M29W640F

M29W640F
M29W640FT
M29W640FB
64 Mbit (8Mb x8 or 4Mb x16, Page, Boot Block)
3V Supply Flash Memory
Feature summary
Supply voltage
– VCC = 2.7V to 3.6V for Program, Erase,
Read
– VPP =12 V for Fast Program (optional)
Asynchronous Random/Page Read
– Page Width: 4 Words
– Page Access: 25ns
– Random Access: 60ns, 70ns
TSOP48 (N)
12 x 20mm
Programming time
– 10 s per Byte/Word typical
– 4 Words / 8 Bytes Program
135 Memory Blocks
– 1 Boot Block and 7 Parameter Blocks,
8 KBytes each (Top or Bottom location)
– 127 Main Blocks, 64 KBytes each
TFBGA48 (ZA)
6x8mm
Program/Erase Controller
– Embedded Byte/Word Program algorithms
Program/Erase Suspend and Resume
– Read from any Block during Program
Suspend
– Read and Program another Block during
Erase Suspend
Extended Memory Block
Extra block used as security block or to store
additional information
Low power consumption
– Standby and Automatic Standby
Unlock Bypass Program command
– Faster Production/Batch Programming
100,000 Program/Erase cycles per block
VPP/WP pin for Fast Program and Write Protect
Electronic Signature
– Manufacturer Code: 0020h
Temporary Block Unprotection mode
Common Flash Interface
– 64-bit Security Code
Table 1.
ECOPACK® packages
Device Codes
Root Part Number
Device Code
M29W640FB
22FDh
M29W640FT
September 2008
22EDh
Rev 8
1/71
www.Numonyx.com
1
Contents
M29W640FT, M29W640FB
Contents
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1
Address Inputs (A0-A21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.3
Data Inputs/Outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
2.4
2.5
2.6
2.7
2.8
2.9
Data Input/Output or Address Input (DQ15A–1) . . . . . . . . . . . . . . . . . . . .11
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
VPP/Write Protect (VPP/WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Reset/Block Temporary Unprotect (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10
Ready/Busy Output (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.12
VCC Supply Voltage (2.7V to 3.6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.11
2.13
3
Data Inputs/Outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Byte/Word Organization Select (BYTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
3.4
3.5
3.6
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Special Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1
3.6.2
4
Block Protect and Chip Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1
Standard commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1
Read/Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2
2/71
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Auto Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
M29W640FT, M29W640FB
4.1.4
Chip Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.6
Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.5
4.1.7
4.1.8
4.1.9
4.2
4.1.10
Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1
Double Byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3
Octuple Byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
Quadruple Byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Double Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Quadruple Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Unlock Bypass command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Unlock Bypass Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Unlock Bypass Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Block Protection commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1
Enter Extended Block command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3
Block Protect and Chip Unprotect commands . . . . . . . . . . . . . . . . . . . . 26
4.3.2
5
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Fast Program commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2
4.3
Contents
Exit Extended Block command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1
Data Polling Bit (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3
Error Bit (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2
5.4
5.5
Toggle Bit (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Erase Timer Bit (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Alternative Toggle Bit (DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Appendix A Block addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3/71
Contents
M29W640FT, M29W640FB
Appendix B Common Flash Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendix C Extended Memory Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
C.1
C.2
Factory Locked Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Customer Lockable Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Appendix D Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
D.1
D.2
Programmer technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
In-System technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4/71
M29W640FT, M29W640FB
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Device Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hardware protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Bus operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Bus operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Commands, 16-bit mode, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Commands, 8-bit mode, BYTE = VIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Program, Erase times and Program, Erase Endurance cycles. . . . . . . . . . . . . . . . . . . . . . 29
Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Write AC characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Write AC characteristics, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Reset/Block Temporary Unprotect AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, package mechanical data . . . 44
TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package mechanical data . . . . . . 45
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Top Boot Block addresses, M29W640FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Bottom Boot Block addresses, M29W640FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Primary Algorithm-specific Extended Query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Security Code Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Extended Block address and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Programmer technique bus operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5/71
List of figures
M29W640FT, M29W640FB
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
6/71
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
TSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
TFBGA48 connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Polling flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Data Toggle flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
AC measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Read Mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Page Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Write AC waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Write AC waveforms, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Reset/Block Temporary Unprotect AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Accelerated Program Timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, top view package outline . . . . 44
TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package outline . . . . . . . . . . . . . . 45
Programmer Equipment Group Protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Programmer Equipment Chip Unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
In-System Equipment Group Protect flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
In-System Equipment Chip Unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
M29W640FT, M29W640FB
1
Summary description
Summary description
The M29W640F is a 64 Mbit (8Mb x8 or 4Mb x16) non-volatile memory that can be read,
erased and reprogrammed. These operations can be performed using a single low voltage
(2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode.
The memory is divided into blocks that can be erased independently so it is possible to
preserve valid data while old data is erased. Blocks can be protected in units of 256 KByte
(generally groups of four 64 KByte blocks), to prevent accidental Program or Erase
commands from modifying the memory. Program and Erase commands are written to the
Command Interface of the memory. An on-chip Program/Erase Controller simplifies the
process of programming or erasing the memory by taking care of all of the special
operations that are required to update the memory contents. The end of a program or erase
operation can be detected and any error conditions identified. The command set required to
control the memory is consistent with JEDEC standards.
The device features an asymmetrical blocked architecture. The device has an array of 135
blocks:
8 Parameters Blocks of 8 KBytes each (or 4 KWords each)
127 Main Blocks of 64 KBytes each (or 32 KWords each)
M29W640FT has the Parameter Blocks at the top of the memory address space while the
M29W640FB locates the Parameter Blocks starting from the bottom.
The M29W640F has an extra block, the Extended Block, of 128 Words in x16 mode or of
256 Byte in x8 mode that can be accessed using a dedicated command. The Extended
Block can be protected and so is useful for storing security information. However the
protection is not reversible, once protected the protection cannot be undone.
Chip Enable, Output Enable and Write Enable signals control the bus operation of the
memory. They allow simple connection to most microprocessors, often without additional
logic.
The VPP/WP signal is used to enable faster programming of the device, enabling multiple
word/byte programming. If this signal is held at VSS, the boot block, and its adjacent
parameter block, are protected from program and erase operations.
The device supports Asynchronous Random Read and Page Read from all blocks of the
memory array.
The memories are offered in TSOP48 (12x 20mm) and TFBGA48 (6x8mm, 0.8mm pitch)
packages.
In order to meet environmental requirements, Numonyx offers the M29W640FT and the
M29W640FB in ECOPACK® packages. ECOPACK packages are Lead-free. The category
of second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an Numonyx trademark.
ECOPACK specifications are available at: www.Numonyx.com.
The memory is delivered with all the bits erased (set to 1).
7/71
Summary description
Figure 1.
Logic diagram
Table 2.
Signal names
A0-A21
Address Inputs
DQ0-DQ7
Data Inputs/Outputs
DQ15A–1 (or DQ15)
Data Input/Output or Address Input (or Data Input/Output)
G
Output Enable
DQ8-DQ14
E
W
RP
RB
BYTE
VCC
VPP /WP
VSS
NC
8/71
M29W640FT, M29W640FB
Data Inputs/Outputs
Chip Enable
Write Enable
Reset/Block Temporary Unprotect
Ready/Busy Output
Byte/Word Organization Select
Supply voltage
Supply voltage for Fast Program (optional) or Write Protect
Ground
Not Connected Internally
M29W640FT, M29W640FB
Figure 2.
Summary description
TSOP connections
9/71
Summary description
Figure 3.
10/71
M29W640FT, M29W640FB
TFBGA48 connections (top view through package)
M29W640FT, M29W640FB
2
Signal descriptions
Signal descriptions
See Figure 1: Logic diagram, and Table 2: Signal names, for a brief overview of the signals
connected to this device.
2.1
Address Inputs (A0-A21)
2.2
Data Inputs/Outputs (DQ0-DQ7)
2.3
Data Inputs/Outputs (DQ8-DQ14)
2.4
Data Input/Output or Address Input (DQ15A–1)
2.5
Chip Enable (E)
2.6
Output Enable (G)
The Address Inputs select the cells in the memory array to access during Bus Read
operations. During Bus Write operations they control the commands sent to the Command
Interface of the Program/Erase Controller.
The Data I/O outputs the data stored at the selected address during a Bus Read operation.
During Bus Write operations they represent the commands sent to the Command Interface
of the Program/Erase Controller.
The Data I/O outputs the data stored at the selected address during a Bus Read operation
when BYTE is High, VIH. When BYTE is Low, VIL, these pins are not used and are high
impedance. During Bus Write operations the Command Register does not use these bits.
When reading the Status Register these bits should be ignored.
When BYTE is High, VIH, this pin behaves as a Data Input/Output pin (as DQ8-DQ14).
When BYTE is Low, VIL, this pin behaves as an address pin; DQ15A–1 Low will select the
LSB of the addressed Word, DQ15A–1 High will select the MSB. Throughout the text
consider references to the Data Input/Output to include this pin when BYTE is High and
references to the Address Inputs to include this pin when BYTE is Low except when stated
explicitly otherwise.
The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to
be performed. When Chip Enable is High, VIH, all other pins are ignored.
The Output Enable, G, controls the Bus Read operation of the memory.
11/71
Signal descriptions
M29W640FT, M29W640FB
2.7
Write Enable (W)
2.8
VPP/Write Protect (VPP/WP)
The Write Enable, W, controls the Bus Write operation of the memory’s Command Interface.
The VPP/Write Protect pin provides two functions. The VPP function allows the memory to
use an external high voltage power supply to reduce the time required for Unlock Bypass
Program operations. The Write Protect function provides a hardware method of protecting
the two outermost boot blocks. The VPP/Write Protect pin must not be left floating or
unconnected.
When VPP/Write Protect is Low, VIL, the memory protects the two outermost boot blocks;
Program and Erase operations in this block are ignored while VPP/Write Protect is Low,
even when RP is at VID.
When VPP/Write Protect is High, VIH, the memory reverts to the previous protection status
of the two outermost boot blocks. Program and Erase operations can now modify the data in
the two outermost boot blocks unless the block is protected using Block Protection.
Applying VPPH to the VPP/WP pin will temporarily unprotect any block previously protected
(including the two outermost parameter blocks) using a High Voltage Block Protection
technique (In-System or Programmer technique). See Table 3: Hardware protection for
details.
When VPP/Write Protect is raised to VPP the memory automatically enters the Unlock
Bypass mode. When VPP/Write Protect returns to VIH or VIL normal operation resumes.
During Unlock Bypass Program operations the memory draws IPP from the pin to supply the
programming circuits. See the description of the Unlock Bypass command in the Command
Interface section. The transitions from VIH to VPP and from VPP to VIH must be slower than
tVHVPP, see Figure 13: Accelerated Program Timing waveforms.
Never raise VPP/Write Protect to VPP from any mode except Read mode, otherwise the
memory may be left in an indeterminate state.
A 0.1 F capacitor should be connected between the VPP/Write Protect pin and the VSS
Ground pin to decouple the current surges from the power supply. The PCB track widths
must be sufficient to carry the currents required during Unlock Bypass Program, IPP.
Table 3.
VPP /WP
VIL
VIH or VID
VPPH
12/71
Hardware protection
RP
Function
VIH
2 outermost parameter blocks protected from Program/Erase operations
VID
All blocks temporarily unprotected
VID
VIH or VID
All blocks temporarily unprotected except the 2 outermost blocks
All blocks temporarily unprotected
M29W640FT, M29W640FB
2.9
Signal descriptions
Reset/Block Temporary Unprotect (RP)
The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the
memory or to temporarily unprotect all Blocks that have been protected.
Note that if VPP/WP is at VIL, then the two outermost boot blocks will remain protected even
if RP is at VID.
A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, VIL, for at
least tPLPX. After Reset/Block Temporary Unprotect goes High, VIH, the memory will be
ready for Bus Read and Bus Write operations after tPHEL or tRHEL, whichever occurs last.
See the Ready/Busy Output section, Table 17: Reset/Block Temporary Unprotect AC
characteristics and Figure 12: Reset/Block Temporary Unprotect AC waveforms, for more
details.
Holding RP at VID will temporarily unprotect the protected Blocks in the memory. Program
and Erase operations on all blocks will be possible. The transition from VIH to VID must be
slower than tPHPHH.
2.10
Ready/Busy Output (RB)
The Ready/Busy pin is an open-drain output that can be used to identify when the device is
performing a Program or Erase operation. During Program or Erase operations Ready/Busy
is Low, VOL. Ready/Busy is high-impedance during Read mode, Auto Select mode and
Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy
becomes high-impedance. See Table 17: Reset/Block Temporary Unprotect AC
characteristics and Figure 12: Reset/Block Temporary Unprotect AC waveforms, for more
details.
The use of an open-drain output allows the Ready/Busy pins from several memories to be
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the
memories is busy.
2.11
Byte/Word Organization Select (BYTE)
The Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus
modes of the memory. When Byte/Word Organization Select is Low, VIL, the memory is in
x8 mode, when it is High, VIH, the memory is in x16 mode.
13/71
Signal descriptions
2.12
M29W640FT, M29W640FB
VCC Supply Voltage (2.7V to 3.6V)
VCC provides the power supply for all operations (Read, Program and Erase).
The Command Interface is disabled when the VCC Supply voltage is less than the Lockout
Voltage, VLKO. This prevents Bus Write operations from accidentally damaging the data
during power up, power down and power surges. If the Program/Erase Controller is
programming or erasing during this time then the operation aborts and the memory contents
being altered will be invalid.
A 0.1 F capacitor should be connected between the VCC Supply voltage pin and the VSS
Ground pin to decouple the current surges from the power supply. The PCB track widths
must be sufficient to carry the currents required during Program and Erase operations, ICC3.
2.13
14/71
VSS Ground
VSS is the reference for all voltage measurements. The device features two V SS pins which
must be both connected to the system ground.
M29W640FT, M29W640FB
3
Bus operations
Bus operations
There are five standard bus operations that control the device. These are Bus Read, Bus
Write, Output Disable, Standby and Automatic Standby. See Table 4: Bus operations, BYTE
= VIL and Table 5: Bus operations, BYTE = VIH, for a summary. Typically glitches of less
than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus
operations.
3.1
Bus Read
3.2
Bus Write
Bus Read operations read from the memory cells, or specific registers in the Command
Interface. A valid Bus Read operation involves setting the desired address on the Address
Inputs, applying a Low signal, VIL, to Chip Enable and Output Enable and keeping Write
Enable High, VIH. The Data Inputs/Outputs will output the value, see Figure 8: Read Mode
AC waveforms, and Table 14: Read AC characteristics, for details of when the output
becomes valid.
Bus Write operations write to the Command Interface. To speed up the read operation the
memory array can be read in Page mode where data is internally read and stored in a page
buffer. The Page has a size of 4 Words and is addressed by the address inputs A0-A1.
A valid Bus Write operation begins by setting the desired address on the Address Inputs.
The Address Inputs are latched by the Command Interface on the falling edge of Chip
Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs are latched by the
Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs
first. Output Enable must remain High, VIH, during the whole Bus Write operation. See
Figure 10: Write AC waveforms, Write Enable controlled, Figure 11: Write AC waveforms,
Chip Enable controlled, and Table 15: Write AC characteristics, Write Enable controlled and
Table 16: Write AC characteristics, Chip Enable controlled, for details of the timing
requirements.
3.3
Output Disable
3.4
Standby
The Data Inputs/Outputs are in the high impedance state when Output Enable is High, VIH.
When Chip Enable is High, VIH, the memory enters Standby mode and the Data
Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to
the Standby Supply Current, ICC2, Chip Enable should be held within VCC ± 0.2V. For the
Standby current level see Table 13: DC characteristics.
During program or erase operations the memory will continue to use the Program/Erase
Supply Current, ICC3, for Program or Erase operations until the operation completes.
15/71
Bus operations
3.5
Automatic Standby
3.6
Special Bus operations
3.6.1
Electronic Signature
3.6.2
Block Protect and Chip Unprotect
M29W640FT, M29W640FB
If CMOS levels (VCC ± 0.2V) are used to drive the bus and the bus is inactive for 300ns or
more the memory enters Automatic Standby where the internal Supply Current is reduced to
the Standby Supply Current, ICC2. The Data Inputs/Outputs will still output data if a Bus
Read operation is in progress.
Additional bus operations can be performed to read the Electronic Signature and also to
apply and remove Block Protection. These bus operations are intended for use by
programming equipment and are not usually used in applications. They require VID to be
applied to some pins.
The memory has two codes, the manufacturer code and the device code, that can be read
to identify the memory. These codes can be read by applying the signals listed in Table 4:
Bus operations, BYTE = VIL and Table 5: Bus operations, BYTE = VIH.
Groups of blocks can be protected against accidental Program or Erase. The Protection
Groups are shown in Appendix A: Block addresses Table 21 and Table 22. The whole chip
can be unprotected to allow the data inside the blocks to be changed.
The VPP/Write Protect pin can be used to protect the two outermost boot blocks. When
VPP /Write Protect is at VIL the two outermost boot blocks are protected and remain
protected regardless of the Block Protection Status or the Reset/Block Temporary
Unprotect pin status.
Block Protect and Chip Unprotect operations are described in Appendix D: Block protection.
16/71
M29W640FT, M29W640FB
Table 4.
Bus operations
Bus operations, BYTE = VIL (1)
Operation
Bus Read
Bus Write
Address Inputs
DQ15A–1, A0-A21
E
G
W
VIL
VIL
VIH Cell address
VIH
VIH X
VIL
VIH
Standby
VIH
X
Read Manufacturer Code
VIL
VIL
VIH
Read Device Code
VIL
VIL
A0 = VIH, A1-A3= VIL,
VIH A6 = VIL, A9 = VID,
Others VIL or VIH
Read Extended Memory
Block Verify Code
VIL
VIL
Output Disable
Read Block Protection
Status
X
VIL
X
VIL
X
A0-A3 = VIL, A6 = VIL ,
A9 = VID, Others VIL or VIH
Hi-Z
80h (Factory Locked)
00h (Customer Lockable)
VIH
Hi-Z
01h (protected)
00h (unprotected)
A0,A2,A3, A6= VIL,
A1= VIH, A9 = VID,
A12-A21 = Block address,
Others VIL or VIH
Address Inputs
A0-A21
VIH
Cell address
Standby
X
VIH
VIH
VIH
X
Read Manufacturer Code
VIL
VIL
VIH
Read Device Code
VIL
VIL
VIH
Read Extended Memory
Block Verify Code
VIL
VIL
VIH
Read Block Protection
Status
VIL
VIL
VIH
1. X = VIL or VIH .
Hi-Z
Hi-Z
VIL
VIH
X
Hi-Z
Data Input
A0 -A1 = VIH, A2-A3= VIL,
VIH A6 = VIL, A9 = VID,
Others VIL or VIH
VIL
Output Disable
Hi-Z
Hi-Z
EDh (M29W640FT)
FDh (M29W640FB)
W
VIL
Data Output
Hi-Z
G
Bus Write
Hi-Z
20h
E
Bus Read
DQ7-DQ0
Hi-Z
Bus operations, BYTE = VIH(1)
Operation
DQ14-DQ8
VIL Command address
1. X = VIL or VIH .
Table 5.
Data Inputs/Outputs
VIL
X
Command address
X
A0-A3 = VIL, A6 = VIL,
A9 = VID, Others VIL or VIH
A0 = VIH, A1-A3= VIL, A6 = VIL,
A9 = VID, Others VIL or VIH
A0 -A1 = VIH, A2-A3= VIL ,
A6 = VIL, A9 = VID,
Others VIL or VIH
A0,A2,A3, A6= VIL , A1 = VIH, A9 = VID,
A12-A21 = Block address,
Others VIL or VIH
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
Data Output
Data Input
Hi-Z
Hi-Z
0020h
22EDh (M29W640FT)
22FDh (M29W640FB)
80h (Factory Locked)
00h (Customer Lockable)
0001h (protected)
0000h (unprotected)
17/71
Command interface
4
M29W640FT, M29W640FB
Command interface
All Bus Write operations to the memory are interpreted by the Command Interface.
Commands consist of one or more sequential Bus Write operations. Failure to observe a
valid sequence of Bus Write operations will result in the memory returning to Read mode.
The long command sequences are imposed to maximize data security.
The address used for the commands changes depending on whether the memory is in 16bit or 8-bit mode. See either Table 6, or Table 7, depending on the configuration that is being
used, for a summary of the commands.
4.1
Standard commands
4.1.1
Read/Reset command
The Read/Reset command returns the memory to its Read mode. It also resets the errors in
the Status Register. Either one or three Bus Write operations can be used to issue the
Read/Reset command.
The Read/Reset command can be issued, between Bus Write cycles before the start of a
program or erase operation, to return the device to read mode. If the Read/Reset command
is issued during the timeout of a Block Erase operation then the memory will take up to 10 s
to abort. During the abort period no valid data can be read from the memory. The
Read/Reset command will not abort an Erase operation when issued while in Erase
Suspend.
4.1.2
Auto Select command
The Auto Select command is used to read the Manufacturer Code, the Device Code, the
Block Protection Status and the Extended Memory Block Verify Code. Three consecutive
Bus Write operations are required to issue the Auto Select command. Once the Auto Select
command is issued the memory remains in Auto Select mode until a Read/Reset command
is issued. Read CFI Query and Read/Reset commands are accepted in Auto Select mode,
all other commands are ignored.
In Auto Select mode, the Manufacturer Code and the Device Code can be read by using a
Bus Read operation with addresses and control signals set as shown in Table 4: Bus
operations, BYTE = VIL and Table 5: Bus operations, BYTE = VIH, except for A9 that is
‘Don’t Care’.
The Block Protection Status of each block can be read using a Bus Read operation with
addresses and control signals set as shown in Table 4: Bus operations, BYTE = VIL and
Table 5: Bus operations, BYTE = VIH, except for A9 that is ‘Don’t Care’. If the addressed
block is protected then 01h is output on Data Inputs/Outputs DQ0-DQ7, otherwise 00h is
output (in 8-bit mode).
The protection status of the Extended Memory block, or Extended Memory Block Verify
code, can be read using a Bus Read operation with addresses and control signals set as
shown in Table 4: Bus operations, BYTE = VIL and Table 5: Bus operations, BYTE = VIH,
except for A9 that is ‘Don’t Care’. If the Extended Block is "Factory Locked" then 80h is
output on Data Input/Outputs DQ0-DQ7, otherwise 00h is output (8-bit mode).
18/71
M29W640FT, M29W640FB
4.1.3
Command interface
Read CFI Query command
The Read CFI Query Command is used to read data from the Common Flash Interface
(CFI) Memory Area. This command is valid when the device is in the Read Array mode, or
when the device is in Autoselected mode.
One Bus Write cycle is required to issue the Read CFI Query Command. Once the
command is issued subsequent Bus Read operations read from the Common Flash
Interface Memory Area.
The Read/Reset command must be issued to return the device to the previous mode (the
Read Array mode or Autoselected mode). A second Read/Reset command would be
needed if the device is to be put in the Read Array mode from Autoselected mode.
See Appendix B: Common Flash Interface (CFI), Tables 23, 24, 25, 26, 27 and 28 for details
on the information contained in the Common Flash Interface (CFI) memory area.
4.1.4
Chip Erase command
The Chip Erase command can be used to erase the entire chip. Six Bus Write operations
are required to issue the Chip Erase Command and start the Program/Erase Controller.
If any blocks are protected then these are ignored and all the other blocks are erased. If all
of the blocks are protected the Chip Erase operation appears to start but will terminate
within about 100 s, leaving the data unchanged. No error condition is given when protected
blocks are ignored.
During the erase operation the memory will ignore all commands, including the Erase
Suspend command. It is not possible to issue any command to abort the operation. Typical
chip erase times are given in Table 8: Program, Erase times and Program, Erase
Endurance cycles. All Bus Read operations during the Chip Erase operation will output the
Status Register on the Data Inputs/Outputs. See the section on the Status Register for more
details.
After the Chip Erase operation has completed the memory will return to the Read Mode,
unless an error has occurred. When an error occurs the memory will continue to output the
Status Register. A Read/Reset command must be issued to reset the error condition and
return to Read Mode.
The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All
previous data is lost.
19/71
Command interface
4.1.5
M29W640FT, M29W640FB
Block Erase command
The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write
operations are required to select the first block in the list. Each additional block in the list can
be selected by repeating the sixth Bus Write operation using the address of the additional
block. The Block Erase operation starts the Program/Erase Controller about 50 s after the
last Bus Write operation. Once the Program/Erase Controller starts it is not possible to
select any more blocks. Each additional block must therefore be selected within 50 s of the
last block. The 50 s timer restarts when an additional block is selected. The Status Register
can be read after the sixth Bus Write operation. See the Status Register section for details
on how to identify if the Program/Erase Controller has started the Block Erase operation.
If any selected blocks are protected then these are ignored and all the other selected blocks
are erased. If all of the selected blocks are protected the Block Erase operation appears to
start but will terminate within about 100 s, leaving the data unchanged. No error condition is
given when protected blocks are ignored.
During the Block Erase operation the memory will ignore all commands except the Erase
Suspend command. Typical block erase times are given in Table 8: Program, Erase times
and Program, Erase Endurance cycles. All Bus Read operations during the Block Erase
operation will output the Status Register on the Data Inputs/Outputs. See the section on the
Status Register for more details.
After the Block Erase operation has completed the memory will return to the Read Mode,
unless an error has occurred. When an error occurs the memory will continue to output the
Status Register. A Read/Reset command must be issued to reset the error condition and
return to Read mode.
The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All
previous data in the selected blocks is lost.
4.1.6
Erase Suspend command
The Erase Suspend Command may be used to temporarily suspend a Block Erase
operation and return the memory to Read mode. The command requires one Bus Write
operation.
The Program/Erase Controller will suspend within the Erase Suspend Latency time of the
Erase Suspend Command being issued. Once the Program/Erase Controller has stopped
the memory will be set to Read mode and the Erase will be suspended. If the Erase
Suspend command is issued during the period when the memory is waiting for an additional
block (before the Program/Erase Controller starts) then the Erase is suspended immediately
and will start immediately when the Erase Resume Command is issued. It is not possible to
select any further blocks to erase after the Erase Resume.
During Erase Suspend it is possible to Read and Program cells in blocks that are not being
erased; both Read and Program operations behave as normal on these blocks. If any
attempt is made to program in a protected block or in the suspended block then the Program
command is ignored and the data remains unchanged. The Status Register is not read and
no error condition is given. Reading from blocks that are being erased will output the Status
Register.
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands
during an Erase Suspend. The Read/Reset command must be issued to return the device to
Read Array mode before the Resume command will be accepted.
20/71
M29W640FT, M29W640FB
4.1.7
Erase Resume command
4.1.8
Program Suspend command
Command interface
The Erase Resume command must be used to restart the Program/Erase Controller after an
Erase Suspend. The device must be in Read Array mode before the Resume command will
be accepted. An erase can be suspended and resumed more than once.
The Program Suspend command allows the system to interrupt a program operation so that
data can be read from any block. When the Program Suspend command is issued during a
program operation, the device suspends the program operation within the Program
Suspend Latency time (see Table 8: Program, Erase times and Program, Erase Endurance
cycles for value) and updates the Status Register bits.
After the program operation has been suspended, the system can read array data from any
address. However, data read from Program-Suspended addresses is not valid.
The Program Suspend command may also be issued during a program operation while an
erase is suspended. In this case, data may be read from any addresses not in Erase
Suspend or Program Suspend. If a read is needed from the Extended Block area (One-time
Program area), the user must use the proper command sequences to enter and exit this
region.
The system may also issue the Auto Select command sequence when the device is in the
Program Suspend mode. The system can read as many Auto Select codes as required.
When the device exits the Auto Select mode, the device reverts to the Program Suspend
mode, and is ready for another valid operation. See Auto Select command sequence for
more information.
4.1.9
Program Resume command
After the Program Resume command is issued, the device reverts to programming. The
controller can determine the status of the program operation using the DQ7 or DQ6 status
bits, just as in the standard program operation. See Write Operation Status for more
information.
The system must write the Program Resume command, to exit the Program Suspend mode
and to continue the programming operation.
Further issuing of the Resume command is ignored. Another Program Suspend command
can be written after the device has resumed programming.
21/71
Command interface
4.1.10
M29W640FT, M29W640FB
Program command
The Program command can be used to program a value to one address in the memory
array at a time. The command requires four Bus Write operations, the final write operation
latches the address and data, and starts the Program/Erase Controller.
Programming can be suspended and then resumed by issuing a Program Suspend
command and a Program Resume command, respectively (see Section 4.1.8: Program
Suspend command and Section 4.1.9: Program Resume command).
If the address falls in a protected block then the Program command is ignored, the data
remains unchanged. The Status Register is never read and no error condition is given.
During the program operation the memory will ignore all commands. It is not possible to
issue any command to abort or pause the operation. Typical program times are given in
Table 8: Program, Erase times and Program, Erase Endurance cycles. Bus Read
operations during the program operation will output the Status Register on the Data
Inputs/Outputs. See the section on the Status Register for more details.
After the program operation has completed the memory will return to the Read mode, unless
an error has occurred. When an error occurs the memory will continue to output the Status
Register. A Read/Reset command must be issued to reset the error condition and return to
Read mode.
Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase
Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.
22/71
M29W640FT, M29W640FB
4.2
Command interface
Fast Program commands
There are four Fast Program commands available to improve the programming throughput,
by writing several adjacent words or bytes in parallel. The Double, Quadruple and Octuple
Byte Program commands are available for x8 operations, while the Double Quadruple Word
Program command are available for x16 operations.
Fast Program commands can be suspended and then resumed by issuing a Program
Suspend command and a Program Resume command, respectively (see Section 4.1.8:
Program Suspend command and Section 4.1.9: Program Resume command).
To perform some of the Fast Program commands, VPPH must be applied to VPP/WP pin.
Care must be taken because applying a VPPH to the VPP/WP pin will temporarily unprotect
any protected block.
4.2.1
Double Byte Program command
The Double Byte Program command is used to write a page of two adjacent Bytes in
parallel. The two bytes must differ only in DQ15A-1. Three bus write cycles are necessary to
issue the Double Byte Program command.
1.
2.
3.
4.2.2
The first bus cycle sets up the Double Byte Program Command.
The second bus cycle latches the Address and the Data of the first byte to be written.
The third bus cycle latches the Address and the Data of the second byte to be written.
Quadruple Byte Program command(1)
The Quadruple Byte Program command is used to write a page of four adjacent Bytes in
parallel. The four bytes must differ only for addresses A0, DQ15A-1. Five bus write cycles
are necessary to issue the Quadruple Byte Program command.
1.
The first bus cycle sets up the Quadruple Byte Program Command.
3.
The third bus cycle latches the Address and the Data of the second byte to be written.
5.
The fifth bus cycle latches the Address and the Data of the fourth byte to be written and
starts the Program/Erase Controller.
2.
4.
The second bus cycle latches the Address and the Data of the first byte to be written.
The fourth bus cycle latches the Address and the Data of the third byte to be written.
1. For devices with process technology code “H” in the marking, the Quadruple Byte Program command can be performed
without applying V PPH on the VPP/WP pin. For other devices, applying V PPH on the VPP/WP pin is mandatory.
23/71
Command interface
4.2.3
M29W640FT, M29W640FB
Octuple Byte Program command
This is used to write eight adjacent Bytes, in x8 mode, simultaneously. The addresses of the
eight Bytes must differ only in A1, A0 and DQ15A-1.
Nine bus write cycles are necessary to issue the command:
1.
The first bus cycle sets up the command.
3.
The third bus cycle latches the Address and the Data of the second Byte to be written.
2.
4.
5.
6.
7.
8.
9.
The second bus cycle latches the Address and the Data of the first Byte to be written.
The fourth bus cycle latches the Address and the Data of the third Byte to be written.
The fifth bus cycle latches the Address and the Data of the fourth Byte to be written.
The sixth bus cycle latches the Address and the Data of the fifth Byte to be written.
The seventh bus cycle latches the Address and the Data of the sixth Byte to be written.
The eighth bus cycle latches the Address and the Data of the seventh Byte to be
written.
The ninth bus cycle latches the Address and the Data of the eighth Byte to be written
and starts the Program/Erase Controller.
To perform the Quadruple Byte Program command, it is necessary to apply VPPH to the
VPP/WP pin.
4.2.4
Double Word Program command(2)
The Double Word Program command is used to write a page of two adjacent Words in
parallel. The two Words must differ only for the address A0.
Three bus write cycles are necessary to issue the Double Word Program command.
The first bus cycle sets up the Quadruple Word Program Command.
The second bus cycle latches the Address and the Data of the first Word to be written.
The third bus cycle latches the Address and the Data of the second Word to be written
and starts the Program/Erase Controller.
After the program operation has completed the memory will return to the Read mode, unless
an error has occurred. When an error occurs Bus Read operations will continue to output
the Status Register. A Read/Reset command must be issued to reset the error condition and
return to Read mode.
Note that the Fast Program commands cannot change a bit set at ’0’ back to ’1’. One of the
Erase Commands must be used to set all the bits in a block or in the whole memory from ’0’
to ’1’.
Typical Program times are given in Table 8: Program, Erase times and Program, Erase
Endurance cycles.
2. For devices with process technology code “H” in the marking, the Double Word Program command can be performed
without applying V PPH on the VPP/WP pin. For other devices, applying V PPH on the VPP/WP pin is mandatory.
24/71
M29W640FT, M29W640FB
4.2.5
Command interface
Quadruple Word Program command
This is used to write a page of four adjacent Words (or 8 adjacent Bytes), in x16 mode,
simultaneously. The addresses of the four Words must differ only in A1 and A0.
Five bus write cycles are necessary to issue the command:
The first bus cycle sets up the command.
The second bus cycle latches the Address and the Data of the first Word to be written.
The third bus cycle latches the Address and the Data of the second Word to be written.
The fourth bus cycle latches the Address and the Data of the third Word to be written.
The fifth bus cycle latches the Address and the Data of the fourth Word to be written
and starts the Program/Erase Controller.
4.2.6
To perform the Quadruple Byte Program command, it is necessary to apply VPPH to the
VPP/WP pin.
Unlock Bypass command
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program
command to program the memory faster than with the standard program commands. When
the cycle time to the device is long, considerable time saving can be made by using these
commands. Three Bus Write operations are required to issue the Unlock Bypass command.
Once the Unlock Bypass command has been issued the memory will only accept the Unlock
Bypass Program command and the Unlock Bypass Reset command. The memory can be
read as if in Read mode.
When VPP is applied to the VPP/Write Protect pin the memory automatically enters the
Unlock Bypass mode and the Unlock Bypass Program command can be issued
immediately.
4.2.7
Unlock Bypass Program command
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program
command to program the memory. When the cycle time to the device is long, considerable
time saving can be made by using these commands. Three Bus Write operations are
required to issue the Unlock Bypass command.
Once the Unlock Bypass command has been issued the memory will only accept the Unlock
Bypass Program command and the Unlock Bypass Reset command. The memory can be
read as if in Read mode.
The memory offers accelerated program operations through the VPP/Write Protect pin.
When the system asserts VPP on the VPP/Write Protect pin, the memory automatically
enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass
program command sequence. The memory uses the higher voltage on the VPP/Write
Protect pin, to accelerate the Unlock Bypass Program operation.
Never raise VPP/Write Protect to VPP from any mode except Read mode, otherwise the
memory may be left in an indeterminate state.
25/71
Command interface
4.2.8
Unlock Bypass Reset command
4.3
Block Protection commands
4.3.1
Enter Extended Block command
M29W640FT, M29W640FB
The Unlock Bypass Reset command can be used to return to Read/Reset mode from
Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass
Reset command. Read/Reset command does not exit from Unlock Bypass Mode.
The device has an extra 256 Byte block (Extended Block) that can only be accessed using
the Enter Extended Block command. Three Bus write cycles are required to issue the
Extended Block command. Once the command has been issued the device enters
Extended Block mode where all Bus Read or Write operations to the Boot Block addresses
access the Extended Block. The Extended Block (with the same address as the Boot
Blocks) cannot be erased, and can be treated as one-time programmable (OTP) memory. In
Extended Block mode the Boot Blocks are not accessible.
To exit from the Extended Block mode the Exit Extended Block command must be issued.
The Extended Block can be protected, however once protected the protection cannot be
undone.
4.3.2
Exit Extended Block command
4.3.3
Block Protect and Chip Unprotect commands
The Exit Extended Block command is used to exit from the Extended Block mode and return
the device to Read mode. Four Bus Write operations are required to issue the command.
Groups of blocks can be protected against accidental Program or Erase. The Protection
Groups are shown in Appendix A: Block addresses, Table 21: Top Boot Block addresses,
M29W640FT and Table 22: Bottom Boot Block addresses, M29W640FB. The whole chip
can be unprotected to allow the data inside the blocks to be changed.
Block Protect and Chip Unprotect operations are described in Appendix D: Block protection.
26/71
M29W640FT, M29W640FB
Commands, 16-bit mode, BYTE = VIH(1)
Command
Read/Reset
Length
Table 6.
Command interface
1
3
1st
2nd
3rd
Addr Data Addr Data
X
F0
555
AA
555
AA
Auto Select
3
555
Double Word Program
3
555
5
555
3
Bus Write operations
2AA
55
Addr
4th
X
F0
555
A0
PA
PD
PA2
PD2
PA3
PD3
555
AA
2AA
55
2AA
55
555
50
PA0
PD0
PA1
PD1
56
PA0
PD0
PA1
PD1
555
AA
2AA
55
555
20
2
X
A0
PA
PD
Unlock Bypass Reset
2
X
90
X
00
Block Erase
6+
555
AA
2AA
55
555
555
80
80
1
X
B0
1
X
30
1
55
98
2AA
55
555
88
Quadruple Word
Program
Unlock Bypass
Unlock Bypass
Program
Chip Erase
Program/Erase
Suspend
Program/Erase
Resume
Read CFI Query
Enter Extended Block
Exit Extended Block
4
6
3
4
555
555
555
AA
AA
AA
2AA
2AA
2AA
55
55
55
6th
Data Addr Data Addr Data Addr Data
AA
Program
5th
555
90
90
555
AA
X
00
2AA
55
555
BA
10
30
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in
hexadecimal. The Command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8DQ14 and DQ15 are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
27/71
Command interface
Command
Read/Reset
Commands, 8-bit mode, BYTE = VIL
Length
Table 7.
M29W640FT, M29W640FB
1
1st
2nd
3rd
X
F0
3 AAA AA 555 55
X
Double Byte
Program
3 AAA 50 PA0 PD0 PA1 PD1
Octuple Byte
Program
5th
6th
7th
8th
4 AAA AA 555 55 AAA A0
PA
PD
5 AAA 56 PA0 PD0 PA1 PD1 PA2 PD2 PA3 PD3
9 AAA 8B PA0 PD0 PA1 PD1 PA2 PD2 PA3 PD3 PA4 PD4 PA5 PD5 PA6 PD6 PA7 PD7
Unlock Bypass 3 AAA AA 555 55 AAA 20
Unlock Bypass
2
Program
Unlock Bypass
2
Reset
Chip Erase
Block Erase
Exit Extended
Block
A0
PA
PD
X
90
X
00
6+ AAA AA 555 55 AAA 80 AAA AA 555
Program/Erase
1
Resume
Enter
Extended
Block
X
6 AAA AA 555 55 AAA 80 AAA AA 555
Program/Erase
1
Suspend
Read CFI
Query
1
X
B0
X
30
AA
98
55 AAA 10
55
BA
30
3 AAA AA 555 55 AAA 88
4 AAA AA 555 55 AAA 90
X
00
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in
hexadecimal. The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8DQ14 and DQ15 are Don’t Care. DQ15A–1 is A–1 when BYTE is V IL or DQ15 when BYTE is VIH.
28/71
9th
F0
3 AAA AA 555 55 AAA 90
Quadruple
Byte Program
4th
Add Data Add Data Add Data Add Data Add Data Add Data Add Data Add Data Add Data
Auto Select
Program
Bus Write operations(1)
M29W640FT, M29W640FB
Table 8.
Command interface
Program, Erase times and Program, Erase Endurance cycles
Chip Erase
Parameter
Min
Block Erase (64 KBytes)
Erase Suspend Latency time
Program (Byte or Word)
Double Word /Quadruple Byte Program
Chip Program (Byte by Byte)
Chip Program (Double Word/Quadruple Byte Program)
s
20
s
(4)
50
200
(3)
200
(3)
400
(3)
100
(3)
200(3)
10
200(3)
40
200(3)
10
100,000
400(3)
10
20
Chip Program (Quadruple Word/Octuple Byte Program)
1. Typical values measured at room temperature and nominal voltages.
0.8
6(4)
80
80
Chip Program (Word by Word)
Data Retention
Unit
10
Quadruple Word / Octuple Byte Program
Program/Erase Cycles (per Block)
Max(2)
10
Double Byte
Program Suspend Latency time
Typ(1)(2)
s
s
s
s
s
s
s
s
(3)
50
4
s
s
cycles
years
2. Sampled, but not 100% tested.
3. Maximum value measured at worst case conditions for both temperature and V CC after 100,00 program/erase cycles.
4. Maximum value measured at worst case conditions for both temperature and V CC .
29/71
Status Register
5
M29W640FT, M29W640FB
Status Register
Bus Read operations from any address always read the Status Register during Program
and Erase operations. It is also read during Erase Suspend when an address within a block
being erased is accessed.
The bits in the Status Register are summarized in Table 9: Status Register Bits.
5.1
Data Polling Bit (DQ7)
The Data Polling Bit can be used to identify whether the Program/Erase Controller has
successfully completed its operation or if it has responded to an Erase Suspend. The Data
Polling Bit is output on DQ7 when the Status Register is read.
During Program operations the Data Polling Bit outputs the complement of the bit being
programmed to DQ7. After successful completion of the Program operation the memory
returns to Read mode and Bus Read operations from the address just programmed output
DQ7, not its complement.
During Erase operations the Data Polling Bit outputs ’0’, the complement of the erased state
of DQ7. After successful completion of the Erase operation the memory returns to Read
Mode.
In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation
within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the
Program/Erase Controller has suspended the Erase operation.
Figure 4: Data Polling flowchart, gives an example of how to use the Data Polling Bit. A
Valid Address is the address being programmed or an address within the block being
erased.
5.2
Toggle Bit (DQ6)
The Toggle Bit can be used to identify whether the Program/Erase Controller has
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle
Bit is output on DQ6 when the Status Register is read.
During Program and Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with
successive Bus Read operations at any address. After successful completion of the
operation the memory returns to Read mode.
During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block
being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has
suspended the Erase operation.
Figure 5: Data Toggle flowchart, gives an example of how to use the Data Toggle Bit.
30/71
M29W640FT, M29W640FB
5.3
Status Register
Error Bit (DQ5)
The Error Bit can be used to identify errors detected by the Program/Erase Controller. The
Error Bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write the
correct data to the memory. If the Error Bit is set a Read/Reset command must be issued
before other commands are issued. The Error bit is output on DQ5 when the Status Register
is read.
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to
do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’.
One of the Erase commands must be used to set all the bits in a block or in the whole
memory from ’0’ to ’1’.
5.4
Erase Timer Bit (DQ3)
5.5
Alternative Toggle Bit (DQ2)
The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation
during a Block Erase command. Once the Program/Erase Controller starts erasing the
Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer Bit
is set to ’0’ and additional blocks to be erased may be written to the Command Interface.
The Erase Timer Bit is output on DQ3 when the Status Register is read.
The Alternative Toggle Bit can be used to monitor the Program/Erase controller during
Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status Register is
read.
During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’,
etc., with successive Bus Read operations from addresses within the blocks being erased.
A protected block is treated the same as a block not being erased. Once the operation
completes the memory returns to Read mode.
During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with
successive Bus Read operations from addresses within the blocks being erased. Bus Read
operations to addresses within blocks not being erased will output the memory cell data as if
in Read mode.
After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be
used to identify which block or blocks have caused the error. The Alternative Toggle Bit
changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read Operations from addresses
within blocks that have not erased correctly. The Alternative Toggle Bit does not change if
the addressed block has erased correctly.
31/71
Status Register
M29W640FT, M29W640FB
Table 9.
Status Register Bits(1)
Operation
Address
DQ7
Program During Erase
Suspend
Chip Erase
Any address
Program
Program Error
Block Erase before
timeout
Block Erase
Erase Suspend
Erase Error
DQ7
DQ6
Toggle
DQ5
DQ3
DQ2
RB
Any address
DQ7
Toggle
0
–
–
0
Any address
DQ7
Toggle
1
–
–
Hi-Z
Erasing Block
0
Toggle
0
Toggle
0
0
Toggle
Toggle
0
1
No Toggle
Toggle
Hi-Z
0
Toggle
Any address
Non-Erasing Block
0
Non-Erasing Block
0
Erasing Block
Erasing Block
Non-Erasing Block
Good Block address
Faulty Block address
1. Unspecified data bits should be ignored.
Figure 4.
32/71
0
Data Polling flowchart
0
Toggle
0
–
–
0
1
Toggle
0
0
No Toggle
Toggle
0
1
No Toggle
0
0
0
1
–
Data read as normal
Toggle
1
1
1
1
Toggle
No Toggle
Toggle
0
0
0
0
Hi-Z
Hi-Z
Hi-Z
M29W640FT, M29W640FB
Figure 5.
Status Register
Data Toggle flowchart
33/71
Maximum rating
6
M29W640FT, M29W640FB
Maximum rating
Stressing the device above the rating listed in the Absolute Maximum Ratings table may
cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions
for extended periods may affect device reliability. These are stress ratings only and
operation of the device at these or any other conditions above those indicated in the
Operating sections of this specification is not implied. Refer also to the Numonyx SURE
Program and other relevant quality documents.
Table 10.
Symbol
TBIAS
TSTG
VIO
VCC
VID
VPP(3)
Absolute maximum ratings
Parameter
Temperature under bias
Storage temperature
Min
Max
Unit
–65
150
°C
–50
125
Input or Output voltage (1)(2)
–0.6
VCC +0.6
Identification voltage
–0.6
13.5
Supply voltage
Program voltage
–0.6
–0.6
4
13.5
1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.
°C
V
V
V
V
2. Maximum voltage may overshoot to VCC +2V during transition and for less than 20ns during transitions.
3. VPP must not remain at 12V for more than a total of 80hrs.
34/71
M29W640FT, M29W640FB
7
DC and AC parameters
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC Characteristic tables that
follow are derived from tests performed under the Measurement Conditions summarized in
the relevant tables. Designers should check that the operating conditions in their circuit
match the measurement conditions when relying on the quoted parameters.
Table 11.
Operating and AC measurement conditions
Parameter
VCC Supply voltage
Ambient Operating Temperature
Load capacitance (CL)
Input Rise and Fall times
Input Pulse voltages
Input and Output Timing Ref. voltages
Figure 6.
AC measurement I/O waveform
Figure 7.
AC measurement Load Circuit
M29W640FT, M29W640FB
Min
Max
–40
85
2.7
3.6
30
0 to VCC
VCC/2
10
Unit
V
°C
pF
ns
V
V
35/71
DC and AC parameters
Table 12.
Symbol
CIN
COUT
M29W640FT, M29W640FB
Device capacitance
Parameter
Test condition
Input capacitance
VIN = 0V
Output capacitance
Symbol
DC characteristics
Parameter
ILI
Input Leakage Current
ICC1
Supply Current (Read)
ICC2
Supply Current (Standby)
ICC3
Supply Current
(Program/Erase)
VIL
Input Low voltage
VPP
Voltage for VPP/WP
Program Acceleration
ILO
VIH
IPP
VOL
VOH
VID
VLKO(1)
Output Leakage Current
0V
0V
VIN
VOUT
VCC
Current for VPP/WP
Program Acceleration
Output Low voltage
Output High voltage
Identification voltage
Program/Erase Lockout
Supply voltage
Min
VCC
E = VIL, G = V IH,
f = 6MHz
Unit
12
pF
pF
Max
Unit
±1
A
±1
A
10
mA
100
A
20
mA
20
mA
0.7VCC
VCC +0.3
V
11.5
12.5
V
VCC = 2.7V ±10%
15
mA
IOL = 1.8mA
0.45
V
E = VCC ±0.2V,
RP = V CC ±0.2V
Program/Erase
Controller active
VPP/WP =
VIL or VIH
VPP /WP = VPP
Input High voltage
1. Sampled only, not 100% tested.
36/71
Test condition
Max
6
VOUT = 0V
1. Sampled only, not 100% tested.
Table 13.
Min
VCC = 2.7V ±10%
IOH = –100 A
–0.5
VCC –0.4
0.8
V
V
11.5
12.5
V
1.8
2.3
V
M29W640FT, M29W640FB
Figure 8.
Read Mode AC waveforms
Figure 9.
Page Read AC waveforms
DC and AC parameters
37/71
DC and AC parameters
Table 14.
M29W640FT, M29W640FB
Read AC characteristics
Symbol
Alt
tAVAV
tRC
tAVQV
tACC Address Valid to Output Valid
tAVQV1
tPAGE Address Valid to Output Valid (Page)
tELQX (1)
Parameter
Address Valid to Next Address Valid
tELQV
tLZ
tCE
Chip Enable Low to Output Transition
tGLQX (1)
tOLZ
tGLQV
tOE
Output Enable Low to Output
Transition
tGHQZ (1)
tDF
tEHQZ
(1)
tEHQX
tGHQX
tAXQX
tHZ
tOH
Chip Enable Low to Output Valid
Output Enable Low to Output Valid
Chip Enable High to Output Hi-Z
Output Enable High to Output Hi-Z
Chip Enable, Output Enable or
Address Transition to Output Transition
Unit
60
70
Min
60
70
ns
Max
60
70
ns
E = VIL,
G = VIL
Max
25
25
ns
G = VIL
Min
Max
0
60
0
70
ns
ns
E = V IL
Min
0
0
ns
E = V IL
Max
25
25
ns
E = V IL
Max
25
25
ns
E = VIL,
G = VIL
E = VIL,
G = VIL
G = VIL
G = VIL
Max
25
25
ns
Min
0
0
ns
tELBL
tELBH
tELFL
Chip Enable to BYTE Low or High
tELFH
Max
5
5
ns
tBHQV
tFHQV BYTE High to Output Valid
Max
Max
25
25
ns
tBLQZ
tFLQZ BYTE Low to Output Hi-Z
1. Sampled only, not 100% tested.
38/71
Test condition
M29W640FT,
M29W640FB
30
30
ns
M29W640FT, M29W640FB
DC and AC parameters
Figure 10. Write AC waveforms, Write Enable controlled
39/71
DC and AC parameters
Table 15.
M29W640FT, M29W640FB
Write AC characteristics, Write Enable controlled
Symbol
Alt
tAVAV
tWC
Address Valid to Next Address Valid
tWLWH
tWP
Write Enable Low to Write Enable High
tWHDX
tDH
tWHWL
tWPH
tWLAX
tAH
tWHGL
tOEH
tELWL
tDVWH
tWHEH
tAVWL
tGHWL
tWHRL(1)
tVCHEL
tCS
tDS
tCH
tAS
tBUSY
tVCS
Parameter
Min
Chip Enable Low to Write Enable Low
Min
Input Valid to Write Enable High
Min
60
70
0
0
60
ns
ns
45
45
Write Enable High to Input Transition
Min
0
0
Write Enable High to Write Enable Low
Min
30
30
Min
45
45
Min
0
0
Write Enable High to Chip Enable High
Address Valid to Write Enable Low
Write Enable Low to Address Transition
Min
Min
Output Enable High to Write Enable Low
Min
Program/Erase Valid to RB Low
Max
Write Enable High to Output Enable Low
VCC High to Chip Enable Low
Min
45
0
0
0
30
50
Unit
70
Min
1. Sampled only, not 100% tested.
40/71
M29W640FT,
M29W640FB
45
ns
ns
ns
0
ns
0
ns
ns
ns
0
ns
30
ns
50
ns
s
M29W640FT, M29W640FB
Figure 11.
DC and AC parameters
Write AC waveforms, Chip Enable controlled
41/71
DC and AC parameters
Table 16.
M29W640FT, M29W640FB
Write AC characteristics, Chip Enable controlled
Alt
tAVAV
tWC
Address Valid to Next Address Valid
Min
60
70
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
45
45
ns
Chip Enable High to Input Transition
Min
0
0
ns
Chip Enable High to Chip Enable Low
Min
30
30
ns
Chip Enable Low to Address Transition
Min
45
45
Min
0
0
ns
50
s
tWLEL
tDVEH
tEHDX
tEHWH
tWS
tDS
tDH
tWH
tEHEL
tCPH
tELAX
tAH
tEHGL
tOEH
tAVEL
tGHEL
tEHRL(1)
tVCHWL
tAS
Parameter
M29W640FT, M29W640FB
Symbol
Write Enable Low to Chip Enable Low
Input Valid to Chip Enable High
Chip Enable High to Write Enable High
Address Valid to Chip Enable Low
Output Enable High Chip Enable Low
Chip Enable High to Output Enable Low
tBUSY Program/Erase Valid to RB Low
tVCS
VCC High to Write Enable Low
1. Sampled only, not 100% tested.
Min
Min
Min
Min
Min
Max
Min
Figure 12. Reset/Block Temporary Unprotect AC waveforms
42/71
60
0
45
0
0
0
30
50
70
0
45
0
0
0
30
Unit
ns
ns
ns
ns
ns
ns
ns
M29W640FT, M29W640FB
DC and AC parameters
Figure 13. Accelerated Program Timing waveforms
Table 17.
Reset/Block Temporary Unprotect AC characteristics
M29W640FT,
M29W640FB
Unit
Min
50
ns
RB High to Write Enable Low, Chip Enable Low,
Output Enable Low
Min
0
ns
RP Pulse Width
Min
500
ns
Min
500
ns
Symbol
Alt
tPHWL(1)
tPHEL
tPHGL(1)
tRH
RP High to Write Enable Low, Chip Enable Low,
Output Enable Low
tRHWL(1)
tRHEL(1)
tRHGL(1)
tRB
tPLYH
tRP
tREADY
tPLPX
tPHPHH(1)
tVHVPP(1)
tVIDR
Parameter
RP Low to Read mode
Max
VPP Rise and Fall Time
Min
RP Rise Time to VID
1. Sampled only, not 100% tested.
50
250
s
ns
43/71
Package mechanical
8
M29W640FT, M29W640FB
Package mechanical
Figure 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, top view
package outline
1. Drawing is not to scale.
Table 18.
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, package
mechanical data
Symbol
Typ
Min
A1
0.100
B
0.220
A
A2
C
CP
D1
E
1.000
12.000
20.000
inches
Max
Typ
Min
0.050
0.150
0.0039
0.0020
0.0059
0.170
0.270
0.0087
0.0067
0.0106
0.950
1.200
1.050
0.0394
0.0374
0.100
0.210
11.900
12.100
0.4724
0.4685
19.800
0.100
20.200
0.7874
0.0039
0.7795
Max
0.0472
0.0413
0.0083
0.0039
0.4764
0.7953
E1
18.400
18.300
18.500
0.7244
0.7205
0.7283
L
0.600
0.500
0.700
0.0236
0.0197
0.0276
3°
0°
5°
3°
0°
5°
e
L1
44/71
millimeters
0.500
0.800
–
–
0.0197
0.0315
–
–
M29W640FT, M29W640FB
Package mechanical
Figure 15. TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package outline
1. Drawing is not to scale.
Table 19.
Symbol
A
TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package
mechanical data
millimeters
Typ
Min
inches
Max
1.200
Typ
A1
0.260
b
0.350
0.450
–
–
0.1575
A2
D
6.000
5.900
0.0102
0.900
6.100
Min
0.2362
0.0138
0.2323
0.0472
0.0354
0.0177
0.2402
D1
4.000
E
8.000
7.900
8.100
0.3150
0.3110
0.3189
0.800
–
–
0.0315
–
–
–
0.0472
–
0.0157
–
ddd
E1
5.600
FD
1.000
–
–
SD
0.400
–
–
e
FE
SE
1.200
0.400
–
0.100
–
–
–
–
0.2205
0.0394
0.0157
–
Max
–
–
0.0039
–
–
–
–
–
–
–
45/71
Part numbering
9
M29W640FT, M29W640FB
Part numbering
Table 20.
Ordering information scheme
Example:
M29W640FB
70
N
6
F
Device Type
M29
Operating Voltage
W = VCC = 2.7 to 3.6V
Device Function
640F = 64 Mbit (x8 / x16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
60 = 60ns
70 = 70ns
Package
N = TSOP48: 12 x 20 mm
ZA = TFBGA48: 6x8mm, 0.80 mm pitch
Temperature Range
6 = 40 to 85 °C
Option
E = ECOPACK Package, Standard Packing
Note:
F = ECOPACK Package, Tape & Reel Packing
This product is also available with the Extended Block factory locked. For further details and
ordering information contact your nearest Numonyx sales office.
Devices are shipped from the factory with the memory content bits erased to 1. For a list of
available options (Speed, Package, etc.) or for further information on any aspect of this
device, please contact your nearest Numonyx Sales Office.
46/71
M29W640FT, M29W640FB
Appendix A
Table 21.
Block addresses
Top Boot Block addresses, M29W640FT
Block
KBytes/KWords
1
64/32
0
2
3
4
5
6
7
8
9
64/32
64/32
64/32
64/32
64/32
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
018000h–01FFFFh
050000h–05FFFFh
028000h–02FFFFh
070000h–07FFFFh
038000h–03FFFFh
090000h–09FFFFh
048000h–04FFFFh
0B0000h–0BFFFFh
058000h–05FFFFh
0D0000h–0DFFFFh
068000h–06FFFFh
0F0000h–0FFFFFh
078000h–07FFFFh
110000h–11FFFFh
088000h–08FFFFh
130000h–13FFFFh
098000h–09FFFFh
060000h–06FFFFh
0A0000h–0AFFFFh
0E0000h–0EFFFFh
120000h–12FFFFh
020000h–027FFFh
030000h–037FFFh
040000h–047FFFh
050000h–057FFFh
060000h–067FFFh
070000h–077FFFh
080000h–087FFFh
090000h–097FFFh
0A0000h–0A7FFFh
150000h–15FFFFh
0A8000h–0AFFFFh
170000h–17FFFFh
0B8000h–0BFFFFh
160000h–16FFFFh
0B0000h–0B7FFFh
0C0000h–0C7FFFh
190000h–19FFFFh
0C8000h–0CFFFFh
1B0000h–1BFFFFh
0D8000h–0DFFFFh
1D0000h–1DFFFFh
0E8000h–0EFFFFh
1F0000h–1FFFFFh
0F8000h–0FFFFFh
1A0000h–1AFFFFh
1C0000h–1CFFFFh
Protection Group
008000h–00FFFFh
030000h–03FFFFh
180000h–18FFFFh
64/32
64/32
010000h–017FFFh
140000h–14FFFFh
64/32
64/32
020000h–02FFFFh
010000h–01FFFFh
100000h–10FFFFh
64/32
64/32
000000h–007FFFh(1)
0C0000h–0CFFFFh
Protection Group
(x16)
000000h–00FFFFh(1)
080000h–08FFFFh
64/32
64/32
(x8)
040000h–04FFFFh
64/32
12
14
Protection Group
64/32
64/32
13
Protection Block Group
64/32
10
11
Block addresses
1E0000h–1EFFFFh
0D0000h–0D7FFFh
0E0000h–0E7FFFh
0F0000h–0F7FFFh
47/71
Block addresses
Table 21.
Top Boot Block addresses, M29W640FT (continued)
Block
KBytes/KWords
33
64/32
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
48/71
M29W640FT, M29W640FB
64/32
64/32
Protection Block Group
Protection Group
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
120000h–127FFFh
128000h–12FFFFh
270000h–27FFFFh
138000h–13FFFFh
290000h–29FFFFh
148000h–14FFFFh
2B0000h–2BFFFFh
158000h–15FFFFh
2D0000h–2DFFFFh
168000h–16FFFFh
2F0000h–2FFFFFh
178000h–17FFFFh
310000h–31FFFFh
188000h–18FFFFh
330000h–33FFFFh
198000h–19FFFFh
260000h–26FFFFh
2A0000h–2AFFFFh
2E0000h–2EFFFFh
320000h–32FFFFh
130000h–137FFFh
140000h–147FFFh
150000h–157FFFh
160000h–167FFFh
170000h–177FFFh
180000h–187FFFh
190000h–197FFFh
1A0000h–1A7FFFh
350000h–35FFFFh
1A8000h–1AFFFFh
370000h–37FFFFh
1B8000h–1BFFFFh
360000h–36FFFFh
1B0000h–1B7FFFh
1C0000h–1C7FFFh
390000h–39FFFFh
1C8000h–1CFFFFh
3B0000h–3BFFFFh
1D8000h–1DFFFFh
3D0000h–3DFFFFh
1E8000h–1EFFFFh
3F0000h–3FFFFFh
1F8000h–1FFFFFh
3A0000h–3AFFFFh
3C0000h–3CFFFFh
Protection Group
110000h–117FFFh
250000h–25FFFFh
380000h–38FFFFh
64/32
64/32
118000h–11FFFFh
340000h–34FFFFh
64/32
64/32
230000h–23FFFFh
220000h–22FFFFh
300000h–30FFFFh
Protection Group
100000h–107FFFh
108000h–10FFFFh
2C0000h–2CFFFFh
Protection Group
(x16)
210000h–21FFFFh
280000h–28FFFFh
64/32
64/32
200000h–20FFFFh
240000h–24FFFFh
64/32
64/32
(x8)
3E0000h–3EFFFFh
1D0000h–1D7FFFh
1E0000h–1E7FFFh
1F0000h–1F7FFFh
M29W640FT, M29W640FB
Table 21.
Top Boot Block addresses, M29W640FT (continued)
Block
KBytes/KWords
65
64/32
64
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
Block addresses
64/32
64/32
Protection Block Group
Protection Group
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
450000h–45FFFFh
228000h–22FFFFh
470000h–47FFFFh
238000h–23FFFFh
490000h–49FFFFh
248000h–24FFFFh
4B0000h–4BFFFFh
258000h–25FFFFh
4D0000h–4DFFFFh
268000h–26FFFFh
4F0000h–4FFFFFh
278000h–27FFFFh
510000h–51FFFFh
288000h–28FFFFh
530000h–53FFFFh
298000h–29FFFFh
460000h–46FFFFh
4A0000h–4AFFFFh
4E0000h–4EFFFFh
520000h–52FFFFh
220000h–227FFFh
230000h–237FFFh
240000h–247FFFh
250000h–257FFFh
260000h–267FFFh
270000h–277FFFh
280000h–287FFFh
290000h–297FFFh
2A0000h–2A7FFFh
2A8000h–2AFFFFh
570000h–57FFFFh
2B8000h–2BFFFFh
560000h–56FFFFh
2B0000h–2B7FFFh
2C0000h–2C7FFFh
590000h–59FFFFh
2C8000h–2CFFFFh
5B0000h–5BFFFFh
2D8000h–2DFFFFh
5D0000h–5DFFFFh
2E8000h–2EFFFFh
5F0000h–5FFFFFh
2F8000h–2FFFFFh
5A0000h–5AFFFFh
5C0000h–5CFFFFh
Protection Group
210000h–217FFFh
550000h–55FFFFh
580000h–58FFFFh
64/32
64/32
218000h–21FFFFh
540000h–54FFFFh
64/32
64/32
430000h–43FFFFh
420000h–42FFFFh
500000h–50FFFFh
Protection Group
200000h–207FFFh
208000h–20FFFFh
4C0000h–4CFFFFh
Protection Group
(x16)
410000h–41FFFFh
480000h–48FFFFh
64/32
64/32
400000h–40FFFFh
440000h–44FFFFh
64/32
64/32
(x8)
5E0000h–5EFFFFh
2D0000h–2D7FFFh
2E0000h–2E7FFFh
2F0000h–2F7FFFh
49/71
Block addresses
Table 21.
Top Boot Block addresses, M29W640FT (continued)
Block
KBytes/KWords
97
64/32
96
98
99
100
101
102
103
104
105
106
107
108
109
64/32
64/32
64/32
64/32
64/32
116
117
118
119
120
121
122
123
50/71
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
630000h–63FFFFh
318000h–31FFFFh
650000h–65FFFFh
328000h–32FFFFh
670000h–67FFFFh
338000h–33FFFFh
690000h–69FFFFh
348000h–34FFFFh
6B0000h–6BFFFFh
358000h–35FFFFh
6D0000h–6DFFFFh
368000h–36FFFFh
6F0000h–6FFFFFh
378000h–37FFFFh
710000h–71FFFFh
388000h–38FFFFh
730000h–73FFFFh
398000h–39FFFFh
620000h–62FFFFh
660000h–66FFFFh
6A0000h–6AFFFFh
6E0000h–6EFFFFh
720000h–72FFFFh
740000h–74FFFFh
Protection Group
310000h–317FFFh
320000h–327FFFh
330000h–337FFFh
340000h–347FFFh
350000h–357FFFh
360000h–367FFFh
370000h–377FFFh
380000h–387FFFh
390000h–397FFFh
3A0000h–3A7FFFh
750000h–75FFFFh
3A8000h–3AFFFFh
770000h–77FFFFh
3B8000h–3BFFFFh
760000h–76FFFFh
780000h–78FFFFh
Protection Group
300000h–307FFFh
308000h–30FFFFh
700000h–70FFFFh
Protection Group
(x16)
610000h–61FFFFh
6C0000h–6CFFFFh
64/32
64/32
600000h–60FFFFh
680000h–68FFFFh
64/32
64/32
115
Protection Group
64/32
64/32
(x8)
640000h–64FFFFh
64/32
112
114
Protection Group
64/32
64/32
113
Protection Block Group
64/32
110
111
M29W640FT, M29W640FB
3B0000h–3B7FFFh
3C0000h–3C7FFFh
790000h–79FFFFh
3C8000h–3CFFFFh
7B0000h–7BFFFFh
3D8000h–3DFFFFh
7A0000h–7AFFFFh
3D0000h–3D7FFFh
M29W640FT, M29W640FB
Table 21.
Block addresses
Top Boot Block addresses, M29W640FT (continued)
Block
KBytes/KWords
125
64/32
7D0000h–7DFFFFh
3E8000h–3EFFFFh
8/4
7F0000h–7F1FFFh
3F8000h–3F8FFFh
124
126
127
128
129
130
131
132
133
134
64/32
Protection Block Group
64/32
8/4
8/4
8/4
7C0000h–7CFFFFh
7E0000h–7EFFFFh
Protection Group
8/4
8/4
8/4
8/4
(x8)
1. Used as the Extended Block addresses in Extended Block mode.
7F2000h–7F3FFFh
7F4000h–7F5FFFh
7F6000h–7F7FFFh
(x16)
3E0000h–3E7FFFh
3F0000h–3F7FFFh
3F9000h–3F9FFFh
3FA000h–3FAFFFh
3FB000h–3FBFFFh
7F8000h–7F9FFFh
3FC000h–3FCFFFh
7FC000h–7FDFFFh
3FE000h–3FEFFFh
7FA000h–7FBFFFh
7FE000h–7FFFFFh
3FD000h–3FDFFFh
3FF000h–3FFFFFh
51/71
Block addresses
Table 22.
Bottom Boot Block addresses, M29W640FB
Block
KBytes/KWords
1
8/4
0
2
3
4
5
6
7
8/4
8/4
8/4
8/4
64/32
12
64/32
14
64/32
13
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
52/71
Protection Group
64/32
Protection Group
Protection Group
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
003000h–003FFFh
004000h–004FFFh
005000h–005FFFh
006000h–006FFFh
007000h–007FFFh
008000h–00FFFFh
030000h-03FFFFh
018000h–01FFFFh
050000h-05FFFFh
028000h–02FFFFh
070000h-07FFFFh
038000h–03FFFFh
090000h-09FFFFh
048000h–04FFFFh
0B0000h-0BFFFFh
058000h–05FFFFh
0D0000h-0DFFFFh
068000h–06FFFFh
0F0000h-0FFFFFh
078000h–07FFFFh
110000h-11FFFFh
088000h–08FFFFh
130000h-13FFFFh
098000h–09FFFFh
060000h-06FFFFh
0A0000h-0AFFFFh
0E0000h-0EFFFFh
120000h-12FFFFh
010000h–017FFFh
020000h–027FFFh
030000h–037FFFh
040000h–047FFFh
050000h–057FFFh
060000h–067FFFh
070000h–077FFFh
080000h–087FFFh
090000h–097FFFh
0A0000h–0A7FFFh
150000h-15FFFFh
0A8000h–0AFFFFh
170000h-17FFFFh
0B8000h–0BFFFFh
160000h-16FFFFh
180000h-18FFFFh
Protection Group
001000h–001FFFh
010000h-01FFFFh
140000h-14FFFFh
64/32
64/32
00C000h-00DFFFh
100000h-10FFFFh
64/32
64/32
00A000h-00BFFFh
0C0000h-0CFFFFh
64/32
64/32
008000h-009FFFh
080000h-08FFFFh
64/32
64/32
002000h–002FFFh
040000h-04FFFFh
64/32
64/32
004000h-005FFFh
020000h-02FFFFh
64/32
64/32
000000h–000FFFh(1)
00E000h-00FFFFh
64/32
(x16)
000000h-001FFFh(1)
006000h-007FFFh
8/4
10
(x8)
002000h-003FFFh
8/4
64/32
11
Protection Block Group
8/4
8
9
M29W640FT, M29W640FB
0B0000h–0B7FFFh
0C0000h–0C7FFFh
190000h-19FFFFh
0C8000h–0CFFFFh
1B0000h-1BFFFFh
0D8000h–0DFFFFh
1A0000h-1AFFFFh
0D0000h–0D7FFFh
M29W640FT, M29W640FB
Table 22.
Bottom Boot Block addresses, M29W640FB (continued)
Block
KBytes/KWords
36
64/32
35
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
Block addresses
64/32
64/32
Protection Block Group
Protection Group
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
210000h-21FFFFh
108000h–10FFFFh
230000h-23FFFFh
118000h–11FFFFh
220000h-22FFFFh
100000h–107FFFh
110000h–117FFFh
120000h–127FFFh
128000h–12FFFFh
270000h-27FFFFh
138000h–13FFFFh
290000h-29FFFFh
148000h–14FFFFh
2B0000h-2BFFFFh
158000h–15FFFFh
2D0000h-2DFFFFh
168000h–16FFFFh
2F0000h-2FFFFFh
178000h–17FFFFh
310000h-31FFFFh
188000h–18FFFFh
330000h-33FFFFh
198000h–19FFFFh
260000h-26FFFFh
2A0000h-2AFFFFh
2E0000h-2EFFFFh
320000h-32FFFFh
130000h–137FFFh
140000h–147FFFh
150000h–157FFFh
160000h–167FFFh
170000h–177FFFh
180000h–187FFFh
190000h–197FFFh
1A0000h–1A7FFFh
350000h-35FFFFh
1A8000h–1AFFFFh
370000h-37FFFFh
1B8000h–1BFFFFh
360000h-36FFFFh
380000h-38FFFFh
Protection Group
0F0000h–0F7FFFh
250000h-25FFFFh
340000h-34FFFFh
64/32
64/32
0F8000h–0FFFFFh
300000h-30FFFFh
64/32
64/32
1F0000h-1FFFFFh
1E0000h-1EFFFFh
2C0000h-2CFFFFh
Protection Group
0E0000h–0E7FFFh
0E8000h–0EFFFFh
280000h-28FFFFh
Protection Group
(x16)
1D0000h-1DFFFFh
240000h-24FFFFh
64/32
64/32
1C0000h-1CFFFFh
200000h-20FFFFh
64/32
64/32
(x8)
1B0000h–1B7FFFh
1C0000h–1C7FFFh
390000h-39FFFFh
1C8000h–1CFFFFh
3B0000h-3BFFFFh
1D8000h–1DFFFFh
3A0000h-3AFFFFh
1D0000h–1D7FFFh
53/71
Block addresses
Table 22.
Bottom Boot Block addresses, M29W640FB (continued)
Block
KBytes/KWords
68
64/32
67
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
54/71
M29W640FT, M29W640FB
64/32
64/32
Protection Block Group
Protection Group
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
Protection Group
64/32
64/32
64/32
410000h-41FFFFh
208000h–20FFFFh
430000h-43FFFFh
218000h–21FFFFh
450000h-45FFFFh
228000h–22FFFFh
470000h-47FFFFh
238000h–23FFFFh
490000h-49FFFFh
248000h–24FFFFh
4B0000h-4BFFFFh
258000h–25FFFFh
4D0000h-4DFFFFh
268000h–26FFFFh
4F0000h-4FFFFFh
278000h–27FFFFh
510000h-51FFFFh
288000h–28FFFFh
530000h-53FFFFh
298000h–29FFFFh
420000h-42FFFFh
460000h-46FFFFh
4A0000h-4AFFFFh
4E0000h-4EFFFFh
520000h-52FFFFh
540000h-54FFFFh
64/32
64/32
1F8000h–1FFFFFh
500000h-50FFFFh
64/32
64/32
3F0000h-3FFFFFh
3E0000h-3EFFFFh
4C0000h-4CFFFFh
Protection Group
1F0000h–1F7FFFh
200000h–207FFFh
210000h–217FFFh
220000h–227FFFh
230000h–237FFFh
240000h–247FFFh
250000h–257FFFh
260000h–267FFFh
270000h–277FFFh
280000h–287FFFh
290000h–297FFFh
2A0000h–2A7FFFh
550000h-55FFFFh
2A8000h–2AFFFFh
570000h-57FFFFh
2B8000h–2BFFFFh
560000h-56FFFFh
580000h-58FFFFh
Protection Group
1E0000h–1E7FFFh
1E8000h–1EFFFFh
480000h-48FFFFh
Protection Group
(x16)
3D0000h-3DFFFFh
440000h-44FFFFh
64/32
64/32
3C0000h-3CFFFFh
400000h-40FFFFh
64/32
64/32
(x8)
2B0000h–2B7FFFh
2C0000h–2C7FFFh
590000h-59FFFFh
2C8000h–2CFFFFh
5B0000h-5BFFFFh
2D8000h–2DFFFFh
5A0000h-5AFFFFh
2D0000h–2D7FFFh
M29W640FT, M29W640FB
Table 22.
Bottom Boot Block addresses, M29W640FB (continued)
Block
KBytes/KWords
100
64/32
102
64/32
99
101
103
104
105
106
107
108
109
64/32
64/32
64/32
64/32
64/32
64/32
64/32
114
64/32
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Protection Group
Protection Group
Protection Group
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
64/32
Protection Group
64/32
64/32
64/32
2F8000h–2FFFFFh
610000h-61FFFFh
308000h–30FFFFh
630000h-63FFFFh
318000h–31FFFFh
650000h-65FFFFh
328000h–32FFFFh
670000h-67FFFFh
338000h–33FFFFh
690000h-69FFFFh
348000h–34FFFFh
6B0000h-6BFFFFh
358000h–35FFFFh
6D0000h-6DFFFFh
368000h–36FFFFh
6F0000h-6FFFFFh
378000h–37FFFFh
710000h-71FFFFh
388000h–38FFFFh
730000h-73FFFFh
398000h–39FFFFh
620000h-62FFFFh
660000h-66FFFFh
6A0000h-6AFFFFh
6E0000h-6EFFFFh
720000h-72FFFFh
740000h-74FFFFh
64/32
64/32
5F0000h-5FFFFFh
5E0000h-5EFFFFh
700000h-70FFFFh
Protection Group
2F0000h–2F7FFFh
300000h–307FFFh
310000h–317FFFh
320000h–327FFFh
330000h–337FFFh
340000h–347FFFh
350000h–357FFFh
360000h–367FFFh
370000h–377FFFh
380000h–387FFFh
390000h–397FFFh
3A0000h–3A7FFFh
750000h-75FFFFh
3A8000h–3AFFFFh
770000h-77FFFFh
3B8000h–3BFFFFh
760000h-76FFFFh
780000h-78FFFFh
Protection Group
2E0000h–2E7FFFh
2E8000h–2EFFFFh
6C0000h-6CFFFFh
Protection Group
(x16)
5D0000h-5DFFFFh
680000h-68FFFFh
64/32
64/32
5C0000h-5CFFFFh
640000h-64FFFFh
64/32
64/32
(x8)
600000h-60FFFFh
64/32
112
115
Protection Group
64/32
64/32
113
Protection Block Group
64/32
110
111
Block addresses
3B0000h–3B7FFFh
3C0000h–3C7FFFh
790000h-79FFFFh
3C8000h–3CFFFFh
7B0000h-7BFFFFh
3D8000h–3DFFFFh
7A0000h-7AFFFFh
3D0000h–3D7FFFh
55/71
Block addresses
Table 22.
Bottom Boot Block addresses, M29W640FB (continued)
Block
KBytes/KWords
132
64/32
131
133
134
M29W640FT, M29W640FB
64/32
64/32
64/32
Protection Block Group
Protection Group
1. Used as the Extended Block addresses in Extended Block mode.
56/71
(x8)
7C0000h-7CFFFFh
(x16)
3E0000h–3E7FFFh
7D0000h-7DFFFFh
3E8000h–3EFFFFh
7F0000h-7FFFFFh
3F8000h–3FFFFFh
7E0000h-7EFFFFh
3F0000h–3F7FFFh
M29W640FT, M29W640FB
Appendix B
Common Flash Interface (CFI)
Common Flash Interface (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a system software to query the device to
determine various electrical and timing parameters, density information and functions
supported by the memory. The system can interface easily with the device, enabling the
software to upgrade itself when necessary.
When the CFI Query Command is issued the device enters CFI Query mode and the data
structure is read from the memory. Tables 23, 24, 25, 26, 27, and 28, show the addresses
used to retrieve the data.
The CFI data structure also contains a security area where a 64 bit unique security number
is written (see Table 28: Security Code Area). This area can be accessed only in Read
mode by the final user. It is impossible to change the security number after it has been
written by ST.
Table 23.
Address
x16
Query structure overview(1)
x8
10h
20h
1Bh
Sub-section name
Description
CFI Query Identification String
Command set ID and algorithm data offset
Device Geometry Definition
Flash device layout
27h
36h
4Eh
System Interface Information
40h
80h
61h
C2h
Primary Algorithm-specific Extended
Query table
Security Code Area
Device timing & voltage information
Additional information specific to the
Primary Algorithm (optional)
64 bit unique device number
1. Query data are always presented on the lowest order data outputs.
57/71
Common Flash Interface (CFI)
Table 24.
Address
x16
10h
x8
24h
0059h
13h
26h
14h
15h
28h
2Ah
16h
2Ch
18h
17h
19h
1Ah
Data
0051h
22h
12h
CFI Query Identification String(1)
20h
11h
2Eh
M29W640FT, M29W640FB
Description
Value
“Q”
0052h Query Unique ASCII String "QRY"
"R"
0002h Primary Algorithm Command Set and Control Interface ID code
0000h 16 bit ID code defining a specific algorithm
0040h Address for Primary Algorithm extended Query table (see
0000h Table 27)
"Y"
AMD
Compatible
P = 40h
30h
0000h Alternate Vendor Command Set and Control Interface ID Code
0000h second vendor - specified algorithm supported
NA
34h
0000h
Address for Alternate Algorithm extended Query table
NA
32h
0000h
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
Table 25.
Address
x16
x8
1Bh
36h
1Ch
38h
1Dh 3Ah
1Eh
1Fh
20h
21h
40h
42h
24h
48h
26h
58/71
3Eh
44h
25h
Data
Description
Value
VCC Logic Supply Minimum Program/Erase voltage
0027h bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
VCC Logic Supply Maximum Program/Erase voltage
0036h bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
VPP [Programming] Supply Minimum Program/Erase voltage
00B5h bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
VPP [Programming] Supply Maximum Program/Erase voltage
3Ch 00C5h bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
22h
23h
CFI Query System Interface Information
46h
4Ah
4Ch
0004h Typical timeout per single byte/word program = 2n s
0000h Typical timeout for minimum size write buffer program = 2n s
n
000Ah Typical timeout per individual Block Erase = 2 ms
n
0000h Typical timeout for full Chip Erase = 2 ms
n
0004h Maximum timeout for byte/word program = 2 times typical
0000h Maximum timeout for write buffer program = 2n times typical
0003h Maximum timeout per individual Block Erase = 2n times typical
n
0000h Maximum timeout for Chip Erase = 2 times typical
2.7V
3.6V
11.5V
12.5V
16 s
NA
1s
NA
256 s
NA
8s
NA
M29W640FT, M29W640FB
Table 26.
Address
x16
Device Geometry Definition(1)
x8
27h
4Eh
2Ah
2Bh
54h
56h
28h
29h
Common Flash Interface (CFI)
50h
52h
Data
Description
0017h Device Size = 2n in number of bytes
8 MByte
0004h
Maximum number of bytes in multi-byte program or page = 2n
0000h
16 Bytes
0002h
Flash Device Interface Code description
0000h
Number of Erase Block Regions. It specifies the number of
regions containing contiguous Erase Blocks of the same size.
2Ch
58h
0002h
2Dh
2Eh
5Ah
5Ch
0007h Region 1 Information
0000h Number of Erase Blocks of identical size = 0007h+1
2Fh
30h
31h
32h
33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
5Eh
60h
62h
64h
66h
68h
6Ah
6Ch
6Eh
70h
72h
74h
76h
78h
Value
0020h Region 1 Information
0000h Block size in Region 1 = 0020h * 256 byte
007Eh Region 2 Information
0000h Number of Erase Blocks of identical size= 007Eh+1
0000h Region 2 Information
0001h Block size in Region 2 = 0100h * 256 byte
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
Region 3 Information
Number of Erase Blocks of identical size=007Fh+1
Region 3 Information
Block size in Region 3 = 0000h * 256 byte
Region 4 Information
Number of Erase Blocks of Identical size=007Fh+1
Region 4 Information
Block size in Region 4 = 0000h * 256 byte
x8, x16
Async.
2
8
8Kbyte
127
64Kbyte
0
0
0
0
1. For Bottom Boot devices, Erase Block Region 1 is located from address 000000h to 007FFFh and Erase
Block Region 2 from address 008000h to 3FFFFFh.
For Top Boot devices, Erase Block Region 1 is located from address 000000h to 3F7FFFh and Erase
Block Region 2 from address 3F8000h to 3FFFFFh.
59/71
Common Flash Interface (CFI)
Table 27.
Address
x16
Primary Algorithm-specific Extended Query table
x8
Data
Description
40h
80h
42h
84h
Primary Algorithm extended Query table unique ASCII string
0052h
“PRI”
0049h
88h
0033h Minor version number, ASCII
41h
43h
44h
82h
86h
0050h
0031h Major version number, ASCII
Value
"P"
"R"
"I"
“1”
"3"
45h
8Ah
Address Sensitive Unlock (bits 1 to 0)
0000h 00h = required, 01h = not required
Silicon Revision Number (bits 7 to 2)
46h
8Ch
0002h
47h
8Eh
0004h
48h
90h
0001h
49h
92h
0004h
4Ah
94h
0000h Simultaneous Operations, 00h = not supported
0000h Burst Mode: 00h = not supported, 01h = supported
No
4Ch
98h
0001h
Yes
4Dh
9Ah
VPP Supply Minimum Program/Erase voltage
00B5h bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV
4Eh
9Ch
4Fh
9Eh
50h
A0h
4Bh
60/71
M29W640FT, M29W640FB
96h
Erase Suspend
00h = not supported, 01h = Read only, 02 = Read and Write
Block Protection
00h = not supported, x = number of blocks per protection group
Temporary Block Unprotect
00h = not supported, 01h = supported
Block Protect /Unprotect
04 = M29W640F
Page Mode: 00h = not supported, 01h = 4 page word, 02h = 8
page word
VPP Supply Maximum Program/Erase voltage
00C5h bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV
Top/Bottom Boot Block Flag
0002h 02h = Bottom Boot device
0003h 03h = Top Boot device
Program Suspend
0001h 00h = Not Supported
01h = Supported
Yes
2
4
Yes
04
No
11.5V
12.5V
–
Suppor
ted
M29W640FT, M29W640FB
Table 28.
Common Flash Interface (CFI)
Security Code Area
Address
x16
x8
Data
61h
C3h, C2h
XXXX
63h
C7h, C6h
XXXX
62h
64h
C5h, C4h
C9h, C8h
XXXX
Description
64 bit: unique device number
XXXX
61/71
Extended Memory Block
Appendix C
M29W640FT, M29W640FB
Extended Memory Block
The M29W640F has an extra block, the Extended Block, that can be accessed using a
dedicated command.
This Extended Block is 128 Words in x16 mode and 256 Bytes in x8 mode. It is used as a
security block to provide a permanent security identification number) or to store additional
information.
The Extended Block is either Factory Locked or Customer Lockable, its status is indicated
by bit DQ7. This bit is permanently set to either ‘1’ or ‘0’ at the factory and cannot be
changed. When set to ‘1’, it indicates that the device is factory locked and the Extended
Block is protected. When set to ‘0’, it indicates that the device is customer lockable and the
Extended Block is unprotected. Bit DQ7 being permanently locked to either ‘1’ or ‘0’ is
another security feature which ensures that a customer lockable device cannot be used
instead of a factory locked one.
Bit DQ7 is the most significant bit in the Extended Block Verify Code and a specific
procedure must be followed to read it. See “Extended Memory Block Verify Code” in Table 4:
Bus operations, BYTE = VIL and Table 5: Bus operations, BYTE = VIH, for details of how to
read bit DQ7.
The Extended Block can only be accessed when the device is in Extended Block mode. For
details of how the Extended Block mode is entered and exited, refer to the Section 4.3.1:
Enter Extended Block command and Section 4.3.2: Exit Extended Block command, and to
Table 6 and Table 7: Commands, 8-bit mode, BYTE = VIL.
C.1
Factory Locked Extended Block
C.2
Customer Lockable Extended Block
In devices where the Extended Block is factory locked, the Security Identification Number is
written to the Extended Block address space (see Table 29: Extended Block address and
data) in the factory. The DQ7 bit is set to ‘1’ and the Extended Block cannot be unprotected.
A device where the Extended Block is customer lockable is delivered with the DQ7 bit set to
‘0’ and the Extended Block unprotected. It is up to the customer to program and protect the
Extended Block but care must be taken because the protection of the Extended Block is not
reversible.
There are two ways of protecting the Extended Block:
Issue the Enter Extended Block command to place the device in Extended Block mode,
then use the In-System Technique with RP either at VIH or at VID (refer to Appendix D,
Section D.2: In-System technique and to the corresponding flowcharts, Figure 18 and
Figure 19, for a detailed explanation of the technique).
Issue the Enter Extended Block command to place the device in Extended Block mode,
then use the Programmer Technique (refer to Appendix D, Section D.1: Programmer
technique and to the corresponding flowcharts, Figure 16 and Figure 17, for a detailed
explanation of the technique).
Once the Extended Block is programmed and protected, the Exit Extended Block command
must be issued to exit the Extended Block mode and return the device to Read mode.
62/71
M29W640FT, M29W640FB
Table 29.
Extended Memory Block
Extended Block address and data
Address
x8
000000h-00007Fh
000080h-0000FFh
x16
000000h-00003Fh
000040h-00007Fh
Data
Factory Locked
Customer Lockable
Unavailable
Determined by
customer
Security Identification Number
63/71
Block protection
Appendix D
M29W640FT, M29W640FB
Block protection
Block protection can be used to prevent any operation from modifying the data stored in the
memory. The blocks are protected in groups, refer to Appendix A: Block addresses,
Table 21 and Table 22 for details of the Protection Groups. Once protected, Program and
Erase operations within the protected group fail to change the data.
There are three techniques that can be used to control Block Protection, these are the
Programmer technique, the In-System technique and Temporary Unprotection. Temporary
Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is
described in the Signal Descriptions section.
D.1
Programmer technique
The Programmer technique uses high (VID) voltage levels on some of the bus pins. These
cannot be achieved using a standard microprocessor bus, therefore the technique is
recommended only for use in Programming Equipment.
To protect a group of blocks follow the flowchart in Figure 16: Programmer Equipment
Group Protect flowchart. To unprotect the whole chip it is necessary to protect all of the
groups first, then all groups can be unprotected at the same time. To unprotect the chip
follow Figure 17: Programmer Equipment Chip Unprotect flowchart. Table 30: Programmer
technique bus operations, BYTE = VIH or VIL, gives a summary of each operation.
The timing on these flowcharts is critical. Care should be taken to ensure that, where a
pause is specified, it is followed as closely as possible. Do not abort the procedure before
reaching the end. Chip Unprotect can take several seconds and a user message should be
provided to show that the operation is progressing.
D.2
In-System technique
The In-System technique requires a high voltage level on the Reset/Blocks Temporary
Unprotect pin, RP(1). This can be achieved without violating the maximum ratings of the
components on the microprocessor bus, therefore this technique is suitable for use after the
memory has been fitted to the system.
To protect a group of blocks follow the flowchart in Figure 18: In-System Equipment Group
Protect flowchart. To unprotect the whole chip it is necessary to protect all of the groups first,
then all the groups can be unprotected at the same time. To unprotect the chip follow
Figure 19: In-System Equipment Chip Unprotect flowchart.
Note:
64/71
The timing on these flowcharts is critical. Care should be taken to ensure that, where a
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to
service interrupts that will upset the timing and do not abort the procedure before reaching
the end. Chip Unprotect can take several seconds and a user message should be provided
to show that the operation is progressing.
RP can be either at VIH or at VID when using the In-System Technique to protect the
Extended Block.
M29W640FT, M29W640FB
Table 30.
Block protection
Programmer technique bus operations, BYTE = VIH or VIL
Operation
E
G
W
Block (Group)
Protect(1)
VIL
VID
VIL Pulse
Chip Unprotect
VID
VID
VIL Pulse
Block (Group)
Protection Verify
VIL
VIL
VIH
Block (Group)
Unprotection Verify
VIL
VIL
VIH
Address Inputs
A0-A21
A9 = VID, A12-A21 = Block address
Others = X
A9 = VID, A12 = VIH, A15 = VIH
Others = X
A0, A2, A3 = VIL , A1 = VIH, A6 = VIL,
A9 = VID, A12-A21 = Block address
Others = X
A0, A2, A3 = VIL, A1 = VIH, A6 = VIH,
A9 = VID, A12-A21 = Block address
Others = X
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
X
X
Pass = XX01h
Retry = XX00h
Retry = XX01h
Pass = XX00h
1. Block Protection Groups are shown in Appendix A, Tables 21 and 22.
65/71
Block protection
M29W640FT, M29W640FB
Figure 16. Programmer Equipment Group Protect flowchart
1. Block Protection Groups are shown in Appendix A, Tables 21 and 22.
66/71
M29W640FT, M29W640FB
Block protection
Figure 17. Programmer Equipment Chip Unprotect flowchart
1. Block Protection Groups are shown in Appendix A, Tables 21 and 22.
67/71
Block protection
M29W640FT, M29W640FB
Figure 18. In-System Equipment Group Protect flowchart
1. Block Protection Groups are shown in Appendix A, Tables 21 and 22.
2. RP can be either at V IH or at VID when using the In-System Technique to protect the Extended Block.
68/71
M29W640FT, M29W640FB
Block protection
Figure 19. In-System Equipment Chip Unprotect flowchart
1. Block Protection Groups are shown in Appendix A, Tables 21 and 22.
69/71
Revision history
M29W640FT, M29W640FB
Revision history
Table 31.
Date
01-Mar-2005
17-May-2005
07-Oct-2005
02-Dec-2005
15-Dec-2005
70/71
Document revision history
Revision
0.1
0.2
1.0
2
3
10-Mar-2006
4
23-Aug-2006
5
25-Oct-2006
6
10-Dec-2007
7
28-Aug-2008
8
First Issue.
Changes
Asynchronous Page mode added.
70ns speed class added.
Device codes modified.
TFBGA63 replaced by TFBGA48 6x8 package. ECOPACK text updated
Page size changed to 4 Word.
90ns speed class removed.
Quadruple Word/Octuple Byte Program command added.
Table 4: Bus operations, BYTE = VIL and Table 5: Bus operations, BYTE
= VIH: A0-A21 addresses for reading the Device Code, the Manufacturer
Code, the Extended Memory Block Verify Code, and the Block Protection
Status, have been updated.
Appendix D: Block protection: Table 30: Programmer technique bus
operations, BYTE = VIH or VIL: A0-A21 addresses updated for Block
Protection/Unprotection Verify using the Programmer technique.
Datasheet status changed to “Full Datasheet”.
60ns speed class added.
Program Suspend and Resume added.
Section 2.8: VPP /Write Protect (VPP/WP) and Section 4.2: Fast Program
commands. Section 4: Command interface restructured.
Table 29: Extended Block address and data updated.
Double Byte Program commands added in Section 4: Command
interface.
Table 4: Bus operations, BYTE = VIL and Table 5: Bus operations, BYTE
= VIH.: A6 changed from VIH to VIL for Read Block Protection Status
operation.
DQ7 changed to DQ7 for Program, Program During Erase Suspend and
Program Error in Table 9: Status Register Bits.
A6 = V IL corrected to A6 = VIH during the Verify phase in Figure 17:
Programmer Equipment Chip Unprotect flowchart.
Address ranges modified for x8 and x16 modes in Table 29: Extended
Block address and data.
Amended mistake in second title (M29W640FT changed to
M29W640FB); removed the 4th cycle from the double byte program of
Table 7: Commands, 8-bit mode, BYTE = VIL
Table 9: Status Register Bits updated.
Applied Numonyx branding.
Added clarifications regarding VPPH when performing Fast Program
commands.
M29W640FT, M29W640FB
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Numonyx may make changes to specifications and product descriptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by
visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2008, Numonyx, B.V., All Rights Reserved.
71/71
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement