GEK-106495E
GE Consumer & Industrial
Multilin
489
Generator Management Relay
COMMUNICATIONS GUIDE
Software Revision: 4.0x
GE Publication Code: GEK-106495E
GE Multilin Part Number: 1601-0149-A6
Copyright © 2006 GE Multilin
ISO9001:2000
I
N
EM
G
Canada L6E 1B3
D
215 Anderson Avenue, Markham, Ontario
T
GIS ERE
RE
GE Multilin
U LT I L
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEmultilin.com
*1601-0149-A6*
GE Multilin's Quality Management
System is registered to
ISO9001:2000
QMI # 005094
UL # A3775
CGTOC
TABLE OF CONTENTS
Table of Contents
CG: COMMUNICATIONS
GUIDE
MODBUS PROTOCOL ........................................................................................................CG-1
ELECTRICAL INTERFACE ....................................................................................................... CG-1
MODBUS RTU DESCRIPTION ............................................................................................. CG-1
DATA FRAME FORMAT AND DATA RATE .......................................................................... CG-2
DATA PACKET FORMAT ....................................................................................................... CG-2
CRC-16 ALGORITHM ......................................................................................................... CG-3
TIMING .................................................................................................................................. CG-4
MODBUS FUNCTIONS ......................................................................................................CG-5
SUPPORTED FUNCTIONS ..................................................................................................... CG-5
FUNCTION CODES 03/04: READ SETPOINTS / ACTUAL VALUES ................................. CG-5
FUNCTION CODE 05: EXECUTE OPERATION ................................................................... CG-6
FUNCTION CODE 06: STORE SINGLE SETPOINT ............................................................. CG-6
FUNCTION CODE 07: READ DEVICE STATUS .................................................................. CG-7
FUNCTION CODE 08: LOOPBACK TEST ............................................................................ CG-8
FUNCTION CODE 16: STORE MULTIPLE SETPOINTS ....................................................... CG-8
FUNCTION CODE 16: PERFORMING COMMANDS ........................................................... CG-9
ERROR RESPONSES ............................................................................................................. CG-10
MODBUS MEMORY MAP ..................................................................................................CG-11
MEMORY MAP INFORMATION ............................................................................................ CG-11
USER-DEFINABLE MEMORY MAP AREA ........................................................................... CG-11
EVENT RECORDER ............................................................................................................... CG-12
WAVEFORM CAPTURE ......................................................................................................... CG-12
DUAL SETPOINTS ................................................................................................................. CG-13
PASSCODE OPERATION ....................................................................................................... CG-13
489 MEMORY MAP ............................................................................................................ CG-13
MEMORY MAP DATA FORMATS ......................................................................................... CG-42
DNP PROTOCOL ................................................................................................................CG-55
DEVICE PROFILE DOCUMENT ............................................................................................. CG-55
IMPLEMENTATION TABLE .................................................................................................... CG-56
DEFAULT VARIATIONS ......................................................................................................... CG-58
DNP POINT LISTS ..............................................................................................................CG-59
BINARY INPUT / BINARY INPUT CHANGE (OBJECTS 01/02) ........................................ CG-59
BINARY / CONTROL RELAY OUTPUT BLOCK (OBJECTS 10/12) ................................... CG-63
BINARY / FROZEN COUNTER (OBJECTS 20/21) ............................................................. CG-64
ANALOG INPUT / INPUT CHANGE (OBJECTS 30/32) .................................................... CG-65
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CGTOC–I
TABLE OF CONTENTS
CGTOC–II
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
GE Consumer & Industrial
Multilin
489 Generator Management Relay
Communications Guide
CG.1 Modbus Protocol
CG.1.1 Electrical Interface
The hardware or electrical interface is one of the following: one of two 2-wire RS485 ports
from the rear terminal connector or the RS232 from the front panel connector. In a 2-wire
RS485 link, data flow is bidirectional. Data flow is half-duplex for both the RS485 and the
RS232 ports. That is, data is never transmitted and received at the same time. RS485 lines
should be connected in a daisy chain configuration (avoid star connections) with a
terminating network installed at each end of the link, i.e. at the master end and at the slave
farthest from the master. The terminating network should consist of a 120 Ω resistor in
series with a 1 nF ceramic capacitor when used with Belden 9841 RS485 wire. The value of
the terminating resistors should be equal to the characteristic impedance of the line. This
is approximately 120 Ω for standard #22 AWG twisted pair wire. Shielded wire should
always be used to minimize noise. Polarity is important in RS485 communications. Each '+'
terminal of every 489 must be connected together for the system to operate. Refer to the
489 Instruction Manual for correct serial port wiring.
CG.1.2 Modbus RTU Description
The 489 implements a subset of the AEG Modicon Modbus RTU serial communication
standard. Many popular programmable controllers support this protocol directly with a
suitable interface card allowing direct connection of relays. Although the Modbus protocol
is hardware independent, the 489 interfaces include two 2-wire RS485 ports and one
RS232 port. Modbus is a single master, multiple slave protocol suitable for a multi-drop
configuration as provided by RS485 hardware. In this configuration up to 32 slaves can be
daisy-chained together on a single communication channel.
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CG–1
The 489 is always a slave; it cannot be programmed as a master. Computers or PLCs are
commonly programmed as masters. The Modbus protocol exists in two versions: Remote
Terminal Unit (RTU, binary) and ASCII. Only the RTU version is supported by the 489.
Monitoring, programming, and control functions are performed with read/write register
commands.
CG.1.3 Data Frame Format and Data Rate
One data frame of an asynchronous transmission to or from a 489 is default to 1 start bit,
8 data bits, and 1 stop bit. This produces a 10-bit data frame. This is important for
transmission through modems at high bit rates (11 bit data frames are not supported by
Hayes modems at bit rates of greater than 300 bps). The parity bit is optional as odd or
even. If it is programmed as odd or even, the data frame consists of 1 start bit, 8 data bits,
1 parity bit, and 1 stop bit.
Modbus protocol can be implemented at any standard communication speed. The 489
RS485 ports support operation at 1200, 2400, 4800, 9600, and 19200 baud. The front panel
RS232 baud rate is fixed at 9600 baud.
CG.1.4 Data Packet Format
A complete request/response sequence consists of the following bytes (transmitted as
separate data frames):
1.
A Master Query Message consisting of: a 1-byte Slave Address, a 1-byte Function Code, a variable number of Data Bytes depending on the Function Code,
and a 2-byte CRC code.
2.
A Slave Response Message consisting of: a 1-byte Slave Address, a 1-byte
Function Code, a variable number of Data Bytes depending on the Function
Code, and a 2-byte CRC code.
The terms Slave Address, Function Code, Data Bytes, and CRC are explained below:
2
•
SLAVE ADDRESS: This is the first byte of every transmission. This byte represents the
user-assigned address of the slave device that is to receive the message sent by the
master. Each slave device must be assigned a unique address and only the addressed
slave will respond to a transmission that starts with its address. In a master request
transmission the Slave Address represents the address of the slave to which the
request is being sent. In a slave response transmission the Slave Address represents
the address of the slave that is sending the response. The RS232 port ignores the slave
address, so it will respond regardless of the value in the message. Note: A master
transmission with a Slave Address of 0 indicates a broadcast command. Broadcast
commands can be used for specific functions.
•
FUNCTION CODE: This is the second byte of every transmission. Modbus defines
function codes of 1 to 127. The 489 implements some of these functions. In a master
request transmission the Function Code tells the slave what action to perform. In a
slave response transmission if the Function Code sent from the slave is the same as
the Function Code sent from the master indicating the slave performed the function
as requested. If the high order bit of the Function Code sent from the slave is a 1 (i.e. if
the Function Code is greater than 127) then the slave did not perform the function as
requested and is sending an error or exception response.
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
•
DATA BYTES: This is a variable number of bytes depending on the Function Code.
These may be actual values, setpoints, or addresses sent by the master to the slave or
vice-versa. Data is sent MSByte first followed by the LSByte.
•
CRC: This is a two byte error checking code. CRC is sent LSByte first followed by the
MSByte. The RTU version of Modbus includes a two byte CRC-16 (16-bit cyclic
redundancy check) with every transmission. The CRC-16 algorithm essentially treats
the entire data stream (data bits only; start, stop and parity ignored) as one
continuous binary number. This number is first shifted left 16 bits and then divided by
a characteristic polynomial (11000000000000101B). The 16-bit remainder of the
division is appended to the end of the transmission, LSByte first. The resulting
message including CRC, when divided by the same polynomial at the receiver will give
a zero remainder if no transmission errors have occurred.
If a 489 Modbus slave device receives a transmission in which an error is indicated by the
CRC-16 calculation, the slave device will not respond to the transmission. A CRC-16 error
indicates than one or more bytes of the transmission were received incorrectly and thus
the entire transmission should be ignored in order to avoid the 489 performing any
incorrect operation. The CRC-16 calculation is an industry standard method used for error
detection. An algorithm is included here to assist programmers in situations where no
standard CRC-16 calculation routines are available.
CG.1.5 CRC-16 Algorithm
Once the following algorithm is complete, the working register “A” will contain the CRC
value to be transmitted. Note that this algorithm requires the characteristic polynomial to
be reverse bit ordered. The MSbit of the characteristic polynomial is dropped since it does
not affect the value of the remainder.
The symbols used in the algorithm are shown below:
-->
data transfer
A; Alow; Ahigh
16-bit working register; low and high order bytes of A (the 16-bit working
register)
CRC
16 bit CRC-16 result
i, j
loop counters
(+)
logical EXCLUSIVE-OR operator
N
total number of data bytes
Di
i-th data byte (i = 0 to N – 1)
G
16 bit characteristic polynomial = 1010000000000001 (binary) with
MSbit dropped and bit order reversed
shr (x)
right shift operator (the LSbit of x is shifted into a carry flag, a '0' is shifted
into the MSbit of x, all other bits are shifted right one location)
The CRC algorithm is shown below:
1.
2.
3.
4.
FFFF (hex) --> A
0 --> i
0 --> j
Di (+) Alow --> Alow
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
3
5. j + 1 --> j
6. shr (A)
7. Is there a carry?No: go to step 8.
Yes: G (+) A --> A and continue.
8. Is j = 8?
No: go to 5.; Yes: continue.
9. i + 1 --> i
10.Is i = N?
No: go to 3.; Yes: continue.
11.A --> CRC
CG.1.6 Timing
Data packet synchronization is maintained by timing constraints. The receiving device
must measure the time between the reception of characters. If three and one half
character times elapse without a new character or completion of the packet, then the
communication link must be reset (i.e. all slaves start listening for a new transmission from
the master). Thus at 9600 baud a delay of greater than 3.5 × 1 / 9600 × 10 = 3.65 ms will
cause the communication link to be reset.
4
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CG.2 Modbus Functions
CG.2.1 Supported Functions
The following functions are supported by the 489:
•
Function Codes 03 and 04: Read Setpoints and Actual Values
•
Function Code 05: Execute Operation
•
Function Code 06: Store Single Setpoint
•
Function Code 07: Read Device Status
•
Function Code 08: Loopback Test
•
Function Code 16: Store Multiple Setpoints
A detailed explanation of how the 489 implements these function codes is shown in the
following sections.
CG.2.2 Function Codes 03/04: Read Setpoints / Actual Values
Modbus implementation: Read Input and Holding Registers
489 Implementation: Read Setpoints and Actual Values
For the 489 Modbus implementation, these commands are used to read any setpoint
(‘holding registers’) or actual value (‘input registers’). Holding and input registers are 16-bit
(two byte) values transmitted high order byte first. Thus all 489 setpoints and actual values
are sent as two bytes. The maximum of 125 registers can be read in one transmission.
Function codes 03 and 04 are configured to read setpoints or actual values
interchangeably since some PLCs do not support both function codes.
The slave response to these function codes is the slave address, function code, a count of
the number of data bytes to follow, the data itself and the CRC. Each data item is sent as a
two byte number with the high order byte sent first. The CRC is sent as a two byte number
with the low order byte sent first.
Message Format and Example:
Request slave 11 to respond with 2 registers starting at address 0235. For this example,
the register data in these addresses is:
Address
Data
0235
0064
0236
000A
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
03
read register values
Data Starting Address
2
02 32
data starting at 0235h
Number of Setpoints
2
00 02
2 registers = 4 bytes total
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Description
5
Master Transmission
Bytes
Example
2
D5 17
CRC (low, high)
Slave Response
Description
computed CRC error code
Bytes
Example
Slave Address
1
0B
Description
Function Code
1
03
read register values
Byte Count
1
04
2 registers = 4 bytes total
Data #1 (high, low)
2
00 64
Data #2 (high, low)
2
00 0A
value in address 0236h
CRC (low, high)
2
EB 91
computed CRC error code
message from slave 11
value in address 0235h
CG.2.3 Function Code 05: Execute Operation
Modbus Implementation: Force Single Coil
489 Implementation: Execute Operation
This function code allows the master to request specific 489 command operations. The
command numbers listed in the Commands area of the memory map correspond to
operation code for function code 05. The operation commands can also be initiated by
writing to the Commands area of the memory map using function code 16. Refer to
Section CG.2.7 Function Code 16: Store Multiple Setpoints on page –8 for complete details.
Supported Operations:Reset 489 (operation code 1); Generator Start (operation code 2);
Generator Stop (operation code 3); Waveform Trigger (operation code 4)
Message Format and Example:
Reset 489 (operation code 1).
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
05
execute operation
Operation Code
2
00 01
reset command (op code 1)
Code Value
2
FF 00
perform function
CRC (low, high)
2
DD 50
computed CRC error code
Slave Response
Description
Bytes
Example
Slave Address
1
0B
message from slave 11
Description
Function Code
1
05
execute operation
Operation Code
2
00 01
reset command (op code 1)
Code Value
2
FF 00
perform function
CRC (low, high)
2
DD 50
computed CRC error code
CG.2.4 Function Code 06: Store Single Setpoint
Modbus Implementation: Preset Single Register
489 Implementation: Store Single Setpoint
This command allows the master to store a single setpoint into the 489 memory. The slave
response to this function code is to echo the entire master transmission.
6
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Message Format and Example:
Request slave 11 to store the value 01F4 in Setpoint address 1180. After the transmission
in this example is complete, Setpoints address 1180 will contain the value 01F4.
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
06
store single setpoint
Data Starting Address
2
11 80
setpoint address 1180h
Data
2
01 F4
data for address 1180h
CRC (low, high)
2
8D A3
computed CRC error code
Slave Response
Description
Bytes
Example
Slave Address
1
0B
message from slave 11
Description
Function Code
1
06
store single setpoint
Data Starting Address
2
11 80
setpoint address 1180h
Data
2
01 F4
data for address 1180h
CRC (low, high)
2
8D A3
computed CRC error code
CG.2.5 Function Code 07: Read Device Status
Modbus Implementation: Read Exception Status
489 Implementation: Read Device Status
This function reads the selected device status. A short message length allows for rapid
reading of status. The returned status byte has individual bits set to 1 or 0 depending on
the slave device status. The 489 general status byte is shown below:
Bit
B0
Description
Bit
1 TRIP relay operated = 1
B4
Description
5 ALARM relay operated = 1
B1
2 AUXILIARY relay operated = 1
B5
6 SERVICE relay operated = 1
B2
3 AUXILIARY relay operated = 1
B6
Offline = 1
B3
4 AUXILIARY relay operated = 1
B7
Online = 1
Note that if the generator status is neither Offline nor Online, the generator status is
Tripped.
Message Format and Example:
Request status from slave 11.
Bytes
Example
Slave Address
Master Transmission
1
0B
message for slave 11
Function Code
1
07
read device status
CRC (low, high)
2
47 42
Bytes
Example
Slave Address
1
0B
message from slave 11
Function Code
1
07
read device status
Device Status
1
59
status = 01011001b
Slave Response
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Description
computed CRC error code
Description
7
Slave Response
Bytes
Example
2
C2 08
CRC (low, high)
Description
computed CRC error code
CG.2.6 Function Code 08: Loopback Test
Modbus Implementation: Loopback Test
489 Implementation: Loopback Test
This function is used to test the integrity of the communication link. The 489 will echo the
request.
Message Format and Example:
Loopback test from slave 11.
Master Transmission
Bytes
Example
Description
Slave Address
1
0B
message for slave 11
Function Code
1
08
loopback test
Diagnostic Code
2
00 00
must be 0000h
Data
2
00 00
must be 0000h
CRC (low, high)
2
E0 A1
computed CRC error code
Bytes
Example
Slave Address
1
0B
message from slave 11
Function Code
1
08
loopback test
Slave Response
Description
Diagnostic Code
2
00 00
must be 0000h
Data
2
00 00
must be 0000h
CRC (low, high)
2
E0 A1
computed CRC error code
CG.2.7 Function Code 16: Store Multiple Setpoints
Modbus Implementation: Preset Multiple Registers
489 Implementation: Store Multiple Setpoints
This function code allows multiple Setpoints to be stored into the 489 memory. Modbus
“registers” are 16-bit (two byte) values transmitted high order byte first. Thus all 489
setpoints are sent as two bytes. The maximum number of Setpoints that can be stored in
one transmission is dependent on the slave device. Modbus allows up to a maximum of 60
holding registers to be stored. The 489 response to this function code is to echo the slave
address, function code, starting address, the number of Setpoints stored, and the CRC.
Message Format and Example:
Request slave 11 to store the value 01F4 to Setpoint address 1180 and the value 0001 to
setpoint address 1181. After the transmission in this example is complete, 489 slave 11 will
have the following setpoints information stored:
Address
8
Data
1180
01F4
1181
0001
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Bytes
Example
Slave Address
Master Transmission
1
0B
message for slave 11
Function Code
1
10
store setpoints
Data Starting Address
2
11 80
data starting at 1180h
Number of Setpoints
2
00 02
2 setpoints = 4 bytes total
Byte Count
1
04
Data 1
2
01 F4
data for address 1180h
Data 2
2
00 01
data for address 1181h
CRC (low, high)
2
9B 89
computed CRC error code
Bytes
Example
Slave Address
1
0B
message from slave 11
Function Code
1
10
store multiple setpoints
Data Starting Address
2
11 80
data starting at 1180h
Slave Response
Description
2 registers = 4 bytes
Description
Number of Setpoints
2
00 02
2 setpoints (4 bytes total)
CRC (low, high)
2
45 B6
computed CRC error code
CG.2.8 Function Code 16: Performing Commands
Some PLCs may not support execution of commands using function code 5 but do support
storing multiple setpoints using function code 16. To perform this operation using function
code 16 (10h), a certain sequence of commands must be written at the same time to the
489. The sequence consists of: Command Function register, Command operation register
and Command Data (if required). The Command Function register must be written with the
value of 5 indicating an execute operation is requested. The Command Operation register
must then be written with a valid command operation number from the list of commands
shown in the memory map. The Command Data registers must be written with valid data if
the command operation requires data. The selected command will execute immediately
upon receipt of a valid transmission.
Message Format and Example:
Perform a 489 RESET (operation code 1).
Bytes
Example
Slave Address
Master Transmission
1
0B
message for slave 11
Description
Function Code
1
10
store setpoints
Data Starting Address
2
00 80
setpoint address 0080h
Number of Setpoints
2
00 02
2 setpoints = 4 bytes total
Byte Count
1
04
Command Function
2
00 05
data for address 0080h
Command Function
2
00 01
data for address 0081h
CRC (low, high)
2
0B D6
computed CRC error code
Bytes
Example
Slave Address
1
0B
message from slave 11
Function Code
1
10
store multiple setpoints
Data Starting Address
2
00 80
setpoint address 0080h
Slave Response
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
2 registers = 4 bytes
Description
9
Bytes
Example
Number of Setpoints
Slave Response
2
00 02
2 setpoints (4 bytes total)
Description
CRC (low, high)
2
40 8A
computed CRC error code
CG.2.9 Error Responses
When a 489 detects an error other than a CRC error, a response will be sent to the master.
The MSbit of the Function Code byte will be set to 1 (i.e. the function code sent from the
slave will be equal to the function code sent from the master plus 128). The following byte
will be an exception code indicating the type of error that occurred.
Transmissions received from the master with CRC errors will be ignored by the 489.
The slave response to an error (other than CRC error) will be:
•
SLAVE ADDRESS: 1 byte
•
FUNCTION CODE: 1 byte (with MSbit set to 1)
•
EXCEPTION CODE: 1 byte
•
CRC: 2 bytes
The 489 implements the following exception response codes.
01: ILLEGAL FUNCTION
The function code transmitted is not one of the functions supported by the 489.
02: ILLEGAL DATA ADDRESS
The address referenced in the data field transmitted by the master is not an allowable
address for the 489.
03: ILLEGAL DATA VALUE
The value referenced in the data field transmitted by the master is not within range for the
selected data address.
10
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CG.3 Modbus Memory Map
CG.3.1 Memory Map Information
The data stored in the 489 is grouped as Setpoints and Actual Values. Setpoints can be
read and written by a master computer. Actual Values are read only. All Setpoints and
Actual Values are stored as two byte values. That is, each register address is the address of
a two-byte value. Addresses are listed in hexadecimal. Data values (Setpoint ranges,
increments, and factory values) are in decimal.
Note
Many Modbus communications drivers add 40001d to the actual address of the register
addresses. For example: if address 0h was to be read, 40001d would be the address
required by the Modbus communications driver; if address 320h (800d) was to be read,
40801d would be the address required by the Modbus communications driver.
CG.3.2 User-Definable Memory Map Area
The 489 contains a User Definable area in the memory map. This area allows remapping of
the addresses of all Actual Values and Setpoints registers. The User Definable area has two
sections:
1.
A Register Index area (memory map addresses 0180h to 01FCh) that contains
125 Actual Values or Setpoints register addresses.
2.
A Register area (memory map addresses 0100h to 017Ch) that contains the
data at the addresses in the Register Index.
Register data that is separated in the rest of the memory map may be remapped to
adjacent register addresses in the User Definable Registers area. This is accomplished by
writing to register addresses in the User Definable Register Index area. This allows for
improved throughput of data and can eliminate the need for multiple read command
sequences.
For example, if the values of Average Phase Current (register addresses 0412h and 0413h)
and Hottest Stator RTD Temperature (register address 04A1h) are required to be read from
an 489, their addresses may be remapped as follows:
1.
Write 0412h to address 0180h (User Definable Register Index 0000) using function code 06 or 16.
2.
Write 0413h to address 0181h (User Definable Register Index 0001) using function code 06 or 16.
(Average Phase Current is a double register number)
3.
Write 04A1h to address 0182h (User Definable Register Index 0002) using function code 06 or 16.
A read (function code 03 or 04) of registers 0100h (User Definable Register 0000) and
0101h (User Definable Register 0001) will return the Average Phase Current and register
0102h (User Definable Register 0002) will return the Hottest Stator RTD Temperature.
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
11
CG.3.3 Event Recorder
The 489 event recorder data starts at address 3000h. Address 3003h is the ID number of
the event of interest (a high number representing the latest event and a low number
representing the oldest event). Event numbers start at zero each time the event record is
cleared, and count upwards. To retrieve event 1, write ‘1’ to the Event Record Selector
(3003h) and read the data from 3004h to 30E7h. To retrieve event 2, write ‘2’ to the Event
Record Selector (3003h) and read the data from 3004h to 30E7h. All 40 events may be
retrieved in this manner. The time and date stamp of each event may be used to ensure
that all events have been retrieved in order without new events corrupting the sequence of
events (event 0 should be less recent than event 1, event 1 should be less recent than
event 2, etc.).
If more than 40 events have been recorded since the last time the event record was
cleared, the earliest events will not be accessible. For example, if 100 events have been
recorded (i.e., the total events since last clear in register 3002h is 100), events 60 through
99 may be retrieved. Writing any other value to the event record selector (register 3003h)
will result in an “invalid data value” error.
Each communications port can individually select the ID number of the event of interest by
writing address 3003h. This way the front port, rear port and auxiliary port can read
different events from the event recorder simultaneously.
CG.3.4 Waveform Capture
The 489 stores up to 64 cycles of A/D samples in a waveform capture buffer each time a
trip occurs. The waveform capture buffer is time and date stamped and may therefore be
correlated to a trip in the event record. To access the waveform capture memory, select
the channel of interest by writing the number to the Waveform Capture Channel Selector
(30F5h). Then read the waveform capture data from address 3100h-31BFh, and read the
date, time and line frequency from addresses 30F0h-30F4h.
Each communications port can individually select a Waveform Channel Selector of interest
by writing address 30F5h. This way the front port, rear port and auxiliary port can read
different Waveform Channels simultaneously.
The channel selector must be one of the following values:
VALUE
12
SELECTED A/D SAMPLES
SCALE FACTOR
500 counts equals 1 × CT primary
0
Phase A line current
1
Phase B line current
500 counts equals 1 × CT primary
2
Phase C line current
500 counts equals 1 × CT primary
3
Neutral-End phase A current
500 counts equals 1 × CT primary
4
Neutral-End phase B current
500 counts equals 1 × CT primary
5
Neutral-End phase C current
500 counts equals 1 × CT primary
6
Ground current
500 counts equals 1 × CT primary
or 1A for 50:0.025
7
Phase A to neutral voltage
2500 counts equals 120 secondary volts
8
Phase B to neutral voltage
2500 counts equals 120 secondary volts
9
Phase C to neutral voltage
2500 counts equals 120 secondary volts
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CG.3.5 Dual Setpoints
Each communications port can individually select an Edit Setpoint Group of interest by
writing address 1342h. This way the front port, rear port and auxiliary port can read and
alter different setpoints simultaneously.
CG.3.6 Passcode Operation
Each communications port can individually set the Passcode Access by writing address
88h with the correct Passcode. This way the front port, rear port and auxiliary port have
individual access to the setpoints. Reading address 0203h, COMMUNICATIONS SETPOINT
ACCESS register, provides the user with the current state of access for the given port. A
value of 1 read from this register indicates that the user has full access rights to changing
setpoints from the given port.
CG.3.7 489 Memory Map
The 489 memory map is shown in the following table.
Table CG–1: 489 Memory Map (Sheet 1 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
DEFAULT
PRODUCT ID
0000
GE Multilin Product Device Code
0001
Product Hardware Revision
0002
Product Software Revision
0003
Product Modification Number
0010
Boot Program Revision
0011
Boot Program Modification Number
N/A
N/A
N/A
F1
32
1 to 26
1
N/A
F15
N/A
N/A
N/A
N/A
N/A
F16
0 to 999
1
N/A
F1
N/A
N/A
N/A
N/A
F16
N/A
0 to 999
1
N/A
F1
N/A
N/A
MODEL ID
0040
Order Code
0 to 16
1
N/A
F22
0050
489 Revision
12
1
N/A
F22
N/A
0060
489 Boot Revision
12
1
N/A
F22
N/A
5
N/A
N/A
F1
N/A
0 to 65535
1
N/A
F1
N/A
COMMANDS
0080
Command Function Code (always 5)
0081
Command Operation Code
0088
Communications Port Passcode
0 to 99999999
1
N/A
F12
0
00F0
Time (Broadcast)
N/A
N/A
N/A
F24
N/A
00F2
Date (Broadcast)
N/A
N/A
N/A
F18
N/A
USER_MAP / USER MAP VALUES
0100
User Map Value #1 of 125...
N/A
N/A
N/A
F1
N/A
017C
User Map Value #125 of 125
N/A
N/A
N/A
F1
N/A
USER_MAP / USER MAP ADDRESSES
0180
User Map Address #1 of 125
0 to 3FFF
1
hex
F1
200
0181
User Map Address #2 of 125
0 to 3FFF
1
hex
F1
201
0182
User Map Address #3 of 125
0 to 3FFF
1
hex
F1
202
...
...
...
...
...
...
...
01FC
User Map Address #125 of 125
0 to 3FFF
1
hex
F1
27C
STATUS / GENERATOR STATUS
0200
Generator Status
0 to 4
1
–
F133
1
0201
Generator Thermal Capacity Used
0 to 100
1
%
F1
0
0202
Estimated Trip Time On Overload
0 to 65535 *
1
s
F12
–1
0203
Communications Setpoint Access
0 to 1
N/A
N/A
F126
N/A
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
13
Table CG–1: 489 Memory Map (Sheet 2 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
DEFAULT
STATUS / SYSTEM STATUS
0210
General Status
0 to 65535
1
N/A
F140
0
0211
Output Relay Status
0 to 63
1
N/A
F141
0
0212
Active Setpoint Group
0 to 1
1
N/A
F118
0
STATUS / LAST TRIP DATA
0220
Cause of Last Trip
0 to 139
1
–
F134
0
0221
Time of Last Trip
N/A
N/A
N/A
F19
N/A
0223
Date of Last Trip
0225
Tachometer Pretrip
0226
0228
N/A
N/A
N/A
F18
N/A
0 to 7200
1
RPM
F1
0
Phase A Pre-Trip Current
0 to 999999
1
Amps
F12
0
Phase B Pre-Trip Current
0 to 999999
1
Amps
F12
0
022A
Phase C Pre-Trip Current
0 to 999999
1
Amps
F12
0
022C
Phase A Pre-Trip Differential Current
0 to 999999
1
Amps
F12
0
022E
Phase B Pre-Trip Differential Current
0 to 999999
1
Amps
F12
0
0230
Phase C Pre-Trip Differential Current
0 to 999999
1
Amps
F12
0
0232
Negative Sequence Current Pretrip
0 to 2000
1
% FLA
F1
0
0233
Ground Current Pretrip
0235
Pre-Trip A-B Voltage
0 to 20000000
1
A
F14
0
0 to 50000
1
Volts
F1
0
0236
Pre-Trip B-C Voltage
0 to 50000
1
Volts
F1
0
0237
Pre-Trip C-A Voltage
0 to 50000
1
Volts
F1
0
0238
Frequency Pretrip
0 to 12000
1
Hz
F3
0
023B
Real Power (MW) Pretrip
–2000000 to 2000000
1
MW
F13
0
023D
Reactive Power Mvar Pretrip
–2000000 to 2000000
1
Mvar
F13
0
023F
Apparent Power MVA Pretrip
0 to 2000000
1
MVA
F13
0
0241
Last Trip Data Stator RTD
1 to 12
1
–
F1
1
0242
Hottest Stator RTD Temperature
–50 to 250
1
°C
F4
0
0243
Last Trip Data Bearing RTD
1
0244
Hottest Bearing RTD Temperature
0245
Last Trip Data Other RTD
0246
Hottest Other RTD Temperature
0247
Last Trip Data Ambient RTD
0248
Hottest Ambient RTD Temperature
0249
Analog Input 1 Pretrip
024B
Analog Input 2 Pretrip
024D
1 to 12
1
–
F1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
–50000 to 50000
1
Units
F12
0
–50000 to 50000
1
Units
F12
0
Analog Input 3 Pretrip
–50000 to 50000
1
Units
F12
0
024F
Analog Input 4 Pretrip
–50000 to 50000
1
Units
F12
0
025C
Hottest Stator RTD Temperature
–50 to 250
1
°F
F4
0
025D
Hottest Bearing RTD Temperature
–50 to 250
1
°F
F4
0
025E
Hottest Other RTD Temperature
–50 to 250
1
°F
F4
0
025F
Hottest Ambient RTD Temperature
–50 to 250
1
°F
F4
0
0260
Neutral Voltage Fundamental Pretrip
0 to 250000
1
Volts
F10
0
0262
Neutral Voltage 3rd Harmonic Pretrip
0 to 250000
1
Volts
F10
0
0264
Pre-Trip Vab/Iab
0 to 65535
1
ohms s
F2
0
0265
Pre-Trip Vab/Iab Angle
0 to 359
1
°
F1
0
STATUS / TRIP PICKUPS
0280
Input A Pickup
0 to 4
1
–
F123
0
0281
Input B Pickup
0 to 4
1
–
F123
0
0282
Input C Pickup
0 to 4
1
–
F123
0
0283
Input D Pickup
0 to 4
1
–
F123
0
0284
Input E Pickup
0 to 4
1
–
F123
0
0285
Input F Pickup
0 to 4
1
–
F123
0
0286
Input G Pickup
0 to 4
1
–
F123
0
0287
Sequential Trip Pickup
0 to 4
1
–
F123
0
1, 2, 3
14
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 3 of 30)
RANGE
STEP
UNITS
FORMAT
0288
ADDR
Field-Breaker Discrepancy Pickup
Name
0 to 4
1
–
F123
DEFAULT
0
0289
Tachometer Pickup
0 to 4
1
–
F123
0
028A
Offline Overcurrent Pickup
0 to 4
1
–
F123
0
028B
Inadvertent Energization Pickup
0 to 4
1
–
F123
0
028C
Phase Overcurrent Pickup
0 to 4
1
–
F123
0
028D
Negative Sequence Overcurrent Pickup
0 to 4
1
–
F123
0
028E
Ground Overcurrent Pickup
0 to 4
1
–
F123
0
028F
Phase Differential Pickup
0 to 4
1
–
F123
0
0290
Undervoltage Pickup
0 to 4
1
–
F123
0
0291
Overvoltage Pickup
0 to 4
1
–
F123
0
0292
Volts/Hertz Pickup
0 to 4
1
–
F123
0
0293
Phase Reversal Pickup
0 to 4
1
–
F123
0
0294
Underfrequency Pickup
0 to 4
1
–
F123
0
0295
Overfrequency Pickup
0 to 4
1
–
F123
0
0296
Neutral Overvoltage (Fundamental) Pickup
0 to 4
1
–
F123
0
0297
Neutral Undervoltage (3rd Harmonic) Pickup
0 to 4
1
–
F123
0
0298
Reactive Power Pickup
0 to 4
1
–
F123
0
0299
Reverse Power Pickup
0 to 4
1
–
F123
0
029A
Low Forward Power Pickup
0 to 4
1
–
F123
0
029B
Thermal Model Pickup
0 to 4
1
–
F123
0
029C
RTD #1 Pickup
0 to 4
1
–
F123
0
029D
RTD #2 Pickup
0 to 4
1
–
F123
0
029E
RTD #3 Pickup
0 to 4
1
–
F123
0
029F
RTD #4 Pickup
0 to 4
1
–
F123
0
02A0
RTD #5 Pickup
0 to 4
1
–
F123
0
02A1
RTD #6 Pickup
0 to 4
1
–
F123
0
02A2
RTD #7 Pickup
0 to 4
1
–
F123
0
02A3
RTD #8 Pickup
0 to 4
1
–
F123
0
02A4
RTD #9 Pickup
0 to 4
1
–
F123
0
02A5
RTD #10 Pickup
0 to 4
1
–
F123
0
02A6
RTD #11 Pickup
0 to 4
1
–
F123
0
02A7
RTD #12 Pickup
0 to 4
1
–
F123
0
02A8
Analog Input 1 Pickup
0 to 4
1
–
F123
0
02A9
Analog Input 2 Pickup
0 to 4
1
–
F123
0
02AA
Analog Input 3 Pickup
0 to 4
1
–
F123
0
02AB
Analog Input 4 Pickup
0 to 4
1
–
F123
0
02AC
Loss Of Excitation 1 Pickup
0 to 4
1
–
F123
0
02AD
Loss Of Excitation 2 Pickup
0 to 4
1
–
F123
0
02AE
Ground Directional Pickup
0 to 4
1
–
F123
0
02AF
High-Set Phase Overcurrent Pickup
0 to 4
1
–
F123
0
02B0
Distance Zone 1 Pickup
0 to 4
1
–
F123
0
02B1
Distance Zone 2 Pickup
0 to 4
1
–
F123
0
STATUS / ALARM PICKUPS
0300
Input A Pickup
0 to 4
1
–
F123
0
0301
Input B Pickup
0 to 4
1
–
F123
0
0302
Input C Pickup
0 to 4
1
–
F123
0
0303
Input D Pickup
0 to 4
1
–
F123
0
0304
Input E Pickup
0 to 4
1
–
F123
0
0305
Input F Pickup
0 to 4
1
–
F123
0
0306
Input G Pickup
0 to 4
1
–
F123
0
0307
Tachometer Pickup
0 to 4
1
–
F123
0
0308
Overcurrent Pickup
0 to 4
1
–
F123
0
0309
Negative Sequence Overcurrent Pickup
0 to 4
1
–
F123
0
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
15
Table CG–1: 489 Memory Map (Sheet 4 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
030A
ADDR
Ground Overcurrent Pickup
Name
0 to 4
1
–
F123
0
030B
Undervoltage Pickup
0 to 4
1
–
F123
0
030C
Overvoltage Pickup
0 to 4
1
–
F123
0
030D
Volts/Hertz Pickup
0 to 4
1
–
F123
0
030E
Underfrequency Pickup
0 to 4
1
–
F123
0
030F
Overfrequency Pickup
0 to 4
1
–
F123
0
0310
Neutral Overvoltage (Fundamental) Pickup
0 to 4
1
–
F123
0
0311
Neutral Undervoltage (3rd harmonic) Pickup
0 to 4
1
–
F123
0
0312
Reactive Power Pickup
0 to 4
1
–
F123
0
0313
Reverse Power Pickup
0 to 4
1
–
F123
0
0314
Low Forward Power Pickup
0 to 4
1
–
F123
0
0315
RTD #1 Pickup
0 to 4
1
–
F123
0
0316
RTD #2 Pickup
0 to 4
1
–
F123
0
0317
RTD #3 Pickup
0 to 4
1
–
F123
0
0318
RTD #4 Pickup
0 to 4
1
–
F123
0
0319
RTD #5 Pickup
0 to 4
1
–
F123
0
031A
RTD #6 Pickup
0 to 4
1
–
F123
0
031B
RTD #7 Pickup
0 to 4
1
–
F123
0
031C
RTD #8 Pickup
0 to 4
1
–
F123
0
031D
RTD #9 Pickup
0 to 4
1
–
F123
0
031E
RTD #10 Pickup
0 to 4
1
–
F123
0
031F
RTD #11 Pickup
0 to 4
1
–
F123
0
0320
RTD #12 Pickup
0 to 4
1
–
F123
0
0321
Open Sensor Pickup
0 to 4
1
–
F123
0
0322
Short/Low Temperature Pickup
0 to 4
1
–
F123
0
0323
Thermal Model Pickup
0 to 4
1
–
F123
0
0324
Trip Counter Pickup
0 to 4
1
–
F123
0
0325
Breaker Failure Pickup
0 to 4
1
–
F123
0
0326
Trip Coil Monitor Pickup
0 to 4
1
–
F123
0
0327
VT Fuse Failure Pickup
0 to 4
1
–
F123
0
0328
Current Demand Pickup
0 to 4
1
–
F123
0
0329
MW Demand Pickup
0 to 4
1
–
F123
0
032A
Mvar Demand Pickup
0 to 4
1
–
F123
0
032B
MVA Demand Pickup
0 to 4
1
–
F123
0
032C
Analog Input 1 Pickup
0 to 4
1
–
F123
0
032D
Analog Input 2 Pickup
0 to 4
1
–
F123
0
032E
Analog Input 3 Pickup
0 to 4
1
–
F123
0
032F
Analog Input 4 Pickup
0 to 4
1
–
F123
0
0330
Not Programmed Pickup
0 to 4
1
–
F123
0
0331
Simulation Mode Pickup
0 to 4
1
–
F123
0
0332
Output Relays Forced Pickup
0 to 4
1
–
F123
0
0333
Analog Output Forced Pickup
0 to 4
1
–
F123
0
0334
Test Switch Shorted Pickup
0 to 4
1
–
F123
0
0335
Ground Directional Pickup
0 to 4
1
–
F123
0
0336
IRIG-B Alarm Pickup
0 to 4
1
–
F123
0
0337
Generator Running Hour Pickup
0 to 4
1
–
F123
0
STATUS / DIGITAL INPUTS
0380
Access Switch State
0 to 1
1
–
F207
0
0381
Breaker Status Switch State
0 to 1
1
–
F207
0
0382
Assignable Digital Input 1 State
0 to 1
1
–
F207
0
0383
Assignable Digital Input 2 State
0 to 1
1
–
F207
0
0384
Assignable Digital Input 3 State
0 to 1
1
–
F207
0
0385
Assignable Digital Input 4 State
0 to 1
1
–
F207
0
1, 2, 3
16
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 5 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
0386
ADDR
Assignable Digital Input 5 State
Name
0 to 1
1
–
F207
0
0387
Assignable Digital Input 6 State
0 to 1
1
–
F207
0
0388
Assignable Digital Input 7 State
0 to 1
1
–
F207
0
0389
Trip Coil Supervision
0 to 1
1
–
F132
0
STATUS / REAL TIME CLOCK
03FC
Date (Read-only)
N/A
N/A
N/A
F18
N/A
03FE
Time (Read-only)
N/A
N/A
N/A
F19
N/A
METERING DATA / CURRENT METERING
0400
Phase A Output Current
0 to 999999
1
Amps
F12
0
0402
Phase B Output Current
0 to 999999
1
Amps
F12
0
0404
Phase C Output Current
0 to 999999
1
Amps
F12
0
0406
Phase A Neutral-Side Current
0 to 999999
1
Amps
F12
0
0408
Phase B Neutral-Side Current
0 to 999999
1
Amps
F12
0
040A
Phase C Neutral-Side Current
0 to 999999
1
Amps
F12
0
040C
Phase A Differential Current
0 to 999999
1
Amps
F12
0
040E
Phase B Differential Current
0 to 999999
1
Amps
F12
0
0410
Phase C Differential Current
0 to 999999
1
Amps
F12
0
0412
Average Phase Current
0 to 999999
1
Amps
F12
0
0414
Generator Load
0 to 2000
1
% FLA
F1
0
0415
Negative Sequence Current
0 to 2000
1
% FLA
F1
0
0416
Ground Current
0 to 10000
1
Amps
F14
0
0420
Phase A Current Angle
0 to 359
1
°
F1
0
0421
Phase B Current Angle
0 to 359
1
°
F1
0
0422
Phase C Current Angle
0 to 359
1
°
F1
0
0423
Phase A Neutral-Side Angle
0 to 359
1
°
F1
0
0424
Phase B Neutral-Side Angle
0 to 359
1
°
F1
0
0425
Phase C Neutral-Side Angle
0 to 359
1
°
F1
0
0426
Phase A Differential Angle
0 to 359
1
°
F1
0
0427
Phase B Differential Angle
0 to 359
1
°
F1
0
0428
Phase C Differential Angle
0 to 359
1
°
F1
0
0429
Ground Current Angle
0 to 359
1
°
F1
0
METERING DATA / VOLTAGE METERING
0440
Phase A-B Voltage
0 to 50000
1
Volts
F1
0
0441
Phase B-C Voltage
0 to 50000
1
Volts
F1
0
0442
Phase C-A Voltage
0 to 50000
1
Volts
F1
0
0443
Average Line Voltage
0 to 50000
1
Volts
F1
0
0444
Phase A-N Voltage
0 to 50000
1
Volts
F1
0
0445
Phase B-N Voltage
0 to 50000
1
Volts
F1
0
0446
Phase C-N Voltage
0 to 50000
1
Volts
F1
0
0447
Average Phase Voltage
0 to 50000
1
Volts
F1
0
0448
Per Unit Measurement Of V/Hz
0 to 200
1
–
F3
0
0449
Frequency
500 to 9000
1
Hz
F3
0
044A
Neutral Voltage Fund
0 to 250000
1
Volts
F10
0
044C
Neutral Voltage 3rd Harmonic
0 to 250000
1
Volts
F10
0
044E
Neutral Voltage Vp3 3rd Harmonic
0 to 250000
1
Volts
F10
0
0450
Vab/Iab
0 to 65535
1
ohms
F2
0
0451
Vab/Iab Angle
0 to 359
1
°
F1
0
0460
Line A-B Voltage Angle
0 to 359
1
°
F1
0
0461
Line B-C Voltage Angle
0 to 359
1
°
F1
0
0462
Line C-A Voltage Angle
0 to 359
1
°
F1
0
0463
Phase A-N Voltage Angle
0 to 359
1
°
F1
0
0464
Phase B-N Voltage Angle
0 to 359
1
°
F1
0
0465
Phase C-N Voltage Angle
0 to 359
1
°
F1
0
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
17
Table CG–1: 489 Memory Map (Sheet 6 of 30)
ADDR
0466
Name
Neutral Voltage Angle
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 359
1
–
F1
0
METERING DATA / POWER METERING
0480
Power Factor
–100 to 100
1
–
F6
0
0481
Real Power
–2000000 to 2000000
1
MW
F13
0
0483
Reactive Power
–2000000 to 2000000
1
Mvar
F13
0
0485
Apparent Power
–2000000 to 200000
1
MVA
F13
0
0487
Positive Watthours
0 to 4000000000
1
MWh
F13
0
0489
Positive Varhours
0 to 4000000000
1
Mvarh
F13
0
048B
Negative Varhours
0 to 4000000000
1
Mvarh
F13
0
METERING DATA / TEMPERATURE
04A0
Hottest Stator RTD
1 to 12
1
–
F1
0
04A1
Hottest Stator RTD Temperature
–52 to 250
1
°C
F4
–52
04A2
RTD #1 Temperature
–52 to 251
1
°C
F4
–52
04A3
RTD #2 Temperature
–52 to 251
1
°C
F4
–52
04A4
RTD #3 Temperature
–52 to 251
1
°C
F4
–52
04A5
RTD #4 Temperature
–52 to 251
1
°C
F4
–52
04A6
RTD #5 Temperature
–52 to 251
1
°C
F4
–52
04A7
RTD #6 Temperature
–52 to 251
1
°C
F4
–52
04A8
RTD #7 Temperature
–52 to 251
1
°C
F4
–52
04A9
RTD #8 Temperature
–52 to 251
1
°C
F4
–52
04AA
RTD #9 Temperature
–52 to 251
1
°C
F4
–52
04AB
RTD #10 Temperature
–52 to 251
1
°C
F4
–52
04AC
RTD #11 Temperature
–52 to 251
1
°C
F4
–52
04AD
RTD #12 Temperature
–52 to 251
1
°C
F4
–52
04C0
Hottest Stator RTD Temperature
–52 to 250
1
°F
F4
–52
04C1
RTD #1 Temperature
–52 to 251
1
°F
F4
–52
04C2
RTD #2 Temperature
–52 to 251
1
°F
F4
–52
04C3
RTD #3 Temperature
–52 to 251
1
°F
F4
–52
04C4
RTD #4 Temperature
–52 to 251
1
°F
F4
–52
04C5
RTD #5 Temperature
–52 to 251
1
°F
F4
–52
04C6
RTD #6 Temperature
–52 to 251
1
°F
F4
–52
04C7
RTD #7 Temperature
–52 to 251
1
°F
F4
–52
04C8
RTD #8 Temperature
–52 to 251
1
°F
F4
–52
04C9
RTD #9 Temperature
–52 to 251
1
°F
F4
–52
04CA
RTD #10 Temperature
–52 to 251
1
°F
F4
–52
04CB
RTD #11 Temperature
–52 to 251
1
°F
F4
–52
04CC
RTD #12 Temperature
–52 to 251
1
°F
F4
–52
METERING DATA / DEMAND METERING
04E0
Current Demand
0 to 1000000
1
Amps
F12
0
04E2
MW Demand
0 to 2000000
1
MW
F13
0
04E4
Mvar Demand
0 to 2000000
1
Mvar
F13
0
04E6
MVA Demand
0 to 2000000
1
MVA
F13
0
04E8
Peak Current Demand
0 to 1000000
1
Amps
F12
0
04EA
Peak MW Demand
0 to 2000000
1
MW
F13
0
04EC
Peak Mvar Demand
0 to 2000000
1
Mvar
F13
0
04EE
Peak MVA Demand
0 to 2000000
1
MVA
F13
0
METERING DATA / ANALOG INPUTS
0500
Analog Input 1
–50000 to 50000
1
Units
F12
0
0502
Analog Input 2
–50000 to 50000
1
Units
F12
0
0504
Analog Input 3
–50000 to 50000
1
Units
F12
0
0506
Analog Input 4
–50000 to 50000
1
Units
F12
0
0 to 7200
1
RPM
F1
0
METERING DATA / SPEED
0520
1, 2, 3
18
Tachometer
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 7 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
DEFAULT
0
LEARNED DATA / PARAMETER AVERAGES
0600
Average Generator Load
0 to 2000
1
%FLA
F1
0601
Average Negative Sequence Current
0 to 2000
1
%FLA
F1
0
0602
Average Phase-Phase Voltage
0 to 50000
1
V
F1
0
0603
Reserved
–
–
–
–
–
0604
Reserved
–
–
–
–
–
LEARNED DATA / RTD MAXIMUMS
0620
RTD #1 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0621
RTD #2 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0622
RTD #3 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0623
RTD #4 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0624
RTD #5 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0625
RTD #6 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0626
RTD #7 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0627
RTD #8 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0628
RTD #9 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0629
RTD #10 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
062A
RTD #11 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
062B
RTD #12 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0640
RTD #1 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0641
RTD #2 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0642
RTD #3 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0643
RTD #4 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0644
RTD #5 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0645
RTD #6 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0646
RTD #7 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0647
RTD #8 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0648
RTD #9 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0649
RTD #10 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
064A
RTD #11 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
064B
RTD #12 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
N/A
1
---
F22
A3000000
↓
↓
↓
↓
↓
N/A
1
---
F22
A3000000
489 MODEL INFORMATION
0650
Relay serial number (read only)
↓
0653
↓
Relay serial number (read only)
COMMUNICATION ACTUAL VALUES
0660
CoBox serial number
---
---
---
F22
---
0674
CoBox MAC address
---
---
---
F22
---
0688
CoBox firmware version
---
---
---
F22
---
069C
Ethernet status
---
---
---
F152
--0
LEARNED DATA / ANALOG IN MIN/MAX
0700
Analog Input 1 Minimum
–50000 to 50000
1
Units
F12
0702
Analog Input 1 Maximum
–50000 to 50000
1
Units
F12
0
0704
Analog Input 2 Minimum
–50000 to 50000
1
Units
F12
0
0706
Analog Input 2 Maximum
–50000 to 50000
1
Units
F12
0
0708
Analog Input 3 Minimum
–50000 to 50000
1
Units
F12
0
070A
Analog Input 3 Maximum
–50000 to 50000
1
Units
F12
0
070C
Analog Input 4 Minimum
–50000 to 50000
1
Units
F12
0
070E
Analog Input 4 Maximum
–50000 to 50000
1
Units
F12
0
N/A
MAINTENANCE / TRIP COUNTERS
077F
Trip Counters Last Cleared (Date)
N/A
N/A
N/A
F18
0781
Total Number of Trips
0 to 50000
1
–
F1
0
0782
Digital Input Trips
0 to 50000
1
–
F1
0
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
19
Table CG–1: 489 Memory Map (Sheet 8 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
0783
ADDR
Sequential Trips
Name
0 to 50000
1
–
F1
0
0784
Field-Breaker Discrepancy Trips
0 to 50000
1
–
F1
0
0785
Tachometer Trips
0 to 50000
1
–
F1
0
0786
Offline Overcurrent Trips
0 to 50000
1
–
F1
0
0787
Phase Overcurrent Trips
0 to 50000
1
–
F1
0
0788
Negative Sequence Overcurrent Trips
0 to 50000
1
–
F1
0
0789
Ground Overcurrent Trips
0 to 50000
1
–
F1
0
078A
Phase Differential Trips
0 to 50000
1
–
F1
0
078B
Undervoltage Trips
0 to 50000
1
–
F1
0
078C
Overvoltage Trips
0 to 50000
1
–
F1
0
078D
Volts/Hertz Trips
0 to 50000
1
–
F1
0
078E
Phase Reversal Trips
0 to 50000
1
–
F1
0
078F
Underfrequency Trips
0 to 50000
1
–
F1
0
0790
Overfrequency Trips
0 to 50000
1
–
F1
0
0791
Neutral Overvoltage (Fundamental) Trips
0 to 50000
1
–
F1
0
0792
Neutral Undervoltage (3rd Harmonic) Trips
0 to 50000
1
–
F1
0
0793
Reactive Power Trips
0 to 50000
1
–
F1
0
0794
Reverse Power Trips
0 to 50000
1
–
F1
0
0795
Low Forward Power Trips
0 to 50000
1
–
F1
0
0796
Stator RTD Trips
0 to 50000
1
–
F1
0
0797
Bearing RTD Trips
0 to 50000
1
–
F1
0
0798
Other RTD Trips
0 to 50000
1
–
F1
0
0799
Ambient RTD Trips
0 to 50000
1
–
F1
0
079A
Thermal Model Trips
0 to 50000
1
–
F1
0
079B
Inadvertent Energization Trips
0 to 50000
1
–
F1
0
079C
Analog Input 1 Trips
0 to 50000
1
–
F1
0
079D
Analog Input 2 Trips
0 to 50000
1
–
F1
0
079E
Analog Input 3 Trips
0 to 50000
1
–
F1
0
079F
Analog Input 4 Trips
0 to 50000
1
–
F1
0
MAINTENANCE / GENERAL COUNTERS
07A0
Number Of Breaker Operations
0 to 50000
1
–
F1
0
07A1
Number Of Thermal Resets
0 to 50000
1
–
F1
0
MAINTENANCE / TRIP COUNTERS
07A2
Loss Of Excitation 1 Trips
0 to 50000
1
–
F1
0
07A3
Loss Of Excitation 2 Trips
0 to 50000
1
–
F1
0
07A4
Ground Directional Trips
0 to 50000
1
–
F1
0
07A5
High-Set Phase Overcurrent Trips
0 to 50000
1
–
F1
0
07A6
Distance Zone 1 Trips
0 to 50000
1
–
F1
0
07A7
Distance Zone 2 Trips
0 to 50000
1
–
F1
0
0 to 1000000
1
h
F12
0
0 to 65535
1
N/A
F136
N/A
3000000 to 9999999
1
–
F12
3000000
MAINTENANCE / TIMERS
07E0
Generator Hours Online
PRODUCT INFO. / 489 MODEL INFO.
0800
Order Code
0801
489 Serial Number
PRODUCT INFO. / CALIBRATION INFO.
0810
Original Calibration Date
N/A
N/A
N/A
F18
N/A
0812
Last Calibration Date
N/A
N/A
N/A
F18
N/A
489 SETUP / PREFERENCES
1000
Default Message Cycle Time
5 to 100
5
s
F2
20
1001
Default Message Timeout
10 to 900
1
s
F1
300
1003
Parameter Averages Calculation Period
1 to 90
1
min
F1
15
1004
Temperature Display
0 to 1
1
–
F100
0
1005
Waveform Trigger Position
1 to 100
1
%
F1
25
1, 2, 3
20
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 9 of 30)
ADDR
Name
1006
Passcode (Write Only)
1008
Encrypted Passcode (Read Only)
100A
Waveform Memory Buffer
RANGE
STEP
UNITS
FORMAT
0 to 99999999
1
N/A
F12
DEFAULT
0
N/A
N/A
N/A
F12
N/A
1 to 16
1
–
F1
8
489 SETUP / SERIAL PORTS
1010
Slave Address
1 to 254
1
–
F1
254
1011
Computer RS485 Baud Rate
0 to 5
1
–
F101
4
1012
Computer RS485 Parity
0 to 2
1
–
F102
0
1013
Auxiliary RS485 Baud Rate
0 to 5
1
–
F101
4
1014
Auxiliary RS485 Parity
0 to 2
1
–
F102
0
1015
Port Used For DNP
0 to 3
1
–
F216
0
1016
DNP Slave Address
0 to 255
1
–
F1
255
1017
DNP Turnaround Time
0 to 100
10
ms
F1
10
COMMUNICATION SETPOINTS
1020
Ethernet IP address
---
---
---
F150
0
1022
Ethernet subnet mask
---
---
--–
F150
FFFFFC00
1024
Ethernet gateway address
102C
Front RS232 baud rate
---
---
--–
F150
0
0 to 5
1
---
F101
5
489 SETUP / REAL TIME CLOCK
1030
Date
N/A
N/A
N/A
F18
N/A
1032
Time
N/A
N/A
N/A
F19
N/A
1034
IRIG-B Type
0 to 2
1
–
F220
0
_
489 SETUP / MESSAGE SCRATCHPAD
1060
Scratchpad
0 to 40
1
–
F22
1080
Scratchpad
0 to 40
1
–
F22
_
10A0
Scratchpad
0 to 40
1
–
F22
_
10C0
Scratchpad
0 to 40
1
–
F22
_
10E0
Scratchpad
0 to 40
1
–
F22
_
0
489 SETUP / CLEAR DATA
1130
Clear Last Trip Data
0 to 1
1
–
F103
1131
Clear Mwh And Mvarh Meters
0 to 1
1
–
F103
0
1132
Clear Peak Demand Data
0 to 1
1
–
F103
0
1133
Clear RTD Maximums
0 to 1
1
–
F103
0
1134
Clear Analog Inputs Minimums/Maximums
0 to 1
1
–
F103
0
1135
Clear Trip Counters
0 to 1
1
–
F103
0
1136
Clear Event Record
0 to 1
1
–
F103
0
1137
Clear Generator Information
0 to 1
1
–
F103
0
1138
Clear Breaker Information
0 to 1
1
–
F103
0
10 to 50001
1
Amps
F1
50001
0 to 3
1
–
F104
0
5 to 10000
1
: 1 / :5
F1
100
SYSTEM SETUP / CURRENT SENSING
1180
Phase CT Primary
1181
Ground CT
1182
Ground CT Ratio
SYSTEM SETUP / VOLTAGE SENSING
11A0
VT Connection Type
0 to 2
1
–
F106
0
11A1
Voltage Transformer Ratio
100 to 30000
1
:1
F3
500
11A2
Neutral VT Ratio
100 to 24000
1
:1
F3
500
11A3
Neutral Voltage Transformer
0 to 1
1
–
F103
0
50 to 2000001
1
MVA
F13
2000001
5 to 100
1
–
F3
100
100 to 30001
1
V
F1
30001
SYSTEM SETUP / GEN. PARAMETERS
11C0
Generator Rated MVA
11C2
Generator Rated Power Factor
11C3
Generator Voltage Phase-Phase
11C4
Generator Nominal Frequency
0 to 3
1
Hz
F107
0
11C5
Generator Phase Sequence
0 to 2
1
–
F124
0
SYSTEM SETUP / SERIAL START/STOP
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
21
Table CG–1: 489 Memory Map (Sheet 10 of 30)
RANGE
STEP
UNITS
FORMAT
11E0
ADDR
Serial Start/Stop Initiation
Name
0 to 1
1
–
F105
DEFAULT
0
11E1
Startup Initiation Relays (2-5)
1 to 4
1
–
F50
0
11E2
Shutdown Initiation Relays (1-4)
0 to 3
1
–
F50
0
11E3
Serial Start/Stop Events
0 to 1
1
–
F105
0
0 to 1
1
–
F209
1
DIGITAL INPUTS / BREAKER STATUS
1200
Breaker Status
DIGITAL INPUTS / GENERAL INPUT A
1210
Assign Digital Input
0 to 7
1
–
F210
0
1211
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
1212
Input Name
1218
Block Input From Online
1219
General Input A Control
121A
Pulsed Control Relay Dwell Time
121B
121C
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
General Input A Control Events
0 to 1
1
–
F105
0
121D
General Input A Alarm
0 to 2
1
–
F115
0
121E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
121F
General Input A Alarm Delay
1 to 50000
1
s
F2
50
1220
General Input A Alarm Events
0 to 1
1
–
F105
0
1221
General Input A Trip
0 to 2
1
–
F115
0
1222
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1223
General Input A Trip Delay
1 to 50000
1
s
F2
50
DIGITAL INPUTS / GENERAL INPUT B
1230
Assign Digital Input
0 to 7
1
–
F210
0
1231
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
1232
Input Name
1238
Block Input From Online
1239
General Input B Control
123A
Pulsed Control Relay Dwell Time
123B
123C
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
General Input B Control Events
0 to 1
1
–
F105
0
123D
General Input B Alarm
0 to 2
1
–
F115
0
123E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
123F
General Input B Alarm Delay
1 to 50000
1
s
F2
50
1240
General Input B Alarm Events
0 to 1
1
–
F105
0
1241
General Input B Trip
0 to 2
1
–
F115
0
1242
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1243
General Input B Trip Delay
1 to 50000
1
s
F2
50
DIGITAL INPUTS / GENERAL INPUT C
1250
Assign Digital Input
0 to 7
1
–
F210
0
1251
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
1252
Input Name
1258
Block Input From Online
1259
General Input C Control
125A
Pulsed Control Relay Dwell Time
125B
125C
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
General Input C Control Events
0 to 1
1
–
F105
0
125D
General Input C Alarm
0 to 2
1
–
F115
0
125E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
125F
General Input C Alarm Delay
1 to 50000
1
s
F2
50
1260
General Input C Alarm Events
0 to 1
1
–
F105
0
1261
General Input C Trip
0 to 2
1
–
F115
0
1262
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1, 2, 3
22
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 11 of 30)
ADDR
1263
Name
General Input C Trip Delay
RANGE
STEP
UNITS
FORMAT
DEFAULT
1 to 50000
1
s
F2
50
DIGITAL INPUTS / GENERAL INPUT D
1270
Assign Digital Input
0 to 7
1
–
F210
0
1271
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
1272
Input Name
1278
Block Input From Online
1279
General Input D Control
127A
Pulsed Control Relay Dwell Time
127B
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
127C
General Input D Control Events
0 to 1
1
–
F105
0
127D
General Input D Alarm
0 to 2
1
–
F115
0
127E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
127F
General Input D Alarm Delay
1 to 50000
1
s
F2
50
1280
General Input D Alarm Events
0 to 1
1
–
F105
0
1281
General Input D Trip
0 to 2
1
–
F115
0
1282
Assign Trip Relays (1-4)
1283
General Input D Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
DIGITAL INPUTS / GENERAL INPUT E
1290
Assign Digital Input
0 to 7
1
–
F210
0
1291
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
1292
Input Name
1298
Block Input From Online
1299
General Input E Control
129A
Pulsed Control Relay Dwell Time
129B
129C
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
General Input E Control Events
0 to 1
1
–
F105
0
129D
General Input E Alarm
0 to 2
1
–
F115
0
129E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
129F
General Input E Alarm Delay
1 to 50000
1
s
F2
50
12A0
General Input E Alarm Events
0 to 1
1
–
F105
0
12A1
General Input E Trip
0 to 2
1
–
F115
0
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
12A2
Assign Trip Relays (1-4)
12A3
General Input E Trip Delay
DIGITAL INPUTS / GENERAL INPUT F
12B0
Assign Digital Input
0 to 7
1
–
F210
0
12B1
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
12B2
Input Name
12B8
Block Input From Online
12B9
General Input F Control
12BA
Pulsed Control Relay Dwell Time
12BB
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
12BC
General Input F Control Events
0 to 1
1
–
F105
0
12BD
General Input F Alarm
0 to 2
1
–
F115
0
12BE
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
12BF
General Input F Alarm Delay
1 to 50000
1
s
F2
50
12C0
General Input F Alarm Events
0 to 1
1
–
F105
0
12C1
General Input F Trip
0 to 2
1
–
F115
0
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
12C2
Assign Trip Relays (1-4)
12C3
General Input F Trip Delay
DIGITAL INPUTS / GENERAL INPUT G
12D0
Assign Digital Input
0 to 7
1
–
F210
0
12D1
Asserted Digital Input State
0 to 1
1
–
F131
0
12D2
Input Name
0 to 12
1
–
F22
_
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
23
Table CG–1: 489 Memory Map (Sheet 12 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
12D8
ADDR
Block Input From Online
Name
0 to 5000
1
s
F1
0
12D9
General Input G Control
0 to 1
1
–
F105
0
12DA
Pulsed Control Relay Dwell Time
0 to 250
1
s
F2
0
0
12DB
Assign Control Relays (1-5)
0 to 4
1
–
F50
12DC
General Input G Control Events
0 to 1
1
–
F105
0
12DD
General Input G Alarm
0 to 2
1
–
F115
0
12DE
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
12DF
General Input G Alarm Delay
1 to 50000
1
s
F2
50
12E0
General Input G Alarm Events
0 to 1
1
–
F105
0
12E1
General Input G Trip
0 to 2
1
–
F115
0
12E2
Assign Trip Relays (1-4)
12E3
General Input G Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
0 to 7
1
–
F210
0
0 to 7
1
–
F210
0
0 to 7
1
–
F210
0
0
DIGITAL INPUTS / REMOTE RESET
1300
Assign Digital Input
DIGITAL INPUTS / TEST INPUT
1310
Assign Digital Input
DIGITAL INPUTS / THERMAL RESET
1320
Assign Digital Input
DIGITAL INPUTS / DUAL SETPOINTS
1340
Assign Digital Input
0 to 7
1
–
F210
1341
Active Setpoint Group
0 to 1
1
–
F118
0
1342
Edit Setpoint Group
0 to 1
1
–
F118
0
0
DIGITAL INPUTS / SEQUENTIAL TRIP
1360
Assign Digital Input
0 to 7
1
–
F210
1361
Sequential Trip Type
0 to 1
1
–
F206
0
1362
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1363
Sequential Trip Level
2 to 99
1
× Rated MW
F14
5
1365
Sequential Trip Delay
2 to 1200
1
s
F2
10
DIGITAL INPUTS / FIELD-BREAKER DISCREPANCY
1380
Assign Digital Input
0 to 7
1
–
F210
0
1381
Field Status Contact
0 to 1
1
–
F109
0
1382
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1383
Field-Breaker Discrepancy Trip Delay
1 to 5000
1
s
F2
10
DIGITAL INPUTS / TACHOMETER
13A0
Assign Digital Input
13A1
Rated Speed
0 to 7
1
–
F210
0
100 to 3600
1
RPM
F1
3600
13A2
Tachometer Alarm
0 to 2
1
–
F115
0
13A3
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
13A4
Tachometer Alarm Speed
101 to 175
1
%Rated
F1
110
13A5
Tachometer Alarm Delay
1 to 250
1
s
F1
1
13A6
Tachometer Alarm Events
0 to 1
1
–
F105
0
13A7
Tachometer Trip
0 to 2
1
–
F115
0
13A8
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
13A9
Tachometer Trip Speed
101 to 175
1
%Rated
F1
110
13AA
Tachometer Trip Delay
1 to 250
1
s
F1
1
0 to 7
1
–
F210
0
DIGITAL INPUTS / WAVEFORM CAPTURE
13C0
Assign Digital Input
DIGITAL INPUTS / GROUND SWITCH STATUS
13D0
Assign Digital Input
0 to 7
1
–
F210
0
13D1
Ground Switch Contact
0 to 1
1
–
F109
0
OUTPUT RELAYS / RELAY RESET MODE
1400
1 Trip
0 to 1
1
–
F117
0
1401
2 Auxiliary
0 to 1
1
–
F117
0
1, 2, 3
24
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 13 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
1402
ADDR
3 Auxiliary
Name
0 to 1
1
–
F117
0
1403
4 Auxiliary
0 to 1
1
–
F117
0
1404
5 Alarm
0 to 1
1
–
F117
0
1405
6 Service
0 to 1
1
–
F117
0
CURRENT ELEMENTS / OVERCURRENT ALARM
1500
Overcurrent Alarm
0 to 2
1
–
F115
0
1501
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1502
Overcurrent Alarm Level
10 to 150
1
× FLA
F3
101
1503
Overcurrent Alarm Delay
1 to 2500
1
s
F2
1
1504
Overcurrent Alarm Events
0 to 1
1
–
F105
0
CURRENT ELEMENTS / OFFLINE OVERCURRENT
1520
Offline Overcurrent Trip
0 to 2
1
–
F115
0
1521
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1522
Offline Overcurrent Pickup
5 to 100
1
× CT
F3
5
1523
Offline Overcurrent Trip Delay
3 to 99
1
Cycles
F1
5
CURRENT ELEMENTS / INADVERTENT ENERGIZATION
1540
Inadvertent Energize Trip
0 to 2
1
–
F115
0
1541
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
0
1542
Arming Signal
0 to 1
1
–
F202
1543
Inadvertent Energize O/c Pickup
5 to 300
1
× CT
F3
5
1544
Inadvertent Energize Pickup
50 to 99
1
× Rated V
F3
50
CURRENT ELEMENTS / PHASE OVERCURRENT
1600
Phase Overcurrent Trip
0 to 2
1
–
F115
0
1601
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1602
Enable Voltage Restraint
0 to 1
1
–
F103
0
1603
Phase Overcurrent Pickup
15 to 2000
1
× CT
F3
1000
1604
Curve Shape
0 to 13
1
–
F128
0
1605
FlexCurve™ Trip Time at 1.03 × PU
0 to 65535
1
ms
F1
65535
1606
FlexCurve™ Trip Time at 1.05 × PU
0 to 65535
1
ms
F1
65535
1607
FlexCurve™ Trip Time at 1.10 × PU
0 to 65535
1
ms
F1
65535
1608
FlexCurve™ Trip Time at 1.20 × PU
0 to 65535
1
ms
F1
65535
1609
FlexCurve™ Trip Time at 1.30 × PU
0 to 65535
1
ms
F1
65535
160A
FlexCurve™ Trip Time at 1.40 × PU
0 to 65535
1
ms
F1
65535
160B
FlexCurve™ Trip Time at 1.50 × PU
0 to 65535
1
ms
F1
65535
160C
FlexCurve™ Trip Time at 1.60 × PU
0 to 65535
1
ms
F1
65535
160D
FlexCurve™ Trip Time at 1.70 × PU
0 to 65535
1
ms
F1
65535
160E
FlexCurve™ Trip Time at 1.80 × PU
0 to 65535
1
ms
F1
65535
160F
FlexCurve™ Trip Time at 1.90 × PU
0 to 65535
1
ms
F1
65535
1610
FlexCurve™ Trip Time at 2.00 × PU
0 to 65535
1
ms
F1
65535
1611
FlexCurve™ Trip Time at 2.10 × PU
0 to 65535
1
ms
F1
65535
1612
FlexCurve™ Trip Time at 2.20 × PU
0 to 65535
1
ms
F1
65535
1613
FlexCurve™ Trip Time at 2.30 × PU
0 to 65535
1
ms
F1
65535
1614
FlexCurve™ Trip Time at 2.40 × PU
0 to 65535
1
ms
F1
65535
1615
FlexCurve™ Trip Time at 2.50 × PU
0 to 65535
1
ms
F1
65535
1616
FlexCurve™ Trip Time at 2.60 × PU
0 to 65535
1
ms
F1
65535
1617
FlexCurve™ Trip Time at 2.70 × PU
0 to 65535
1
ms
F1
65535
1618
FlexCurve™ Trip Time at 2.80 × PU
0 to 65535
1
ms
F1
65535
1619
FlexCurve™ Trip Time at 2.90 × PU
0 to 65535
1
ms
F1
65535
161A
FlexCurve™ Trip Time at 3.00 × PU
0 to 65535
1
ms
F1
65535
161B
FlexCurve™ Trip Time at 3.10 × PU
0 to 65535
1
ms
F1
65535
161C
FlexCurve™ Trip Time at 3.20 × PU
0 to 65535
1
ms
F1
65535
161D
FlexCurve™ Trip Time at 3.30 × PU
0 to 65535
1
ms
F1
65535
161E
FlexCurve™ Trip Time at 3.40 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
25
Table CG–1: 489 Memory Map (Sheet 14 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
161F
ADDR
FlexCurve™ Trip Time at 3.50 × PU
0 to 65535
1
ms
F1
65535
1620
FlexCurve™ Trip Time at 3.60 × PU
0 to 65535
1
ms
F1
65535
1621
FlexCurve™ Trip Time at 3.70 × PU
0 to 65535
1
ms
F1
65535
1622
FlexCurve™ Trip Time at 3.80 × PU
0 to 65535
1
ms
F1
65535
1623
FlexCurve™ Trip Time at 3.90 × PU
0 to 65535
1
ms
F1
65535
1624
FlexCurve™ Trip Time at 4.00 × PU
0 to 65535
1
ms
F1
65535
1625
FlexCurve™ Trip Time at 4.10 × PU
0 to 65535
1
ms
F1
65535
1626
FlexCurve™ Trip Time at 4.20 × PU
0 to 65535
1
ms
F1
65535
1627
FlexCurve™ Trip Time at 4.30 × PU
0 to 65535
1
ms
F1
65535
1628
FlexCurve™ Trip Time at 4.40 × PU
0 to 65535
1
ms
F1
65535
1629
FlexCurve™ Trip Time at 4.50 × PU
0 to 65535
1
ms
F1
65535
162A
FlexCurve™ Trip Time at 4.60 × PU
0 to 65535
1
ms
F1
65535
162B
FlexCurve™ Trip Time at 4.70 × PU
0 to 65535
1
ms
F1
65535
162C
FlexCurve™ Trip Time at 4.80 × PU
0 to 65535
1
ms
F1
65535
162D
FlexCurve™ Trip Time at 4.90 × PU
0 to 65535
1
ms
F1
65535
162E
FlexCurve™ Trip Time at 5.00 × PU
0 to 65535
1
ms
F1
65535
162F
FlexCurve™ Trip Time at 5.10 × PU
0 to 65535
1
ms
F1
65535
1630
FlexCurve™ Trip Time at 5.20 × PU
0 to 65535
1
ms
F1
65535
1631
FlexCurve™ Trip Time at 5.30 × PU
0 to 65535
1
ms
F1
65535
1632
FlexCurve™ Trip Time at 5.40 × PU
0 to 65535
1
ms
F1
65535
1633
FlexCurve™ Trip Time at 5.50 × PU
0 to 65535
1
ms
F1
65535
1634
FlexCurve™ Trip Time at 5.60 × PU
0 to 65535
1
ms
F1
65535
1635
FlexCurve™ Trip Time at 5.70 × PU
0 to 65535
1
ms
F1
65535
1636
FlexCurve™ Trip Time at 5.80 × PU
0 to 65535
1
ms
F1
65535
1637
FlexCurve™ Trip Time at 5.90 × PU
0 to 65535
1
ms
F1
65535
1638
FlexCurve™ Trip Time at 6.00 × PU
0 to 65535
1
ms
F1
65535
1639
FlexCurve™ Trip Time at 6.50 × PU
0 to 65535
1
ms
F1
65535
163A
FlexCurve™ Trip Time at 7.00 × PU
0 to 65535
1
ms
F1
65535
163B
FlexCurve™ Trip Time at 7.50 × PU
0 to 65535
1
ms
F1
65535
163C
FlexCurve™ Trip Time at 8.00 × PU
0 to 65535
1
ms
F1
65535
163D
FlexCurve™ Trip Time at 8.50 × PU
0 to 65535
1
ms
F1
65535
163E
FlexCurve™ Trip Time at 9.00 × PU
0 to 65535
1
ms
F1
65535
163F
FlexCurve™ Trip Time at 9.50 × PU
0 to 65535
1
ms
F1
65535
1640
FlexCurve™ Trip Time at 10.0 × PU
0 to 65535
1
ms
F1
65535
1641
FlexCurve™ Trip Time at 10.5 × PU
0 to 65535
1
ms
F1
65535
1642
FlexCurve™ Trip Time at 11.0 × PU
0 to 65535
1
ms
F1
65535
1643
FlexCurve™ Trip Time at 11.5 × PU
0 to 65535
1
ms
F1
65535
1644
FlexCurve™ Trip Time at 12.0 × PU
0 to 65535
1
ms
F1
65535
1645
FlexCurve™ Trip Time at 12.5 × PU
0 to 65535
1
ms
F1
65535
1646
FlexCurve™ Trip Time at 13.0 × PU
0 to 65535
1
ms
F1
65535
1647
FlexCurve™ Trip Time at 13.5 × PU
0 to 65535
1
ms
F1
65535
1648
FlexCurve™ Trip Time at 14.0 × PU
0 to 65535
1
ms
F1
65535
1649
FlexCurve™ Trip Time at 14.5 × PU
0 to 65535
1
ms
F1
65535
164A
FlexCurve™ Trip Time at 15.0 × PU
0 to 65535
1
ms
F1
65535
164B
FlexCurve™ Trip Time at 15.5 × PU
0 to 65535
1
ms
F1
65535
164C
FlexCurve™ Trip Time at 16.0 × PU
0 to 65535
1
ms
F1
65535
164D
FlexCurve™ Trip Time at 16.5 × PU
0 to 65535
1
ms
F1
65535
164E
FlexCurve™ Trip Time at 17.0 × PU
0 to 65535
1
ms
F1
65535
164F
FlexCurve™ Trip Time at 17.5 × PU
0 to 65535
1
ms
F1
65535
1650
FlexCurve™ Trip Time at 18.0 × PU
0 to 65535
1
ms
F1
65535
1651
FlexCurve™ Trip Time at 18.5 × PU
0 to 65535
1
ms
F1
65535
1652
FlexCurve™ Trip Time at 19.0 × PU
0 to 65535
1
ms
F1
65535
1653
FlexCurve™ Trip Time at 19.5 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
26
Name
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 15 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
1654
ADDR
FlexCurve™ Trip Time at 20.0 × PU
Name
0 to 65535
1
ms
F1
65535
1655
Overcurrent Curve Multiplier
0 to 100000
1
–
F14
100
1657
Overcurrent Curve Reset
0 to 1
1
–
F201
0
1658
Voltage Lower Limit
10 to 60
1
%
F1
10
CURRENT ELEMENTS / NEGATIVE SEQUENCE
1700
Negative Sequence Alarm
0 to 2
1
–
F115
0
1701
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1702
Negative Sequence Alarm Pickup
3 to 100
1
%FLA
F1
3
1703
Negative Sequence Alarm Delay
1 to 1000
1
s
F2
50
1704
Negative Sequence Alarm Events
0 to 1
1
–
F105
0
1705
Negative Sequence Overcurrent Trip
0 to 2
1
–
F115
0
1706
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1707
Negative Sequence Overcurrent Trip Pickup
3 to 100
1
%FLA
F1
8
1708
Negative Sequence Overcurrent Constant K
1 to 100
1
–
F1
1
1709
Negative Sequence Overcurrent Maximum Time
10 to 1000
1
s
F1
1000
170A
Negative Sequence Overcurrent Reset Rate
0 to 9999
1
s
F2
2270
CURRENT ELEMENTS / GROUND O/C
1720
Ground Overcurrent Alarm
0 to 2
1
–
F115
0
1721
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
20
1722
Ground Overcurrent Alarm Pickup
5 to 2000
1
× CT
F3
1723
Ground Overcurrent Alarm Delay
0 to 100
1
Cycles
F1
0
1724
Ground Overcurrent Alarm Events
0 to 1
1
–
F105
0
1725
Ground Overcurrent Trip
0 to 2
1
–
F115
0
1726
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1727
Ground Overcurrent Trip Pickup
5 to 2000
1
× CT
F3
20
1728
Curve Shape
0 to 13
1
–
F128
0
1729
FlexCurve™ Trip Time at 1.03 × PU
0 to 65535
1
ms
F1
65535
172A
FlexCurve™ Trip Time at 1.05 × PU
0 to 65535
1
ms
F1
65535
172B
FlexCurve™ Trip Time at 1.10 × PU
0 to 65535
1
ms
F1
65535
172C
FlexCurve™ Trip Time at 1.20 × PU
0 to 65535
1
ms
F1
65535
172D
FlexCurve™ Trip Time at 1.30 × PU
0 to 65535
1
ms
F1
65535
172E
FlexCurve™ Trip Time at 1.40 × PU
0 to 65535
1
ms
F1
65535
172F
FlexCurve™ Trip Time at 1.50 × PU
0 to 65535
1
ms
F1
65535
1730
FlexCurve™ Trip Time at 1.60 × PU
0 to 65535
1
ms
F1
65535
1731
FlexCurve™ Trip Time at 1.70 × PU
0 to 65535
1
ms
F1
65535
1732
FlexCurve™ Trip Time at 1.80 × PU
0 to 65535
1
ms
F1
65535
1733
FlexCurve™ Trip Time at 1.90 × PU
0 to 65535
1
ms
F1
65535
1734
FlexCurve™ Trip Time at 2.00 × PU
0 to 65535
1
ms
F1
65535
1735
FlexCurve™ Trip Time at 2.10 × PU
0 to 65535
1
ms
F1
65535
1736
FlexCurve™ Trip Time at 2.20 × PU
0 to 65535
1
ms
F1
65535
1737
FlexCurve™ Trip Time at 2.30 × PU
0 to 65535
1
ms
F1
65535
1738
FlexCurve™ Trip Time at 2.40 × PU
0 to 65535
1
ms
F1
65535
1739
FlexCurve™ Trip Time at 2.50 × PU
0 to 65535
1
ms
F1
65535
173A
FlexCurve™ Trip Time at 2.60 × PU
0 to 65535
1
ms
F1
65535
173B
FlexCurve™ Trip Time at 2.70 × PU
0 to 65535
1
ms
F1
65535
173C
FlexCurve™ Trip Time at 2.80 × PU
0 to 65535
1
ms
F1
65535
173D
FlexCurve™ Trip Time at 2.90 × PU
0 to 65535
1
ms
F1
65535
173E
FlexCurve™ Trip Time at 3.00 × PU
0 to 65535
1
ms
F1
65535
173F
FlexCurve™ Trip Time at 3.10 × PU
0 to 65535
1
ms
F1
65535
1740
FlexCurve™ Trip Time at 3.20 × PU
0 to 65535
1
ms
F1
65535
1741
FlexCurve™ Trip Time at 3.30 × PU
0 to 65535
1
ms
F1
65535
1742
FlexCurve™ Trip Time at 3.40 × PU
0 to 65535
1
ms
F1
65535
1743
FlexCurve™ Trip Time at 3.50 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
27
Table CG–1: 489 Memory Map (Sheet 16 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
1744
ADDR
FlexCurve™ Trip Time at 3.60 × PU
0 to 65535
1
ms
F1
65535
1745
FlexCurve™ Trip Time at 3.70 × PU
0 to 65535
1
ms
F1
65535
1746
FlexCurve™ Trip Time at 3.80 × PU
0 to 65535
1
ms
F1
65535
1747
FlexCurve™ Trip Time at 3.90 × PU
0 to 65535
1
ms
F1
65535
1748
FlexCurve™ Trip Time at 4.00 × PU
0 to 65535
1
ms
F1
65535
1749
FlexCurve™ Trip Time at 4.10 × PU
0 to 65535
1
ms
F1
65535
174A
FlexCurve™ Trip Time at 4.20 × PU
0 to 65535
1
ms
F1
65535
174B
FlexCurve™ Trip Time at 4.30 × PU
0 to 65535
1
ms
F1
65535
174C
FlexCurve™ Trip Time at 4.40 × PU
0 to 65535
1
ms
F1
65535
174D
FlexCurve™ Trip Time at 4.50 × PU
0 to 65535
1
ms
F1
65535
174E
FlexCurve™ Trip Time at 4.60 × PU
0 to 65535
1
ms
F1
65535
174F
FlexCurve™ Trip Time at 4.70 × PU
0 to 65535
1
ms
F1
65535
1750
FlexCurve™ Trip Time at 4.80 × PU
0 to 65535
1
ms
F1
65535
1751
FlexCurve™ Trip Time at 4.90 × PU
0 to 65535
1
ms
F1
65535
1752
FlexCurve™ Trip Time at 5.00 × PU
0 to 65535
1
ms
F1
65535
1753
FlexCurve™ Trip Time at 5.10 × PU
0 to 65535
1
ms
F1
65535
1754
FlexCurve™ Trip Time at 5.20 × PU
0 to 65535
1
ms
F1
65535
1755
FlexCurve™ Trip Time at 5.30 × PU
0 to 65535
1
ms
F1
65535
1756
FlexCurve™ Trip Time at 5.40 × PU
0 to 65535
1
ms
F1
65535
1757
FlexCurve™ Trip Time at 5.50 × PU
0 to 65535
1
ms
F1
65535
1758
FlexCurve™ Trip Time at 5.60 × PU
0 to 65535
1
ms
F1
65535
1759
FlexCurve™ Trip Time at 5.70 × PU
0 to 65535
1
ms
F1
65535
175A
FlexCurve™ Trip Time at 5.80 × PU
0 to 65535
1
ms
F1
65535
175B
FlexCurve™ Trip Time at 5.90 × PU
0 to 65535
1
ms
F1
65535
175C
FlexCurve™ Trip Time at 6.00 × PU
0 to 65535
1
ms
F1
65535
175D
FlexCurve™ Trip Time at 6.50 × PU
0 to 65535
1
ms
F1
65535
175E
FlexCurve™ Trip Time at 7.00 × PU
0 to 65535
1
ms
F1
65535
175F
FlexCurve™ Trip Time at 7.50 × PU
0 to 65535
1
ms
F1
65535
1760
FlexCurve™ Trip Time at 8.00 × PU
0 to 65535
1
ms
F1
65535
1761
FlexCurve™ Trip Time at 8.50 × PU
0 to 65535
1
ms
F1
65535
1762
FlexCurve™ Trip Time at 9.00 × PU
0 to 65535
1
ms
F1
65535
1763
FlexCurve™ Trip Time at 9.50 × PU
0 to 65535
1
ms
F1
65535
1764
FlexCurve™ Trip Time at 10.0 × PU
0 to 65535
1
ms
F1
65535
1765
FlexCurve™ Trip Time at 10.5 × PU
0 to 65535
1
ms
F1
65535
1766
FlexCurve™ Trip Time at 11.0 × PU
0 to 65535
1
ms
F1
65535
1767
FlexCurve™ Trip Time at 11.5 × PU
0 to 65535
1
ms
F1
65535
1768
FlexCurve™ Trip Time at 12.0 × PU
0 to 65535
1
ms
F1
65535
1769
FlexCurve™ Trip Time at 12.5 × PU
0 to 65535
1
ms
F1
65535
176A
FlexCurve™ Trip Time at 13.0 × PU
0 to 65535
1
ms
F1
65535
176B
FlexCurve™ Trip Time at 13.5 × PU
0 to 65535
1
ms
F1
65535
176C
FlexCurve™ Trip Time at 14.0 × PU
0 to 65535
1
ms
F1
65535
176D
FlexCurve™ Trip Time at 14.5 × PU
0 to 65535
1
ms
F1
65535
176E
FlexCurve™ Trip Time at 15.0 × PU
0 to 65535
1
ms
F1
65535
176F
FlexCurve™ Trip Time at 15.5 × PU
0 to 65535
1
ms
F1
65535
1770
FlexCurve™ Trip Time at 16.0 × PU
0 to 65535
1
ms
F1
65535
1771
FlexCurve™ Trip Time at 16.5 × PU
0 to 65535
1
ms
F1
65535
1772
FlexCurve™ Trip Time at 17.0 × PU
0 to 65535
1
ms
F1
65535
1773
FlexCurve™ Trip Time at 17.5 × PU
0 to 65535
1
ms
F1
65535
1774
FlexCurve™ Trip Time at 18.0 × PU
0 to 65535
1
ms
F1
65535
1775
FlexCurve™ Trip Time at 18.5 × PU
0 to 65535
1
ms
F1
65535
1776
FlexCurve™ Trip Time at 19.0 × PU
0 to 65535
1
ms
F1
65535
1777
FlexCurve™ Trip Time at 19.5 × PU
0 to 65535
1
ms
F1
65535
1778
FlexCurve™ Trip Time at 20.0 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
28
Name
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 17 of 30)
ADDR
Name
1779
Overcurrent Curve Multiplier
177B
Overcurrent Curve Reset
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 100000
1
–
F14
100
0 to 1
1
–
F201
0
0
CURRENT ELEMENTS / PHASE DIFFERENTIAL
17E0
Phase Differential Trip
0 to 2
1
–
F115
17E1
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
17E2
Differential Trip Minimum Pickup
5 to 100
1
× CT
F3
10
17E3
Differential Trip Slope 1
1 to 100
1
%
F1
10
17E4
Differential Trip Slope 2
1 to 100
1
%
F1
20
17E5
Differential Trip Delay
0 to 100
1
cycles
F1
0
CURRENT ELEMENTS / GROUND DIRECTIONAL
1800
Supervise With Digital Input
0 to 1
1
–
F103
1
1801
Ground Directional MTA
0 to 3
1
–
F217
0
1802
Ground Directional Alarm
0 to 2
1
–
F115
0
1803
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1804
Ground Directional Alarm Pickup
5 to 2000
1
× CT
F3
5
1805
Ground Directional Alarm Delay
1 to 1200
1
s
F2
30
1806
Ground Directional Alarm Events
0 to 1
1
–
F105
0
1807
Ground Directional Trip
0 to 2
1
–
F115
0
1808
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1809
Ground Directional Trip Pickup
5 to 2000
1
× CT
F3
5
180A
Ground Directional Trip Delay
1 to 1200
1
s
F2
30
CURRENT ELEMENTS / HIGH-SET PHASE OVERCURRENT
1830
High-Set Phase Overcurrent Trip
0 to 2
1
–
F115
0
1831
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1832
High-Set Phase Overcurrent Pickup
15 to 2000
1
× CT
F3
500
1833
High-Set Phase Overcurrent Delay
0 to 10000
1
s
F3
100
VOLTAGE ELEMENTS / UNDERVOLTAGE
2000
Undervoltage Alarm
0 to 2
1
–
F115
0
2001
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2002
Undervoltage Alarm Pickup
50 to 99
1
× Rated
F3
85
2003
Undervoltage Alarm Delay
2 to 1200
1
s
F2
30
2004
Undervoltage Alarm Events
0 to 1
1
–
F105
0
2005
Undervoltage Trip
0 to 2
1
–
F115
0
2006
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2007
Undervoltage Trip Pickup
50 to 99
1
× Rated
F3
80
2008
Undervoltage Trip Delay
2 to 100
1
s
F2
10
2009
Undervoltage Curve Reset Rate
0 to 9999
1
s
F2
14
200A
Undervoltage Curve Element
0 to 1
1
–
F208
0
VOLTAGE ELEMENTS / OVERVOLTAGE
2020
Overvoltage Alarm
0 to 2
1
–
F115
0
2021
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2022
Overvoltage Alarm Pickup
101 to 150
1
× Rated
F3
115
2023
Overvoltage Alarm Delay
1 to 1200
1
s
F2
30
2024
Overvoltage Alarm Events
0 to 1
1
–
F105
0
2025
Overvoltage Trip
0 to 2
1
–
F115
0
2026
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2027
Overvoltage Trip Pickup
101 to 150
1
× Rated
F3
120
2028
Overvoltage Trip Delay
1 to 100
1
s
F2
10
2029
Overvoltage Curve Reset Rate
0 to 9999
1
s
F2
14
202A
Overvoltage Curve Element
0 to 1
1
–
F208
0
VOLTAGE ELEMENTS / VOLTS/HERTZ
2040
Volts/Hertz Alarm
0 to 2
1
–
F115
0
2041
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
29
Table CG–1: 489 Memory Map (Sheet 18 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
2042
ADDR
Volts/Hertz Alarm Pickup
Name
50 to 199
1
× Nominal
F3
100
2043
Volts/Hertz Alarm Delay
1 to 1500
1
s
F2
30
2044
Volts/Hertz Alarm Events
0 to 1
1
–
F105
0
2045
Volts/Hertz Trip
0 to 2
1
–
F115
0
2046
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2047
Volts/Hertz Trip Pickup
50 to 199
1
× Nominal
F3
100
2048
Volts/Hertz Trip Delay
1 to 1500
1
s
F2
10
2049
Volts/Hertz Curve Reset Rate
0 to 9999
1
s
F2
14
204A
Volts/Hertz Trip Element
0 to 3
1
–
F211
0
VOLTAGE ELEMENTS / PHASE REVERSAL
2060
Phase Reversal Trip
0 to 2
1
–
F115
0
2061
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
VOLTAGE ELEMENTS / UNDERFREQUENCY
2080
Block Underfrequency From Online
2081
Voltage Level Cutoff
0 to 5
1
s
F1
1
50 to 99
1
× Rated
F3
50
2082
Underfrequency Alarm
0 to 2
1
–
F115
0
2083
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2084
Underfrequency Alarm Level
2000 to 6000
1
Hz
F3
5950
2085
Underfrequency Alarm Delay
1 to 50000
1
s
F2
50
2086
Underfrequency Alarm Events
0 to 1
1
–
F105
0
2087
Underfrequency Trip
0 to 2
1
–
F115
0
2088
Assign Trip Relays (1-4)
2089
Underfrequency Trip Level 1
208A
208B
208C
0 to 3
1
–
F50
1
2000 to 6000
1
Hz
F3
5950
Underfrequency Trip Delay 1
1 to 50000
1
s
F2
600
Underfrequency Trip Level 2
2000 to 6000
1
Hz
F3
5800
Underfrequency Trip Delay 2
1 to 50000
1
s
F2
300
VOLTAGE ELEMENTS / OVERFREQUENCY
20A0
Block Overfrequency From Online
20A1
Voltage Level Cutoff
0 to 5
1
s
F1
1
50 to 99
1
× Rated
F3
50
20A2
Overfrequency Alarm
0 to 2
1
–
F115
0
20A3
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
20A4
Overfrequency Alarm Level
2501 to 7000
1
Hz
F3
6050
20A5
Overfrequency Alarm Delay
1 to 50000
1
s
F2
50
20A6
Overfrequency Alarm Events
0 to 1
1
–
F105
0
20A7
Overfrequency Trip
0 to 2
1
–
F115
0
20A8
Assign Trip Relays (1-4)
20A9
Overfrequency Trip Level 1
0 to 3
1
–
F50
1
2501 to 7000
1
Hz
F3
6050
20AA
20AB
Overfrequency Trip Delay 1
1 to 50000
1
s
F2
600
Overfrequency Trip Level 2
2501 to 7000
1
Hz
F3
6200
20AC
Overfrequency Trip Delay 2
1 to 50000
1
s
F2
300
VOLTAGE ELEMENTS / NEUTRAL OVERVOLTAGE (FUNDAMENTAL)
20C0
Neutral Overvoltage Alarm
0 to 2
1
–
F115
0
20C1
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
20C2
Neutral Overvoltage Alarm Level
20 to 1000
1
Vsec
F2
30
20C3
Neutral Overvoltage Alarm Delay
1 to 1200
1
s
F2
10
20C4
Neutral Overvoltage Alarm Events
0 to 1
1
–
F105
0
20C5
Neutral Overvoltage Trip
0 to 2
1
–
F115
0
20C6
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20C7
Neutral Overvoltage Trip Level
20 to 1000
1
Vsec
F2
50
20C8
Neutral Overvoltage Trip Delay
1 to 1200
1
s
F2
10
20C9
Supervise With Digital Input
20CA
Neutral Overvoltage Curve Reset Rate
20CB
Neutral Overvoltage Trip Element
1, 2, 3
30
0 to 1
1
–
F103
0
0 to 9999
1
s
F2
0
0 to 1
1
–
F208
1
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 19 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
DEFAULT
VOLTAGE ELEMENTS / NEUTRAL UNDERVOLTAGE (3rd HARMONIC)
20E0
Low Power Blocking Level
2 to 99
1
× Rated MW
F14
5
20E2
Low Voltage Blocking Level
50 to 100
1
× Rated
F3
75
20E3
Neutral Undervoltage Alarm
0 to 2
1
–
F115
0
20E4
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
20E5
Neutral Undervoltage Alarm Level
5 to 200
1
V
F2
5
20E6
Neutral Undervoltage Alarm Delay
5 to 120
1
s
F1
30
20E7
Neutral Undervoltage Alarm Events
0 to 1
1
–
F105
0
20E8
Neutral Undervoltage Trip
0 to 2
1
–
F115
0
20E9
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20EA
Neutral Undervoltage Trip Level
5 to 200
1
V
F2
10
20EB
Neutral Undervoltage Trip Delay
5 to 120
1
s
F1
30
VOLTAGE ELEMENTS / LOSS OF EXCITATION
2100
Enable Voltage Supervision
2101
Voltage Level
0 to 1
1
–
F103
0
70 to 100
1
× rated
F3
70
0
2102
Circle 1 Trip
0 to 2
1
–
F115
2103
Assign Circle 1 Trip Relays (1-4)
0 to 3
1
–
F50
1
2104
Circle 1 Diameter
25 to 3000
1
Ωs
F2
250
2105
Circle 1 Offset
10 to 3000
1
Ωs
F2
25
2106
Circle 1 Trip Delay
1 to 100
1
s
F2
50
0
2107
Circle 2 Trip
0 to 2
1
–
F115
2108
Assign Circle 2 Trip Relays (1-4)
0 to 3
1
–
F50
1
2109
Circle 2 Diameter
25 to 3000
1
Ωs
F2
350
210A
Circle 2 Offset
10 to 3000
1
Ωs
F2
25
210B
Circle 2 Trip Delay
1 to 100
1
s
F2
50
0
VOLTAGE ELEMENTS / DISTANCE ELEMENT
2130
Step Up Transformer Setup
0 to 1
1
–
F219
2131
Fuse Failure Supervision
0 to 1
1
–
F105
0
2132
Zone 1 Trip
0 to 2
1
–
F115
0
2133
Assign Zone 1 Trip Relays (1-4)
2134
Zone 1 Reach
2135
Zone 1 Angle
50 to 85
1
2136
Zone 1 Trip Delay
0 to 1500
1
2137
Zone 2 Trip
0 to 2
1
–
F115
0
2138
Assign Zone 2 Trip Relays (1-4)
0 to 3
1
–
F50
1
2139
Zone 2 Reach
1 to 5000
1
Ωs
F2
100
213A
Zone 2 Angle
50 to 85
1
°
F1
75
213B
Zone 2 Trip Delay
0 to 1500
1
s
F2
20
1
0 to 3
1
–
F50
1
1 to 5000
1
Ωs
F2
100
°
F1
75
s
F2
4
POWER ELEMENTS / REACTIVE POWER
2200
Block Mvar Element From Online
0 to 5000
1
s
F1
2201
Reactive Power Alarm
0 to 2
1
–
F115
0
2202
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
85
2203
Positive Mvar Alarm Level
2 to 201
1
x rated
F14
2205
Negative Mvar Alarm Level 3
2 to 201
1
x rated
F14
85
2207
Negative Mvar Alarm Delay
2 to 1200
1
s
F2
10
2208
Reactive Power Alarm Events
0 to 1
1
–
F105
0
2209
Reactive Power Trip
0 to 2
1
–
F115
0
220A
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
220B
Positive Mvar Trip Level 3
2 to 201
1
Mvar
F14
80
220D
Negative Mvar Trip Level 3
2 to 201
1
Mvar
F14
80
220F
Negative Mvar Trip Delay
2 to 1200
1
s
F2
10
2210
Positive Mvar Trip Delay
2 to 1200
1
s
F2
200
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
31
Table CG–1: 489 Memory Map (Sheet 20 of 30)
ADDR
2211
Name
Positive Mvar Alarm Delay
RANGE
STEP
UNITS
FORMAT
DEFAULT
2 to 1200
1
s
F2
100
1
POWER ELEMENTS / REVERSE POWER
2240
Block Reverse Power From Online
0 to 5000
1
s
F1
2241
Reverse Power Alarm
0 to 2
1
–
F115
0
2242
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2243
Reverse Power Alarm Level
2 to 99
1
× Rated
F14
5
2245
Reverse Power Alarm Delay
2 to 1200
1
s
F2
100
2246
Reverse Power Alarm Events
0 to 1
1
–
F105
0
2247
Reverse Power Trip
0 to 2
1
–
F115
0
2248
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2249
Reverse Power Trip Level
2 to 99
1
× Rated
F14
5
224B
Reverse Power Trip Delay
2 to 1200
1
s
F2
200
0
POWER ELEMENTS / LOW FORWARD POWER
2280
Block Low Forward Power From Online
0 to 15000
1
s
F1
2281
Low Forward Power Alarm
0 to 2
1
–
F115
0
2282
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2283
Low Forward Power Alarm Level
2 to 99
1
× Rated MW
F14
5
2285
Low Forward Power Alarm Delay
2 to 1200
1
s
F2
100
2286
Low Forward Power Alarm Events
0 to 1
1
–
F105
0
2287
Low Forward Power Trip
0 to 2
1
–
F115
0
2288
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2289
Low Forward Power Trip Level
2 to 99
1
× Rated MW
F14
5
228B
Low Forward Power Trip Delay
2 to 1200
1
s
F2
200
0
RTD TEMPERATURE / RTD TYPES
2400
Stator RTD Type
0 to 3
1
–
F120
2401
Bearing RTD Type
0 to 3
1
–
F120
0
2402
Ambient RTD Type
0 to 3
1
–
F120
0
2403
Other RTD Type
0 to 3
1
–
F120
0
1
RTD TEMPERATURE / RTD #1
2420
RTD #1 Application
0 to 4
1
–
F121
2421
RTD #1 Alarm
0 to 2
1
–
F115
0
2422
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2423
RTD #1 Alarm Temperature
1 to 250
1
°C
F1
130
2424
RTD #1 Alarm Events
0 to 1
1
–
F105
0
2425
RTD #1 Trip
0 to 2
1
–
F115
0
2426
RTD #1 Trip Voting
1 to 12
1
–
F122
1
2427
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2428
RTD #1 Trip Temperature
1 to 250
1
°C
F1
155
2429
RTD #1 Name
0 to 8
1
–
F22
_
1
RTD TEMPERATURE / RTD #2
2460
RTD #2 Application
0 to 4
1
–
F121
2461
RTD #2 Alarm
0 to 2
1
–
F115
0
2462
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2463
RTD #2 Alarm Temperature
1 to 250
1
°C
F1
130
2464
RTD #2 Alarm Events
0 to 1
1
–
F105
0
2465
RTD #2 Trip
0 to 2
1
–
F115
0
2466
RTD #2 Trip Voting
1 to 12
1
–
F122
2
2467
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2468
RTD #2 Trip Temperature
1 to 250
1
°C
F1
155
2469
RTD #2 Name
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #3
24A0
RTD #3 Application
0 to 4
1
–
F121
1
24A1
RTD #3 Alarm
0 to 2
1
–
F115
0
1, 2, 3
32
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 21 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
1 to 4
1
–
F50
DEFAULT
16
1 to 250
1
°C
F1
130
24A2
Assign Alarm Relays (2-5)
24A3
RTD #3 Alarm Temperature
24A4
RTD #3 Alarm Events
0 to 1
1
–
F105
0
24A5
RTD #3 Trip
0 to 2
1
–
F115
0
24A6
RTD #3 Trip Voting
1 to 12
1
–
F122
3
24A7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
155
0 to 8
1
–
F22
_
1
24A8
RTD #3 Trip Temperature
24A9
RTD #3 Name
RTD TEMPERATURE / RTD #4
24E0
RTD #4 Application
0 to 4
1
–
F121
24E1
RTD #4 Alarm
0 to 2
1
–
F115
0
24E2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
24E3
RTD #4 Alarm Temperature
1 to 250
1
°C
F1
130
24E4
RTD #4 Alarm Events
0 to 1
1
–
F105
0
24E5
RTD #4 Trip
0 to 2
1
–
F115
0
24E6
RTD #4 Trip Voting
1 to 12
1
–
F122
4
24E7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
24E8
RTD #4 Trip Temperature
1 to 250
1
°C
F1
155
24E9
RTD #4 Name
0 to 8
1
–
F22
_
1
RTD TEMPERATURE / RTD #5
2520
RTD #5 Application
0 to 4
1
–
F121
2521
RTD #5 Alarm
0 to 2
1
–
F115
0
2522
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2523
RTD #5 Alarm Temperature
1 to 250
1
°C
F1
130
2524
RTD #5 Alarm Events
0 to 1
1
–
F105
0
2525
RTD #5 Trip
0 to 2
1
–
F115
0
2526
RTD #5 Trip Voting
1 to 12
1
–
F122
5
2527
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2528
RTD #5 Trip Temperature
1 to 250
1
°C
F1
155
2529
RTD #5 Name
0 to 8
1
–
F22
_
1
RTD TEMPERATURE / RTD #6
2560
RTD #6 Application
0 to 4
1
–
F121
2561
RTD #6 Alarm
0 to 2
1
–
F115
0
2562
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2563
RTD #6 Alarm Temperature
1 to 250
1
°C
F1
130
2564
RTD #6 Alarm Events
0 to 1
1
–
F105
0
2565
RTD #6 Trip
0 to 2
1
–
F115
0
2566
RTD #6 Trip Voting
1 to 12
1
–
F122
6
2567
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2568
RTD #6 Trip Temperature
1 to 250
1
°C
F1
155
2569
RTD #6 Name
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #7
25A0
RTD #7 Application
0 to 4
1
–
F121
2
25A1
RTD #7 Alarm
0 to 2
1
–
F115
0
25A2
Assign Alarm Relays (2-5)
25A3
RTD #7 Alarm Temperature
25A4
25A5
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
80
RTD #7 Alarm Events
0 to 1
1
–
F105
0
RTD #7 Trip
0 to 2
1
–
F115
0
25A6
RTD #7 Trip Voting
1 to 12
1
–
F122
7
25A7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
25A8
RTD #7 Trip Temperature
1 to 250
1
°C
F1
90
25A9
RTD #7 Name
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #8
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
33
Table CG–1: 489 Memory Map (Sheet 22 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
25E0
ADDR
RTD #8 Application
Name
0 to 4
1
–
F121
2
25E1
RTD #8 Alarm
0 to 2
1
–
F115
0
25E2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
80
25E3
RTD #8 Alarm Temperature
1 to 250
1
°C
F1
25E4
RTD #8 Alarm Events
0 to 1
1
–
F105
0
25E5
RTD #8 Trip
0 to 2
1
–
F115
0
25E6
RTD #8 Trip Voting
1 to 12
1
–
F122
8
25E7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
25E8
RTD #8 Trip Temperature
1 to 250
1
°C
F1
90
25E9
RTD #8 Name
0 to 8
1
–
F22
_
2
RTD TEMPERATURE / RTD #9
2620
RTD #9 Application
0 to 4
1
–
F121
2621
RTD #9 Alarm
0 to 2
1
–
F115
0
2622
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
80
2623
RTD #9 Alarm Temperature
1 to 250
1
°C
F1
2624
RTD #9 Alarm Events
0 to 1
1
–
F105
0
2625
RTD #9 Trip
0 to 2
1
–
F115
0
2626
RTD #9 Trip Voting
1 to 12
1
–
F122
9
2627
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2628
RTD #9 Trip Temperature
1 to 250
1
°C
F1
90
2629
RTD #9 Name
0 to 8
1
–
F22
_
2
RTD TEMPERATURE / RTD #10
2660
RTD #10 Application
0 to 4
1
–
F121
2661
RTD #10 Alarm
0 to 2
1
–
F115
0
2662
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2663
RTD #10 Alarm Temperature
1 to 250
1
°C
F1
80
2664
RTD #10 Alarm Events
0 to 1
1
–
F105
0
2665
RTD #10 Trip
0 to 2
1
–
F115
0
2666
RTD #10 Trip Voting
1 to 12
1
–
F122
10
2667
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2668
RTD #10 Trip Temperature
1 to 250
1
°C
F1
90
2669
RTD #10 Name
0 to 8
1
–
F22
_
4
RTD TEMPERATURE / RTD #11
26A0
RTD #11 Application
0 to 4
1
–
F121
26A1
RTD #11 Alarm
0 to 2
1
–
F115
0
26A2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
26A3
RTD #11 Alarm Temperature
1 to 250
1
°C
F1
80
26A4
RTD #11 Alarm Events
0 to 1
1
–
F105
0
26A5
RTD #11 Trip
0 to 2
1
–
F115
0
26A6
RTD #11 Trip Voting
1 to 12
1
–
F122
11
26A7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
26A8
RTD #11 Trip Temperature
1 to 250
1
°C
F1
90
26A9
RTD #11 Name
0 to 8
1
–
F22
_
3
RTD TEMPERATURE / RTD #12
26E0
RTD #12 Application
0 to 4
1
–
F121
26E1
RTD #12 Alarm
0 to 2
1
–
F115
0
26E2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
26E3
RTD #12 Alarm Temperature
1 to 250
1
°C
F1
60
26E4
RTD #12 Alarm Events
0 to 1
1
–
F105
0
26E5
RTD #12 Trip
0 to 2
1
–
F115
0
26E6
RTD #12 Trip Voting
1 to 12
1
–
F122
12
26E7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
26E8
RTD #12 Trip Temperature
1 to 250
1
°C
F1
80
1, 2, 3
34
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 23 of 30)
ADDR
26E9
Name
RTD #12 Name
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 8
1
–
F22
_
RTD TEMPERATURE / OPEN RTD SENSOR
2720
Open RTD Sensor Alarm
0 to 2
1
–
F115
0
2721
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2722
Open RTD Sensor Alarm Events
0 to 1
1
–
F105
0
RTD TEMPERATURE / RTD SHORT/LOW TEMPERATURE
2740
RTD Short/Low Temperature Alarm
0 to 2
1
–
F115
0
2741
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2742
RTD Short/Low Temperature Alarm Events
0 to 1
1
–
F105
0
THERMAL MODEL / MODEL SETUP
2800
Enable Thermal Model
0 to 1
1
–
F103
0
2801
Overload Pickup Level
101 to 125
1
× FLA
F3
101
2802
Unbalance Bias K Factor
0 to 12
1
–
F1
0
2803
Cool Time Constant Online
0 to 500
1
min
F1
15
2804
Cool Time Constant Offline
0 to 500
1
min
F1
30
2805
Hot/Cold Safe Stall Ratio
1 to 100
1
–
F3
100
2806
Enable RTD Biasing
0 to 1
1
–
F103
0
2807
RTD Bias Minimum
0 to 250
1
°C
F1
40
2808
RTD Bias Center Point
0 to 250
1
°C
F1
130
2809
RTD Bias Maximum
0 to 250
1
°C
F1
155
280A
Select Curve Style
0 to 2
1
–
F142
0
280B
Standard Overload Curve Number
1 to 15
1
–
F1
4
280C
Time to Trip at 1.01 × FLA
5 to 999999
1
s
F10
5
280E
Time to Trip at 1.05 × FLA
5 to 999999
1
s
F10
5
2810
Time to Trip at 1.10 × FLA
5 to 999999
1
s
F10
5
2812
Time to Trip at 1.20 × FLA
5 to 999999
1
s
F10
5
2814
Time to Trip at 1.30 × FLA
5 to 999999
1
s
F10
5
2816
Time to Trip at 1.40 × FLA
5 to 999999
1
s
F10
5
2818
Time to Trip at 1.50 × FLA
5 to 999999
1
s
F10
5
281A
Time to Trip at 1.75 × FLA
5 to 999999
1
s
F10
5
281C
Time to Trip at 2.00 × FLA
5 to 999999
1
s
F10
5
281E
Time to Trip at 2.25 × FLA
5 to 999999
1
s
F10
5
2820
Time to Trip at 2.50 × FLA
5 to 999999
1
s
F10
5
2822
Time to Trip at 2.75 × FLA
5 to 999999
1
s
F10
5
2824
Time to Trip at 3.00 × FLA
5 to 999999
1
s
F10
5
2826
Time to Trip at 3.25 × FLA
5 to 999999
1
s
F10
5
2828
Time to Trip at 3.50 × FLA
5 to 999999
1
s
F10
5
282A
Time to Trip at 3.75 × FLA
5 to 999999
1
s
F10
5
282C
Time to Trip at 4.00 × FLA
5 to 999999
1
s
F10
5
282E
Time to Trip at 4.25 × FLA
5 to 999999
1
s
F10
5
2830
Time to Trip at 4.50 × FLA
5 to 999999
1
s
F10
5
2832
Time to Trip at 4.75 × FLA
5 to 999999
1
s
F10
5
2834
Time to Trip at 5.00 × FLA
5 to 999999
1
s
F10
5
2836
Time to Trip at 5.50 × FLA
5 to 999999
1
s
F10
5
2838
Time to Trip at 6.00 × FLA
5 to 999999
1
s
F10
5
283A
Time to Trip at 6.50 × FLA
5 to 999999
1
s
F10
5
283C
Time to Trip at 7.00 × FLA
5 to 999999
1
s
F10
5
283E
Time to Trip at 7.50 × FLA
5 to 999999
1
s
F10
5
2840
Time to Trip at 8.00 × FLA
5 to 999999
1
s
F10
5
2842
Time to Trip at 10.0 × FLA
5 to 999999
1
s
F10
5
2844
Time to Trip at 15.0 × FLA
5 to 999999
1
s
F10
5
2846
Time to Trip at 20.0 × FLA
5 to 999999
1
s
F10
5
2848
Minimum Allowable Voltage
70 to 95
1
%
F1
80
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
35
Table CG–1: 489 Memory Map (Sheet 24 of 30)
ADDR
Name
2849
Stall Current at Minimum Voltage
284A
Safe Stall Time at Minimum Voltage
RANGE
STEP
UNITS
FORMAT
200 to 1500
1
× FLA
F3
DEFAULT
480
5 to 9999
1
s
F2
200
380
284B
Acceleration Intersect at Minimum Voltage
200 to 1500
1
× FLA
F3
284C
Stall Current at 100% Voltage
200 to 1500
1
× FLA
F3
600
284D
Safe Stall Time at 100% Voltage
5 to 9999
1
s
F2
100
284E
Acceleration Intersect at 100% Voltage
200 to 1500
1
× FLA
F3
500
THERMAL MODEL / THERMAL ELEMENTS
2900
Thermal Model Alarm
0 to 2
1
–
F115
0
2901
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
75
2902
Thermal Alarm Level
10 to 100
1
%Used
F1
2903
Thermal Model Alarm Events
0 to 1
1
–
F105
0
2904
Thermal Model Trip
0 to 2
1
–
F115
0
2905
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
MONITORING / TRIP COUNTER
2A00
Trip Counter Alarm
0 to 2
1
–
F115
0
2A01
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A02
Trip Counter Alarm Level
1 to 50000
1
Trips
F1
25
2A03
Trip Counter Alarm Events
0 to 1
1
–
F105
0
MONITORING / BREAKER FAILURE
2A20
Breaker Failure Alarm
0 to 2
1
–
F115
0
2A21
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A22
Breaker Failure Level
5 to 2000
1
× CT
F3
100
2A23
Breaker Failure Delay
10 to 1000
10
ms
F1
100
2A24
Breaker Failure Alarm Events
0 to 1
1
–
F105
0
MONITORING / TRIP COIL MONITOR
2A30
Trip Coil Monitor Alarm
0 to 2
1
–
F115
0
2A31
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A32
Trip Coil Monitor Alarm Events
0 to 1
1
–
F105
0
MONITORING / VT FUSE FAILURE
2A50
VT Fuse Failure Alarm
0 to 2
1
–
F115
0
2A51
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A52
VT Fuse Failure Alarm Events
0 to 1
1
–
F105
0
15
MONITORING / CURRENT DEMAND
2A60
Current Demand Period
5 to 90
1
min
F1
2A61
Current Demand Alarm
0 to 2
1
A
F115
0
2A62
Assign Alarm Relays (2-5)
1 to 4
1
A
F50
16
2A63
Current Demand Limit
10 to 2000
1
× FLA
F14
125
2A65
Current Demand Alarm Events
0 to 1
1
A
F105
0
15
MONITORING / MW DEMAND
2A70
MW Demand Period
5 to 90
1
min
F1
2A71
MW Demand Alarm
0 to 2
1
–
F115
0
2A72
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
10 to 200
1
× Rated
F14
125
0 to 1
1
–
F105
0
15
2A73
MW Demand Limit
2A75
MW Demand Alarm Events
MONITORING / Mvar DEMAND
2A80
Mvar Demand Period
5 to 90
1
min
F1
2A81
Mvar Demand Alarm
0 to 2
1
–
F115
0
2A82
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
10 to 200
1
× Rated
F14
125
0 to 1
1
–
F105
0
2A83
Mvar Demand Limit
2A85
Mvar Demand Alarm Events
MONITORING / MVA DEMAND
2A90
MVA Demand Period
5 to 90
1
min
F1
15
2A91
MVA Demand Alarm
0 to 2
1
–
F115
0
1, 2, 3
36
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 25 of 30)
ADDR
Name
2A92
Assign Alarm Relays (2-5)
2A93
MVA Demand Limit
2A95
MVA Demand Alarm Events
RANGE
STEP
UNITS
FORMAT
1 to 4
1
–
F50
DEFAULT
16
10 to 200
1
× Rated
F14
125
0 to 1
1
–
F105
0
MONITORING / PULSE OUTPUT
2AB0
Positive kWh Pulse Output Relays (2-5)
2AB1
Positive kWh Pulse Output Interval
2AB2
Positive kvarh Pulse Output Relays (2-5)
2AB3
Positive kvarh Pulse Output Interval
1 to 4
1
–
F50
0
1 to 50000
1
–
F1
10
1 to 4
1
–
F50
0
1 to 50000
1
–
F1
10
2AB4
Negative kvarh Pulse Output Relays (2-5)
1 to 4
1
–
F50
0
2AB5
Negative kvarh Pulse Output Interval
1 to 50000
1
–
F1
10
2AB6
Pulse Width
200 to 1000
1
–
F1
200
0
MONITORING / RUNNING HOUR SETUP
2AC0
Initial Generator Running Hours
0 to 999999
1
h
F12
2AC2
Generator Running Hour Alarm
0 to 2
1
–
F115
0
2AC3
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1 to 1000000
1
h
F12
1000
0 to 42
1
–
F127
0
0 to 42
1
–
F127
0
0 to 42
1
–
F127
0
0 to 42
1
–
F127
0
2AC4
Generator Running Hour Limit
2AC6
Reserved
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 1
2B00
Analog Output 1
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 2
2B01
Analog Output 2
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 3
2B02
Analog Output 3
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 4
2B03
Analog Output 4
ANALOG INPUT/OUTPUT / ANALOG OUTPUTS
2B04
Ia Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B05
Ia Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B06
Ib Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B07
Ib Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B08
Ic Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B09
Ic Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B0A
Average Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B0B
Average Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B0C
Negative Sequence Current Minimum
0 to 2000
1
%FLA
F1
0
2B0D
Negative Sequence Current Maximum
0 to 2000
1
%FLA
F1
100
2B0E
Averaged Generator Load Minimum
0 to 2000
1
× FLA
F3
0
2B0F
Averaged Generator Load Maximum
0 to 2000
1
× FLA
F3
125
2B10
Hottest Stator RTD Minimum
–50 to 250
1
°C
F4
0
2B11
Hottest Stator RTD Maximum
–50 to 250
1
°C
F4
200
2B12
Hottest Bearing RTD Minimum
–50 to 250
1
°C
F4
0
2B13
Hottest Bearing RTD Maximum
–50 to 250
1
°C
F4
200
2B14
Ambient RTD Minimum
–50 to 250
1
°C
F4
0
2B15
Ambient RTD Maximum
–50 to 250
1
°C
F4
70
2B16
RTD #1 Minimum
–50 to 250
1
°C
F4
0
2B17
RTD #1 Maximum
–50 to 250
1
°C
F4
200
2B18
RTD #2 Minimum
–50 to 250
1
°C
F4
0
2B19
RTD #2 Maximum
–50 to 250
1
°C
F4
200
2B1A
RTD #3 Minimum
–50 to 250
1
°C
F4
0
2B1B
RTD #3 Maximum
–50 to 250
1
°C
F4
200
2B1C
RTD #4 Minimum
–50 to 250
1
°C
F4
0
2B1D
RTD #4 Maximum
–50 to 250
1
°C
F4
200
2B1E
RTD #5 Minimum
–50 to 250
1
°C
F4
0
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
37
Table CG–1: 489 Memory Map (Sheet 26 of 30)
RANGE
STEP
UNITS
FORMAT
DEFAULT
2B1F
ADDR
RTD #5 Maximum
Name
–50 to 250
1
°C
F4
200
2B20
RTD #6 Minimum
–50 to 250
1
°C
F4
0
2B21
RTD #6 Maximum
–50 to 250
1
°C
F4
200
2B22
RTD #7 Minimum
–50 to 250
1
°C
F4
0
2B23
RTD #7 Maximum
–50 to 250
1
°C
F4
200
2B24
RTD #8 Minimum
–50 to 250
1
°C
F4
0
2B25
RTD #8 Maximum
–50 to 250
1
°C
F4
200
2B26
RTD #9 Minimum
–50 to 250
1
°C
F4
0
2B27
RTD #9 Maximum
–50 to 250
1
°C
F4
200
2B28
RTD #10 Minimum
–50 to 250
1
°C
F4
0
2B29
RTD #10 Maximum
–50 to 250
1
°C
F4
200
2B2A
RTD #11 Minimum
–50 to 250
1
°C
F4
0
2B2B
RTD #11 Maximum
–50 to 250
1
°C
F4
200
2B2C
RTD #12 Minimum
–50 to 250
1
°C
F4
0
2B2D
RTD #12 Maximum
–50 to 250
1
°C
F4
200
2B2E
AB Voltage Minimum
0 to 150
1
× Rated
F3
0
2B2F
AB Voltage Maximum
0 to 150
1
× Rated
F3
125
2B30
BC Voltage Minimum
0 to 150
1
× Rated
F3
0
2B31
BC Voltage Maximum
0 to 150
1
× Rated
F3
125
2B32
CA Voltage Minimum
0 to 150
1
× Rated
F3
0
2B33
CA Voltage Maximum
0 to 150
1
× Rated
F3
125
2B34
Average Voltage Minimum
0 to 150
1
× Rated
F3
0
2B35
Average Voltage Maximum
0 to 150
1
× Rated
F3
125
2B36
Volts/Hertz Minimum
0 to 200
1
× Rated
F3
0
2B37
Volts/Hertz Maximum
0 to 200
1
× Rated
F3
150
2B38
Frequency Minimum
0 to 9000
1
Hz
F3
5900
2B39
Frequency Maximum
0 to 9000
1
Hz
F3
6100
2B3C
Power Factor Minimum
–99 to 100
1
–
F6
80
2B3D
Power Factor Maximum
–99 to 100
1
–
F6
–80
2B3E
Reactive Power Minimum
–200 to 200
1
× Rated
F6
0
2B3F
Reactive Power Maximum
–200 to 200
1
× Rated
F6
125
2B40
Real Power (MW) Minimum
–200 to 200
1
× Rated
F6
0
2B41
Real Power (MW) Maximum
–200 to 200
1
× Rated
F6
125
2B42
Apparent Power Minimum
0 to 200
1
× Rated
F3
0
2B43
Apparent Power Maximum
0 to 200
1
× Rated
F3
125
2B44
Analog Input 1 Minimum
–50000 to 50000
1
Units
F12
0
2B46
Analog Input 1 Maximum
–50000 to 50000
1
Units
F12
50000
2B48
Analog Input 2 Minimum
–50000 to 50000
1
Units
F12
0
2B4A
Analog Input 2 Maximum
–50000 to 50000
1
Units
F12
50000
2B4C
Analog Input 3 Minimum
–50000 to 50000
1
Units
F12
0
2B4E
Analog Input 3 Maximum
–50000 to 50000
1
Units
F12
50000
2B50
Analog Input 4 Minimum
–50000 to 50000
1
Units
F12
0
2B52
Analog Input 4 Maximum
–50000 to 50000
1
Units
F12
50000
2B54
Tachometer Minimum
0 to 7200
1
RPM
F1
3500
2B55
Tachometer Maximum
0 to 7200
1
RPM
F1
3700
2B56
Thermal Capacity Used Minimum
0 to 100
1
%
F1
0
2B57
Thermal Capacity Used Maximum
0 to 100
1
%
F1
100
2B58
Neutral Voltage Third Harmonic Minimum
0 to 250000
1
Volts
F10
0
2B5A
Neutral Voltage Third Harmonic Maximum
0 to 250000
1
Volts
F10
450
2B5C
Current Demand Minimum
0 to 2000
1
× FLA
F3
0
2B5D
Current Demand Maximum
0 to 2000
1
× FLA
F3
125
2B5E
Mvar Demand Minimum
0 to 200
1
× Rated
F3
0
2B5F
Mvar Demand Maximum
0 to 200
1
× Rated
F3
125
1, 2, 3
38
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 27 of 30)
RANGE
STEP
UNITS
FORMAT
2B60
ADDR
MW Demand Minimum
Name
0 to 200
1
× Rated
F3
DEFAULT
0
2B61
MW Demand Maximum
0 to 200
1
× Rated
F3
125
2B62
MVA Demand Minimum
0 to 200
1
× Rated
F3
0
2B63
MVA Demand Maximum
0 to 200
1
× Rated
F3
125
0
ANALOG INPUT/OUTPUT / ANALOG INPUT 1
2C00
Analog Input 1
0 to 3
1
–
F129
2C05
Analog Input 1 Units
0 to 6
1
–
F22
_
2C08
Analog Input 1 Minimum
–50000 to 50000
1
Units
F12
0
2C0A
Analog Input 1 Maximum
–50000 to 50000
1
Units
F12
100
2C0C
Block Analog Input 1 From Online
0 to 5000
1
s
F1
0
2C0D
Analog Input 1 Alarm
0 to 2
1
–
F115
0
2C0E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2C0F
Analog Input 1 Alarm Level
–50000 to 50000
1
Units
F12
10
2C11
Analog Input 1 Alarm Pickup
0 to 1
1
–
F130
0
2C12
Analog Input 1 Alarm Delay
1 to 3000
1
s
F2
1
2C13
Analog Input 1 Alarm Events
0 to 1
1
–
F105
0
2C14
Analog Input 1 Trip
0 to 2
1
–
F115
0
2C15
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20
2C16
Analog Input 1 Trip Level
–50000 to 50000
1
Units
F12
2C18
Analog Input 1 Trip Pickup
0 to 1
1
–
F130
0
2C19
Analog Input 1 Trip Delay
1 to 3000
1
s
F2
1
2C1A
Analog Input 1 Name
0 to 12
1
–
F22
_
0
ANALOG INPUT/OUTPUT / ANALOG INPUT 2
2C40
Analog Input 2
0 to 3
1
–
F129
2C45
Analog Input 2 Units
0 to 6
1
–
F22
_
2C48
Analog Input 2 Minimum
–50000 to 50000
1
Units
F12
0
2C4A
Analog Input 2 Maximum
–50000 to 50000
1
Units
F12
100
2C4C
Block Analog Input 2 From Online
0 to 5000
1
s
F1
0
2C4D
Analog Input 2 Alarm
0 to 2
1
–
F115
0
2C4E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2C4F
Analog Input 2 Alarm Level
–50000 to 50000
1
Units
F12
10
2C51
Analog Input 2 Alarm Pickup
0 to 1
1
–
F130
0
2C52
Analog Input 2 Alarm Delay
1 to 3000
1
s
F2
1
2C53
Analog Input 2 Alarm Events
0 to 1
1
–
F105
0
2C54
Analog Input 2 Trip
0 to 2
1
–
F115
0
2C55
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20
2C56
Analog Input 2 Trip Level
–50000 to 50000
1
Units
F12
2C58
Analog Input 2 Trip Pickup
0 to 1
1
–
F130
0
2C59
Analog Input 2 Trip Delay
1 to 3000
1
s
F2
1
2C5A
Analog Input 2 Name
0 to 12
1
–
F22
_
0
ANALOG INPUT/OUTPUT / ANALOG INPUT 3
2C80
Analog Input 3
0 to 3
1
–
F129
2C85
Analog Input 3 Units
0 to 6
1
–
F22
_
2C88
Analog Input 3 Minimum
–50000 to 50000
1
Units
F12
0
2C8A
Analog Input 3 Maximum
–50000 to 50000
1
Units
F12
100
2C8C
Block Analog Input 3 From Online
0 to 5000
1
s
F1
0
2C8D
Analog Input 3 Alarm
0 to 2
1
–
F115
0
2C8E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2C8F
Analog Input 3 Alarm Level
–50000 to 50000
1
Units
F12
10
2C91
Analog Input 3 Alarm Pickup
0 to 1
1
–
F130
0
2C92
Analog Input 3 Alarm Delay
1 to 3000
1
s
F2
1
2C93
Analog Input 3 Alarm Events
0 to 1
1
–
F105
0
2C94
Analog Input 3 Trip
0 to 2
1
–
F115
0
1, 2, 3
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
39
Table CG–1: 489 Memory Map (Sheet 28 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
0 to 3
1
–
F50
1
–50000 to 50000
1
Units
F12
20
0 to 1
1
–
F130
0
1 to 3000
1
s
F2
1
1
–
F22
_
0
2C95
Assign Trip Relays (1-4)
2C96
Analog Input 3 Trip Level
2C98
Analog Input 3 Trip Pickup
2C99
Analog Input 3 Trip Delay
2C9A
Analog Input 3 Name
0 to 12
DEFAULT
ANALOG INPUT/OUTPUT / ANALOG INPUT 4
2CC0
Analog Input 4
0 to 3
1
–
F129
2CC5
Analog Input 4 Units
0 to 6
1
–
F22
_
2CC8
Analog Input 4 Minimum
–50000 to 50000
1
Units
F12
0
2CCA
Analog Input 4 Maximum
–50000 to 50000
1
Units
F12
100
2CCC
Block Analog Input 4 From Online
0 to 5000
1
s
F1
0
2CCD
Analog Input 4 Alarm
0 to 2
1
–
F115
0
2CCE
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2CCF
Analog Input 4 Alarm Level
–50000 to 50000
1
Units
F12
10
2CD1
Analog Input 4 Alarm Pickup
0 to 1
1
–
F130
0
2CD2
Analog Input 4 Alarm Delay
1 to 3000
1
s
F2
1
2CD3
Analog Input 4 Alarm Events
0 to 1
1
–
F105
0
2CD4
Analog Input 4 Trip
0 to 2
1
–
F115
0
2CD5
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20
2CD6
Analog Input 4 Trip Level
–50000 to 50000
1
Units
F12
2CD8
Analog Input 4 Trip Pickup
0 to 1
1
–
F130
0
2CD9
Analog Input 4 Trip Delay
1 to 3000
1
s
F2
1
2CDA
Analog Input 4 Name
0 to 12
1
–
F22
_
0 to 3
1
–
F138
0
0 to 300
1
s
F1
15
489 TESTING / SIMULATION MODE
2D00
Simulation Mode
2D01
Pre-fault To Fault Time Delay
489 TESTING / PRE-FAULT SETUP
2D20
Pre-Fault Iphase Output
0 to 2000
1
× CT
F3
0
2D21
Pre-Fault Voltages Phase-N
0 to 150
1
× Rated
F3
100
2D22
Pre-Fault Current Lags Voltage
0 to 359
1
°
F1
0
2D23
Pre-Fault Iphase Neutral
0 to 2000
1
× CT
F3
0
2D24
Pre-Fault Current Ground
0 to 2000
1
× CT
F3
0
2D25
Pre-Fault Voltage Neutral
0 to 1000
1
Volts
F2
0
2D26
Pre-Fault Stator RTD Temp
–50 to 250
1
°C
F4
40
2D27
Pre-Fault Bearing RTD Temp
–50 to 250
1
°C
F4
40
2D28
Pre-Fault Other RTD Temp
–50 to 250
1
°C
F4
40
2D29
Pre-Fault Ambient RTD Temp
–50 to 250
1
°C
F4
40
2D2A
Pre-Fault System Frequency
50 to 900
1
Hz
F2
600
2D2B
Pre-Fault Analog Input 1
0 to 100
1
%
F1
0
2D2C
Pre-Fault Analog Input 2
0 to 100
1
%
F1
0
2D2D
Pre-Fault Analog Input 3
0 to 100
1
%
F1
0
2D2E
Pre-Fault Analog Input 4
0 to 100
1
%
F1
0
2D4C
Pre-Fault Stator RTD Temp
–50 to 250
1
°F
F4
40
2D4D
Pre-Fault Bearing RTD Temp
–50 to 250
1
°F
F4
40
2D4E
Pre-Fault Other RTD Temp
–50 to 250
1
°F
F4
40
2D4F
Pre-Fault Ambient RTD Temp
–50 to 250
1
°F
F4
40
489 TESTING / FAULT SETUP
2D80
Fault Iphase Output
0 to 2000
1
× CT
F3
0
2D81
Fault Voltages Phase-N
0 to 150
1
× Rated
F3
100
2D82
Fault Current Lags Voltage
0 to 359
1
°
F1
0
2D83
Fault Iphase Neutral
0 to 2000
1
× CT
F3
0
2D84
Fault Current Ground
0 to 2000
1
× CT
F3
0
2D85
Fault Voltage Neutral
0 to 1000
1
Volts
F2
0
1, 2, 3
40
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–1: 489 Memory Map (Sheet 29 of 30)
RANGE
STEP
UNITS
FORMAT
2D86
ADDR
Fault Stator RTD Temp
Name
–50 to 250
1
°C
F4
DEFAULT
40
2D87
Fault Bearing RTD Temp
–50 to 250
1
°C
F4
40
2D88
Fault Other RTD Temp
–50 to 250
1
°C
F4
40
2D89
Fault Ambient RTD Temp
–50 to 250
1
°C
F4
40
2D8A
Fault System Frequency
50 to 900
1
Hz
F2
600
2D8B
Fault Analog Input 1
0 to 100
1
%
F1
0
2D8C
Fault Analog Input 2
0 to 100
1
%
F1
0
2D8D
Fault Analog Input 3
0 to 100
1
%
F1
0
2D8E
Fault Analog Input 4
0 to 100
1
%
F1
0
2DBC
Fault Stator RTD Temp
–50 to 250
1
°F
F4
40
2DBD
Fault Bearing RTD Temp
–50 to 250
1
°F
F4
40
2DBE
Fault Other RTD Temp
–50 to 250
1
°F
F4
40
2DBF
Fault Ambient RTD Temp
–50 to 250
1
°F
F4
40
0 to 8
1
–
F139
0
489 TESTING / TEST OUTPUT RELAYS
2DE0
Force Operation Of Relays
489 TESTING / TEST ANALOG OUTPUT
2DF0
Force Analog Outputs Function
0 to 1
1
–
F126
0
2DF1
Analog Output 1 Forced Value
0 to 100
1
%
F1
0
2DF2
Analog Output 2 Forced Value
0 to 100
1
%
F1
0
2DF3
Analog Output 3 Forced Value
0 to 100
1
%
F1
0
2DF4
Analog Output 4 Forced Value
0 to 100
1
%
F1
0
EVENT RECORDER / GENERAL
3000
Event Recorder Last Reset Date (2 Words)
N/A
N/A
N/A
F18
N/A
3002
Total Number Of Events Since Last Clear
0 to 65535
1
N/A
F1
0
3003
Event Record Select
0 to 65535
1
N/A
F1
1
EVENT RECORDER / SELECTED EVENT
3004
Cause Of Event
3005
Time Of Event (2 Words)
0 to 143
-
–
F134
0
N/A
N/A
N/A
F19
N/A
3007
Date Of Event (2 Words)
3009
Tachometer
N/A
300A
Phase A Current
300C
Phase B Current
0 to 999999
1
Amps
F12
0
300E
Phase C Current
0 to 999999
1
Amps
F12
0
3010
Phase A Differential Current
0 to 999999
1
Amps
F12
0
3012
Phase B Differential Current
0 to 999999
1
Amps
F12
0
3014
Phase C Differential Current
0 to 999999
1
Amps
F12
0
3016
Neg. Seq. Current
0 to 2000
1
%FLA
F1
0
3017
Ground Current
0 to 20000000
1
A
F14
0
N/A
N/A
N/A
F18
0 to 7200
1
RPM
F1
0
0 to 999999
1
Amps
F12
0
3019
A-B Voltage
0 to 50000
1
Volts
F1
0
301A
B-C Voltage
0 to 50000
1
Volts
F1
0
301B
C-A Voltage
0 to 50000
1
Volts
F1
0
301C
Frequency
0 to 12000
1
Hz
F3
0
301D
Active Group
0 to 1
1
–
F1
0
301F
Real Power (MW)
–2000000 to 2000000
1
MW
F13
0
3021
Reactive Power Mvar
–2000000 to 2000000
1
Mar
F13
0
3023
Apparent Power MVA
0 to 2000000
1
MVA
F13
0
3025
Hottest Stator RTD Number
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
1
3026
Hottest Stator RTD Temperature
3027
Hottest Bearing RTD Number
3028
Hottest Bearing RTD Temperature
3029
Hottest Other RTD Number
302A
Hottest Other RTD Temperature
302B
Hottest Ambient RTD Number
1, 2, 3
1 to 12
1
–
F1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
See Table footnotes on page page 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
41
Table CG–1: 489 Memory Map (Sheet 30 of 30)
ADDR
Name
RANGE
STEP
UNITS
FORMAT
–50 to 250
1
°C
F4
0
Analog Input 1
–50000 to 50000
1
Units
F12
0
302F
Analog Input 2
–50000 to 50000
1
Units
F12
0
3031
Analog Input 3
–50000 to 50000
1
Units
F12
0
3033
Analog Input 4
–50000 to 50000
1
Units
F12
0
3035
Phase A Neutral Current
0 to 999999
1
Amps
F12
0
3037
Phase B Neutral Current
0 to 999999
1
Amps
F12
0
3039
Phase C Neutral Current
0 to 999999
1
Amps
F12
0
30E0
Hottest Stator RTD Temperature
–50 to 250
1
°F
F4
0
0
302C
Hottest Ambient RTD Temperature
302D
DEFAULT
30E1
Hottest Bearing RTD Temperature
–50 to 250
1
°F
F4
30E2
Hottest Other RTD Temperature
–50 to 250
1
°F
F4
0
30E3
Hottest Ambient RTD Temperature
–50 to 250
1
°F
F4
0
30E5
Neutral Voltage (Fundamental)
0 to 250000
1
Volts
F10
0
30E7
Neutral Voltage (3rd Harmonic)
0 to 250000
1
Volts
F10
0
30E9
Vab/Iab
0 to 65535
1
ohms s
F1
0
30EA
Vab/Iab Angle
0 to 359
1
°
F1
0
WAVEFORM MEMORY SETUP
30F0
Waveform Memory Trigger Date
N/A
N/A
N/A
F18
N/A
30F2
Waveform Memory Trigger Time
N/A
N/A
N/A
F19
N/A
30F4
Frequency During Trace Acquisition
0 to 12000
1
Hz
F3
0
30F5
Waveform Memory Channel Selector (Holding Register)
0 to 9
1
N/A
F214
0
30F6
Waveform Trigger Selector
1 to 65535
1
N/A
F1
0
30F7
Waveform Trigger Cause (Read-only)
0 to 139
1
N/A
F134
0
30F8
Number of Samples per Trace
1 to 1536
-
-
F1
N/A
30F9
Number of Waveform Captures Taken
0 to 65535
1
N/A
F1
0
WAVEFORM MEMORY SAMPLES
3100
First Waveform Memory Sample
–32767 to 32767
1
-
F4
0
3700
Last Waveform Memory Sample
–32767 to 32767
1
-
F4
0
1, 2, 3
See Table footnotes on page page 42
*. A Value of 65535 indicates ‘Never’
. A value of 0xFFFF indicates “no measurable value”.
. Maximum value turns feature ‘Off’
CG.3.8 Memory Map Data Formats
The data formats used in the Modbus memory map are shown below.
Table CG–2: Data Formats (Sheet 1 of 14)
CODE
F1
F2
TYPE
16 bits
DEFINITION
UNSIGNED VALUE
Example: 1234 stored as 1234
16 bits
UNSIGNED VALUE,
1 DECIMAL PLACE
Example: 123.4 stored as 1234
F3
16 bits
UNSIGNED VALUE,
2 DECIMAL PLACES
Example: 12.34 stored as 1234
F4
F5
16 bits
2’s COMPLEMENT SIGNED VALUE
Example: –1234 stored as –1234 (i.e. 64302)
16 bits
2’s COMPLEMENT SIGNED VALUE
1 DECIMAL PLACES
Example: -123.4 stored as -1234 (i.e. 64302)
42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 2 of 14)
CODE
F6
TYPE
16 bits
DEFINITION
2’s COMPLEMENT SIGNED VALUE
2 DECIMAL PLACES
Example: –12.34 stored as –1234 (i.e. 64302)
F10
32 bits
2’s COMPLEMENT SIGNED LONG VALUE
1 DECIMAL PLACE
1st 16 bits
High Order Word of Long Value
2nd 16 bits
Low Order Word of Long Value
Example: –12345.6 stored as
–123456 (i.e. 1st word: FFFE hex, 2nd word: 1DC0 hex)
F12
32 bits
2’s COMPLEMENT SIGNED LONG VALUE
1st 16 bits
High Order Word of Long Value
2nd 16 bits
Low Order Word of Long Value
Example: -123456 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word: 1DC0 hex)
F13
32 bits
2’s COMPLEMENT SIGNED LONG VALUE, 3
DECIMAL PLACES
1st 16 bits
High Order Word of Long Value
2nd 16 bits
Low Order Word of Long Value
Example: -123.456 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word: 1DC0 hex)
F14
32 bits
2’s COMPLEMENT SIGNED LONG VALUE, 2
DECIMAL PLACES
1st 16 bits
High Order Word of Long Value
2nd 16 bits
Low Order Word of Long Value
Example: -1234.56 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word: 1DC0 hex)
F15
F16
16 bits
HARDWARE REVISION
0000 0000 0000
0001
1=A
0000 0000 0000
0010
2=B
...
...
0000 0000 0001
1010
26 = Z
16 bits
SOFTWARE REVISION
1111 1111
xxxx xxxx
Major Revision Number
0 to 9 in steps of 1
xxxx xxxx 1111
1111
Minor Revision Number (two BCD digits)
00 to 99 in steps of 1
Example: Revision 2.30 stored as 0230 hex
32 bits
F18
DATE (MM/DD/YYYY)
1st byte
Month (1 to 12)
2nd byte
Day (1 to 31)
3rd & 4th byte
Year (1995 to 2094)
Example: Feb. 20, 1996 stored as 34867148 (i.e. 1st word: 0214, 2nd
word 07CC)
32 bits
F19
TIME (HH:MM:SS:hh)
1st byte
Hours (0 to 23)
2nd byte
Minutes (0 to 59)
3rd byte
Seconds (0 to 59)
4th byte
Hundredths of seconds (0 to 99)
Example: 2:05pm stored as 235208704 (i.e. 1st word: 0E05, 2nd word
0000)
F20
32 bits
2’s COMPLEMENT SIGNED LONG VALUE
1st 16 bits
High Order Word of Long Value
2nd 16 bits
Low Order Word of Long Value
Note: -1 means “Never”
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
43
Table CG–2: Data Formats (Sheet 3 of 14)
CODE
F22
TYPE
DEFINITION
16 bits
TWO 8-BIT CHARACTERS
PACKED INTO 16-BIT UNSIGNED
MSB
First Character
LSB
Second Character
Example: String ‘AB’ stored as 4142 hex.
32 bits
F24
TIME FORMAT FOR BROADCAST
1st byte
Hours (0 to 23)
2nd byte
Minutes (0 to 59)
3rd & 4th bytes
Milliseconds (0 to 59999)
Note: Clock resolution limited to 0.01 sec
Example: 1:15:48:572 stored as 17808828 (i.e., 1st word 010F, 2nd word
BDBC)
F50
F100
F101
F102
F103
F104
F105
F106
44
16 bits
ASSIGN ALARM/TRIP RELAYS
Bit 0
Relay 1
Bit 1
Relay 2
Bit 2
Relay 3
Bit 3
Relay 4
Bit 4
Relay 5
Bits 5 to 15
Not used
Unsigned
16 bit integer
TEMPERATURE DISPLAY UNITS
0
Celsius
1
Fahrenheit
Unsigned
16 bit integer
RS485 BAUD RATE
0
300 baud
1
1200 baud
2
2400 baud
3
4800 baud
4
9600 baud
5
19200 baud
Unsigned
16 bit integer
RS485 PARITY
0
None
1
Odd
2
Even
Unsigned
16 bit integer
NO/YES SELECTION
0
No
1
Yes
Unsigned
16 bit integer
GROUND CT TYPE
0
None
1
1 A Secondary
2
50/0.025 Ground CT
3
5 A Secondary
Unsigned
16 bit integer
OFF/ON SELECTION
0
Off
1
On
Unsigned
16 bit integer
VOLTAGE TRANSFORMER CONNECTION TYPE
0
None
1
Open Delta
2
Wye
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 4 of 14)
CODE
F107
F109
F115
F117
F118
F120
F121
F122
TYPE
DEFINITION
Unsigned
16 bit integer
NOMINAL FREQUENCY
0
----
1
60 Hz
2
50 Hz
3
25 Hz
Unsigned
16 bit integer
STARTER STATUS SWITCH
0
Auxiliary A
1
Auxiliary B
Unsigned
16 bit integer
ALARM / TRIP TYPE SELECTION
0
Off
1
Latched
2
Unlatched
Unsigned
16 bit integer
RESET MODE
0
All Resets
1
Remote Reset Only
2
Keypad Reset Only
Unsigned
16 bit integer
SETPOINT GROUP
0
Group 1
1
Group 2
Unsigned
16 bit integer
RTD TYPE
0
100 Ohm Platinum
1
120 Ohm Nickel
2
100 Ohm Nickel
3
10 Ohm Copper
Unsigned
16 bit integer
RTD APPLICATION
0
None
1
Stator
2
Bearing
3
Ambient
4
Other
Unsigned
16 bit integer
RTD VOTING SELECTION
1
RTD #1
2
RTD #2
3
RTD #3
4
RTD #4
5
RTD #5
6
RTD #6
7
RTD #7
8
RTD #8
9
RTD #9
10
RTD #10
11
RTD #11
12
RTD #12
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
45
Table CG–2: Data Formats (Sheet 5 of 14)
CODE
F123
F124
F126
46
TYPE
DEFINITION
Unsigned
16 bit integer
ALARM/TRIP STATUS
0
Not Enabled
1
Inactive
2
Timing Out
3
Active Trip
4
Latched Trip
Unsigned
16 bit integer
PHASE ROTATION SELECTION
0
----
1
ABC
2
ACB
Unsigned
16 bit
DISABLED / ENABLED SELECTION
0
Disabled
1
Enabled
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 6 of 14)
CODE
F127
TYPE
DEFINITION
Unsigned
16 bit integer
ANALOG OUTPUT PARAMETER SELECTION
0
None
1
IA Output Current
2
IB Output Current
3
IC Output Current
4
Average Output Current
5
Negative Sequence Current
6
Average Generator Load
7
Hottest Stator RTD
8
Hottest Bearing RTD
9
Ambient RTD
10
RTD #1
11
RTD #2
12
RTD #3
13
RTD #4
14
RTD #5
15
RTD #6
16
RTD #7
17
RTD #8
18
RTD #9
19
RTD #10
20
RTD #11
21
RTD #12
22
AB Voltage
23
BC Voltage
24
CA Voltage
25
Average Voltage
26
Volts/Hertz
27
Frequency
28
Third Harmonic Neutral Voltage
29
Power Factor
30
Reactive Power (Mvar)
31
Real Power (MW)
32
Apparent Power (MVA)
33
Analog Input 1
34
Analog Input 2
35
Analog Input 3
36
Analog Input 4
37
Tachometer
38
Thermal Capacity Used
39
Current Demand
40
Mvar Demand
41
MW Demand
42
MVA Demand
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
47
Table CG–2: Data Formats (Sheet 7 of 14)
CODE
F128
F129
F130
FC131
F132
F133
F134
48
TYPE
DEFINITION
Unsigned
16 bit integer
OVERCURRENT CURVE STYLE SELECTION
0
ANSI Extremely Inverse
1
ANSI Very Inverse
2
ANSI Normally Inverse
3
ANSI Moderately Inverse
4
IEC Curve A (BS142)
5
IEC Curve B (BS142)
6
IEC Curve C (BS142)
7
IEC Short Inverse
8
IAC Extremely Inverse
9
IAC Very Inverse
10
IAC Inverse
11
IAC Short Inverse
12
FlexCurve™
13
Definite Time
Unsigned
16 bit integer
ANALOG INPUT SELECTION
0
Disabled
1
4 to 20 mA
2
0 to 20 mA
3
0 to 1 mA
Unsigned
16 bit integer
PICKUP TYPE
0
Over
1
Under
Unsigned
16 bit integer
INPUT SWITCH STATUS
0
Closed
1
Open
Unsigned
16 bit integer
TRIP COIL SUPERVISION STATUS
0
No Coil
1
Coil
Unsigned
16 bit integer
GENERATOR STATUS
0
Offline
1
Offline
2
Online
3
Overload
4
Tripped
Unsigned
16 bit integer
CAUSE OF EVENT /
CAUSE OF LAST TRIP
0
No Event
1
General Switch A Trip
2
General Switch B Trip
3
General Switch C Trip
4
General Switch D Trip
5
General Switch E Trip
6
General Switch F Trip
7
General Switch G Trip
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 8 of 14)
CODE
F134
ctd.
TYPE
DEFINITION
8
Sequential Trip
9
Tachometer Trip
10
Unknown Trip
11
Unknown Trip
12
Overload Trip
13
Unknown Trip
14
Neutral Overvoltage Trip
15
Neutral Undervoltage (3rd Harmonic) Trip
16
Not Used
17
Not Used
18
Not Used
19
Not Used
20
Differential Trip
21
Not Used
22
RTD 1 Trip
23
RTD 2 Trip
24
RTD 3 Trip
25
RTD 4 Trip
26
RTD 5 Trip
27
RTD 6 Trip
28
RTD 7 Trip
29
RTD 8 Trip
30
RTD 9 Trip
31
RTD 10 Trip
32
RTD 11 Trip
33
RTD 12 Trip
34
Undervoltage Trip
35
Overvoltage Trip
36
Phase Reversal Trip
37
Overfrequency Trip
38
Not Used
39
Reactive Power Trip
40
Underfrequency Trip
41
Analog Input 1 Trip
42
Analog Input 2 Trip
43
Analog Input 3 Trip
44
Analog Input 4 Trip
45
Not Used
46
Reverse Power Trip
47
Field-Breaker Discrepancy
48
Offline Overcurrent Trip
49
Phase Overcurrent Trip
50
Negative Sequence Overcurrent Trip
51
General Switch A Alarm
52
General Switch B Alarm
53
General Switch C Alarm
54
General Switch D Alarm
55
General Switch E Alarm
56
General Switch F Alarm
57
General Switch G Alarm
58
Not Used
59
Tachometer Alarm
60
Thermal Model Alarm
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
49
Table CG–2: Data Formats (Sheet 9 of 14)
CODE
TYPE
61
F134
ctd.
50
DEFINITION
Not Used
62
Underfrequency Alarm
63
Not Used
64
Not Used
65
RTD 1 Alarm
66
RTD 2 Alarm
67
RTD 3 Alarm
68
RTD 4 Alarm
69
RTD 5 Alarm
70
RTD 6 Alarm
71
RTD 7 Alarm
72
RTD 8 Alarm
73
RTD 9 Alarm
74
RTD 10 Alarm
75
RTD 11 Alarm
76
RTD 12 Alarm
77
Open RTD Alarm
78
Short/Low RTD Alarm
79
Undervoltage Alarm
80
Overvoltage Alarm
81
Overfrequency Alarm
82
Not Used
83
Reactive Power Alarm
84
Low Forward Power Alarm
85
Trip Counter Alarm
86
Breaker Failure Alarm
87
Current Demand Alarm
88
MW Demand Alarm
89
Mvar Demand Alarm
90
MVA Demand Alarm
91
Not Used
92
Analog Input 1 Alarm
93
Analog Input 2 Alarm
94
Analog Input 3 Alarm
95
Analog Input 4 Alarm
96
Reverse Power Alarm
97
Not Used
98
Negative Sequence Alarm
99
Ground Overcurrent Alarm
100
Not Used
101
Service Alarm
102
Control Power Lost
103
Control Power Applied
104
Thermal Reset Close
105
Not Used
106
Not Used
107
Relay Not Inserted
108
Trip Coil Supervision
109
Breaker Failure
110
VT Fuse Failure
111
Simulation Started
112
Simulation Stopped
113
Ground Overcurrent Trip
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 10 of 14)
CODE
F134
ctd.
F136
F138
F139
TYPE
DEFINITION
114
Volts/Hertz Trip
115
Volts/Hertz Alarm
116
Low Forward Power Trip
117
Inadvertent Energization
118
Serial Start Command
119
Serial Stop Command
120
Input A Control
121
Input B Control
122
Input C Control
123
Input D Control
124
Input E Control
125
Input F Control
126
Input G Control
127
Neutral Overvoltage Alarm
128
Neutral Undervoltage (3rd Harmonic) Alarm
129
Setpoint Group 1 Active
130
Setpoint Group 2 Active
131
Loss of Excitation 1
132
Loss of Excitation 2
133
Ground Directional Trip
134
Ground Directional Alarm
135
High-Set Phase Overcurrent Trip
136
Distance Zone 1 Trip
137
Distance Zone 2 Trip
138
Digital Input Waveform Trigger
139
Serial Waveform Trigger
Unsigned
16 bit integer
ORDER CODE
Bit 0
0 = P5 (5 A CT secondary), 1 = P1 (1 A CT secondary)
Bit 1
0 = HI (High Voltage Power Supply),
1 = LO (Low Voltage Power Supply)
Bit 2
0 = A20 (4 to 20 mA Analog Outputs),
1 = A1 (0 to 1 mA Analog Outputs)
Unsigned
16 bit integer
SIMULATION MODE
0
Off
1
Simulate Pre-Fault
2
Simulate Fault
3
Pre-Fault to Fault
Unsigned
16 bit integer
FORCE OPERATION OF RELAYS
0
Disabled
1
1 TRIP
2
2 AUXILIARY
3
3 AUXILIARY
4
4 AUXILIARY
5
5 ALARM
6
6 SERVICE
7
All Relays
8
No Relays
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
51
Table CG–2: Data Formats (Sheet 11 of 14)
CODE
F140
F141
F142
TYPE
DEFINITION
16 bits
GENERAL STATUS
bit 0
Relay in Service
bit 1
Active Trip Condition
bit 2
Active Alarm Condition
bit 3
Reserved
bit 4
Reserved
bit 5
Reserved
bit 6
Reserved
bit 7
Simulation Mode Enabled
bit 8
Breaker Open LED
bit 9
Breaker Closed LED
bit 10
Hot Stator LED
bit 11
Negative Sequence LED
bit 12
Ground LED
bit 13
Loss of Field LED
bit 14
VT Failure LED
bit 15
Breaker Failure LED
16 bits
OUTPUT RELAY STATUS
bit 0
1 TRIP
bit 1
2 AUXILIARY
bit 2
3 AUXILIARY
bit 3
4 AUXILIARY
bit 4
5 ALARM
bit 5
6 SERVICE
bit 6 to
bit 15
Not Used
Unsigned
16 bit integer
THERMAL MODEL CURVE STYLE SELECTION
0
Standard
1
Custom
2
Voltage Dependent
Unsigned
32 bits integer
F148
1st 16 bits
High Order Word - Long.
2nd 16 bits
Low Order Word - Long.
For example: 123456 stored as 1st word: 0001 hex, 2nd word: E240 hex.
Unsigned
32 bits integer
F150
IP ADDRESS / SUBNET MASK / DEFAULT GATEWAY
Each byte in this register represents one octet in
the IP Address.
For example: 0x015EDA1F means 1.94.218.31
F152
52
Unsigned
16 bit integer
ETHERNET STATUS
0
Diagnostic Status On
1
Connection Status On
2
Not Used
3
Ethernet Link Status On
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 12 of 14)
CODE
F200
F201
F202
F206
F207
F208
F209
F210
F211
TYPE
DEFINITION
Unsigned
16 bit integer
COMMUNICATION MONITOR BUFFER STATUS
0
Buffer Cleared
1
Received OK
2
Wrong Slave Address
3
Illegal Function
4
Illegal Count
5
Illegal Register Address
6
CRC Error
7
Illegal Data
Unsigned
16 bit integer
CURVE RESET TYPE
0
Instantaneous
1
Linear
Unsigned
16 bit integer
INADVERTENT ENERGIZATION ARMING TYPE
0
Undervoltage and Offline
1
Undervoltage or Offline
Unsigned
16 bit integer
SEQUENTIAL TRIP TYPE
0
Low Forward Power
1
Reverse Power
Unsigned
16 bit integer
SWITCH STATUS
0
Open
1
Shorted
Unsigned
16 bit integer
UNDERVOLTAGE TRIP ELEMENT TYPE
0
Curve
1
Definite Time
Unsigned
16 bit integer
BREAKER OPERATION TYPE
0
Breaker Auxiliary A
1
Breaker Auxiliary B
Unsigned
16 bit integer
ASSIGNABLE INPUT SELECTION
0
None
1
Input 1
2
Input 2
3
Input 3
4
Input 4
5
Input 5
6
Input 6
7
Input 7
Unsigned
16 bit integer
VOLTS/HERTZ ELEMENT TYPE
0
Curve #1
1
Curve #2
2
Curve #3
3
Definite Time
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
53
Table CG–2: Data Formats (Sheet 13 of 14)
CODE
F212
F213
F214
F215
F216
F217
54
TYPE
DEFINITION
Unsigned
16 bit integer
RTD NUMBER
0
All
1
RTD #1
2
RTD #2
3
RTD #3
4
RTD #4
5
RTD #5
6
RTD #6
7
RTD #7
8
RTD #8
9
RTD #9
10
RTD #10
11
RTD #11
12
RTD #12
Unsigned
16 bit integer
COMMUNICATIONS MONITOR PORT SELECTION
0
Computer RS485
1
Auxiliary RS485
2
Front Panel RS232
Unsigned
16 bit integer
WAVEFORM MEMORY CHANNEL SELECTOR
0
Phase A Line Current
512 counts = 1 × CT
1
Phase B Line Current
512 counts = 1 × CT
2
Phase C Line Current
512 counts = 1 × CT
3
Phase A Line Current
512 counts = 1 × CT
4
Neutral-End Phase A Line Current
512 counts = 1 × CT
5
Neutral-End Phase B Line Current
512 counts = 1 × CT
6
Neutral-End Phase C Line Current
512 counts = 1 × CT
7
Phase A to Neutral Voltage; 3500 counts = 120
secondary volts
8
Phase B to Neutral Voltage; 3500 counts = 120
secondary volts
9
Phase C to Neutral Voltage; 3500 counts = 120
secondary volts
Unsigned
16 bit integer
CURRENT SOURCE
0
Neutral-End CTs
1
Output-End CTs
Unsigned
16 bit integer
DNP PORT SELECTION
0
None
1
Computer RS485
2
Auxiliary RS485
3
Front Panel RS485
Unsigned
16 bit integer
GROUND DIRECTIONAL MTA
0
0 degrees
1
90 degrees
2
180 degrees
3
270 degrees
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–2: Data Formats (Sheet 14 of 14)
CODE
F218
F219
F220
TYPE
Unsigned
16 bit integer
DEFINITION
BREAKER STATE
0
52 Closed
1
52 Open/Closed
Unsigned
16 bit integer
STEP-UP TRANSFORMER TYPE
0
None
1
Delta/Wye
Unsigned
16 bit integer
IRIG-B TYPE
0
None
1
DC Shift
2
Amplitude Modulated
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
55
CG.4 DNP Protocol
CG.4.1 Device Profile Document
The communications port configured as a DNP slave port must support the full set of
features listed in the Level 2 DNP V3.00 Implementation (DNP-L2) described in Chapter 2 of
the subset definitions. See the DNP protocol website at http://www.dnp.org for details
DNP 3.0: DEVICE PROFILE DOCUMENT
Vendor Name: General Electric Multilin Inc.
Device Name: 489 Generator Management Relay
Highest DNP Level Supported:
For Requests: Level 2
For Responses: Level 2
Device Function:
Slave
Ë Master Ë
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP
Levels Supported (the complete list is described in the attached table):
Binary Input (Object 1, variations 1 and 2)
Binary Output (Object 10, variation 2)
Binary Counter (Object 20, variations 5 and 6)
Frozen Counter (Object 21, variations 9 and 10)
Analog Input (Object 30, variations 1, 2, 3, and 4)
Analog Input Change (Object 32, variations 1, 2, 3, and 4)
Warm Restart (Function Code 14)
Maximum Data Link Frame Size (octets):
Transmitted: 292
Received: 292
Maximum Application Fragment Size
(octets):
Transmitted: 2048
Received: 2048
Maximum Data Link Re-tries:
Ë
None
Ë Fixed
Ë Configurable
Maximum Application Layer Re-tries:
Ë
None
Ë Configurable
Requires Data Link Layer Confirmation:
Ë
Never
Ë Always
Ë Sometimes
Ë Configurable
Requires Application Layer Confirmation:
Ë Never
Ë Always
Ë
When reporting Event Data
Ë When sending multi-fragment responses
Ë Sometimes
Ë Configurable
Timeouts while waiting for:
Data Link Confirm
Complete Appl. Fragment
Application Confirm
Complete Appl. Response
Others: (None)
56
Ë
None
Ë
None
Ë
None
Ë Fixed
Ë Fixed
Ë Fixed
Ë Variable
Ë Variable
Ë Variable
(fixed value is 5000 milliseconds)
Ë
None
Ë Fixed
Ë Variable
Ë Configurable
Ë Configurable
Ë Configurable
Ë Configurable
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
DNP 3.0: DEVICE PROFILE DOCUMENT (Continued)
Executes Control Operations:
Write Binary Outputs
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Select/Operate
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Direct Operate
Always
Ë Never Ë
Ë Sometimes Ë Configurable
Direct Operate: No Ack
Always
Ë Never Ë
Ë Sometimes Ë Configurable
Count > 1
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Pulse On
Always
Ë Never Ë
Ë Sometimes Ë Configurable
Pulse Off
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Latch On
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Latch Off
Ë
Never Ë Always
Ë Sometimes Ë Configurable
See Binary / Control Relay Output Block (Objects 10/12) on page CG–63 for an
explanation of the above.
Queue
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Clear Queue
Ë
Never Ë Always
Ë Sometimes Ë Configurable
Reports Binary Input Change Events when
no specific variations requested:
Ë Never
Ë
Only time-tagged
Ë Only non-time-tagged
Ë Configurable to send both, one or the
other
Reports time-tagged Binary Input Change
Events when no specific variation
requested:
Ë Never
Ë
Binary Input Change With Time
Ë Binary Input Change With Relative
Time
Ë Configurable
Sends Unsolicited Responses:
Ë
Never
Ë Configurable
Ë Only certain objects
Ë Sometimes
Ë ENABLE/DISABLE UNSOLICITED
Function codes supported
Sends Static Data in Unsolicited
Responses:
Ë
Never
Ë When Device Restarts
Ë When Status Flags Change
Default Counter Object/Variation:
Ë No Counters Reported
Ë Configurable
Ë
Default Object / Default Variation
Ë Point-by-point list attached
Counters Roll Over at:
Ë No Counters Reported
Ë Configurable
Ë 16 Bits
Ë 32 Bits
Ë Other Value
Ë
Point-by-point list attached
Sends Multi-Fragment Responses:
Ë
No
Ë Yes
CG.4.2 Implementation Table
The table below gives a list of all objects recognized and returned by the relay. Additional
information is provided on the following pages including a list of the default variations
returned for each object and lists of defined point numbers for each object.
Implementation Table Notes:
1.
For this object, the quantity specified in the request must be exactly 1 as there is only
one instance of this object defined in the relay.
2.
All static data known to the relay is returned in response to a request for Class 0. This
includes all objects of type 1 (Binary Input), type 10 (Binary Output), type 20 (Binary
Counter), type 21 (Frozen Counter) and type 30 (Analog Input).
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
57
3.
The point tables for Binary Input and Analog Input objects contain a field that defines
to which event class the corresponding static data point has been assigned.
4.
For this object, the qualifier code must specify an index of 7 only.
5.
Delay Measurement (function code 23) is supported since the relay allows for writing
the time via object 50 and it also periodically sets the “Time Synchronization Required”
Internal Indication (IIN). The IIN is set at power-up and will be set again 24 hours after
it was last cleared. The IIN is cleared when time is written as object 50 data or if IRIG-B
is enabled and relay time is updated as a result of a successful decoding of this signal.
Table CG–3: DNP Implementation Table
Object
Obj
58
Var
Request
Description
Func Codes
Response
Qual Codes
(Hex)
Func Codes
Qual Codes
(Hex)
1
0
Binary Input - All Variations
1
06
1
1
Binary Input
1
00, 01, 06
129
00, 01
1
2
Binary Input With Status (Note 6)
1
00, 01, 06
129
00, 01
2
0
Binary Input Change - All Variations
1
06, 07, 08
2
1
Binary Input Change Without Time
1
06, 07, 08
129
17, 28
2
2
Binary Input Change With Time
1
06, 07, 08
129
17, 28
10
0
Binary Output - All Variations
1
06
10
2
Binary Output Status
00, 01
12
1
Control Relay Output Block
20
0
20
20
1
00, 01, 06
129
3, 4, 5, 6
17, 28
129
17, 28
Binary Counter - All Variations
1, 7, 8, 9, 10
06
129
00, 01
5
32-Bit Binary Counter without Flag
1, 7, 8, 9, 10
06
129
00, 01
6
16-Bit Binary Counter without Flag
1, 7, 8, 9, 10
06
129
00, 01
21
0
Frozen Counter - All Variations
1
06
129
00, 01
21
9
32-Bit Frozen Counter without Flag
1
06
129
00, 01
21
10
16-Bit Frozen Counter without Flag
1
06
129
00, 01
30
0
Analog Input - All Variations
1
06
30
1
32-Bit Analog Input With Flag
1
00, 01, 06
129
00, 01
30
2
16-Bit Analog Input With Flag
1
00, 01, 06
129
00, 01
30
3
32-Bit Analog Input Without Flag
1
00, 01, 06
129
00, 01
30
4
16-Bit Analog Input Without Flag
1
00, 01, 06
129
00, 01
32
0
Analog Input Change - All Variations
1
06, 07, 08
32
1
32-Bit Analog Input Change without Time
1
06, 07, 08
129
17, 28
32
2
16-Bit Analog Input Change without Time
1
06, 07, 08
129
17, 28
32
3
32-Bit Analog Input Change with Time
1
06, 07, 08
129
17, 28
32
4
16-Bit Analog Input Change with Time
50
1
Time and Date
1
06, 07, 08
129
17, 28
1, 2
07 (Note 1)
129
60
1
07
Class 0 Data (Note 2)
1
06
129
60
60
2
Class 1 Data (Note 3)
1
06, 07, 08
129
3
Class 2 Data (Note 3)
1
06, 07, 08
129
60
4
Class 3 Data (Note 3)
1
06, 07, 08
129
80
1
Internal Indications
2
00 (Note 4)
129
No object - Cold Start
13
No object - Warm Start
14
No object - Delay Measurement (Note 5)
23
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CG.4.3 Default Variations
The following table specifies the default variation for all objects returned by the relay.
These are the variations that will be returned for the object in a response when no specific
variation is specified in a request.
Table CG–4: Default Variations
Object
Description
Default
Variation
1
Binary Input - Single Bit
1
2
Binary Input Change With Time
2
10
Binary Output Status
2
20
16-Bit Binary Counter without Flag
6
21
16-Bit Frozen Counter without Flag
10
30
32-Bit Analog Input Without Flag
3
32
32-Bit Analog Input Change Without Time
1
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
59
CG.5 DNP Point Lists
CG.5.1 Binary Input / Binary Input Change (Objects 01/02)
The point list for Binary Inputs (Object 01) and Binary Input Change (Object 02) is shown
below:
Table CG–5: Binary Inputs (Sheet 1 of 4)
60
Idx
Description
Class
0
Relay In Service
Class 1
1
Trip Condition Active
Class 1
2
Alarm Condition Active
Class 1
3
Simulation Mode Enabled
Class 1
4
Breaker Is Open
Class 1
5
Breaker Is Closed
Class 1
6
Hot Stator Fault Active
Class 1
7
Negative Sequence Fault Active
Class 1
8
Ground Fault Active
Class 1
9
Loss Of Field Fault Active
Class 1
10
VT Failure Detected
Class 1
11
Breaker Failure Detected
Class 1
12
Relay 1 Trip Operated
Class 1
13
Relay 2 Auxiliary Operated
Class 1
14
Relay 3 Auxiliary Operated
Class 1
15
Relay 4 Auxiliary Operated
Class 1
16
Relay 5 Alarm Operated
Class 1
17
Relay 6 Service Operated
Class 1
18
Setpoint Access Input Closed
Class 1
19
Breaker Status Input Closed
Class 1
20
Assignable Input 1 Closed
Class 1
21
Assignable Input 2 Closed
Class 1
22
Assignable Input 3 Closed
Class 1
23
Assignable Input 4 Closed
Class 1
24
Assignable Input 5 Closed
Class 1
25
Assignable Input 6 Closed
Class 1
26
Assignable Input 7 Closed
Class 1
27
Trip Coil Supervision - Coil Detected
Class 1
40
Assignable Input 1 Trip Active or Latched
Class 1
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–5: Binary Inputs (Sheet 2 of 4)
Idx
Description
Class
41
Assignable Input 2 Trip Active or Latched
Class 1
42
Assignable Input 3 Trip Active or Latched
Class 1
43
Assignable Input 4 Trip Active or Latched
Class 1
44
Assignable Input 5 Trip Active or Latched
Class 1
45
Assignable Input 6 Trip Active or Latched
Class 1
46
Assignable Input 7 Trip Active or Latched
Class 1
47
Sequential Trip Active or Latched
Class 1
48
Field-Breaker Discrepancy Trip Active or Latched
Class 1
49
Tachometer Trip Active or Latched
Class 1
50
Offline Overcurrent Trip Active or Latched
Class 1
51
Inadvertent Energization Trip Active or Latched
Class 1
52
Phase Overcurrent Trip Active or Latched
Class 1
53
Negative Sequence Overcurrent Trip Active or
Latched
Class 1
54
Ground Overcurrent Trip Active or Latched
Class 1
55
Phase Differential Trip Active or Latched
Class 1
56
Undervoltage Trip Active or Latched
Class 1
57
Overvoltage Trip Active or Latched
Class 1
58
Volts/Hertz Trip Active or Latched
Class 1
59
Phase Reversal Trip Active or Latched
Class 1
60
Underfrequency Trip Active or Latched
Class 1
61
Overfrequency Trip Active or Latched
Class 1
62
Neutral Overvoltage Trip Active or Latched
Class 1
63
Neutral Undervoltage (Third Harmonic) Trip Active
or Latched
Class 1
64
Reactive Power Trip Active or Latched
Class 1
65
Reverse Power Trip Active or Latched
Class 1
66
Low Fwd Power Trip Active or Latched
Class 1
67
Thermal Model Trip Active or Latched
Class 1
68
RTD 1 Trip Active or Latched
Class 1
69
RTD 2 Trip Active or Latched
Class 1
70
RTD 3 Trip Active or Latched
Class 1
71
RTD 4 Trip Active or Latched
Class 1
72
RTD 5 Trip Active or Latched
Class 1
73
RTD 6 Trip Active or Latched
Class 1
74
RTD 7 Trip Active or Latched
Class 1
75
RTD 8 Trip Active or Latched
Class 1
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
61
Table CG–5: Binary Inputs (Sheet 3 of 4)
62
Idx
Description
Class
76
RTD 9 Trip Active or Latched
Class 1
77
RTD 10 Trip Active or Latched
Class 1
78
RTD 11 Trip Active or Latched
Class 1
79
RTD 12 Trip Active or Latched
Class 1
80
Analog Input 1 Trip Active or Latched
Class 1
81
Analog Input 2 Trip Active or Latched
Class 1
82
Analog Input 3 Trip Active or Latched
Class 1
83
Analog Input 4 Trip Active or Latched
Class 1
84
Loss of Excitation Circle 1 Trip Active or Latched
Class 1
85
Loss of Excitation Circle 2 Trip Active or Latched
Class 1
86
Ground Directional Trip Active or Latched
Class 1
87
High Set Phase Overcurrent Trip Active or Latched Class 1
88
Distance Zone 1 Trip Active or Latched
Class 1
89
Distance Zone 2 Trip Active or Latched
Class 1
100
Assignable Input 1 Alarm Active / Latched
Class 1
101
Assignable Input 2 Alarm Active or Latched
Class 1
102
Assignable Input 3 Alarm Active or Latched
Class 1
103
Assignable Input 4 Alarm Active or Latched
Class 1
104
Assignable Input 5 Alarm Active or Latched
Class 1
105
Assignable Input 6 Alarm Active or Latched
Class 1
106
Assignable Input 7 Alarm Active / Latched
Class 1
107
Tachometer Alarm Active or Latched
Class 1
108
Overcurrent Alarm Active or Latched
Class 1
109
Negative Sequence Alarm Active or Latched
Class 1
110
Ground Overcurrent Alarm Active or Latched
Class 1
111
Undervoltage Alarm Active or Latched
Class 1
112
Overvoltage Alarm Active or Latched
Class 1
113
Volts/Hertz Alarm Active or Latched
Class 1
114
Underfreq Alarm Active or Latched
Class 1
115
Overfrequency Alarm Active or Latched
Class 1
116
Neutral Overvoltage Alarm Active or Latched
Class 1
117
Neutral Undervoltage (Third Harmonic) Alarm
Active or Latched
Class 1
118
Reactive Power Alarm Active or Latched
Class 1
119
Reverse Power Alarm Active or Latched
Class 1
120
Low Forward Power Alarm Active / Latched
Class 1
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–5: Binary Inputs (Sheet 4 of 4)
Idx
Description
Class
121
RTD 1 Alarm Active or Latched
Class 1
122
RTD 2 Alarm Active or Latched
Class 1
123
RTD 3 Alarm Active or Latched
Class 1
124
RTD 4 Alarm Active or Latched
Class 1
125
RTD 5 Alarm Active or Latched
Class 1
126
RTD 6 Alarm Active or Latched
Class 1
127
RTD 7 Alarm Active or Latched
Class 1
128
RTD 8 Alarm Active or Latched
Class 1
129
RTD 9 Alarm Active or Latched
Class 1
130
RTD 10 Alarm Active or Latched
Class 1
131
RTD 11 Alarm Active or Latched
Class 1
132
RTD 12 Alarm Active or Latched
Class 1
133
Open Sensor Alarm Active or Latched
Class 1
134
Short/Low Temp Alarm Active or Latched
Class 1
135
Thermal Model Alarm Active or Latched
Class 1
136
Trip Counter Alarm Active or Latched
Class 1
137
Breaker Failure Alarm Active or Latched
Class 1
138
Trip Coil Monitor Alarm Active or Latched
Class 1
139
VTFF Alarm Active or Latched
Class 1
140
Current Dmd Alarm Active or Latched
Class 1
141
MW Demand Alarm Active or Latched
Class 1
142
Mvar Demand Alarm Active or Latched
Class 1
143
MVA Alarm Active or Latched
Class 1
144
Analog Input 1 Alarm Active or Latched
Class 1
145
Analog Input 2 Alarm Active or Latched
Class 1
146
Analog Input 3 Alarm Active or Latched
Class 1
147
Analog Input 4 Alarm Active or Latched
Class 1
148
Not Programmed Alarm Active or Latched
Class 1
149
Simulation Mode Alarm Active or Latched
Class 1
150
Output Relays Forced Alarm Active or Latched
Class 1
151
Analog Output Forced Alarm Active or Latched
Class 1
152
Test Switch Shorted Alarm Active or Latched
Class 1
153
Ground Directional Alarm Active or Latched
Class 1
154
IRIG-B Failure Alarm Active or Latched
Class 1
155
Generator Running Hour Alarm Active or Latched
Class 1
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
63
Note
Any detected change in the state of any point assigned to Class 1 will cause the generation
of an event object.
CG.5.2 Binary / Control Relay Output Block (Objects 10/12)
Table CG–6: Binary Output Point List
INDEX
DESCRIPTION
0
Reset
1
Generator Start
2
Generator Stop
3
Clear Trip Counters
4
Clear Last Trip Data
5
Clear MWh and Mvarh
6
Clear Peak Demand Data
7
Clear Generator Information
8
Clear Breaker Information
The following restrictions should be noted when using object 12 to control the points listed
above:
1.
The Count field is checked first. If it is zero, the command will be accepted but no
action will be taken. If this field is non-zero, the command will be executed exactly
once regardless of its value.
2.
The Control Code field of object 12 is then inspected:
• The Queue and Clear sub-fields are ignored.
• If the Control Code field is zero (i.e., NUL operation) the command is accepted but
no action is taken.
• For all points, the only valid control is “Close - Pulse On” (41 hex). This is used to
initiate the function (e.g., Reset) associated with the point.
• Any value in the Control Code field not specified above is invalid and will be
rejected.
• The On Time and Off Time fields are ignored. A ”Pulse On” control takes effect
immediately when received. Thus, the timing is irrelevant.
• The Status field in the response will reflect the success or failure of the control
attempt thus:
• A Status of “Request Accepted” (0) will be returned if the command was accepted.
• A Status of “Request not Accepted due to Formatting Errors” (3) will be returned if
the Control Code field was incorrectly formatted or an invalid Code was present in
the command.
64
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
• A Status of “Control Operation not Supported for this Point” (4) will be returned if an
attempt was made to operate the point and the relay, owing to its configuration,
does not allow the point to perform its function.
An operate of the Reset point may fail (even if the command is accepted) due to other
inputs or conditions (e.g., blocks) existing at the time. To verify the success or failure of an
operate of this point it is necessary that the associated Binary Input(s) be examined after
the control attempt is performed.
When using object 10 to read the status of any Binary Output, a value of zero will always
be returned. This is due to the fact that all points are “Pulse On” and are deemed to be
normally off.
CG.5.3 Binary / Frozen Counter (Objects 20/21)
Table CG–7: Counters Point List
INDEX
ROLLOVER
POINT
0
50000
Number of Breaker Operations
1
50000
Number of Thermal Resets
2
50000
Number of Trips (total)
3
50000
Number of Digital Input Trips
4
50000
Number of Sequential Trips
5
50000
Number of Field-Breaker Discrepancy Trips
6
50000
Number of Tachometer Trips
7
50000
Number of Offline Overcurrent Trips
8
50000
Number of Phase Overcurrent Trips
9
50000
Number of Negative Sequence Overcurrent Trips
10
50000
Number of Ground Overcurrent Trips
11
50000
Number of Phase Differential Trips
12
50000
Number of Undervoltage Trips
13
50000
Number of Overvoltage Trips
14
50000
Number of Volts/Hertz Trips
15
50000
Number of Phase Reversal Trips
16
50000
Number of Underfrequency Trips
17
50000
Number of Overfrequency Trips
18
50000
Number of Neutral Overvoltage (Fundamental) Trips
19
50000
Number of Neutral Undervoltage (Third Harmonic) Trips
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
DESCRIPTION
65
Table CG–7: Counters Point List
Note
INDEX
ROLLOVER
POINT
DESCRIPTION
20
50000
Number of Reactive Power Trips
21
50000
Number of Reverse Power Trips
22
50000
Number of Underpower Trips
23
50000
Number of Stator RTD Trips
24
50000
Number of Bearing RTD Trips
25
50000
Number of Other RTD Trips
26
50000
Number of Ambient RTD Trips
27
50000
Number of Thermal Model Trips
28
50000
Number of Inadvertent Energization Trips
29
50000
Number of Analog Input 1 Trips
30
50000
Number of Analog Input 2 Trips
31
50000
Number of Analog Input 3 Trips
32
50000
Number of Analog Input 4 Trips
33
50000
Number of Loss of Excitation Circle 1 Trips
34
50000
Number of Loss of Excitation Circle 2 Trips
35
50000
Number of Ground Directional Trips
36
50000
Number of High Set Phase Overcurrent Trips
37
50000
Number of Distance Zone 1 Trips
38
50000
Number of Distance Zone 2 Trips
The counters cannot be cleared with the Freeze/Clear function codes (9/10). Instead, the
control relay output block points can be used to clear groups of counters. There is only one
copy of each counter, so clearing a counter via Modbus or the front panel display causes
the corresponding DNP counter point to be cleared and vice-versa.
CG.5.4 Analog Input / Input Change (Objects 30/32)
In the following table, the Format column indicates that the associated data point format
is determined by the entry in Data Formats on page CG–42. For example, an “F1” format is
described in that table as a (16-bit) unsigned value without any decimal places. Therefore,
the value read should be interpreted in this manner. Many of the values reported by the
489 have a size of 32-bits and have had their upper and lower 16-bit components
assigned to separate points. Where indicated, refer to the appropriate note following the
table for more detail.
66
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–8: Analog Inputs Point List (Sheet 1 of 5)
INDEX
FORMAT
0
F133
1
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
Generator Status
Class 1
Note 3
F1
Generator Thermal Capacity Used
Class 1
2
F1
Estimated Trip Time On Overload (seconds, 65535
means never)
Class 1
3
F134
Cause Of Last Trip
Class 1
Note 3
4
F19
Time Of Last Trip (Upper 16 Bits)
Class 1
Notes 3,4
5
F19
Time Of Last Trip (Lower 16 Bits)
Class 1
Notes 3,4
6
F18
Date Of Last Trip (Upper 16 Bits)
Class 1
Notes 3,4
7
F18
Date Of Last Trip (Lower 16 Bits)
Class 1
Notes 3,4
8
F1
Tachometer Pre-Trip
Class 1
Note 3
9
F1
Scale factor for pre-trip current readings (pre-trip
points marked with “Note 6”). Will always be a
power of 10 (1, 10, 100, etc.). Changes only when
the configuration setpoints are changed.
Class 1
Note 3
10
F1
Phase A Pre-Trip Current
Class 1
Notes 3, 6
11
F1
Phase B Pre-Trip Current
Class 1
Notes 3, 6
12
F1
Phase C Pre-Trip Current
Class 1
Notes 3, 6
13
F1
Phase A Pre-Trip Differential Current
Class 1
Notes 3, 6
14
F1
Phase B Pre-Trip Differential Current
Class 1
Notes 3, 6
15
F1
Phase C Pre-Trip Differential Current
Class 1
Notes 3, 6
16
F1
Pre-Trip Negative Sequence Current
Class 1
Note 3
17
F1
Ground Current Scale Factor. Will always be a
power of 10 (1, 10, 100, etc.). Changes only when
the configuration setpoints are changed.
Class 1
Note 3
18
F6
Pre-Trip Ground Current (scaled according to
previous setpoint)
Class 1
Note 3
19
F1
Phase A-B Pre-Trip Voltage
Class 1
Note 3
20
F1
Phase B-C Pre-Trip Voltage
Class 1
Note 3
21
F1
Phase C-A Pre-Trip Voltage
Class 1
Note 3
22
F3
Pre-Trip Frequency
Class 1
Note 3
23
F1
Pre-Trip Real Power (MW)
Class 1
Notes 3,8
24
F1
Pre-Trip Real Power (kW)
Class 1
Notes 3,8
25
F1
Pre-Trip Reactive Power (Mar
Class 1
Notes 3,8
26
F1
Pre-Trip Reactive Power (kvar)
Class 1
Notes 3,8
27
F1
Pre-Trip Apparent Power (MVA)
Class 1
Notes 3,8
28
F1
Pre-Trip Apparent Power (kVA)
Class 1
Notes 3,8
29
F1
Last Trip Stator RTD
Class 1
Note 3
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
67
Table CG–8: Analog Inputs Point List (Sheet 2 of 5)
68
INDEX
FORMAT
30
F4
31
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
Last Trip Hottest Stator RTD Temperature (°C)
Class 1
Note 3
F1
Last Trip Bearing RTD
Class 1
Note 3
32
F4
Last Trip Hottest Bearing RTD Temperature (°C)
Class 1
Note 3
33
F1
Last Trip Other RTD
Class 1
Note 3
34
F4
Last Trip Hottest Other RTD Temperature (°C)
Class 1
Note 3
35
F1
Last Trip Ambient RTD
Class 1
Note 3
36
F4
Last Trip Hottest Ambient RTD Temperature (°C)
Class 1
Note 3
37
F12
Pre-Trip Analog Input 1
Class 1
Notes 3,9
38
F12
Pre-Trip Analog Input 2
Class 1
Notes 3,9
39
F12
Pre-Trip Analog Input 3
Class 1
Notes 3,9
40
F12
Pre-Trip Analog Input 4
Class 1
Notes 3,9
41
F1
Pre-Trip Fundamental Frequency Neutral Voltage
(volts)
Class 1
Notes 3,10
42
F10
Pre-Trip Fundamental Frequency Neutral Voltage
(tenths of a volt)
Class 1
Notes 3,10
43
F1
Pre-Trip Third Harmonic Neutral Voltage (volts)
Class 1
Notes 3,10
44
F10
Pre-Trip Third Harmonic Neutral Voltage (tenths of
a volt)
Class 1
Notes 3,10
45
F2
Pre-Trip Vab/Iab (loss of excitation impedance)
Class 1
Note 3
46
F1
Pre-Trip Vab/Iab Angle (loss of excitation
impedance angle)
Class 1
Note 3
47
F1
Scale factor for current readings (points marked
with “Note 7”). Will always be a power of 10 (1, 10,
100, etc.). Changes only when the configuration
setpoints are changed.
Class 1
Note 3
48
F1
Phase A Output Current
Class 2
Note 7
49
F1
Phase B Output Current
Class 2
Note 7
50
F1
Phase C Output Current
Class 2
Note 7
51
F1
Phase A Neutral-Side Current
Class 2
Note 7
52
F1
Phase B Neutral-Side Current
Class 2
Note 7
53
F1
Phase C Neutral-Side Current
Class 2
Note 7
54
F1
Phase A Differential Current
Class 2
Note 7
55
F1
Phase B Differential Current
Class 2
Note 7
56
F1
Phase C Differential Current
Class 2
Note 7
57
F1
Average Phase Current
Class 2
Note 7
58
F1
Generator Load (percent)
Class 2
59
F1
Negative Sequence Current
Class 2
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–8: Analog Inputs Point List (Sheet 3 of 5)
INDEX
FORMAT
60
F1
61
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
Ground Current Scale Factor. Will always be a
power of 10 (1, 10, 100, etc.). Changes only when
the configuration setpoints are changed.
Class 1
Note 3
F3
Ground Current (scaled according to the previous
point)
Class 2
62
F1
Phase A-B Voltage
Class 2
63
F1
Phase B-C Voltage
Class 2
64
F1
Phase C-A Voltage
Class 2
65
F1
Average Line Voltage
Class 2
66
F1
Phase A-N Voltage
Class 2
67
F1
Phase B-N Voltage
Class 2
68
F1
Phase C-N Voltage
Class 2
69
F1
Average Phase Voltage
Class 2
70
F3
Per Unit Measurement Of V/Hz
Class 2
71
F3
Frequency
Class 2
Note 2
72
F1
Fundamental Frequency Neutral Voltage (volts)
Class 2
Note 10
73
F10
Fundamental Frequency Neutral Voltage (tenths of
a volt)
Class 2
Note 10
74
F1
Third Harmonic Neutral Voltage (volts)
Class 2
Note 10
75
F10
Third Harmonic Neutral Voltage (tenths of a volt)
Class 2
Note 10
76
F1
Third Harmonic Terminal Voltage (volts)
Class 2
Note 10
77
F10
Third Harmonic Terminal Voltage (tenths of a volt)
Class 2
Note 10
78
F2
Vab/Iab (loss of excitation impedance)
Class 2
79
F1
Vab/Iab Angle (loss of excitation impedance angle)
Class 2
80
F6
Power Factor
Class 2
81
F1
Real Power (MW)
Class 2
Note 8
82
F1
Real Power (kW)
Class 2
Note 8
83
F1
Reactive Power (Mar)
Class 2
Note 8
84
F1
Reactive Power (kvar)
Class 2
Note 8
85
F1
Apparent Power (MVA)
Class 2
Note 8
86
F1
Apparent Power (kVA)
Class 2
Note 8
87
F1
Hottest Stator RTD
Class 2
Note 3
88
F4
Hottest Stator RTD Temperature (°C)
Class 2
89
F4
RTD #1 Temperature (°C)
Class 2
90
F4
RTD #2 Temperature (°C)
Class 2
91
F4
RTD #3 Temperature (°C)
Class 2
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
69
Table CG–8: Analog Inputs Point List (Sheet 4 of 5)
70
INDEX
FORMAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
92
F4
RTD #4 Temperature (°C)
Class 2
93
F4
RTD #5 Temperature (°C)
Class 2
94
F4
RTD #6 Temperature (°C)
Class 2
95
F4
RTD #7 Temperature (°C)
Class 2
96
F4
RTD #8 Temperature (°C)
Class 2
97
F4
RTD #9 Temperature (°C)
Class 2
98
F4
RTD #10 Temperature (°C)
Class 2
99
F4
RTD #11 Temperature (°C)
Class 2
100
F4
RTD #12 Temperature (°C)
Class 2
101
F1
Current Demand
Class 2
Note 7
102
F1
MW Demand
Class 2
Note 8
103
F1
kW Demand
Class 2
Note 8
104
F1
Mvar Demand
Class 2
Note 8
105
F1
kvar Demand
Class 2
Note 8
106
F1
MVA Demand
Class 2
Note 8
107
F1
kVA Demand
Class 2
Note 8
108
F1
Peak Current Demand
Class 2
Note 7
109
F1
Peak MW Demand
Class 2
Note 8
110
F1
Peak kW Demand
Class 2
Note 8
111
F1
Peak Mvar Demand
Class 2
Note 8
112
F1
Peak kvar Demand
Class 2
Note 8
113
F1
Peak MVA Demand
Class 2
Note 8
114
F1
Peak kVA Demand
Class 2
Note 8
115
F12
Analog Input 1
Class 2
Note 9
116
F12
Analog Input 2
Class 2
Note 9
117
F12
Analog Input 3
Class 2
Note 9
118
F12
Analog Input 4
Class 2
Note 9
119
F1
Tachometer RPM
Class 2
120
F1
Average Generator Load
Class 2
121
F1
Average Negative Sequence Current
Class 2
122
F1
Average Phase-Phase Voltage
Class 2
123
-
User Map Value 1
Note 5
124
-
User Map Value 2
Note 5
↓
↓
…↓...
↓
NOTES
↓
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Table CG–8: Analog Inputs Point List (Sheet 5 of 5)
INDEX
FORMAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
246
-
User Map Value 124
Note 5
247
-
User Map Value 125
Note 5
248
F118
Active Setpoint Group
Class 1
249
F13
Positive kWh
Class 2
250
F13
Positive kvarh
Class 2
251
F13
Negative kvarh
Class 2
252
F12
Generator Hours Online
Class 2
Note 3
Table Notes:
1.
Unless otherwise specified, an event object will be generated for a point if the current
value of the point changes by an amount greater than or equal to two percent of its
previous value.
2.
An event object is created for the Frequency point if the frequency changes by 0.04 Hz
or more from its previous value.
3.
An event object is created for these points if the current value of a point is in any way
changed from its previous value.
4.
To support existing SCADA hardware that is not capable of 32-bit data reads, the
upper and lower 16-bit portions of these 32-bit values have been assigned to
separate points. To read this data, it is necessary to read both the upper and lower 16bit portions, concatenate these two values to form a 32-bit value and interpret the
result in the format associated with the point as specified in Data Formats on page
CG–42.
5.
The data returned by a read of the User Map Value points is determined by the values
programmed into the corresponding User Map Address registers (which are only
accessible via Modbus). Refer to User-Definable Memory Map Area on page CG–11 for
more information. Changes in User Map Value points never generate event objects.
Note that it is possible to refer to a 32-bit quantity in a user map register, which may
require the use of a 32-bit variation to read the associated analog input point.
6.
The scale for pre-trip currents is determined by the value in point 9, which should not
normally change
7.
The scale for currents is determined by the value in point 47, which should not
normally change
8.
Each power quantity is available at two different points, with two different scale
factors (kW and MW, for example). The user should select the unit which is closest to
providing the resolution and range desired. If 32-bit analog input capability is present,
the higher-resolution (kW, kvar, kVA) points should generally be used, since they
provide the greatest resolution.
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
71
9.
Analog input values may be –50000 to +50000 if so configured. Therefore, 32-bit
analog input capability is required to read the full possible range. If the SCADA
equipment can only read 16-bit registers, the analog inputs should be configured to
operate within the range –32768 to +32767.
10. Each neutral voltage quantity is available at two different points, with two different
scale factors (volts and tenths of a volt). The user should select the unit which is closest
to providing the resolution and range desired. If 32-bit analog input capability is
present, the higher-resolution (tenths of a volt) points should generally be used, since
they provide the greatest resolution.
72
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CHAPTER CGI:
Index
A
ANALOG INPUTS
DNP point list ............................................................................... 65
B
BAUD RATE ...................................................................................... 2
BINARY COUNTER DNP POINTS .......................................................... 64
BINARY INPUTS DNP POINTS ............................................................. 59
BINARY OUTPUTS DNP POINTS ........................................................... 63
C
COMMUNICATIONS
data frame format ........................................................................... 2
data rate ....................................................................................... 2
error responses ............................................................................. 10
passcode ...................................................................................... 13
CRC-16 ............................................................................................ 3
CYCLIC REDUNDANCY CHECK
see CRC-16
D
DATA FORMATS, MEMORY MAP ........................................................... 42
DATA FRAME FORMAT ......................................................................... 2
DATA PACKET FORMAT ....................................................................... 2
DATA RATE ....................................................................................... 2
DEFAULT VARIATIONS ...................................................................... 58
DNP
device profile document .................................................................. 55
implementation table ..................................................................... 56
point lists ............................................................................ 59, 63, 64
DNP COMMUNICATIONS
device profile document .................................................................. 55
DUAL SETPOINTS ............................................................................ 13
E
ELECTRICAL INTERFACE ...................................................................... 1
ERROR RESPONSES .......................................................................... 10
EVENT RECORDER ........................................................................... 12
L
LOOPBACK TEST ................................................................................ 8
M
MEMORY MAP
data formats ................................................................................. 42
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
CGI–1
CHAPTER CGI:
description .................................................................................... 11
format codes ................................................................................. 42
information ................................................................................... 11
Modbus ........................................................................................ 13
user-definable ............................................................................... 11
MODBUS
description .................................................................................. 1, 2
execute operation ............................................................................ 6
function code 03 ............................................................................. 5
function code 04 ............................................................................. 5
function code 05 ............................................................................. 6
function code 06 ............................................................................. 6
function code 07 ............................................................................. 7
function code 08 ............................................................................. 8
function code 16 ............................................................................. 8
loopback test .................................................................................. 8
performing commands ...................................................................... 9
read actual values ........................................................................... 5
read device status ........................................................................... 7
read setpoints ................................................................................ 5
store multiple setpoints .................................................................... 8
store single setpoint ........................................................................ 6
MODBUS FUNCTIONS ......................................................................... 5
R
RS232 COMMUNICATIONS ................................................................... 1
RS485 COMMUNICATIONS ................................................................... 1
T
TIMING ........................................................................................... 4
TRACE MEMORY .......................................................................... 12, 13
U
USER DEFINABLE MEMORY MAP ........................................................... 11
W
WAVEFORM CAPTURE ........................................................................ 12
CGI–2
489 GENERATOR MANAGEMENT RELAY – COMMUNICATIONS GUIDE
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising