2SK1304 Application Features

2SK1304 Application Features
2SK1304
Silicon N-Channel MOS FET
Application
TO–3P
High speed power switching
Features
•
•
•
•
Low on-resistance
High speed switching
Low drive current
4 V gate drive device
– Can be driven from 5 V source
• Suitable for motor drive, DC-DC converter,
power switch and solenoid drive
2
1
2
3
1
1. Gate
2. Drain
(Flange)
3. Source
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
100
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
40
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
160
A
———————————————————————————————————————————
Body to drain diode reverse drain current
IDR
40
A
———————————————————————————————————————————
Channel dissipation
Pch**
100
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at TC = 25 °C
2SK1304
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
100
—
—
V
ID = 10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
250
µA
VDS = 80 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
1.0
—
2.0
V
ID = 1 mA, VDS = 10 V
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.025
0.03
Ω
ID = 20 A, VGS = 10 V *
———————————
——————————–
—
ID = 20 A, VGS = 4 V *
0.03
0.04
———————————————————————————————————————————
Forward transfer admittance
|yfs|
22
35
—
S
ID = 20 A, VDS = 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
3500
—
pF
VDS = 10 V, VGS = 0,
————————————————————————————————
Output capacitance
Coss
—
1400
—
pF
f = 1 MHz
————————————————————————————————
Reverse transfer capacitance
Crss
—
340
—
pF
———————————————————————————————————————————
Turn-on delay time
td(on)
—
25
—
ns
————————————————————————————————
Rise time
tr
—
170
—
ns
ID = 20 A, VGS = 10 V,
RL = 1.5 Ω
————————————————————————————————
Turn-off delay time
td(off)
—
730
—
ns
————————————————————————————————
Fall time
tf
—
300
—
ns
———————————————————————————————————————————
Body to drain diode forward
voltage
VDF
—
1.2
—
V
IF = 40 A, VGS = 0
———————————————————————————————————————————
Body to drain diode reverse
recovery time
trr
—
300
—
ns
IF = 40 A, VGS = 0,
diF/dt = 50 A/µs
———————————————————————————————————————————
* Pulse Test
2SK1304
Maximum Safe Operation Area
Power vs. Temperature Derating
500
Operation in this Area
is Limited by RDS (on)
200
Drain Current ID (A)
Channel Dissipation Pch (W)
120
80
40
100
50
D
C
20
150
10 V
5
s
m
s
(T
C
Ta = 25°C
(1
=
Sh
ot
)
25
°C
)
0.5
1
5V
Pulse Test
3
30
10
100 300 1,000
Drain to Source Voltage VDS (V)
VDS = 10 V
Pulse Test
40
4V
Drain Current ID (A)
Drain Current ID (A)
µs
Typical Transfer Characteristics
3.5 V
40
3V
0
m
µs
50
60
20
10
n
7V
80
1
=
tio
Typical Output Characteristics
100
O
0
ra
10
1.0
50
100
Case Temperature TC (°C)
PW
pe
2
0
10
10
20
75°C
10
VGS = 2.5 V
8
4
12
16
Drain to Source Voltage VDS (V)
30
20
0
TC = 25°C
–25°C
1
3
4
2
Gate to Source Voltage VGS (V)
5
Static Drain to Source on State
Resistance vs. Drain Current
Drain to Source Saturation Voltage
vs. Gate to Source Voltage
Static Drain to Source on State Resistance
RDS (on) (Ω)
Drain to Source Saturation Voltage VDS (on) (V)
2SK1304
2.0
Pulse Test
1.6
50 A
1.2
0.8
20 A
0.4
ID = 10 A
4
2
6
8
Gate to Source Voltage VGS (V)
0
0.5
Pulse Test
0.2
0.1
10 V
0.02
0.01
0.005
10
2
0.10
Pulse Test
ID = 50 A
20 A
0.06
10 A
0.04
0.02
0
–40
VGS = 4 V
50 A
20 A
10 A
VGS = 10 V
0
80
120
40
Case Temperature TC (°C)
5
10 20
50 100
Drain Current ID (A)
200
Forward Transfer Admittance
vs. Drain Current
Forward Transfer Admittance yfs (S)
Static Drain to Source on State Resistance
RDS (on) (Ω)
Static Drain to Source on State
Resistance vs. Temperature
0.08
VGS = 4 V
0.05
160
50
20
–25°C
TC = 25°C
10
75°C
5
2
VGS = 10 V
Pulse Test
1.0
0.5
1.0
2
5
10
20
Drain Current ID (A)
50
2SK1304
Body to Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
10,000
di/dt = 50 A/µs, Ta = 25°C
VGS = 0
Pulse Test
200
Ciss
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
100
50
20
Coss
1,000
Crss
100
10
VGS = 0
f = 1 MHz
5
0.5
10
2
1.0
10
20
5
Reverse Drain Current IDR (A)
50
0
20
10
30
40
Drain to Source Voltage VDS (V)
Switching Characteristics
Dynamic Input Characteristics
16
50 V
80 V
12
VDD = 80 V
50 V
VGS
8
25 V
20
ID = 40 A
4
0
0
40
120
160
80
Gate Charge Qg (nc)
200
td (off)
500
Switching Time t (ns)
VDD = 25 V
VDS
60
40
1,000
20
Gate to Source Voltage VGS (V)
Drain to Source Voltage VDS (V)
100
80
50
tf
200
100
tr
50
td (on)
20
10
0.5
VGS = 10 V
PW = 2 µs, duty < 1%
1.0
5
20
10
2
Drain Current ID (A)
50
2SK1304
Reverse Drain Current vs.
Source to Drain Voltage
Reverse Drain Current IDR (A)
50
Pulse Test
40
30
10 V
5V
20
10
VGS = 0, –5 V
Normalized Transient Thermal Impedance γS (t)
0
0.8
2.0
0.4
1.2
1.6
Source to Drain Voltage VSD (V)
Normalized Transient Thermal Impedance vs. Pulse Width
3
TC = 25°C
1.0
D=1
0.5
0.3
0.2
0.1
0.1
0.05
0.03
0.02
0.01
θch–c (t) = γS (t) · θch–c
θch–c = 1.25°C/W, TC = 25°C
PDM
lse
1S
0.01
10 µ
Pu
hot
T
100 µ
1m
10 m
Pulse Width PW (s)
100 m
PW
1
D = PW
T
10
2SK1304
Switching Time Test Circuit
Wavewforms
Vin Monitor
90 %
Vout Monitor
D.U.T
RL
Vin
Vout
10 %
10 %
10 %
50 Ω
Vin = 10 V
.
VDD =
. 30 V
td (on)
90 %
tr
90 %
td (off)
tf
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement