
Statistics for the rate at which packets are enqueued.
In some time periods, the enqueue rate might exceed
the dequeue rate. This can occur when a burst of
traffic arrives at a queue which might be dequeuing
at a slower rate because of a shaper or congestion.
In other time periods, the enqueue rate might be less
than the dequeue rate. This can occur when a buffered
burst of packets are being dequeued, and no new
packets are arriving at the queue.
aggregate drop rate
Total number of all drop rates
committed drop rate
Drop rate for green packets
conformed drop rate
Drop rate for yellow packets
exceeded drop rate
Drop rate for red packets
minimum rate
Minimum rate for queue
maximum rate
Maximum rate for queue
Queues reported
Number of queues reported
Queues filtered (under threshold)
Number of queues not reported because they are
under the threshold
Copyright © 2012, Juniper Networks, Inc.
321
JunosE 14.1.x Quality of Service Configuration Guide
Table 44: show egress-queue rates Output Fields (continued)
Related
Documentation
Field Name
Field Description
Queues disabled (no rate period)
Number of queues not displayed because statistics
gathering is disabled (that is, the referenced statistics
profile does not have a rate period set)
Queues disabled (no resources)
Number of queues not displayed because no
resources were available
Total queues
Total number of queues within the hierarchical scope
of the command
•
Configuring Rate Statistics on page 39
•
Configuring an Assured Rate for a Scheduler Node or Queue on page 54
•
show egress-queue rates
Monitoring Queue Statistics for the Fabric
Purpose
Action
Display forwarded and dropped statistics for the fabric.
To display general information about the fabric queue:
host1#show fabric-queue
traffic
egress
class
slot
---------------best-effort
all
best-effort
all
best-effort
all
type
--------committed
conformed
exceeded
forwarded
packets
--------0
0
0
forwarded
bytes
--------0
0
0
dropped
packets
------0
0
0
dropped
bytes
------0
0
0
To display detailed information about the fabric queue in a specific traffic class:
host1#show fabric-queue traffic-class video detail
To display information about the fabric queue on the egress slot:
host1#show fabric-queue egress-slot 0
Meaning
Table 45 on page 322 lists the show fabric-queue command output fields.
Table 45: show fabric-queue Output Fields
322
Field Name
Field Description
traffic class
Name of the traffic class
egress slot
Egress slot for which statistics are being displayed
type
Type of packet
forwarded packets
Number of forwarded packet
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 45: show fabric-queue Output Fields (continued)
Related
Documentation
Field Name
Field Description
forwarded bytes
Number of forwarded bytes
dropped packets
Number of dropped packets
dropped bytes
Number of dropped bytes
•
Configuring Rate Statistics on page 39
•
Configuring Event Statistics on page 40
•
show fabric-queue
Monitoring the Configuration of Statistics Profiles
Purpose
Action
Display information about statistics profiles.
To display information about all statistics profiles:
host1#show statistics-profile
forwarding
committed
statistics
rate
drop
profile
threshold
threshold
--------------------------default
<none>
<none>
statpro-1
10000000
2000000
conformed
drop
threshold
--------<none>
4000000
exceeded
drop
threshold
--------<none>
6000000
rate
period
-----<none>
30
To display the number of times that a QoS profile references the statistics profile:
host1#show statistics-profile rates1 brief
To display a list of QoS profiles that reference the statistics profile:
host1#show statistics-profile rates1 references
Meaning
Table 46 on page 323 lists the show statistics-profile command output fields.
Table 46: show statistics-profile Output Fields
Field Name
Field Description
statistics profile
Name of the statistics profile
forwarding rate threshold
Threshold above which forwarded-rate-exceeded
events are counted
committed drop threshold
Threshold above which committed-drop-events are
counted
conformed drop threshold
Threshold above which conformed-drop-events are
counted
Copyright © 2012, Juniper Networks, Inc.
323
JunosE 14.1.x Quality of Service Configuration Guide
Table 46: show statistics-profile Output Fields (continued)
Related
Documentation
Field Name
Field Description
exceeded drop threshold
Threshold above which exceeded-drop-events are
counted
rate period
Time frame during which statistics are gathered
•
Configuring Rate Statistics on page 39
•
Configuring Event Statistics on page 40
•
show statistics-profile
Monitoring the QoS Profiles Attached to an Interface
Purpose
Action
Display the QoS profiles in effect for and stacked above the specified interface. If no QoS
profiles are attached to the interface or above the interface, the router displays the QoS
profile that is in effect down the interface stack toward the port interface.
To display the interface hierarchy for a specific interface:
host1#show qos interface-hierarchy interface atm 11/0.1
[email protected] atm-vc ATM11/0.1:
t-class interface rule
traffic
qos profile
group
type
type
class
--------------- ------- --------- ----- [email protected]/0.1
atm-vc
node
[email protected]/0.1
atm-vp
node
[email protected]/0.1
atm-vc
queue best-effort
[email protected]/0.1
atm-vc
queue tc5
[email protected]/0.1
atm-vc
queue tc6
[email protected]/0.1
g1
atm
group
[email protected]/0.1
g1
atm-vc
node
[email protected]/0.1
g1
atm-vp
node
[email protected]/0.1
g1
atm-vc
queue tc1
[email protected]/0.1
g1
atm-vc
queue tc2
[email protected]/0.1
g2
atm-vp
node
[email protected]/0.1
g2
atm-vc
queue tc3
[email protected]/0.1
g2
atm-vc
queue tc4
scheduler
profile
-----------default
default
default
default
default
strictShaper
default
default
default
default
default
default
default
queue
profile
------default
default
default
default
default
default
default
default
default
default
default
default
default
To display the interface hierarchy using an L2TP session:
host1#show qos interface-hierarchy l2tp-session session1
To display the interface hierarchy for a tunnel interface, specify the interface at the root
of the scheduler hierarchy located on the tunnel-service interface or at the same hierarchy
for LNS GRE tunnel traffic:
host1#show qos interface-hierarchy tunnel-server 6/0
To display the interface hierarchy for an interface set:
host1#show qos interface-hierarchy qos-interface-set gigEbusiness
324
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
To display the interface hierarchy for an interface superset:
host1#show qos interface-hierarchy qos-interface-superset allservices
Meaning
Table 47 on page 325 lists the show qos interface-hierarchy command output fields.
Table 47: show qos interface-hierarchy Output Fields
Related
Documentation
Field Name
Field Description
[email protected]
Interface for which the hierarchy is being displayed
qos profile
Name of the QoS profile and its attachment point
t-class group
Traffic-class groups associated with the interface
interface type
Type of interface to which the profile is attached
rule type
Queue, node, group, or shadow node
traffic class
Name of the traffic class associated with the queue
scheduler profile
Scheduler profiles associated with the interface
queue profile
Queue profiles associated with the interface
•
Configuring a QoS Profile on page 126
•
Attaching a QoS Profile to an Interface on page 128
•
Creating Parameter Instances on page 231
•
Configuring Interface Sets for QoS on page 205
•
Configuring Interface Supersets for QoS on page 204
•
show qos interface-hierarchy
Monitoring the Configuration of QoS Port-Type Profiles
Purpose
Action
Display information about QoS port-type profiles.
To display information about all interface types:
host1#show qos-port-type-profile
default-port-profile ethernet qos-profile ethernet-default
default-port-profile atm qos-profile atm-default
default-port-profile serial qos-profile serial-default
default-port-profile server-port qos-profile server-default
default-port-profile lag qos-profile lag-default
Meaning
Displays a list of all qos-port-type-profile commands as they have been entered.
Copyright © 2012, Juniper Networks, Inc.
325
JunosE 14.1.x Quality of Service Configuration Guide
Related
Documentation
•
Configuring a QoS Profile on page 126
•
Attaching a QoS Profile to an Interface on page 128
•
Creating Parameter Instances on page 231
•
Example: Port-Type QoS Profile Attachment on page 133
•
show qos-port-type-profile
Monitoring the Configuration of QoS Profiles
Purpose
Display information about QoS profiles, including attachments to interfaces or port types.
This command displays groups, nodes, and queues, in that order, according to the
following sequence:
Action
•
not members of a traffic-class group
•
members of the strict-priority traffic-class group
•
members of an extended traffic-class group in the order of configuration
To display information about a specific QoS profile:
host1# show qos-profile qpDiffServExample1
qos-profile qpDiffServExample1:
interface rule
traffic
t-class group
type
type
class
-------------------- --------- ----- ----------ip
queue tc3
ip
queue tc4
ip
queue tc5
expedited-forwarding ethernet group
expedited-forwarding ip
node
expedited-forwarding ip
queue voice
best-effort
ethernet group
best-effort
ip
node
best-effort
ip
queue best-effort
assured-forwarding
ethernet group
assured-forwarding
ip
node
assured-forwarding
ip
queue video
scheduler
profile
--------------best-effort
best-effort
best-effort
expeditedGroup
default
voice
bestEffortGroup
default
best-effort
assuredGroup
default
video
queue
profile
------default
default
default
drop
profile
------default
default
default
statistics
profile
---------default
default
default
default default default
default default default
default default default
To display information about the QoS profiles attached to an interface or port type:
host1# show qos-profile references interface fastEthernet 9/0 202
qos profile
attachment
-------------------------------- -------------------------------------------atm-default
(qos-port-type-profile)
serial-default
(qos-port-type-profile)
ethernet-default
(qos-port-type-profile)
server-default
(qos-port-type-profile)
lag-default
(qos-port-type-profile)
subscriber-data-service
vlan FastEthernet9/0.1
subscriber-triple-play
vlan FastEthernet9/0.2
subscriber-triple-play
vlan FastEthernet9/0.3
Port attachments:
4
Interface attachments:
3
326
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
DCM Profile attachments: 0
Not attached:
0
To display the number of times the QoS profile is referenced by an interface or protocol
profile:
host1#show qos-profile brief
qos-profile atm-default referenced by 1 attachment
qos-profile serial-default referenced by 1 attachment
qos-profile ethernet-default referenced by 1 attachment
qos-profile server-default referenced by 1 attachment
qos-profile lag-default referenced by 1 attachment
To display information about the QoS profiles attached to a specific tunnel interface,
specify the interface at the root of the scheduler hierarchy located on the tunnel-service
interface or at the same hierarchy for LNS GRE tunnel traffic:
host1#show qos-profile references tunnel-server 6/0
To display information about the QoS profiles attached to a specific L2TP session:
host1#show qos-profile references l2tp-session session1
To display attachments for QoS profiles only on the specified interface and not QoS
profiles stacked above the interface:
host1#show qos-profile references interface gigabitEthernet 6/0 explicit
Meaning
Table 48 on page 327 lists the show qos-profile command output fields.
Table 48: show qos-profile Output Fields
Field Name
Field Description
qos-profile
Name of QoS profile
t-class group
Name of the traffic-class group associated with the
interface
interface type
Type of interface
rule type
Whether the rule is a group node, scheduler node,
queue, or shadow node
traffic class
Name of the traffic class associated with the interface
scheduler profile
Name of the scheduler profile associated with the
interface
queue profile
Name of the queue profile associated with the
interface
drop profile
Name of the drop profile associated with the interface
statistics profile
Name of the statistics profile associated with the
interface
Copyright © 2012, Juniper Networks, Inc.
327
JunosE 14.1.x Quality of Service Configuration Guide
Table 48: show qos-profile Output Fields (continued)
Related
Documentation
Field Name
Field Description
attachment
Type of interface or port type to which the QoS profile
is attached
Port attachments
Number of QoS profiles attached to port types
DCM Profile attachments
Number of QoS profiles attached to profiles for
Service Manager
Interface attachments
Number of QoS profiles attached to interfaces
Not attached
Number of QoS profiles that are unattached
•
Configuring a QoS Profile on page 126
•
Attaching a QoS Profile to an Interface on page 128
•
Creating Parameter Instances on page 231
•
show qos-profile
Monitoring the QoS Configuration of ATM Interfaces
Purpose
Action
Display ATM port queuing mode and QoS shaping mode status for a specific ATM
interface.
To display the QoS configuration on an ATM interface:
host1# show interfaces atm 2/0
ATM Interface 2/0 is up, line protocol is disabled
AAL5 operational status:
up
time since last status change: 01:08:32
ATM operational status:
up
time since last status change: 01:08:32
.
.
.....
InPackets:
0
InBytes:
0
InCells:
0
OutPackets:
7803262
OutBytes:
7803262000
OutCells:
163868502
InErrors:
0
OutErrors:
0
InPacketDiscards: 0
InByteDiscards:
0
InCellErrors:
0
Administrative qos-shaping-mode: frame
Operational qos-shaping-mode: frame
Administrative qos-mode-port: none
328
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Operational qos-mode-port: none
Attached QoS profile: shaping
Meaning
Table 49 on page 329 lists the related show interfaces atm command output fields.
Table 49: show interfaces atm Output Fields
Field Name
Field Description
Administrative qos-mode-port
Per-port queuing mode status: disabled, low-latency,
low-cdv, none
Operational qos-mode-port
Per-port queuing mode status: disabled, low-latency,
low-cdv, none
Administrative qos-shaping-mode
Configured shaping mode for the interface:
Operational qos-shaping-mode
Attached QoS profile
Copyright © 2012, Juniper Networks, Inc.
•
disabled—Shaping mode is configured but disabled.
•
frame—Default shaping mode for shaping and
policing rates. Reports statistics such as
transmitted bytes and dropped bytes based on
bytes within frames.
•
cell—Shaping mode for shaping and policing rates
is cell-based; resulting traffic stream conforms
exactly to the policing rates configured in
downstream devices. Reports statistics in bytes
within cells and also accounts for cell
encapsulation and padding overhead.
•
none—Shaping mode is not configured.
Actual shaping mode for the interface. The router
determines the operational shaping mode based on
the values configured for the qos-shaping-mode
command or the qos-port-mode command. For more
information, see “Per-Packet Queuing on the SAR
Scheduler Overview” on page 157.
•
disabled—Shaping mode is configured but disabled.
•
frame—Default shaping mode for shaping and
policing rates. Reports statistics such as
transmitted bytes and dropped bytes based on
bytes within frames.
•
cell—Shaping mode for shaping and policing rates
is cell-based; resulting traffic stream conforms
exactly to the policing rates configured in
downstream devices. Reports statistics in bytes
within cells and also accounts for cell
encapsulation and padding overhead.
•
none—Shaping mode is not configured.
QoS profile attachment at or below the displayed
interface. For example, if the interface being displayed
is a VC, and the attachment is at the ATM AAL5
interface, the ATM AAL5 interface attachment is
displayed.
329
JunosE 14.1.x Quality of Service Configuration Guide
Related
Documentation
•
Configuring the QoS Shaping Mode for ATM Interfaces on page 169
•
Configuring a QoS Profile on page 126
•
Attaching a QoS Profile to an Interface on page 128
•
Creating Parameter Instances on page 231
•
JunosE Link Layer Configuration Guide
•
show atm interface
•
show interfaces
Monitoring the QoS Configuration of IP Interfaces
Purpose
Display the QoS configuration on a particular IP interface.
A dynamic IP interface can have a QoS profile attached by RADIUS. For example, if
configured by RADIUS, the show ip interface command might show the following:
Attached QoS profile: Strict-qos
However, if the profile is configured statically, the QoS profile is attached to the ATM
subinterface, and the attachment is displayed by the show atm subinterface command
rather than show ip interface.
Action
To display the QoS configuration for an IP interface:
host1#show ip interface atm 2/0.1
ATM2/0.1 line protocol Atm1483 is up, ip is up
..........................................
Attached QoS profile: test @ ATM2/0
queue 0: traffic class best-effort, bound to ip ATM2/0.1
Queue length 0 Bytes
Forwarded packets 0, Bytes 0
Dropped committed packets 0, Bytes 0
Dropped conformed packets 0, Bytes 0
Dropped exceeded packets 0, Bytes 0
Dropped by WRED committed packets 0, bytes 0
Dropped by WRED conformed packets 0, bytes 0
Dropped by WRED exceeded packets 0, bytes 0
Average queue length 150576 bytes
queue 1: traffic class tc1, bound to ip ATM2/0.1
Queue length 0 Bytes
Forwarded packets 0, Bytes 0
Dropped committed packets 0, Bytes 0
Dropped conformed packets 0, Bytes 0
Dropped exceeded packets 0, Bytes 0
Dropped by WRED committed packets 0, bytes 0
Dropped by WRED conformed packets 0, bytes 0
Dropped by WRED exceeded packets 0, bytes 0
Average queue length 150576 bytes
Meaning
330
Table 50 on page 331 lists the related show ip interface command output fields.
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 50: show ip interface Output Fields
Field Name
Field Description
Attached QoS profile
QoS profile attachment at or below the displayed
interface. For example, if the interface being displayed
is an IP interface, and the attachment is at the VC, the
VC interface attachment is displayed.
queue 0
Number of the queue for which statistics are being
displayed and whether the queue is under traffic class
control
traffic class
Name of traffic class
bound to
Interface to which queue is bound
Queue length
Size of queue in length and bytes
Forwarded
Number of forwarded packets and bytes
Dropped committed
Number of committed packets and bytes dropped
Dropped conformed
Number of conformed packets and bytes dropped
Dropped exceeded
Number of exceeded packets and bytes dropped
Dropped by WRED committed
Number of committed packets and bytes dropped by
WRED
Displays a cumulative number of committed,
conformed, and exceeded packets dropped by WRED
for ES2 10G ADV LMs.
Dropped by WRED conformed
Number of conformed packets and bytes dropped by
WRED
Displays a value of zero for ES2 10G ADV LMs because
of the single counter used to calculate packets
dropped by WRED functionality (as an aggregate of
all colors) for these LMs.
Dropped by WRED exceeded
Number of exceeded packets and bytes dropped by
WRED
Displays a value of zero for ES2 10G ADV LMs because
of the single counter used to calculate packets
dropped by WRED functionality (as an aggregate of
all colors) for these LMs.
Average queue length
Related
Documentation
•
Average length of queue in bytes
Configuring a QoS Profile on page 126
Copyright © 2012, Juniper Networks, Inc.
331
JunosE 14.1.x Quality of Service Configuration Guide
•
Attaching a QoS Profile to an Interface on page 128
•
Creating Parameter Instances on page 231
•
show ip interface
Monitoring the QoS Configuration of Fast Ethernet, Gigabit Ethernet, and 10-Gigabit
Ethernet Interfaces
Purpose
Action
Display information about the QoS configuration for a specific Fast Ethernet, Gigabit
Ethernet, or 10-Gigabit Ethernet interface.
To display the QoS configuration for a Fast Ethernet interface:
host1#show interfaces fastEthernet 6/0
GigEthernet6/0 is Up, Administrative status is Up
Hardware is Intel 21440, address is 0090.1a40.5508
MAU is 100BASE-TX
MTU: Operational 1522, Administrative 1522
Duplex Mode: Operational Full Duplex, Administrative Auto Negotiate
Speed: Operational 100 Mbps, Administrative Auto Negotiate
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
In: Bytes 0, Unicast 0
Multicast 0, Broadcast 0
Errors 0, Discards 0, Mac Errors 0, Alignment 0
CRC 0, Too Longs 0, Symbol Errors 0
Out: Bytes 64, Unicast 0
Multicast 0, Broadcast 1
Errors 0, Discards 0, Mac Errors 0, Deferred 0, No Carrier 0
Collisions: Single 0, Multiple 0, Late 0, Excessive 0
Administrative qos-shaping-mode: cell
Operational qos-shaping-mode: cell
Attached QoS profile: ss
To display the QoS configuration for a Gigabit Ethernet interface:
host1#show interfaces gigabitEthernet 2/0
To display the QoS configuration for a 10-Gigabit Ethernet interface:
host1#show interfaces tenGigabitEthernet 5/0/0
Meaning
332
Table 51 on page 333 lists the related show interfaces command output fields.
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 51: show interfaces Output Fields
Field Name
Field Description
Administrative qos-shaping-mode
Configured shaping mode for the interface:
Operational qos-shaping-mode
Attached QoS profile
Related
Documentation
•
disabled—Shaping mode is configured but disabled.
•
frame—Default shaping mode for shaping and
policing rates. Reports QoS statistics such as
transmitted bytes and dropped bytes based on
bytes within frames.
•
cell—Shaping mode for shaping and policing rates
is cell-based; resulting traffic stream conforms
exactly to the policing rates configured in
downstream devices. Reports statistics in bytes
within cells and also accounts for cell
encapsulation and padding overhead.
•
none—Shaping mode is not configured.
Actual shaping mode for the interface. The router
determines the operational shaping mode based on
the value configured using the qos-shaping-mode
command. For more information, see “QoS Shaping
Mode for Ethernet Interfaces Overview” on page 172.
•
disabled—Shaping mode is configured but disabled.
•
frame—Default shaping mode for shaping and
policing rates. Reports QoS statistics such as
transmitted bytes and dropped bytes based on
bytes within frames.
•
cell—Shaping mode for shaping and policing rates
is cell-based; resulting traffic stream conforms
exactly to the policing rates configured in
downstream devices. Reports statistics in bytes
within cells and also accounts for cell
encapsulation and padding overhead.
•
none—Shaping mode is not configured.
QoS profile attachment at or below the displayed
interface. For example, if the interface being displayed
is a VLAN subinterface, and the attachment is at the
Gigabit Ethernet interface, the Gigabit Ethernet
attachment is displayed.
•
Configuring the QoS Shaping Mode for Ethernet Interfaces on page 173
•
Creating Parameter Instances on page 231
•
Monitoring the Status of Fast Ethernet Interfaces
•
show interfaces
Copyright © 2012, Juniper Networks, Inc.
333
JunosE 14.1.x Quality of Service Configuration Guide
Monitoring the QoS Configuration of IEEE 802.3ad Link Aggregation Group Bundles
Purpose
Action
Display information about the QoS configuration for Ethernet member links in all IEEE
802.3ad link aggregation group (LAG) bundles configured on the router, or about the
member links in a specified IEEE 802.3ad LAG bundle.
To display the QoS configuration for a specific LAG bundle:
host1#show interfaces lag lg0 members
Lag lg0 is Up, Administrative status is Up
MAC Address is 0090.1a40.01be
MTU: Operational 1526
Duplex Mode: Operational Full Duplex
Speed: Operational 100 Mbps
System Priority 32768 System MAC Address is 0090.1a00.00e0 key 8
Partner System Priority 0 System MAC Address is 0000.0000.0000 key 0
QoS parameter: vlan 1500000
Attached QoS profile: eth1
Member-interface FastEthernet11/2 is Up
(LACP disabled, state collecting/distributing)
Member-interface FastEthernet11/3 is Down
(LACP disabled, state waiting)
Member-interface FastEthernet11/4 is Up
(LACP disabled, state collecting/distributing)
Meaning
Table 52 on page 334 lists the related show interfaces lag memberscommand output
fields.
Table 52: show interfaces lag members Output Fields
Related
Documentation
Field Name
Field Description
Lag
Name of the LAG bundle
QoS parameter
QoS parameter instance at the displayed interface
Attached QoS profile
QoS profile attachment at the displayed interface
•
Configuring the Scheduler Hierarchy for Hashed Load Balancing in 802.3ad Link
Aggregation Groups on page 185
•
Configuring the Scheduler Hierarchy for Subscriber Load Balancing in 802.3ad Link
Aggregation Groups on page 186
•
Creating Parameter Instances on page 231
•
JunosE Physical Layer Configuration Guide
•
show interfaces lag members
Monitoring the Configuration of QoS Interface Sets
Purpose
334
Display information about configured interface sets.
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Action
To display information about a specific interface set:
host1#show qos-interface-set vlan-set
interface
member member restricted
set
parent
port
type count interface
--------- ------ --------- ------ ------ ---------vlan-set vlan-ss lag test1 vlan
2
none
To display detailed information about a specific interface set:
host1#show qos-interface-set vlan-set detail
interface
member member restricted
set
parent
port
type count interface
--------- ------- --------- ------ ------ ---------vlan-set vlan-ss lag test1 vlan
2
none
Children:
vlan lag test1.1
Meaning
vlan lag test1.4
Table 53 on page 335 lists the show qos-interface-set command output fields.
Table 53: show qos-interface-set Output Fields
Related
Documentation
Field Name
Field Description
interface set
Name of the interface set
parent
Name of the interface superset that is the parent of
the interface set
port
Interface that is the parent of the interface superset
member type
Member-interface type defined for the interface set:
•
vlan
•
ip
•
vlan
restricted interface
Restricted interface configured for this interface set
Children
List of interface members associated with the
interface superset
•
Configuring Interface Sets for QoS on page 205
•
show qos-interface-set
Monitoring the Configuration of QoS Interface Supersets
Purpose
Display information about configured interface supersets.
Copyright © 2012, Juniper Networks, Inc.
335
JunosE 14.1.x Quality of Service Configuration Guide
Action
To display information about a specific interface superset:
host1#show qos-interface-superset vlan-ss
interface
member restricted
superset
port
count interface
--------- --------- ------ ---------vlan-ss
lag test1
1
none
To display detailed information about a specific interface superset:
host1#show qos-interface-superset vlan-ss detail
interface
member restricted
superset
port
count interface
--------- --------- ------ ---------vlan-ss
lag test1
1
none
Children:
set set
Meaning
Table 54 on page 336 lists the show qos-interface-superset command output fields.
Table 54: show qos-interface-superset Output Fields
Related
Documentation
Field Name
Field Description
interface superset
Name of the interface superset
port
Interface that is the parent of the interface superset
member count
Number of interface members associated with the
interface superset
restricted interface
Restricted interface configured for this interface
superset
Children
List of interface set members associated with the
interface superset
•
Configuring Interface Supersets for QoS on page 204
•
show qos-interface-superset
Monitoring the AAA Downstream Rate for QoS
Purpose
Action
Display whether the QoS downstream rate application is enabled to use downstream
rates from the Actual-Data-Rate-Downstream [26-130] DSL Forum VSA.
To display the status of the QoS downstream rate application:
host1#show aaa qos downstream-rate
Downstream-rate reporting is disabled
Meaning
336
Table 55 on page 337 show aaa qos downstream-rate command output fields.
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 55: show aaa qos downstream-rate Output Fields
Related
Documentation
Field Name
Field Description
Downstream-rate reporting is
Status of the QoS downstream rate application:
enabled or disabled
•
Configuring a Parameter Definition for QoS Downstream Rate on page 289
•
show aaa qos downstream-rate
Monitoring QoS Parameter Instances
Purpose
Action
Display the QoS parameter instances for QoS clients.
To display information about the QoS parameters attached to a specific interface or port
type:
host1#show qos-parameter max-subscriber-bw references
interface parameter name
value
--------- ----------------- ------global
max-subscriber-bw 5000000
ATM11/0.1 max-subscriber-bw 6000000
Global parameter instances:
Parameter instances reported:
1
2
To display a list of all QoS parameters attached to all interfaces:
host1#show qos-parameter references
interface
parameter name
----------------------- -----------------------------global
max-subscriber-bandwidth
global
subscriber-weight
global
max-subscriber-video-bandwidth
global
max-100Kbps-voice-calls
FastEthernet9/0.2
max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
FastEthernet9/0.3
max-subscriber-bandwidth
subscriber-weight
max-subscriber-video-bandwidth
max-100Kbps-voice-calls
FastEthernet9/0 svlan 1 max-subscriber-video-bandwidth
value
------2000000
1
2000000
1
6000000
3
2000000
1
8000000
6
3000000
3
1000000
Global parameter instances:
4
Parameter instances reported: 13
To display the QoS profile name and attachment data for a specific interface:
host1#show qos-parameter references interface fastEthernet 9/0.3
instance
interface
parameter name
value
Type
----------------- ------------------------------ ------- -------FastEthernet9/0.3 max-subscriber-bandwidth
8000000 explicit
subscriber-weight
6 explicit
Copyright © 2012, Juniper Networks, Inc.
337
JunosE 14.1.x Quality of Service Configuration Guide
max-subscriber-video-bandwidth 3000000 explicit
max-100Kbps-voice-calls
3 explicit
Explicit parameter instances:
Hierarchical parameter instances:
IP multicast parameter instances:
Parameter instances reported:
4
0
0
4
To display information in expanded format, including Service Manager references:
host1#show qos-parameter video references full
service
parameter
manager
interface
name
value source
refs
persistence
------------------ --------- ----- ------- ------- ----------GigabitEthernet6/0 video
50
default none
persistent
Global parameter instances:
0
Parameter instances reported: 1
To display information about global parameter instance attachments in condensed
format:
host1#show qos-parameter references global brief
To display information about the parameter instances attached to a specific tunnel
interface, specify the interface at the root of the scheduler hierarchy located on the
tunnel-service interface or at the same hierarchy for LNS GRE tunnel traffic:
host1#show qos-parameter references tunnel-server 6/0
To display information about the parameter instancesattached to a specific L2TP session:
host1#show qos-parameter references l2tp-session session1
To display parameter instances only on the specified interface and not QoS parameters
stacked above the interface:
host1#show qos-parameter references gigabitEthernet 6/0 explicit
Meaning
Table 56 on page 338 lists the show qos-parameter command output fields.
Table 56: show qos-parameter Output Fields
338
Field Name
Field Description
interface
Location of the interface to which the parameter
instance is assigned; global indicates that the
parameter is assigned to the chassis
parameter name
Name of the parameter instance
value
Value assigned to the parameter instance
Copyright © 2012, Juniper Networks, Inc.
Chapter 31: Monitoring QoS on E Series Routers
Table 56: show qos-parameter Output Fields (continued)
Related
Documentation
Field Name
Field Description
source
Source of the parameter instance:
•
dcm—Parameter instance was created in a profile
•
radius—Parameter instance was created through
RADIUS
•
service manager—Parameter instance was created
through Service Manager
•
default—Parameter instance was created through
the CLI or SNMP
service manager refs
Number of references of this parameter instance
created through Service Manager
persistence
Status of the persistence of a parameter instance in
the system:
•
persistent—Parameter instance is stored in NVS
and is restored after a chassis reset
•
non-persistent—Parameter instance is not stored
in NVS and are deleted after a chassis reset
Global parameter instances
Number of parameter instances assigned to the
chassis
Parameter instances reported
Total number of parameter instances assigned
Explicit parameter instances
Total number of explicit parameter instances assigned
Hierarchical parameter instances
Total number of hierarchical parameter instances
assigned
IP multicast parameter instances
Total number of parameter instances associated with
the IP multicast bandwidth adjustment application
•
Creating Parameter Instances on page 231
•
show qos-parameter
Monitoring QoS Parameter Definitions
Purpose
Action
Display the QoS parameter definition settings for QoS administrators.
To display the settings for a specific QoS parameter definition:
host1#show qos-parameter-define ip-multicast
controlled instance subscriber
parameter
interface interface interface
name
types
types
types
------------ ---------- --------- ---------ip-multicast ip
ip, ipv6 <none>
Copyright © 2012, Juniper Networks, Inc.
value
range
-----<none>
339
JunosE 14.1.x Quality of Service Configuration Guide
parameter
name
properties
------------ ------------------------------------ip-multicast ip-multicast-adjustment, hierarchical
To display information about QoS parameter definitions in condensed format:
host1#show qos-parameter-define voice1 brief
To display references to all QoS parameter definitions:
host1#show qos-parameter-define references
Meaning
Table 57 on page 340 lists the show qos-parameter-define command output fields.
Table 57: show qos-parameter-define Output Fields
Related
Documentation
340
Field Name
Field Description
parameter name
Name of the parameter definition
controlled interface types
Types of controlled-interface types that are available
for the parameter definition
instance interface types
Types of instance-interface types that are available
for the parameter definition
subscriber interface types
Types of subscriber-interface types that are available
for the parameter definition
value range
Range assigned to the parameter definition
properties
Applications and hierarchical settings assigned to the
parameter definition
•
Configuring a Basic Parameter Definition for QoS Administrators on page 228
•
show qos-parameter-define
Copyright © 2012, Juniper Networks, Inc.
CHAPTER 32
Troubleshooting QoS
This chapter provides information for troubleshooting QoS.
QoS topics are discussed in the following sections:
•
Troubleshooting Memory and Processor Use for Egress Queue Rate Statistics and
Events on page 341
Troubleshooting Memory and Processor Use for Egress Queue Rate Statistics and
Events
Problem
The E Series Broadband Services Routers uses shared processing and memory when it
gathers egress queue rate statistics and events. If sufficient memory is not available, the
statistics gathering is temporarily disabled and the queues are considered to be in failover
mode until memory becomes available.
The router displays a CLI message whenever queues are put into failover mode and when
they recover from failover mode.
NOTE: When an extremely large number of statistics is being gathered over
a short period of time, the router might release the processor to perform more
important tasks. This can result in longer rate periods than you have
configured. For example, if you configured 10,000 queues to gather statistics
every second on a line module, the router might actually lengthen the rate
to 2 seconds or more.
Solution
Related
Documentation
To display the number of queues that are disabled because of no resources, issue the
show egress-queue rates command.
•
Monitoring Forwarding and Drop Rates on the Egress Queue on page 318
•
show egress-queue rates
Copyright © 2012, Juniper Networks, Inc.
341
JunosE 14.1.x Quality of Service Configuration Guide
342
Copyright © 2012, Juniper Networks, Inc.
PART 8
Index
•
Index on page 345
Copyright © 2012, Juniper Networks, Inc.
343
JunosE 14.1.x Quality of Service Configuration Guide
344
Copyright © 2012, Juniper Networks, Inc.
B
Index
Symbols
10-Gigabit Ethernet
monitoring......................................................................332
10-Gigabit Ethernet forwarding ASIC
(TFA)..............................................................69, 95, 122, 143
802.3ad link aggregation
configuring for QoS.......................................................177
link redundancy and QoS..........................................178
A
aaa qos downstream-rate command.........................290
Access Node Control Protocol. See ANCP
ADSL traffic
managing cell tax........................................................279
ANCP (Access Node Control Protocol)
shaping downstream rates from.................287, 289
ASIC scheduler...........................................................................3
assured rate.................................................................................5
assured-rate command.....................................................228
ATM (Asynchronous Transfer Mode)
cell shaping....................................................................158
configuration guidelines for QoS.............................161
configuring for QoS.....................................................156
configuring the integrated scheduler....................153
frame shaping...............................................................158
monitoring......................................................................328
monitoring for QoS......................................................170
SAR shaping....................................................................161
shaping for QoS............................................................158
atm commands
atm vp-tunnel ......................................................163, 167
atm-vp qos-parameter..............................................231
atm-vp qos-profile......................................................128
ATM modules with relative strict priority......................60
minimizing latency on the SAR................................60
oversubscribing..............................................................60
ATM SAR shaping, QoS........................................................161
ATM VP
interface attachments................................................128
audience for QoS.......................................................................4
Copyright © 2012, Juniper Networks, Inc.
backpressure...................................................................154, 161
default integrated mode.............................................161
low-cdv mode.................................................................161
low-latency mode.........................................................161
best effort...............................................................................5, 13
best-effort queue......................................................................5
best-effort scheduler node....................................................5
buffer-weight command......................................................23
burst size, setting in a shaping rate.................................60
byte adjustment application
configuration example...............................................273
byte adjustment applications
overview..........................................................................279
C
CDV (cell delay variation)......................................................5
CDVT (cell delay variation tolerance)......................5, 158
cell byte-adjustment application
configuring.....................................................................283
cell delay variation tolerance. See CDVT
cell delay variation. See CDV
clear egress-queue command...........................................42
clear fabric-queue command............................................42
clearing statistics....................................................................42
color-based thresholds.........................................................18
committed drop threshold...................................................37
committed-drop-threshold command...........................41
committed-length command............................................23
committed-threshold command................................27, 31
compound shared shaping. See shared shaping
configuration examples
DiffServ.............................................................................137
QoS parameters.........................................232, 251, 261
QoS profiles....................................................................133
configuring. See specific feature, product, or
protocol
conformed drop threshold...................................................37
conformed-drop-threshold command...........................41
conformed-fraction command..........................................23
conformed-length command............................................23
conformed-threshold command................................27, 31
constituents, shared-shaping............................................70
controlled-interface-type command...........................228
controlling subscriber bandwidth
configuration example......................................232, 251
conventions
notice icons....................................................................xxiii
text and syntax.............................................................xxiv
345
JunosE 14.1.x Quality of Service Configuration Guide
convergence-factor command.........................................89
customer support..................................................................xxv
contacting JTAC............................................................xxv
D
DiffServ
configuration example................................................137
networks...............................................................................3
documentation set
comments on.................................................................xxv
drop profile................................................................................25
configuration examples for RED.......................28, 29
configuration examples for WRED..........................32
configuring RED...............................................................27
configuring WRED.........................................................30
RED (random early detection).................................26
dynamic shaping of traffic...................................................67
E
effective weight..........................................................................5
egress forwarding ASIC (EFA)....................................95, 121
Ethernet
802.3ad link aggregation and QoS.........................177
configuring for QoS..............................................172, 177
overview for QoS............................................................171
QoS shaping mode.......................................................172
Ethernet link aggregation commands
member-interface.......................................................186
event statistics........................................................................40
exceeded drop threshold......................................................37
exceeded-drop-threshold command..............................41
exceeded-fraction command............................................23
exceeded-length command...............................................23
exceeded-threshold command...................................27, 31
expressions......................................................................48, 225
F
fabric-strict-priority command..........................................15
fabric-weight command.......................................................15
Fast Ethernet
monitoring......................................................................332
forwarding classes. See traffic classes
forwarding rate threshold.....................................................37
forwarding-rate-threshold command............................40
frame byte adjustment application
configuring.....................................................................285
frame forwarding ASIC (FFA).....................................96, 121
346
G
Gigabit Ethernet
monitoring......................................................................332
group command...........................................................127, 228
group node...................................................................................6
H
HAR (hierarchical assured rate)..........................................6
hierarchical assured rate. See HAR
hierarchical round-robin. See HRR
hierarchy, QoS scheduler..............................................6, 307
HRR (hierarchical round-robin)....................................6, 57
HRR scheduler...............................................................153, 156
relative strict priority on.......................................58, 60
I
implicit constituents
selection for compound shared shaping............105
selection for simple shared shaping.....................105
instance-interface-type command...............................228
integrated scheduler
configuring for QoS......................................................153
interface profile
attachments...................................................................128
IP multicast bandwidth adjustment
configuration example...............................................261
configuring.....................................................................259
overview...........................................................................257
L
L2TP (Layer 2 Tunneling Protocol)
calculating the transmit connect speed..............197
configuring for QoS......................................................193
monitoring for QoS......................................................198
overview for QoS...........................................................191
L2TP sessions
QoS.....................................................................................191
latency...........................................................................................6
layer 2 control. See ANCP
load balancing
configuring parameters..............................................187
hashed
configuring.............................................................185
overview..........................................................177, 180
munged QoS profiles..................................................178
subscriber
configuring.............................................................186
enabling default configuration.......................185
overview..........................................................177, 180
Copyright © 2012, Juniper Networks, Inc.
Index
load-rebalance command........................................187, 188
M
manuals
comments on.................................................................xxv
maximum-voql command.................................................90
minimum-dynamic-rate-percent command..............90
monitoring. See specific feature, product, or
protocol
multiple traffic-class groups...............................................14
munged QoS profile
attachments..................................................................130
Ethernet link aggregation..........................................178
N
node command........53, 64, 127, 146, 185, 186, 196, 228
nodes
best-effort scheduler......................................................5
group.....................................................................................6
scheduler.............................................................................6
system resources...........................................................121
notice icons.............................................................................xxiii
O
operational QoS shaping mode......................................158
P
packet fragmentation, managing..................................285
parameters.......................................249, 257, 269, 279, 287
See also QoS parameters
phantom nodes......................................................................143
port shaping...............................................................................51
port-type profile, QoS.............................................................6
attachments..................................................................130
profile
drop.....................................................................................25
QoS
attachment................................................................6
overview...................................................................121
port-type.....................................................................6
scheduler...........................................................................45
statistics.............................................................................37
profiles..........................................................................................17
Q
QoS (quality of service)
administrators of......................................................4, 215
clients of......................................................................4, 215
description of.....................................................................3
Copyright © 2012, Juniper Networks, Inc.
differentiated services
assured forwarding.................................................3
expedited forwarding.............................................3
extends DiffServ................................................................3
features.................................................................................7
overview...............................................................................3
parameters......................................................................215
terms.....................................................................................5
QoS cell mode application
configuration example...............................................273
configuring......................................................................272
overview..........................................................................269
QoS commands
qos-mode-port .............................................................157
qos-parameter ..............................................................231
qos-parameter-define ..............................................228
qos-port-type-profile .......................................130, 185
qos-profile
.............39, 40, 52, 63, 126, 130, 146, 185, 186, 193
qos-shaping-mode ...................................156, 169, 173
qos-shared-shaper-control command................89
QoS downstream rate application
configuring.....................................................................289
overview..........................................................................287
relationship with QoS cell mode...........................270
QoS interface sets
terms...............................................................................200
QoS parameters
802.3ad link aggregation...........................................178
audience...........................................................................215
configuration examples...........................232, 251, 261
configuring for QoS administrators.......................219
configuring for QoS clients......................................229
overview...........................................................................215
parameter definitions
assured rate...................................................48, 225
cell byte adjustment................................279, 283
configuring.............................................................228
expressions....................................................48, 225
frame byte adjustment..........................280, 285
IP multicast bandwidth
adjustment..............................................257, 259
overview..................................................................219
QoS cell mode............................................269, 272
QoS downstream rate............................287, 289
referencing scheduler profiles........................225
shaping rate...................................................48, 225
shared-shaping rate...................................48, 225
347
JunosE 14.1.x Quality of Service Configuration Guide
parameter instances
configuring for an interface..............................231
configuring for QoS clients.............................229
configuring globally.............................................231
overview.................................................................229
relationship with other profiles................................217
terminology.....................................................................216
using with Service Manager............................215, 232
QoS profile
ATM VP attachments.................................................128
attaching..........................................................................128
configuring......................................................................126
interface attachments................................................128
monitoring.......................................................................149
munged...................................................................130, 178
munged attachments.................................................130
overview............................................................................121
port-type attachments..............................................130
rules illustrated.............................................................140
S-VLAN attachments.................................................129
using with Service Manager.....................................126
QoS shaping mode
configuring..............................................................169, 173
overview............................................................................172
qos-profile command.........................................................228
queue bandwidth....................................................................57
queue buffers....................................................................20, 24
queue command..............64, 127, 146, 185, 186, 193, 228
queue length.....................................................................20, 24
queue profiles............................................................................17
color-based thresholds................................................18
configuring........................................................................22
monitoring.........................................................................24
overview..............................................................................17
queue-profile command......................................................23
queues...........................................................................................6
system resources...........................................................121
R
random early detection. See RED
range command...................................................................228
rate shaping...............................................................................51
QoS........................................................................................6
rate statistics.............................................................................37
rate-period command...................................................39, 40
reaction-factor command..................................................89
RED (random early detection)......................................6, 25
and dynamic queue thresholds................................33
configuration examples........................................28, 29
348
configuring.........................................................................27
configuring average queue length...........................28
configuring color blind RED........................................29
configuring colored RED..............................................28
how it works.....................................................................26
monitoring.........................................................................35
relative strict-priority scheduling
configuration example.................................................59
configuring........................................................................58
on ATM modules............................................................60
minimizing latency on the SAR.......................60
oversubscribing.....................................................60
setting burst size in shaping rate.............................60
shaping rate for nonstrict queues...........................60
tuning latency on strict-priority queues................63
zero-weight queues......................................................60
S
S-VLAN
interface attachments................................................129
SAR (segmentation and reassembly)
scheduler.....................................................................153, 156
strict-priority on..............................................................59
scheduler
hierarchy.......................................................................6, 46
HRR....................................................................................153
node, best-effort
best-effort scheduler.............................................5
profile........................................................................45, 225
configuring...............................................................47
SAR....................................................................................153
scheduler hierarchy
monitoring......................................................................307
scheduler map. See QoS profile
scheduler-profile command...........................48, 193, 228
scheduling
monitoring........................................................................117
shadow nodes
configuration examples
different traffic-class group............................148
same traffic-class group..................................148
VLAN and IP queues...........................................147
configuring......................................................................146
interface types...............................................................126
overview...........................................................................143
system resources..........................................................145
shadow-node command...................................................146
shapeless tunnel..........................................................165, 168
Copyright © 2012, Juniper Networks, Inc.
Index
shaping
using expressions for..........................................48, 225
shaping mode
configuring..............................................................169, 173
overview............................................................................172
shaping rate
for nonstrict queues.....................................................60
setting burst size in.......................................................60
shaping, QoS ATM................................................................158
cell......................................................................................158
frame.................................................................................158
shaping-rate command.....................................................228
shared shaping
active constituents........................................................70
compound........................................................................95
active constituents.............................................103
configuration..........................................................96
configuration example, VC shared
shaping.................................................................98
configuration example, VP shared
shaping...............................................................100
configuration limitations....................................70
hardware dependency........................................95
considerations.................................................................70
constituents.....................................................................70
active..........................................................................70
comparison of explicit and implicit..............103
inactive....................................................................103
explicit constituents
example.....................................................................111
example of weighted...........................................112
selection...........................................................103, 111
implicit constituents
example at best-effort node..........................105
example at best-effort queue........................106
example for mixed interface types...............107
selection.................................................................103
selection for compound...................................105
selection for simple............................................105
inactive constituents..................................................103
individual shaping and.................................................70
limiting bandwidth........................................................69
low-CDV mode.................................................................71
on the SAR, limitations of............................................71
overview.....................................................................67, 69
simple.................................................................................75
active constituents.............................................103
configuration............................................................77
configuration example, Ethernet.....................82
Copyright © 2012, Juniper Networks, Inc.
configuration example, VC shared
shaping.................................................................79
configuration example, VP shared
shaping..................................................................81
controlling the algorithm...................................85
example, basic........................................................75
example, on best-effort scheduler
node.......................................................................75
traffic starvation..............................................................72
types, simple versus compound..............................69
shared-shaping-constituent command........................115
shared-shaping-rate command......................78, 96, 228
show commands
show aaa qos downstream-rate...........................336
show atm interface.....................................................328
show drop-profile.......................................................306
show egress-queue events ......................................317
show egress-queue rates .........................................319
show fabric-queue .....................................................322
show interfaces gigabitEthernet............................332
show interfaces lag members................................334
show interfaces tenGigabitEthernet....................332
show qos-parameter..................................................337
show qos-parameter-define .................................339
show qos-port-type profile ....................................325
show qos-profile..........................................................326
show qos-shared-shaper-control
command...................................................................316
show queue-profile ...................................................305
show scheduler-profile ..............................................313
show statistics-profile ..............................................323
show traffic-class.......................................................300
show traffic-class-group ..........................................301
show qos commands
show qos interface-hierarchy.................................324
show qos queue-thresholds ..................................302
show qos scheduler-hierarchy...............................307
show qos shared-shaper ..........................................315
simple shared shaping. See shared shaping
statistics
ATM....................................................................................158
statistics profile........................................................................37
clearing...............................................................................42
committed drop threshold..........................................37
conformed drop threshold..........................................37
event statistics................................................................37
exceeded drop threshold.............................................37
failover mode.................................................................341
forwarding rate threshold............................................37
349
JunosE 14.1.x Quality of Service Configuration Guide
maximum..........................................................................37
monitoring.........................................................................42
overview.............................................................................37
rate period..........................................................37, 39, 40
rate statistics....................................................................37
resource use...................................................................341
thresholds.........................................................................40
statistics-profile command................................................39
strict-priority command.......................................................64
strict-priority scheduling...............................................57, 59
true versus relative........................................................59
See also relative strict-priority scheduling
subscriber-interface-type command...........................228
support, technical See technical support
svlan commands
svlan qos-parameter..................................................232
svlan qos-profile...........................................................129
WRED (weighted random early detection).............6, 25
configuration examples...............................................32
configuring........................................................................30
different drop behavior for each
queue.....................................................................32
different treatment of colored
packets..................................................................32
how it works.....................................................................26
monitoring.........................................................................35
Z
zero-weight queues...............................................................60
T
TCP friendly................................................................................51
technical support
contacting JTAC............................................................xxv
text and syntax conventions............................................xxiv
traffic classes
configuring.........................................................................14
monitoring.........................................................................16
multiple, configuration example.............................137
overview..............................................................................13
traffic flow....................................................................................4
traffic-class command.................................14, 16, 193, 228
traffic-class groups
monitoring.........................................................................16
multiple...............................................................................14
overview..............................................................................14
traffic-class-group command............................................15
triple play configurations...........................................98, 234
true strict priority scheduling.............................................59
V
variables
configuring for shared shaping.................................85
VDSL traffic
managing packet fragmentation for....................285
W
weight command..........................................................56, 228
weight, QoS.................................................................................6
weighted random early detection. See WRED
350
Copyright © 2012, Juniper Networks, Inc.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement