4.1 MB

4.1 MB
UFC 3-460-01
16 August 2010
ED
UNIFIED FACILITIES CRITERIA (UFC)
C
AN
C
EL
L
DESIGN: PETROLEUM FUEL
FACILITIES
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
UFC 3-460-01
16 August 2010
UNIFIED FACILITIES CRITERIA (UFC)
CRITERIA FORMAT STANDARD
U.S. ARMY CORPS OF ENGINEERS
ED
Any copyrighted material included in this UFC is identified at its point of use.
Use of the copyrighted material apart from this UFC must have the permission of the
copyright holder.
NAVAL FACILITIES ENGINEERING COMMAND (Preparing Activity)
EL
L
AIR FORCE CIVIL ENGINEER SUPPORT AGENCY
Record of Changes (changes are indicated by \1\ ... /1/)
Date
Location
C
AN
C
Change No.
This UFC supersedes UFC 3-460-01, dated 16 January 2004.
UFC 3-460-01
16 August 2010
FOREWORD
ED
The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides
planning, design, construction, sustainment, restoration, and modernization criteria, and applies
to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance
with USD (AT&L) Memorandum dated 29 May 2002. UFC will be used for all DoD projects and
work for other customers where appropriate. All construction outside of the United States is
also governed by Status of Forces Agreements (SOFA), Host Nation Funded Construction
Agreements (HNFA), and in some instances, Bilateral Infrastructure Agreements (BIA.)
Therefore, the acquisition team must ensure compliance with the more stringent of the UFC, the
SOFA, the HNFA, and the BIA, as applicable.
EL
L
UFC are living documents and will be periodically reviewed, updated, and made available to
users as part of the Services’ responsibility for providing technical criteria for military
construction. Headquarters, U.S. Army Corps of Engineers (HQUSACE), Naval Facilities
Engineering Command (NAVFAC), and Air Force Center for Engineering
and the Environment (AFCEE) are responsible for administration of the UFC system. Defense
agencies should contact the preparing service for document interpretation and improvements.
Technical content of UFC is the responsibility of the cognizant DoD working group.
Recommended changes with supporting rationale should be sent to the respective service
proponent office by the following electronic form: Criteria Change Request (CCR). The form is
also accessible from the Internet sites listed below.
UFC are effective upon issuance and are distributed only in electronic media from the following
source:
Whole Building Design Guide web site http://dod.wbdg.org/.
C
•
AN
Hard copies of UFC printed from electronic media should be checked against the current
electronic version prior to use to ensure that they are current.
______________________________________
JOSEPH E. GOTT, P.E.
Chief Engineer
Naval Facilities Engineering Command
C
______________________________________
JAMES C. DALTON, P.E.
Chief, Engineering and Construction
U.S. Army Corps of Engineers
______________________________________
DENNIS FIRMAN
Director of the Air Force Center for Engineering
and the Environment
Department of the Air Force
______________________________________
MICHAEL McANDREW
Director, Facility Investment and
Management
Office of the Deputy Under Secretary of Defense
(Installations and Environment)
i
UFC 3-460-01
16 August 2010
UNIFIED FACILITIES CRITERIA (UFC)
REVISION SUMMARY SHEET
Document: UFC 3-460-01
Superseding: UFC 3-460-01, 16 January 2004. Note that UFC 3-460-01, 16 January
2004 did not make any changes to MIL-HDBK-1022, 1 November 1999.
AN
C
EL
L
ED
Description of Changes: This update to UFC 3-460-01 incorporate changes to the
design requirements for fuel facilities. These changes are based on lessons learned
from the previous guidelines, new technologies, updated requirements by the services
for fuel handling and quality, and new regulations and other reference documents.
Incorporation of these changes will decrease the life-cycle costs by ensuring the
integrity of the fueling systems during operations and decreasing maintenance
requirements. These changes include, but not limited to updating the references, and
the requirements for:
•
Physical Security (Paragraph 2-6)
•
Electrical Classifications (Paragraph 2-12)
•
Fire Protection (Paragraph 2-15)
•
Canopies (Paragraph 3-8)
•
Fuel Filtration (Table 4-1)
•
Isolation Valves (Paragraph 3-6.7)
•
Tanks (Paragraphs 8-4 Thru 8-10)
•
Aboveground Tank Spill Containment Systems (Paragraph 8-14)
•
Tank Appurtenances, (Table 8-1)
•
Coating Systems, (8-3.9, 9-6 Thru 9-9)
•
Piping Systems (paragraph 9-2.1).
This update also includes hyperlinks between the Table of Contents to the document,
and the document to the glossary and references.
C
Reasons for Changes:
•
Requirements for the fueling systems and related facilities have changed
due to the type of fuels currently used, and the quality requirements for
these fuels. The quality requirements for these fuels are set by the Naval
Air Systems Command, Naval Sea Systems Command, Air Force
Petroleum Office, and the Army Petroleum Office.
•
Many of the changes are from lessons learned from design, construction,
maintenance and operations of the fuel facilities.
•
Many of the references have changed or out dated.
Impact: The changes to this UFC will impact the design and cost of fuel facilities.
However, the following benefits should be realized.
•
Ensure that the fuel quality issued to the DoD aircraft, trucks, ships, and
vehicles is such that no damage is realized to all of the DoD assets
ii
UFC 3-460-01
16 August 2010
•
•
By ensuring that all fuel facilities will be standardized throughout the triservices.
Decrease the amount of maintenance and repair required on the fuel
facility system.
EL
L
ED
Non-Unified Items: There are a few items that are either Navy, Air Force or Army
specific. The list below summarizes these items, along with the justification for it to be
Service Specific:
•
The Navy requires the use of a fusible link butterfly valve at the inlet to
truck fillstand and on supply and return risers at aircraft direct fueling
stations. The Navy’s position for fusible link valves is primarily because
JP-5, which is primarily used by the Navy, does not have the Static
dissipater additive (SDA), so it is more likely to spark during transport thru
pipelines and equipment than any other fuel. (Refer to paragraph 23.14.3). The fusible link will shut if there is a fire or other high-temperature
event. Also, the Navy’s aircraft direct fueling stations are designed to hot
refuel aircraft, so the fusible link will also protect the aircraft if there is a
high-temperature event between the tank and the fusible link.
The Air Force allows the use of internally coated filter separators and
piping from the filter/separators to the skin of the aircraft. Since it is Air
Force policy to always filter the fuel at the skin of the aircraft, any paint
and carbon particles in the fuel will be filtered before entering the aircraft.
The Navy does not filter at the skin of the aircraft, therefore the filterseparator must be either aluminum or stainless steel, and the piping from
the filter-separator to the aircraft is to be stainless steel.
•
This UFC references Service-Specific documents, which the tri-service
fuel community does not oversee. Also, each service has its own
requirements for fuel quality and operations.
C
AN
C
•
iii
UFC 3-460-01
16 August 2010
ABSTRACT
C
AN
C
EL
L
ED
This guidance is for individual project planning and for preparing engineering and
construction documentation. Basic guidance is provided to professional facility
planners, engineers, and architects for use in designing liquid fueling and dispensing
facilities, liquefied petroleum gas facilities, and compressed natural gas facilities.
Included are basic requirements for the design of fueling systems; the design of
receiving, dispensing, and storage facilities; ballast treatment and sludge removal;
corrosion and fire protection; and environmental requirements.
iv
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
TABLE OF CONTENTS
CHAPTER 1 - INTRODUCTION ..................................................................................... 1
1-1
SCOPE ...................................................................................................... 1
1-2
USE OF UFC ............................................................................................. 1
1-3
PURPOSE OF CRITERIA.......................................................................... 1
1-4
DEPARTMENT OF DEFENSE (DoD) FUELS FACILITY ENGINEERING
PANEL ....................................................................................................... 1
1-5
SERVICE HEADQUARTERS SUBJECT MATTER EXPERTS (SME)....... 1
1-6
WAIVERS .................................................................................................. 2
1-7
RELATED CRITERIA................................................................................. 2
1-8
POLICY...................................................................................................... 2
1-9
REFERENCED STANDARDS ................................................................... 2
1-10
PROJECTS OUTSIDE OF CONTINENTAL UNITED STATES ................. 3
1-10.1
NATO Standards ....................................................................................... 3
1-10.2
Non-NATO Projects ................................................................................... 3
CHAPTER 2 - GENERAL DESIGN INFORMATION ....................................................... 4
2-1
OPERATIONAL CAPABILITIES ................................................................ 4
2-2
FUEL SPECIFICATIONS ........................................................................... 4
2-3
FUEL PROPERTIES AND ADDITIVES ..................................................... 5
2-3.1
Motor Gasoline (Mogas) [F-46] [ASTM D4814].......................................... 5
2-3.2
Aviation Gasoline (Avgas) [F-18] [ASTM D910] ......................................... 5
2-3.3
Aviation Turbine Fuels ............................................................................... 5
2-3.4
Kerosene [ASTM D3699] ........................................................................... 6
2-3.5
Diesel Fuels ............................................................................................... 7
2-3.6
Burner Fuel Oils ......................................................................................... 8
2-3.7
Alternative Fuel (E85) [ASTM D5798] ........................................................ 9
2-3.8
Alternative Fuel Bio-Diesel (B20) ............................................................... 9
2-3.9
Liquefied Petroleum Gas (LPG) ............................................................... 10
2-3.10
Compressed Natural Gas (CNG) ............................................................. 11
2-3.11
OTTO Fuels ............................................................................................. 12
2-3.12
Lubricating Oils ........................................................................................ 12
2-3.13
Hydrazine - Water (H-70) [MIL-PRF-26536] ............................................ 12
2-3.14
Fuel Additives .......................................................................................... 13
2-4
PRODUCT SEGREGATION .................................................................... 14
2-4.1
Product Grades ........................................................................................ 14
2-4.2
Exceptions ............................................................................................... 14
2-5
TRANSFER FLOW RATES ..................................................................... 14
2-6
PHYSICAL SECURITY ............................................................................ 16
2-6.1
Antiterrorism and Physical Security ......................................................... 16
2-6.2
Security Fencing ...................................................................................... 16
2-7
MAINTAINABILITY CAPABILITIES ......................................................... 16
2-8
VOICE COMMUNICATIONS ................................................................... 17
2-9
OTHER COMMUNICATIONS .................................................................. 17
2-9.1
Data Communications.............................................................................. 17
2-9.2
Fire Alarm Communication ...................................................................... 17
2-10
VAPOR RECOVERY ............................................................................... 17
2-11
WORKER SAFETY .................................................................................. 17
v
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
2-11.1
Safety Showers and Eyewash Fountains................................................. 17
2-12
ELECTRICAL DESIGN ............................................................................ 18
2-12.1
Area Classifications ................................................................................. 18
2-12.2
Illumination............................................................................................... 20
2-12.3
Grounding and Bonding ........................................................................... 20
2-13
CATHODIC PROTECTION...................................................................... 22
2-13.1
Tanks ....................................................................................................... 22
2-13.2
Piping ....................................................................................................... 22
2-13.3
Structures ................................................................................................ 23
2-14
ENVIRONMENTAL PROTECTION ......................................................... 23
2-14.1
General Policy ......................................................................................... 23
2-14.2
Regulations .............................................................................................. 23
2-14.3
Transfer of Fuel at Ports .......................................................................... 24
2-14.4
Air Quality Control .................................................................................... 25
2-14.5
Water Quality Control............................................................................... 26
2-14.6
Aboveground Storage Tanks ................................................................... 28
2-14.7
Underground Storage Tanks.................................................................... 29
2-15
FIRE PROTECTION ................................................................................ 29
2-15.1
General Requirements ............................................................................. 29
2-15.2
Protection of Aboveground Storage Tanks .............................................. 29
2-15.3
Fire Protection of Pumping Facilities ....................................................... 30
2-15.4
Fire Protection of Underground Vertical Storage Tanks .......................... 30
2-15.5
Protection of Tank Truck and Tank Car Facilities .................................... 31
2-15.6
Protection of Aircraft Fueling Facilities ..................................................... 31
2-15.7
Protection of Fuel Testing Laboratory ...................................................... 31
2-15.8
Protection of Support Facilities ................................................................ 31
2-15.9
Protection of Fuel Piers............................................................................ 31
2-16
EMERGENCY SHUT-DOWN .................................................................. 31
2-17
ELECTROMAGNETIC RADIATION HAZARDS ...................................... 32
2-18
IDENTIFICATION .................................................................................... 32
2-19
ANTISTATIC DESIGN ............................................................................. 32
2-19.1
Piping Inlet Connections .......................................................................... 32
2-19.2
Enclosed Vapor Spaces........................................................................... 32
2-19.3
Filter/Separators ...................................................................................... 33
2-19.4
Aircraft Direct Fueling Stations ................................................................ 33
2-19.5
Truck Bottom Loading .............................................................................. 33
2-20
OPERATION AND MAINTENANCE DOCUMENTATION........................ 33
2-20.1
Equipment Operation and Maintenance Documentation ......................... 33
2-20.2
Operation and Maintenance Support Information (OMSI) ........................ 33
2-21
PROTECTION AGAINST SEISMIC ACTIVITY ........................................ 33
2-22
STRUCTURAL DESIGN .......................................................................... 34
2-23
CONCRETE............................................................................................. 34
2-24
AIRFIELD/AIRSPACE REQUIREMENTS ................................................ 34
2-25
PERMITS ................................................................................................. 34
CHAPTER 3 - BULK FUEL STORAGE FACILITIES ..................................................... 35
3-1
INTRODUCTION ..................................................................................... 35
3-2
GENERAL REQUIREMENTS .................................................................. 35
vi
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
3-3
RECEIVING FACILITIES ......................................................................... 35
3-3.1
Pipeline Receiving Facilities .................................................................... 35
3-3.2
Tank Truck and Tank Car Off-loading Facilities ....................................... 37
3-3.3
Marine Off-loading Facilities .................................................................... 42
3-4
DISPENSING FACILITIES....................................................................... 43
3-4.1
Pipeline Pumping Facilities ...................................................................... 43
3-4.2
Tank Truck and Tank Car Loading Facilities............................................ 44
3-4.3
Marine Loading Facilities ......................................................................... 49
3-5
PIPING SYSTEMS .................................................................................. 49
3-5.1
Product Segregation ................................................................................ 49
3-6
EQUIPMENT DESCRIPTIONS ................................................................ 50
3-6.1
Bulk Air Eliminators .................................................................................. 50
3-6.2
Meters ...................................................................................................... 50
3-6.3
Pressure or Pressure/Vacuum Gauges ................................................... 51
3-6.4
Strainers .................................................................................................. 51
3-6.5
Surge Suppressors .................................................................................. 52
3-6.6
Pumps...................................................................................................... 52
3-6.7
Valves ...................................................................................................... 53
3-6.8
Other Valves (Except Diaphragm Control Valves) ................................... 57
3-6.9
Diaphragm Control Valves ....................................................................... 57
3-6.10
Thermometers ......................................................................................... 58
3-6.11
Fuel Hoses............................................................................................... 59
3-7
CONTROLS ............................................................................................. 59
3-7.1
Design Requirements .............................................................................. 59
3-7.2
Flow Controls ........................................................................................... 59
3-7.3
Pump Controls ......................................................................................... 59
3-8
CANOPIES .............................................................................................. 61
3-8.1
Canopies to Protect Fixed Assets ............................................................ 61
3-8.2
Canopies to Reduce Stormwater ............................................................. 62
3-9
PRODUCT RECOVERY SYSTEMS ........................................................ 62
3-10
FUEL ADDITIVES .................................................................................... 62
CHAPTER 4 - AIRCRAFT FUELING FACILITIES......................................................... 63
4-1
INTRODUCTION ..................................................................................... 63
4-1.1
Function ................................................................................................... 63
4-1.2
Aviation Turbine Fuels ............................................................................. 63
4-1.3
Special Precautions for Aviation Turbine Fuel Quality ............................. 63
4-2
GENERAL REQUIREMENTS .................................................................. 64
4-3
RECEIVING FACILITIES ......................................................................... 64
4-3.1
Pipeline Receiving Facilities .................................................................... 64
4-3.2
Tank Truck and Tank Car Off-Loading Facilities...................................... 66
4-3.3
Marine Off-Loading Facilities ................................................................... 71
4-3.4
Special In-Bound Filtration ....................................................................... 71
4-4
DISPENSING FACILITIES....................................................................... 71
4-4.1
Refueler Truck Fillstands ......................................................................... 71
4-4.2
Aircraft Direct Fueling Systems................................................................ 77
4-4.3
Marine Loading Facilities ......................................................................... 81
4-5
PIPING SYSTEMS .................................................................................. 81
vii
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
4-5.1
Product Segregation ................................................................................ 81
4-6
EQUIPMENT DESCRIPTIONS ................................................................ 82
4-6.1
Bulk Air Eliminators .................................................................................. 82
4-6.2
Meters ...................................................................................................... 82
4-6.3
Pressure or Pressure/Vacuum Gauges ................................................... 83
4-6.4
Strainers .................................................................................................. 83
4-6.5
Surge Suppressors .................................................................................. 84
4-6.6
Filter/Separators ...................................................................................... 84
4-6.7
Pumps...................................................................................................... 86
4-6.8
Valves ...................................................................................................... 87
4-6.9
Other Valves (Except Diaphragm Control Valves) ................................... 90
4-6.10
Diaphragm Control Valves ....................................................................... 91
4-6.11
Fuel Hoses............................................................................................... 92
4-7
CONTROLS ............................................................................................. 92
4-7.1
Design Requirements .............................................................................. 92
4-7.2
Flow Controls ........................................................................................... 93
4-7.3
Pump Controls ......................................................................................... 93
4-8
CANOPIES .............................................................................................. 95
4-8.1
Canopies to Protect Fixed Assets ............................................................ 95
4-8.2
Canopies to Reduce Stormwater ............................................................. 95
4-9
FUEL ADDITIVES .................................................................................... 95
4-9.1
Plus 100 Additive ..................................................................................... 95
4-10
DEFUELING AND RETURN-TO-BULK (RTB) SYSTEMS....................... 95
4-10.1
General Criteria ....................................................................................... 95
4-10.2
JP-5 Systems........................................................................................... 96
4-10.3
JP-8 Systems........................................................................................... 96
4-11
PRODUCT RECOVERY SYSTEMS ........................................................ 97
4-11.1
Tank Trucks and Fuel Bowsers ............................................................... 97
4-11.2
Return to Bulk .......................................................................................... 97
CHAPTER 5 - MARINE RECEIVING AND DISPENSING FACILITIES ....................... 100
5-1
FUNCTION ............................................................................................ 100
5-2
FUEL PIERS AND WHARVES .............................................................. 100
5-3
BERTHING PIERS ................................................................................ 100
5-4
OFFSHORE MOORINGS ...................................................................... 100
5-5
GENERAL REQUIREMENTS ................................................................ 100
5-6
GENERAL LAYOUT .............................................................................. 100
5-7
PIPING SYSTEMS ................................................................................ 101
5-7.1
Piping Arrangement ............................................................................... 101
5-8
EQUIPMENT DESCRIPTIONS .............................................................. 102
5-8.1
Loading/Off-Loading Arms ..................................................................... 102
5-8.2
Fuel Hoses............................................................................................. 102
5-8.3
Submarine Fuel Hoses .......................................................................... 102
5-8.4
Meters .................................................................................................... 103
5-8.5
Strainers ................................................................................................ 103
5-8.6
Surge Suppressors ................................................................................ 104
5-8.7
Valves .................................................................................................... 104
5-8.8
Other Valves .......................................................................................... 107
viii
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
5-8.9
Pressure or Pressure/Vacuum Gauges ................................................. 107
5-8.10
Stripper Pumps ...................................................................................... 108
5-8.11
Excess Flow Sensors............................................................................. 108
5-8.12
Solid Cyclonic Separators ...................................................................... 108
5-8.13
Grounding Systems ............................................................................... 108
5-8.14
Special Considerations for AviationTurbine Fuels ................................. 108
5-9
PRODUCT RECOVERY SYSTEMS ...................................................... 108
5-10
WEATHER SHEDS................................................................................ 109
5-11
CANOPIES ............................................................................................ 109
5-12
SPECIAL CALCULATIONS ................................................................... 109
5-13
SAFETY SHOWERS AND EYEWASH FOUNTAINS ............................ 109
5-14
TRAFFIC BOLLARDS............................................................................ 109
5-15
SPECIAL DRAINAGE FOR FUELING PIERS ....................................... 109
5-16
BALLAST TREATMENT AND SLUDGE REMOVAL ............................. 110
5-16.1
Ballast Receiving and Treatment Facilities ............................................ 110
5-17
SLUDGE REMOVAL SYSTEMS ........................................................... 112
5-17.1
Design Requirements ............................................................................ 112
5-17.2
Sludge Disposal ..................................................................................... 112
5-17.3
Piping Materials ..................................................................................... 112
CHAPTER 6 - INTERTERMINAL AND INSTALLATION PIPELINES .......................... 113
6-1
INTRODUCTION ................................................................................... 113
6-2
GENERAL REQUIREMENTS ................................................................ 113
6-3
DESIGN REQUIREMENTS ................................................................... 113
6-3.1
Fuel Segregation ................................................................................... 113
6-3.2
Applicable Regulations .......................................................................... 113
6-3.3
Sampling ................................................................................................ 113
6-3.4
Pigging ................................................................................................... 114
6-3.5
Surge Suppression ................................................................................ 114
6-4
PIPING SYSTEMS ................................................................................ 114
6-5
EQUIPMENT ......................................................................................... 114
6-5.1
Meters .................................................................................................... 114
6-5.2
Manual Valves ....................................................................................... 114
6-5.3
Other Valves (Except Diaphragm Control Valves) ................................. 117
6-5.4
Diaphragm Control Valves ..................................................................... 118
6-5.5
Strainers ................................................................................................ 119
6-5.6
Surge Suppressors ................................................................................ 120
6-5.7
Pigging Equipment ................................................................................. 120
6-5.8
Pumps.................................................................................................... 120
6-5.9
Sampling Connections ........................................................................... 120
6-5.10
Special Consideration for AviationTurbine Fuels ................................... 120
6-6
PRODUCT RECOVERY SYSTEMS ...................................................... 121
6-7
CANOPIES ............................................................................................ 121
6-7.1
Canopies to Protect Fixed Assets .......................................................... 121
6-7.2
Canopies to Reduce Stormwater ........................................................... 121
6-8
SPECIAL CALCULATIONS ................................................................... 121
CHAPTER 7 - GROUND PRODUCTS FUELING FACILITIES ................................... 122
7-1
INTRODUCTION ................................................................................... 122
ix
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
7-1.1
Types of Facilities .................................................................................. 122
7-2
GENERAL REQUIREMENTS ................................................................ 122
7-3
DESIGN REQUIREMENTS ................................................................... 122
7-3.1
Fuel Segregation ................................................................................... 122
7-3.2
Facility Size ............................................................................................ 122
7-3.3
Facility Configurations............................................................................ 123
7-3.4
Shelters.................................................................................................. 123
7-3.5
Concrete Fueling Area – Filling Stations ................................................ 123
7-3.6
Concrete Fueling Area – Tactical Refueler Truck Loading Facilities...... 123
7-3.7
Canopies................................................................................................ 123
7-3.8
Regulations ............................................................................................ 124
7-3.9
Bottom Loading...................................................................................... 124
7-4
STORAGE TANKS ................................................................................ 124
7-5
PIPING SYSTEMS ................................................................................ 124
7-5.1
Piping System – Tactical Refueler Facilities .......................................... 124
7-5.2
Aboveground Piping System – Filling Stations ...................................... 124
7-6
EQUIPMENT DESCRIPTIONS .............................................................. 124
7-6.1
Filling Stations ....................................................................................... 124
7-6.2
Tactical Refueler Truck Loading Facilities ............................................. 125
7-6.3
Valves .................................................................................................... 125
7-6.4
Diaphragm Control Valves ..................................................................... 126
7-6.5
Other Valves .......................................................................................... 126
7-7
VAPOR RECOVERY ............................................................................. 127
CHAPTER 8 - ATMOSPHERIC STORAGE TANKS ................................................... 128
8-1
INTRODUCTION ................................................................................... 128
8-2
GENERAL REQUIREMENTS ................................................................ 128
8-3
GENERAL CRITERIA ............................................................................ 128
8-3.1
Materials ................................................................................................ 128
8-3.2
Protection............................................................................................... 128
8-3.3
Design Requirements ............................................................................ 128
8-3.4
Storage Capacity ................................................................................... 128
8-3.5
Tank Spacing ......................................................................................... 129
8-3.6
Distance from Buildings and Property Lines .......................................... 130
8-3.7
Distance from Roadway, Railroads and Power Lines ............................ 131
8-3.8
Distance from Tank Truck and Tank Car Off-Loading and Loading ....... 132
8-3.9
Interior Coatings .................................................................................... 132
8-3.10
Exterior Coatings ................................................................................... 132
8-3.11
Fill Piping ............................................................................................... 133
8-3.12
Vapor Emission Control Systems .......................................................... 133
8-3.13
Strapping Tables .................................................................................... 133
8-3.14
Product Recovery Systems.................................................................... 133
8-3.15
Registration............................................................................................ 134
8-4
HORIZONTAL ABOVEGROUND TANKS (SINGLE-WALL STEEL) ...... 134
8-4.1
General Design Considerations ............................................................. 134
8-4.2
Installation.............................................................................................. 134
8-5
HORIZONTAL ABOVEGROUND TANKS (DOUBLE-WALL STEEL) .... 135
8-5.1
General Design Considerations ............................................................. 135
x
UFC 3-460-01
16 August 2010
ED
EL
L
C
AN
8-13.1
8-14
8-14.1
8-14.2
8-14.3
8-14.4
8-14.5
8-14.6
8-14.7
8-14.8
8-15
8-15.1
8-15.2
8-15.3
8-15.4
8-15.5
8-15.6
8-15.7
8-16
8-16.1
Installation.............................................................................................. 135
HORIZONTAL ABOVEGROUND TANKS (FIRE-RESISTANT) ............. 136
General Design Considerations ............................................................. 136
Installation.............................................................................................. 136
HORIZONTAL ABOVEGROUND TANKS (PROTECTED TANKS) ....... 137
General Design Considerations ............................................................. 137
Installation.............................................................................................. 137
ABOVEGROUND VERTICAL STORAGE TANKS ................................. 138
General Design Considerations ............................................................. 138
Tank Roofs ............................................................................................ 139
Internal Floating Pans ............................................................................ 139
Tank Bottoms......................................................................................... 140
Foundations ........................................................................................... 140
UNDERGROUND HORIZONTAL STORAGE TANKS ........................... 141
General Design Considerations ............................................................. 141
Installation.............................................................................................. 142
UNDERGROUND VERTICAL STORAGE TANKS (Cut and Cover) ...... 142
General Design Considerations ............................................................. 142
APPURTENANCES ............................................................................... 143
HEATERS .............................................................................................. 143
General Design Considerations ............................................................. 143
Heating Medium ..................................................................................... 143
Convection-Type .................................................................................... 143
In-Line Type ........................................................................................... 143
Insulation and Tracing............................................................................ 144
UNDERGROUND STORAGE TANK SPILL CONTAINMENT
SYSTEMS.............................................................................................. 144
General Design Considerations ............................................................. 144
ABOVEGROUND TANK SPILL CONTAINMENT SYSTEMS ................ 144
General Design Considerations ............................................................. 144
Spill Containment System Capacity ....................................................... 145
Remote Containment/Impoundment Spill Collection Systems ............... 145
Diked Enclosure – Earthen Dike Type ................................................... 146
Diked Enclosure – Reinforced Concrete Dike Type ............................... 146
Diked Enclosure – Combination Dike Type............................................ 146
Stormwater Collection Systems ............................................................. 146
Dike Access ........................................................................................... 146
MISCELLANEOUS USE TANKS ........................................................... 147
Installation.............................................................................................. 147
Heating Oil Tanks .................................................................................. 147
Emergency Generator Fuel Tanks ......................................................... 147
Fire Pump Fuel Tanks............................................................................ 147
Waste Oil Tanks .................................................................................... 147
Containment .......................................................................................... 147
Underground Tanks ............................................................................... 147
SHIPBOARD OFF-LOAD FUEL STORAGE TANKS ............................. 148
Function ................................................................................................. 148
C
8-5.2
8-6
8-6.1
8-6.2
8-7
8-7.1
8-7.2
8-8
8-8.1
8-8.2
8-8.3
8-8.4
8-8.5
8-9
8-9.1
8-9.2
8-10
8-10.1
8-11
8-12
8-12.1
8-12.2
8-12.3
8-12.4
8-12.5
8-13
xi
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
8-16.2
General Design Considerations ............................................................. 148
8-16.3
Locations ............................................................................................... 148
8-17
JET ENGINE TEST CELL FUEL STORAGE TANKS ............................ 148
8-18
FUELS AUTOMATED SYSTEM ............................................................ 148
CHAPTER 9 - PIPING SYSTEMS ............................................................................... 154
9-1
INTRODUCTION ................................................................................... 154
9-2
GENERAL REQUIREMENTS ................................................................ 154
9-2.1
Design Requirements ............................................................................ 154
9-2.2
Piping Arrangement ............................................................................... 156
9-2.3
Surge Analysis ....................................................................................... 157
9-3
ABOVEGROUND PIPING ..................................................................... 158
9-3.1
Identification........................................................................................... 159
9-3.2
Pipe Supports ........................................................................................ 159
9-3.3
Arrangement .......................................................................................... 159
9-3.4
Anchors.................................................................................................. 159
9-3.5
Thermal Relief Valves ............................................................................ 160
9-4
UNDERGROUND PIPING ..................................................................... 160
9-4.1
Depth of Cover....................................................................................... 161
9-4.2
Parallel and Crossing Pipes ................................................................... 161
9-4.3
Casing Sleeves ...................................................................................... 161
9-4.4
Line Markers .......................................................................................... 162
9-4.5
Warning Tapes ...................................................................................... 162
9-4.6
Double-Wall Piping ................................................................................ 162
9-4.7
Single-Wall Piping Leak Detection Systems .......................................... 162
9-5
UNDERWATER PIPING ........................................................................ 162
9-5.1
Special Arrangements............................................................................ 163
9-5.2
Connections ........................................................................................... 163
9-5.3
Unique Considerations........................................................................... 163
9-5.4
Corrosion Protection .............................................................................. 163
9-5.5
Depth of Burial ....................................................................................... 163
9-5.6
Pipe Thickness and Weight ................................................................... 164
9-6
PIPING MATERIALS ............................................................................. 164
9-6.1
Non-Aviation Systems............................................................................ 164
9-6.2
Aviation Systems ................................................................................... 164
9-7
WELDING CRITERIA ............................................................................ 164
9-8
PIPING CONNECTIONS ....................................................................... 164
9-9
INTERIOR PIPE COATINGS ................................................................. 165
9-10
EXTERIOR PIPE COATINGS................................................................ 166
9-11
SAMPLING FACILITIES ........................................................................ 166
CHAPTER 10 - ALTERNATE POL FACILITIES .......................................................... 167
10-1
INTRODUCTION ................................................................................... 167
10-2
LIQUEFIED PETROLEUM GAS (LPG).................................................. 167
10-2.1
Uses....................................................................................................... 167
10-2.2
General Design Considerations ............................................................. 167
10-2.3
Receiving Facilities ................................................................................ 169
10-2.4
Storage Facilities ................................................................................... 170
10-2.5
Distribution Facilities .............................................................................. 172
xii
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
10-2.6
Air Mixing Facilities ................................................................................ 175
10-3
COMPRESSED NATURAL GAS (CNG) ................................................ 175
10-3.1
Uses....................................................................................................... 175
10-3.2
General Design Considerations ............................................................. 176
10-3.3
Warning ................................................................................................. 178
10-4
HYDRAZINE STORAGE AND SERVICING FACILITIES ...................... 179
10-4.1
Uses....................................................................................................... 179
10-4.2
General Design Considerations ............................................................. 179
10-4.3
Construction Concepts........................................................................... 180
10-5
OTTO FUELS ........................................................................................ 184
CHAPTER 11 - SUPPORT FACILITIES...................................................................... 185
11-1
INTRODUCTION ................................................................................... 185
11-2
OPERATIONS BUILDING ..................................................................... 185
11-2.1
Design Standards .................................................................................. 185
11-2.2
Fuel Office ............................................................................................. 185
11-2.3
Training/Conference Room .................................................................... 185
11-2.4
Fuel Maintenance Workshop ................................................................. 185
11-2.5
Storeroom .............................................................................................. 185
11-2.6
Laboratory.............................................................................................. 185
11-2.7
Miscellaneous Safety Equipment ........................................................... 187
11-2.8
Control Room......................................................................................... 187
11-2.9
Miscellaneous Spaces ........................................................................... 187
11-2.10
Communications .................................................................................... 187
11-3
ROADS .................................................................................................. 187
11-4
UTILITIES .............................................................................................. 187
11-5
AIRCRAFT REFUELER AND FUEL DELIVERY VEHICLE PARKING .. 188
11-5.1
General .................................................................................................. 188
11-5.2
Clearances............................................................................................. 188
11-5.3
Arrangement .......................................................................................... 189
11-5.4
Ingress/Egress ....................................................................................... 189
11-5.5
Paving .................................................................................................... 189
11-5.6
Containment Area .................................................................................. 190
11-5.7
Remote Spill Containment System ........................................................ 190
11-5.8
Fire Protection ....................................................................................... 190
11-5.9
Security .................................................................................................. 190
11-5.10
Lighting .................................................................................................. 190
11-5.11
Block Heater Connections ..................................................................... 190
CHAPTER 12 - MAJOR REHABILITATION ................................................................ 191
12-1
INTRODUCTION ................................................................................... 191
12-2
GENERAL REQUIREMENTS ................................................................ 191
12-3
ABOVEGROUND FUEL STORAGE TANK REHABILITATION ............. 191
12-3.1
Aboveground Vertical Tank Inspections................................................. 191
12-3.2
Increase Manhole Sizes......................................................................... 191
12-3.3
Replace Tank Floors .............................................................................. 192
12-3.4
Replace Floating Roof Tanks With Fixed Roofs .................................... 193
12-3.5
Product Recovery Systems.................................................................... 193
12-3.6
Coatings................................................................................................. 194
xiii
UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
12-3.7
Isolation Valves ...................................................................................... 194
12-3.8
Alarms and High Level Shut-off Valves.................................................. 194
12-4
UNDERGROUND OPERATING TANKS ............................................... 194
12-4.1
Manholes ............................................................................................... 194
12-4.2
Interior Coatings .................................................................................... 194
12-5
HYDRANT SYSTEMS ........................................................................... 194
12-5.1
Pumps.................................................................................................... 195
12-5.2
Filter/Separators .................................................................................... 195
12-5.3
Fuel Quality Monitors ............................................................................. 195
12-5.4
Control Systems .................................................................................... 195
12-5.5
Electrical Systems ................................................................................. 196
12-5.6
Lateral Control Pits ................................................................................ 196
12-5.7
Distribution Piping .................................................................................. 196
12-5.8
Diaphragm Control Valves ..................................................................... 196
12-5.9
Hydrant Outlets ...................................................................................... 197
12-6
DIKES, LINERS, AND BASINS ............................................................. 197
12-7
LEAK DETECTION ................................................................................ 197
12-8
CATHODIC PROTECTION.................................................................... 197
12-9
ISOLATION VALVES ............................................................................. 197
12-10
SOIL AND GROUNDWATER REMEDIATION ...................................... 197
12-11
LIQUEFIED PETROLEUM GAS (LPG) FACILITIES ............................. 198
12-12
PIPELINE INSPECTION ........................................................................ 198
12-12.1
Inspection .............................................................................................. 198
12-12.2
Smart Pigging ........................................................................................ 198
12-13
CHECKLIST........................................................................................... 198
CHAPTER 13 - FUELING FACILITY TEMPORARY DEACTIVATION ........................ 202
13-1
INTRODUCTION ................................................................................... 202
13-2
GENERAL REQUIREMENTS ................................................................ 202
13-3
FUEL STORAGE AND DISTRIBUTION FACILITIES ............................ 202
13-3.1
Tanks ..................................................................................................... 202
13-3.2
Pipelines ................................................................................................ 204
13-4
FACILITIES............................................................................................ 205
13-4.1
General Considerations ......................................................................... 205
13-4.2
Fencing .................................................................................................. 205
13-4.3
Paved Surfaces ..................................................................................... 205
CHAPTER 14 - FUELING FACILITY CLOSURE ........................................................ 207
14-1
CLOSURE REQUIREMENTS................................................................ 207
14-1.1
Aboveground Tanks ............................................................................... 207
14-1.2
Underground Tanks ............................................................................... 207
14-1.3
Pipelines ................................................................................................ 207
14-2
GENERAL REQUIREMENTS ................................................................ 208
14-3
INVENTORY .......................................................................................... 208
GLOSSARY ................................................................................................................ 239
APPENDIX A - REFERENCES .................................................................................... A-1
APPENDIX B - MANUAL SURGE CALCULATIONS FOR SIMPLE PIPING
SYSTEMS............................................................................................... B-1
APPENDIX C - CHARTER OF DoD FUELS FACILITY ENGINEERING PANEL ........ C-1
xiv
UFC 3-460-01
16 August 2010
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 4-1.
Table 8-1.
Table 9-1.
TABLES
Properties of Aviation Fuels .......................................................................... 6
Physical Properties of Diesel Fuels ............................................................... 7
Physical Properties of Burner Fuel Oils ......................................................... 8
Design Flow Rates ...................................................................................... 15
Aviation Turbine Fuel Receipt Filtration Table (1) (3) .................................. 98
Appurtenances .......................................................................................... 149
Allowable Pressure Table – ANSI Class 150 Flanged Joints .................... 158
C
AN
C
EL
L
ED
FIGURES
Plate 001 – UFC Chapter Identification Plan ............................................................... 209
Plate 002 – Tank Truck and Tank Car Receiving and Dispensing Facilities ............... 210
Plate 003 – Tank Truck and Tank Car Off-Loading Drop Tank System ...................... 211
Plate 004 – Tank Truck and Tank Car Packaged Off-Loading System ....................... 212
Plate 005 – Tank Truck and Tank Car Loading System and Direct Off-Loading
System ..................................................................................................... 213
Plate 006 – Refueler Truck Facilities Layout Plan ....................................................... 214
Plate 007 – Refueler Truck Loading Systems ............................................................. 215
Plate 008 – Aircraft Direct Fueling Systems Large Frame Aircraft On-Apron Fueling
Positions .................................................................................................. 216
Plate 009 – Aircraft Direct Fueling Systems Small Frame Aircraft Fueling Lane and
Apron Edge .............................................................................................. 217
Plate 010 – Aircraft Direct Fueling Systems Small Frame Aircraft In-Shelter Fueling
Positions .................................................................................................. 218
Plate 011 – GOV Vehicle Motive Fuel Filling Station Plan .......................................... 219
Plate 012 – Tactical Refueler Ground Product Truck Loading Facility Plan ................ 220
Plate 013 – Tactical Refueler Ground Product Truck Loading Systems ...................... 221
Plate 014 – Level Alarm Setpoints Vertical Aboveground Tank with Floating Pan ...... 222
Plate 015 – Level Alarm Setpoints Vertical Aboveground Tank without Floating Pan . 223
Plate 016 – Aboveground Vertical Storage Tanks Inlet Fill Connection ...................... 224
Plate 017 – Horizontal Underground Storage Tanks Inlet Fill Connection................... 225
Plate 018 – Horizontal Aboveground Storage Tanks Inlet Fill Connection .................. 226
Plate 019 – Earthen Dikes........................................................................................... 227
Plate 020 – Piping Systems Sliding Pipe Support ....................................................... 228
Plate 021 – Piping Systems Anchor Pipe Support ...................................................... 229
Plate 022 – Aviation System Piping Materials System Standards ............................... 230
Plate 023 – Thermal Relief Piping Systems Integral Valve and Conventional............. 231
Plate 024 – Thermal Relief Piping Systems Equipment Pump House or Pads ........... 232
Plate 025 – Thermal Relief Piping Systems Tank Truck and Refueler Racks ............. 233
Plate 026 – Thermal Relief Piping Systems Storage Tanks ........................................ 234
Plate 027 – Liquefied Petroleum Gas Facilities Small Volume Facility for Trucks and
Cylinders .................................................................................................. 235
Plate 028 – Liquefied Petroleum Gas Facilities Large Volume Facility for Tank Cars and
Water Vessels .......................................................................................... 236
Plate 029 – Liquefied Petroleum Gas Facilities Tank Spacing Requirements ............. 237
Plate 030 – Liquefied Petroleum Gas FacilitiesTank Spacing Requirements .............. 238
xv
UFC 3-460-01
16 August 2010
CHAPTER 1 - INTRODUCTION
ED
1-1
SCOPE
This Unified Facilities Criteria, UFC 3-460-01, contains general criteria and standard
procedures for the design and construction of military land-based facilities which
receive, store, distribute, or dispense liquid fuels. It is also applicable to the handling of
liquefied petroleum gases (LPG) and compressed natural gas (CNG). It provides
guidance on the rehabilitation, deactivation, or closure of fueling facilities. Support
facilities are also included. Facility Plate 001 provides assistance in identifying UFC
chapter numbers for specific fueling components.
EL
L
1-2
USE OF UFC
The guidance contained in this UFC is intended for use by facility planners, engineers,
and architects for individual project planning and for preparing engineering and
construction documentation. In addition, it is intended for use by operations and
maintenance personnel as a guidance document for facility design, modifications, and
improvements.
C
1-3
PURPOSE OF CRITERIA
These criteria, except Chapters 12, 13, and 14 of this UFC, are intended for new
construction only and do not apply retroactively to facilities existing at the time this UFC
was issued. However, these criteria, including Chapters 12, 13, and 14, are applicable
when modernizing or expanding existing facilities if the improvements can be justified in
terms of obsolescence, expanded operational requirements, safety, environmental
compliance, or excessive maintenance costs.
C
AN
1-4
DEPARTMENT OF DEFENSE (DoD) FUELS FACILITY ENGINEERING
PANEL
This UFC was updated by the DoD Fuels Facility Engineering Panel. This group is an
association of recognized petroleum, oils, and lubricants (POL) experts, primarily from
the engineering community, to advise the Services on ways to provide safe,
operationally effective and economic fueling systems. The panel will investigate,
develop, and recommend standardization of facilities, equipment, and procedures for
storage, distribution, and dispensing systems for aircraft, marine, and ground fuels. The
panel will investigate the use of facility component parts on DoD installations and will
serve as a pool of expertise to assist in resolving systemic POL facility problems. It will
also serve as a forum to update members on new equipment, DoD or service-specific
programs, and changes affecting the fuels maintenance/repair community. Refer to
Appendix C, Charter for DoD Fuels Facility Engineering for more information.
1-5
SERVICE HEADQUARTERS SUBJECT MATTER EXPERTS (SME)
It is recognized that the policies, obligations, and responsibilities of the military branches
may vary on some minor points. Therefore, consult the Subject Matter Expert at the
appropriate Service Headquarters for interpretation. For the purposes of interpretation
1
UFC 3-460-01
16 August 2010
of this UFC, the Subject Matter Expert at the appropriate Service Headquarters is
defined as follows:
Army – Headquarters, U.S. Army Corps of Engineers, POL Facilities
Proponent (CECW-CE)
b)
Air Force – The Air Force Fuels Engineer (HQ AFCESA/CEOA)
through the applicable Major Command (MAJCOM) Fuels Engineer
c)
Navy/Marine Corps: NAVFAC POL Facility Subject Matter Expert
(NFESC-OP232).
d)
Defense Energy Support Center (DESC) – DESC Facilities Engineer.
Defense Energy Support Center (DESC-WI)
ED
a)
EL
L
1-6
WAIVERS
For specific interpretations or waivers, contact the appropriate Service Headquarters
Subject Matter Experts (SME) and refer to MIL-STD-3007 for the waiver process.
Substantive deviations from this UFC must first be presented to the appropriate Service
Headquarters SMEs, and then reviewed / approved by the DoD Fuels Facility
Engineering Panel, preferably in a normal meeting, prior to being carried further in the
waiver process. Where time does not permit, approval may be obtained by polling the
voting members. The DoD Fuel Facility Engineering Panel consists of members from
the above Service Headquarters SMEs.
C
1-7
RELATED CRITERIA
Other sources for criteria related to petroleum fuel facilities are identified in Appendix A,
References. Any reference noted is the latest edition unless otherwise stated.
AN
UFC 1-200-01 General Building Requirements, provides applicability of model building
codes and government-unique criteria for typical design disciplines and building
systems, as well as for accessibility, antiterrorism, security, sustainability, and safety.
Use this UFC in addition to UFC 1-200-01 and the UFCs and government criteria
referenced therein.
C
1-8
POLICY
Design petroleum fuel facilities to meet the operational and management requirements
of the command in which the facility is located, as well as to meet all applicable federal,
state, and local regulations concerning environmental, health, safety, and fire protection
issues.
1-9
REFERENCED STANDARDS
The execution agency issuing a contract for design and/or construction services will
direct the use of standard designs, guide specifications, and/or definitive drawings. In
other situations where these standards are not readily available, contact appropriate
Service Headquarters for assistance in obtaining these documents.
2
UFC 3-460-01
16 August 2010
1-10
PROJECTS OUTSIDE OF CONTINENTAL UNITED STATES
1-10.1
NATO Standards
For fueling projects outside of the continental United States (CONUS) and in a NATO
(North Atlantic Treaty Organization) country, review and comply with all appropriate
NATO documents.
C
AN
C
EL
L
ED
1-10.2
Non-NATO Projects
For fueling projects located outside of the CONUS and not in a NATO country, use this
UFC, applicable Service policy, and host-nation standards (if more stringent).
3
UFC 3-460-01
16 August 2010
CHAPTER 2 - GENERAL DESIGN INFORMATION
ED
2-1
OPERATIONAL CAPABILITIES
Design fuel facilities for continued operation using emergency or temporary expedients
despite the loss of one or more components of the fuel receiving and/or dispensing
system by enemy action or other factors. For tactical or mission-related fuel facilities,
provide an alternative source of fuel supply to the fuel facility to ensure emergency
operation under the most adverse conditions, including back-up power (emergency
generators). Maintain consistency with prescribed criteria in appropriate directives,
instructions, and standard designs (including NATO Standards).
2-2
FUEL SPECIFICATIONS
The following specifications apply to the various petroleum fuels that may be addressed:
a) MIL-DTL-5624, Turbine Fuel, Aviation, Grades JP-4 and JP-5.
EL
L
b) MIL-DTL-38219, Turbine Fuel, Low Volatility, JP-7.
c) MIL-DTL-83133, Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO
F-34), and NATO F-35, and JP-8+100 (NATO F-37).
d) MIL-DTL-25524, Turbine Fuel, Aviation, Thermally Stable.
e) ASTM D1655, Standard Specification for Aviation Turbine Fuels.
C
f) CID A-A-52557, Fuel Oil, Diesel; for Posts, Camps and Stations.
g) CID A-A-59693, Diesel Fuel, Biodiesel Blend (B20).
AN
h) MIL-DTL-16884, Fuel, Naval Distillate.
i) ASTM D3699, Standard Specification for Kerosene.
j) ASTM D4814, Standard Specification for Automotive Spark-Ignition
Engine Fuel.
C
k) ASTM D910, Standard Specification for Aviation Gasoline (Avgas)
l) ASTM D975, Standard Specification for Diesel Fuel Oils.
m) MIL-DTL-87107, Propellant, High Density Synthetic Hydrocarbon Type,
Grade JP-10.
n) ASTM D5798, Standard Specification for Fuel Ethanol (Ed75-Ed85) for
Automotive Spark-Ignition Engines.
o) ASTM D6751, Standard Specification for Biodiesel Fuel Blend Stock
(B100) for Middle Distillate Fuels.
4
UFC 3-460-01
16 August 2010
2-3
FUEL PROPERTIES AND ADDITIVES
In addition to the fuel specifications, refer to Coordinating Research Council, Inc. (CRC),
Handbook of Aviation Fuel Properties, for additional fuel properties. The following
paragraphs list typical physical properties of various grades of fuel and additives which
would affect the design of a petroleum fuel facility. The NATO designation is shown in
brackets.
2-3.1
Motor Gasoline (Mogas) [F-46] [ASTM D4814]
2-3.2
EL
L
ED
2-3.1.1
Special Precautions for Mogas
Because of its high volatility, gasoline produces large amounts of vapor at ordinary
temperatures. When confined in a tank or container at liquid temperatures above 20
degrees F (-7 degrees C), the vapor space is normally too rich to be explosive. At
temperatures 20 degrees F (-7 degrees C) or less, vapor spaces above gasoline may
be in the explosive range. One gallon (3.785 L) of liquid gasoline when vaporized will
occupy about 25 cubic feet of space (0.7 m3), and if permitted to escape and become
diluted with air, it is highly flammable. Provide a design that precludes disposing of
Mogas into storm or sanitary sewers.
Aviation Gasoline (Avgas) [F-18] [ASTM D910]
C
2-3.2.1
Description of Aviation Gasoline
Aviation gasoline is a high-octane aviation fuel used for piston or Wankel engine
powered aircraft. It is distinguished from motor gasoline, which is the everyday gasoline
used in ground vehicles. In military service, avgas is seldom used in manned aircraft
but is commonly used in Unmanned Aerial Vehicles (UAVs).
AN
2-3.2.2
Avgas Grades
100LL, spoken as "100 low lead", is the most common grade used in military
applications. It is dyed blue, and contains a maximum of 2 grams of lead per US gallon
(0.56 grams/liter) and is the most commonly available and used aviation gasoline.
Other grades that are theoretically available include Grade 80, Grade 91, Grade 100,
and Grade 82UL. The differences between all 80, 91, 100, and 100LL are lead content
and color. Grade 82UL is unleaded.
C
2-3.2.3
Special Precautions for Avgas
Using the wrong grade of gasoline will cause engine problems. Virtually all grades of
avgas available contain tetra-ethyl lead (TEL) as a lead based anti-knock compound.
See Mogas for flammability issues.
2-3.3
Aviation Turbine Fuels
2-3.3.1
Physical Properties of Aviation Turbine Fuels
5
UFC 3-460-01
16 August 2010
Table 2-1. Properties of Aviation Fuels
Grade
Number
JP-8 [F-34,
F-37]
JP-10
JPTS
Jet A
Jet A-1
[F-35]
Hydrazine
Specific
Gravity
57° to 45°
API
48° to 36°
API
51° to 37°
API
20° to
18.5° API
53° to 46°
API
51° to 37°
API
51° to 37°
API
9° API
0.751 to
0.802
0.788 to
0.845
0.775 to
0.840
0.935 to
0.943
0.767 to
0.797
0.775 to
0.840
0.775 to
0.840
1.007
Reid Vapor
Pressure at
100°F(38°C)
psia (kPa)
2 to 3 (13.8 to
20.7)
Minimum
Flash
Point,
°F (°C)
Average (kin.)
Viscosity at 100°F
(38°C), ft2/s x 10-5
(cSt)
Freezing
Point,
°F (°C)
-20 (-29)
0.9 x 10-5 (0.8)
-72 (-58)
0.04 (0.3)
140 (60)
1.6 x 10-5 (1.5)
-61 (-52)
ED
JP-5 [F-44]
Relative
density
100 (38)
1.9 x 10-5 (1.8)
-53 (-47)
67 (19)
3.4 x 10-5 (3.2)
-110 (-79)
110 (43)
1.3 x 10-5 (1.2)
-64 (-53)
100 (38)
1.6 x 10-5 (1.5)
-40 (-40)
0.05 (0.3)
100 (38)
1.6 x 10-5 (1.5)
-53 (-47)
NA
126 (52)
NA
NA
0.05 (0.3)
0.11 (0.8)
0.11 (0.8)
0.029 (0.2)
EL
L
JP-4 [F-40]
Property
C
AN
C
2-3.3.2
Special Precautions for Aviation Turbine Fuels
Because of the serious consequences of a turbine engine failure and the nature of the
fuel systems in turbine engines, provide designs which include means to prevent
Contamination of aviation turbine fuels by dirt, water, or other types of fuels. Solid
contaminants are generally those which are insoluble in fuel. Most common are iron
rust, scale, sand, and dirt. Iron rust contaminates aviation turbine fuel. Special filtration
is required for receiving aviation turbine fuel into bulk storage and operating storage to
remove contaminants before the fuel is delivered to aircraft. To preserve fuel quality,
limit materials in contact with the fuel to stainless steel, non-ferrous, or coated carbon
steel for aircraft fueling systems. Do not use zinc, copper, and zinc- or copper-bearing
alloys in contact with aviation turbine fuels, including pipe, valves, equipment, and
accessories. The maximum allowable aircraft servicing use limits of solids is 2.0 mg/L
and the maximum allowable aircraft servicing use limits of free water is 5 ppm. Provide
a design that precludes disposing of aviation turbine fuels into storm or sanitary sewers.
2-3.4
Kerosene [ASTM D3699]
2-3.4.1
Physical Properties of Kerosene
a) Relative density
API Gravity
51 degrees to 37 degrees API
Specific Gravity 0.775 to 0.840
6
UFC 3-460-01
16 August 2010
b) Reid Vapor Pressure 0.5 psia (3.5 kPa) (maximum at 100 degrees F
(38 degrees C))
c) Flash Point (minimum) 100 degrees F (38 degrees C)
d) Viscosity at 104 degrees F (40 degrees C) 1 to 2 x 10-5 ft2/s (0.9 to 1.9
cSt.)
e) Freezing Point -22 degrees F (-30 degrees C) (maximum)
2-3.5
ED
2-3.4.2
Special Precautions for Kerosene
Design separate systems for kerosene to avoid discoloration caused by contamination.
Provide a design that precludes disposing of kerosene into storm or sanitary sewers.
Diesel Fuels
2-3.5.2
EL
L
2-3.5.1
Sulfur Content of Diesel Fuels
Diesel fuel that is available for motive fuel in the United States is Low Sulfur Diesel
(LSD) which has a maximum sulfur content of 500 ppm and Ultra Low Sulfur Diesel
(ULSD) which has a maximum sulfur content of 15 ppm, both meeting ASTM D975.
Physical Properties of Diesel Fuels
Automotive DF-2
[F-54]
Diesel Fuel Marine
[F-76]
Ultra Low Sulfur
Diesel [ASTM D975]
C
Table 2-2. Physical Properties of Diesel Fuels
40 to 34 (0.825 to
0.855)
39 to 33 (0.830 to
0.860)
30 (0.876)
0 (0)
0 (0)
0 (0)
131 (55)
2.0 to 4.4 x 10-5
(1.9 to 4.1)
10 (-12)
140 (60)
1.8 to 4.6 x 10-5
(1.7 to 4.3)
20 (-7)
150 (66)
2.7 x 10-5 (2.5)
AN
(a) Relative density API
Gravity, °API (Specific
Gravity)
(b) Reid Vapor Pressure
at 100 °F (38 °C), psia
(kPa)
(c) Flash Point, °F (°C)
(d) Viscosity at 104°F
(40°C) ft2/s (cSt)
(e) Pour Point, °F (°C)
JP-8 is currently used as arctic grade diesel fuel (DFA) in the Arctic and Antarctic for heating
fuel. The gross heating value of JP-8 is 18,400 Btu/lb (42 800 kJ/kg).
C
Notes:
0 (-18)
DF-1, winter grade diesel fuel, has a flash point of 100 degrees F (38 degrees C) and a
-5 2
viscosity of 1.4 to 2.6 x 10 ft /s (1.3 to 2.4 cSt) at 104 degrees F (40 degrees C).
2-3.5.3
Special Precautions for Low Sulfur Diesel Fuels
While not as critical as with aviation turbine fuels, diesel fuel systems are subject to
damage by dirt and water in the fuel. Avoid contamination by dirt and water or dilution
by lighter fuels. In cold climates, provide designs that will prevent “gelling.” Provide a
design that precludes disposing of diesel fuels into storm or sanitary sewers.
7
UFC 3-460-01
16 August 2010
2-3.5.4
Special Precautions for Ultra Low Sulfur Diesel
With the reduction in sulfur content comes a reduction in overall lubricity and
conductivity of the fuel. A lower lubricity level can cause premature wear and damage
to metal parts in typical compression ignition engines. Lubricity additives are added in
accordance with ASTM D975 . Lower conductivity can cause a potential for an
increased risk in fire or explosion caused by static electricity. Even though a
conductivity additive is added it is recommended that flow rates are limited and bonding
and grounding equipment be utilized to minimize static electricity during loading
operations.
Burner Fuel Oils
2-3.6.1
Physical Properties of Burner Fuel Oils
ED
2-3.6
Table 2-3. Physical Properties of Burner Fuel Oils
100 (38)
5 Heavy
23 to 8
6
22 to 7
0.825 to
0.877
0.876 to
0.966
0.922 to
0.972
0.913 to
1.017
0.922 to
1.022
< 0.1
(< 0.7)
< 0.1
(< 0.7)
< 0.1
(< 0.7)
< 0.1
(< 0.7)
< 0.1
(< 0.7)
100 (38)
130 (54)
130 (54)
130 (54)
150 (66)
70 to 215
(65 to 200)
323 to 969
(300 to 900)
20 to 30
(-7 to -1)
18,560
(43 171)
20 to 30
(-7 to -1)
18,825
(43 787)
208 to
807
(193 to
750)
30 to 70
(-1 to 21)
18,200
(42 333)
EL
L
< 0.1
(< 0.7)
Grade Number
4
5 Light
30 to 15
22 to 14
1.5 to 2.4
(1.4 to 2.2)
2 to 3.3
(1.9 to
3.1)
-10 (-23)
-5 (-21)
11.3 to
70
(10.5 to
65)
21 (-6)
19,765
(45 973)
19,460
(45 264)
18,840
(43 820)
AN
Reid Vapor
Pressure at 100°F
(38°C), psia (kPa)
Minimum Flash
Point, °F (°C)
Average viscosity
at 100°F (38°C),
ft2/s x 10-5
(cSt)
Pour Point,
°F (°C)
Gross Heat Value,
Btu/lb (kJ/kg)
0.786 to
0.843
2
40 to 28
C
Relative Density
°API
Specific Gravity
1
48 to 36
C
2-3.6.2
Special Precautions for Burner Fuel Oils
When the ambient temperature of the burner fuel oil is less than 20 degrees F (11
degrees C) above the pour point temperature, the burner fuel oil needs to be heated. At
the burner fuel oil’s pour point temperature, the fuel oil has reached a gel-like state and
would be difficult to pump. In nearly all cases, No. 6 fuel oil requires heating to be
pumped. In some cases, No. 4 and No. 5 burner fuel oils will require heating. Provide a
design that precludes disposing of burner fuel oils into storm or sanitary sewers.
8
UFC 3-460-01
16 August 2010
2-3.7
Alternative Fuel (E85) [ASTM D5798]
2-3.7.1
Physical Properties of E85
a) Specific Gravity 0.760 to 0.780
b) Reid Vapor Pressure 6-12 psia (42 to 83 kPa)
c) Flash Point (minimum) -20 degrees F (-30 degrees C)
ED
d) Viscosity is 6.1x10-6 to 3.4x10-5 ft2/s (0.57 to 3.19 cSt)
e) Pour Point -212 degrees F (-100 degrees C)
AN
C
EL
L
2-3.7.2
Special Precautions for E85
Due to the corrosiveness of E85, many common materials used with gasoline systems
are not compatible with the handling and storage of alcohols (E85, or ethanol, is 85
percent ethyl alcohol). Zinc, brass, lead, aluminum, and lead based solder are several
metals that become degraded by ethanol exposure. Other metals, including unplated
steel, stainless steel, black iron and bronze seem to have acceptable resistance to
ethanol corrosion. Certain nonmetallic materials that have been successfully used with
ethanol include: Buna-N, Neoprene rubber, polyethylene, nylon, polypropylene, nitrile,
Viton, and Teflon. Common nonmetallic materials degraded by ethanol are natural
rubber, polyurethane, cork gasket material, leather, polyester-bonded fiberglass
laminate, polyvinyl chloride (PVC), polyamides, and methyl-methacrylate plastics.
Proper cleaning of existing tanks that are being converted for E85 storage is required,
because E85’s solvent properties loosen tank deposits. In ethanol dispensing a onemicron in-line filter is recommended for impurity/particle removal. The shelf life of E85
is approximately 60-90 days in some cases. At normal temperatures E85 is less
explosive than gasoline, but E85 is more explosive at lower temperatures. Ethanol
vapors have similar behavior to gasoline, but a lower vapor pressure. E85 is an
electrical conductor, and is potentially carcinogenic. Provide a design that precludes
disposing of E85 into storm or sanitary sewers. For Air Force projects see ETL 03-04.
Alternative Fuel Bio-Diesel (B20)
C
2-3.8
2-3.8.1
Physical Properties of Bio-Diesel
Biodiesel fuel B20 is a blend of petroleum diesel fuel meeting ASTM D975 and 100
percent (neat) biodiesel fuel meeting either ASTM D6751 or EN 14214, where the
biodiesel content of the blended fuel is no more than 20 percent biodiesel by volume
(B20). Biodiesel has physical properties very similar to conventional diesel.
a) Specific Gravity 0.870 to 0.890
b) Reid Vapor Pressure 0.0 psia (0.0 kPa) (maximum at 100 degrees F
(38 degrees C))
9
UFC 3-460-01
16 August 2010
c) Flash Point (minimum) 100 degrees F (38 degrees C) for D1, 126
degrees F (52 degrees C)
d) Viscosity at 104 degrees F (40 degrees C) 1.2 to 4.4 x 10-5 ft2/s (1.3 to
4.1 cSt.)
e) Pour Point 10 degrees F (-12 degrees C)
2-3.9
EL
L
ED
2-3.8.2
Special Precautions for Bio-Diesel
In dispensing Bio-Diesel, it is recommended that a 30-micron and a 10-micron in-line
filter be used, in succession, as a primary and secondary means for impurity/particle
removal. Bio-Diesel (B100) has good solvent qualities and will remove deposits from
fuel systems. As a result, it may require more filter changes initially. One of the most
commonly used blends of Bio-Diesel is B20. B20 has not been approved for use in
combat or tactical vehicles or equipment. The usage of bio-diesel in other
engines/vehicles has been reviewed by vehicle manufacturers and copies can be
obtained at http://www.biodiesel.org/. B20 should be used within six months of
manufacturer, because of the fuels shelf life. Users should be aware that a B20 blend
will have increased viscosity requirements. Provide a design that precludes disposing
of bio-diesel fuels into storm or sanitary sewers. For Air Force projects see ETL 03-04.
Liquefied Petroleum Gas (LPG)
AN
C
2-3.9.1
Physical Properties of LPG
LPG is composed predominantly of propane and propylene with minor amounts of
butane, isobutane, and butylene. It is odorless, colorless, and non-toxic. To reduce the
danger of an explosion from undetected leaks, commercial LPG usually contains an
odorizing agent which gives it a distinctive pungent odor. LPG is a vapor at
atmospheric conditions. It is normally stored as a liquid at a storage pressure of 200
psia (1400 kPa). LPG has the following properties:
a) Freezing Point, degrees F (degrees C) -305 (-187)
b) Relative Density (Specific Gravity) 147 degrees API (0.588)
C
c) Vapor Pressure at 100 degrees F (38 degrees C), 175.8 (1212) psi
(kPa)
d) Heat Content, Btu/lb (kJ/kg)
2-3.9.2
21,591 (50 221)
Special Precautions for LPG
a) Store LPG under pressure in appropriate pressure-rated tanks.
b) The potential for fire and explosion presents extreme hazards to life
and property. Provide adequate relief venting and additional fire
protection in accordance with NFPA 58.
10
UFC 3-460-01
16 August 2010
c) Provide tank spacing in accordance with the requirements of Chapter
10 of this UFC.
2-3.10
Compressed Natural Gas (CNG)
Special Precautions for CNG
AN
2-3.10.2
C
EL
L
ED
2-3.10.1
Physical Properties of CNG
Appendix A to NFPA 52, Compressed Natural Gas (CNG) Vehicular Fuel Systems,
defines certain CNG properties. Natural gas is a flammable gas. It is colorless,
tasteless, and non-toxic. It is a light gas, weighing about two thirds as much as air. It
tends to rise and diffuse rapidly in air when it escapes from the system. Natural gas
burns in air with a luminous flame. At atmospheric pressure, the ignition temperature of
natural gas mixtures has been reported to be as low as 900 degrees F (482 degrees C).
The flammable limits of natural gas-air mixtures at atmospheric pressure are about 5
percent to 15 percent by volume of natural gas. While natural gas consists principally of
methane, it also contains ethane, small amounts of propane, butane, and higher
Hydrocarbons and may contain small amounts of nitrogen, carbon dioxide, hydrogen
sulfide, and helium which will vary from zero to a few percent depending upon the
source and seasonal effects. As distributed in the United States and Canada, natural
gas also contains water vapor. This “pipeline quality” gas can contain 7 pounds or more
of water per million cubic feet of gas (112 kg/106 m3). Some constituents of natural
gas, especially carbon dioxide and hydrogen sulfide in the presence of liquid water, can
be corrosive to carbon steel, and the corrosive effect is increased by pressure. The
pressures used in CNG systems covered by NFPA 52 are substantial and well above
those used in transmission and distribution piping and in other natural gas consuming
equipment. As excessive corrosion can lead to sudden explosive rupture of a container,
this hazard must be controlled. Pressures in CNG fueling stations are typically less
than 5,000 psi (35 000 kPa).
a) Provide venting for safety relief in areas where CNG is to be stored.
C
b) CNG is a highly flammable substance. Therefore, in design of
facilities, use the following precautions to prevent fires from becoming
uncontrollable:
(1)
Do not directly extinguish fires with water.
(2)
Do not extinguish large fires.
(3)
Allow large fires to burn while cooling adjacent equipment with
water spray.
(4)
Shut-off CNG source, if possible.
(5)
Extinguish small fires with dry chemicals.
11
UFC 3-460-01
16 August 2010
c) CNG is non-toxic but can cause anoxia (asphyxiation) when it
displaces the normal 21 percent oxygen in a confined area without
adequate ventilation.
d) Because of corrosion problems, water in Department of Transportation
(DOT) certified tanks is limited to 0.5 pounds per million cubic feet (8
kg/10 6 m3).
ED
2-3.11
OTTO Fuels
Information on OTTO fuels is contained in NAVSEA S6340-AA-MMA-010, Technical
Manual for OTTO Fuel II Safety, Storage, and Handling Instructions, published by
direction of Commander, Naval Sea Systems Command. Distribution of this document
is restricted and Naval Sea Systems Command handles requests for information.
Lubricating Oils
2-3.12.1
Steam Turbine Lubricating Oils [0-250] [MIL-PRF-17331]
EL
L
2-3.12
a) For use in main turbines and gears, auxiliary turbine installations,
certain hydraulic equipment, general mechanical lubrication, and air
compressors.
b) Physical Properties:
Flash Point: 400 degrees F (204 degrees C) minimum.
(2)
Pour Point: 20 degrees F (-6 degrees C) maximum.
Viscosity at 104 degrees F (40 degrees C), 80 to 104 x 10-5 ft2/s
(74 to 97 x 10-6 m2/s).
AN
(3)
C
(1)
2-3.12.2
Lubricating Oils [0-278], [MIL-PRF-9000]
For use in advanced design high-output shipboard main propulsion and auxiliary diesel
engines using fuel conforming to MIL-DTL-16884.
C
2-3.12.3
Special Precautions for Lubricating Oils
To pump the oil when the ambient temperature of the lubricating oil is less than 20
degrees F (11 degrees C) above the pour point temperature, heat the lubricating oil. At
the pour point temperature, the oil becomes gel-like and is difficult to pump. Ensure the
design does not allow the discharge of lubricating oil into storm or sanitary sewers.
2-3.13
Hydrazine - Water (H-70) [MIL-PRF-26536]
2-3.13.1
Physical Properties of H-70
This fuel is a mixture of 70 percent hydrazine and 30 percent water. It is a clear, oily,
water-like liquid with a fishy, ammonia-like odor. It is stable under extremes of heat and
cold; however, it will react with carbon dioxide and oxygen in the air. It may ignite
spontaneously when in contact with metallic oxides such as rust.
12
UFC 3-460-01
16 August 2010
2-3.13.2
Special Precautions for H-70
Keep working and storage areas clean and free of materials that may react with
hydrazine. Provide only stainless steel in areas where extended contact is possible.
Areas where incidental contact is possible should be kept free of rust. Ensure the
design does not allow the discharge of H-70 into storm or sanitary sewers.
2-3.14
Fuel Additives
ED
2-3.14.1
Fuel System Icing Inhibitor (FSII), High Flash, [MIL-DTL-85470]
(diethylene glycol monomethyl ether (DIEGME))
a) Used in aviation turbine fuels to prevent the formation of ice crystals
from entrapped water in the fuel at freezing temperatures. In addition,
it has good biocidal properties, preventing growth of microorganisms in
the fuel.
EL
L
b) Avoid water entry/bottoms in storage tanks because the additive will
dissolve in the water, reducing the concentration of additives left in the
fuel.
c) Refer to fuel specification for more information.
d) Consult federal, state, and local regulations for appropriate disposal
methods.
AN
C
2-3.14.2
Corrosion Inhibitor/Lubricity Improver (CI), [MIL-PRF-25017]
A combination lubricity improver and corrosion inhibitor additive, procured under
MIL-PRF-25017, is injected in all military aviation turbine fuels at the refinery in order to
improve the lubricating characteristics of the fuel.
C
2-3.14.3
Static Dissipater Additive
Static dissipater additive (SDA) enhances safety during handling and flight by reducing
static discharge potential in the vapor space above the fuel. SDA increases the
conductivity of the fuel, thus decreasing the electrostatic charge relaxation time (the rate
of which a charge dissipates or travels through the fuel) which decreases the potential
for ignition from static charges. The actual proportion is in accordance with the specific
fuel military specification. For fuel system design purposes, assume a lower limit of 50
picosiemens per meter in the determination of relaxation requirements. SDA is added
to all JP-8 (F-34; F-35; F-37). SDA is not added to JP-5 and F-76 or to Jet A/A-1 that is
stored at military installations.
2-3.14.4
Thermal Stability Improver Additive (+100 Additive)
Thermal stability additive (TSIA) enhances safety during handling and flight by
increasing fuel tolerance to elevated temperatures. JP-8+100 (NATO F-37) is the
aviation turbine fuel that utilizes TSIA.
13
UFC 3-460-01
16 August 2010
2-4
PRODUCT SEGREGATION
2-4.1
Product Grades
Except as otherwise approved by Service Headquarters, provide separate receiving,
storage, and distribution systems for each product. Except as otherwise approved by
Service Headquarters, prevent misfueling (transferring a type of fuel other than the type
intended) by using different size piping, valves, adaptors, nozzles, etc. The products to
be segregated include:
ED
a) Mogas.
b) Diesel fuel, including ultra-low sulfur diesel and distillate type burner
fuels (No. 1, No. 2, and kerosene).
c) Aviation turbine fuel, separate systems for each grade.
e) LPG.
f) CNG.
EL
L
d) Residual type burner fuels (No. 4, No. 5, and No. 6).
g) OTTO fuels.
h) E85.
C
i) Bio-diesel.
AN
2-4.2
Exceptions
Designs for different products using the same piping may be approved for long receiving
lines such as from a tanker or barge pier or a cross-country pipeline to a storage facility.
Where such common use occurs, make provisions for receiving and segregating the
interface between two products. Consider the use of pigs or break-out tanks to
separate batches. Exceptions will not be approved for common systems to carry both
clean and residual type fuels.
C
2-5
TRANSFER FLOW RATES
Table 2-4 shows the recommended range of design flow rates. In some cases, greater
rates may be needed to meet the operational requirements of a particular facility.
14
UFC 3-460-01
16 August 2010
Table 2-4. Design Flow Rates
Aviation
Turbine
Service
Fuel
Between storage tanks, gpm 600 to 1,200
(m3/hr)
(136 to 272)
Tank car unloading to
300 to 600
storage (per car), gpm
(68 to 136)
(m3/hr)
Tank truck unloading to
300 to 600
storage (per truck), gpm
(68 to 136)
(m3/hr)
Gravity receipt tank to
600
storage gpm (m3/hr)
(136)
Storage to tank truck/refueler 300 or 600
loading (per truck), gpm
(68 or 136)
(m3/hr)
Delivery from direct fueling
stations to aircraft, gpm
Varies2
3
(m /hr)
Delivery from direct fueling
stations to helicopters,
Varies2
3
gpm (m /hr)
Between super tanker and
16,800
3
storage, gpm (m /hr)
(3815)
Between regular tanker and
7,000
storage, gpm (m3/hr)
(1590)
Between barge and storage,
2,800
gpm (m3/hr)
(636)
To fleet oilers, gpm (m3/hr)
3,500
(795)
3
To AOEs, gpm (m /hr)
7,000
(1590)
To carriers, gpm (m3/hr)
2,450
(556)
To average cruisers, gpm
700
(m3/hr)
(159)
To average destroyers,
700
gpm (m3/hr)
(159)
Storage to tank car loading
300 or 600
(per car), gpm (m3/hr)
(68 or 136)
1
600 to 1,200
(136 to 272)
300 to 600
(68 to 136)
Burner Fuel
Oils
600 to 1,200
(136 to 272)
300 to 600
(68 to 136)
600 to 1,200
(136 to 272)
300
(68)
300 to 600
(68 to 136)
300 to 600
(68 to 136)
300 to 600
(68 to 136)
600
(136)
300 or 600
(68 or 136)
600
(136)
300 or 600
(68 or 136)
600
(136)
300 or 600
(68 or 136)
N/A
N/A
N/A
N/A
N/A
N/A
16,800
(3815)
7,000
(1590)
2,800
(636)
3,500
(795)
7,000
(1590)
2,450
(556)
1,400
(318)
1,400
(318)
300 or 600
(68 or 136)
16,800
(3815)
7,000
(1590)
2,800
(636)
16,800
(3815)
7,000
(1590)
2,800
(636)
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
300 or 600
(68 or 136)
N/A
300 or 600
(68 or 136)
EL
L
C
AN
C
1
Mogas
ED
Diesel Fuel
At dockside, deliveries from tankers should be assumed to be at a pressure of 80 to 100 psig
(600 to 700 kPa), and deliveries to tankers to be at 60 psig (400 kPa). Rates to other ships are
maximums based on fueling at sea capacities. Lesser rates for fueling at piers can be used if more
practical. Loading rates are based on 40 psig (300 kPa) maximum per hose at ship connections.
2
Refer to Chapter 4 of this UFC for guidance on fueling rates for aircraft. Contact appropriate
Service Headquarters for actual fueling rates for aircraft for which design applies.
15
UFC 3-460-01
16 August 2010
2-6
PHYSICAL SECURITY
Plan and design fuel facilities with the goal of protecting the fuels, storage, and transfer
capability from enemy attack, terrorists, sabotage, fire, seismic activity, and other
damaging influences. In high threat areas, more extensive protection may be required.
Consult appropriate Service Headquarters for guidance. NATO projects have their own
specific criteria which govern protection level requirements.
ED
2-6.1
Antiterrorism and Physical Security
Per DoD 5200.08-R, Physical Security Program, at a minimum, fuel support points,
pipeline, pumping stations, and piers shall be designated and posted as Controlled
Areas. Areas containing critical assets may be designated as a restricted area.
EL
L
Controlled and restricted areas are defined areas in which there are special restrictive
measures employed to prevent unauthorized entry. Restricted areas may be of different
types depending on the nature and varying degree of importance of the protected asset.
Restricted areas must be authorized by the installation commander, properly posted,
and shall employ physical security measures.
UFC 4-020-01, DoD Security Engineering Facilities Planning Manual, supports the
planning of DoD facilities that include requirements for security and antiterrorism. Use
in conjunction with UFC 4-010-01, DoD Minimum Antiterrorism Standards for Buildings,
to establish the security and antiterrorism design criteria that will be the basis for DoD
facility designs.
C
UFC 4-010-01, DoD Minimum Antiterrorism Standards for Buildings, establishes the
standards that provide minimum levels of protection against terrorist attacks for the
occupants of all DoD inhabited buildings. Incorporate the minimum standards into the
design of all new construction and major renovations of inhabited DoD buildings.
AN
Coordinate with installation or activity Security and Antiterrorism Officer (ATO) to
determine area designation (controlled or restricted), threat environment, Design Basis
Threat (DBT), level of protection and access control requirements.
C
2-6.2
Security Fencing
Unless otherwise directed by Service Headquarters, provide security fencing around all
petroleum facilities to ensure safety and inhibit sabotage, theft, vandalism, or entry by
unauthorized persons. Install a 7-foot (2.1 m) fabric height fence of chain-link type with
three-strand barbed wire outriggers on top or its equivalent. Ensure fencing, gates, and
associated clearance requirements are in accordance with MIL-HDBK-1013/10 or UFC
4-020-03FA. Contact the Installation Security Organization for additional requirements.
2-7
MAINTAINABILITY CAPABILITIES
Provide adequate maintenance space around all equipment including:
a) Filter/separator and other filtration device maintenance access,
particularly element removal. For vertical filtration devices provide stair
and platform access to at least one side of each unit.
16
UFC 3-460-01
16 August 2010
b) Manual valves, especially replacement of slips in double block and
bleed tapered lift plug valves.
c) Adequate room and locations for the use of an intelligent pig
launcher/receiver in all section of piping.
d) Meter reading and maintenance.
e) Control valves.
ED
f) Pumps, including removal.
g) Instruments, especially those mounted on tank shells.
2-9
EL
L
2-8
VOICE COMMUNICATIONS
Provide voice communications (direct line for Air Force projects only) between
separated areas such as receiving, dispensing, pump stations, and fuel storage areas to
coordinate operations involved in fuel transfer. Refer to UFC 3-501-01 and UFC 3-55001 or Corps TM 5-811-9.
OTHER COMMUNICATIONS
C
2-9.1
Data Communications
Data communications systems shall be designed in accordance with the applicable
Telecommunications Industry Association (TIA) and Electronic Industries Association
(EIA) documents. Coordinate with local Base Communications squadron where
applicable. For Army, Navy, and Air Force communication systems design criteria see
USACE ETL 1110-3-502, Air Force LTA-AF and DoD UFC 3-580-01.
AN
2-9.2
Fire Alarm Communication
Fire alarm communications systems shall be coordinated with the Base Fire
Department. For fire alarm communication system requirements see the relevant
UFGS.
C
2-10
VAPOR RECOVERY
Provide vapor recovery where required by federal, state, and local regulations (40 CFR
Part 60 Subpart XX) and other chapters of this UFC. Refer to paragraph titled Air
Quality Control in this chapter of the UFC.
2-11
WORKER SAFETY
Design facilities to comply with the most stringent of the Occupational Safety and Health
Administration (OSHA) or the host nation standards. Also, ensure that design complies
with service-specific occupational safety and health criteria. For Navy, OPNAVINST
5100.23 Series Applies.
2-11.1
Safety Showers and Eyewash Fountains
Safety showers and eyewash facilities are required in workshops, laboratories,
pumphouses, fueling piers and other similar facilities. Fixed safety showers and
17
UFC 3-460-01
16 August 2010
eyewash facilities, or portable eyewash units, shall be installed at other locations where
fuel is transferred to/from trucks, rail cars, and aircraft. Refer to Appendix D of UFC 3420-01, Plumbing Systems, for additional requirements associated with Emergency
Shower and Eyewash Stations.
2-12
ELECTRICAL DESIGN
EL
L
ED
2-12.1
Area Classifications
Classify all fuel facilities, except as modified by this UFC, in accordance with API RP
500, NFPA 30, NFPA 70, and ANSI/IEEE C2. These practices may be modified where
unusual conditions occur, where locations contain hazardous atmospheres classified
other than Group D (as defined by NFPA 70), or where equipment malfunction may
cause hazardous situations. Use sound judgment in applying these requirements.
Specify a higher classification wherever necessary to maintain safety and continuity of
service. Treat combustible liquids under pressure as flammable liquids. All piping and
equipment including that connected to an atmospheric storage tank shall be considered
pressurized. Ensure design is in accordance with the requirements designated in NFPA
70 for the specific division and class. Ensure equipment temperature class or operating
temperature is in accordance with NFPA 70. Ensure that project drawings include
hazardous area plans indicating extent and classification of areas. Drawings should
provide dimensions indicating extent of classified areas and should include
sections/elevations when required to fully convey the extent of the areas.
C
2-12.1.1
Class I, Division 1
Class I, Division 1 locations include:
AN
a) Outdoor locations and those indoor locations having positive
mechanical ventilation that is within 3 feet (0.9 m) of the fill openings or
vents on individual containers to which flammable liquids are being
transferred. Provide alarm devices on all ventilation systems.
b) Outdoor locations within 5 feet (1.5 m) of open end of vents and
openings on liquid fuel storage tanks extending in all directions.
C
c) Entire pit, sump, open trench, or other depression, any part of which is
within a Division 1 or 2 location and is without mechanical ventilation.
d) Locations within and on exterior walls of open top spill containment
structures including oil/water separators and spill containment boxes.
e) Locations at fuel dispensers.
f) Locations within 3 feet (0.9 m) of vent, extending in all directions, when
loading a truck through the bottom connection.
g) All pump/filter houses handling liquid fuels.
18
UFC 3-460-01
16 August 2010
h) Any area containing electrical equipment that is or may be exposed to
atomized fuel and where the ambient temperature can at any time be
above the flash point of the fuel.
2-12.1.2
Class I, Division 2
Class I, Division 2 locations include:
a) Outdoor locations between 5 feet (1.5 m) and 10 feet (3 m) of the
Division 1 zones at vents and openings, on liquid fuel storage tanks
extending in all directions.
ED
b) Entire pit, sump, open trench, or other depression, any part of which is
within a Division 1 or 2 location and is provided with mechanical
ventilation.
EL
L
c) Outdoor locations within 3 feet (0.9 m) of the exterior surface of
pumps, air relief valves, withdrawal fittings, meters, and similar devices
that are located in pipelines handling liquid fuels under pressure.
Class I, Division 2 locations extend upward 18 inches (450 mm) above
grade level and within 10 feet (3 m) horizontally from any surface of the
device.
d) Locations within and extending upward to the top of the dikes that
surround aboveground tanks containing liquid fuels and within 10 feet
(3 m), extending in all directions of the tank shell, ends, or roof.
AN
C
e) Locations extending upward 18 inches (450 mm) above grade level
within 15 feet (4.6 m) horizontally from any surface of open top spill
containment structures including oil/water separators and spill
containment boxes, whether installed indoors or outdoors.
f) Locations 25 feet (7.6 m) horizontally in all directions on pier side from
portion of hull containing cargo and from water level to 25 feet (7.6 m)
above cargo tank at highest point.
C
g) Area between 3 feet (0.9 m) and 10 feet (3 m) extending in all
directions from vent when loading a truck. Also upward 18 inches (450
mm) above grade and within 10 feet (3 m) horizontally from the truck
load connection.
2-12.1.3
Non-Classified Locations
Non-classified locations include:
a) Outdoor locations having closed piping systems handling flammable or
combustible liquids that have no pumps, air relief valves, withdrawal
fittings, valves, screwed fittings, flanges, meters, or similar devices
which create joints in piping.
19
UFC 3-460-01
16 August 2010
b) Office buildings, boiler rooms, control rooms, and similar locations that
are outside the limits of hazardous locations, as defined above, and
are not used for transferring flammable or combustible liquids or
containers for such liquids.
c) Areas in which flammable and combustible liquids are stored in
accordance with NFPA 30, outside the limits of a classified location,
and the liquids are not transferred.
EL
L
ED
2-12.2
Illumination
Illuminate all working areas for night operations to the minimum intensity recommended
in Table 4 of API RP 540. Lighting design should also provide for road access on tall
light posts to allow for lamp replacement. For facilities within the jurisdiction of the U.S.
Coast Guard under 33 CFR Part 154, illuminate to the minimum intensity required by
that regulation. Provide security lighting in accordance with MIL-HDBK-1013/1 for the
Navy, UFC 3-550-03FA for the Army and Air Force and AFOSH Standard 91-38 for the
Air Force. If local or state regulations exist, follow the most stringent requirements.
2-12.3
Grounding and Bonding
The following references apply to grounding and bonding systems:
a) ANSI/IEEE 142
b) NFPA 70
C
c) NFPA 77
d) NFPA 780
AN
e) API RP 540
f) API RP 2003
g) ANSI/IEEE 1100
C
h) NFPA 407
2-12.3.1
Grounding Requirements
Ground the following items in accordance with Article 250 of NFPA 70:
a) Motor, generator, and transformer frames.
b) Non-current-carrying metallic parts of electrical equipment and
installations, such as enclosures for panelboards, switchgear, and
motor control centers.
c) Metallic messengers of self-supporting cables.
20
UFC 3-460-01
16 August 2010
d) Exposed conductive materials enclosing electrical conductors, such as
metallic conduit, metallic tubing, metallic armoring, sheaths and
shields, cable troughs, trays and racks, wireways, and busways.
e) Filter/separators and other filtration equipment.
ED
2-12.3.2
Current and Lightning Protection
Provide lightning protection in accordance with Corps TM 5-811-3, AFM 88-9, NFPA
780, MIL-HDBK-1004/6, and local installation requirements. For fault current protection
and lightning protection, ground the following items through ground rods or beds or
bond to a grounded network. Provide ground for these items as required by the above
references.
a) Fences.
b) Lightning arrestors and lightning shield conductors.
d) Canopies.
EL
L
c) Operating mechanisms of overhead airbreak switches.
e) Aboveground storage tanks.
C
2-12.3.3
Static Electricity Prevention
To prevent the buildup static electricity, ground the following items directly through
ground rods or beds or bond to a grounded network. Do not exceed 10,000 ohms of
resistance to ground, unless otherwise stated. Do not bond dissimilar metals together.
AN
a) Aboveground tanks, vessels, stacks, heat exchangers, and similar
equipment not directly supported or bolted to a grounded supporting
network.
b) Pipe and pipe support columns in accordance with the more stringent
of NFPA 77 or below.
C
(1)
Provide (minimum) 1 ground rod on pipe runs 100 feet (30 m)
long or less unless the pipe is connected to a grounded source
within the 100 feet (30 m).
(2)
Provide (minimum) 2 ground rods on runs of pipe that exceed
100 feet (30 m), but are less than 300 feet (90 m) in length.
(3)
Provide (minimum) 1 ground rod at intervals not exceeding 300
feet (90 m) on runs of pipe that are greater than 300 feet (90 m)
in length.
(4)
Parallel pipes may be bonded and common ground rods used,
spaced in accordance with (1) through (3) above.
21
UFC 3-460-01
16 August 2010
c) Aircraft direct fueling stations.
d) Hydrant pits.
e) Internal floating pans bonded to the storage tank shell.
f) Aboveground portions of electrically isolated piping at truck, rail, and
marine loading and unloading stations.
EL
L
ED
2-12.3.4
Installation
Isolate grounding systems for instrumentation, instrument control boards, and electronic
equipment from all other ground systems. Additional grounding is not required for
overhead electrical equipment bolted directly to grounded metallic structures. Where
feasible, separate the conductor connecting a lightning rod to the grounding electrode
from other grounding conductors. Route with a minimum of sharp bends and in the
most direct manner to the grounding electrode. Do not use this electrode in lieu of
grounding electrodes which may be required for other systems. This provision does not
prohibit the required bonding together for grounding electrodes of different systems.
C
2-13
CATHODIC PROTECTION
Obtain the services of a National Association of Corrosion Engineers (NACE)-certified
Corrosion Specialist or Cathodic Protection Specialist or a registered professional
Corrosion Engineer to perform all cathodic protection design and testing. For Army and
Air Force designs, comply with the current Engineering Technical Letters in addition to
the following requirements. For Navy designs, comply with NAVFAC Interim Technical
Guidance FY94-01.
AN
2-13.1
Tanks
For all underground steel tanks and tank bottoms of aboveground vertical tanks, provide
cathodic protection in accordance with UFC 3-570-02N, API RP 651, 40 CFR Part 280,
UL 1746, and UFC 3-460-03. For additional information on cathodic protection, refer to
NAVFAC MO-230 and AFI 32-1054. Current tank design configuration electrically
isolates the tank bottom from surrounding earth. Therefore, install cathodic protection
between the liner and the tank bottom.
C
2-13.2
Piping
For all carbon steel and stainless steel underground and underwater piping, provide
cathodic protection in accordance with UFC 3-570-02N and 40 CFR Part 280 for piping
associated with underground storage tanks. For additional information on cathodic
protection, refer to NAVFAC MO-230, NACE SP0169 Control of External Corrosion on
Underground or Submerged Metallic Piping Systems, and 49 CFR Part 195. Buried
stainless steel corrodes and, therefore, must be cathodically protected.
2-13.2.1
Surge Arrestors
Provide surge arrestors across all aboveground insulated flanges connected to
belowground cathodically protected piping. Require surge arrestors to be designed for
use with insulated flanges and for use in Class I, Division 1 areas. Provide covers over
22
UFC 3-460-01
16 August 2010
flanges to preclude dirt from degrading surge arrestors; refer to DoD Standard Design
AW 78-24-28.
2-13.3
Structures
Obtain the services of a (NACE)-certified Corrosion Specialist or Cathodic Protection
Specialist or a registered professional Corrosion Engineer to evaluate the need for
cathodic protection on steel portions of fueling support facilities. Comply with UFC 3570-02N.
ENVIRONMENTAL PROTECTION
ED
2-14
2-14.2
Regulations
EL
L
2-14.1
General Policy
It is the firm policy of the Department of Defense to design and construct fueling
facilities in a manner that will prevent damage to the environment by accidental
discharge of fuels, their vapors or residues. Designs must comply with foreign
government, national, state, and local environmental protection regulations that are in
effect at a particular facility.
2-14.2.1
Within U.S.A.
Within the jurisdiction of the United States, adhere to the following environmental
protection regulations:
a) National Environmental Policy Act (NEPA), 42 USC 4321.
C
b) U.S. Coast Guard Regulations, 33 CFR Part 154.
AN
c) Environmental Protection Agency Regulations, 40 CFR Part 60.
d) Environmental Protection Agency Regulations, 40 CFR Part 112.
e) Environmental Protection Agency Regulations, 40 CFR Part 122.
f) Environmental Protection Agency Regulations, 40 CFR Part 280.
C
g) Environmental Protection Agency Regulations, 40 CFR Part 281.
h) Department of Transportation Regulations, 49 CFR Part 195.
i) Obtain additional data on anti-pollution regulations for specific
locations from Service Headquarters Environmental Support Office.
2-14.2.2
Outside U.S.A.
At facilities in other countries, consult appropriate service environmental directives,
DODD Overseas Environmental Baseline Guidance Doctrine and for Navy,
OPNAVINST 5090.1. It may be appropriate to address the DoD Overseas
Environmental Baseline Guidance Document and appropriate Final Governing
23
UFC 3-460-01
16 August 2010
Standards for the region/country. If tank is to be installed in a locale or state with more
stringent criteria, use the more stringent criteria. If tank is to be installed in a NATO
country other than the CONUS, follow the most stringent of local regulations or NATO
Airfield Standard Design - Jet Fuel Storage and Dispensing Systems.
2-14.3
Transfer of Fuel at Ports
ED
2-14.3.1
Bulk Transfer
Compliance with 33 CFR Part 154 is required for each fixed facility capable of
transferring fuel in bulk to or from a vessel with a capacity of 10,500 gallons (39 700 L)
or more. These facilities are required to have an operations manual approved by the
Captain of the Port. In the operations manual, include the requirement for the following
systems:
a) Hose assemblies
EL
L
b) Loading arms
c) Closure devices
d) Monitoring devices
e) Small discharge containment
f) Discharge removal
C
g) Discharge containment equipment
h) Emergency shutdown
AN
i) Communications
j) Lighting
C
2-14.3.2
Vapor Collection
For facilities that collect vapor from vessel cargo tanks, ensure that the requirements of
40 CFR Part 60 for the following items are met:
a) Vapor line connections
b) Vessel liquid overfill protection
c) Vessel vapor overpressure and vacuum protection
d) Fire, explosion, and detonation protection
e) Detonation arrestors, flame arrestors, and flame screens
f) Inerting, enriching, and diluting systems
24
UFC 3-460-01
16 August 2010
g) Vapor compressors and blowers
h) Vapor recovery and vapor destruction units
2-14.4
Air Quality Control
ED
2-14.4.1
Design Requirements
Regulatory requirements pertaining to air quality control will vary according to locality
and to type and size of the petroleum vapor source. Petroleum storage and dispensing
facilities are common sources of air pollution. Their emissions are typically restricted
through requirements in state and local regulations. Federal regulations (40 CFR Part
60 Subparts Kb and XX) may also apply depending on the product handled and size of
the tank or facility being constructed.
C
EL
L
2-14.4.2
Aboveground Storage Tanks
Federal regulation 40 CFR Part 60 Subpart Kb requires that tanks used for the storage
of fuel with a design capacity greater than 19,000 gallons (72 000 L) having a true vapor
pressure greater than 0.75 psia (5. kPa) at operating temperature must be equipped
with either: 1) a fixed roof in combination with an internal floating pan; 2) an external
floating roof equipped with a dual seal closure device between the wall of the tank and
the roof edge; or 3) a closed vent system designed to collect all volatile organic
compound (VOC) vapors and gases discharged from the tank and a control device
designed to reduce VOC emissions by 95 percent or greater. It is the design intent that
most vertical aboveground tanks will have internal floating pans and that vapor recovery
will be used only if required by federal, state, or local regulations for the type of fuel and
type of tank proposed, except as specifically required by another chapter of this UFC.
Refer to Chapter 8 of this UFC for specific requirements for floating pans.
C
AN
2-14.4.3
Truck and Rail Loading Facilities
Tank truck and tank car loading facilities constructed or modified after December 17,
1980 which load an annual average of more than 20,000 gallons (76 000 L) per day of
fuel having a true vapor pressure (TVP) of 0.75 psia (5 kPa) or greater must discharge
the vapors resulting from such operations into a closed system. Ensure this system
leads to a vapor recovery or disposal system which is capable of removing 95 percent
of the petroleum vapor before final discharge into the atmosphere. Equip bulk gasoline
terminals (handling fuels with TVP > 4.003 psia or 27.60 kPa) with a vapor collection
system designed to collect total organic compound (TOC) vapors displaced from tank
trucks during loading. Emissions from the vapor control system due to loading must not
exceed 35 mg of TOC per liter of gasoline loaded. For facilities with an existing vapor
processing system, the TOC emissions must not exceed 80 mg of TOC per liter of
gasoline loaded (40 CFR Part 60 Subpart XX).
2-14.4.4
Permit Requirements
Air quality permits are typically required for the construction of petroleum storage and
dispensing facilities. It is essential for designers to review regulatory requirements to
ensure incorporation of proper environmental controls. State and local regulations are
primary sources for air quality requirements, but for particularly large facilities, it is also
25
UFC 3-460-01
16 August 2010
2-14.5
Water Quality Control
ED
beneficial to confer with the EPA regional office. The permit review and air quality
controls will further depend on whether the construction site is located in an attainment
or non-attainment area for ozone. Different permit programs apply in these areas, but
they can both yield strict control requirements depending on the air quality of the area.
An emissions offset analysis may be necessary before any construction permit can be
granted. This analysis will require and demonstrate a reduction in VOC emissions from
other sources in the locality where the new source construction is to take place. The
offset can be obtained by providing new or better controls or otherwise decreasing
emissions from an existing source.
2-14.5.1
Design Requirements
Protection of the natural waters against pollution from discharge of petroleum is
achieved by complying with federal, state, and local regulations.
EL
L
2-14.5.2
Stormwater Discharge
A National Pollutant Discharge Elimination System (NPDES) Permit, 40 CFR Part 122,
may be required for the discharge of stormwater. A review of federal, state, and local
stormwater regulations is required prior to design and construction. Discharge of
stormwater includes:
a) Controlled drainage from storage tank areas with impermeable diked
enclosures or drainage systems leading to impoundments.
C
b) Drainage from treatment systems.
AN
c) Drainage from facility transfer operations, pumping, and tank car and
tank truck loading/off-loading areas.
d) Drainage from equipment/vehicle maintenance areas.
C
2-14.5.3
Spill Prevention Control and Countermeasures (SPCC) Plan
The minimum requirements for spill prevention in the United States are contained in 40
CFR Part 112. It requires the preparation of a SPCC Plan for facilities that may
discharge fuel into navigable waters of the United States. Specific design features are
necessary to meet the SPCC objectives at all facilities. The SPCC plan must
demonstrate that the fuel facility will be designed and constructed in a manner that will
prevent spillage, and should such a spillage occur, prevent the spill from leaving the
property and entering a waterway. Review API Bulletin D16 to assist with conformance
to regulations. Refer to 33 CFR Part 154 for small discharge containment.
2-14.5.4
Meeting SPCC Plan Objectives
40 CFR Part 112 allows SPCC Plan objectives to be met by either spill containment or
spill treatment. For facilities covered by this UFC only spill containment systems are
acceptable. Spill treatment systems shall not be allowed to meet SPCC requirements
unless required by regulations. Provide treatment systems (oil/water separators) to
treat the discharge from spill containment systems only when required by federal, state,
26
UFC 3-460-01
16 August 2010
or local regulations, or by Service Headquarters. Typical facilities requiring a spill
containment system are fuel storage tanks, tank truck loading/off-loading/parking areas,
and tank car loading/off-loading areas.
ED
2-14.5.5
Spill Containment Systems
The SPCC Plan objectives expressed in 40 CFR Part 112 shall be met with
impermeable spill containment system designed to prevent a spill from leaving the
property unless a spill treatment system is required by federal, state, or local
regulations, or by Service Headquarters. See the individual chapters of this UFC for
requirements.
EL
L
2-14.5.6
Spill Treatment Systems (Oil/Water Separators)
Treatment systems (oil/water separators) may not be used to meet the requirements of
40 CFR Part 112 unless required by federal, state, or local regulations, or as
determined by the appropriate Service Headquarters. Do not provide oil/water
separator to treat the discharge from spill containment systems (e.g. secondary
containment dikes, tank truck parking areas, loading/off-loading facilities), unless
specifically required by regulations. Select either a conventional rectangular API type
gravity oil/water separator or one with inclined parallel plates. Where possible, design
the separator as a rectangular vessel with a fully open top with lid for ease of inspection
and cleaning.
a) Design and construct the separator in accordance with the following:
UFC 1-200-01 and UFC 3-301-01.
(2)
UFGS 44 42 53.
Army Corps of Engineers ETL 1110-3-466.
AN
(3)
C
(1)
(4)
ACI 350.4R-04, Design Considerations for Environmental
Engineering Concrete Structures.
b) Consider the following items in sizing the oil/water separator:
C
(1)
Anticipated inlet flow rate of a 5-year, 1-hour duration storm
event.
(2)
Type of fuel.
(3)
Specific gravity and viscosity of fuel.
(4)
Specific ambient and product temperature ranges.
(5)
Product storage capacity required.
(6)
Possible contaminants present.
(7)
Operating parameters are intermittent or continuous.
27
UFC 3-460-01
16 August 2010
c) Require parallel plates to be constructed from non-oleophilic materials
such as fiberglass. Arrange the plates in either a downflow or
crossflow mode so that the oil collects in the high point of the
corrugations and rises to the top without clogging from settleable
solids.
ED
d) Consider installing a retention basin upstream of the oil/water
separator. This would allow solids to settle prior to reaching the
oil/water separator and allow the option of either releasing the
stormwater to the oil/water separator or to an appropriate stormwater
collection system.
2-14.5.7
Leak Detection
As required by federal, state, and local regulations install leak detection on
aboveground tank bottoms, underground storage tanks, and underground piping.
EL
L
2-14.5.8
Wastewater Disposal
Provide a holding tank for wastewater. Wastewater is any water which has been in
contact with significant quantities of fuel such as water collected from tank sumps,
equipment drains, and equipment sumps. Ensure that tank construction conforms to
federal, state, and local environmental requirements. Provide a means to remove
wastewater for off-site disposal.
AN
C
2-14.5.9
Dewatering
Where dewatering for construction purposes is necessary and contamination is
suspected, test the groundwater prior to construction to determine the extent of
contamination. If the groundwater is, or has the potential to be, contaminated with
petroleum products, review federal, state, and local regulations for acceptable treatment
methods. Permits may be required for treatment and/or disposal of the water. Contact
facility Environmental Department for guidance.
2-14.6
Aboveground Storage Tanks
C
2-14.6.1
Design Requirements
Aboveground storage tanks may be single wall, double wall, horizontal, vertical,
protected, or fire resistant as discussed in Chapter 8. There is not a single federal
regulation that specifically addresses aboveground storage tanks similar to 40 CFR Part
280 that solely governs underground storage tanks. The majority of the federal
environmental design requirements come from either 40 CFR Part 112 or 29 CFR Part
1910.106. These regulations include environmental related requirements for:
a) Diking and drainage.
b) Flooding.
c) Corrosion Protection.
d) Inspections, Tests, and Records.
28
UFC 3-460-01
16 August 2010
e) Brittle Fracture Analysis.
The designer must consult the latest version of these regulations and comply with all
federal, state, and local regulations.
2-14.7
Underground Storage Tanks
ED
2-14.6.2
Other Requirements
If a tank is to be installed in a locale or state with more stringent criteria, use the more
stringent criteria. If tank is to be installed in a NATO country other than the CONUS,
follow the most stringent of local regulations or NATO Airfield Standard Design - Jet
Fuel Storage and Dispensing Systems.
EL
L
2-14.7.1
Design Requirements
All underground and cut and cover storage tanks are to be double wall type. Single wall
underground storage tanks are not allowed. For underground storage tanks larger than
110 gallons (416 L), the following are required by 40 CFR 280:
a)
Corrosion protection for tanks and associated underground piping.
b)
High level alarm.
c)
Spill and overfill protection.
d)
Release detection.
AN
C
2-14.7.2
Other Requirements
If a tank is to be installed in a locale or state with more stringent criteria, use the more
stringent criteria. If tank is to be installed in a NATO country other than the CONUS,
follow the most stringent of local regulations or NATO Airfield Standard Design - Jet
Fuel Storage and Dispensing Systems.
2-15
FIRE PROTECTION
C
2-15.1
General Requirements
Design all petroleum fuel storage, handling, transportation, and distribution facilities with
full consideration of the hazardous nature of the fuels to be handled and their vapors.
Ensure compliance with UFC 3-600-01.
2-15.2
Protection of Aboveground Storage Tanks
2-15.2.1
Tank Exterior Fire Protection Water Systems
Provide fire protection water mains, hydrants, valves, pumps, and application devices to
permit control of brush and grass fires and cooling of storage tanks in the event of a fire
exposure. Provide a minimum of two hydrants. Locate hydrants and valves outside of
diked areas and accessible to fire department pumper vehicles. Locate hydrants so that
protected exposures can be reached through hose runs not exceeding 300 feet (90 m).
Comply with all requirements of UFC 3-600-01 for water supply.
29
UFC 3-460-01
16 August 2010
ED
2-15.2.2
Tank Interior Fire Protection Systems
Tanks containing Class I flammable fuels or mission-critical Class II combustible fuels,
such as JP-8, shall be equipped with a full contact, aluminum honeycomb floating pan.
Other Class II fuels require a floating pan if the tank does not comply with the spacing
and diking requirements of this UFC. Tanks storing mission-critical Class III fuels, such
as JP-5 and diesel fuel marine (F-76), if located in hot (desert-like) climate, also require
a floating pan to eliminate the fuel/air interface. A single slotted stilling well, that
penetrates the floating pan, has a maximum diameter of 10 inches (250 mm) and is
used for the automatic tank gauge system, is allowed to be provided without a vapor
sleeve (bellow). The slotted well used for manual measurements shall be equipped with
a floating plug.
EL
L
2-15.3
Fire Protection of Pumping Facilities
Fuel pump houses where over 50% of the fuel hydrant pumping capacity is in one fire
area and that area is enclosed shall be protected with an automatic fire suppression
system, such as a fire sprinkler system, foam water fire suppression system, etc. Fuel
pump houses where over 50% of the transfer pumping is in one (enclosed) fire area
shall be protected with an automatic fire suppression system, foam water fire
suppression system, etc. Readily available mobile pumping equipment with 50% of the
total pumping capacities can be used to eliminate need for a fire suppression system.
Where mobile pumping option is selected, provide connection points in the fuel system
for temporary mobile pumps in the event that a pump facility is lost. Pump pads and
pump shelters do not need fire suppression systems.
AN
C
2-15.3.1
Pumphouses, Pump Shelters, and Pump Pads
A pump pad has no roof or canopy. A pump shelter has a roof, at least one wall
completely open with adequate fire department access, and a total open wall area of 50
percent or more. A pumphouse has a roof, and a total open wall area of less than 50
percent.
2-15.3.2
Fire Department Access
Provide adequate fire department access for all pumping facilities. Provide fire
department access to all open sides of a pumphouse or pump shelter. Provide fire
department access to at least two sides of a pump pad.
Fire Protection of Underground Vertical Storage Tanks
C
2-15.4
2-15.4.1
Fire Protection Water Systems
Provide fire protection water mains, hydrants, valves, pumps, and application devices to
permit control of brush and grass fires and for cooling of the aboveground piping and
equipment associated with underground vertical storage tanks in the event of a fire
exposure. Provide a minimum of two hydrants. Locate hydrants so that protected
exposures can be reached through hose runs not exceeding 300 feet (90 m). Comply
with all requirements of UFC 3-600-01 for water supply except that the minimum fire
flow rate and minimum duration per hydrant shall be calculated using the smallest
diameter of aboveground POL tank.
30
UFC 3-460-01
16 August 2010
2-15.5
Protection of Tank Truck and Tank Car Facilities
For facilities (such as loading stands) used for the transfer of flammable or combustible
liquids to or from tank truck, refuelers, tank cars, drums, or other portable containers,
provide portable dry chemical extinguishers of appropriate size, number, and location
for the exposure.
2-15.6
Protection of Aircraft Fueling Facilities
Provide fire fighting equipment in accordance with service requirements. Refer to USAF
AFTO 00-25-172, NAVAIR 00-80R-14, NAVAIR 00-80T-109, AR 420-90 and NFPA 407.
ED
2-15.7
Protection of Fuel Testing Laboratory
Laboratories shall comply with the general facility requirements of UFC 3-600-01 and
NFPA 45 Laboratories using Chemicals.
2-15.8
Protection of Support Facilities
Comply with UFC 3-600-01 for fire protection of support facilities.
EL
L
2-15.9
Protection of Fuel Piers
Provide protection for piers with fixed piping systems used for the transfer of flammable
or combustible liquids in accordance with the following:
a) UFC 3-600-01
b) UFC 4-152-01, UFC 4-150-02, and UFC 4-150-06
C
c) NFPA 30
d) NFPA 30A
AN
e) NFPA 307 (If liquids are handled in bulk quantities across general
purpose piers and wharves.)
C
2-15.9.1
Fire Protection Water Systems
Use fire water systems with hydrants located so that vessels alongside can be reached
through hose lines not longer than 300 feet (90 m). Consult UFC 3-600-01 to determine
total water demands for piers based on an extra hazard occupancy classification.
2-16
EMERGENCY SHUT-DOWN
Emergency fuel shutoff (EFSO) pushbuttons are required wherever there is a potential
for an accidental release. EFSO pushbutton stations are required near tanks (outside of
berm area), tank car and tank truck loading and off-loading, refueler truck fillstands,
aircraft direct fueling stations, pumps, fuel piers, etc. All pumps shall shut down and all
motor operated valves shall close when an EFSO pushbutton is pressed. An alarm
shall be annunciated at the master alarm panel. Operation of all pumps and valves
shall be discontinued until all EFSO pushbuttons are cleared and the alarm
acknowledged. Off-base pipeline receipt and tanker receipt may be exceptions; contact
Service Headquarters for direction.
31
UFC 3-460-01
16 August 2010
2-17
ELECTROMAGNETIC RADIATION HAZARDS
Potential ignition hazards to petroleum storage, dispensing, or handling facilities may be
created by emissions from electromagnetic devices such as radio and radar.
Beam/signal strength has been known to cause ignition of flammable vapor-air mixtures
from inductive electrical heating of solid materials or from electrical arcs or sparks from
chance resonant connections. For additional information, refer to MIL-STD-461 and
NFPA 407. Incorporate the following specific precautions and restrictions in the design
of petroleum fuel facilities:
ED
a) Locate the radio transmitting antennas as far as practically possible
from fuel storage or transfer areas.
b) Do not locate the fuel storage or transfer facilities closer than 300 feet
(90 m) from aircraft warning radar antennas.
EL
L
c) Do not locate fuel storage or transfer facilities closer than 500 feet (150
m) from airport ground approach and control equipment.
d) Do not locate fuel storage or transfer facilities closer than 300 feet (90
m) from areas where airborne surveillance radar may be operated.
e) Do not locate fuel storage and transfer facilities closer than 100 feet
(30 m) from airport surface detection radar equipment.
AN
C
2-18
IDENTIFICATION
Identify all pipelines and tanks as to product service by color coding, banding, product
names, NATO designation, and directions of flow in accordance with MIL-STD-161.
Mark valves, pumps, meters, and other items of equipment with easily discernible
painted numbers or numbered corrosion-resistant metal or plastic tags attached with a
suitable fastener. Ensure numbers correspond to those on the schematic flow diagrams
and other drawings for the installation.
C
2-19
ANTISTATIC DESIGN
Consider static build-up in the design. Refer to CRC Report No. 346 and No. 355, API
RP 2003; and NAVFAC MO-230. Because of the many variables involved, such as
properties of fuels and geometry of equipment layouts, no specific limits are established
for design factors such as flow velocities.
2-19.1
Piping Inlet Connections
Design connections to tanks for reduced velocity and to prevent splashing by use of
diffusers. Fuel products are not permitted to free fall under any circumstances. Position
inlet as close to the tank floor as possible to limit free fall.
2-19.2
Enclosed Vapor Spaces
Spaces above flammable or combustible Hydrocarbons in tanks or other liquid
containers must not have any pointed projection or probes which could be focal points
for static electricity discharges.
32
UFC 3-460-01
16 August 2010
2-19.3
Filter/Separators
The heaviest electrostatic charges are usually developed in filtering elements of this
equipment. The design should attempt to reduce such charges before fuel is
transferred into storage tanks, vehicle tanks, or any equipment containing vapor spaces.
ED
a) By means of residence time in piping or in a relaxation tank, provide a
minimum of 30 seconds relaxation time between this equipment and
discharging into a tank or vehicle. The only aviation turbine fuel
currently in the inventory that requires this minimum relaxation time are
JP-5, JPTS and other aviation turbine fuels that do not contain SDA.
b) Relaxation time is not required for projects handling only fuels
containing a static dissipator additive that provides a conductivity level
greater than 50 conductivity units (50 picosiemens per meter) at the
fuel temperature of the operations. Examples of this are JP-4 and JP8.
EL
L
c) Provide a means for slow filling, to prevent static discharge when first
filling empty filter-separator vessels.
C
2-19.4
Aircraft Direct Fueling Stations
JP-5 requires a 30-second residence time in the piping or in a relaxation tank after
flowing through filtration and before being discharged into the aircraft to allow separate
charges generated by the filtering elements to recombine and neutralize themselves.
Where possible, design the piping layout to provide the required 30-second relaxation
time without use of a relaxation tank.
AN
2-19.5
Truck Bottom Loading
Provide facilities only capable of bottom loading of trucks. Army facilities that routinely
handle trucks that are not capable of bottom loading must obtain approval for the
addition of top loading capability from the Army Service Headquarters. Refer to NFPA
77 and API RP 2003 for additional information and requirements.
2-20
OPERATION AND MAINTENANCE DOCUMENTATION
C
2-20.1
Equipment Operation and Maintenance Documentation
In all construction and procurement contracts, require operation and maintenance data
for pieces of equipment which require maintenance and/or which require setting,
adjusting, starting, stopping, calibrating, and similar operational activities.
2-20.2
Operation and Maintenance Support Information (OMSI)
An OMSI for all new facilities is required. The determination to include a requirement
for a complete OMSI for new facilities or a major rehabilitation will be made by the
appropriate Service Headquarters.
2-21
PROTECTION AGAINST SEISMIC ACTIVITY
Design fuel facility buildings and structures for seismic requirements in accordance with
UFC 1-200-01. Design aboveground vertical storage tanks in accordance with API Std
33
UFC 3-460-01
16 August 2010
650, Appendix E. Analyze flexible aboveground pipelines using techniques to account
for harmonic response.
2-22
STRUCTURAL DESIGN
Design all buildings and structures in accordance with UFC 1-200-01.
ED
2-23
CONCRETE
Concrete where used in this UFC refers to cast-in-place, Portland Cement Concrete
(PCC), reinforced as required, finished, and cured. The use of coated or uncoated
bituminous asphalt concrete (asphalt), “shotcrete”, or autoclaved cellular concrete
(ACC) in its place is prohibited.
2-24
AIRFIELD/AIRSPACE REQUIREMENTS
Incorporate requirements for airfield and airspace clearances into all construction
documents for work near an airfield. Verify compliance with UFC 3-260-02.
C
AN
C
EL
L
2-25
PERMITS
The planner, programmer, and designer should give consideration to required permits
(dredging, air emissions, water discharges, etc.). Considerations are cost of permit,
cost impact of project to meet permit requirements, schedule impact of permit, who is to
obtain permit, and at what time in the project schedule should application be made.
34
UFC 3-460-01
16 August 2010
CHAPTER 3 - BULK FUEL STORAGE FACILITIES
EL
L
ED
3-1
INTRODUCTION
This chapter provides guidance for the design of bulk fuel storage facilities, including
bulk storage tanks and those components normally located within a typical bulk storage
compound. These components include pipeline receiving facilities, tank truck and tank
car receiving facilities, pipeline dispensing (pumping) facilities, tank truck and tank car
loading facilities, and all related piping and equipment. Fuel storage tanks are
discussed in Chapter 8 and piping systems in Chapter 9 of this UFC. Support facilities,
which are discussed in Chapter 11 of this UFC, are often collocated within bulk facilities.
Systems used to receive and dispense aviation turbine fuels are discussed in Chapter 4
of this UFC. Systems used to receive and dispense fuel from barges and ships are
discussed in Chapter 5 of this UFC. Installation pipelines connecting bulk facilities with
marine receiving and dispensing facilities, aircraft fueling facilities, and ground vehicle
fueling facilities, as well as interterminal pipelines are discussed in Chapter 6 of this
UFC. Refer to Facility Plate 001 for the entire chapter identification plan pertaining to
this UFC.
Note: If aviation fuel can be pumped directly from a tank into an aircraft, aircraft direct
fueling system or a refueler, treat the tank as an operating storage tank regardless of
size and location and must meet the applicable requirements for aviation turbine fuel
operating tanks. The exception is bulk storage tanks that are configured to fill refuelers
on an emergency basis only.
AN
C
3-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not begin the design of any fueling system without first becoming
completely familiar with Chapter 2 of this UFC.
C
3-3
RECEIVING FACILITIES
Fuel is normally received at bulk fuel storage facilities by pipeline, tank truck, tank car,
barge, or ship. In many cases, the fuel is pumped by pipeline from the marine receiving
facility to the bulk storage facility. Marine receiving facilities are addressed in Chapter 5
of this UFC. Service Headquarters, with concurrence from the Defense Energy Support
Center, will determine the appropriate type of delivery method based on mission
requirements and an economic analysis. A secondary method of delivery is normally
required for aviation activities.
3-3.1
Pipeline Receiving Facilities
3-3.1.1
General Criteria
Petroleum fuels may be supplied to bulk fuel storage tanks by interterminal pipelines
which may be dedicated to serving the particular facility or may be commercial pipelines
handling a number of types or grades of fuel for more than one user. In some cases,
the pipeline will be an installation pipeline. If different fuel types are used, separate
each type within the receiving facility. Exercise extreme care to avoid designing a
35
UFC 3-460-01
16 August 2010
system that could create damaging surges in the pipeline created by quick closing
valves.
3-3.1.2
Equipment Required
ED
a) Provide pressure-regulating diaphragm control valves to reduce
pipeline pressures to the design pressure of the facility’s piping and
equipment. Provide a manual isolation valve at both the upstream and
downstream side of each diaphragm control valve. Prior to designing
any features into the system which might affect the flow from a
pipeline, contact the operator of the pipeline to ascertain the current
operating conditions, evaluate the use of diaphragm control valves,
conduct a surge analysis of the pipeline, and determine whether the
use of diaphragm control valves is appropriate.
C
EL
L
b) Provide a meter at the receiving end of the line to measure quantities
of fuel received. Turbine-type meters are commonly used for pipeline
receipt. However, positive displacement meters are acceptable if
available at the required flow rate. Consider also the use of alternative
meter technologies such as ultrasonic meters. Compensate for fuel
temperature at the point of custody transfer. Provide a basket strainer
on the upstream side of the meter and connections for proving the
meter with a portable prover. A meter prover connection consists of a
manual isolation valve in the main pipeline with a tee on both the
upstream and downstream sides of the valve. The branch of each of
the tees has a manual isolation valve and a hose connection. The
master meter can be attached to the hose connections.
AN
c) Provide a means for sampling each pipeline product at a breakout
manifold.
C
d) Provide provisions for a contractor to bolt pig launchers and receivers
to the system for pigging. Arrange pig receiving connections to avoid
introducing pipeline sludge and sediment into the tanks. Pig launching
and receiving provisions are required for interterminal (cross-country)
and installation (as described in Chapter 6 of this UFC) underground
pipelines.
e) Provide an interface tank to receive mixed fuels at the beginning and
end of a shipment unless the commercial pipeline company can
provide this service satisfactorily.
f) Provide a breakout tank only if pipeline flow cannot be stopped due to
pipeline operational requirements. Provide valves to divert the flow of
fuel from the pipeline to the breakout tank in the event fuel transfer is
blocked by a manual or automatic valve within the fuel facility system
such that the fuel facility system would be overpressurized from
36
UFC 3-460-01
16 August 2010
transient surge or high pressure from deadheading a pipeline supply
pump. Provide appropriate breakout tank overfill alarms and alarm
breakout operation so fuel facility operators can take necessary steps
to stop pipeline flow. Provide means of transferring fuel out of
breakout tank back to fuel systems after a breakout event. Conduct a
thorough review with the pipeline operator and perform a transient
surge analysis to determine if surge pressure reduction methods are
required to avoid damage to the pipeline.
EL
L
ED
g) Provide means of inbound filtration for all products. The selection of
filtration depends on anticipated impurities, the source of fuel, and the
shipping methods. Consider the use of micronic filters, cyclonic filters,
and haypack coalescers as possible filtration devices. Avoid the use of
water slug shutoff diaphragm control valves or other rapid-closing
valves on pipeline receipt facilities. For inbound filtration of aviation
turbine fuels, refer to “Special In-Bound Filtration” paragraph of
Chapter 4 of this UFC.
h) Provide manual isolation valves to isolate equipment for service.
i) Provide basket strainers upstream of pumps, meters and receipt
filtration.
C
j) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
AN
k) Provide a concrete housekeeping pad and, unless otherwise directed
by Service Headquarters, a canopy to protect fixed facilities assets and
equipment from the elements. See the “Canopies” paragraph of this
chapter.
3-3.2
Tank Truck and Tank Car Off-loading Facilities
C
3-3.2.1
General Criteria
Bulk fuel storage facilities may be supplied with fuel by tank truck or tank car or both. At
facilities with pipeline or water transport as their principal supply source, provide tank
truck or tank car deliveries as a secondary supply source. Tank truck deliveries are the
most common method. However, special transportation considerations or changing
circumstances may make the use of rail facilities desirable. Therefore, at an activity
with railroad service, arrange a tank truck receiving facility so that the system can be
easily and economically extended to the existing rail spur. See Facility Plate 002.
a) The preferred off-loading method is into a drop tank off-loading system.
See Facility Plate 003.
37
UFC 3-460-01
16 August 2010
b) Provide a packaged off-loading system when a drop tank type offloading is not practical for off-loading tank trucks or tank cars due to
environmental concerns, site limitations, or cost considerations, and/or
directed by Service Headquarters. See Facility Plate 004.
c) Provide a direct off-loading system when only an occasional tank truck
requires off-loading and when directed by Service Headquarters. See
Facility Plate 005.
ED
d) Do not locate tank truck or tank car receiving facilities closer than 50
feet (15 m) from tanks, buildings, roads, overhead power lines, padmounted transformers, and property lines. Comply with NFPA 30 and
assume that the property line is the fuel farm fence. Use the criteria for
Class I liquids regardless of product and do not take a reduction for
fixed fire protection.
EL
L
e) Provide an adequate number (minimum two) of positions to off-load the
daily fuel requirements of the facility in an eight-hour period without
causing detention or demurrage of delivery conveyances.
C
f) Provide separate off-loading connections for each type of fuel to be
handled. To facilitate the use of tank trucks with multiple independent
compartments, provide a hose manifold with a minimum of two
connections per tank truck. A manifold with hose connections equal to
the number of truck compartments is recommended for quick
turnaround. If less than five connections are provided, provide a blind
flange on the end of the manifold to accommodate additional
connections.
C
AN
g) Provide a containment area at each truck off-loading position
consisting of an impermeable retention and controlled drainage system
leading to a concrete remote spill containment system. Pave the
containment area consisting of the islands, the spaces between islands
and on each side of the outer islands, with concrete pitched a minimum
of one percent toward catch basins or trench drains. Design the
containment area in accordance with UFC 1-200-01, federal, state, and
local regulations. Do not use asphalt within a spill containment area.
The maximum slope of any paving within a truck movement or parking
area shall not exceed 2 percent excepting rollover curbs. If a rollover
curb is provided, the sum of the vertical entrance and exit grades shall
not exceed 8 percent, the horizontal length of the curb in the direction
of truck movement shall not be less than 15 feet, and the rollover curb
shall be aligned perpendicular with direction of truck movement.
h) At tank car off-loading areas, pave the containment area with concrete
(or otherwise provide containment) for an area extending from 5 feet
(1.5 m) outside of each outer rail and extending longitudinally 15 feet
38
UFC 3-460-01
16 August 2010
(4.6 m) each way from the center of each loading position. Slope the
paved area to a to a spill containment system as described previously.
EL
L
ED
i) Provide a concrete remote spill containment system for each
containment area. Design the remote spill containment system in
accordance with UFC 1-200-01, federal, state, and local regulations.
Provide the remote spill containment system with capacity greater than
either the volume of the largest tank truck or tank car compartment to
be off-loaded, or runoff from a rainfall of intensity equal to a 5-year
expectancy, 1-hour duration storm. Provide a lockable knife gate valve
with indicator post located outside the enclosure in an area that will be
safely accessible during a fire. The valve shall be lockable and
normally closed to allow for containment during fueling operations and
which can be opened to drain the area when necessary. Tank trucks
can be as large as 10,000 gallons (38 000 L) in capacity and tanks
cars as large as 40,000 gallons (150 000 L). If a canopy is installed,
reduce the sizing for rainfall, accounting for wind-blown rain. Consider
combining the remote spill containment system with other spill
containment systems on site, except with tank containment systems.
However, take the level of contamination in each containment area into
consideration.
C
j) Construct the drain piping between the containment area and the
concrete remote spill containment system, and between the remote
spill containment system and lockable knife gate valve of petroleumresistant, fire-resistant, impermeable materials. Do not use clay,
concrete, fiberglass, or plastic piping materials.
AN
k) For off-loading tank trucks, arrange the flow of traffic to permit
continuous forward movement of tank trucks at all times. Commercial
tank trucks off-load on the passenger side.
C
l) To determine the number of connections needed for off-loading tank
cars, consult with Service Headquarters and consider minimizing tank
car movements, tank car shipping schedules, conveyance turn-around
times, local rail switching capabilities, and quantity of fuel needed for
one day’s fuel supply.
m) Provide an electrical design that meets the minimum requirements of
NFPA 70, NFPA 77, and NFPA 780. Treat combustible liquids under
pressure as a flammable liquid.
n) Provide a canopy for protection from the elements of fixed facility
assets and equipment per the “Canopies” paragraph of this chapter.
o) Provide a canopy to preclude rain from the containment area when the
requirements listed in the “Canopies” paragraph of this chapter are
met.
39
UFC 3-460-01
16 August 2010
p) Provide for egress and entrance of emergency response vehicles. The
egress and entrance routes need to be large enough to allow both,
trucks and emergency vehicles, leaving and entering the facility.
q) Provide a means of inbound filtration for all products. The selection of
filtration depends on anticipated impurities, the source of fuel, and the
shipping methods. Consider the use of micronic filters, cyclonic filters,
and haypack coalescers as possible filtration devices. For inbound
filtration of aviation turbine fuels, refer to Chapter 4 of this UFC.
EL
L
ED
3-3.2.2
Tank Truck and Tank Car Drop Tank Off-Loading System
The introduction of air into a fuel receiving system poses extreme hazards which can
result in fire and/or explosion. Hazards are compounded when an air/fuel mixture is
passed through receipt filter/separators where static electricity is generated and ignition
can occur. Design off-loading facilities so air is not introduced into the system. For
facilities with the capability to off-load several tank trucks at once or where newer tank
trucks with multiple hoses are connected to multiple isolated compartments, consider
providing an underground, gravity-type, receiving tank with submersible transfer pumps
and level controls. For smaller systems of one or two tank trucks, consider a low profile,
aboveground, receiving tank with a centrifugal transfer pump. For either case, provide
level sensors to control the flow. Provide a temperature compensated meter on the
receipt line to the tank at points of transfer and custody. For materials of construction
for off-loading drop tanks, refer to Chapter 8. See Facility Plate 003.
C
AN
C
3-3.2.3
Tank Truck and Tank Car Packaged Off-Loading System
For tank truck or tank car off-loading, an off-loading drop tank may not be practical due
to environmental concerns, site limitations, or cost considerations. In these instances,
provide a 600 gpm (38 L/s) packaged off-loading system. Provide one packaged
system, including vertical inline centrifugal pump, diaphragm control valves to control
flow, meter, and multiple hose connections (one for each tank truck compartment), for
each tank truck or tank car receiving station. Provide an air eliminator tank to remove
air from the system, reducing the risk of an air/fuel mixture passing through receipt
filter/separators and preventing the metering of air. Level sensors in the air eliminator
tank control the pump discharge diaphragm control valves, modulating the flow rate
based on the level in the air eliminator tank. Refer to NAVFAC Drawing No.1404005
and Facility Plate 004.
3-3.2.4
Tank Truck and Tank Car Direct Off-Loading System
Use when only an occasional tank truck requires off-loading and when directed by
Service Headquarters. Refer to Facility Plate 005.
3-3.2.5
Equipment Required
a) When tank trucks or tank cars are off-loaded with a drop tank offloading system, do not provide an off-loading pump. Provide at least
two pumps in the drop tank to transfer fuel to the storage tank.
40
UFC 3-460-01
16 August 2010
b) When tank trucks or tank cars are off-loaded with packaged off-loading
systems, provide one system for each tank truck or tank car that is to
be off-loaded simultaneously, at an average capacity of 600 gpm (38
L/s) each. The number of systems shall be determined by Service
Headquarters but shall be a minimum of two. The capacity of the
systems may be reduced to 300 gpm (19 L/s) each only when directed
by Service Headquarters.
EL
L
ED
c) When tank trucks or tank cars are off-loaded with direct off-loading
systems, provide centrifugal pumps configured to provide automatic air
elimination as shown on Facility Plate 005. Provide at least two pumps
to allow continued operation if one is out of service. The capacity of
the pumps may be increased to 600 gpm (38 L/s) each only when
directed by Service Headquarters. The centerline height of suction line
from manifold to pump should not exceed 23.25 inches (591 mm)
above truck unloading, parked position. Locate the pump as close as
possible to the off-load point to prevent suction problems.
C
d) Provide 4-inch (100 mm) diameter by 10-foot (3 m) long lightweight
reinforced vacuum rated off-loading hoses and covered hose storage
racks for each hose connection at each off-loading position. Eliminate
covered hose storage rack if off-load rack is to be covered by a
canopy. Ensure that all swivels are non-lubricated aluminum or
stainless steel in-line repairable type. Consult with Activity to verify the
need for hoses, since at some locations, the fuel hauling contractor
provides the hoses.
C
AN
e) Equip each tank truck off-loading position with an electronic,
intrinsically safe, automatic, self-monitoring ground verification unit with
a lockable bypass. If grounding is not verified and there is an offloading pump dedicated to that position, ensure the unit prevents the
pump from starting. If the pump is not dedicated, ensure an alarm
sounds if the off-loading valve is opened prior to grounding verification.
Include a separate grounding reel to accommodate vehicles without
grounding equipment.
f) Provide emergency fuel shutoff (EFSO) pushbutton stations. For truck
off-loading with multiple positions, an EFSO pushbutton station is
required for each position and along routes of personnel ingress and
egress between 100 and 200 feet from the off-loading position. Design
in such a manner that activation of the emergency stop will shutoff all
fueling in the off-loading area and/or the associated pumphouse or
pump pad.
g) Provide fuel sampling connections at each position for each product
line for collecting test samples.
41
UFC 3-460-01
16 August 2010
h) Provide pressure gauges on both sides of each strainer or a differential
type gauge across each strainer. Where a strainer is upstream of a
pump, the pump suction gauge may function as the strainer
downstream gauge.
i) Provide a compound (pressure/vacuum) gauge on the inlet side of
pumps and a pressure gauge on the outlet side of pumps.
ED
j) If the system is for JP-5 or other fuel that does not have a static
dissipater additive which provides a conductivity level greater than 50
conductivity units (50 picosiemens per meter), and a 30-second
retention time is not provided between filter/separator and receiving
tank, provide a relaxation tank downstream of filter/separator to ensure
a combined 30-second retention time (time in the relaxation tank and
time in the piping).
EL
L
k) Provide basket strainers upstream of pumps, meters, and receipt
filtration.
l) Provide a combination flow control and non-surge check diaphragm
control valve on all off-load pumps except positive displacement types.
If a bulk air eliminator with automatic air release head is included,
provide a means of closing the diaphragm control valve with a solenoid
pilot.
AN
C
m) Provide a positive displacement or turbine meter and meter proving
connections. Provide meter with temperature compensation capability
wherever custody transfer occurs. Provide a basket strainer on the
upstream side of the meter.
C
n) On each off-loading connection or on the off-loading riser, install a
visual fuel flow indicator (maximum pressure 275 psi (1900 kPa) at 100
degrees F (38 degrees C), with Viton Seals with a maximum
temperature rating of 350 degrees F (177 degrees C)). This will allow
visual quality assurance and provide the operator with a backup
system to shut off the pumps when off-loading is complete to prevent
air build-up in the receipt lines.
o) Provide manual isolation valves to isolate equipment for service.
p) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
3-3.3
Marine Off-loading Facilities
See Chapter 5 of this UFC.
42
UFC 3-460-01
16 August 2010
3-4
DISPENSING FACILITIES
Fuel is normally dispensed from a bulk facility via an installation pipeline, interterminal
pipeline, tank truck, or tank car.
3-4.1
Pipeline Pumping Facilities
3-4.1.2
ED
3-4.1.1
General Criteria
As discussed in Chapter 6 of this UFC, pipelines are either interterminal pipelines or
installation pipelines. Installation pipelines are commonly used to transfer fuel to an
aircraft fueling facility or a marine dispensing facility. Interterminal pipelines are crosscountry between installations. However, since pipeline pumping facilities are typically at
a bulk fuel storage facility, they are covered in this chapter.
Equipment Required
EL
L
a) Centrifugal pumps complying with API Std 610 with adequate head
and capacity. Always provide one additional pump as back-up.
b) Turbine or positive displacement meter with proving connections.
Consideration can also be given to alternative meter technologies such
as ultrasonic meters. Compensate for fuel temperature at custody
transfer point.
c) Provide fuel sampling connections for collecting test sample.
C
d) Pig launching and receiving capability for interterminal and installation
pipelines.
AN
e) Strainer on the upstream side of meters and pumps.
f) Manual double block and bleed isolation valves where total isolation is
required.
g) Pressure gauges on both sides of the strainer or a differential pressure
type gauge across the strainer.
C
h) Compound (pressure/vacuum) gauges on the inlet side of pumps and
pressure gauges on the outlet side of pumps.
i) Provide a combination flow control and non-surge check diaphragm
control valve on all pumps except positive displacement types. If a
bulk air eliminator with automatic air release head is included, provide
a means of closing the diaphragm control valve with a solenoid pilot.
j) Provide manual isolation valves to isolate equipment for service.
k) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
43
UFC 3-460-01
16 August 2010
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
l) Provide a concrete housekeeping pad and, unless otherwise directed
by Service Headquarters, a canopy to protect fixed facilities assets and
equipment from the elements. See the “Canopies” paragraph of this
chapter.
3-4.2
Tank Truck and Tank Car Loading Facilities
EL
L
ED
3-4.2.1
General Criteria
This chapter applies to facilities required for loading over-the-road tank truck transports
or rail tank cars used for the bulk transfer of fuel. A typical application is the transfer by
tank truck from a storage terminal to secondary storage, such as a filling station or a
heating plant. In many cases, the receiving and loading facilities are combined. In
these cases, both receiving and loading facility requirements must be addressed. This
chapter does not include facilities for loading aviation refuelers for direct issue to
aircraft. This process requires special design considerations as discussed in Chapter 4
of this UFC. See Facility Plates 002, 003 and 005.
a) Determine the volume of fuel and number of tank trucks or tank cars to
be handled by an operational analysis with assistance from Service
Headquarters.
AN
C
b) Do not locate tank truck or tank car loading facilities closer than a
minimum of 50 feet (15 m) from tanks, buildings, roads, overhead
power lines, pad-mounted transformers, and property lines. Comply
with NFPA 30 and assume that the property line is the fuel farm fence.
Use the criteria for Class I liquids regardless of product and do not take
a reduction for fixed fire protection. Do not locate a tank truck loading
facility closer than 100 feet (30 m) from a railroad track (or spur) or rail
siding for loading/off-loading of fuel.
C
c) Bottom loading is the only acceptable method of loading tank trucks.
Bottom loading results in increased safety, manpower savings, quality
control of product, and area cleanliness. At non-U.S. locations where
only contracted top loading tank trucks are available, install a top
loading rack with permission of Service Headquarters. In this event,
provide future bottom loading capabilities.
d) Provide a containment area at each truck loading position consisting of
an impermeable retention and controlled drainage system leading to a
concrete remote spill containment system. Pave the containment area
consisting of the islands, the spaces between islands and on each side
of the outer islands, with concrete pitched a minimum of one percent
toward catch basins or trench drains. Design the containment area in
accordance with UFC 1-200-01, federal, state, and local regulations.
44
UFC 3-460-01
16 August 2010
Do not use asphalt within a spill containment area. The maximum
slope of any paving within a truck movement or parking area shall not
exceed 2 percent excepting rollover curbs. If a rollover curb is
provided, the sum of the vertical entrance and exit grades shall not
exceed 8 percent, the horizontal length of the curb in the direction of
truck movement shall not be less than 15 feet, and the rollover curb
shall be aligned perpendicular with direction of truck movement.
ED
e) At tank car loading areas, pave the containment area with concrete (or
otherwise provide containment) for an area extending from 5 feet (1.5
m) outside of each outer rail and extending longitudinally 15 feet (4.6
m) each way from the center of each loading position. Slope the
paved area to a spill containment system as described previously in
Item (d).
AN
C
EL
L
f) Provide a concrete remote spill containment system for each
containment area. Design the remote spill containment system in
accordance with UFC 1-200-01, federal, state, and local regulations.
Provide the remote spill containment system with capacity greater than
either the volume of the largest tank truck or tank car compartment to
be off-loaded or runoff from a rainfall of intensity equal to a 5-year
expectancy, 1-hour duration storm. Provide a lockable knife gate valve
with indicator post located outside the enclosure in an area that will be
safely accessible during a fire. The valve shall be lockable and
normally closed to allow for containment during fueling operations and
which can be opened to drain the area when necessary. Tank trucks
can be as large as 10,000 gallons (38 000 L) in capacity and tanks
cars as large as 40,000 gallons (150 000 L). If a canopy is installed,
reduce the sizing for rainfall, accounting for wind-blown rain. Consider
combining the remote spill containment system with other spill
containment systems on site, except with tank containment systems.
However, take the level of contamination in each containment area into
consideration.
C
g) Construct the drain piping between the containment area and the
concrete remote spill containment system, and between the remote
spill containment system and lockable knife gate valve of petroleumresistant, fire-resistant, impermeable materials. Do not use clay,
concrete, fiberglass, or plastic piping materials.
h) Provide a canopy for protection from the elements of fixed facility
assets and equipment per the “Canopies” paragraph of this chapter.
i) Provide a canopy to preclude rain from the containment area when the
requirements listed in the “Canopies” paragraph of this chapter are
met.
45
UFC 3-460-01
16 August 2010
j) Provide separate piping, pumps, loading connections, and controls for
each different type and grade of fuel.
ED
k) Arrange loading rack with a row of islands with sufficient clearance
between to allow easy access to all parts of the tank trucks when
parked. Arrange islands and approaches in a manner that allows
forward motion for all tank trucks at all times with ample room for
turning. Space and arrange bottom loading islands to accommodate
one tank truck only on the side adjacent to the tank truck’s liquid
connections, usually the passenger side of the tank truck.
l) Provide for entrance and egress of emergency vehicles.
3-4.2.2
C
EL
L
m) If top loading is required for tank cars (normally only when commercial
contract leaves no other choice) and approved by Service
Headquarters, provide a typical tank car loading rack with an elevated
steel platform, consisting of a walkway, 4 feet (1.2 m) wide, 10.5 feet
(3.2 m) above the top of the rails, and the full length of six tank cars.
Ensure that the centerline of the structure is 10.5 feet (3.2 m) above
the centerline of the tracks. Equip the platform with a counterweighted
or spring-loaded tilting bridge to connect to the tank car dome at each
loading station. Design so that when released from the horizontal
position, the bridge will automatically move and lock in an upright
position away from any part of the tank car under all weather
conditions. Ensure conformance with UFC 1-200-01 requirements.
Platform is not required on Air Force projects.
Tank Truck Fillstand Equipment Required
AN
a) Provide a positive displacement or turbine meter for each tank truck fill
connection. Protect each meter with an upstream basket strainer.
Include temperature compensation if rack is to be point of custody
transfer.
b) Provide fuel sampling connections for collecting test samples.
C
c) Provide pressure gauges on both sides of the strainer or a differential
pressure type across the strainer.
d) Provide fusible link butterfly isolation valves as the first piece of
equipment (in the direction of the flow) on the loading position. (Valve
is not required on Air Force projects.)
e) Make provisions to start and stop the pumps with start and stop pump
controls at each position. Include pump status indicator light on control
box.
46
UFC 3-460-01
16 August 2010
f) Provide a solenoid operated truck loading diaphragm control valve with
opening/closing speed control, pressure regulating, check and solenoid
shut-off features. Interlock the solenoid with the electronic high-level
shutoff, ground verification, and deadman control system.
EL
L
ED
g) Provide each fill position with an electronic high-level shutoff, ground
verification, and deadman control system. The system shall be
intrinsically safe and self-checking. Interlock the system with either the
solenoid operated truck loading diaphragm control valve or the pump
such that the valve cannot remain open or the pump cannot operate if
the tank truck compartment is full, the tank truck is not grounded, or
the deadman is released. Ensure the system is compatible with both
electronic and fiber optic sensors with manual-keyed bypass. (May
require a parallel effort beyond the project scope to ensure that all
trucks using the facility have compatible connections. If facility has
trucks that do not have fixed probes, use cane probes instead.) (This
unit is optional on Army projects with only tactical refuelers. Contact
the Service Headquarters for guidance.)
C
h) Provide emergency fuel shutoff (EFSO) pushbutton stations. For
fillstands with multiple positions, an EFSO pushbutton station is
required for each position and along routes of personnel ingress and
egress between 100 and 200 feet from the fillstand. Design in such a
manner that activation of the emergency stop will shutoff all fueling at
that pump house or pump pad.
i) Equip liquid connections to tank trucks for bottom loading with
drybreak couplers in accordance with API RP 1004.
AN
j) Refer to Chapter 2 of this UFC for guidelines on vapor collection and
recovery or disposal systems.
k) Provide heaters and insulated, heated pipelines, as required, where
viscous fuels are to be loaded to maintain the temperature of the fuel
at its minimum pumping temperature.
C
l) Provide stainless steel loading arms (pantograph, without hoses)
equipped with non-lubricated swivels may be used instead of hoses, if
approved by Service Headquarters. Ensure all swivels are nonlubricated, stainless steel in-line repairable type.
m) Provide meter proving connections as described in the paragraph titled
“Pipeline Receiving Facilities”, unless local procedure provides an
alternative.
n) Provide relaxation tank or piping configuration with sufficient capacity
to retain the maximum flow of the loading station for 30 seconds from
the time the fuel leaves the last piece of filtration equipment to the fuel
47
UFC 3-460-01
16 August 2010
reaching the loading Nozzle. Applies only to JP-5 or other fuels which
do not have a static dissipation additive that provides a conductivity
level greater than 50 picosiemens.
o) Provide basket strainer upstream of meters and pumps.
p) Provide manual isolation valves to isolate equipment for service.
ED
q) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
r) Grounding/bonding reel (provided as an integral part of the high level
shutoff system).
3-4.2.3
EL
L
s) Provide hydraulic shock surge suppressors (if required).
Tank Car Loading Station Equipment Required
a) Provide a positive displacement or turbine meter for each tank car fill
connection. Protect each meter with an upstream basket strainer.
Include temperature compensation if rack is to be point of custody
transfer.
C
b) Provide meter proving connections as described in the paragraph titled
“Pipeline Receiving Facilities”, unless local procedure provides an
alternative.
AN
c) Provide fuel sampling connections for collecting test samples.
d) Provide pressure gauges on both sides of the strainer or a differential
pressure type across the strainer.
C
e) Provide fusible link butterfly isolation valves as the first piece of
equipment (in the direction of the flow) on the loading position. (Valve
is not required on Air Force projects.)
f) Provide loading connections, controls, valves, etc., on one or both
sides of the loading platform as specified by Service Headquarters.
Load tank cars from the bottom using counterbalanced, articulated
tank car loading assemblies.
g) Provide an electronic, intrinsically safe, portable liquid high level
sensor with adjustable height at each loading rack. To prevent an
overfill, interlock the sensor with the electronic high-level shutoff,
ground verification, and deadman control system.
48
UFC 3-460-01
16 August 2010
h) Provide an electronic high-level shutoff, ground verification, and
deadman control system. The system shall be intrinsically safe and
self-checking. Interlock the system with either the solenoid operated
tank car loading diaphragm control valve or the pump such that the
valve cannot remain open or the pump cannot operate if: the tank car
is full, the tank car is not grounded, or the deadman is released.
Provide the capability to connect the ground verification rack to the rail
tank car frame.
ED
i) Provide emergency fuel shutoff (EFSO) pushbutton stations. For
fillstands with multiple positions, an EFSO pushbutton station is
required for each position and along routes of personnel ingress and
egress between 100 and 200 feet from the fillstand. Design in such a
manner that activation of the emergency stop will shutoff all fueling at
that pump house or pump pad.
EL
L
j) Provide solenoid operated tank car loading diaphragm control valve
with opening/closing speed control, pressure regulating, check, and
solenoid shut-off features. Interlock the solenoid with the electronic
high-level shutoff, ground verification, and deadman control system.
k) Provide a basket strainer upstream of meters and pumps.
l) Provide manual isolation valves to isolate equipment for service.
AN
C
m) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
C
n) Provide relaxation tank or piping configuration with sufficient capacity
to retain the maximum flow of the loading station for 30 seconds from
the time the fuel leaves the last piece of filtration equipment to the fuel
reaching the loading nozzle. Applies only to JP-5 or other fuels which
do not have a static dissipation additive that provides a conductivity
level greater than 50 picosiemens.
o) Provide hydraulic shock surge suppressors (if required).
3-4.3
Marine Loading Facilities
See Chapter 5 of this UFC.
3-5
PIPING SYSTEMS
Refer to Chapter 9 of this UFC for more information regarding piping systems.
3-5.1
Product Segregation
Except as otherwise approved by Service Headquarters provide separate receiving,
storage, and distribution systems for each product. Except as otherwise approved by
49
UFC 3-460-01
16 August 2010
Service Headquarters, prevent misfueling (transferring a type of fuel other than the type
intended) by using different size piping, valves, adaptors, nozzles, etc.
3-6
EQUIPMENT DESCRIPTIONS
The appropriate guide specification and/or standard design provides specific information
for equipment selection. Make provisions to drain equipment for maintenance. Provide
hardpiped drains when the equipment holds more than 5 gallons (19 L) of fuel or when
a pipe which drains to the product recovery tank is within 12 ft (3.7 m) of the equipment.
ED
3-6.1
Bulk Air Eliminators
Use flange-connected, steel bodied bulk air eliminator of the desired pressure and flow
rating for the applicable service requirement. Include an automatic air release head and
interlock the equipment with a float or solenoid-operated hydraulically operated
diaphragm control valve. Provide discharge piping to the product recovery tank or other
safe means of containment.
EL
L
3-6.2
Meters
Provide meters with swivel mounted counter heads at truck fillstands to accommodate
varying truck and operator positions.
AN
C
3-6.2.1
Meters - Positive Displacement
Use flange-connected, cast steel bodied positive displacement meters of the
appropriate pressure and flow rating to meet applicable service requirements. Ensure
meter has case drain and register. Provide temperature compensation and adjustable
calibration capabilities where there is custody transfer. Ensure meter accessories are
compatible with either the mechanical or electronic support equipment selected.
Provide an accuracy of plus or minus 0.5 percent when used for custody transfer.
Consult the appropriate Service Headquarters for requirements for the meter to
communicate to a remote location or equipment. Consider the use of a card-operated
or key-operated data acquisition system. Refer to “Card and Key Locks” under
“Controls” paragraph of this chapter.
C
3-6.2.2
Meters – Turbine
Use flange-connected steel bodied turbine meters of the appropriate pressure and flow
rating to meet applicable service requirements. Provide a flow straightener before
turbine meters or provide a straight length of pipe at a minimum of ten pipe diameters
upstream and five pipe diameters downstream of all turbine meters, or as required by
manufacturer. Ensure meter has case drain and register. Provide temperature
compensation and adjustable calibration capabilities where there is custody transfer.
Provide an accuracy of plus or minus 0.5 percent when used for custody transfer.
Ensure all supporting equipment for meter is compatible with the turbine meter selected.
Consult the appropriate Service Headquarters for requirements for the meter to
communicate to a remote location or equipment. Consider the use of a card-operated
or key-operated data acquisition system. Refer to “Card and Key Locks” under
“Controls” paragraph of this chapter.
50
UFC 3-460-01
16 August 2010
3-6.2.3
Meters – Orifice
Use this type of meter only where custody transfer or accounting/inventory control is not
required. Provide with flange connections. Provide a flow straightener before orifice
meters or provide a straight length of pipe at a minimum of ten pipe diameters upstream
and five pipe diameters downstream of all orifice meters, or as required by
manufacturer.
ED
3-6.3
Pressure or Pressure/Vacuum Gauges
Use liquid-filled gauges of range and dial size, as necessary, but not less than 0 to 160
psig (0 to 1100 kPa) pressure range and 4-inch (100 mm) diameter dial. Gauges shall
be all stainless steel construction, with black graduations on a white face. For extreme
temperature environments, consult Service Headquarters for direction on the possible
use of air-filled gauges. For locations where the temperature is less than -40 degrees F
(-40 degrees C), use appropriate gauge liquid that will not freeze to prevent damaging
the gauge.
EL
L
a) Consider the location, year-round weather conditions, and service
requirements for the type of liquid filling to be used.
b) Gauge liquids and service ranges.
Liquid
Range
0 °F to 400 °F
(-18 °C to 204 °C)
-40 °F to 600 °F
(-40 °C to 316 °C)
Glycerin
C
Silicone
AN
c) Provide a lever handle gauge cock and pressure snubber in each
pressure gauge connection.
d) Provide indicating and recording pressure gauges on suction and
discharge lines for interterminal pipeline pumping stations and on the
incoming line at the delivery terminal of each such pipeline, if required
by Service Headquarters.
C
e) Pressure gauges shall be installed so that they are testable without
removing them from the piping.
3-6.4
Strainers
Require a strainer to protect centrifugal pumps, unless it precludes meeting the net
positive suction head of the pump. Whether or not strainers are installed on the suction
side of centrifugal pumps, require a spool piece so that temporary strainers can be
installed during startup of the system. Strainers are required on the suction side of all
pumps, meters, and receipt filtration. Also:
a) Use flanged basket strainers constructed of steel and fitted with
removable baskets of fine Monel metal or stainless steel mesh with
51
UFC 3-460-01
16 August 2010
large mesh reinforcements. Provide quick opening, single screw type
with drain connection in bottom.
b) Provide a fine screen mesh as follows:
Size of Opening
0.108 inch (2.74 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
ED
Pump suctions (Centrifugal)
Pump suctions (Positive
Displacement)
Receipt Filtration
Meter inlets (unless downstream
of a filter/separator)
Mesh
7
40
0.016 inch (0.40 mm)
c) In all cases, ensure the effective screen area is not less than three
times the cross sectional area of the pipe.
EL
L
d) Provide pressure gauges on both sides of the strainer or a differential
type gauge across the strainer.
AN
C
3-6.5
Surge Suppressors
Every effort should be made to control hydraulic surge or shock to acceptable limits by
the design of the piping system rather than by the use of surge suppressors. Where
this is not possible or becomes extremely impractical, surge suppressor(s) may be
incorporated. Use the diaphragm or bladder type equipped with a top-mounted liquidfilled pressure gauge, wafer-style check valve at the bottom, drain above the check
valve, and isolation valve. Provide a needle valve around the check valve to permit
controlled bleed back of the surge suppresser without rebounding. Locate surge
suppressors as close as possible to the point of shutoff that is expected to cause the
shock. Surge suppressors can reduce shock pressure but will not eliminate it entirely.
The preferred solution to hydraulic shock is conservative piping design, use of loops,
and slow-closing valves. Surge suppressors are strictly a last resort solution and
require the approval of Service Headquarters prior to designing into a system.
3-6.6
Pumps
C
3-6.6.1
Design Requirements
Design pumps to deliver the full range of operating conditions anticipated at any facility
with flow rates as presented in Chapter 2 of this UFC. Ensure pumps develop sufficient
head to overcome the friction and static head losses in the system at the rated flow.
Consider the specific gravity, temperature, viscosity, vapor pressure, corrosive, and
solvent properties of the fuel. If a range is given for the specific gravity, etc., in
paragraph 2.3, use the larger value for the purpose of calculations. For any single
grade of fuel, connect pumps in parallel. Select according to the type most suitable for
the particular application. Do not use positive displacement or reciprocating pumps for
product issue or pipeline transfer. Provide enough pumps to allow the system to
operate at full capacity with the largest pump out-of-service.
52
UFC 3-460-01
16 August 2010
3-6.6.2
Centrifugal Pumps
Use API Std 610 centrifugal pumps to pump from aboveground tanks with continuously
flooded suctions.
3-6.6.3
Vertical Turbine Pumps
Use API Std 610 vertical turbine pumps to pump from underground tanks. Do not use
horizontal transfer pumps in a pit alongside the underground tank as an alternative.
ED
3-6.6.4
Rotary Pumps
Use sliding vane positive displacement pumps or self-priming centrifugal pumps for
applications such as stripping pipelines or similar service where the pump may
frequently lose its prime. For these pumps, provide a pressure relief valve located on
the discharge side of the pumps. A variable speed motor can be used on positive
displacement pumps to gradually bring the pump to normal operating speed.
EL
L
Note: On positive displacement pumps the pressure relief valves shall be considered
safety relief valves, not operating valves (valves that modulate on a normal basis to
maintain a set pressure). Use of the relief valve to modulate the pump discharge
pressure voids the pump warranty.
3-6.6.5
Drivers
Drive permanently installed pumps by an electric motor which is properly classified in
accordance with NFPA 70. Size drivers to be non-overloading at any point on the
curve. Provide anti-reversing rachets on all vertical turbine pump motors.
C
3-6.6.6
Materials of Construction
Use carbon steel or nodular iron casings and components. Refer to Chapter 4 of this
UFC for aviation turbine fuels requirements.
AN
3-6.6.7
Installation
Mount permanently installed pumps on substantial foundations of reinforced concrete
designed in accordance with Hydraulic Institute Standards.
3-6.7
Valves
C
3-6.7.1
Materials of Construction – General Service
Require valves to have carbon steel bodies and bonnets except for aviation turbine
fuels (see below). Valves in general service may be internal nickel plated, or internal
epoxy coated. Do not allow valves with aluminum, cast iron, or bronze materials. Use
only API fire-safe valves.
3-6.7.2
Materials of Construction – Aviation Turbine Fuel Service
Valve materials in contact with aviation turbine fuel shall either be stainless steel,
chrome plated carbon steel, or electroless nickel plated carbon steel. Do not allow zinc,
zinc-coated, copper, or copper bearing materials in contact with the fuel. Do not allow
internally epoxy-coated valves.
53
UFC 3-460-01
16 August 2010
Require manual valves in aviation turbine fuel systems to have stainless steel bodies
and bonnets. Carbon steel bodied valves are permitted provided they are internally
plated with nickel plating. Do not allow aluminum, cast iron, or bronze bodied valves.
Use only API fire-safe valves.
3-6.7.3
Isolation Valve Types
a) Double Block and Bleed Isolation Valves:
Use these for separation of product services, on tank shell
connections, when piping goes above or below ground, between
pier and tank storage, and other locations critical to pressuretesting of piping.
(2)
Plug Valves (Double Block and Bleed): Use double-seated,
tapered lift, lockable, plug type valves with a body bleed between
the seats (double block and bleed). Valves shall be designed so
that if the synthetic seating material is burned out in a fire, a
metal-to-metal seat will remain to affect closure and comply with
API Std 607. Lubricated plug valves are not allowed. Include
integral body cavity thermal relief valve.
(3)
Ball Valves (Double Block and Bleed): Use double-seated,
trunion mounted, lockable, ball type valves with a body bleed
between the seats (double block and bleed). These will be very
rarely used but are acceptable as an alternative to double block
and bleed plug valves in applications where the valve is operated
very infrequently. An example is isolation valve pits where they
are only closed to perform pressure testing of piping. Valves
shall be designed so that if the synthetic seating material is
burned out in a fire, a metal-to-metal seat will remain to affect
closure and comply with API Std 607. Include integral body
cavity thermal relief valve.
AN
C
EL
L
ED
(1)
C
(4)
Gate Valves (Double Block and Bleed): Use double-seated,
lockable, gate type valves with a body bleed between the seats
(double block and bleed). These will be very rarely used but are
acceptable as an alternative to double block and bleed plug
valves and double block and bleed ball valves only when other
double block and bleed valves will not physically fit. Valves shall
be designed so that if the synthetic seating material is burned out
in a fire, a metal-to-metal seat will remain to affect closure and
comply with API Std 607. Single seated gate valves are not
allowed. Include integral body cavity thermal relief valve.
b) Quick Opening/Frequent Opening Isolation Valves:
54
UFC 3-460-01
16 August 2010
Use these for less critical applications where double block and
bleed shutoff is not required.
(2)
Ball Valves: Ball type, lockable, valves designed so that if the
synthetic seating material is burned out in a fire, a metal-to-metal
seat will remain to affect closure and comply with API Std 607.
Use Teflon or Viton synthetic seals or seating material. Use full
port ball valves where line pigging is required or if within ten pipe
diameters upstream and/or five pipe diameters downstream of a
flow or pressure control valve, or a flow-sensing device such as
a venturi. Valves should comply with API Std 608.
(3)
Butterfly Valves: High-performance wafer trunion butterfly type
valves designed so that if the synthetic seating material is
burned out in a fire, a metal-to-metal seat will remain to affect
closure and comply with API Std 607. Use Teflon or Viton
synthetic seals or seating material. Use valves of highperformance type with eccentric disc shaft and clamping action
for bubble-tight shutoff. Provide only at inlet to truck fillstand and
on supply and return risers at aircraft direct fueling stations with
fusible link set to release at 165 degrees F (74 degrees C).
These valves are not required nor permitted on Air Force
projects.
EL
L
ED
(1)
C
c) Use full port valves with exact same diameter of the pipe when line
pigging is required.
C
AN
3-6.7.4
Isolation Valve Operators
Manually operate valves not specified for remote, automatic, or emergency operation.
Use geared operators for ball and double block and bleed plug valves larger than 6
inches (150 mm). Double block and bleed gate, ball, and double block and bleed valves
specified for remote, automatic, or emergency service may have electric motor
operators, if approved by Service Headquarters. Provide locking tabs on isolation
valves to allow padlock to be used to lock out the valves during maintenance. Provide
chain operators on valves which are located 72 inches (1800 mm) or higher above
grade.
3-6.7.5
Isolation Valve Locations
Provide isolation valves in piping systems to control flow and to permit isolation of
equipment for maintenance or repair. Provide additional valves at locations necessary
to conduct a valid hydrostatic test. Require manually operated valves, except where
motor operators are specifically authorized by applicable standard drawings or technical
specifications. Use double block and bleed type isolation valves for separation of
product services, on tank shell connections (ASTs over 12,000 gallons only), when
piping goes above or below ground, between pier and tank storage, and other locations
critical to periodic pressure-testing of piping. Quick opening/frequent opening type
isolation valves may be used for less critical applications where double block and bleed
55
UFC 3-460-01
16 August 2010
shutoff is not required. As a minimum requirement, provide isolation valves at the
following locations:
a) Where piping goes underground or comes aboveground and requires
periodic pressure testing.
b) At all subsurface and aboveground piping connections to storage
tanks.
ED
c) On each branch line at the point of connection to the main product
pipeline or header.
d) On the product pipeline or header just before the line leaves a pumping
station.
EL
L
e) On the suction side and discharge side of each pumping unit, except
the suction side of vertical centrifugal pumps installed in underground
tanks.
f) On the upstream and downstream side of each line blind at
connections to cross country pipelines.
C
g) On the inlet and outlet connection of each line strainer, filter/separator,
meter, diaphragm control valve, and other equipment that requires
periodic servicing. One inlet valve and one outlet valve may be used
to isolate more than one piece of adjacent equipment which are
connected in series.
AN
h) On each main distribution pipeline immediately downstream of the
branch connection to each existing or future operating storage facility
served by the pipeline.
i) On the aboveground piping at each tank car or tank truck off-loading
connection, and at each inlet to the gravity drop tank.
C
j) On the aboveground piping at each tank car and tank truck loading
connection.
k) At critical roadway, runway and taxiway crossings, consider isolation
valves on both sides of runway/taxiway to facilitate hydrostatic testing
and isolation.
3-6.7.6
Isolation Valve Pits
Provide Fiberglass or concrete pits with a rolling or hinged cover designed in
accordance with the Air Force Standard Design AW 78-24-28 for all isolation valves
installed in non-traffic areas on underground fuel systems. Design valve pits and valve
operators so that the valves can be operated by personnel, without confined space
entry.
56
UFC 3-460-01
16 August 2010
3-6.8
Other Valves (Except Diaphragm Control Valves)
ED
3-6.8.1
Check Valves
Use check valves to prevent backflow through pumps, branch lines, meters, or other
locations where runback or reverse flow must be avoided. Check valves may be of the
swing disk, globe, dual plate hinged disk, spring-loaded poppet, ball, or diaphragmactuated types. Use checks of soft-seated non-slamming type with renewable seats
and disks. Ensure check valves conform to API Spec 6D. Use non-surge check
diaphragm control valves with flow control feature on the discharge of all pumps. When
using non-surge check diaphragm control valves on pump discharge, consider the use
of a spring type wafer check before the diaphragm valve to prevent sudden flow
reversals during shutdown from passing back thru the pump before the diaphragm
control valve diaphragm chamber is filled and reacts by closing the valve.
EL
L
3-6.8.2
Thermal Relief
Provide thermal relief valves around isolation and check valves to relieve excessive
pressures caused by thermal expansion of liquid trapped between shutoff points. See
Facility Plates 023, 024, 025 and 026.
AN
C
3-6.9
Diaphragm Control Valves
Hydraulically operated, single-seated, globe type, diaphragm actuated control valves
are used extensively in fueling systems as control valves. These valves consist of a
main valve and a pilot control system. The main valve consists of a body, diaphragm,
and cover and is operated by varying the amount of pressure above the diaphragm.
Since the chamber above the diaphragm exposes a greater area of the diaphragm to
chamber pressure than the area of the disc exposed to line pressure, an equal pressure
in the chamber and pipeline results in a greater force being applied to the top of the
disc. This forces the disc against the seat, thus closing the valve. By selecting the
proper pilot control system, these valves can be used in numerous ways to control flow,
pressure, and level within fueling systems.
C
3-6.9.1
Open/Close Operation
This is the most basic function of hydraulically operated diaphragm control valves. The
operation is accomplished by applying pressure above the diaphragm to close the valve
and relieve that pressure to allow line pressure to open the valve. The pilot trim used to
perform this operation is a three-way valve which can be controlled by a solenoid, hand,
pressure, pressure differential, or a float.
3-6.9.2
Throttling Operation
This is the other main method of controlling the hydraulically operated diaphragm
control valve. In this case, the valve modulates to any degree of opening, in response
to changes in the throttling control. The throttling control reacts to a pressure or a
pressure differential across the main valve or a pressure differential across an orifice
plate to regulate the position of the disc in the main valve. For proper operation these
valves should be installed with straight pipe on both sides of the valve. Ten pipe
diameters on the upstream side and five diameters on the downstream side is sufficient;
provide full port manual isolation valves if they are placed within these limits.
57
UFC 3-460-01
16 August 2010
3-6.9.3
Check Valve Function
This is a unique function of a control valve. In this case, the main valve outlet pressure
is connected to the diaphragm cover. Therefore, if the downstream outlet pressure
exceeds the inlet pressure, which normally holds the valve open, the valve will close
and prevent backflow. Note: In order for the valve to close it must backflow, sometimes
for a substantial amount of time. Consider putting a regular check valve in series with
this valve in cases where this is a concern.
ED
3-6.9.4
Remote Operations
Hydraulically operated diaphragm control valves can be operated remotely. This is
accomplished by installing tubing from the point of pressure sensing to the valve or by
using remote-controlled solenoids within the trim.
EL
L
3-6.9.5
Materials of Construction
Use stainless steel pilot control valves and stainless steel tubing. Use bodies, bonnets,
and covers made stainless steel, internally plated (chrome) steel, or internally plated
(nickel) nodular iron. Provide Viton or Buna-N diaphragm and disc ring. Enclose all
electrical apparatus according to classification of the area in which they are installed.
Provide a means to wire seal all adjustable pilots. Do not use aluminum valves.
3-6.9.6
Applications
For fueling systems, use hydraulically operated diaphragm control valves in the
following applications (also refer to specific chapters for applications):
a) Water slug shutoff.
C
b) Rate of flow control.
AN
c) Pressure reduction.
d) Pressure relief.
e) Liquid level control.
f) Non-surge check control.
C
g) Deadman control.
h) Electrical block control.
3-6.9.7
Combinations
A combination of these controls is also possible. A typical use of these controls is on a
filter/separator for water slug shutoff and rate of flow control.
3-6.10
Thermometers
Provide thermometers in Burner Fuel No. 5 and No. 6 distribution piping systems at
each loading and receiving point and on the inlet and outlet of each heater.
58
UFC 3-460-01
16 August 2010
3-6.11
Fuel Hoses
Use sizes as required for design flow rates. For hose flanges and nipples, use carbon
steel or brass, except at aviation turbine fuel issue points use brass, stainless steel, or
aluminum where metal parts contact the fuel.
3-6.11.1
Loading Fuel Hoses
Provide pressurized loading hoses and connections complying with EI Std 1529.
3-7
ED
3-6.11.2
Off-Loading Fuel Hoses
Provide lightweight, flexible, non-pressurized off-loading hoses constructed of nitrile
rubber, rigid polyvinyl chloride (PVC) helix, synthetic braiding, smooth bore, and
corrugated outer diameter. Provide non-pressurized hoses with a 65 psi (450 kPa)
rating at 72 degrees F (22 degrees C) and 27 in Hg (90 kPa) vacuum rating.
CONTROLS
C
EL
L
3-7.1
Design Requirements
Automatic controls at any facility may include temperature, pressure, fuel level and
pump controls, automatic flow controls, alarm and limit switches, motor operated
isolation valves, solenoid pilot actuated diaphragm control, and remote system condition
indicators. Other forms of automatic controls are remote meter indication, electronic
access control, data logging, and application of computer techniques. Base the
selection of advanced automation and telemetry systems on a study of the particular
application with consideration of possible economic justification, operational, and
security requirements.
AN
3-7.2
Flow Controls
Where it is possible to achieve flow rates which exceed equipment ratings, provide an
adjustable flow control valve on the outlet connection of each meter or filter/separator.
Use a diaphragm control valve controlled by the pressure differential across an orifice or
a venturi in the main line. Where necessary, provide remote-operated valves on
storage tank inlet and outlet lines, suction and discharge of transfer pumps, and transfer
lines at fuel piers and other locations.
C
3-7.3
Pump Controls
Operation of pump suction and discharge valves may be a part of the automatic
sequence for the starting of a centrifugal pump and for shutting it down, remotely,
locally, or by a protective shutdown device. Remote-operated valves on the discharge
side of the pump can be either motor-operated or the solenoid pilot-type, hydraulically
operated diaphragm control valves. Remote control valves on the suction side of the
pump can be motor-operated valves only. Equip these valves with green and red (open
and closed) indicating lights at their pushbutton control locations. Consider the use of
PLCs on more complicated systems.
3-7.3.1
All Pumps
Provide the following controls:
59
UFC 3-460-01
16 August 2010
a) A keyed hand/auto button at each pump and a keyed hand-off-auto
switch at the motor starter for each remotely operated pump. Both
devices will use the same key.
b) Indicator lights at the control station to give positive indications both
when a pump is operating and when it is not energized. Use the
"push-to-test" type.
c) A signal light or alarm to indicate pump failure when a pump is
controlled automatically.
ED
d) Reduced voltage starting if required by electric utility supplier or in all
cases for pump motors greater than 50 horsepower (37 kW) and all
vertical pumps.
EL
L
e) Emergency fuel shut-off (EFSO) pushbutton stations, between 100 and
200 feet from the pump in the expected ingress and egress direction,
with maintained contacts. Provide additional EFSO pushbutton
stations at the point of fuel delivery or receipt (fillstands, piers, tanks,
etc.) using the same spacing and location requirements.
C
3-7.3.2
Multi-Function Pumps
Multi-function pumps are typically used at small facilities and are designed and
arranged to be able to perform different functions such as fuel loading, off-loading, or
transfer depending on how valves are aligned. Provide each function with the control
system requirements for each function described elsewhere in this chapter. For each
multi-task pump provide a manual selector switch to choose which set of control and set
points the pump is to "look at" when performing a particular function.
C
AN
3-7.3.3
Transfer Pumps
Transfer pumps are used to supply fuel to a tank truck loading facility, tank car loading
facility, or transfer fuel from one place on the installation to another (e.g., bulk storage
tank facility to operating storage tank). If these pumps exceed 150 horsepower (112
kW), comply with the paragraph titled “Pipeline Pumps” in this Chapter. In addition to
requirements in the paragraph titled “Pipeline Pumps” in this Chapter, provide transfer
pumps with push button start/stop stations. Where these pumps are used for truck
and/or car loading, provide push button controls adjacent to the pumps and at each
loading station. Use programmable logic controllers (PLC) where multiple pumps
supply header loading multiple trucks or cars to obtain desired flow rate to each loading
station.
3-7.3.4
Pipeline Pumps
For pumps over 150 horsepower (112 kW), provide protective shutdown devices with
alarm at central supervisory control station in the event of the following:
a) High pump case temperature due to blocked discharge.
b) Excessive pump vibration.
60
UFC 3-460-01
16 August 2010
c) Mechanical seal or packing gland failure.
d) High discharge pressure or loss of discharge pressure.
e) Excessive motor vibration.
f) High motor winding temperature.
h) Loss of pump suction pressure.
ED
g) Electrical interlocks which will prevent starting a pump if certain key
valve settings are not correct and which will cause a pump shutdown if
a key valve setting is changed.
i) High bearing temperature and/or loss of cooling water flow.
EL
L
3-7.3.5
Temperature Controls
Provide temperature controls at all fuel oil heaters to control the outlet oil temperature
within safe limits. Provide a sensing element in the fuel outlet line which activates a
thermostatic valve in the heating medium supply connection to the heater. Use a selfactuating control valve that requires no external power for closure. Use a manually
adjustable set point for each temperature variable over the desired temperature range.
Provide a bypass around the control valve with a V-port globe or ball valve for manual
operation.
C
AN
C
3-7.3.6
Card and Key Locks
Consider the possible economic and operational advantages of using an electronic card
or key system which permits 24-hour unmanned operation of the facility. These types of
systems are comprised of a card/key reader which is located near the service pump.
The reader is activated by a card or key and accumulates issues and customer data
which is downloaded to a central computer on a periodic basis. Activities with
capitalized fuel, that is petroleum product owned by Defense Logistics Agency (DLA)/
DESC, are eligible for projects to install automated card/key lock systems. Activities
with capitalized fuel report inventories of these products to DESC through a system
called Business Systems Modernization - Energy (BSM-E). Automated systems to
control capitalized inventories must be able to interface with the BSM-E. These types of
automated systems are managed under the automated fuel service station (AFSS)
program by DESC. It should be noted that AFSS equipment is used to control issues of
product and is not an automated tank gauging system. Further information on AFSS
systems and funding programs may be obtained by contacting DESC-FE.
3-8
CANOPIES
3-8.1
Canopies to Protect Fixed Assets
Unless otherwise directed by Service Headquarters, provide a canopy to protect fixed
facility assets and equipment from the elements. Fixed facilities and equipment include
but are not limited to: pump pads, filtration pads, meter pads, isolation valve pads, tank
truck and tank-car off-loading and loading equipment pads, control panels, electrical
61
UFC 3-460-01
16 August 2010
panels, and motor control centers (MCCs). Ensure structural design is in accordance
with UFC 1-200-01 and UFC 3-301-01 .
ED
3-8.2
Canopies to Reduce Stormwater
Do not provide a canopy to preclude rain from reaching the containment area unless it
is required by federal, state, or local regulations; or it is economically justified by
reducing the size of the concrete remote spill containment or spill treatment system; or if
directed by Service Headquarters. At a canopy over a tank truck or tank car loading
and off-loading containment area, ensure that the underside of the canopy is high
enough to provide operator head room when walking on top of the truck or car. Ensure
structural design is in accordance with UFC 1-200-01 and UFC 3-301-01.
EL
L
3-9
PRODUCT RECOVERY SYSTEMS
Provide a product recovery system to collect and store usable aviation turbine fuel that
would otherwise become waste from operational or maintenance activities. Consider a
product recovery system for other products. See Chapter 8 of this UFC for product
recovery systems.
C
AN
C
3-10
FUEL ADDITIVES
If directed by DESC, provide bulk storage facilities which store aviation turbine fuels
with the equipment to inject fuel additives. This will require proportional injectors,
storage of additives, and capability of recirculating tanks through piping with injectors. If
the additives have a corrosive characteristic, construct the system, including storage
tanks, tank appurtenances, pumps if required, piping and associated fittings, valves,
and injector assemblies of stainless steel components.
62
UFC 3-460-01
16 August 2010
CHAPTER 4 - AIRCRAFT FUELING FACILITIES
ED
4-1
INTRODUCTION
This chapter provides guidance for the design of aircraft fueling facilities, including
operating storage tanks and those components normally located within a typical
compound. These components include pipeline receiving facilities, tank truck and tank
car receiving facilities, refueler truck fillstands, type III, IV, and V aircraft direct fueling
systems, and associated piping and equipment. Fuel storage tanks are discussed in
Chapter 8 and piping systems in Chapter 9 of this UFC. Systems used to receive fuels
from barges and ships are discussed in Chapter 5. Pipelines that transport fuel from off
base and pipelines between bulk tanks and operating storage tanks are discussed in
Chapter 6 of this UFC.
EL
L
Note: If aviation fuel can be pumped directly from a tank into an aircraft, aircraft direct
fueling system or a refueler, treat the tank as an operating storage tank regardless of
size and location and meet the applicable requirements for aviation turbine fuel
operating tanks. The exception is bulk storage tanks that are configured to fill refuelers
on an emergency basis only.
AN
C
4-1.1
Function
Aircraft fueling facilities, as discussed in this chapter, are designed for ground fueling of
fixed and rotary wing aircraft. Two methods are used for refueling aircraft: refueler
trucks and aircraft direct fueling systems (e.g., hydrant system). The preferred method
of fueling used at most Navy, Marine Corps, and Army small aircraft bases is by refueler
trucks. For Air Force transport, tanker, cargo, bomber, and other large aircraft, the
preferred method of fueling is by hydrant system where the aircraft are fueled on the
apron in their parked positions. Where operational/mission requirements dictate a quick
return to the air, small-frame aircraft, both fixed and rotary wing, are refueled with the
engines running via aircraft direct fueling systems under a "gas and go" or hot pit
refueling concept. Install aircraft direct fueling systems only when specifically
authorized by Service Headquarters.
C
4-1.2
Aviation Turbine Fuels
The fuels covered in this chapter are JP-4, JP-5, JP-8, JPTS, Jet A, and Jet A-1.
Because of the critical nature of the end use of the fuel, protection of fuel quality,
dependability of the system, and safety are very important. Refer to Chapter 2 of this
UFC for information on fuel properties.
4-1.3
Special Precautions for Aviation Turbine Fuel Quality
Take extra care to prevent the contamination of aviation turbine fuels by dirt, water, and
other fuels. For additional information, refer to Chapter 2 of this UFC. Aircraft fueling
system must be designed with capability to generate sufficient turbulent flow to flush
sediment and condensed water from all portions of piping systems. Refer to Chapter 9
of this UFC for fuel velocity criteria.
63
UFC 3-460-01
16 August 2010
4-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains information on fueling facilities. Do not
begin the design on any fueling system without first becoming completely familiar with
Chapters 2 and 9 of this UFC and with the airfield clearance requirements found in UFC
3-260-02.
4-3.1
Pipeline Receiving Facilities
ED
4-3
RECEIVING FACILITIES
Fuel deliveries to a military aviation activity are normally made by tank truck, railroad
tank car, barge, or pipeline. A secondary method of delivery is normally required.
Service Headquarters, with concurrence from the DESC, will determine the appropriate
type of delivery method based on mission requirements and an economic analysis.
Equipment Required
C
4-3.1.2
EL
L
4-3.1.1
General Criteria
Petroleum fuels may be supplied to aviation turbine fuel storage tanks by interterminal
pipelines or installation pipelines. Interterminal pipelines may be dedicated to serving
the particular facility or may be commercial pipelines handling a number of types or
grades of fuel for more than one user. Installation pipelines will normally be a pipe from
the bulk facility to the aircraft fueling facility. Provide for separate receiving and
distribution piping for each grade of aviation turbine fuel unless otherwise approved by
Service Headquarters. Exercise extreme care to avoid designing a system that could
create damaging surges in the pipeline created by quick closing valves.
C
AN
a) Provide pressure-regulating diaphragm control valves to reduce
pipeline pressures to the design pressure of the facility’s piping and
equipment. Provide a manual isolation valve at both the upstream and
downstream side of each diaphragm control valve. Prior to designing
any features into the system which might affect the flow from a
pipeline, contact the operator of the pipeline to ascertain the current
operating conditions, evaluate the use of diaphragm control valves,
conduct a surge analysis of the pipeline, and determine whether the
use of diaphragm control valves is appropriate.
b) Provide a meter at the receiving end of the line to measure quantities
of fuel received. Turbine-type meters are commonly used for pipeline
receipt. However, positive displacement meters are acceptable if
available at the required flow rate. Consider the use of alternative
meter technologies such as ultrasonic meters. Compensate for fuel
temperature at the point of custody transfer. Provide a basket strainer
on the upstream side of the meter and connections for proving the
meter with a portable prover. A meter prover connection consists of a
manual isolation valve in the main pipeline with a tee on both the
upstream and downstream sides of the valve. The branch of each of
64
UFC 3-460-01
16 August 2010
the tees has a manual isolation valve and a hose connection. The
master meter can be attached to the hose connections.
c) Provide a means for sampling each pipeline product at a breakout
manifold.
ED
d) Provide provisions for a contractor to bolt pig launchers and receivers
to the system for pigging. Arrange pig receiving connections to avoid
introducing pipeline sludge and sediment into the tanks. Pig launching
and receiving connections are required for interterminal (cross-country)
and installation (as described in Chapter 6 of this UFC) underground
pipelines.
e) Provide an interface tank to receive mixed fuels at the beginning and
ending of a shipment unless the commercial pipeline company can
provide this service satisfactorily.
AN
C
EL
L
f) Provide a breakout tank only if pipeline flow cannot be stopped due to
pipeline operational requirements. Provide valves to divert the flow of
fuel from the pipeline to the breakout tank in the event fuel transfer is
blocked by a manual or automatic valve within the fuel facility system
such that the fuel facility system would be overpressurized from
transient surge or high pressure from deadheading a pipeline supply
pump. Provide appropriate breakout tank overfill alarms and alarm
breakout operation so fuel facility operators can take necessary steps
to stop pipeline flow. Provide means of transferring fuel out of
breakout tank back to fuel systems after a breakout event. Conduct a
thorough review with the pipeline operator and perform a transient
surge analysis to determine if surge pressure reduction methods are
required to avoid damage to the pipeline.
C
g) Provide means of inbound filtration for all products. The selection of
filtration depends on anticipated impurities, the source of fuel, and the
shipping methods. Avoid the use of water slug shutoff diaphragm
control valves or other rapid-closing valves on pipeline receipt facilities.
See the “Special In-Bound Filtration” paragraph and Table 4-1 of this
Chapter of the UFC for details.
h) Provide manual isolation valves to isolate equipment for service.
i) Provide basket strainers upstream of meters and filtration.
j) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
65
UFC 3-460-01
16 August 2010
k) Provide a concrete housekeeping pad and, unless otherwise directed
by Service Headquarters, a canopy to protect fixed facilities assets and
equipment from the elements. See the “Canopies” paragraph of this
chapter.
4-3.2
Tank Truck and Tank Car Off-Loading Facilities
ED
4-3.2.1
General Criteria
Fuel system operating tanks may be supplied with fuel by tank truck or tank car or both.
At facilities with pipeline or water transport as their principal supply source, provide tank
truck or tank car deliveries as a secondary supply source. Tank truck deliveries are the
most common method. However, special transportation considerations or changing
circumstances may make the use of rail facilities desirable. Therefore, at an activity
with railroad service, arrange a tank truck receiving facility so that the system can be
easily and economically extended to the existing rail spur. See Facility Plate 002.
EL
L
a) The preferred off-loading method is into a drop tank off-loading system.
See Facility Plate 003.
b) Provide a packaged off-loading system when a drop tank type offloading system is not practical for off-loading tank trucks or tank cars
due to environmental concerns, site limitations, or cost considerations,
and/or when directed by Service Headquarters. See Facility Plate 004.
C
c) Provide a direct off-loading system when only an occasional tank truck
requires off-loading and when directed by Service Headquarters. See
Facility Plate 005.
AN
d) Do not locate tank truck or tank car receiving facilities closer than 50
feet (15 m) from tanks, buildings, roads, overhead power lines, padmounted transformers, and property lines. Comply with NFPA 30 and
assume that the property line is the fuel farm fence. Use the criteria for
Class I liquids regardless of product and do not take a reduction for
fixed fire protection.
C
e) Provide an adequate number (minimum two) of positions to off-load the
daily fuel requirements of the facility in an 8-hour period without
causing detention or demurrage of delivery conveyances.
f) Provide separate off-loading connections for each type of fuel to be
handled. To facilitate the use of tank trucks with multiple independent
compartments, provide a hose manifold with a minimum of two
connections per tank truck. A manifold with hose connections equal to
the number of truck compartments is recommended for quick
turnaround. If less than five connections are provided, provide a blind
flange on the end of the manifold to accommodate additional
connections.
66
UFC 3-460-01
16 August 2010
ED
g) Provide a containment area at each truck off-loading position
consisting of an impermeable retention and controlled drainage system
leading to a concrete remote spill containment system. Pave the
containment area consisting of the islands, the spaces between islands
and on each side of the outer islands, with concrete pitched a minimum
of one percent toward catch basins or trench drains. Design the
containment area in accordance with UFC 1-200-01, federal, state and
local regulations. Do not use asphalt within a spill containment area.
The maximum slope of any paving within a truck movement or parking
area shall not exceed 2 percent excepting rollover curbs. If a rollover
curb is provided, the sum of the vertical entrance and exit grades shall
not exceed 8 percent, the horizontal length of the curb in the direction
of truck movement shall not be less than 15 feet, and the rollover curb
shall be aligned perpendicular with direction of truck movement.
EL
L
h) At tank car off-loading areas, pave the containment area with concrete
(or otherwise provide containment) for an area extending from 5 feet
(1.5 m) outside of each outer rail and extending longitudinally 15 feet
(4.6 m) each way from the center of each loading position. Slope the
paved area to a spill containment system as described previously in
item (g).
C
AN
C
i) Provide a concrete remote spill containment system for each
containment area. Design the remote spill containment system in
accordance with UFC 1-200-01, federal, state, and local regulations.
Provide the remote spill containment system with capacity greater than
either the volume of the largest tank truck or tank car compartment to
be off-loaded or the runoff from a rainfall of intensity equal to a 5-year
expectancy for a 1-hour duration. Provide a lockable knife gate valve
with indicator post located outside the enclosure in an area that will be
safely accessible during a fire. The valve shall be lockable and
normally closed to allow for containment during fueling operations and
which can be opened to drain area when necessary. Tank trucks can
be as large as 10,000 gallons (38 000 L) in capacity and tank cars as
large as 40,000 gallons (151 000 L). If a canopy is installed, reduce
the sizing for rainfall, accounting only for wind-blown rain. Consider
combining the remote spill containment system with other spill
containment systems on-site, except with tank containment systems.
However, take the level of contamination in each containment area into
consideration.
j) Construct the drain piping between the containment area and the
remote spill containment system, and between the remote spill
containment system and lockable knife gate valve of petroleumresistant, fire-resistant, impermeable materials. Do not use clay,
concrete, fiberglass, or plastic piping materials.
67
UFC 3-460-01
16 August 2010
k) For off-loading tank trucks, arrange the flow of traffic to permit
continuous forward movement of trucks at all times. Commercial tank
trucks off-load on the passenger side.
l) To determine the number of connections needed for off-loading tank
cars, consult with Service Headquarters and consider minimizing tank
car movements, tank car shipping schedules, conveyance turn-around
times, local rail switching capabilities, and quantity of fuel needed for
one day’s fuel supply.
ED
m) Provide an electrical design that meets the minimum requirements of
NFPA 70, NFPA 77, and NFPA 780. Treat combustible liquids under
pressure as a flammable liquid.
n) Provide a canopy for protection from the elements of fixed facility
assets and equipment per the “Canopies” paragraph of this chapter.
EL
L
o) Provide a canopy to preclude rain from the containment area when the
requirements listed in the “Canopies” paragraph of this chapter are
met.
p) Provide for egress and entrance of emergency response vehicles. The
egress and entrance routes need to be large enough to allow both,
trucks and emergency vehicles to leave and enter the facility
simultaneously.
AN
C
q) Provide means of inbound filtration for all products. The selection of
filtration depends on anticipated impurities, the source of fuel, and the
shipping methods. See “Special In-Bound Filtration” paragraph and
Table 4-1 in this chapter of this UFC.
C
4-3.2.2
Tank Truck and Tank Car Drop Tank Off-Loading System
The introduction of air into a fuel receiving system poses extreme hazards which can
result in fire and/or explosion. Hazards are compounded when an air/fuel mixture is
passed through receipt filter/separators where static electricity is generated and ignition
can occur. Design off-loading facilities so air is not introduced into the system. For
facilities with the capability to off-load several tank trucks at once or where newer tank
trucks with multiple hoses are connected to multiple isolated compartments, consider
providing an underground, gravity-type, receiving tank with deepwell turbine transfer
pumps and level controls. For smaller systems of one or two tank trucks, consider
providing a low profile, aboveground, receiving tank with a centrifugal transfer pump.
For either case, provide level sensors to control the transfer rate. Provide a meter on
the receipt line to the tank at points of custody transfer and when directed. For
materials of construction for off-loading drop tanks, refer to Chapter 8. See Facility
Plate 003.
68
UFC 3-460-01
16 August 2010
ED
4-3.2.3
Tank Truck and Tank Car Packaged Off-Loading System
For tank truck or tank car off-loading an off-loading drop tank may not be practical due
to environmental concerns, site limitations, or cost considerations. In these instances,
provide a 600 gpm (38 L/s) packaged off-loading system. Provide one packaged
system, including vertical inline centrifugal pump, diaphragm control valves to control
flow, meter, and multiple hose connections (one for each tank truck compartment), for
each tank truck or tank car receiving station. Provide an air eliminator tank to remove
air from the system, reducing the risk of an air/fuel mixture passing through receipt
filter/separators and preventing the metering of air. Level sensors in the air eliminator
tank control the pump discharge diaphragm control valves, modulating the flow rate
based on the level in the air eliminator tank. Refer to NAVFAC Drawing No. 1404005
and Facility Plate 004.
4-3.2.4
Tank Truck and Tank Car Direct Off-Loading System
Use when only an occasional tank truck requires off-loading and when directed by
Service Headquarters. Refer to Facility Plate 005.
Equipment Required
EL
L
4-3.2.5
a) When tank trucks or tank cars are off-loaded with a drop tank offloading system, do not provide an off-loading pump. Provide at least
two pumps in the drop tank to transfer fuel to the storage tank.
AN
C
b) When tank trucks or tank cars are off-loaded with packaged off-loading
systems, provide one system for each tank truck or tank car that is to
be off-loaded simultaneously, at an average capacity of 600 gpm (38
L/s) each. The number of systems shall be determined by Service
Headquarters but shall be a minimum of two. The capacity of the
systems may be reduced to 300 gpm (19 L/s) each only when directed
by Service Headquarters.
C
c) When tank trucks or tank cars are off-loaded with direct off-loading
systems, provide centrifugal pumps configured to provide automatic air
elimination as shown on Facility Plate 005. Provide at least two pumps
to allow continued operation if one is out of service. The capacity of
the pumps may be increased to 600 gpm (38 L/s) each only when
directed by Service Headquarters. The centerline height of suction line
from manifold to pump should not exceed 23.25 inches (591 mm)
above truck unloading, parked position. Locate the pump as close as
possible to the off-load point to prevent suction problems.
d) When tank trucks or tank cars are off-loaded with a drop tank offloading system, do not provide an off-loading pump. Provide at least
two pumps in the drop tank to transfer fuel from the drop tank to the
storage tank.
69
UFC 3-460-01
16 August 2010
e) Provide 4-inch (100 mm) diameter by 10-foot (3 m) long lightweight
reinforced vacuum rated off-loading hoses and covered hose storage
racks for each hose connection at each off-loading position. Ensure
that all swivels are non-lubricated aluminum or stainless steel in-line
repairable type.
ED
f) Equip each tank truck off-loading position with an electronic,
intrinsically safe, automatic, self-monitoring ground verification unit with
a lockable bypass. If grounding is not verified and there is an offloading pump dedicated to that position, ensure the unit prevents the
pump from starting. If the pump is not dedicated, ensure an alarm
sounds if the off-loading valve is opened prior to grounding verification.
Include a separate grounding reel to accommodate vehicles without
grounding equipment.
EL
L
g) Provide emergency fuel shutoff (EFSO) pushbutton stations. For truck
off-loading stations with multiple positions, an EFSO pushbutton
station is required for each position and along routes of personnel
ingress and egress between 100 and 200 feet from the off-loading
position. Design in such a manner that activation of the emergency
stop will shutoff all fueling in the off-loading area and/or it associated
pumphouse or pump pad.
h) Provide fuel sampling connections at each position for each product
line for collecting test samples.
AN
C
i) Provide pressure gauges on both sides of each strainer or a differential
type gauge across each strainer. Where a strainer is upstream of a
pump, the pump suction gauge may function as the strainer
downstream gauge.
j) Provide a compound (pressure/vacuum) gauge on the inlet side of the
pumps and a pressure gauge on the outlet side of pumps.
C
k) If system is for JP-5 or other fuel that does not have a static dissipation
additive which provides a conductivity level greater than 50
picosiemens, and a 30-second retention time is not provided between
filter/separator and receiving tank, provide a relaxation tank or design
the piping layout to provide the required 30-second relaxation time
downstream of filter/separator.
l) Provide basket strainers upstream of pumps, meters and receipt
filtration.
m) Provide a combination flow control and non-surge check diaphragm
control valve on all off-loading pumps except positive displacement
types. If a bulk air eliminator with automatic air release head is
70
UFC 3-460-01
16 August 2010
included, provide a means of closing the diaphragm control valve with
a solenoid pilot.
n) Provide a positive displacement or turbine meter and meter proving
connections. Provide meter with temperature compensation capability
wherever custody transfer occurs. Provide a basket strainer on the
upstream side of the meter.
ED
o) On each off-loading connection or on the off-loading riser, install a
visual fuel flow indicator (maximum pressure 275 psi (1900 kPa) at 100
degrees F (38 degrees C), with Viton Seals with a maximum
temperature rating of 350 degrees F (177 degrees C)). This will allow
visual quality assurance and provide the operator with a backup
system to shut off the pumps when off-loading is complete to prevent
air build-up in the receipt lines.
EL
L
p) Provide filter/separators and other filtration devices as described in
Table 4-1 to filter fuel before it enters the storage tank.
q) Provide manual isolation valves to isolate equipment for service.
r) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
AN
C
s) For JP-8 systems, provide a capability to defuel JP-8 refueler trucks
back into operating storage as described in the paragraph titled
“Defueling and Return-to-Bulk Systems” in this chapter.
t) Where tank trucks or tank cars are off-loaded into drop tanks provide a
meter on the receipt line to the tank only when directed by Service
Headquarters.
C
4-3.3
Marine Off-Loading Facilities
See Chapter 5 of this UFC
4-3.4
Special In-Bound Filtration
Where fuel is transferred to the base fuel system operating tanks from tankers, barges,
or directly from the supplier (off base) by a multi-product pipeline, pass the fuel through
strainers, then pre-filtration, then fine filtration. In other cases, pass the fuel through
strainers and fine filtration only. See Table 4-1 of this chapter for details.
4-4
DISPENSING FACILITIES
4-4.1
Refueler Truck Fillstands
Mission and turn-around times will establish the number of fill positions, with two being
the minimum. Service Headquarters can assist in determining the number. See Facility
71
UFC 3-460-01
16 August 2010
Plates 006 and 007 for general design guidance and also DoD Standard Design AW 7824-29, Type IV/V. Provide a separate loading system for each grade or type of fuel to
be handled.
4-4.1.1
General Criteria
ED
a) Locate the refueler loading facility as close as practical or permissible
to the location of the aircraft to be fueled but not less than 50 feet (15
m) from tanks, buildings, roads, overhead power lines, pad-mounted
transformers, and property lines.
EL
L
b) For aircraft direct fueling systems, the fuel supply piping to the refueler
truck loading facility may be a spur or extension from that system and
constructed of the same material as that system. In this case, the
filter/separators are not required since they are provided as part of the
aircraft direct fueling system. Where filtration is downstream of the
pump house and the spur connects prior to the filtration equipment, a
filtered lateral is required.
C
c) Arrange fuel loading equipment on one or more concrete islands
configured for refueling on one side only. Make the direction of traffic
appropriate for the location of the loading connections on the refueler,
located on the driver's side. When more than one island is required
because of the volume or number of fuel grades to be handled,
arrange them in a parallel fashion with approximately 15 feet (4.6 m)
between adjacent sides. Arrange the islands and approaches to allow
forward motion for all trucks at all times with ample room for turning.
Allow for egress and entrance of emergency response vehicles.
C
AN
d) Provide a containment area at each truck loading position, consisting
of an impermeable retention and controlled drainage system leading to
a concrete remote spill containment. Pave the containment area
consisting of the islands, the spaces between islands and on each side
of the outer islands, with concrete pitched a minimum of one percent
toward catch basins or trench drains. Design the containment areas in
accordance with UFC 1-200-01, federal, state, and local regulations.
Do not use asphalt within a spill containment area. The maximum
slope of any paving a within truck movement or parking area shall not
exceed 2 percent excepting rollover curbs. If a rollover curb is
provided, the sum of the vertical entrance and exit grades shall not
exceed 8 percent, the horizontal length of the curb in the direction of
truck movement shall not be less than 15 feet, and the rollover curb
shall be aligned perpendicular with direction of truck movement.
e) At tank car loading areas, pave the containment area with concrete (or
otherwise provide containment) for an area extending from 5 feet (1.5
m) outside of each outer rail and extending longitudinally 15 feet (4.6
72
UFC 3-460-01
16 August 2010
m) each way from the center of each loading position. Slope the
paved area to a spill containment system as described previously in
item (d).
EL
L
ED
f) Provide a concrete remote spill containment system for each
containment area. Design the remote spill containment system in
accordance with UFC 1-200-01, federal, state, and local regulations.
Provide the remote spill containment system with capacity greater than
either the volume of the largest refueler to be loaded or the runoff from
a rainfall of intensity equal to a 5-year expectancy for a 1-hour
duration. Provide a lockable knife gate valve with indicator post
located outside the enclosure in an area that will be safely accessible
during a fire. The valve on the drain system shall be lockable and
normally closed to allow for containment during fueling operations and
which can be opened to drain the area when necessary. Tank trucks
can be as large as 10,000 gallons (38 000 L) in capacity. If a canopy
is installed, reduce the sizing for rainfall, accounting only for windblown rain. Consider combining the remote spill containment systems
with other spill containment systems on-site, except with tank
containment systems. However, take the level of contamination in
each containment area into consideration.
C
g) Construct the drain piping between the containment area and the
concrete remote spill containment system, and between the remote
spill containment system and lockable knife gate valve of petroleumresistant, fire-resistant, impermeable materials. Do not use clay,
concrete, fiberglass, or plastic piping materials.
AN
h) Load aircraft refueler trucks by bottom loading only. Design the
system to deliver a nominal flowrate of 600 gpm (38 L/s) with a
pressure refueling nozzle pressure of 35 psig (240 kPa). System
design shall take into consideration pressure and flow settings to
prevent damage to bottom loader. Contact Service Headquarters for
further direction.
C
i) Provide a canopy for protection from the elements of fixed facility
assets and equipment per the “Canopies” paragraph of this chapter.
j) Provide a canopy to preclude rain from the containment area when the
requirements listed in the “Canopies” paragraph of this chapter are
met.
k) Design all electrical systems and apparatus for use in Class I, Division
1, Group D, hazardous areas in accordance with NFPA 70, regardless
of the type of fuel dispensed.
73
UFC 3-460-01
16 August 2010
l) Provide for egress and entrance of emergency response vehicles. The
egress and entrance routes need to be large enough to allow both,
trucks and emergency vehicles, leaving and entering the facility.
m) For JP-8 systems, provide a capability to defuel JP-8 refueler trucks
back into operating storage as described in the paragraph titled
“Defueling and Return-to-Bulk Systems” in this chapter.
ED
4-4.1.2
Equipment Required
Provide separate piping, pumps, loading connections, and controls for each different
type or grade of fuel. Provide an individual isolation valve for each fill connection.
Include the following equipment in each refueler truck fillstand:
a) Self-closing emergency valve with 165 degrees F (74 degrees C)
fusible link (These valves are not required nor permitted on Air Force
projects).
EL
L
b) Provide manual isolation valves to isolate equipment for service.
c) Provide thermal relief valves around isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
C
d) Provide filter/separator, unless fillstand is supplied from an aircraft
direct fueling system via a non-ferrous branch connection downstream
of the issue filter/separator.
AN
e) Positive displacement or turbine meter with rated capacity equal to the
maximum flow of the loading station and the following accessories:
If custody transfer point: a combination ticket printer and large
numeral zero reset counter with self-closing weatherproof cover.
Ticket printer not required on Army or Air Force projects.
(2)
Pulse transmitter of the photoelectric, high resolution type
required for projects which employ electronic data acquisition
systems.
C
(1)
(3)
Temperature compensation if at a custody transfer point.
f) Provide relaxation tank or piping configuration with sufficient capacity
to retain the maximum flow of the loading station for 30 seconds from
the time the fuel leaves the last piece of filtration equipment to the fuel
reaching the loading pressure refueling nozzle. Applies only to JP-5 or
other fuels which do not have a static dissipation additive that provides
a conductivity level greater than 50 picosiemens per meter.
74
UFC 3-460-01
16 August 2010
g) Mechanical loading arm. The preferred device is a non-lubricated,
swiveled, stainless steel, counterbalanced mechanical loading arm. As
an option, with the approval of Service Headquarters, use a loading
hose approximately 10 feet (3 m) long, 3 or 4-inch (75 or 100 mm)
nominal diameter, and meeting requirements of EI Std 1529. A spiral
protective device (slinky) may be installed around the hose. House the
hose in a covered hose tray to protect from ultraviolet damage. Install
with a non-lubricated stainless steel in-line repairable swivel.
ED
h) SAE AS5877 pressure refueling nozzle of size and type compatible
with truck-loading connections (coded for product use, if more than one
type of fuel is issued at the fillstand). Connect the pressure fueling
nozzle to the loading arm or hose with a dry-break quick disconnect.
EL
L
i) Sample outlet with a 1/4-inch (8 mm) diameter sample point with
probe, ball valve, and quick disconnect at each position for each
product line.
j) Make provisions to start and stop the pumps with start and stop pump
controls at each position. Include pump status indicator light on control
box.
k) A hydraulically operated diaphragm control valve with the following
functions (care must be taken to select equipment which is compatible
with electronic or mechanical meter stacks):
C
Adjustable rate of flow control if fillstand is on a branch line from
an aircraft direct fueling system or other multiple pump
arrangement which could result in issue exceeding 600 gpm (38
L/s).
AN
(1)
Pressure regulating to maintain desired upstream or downstream
pressures.
(3)
Adjustable time delay for opening and closing speed control.
(4)
Control valve to close in the event of diaphragm failure.
(5)
Thermal relief to relieve excessive pressures caused by thermal
expansion of liquid trapped between shutoff points.
(6)
Position indicator.
(7)
Solenoid Shutoff. Interlock the solenoid with the electronic highlevel shutoff, ground verification, and deadman control.
C
(2)
l) Provide each fill position with an electronic high-level shutoff, ground
verification, and deadman control system. The system shall be
75
UFC 3-460-01
16 August 2010
ED
intrinsically safe and self-checking. Interlock the system with either the
solenoid operated truck loading diaphragm control valve or the pump
such that the valve cannot remain open or the pump cannot operate if
the tank truck compartment is full, the tank truck is not grounded, or
the deadman is released. Ensure the system is compatible with both
electronic and fiber optic sensors with manual-keyed bypass. (May
require a parallel effort beyond the project scope to ensure that all
trucks using the facility have compatible connections. If facility has
trucks that do not have fixed probes, use cane probes instead.) (This
unit is optional on Army projects with only tactical refuelers. Contact
the Service Headquarters for guidance.)
EL
L
m) Provide emergency fuel shutoff (EFSO) pushbutton stations. For
fillstands with multiple positions, an EFSO pushbutton station is
required for each position and along routes of personnel ingress and
egress between 100 and 200 feet from the fillstand. Design in such a
manner that activation of the emergency stop will shutoff all fueling at
that pump house or pump pad.
n) Low-intensity area lighting, in accordance with API RP 540, to permit
full visibility of all equipment and controls during night operations.
o) Refer to Chapter 2 of this UFC for information on vapor collection and
recovery or disposal systems.
C
p) On/off station for pumps, if pumps are dedicated to fillstand. Provide a
light to indicate on/off status.
AN
q) Grounding reel and grounding plate as detailed in Standard Design
AW 78-24-29, Type III with multiple connections.
r) Provide basket strainer upstream of pumps, meters, and where a
filter/separator is not provided at the load rack.
s) Pressure gauge.
C
t) Maintenance drains.
u) Vents.
v) Provide hydraulic shock surge suppressors (if required).
w) For JP-8 systems, to allow defueling of refueler trucks, provide a
Return-To-Bulk (RTB) station by providing a MIL-STD MS 24484
aircraft refueling adapter a point upstream of receipt filtration.
Acceptable locations include the return line at a truck fillstand, the
return line at a hydrant hose truck check-out station, the return line at a
pantograph flush station, the product recovery tank, or at a truck
76
UFC 3-460-01
16 August 2010
off-load station. Provide one SPR connection per group of fillstands or
truck off-load stations. If into a product recovery tank, do not bypass
the level control valve.
x) Meter proving connections, unless local procedure provides an
alternative.
C
AN
C
EL
L
ED
4-4.2
Aircraft Direct Fueling Systems
Aircraft direct fueling systems are fuel systems that deliver fuel directly into an aircraft
and require additional fueling hardware, such as a hydrant hose truck, pantograph, or
hydrant hose cart. These may be Type III hydrant systems (DoD Standard Design AW
78-24-28) for portable pantographs or hydrant servicing trucks/carts; or may be hard
piped with fixed pantographs, which is usually the case for Type V in-shelter fueling
(DoD Standard Design AW 78-24-29) and Type IV hot fueling stations (DoD Standard
Design AW 78-24-29). While individual components may vary slightly between the
various aircraft fueling systems, the basic philosophy of a system configured in a loop
with no dead ends, is followed by all the services. The loop is made up of the
supply/return piping with a flushing/back-pressure control valve that maintains a
constant pressure on the supply side piping and relieves excess fuel not taken on by the
aircraft(s) into the return portion of the piping and back to the tank. The lead pump is
turned on either automatically by a drop in the system pressure or manually by an on/off
switch at each direct fueling station. A venturi in the supply piping senses flow rate in
the loop and works in conjunction with a venturi in the return loop. Depending on the
flow demand, the return venturi turns on/off additional pumps as required. If return flow
is below a preset limit (indicating that fuel is being dispensed), a low flow is sensed and
additional pump(s) are turned on, one at a time, until a steady flow condition is reached.
Conversely, if the return flow is above a preset limit (indicating less fuel is being
dispensed), the return venturi senses high flow conditions and turns the pump(s) off,
one at a time, until the system is brought to rest. The continued circulation of the fuel
not only provides a self-cleaning action but when properly adjusted, the system is able
to more closely match the varying fuel filling rates of aircraft. This provides smooth
operation and helps eliminate destructive surge pressure spikes. In order to ensure the
highest quality of fuel, contact with bare carbon steel is limited to an absolute minimum
prior to filtration and is not permitted downstream of the issue filter/separators, unless
specifically authorized by Service Headquarters.
4-4.2.1
General Requirements
Install aircraft direct fueling systems only when specifically authorized. Service
Headquarters or MAJCOMs assist in determining the number and type of stations
required by the activity and with locating hydrant pits in aircraft parking ramps.
Construct new facilities only for issuing aviation turbine fuels through pressurized
refueling nozzles and closed circuit fueling nozzles. Locate fueling stations at the edge
of the aircraft parking apron or taxiways or at apron parking spots for large frame
aircraft. Size and configure these systems based on the types of aircraft to be refueled,
aircraft fuel capacity, and the number and types of aircraft to be simultaneously
refueled. A parking plan shall be approved before proceeding with the hydrant pit layout
design. Some aircraft, such as fighters and some helicopters, may be refueled with
77
UFC 3-460-01
16 August 2010
engines running. See Facility Plates 008, 009 and 010. For additional guidance on Air
Force projects, refer to AFH 32-1084.
ED
4-4.2.2
Fixed-Wing Small-Frame Aircraft
Locate aircraft direct fueling stations for small-frame aircraft (carrier aircraft, patrol
aircraft, fighter aircraft, and small transports) along the edge of designated access
ramps, aprons, or fueling lanes with easy access by aircraft and as close to their normal
taxi routes as practical while still meeting centerline clearance requirements. Provide
facilities for fueling aircraft with engines or support equipment running. These systems
are installed where the mission dictates a continuing need for rapid turnaround without
shutting engines down and are located to permit quick return to the runway. Configure
taxi patterns to and from fueling stations to keep jet blast away from people. Refer to
DoD Standard Design AW 78-24-29 and Navy Definitive Design No. 1404000. Use the
following design criteria:
EL
L
a) Outside of the limits prescribed for clear areas by UFC 3-260-01 and
UFC 3-260-02, locate the equipment aboveground on a concrete slab
adjacent to the edge of an access ramp, apron, or fueling lane. Ensure
that the width of the slab and location of the equipment, including the
pantograph when retracted, with respect to the ramp, apron, or fueling
lane, does not interfere with any part of the aircraft on its approach to
or departure from the fueling station. Equip Army and Navy hot fueling
stations with an emergency dry breakaway coupling.
C
b) Limit the height of the equipment, including lighting, on the slab to no
more than 30 inches (762 mm) above nominal grade. Contact Airfield
Manager for additional clearances.
C
AN
c) Provide a nominal maximum flow rate for each direct fueling station of
600 gpm (38 L/s). However, design the system to deliver 400 gpm (25
L/s) with a nozzle pressure of 35 psig (240 kPa). Ensure adequate
pump design for 600 gpm flowrate. (In general, systems designed to
deliver 400 gpm at 35 psig have been shown to be fully capable of
delivering 600 gpm with a nozzle pressure reading of 10 to 20 psig.)
Actual fueling rates for small-frame aircraft range from 250 to 550 gpm
(16 to 35 L/s). Since the actual flow rate will vary as the nozzle back
pressure varies, it is necessary to limit the maximum nozzle pressure
to 55 psig (380 kPa) at the skin of the aircraft to protect the aircraft.
The issue venturi in a pantograph is a critical component of the aircraft
direct fueling system and must be able to correctly simulate nozzle
pressure and compensate for all pressure losses up to and including
the fueling nozzle. Use maximum rates and the number of required
simultaneous refuelings for system sizing.
d) Provide at least two fueling stations, with the system sized for a
minimum flow rate of 1,200 gpm (76 L/s). Where more than two
fueling stations are required, increase the total system rate by 600 gpm
78
UFC 3-460-01
16 August 2010
(38 L/s) for every three additional fueling stations. Service
headquarters and Major Command approval are required for systems
exceeding 2400 gpm. However, systems are not recommended to
exceed 3,000 gpm (including spare pump).
ED
e) DOD has two variations of the standard design for fixed-wing, small
frame aircraft direct fueling stations – Type IV (DoD Standard Design
AW 78-24-29) and Type V (DoD Standard Design AW 78-24-29). Both
variations use pantographs for fueling the aircraft. The Type V is the
same as the Type IV except that the refueling points are located in
hardened aircraft shelters. The Type V variation is also known as inshelter refueling.
EL
L
f) Both hose-end and hoseless pantographs can be used with either
Type IV or Type V aircraft direct fueling systems. Contact the service
headquarters for which type of pantograph to use. Use SAE AS5877
pressure refueling nozzles on pantographs. Equip pantographs on
Navy/Marine Corps projects with 55 psi hose end pressure regulators
located just before the refueling nozzle. Refer to DoD Standard
Design AW 78-24-29, Type IV/V.
4-4.2.3
Large-Frame Aircraft
Locate aircraft direct fueling stations for large aircraft (transports, cargo planes, tankers,
long-range patrol planes, and bombers) adjacent to their normal parking positions. Use
the following design criteria:
AN
C
a) Individually determine the number of fueling stations required for each
activity. This depends on the number of large aircraft based at the
activity or the number of aircraft that will need refueling as transients.
To accommodate the fueling of a number of aircraft within a given time
span without moving them, more fueling stations are normally required
than would actually be used at one time.
C
b) Provide a flow rate criteria for each fueling station of 600 gpm (38 L/s)
or 1,200 gpm (76 L/s) at 45 psig (310 kPa) nozzle pressure. The
selection of 600 gpm (38 L/s) or 1,200 gpm (76 L/s) is based on
aircraft. Contact MAJCOM for guidance. Size combined system
requirements in multiples of 600 gpm (38 L/s), starting at a minimum
flow rate of 1,200 gpm (76 L/s) up to a maximum flow rate of 2,400
gpm (152 L/s).
c) Design the piping, hydraulics, materials, and pumps in accordance with
other paragraphs in this chapter.
d) Large aircraft such as transports and cargo planes can be fueled from
flush-mounted hydrant pits (preferred method for Air Force projects).
Flush-mounted hydrant pits are required to conform to DoD Standard
Design AW 78-24-28 for Type III hydrant systems. Pantographs can
79
UFC 3-460-01
16 August 2010
be used where normal aircraft parking positions can be located
adjacent to edge of the ramp (fixed long-reach pantographs have a
maximum reach of 135 feet (41 m)).
ED
e) Use self-propelled hydrant hose trucks, Type III hydrant hose carts, or
detachable pantograph assemblies to provide the connection from the
flush-mounted hydrant pits to the aircraft and the necessary controls.
Provide a hydrant control valve that is hydraulically or pneumatically
actuated and operated, depending on the type of mobile refueling
equipment used. In order to ensure that the control valve is always in
control and modulating and thus able to protect the aircraft, provide a
differential pressure pilot with a set point of 15 psi (100 kPa). Provide
Navy fueling stations with hose end controllers to limit pressure at the
aircraft skin.
EL
L
f) Equip pantographs in accordance with DoD Standard Designs. When
incorporating the detachable pantograph into the design, follow
USAFE/NATO specifications in which the swivels contain in-line
repairable roller bearings. In addition, include the pantograph(s) as
part of the construction project. Normally, the number of pantographs
required equals the number of simultaneous refuelings to be
performed.
C
AN
C
g) The Air Force large-frame aircraft direct fueling system is referred to as
a Type III pressurized fueling system. The Type III fueling system, or
the constant pressure system, is the standard hydrant fueling system
for large-frame aircraft. It is comprised of two operating storage tanks,
a pump house, a hydrant loop, and hydrants at each parking position.
The system is controlled by two redundant PLCs and is constantly
pressurized when in operation. Fuel is pumped from the tanks,
through filter separators and a supply venturi into the hydrant loop. It
flows through the appropriate hydrant valve, through a hydrant
servicing vehicle or mobile pantograph, into the aircraft if refueling is
underway. A backpressure control valve keeps system pressure at a
pre-set level and a return venturi measures flow back to the storage
tank. Working in conjunction with the return venturi, pumps are turned
on and off depending on refueling requirements. This system is sized
in 600 gpm (38 L/s) increments up to 2,400 gpm (152 L/s). Issue
pumps are sized to provide a minimum of 100 psi (690 kPa) at the
outlet of the most distant hydrant adapter. Each hydrant pit control
valve is equipped with a pressure control and surge shutdown pilot.
These pilot controls are set at 45 psig (310 kPa) and 50 psig (345
kPa), respectively. The hydrant control valves allow nominal flow rates
up to 900 gpm (57 L/s) using a 4-inch valve and nominal flow rates up
to 1200 gpm (76 L/s) using a 6-inch valve. Contact Service
Headquarters for specific guidance and sizing of the hydrant control
80
UFC 3-460-01
16 August 2010
valve. Refer to DoD Standard Design AW 78-24-28 for Type III
hydrant systems.
4-4.2.4
Helicopters
Refer to DoD Standard Design AW 78-24-29, Type IV, and use the following design
criteria for designing direct fueling systems for helicopters:
ED
a) Design piping, pumps, controls, accessories, and auxiliary systems in
accordance with other applicable paragraphs of this chapter. For each
direct fueling station, provide a nominal maximum flow of 300 gpm (19
L/s). Design system to be capable of delivering 275 gpm (17 L/s) at 35
psig (240 kPa) nozzle pressure. Make the minimum size system 600
gpm (38 L/s) with at least two fueling stations. For diversity usage,
increase by 300 gpm (19 L/s) for every three additional fueling stations.
At outlying fields and with Service Headquarters’ approval, a single
fueling station may be used.
EL
L
b) Provide aboveground direct fueling stations equipped identical to fixedwing small-frame aircraft fueling stations. Design the horizontal
position and vertical projection of fueling equipment to avoid
interference with the helicopters' blades when in the drooped attitude.
c) Coordinate the type of pressure refueling nozzle, SAE AS5877 or
closed-circuit, with the end user.
AN
C
4-4.2.5
Surface-Effect Hovercraft
Turbine-powered, surface-effect hovercraft can be fueled on the parking apron with
aircraft direct fueling systems. Use a 200 gpm (13 L/s) maximum fueling rate at 30 psig
(207 kPa) nozzle pressure. The fueling hardware components are similar to those
required for aircraft direct fueling with JP-5. Orient fueling stations so that the blast
generated from the turbine engine does not damage the direct fueling station
components. Refer to DoD Standard Design AW 78-24-29, Type IV.
4-4.3
Marine Loading Facilities
See Chapter 5 of this UFC.
C
4-5
PIPING SYSTEMS
Refer to Chapter 9 of this UFC for information and guidelines regarding piping systems.
4-5.1
Product Segregation
Except as otherwise approved by Service Headquarters, prevent contamination of
aviation turbine fuel by providing separate receiving, storage, and distribution systems
for each product. Except as otherwise approved by Service Headquarters prevent
misfueling (transferring a type of fuel other than that intended) by using different size
piping, valves, adaptors, nozzles, etc.
81
UFC 3-460-01
16 August 2010
4-6
EQUIPMENT DESCRIPTIONS
The appropriate guide specifications and/or standard design will provide specific
information for equipment selection. Make provisions to drain equipment for
maintenance. Provide hard piped drains when the equipment holds more than 5 gallons
(19 L) of fuel or when a pipe which drains to the product recovery tank is within 12 feet
(3.7 m) of the equipment.
ED
4-6.1
Bulk Air Eliminators
Use flange-connected, steel bodied bulk air eliminator of the desired pressure and flow
rating for the applicable service requirement. Include an automatic air release head and
interlock the equipment with a float or solenoid-operated hydraulically operated
diaphragm control valve. Provide discharge piping to the product recovery tank or other
safe means of containment.
EL
L
4-6.2
Meters
Provide meters with swivel mounted counter heads at truck fillstands to accommodate
varying truck and operator positions.
AN
C
4-6.2.1
Meters – Positive Displacement
Use flange-connected, cast steel bodied (except aluminum or stainless steel if after the
issue filter/separator) positive displacement meters of the desired pressure and flow
rating for the applicable service requirements. Ensure meter has case drain and
register. Provide temperature compensation and adjustable calibration capabilities
where there is custody transfer. Ensure meter accessories are compatible with either
the mechanical or electronic support equipment selected. Provide an accuracy of plus
or minus 0.5 percent when used for custody transfer. Consult the appropriate Service
Headquarters for requirements for the meter to communicate to a remote location or
equipment. Consider the use of a card-operated or key-operated data acquisition
system. Cards or keys, as appropriate, are coded to identify the receiver of the fuel and
to allow access to the fuel. The quantities taken are transmitted to a data-receiving
device by electronic pulse transmitters mounted on each meter, and each transaction is
automatically recorded.
C
4-6.2.2
Meters – Turbine
Use flange-connected, stainless steel-bodied turbine meters of the desired pressure
and flow rating for the applicable service requirement. Provide a flow straightener
before turbine meters or provide a straight length of pipe at a minimum of ten pipe
diameters upstream and five pipe diameters downstream of all turbine meters, or as
required by manufacturer. Ensure meter has case drain and register. Provide
temperature compensation and adjustable calibration capabilities where there is
custody transfer. Ensure all supporting equipment for meter is compatible with the
turbine meter selected. Provide an accuracy of plus or minus 0.5 percent when used for
custody transfer. Consult the appropriate Service Headquarters for requirements for the
meter to communicate to a remote location or equipment. Consider the use of a cardoperated or key-operated data acquisition system. Cards or keys, as appropriate, are
coded to identify the receiver of the fuel and to allow access to the fuel. The quantities
82
UFC 3-460-01
16 August 2010
taken are transmitted to a data-receiving device by electronic pulse transmitters
mounted on each meter, and each transaction is automatically recorded.
ED
4-6.3
Pressure or Pressure/Vacuum Gauges
Use liquid-filled gauges of range and dial size, as necessary, but not less than 0 to 160
pounds per square inch (0 to 1100 kPa) pressure range and 4-inch (100 mm) diameter
dial. Gauges are to be of all stainless steel construction, with black graduations on a
white face. For locations where the temperature exceeds 100 degrees F (38 degrees
C), consult Service Headquarters for direction on the possible use of gas-filled gauges.
For locations where the temperature is less than -40 degrees F (-40 degrees C), use
appropriate gauge liquid that will not freeze to prevent damaging the gauge.
a) Consider the location, year-round weather conditions, and service
requirements for the type of liquid filling to be used.
b) Gauge liquids and service ranges:
Range
0 °F to 400 °F
(-18 °C to 204 °C)
-40 °F to 600 °F
(-40 °C to 316 °C)
EL
L
Liquid
Glycerin
Silicone
c) Provide a lever handle gauge cock and pressure snubber in each
pressure gauge connection.
AN
C
d) Provide indicating and recording pressure gauges on suction and
discharge lines for interterminal pipeline pumping stations and on the
incoming line at the delivery terminal of each such pipeline, if required
by Service Headquarters.
e) Pressure gauges shall be installed so that they are testable without
removing them from the piping.
C
4-6.4
Strainers
Require a strainer to protect centrifugal pumps, unless it precludes meeting the net
positive suction head of the pump. Whether or not strainers are installed on the suction
side of centrifugal pumps, require a spool piece so that temporary strainers can be
installed during startup of the system. Strainers are required on the suction side of all
positive displacement pumps, meters and receipt filtration. Strainers are not required
upstream of issue filter/separators or diaphragm control valves. Also:
a) Use flanged basket strainers constructed of steel and fitted with
removable baskets of fine Monel metal or stainless steel mesh with
large mesh reinforcements. Provide quick opening, single screw type
with drain connection in bottom.
83
UFC 3-460-01
16 August 2010
b) Provide a fine screen mesh as follows:
Pump suctions (Centrifugal)
Pump suctions (Positive
Displacement)
Receipt Filtration
Meter inlets (unless downstream
of a filter/separator)
Mesh
7
Size of Opening
0.108 inch (2.74 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
ED
c) In all cases, ensure the effective screen area is not less than three
times the cross sectional area of the pipe.
d) Provide pressure gauges on both sides of the strainer or a differential
type gauge across the strainer.
AN
C
EL
L
4-6.5
Surge Suppressors
Every effort should be made to control hydraulic surge or shock to acceptable limits by
the design of the piping system rather than by the use of surge suppressors. Where
this is not possible or becomes extremely impractical, surge suppressors may be
incorporated. Use the diaphragm or bladder type equipped with a top-mounted liquidfilled pressure gauge, wafer-style check valve at the bottom, drain above the check
valve, and isolation valve. Provide a needle valve around the check valve to permit
controlled bleed back of the surge suppresser without rebounding. Locate surge
suppressors as close as possible to the point of shutoff that is expected to cause the
shock. Surge suppressors can reduce shock pressure but will not eliminate it entirely.
The preferred solution to hydraulic shock is conservative piping design, use of loops,
and slow-closing valves. Surge suppressors are strictly a last resort solution and
require the approval of Service Headquarters prior to designing into a system.
C
4-6.6
Filter/Separators
The common aviation turbine fuel contaminants are water, solids, surfactants, microorganisms, and miscellaneous contaminants. Solid contaminants are generally those
which are insoluble in fuel, most common are iron rust, scale, sand, and dirt. However,
metal particles, dust, lint from filter material and rags, gasket pieces, and even sludge
produced by bacterial action are included. The maximum amount and size of solids that
an aircraft can tolerate vary by aircraft type and fuel system. Close Tolerance
mechanisms in turbine engines can be damaged by particles as small as 1/20th the
diameter of a human hair. Filter/separators continually remove dirt and free water from
aviation turbine fuels. Ensure that the design requires two separate filtrations prior to
the fuel reaching the refueler truck fillstand, hydrant pit, or aircraft direct fueling station.
4-6.6.1
Design Requirements
All aviation turbine fuels pumped into an operating tank must pass through a
filter/separator. Provide a filter/separator on the discharge line from the operating
storage tank. Filter/separators are required for all aviation turbine fuel systems in
facilities where the fuel is dispensed directly to aircraft or is loaded on refuelers that
84
UFC 3-460-01
16 August 2010
eventually dispense the fuel to aircraft. As a minimum for such facilities, provide
filter/separators as follows:
a) Design and construct filter/separators in accordance with EI
Specification 1581(Edition 5).
b) Elements for filter/separators shall meet the standard sizes described
in DESC-X-P-2.
ED
c) Provide horizontal filter/separators. Provide vertical filter/separators
only where space constraints prohibit horizontal units. Provide access
to at least one side of every vertical unit via a separate (not attached to
the filter/separator), stand alone, fixed platform.
EL
L
d) Design and construct filter/separators in accordance with the American
Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel
Code Construct metal parts which will be in contact with the fuel,
including the shell, head, and internal attachments of 3003 or 5083
aluminum alloy. (The Air Force also allows interior epoxy-coated
carbon steel.) Include the following accessories:
Piston-type differential pressure gauge with 1 psi (5 kPa)
graduations across the elements. Pressure gauge shall be
testable without removal from the piping.
(2)
Sight glass on the water sump.
Hydraulically operated diaphragm control valve in the main
discharge piping with rate of flow and water slug features.
Include a manual check mechanism external to the
filter/separator to check the float. (The water slug feature must
not be included on pipeline, barge, or tanker receipt lines. In
those cases, use a differential pressure alarm and a differential
pressure-actuated bypass valve.)
AN
(3)
C
(1)
C
(4)
Only at barge-receiving locations or where large quantities of
water are expected, automatic water drain valve connected to
the bottom of the water sump.
(5)
Manual water drain valve from the bottom of the water sump.
(6)
Safety relief valve in accordance with the American Society of
Mechanical Engineers (ASME) Boiler and Pressure Vessel
Code.
(7)
Thermal relief.
(8)
Automatic air release with check valve.
85
UFC 3-460-01
16 August 2010
(9)
Basket strainers upstream of all receipt filter/separators.
(10) Connect automatic water drains, manual drains, thermal relief
valves, and air releases to a permanently installed product
recovery tank as described in Chapter 8 of this UFC.
(11) Fuel sample points upstream and downstream.
ED
e) Do not provide sight gauges (sight flow indicators) on drain piping and
pressure relief valves. Do not allow sight flow indicators to be installed
on any filtration device.
f) Do not allow reverse flow thru filter/separators or any other filtration
devices.
EL
L
g) Provide a means to slow-fill the vessel. This is necessary to avoid
static buildup during the filling of the filter/separator. DoD Standard
Design AW 78-24-28 gives details for this design feature.
AN
C
4-6.6.2
Arrangement
Arrange the system piping so that fuel from the discharge side of the fueling system
transfer pumps can be recirculated back through the inlet filter/separators into the
operating storage tank. Inlet filter/separators may serve more than one operating
storage tank. In aircraft direct fueling systems on the downstream side of operating
storage tanks, arrange the piping so that the fuel can be circulated from the operating
storage tanks, through the filter/separators, to each aircraft fixed fueling station and
back through the inlet filter/separators to the operating storage tanks. Provide
dispensing filter/separators of the same number and capacity as the transfer pumps;
that is, for three 600 gpm (38 L/s) pumps, provide three 600 gpm (38 L/s)
filter/separators.
4-6.7
Pumps
C
4-6.7.1
Design Requirements
Design pumps to deliver the full range of operating conditions anticipated at any facility
with flow rates as presented in this chapter. Ensure pumps develop sufficient head to
overcome the friction and static head losses in the system at the rated flow. Consider
the specific gravity, temperature, viscosity, vapor pressure, corrosive, and solvent
properties of the fuel. Provide at least two pumps for each aviation turbine fueling
system. For any single grade of fuel, connect pumps in parallel. Select according to
the type most suitable for the particular application. Do not use positive displacement or
reciprocating pumps for product issue or pipeline transfer. Provide separate pumps for
each type of aviation turbine fuel. Provide at least two transfer pumps, each capable of
delivering the required system capacity.
4-6.7.2
Centrifugal Pumps
Use API Std 610 centrifugal pumps to pump from aboveground tanks with continuously
flooded suctions.
86
UFC 3-460-01
16 August 2010
4-6.7.3
Vertical Turbine Pumps
Use API Std 610 vertical turbine pumps to pump from underground tanks. Do not use
horizontal transfer pumps in a pit alongside the underground tank. Provide a foot valve
on all vertical turbine pumps on Navy and USAFE Projects.
ED
4-6.7.4
Rotary Pumps
Use sliding vane positive displacement pumps or self-priming centrifugal pumps for
applications such as stripping pipelines or similar service where the pump may
frequently lose its prime. For these pumps, provide a pressure relief valve located on
the discharge side of the pumps. A variable speed motor can be used on positive
displacement pumps to gradually bring the pump to normal operating speed.
Note: On positive displacement pumps the pressure relief valve shall be considered
safety relief valves, not operating valves (valves that modulate on a normal basis to
maintain a set pressure). Use of the relief valve to modulate the pump discharge
pressure voids the pump warranty.
EL
L
4-6.7.5
Drivers
Drive permanently installed pumps by an electric motor which is properly classified in
accordance with NFPA 70. Size drivers shall be non-overloading at any point on the
curve. Provide anti-reversing ratchets on all vertical turbine pump motors.
C
4-6.7.6
Materials of Construction
For aviation turbine fuels, require cast steel or nodular iron casings and stainless steel
impellers and trim. Consider nonferrous materials in severe corrosive environments,
consult Service Headquarters.
AN
4-6.7.7
Installation
Mount permanently installed pumps on substantial foundations of reinforced concrete,
designed in accordance with Hydraulic Institute Standards.
4-6.8
Valves
C
4-6.8.1
Materials of Construction – Aviation Turbine Fuel Service
Valve materials in contact with aviation turbine fuel shall either be stainless steel,
chrome plated carbon steel, or electroless nickel plated carbon steel. Do not allow zinc,
zinc-coated, copper, or copper bearing materials in contact with the fuel. Do not allow
internally epoxy-coated valves.
Require manual valves in aviation turbine fuel systems to have stainless steel bodies
and bonnets. Carbon steel bodied valves are permitted provided they are internally
plated with nickel plating. Do not allow aluminum, cast iron, or bronze bodied valves.
Use only API fire-safe valves.
4-6.8.2
Isolation Valve Types
a) Double Block and Bleed Isolation Valves:
87
UFC 3-460-01
16 August 2010
Use these for separation of product services, on tank shell
connections, when piping goes above or below ground, between
pier and tank storage, and other locations critical to pressuretesting of piping.
(2)
Plug Valves (Double Block and Bleed): Use double-seated,
tapered lift, lockable, plug type valves with a body bleed between
the seats (double block and bleed). Valves shall be designed so
that if the synthetic seating material is burned out in a fire, a
metal-to-metal seat will remain to affect closure and comply with
API Std 607. Lubricated plug valves are not allowed. Include
integral body cavity thermal relief valve.
(3)
Ball Valves (Double Block and Bleed): Use double-seated,
trunion mounted, lockable, ball type valves with a body bleed
between the seats (double block and bleed). These will be very
rarely used but are acceptable as an alternative to double block
and bleed plug valves in applications where the valve is operated
very infrequently. An example is isolation valve pits where they
are only closed to perform pressure testing of piping. Valves
shall be designed so that if the synthetic seating material is
burned out in a fire, a metal-to-metal seat will remain to affect
closure and comply with API Std 607. Include integral body
cavity thermal relief valve.
(4)
Gate Valves (Double Block and Bleed): Use double-seated,
lockable, gate type valves with a body bleed between the seats
(double block and bleed). These will be very rarely used but are
acceptable as an alternative to double block and bleed plug
valves and double block and bleed ball valves only when other
double block and bleed valves will not physically fit. Valves shall
be designed so that if the synthetic seating material is burned out
in a fire, a metal-to-metal seat will remain to affect closure and
comply with API Std 607. Single seated gate valves are not
allowed. Include integral body cavity thermal relief valve.
C
AN
C
EL
L
ED
(1)
b) Quick Opening/Frequent Opening Isolation Valves:
(1)
Use these for less critical applications where double block and
bleed shutoff is not required.
(2)
Ball Valves: Ball type, lockable, valves designed so that if the
synthetic seating material is burned out in a fire, a metal-to-metal
seat will remain to affect closure and comply with API Std 607.
Use Teflon or Viton synthetic seals or seating material. Use full
port ball valves where line pigging is required or if within ten pipe
diameters upstream and/or five pipe diameters downstream of a
88
UFC 3-460-01
16 August 2010
flow or pressure control valve, or a flow-sensing device such as
a venturi. Valves should comply with API Std 608.
Butterfly Valves: High-performance wafer trunion butterfly type
valves designed so that if the synthetic seating material is
burned out in a fire, a metal-to-metal seat will remain to affect
closure and comply with API Std 607. Use Teflon or Viton
synthetic seals or seating material. Use valves of highperformance type with eccentric disc shaft and clamping action
for bubble-tight shutoff. Provide only at inlet to truck fillstand and
on supply and return risers at aircraft direct fueling stations with
fusible link set to release at 165 degrees F (74 degrees C).
These valves are not required nor permitted on Air Force
projects.
ED
(3)
EL
L
c) Use full port valves with exact same diameter of the pipe when line
pigging is required.
C
4-6.8.3
Isolation Valve Operators
Provide manually operated valves not specified for remote, automatic, or emergency
operation. Use geared operators for ball and double block and bleed valves larger than
6 inches (150 mm). Double block and bleed gate, ball and double block and bleed
valves specified for remote, automatic, or emergency service may have electric motor
operators, if approved by Service Headquarters. Provide locking tabs on isolation
valves to allow padlock to be used for lock-out during maintenance. Provide chain
operators on valves which are located 72 inches (1800 mm) or higher above grade.
C
AN
4-6.8.4
Isolation Valve Locations
Provide isolation valves in product piping systems to control flow and to permit isolation
of equipment for maintenance or repair. Provide additional valves at required locations
necessary to conduct a valid hydrostatic test. Require manually operated valves,
except where motor operators are specifically authorized by applicable standard
drawings or technical specifications. Use double block and bleed type isolation valves
for separation of product services, on tank shell connections (ASTs over 12,000 gallons
only), when piping goes above or below ground, between pier and tank storage, and
other locations critical to periodic pressure-testing of piping. Quick opening/frequent
opening type isolation valves may be used for less critical applications where double
block and bleed shutoff is not required. As a minimum requirement, provide isolation
valves at the following locations:
a) Provide double block and bleed valves where piping goes
below/aboveground and requires periodic pressure testing.
b) At all subsurface and aboveground piping connections to storage
tanks.
c) On each branch line at the point of connection to the main product
pipeline or header.
89
UFC 3-460-01
16 August 2010
d) On the product pipeline or header just before the line leaves a pumping
station.
e) On the suction side and discharge side of each pumping unit, except
the suction side of vertical centrifugal pumps installed in underground
tanks.
f) At all aircraft fuel dispensing points.
ED
g) On the inlet and outlet connection of each line strainer, filter/separator,
meter, diaphragm control valve, and other equipment that requires
periodic servicing. One inlet valve and one outlet valve may be used
to isolate more than one piece of adjacent equipment which are
connected in series.
EL
L
h) On the aboveground piping at each tank car or tank truck off-loading
connection. This requirement does not apply to gravity off-loading
lines unless isolation valves are specifically called for on applicable
drawings.
i) On the aboveground piping at each refueler loading connection.
j) At critical points where pipes cross runways, roads, and taxiways.
AN
C
4-6.8.5
Isolation Valve Pits
Provide fiberglass or concrete pits with a rolling or hinged cover designed in accordance
with the DoD Standard Design AW 78-24-28 for all isolation valves installed in nontraffic areas on underground fuel systems. Design valve pits and valve operators so
that the valves can be operated by personnel, without confined space entry.
4-6.9
Other Valves (Except Diaphragm Control Valves)
C
4-6.9.1
Check Valves
Use check valves to prevent backflow through pumps, branch lines, meters, or other
locations where runback or reverse flow must be avoided. Check valves may be of the
swing disk, globe, dual plate hinged disk, spring-loaded poppet, ball, or diaphragmactuated types. Use checks of soft-seated non-slamming type with renewable seats
and disks. Ensure check valves conform to API Spec 6D. Use non-surge check
diaphragm control valves with flow control feature on the discharge of all pumps. When
using non-surge check diaphragm control valves on pump discharge, consider the use
of a spring type wafer check before the diaphragm valve to prevent sudden flow
reversals during shutdown from passing back thru the pump before the diaphragm
control valve diaphragm chamber is filled and reacts by closing the valve.
4-6.9.2
Thermal Relief
Provide thermal relief valves around isolation and check valves to relieve excessive
pressures caused by thermal expansion of liquid trapped between shutoff points. See
Facility Plates 023, 024, 025 and 026.
90
UFC 3-460-01
16 August 2010
ED
4-6.10
Diaphragm Control Valves
Hydraulically operated, single-seated, globe type, diaphragm actuated valves are used
extensively in fueling systems as control valves. These valves consist of a main valve
and a pilot control system. The valve is operated by varying the amount of pressure
above the diaphragm. Since the chamber above the diaphragm exposes a greater area
of the diaphragm to chamber pressure than the area of the disc exposed to line
pressure, an equal pressure in the chamber and pipeline results in a greater force being
applied to the top of the disc. This forces the disc against the seat, thus closing the
valve. By selecting the proper pilot control system, these valves can be used in
numerous ways to control flow, pressure, and level within fueling systems.
EL
L
4-6.10.1
Open/Close Operation
This is the most basic function of hydraulically operated diaphragm control valves. The
operation is accomplished by applying pressure above the diaphragm to close the valve
and relieve that pressure to allow line pressure to open the valve. The pilot trim used to
perform this operation is a three-way valve which can be controlled by a solenoid, hand,
pressure, pressure differential, or a float.
C
4-6.10.2
Throttling Operation
This is the other main method of controlling the hydraulically operated diaphragm
control valve. In this case, the valve modulates to any degree of opening, in response
to changes in the throttling control. The throttling control reacts to a pressure, or a
pressure differential across the main valve, or pressure differential across an orifice
plate to regulate the position of the disc in the main valve. For proper operation these
valves should be installed with straight pipe on both sides of the valve. Ten pipe
diameters on the upstream side and five diameters on the downstream side is sufficient;
provide full port manual isolation valves if they are placed within these limits.
C
AN
4-6.10.3
Check Valve Function
This is a unique function of a control valve. In this case, the main valve outlet pressure
is connected to the diaphragm cover. Therefore, if the downstream outlet pressure
exceeds the inlet pressure, which normally holds the valve open, the valve will close
and prevent backflow. Note: In order for the valve to close, it must backflow,
sometimes for a substantial amount of time. Consider putting a regular check valve in
series with this valve in cases where this is a concern.
4-6.10.4
Remote Operations
Hydraulically operated diaphragm control valves can be operated remotely. This is
accomplished by installing tubing from the point of pressure sensing to the valve or by
using remote-controlled solenoids within the trim.
4-6.10.5
Materials of Construction
Use stainless steel pilots and stainless steel tubing. Use bodies, bonnets, and covers
made of stainless steel, internally plated (chrome) steel, or internally plated (nickel)
nodular iron. Provide Viton or Buna-N diaphragm and disc ring. Enclose all electrical
apparatus according to classification of the area in which they are installed. Provide a
means to wire seal all adjustable pilots. Do not use aluminum valves.
91
UFC 3-460-01
16 August 2010
4-6.10.6
Applications
For fueling systems, use hydraulically operated diaphragm control valves in the
following applications (also refer to specific chapters for applications):
a) Water slug shutoff.
b) Rate of flow control.
c) Pressure reduction.
ED
d) Pressure relief.
e) Liquid level control.
f) Non-surge check control.
g) Deadman control.
EL
L
h) Electrical block control.
4-6.10.7
Combinations
A combination of these controls is also possible. A typical use of these controls is on a
filter/separator for water slug shutoff and rate of flow control.
C
4-6.11
Fuel Hoses
Use sizes as required for design flow rates. For hose flanges and nipples, use carbon
steel or brass, except at aviation turbine fuel issue points use brass, stainless steel, or
aluminum where metal parts contact the fuel.
AN
4-6.11.1
Loading Fuel Hoses
Provide pressurized loading hoses and connections complying with EI Std 1529.
C
4-6.11.2
Off-Loading Fuel Hoses
Provide lightweight, flexible, non-pressurized off-loading hoses constructed of nitrile
rubber, rigid polyvinyl chloride (PVC) helix, synthetic braiding, smooth bore, and
corrugated outer diameter. Provide non-pressurized hoses with a 65 psi (450 kPa)
rating at 72 degrees F (22 degrees C) and 27 in Hg (90 kPa) vacuum rating.
4-7
CONTROLS
4-7.1
Design Requirements
Automatic controls at any facility may include temperature, pressure, fuel level and
pump controls, automatic flow controls, alarm and limit switches, motor operated
isolation valves, solenoid pilot actuated diaphragm control valves, and remote system
condition indicators. Other forms of automatic controls are remote meter indication,
electronic access control, data logging, and application of computer techniques. Base
the selection of advanced automation and telemetry systems on a study of the particular
92
UFC 3-460-01
16 August 2010
application with consideration of possible economic justification, operational, and
security requirements.
ED
4-7.2
Flow Controls
Where it is possible to achieve flow rates which exceed equipment ratings, provide an
adjustable flow control diaphragm control valve on the outlet connection of each meter
or filter/separator. Use a diaphragm control valve controlled by the pressure differential
across an orifice plate in the valve or a venturi in the main line. Where necessary,
provide remote-operated valves on storage tank inlet and outlet lines, suction and
discharge of transfer pumps, and transfer lines at fuel piers and other locations.
EL
L
4-7.3
Pump Controls
Operation of pump suction and discharge valves may be a part of the automatic
sequence for the starting of a centrifugal pump and for shutting it down, remotely,
locally, or by a protective shutdown device. Remote-operated valves on the discharge
side of the pump can be either motor-operated or the solenoid pilot-type, hydraulically
operated diaphragm control valves. Remote control valves on the suction side of the
pump can be motor-operated valves only. Equip these valves with green and red (open
and closed) indicating lights at their pushbutton control locations. Consider the use of
PLCs on more complicated systems.
4-7.3.1
All Pumps
Provide the following controls:
C
a) A keyed hand/auto button at each pump and a keyed hand-off-auto
switch at the motor starter for each remotely operated pump. Both
devices will use the same key.
AN
b) Indicator lights at the control station to give positive indications both
when a pump is operating and when it is not energized. Use the
"push-to-test" type.
c) A signal light or alarm to indicate pump failure when a pump is
controlled automatically.
C
d) Reduced voltage starting if required by electric utility supplier or, in all
cases, for pump motors greater than 50 hp (37 kW) and all vertical
pumps.
e) Emergency fuel shut-off (EFSO) pushbutton stations, between 100 and
200 feet from the pump in the expected ingress and egress direction,
with maintained contacts. Provide additional EFSO pushbutton
stations at the point of fuel delivery or receipt (tanks, piers, fillstands,
etc.) using the same spacing and locations requirements.
4-7.3.2
Multi-Function Pumps
Multi-function pumps are typically used at small facilities and are designed and
arranged to be able to perform different functions such as fuel loading, off-loading, or
93
UFC 3-460-01
16 August 2010
transfer depending on how valves are aligned. Provide each function with the control
system requirements for each function described elsewhere in this chapter. For each
multi-task pump provide a manual selector switch to choose which set of control and set
points the pump is to "look at" when performing a particular function.
ED
4-7.3.3
Transfer Pumps
Parallel transfer pumps supplying an issuing facility with varying demand flow rates
must be sequenced automatically by flow-sensing sequence equipment. Lead pumps
can be started by a pushbutton at an issuing facility, or automatically by a pressure
switch actuated by a decrease in system pressure as might be caused by opening a
valve at the issuing facility. This method requires the system to be pressurized at all
times and is normally incorporated in the Type III hydrant system design. Incorporate
the following control features:
EL
L
a) Automatically controlled pumps with emergency stop buttons with lockkey reset at issuing stations and at the central supervisory control
station.
b) Automatic shut-off of transfer pumps on loss of suction or no flow for
more than 3 minutes. Upon automatic shut-off, a corresponding alarm
at the central supervisory control station is activated.
4-7.3.4
Pipeline Pumps
For pumps over 150 horsepower (112 kW), provide protective shutdown devices with
alarm at central supervisory control station in the event of the following:
C
a) High pump case temperature due to blocked discharge.
AN
b) Excessive pump vibration.
c) Mechanical seal or packing gland failure.
d) High discharge pressure or loss of discharge pressure.
e) Excessive motor vibration.
C
f) High motor winding temperature.
g) Electrical interlocks which will prevent starting a pump if certain key
valve settings are not correct and which will cause a pump shutdown if
a key valve setting is changed.
h) Loss of pump suction pressure.
i) High-bearing temperature and/or loss of cooling water flow.
94
UFC 3-460-01
16 August 2010
4-8
CANOPIES
4-8.1
Canopies to Protect Fixed Assets
Unless otherwise directed by Service Headquarters, provide a canopy to protect fixed
facility assets and equipment from the elements. Fixed facilities and equipment include
but are not limited to: pump pads, filtration pads, meter pads, isolation valve pads, tank
truck and tank-car off-loading and loading equipment pads, control panels, electrical
panels, and motor control centers (MCCs). Ensure structural design is in accordance
with UFC 1-200-01 and UFC 3-301-01.
EL
L
ED
4-8.2
Canopies to Reduce Stormwater
Do not provide a canopy to preclude rain from reaching the containment area unless it
is required by federal, state, or local regulations; or it is economically justified by
reducing the size of the concrete remote spill containment or spill treatment system; or if
directed by Service Headquarters. At a canopy over a tank truck or tank car loading
and off-loading containment area, ensure that the underside of the canopy is high
enough to provide operator head room when walking on top of the truck or car. Ensure
structural design is in accordance with UFC 1-200-01 and UFC 3-301-01 .
C
4-9
FUEL ADDITIVES
Provide storage facilities which store aviation turbine fuels with the equipment to inject
fuel additives if directed by Service Headquarters. This will require proportional
injectors with manual bypass, storage of additives, and recirculation of tanks through
piping with injectors. If the additives have a corrosive characteristic, construct the
system, including storage tanks, tank appurtenances, pumps if required, piping and
associated fittings, valves, and injector assemblies of stainless steel components.
Consult Service Headquarters for guidance as to which additives must be included.
C
AN
4-9.1
Plus 100 Additive
Additives used to raise the thermal stability of jet fuel by a minimum of 100 degrees F
(38 degrees C) also act as surfactants that will disable the water removal properties of
the filter/separators that do not meet the requirements of EI Specification 1581 (Edition
5). Because fuel containing a thermal stability additive is issued only at designated air
bases, the major command fuels engineer (for USAF air bases), Army Petroleum Office
(for US Army airfields), or Naval Air Systems Command (AIR-4.4.5) (for USN/USMC
stations) will provide direction as to those bases where its use is permitted and
guidance concerning the location of additive injection equipment and additive storage
facilities.
4-10
DEFUELING AND RETURN-TO-BULK (RTB) SYSTEMS
4-10.1
General Criteria
Acceptable locations for defueling and RTB Systems include the return line at a truck
fillstand, the return line at a hydrant hose truck check-out station, the return line at a
pantograph flush station, the product recovery tank, or at a truck off-load station.
95
UFC 3-460-01
16 August 2010
4-10.2
JP-5 Systems
4-10.2.1
Hydrant Systems
Because the degradation of flash point below the minimum JP-5 requirement can occur
when other than JP-5 is defueled from aircraft directly into operating tanks, ensure that
JP-5 direct fueling systems are not capable of defueling an aircraft back into hydrant
systems and operating storage. Defuel aircraft into mobile tanker vehicles or into fixed
dedicated defuel tanks.
ED
4-10.2.2
Other
Do not provide a capability to defuel JP-5 refueler trucks back into storage unless
directed by Service Headquarters.
JP-5 systems do not use fuel bowsers (mobile defuel tanks).
4-10.3
JP-8 Systems
EL
L
4-10.3.1
Hydrant Systems – Hydrant Loop
Provide JP-8 hydrant systems with capability to defuel aircraft back into the hydrant
systems and operating storage through the hydrant pit diaphragm control valves.
C
4-10.3.2
Hydrant Systems – Other
To allow defueling of refueler trucks provide a Return-To-Bulk (RTB) station on the
return line of a hydrant hose truck check-out station or a pantograph check-out station,
or a pantograph flushing station. Provide one adapter per group.
AN
4-10.3.3
Tank Truck and Tank Car Off-Loading
To allow defueling of refueler trucks, provide a Return-To-Bulk (RTB) station by
providing a MIL-STD MS 24484 aircraft refueling adapter at a tank truck or tank car
off-loading station. Provide one adapter per group of tank truck or tank car off-load
stations. If defueling into a product recovery tank, do not bypass the level control valve.
C
4-10.3.4
Refueler Truck Fillstands
To allow defueling of refueler trucks, provide a Return-To-Bulk (RTB) station by
providing a MIL-STD MS 24484 aircraft refueling adapter at a point upstream of receipt
filtration when the fillstand has a return line. Provide one adapter per group of refueler
truck fillstands. If defueling into a product recovery tank, do not bypass the level control
valve.
4-10.3.5
Fuel Bowsers (Mobile Defuel Tanks )
Provide a capability to empty JP-8 fuel bowsers mobile defuel tanks by providing a
gravity drain connection on underground product recovery tanks, or by providing a
pump at aboveground product recovery tanks. Do not bypass the product recovery tank
level control valve.
96
UFC 3-460-01
16 August 2010
4-11
PRODUCT RECOVERY SYSTEMS
Provide a system with pumps, piping, valves, and tanks to collect and store usable
aviation turbine fuel which would otherwise become waste from operational or
maintenance activities. See Chapter 8 of this UFC.
4-11.1
Tank Trucks and Fuel Bowsers
Provide a capability to receive fuel from JP-8 tank trucks and JP-8 fuel bowsers into the
product recovery tank, either at the product recovery tank location, the truck fillstands,
or through a connection at the fuel receipt facility.
C
AN
C
EL
L
ED
4-11.2
Return to Bulk
Provide a capability to return aviation turbine fuel from JP-5 and JP-8 product recovery
tank back into operating storage by pumping the fuel into the receipt piping upstream of
receipt filtration.
97
UFC 3-460-01
16 August 2010
TRUCK/RAIL
RC(IOT)
T(IB) (1)

DESCRIPTION
B(IB) (1)
   2   1 1   
Provide strainers upstream of filter/separators.
Provide pre-filtration consisting of pre-filter or coalescer
vessels, or both. For a receipt rate of 1200 gpm or less,
provide at least two equal sized vessels of each type in
parallel, each sized to handle at least 100% of the
 2   1 1
normal off-loading flow rate. When the flowrate is over
1200 gpm, provide two sets of each type of vessel
installed in parallel, each set sized for 100% of the
normal off-loading flow rate.
c. Consider pre-filtration consisting of pre-filter or
 
  
2
coalescer vessels, or both.
d. When receiving from a non-government controlled
source: Provide fine filtration. For a receipt rate of
1200 gpm or less, provide two equal sized
filter/separators in parallel, each sized to handle at least

 2   1 1
100% of the normal off-loading flow rate. When the
flowrate is over 1200 gpm, provide two sets of
filter/separators installed in parallel, each set sized for
100% of the normal off-loading flow rate.
e. When receiving from a non-government controlled
source: Provide fine filtration consisting of a sufficient

  
2
number of equally sized receipt filter/separators to
handle 100% of the maximum expected flow, plus
provide an equally sized spare filter/separator.
(1) Tankers always, and barges and pipelines may, receive at greater than 2,800 gpm. In these cases,
fuel is typically received without filtration into a breakout tank, usually for economic reasons.
Contact Service Headquarters to determine what filtration is needed.
(2) MPP(IOT) included for information only. NEVER receive fuel from a Multi-Product Pipeline into an
Operating Tank.
(3) This table will not typically apply to receipt into regional bulk storage centers such as Defense Fuel
Support Points (DFSPs). These typically do not have filtration on receipt. Contact Service
Headquarters for guidance.
ITEM
RC(IB)
OTRTT(IOT)
T(IOT) (1)
MARINE
B(IOT) (1)
MPP(IOT) (1)
MPP(IB) (1)
SPP(IOT) (1)
SPP(IB) (1)
PIPELINE
OTRTT(IB)
Table 4-1. Aviation Turbine Fuel Receipt Filtration Table (1) (3)

C
AN
C
EL
L
ED
a.
b.
SPP(IB) - Single Product Pipeline (Into Bulk)
SPP(IOT) - Single Product Pipeline (Into Operating Tank)
MPP(IB) - Multi-Product Pipeline (Into Bulk)
MPP(IOT) - Multi-Product Pipeline (Into Operating Tank)
B(IB) - Barge (Into Bulk)
B(IOT) - Barge (Into Operating Tank)
T(IB) - Tanker (Into Bulk)
T(IOT) - Tanker (Into Operating Tank)
OTRTT(IB) - Over the Road Tank Truck (Into Bulk)
OTRTT(IOT) - Over the Road Tank Truck (IOT)
RC(IB) - Rail Car (Into Bulk)
RC(IOT) - Rail Car (Into Operating Tank)
98

UFC 3-460-01
16 August 2010
Table 4-1 – (Continued) (3)
AN
C
EL
L
ED
When receiving from a government controlled source:
Provide fine filtration consisting of a sufficient number of

f.
2
1 1   
equally sized receipt filter/separators to handle 100% of
the maximum expected flow.
Provide each vessel with a feature to automatically
switch the fuel stream to the other vessel when the
differential pressure across the vessel reaches a preset
   2   1 1
g. limit. Require a warning signal to the operator that the
switching operation has occurred. In cases of
emergency, include the capability to bypass the inlet
filter/separator bank.
Disable filter/separator control valve water slug feature.
Provide water conductance probe tied to an alarm in
   2   1 1
h.
place of water slug float. Provide differential pressure
alarm and differential pressure-actuated bypass valve.
Provide filter/separator sump with automatic water drain
i.
2   1 1
valve connected to the bottom of the water sump. (4)
Consider providing filter/separator sump with automatic
   2
1 1
j. water drain valve connected to the bottom of the water
sump when large quantities of water are expected. (4)
(1) Tankers always, and barges and pipelines may, receive at greater than 2,800 gpm. In these cases,
fuel is typically received into a breakout tank, usually for economic reasons. Contact Service
Headquarters to determine what filtration is needed.
(2) MPP(IOT) included for information only. NEVER receive fuel from a Multi-Product Pipeline into an
Operating Tank.
(3) This table will not typically apply to receipt into regional bulk storage centers such as Defense Fuel
Support Points (DFSPs). These typically have not filtration on receipt. Contact Service
Headquarters for guidance.
(4) Consider also in any situation where large quantities of water are expected.
C
SPP(IB) - Single Product Pipeline (Into Bulk)
SPP(IOT) - Single Product Pipeline (Into Operating Tank)
MPP(IB) - Multi-Product Pipeline (Into Bulk)
MPP(IOT) - Multi-Product Pipeline (Into Operating Tank)
B(IB) - Barge (Into Bulk)
B(IOT) - Barge (Into Operating Tank)
OTRTT(IB) - Over the Road Tank Truck (Into Bulk)
OTRTT(IOT) - Over the Road Tank Truck (IOT)
RC(IB) - Rail Car (Into Bulk)
RC(IOT) - Rail Car (Into Operating Tank)
T(IB) - Tanker (Into Bulk)
T(IOT) - Tanker (Into Operating Tank)
99
RC(IOT)
RC(IB)
OTRTT(IOT)
OTRTT(IB)
TRUCK/RAIL
T(IOT) (1)
T(IB) (1)
B(IOT) (1)
MARINE
B(IB) (1)
MPP(IOT) (1)
MPP(IB) (1)
DESCRIPTION
SPP(IOT) (1)
SPP(IB) (1)
ITEM
PIPELINE

UFC 3-460-01
16 August 2010
CHAPTER 5 - MARINE RECEIVING AND DISPENSING FACILITIES
5-1
FUNCTION
Design marine fuel receiving and dispensing facilities for the purpose of receiving fuel
and/or loading fuel aboard ships, barges and boats for consumption or as cargo. In
many cases, the marine receiving and dispensing facilities will be combined. Special
requirements for aviation turbine Fuels are in Chapter 4 of this UFC.
EL
L
ED
5-2
FUEL PIERS AND WHARVES
Ensure that the structural design of fuel piers and wharves is in accordance with UFC 4152-01. When required and approved by the appropriate Service Headquarters, design
fuel piers for dispensing and receiving fuel. Ensure that the size of the facility is
compatible with the fuel requirements of the activity and the number of simultaneous
loadings and off-loadings to be accommodated. For dispensing of fuel, consider the
number, type, and size of vessels to be fueled or loaded to provide the required number
and locations of fuel outlets. In most cases, use dedicated fuel piers and wharves for
fuel receipt. Include in the design an energy absorbing fender system. Refer to
NAVFAC Definitive Drawings 1403995 through 1403999.
AN
C
5-3
BERTHING PIERS
In some cases, permanent fuel piping and equipment may be installed on berthing piers
which were not primarily designed for handling fuel. Design such piers in accordance
with UFC 4-152-01. These facilities are normally used only for dispensing fuel to
surface combatants for consumption. Operational requirements usually dictate a clear
berthing pier surface area. This imposes restrictions on the use of loading arms and
above deck piping. For these areas, trench-contained piping may be considered. Prior
to designing facilities on berthing piers for receiving and/or dispensing of bulk fuel for
transport, review plans with appropriate port operations agency.
C
5-4
OFFSHORE MOORINGS
When operations of an activity do not warrant construction of fuel piers, provide offshore
moorings for vessels to discharge or receive fuel through underwater pipelines
connecting to the shore facility. Clearly mark the moorings so that the vessel, when
moored, will be in the proper position to pick up and connect to the underwater
connection. Coordinate offshore mooring systems with Naval Facilities Engineering
Service Center, Ocean Construction Division (NFESC-OCD).
5-5
GENERAL REQUIREMENTS
Chapter 2, General Design Information, of this UFC contains important information on
fueling facilities. Do not start the design of any fueling system without first becoming
completely familiar with Chapter 2 of this UFC. In particular, refer to Chapter 2 for
guidance on spill prevention, air quality control, and other environmental, safety and fire
protection issues.
5-6
GENERAL LAYOUT
Provide pier loading and off-loading connections, with blind flange and with ball valve for
throttling and isolation, at the pier edge for each product to be transported. The intent is
100
UFC 3-460-01
16 August 2010
for a loading arm manifold with a separate manual isolation plug valve for each product
connection. This will allow simultaneous loading and off-loading of different products,
each through a dedicated arm. Provide a double block and bleed plug valve at the point
which the line is being stripped. Use the following criteria:
ED
a) Provide each branch line to the pier edge with a manual isolation valve
located at the main line. Provide thermal relief valves around isolation
and check valves to relieve excessive pressures caused by thermal
expansion of liquid trapped between shutoff points. See Facility Plate
025.
b) Do not provide a gauge outboard of the hose connection shutoff valve
because hose movement will indicate the presence or absence of
pressure in the hose.
c) If required, provide one or more loading arms at each station.
EL
L
d) Provide a liquid-filled pressure gauge for each loading arm, located to
be easily read from the operator position. This gauge is provided
because the drybreak check valve at the end of the loading arm and
the rigid piping will not intuitively indicate the presence or absence of
pressure at the loading arm.
AN
C
e) Provide for venting and draining of the branch lines and loading arm
manifolds. Provide for manual venting of the branch lines, connect the
vents to the oil waste line, similar to a sanitary vent system to avoid
spillage. When pier drain lines cannot be sloped back to the pierhead
stripping pumps, a design including separate oil waste drain lines,
holding tank and dedicated stripping pump is a viable alternative.
f) Provide segregated handling of multiple products through the loading
arms, while allowing easy selection of the products to be transported.
Double block and bleed valves can be used for this application.
C
g) Provide a separate pipe and connection for ballast water or offspec
fuel if the size of the facility and level of activity warrants it.
h) Provide each hose handling and loading arm area with fixed spill
containment as defined in 33 CFR Part 154.
i) Provide hydraulic shock surge suppressors (if required).
5-7
PIPING SYSTEMS
Refer to Chapter 9 of this UFC for information regarding piping systems.
5-7.1
Piping Arrangement
In addition to complying with Chapter 9, use the following criteria:
101
UFC 3-460-01
16 August 2010
a) Where simultaneous deliveries of the same fuel may be made by more
than one vessel, size fuel headers and related equipment for the total
flow rates of all vessels discharging into the headers. Ensure that flow
rates are in accordance with Chapter 2 of this UFC.
b) Place pier piping above the pier deck within a containment area for
fueling piers and within a trench on berthing piers. Slope piping toward
shore to permit stripping. Use gratings as required to allow access
across the piping.
ED
c) Provide flexibility in the piping between the pier and the shore to allow
for small movement of the pier relative to the shore. Use a suitable
pipe bend or offset configuration, preferably in a horizontal plane, that
will allow three-dimensional movement. If vertical bends are used,
install vents and drains.
EL
L
d) Provide flexibility in the piping along the pier to allow for pipe growth
due to thermal expansion. Horizontal expansion loops are preferred.
In cases where space is tight provide vertical expansion loops or
bellows expansion joints where necessary. Where practical provide
vertical expansion loops with vents and drains.
e) Include in the pier facilities, pipe manifolds for each fuel type arranged
parallel to the face of the pier.
5-8
C
f) Pipe hangers are not allowed.
EQUIPMENT DESCRIPTIONS
C
AN
5-8.1
Loading/Off-Loading Arms
Provide articulated marine loading arms for receiving and shipping fuel cargoes so that
the connected vessel can move 15 feet (4.6 mm) forward, 15 feet (4.6 mm) aft, and 10
feet (3 m) off the face of the pier and vertically as caused by loading or off-loading of the
vessel and tidal changes, without damage to the arm. Provide a hydraulic power assist
system for operating loading arms larger than 8-inch (200 mm) nominal size. Equip the
end of the loader to be connected to the ship’s manifold with an insulating section, a
standard ANSI forged steel flange, and a steel quick coupling device, manually or
hydraulically operated. Refer to NAVFAC Drawing No. 1403997. Consider breakaway
couplings for locations with strong current.
5-8.2
Fuel Hoses
Loading/off-loading arms are the preferred method to be used. Provide a facility for
storing and protecting the hose as near as practical to the pier if hose is provided in lieu
of loading/off-loading arm.
5-8.3
Submarine Fuel Hoses
Provide submarine fuel hose where offshore moorings are used. Use heavy duty,
smooth bore, oil and gasoline, marine cargo, discharge hose rated for a working
102
UFC 3-460-01
16 August 2010
pressure of not less than 225 psig (1550 kPa) and built-in nipples with Class 300
flanges with stainless steel bolts and Monel nuts. Hoses should be U. S. Coast Guard
certified.
ED
5-8.4
Meters
Provide a turbine or positive displacement meter for each dispensing outlet that might
be used simultaneously. With the approval of the appropriate Service Headquarters,
use portable meters where fueling operations are intermittent. Also consider the use of
alternative technologies such as ultrasonic meters. Require temperature compensation
feature at each meter used for custody transfer.
EL
L
5-8.4.1
Meters – Positive Displacement
Require flange-connected, cast steel bodied positive displacement meters of the
desired pressure and flow rating for the applicable service requirements. Ensure meter
has case drain and register. Provide temperature compensation and adjustable
calibration capabilities when there is custody transfer. Ensure meter accessories are
compatible with either the mechanical or electronic support equipment selected.
Provide an accuracy of plus or minus 0.5 percent when used for custody transfer.
Consult the appropriate Service Headquarters for requirements for the meter to
communicate to a remote location or equipment. Consider the use of a card-operated
or key-operated data acquisition system. Cards or keys, as appropriate, are coded to
identify the receiver of the fuel and to allow access to the fuel. The quantities taken are
transmitted to a data-receiving device by electronic pulse transmitters mounted on each
meter, and each transaction is automatically recorded.
C
AN
C
5-8.4.2
Meters – Turbine
Use flange-connected, steel bodied turbine meters of the desired pressure and flow
rating for the applicable service requirement. Provide a flow straightener before turbine
meters or provide a straight length of pipe at a minimum of ten pipe diameters upstream
and five pipe diameters downstream of all turbine meters, or as required by
manufacturer. Ensure meter has case drain and register. Provide temperature
compensation and adjustable calibration capabilities when there is custody transfer.
Ensure all supporting equipment for meter is compatible with the turbine meter selected.
Provide an accuracy of plus or minus 0.5 percent when used for custody transfer.
Consult the appropriate Service Headquarters for requirements for the meter to
communicate to a remote location or equipment. Consider the use of a card-operated
or key-operated data acquisition system. Cards or keys, as appropriate, are coded to
identify the receiver of the fuel and to allow access to the fuel. The quantities taken are
transmitted to a data-receiving device by electronic pulse transmitters mounted on each
meter, and each transaction is automatically recorded.
5-8.5
Strainers
Require a basket strainer to protect centrifugal pumps, unless it precludes meeting the
net positive suction head of the pump. Whether or not strainers are installed on the
suction side of centrifugal pumps, install a spool piece so that temporary strainers can
be installed during startup of the system. Strainers are required on the suction side of
103
UFC 3-460-01
16 August 2010
all pumps, meters, and receipt filtration. Strainers are not required upstream of issue
filter/separators or diaphragm control valves. Also:
a) Use flanged basket strainers constructed of steel and fitted with
removable baskets of fine Monel metal or stainless steel mesh with
large mesh reinforcements.
b) Unless otherwise specified, provide a fine screen mesh as follows:
Size of Opening
0.108 inch (2.74 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
ED
Pump suctions (Centrifugal)
Pump suctions (Positive
Displacement)
Receipt Filtration
Meter inlets (unless downstream
of a filter/separator)
Mesh
7
EL
L
c) In all cases, ensure the effective screen area is not less than three
times the cross sectional area of the pipe.
d) Strainers upstream of pump shall be quick opening, single screw type.
e) Provide pressure gauges on both sides of the strainer and a differential
type gauge across the strainer.
C
AN
C
5-8.6
Surge Suppressors
Every effort should be made to control hydraulic surge or shock to acceptable limits by
the design of the piping system rather than by the use of surge suppressors. Where
this is not possible or becomes extremely impractical, surge suppressor(s) may be
incorporated. Use the diaphragm or bladder type equipped with a top-mounted liquidfilled pressure gauge, wafer-style check valve at the bottom, drain above the check
valve, and isolation valve. Provide a needle valve around the check valve to permit
controlled bleed back of the surge suppresser without rebounding. Locate surge
suppressors as close as possible to the point of shutoff that is expected to cause the
shock. Surge suppressors can reduce shock pressure but will not eliminate it entirely.
The preferred solution to hydraulic shock is conservative piping design, use of loops,
and slow-closing valves. Surge suppressors are strictly a last resort solution and
require the approval of Service Headquarters prior to designing into a system.
5-8.7
Valves
5-8.7.1
Materials of Construction
Require valves to have carbon steel bodies and bonnets. Do not allow valves with
aluminum, cast iron, or bronze materials. Use only API fire-safe valves.
104
UFC 3-460-01
16 August 2010
5-8.7.2
Isolation Valve Types
a) Double Block and Bleed Isolation Valves:
Use these for separation of product services, on tank shell
connections, when piping goes above or below ground, between
pier and tank storage, and other locations critical to pressuretesting of piping.
(2)
Plug Valves (Double Block and Bleed): Use double-seated,
tapered lift, lockable, plug type valves with a body bleed between
the seats (double block and bleed) in critical applications such as
separation of product services, when piping goes above or below
ground, between pier and tank storage, and other locations
critical to pressure-testing of piping. Valves shall be designed so
that if the synthetic seating material is burned out in a fire, a
metal-to-metal seat will remain to affect closure and comply with
API Std 607. Lubricated plug valves are not allowed. Include
integral body cavity thermal relief valve.
(3)
Ball Valves (Double Block and Bleed): Use double-seated,
trunion mounted, lockable, ball type valves with a body bleed
between the seats (double block and bleed). These will be very
rarely used but are acceptable as an alternative to double block
and bleed plug valves in applications where the valve is operated
very infrequently. An example is isolation valves in the middle of
piers that are only closed to perform pressure testing of piping.
Valves shall be designed so that if the synthetic seating material
is burned out in a fire, a metal-to-metal seat will remain to affect
closure and comply with API Std 607. Include integral body
cavity thermal relief valve.
AN
C
EL
L
ED
(1)
C
(4)
Gate Valves (Double Block and Bleed). Use double-seated,
lockable, gate type valves with a body bleed between the seats
(double block and bleed). These will be very rarely used but are
acceptable as an alternative to double block and bleed plug
valves and double block and bleed ball valves only when other
double block and bleed valves will not physically fit. Valves shall
be designed so that if the synthetic seating material is burned out
in a fire, a metal-to-metal seat will remain to affect closure and
comply with API Std 607. Single seated gate valves are not
allowed. Include integral body cavity thermal relief valve.
b) Quick Opening/Frequent Opening Isolation Valves
(1)
Use these for less critical applications where double block and
bleed shutoff is not required.
105
UFC 3-460-01
16 August 2010
Ball Valves: Ball type valves may be used as valves for quick or
frequent opening applications when a double block and bleed
valve is not required. Ball valves shall be designed so that if the
synthetic seating material is burned out in a fire, a metal-to-metal
seat will remain to affect closure and comply with API Std 607.
Use Teflon or Viton synthetic seals or seating material. Use full
port ball valves with exact same diameter of the pipe within ten
pipe diameters upstream and/or five pipe diameters downstream
of a flow or pressure control valve, or a flow-sensing device such
as a venturi. Valves should comply with API Std 608.
ED
(2)
c) Butterfly Valves: Butterfly valves are not allowed.
d) Use full port valves with exact same diameter of the pipe when line
pigging is required.
Isolation Valve Locations
C
5-8.7.4
EL
L
5-8.7.3
Isolation Valve Operators
Provide manually operated valves not specified for remote, automatic, or emergency
operation. Use geared operators for ball and double block and bleed plug valves larger
than 6 inches (150 mm). Double block and bleed gate, ball and double block and bleed
valves specified for remote, automatic, or emergency service may have electric motor
operators, if approved by Service Headquarters. Provide locking tabs on isolation
valves to allow padlock to be used for lock-out during maintenance. Provide chain
operators on valves which are located 72 inches (1800 mm) or higher above grade.
AN
a) Provide an isolation valve on each line at the shore end. For piping
used only for receiving fuel, also provide a check valve at the shore
end. Use double block and bleed type, which may be motor-operated
with remote control. To minimize surge potential, use a slow-closing
speed, if possible.
b) Provide double block and bleed isolation valves on the aboveground
piping at each barge or tanker off-loading and loading connection.
C
c) Provide double block and bleed isolation valves near the shoreline of a
submerged pipeline to offshore moorings.
d) Provide double block and bleed isolation valves on the inlet and outlet
connection of each line strainer, filter/separator, meter, diaphragm
control valve, and other equipment that requires periodic servicing.
One inlet valve and one outlet valve may be used to isolate more than
one piece of adjacent equipment which are connected in series.
e) Provide thermal relief valves around all isolation and check valves to
relieve excessive pressures caused by thermal expansion of liquid
106
UFC 3-460-01
16 August 2010
trapped between shutoff points. See Facility Plates 023, 024, 025 and
026.
5-8.7.5
Isolation Valve Pits
Provide fiberglass or concrete pits with a rolling or hinged cover designed in accordance
with the DoD Standard Design AW 78-24-28 for all isolation valves installed in nontraffic areas on underground fuel systems. Design valve pits and valve operators so
that the valves can be operated by personnel, without confined space entry.
Other Valves
ED
5-8.8
EL
L
5-8.8.1
Check Valves
Use check valves to prevent backflow through pumps, branch lines, meters, or other
locations where runback or reverse flow must be avoided. Check valves may be of the
swing disk, globe, dual plate hinged disk, spring-loaded poppet, ball, or diaphragmactuated types. Use checks of soft-seated non-slamming type with renewable seats
and disks. Ensure check valves conform to API Spec 6D. Use non-surge check
diaphragm control valves with flow control feature on the discharge of all pumps. When
using non-surge check diaphragm control valves on pump discharge, consider the use
of a spring type wafer check before the diaphragm control valve to prevent sudden flow
reversals during shutdown from passing back thru the pump before the diaphragm
control valve diaphragm chamber is filled and reacts by closing the valve.
C
5-8.8.2
Thermal Relief
Provide thermal relief valves around isolation and check valves to relieve excessive
pressures caused by thermal expansion of liquid trapped between shutoff points. See
Facility Plates 023, 024, 025 and 026.
AN
5-8.9
Pressure or Pressure/Vacuum Gauges
Use glycerin-filled or silicone-filled pressure gauges of range and dial size, as
necessary, but not less than 0 to 160 psig (0 to 1100 kPa) pressure range and 4-inch
(100 mm) diameter dial. Also:
C
a) Use pressure gauges upstream and downstream of strainers and
filters/separators. A differential pressure gauge may be used in lieu of
gauges on each side.
b) Install compound (pressure/vacuum) gauges on the suction side of
each pump at fuel storage tanks.
c) Provide a lever handle gauge cock and pressure snubber in each
pressure gauge connection.
d) Provide a pressure gauge on each side of the pipeline shutoff valve at
the shore end of each pier-mounted pipeline. Provide the indicating
pointer with a high-pressure-reading tell-tale indicator suitable for
reporting the highest pressure experienced since last reset. Provide
for non-contact resetting of the tell-tale by means of a small magnet.
107
UFC 3-460-01
16 August 2010
e) Provide a pressure gauge on each branch line at each fueling station
on each pier-mounted pipeline. Ensure that the pressure gauge is
legible from the fuel hose connection array and from the pantograph
loading arm location (if provided).
f) Provide a pressure gauge on each marine loading arm assembly (if
provided). Ensure that the gauge is visible by the operator.
ED
g) Pressure gauges shall be installed so that they are testable without
removing them from the piping.
EL
L
5-8.10
Stripper Pumps
Provide positive displacement stripper pumps for emptying loading arms, hoses, and
manifolds. Provide a stripper pump to reclaim each clean product from each main
product line, or connect the product lines to the oil waste drain line. Conduct an
economic analysis of the two alternatives to determine the appropriate choice. Larger,
longer, or more frequently drained lines will favor the stripper pump choice. Use a
stripper pump on multi-product lines, but do not exceed acceptable limits of cross
contamination. Provide a dedicated stripper pump to each separate product line, such
as aviation turbine fuels.
C
5-8.11
Excess Flow Sensors
In piping used for both loading and off-loading, provide a sensor that will alarm both the
control room and at the pier to detect excess flow that might occur in the event of a line
break.
AN
5-8.12
Solid Cyclonic Separators
In facilities which receive product by tankers or barge, consider the use of solid
separators in the receiving lines as part of pre-filtration to remove gross impurities from
the incoming product. In systems equipped with filter/separators in the receiving lines,
locate strainers or cyclonic separators upstream of the filter/separator. Ensure that
there is no slug valve feature on the filter/separator. Consider the use of automatic
water drains. Do not allow reverse flow thru cyclonic separators.
C
5-8.13
Grounding Systems
Provide grounding systems for barges in accordance with UFC 3-460-03, Figure 9.2.
5-8.14
Special Considerations for AviationTurbine Fuels
For inbound filtration of aviation turbine fuels, refer to Chapter 4 of this UFC.
5-9
PRODUCT RECOVERY SYSTEMS
Provide a product recovery system to collect and store usable aviation turbine fuel that
would otherwise become waste from operational or maintenance activities. Consider a
product recovery system for other products. See Chapter 8 of this UFC for product
recovery systems.
108
UFC 3-460-01
16 August 2010
5-10
WEATHER SHEDS
Provide adequate shelter for personnel, as well as for spill containment booms,
absorbent material, and other weather-sensitive equipment.
5-11
CANOPIES
Provide a canopy, unless otherwise directed by Service Headquarters, for all
aboveground equipment including pumps, meters, strainers, filters, control panels,
electrical panels, and motor control centers (MCCs). Ensure structural design is in
accordance with UFC 1-200-01 and UFC 3-301-01 .
EL
L
ED
5-12
SPECIAL CALCULATIONS
Calculate pipeline filling/venting times and draining/stripping times. The larger and the
longer the pipeline, the greater the volume of fuel required to fill the line and, therefore,
the greater the volume of air required to be vented. Undersized vent lines will delay
filling the lines and delay changeover of products in multiproduct lines. Size the vent
lines to allow filling of the line at not more than four times the design transit time of the
line. Connect vent line to the drain line to avoid spills to the environment. Check vent
line air velocity, which must not exceed the allowable air velocity to avoid electrostatic
buildup, in accordance with API RP 2003. Vent rate must be not less than the lowest
allowable pumping rate from ship or shore. Vent rate must be less than the design
transit velocity to minimize hydraulic shock.
AN
C
5-13
SAFETY SHOWERS AND EYEWASH FOUNTAINS
Provide manual shutoff valves on the potable water branch to the safety shower and
eyewash fountain. Provide a means to seal shutoff valve in the open position. This will
ensure operation in an emergency, yet allow for servicing a single shower without
shutting off potable water to the whole pier. Design for freeze protection in climates
subject to freezing. Install safety showers and eyewash fountains in accordance with
ISEA Z358.1.
5-14
TRAFFIC BOLLARDS
Provide traffic bollards to protect fueling piping and equipment on piers and wharves.
Utilize concrete-filled steel pipe of minimum 4-inch (100 mm) diameter and 4-foot (1.2
m) height, embedded in concrete or welded to a steel plate mounted on the structure.
SPECIAL DRAINAGE FOR FUELING PIERS
C
5-15
a) Provide an intercept system to collect oil spills. Place pipes on piers in
a curb containment area with a drain system independent of the deck
drainage. Provide containment also for loading arms and risers.
Provide locking valves in normally closed positions on all containment
areas along with sump pumps or other means of removing the spilled
fuel to a collection point or tank.
b) In cases where the stormwater collected in the intercept system is
contaminated, the water/fuel mixture should be treated as an oil spill as
described previously.
109
UFC 3-460-01
16 August 2010
5-16
BALLAST TREATMENT AND SLUDGE REMOVAL
5-16.1
Ballast Receiving and Treatment Facilities
ED
5-16.1.1
Design Requirements
It is the policy of the United States that there should be no discharge of oil or hazardous
substances into or upon the navigable waters of the United States, adjoining shorelines,
or into or upon the waters of the contiguous zone. Petroleum fuel facilities, which
transfer fuel by barge or tanker or which fuel large ships, require ballast water collection
and treatment facilities to receive and treat oily ballast from cargo or fuel tanks. Also:
EL
L
a) Blend the fuel oil which has been reclaimed from the ballast water
during the collection and treatment process with boiler fuel oil for use in
shoreside boilers. Perform a quality assurance check on the reclaimed
fuel oil to ensure that it meets the minimum requirements for shoreside
boiler fuel. Dispose of sludge accumulated during the collection and
treatment of ballast water in accordance with applicable hazardous
waste management disposal procedures.
b) Select and design the appropriate treatment system based on an
evaluation of the types of oil/water mixtures that may be encountered
at the particular facility. If possible, base the evaluation on samples of
typical ballast water receipts and tank washings including the following:
(2)
The specific gravity and viscosity of the oil in the mixture.
Whether other substances, such as chemicals or bacteria, in the
mixtures must be removed.
AN
(3)
Whether they are simple mixtures, simple gravity suspensions, or
chemically stable emulsions.
C
(1)
The general condition of the ship’s tanks expected to be
discharged (e.g., new, clean, coated, well maintained, or dirty
and normally full of sludge, scale, and rust).
(5)
Whether ballast water is clean sea water or polluted harbor
water.
(6)
Whether the treatment system proposed (“ship’s waste off-load
barge” or fixed shore-based facilities) meets the standards of
effluent water quality established by local environmental
regulations.
C
(4)
c) If it is determined that both simple mixtures and emulsions are present,
consider the possibility of using two segregated separate systems, one
for gravity separation and the other for breaking emulsions. Avoid
mixing the two types of suspensions when possible. For bilge water
110
UFC 3-460-01
16 August 2010
and other contaminated oily wastes which require additional treatment,
refer to UFC 4-832-01N, Industrial and Oily Wastewater Control or for
Army and Air Force projects MIL-HDBK-1005/17, Nondomestic
Wastewater Control and Treatment Design.
d) For typical schematic arrangement of ballast water treatment and
disposal systems, refer to UFGS 44 42 53.
ED
5-16.1.2
Receiving and Settling Tanks
The minimal ballast water receiving facility usually requires two storage tanks, usually of
equal capacity, to be used alternately as receiving and settling tanks. If these tanks are
sized to allow 4 to 5 days undisturbed settlement, separation of simple suspensions of
light oils in water can be achieved. Use welded steel vertical aboveground storage
tanks designed and constructed in accordance with Chapter 8 of this UFC. In addition
to complying with Chapter 8 of this UFC for construction appurtenances, provide the
following fittings and appurtenances:
EL
L
a) An automatic float gauge suitable for use with transmitting device for
remote readout.
b) One cable-operated swing-line assembly on the oil outlet pipe.
c) One shell fill nozzle.
C
d) Valved sample connections in the shell, having nonfreezing-type
valves in cold climates, every 2 feet (0.6 m) vertically, easily accessible
from the ladder or stairway.
AN
e) When chemical feed is provided, a chemical feed inlet valve, to be
nonfreezing type in cold climates.
f) When air blowing is provided, a perforated pipe air sparger for mixing.
Make the perforations in the sides of the pipe to avoid plugging by
settling solids. Use nonfreezing-type air inlet valve(s) in cold climates.
C
g) Sight glass or look box on oil outlet line.
h) Sight glass or look box on water outlet line.
i) Oil sump tank with high-level alarm.
j) Water and oil pumps as required to move fluids from receiving tanks or
from oil sump tanks. For transfer of oily water, use low-speed-type
pumps to minimize emulsification.
k) If heaters are required to reduce oil viscosity and promote separation,
use either tank wall heaters or internal pipes. Keep internal pipes at
least 2 feet (0.6 m) above the tank floor.
111
UFC 3-460-01
16 August 2010
l) Insulation for tanks that will be regularly heated.
m) Provide automatic temperature controls and thermometers for all
heated tanks.
5-17
SLUDGE REMOVAL SYSTEMS
ED
5-16.1.3
Oil/Water Separators
Separate water/fuel mixtures from storage or settling tanks with an API oil/water
separator. Recycle the fuel portion and pass the water portion to another treatment
process. Do not discharge water drawn from tanks to surface water without additional
treatment and permits. Chapter 2 of this UFC contains design information for an API
oil/water separator.
5-17.2
EL
L
5-17.1
Design Requirements
Install sludge removal systems where the accumulation of sludge in substantial
quantities is likely to occur on a regular basis. Sources of such sludge are a ballast
water treatment system, a contaminated fuel recovery system, or frequent cleaning of
shore or ships’ tanks. If routine cleaning of clean product storage tanks occurs on an
irregular basis, sludge removal systems are not required.
Sludge Disposal
C
a) Where possible, provide pumps, tanks, and piping to return sludge
containing recoverable oil to the contaminated oil recovery system. If
this is not possible, consider transferring the sludge to a refinery or
waste oil treatment facility. For additional details, refer to UFC 3-24002N or for Army projects, UFC 3-240-09FA.
AN
b) Provide a tank or tanks with transfer pump(s) for pumpable sludges
that are unreclaimable. Include piping for receiving sludge and for
mixing other low viscosity waste oils for thinning as required. Ensure
that tanks are dike-enclosed and have cone bottoms.
c) Provide tank heating where climate conditions prove necessary.
C
d) Coordinate sludge disposal method and design with facility
environmental office.
e) Enclose the sludge disposal facility with a security fence to prevent
unauthorized entry. Do not use this facility for disposal of sand, gravel,
rust scale, or other solid nonpumpable matter found on tank bottoms.
For further discussion of disposal methods, refer to NAVFAC MO-230.
5-17.3
Piping Materials
Refer to Chapter 9 of this UFC for information regarding piping materials.
112
UFC 3-460-01
16 August 2010
CHAPTER 6 - INTERTERMINAL AND INSTALLATION PIPELINES
ED
6-1
INTRODUCTION
This chapter provides guidance for the design of pipelines. Military pipelines are
typically either interterminal pipelines which are cross country and connect government
installations, or installation pipelines which connect POL facilities within an installation.
The primary differences are that interterminal pipelines cross public and private
properties, streets, highways, railroads, and utility rights-of-way, whereas installation
pipelines do not. Interterminal pipelines may be dedicated lines connecting two or more
facilities or privately owned common carrier lines serving several commercial or military
shippers. In some cases, the shipping facility may consist of a relatively short spur
which delivers the fuel to the suction side of a pumping station which is part of the main
line of a larger pipeline system. Pipeline receiving and dispensing facilities are normally
part of a bulk fuel storage facility, which is discussed in Chapter 3 of this UFC. Special
requirements for aviation turbine Fuels are in Chapter 4 of this UFC.
6-3
EL
L
6-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not start the design of any fueling system without first becoming
completely familiar with Chapter 2 of this UFC.
DESIGN REQUIREMENTS
AN
C
6-3.1
Fuel Segregation
Clean products, such as diesel fuel and distillate-type burner fuels, may be shipped in
the same system without segregation. Batches are usually pumped product to product,
but they may be separated by fresh or suitably treated water. Separate piping systems
are required for residual fuels. For DoD projects, provide a dedicated pipeline for
aviation turbine fuels.
C
6-3.2
Applicable Regulations
Interterminal and installation pipelines shall be designed as described below. Where
federal, state, or local regulations are more restrictive than the requirements indicated,
the more restrictive requirements shall apply.
6-3.2.1
Installation Pipelines
All installation pipelines shall be designed in accordance with ANSI/ASME B31.3.
6-3.2.2
Interterminal Pipelines
The U.S. Department of Transportation regulates the design, construction and operation
of interterminal pipelines for liquid petroleum. Intrastate interterminal pipelines shall be
designed in accordance with ANSI/ASME B31.4. Interstate interterminal pipelines, shall
be designed in accordance with the requirements of 49 CFR Part 195.
6-3.3
Sampling
Provide a means for taking samples of the products shipped.
113
UFC 3-460-01
16 August 2010
6-3.4
Pigging
Pipelines shall be smart piggable including long radius elbows and barred fittings unless
otherwise directed by Service Headquarters.
6-3.5
Surge Suppression
Provide surge suppressors for hydraulic shock when required.
6-4
PIPING SYSTEMS
Refer to Chapter 9 of this UFC for information regarding piping systems.
6-5.1
ED
6-5
EQUIPMENT
Equip all pipelines with meters and basket strainers, and provide the capability to install
a proving meter.
Meters
EL
L
6-5.1.1
Meters – Positive Displacement
Use flange-connected, cast steel bodied positive displacement meters of the desired
pressure and flow rating to meet applicable service requirements. Ensure that meter
has case drain and register. Provide temperature compensation and adjustable
calibration capabilities where there is custody transfer. Ensure meter accessories are
compatible with either the mechanical or electronic support equipment selected.
Consult the appropriate Service Headquarters for requirements for the meter to
communicate to a remote location or equipment.
C
AN
C
6-5.1.2
Meters – Turbine
Use flange-connected steel bodied turbine meters of the desired pressure and flow
rating to meet applicable service requirements. Provide a flow straightener before
turbine meters or provide a straight length of pipe at a minimum of ten pipe diameters
upstream and five pipe diameters downstream of all turbine meters, or as required by
manufacturer. Ensure meter has case drain and register. Provide temperature
compensation and adjustable calibration capabilities where there is custody transfer.
Ensure all supporting equipment for meter is compatible with the turbine meter selected.
Consult the appropriate Service Headquarters for requirements for the meter to
communicate to a remote location or equipment. Consider the use of a card-operated
or key-operated data acquisition system. Cards or keys, as appropriate, are coded to
identify the receiver of the fuel and to allow access to the fuel. The quantities taken are
transmitted to a data-receiving device by electronic pulse transmitters mounted on each
meter, and each transaction is automatically recorded.
6-5.2
Manual Valves
6-5.2.1
Materials of Construction
Require valves to have carbon steel bodies and bonnets. Do not allow valves with
aluminum, cast iron, or bronze materials. Use only API fire-safe valves.
114
UFC 3-460-01
16 August 2010
6-5.2.2
Isolation Valve Types
a) Double Block and Bleed Isolation Valves:
Use these for separation of product services, on tank shell
connections, when piping goes above or below ground, between
pier and tank storage, and other locations critical to pressuretesting of piping.
(2)
Plug Valves (Double Block and Bleed): Use lockable, doubleseated, tapered lift, plug type valves with an automatic body
bleed between the seats (double block and bleed) in critical
applications such as separation of product services, on each line
at the shore end, when piping goes above or below ground,
between pier and tank storage, and other locations critical to
pressure-testing of piping. Valves shall be designed so that if
the synthetic seating material is burned out in a fire, a metal-tometal seat will remain to affect closure and comply with API Std
607. Lubricated plug valves are not allowed. Include integral
body cavity thermal relief valve.
(3)
Ball Valves (Double Block and Bleed): Use double-seated,
trunion mounted, lockable, ball type valves with a body bleed
between the seats (double block and bleed). These will be very
rarely used but are acceptable as an alternative to double block
and bleed plug valves in applications where the valve is operated
very infrequently. An example is isolation valves in the middle of
piers that are only closed to perform pressure testing of piping.
Valves shall be designed so that if the synthetic seating material
is burned out in a fire, a metal-to-metal seat will remain to affect
closure and comply with API Std 607. Include integral body
cavity thermal relief valve.
AN
C
EL
L
ED
(1)
C
(4)
Gate Valves: Use double-seated, lockable, gate type valves with
a body bleed between the seats (double block and bleed).
These will be very rarely used but are acceptable as an
alternative to double block and bleed plug valves and double
block and bleed ball valves only when other double block and
bleed valves will not physically fit. Valves shall be designed so
that if the synthetic seating material is burned out in a fire, a
metal-to-metal seat will remain to affect closure and comply with
API Std 607. Single seated gate valves are not allowed. Include
integral body cavity thermal relief valve.
b) Quick Opening/Frequent Opening Isolation Valves
115
UFC 3-460-01
16 August 2010
Use these for less critical applications where double block and
bleed shutoff is not required.
(2)
Ball Valves: Ball type valves may be used as valves for quick or
frequent opening applications when a double block and bleed
valve is not required. Ball valves shall be designed so that if the
synthetic seating material is burned out in a fire, a metal-to-metal
seat will remain to affect closure and comply with API Std 607.
Use Teflon or Viton synthetic seals or seating material. Use full
port ball valves with exact same diameter of the pipe within ten
pipe diameters upstream and/or five pipe diameters downstream
of a flow or pressure control valve, or a flow-sensing device such
as a venturi. Valves should comply with API Std 608.
ED
(1)
c) Butterfly Valves: Butterfly valves are not allowed.
EL
L
d) Use full port valves with exact same diameter of the pipe when line
pigging is required.
AN
C
6-5.2.3
Isolation Valve Operators
Provide manually operated valves not specified for remote, automatic, or emergency
operation. Use geared operators for ball and double block and bleed valves larger than
6 inches (150 mm). Double block and bleed gate, ball, and double block and bleed
valves specified for remote, automatic, or emergency service may have electric motor
operators with suitable torque limiting controls if approved by Service Headquarters.
For remote valves, consider using solar battery packs to reduce cost of routing power
for the motor operators. Provide locking tabs on isolation valves to allow padlocks to be
used to lock out valves during maintenance. Provide chain operators on valves which
are located 72 inches (1800 mm) or higher above grade.
C
6-5.2.4
Isolation Valve Locations
Provide valves in product piping systems to control flow and to permit isolation of
equipment for maintenance or repair. Provide additional valves at required locations
necessary to conduct a valid hydrostatic test. Provide manually operated valves, except
where motor operators are specifically authorized by applicable standard drawings or
technical specifications. Use double block and bleed type isolation valves for
separation of product services, on tank shell connections (ASTs over 12,000 gallons
only), when piping goes above or below ground, between pier and tank storage, and
other locations critical to periodic pressure-testing of piping. Quick opening/frequent
opening type isolation valves may be used for less critical applications where double
block and bleed shutoff is not required. Before adding isolation valves, evaluate piping
system and make modifications to prevent pressure buildup caused by thermal
expansion. Review paragraph on relief valves in Chapter 9 of this UFC. As a minimum
requirement, provide isolation valves at the following locations:
a) Provide a double block and bleed isolation valve on each branch line at
the point of connection to the main product pipeline or header.
116
UFC 3-460-01
16 August 2010
b) Provide a double block and bleed isolation valve on the product
pipeline or header just before the line leaves a pumping station.
c) Provide a double block and bleed isolation valve at the inlet and outlet
connection of each line strainer, filter/separator, meter, diaphragm
control valve, thermal relief valve, and other equipment that requires
periodic servicing. One inlet and one outlet double block and bleed
isolation valve may be used to isolate more than one piece of adjacent
equipment which are connected in series.
ED
d) Provide a double block and bleed isolation valve on the upstream and
downstream side of each line blind at connections to cross country
pipelines.
EL
L
e) Provide a double block and bleed isolation valve on each main
distribution pipeline immediately downstream of the branch connection
to each existing or future operating storage facility served by the
pipeline.
f) Provide a double block and bleed isolation valve at intermediate points
of approximately 10 miles (16 km) in cross country distribution
pipelines to facilitate isolation of a section of the line for maintenance
and repair.
C
g) Provide a double block and bleed isolation valve on each side of water
crossing exceeding 100 feet (30 m) in width, and near the shoreline of
a submerged sea pipeline.
AN
h) Provide a double block and bleed isolation valve at critical points
where pipes cross under runways, taxiways, and roadways.
i) For low-point drains and high-point vents.
C
6-5.2.5
Isolation Valve Pits
Provide fiberglass or concrete pits with a rolling or hinged cover designed in accordance
with the DoD Standard Design AW 78-24-28 for all isolation valves installed in nontraffic areas on underground fuel systems. Design valve pits and valve operators so
that the valves can be operated by personnel, without confined space entry.
6-5.3
Other Valves (Except Diaphragm Control Valves)
6-5.3.1
Check Valves
Use check valves to prevent backflow through pumps, branch lines, meters, or other
locations where runback or reverse flow must be avoided. Check valves may be of the
swing disk, globe, dual plate hinged disk, spring-loaded poppet, ball, or diaphragmactuated types. Use checks of soft-seated non-slamming type with renewable seats
and disks. Ensure check valves conform to API Spec 6D. Use diaphragm non-surge
check valves with flow control feature on the discharge of all pumps. When using non117
UFC 3-460-01
16 August 2010
surge check diaphragm control valves on pump discharge, consider the use of a spring
type wafer check before the diaphragm valve to prevent sudden flow reversals during
shutdown from passing back thru the pump before the diaphragm control valve
diaphragm chamber is filled and reacts by closing the valve.
6-5.3.2
Thermal Relief
Provide thermal relief valves around shutoff and check valves to relieve excessive
pressures caused by thermal expansion of liquid trapped between shutoff points. See
Facility Plates 023, 024, 025 and 026.
EL
L
ED
6-5.4
Diaphragm Control Valves
Hydraulically operated, single-seated, globe type, diaphragm actuated control valves
are used extensively in fueling systems as control valves. These valves consist of a
main valve and a pilot control system. The valve is operated by varying the amount of
pressure above the diaphragm. Since the chamber above the diaphragm exposes a
greater area of the diaphragm to chamber pressure than the area of the disc exposed to
line pressure, an equal pressure in the chamber and pipeline results in a greater force
being applied to the top of the disc. This forces the disc against the seat, thus closing
the valve. By selecting the proper pilot control system, these valves can be used in
numerous ways to control flow, pressure, and level within fueling systems.
Use extreme care when including these valves on pipelines as they can significantly
contribute to surge potential, if closing time is too short. When properly adjusted, they
can reduce surges.
AN
C
6-5.4.1
Open/Close Operation
This is the most basic operation of hydraulically operated diaphragm control valves.
The operation is accomplished by applying pressure above the diaphragm to close the
valve and relieve that pressure to allow line pressure to open the valve. The pilot trim
used to perform this operation is a three-way valve which can be controlled by a
solenoid, hand, pressure, pressure differential, or a float.
C
6-5.4.2
Throttling Operation
This is the other main method of controlling the hydraulically operated diaphragm
control valve. In this case, the valve modulates to any degree of opening, in response
to changes in the throttling control. The throttling control reacts to a pressure, or a
pressure differential across the main valve, or pressure differential across an orifice
plate to regulate the position of the disc in the main valve; provide full port manual
isolation valves if they are placed within these limits.
6-5.4.3
Check Valve Function
This is a unique function of a control valve. In this case, the main valve outlet pressure
is connected to the diaphragm cover. Therefore, if the downstream outlet pressure
exceeds the inlet pressure, which normally holds the valve open, the valve will close
and prevent backflow.
118
UFC 3-460-01
16 August 2010
6-5.4.4
Remote Operations
Hydraulically operated diaphragm control valves can be operated remotely. This is
accomplished by installing tubing from the point of pressure sensing to the valve or by
using remote-controlled solenoids within the trim.
ED
6-5.4.5
Materials of Construction
Use stainless steel pilots and stainless steel tubing. Use bodies, bonnets, and covers
made of stainless steel, internally plated (chrome) steel, or internally plated (nickel)
nodular iron. Provide Viton or Buna-N diaphragm and disc ring. Enclose all electrical
apparatus according to classification of the area in which they are installed. Provide a
means to wire seal all adjustable pilots. Do not use aluminum valves.
6-5.4.6
Applications
For pipeline systems, use hydraulically operated diaphragm control valves in the
following applications:
EL
L
a) Rate of flow control.
b) Pressure reduction.
c) Pressure relief.
d) Excess flow shutdown.
C
6-5.4.7
Combinations
A combination of these controls is also possible.
AN
6-5.5
Strainers
Require a strainer to protect centrifugal pumps, unless it precludes meeting the net
positive suction head of the pump. Whether or not strainers are installed on the suction
side of centrifugal pumps, install a spool piece so that temporary strainers can be
installed during startup of the system. Strainers are required on the suction side of all
pumps, meters, and receipt filtration. Strainers are not required upstream of issue
filter/separators or diaphragm control valves. Also:
C
a) Use flanged strainers constructed of steel and fitted with removable
baskets of fine Monel metal or stainless steel mesh with large mesh
reinforcements.
b) Unless otherwise specified, provide a fine screen mesh as follows:
Pump suctions (Centrifugal)
Pump suctions (Positive
Displacement)
Receipt Filtration
Meter inlets (unless downstream
of a filter/separator)
119
Mesh
7
Size of Opening
0.108 inch (2.74 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
40
0.016 inch (0.40 mm)
UFC 3-460-01
16 August 2010
c) In all cases, ensure the effective screen area is not less than three
times the cross sectional area of the pipe.
d) Strainers upstream of pump shall be quick opening, single screw type
with drain connection at bottom.
ED
e) Provide pressure gauges on both sides of the strainer and a differential
type gauge across the strainer.
EL
L
6-5.6
Surge Suppressors
Every effort should be made to control hydraulic surge or shock to acceptable limits by
the design of the piping system rather than by the use of surge suppressors. Where
this is not possible or becomes extremely impractical, surge suppressor(s) may be
incorporated. Use the diaphragm or bladder type equipped with a top-mounted liquidfilled pressure gauge, wafer-style check valve at the bottom, drain above the check
valve, and isolation valve. Provide a needle valve around the check valve to permit
controlled bleed back of the surge suppresser without rebounding. Locate surge
suppressors as close as possible to the point of shutoff that is expected to cause the
shock. Surge suppressors can reduce shock pressure but will not eliminate it entirely.
The preferred solution to hydraulic shock is conservative piping design, use of loops,
and slow-closing valves. Surge suppressors are strictly a last resort solution and
require the approval of Service Headquarters prior to designing into a system.
AN
C
6-5.7
Pigging Equipment
Equip all pipelines with outlets to allow the connection of pig launchers and receivers.
Design the outlets so that they can accommodate internal nondestructive inspection
trains. Provide sufficient curvature of bends in the pipeline to permit free passage for
such equipment. Provide tees with, factory installed internal guide bars, at all branch
connections.
C
6-5.8
Pumps
Primary pumping facilities are discussed in Chapter 3 of this UFC. If multiple pump
stations are required to keep pipeline pressure within safe limits, provide them at
appropriate locations. Chapter 3 also provides guidance for those pumping facilities.
6-5.9
Sampling Connections
Provide connections for sampling fuels on each section of a fuel transfer piping system.
Install sampling and testing connections at receiving points, tank outlets, inlet and outlet
sides of filter/separators, fuel dispensing points, and between isolation valves so that
remaining fuel in each portion of a fuel transfer pipeline can be sampled. Where
possible, install sampling connections in vertical runs. Provide a 1/4-inch (8 mm)
diameter sample point with a probe, ball valve, and quick disconnect with dust cap.
6-5.10
Special Consideration for AviationTurbine Fuels
For inbound filtration of aviation turbine fuels, refer to Chapter 4 of this UFC.
120
UFC 3-460-01
16 August 2010
6-6
PRODUCT RECOVERY SYSTEMS
Provide a product recovery system to collect and store usable aviation turbine fuel that
would otherwise become waste from operational or maintenance activities. Consider a
product recovery system for other products. See Chapter 8 of this UFC for product
recovery systems.
6-7
CANOPIES
ED
6-7.1
Canopies to Protect Fixed Assets
Unless otherwise directed by Service Headquarters, provide a canopy to protect fixed
facility assets and equipment from the elements. Fixed facilities and equipment include
but are not limited to: pump pads, filtration pads, meter pads, isolation valve pads, tank
truck and tank-car off-loading and loading equipment pads, control panels, electrical
panels, and motor control centers (MCCs). Ensure structural design is in accordance
with UFC 1-200-01 and UFC 3-301-01.
EL
L
6-7.2
Canopies to Reduce Stormwater
Do not provide a canopy to preclude rain from reaching the containment area unless it
is required by federal, state, or local regulations; or it is economically justified by
reducing the size of the concrete remote spill containment or spill treatment system; or if
directed by Service Headquarters. At a canopy over a tank truck or tank car loading
and off-loading containment area, ensure that the underside of the canopy is high
enough to provide operator head room when walking on top of the truck or car. Ensure
structural design is in accordance with UFC 1-200-01 and UFC 3-301-01.
C
AN
C
6-8
SPECIAL CALCULATIONS
Calculate pipeline filling/venting times and draining/stripping times. The larger and the
longer the pipeline, the greater the volume of fuel required to fill the line and, therefore,
the greater the volume of air required to be vented. Undersized vent lines will delay
filling the lines and delay changeover of products in multiproduct lines. Size vent lines
to allow filling of the line at not more than four times the design transit time of the line.
Where applicable, connect vent lines to system drain lines to avoid spills to the
environment. Check vent line air velocity, which must not exceed the allowable air
velocity to avoid electrostatic buildup, in accordance with API RP 2003. Vent rate must
be not less than the lowest allowable pumping rate from ship or shore. Vent rate must
be less than the design transit velocity to minimize hydraulic shock.
121
UFC 3-460-01
16 August 2010
CHAPTER 7 - GROUND PRODUCTS FUELING FACILITIES
7-1
INTRODUCTION
This chapter provides guidance for the design of ground products (gasoline, diesel)
fueling facilities and covers government vehicle motive fuel filling stations and tactical
refueler truck loading facilities. Private vehicle filling stations, such as exchange service
stations, are not included.
ED
7-1.1
Types of Facilities
The following three types of filling stations may be required (see Facility Plates 011, 012
and 013):
a) A filling station for dispensing motive fuel gasoline and diesel into
government (commercial type) sedans, vans, and small trucks. See
Facility Plate 011.
EL
L
b) A filling station for dispensing motive fuel gasoline and diesel into
tactical vehicles. See Facility Plate 011.
c) A truck loading facility for loading gasoline and diesel into tactical
refueler vehicles. See Facility Plates 012 and 013.
DESIGN REQUIREMENTS
AN
7-3
C
7-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not start design of any fueling system without first becoming completely
familiar with Chapter 2 of this UFC.
7-3.1
Fuel Segregation
Provide separate receiving, storage and distribution systems for each grade or type of
fuel. Except as otherwise approved by Service Headquarters, prevent misfueling
(transferring a type of fuel other than the type intended) by using different size piping,
valves, adaptors, nozzles, etc.
C
In the CONUS, use color coding in accordance with API RP 1637. In non-CONUS
facilities, use host nation standard if it is different than API RP 1637. Use API RP 1637
if no other standard is in effect. For Air Force projects to refer to AFTO 37-1-1.
7-3.2
Facility Size
In each filling station, provide one commercial-type dispensing unit which displays
volume only for each 100 vehicles assigned to the activity. The total amount of storage
capacity in each station should be approximately twice the capacity of all vehicle fuel
tanks, by grade or type of fuel, assigned to the activity. Minimum storage capacity for
any grade or type of fuel is 5,000 gallons (19 000 L) unless approved by Service
Headquarters. For tactical refueler truck loading facilities, see Chapter 3 of this UFC.
122
UFC 3-460-01
16 August 2010
7-3.3
Facility Configurations
In general, for control and safety, separate the three types of filling stations. For a
relatively small installation or one on which there is a limited amount of activity expected
at one time, it may not be practical to provide totally separate facilities. In those cases,
separate the functions as much as possible to minimize mixing traffic of commercialtype vehicles from tactical vehicles and, more importantly, from mixing tactical refuelers
which are being loaded with relatively large quantities of fuel from other vehicles which
are being fueled for their own engine (motive fuel).
ED
7-3.4
Shelters
For staffed facilities, provide a shelter for personnel, records, and tools.
7-3.5
Concrete Fueling Area – Filling Stations
Create a fueling area constructed of concrete by surrounding fueling islands with a
concrete slab graded at a minimum of 1 percent away from the islands.
7-3.7
Canopies
EL
L
7-3.6
Concrete Fueling Area – Tactical Refueler Truck Loading Facilities
Provide concrete spill containment areas and concrete remote spill containment
systems as described for truck loading facilities in Chapter 3 of this UFC.
AN
C
7-3.7.1
Canopies to Protect Fixed Assets
Provide a canopy for protection from the elements of fixed facility assets and equipment
unless otherwise directed by Service Headquarters. Fixed facility assets and equipment
include but are not limited to: pump pads, filtration pads, meter pads, isolation valve
pads, off-loading and loading equipment pads, control panels, electrical panels, and
motor control centers (MCCs). Ensure structural design is in accordance with UFC 1200-01 and UFC 3-301-01.
C
7-3.7.2
Canopies to Reduce Stormwater at Tactical Refueler Truck Loading
Facilities
Do not provide a canopy to preclude rain from reaching the containment area unless it
is required by federal, state, or local regulations; or it is economically justified by
reducing the size of the concrete remote spill containment or spill treatment system; or if
directed by Service Headquarters. Ensure that the underside of the canopy is high
enough to provide operator head room when walking on top of the truck. Ensure
structural design is in accordance with UFC 1-200-01 and UFC 3-301-01.
7-3.7.3
Canopies to Reduce Stormwater of Filling Stations
Do not provide a canopy to preclude rain from reaching the concrete fueling area unless
it is required by federal, state, or local regulations; or a concrete remote spill
containment or treatment system is required by federal, state, or local regulations and it
is economically justified by reducing the size of the remote spill containment or spill
treatment system; or if directed by Service Headquarters. Ensure structural design is in
accordance with UFC 1-200-01 and UFC 3-301-01.
123
UFC 3-460-01
16 August 2010
7-3.8
Regulations
Design must comply with NFPA 30, NFPA 30A, and API RP 1615.
7-3.9
Bottom Loading
The bottom loading of refuelers is required if the refuelers are equipped for it. However,
there are Army refuelers which are not equipped for bottom loading and which will be in
inventory for several years. Therefore, consult Service Headquarters before providing
top loading at tactical refueler fillstands.
7-5
PIPING SYSTEMS
ED
7-4
STORAGE TANKS
Chapter 8, Atmospheric Storage Tanks, contains information on aboveground and
underground storage tanks. For ground products fueling facilities underground,
horizontal tanks are preferred. Follow federal, state, and local regulations when
determining use of AST or UST.
EL
L
7-5.1
Piping System – Tactical Refueler Facilities
For systems serving tactical refueler fillstands see the requirements for tank truck
loading facilities in Chapter 3 of this UFC.
7-5.2
Aboveground Piping System – Filling Stations
Follow state or local regulations when they exceed these requirements. When they do
not exceed them, provide as described in Chapter 9 of this UFC with the following
exceptions:
C
a) Piping 4 inches (100 mm) and larger shall be buttwelded or socket
welded. Use flange connections for joining pipe to equipment.
AN
b) Piping smaller than 4 inches (100 mm) may be buttwelded, or socket
welded. Use flange connections, or socket weld connections with
unions for joining pipe to equipment. Threaded end connections may
be used only where buttwelded or socket welded connections cannot
physically be provided.
C
c) Branch outlet fittings do not have to be designed to be radiographed.
7-6
EQUIPMENT DESCRIPTIONS
7-6.1
Filling Stations
7-6.1.1
Fuel Dispensers
Use a commercially available dispenser with a self-contained electric motor and
pumping unit or a remote pumping type where the pump and motor are located in the
storage tank. If an in-tank type of pump is used, ensure that it is equipped with a
reduced start volume as a leak check. Provide a meter for each dispenser. Dispenser
flow rates are typically a maximum of 10 gpm (0.6 L/s); follow state and local regulations
for actual maximum. Designer shall check with state and local regulations for limitations
124
UFC 3-460-01
16 August 2010
on dispenser flowrates. Dispensing system will include management control system,
printers, computers, and microprocessors. Equip fuel dispensers with an inline filtration
system capable of sediment removal to 10 mg/L or less. Add emergency break-away
hose connections at each fuel dispenser in accordance with NFPA 30A. Where liquid is
supplied to the dispenser under pressure, provide an emergency shutoff valve,
incorporating a fusible link, in the supply line at the base of each dispenser as required
by NFPA 30A. Equip dispensing islands with impervious spill containment pans under
the dispensers.
EL
L
ED
7-6.1.2
Card and Key Locks
Consider the possible economic and operational advantages of using an electronic card
or key system which permits 24-hour unmanned operation of the facility. These types of
systems are comprised of a card/key reader which is located near the service pump.
The reader is activated by a card or key and accumulates issues and customer data
which is downloaded to a central computer on a periodic basis. Activities with
capitalized fuel, that is petroleum product owned by DLA/DESC, are eligible for projects
to install automated card/key lock systems. Activities with capitalized fuel report
inventories of these products to DESC through a system called BSM-E. Automated
systems to control capitalized inventories must be able to interface with the BSM-E.
These types of automated systems are managed under the AFSS program by DESC. It
should be noted that AFSS equipment is used to control issues of product and is not an
automated tank gauging system. Further information on AFSS systems and funding
programs may be obtained by contacting DES-Energy.
C
7-6.2
Tactical Refueler Truck Loading Facilities
Equip similar to truck loading facilities covered in Chapter 3 of this UFC except provide
a grounding reel in lieu of the high-level shutoff/ground detecting system. Verify the
type of nozzle required by the user.
AN
7-6.3
Valves
For systems serving tactical refueler fillstands see the requirements for tank truck
loading facilities in Chapter 3 of this UFC. The below requirements apply to filling
station only.
C
7-6.3.1
Materials of Construction
Require valves to have carbon steel bodies and bonnets. Do not allow valves with
aluminum, cast iron, or bronze materials. Use only API fire-safe valves.
7-6.3.2
Isolation Valve Types
a) Ball Valves: These are the only approved quick opening/frequent
opening isolation valves. Ball type, lockable, valves designed so that if
the synthetic seating material is burned out in a fire, a metal-to-metal
seat will remain to affect closure and comply with API Std 607. Use
Teflon or Viton synthetic seals or seating material. Valves should
comply with API Std 608.
125
UFC 3-460-01
16 August 2010
b) Double Block and Bleed Isolation Valves: Do not provide unless
directed by Service Headquarters.
c) Lubricated Plug Valves: Lubricated plug valves are not allowed.
d) Gate Valves: Gate valves are not allowed.
e) Butterfly Valves: Butterfly valves are not allowed.
ED
7-6.3.3
Isolation Valve Operators
Manually operate valves not specified for remote, automatic, or emergency operation.
Use geared operators for ball valves larger than 6 inches (150 mm). Provide locking
tabs on isolation valves to allow padlock to be used to lock out the valves during
maintenance. Provide chain operators on valves which are located 72 inches (1800
mm) or higher above grade.
EL
L
7-6.3.4
Isolation Valve Locations
Provide isolation valves in piping systems to control flow and to permit isolation of
equipment for maintenance or repair, or as necessary to conduct a valid hydrostatic
test. As a minimum requirement, provide isolation valves at the following locations:
a) Where piping goes underground or comes aboveground and requires
periodic pressure testing.
C
b) At all subsurface and aboveground piping connections to storage
tanks.
AN
c) On the suction side and discharge side of each pumping unit, except
the suction side of vertical centrifugal pumps installed in underground
tanks.
C
d) On the inlet and outlet connection of each line strainer, meter,
diaphragm control valve, and other equipment that requires periodic
servicing. One inlet valve and one outlet valve may be used to isolate
more than one piece of adjacent equipment which are connected in
series.
7-6.4
Diaphragm Control Valves
These valves are not required in filling stations.
7-6.5
Other Valves
7-6.5.1
Check Valves
Use check valves to prevent backflow through pumps, branch lines, meters, or other
locations where runback or reverse flow must be avoided. Check valves may be of the
swing disk, globe, dual plate hinged disk, spring-loaded poppet, ball, or diaphragmactuated types. Use checks of soft-seated non-slamming type with renewable seats
and disks. Ensure check valves conform to API Spec 6D.
126
UFC 3-460-01
16 August 2010
7-6.5.2
Thermal Relief
Provide thermal relief valves around isolation and check valves to relieve excessive
pressures caused by thermal expansion of liquid trapped between shutoff points. See
Facility Plates 023, 024, 025 and 026.
C
AN
C
EL
L
ED
7-7
VAPOR RECOVERY
Provide vapor recovery in accordance with guide specifications unless there are more
stringent federal, state, and local codes or regulations. Some requirements are in 40
CFR Part 60 Subpart XX. If gasoline is being handled, provide, as a minimum, Stage I
vapor recovery and the piping for Stage II. If Stage II is not required by local or state
regulations at time of installation, cap the vapor return pipe at the dispenser.
127
UFC 3-460-01
16 August 2010
CHAPTER 8 - ATMOSPHERIC STORAGE TANKS
ED
8-1
INTRODUCTION
This chapter provides guidance for the design of bulk storage tanks, operating storage
tanks, ground vehicle fueling tanks, miscellaneous use tanks, product recovery system
tanks, contaminated fuel storage tanks, and jet engine test cell fuel storage tanks.
Design guidance on issues related to storage tanks such as protection, location,
coatings, product recovery, and spill containment systems are also covered in this
chapter. Ballast water storage tanks are covered in Chapter 5 and pressurized tanks for
storage of LPG are covered in Chapter 10 of this UFC. This chapter generally applies
to new tanks. Refer to Chapter 12 for repair or refurbishment of existing tanks.
EL
L
8-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not start design of any fueling system without first becoming completely
familiar with Chapter 2 of this UFC.
8-3
GENERAL CRITERIA
Design liquid fuel storage tanks to comply with the operational requirements of the
particular command having jurisdiction of the facility. Ensure that the design is
appropriate for the mission of the facility. Consider the operational requirements of the
users of the fuel.
C
8-3.1
Materials
All aboveground storage tanks shall be constructed of steel or concrete encased steel.
C
AN
8-3.2
Protection
Provide protection to preserve product quality and ensure minimal losses by
evaporation, dilution, leakage, substitution, theft, contamination, attack, sabotage, fire,
and damage to the environment. Use aboveground steel tanks unless the mission of
the facility or other practical considerations dictate that underground tanks be used. Cut
and cover (buried vertical) tanks are not normally used in the CONUS. Cut and cover
tanks may be required if the dispensing system is located in clear zones or explosive
cordon areas. Conduct economic, operational, and mechanical analyses of remotely
locating the pump house/system from the hydrant system versus constructing cut and
cover tanks.
8-3.3
Design Requirements
Fuel storage facilities provide an operating and reserve supply of fuel. The types and
sizes of storage tanks depend on safety, economics, terrorist activity, locality, and
intended service. Provide separate storage for each type and grade of fuel. For
aviation activities, provide a minimum of two tanks for each type of fuel.
8-3.4
Storage Capacity
The capacity or size of each fuel storage tank is based upon the logistical and mission
requirements for the facility and any other facility to be supported from it. For a stated
volume of each fuel, fewer tanks of larger size will result in maximum economy. The
128
UFC 3-460-01
16 August 2010
appropriate Service Headquarters with DESC/DLA approval will determine the number
and size of tanks required. Rule of thumb guidance for operating storage and bulk
storage capacity is available in Navy UFC 2-000-05N/P-80. Provide a minimum of two
tanks at aviation activities for each type of aviation turbine fuel to receive and isolate
new receipts until tested and checked for quality and quantity while the facility continues
to function with stocks on hand. In general, capacities of individual tanks should not
exceed 50 percent of the total storage volume required for each type and grade of fuel.
Do not provide tanks with capacities greater than 100,000 barrels (16 000 m3) except
when larger tanks are specifically authorized by Service Headquarters.
Tank Spacing
ED
8-3.5
8-3.5.1
Vertical Tanks
Provide a minimum distance between the shells of vertical tanks, both aboveground and
underground, of not less than one diameter of the larger tank.
EL
L
8-3.5.2
Horizontal Underground Tanks
Provide a minimum clearance between shells of adjacent horizontal underground tanks
of 3 feet (0.9 m).
8-3.5.3
Horizontal Aboveground Tanks (Single-Wall and Double-Wall Steel)
(Non-Fire Resistant and Non-Protected)
Provide a minimum clearance between aboveground horizontal tanks with capacities
40,000 gallons (151 400 L) or under as follows:
C
a) Arrange tanks in pairs with a minimum of 5 feet (1.5 m) between tanks
in each pair and 10 feet (3 m) between adjacent tanks of two pairs in
the same row.
AN
b) Space adjacent groups of more than two pairs in a single row with at
least 20 feet (6 m) between the nearest tanks of the groups.
c) Provide a minimum end-to-end spacing between tanks in longitudinal
rows of 20 feet (6 m).
C
d) Provide a UL nameplate on tanks stating that the tanks are approved
for that material and service.
e) In addition to requirements listed in this paragraph, tanks located in
facilities governed by NFPA 30A, such as marine/motor fuel dispensing
facilities, shall comply with NFPA 30A.
8-3.5.4
Horizontal Aboveground Tanks (Fire Resistant)
Provide minimum clearance and spacing between fire resistant, secondarily contained
aboveground horizontal tanks in compliance with NFPA 30 and NFPA 30A as
applicable.
129
UFC 3-460-01
16 August 2010
8-3.5.5
Horizontal Aboveground Tanks (Protected)
Provide minimum clearance and spacing between protected, secondarily contained
aboveground horizontal tanks in compliance with NFPA 30 and NFPA 30A as
applicable.
ED
8-3.6
Distance from Buildings and Property Lines
Locate tanks a sufficient distance from buildings and property lines to prevent the
ignition of vapors from the tank and to protect buildings and their occupants or contents
from damage by a tank fire. Assume that the maximum internal pressure in a fire
exposure will not exceed 2.5 psig (17 kPa). As a minimum, comply with requirements of
the following paragraphs.
EL
L
8-3.6.1
Underground Tanks
Locate underground tanks with respect to buildings or similar structures so that the soil
pressure created by the building foundations will not be transmitted to the tank.
Pumping facilities which are often located directly above underground tanks are
accepted. Locate horizontal cylindrical tanks less than or equal to 12 feet (3.7 m) in
diameter not less than 10 feet (3 m) from the nearest point of an adjacent building or
property line. Locate vertical underground tanks at least 25 feet (7.6 m) from the
nearest point of an adjacent building and 50 feet (15 m) from the nearest property line.
AN
C
8-3.6.2
Aboveground Tanks
Locate aboveground tanks with consideration of fire safety. The first consideration is to
prevent the ignition of vapors from the tank, and the second consideration is to protect
the building and its occupants or contents from damage by a tank fire. As a protective
measure, provide all aboveground tanks with some form of emergency relief venting for
fire exposure in accordance with NFPA 30. In the following, it is assumed that all tanks
are constructed or equipped so that the maximum internal pressure in a fire exposure
will not exceed 2.5 psi (17 kPa). Recommended minimum distances for aboveground
tanks from buildings and property lines are as follows:
C
a) Tanks, all sizes and types, not protected or fire-resistant, containing
petroleum fuels with a flash point less than 100 degrees F (38 degrees
C), 100 feet (30 m) or one tank diameter, whichever is greater. Tanks
located in facilities governed by NFPA 30A, such as marine/motor fuel
dispensing facilities, shall comply with NFPA 30A.
b) Tanks, not protected or fire-resistant, containing petroleum fuels with a
flash point of 100 degrees F (38 degrees C) or greater in accordance
with the following:
130
UFC 3-460-01
16 August 2010
Minimum Distance from
Nearest Property Line
Feet (m)
10 (3.0)
20 (6.0)
30 (10)
40 (12)
60 (18)
100 (30)
Tank Capacity
gallons (L)
275 or less (1040 or less)
276 to 750 (1041 to 2800)
751 to 12,000 (2801 to 45 400)
12,001 to 30,000 (45 401 to 113 500)
30,001 to 50,000 (113 501 to 189 000)
50,001 to more (189 001 or more)
Minimum Distance from
Nearest Building
Feet (m)
5 (1.5)
10 (3.0)
15 (4.5)
20 (6.0)
60 (18)
100 (30)
ED
c) For aboveground, fire-resistant tanks in facilities governed by NFPA
30A, use NFPA 30A guidelines.
d) For aboveground, protected tanks, use NFPA 30 guidelines. Protected
tanks located in facilities governed by NFPA 30A, such as
marine/motor fuel dispensing facilities, shall comply with NFPA 30A.
EL
L
8-3.7
Distance from Roadway, Railroads and Power Lines
Minimum distances of storage tanks from adjacent roadways, railways, railroads, and
overhead electric power lines are as follows:
C
8-3.7.1
Underground Tanks
Locate underground tanks with respect to buildings or similar structures so that the soil
pressure created by the building foundations will not be transmitted to the tank.
Pumping facilities which are often located directly above underground tanks are
accepted. Spacing and clearances for underground tanks shall be in accordance with
the most conservative of NFPA 30, NFPA 30A, or as follows:
AN
a) A minimum of 25 feet (7.6 m) from regularly traveled roads and
highways, not including tank farm utility and fire access roads.
b) 25 feet (7.6 m) from railroad spur tracks not used for through traffic.
c) No less than 100 feet (30 m) from main railroad tracks carrying through
traffic.
C
d) 50 feet (15 m) from overhead electric power transmission and
distribution wires.
8-3.7.2
Aboveground Tanks
a) The greater of 100 feet (30 m) or one tank diameter from regularly
traveled roads and highways, not including tank farm utility and fire
access roads.
b) 50 feet (15 m) from railroad spur tracks not used for through traffic.
c) 200 feet (60 m) from main railroad tracks carrying through traffic.
131
UFC 3-460-01
16 August 2010
d) 50 feet (15 m) from overhead electric power transmission and
distribution wires.
e) For above-ground, fire-resistant tanks in facilities governed by NFPA
30A, use NFPA 30A guidelines.
f) For above-ground, protected tanks, use NFPA 30 guidelines.
Protected tanks located in facilities governed by NFPA 30A, such as
marine/motor fuel dispensing facilities, shall comply with NFPA 30A.
ED
8-3.8
Distance from Tank Truck and Tank Car Off-Loading and Loading
Facilities
Provide a minimum distance between both aboveground and underground storage
tanks of not less than 50 feet (15 m) from tank truck and tank car off-loading and
loading facilities.
EL
L
8-3.9
Interior Coatings
To extend the life of steel storage tanks, coat new tanks according to the following
guidelines:
a) Vertical tanks
All aviation, diesel fuel marine (F-76), additive, and lube oil tank.
Interiors shall be 100 percent coated, including floor, shell, and
underside of the roof.
(2)
Other products. Coat the floor, the underside of the fixed roof,
and the bottom 40 inches (1000 mm) of the tank shell.
Additional coating of up to 100 percent requires economic
justification and Service Headquarters approval.
AN
C
(1)
b) Horizontal tanks
(1)
For all products, tank interiors shall be 100 percent coated.
C
c) For all products coat the interior and exterior of carbon steel piping
located inside the tank, and steel appurtenances inside all tanks.
8-3.10
Exterior Coatings
a) Protect the exterior surface of all aboveground steel tanks by coating in
accordance with appropriate guide specifications.
b) Protect the exterior surfaces of all underground horizontal steel tanks
with a factory-applied coating specified in the appropriate guide
specifications.
132
UFC 3-460-01
16 August 2010
c) For protected tanks, with exterior steel containment, consider exterior
fiberglass cladding for extremely corrosive atmospheres or seaside
locations.
8-3.11
Fill Piping
Size the pipe so that the velocity does not exceed 12 feet (3.7 m) per second at
maximum flow rate. Provide a means for reducing the velocity of flow to 3 feet (0.9 m)
per second until the filling inlet nozzle is completely submerged and/or the floating pan
has lifted off its legs.
EL
L
ED
8-3.12
Vapor Emission Control Systems
Provide a vapor emission control system for tanks that store products having a true
vapor pressure of 0.75 psia (5 kPa) or more located in air pollution control areas in
which the discharge of petroleum vapors is controlled or prohibited. Ensure that the
system has sufficient capacity to control the vapor discharged from the tank vents at
maximum filling rate in conformance with local air quality regulations. If gasoline is
being handled, provide, as a minimum, Stage I vapor recovery and the piping for Stage
II. If not required by local or state regulations at time of construction, connect the Stage
II piping to the tank and cap it at the dispenser.
8-3.14
C
8-3.13
Strapping Tables
Provide API MPMS 2 certified strapping tables for all tanks. A registered Professional
Engineer must approve strapping tables. Use 1/16-inch (2 mm) increments reading in
gallons. Provide electronic media data files. Determine strapping table volumes using
physical measurements, not calculated values.
Product Recovery Systems
C
AN
8-3.14.1
General Design Considerations
Provide pumps, piping, valves, and tanks to collect and store usable aviation turbine
fuel which would otherwise become waste from operational or maintenance activities.
Consider a product recovery system for other products. Include a tank to collect
fuel/water mixtures from tank and equipment sumps, equipment drains, product saver
tanks, high point vents, low point drains, and any other equipment from which fuel/water
mixtures can be collected. Separate the fuel and water portions. Filter the fuel portion
and return to operating storage tanks. Do not discharge the water portion to surface
water without additional treatment and permits or treat the water portion as wastewater.
Refer to Chapter 2 of this UFC for information on handling of wastewater. Refer to DoD
Standard Design AW 78-24-28. These systems are standard with the hydrant and
aircraft direct fueling systems.
8-3.14.2
Product Recovery Tanks
For hydrant and aircraft direct fueling systems provide the tank indicated in DoD
Standard Design AW 78-24-28. For other systems, provide a tank with, at a minimum,
the following appurtenances:
a) Level gauge.
133
UFC 3-460-01
16 August 2010
b) Overfill protection level control valve.
c) High and low level switches with alarms and controls.
d) A motor driven fuel transfer pump that returns recovered fuel back to
the system through a hard piped connection.
e) A motor driven sump pump for emptying the tank.
f) Manual gauging hatch.
ED
g) Vent.
h) ATG system for aboveground product recovery tanks having a capacity
more than or equal to 4,000 gallons (15 000 L).
EL
L
i) Do not allow sight flow indicators to be installed on product recovery
tanks.
C
8-3.14.3
Vertical Storage Tanks
In addition to the product recovery tank(s) for the facility, all vertical storage tanks
storing aviation turbine fuel should include a product saver tank with electric pump,
unless the tank is equipped with a filter/separator to remove water from the sump. A
product saver tank is a small aboveground tank piped and valved to allow drawing water
from the bottom of the storage tank and returning the product after the water has been
separated and disposed of in accordance with environmental regulations.
AN
8-3.15
Registration
Register all tanks with the appropriate state and local agencies as required. All tanks
shall have a nameplate installed in accordance with API Std 650.
8-4
HORIZONTAL ABOVEGROUND TANKS (SINGLE-WALL STEEL)
C
8-4.1
General Design Considerations
If small factory-built aboveground storage tanks are required, use horizontal tanks.
Limit tank diameter to 12 feet (3.7 m) or less and capacity to less than 50,000 gallon
(191 m3). Require tank to be of welded steel construction in accordance with UL 142.
Plastic and/or fiberglass aboveground storage tanks are not allowed. Requirements for
all horizontal aboveground storage tanks shall comply with NFPA 30 Chapter 22
Aboveground Storage Tanks. Tanks located in facilities governed by NFPA 30A, such
as marine/motor fuel dispensing facilities, shall comply with NFPA 30A.
8-4.2
Installation
a) Install the tank so that the bottom slopes downward toward one end at
a slope of 1 percent. Locate transfer pumps or suction piping at the
high end of the tank; locate water drawoff at low end of the tank.
134
UFC 3-460-01
16 August 2010
b) Provide protective bollards for tanks not surrounded by a dike.
c) Provide water drawoff lines in each tank. For aviation fueling systems,
arrange piping so that the fuel in the tanks may be recirculated through
the filter/separators. Refer to Facility Plate 018.
d) Provide steel tanks with steel saddles or skids in accordance with UL
142. The bottom of tank is to be at least 12 inches (300 mm) above
grade to avoid the need for fireproofing. Mount steel supports on a
reinforced concrete foundation.
8-5
ED
e) Require tanks to be inspected by a STI Registered Inspector with Level
1 and 2 Certification prior to the tanks being put into service.
HORIZONTAL ABOVEGROUND TANKS (DOUBLE-WALL STEEL)
Installation
AN
8-5.2
C
EL
L
8-5.1
General Design Considerations
Limit tank diameter to 12 feet (3.7 m) or less and capacity to less than 50,000 gallon
(191 m3). Require tank to be of welded steel construction in accordance with UL 142.
No fiberglass aboveground storage tanks are allowed. The main advantage of doublewall steel storage tanks over single-wall steel storage tanks is that separate spill
containment may not be required. NFPA 30 and NFPA 30A have specific criteria for
omitting spill containments when using this type of secondary containment-type tank.
All of the criteria in the NFPA regulations for the appropriate application must be met
before this type of tank is used without spill containment. Requirements for double-wall
steel horizontal aboveground storage tanks shall comply with NFPA 30 Chapter 22
Aboveground Storage Tanks. Tanks located in facilities governed by NFPA 30A, such
as marine/motor fuel dispensing facilities, shall comply with NFPA 30A.
a) For flammable liquid installations, require additional curbing
containment based on tank filling rates if there is a chance of a fuel
spill entering a critical area.
C
b) Install the tank so that the bottom slopes downward toward one end at
a slope of 1 percent. Locate transfer pumps or suction piping at the
high end of the tank; locate water drawoff at low end of the tank.
c) Provide water drawoff lines in each tank. For aviation fueling systems,
arrange piping so that the fuel in the tanks may be recirculated through
the filter/separators.
d) Provide protective bollards for tanks not surrounded by a dike.
e) Provide steel tanks with steel saddles or skids in accordance with UL
142. The bottom of tank is to be at least 12 inches (300 mm) above
135
UFC 3-460-01
16 August 2010
grade to avoid the need for fireproofing. Mount steel supports on a
reinforced concrete foundation.
f) Require the tank to be pressure-tested after installation.
g) Require tanks to be inspected by a STI Registered Inspector with Level
1 and 2 Certification prior to the tanks being put into service.
8-6
HORIZONTAL ABOVEGROUND TANKS (FIRE-RESISTANT)
AN
C
EL
L
ED
8-6.1
General Design Considerations
When small (250 to 20,000 gallon (900 to 75 000 L) capacity) aboveground storage
tanks are required and there are clearance or fire exposure problems and the additional
cost can be justified, consider the use of fire-resistant storage tanks. The main
advantage of fire-resistant tanks over the single wall steel tanks is that separate spill
containment may not be required and the vault system provides an added measure of
fire protection. NFPA 30 and NFPA 30A have specific criteria for omitting spill
containment when using this type of secondary containment-type tank. All of the criteria
in the NFPA regulations for the appropriate application must be met before this type of
tank is used without spill containment. Require tanks to be factory-constructed with a
UL 142 welded steel primary tank, generally low profile and rectangular in design.
Tanks may be used in applications where, in addition to the above considerations,
construction of a separate spill containment system for secondary containment
purposes would have a negative impact on operations and/or aesthetics. Tanks located
close to buildings or with integral fuel dispensers must be UL-listed secondary
containment tanks, utilizing steel inner and outer tanks that can provide interstitial
containment which is both pressure testable and verifiable. Such tanks usually have a
fill of regular or insulating concrete. Ensure the two-hour fire rating meets or exceeds all
requirements of NFPA 30A for “fire resistance” tanks, meets the requirements of UFC 3600-01 and provides a minimum two-hour fire rating in accordance with UFC 3-600-01
and UL 2080.
Installation
a) For flammable liquid installations, require additional curbing
containment based on tank filling rates if there is a chance of a fuel
spill entering a critical area.
C
8-6.2
b) Install the tank so that the bottom slopes downward toward one end at
a slope of 1 percent. Locate transfer pumps or suction piping at the
high end of the tank; locate water drawoff at low end of the tank.
c) Provide water drawoff lines in each tank. For aviation fueling systems,
arrange piping so that the fuel in the tanks may be recirculated through
the filter/separators.
d) A primary tank of stainless steel can be allowed as an option to interior
coated carbon steel for all applications where economically justified.
136
UFC 3-460-01
16 August 2010
e) Require support channels with anchor holes for
earthquake/hurricane/flood restraint tie down.
f) Require steel to be a minimum thickness of 3/16-inch (5 mm) for the
interior carbon steel tank.
g) Provide protective bollards in traffic areas.
h) Require the tank to be pressure-tested after installation.
8-7
ED
i) Require tanks to be inspected by a STI Registered Inspector with Level
1 and 2 Certification prior to the tanks being put into service.
HORIZONTAL ABOVEGROUND TANKS (PROTECTED TANKS)
C
AN
C
EL
L
8-7.1
General Design Considerations
When small (250 to 20,000 gallon (900 to 75 000 L) capacity) aboveground storage
tanks are required and there are clearance or fire exposure problems and the additional
cost can be justified, consider the use of protected storage tanks. The main advantages
of protected tanks over the single wall steel tanks are that a separate dike (containment)
may not be required and the vault system provides an added measure of fire protection.
NFPA 30 and NFPA 30A have specific criteria for omitting dikes when using this type of
secondary containment-type tank. All of the criteria in the NFPA regulations for the
appropriate application must be met before this type of tank is used without a dike.
Additional benefits include added protection from ballistic and vehicular impact and
reduced evaporation of volatile fuels in warm climates. Require tanks to be factoryconstructed with a UL 142 welded steel primary tank, generally low profile and
rectangular in design. Tanks may be used in applications where, in addition to the
above considerations, construction of a separate dike for secondary containment
purposes would have a negative impact on operations and/or aesthetics. Tanks located
close to buildings or with integral fuel dispensers must be UL-listed secondary
containment tanks, utilizing steel inner and outer tanks that can provide interstitial
containment which is both pressure testable and verifiable. Such tanks usually have a
fill of regular or insulating concrete. Ensure the two-hour fire rating meets or exceeds all
requirements of NFPA 30A for “fire resistance” tanks, meets the requirements of UFC 3600-01 and provides a minimum two-hour fire rating in accordance with UFC 3-600-01
and UL 2085.
8-7.2
Installation
a) For flammable liquid installations, require additional curbing
containment based on tank filling rates if there is a chance of a fuel
spill entering a critical area.
b) Install the tank so that the bottom slopes downward toward one end at
a slope of 1 percent. Locate transfer pumps or suction piping at the
high end of the tank; locate water draw-off at low end of the tank.
137
UFC 3-460-01
16 August 2010
c) Provide water drawoff lines in each tank. For aviation fueling systems,
arrange piping so that the fuel in the tanks may be recirculated through
the filter/separators. Locate the water drawoff piping at the low end of
the tank.
d) For applications not requiring secondary containment, such as
residential heating oil tanks where aesthetics may be the prime
concern, consider protected, exposed aggregate, tanks with a UL 2085
secondary containment protected rating without the outer steel jacket.
ED
e) A primary tank of stainless steel can be allowed as an option to interior
coated carbon steel for all applications where economically justified.
f) Require support channels with anchor holes for
earthquake/hurricane/flood restraint tie down.
EL
L
g) Require steel to be a minimum thickness of 3/16-inch (5 mm) for the
interior carbon steel tank.
h) Provide protective bollards in traffic areas.
i) Require the tank to be pressure-tested after installation.
j) Require tanks to be inspected by a STI Registered Inspector with Level
1 and 2 Certification prior to the tanks being put into service.
ABOVEGROUND VERTICAL STORAGE TANKS
C
8-8
AN
8-8.1
General Design Considerations
Provide cylindrical single-wall steel aboveground vertical storage tanks meeting one of
the following criteria (as approved by Service Headquarters):
C
a) Factory-fabricated tanks complying with UL 142 criteria. The diameter
of the tanks is limited by transportation restrictions. Although these
tanks are fabricated in sizes up to 50,000 gallon (191 m3), they
become quite tall due to the diameter limitation. Give special
consideration to height/diameter ratio to ensure tank stability.
b) Field-erected tanks not requiring an internal pan follow API Std 650
configured as required by this UFC.
c) Field-erected tanks complying with DoD Standard Design AW 78-2427. The standard design includes tanks ranging in capacity from 2,500
barrels (400 m3) through 100,000 barrels (16 000 m3) with internal pan
and requires site-adapting by the design team. For tanks larger than
100,000 barrels (16 000 m3), use the multicolumn API Std 650 design.
138
UFC 3-460-01
16 August 2010
d) Require tanks to be inspected by a STI Registered Inspector with Level
1 and 2 Certification or an API Std 653 Certified Inspector, where
applicable, prior to the tanks being put into service.
8-8.2
Tank Roofs
For tanks with internal floating pans, design the roofs in conformance with DoD
Standard Design AW 78-24-27.
8-8.3
Internal Floating Pans
EL
L
ED
a) Tanks containing Class I flammable fuels or mission-critical Class II
combustible fuels, such as JP-8, shall be equipped with a full contact,
aluminum honeycomb floating pan. Other Class II fuels require a
floating pan if the tank does not comply with the spacing and diking
requirements of this UFC. Tanks storing mission-critical Class III fuels,
such as JP-5 and diesel fuel marine (F-76), if located in hot (desertlike) climate, also require a floating pan to eliminate the fuel/air
interface. A single slotted stilling well, that penetrates the floating pan,
has a maximum diameter of 10 inches (250 mm) and is used for the
automatic tank gauge system, is allowed to be provided without a
vapor sleeve (bellow). The slotted well used for manual
measurements shall be equipped with an approved floating plug.
C
b) For cone roof tanks with floating pans, provide roof vent/inspection
hatches in the fixed roof and overflow port/vents near the top of the
shell near a device(s) in the floating pan which is (are) sized by the
manufacturer to evacuate air and gases from underneath the pan
when the pan is on its supports during filling operations.
AN
c) Provide grounding bonds between the floating pan and shell as
follows:
Three lengths of bare, 3/16-inch (5 mm) diameter, stranded,
extra-flexible, stainless steel wire rope, each extending from the
top of the floating pan to the underside of the fixed roof.
(2)
Attach two of the wires near the tank periphery, 180 degrees
apart. Attach the third wire to the floating pan manhole cover.
(3)
Securely connect the wires to the pan and extend vertically to
the tank roof. Ensure wires are accessible for inspection.
(4)
Ensure wires are long enough to accommodate the full travel of
the pan. Locate wires to miss all interior tank appurtenances
and structure.
C
(1)
d) Provide anti-rotation cables in accordance with DoD Standard Design
AW 78-24-27.
139
UFC 3-460-01
16 August 2010
e) For cone roof tanks with floating pans, provide gauge and sampling
hatches in accordance with DoD Standard Design AW 78-24-27.
f) Provide a 36-inch (900 mm) diameter covered manhole in the floating
pan.
ED
8-8.4
Tank Bottoms
Slope the tank bottoms downward in accordance with DoD Standard Design AW 78-2427. A slope of 5 percent is required for positive drainage and self-cleaning action for
tanks storing aviation turbine fuels. After tank construction is complete perform a
hydrostatic test; a helium test may be included as an option. Perform these tests prior
to tank coating. Conduct all tests as recommended by API Std 650.
EL
L
8-8.5
Foundations
Design tank foundations on the basis of a soils exploration program including
preliminary exploration as a minimum and detailed exploration and testing, if existing
soil data is not available and/or inadequate. Refer to UFC 3-220-10N. Analyze the
results of the exploration program to determine the most practical and economical
design to provide a stable foundation for the tank. See DoD Standard Design AW 7824-27. As a minimum, use the following criteria for all tank designs:
AN
C
a) Prevent external corrosion of tank bottoms by locating the tanks well
above the general tank field grade, provide adequate tank field
drainage away from the tank, and construct the foundation pad of
clean, free-draining granular material. If sand is used, ensure a
minimum electrical resistance of 50,000 ohm-cm. Foundation material
should be neutral or alkaline with a pH greater than 7, a chloride
concentration less than 300 ppm, and a sulfate concentration less than
150 ppm as specified by DoD Standard Design AW 78-24-27. The
sand may be washed and the pH may be raised to meet the
requirements. Include cathodic protection to prevent external
corrosion of the tank bottoms. Do not use oil in the sand under the
tank. Do not use dredge material or beach sand.
b) Provide good drainage under the tank.
C
c) Provide a reinforced concrete ringwall foundation and secondary
containment. Locate the tank bottom a minimum of 12 inches
(300 mm) above the dike basin.
d) Cover the area beneath the tanks with a dike fuel-impermeable liner
complying with DoD Standard Design AW 78-24-27 and meeting local
and state requirements. Install all liners according to the
manufacturer's requirements.
e) Over the liner, provide a minimum of 12 inches (300 mm) of
compacted clean sand or similar material as described above.
140
UFC 3-460-01
16 August 2010
Securely attach and seal the liner to the inside of the concrete
foundation ring wall beneath the tank shell.
f) Provide a leak detection system for the tank bottom by installing a pipe
or pipes through the concrete foundation ring wall as a telltale for tank
bottom leaks in accordance with DoD Standard Design AW 78-24-27.
These pipes will also permit water beneath the tank to escape by
gravity.
ED
g) Perform subsurface investigation in sufficient detail to determine if any
compressible, weak, organic, or otherwise objectionable soils exist
within a distance of two tank diameters below ground surface.
EL
L
h) Estimate the magnitudes and rates of settlement (uniform, differential,
and seismic induced) as part of the design. Provide adequate flexibility
in piping, appurtenances, and other systems to accommodate
anticipated settlements. Accomplish flexibility by using pipe offsets or
ball joints. Do not use corrugated or bellows type expansion
compensators. Do not exceed differential settlement values given in
UFC 3-220-10N.
C
i) Where objectionable materials exist or magnitudes of anticipated
settlement are sufficient to cause damage or unacceptable distortion,
consider subsurface improvement. Potential improvement techniques
may include removal of objectionable materials and replacement with
clean compacted granular fill, preloading or surcharging in conjunction
with drainage wicks, deep dynamic compaction, vibrocompaction,
stone columns, compaction grouting, or similar techniques.
AN
j) Where justified by subsurface conditions and economics, consider
using deep foundations such as driven piling or drilled shafts. Design
foundation in accordance with UFC 3-220-01N.
8-9
UNDERGROUND HORIZONTAL STORAGE TANKS
C
8-9.1
General Design Considerations
Where underground storage tanks of 50,000 gallon (191 m3) or less capacity are
required, use factory-built horizontal cylindrical double-wall tanks (welded steel or
fiberglass reinforced plastic (FRP)). Ensure that contract requires the design and
installation in accordance with 40 CFR Part 280 and NFPA 30 or any more stringent
state or local criteria. Require separation of exterior tank walls from the interior walls
with standoffs, thus creating an open space, or interstitial, for monitoring of leaks. This
is called a Type II tank. Do not exceed 12 feet (3.7 m) in diameter for tanks. Limit tank
length to eight times the diameter. Ensure that factory-fabricated tanks comply with UL
58 and STI P3 criteria.
141
UFC 3-460-01
16 August 2010
8-9.2
Installation
a) Install tanks in accordance with NFPA 30 and also in strict accordance
with the manufacturer's installation instructions.
b) Install the tank so that the bottom slopes downward toward one end at
a slope of 1 percent. Locate transfer pumps and suction piping at the
low end of the tank.
ED
c) Provide straps and anchors designed to prevent flotation of tanks
located in areas with high groundwater levels or subject to flooding.
Provide electrical isolation strips between hold-down straps and metal
tanks. Anchors may be a concrete anchor slab under the tank or
concrete deadmen.
EL
L
d) Place tanks on a uniform bed of homogeneous granular material at
least 12 inches (300 mm) thick. If a concrete anchor slab is used,
place a minimum of 6 inches (150 mm) of bedding for steel tanks and
12 inches (300 mm) of bedding for fiberglass tanks between the tank
and the concrete anchor slab. Do not use blocks, chocks, or rocks.
e) Ensure that tank is installed by state-certified contractor if state has a
certification program.
8-10
C
f) Ensure that tank is installed by a contractor that is certified by the tank
manufacturer.
UNDERGROUND VERTICAL STORAGE TANKS (Cut and Cover)
C
AN
8-10.1
General Design Considerations
Underground vertical storage tanks are steel-lined reinforced concrete with leak
monitoring capability. These tanks may be completely buried, surface-constructed and
then covered with embankment, or any variation in between. OCONUS Pacific they are
only required in high threat areas or when tanks are required to be constructed within
the explosive cordon area or clear zone. Tanks being constructed OCONUS NATO
refer to STANAG 3784 for design guidance. They are not used within CONUS except
when tanks are required to be constructed within the explosive cordon. Design
underground vertical steel storage tanks in accordance with DoD Standard Design AW
78-24-27, except as modified herein. These standards include tank sizes of 10,000
through 100,000 barrels (1600 m3 through 16 000 m3) capacity. In general, do not
exceed 100,000 barrels (16 000 m3) capacity. Alternative designs using
prefabricated/pre-stressed tank sections must be approved by the appropriate Service
Headquarters. Provide leak detection for underground storage tanks in accordance with
federal, state, and local regulations.
142
UFC 3-460-01
16 August 2010
8-11
APPURTENANCES
Table 8-1 describes appurtenances for atmospheric storage tanks and identifies the
type of tank to which they should be mounted. Full seal weld all tank attachments to
prevent moisture/water from corroding the tank shell and attachments.
8-12
HEATERS
ED
8-12.1
General Design Considerations
Provide tank heaters and controls for tanks intended for storage of high viscosity
products, such as lube oils, or burner fuels No. 4, No. 5, and No. 6, in climates where
the ambient tank temperature would be less than 20 degrees F (11 degrees C) above
the fuel’s pour point temperature. Heat heavy burner fuel oils and lube oils to a
temperature of 20 degrees F (11 degrees C) above the fuel’s pour point prior to
pumping. Use one of the types of heaters listed below.
EL
L
8-12.2
Heating Medium
Use the appropriate heating medium for the particular application based on
temperature, pressure, and availability. Saturated steam is the preferred heating
medium, but consider using hot oil, hot water, and electric heating where steam is not
available from existing sources.
C
8-12.3
Convection-Type
Use convection-type heaters installed inside a storage tank and capable of passing
through a 36-inch (900 mm) diameter manhole with a capacity to raise the temperature
of a full tank of burner fuel oil approximately 60 degrees F (33 degrees C) in 24 hours.
The appropriate Service Headquarters and/or DLA/DESC will determine if the capacity
of the heater could be reduced if it is not necessary to heat a full tank of fuel within 24
hours.
C
AN
8-12.4
In-Line Type
In-line heaters consist of two general types: tank suction and straight tube. All in-line
heaters are of the shell and tube construction. A tank suction or suction in-line heater is
installed inside the tank on the tank issue line. The fuel oil enters the exchanger at the
end within the tank and exits at the opposite end outside of the tank. The steam or
other heating medium enters and exits the exchanger at the end outside of the tank. A
straight tube or pipe in-line heater is installed directly into the pipeline. The fuel oil
enters the exchanger at one end and exits from the other. The entry and exit points for
the steam side can vary. The following criteria applies to in-line heaters:
a) Capable of heating fuel oil passing through them from the ambient tank
temperature to a minimum of 20 degrees F (11 degrees C) above the
fuel oil’s pour point temperature at required flow rate.
b) If installed in tanks, allow removal of heater tube bundles without
emptying the tank.
c) If multipass in-line heaters are used, do not allow the oil temperature
rise to exceed 30 degrees F (17 degrees C) per pass.
143
UFC 3-460-01
16 August 2010
d) Use carbon steel shells designed for a minimum 175 psig (1210 kPa)
cold working pressure on both steam and oil sides.
e) Do not exceed 0.2 psig (1.4 kPa) for the pressure drop on the oil side
of pump suction line nor exceed 10 psig (70 kPa) of pressure drop for
heaters installed on pump discharge.
8-13
ED
8-12.5
Insulation and Tracing
In cases where fuels are heated, examine the possible economic incentives for
insulating heated storage vessels and piping. In many cases, piping carrying heated
products must be heat traced to prevent possible solidification of the fuel during a
shutdown period. Insulate traced lines. Consider possible incentives for installing a
condensate collection and return system. If a condensate return system is installed,
include a monitor to detect oil in the condensate.
UNDERGROUND STORAGE TANK SPILL CONTAINMENT SYSTEMS
8-14
EL
L
8-13.1
General Design Considerations
Provide drainage structures to impound escaping fuel where rupture of an underground
tank in a hillside location would endanger other activities and structures at elevations
lower than the tank.
ABOVEGROUND TANK SPILL CONTAINMENT SYSTEMS
C
AN
C
8-14.1
General Design Considerations
Provide a spill containment system for all aboveground tanks to prevent spilled
petroleum from leaving the property. Individual tanks larger than 10,000 barrels (1600
m3) in capacity should be enclosed in an individual diked enclosure. Groups of tanks,
with no tank larger than 10,000 barrels (1600 m3) and not exceeding 15,000 barrels
(2400 m3) in aggregate capacity, may be enclosed in a single diked enclosure.
Subdivide each diked area containing two or more tanks by intermediate curbs to
prevent spills from endangering adjacent tanks within the diked area. When subdividing
is required, use intermediate curbs not less than 18 inches (450 mm) in height.
Designer can take advantage of the exception granted for protected tanks by NFPA 30
or NFPA 30A if the provisions of that document are met and local, state, and federal
regulations permit. Refer to DoD Standard Design AW 78-24-27. Use the following
criteria for tank spill containment systems:
a) The preferred method of containment is by diked enclosure
(impounding spilled fuel around the tank by means of a dikes) to
prevent the accidental discharge of petroleum.
b) As an alternative to diked enclosures, use a remote impoundment spill
collection system consisting of a series of drains leading from storage
tank areas to a remote containment or impoundment designed to
prevent the accidental discharge of petroleum. This is not the
144
UFC 3-460-01
16 August 2010
preferred method and requires approval of Service Headquarters.
Generally, this system is used for tanks on a hillside.
c) Slope the area within the containment at no less than 1 percent to
carry drainage away from the tank to a sump located at the low point of
the enclosure.
d) Construct the drain line from the sump of petroleum-resistant, fireresistant, impervious material. Do not use clay, concrete, fiberglass or
plastic piping materials.
ED
e) Control drainage from the sump to the outside of the enclosure by a
lockable knife gate valve with indicator post located outside of the
enclosure in an area that will be safely accessible during a fire.
8-14.2
EL
L
f) Do not allow fuel to run off or escape from the containment area under
any circumstances. Provide means for disposing or for treating
contaminated water from the containment to meet the most stringent of
applicable federal, state, or local requirements.
Spill Containment System Capacity
AN
C
8-14.2.1
Diked Enclosures
Design diked enclosures in accordance with the most stringent of NFPA 30, 40 CFR
Part 112, and other federal, state and local regulations. Additionally, ensure that the
capacity of the diked enclosure is, at a minimum, greater than the largest tank volume
located within the diked enclosure, plus sufficient freeboard equal to the greater of a 24hour, 25-year storm or one foot (0.3 m) over the entire area of drainage. In the event of
a fire, the diked enclosure must be able to contain the flow of water from firefighting
activities for 20 minutes. In appropriate environmental climates, consider snow and ice
accumulation as well. Limit dike heights to 6 feet (1.8 m) or less.
C
8-14.2.2
Remote Impoundments
If approved by Service Headquarters, design remote impoundments in accordance with
the most stringent of NFPA 30, 40 CFR Part 112, and other federal, state and local
regulations. Additionally, ensure the capacity of the remote impoundment is, at a
minimum, greater than the largest tank volume located within the area of drainage, plus
sufficient freeboard equal to the greater of a 24-hour, 25-year storm or one foot (0.3 m)
over the entire area of drainage. When sizing the remote impoundment consider the
total drainage area from all tanks that are included within the spill collection system. In
the event of a fire, the drainage system and impoundment must be able to contain the
flow of water from firefighting activities for 20 minutes on neighboring storage tanks
sharing the same spill collection system. In appropriate environmental climates,
consider snow and ice accumulation as well.
8-14.3
Remote Containment/Impoundment Spill Collection Systems
Construct the remote impoundment as generally described for diked enclosures and in
accordance with UFC 1-200-01 and UFC 3-600-01.
145
UFC 3-460-01
16 August 2010
8-14.4
Diked Enclosure – Earthen Dike Type
Construct earthen dikes of earthen materials with fuel impermeable liner cover. Where
space is a premium, construct dikes of vertical concrete walls. For earthen dikes, make
the minimum distance from the toe of the dike to the tank foundation 5 feet (1.5 m) and
provide a flat surface on the top of the dike at least 3 feet (0.9 m) wide. Do not make
earthen dike slopes steeper than 1 vertical to 1-1/2 horizontal. Cover the sides and top
of the earthen dike and the floor around the tank with one of the following materials (see
Facility Plate 019):
EL
L
ED
a) A fuel impermeable liner. If liner is exposed, the exposed areas must
be resistant to the effects of direct sunlight and to wind uplift. Provide
sandbags in accordance with the appropriate UFGS to assure the liner
is resistant to wind uplift. Follow the liner manufacturer’s
recommendations for protecting the liner by the use of geotextile cover
or other recommended means. Provide a concrete maintenance pad
for personnel access to the tank and for work areas around tank
manholes and valves.
b) Do not use Bentonite or a Bentonite composite material in the
construction of dikes or basins.
c) Do not use asphalt.
AN
C
8-14.5
Diked Enclosure – Reinforced Concrete Dike Type
Design reinforced concrete (prefabricated or cast-in-place) dikes and their foundations
to resist and contain the full hydrostatic load when filled to capacity. Consider the use
of reinforced concrete blocks with or without exterior earth mounding. Use vertical
reinforced concrete dikes where space is a premium. Seal all concrete surfaces with a
flexible, UV-resistant, fuel-resistant coating if required by local or State regulations. Use
a fuel impermeable liner as described above for the dike floor.
C
8-14.6
Diked Enclosure – Combination Dike Type
A vertical concrete wall backed by an external earthen berm may be used. Design the
combined earthen and concrete unit and its foundation to resist and contain the full
hydrostatic load when filled to capacity. Use a fuel impermeable liner as described
above for the dike floor.
8-14.7
Stormwater Collection Systems
Design a stormwater collection system to contain, transport, treat, and discharge any
stormwater that collects in the tank enclosure. Refer to Chapter 2 of this UFC. Review
state and local regulations for design requirements and permitting of stormwater
treatment systems.
8-14.8
Dike Access
Provide concrete, steel, or aluminum steps with pipe handrails for passage across a
dike. Steps and handrails must comply with 29 CFR Part 1910.36. Include a
removable section of the handrail to provide access to the flat top of earthen dikes. If
steel steps are used, they should be hot-dipped galvanized after fabrication. Provide
146
UFC 3-460-01
16 August 2010
ED
enough access locations for safe emergency egress and for normal operation. This will
normally include steps over the dikes separating adjacent tanks, as well as on one wall
without an adjacent tank. Locate steps at the most accessible points, preferably on the
same side as the access stairs to a tank roof. For tanks over 10,000 barrels (1600 m3)
and larger, consider providing earth-filled ramps to permit vehicle access into the dike
when approved by Service Headquarters. If there is sufficient need to provide vehicle
access into diked areas, provide a concrete paved road and/or earth-filled ramp for
vehicle travel-ways. A removable steel bulkhead section may be a cost-effective
method to provide access for dikes with vertical reinforced concrete walls. Where the
vehicle access road crosses the dike, provide a security gate and prominent sign
indicating that access is limited to a 1-ton pick-up truck that is compliant with NFPA 70
Class I, Group D, Division 2 criteria.
EL
L
8-15
MISCELLANEOUS USE TANKS
This paragraph provides design guidance for small miscellaneous use tanks. These
tanks are typically less than 550 gallons (2100 L) in capacity. Check state and local
regulations before beginning design. If a miscellaneous use tank has a capacity greater
than 12,000 gallons (45 800 L), follow the requirements of Table 8-1. Otherwise, use
the standards described below.
C
8-15.1
Installation
Install the tank in conformance with the requirements of NFPA 30. The exception used
for the deletion of dike containment is acceptable if all of the criteria associated with that
exception are met. Provide containment for all tanks, regardless of size, except small
residential heating oil tanks, by complying with Paragraph 8.14 of this UFC or by using
properly installed aboveground concrete-encased tanks in accordance with Paragraph
8.7 of this UFC.
AN
8-15.2
Heating Oil Tanks
Comply with NFPA 31.
8-15.3
Emergency Generator Fuel Tanks
Comply with NFPA 31, NFPA 37, and NFPA 110.
C
8-15.4
Fire Pump Fuel Tanks
Comply with NFPA 20, NFPA 30, and NFPA 31.
8-15.5
Waste Oil Tanks
Check local and state environmental regulations for any additional requirements for
storage of waste oil.
8-15.6
Containment
As discussed previously in this chapter, provide containment, under and around all
aboveground tanks except home heating oil tanks.
8-15.7
Underground Tanks
Ensure all underground tanks are double-walled and have overfill protection, as
described previously in this chapter.
147
UFC 3-460-01
16 August 2010
8-16
SHIPBOARD OFF-LOAD FUEL STORAGE TANKS
8-16.1
Function
In addition to regular storage, consider a storage tank for fuel removed from ships that
may be off-specification or otherwise not satisfactory for its intended use. This fuel may
be downgraded to heating oil or diesel fuel marine.
ED
8-16.2
General Design Considerations
Determine the volume requirements of the contaminated fuel storage tank by an activity
survey. Provide bottom-loading facilities for tank truck loading and off-loading of
contaminated fuel.
8-16.3
Locations
Locate the contaminated fuel storage tank(s) in or near the facility tank farm. Clearly
mark the tank(s) as to the type or grade of fuel.
EL
L
8-17
JET ENGINE TEST CELL FUEL STORAGE TANKS
Design jet engine test cell fuel storage and issue systems to the same standards as
operating storage tank fuel systems (e.g., high level alarms, gauging, shut-offs, etc.).
Normally, tanks are refilled using station aircraft refueling trucks through aircraft singlepoint refueling adaptors.
C
AN
C
8-18
FUELS AUTOMATED SYSTEM
The Defense Logistics Agency's Business System Modernization {BSM Enterprise
Resource Programs (ERP) - Fuels section) is an Automated Information System (AIS)
designed to support the DESC and the Military Services in performing their
responsibilities in fuel management and distribution. FAS is a multi-functional AIS
which provides for point of sale data collection, inventory control, finance and
accounting, procurement, and facilities management. BSM-ERP is composed of an
integrated set of commercial off the shelf (COTS) software applications, based around
an oracle relational database management system (RDBMS), which is hosted on
commercially available computer hardware. The system will provide interfaces to
existing logistics/financial AIS's or to be used only when directed by DLA/DESC.
148
UFC 3-460-01
16 August 2010
Table 8-1. Appurtenances
V-A
H-A
H-U
F-A
P-A
V-U











ED
Item
Appurtenance
Manhole
a
A 30-inch (750 mm) diameter manhole, a minimum
of one manhole for tanks between 1,000 gallons
(4000 L) and 5,000 gallons (19 000 L) capacity,
and a minimum of two manholes (both are to be at
least 36 inches (900 mm), for tanks larger than
5,000 gallons (19 000 L) capacity.
b
A dedicated manhole, other than required above,
as the primary point for piping penetrations into a
tank (may be as small as 22 inches (559 mm)).
c
A manhole located above the internal floating pan’s
high position to aid in venting the tank during
cleaning and to provide access to the floating pan’s
elastomeric wiper seals as required by DoD
Standard AW 78-24-27.
d
Containment sumps and extension manhole.
e
Roof manholes in accordance with API Std 650. A
minimum of four 24-inch (600 mm) square
inspection hatches on fixed roof tanks with floating
pans and two hatches on all other tanks. Locate
the roof manholes near the perimeter of the roof at
opposite ends of a diameter and approximately 90
degrees from the shell manholes.
f
Shell manholes in accordance with API Std 650.
Two 36-inch (900 mm) shell manholes 180
degrees from each other. Align shell manholes
parallel with prevailing wind direction. Hingemounted shell manhole covers.
g
A bolted cover in the roof for installation and
removal of the internal floating pan as required by
the tank supplier based on the pan manufacturer.
Ladder/Stairs
h
Internal ladders (in accordance with OSHA criteria)
for tanks of 5,000 gallons (19 000 L) or larger.
i
An external ladder and platform with safety railing
for gauging and sampling in accordance with 29
CFR Part 1910.23 (if height justifies it).
j
Ladders, railings, toeboards, a spiral stairway, top
platform, and handrail in accordance with API Std
650 and OSHA requirements. Provide stairways to
access high level shut-off and alarms. Provide
serrated treads and non-slip coatings on stairs and
platforms.


C
AN
C
EL
L

149







UFC 3-460-01
16 August 2010
C
AN
C
EL
L
ED
Item
Appurtenance
V-A H-A H-U
F-A
P-A V-U
Level Alarms






k
An individual automatic level alarm system,
*
*
*
independent of the gauging device or system for
each tank. Include high, high-high, low and lowlow level alarms. On aboveground tanks: provide
a manual tester for all alarm sensors to ensure
system operability without a full tank; locate level
alarm equipment for ready access from ground
level or stairway platforms. On aboveground
vertical tanks, in general conformance with API RP
2350, set high-level at 21 minutes before overflow
level (not to exceed 95 percent) and high-high at
seven minutes before overflow level (not to exceed
98 percent); on tanks with floating pans locate the
low level six minutes above the low level of the
floating pan (no less than 5 percent) and locate the
low-low level alarm one minute (no less than 2
percent) above the low level of the floating pan.
For underground tanks, high and high-high will be
90 and 95 percent, respectively (although this may
have to be adjusted downwards for horizontal
tanks). Provide both audible and visible alarms.
On all tanks without floating pans, set low level
alarm such that air is not allowed into the system.
In determining the low level, consider the time it
would take for the pump or system to shut down.
Review facility size and operating method to
determine the most desirable location for audible
and visible alarms, this will usually be in the tank
farm and in the operations building. Connect to
stop issue pump on low level alarm and receipt
pump (if in facility) on high-high level alarm. Install
alarms on winter sun side of the tank. Comply with
most stringent of federal, state, or local regulations.
For vertical aboveground tanks, see Facility Plates
014 and 015.
*NOTE: State and local regulations may be more restrictive. Because underground and aboveground
horizontal tanks will fill extremely fast in the last 5 percent, values of high level alarm positions should
be chosen based on filling rate, tank size, and time needed to respond to the alarm condition. Adjust
values as well for extremely large vertical tanks with small receipt rates and extremely small vertical
tanks with high receipt rates.
150
UFC 3-460-01
16 August 2010
V-A
H-A
H-U
F-A
P-A
V-U










ED
Item
Appurtenance
Vents
l
Open atmospheric vents with weather hoods and
bird screens for tanks to be used for products with
true vapor pressure of 0.75 psia (5 kPa) or less.
For higher vapor pressure, or if a vapor recovery
system is used, provide pressure/vacuum vents in
lieu of open vents. Consider using
pressure/vacuum vents if product quality is at risk
by blowing sand, dust, or snow. Comply with
NFPA 30, host nation requirements, Chapter 2 of
this UFC, API Std 650, API Std 2000, 29 CFR Part
1910.106, and DoD Standard Design AW 78-2427, where applicable. Do not use flame arrestors.
m
Emergency relief venting with capacity in
accordance with NFPA 30 and UL 142, as
applicable. For vertical aboveground tanks, a
weakened roof-to-shell seam, as specified in API
Std 650, may be used to fulfill emergency relief
requirements.
Gauge/Gauge Hatch/Stilling Wells
n
A liquid level gauge calibrated in 1/16-inch (2 mm)
graduations mounted at 60 inches (1500 mm)
above the walking surface.
o
Automatic Tank Gauging (ATG) for all tanks with
fuel managed through the Defense Logistics
Agency's Business Modernization {BSM Enterprise
Resource Programs (ERP) - Fuels section}, that
complies with API MPMS 3. Key features include:
measures fluid level to
±0.05 inch (1 mm); measures standard volume
±0.1 percent; measures average product
temperature ±1 F (0.5 C); measures product
density ±1 percent; detects water in the tank sump
to a level equal to or slightly above the water drawoff pipe; converts volume to API standard
conditions; local tank readout; provides backup
alarms for high, high-high, low, and low-low level
conditions; American Standard Code for
Information Interchange (ASCII) interface.
p
A 4-inch (100 mm) gauge hatch with drop tube to
within 3 inches (75 mm) of the bottom of the tank.*
A second 4-inch (100 mm) opening without a drop
tube or gauge hatch.
* = Lowest point in the tank not the sump.
q
One 8-inch (200 mm) flange nozzle for ATG
(planned or future) near the edge of the roof for
ready access from the stairway platform.

EL
L













C
AN
C

151



UFC 3-460-01
16 August 2010
Appurtenance
One 8-inch (200 mm) gauge hatch for water bottom
sampling, as close to the tank center as possible.
See DoD Standard Design AW 78-24-27.
s
One 8-inch (200 mm) gauge hatch (planned or
future) with aluminum, slotted stilling well extended
to within 3 inches (75 mm) of the bottom of the
tank* for gauging and sampling. A datum plate to
establish a gauging zero point.
Piping Connection
t
Inlet fill connection. See Facility Plates 016, 017,
and 018, as applicable. For H-A tanks, Facility
Plate 017 applies to single wall tanks only.
u
Main suction and low suction. See DoD Standard
Design AW 78-24-27.
v
Inlet fill pipe with horizontal exit perpendicular to a
tank radial. Discharge is approximately 4 inches
(100 mm) above tank floor and enlarged to reduce
fuel velocity. An inverted trap is placed in the line
to serve as a liquid lock to prevent entry of fire or
an explosion from outside the fill pipe.
Overfill Protection
w
Overfill protection with a hydraulically operated
diaphragm control valve. Tanks connected to
commercial pipelines or marine offload systems
with restrictions on shut-off may require diversion
to additional tankage. On vertical tanks, valve
typically closes midway between high and highhigh levels, but ensure valve closes no later than
on high-high level. For underground tanks, (per
NFPA 30) and in aboveground horizontal tanks,
automatically shut off the flow into the tank when
the tank is no more than 95 percent full. Comply
with most stringent of federal, state, or local
regulations. For Navy, Air Force, and Army
systems, include a solenoid on the control valve to
close the valve as a backup. Use API RP 2350 to
establish the proper overfill level setting. On
gravity drop fills, replace valve with an integral high
level shut-off valve in the drop tube. Prior to
designing automatic valve closure features,
conduct a surge analysis on pressure filled
systems. See Plates 017 and 018.
V-A

H-A
H-U
F-A
P-A




EL
L



*




AN
C


C
x
* If pressure-filled.
A lockable, welded steel overfill protection box (15
gallon (60L) minimum) and a manual drain valve to
return spills to the inner tank (omit the drain feature
on aviation turbine fuel tanks).
152
V-U


ED
Item
r

UFC 3-460-01
16 August 2010
V-A
H-A
H-U
F-A
P-A
V-U



ED
Item
Appurtenance
Water Drawoff
y
A 2-inch (50 mm) double block and bleed, plug
valve with internal poppet at the low end of the
tank, unless tank contains aviation turbine fuels
with icing inhibitors. In those cases, the water
drawoff valve may be a ball valve.
z
Water drawoff connections. See DoD Standard
Design AW 78-24-27.
aa
A 1-inch (25 mm) connection from the low end of
the tank to approximately 3.5 feet (1.1 m) above
the ground and equipped with a positive
displacement-type, hand-operated pump for water
drawoff. For Air Force projects, use electrical
pumps only.
bb
A water removal suction tube at low end of tank
with connection for water removal by truck.
Consider installing a fixed, hand-operated pump as
an alternative.
cc
A central sump pump.
Ball Joints
dd
Ball joints on pipes to relieve strain caused by tank
settling or seismic activity. Ensure that contract
specifications do not allow piping connections to be
made until after the tank has been completely
tested and allowed to settle. As an alternative,
settlement calculations can be made and piping
flexibility can be designed to account for settling.
In this case, pipe can be connected prior to testing.

EL
L


*
C


C
AN
* May be required on tanks 25,000 gallons (94 600
L) and larger.
Cable Supports
ee
On the fixed roof of all tanks, provide two scaffold
cable supports in accordance with API Std 650.
Locate the supports near the center of the tank so
that supported cables will have maximum range
and flexibility of operation with minimum
interference with other tank fittings.
Striker Plates
ff
Striker plates under all openings used for manual
gauging in steel tanks and all openings in
fiberglass tanks.
Monitoring Port
gg
A 2-inch (50 mm) monitoring port including a tube
which provides a means to detect product leakage
from the primary tank into the secondary tank.
V-A = Vertical Aboveground Storage Tank
H-U = Horizontal Underground Storage Tank
P-A = Protected Aboveground Storage Tank









H-A = Horizontal Aboveground Storage Tank
F-A = Fire-Resistant Aboveground Storage Tank
V-U = Vertical Underground Storage Tank
153
UFC 3-460-01
16 August 2010
CHAPTER 9 - PIPING SYSTEMS
9-1
INTRODUCTION
This chapter provides guidance for the design of new piping portions of fueling systems,
as discussed in other chapters of this UFC. The criteria provided is intended to be
general in scope except where specific criteria is necessary for given situations.
ED
9-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not start design of any fueling system without first becoming completely
familiar with Chapter 2 of this UFC.
EL
L
9-2.1
Design Requirements
Ensure that piping design, materials, fabrication, assembly, erection, inspection, and
pressure tests for fuel piping systems are in accordance with ANSI/ASME B31.3 . See
Chapter 6 of this UFC for design requirements for interterminal and installation
pipelines. Follow appropriate guide specifications for piping design and materials
selection. Use the following design criteria for piping systems:
AN
C
a) Unless otherwise specified by Service Headquarters, provide
underground piping systems in and around areas subject to aircraft
ground movements. If approved by Service Headquarters, install
piping in concrete trenches. When trenches are employed, comply
with NFPA 415. The use of common trenches for more than one utility
is prohibited. Fueling equipment may be aboveground where it does
not interfere with aircraft or service vehicle movements. Design all
clearances in accordance with UFC 3-260-02 and DoD Standard
Design AW 78-24-28.
b) In other cases, aboveground piping is preferred where it is not
aesthetically objectionable or not exposed to accidental damage,
vandalism, blast damage, or sabotage.
C
c) The preferred method of routing aboveground piping out of a diked
area is over the top of the dike. However, avoid creating an inverted
“U” on the suction side of a pump to avoid an air trap. Provide high
point vents and low point drains as required, refer to Facility Plate 019.
d) Hydrostatically test new piping systems in accordance with
ANSI/ASME B31.3. During testing, disconnect system components
such as storage tanks or equipment which were not designed for the
piping test pressure or protect them against damage by over-pressure.
Hydrostatically test systems to 1.5 times the maximum allowable
design pressure of the ANSI/ASME B16.5 piping system flanges at 100
degrees F (38 degrees C), see Table 9-1. Test hydrant and direct
aircraft fueling systems and installation fuel pipelines with fuel that will
be used in the pipeline or, at a minimum, a fuel with the same
154
UFC 3-460-01
16 August 2010
minimum specification flashpoint as the fuel that will be used when the
piping is in service. The temperature of the fuel, and the ambient
temperature, shall be at least 20 degrees F (11 degrees C) below its
flashpoint during the test.
e) Testing with water requires Service Headquarters approval. When
water is authorized for hydrostatic testing of fuel piping, ensure that all
water is removed from the piping by either pigging the piping, air drying
the line, or by vacuum extraction.
ED
f) Lay out piping between piers and storage tanks, cross-country
pipelines, and between bulk storage and operating tanks to
accommodate pigging operations. Use long radius elbows, full port
valves, barred tees, and provisions for the connection of temporary
launchers and receivers. Refer to UFC 3-260-01 for design guidance.
Give special consideration to smart pigging for single wall pipelines.
C
EL
L
g) When laying out piping for single wall aircraft hydrant systems,
consider smart pigging/pigging in the design. For systems with
required piping slopes and high and low level drains, provide long
radius turns, and provide spool pieces for temporary pig launchers and
receivers. Ensure valves are accessible for removal and replacement
with spool pieces. Where it is more economical or practical to lay
hydrant piping flat (slope less than 0.2 percent), provide the capability
to rapidly clean the lines with a pig or to launch a smart pig. This
includes providing long radius turns, full port valves, barred tees, and
pig launchers and receivers.
AN
h) Provide thermal relief devices on all installed double block and bleed
valves and other valves within the piping system. Provide drain out
with non-freeze valves at all low points of pipelines.
i) Refer to Corps UFC 3-130 series for construction of aboveground and
underground piping in arctic and subarctic conditions.
C
9-2.1.1
Hydraulic Design
In general, provide a hydraulic design with a velocity of 7 to 12 feet per second (2.1 to
3.7 m/s) on pump discharge and 3 to 5 feet per second (0.9 to 1.5 m/s) on pump suction
at full flow. If project-specific conditions make it advisable to exceed these values,
consult the appropriate Service Headquarters. Consult with appropriate Service
Headquarters for outlet pressure requirements. Design suction piping to ensure that the
net positive suction head required by the pumps is available under all conditions of
operation. Consider the following factors in selecting pipe sizes:
a) Operating requirements of the facility to be served.
b) Capital cost of the pipe.
155
UFC 3-460-01
16 August 2010
c) Capital cost of pumping stations and attendant facilities.
d) Operating cost of the system.
e) Harmful effects of excessive velocity of flow including hydraulic shock
and static generation.
f) Fatigue failure caused by cyclic loading.
ED
9-2.2
Piping Arrangement
Wherever possible, arrange piping in parallel groups to facilitate multiple use of
supports, to minimize the amount of trenching for underground piping, and to minimize
the number of steps or stiles needed across pipe runs. For underground applications,
consider constructability when determining amount of spacing between pipes. Use the
following criteria:
EL
L
a) Provide looped piping systems whenever practical. Loops add to the
flexibility and reliability of the system, contribute to product cleanliness
by making circulation possible, and can be used to reduce the
magnitude of hydraulic shock. Sectionalize loops by double block and
bleed valves to provide verifiable isolation and to facilitate pressure
testing.
AN
C
b) Between mains, install cross connections for flexibility of operation and
as an auxiliary means of continuous operation in emergency situations.
In addition, permit the use of line blinds where space limitations
preclude the use of removable pipe sections or fittings. Provide a
separate piping system for each grade of fuel to be handled. Do not
provide cross connections between grades.
C
c) For short runs, provide a line slope of at least 0.2 percent. For long
runs, make line slope sufficient to establish positive drainage by
gravity, but without excessive bury depth. Make gradients uniform
between high and low points. Traps are undesirable because they
provide a place for water and sediment to accumulate. Install drains at
low points to allow removal of any water from condensation. These
low point drains also provide the capability to remove fuel for line
maintenance. If slope is not possible, design the system to
accommodate pigging by providing flange connections for pig
launchers/receivers, long curvature fittings, barred tees, and full port
valves. Install high point vents to remove trapped air. Low point drains
are not required on interterminal pipelines.
d) As a general rule of thumb, provide spacing between piping that will
allow a minimum clearance of 3 inches (75 mm) between adjacent
flanges. In certain situations, such as in a piping trench or other
restrictive location, it may be necessary to reduce the spacing. A
156
UFC 3-460-01
16 August 2010
minimum of 12 inches (300 mm) or one pipe diameter, whichever is
greater, should still be maintained between pipe walls.
EL
L
ED
9-2.3
Surge Analysis
Conduct a complete surge analysis of system operation using a computer simulation
program for all systems with quick closing valves and for aircraft hydrant and direct
fueling systems with more than two outlets. Give full consideration to the causes and
effects of hydraulic shock. This is especially important in closed fueling systems such
as aircraft fueling systems where the receiving tanks or dispensing equipment may be
damaged by shock pressure. Reduce the possibility of shock by limiting flow velocity
and avoiding the use of quick opening/closing valves except where required for system
operation such as hydrant pit valves. Do not reduce flow velocities below minimum
velocity indicated in the paragraph titled “Hydraulic Design” in this chapter of the UFC.
Every reasonable effort must be made to control hydraulic surge or shock within
acceptable limits by the design of the piping system rather than by the use of surge
suppressors. Surge suppressors are strictly a last resort solution and require the
approval of Service Headquarters prior to designing into a system. For all aircraft direct
fueling/hydrant system designs, the loop backpressure control valve is critical in
preventing excessive hydraulic shock. Use the following design criteria and Table 9-1
for piping design pressures:
C
AN
C
a) For all complex piping systems (main header, several laterals, mobile
equipment), employ computer modeling techniques to determine if
surge suppression is required. Conduct a run at steady state flow
conditions to establish system flow rates for the scenario being
modeled. After that, conduct a transient surge analysis imposing
worst-case operating conditions on the system. For hydrant systems
incorporating the use of a back pressure control valve, simulate this
valve as an active modulating valve. If acceptable peak pressures are
exceeded, discuss the results with the Service Headquarters fuels
engineer to review parameters used and consider alternatives. If this
consultation produces no workable solution, perform a second surge
analysis to model the use of surge suppressors in the system. This
analysis must indicate that damaging peak pressures are not
exceeded. Do not use manual surge calculations, except as found
under (c) below, because they do not account for dampening effects of
the system and yield overly conservative results.
b) Most systems designed in accordance with this manual will have ANSI
Class 150 flanges and the maximum allowable operating pressures
seen in Table 9-1. Design the system such that the total pressure
including surge, pump shutoff pressure, thermal fuel expansion effects,
and static pressure in any part of the system never exceeds the
maximum allowable operating pressure. Other equipment items such
as tank trucks, aircraft fuel tanks, or shipboard fuel tanks which may be
damaged by shock pressures may require lower maximum surge
157
UFC 3-460-01
16 August 2010
pressure. Assume a near instantaneous shut-off by the aircraft in the
design of aircraft hydrant systems.
c) Do not use manual calculations instead of computer modeling when
system surge pressures are crucial and the piping system is complex.
However, for simple piping systems that operate under 80 psi (550
kPa) the manual calculations contained in Appendix B can be used to
ascertain if surge will be a problem.
Table 9-1. Allowable Pressure Table – ANSI Class 150 Flanged Joints
ASTM A 182 Gr. F304
ASTM A 182 Gr. F304L
Maximum Allowable
Design Pressure
285 psig (1970 kPa)
275 psig (1900 kPa)
230 psig (1590 kPa)
Maximum
Hydrostatic Test
Pressure
450 psig (3100 kPa)
425 psig (2930 kPa)
350 psig (2400 kPa)
Minimum
Hydrostatic Test
Pressure
425 psig (2930 kPa)
400 psig (2760 kPa)
325 psig (2240 kPa)
Maximum Allowable
Operating Pressure
285 psig (1970 kPa)
275 psig (1900 kPa)
230 psig (1590 kPa)
Maximum Allowable
Surge Pressure
380 psig (2620 kPa)
366 psig (2525 kPa)
306 psig (2100 kPa)
C
EL
L
ED
ASTM A 105
AN
1. All pressure values are taken from ANSI/ASME B16.5-1996, ANSI/ASME
B16.47-1996 and ANSI/ASME B31.3-1999 at 100 degrees F (38 degrees C).
2. Values are presented for information only. Confirm actual values with
ANSI/ASME B16.5, latest edition, based on actual temperatures, bolting and
gasket materials, etc.
3. For other materials, see ANSI/ASME B16.5 and B31.3.
C
4. For lower hydrostatic test pressures, the maximum allowable operating
pressure will be lower than indicated. See ANSI/ASME B31.3.
9-3
ABOVEGROUND PIPING
Support aboveground piping so that the bottom of the pipe is a minimum of 18 inches
(450 mm) above the ground surface or higher if required to service valves and
equipment. In areas subject to flooding, greater clearance may be desirable. At
intersections with roadways, allow enough clearance for the passage of tank trucks,
cranes, and similar heavy vehicles. In areas subject to seismic activity, provide the
piping configuration and support in accordance with the seismic design criteria in UFC
3-310-04. Refer to UFC 3-130 series for considerations in extremely cold climate.
Wherever possible, arrange piping in parallel groups to facilitate multiple uses of
supports, to minimize the amount of trenching for underground piping, and to minimize
158
UFC 3-460-01
16 August 2010
the number of pipe stiles needed. Consider constructability and maintenance in spacing
of piping. As a general rule of thumb, provide spacing between piping that will allow a
minimum clearance of 3 inches (75 mm) between adjacent flanges. In certain
situations, such as in a piping trench or other restrictive location, it may be necessary to
reduce the spacing. A minimum of 12 inches (300 mm) or one pipe diameter,
whichever is greater, should still be maintained between pipe walls.
ED
9-3.1
Identification
Identify piping in accordance with Chapter 2 of this UFC. In addition, mark fuel lines at
head of fueling pier near valves, and mark valve “open” and “close" positions.
EL
L
9-3.2
Pipe Supports
Rest piping on supports, both insulated and uninsulated, on a steel shoe welded to the
bottom of the pipe. Leave the shoe free to move on the support. Construct the portion
of pipe supports in contact with the ground with concrete. Facility Plate 020 shows the
design of typical “slide/guide” pipe supports. Ensure that support material is the same
as the pipe material. Other support configurations are acceptable provided the support
does not contain rollers, does not allow movement of the pipe on a metal surface, and
does not include hangars. Design pipe supports to meet the applicable requirements of
ANSI/ASME B31.3 or ANSI/ASME B31.4.
AN
C
9-3.3
Arrangement
Arrange pipes to provide for expansion and contraction caused by changes in ambient
temperature. Where possible, accommodate expansion and contraction by changes in
direction in piping runs, offsets, loops, or bends. Where expansion loops or off-sets are
not possible, use flexible ball joint offsets. Provide sliding pipe supports or other
method of maintaining alignment on each side of the expansion joint. Do not use
expansion devices which employ packings, slip joints, friction fits, or other non-fire
resistant arrangements. Use ball-type offset joints to accommodate possible settlement
of heavy structures such as storage tanks, if piping design cannot provide enough
flexibility. Design expansion bends, loops, and offsets within stress limitations in
accordance with ANSI/ASME B31.3 and ANSI/ASME B31.4. Thermal expansion of
pipes should also be calculated based on the pipe being empty to include
considerations for when the pipe is being installed or drained.
C
9-3.4
Anchors
Anchor aboveground piping at key points so expansion will occur in the desired
direction. Anchors and guides may also be required to control movement in long runs of
straight pipe or near a connection to fixed equipment such as a pump or filter. See
Facility Plate 021. Space anchors to provide maximum amount of straight runs of piping
from expansion points to the anchors. In general, place anchors at all points of the
system where only minimum piping movement can be tolerated, such as at branch
connections and equipment connections. Key locations are pump houses or other
buildings, manifolds, at changes of direction if not used as an expansion joint, at points
where the pipe size is drastically reduced related to adjacent piping, and at all terminal
points. Limit the use of anchors to the situations described above. Where an anchor is
159
UFC 3-460-01
16 August 2010
welded directly to a pipe, ensure that the anchor material is compatible with the pipe
material.
ED
9-3.5
Thermal Relief Valves
The coefficient of expansion of liquid petroleum in the range of 35 degrees to 60
degrees API (0.8498 to 0.7389) at 60 degrees F (16 degrees C) is 0.0005 gallon per
gallon per degree F (0.0009 L per L per degree C). The total volume generated in most
cases is very small, but the pressure increase resulting from this expansion can equate
to as much as 75 psi for every degree rise in the fuel temperature if not relieved. For
this reason, provide any section of pipe that has the potential to be isolated by a shut-off
valve or other means with a thermal relief valve to relieve the isolated piping section.
Provide a thermal relief of the internal cavity of valves where pressure is trapped when
the valve is in the closed position (double block and bleed plug valves for example).
EL
L
The thermal relief valve should match the material of the piping in which it is installed.
Provide valves used for relief of thermal expansion of not less than 3/4-inch (20 mm)
nominal pipe size. It should be provided with isolation ball valves, with removable
handles, on the inlet and outlet. The set pressure of the relief valve will vary, but
consider a set pressure of about 10 percent above the dead-head pressure of the
pump. This should keep the valve from opening during normal fueling operations.
Ensure the set point is within the design limitations of the piping. Do not provide
thermal relief piping with sight flow indicators.
C
AN
C
Thermal relief valves should never discharge to grade or to a stormwater drainage
system. Ideally, the relief valve should discharge to a header which is piped directly to
an atmospheric source such as a storage tank or product recovery tank. Often, the
practical alternative, is to configure the relief valves into a cascading system, where
each relief valve bypass the shut-off valve that is isolating the piping section and
discharges back into the main product piping. The excess volume may pass through
two or more relief valves before finally making its way back to an atmospheric source.
Caution must be taken to ensure that the relief valves have the capacity to handle the
additive relief flows this type of system creates and that the total relief pressure does
not exceed that system maximum allowable operating pressure. In a cascading system,
consider using balanced type relief valves. Balanced type relief valves limit pressure
buildup that is created in a cascading system, because the balanced type relief valves
relieve at a point independent of downstream pressure.
In some cases a small atmospheric tank may need to be placed to properly relieve a
piping system. This may be the case if a system component has a lower maximum
allowable pressure then the rest of the system or in a remote location where a
cascading system will not work. Equip the tank with self-checking high level alarms and
containment. See Facility Plates 023, 024, 025 and 026.
9-4
UNDERGROUND PIPING
Provide underground piping which passes under public roadways or railroad tracks in
accordance with Department of Transportation regulations 49 CFR Part 195 and API
RP 1102. Refer to Chapter 2 of this UFC for corrosion protection and for environmental
160
UFC 3-460-01
16 August 2010
protection. Before installing underground pipelines, review all federal, state, and local
regulations for double wall pipe, leak detection, and corrosion protection requirements.
9-4.1
Depth of Cover
Use the following criteria for depth of cover over buried fuel pipelines:
ED
a) Locate top of lines at a minimum of 3 feet (0.9 m), except that less
cover is permissible for occasional stretches where overriding
conditions exist, such as the need to pass over a large culvert or
beneath drainage ditches. At such locations, build sufficient slack into
the line to allow for vertical and lateral movement due to frost heave.
Refer to UFC 3-130 series for additional guidance. Protective
measures, such as the installation of reinforced concrete slabs above
the pipe, may also be required where depth is less than required under
Paragraph (b) below.
EL
L
b) Subject to Paragraph (a), provide minimum depths in accordance with
49 CFR Part 195 and federal, state and local regulations. Under
roadways and shoulders of roadways, provide a minimum depth of 4
feet (1.2m).
C
AN
C
9-4.2
Parallel and Crossing Pipes
Provide a minimum clearance of 12 inches (300 mm) between the outer wall of any
buried POL pipe and the extremity of any underground structures including other
underground pipe. Where pipelines cross and a minimum clearance of 12 inches (300
mm) cannot be achieved, provide an insulating mat between the pipes and centered
vertically and on the point of intersection. Insulating mat shall be constructed of
neoprene or butyl rubber and shall be 36 inch (900 mm) by 36 inch (900 mm) and 1/8
inch (3 mm) thick. Provide a test station with two test leads from each pipe. See UFC
3-570-02N, Electrical Engineering Cathodic Protection for more information. Where
non-government and government owned pipe cross or are in proximity of less than 150
feet, contact owner of non-government pipe for coordination to prevent/mitigate cathodic
protection interference. In areas where multiple utilities are routed in the same area
(e.g., a utility corridor), make sure electrical and communication ducts/conduits are kept
a minimum of 36 inches (900 mm) from all other underground utilities especially fuel,
steam, and high-temperature water pipes. Refer to ANSI /IEEE C2, ANSI/ASME B31.4,
and 49 CFR Part 195 for additional requirements. For pipes in concrete trenches,
provide a minimum clearance of 6 inches (150 mm) between flanges and the trench wall
and between adjacent flanges. If there are no flanges, provide a minimum clearance of
12 inches (300 mm) or one pipe diameter (based on largest pipe), whichever is greater,
between the pipe and the trench wall and between adjacent pipes within the concrete
trench.
9-4.3
Casing Sleeves
Use steel casing sleeves only for those crossings where sleeves are required by
authorities having jurisdiction, where it is necessary to bore under the roadway or
railroad tracks to avoid interference with traffic, or where boring is the most economical
161
UFC 3-460-01
16 August 2010
ED
construction method. When planning construction of open trench crossings, consider
the economics of installing spare casing sleeves to eliminate excavating for future fuel
lines. Ensure that the design isolates fuel-carrying pipes from contact with the casing
pipes. Require a seal of the annular space at each end of the casing. Include a vent on
the higher end of each casing. Locate crossings at a minimum depth of 36 inches (900
mm) beneath the bottom of drainage ditches. If this depth cannot be obtained, install
above, but not in contact with, the casing or pipe, a 6-inch (150 mm) thick reinforced
concrete slab of adequate length and width to protect the casing or pipe from damage
by equipment such as ditch graders and mowers. Refer to API RP 1102 for additional
information.
9-4.4
Line Markers
Except where prohibited by national security considerations, install line markers over
each buried line and allow for maintenance provisions in accordance with 49 CFR Part
195.
EL
L
9-4.5
Warning Tapes
Provide buried warning tape for all underground pipelines as required by the appropriate
guide specification.
C
9-4.6
Double-Wall Piping
Provide double-wall piping for Ground Vehicle Fueling Facilities. For other applications,
do not use double-wall piping unless required by state or local regulations, and
approved by Service Headquarters. Service Headquarters approval to use doublewalled pipe must be obtained at the programming level and at the 35 percent design
level.
AN
9-4.7
Single-Wall Piping Leak Detection Systems
For all single-wall buried pipe not used in aircraft direct fueling systems, consider
providing a leak detection system approved by Service Headquarters.
C
9-4.7.1
Leak Detection for Aircraft Direct Fueling Systems
For aircraft direct fueling systems, provide an automatic leak detection system approved
by Service Headquarters, to test all buried portions of the piping system. Automatic
leak detection systems measure changes in either the volume or pressure of the fuel in
a fixed piping system, while accounting for variations in ambient temperature. The
pressure type shall work by measuring the time rate of change of line pressure at two
different pressures. The volume type shall work by measuring the amount of fuel
required to maintain a constant pressure in a line, also at two different pressures. The
system shall have sufficient sensitivity to detect leaks of at least 0.004 percent of line
volume with a Probability of Detection = 95 percent and a Probability of False Alarm = 5
percent. All leak detection system shall be third party certified.
9-5
UNDERWATER PIPING
To receive fuel from offshore moorings, provide one or more underwater pipelines from
the shore facility to the mooring. Limit the design of these systems to engineers with
162
UFC 3-460-01
16 August 2010
this type of experience. Coordinate offshore piping systems with NFESC-Ocean
Construction Division.
9-5.1
Special Arrangements
At the mooring end of each pipeline, provide lengths of submarine fuel hose equal to 2.5
times the depth at high water. At the pipe end of the hose, provide a flanged removable
section of hose 10 feet (3 m) long. At the free end of the hose, provide a steel valve
with a marker buoy attached to a cable or chain which has sufficient strength and
suitable fittings for the vessel to lift the hose and valve aboard.
ED
9-5.2
Connections
Lay out multiple fuel lines and connections so that they correspond to the layout of the
ship’s discharge manifold.
EL
L
9-5.3
Unique Considerations
In piping design, consider fuel characteristics as they may be affected by the sea water
temperature, particularly in cold water. For diesel fuel, aviation turbine fuel, or other
light fuels, small individual lines are preferable as follows:
a) Minimum nominal pipe size of 6 inches (150 mm).
b) For transfers of fuels exceeding 3,000 gpm (189 L/s), use 12-inch (300
mm) to 16-inch (400 mm) diameter pipe.
C
c) Instead of pipes larger than 16 inches (400 mm) in diameter, consider
using two smaller diameter pipes.
AN
d) At an accessible upland location, as close to the water entry as
practical, provide a double block and bleed valve and a manually
operated check valve or bypass to allow reversal of flow when
required.
e) Provide a dependable means of communication between the vessel in
the offshore berth and the shore facility.
C
9-5.4
Corrosion Protection
Wrap, coat, and cathodically protect underwater pipelines in accordance with Chapter 2
of this UFC.
9-5.5
Depth of Burial
Provide sufficient burial depth of underwater pipelines to prevent damage by dredging of
the waterway, by ships’ anchors, trawls, or by scouring action of the current.
Specifically, ensure depth conforms to the requirements of 49 CFR Part 195. Where
lines cross ship channels or anchorages, ensure the top of the pipe is at least 12 feet
(3.7 m) below the theoretical, present or planned future bottom elevation, whichever is
deeper. Recommended backfill in such areas is 2 feet (0.6 m) of gravel directly over the
pipe, followed by stones weighing 50 to 60 pounds (23 kg to 27 kg) up to the bottom
elevation.
163
UFC 3-460-01
16 August 2010
9-6
ED
9-5.6
Pipe Thickness and Weight
Provide sufficient pipe wall thickness to keep stresses due to maximum operating
pressure and other design loads within design limits. Include full consideration to extra
stresses which may occur in laying the pipe. It is common practice to use heavier wall
pipe for water crossings of more than 200 feet (60 m) from bank to bank at normal water
level. This affords greater stiffness and resistance to buckling during handling of the
assembled crossing pipe and requires less weighting material to obtain the necessary
negative buoyancy to keep the line in place while empty or containing a light product.
Reinforced sprayed-on concrete is an acceptable weighting material. Hydrostatically
test assembled crossing pipe before placing, unless crossing pipe is too long for prior
assembly in one segment. In this case, separately test each segment as described.
PIPING MATERIALS
EL
L
9-6.1
Non-Aviation Systems
Use carbon steel piping material for interterminal pipelines (regardless of product) and
for all portions of non-aviation turbine fuel systems. FRP may be used for underground
pipe (not in concrete trenches) in ground vehicle fueling facilities. FRP is not to be used
in aviation turbine fuel system applications. The appropriate service guide specification
includes the necessary requirements. See Facility Plate 022.
C
9-6.2
Aviation Systems
New systems shall use stainless steel issue piping. Interior coated carbon steel may be
used only with the approval of the Service Headquarters for piping downstream of the
last issue filter/separator. Return piping shall be interior coated carbon steel. Give
special consideration to the pressure rating of both the pipe and fittings to ensure
adequacy to accommodate surge pressure. See Facility Plate 022 for piping material
options.
C
AN
9-7
WELDING CRITERIA
Ensure that the contract requires welding and welding inspections in accordance with
appropriate guide specifications and/or standard design. Proper welding, done in
accordance with the guide specifications, will prevent loose and adhered slag on the
inside of the pipeline. Use 100 percent radiographed weld joints meeting the standards
for severe cyclic service contained in ANSI/ASME B31.3 for piping downstream of the
pump in hydrant systems. For all other underground steel pipes, use 100 percent
radiographed weld joints meeting the requirements of ANSI/ASME B31.3.
9-8
PIPING CONNECTIONS
a) For steel piping systems, use weld neck forged flanges with raised
faces having a modified spiral serrated gasket surface finish.
b) Do not use cast iron flanges.
c) Do not use grooved pipe type couplings or similar fittings in permanent
fixed piping systems.
164
UFC 3-460-01
16 August 2010
d) Do not direct bury flanges, valves, mechanical couplings, threaded
fittings, or any mechanical equipment. If they must be used in an
underground system, enclose them in an accessible pit.
e) Use welded connections for joining steel pipe. Use flange connections
for joining pipe to equipment. Use threaded connections only where
unavoidable such as on differential pressure gages, pressure
snubbers, and fuel sample points.
EL
L
ED
f) Use carbon steel bolts, studs, and nuts with carbon steel flanges. Use
stainless steel bolts, studs, and nuts with stainless steel flanges.
Stainless steel bolts may be used on carbon steel flanges in corrosive
environments. Select stainless steel bolts, studs, and nuts based on
seizing and elongation. Coordinate both strength with force needed to
compress selected gasket. In locations where severe corrosion
(typically salt air) is susceptible use flange and bolt seals, filled with
grease preservative, as required to prevent and control corrosion.
g) In steel piping systems, use socket weld joints on 2-inch (50 mm)
diameter nominal size and smaller pipe.
C
h) Make branch connections with butt welded tees except where the
branch is at least two pipe sizes smaller than the run, in which case the
branch connection can be made with a forged or seamless branch
outlet fitting, which is designed in such a way that the connection can
be radiographed.
i) Do not use wrinkle bends or mitered bends for changes in direction.
AN
j) Except for unions and control tubing couplings, do not use threaded
joints in stainless steel systems. Socket-weld stainless steel drain,
vent, and pressure relief valve lines 2-inch (50 mm) in diameter or less.
If aboveground, flanges may be used.
C
k) Join glass FRP piping by bell and spigot joints sealed with adhesive,
except use FRP flanges for connections to flanged equipment such as
pumps or valves. Ensure that no loading can be transferred from steel
piping to FRP piping.
l) Connect all dissimilar metals with isolation flanges.
9-9
INTERIOR PIPE COATINGS
To protect aviation fuel quality and extend the life of the piping, minimize bare carbon
steel piping (except interterminal pipeline) which comes in contact with aviation turbine
fuels especially downstream of initial filtration equipment. Maximize the use of internally
coated pipe. This is not intended to allow the use of lined carbon steel piping as a
substitute for areas requiring non-ferrous piping. Comply with other paragraphs of this
chapter for material selection. Interior pipe coating is not required on non-aviation
165
UFC 3-460-01
16 August 2010
piping except for carbon steel piping within the lower 36 inches (900 mm) of
aboveground vertical storage tanks, and ballast lines on piers.
9-10
EXTERIOR PIPE COATINGS
a) Protect the exterior surfaces of all underground steel piping systems
with a continuously extruded polyethylene coating system or fusion
bonded epoxy. Coat welded joints with a system compatible with the
pipe coating.
ED
b) Protect the exterior surfaces of all aboveground carbon steel piping
systems by coating in accordance with applicable service requirement.
Exterior surface of pipe shall be prepared by abrasive blasting and
cleaned prior to coating application.
EL
L
c) Coat underwater piping with the same materials used for underground
piping. In addition, coat underwater piping with a reinforced sprayedon concrete, or similar type material, for pipe stabilization and to
provide negative buoyancy when the pipeline is empty.
C
AN
C
9-11
SAMPLING FACILITIES
Provide connections for sampling fuels on each section of a fuel transfer piping system.
Install sampling and testing connections at receiving points, tank outlets, inlet and outlet
sides of filter/separators, all fuel dispensing points, and between isolation valves so that
the remaining fuel in each portion of a fuel transfer pipeline can be sampled. Where
possible, install sampling connections in vertical runs. Provide a 1/4-inch (8 mm)
diameter sample point with a probe, ball valve, and quick disconnect with dust cap.
166
UFC 3-460-01
16 August 2010
CHAPTER 10 - ALTERNATE POL FACILITIES
10-2
ED
10-1
INTRODUCTION
This chapter provides guidance for design of alternate POL facilities. The alternate
fuels discussed are: LPG, CNG, hydrazine, and OTTO fuel. This chapter contains
information on products which are unique. Therefore, some special considerations are
discussed, in addition to information provided in Chapter 2, General Design Information,
which contains important information on fueling facilities. Do not start the design of any
fueling system without first becoming completely familiar with Chapter 2 of this UFC.
LIQUEFIED PETROLEUM GAS (LPG)
10-2.1
Uses
The uses for which LPG fuel is procured and the methods of transportation of the fuel
are as follows:
EL
L
a) LPG fuel is used for general heating, metal cutting and brazing, and in
laboratories. LPG is procured in cylinders or for bulk storage by tank
car or tank truck. Cylinders usually contain 100 pounds (45 kg) of gas,
in a liquid state.
b) Fuel supply for firefighting trainers and crash and rescue training
facilities.
Standby LPG facilities serving large capacity equipment, such as
boilers of 200,000 British thermal units (Btu's) per hour (58 000
W) and above, may consist of a separate gas system to an
alternate set of burners on the equipment.
AN
(1)
C
c) Where economically justified, LPG facilities supplement utility-supplied
gas systems for meeting peak loads and as a standby where
interruption to a supply is possible.
C
(2)
For a gas system serving multiple small appliances, provide the
standby equipment with means for air mixing to dilute the LPG
with the proper amount of air to match combustion
characteristics of either natural or manufactured gas serving the
system in place of the utility-supplied gas, or in conjunction with
it to reduce utility peak loads.
10-2.2
General Design Considerations
LPG is odorless, colorless, non-toxic, heavier than air, and explosive. To permit easier
leak detection, an artificial odor may be introduced when shipped from a refinery.
Under standard atmospheric conditions, LPG is in a vapor phase, but it is liquefied
under moderate pressure for shipping and storage. The maximum vapor pressure for
LPG design is 215 psig (1480 kPa) at 100 degrees F (38 degrees C). All LPG
167
UFC 3-460-01
16 August 2010
purchased by the military should emit a distinct odor at a concentration required by
NFPA 58. See Facility Plates 027, 028, 029 and 030.
10-2.2.1
Fire Hazards
In the vapor phase, LPG is a hazard comparable to flammable natural or manufactured
gas. The explosive range is 2.16 to 9.6 percent by volume of air-gas mixture.
a) Provide ventilation in accordance with NFPA 58.
ED
b) In the liquid phase, LPG is a highly volatile, flammable liquid. Because
of rapid vaporization, an LPG fire is basically a gas fire. Therefore, in
the event of a fire, provide means to automatically shut off the LPG
supply feeding the fire.
EL
L
c) Provide emergency shut-off consisting of the combination of three
modes: manual shut-off, remote shut-off, and thermal shut-off.
Remote shut-off normally consists of a nitrogen system with plastic
tubing at the controlled point so that the pressure holds open the valve.
The plastic tubing acts as a fusible link. Provide a cable release shutoff with remote shut-off for combination shut-off. Refer to UFC 4-17901 and API Std 2510.
d) Provide leak detection in accordance with NFPA 59.
AN
C
e) For LPG equipment located inside buildings where there is a potential
for loss of LPG, provide an alarm/detection system with local and
remote alarms (audible and visual), high and low ventilation, doors with
panic hardware, a leak detector readout with the readout outside, and
a leak detector kit located outside.
10-2.2.2
Refrigerating Effects
At normal atmospheric pressure, the boiling point of propane is -45 degrees F (-43
degrees C). Propane in a liquid state and open to the atmosphere will evaporate (not
boil).
C
a) Provide means to address operational concerns as described in the
following paragraph. When LPG is expanded through a regulator from
its vapor pressure to normal service pressures, the cooling effect may
freeze the regulator if water is present in the LPG. Freeze-up can also
occur on equipment which accumulates water such as strainers and
control valves. The freezing effect can also result in exterior ice
formations which disrupts the valve operator. Freeze-ups can be
avoided by cleaning and nitrogen-purging the system.
b) Although it is dehydrated at the refinery, provide a means to keep LPG
dry.
168
UFC 3-460-01
16 August 2010
c) In flashing to vapor from the liquid phase, the refrigerating effect can
be severe if an abrupt pressure drop occurs. Therefore, design a
system which provides means to avoid this problem.
10-2.2.3
Design Standards
Use the following references for general design and safety standards for all LPG
facilities. (Follow particular sections of standards applicable to types of facilities.
Where conflicts occur, use the more stringent requirements.) Appropriate standards are
as follows:
ED
a) NFPA 54, NFPA 58, and NFPA 59.
b) API Std 2510.
c) Gas Processors Association Standard 2140.
EL
L
d) Commercial Item Description A-A-59666, Sections ICC 4BW, ICC 4E,
and ICC 4BA.
e) UFC 4-179-01.
f) Factory Mutual Engineering Corp. (FM), Loss Prevention Data, Liquid
Petroleum Gas, Section 7-55.
10-2.3
Receiving Facilities
AN
C
10-2.3.1
General Design Considerations
LPG may be received by truck, rail, or water for either cylinder (bottled gas) or bulk
systems.
10-2.3.2
Transfer Methods
Design the facility to accommodate one of the following transfer methods:
C
a) No pumping or pressurizing facilities are required for small bulk
systems utilizing truck delivery. Use pumping equipment provided on
trucks instead of stationary pumps.
b) Provide LPG vapor piping, pumps, and compressors for off-loading
tank cars or waterborne LPG tanks to operate, as follows:
(1)
Provide compressor and piping to take suction from the vapor
space of the storage tanks to be filled through an equalizing line
and pressurize the tank to be off-loaded. This forces the LPG
out through the liquid off-loading line into the storage tank.
(2)
Arrange the piping so that after all liquid has been evacuated,
the compressor suction can be reversed to pump the LPG gas
169
UFC 3-460-01
16 August 2010
from the delivery tank to the storage tank through a subsurface
dip tube.
Provide connections and valving to allow bleeding of the liquid
propane from the connection after shutting off the valve at both
the hose end and at the off-loading piping. This is done after offloading the liquid from either a transport truck or a tank car.
Provide a bleed attachment built into the off-loading equipment
for this purpose.
(4)
See Facility Plates 027, 028, 029 and 030 for typical installation.
Provide liquid pumps as standbys for compressors.
ED
(3)
10-2.3.3
Flow Rates
Use the following flow rates:
EL
L
c) Provide the transfer point from trucks or tank cars with a substantial
concrete bulkhead. Anchor the piping in the bulkhead. Do not use
pipe sleeves. Provide with the bulkhead hose or swivel-type piping
connections. The bulkhead provides a breakaway point if the truck or
tank car moves away without first disconnecting the hoses. Also
provide emergency shut-off and excess flow valves. Refer to NFPA 58
and UFC 4-179-01 for additional information.
C
a) Provide flow rates commensurate with the storage capacity and the
size of pumps, compressors, and loading devices.
AN
b) Provide flow rates that allow operators adequate time to shut down
facilities before tanks or trucks are filled beyond maximum allowable.
Limit flow rates from tanks by setting excess flow valves.
c) Provide off-loading lines with manually operated throttle valves so
operators can adjust flow rates to points below shut-off settings of
excess flow valves.
Storage Facilities
C
10-2.4
10-2.4.1
Types of Storage
Types of storage facilities include cylinders or bulk storage tanks.
a) Provide cylinders or containers conforming to ASME and/or DOT
criteria as described in guide specifications. Used tanks are not
allowed. The number of cylinders at a facility depends on the
maximum required flow rate and the vaporization rate per cylinder at
the minimum operating temperatures.
b) Provide bulk storage tanks as follows:
170
UFC 3-460-01
16 August 2010
(1)
For storage tanks up to 30,000 gallons (114 000 L) capacity, use
horizontal steel tanks.
(2)
For storage tanks above 30,000 gallons (114 000 L) capacity,
use spherical or spheroidal steel tanks.
(3)
Do not use underground tanks for LPG.
ED
10-2.4.2
Number and Size of Bulk Tanks
Storage capacity depends on requirements, frequency of deliveries, and dependability
of supply. Consider a multi-tank system for more dependability.
10-2.4.3
Design Requirements
Design requirements are as follows:
EL
L
a) Tanks and tank appurtenances require conformance with NFPA 58
and API Std 2510. Design LPG tanks for a minimum working pressure
of 250 psig (1700 kPa).
b) Tank spacing requires conformance with UFC 4-179-01 and FM
criteria. See Facility Plates 029 and 030.
c) Provide sufficient flexibility in piping connections to tanks to allow for
differential settlement of tank and equipment.
C
d) Provide cathodic protection in accordance with Chapter 2 of this UFC.
AN
e) If using compressor transfer systems, fit tanks with dip pipes a
minimum of 3/4 inches (20 mm) diameter, and gas inlet lines from
compressors, so that gas pumped into storage tanks from empty
delivery vessels is bubbled through liquid LPG to prevent
overpressuring tanks.
C
f) Provide float-actuated high-level alarms set at maximum permissible
filling level of 80 percent on all tanks of 3,000 gallon (11 000 L)
capacity and above.
g) If using installed transfer systems, provide pressure switches on tanks
set to open at pressures 5 psig (35 kPa) below set pressures of safety
valves to stop compressor pumps transferring LPG to tanks.
h) Ensure that tanks are ASME coded and have the ASME national
registration number.
i) Size storage tanks for 120 percent of required storage volume.
j) Electrically ground all storage tanks.
171
UFC 3-460-01
16 August 2010
10-2.4.4
Inspection, Testing, and Certifications
Inspect, test, and certify all new unfired pressure vessels prior to placing into operation.
Do not operate the unfired pressure vessel (UPV) without a valid certificate. Perform
the following tests on the UPV:
a) A general UPV site inspection
b) An external UPV inspection
c) An internal UPV inspection
e) An operational test
ED
d) A hydrostatic test (strength and tightness tests)
EL
L
The inspector must be registered by the National Board of Boiler and Pressure Vessel
Inspectors (NBBI) and must possess a Certificate of Competency and a NBBI National
Board Inspection Code (NBIC) Commission. Upon completion and passing of the
inspections and tests, the tank will be certified. Post a current, valid certificate on or
near the UPV under a protective coating.
10-2.5
Distribution Facilities
See Facility Plates 027, 028, 029 and 030.
C
10-2.5.1
General Design Considerations
The following distribution system requirements apply to the transfer of both the gas and
liquid phases of LPG:
a) Lay all distribution piping underground when practicable.
AN
b) Provide the required flow rates.
c) Install electrical equipment in accordance NFPA 70 and API RP 500.
Use only equipment approved for each classified area. Ensure
electrical design conforms to API RP 540.
C
d) Ground and bond all piping, tanks, and equipment in accordance with
API RP 2003, API Std 2510, API RP 540, and NFPA 70.
e) Refer to Chapter 2 of this UFC for corrosion protection requirements of
underground pipe.
10-2.5.2
Piping Materials
Provide pipe, valves, and fittings in accordance with applicable sections of API Std
2510. Use Schedule 80 welded carbon steel. Threaded connections are only allowed
for valves and equipment. Provide design characteristics and features for gas and
liquid pipelines in accordance with Chapter 9 of this UFC. The minimum design
pressure for liquid LPG piping is 350 psig (2400 kPa) as required by NFPA 58. Use
Class 300 ANSI flanges as a minimum.
172
UFC 3-460-01
16 August 2010
10-2.5.3
Accessories
a) Provide totalizing-type meters, pressure gauges, thermometers,
strainers, and surge suppressors.
b) Ensure that meters are turbine-type with pressure and temperature
compensation and have electronic/digital readout capability.
c) Install meters, if required, in accordance with requirements of API
MPMS 5.
ED
d) Provide pressure gauges of suitable range on all tanks, on suction and
discharge of pumps and compressors, on inlet and outlet of vaporizers
and on downstream of throttle valves.
EL
L
e) Provide thermometers on all tanks, in all transfer lines for both liquid
and gas, and on inlet and outlet of vaporizers.
f) Provide strainers in compressor suctions, upstream of meters and
control valves.
g) Provide surge suppressors on liquid lines, if required.
C
h) Provide knock-out drums or scrubbers of suitable capacities in suction
lines of compressors to remove entrained liquid. Provide drums with
high level, shut-down devices, automatic liquid drainers, glass gauges,
and drains.
AN
i) Ensure all valves are UL listed or FM approved for LPG service. At a
minimum, use Class 300 valves.
j) Provide equipment to inject alcohol into the LPG off-loading line.
Provide equipment capable of injecting alcohol at a rate of 1:800
alcohol to LPG by volume.
C
10-2.5.4
Pumps and Compressors
Design and install pumps and compressors in accordance with API Std 2510 and NFPA
58.
10-2.5.5
Vaporizers
Provide vaporizing equipment for distribution facilities as follows:
a) Provide vaporizers at locations where liquid temperatures are too low
to produce sufficient vapor pressure to meet the maximum required
flow rate.
b) Use vaporizers that are indirect fired-type utilizing steam or hot water
as a heating medium or direct fire waterbath-type.
173
UFC 3-460-01
16 August 2010
c) Size vaporizers to provide at least 125 percent of expected peak load.
d) Design and install vaporizers in accordance with NFPA 58.
e) Use waterbath vaporizers approved by Factory Mutual.
f) Space waterbath vaporizers in accordance with FM Section 7-55,
except provide a minimum of 75 feet (23 m) between truck off-load
stations and tank storage. Where space is limited, provide a blast wall
at the truck off-load stations.
ED
g) When using waterbath vaporizers, provide fire-safe fusible link shut-off
valves in LPG supply piping at the vaporizers. Provide remote shut-off
capability and 24-hour remote monitoring.
EL
L
h) When using waterbath vaporizers, provide an automatic excess
flow/emergency shut-off valves in LPG supply lines to vaporizers. Use
a hydraulically operated diaphragm control valve and locate at tank
storage.
10-2.5.6
Controls
Provide the following controls.
a) Use pumps and/or compressors that can be started and stopped by
manual pushbutton.
Pressure switches on storage tanks set 5 psig (35 kPa) below
relief valve settings.
AN
(1)
C
b) Provide automatic limit switches as follows:
Liquid level switches on storage tanks set at maximum filling
levels.
(3)
Liquid level switches on knock-out drums set to shut off
compressor at high liquid levels.
C
(2)
(4)
High pressure switches in compressor discharges to shut off
compressor at safe pressure levels.
c) Provide manually operated throttle valves in liquid off-loading lines to
adjust flow rates below excess flow valve settings on delivery tanks.
d) Provide a sight flow indicator in liquid lines near throttle valves.
e) Provide automatic temperature, pressure, and limit controls on
vaporizers in accordance with NFPA 58.
174
UFC 3-460-01
16 August 2010
10-2.6
Air Mixing Facilities
10-2.6.1
Pressure Controls
Provide pressure control valves in both air and gas lines to air mixing equipment.
Provide a low pressure alarm in both lines to shut-off air and gas in the event of low
pressure.
10-2.6.2
Volumetric Controls
Provide volumetric controls at all distribution facilities as follows:
ED
a) Provide displacement-type or flow-type meters in both air and gas lines
to maintain a proportional flow of air and gas.
EL
L
b) Use a venturi-type proportioner where the variation in demand flow
rate does not exceed the limited range of the venturi proportioner.
Where the demand flow rate varies excessively, use a venturi-type
proportioner in conjunction with a downstream storage tank, if
economically justified. The storage tank will permit a varying rate of
flow to the system while being filled continually or intermittently at a
constant rate of flow through the proportioner.
C
10-2.6.3
Specific Gravity Indication
Provide a specific gravity indicator and recorder with high and low-limit switches to
sound an alarm if the variation of specific gravity of an air-gas mixture exceeds
acceptable limits of the system. For air mixing systems using LPG with a propane
content of 90 percent and above, the specific gravity of the air-gas mixture is a
sufficiently accurate index of its Btu or joule (J) content, so calorimetric controls and
indication are not required.
AN
10-2.6.4
Calorimetric Controls
Where economically justified, provide an automatic calorimeter to indicate and record
the Btu or J content of the air-gas mixture. Provide high- and low-limit switches to
calorimeter to sound an alarm if the variation of Btu content exceeds acceptable limits of
the system.
C
10-3
COMPRESSED NATURAL GAS (CNG)
Design CNG storage and dispensing facilities to comply with NFPA 52 and appropriate
sections of NFPA 55.
10-3.1
Uses
CNG is primarily used as an alternative fuel in light duty vehicles although it and its
cryogenic counterpart liquid natural gas are gaining acceptance in heavy duty
applications. Energy policy has mandated with certain reservations that by fiscal year
2000 and thereafter, 75 percent of the light-duty vehicles purchased by the government
will use alternative fuels. Therefore, there will be a significant increase in alternative
fuel consumption.
175
UFC 3-460-01
16 August 2010
10-3.2
General Design Considerations
ED
10-3.2.1
System Sizing
To size the system, determine the total daily fuel consumption of base liquid natural gas
vehicles. Based on daily miles driven, determine the number to be refueled each day.
The number of vehicles refueled during surges limits the capacity of most fast fill (3 to 6
minutes) operations. Scheduling vehicles to refuel through the day will effectively
increase system capacity. Use a computer program to size the system because manual
calculations usually result in larger systems than needed. Refer to the Gas Technology
Institute in the References section of this UFC for ordering information of one possible
program. Use the latest version.
EL
L
10-3.2.2
Future Requirements
Anticipate future requirements when sizing the system but normally limit the project to
100 to 150 standard cubic feet per minute (scfm) (47 to 71 L/s). If additional capability
will be needed in the future, plan a second system later or consider other options such
as slow fill systems for overnight fueling. This will provide redundancy and reduce initial
cost. Usually, surge requirements drive machine size and can be controlled by
management actions. Additionally, boosters operating from system pressure or special
control systems may increase surge handling capacity (e.g., 25 to 30 percent of the gas
in a cascade system is available for fast fill operations. A booster or special control
system can increase it to 60 percent.) The combination of these actions could delay
installing a second system many years at most installations.
C
10-3.2.3
Pressures
Most vehicle conversions use 3,000 psig (21 000 kPa) storage systems while original
equipment manufacturers use 3,600 psig (25 000 kPa) systems. The compressors
should operate up to 5,000 psig (35 000 kPa) to refuel at either pressure.
AN
10-3.2.4
Connections
Design the systems to be skid-mounted with compressor system, cascade storage, and
controls. Limit field tie-ins to connecting electricity and high and low pressure gas.
C
10-3.2.5
Compressors
Use crosshead guide type compressors for CNG service. Although more expensive,
the design life of these units is significantly longer. Another option is a conventional
style compressor designed specifically for CNG service. Do not use modified air
compressors. Choose the type compressor after comparing maintenance and reliability
data. Test all compressors at the factory with natural gas before shipping.
10-3.2.6
Compressor Drives
Use either electric or engine-driven compressor drives. Gas engine drives are less
expensive to operate, but maintenance costs are higher. Use a life cycle cost analysis
to determine which compressor drive is best. Although an engine-driven compressor is
more expensive than an electric motor, electrical upgrade costs may be reduced. It also
may be able to operate during power outages.
176
UFC 3-460-01
16 August 2010
10-3.2.7
Compressor Inlet Pressure
Suction pressure is a key factor in selecting a compressor. Use high pressure gas
mains to reduce both initial and operating costs. Avoid pressures less than 20 psig (140
kPa). If high and low pressure lines are near each other and the pressure differential is
at least 150 psig (1030 kPa), 250 psig (1720 kPa) is preferred, and the low pressure line
has a continuous load, a system can be installed and powered by the differential
pressure. Such systems are extremely effective and have low initial and operating
costs. Where a high pressure differential exists, another option is a turbine to drive the
compressor.
ED
10-3.2.8
Storage
Install a cascade system using ASME vessels; either tubes or spheres. Avoid banks of
DOT cylinders since they must be inspected every 5 years.
EL
L
10-3.2.9
Controls
Use either pneumatic or electronic controls depending on local practices. Electronic
controls are preferred in most areas because they provide more accurate compensation
for temperature effects. Pneumatic controls are simpler, but do not fill tanks to their
limits. Normally, this is not a problem, since base vehicles do not normally operate to
their maximum range in one day. Since vehicle tank pressures are rated at 70 degrees
F (21 degrees C), tanks will fill to a higher pressure when outside temperatures are
warmer and to a lower pressure when temperatures are cooler.
C
10-3.2.10
Dispensers
Although more expensive, provide conventional rather than post style dispensers. To
reduce installation costs, use dispensers with the electronics internally mounted and
calibrated at the factory. A dispenser makes CNG refueling similar to conventional
refueling. Depending on funds, a post style dispenser is an option.
AN
10-3.2.11
Nozzles
Use the industry standard nozzle. It comes in three pressure ranges: 2,400 psig
(16 500 kPa), 3,000 psig (21 000 kPa), and 3,600 psig (25 000 kPa). These nozzles
are designed so that a fill system cannot connect to a vehicle tank with a lower pressure
rating, yet it can connect to vehicle tanks with higher ratings.
Environmental Considerations
C
10-3.2.12
a) The compressor unit’s receiver is usually blown-down automatically,
releasing about 0.06 gallons (0.2 L) of oil to the base and subsequently
the ground. Discharges from other components, such as intercoolers,
add to the contamination. Therefore, drip gutters with drains are
required at each corner of the base. Develop a means of collection
and retention of these wastes. Deactivating the automatic dump
features and manually draining is an alternative to a collection system.
177
UFC 3-460-01
16 August 2010
b) Provide gas recovery system as part of the compressor package to
recover gas into an ASME recapture tank when off-loading the
compressor.
c) At the dispenser, provide a vent 8 feet (2.4 m) to 10 feet (3 m) above
ground level to discharge vent gas from dispenser hoses. Oversize
the conduit from the dispenser to the cascade for a vent line to a future
gas recovery system.
ED
d) Locate units with care because of noise. Use landscaping to conceal
units and attenuate the sound.
e) Natural gas engine drives, if used, may require an air emissions
permit.
EL
L
10-3.2.13
Weather
As a minimum, protect compressor units from the weather with a canopy. In colder
climates, use a heated shelter/enclosure with sound attenuation. Some vendors have
enclosures as normal options. Costs vary widely depending on the degree of
protection. Enclosures may require ventilation and Class I, Division 1 classified
electrical components. They should also be accessible by inspectors and servicing
personnel. In lieu of a heated facility/enclosure, crankcase heaters and/or circulating
block heaters may be suitable in moderately cold climates.
AN
C
10-3.2.14
Coatings
The CNG equipment comes factory-painted. Specify special coatings where climatic
conditions warrant. Select a color from the base color scheme. Light beige is a
practical choice. White is a poor choice since the heat of operation discolors it. Storage
containers may have to be painted white with blue letters to meet codes.
10-3.2.15
Water Content
Water content in natural gas varies with region. Gas in the Southeast United States is
usually dry, while gas from West Virginia is very wet. Provide dryers to dry the gas to a
pressure (storage pressure) dew point (PDP) at least 10 degrees F (6 degrees C) below
the winter design dry bulb temperature.
C
10-3.2.16
Design Standards
Design CNG systems to NFPA 52. Use NFPA 54 for the gas supply to the compressor.
Use the ASME Boiler and Pressure Vessel Code for cascade storage. Electrical work
must conform to NFPA 70. When collocating CNG and gasoline stations, also use
NFPA 30A.
10-3.3
Warning
During peak demand periods, some suppliers mix propane air mixtures with natural gas.
When the amount added exceeds 10 percent by volume, the CNG produced from this
gas will normally not perform properly in CNG vehicles because propane becomes a
permanent liquid in storage tanks. Oxygen sensors can be installed to shut down the
178
UFC 3-460-01
16 August 2010
station during such periods. Installations with this situation should use dual fuel
vehicles.
10-4
HYDRAZINE STORAGE AND SERVICING FACILITIES
10-4.2
EL
L
ED
10-4.1
Uses
A blend of 70 percent hydrazine and 30 percent water, known as H-70 fuel, is used to
operate the F-16 emergency power unit (EPU). The F-16 H-70 tank carries 56 pounds
(25 kg) of fuel and requires servicing after the fuel has been used. The H-70 tanks are
removed from the aircraft when the fuel is depleted below a level specified by the using
activity. The tanks are delivered to the servicing facility where any remaining fuel is
drained into a closed 55-gallon (210 L) stainless steel drum. The aircraft H-70 tank is
filled using a closed system charging unit and is either returned to the aircraft or placed
in a handling/storage container for future use. The bulk H-70 storage tank is a 55-gallon
(210 L) stainless steel drum containing approximately 51 gallons (190 L) of H-70.
Nitrogen gas is used as an inert pressure head in the bulk drum to transfer H-70 to the
charging unit. The charging unit is 75 inches (1900 mm) long by 36 inches (900 mm)
wide by 92 inches (2340 mm) high and weighs approximately 475 pounds (216 kg). An
F-16 tactical wing is expected to use approximately 100 gallons (380 L) of H-70 per
20,000 flight hours with an additional minimum of 150 gallons (570 L) held in reserve to
handle deployment/safety stock requirements.
General Design Considerations
C
a) H-70 carries the compatibility group designation of Group C.
AN
b) Separate H-70 fuel storage and liquid/gaseous oxygen storage in
accordance with AFMAN 91-201. Locate the facility a minimum of 50
feet (15 m) from aboveground explosive storage in accordance with
AFMAN 91-201.
c) Locate the facility a minimum of 100 feet (30 m) from public highways;
civilian or government living areas; public facilities such as schools,
churches, clubs, sewage treatment plants; or rivers, lakes, or streams
because of bio-environmental considerations.
C
d) Segregate the servicing and storage facility from large population
concentrations within the confines of a military installation and subject
to the criteria stated above.
e) Store 55-gallon (210 L) drums of hydrazine in facilities no less than 80
feet (24 m) apart. The spacing is also subject to the other criteria
stated in this chapter. This criterion is limited to ten 55-gallon (210 L)
drums and 20 EPU tanks (provided the tanks are stored inside an
approved shipping container).
f) Refer to Air Forces AFTO-42B1-1.
179
UFC 3-460-01
16 August 2010
10-4.3
Construction Concepts
Provide the H-70 facility with space for tank servicing, storage, and personnel hygiene.
10-4.3.1
Access
a) Provide security fencing with a vehicle entrance gate surrounding the
facility to restrict access.
10-4.3.2
ED
b) Provide a doorway leading into storage areas to allow for forklift
access.
Architectural
EL
L
a) The total area recommended for the facility is 783 square feet (73 m2)
with H-70 and N2 bulk storage occupying 210 square feet (20 m2), a
servicing and storage area of 449 square feet (42 m2), and a personnel
area of 124 square feet (12 m2).
b) Provide ceiling height of 12 feet (3.7 m) in storage and servicing areas
and 8 feet (2.4 m) in personnel areas.
c) Provide hollow, metal, exterior and interior doors with panic hardware
and automatic closure. Provide double doors, 6 feet (1.8 m) wide to
allow for equipment movement. Ensure single doors are standard
size.
AN
C
d) Provide a rack in the servicing and storage area for vertical drum
storage (bung side up) to allow for drainage of flush water. Construct
storage rack of hydrazine compatible materials such as stainless steel,
plastic, or high-density polyethylene (HDPE).
e) Design floors to permit drainage and prevent collection of liquids on
any floor surface.
C
10-4.3.3
Fire Protection Systems
A wet pipe sprinkler system is recommended. Consider above-ceiling detectors, as well
as room detectors. Provide fire extinguishers of a type approved for use in combating
hydrocarbon fuel fires in regulated areas. Use AFFF or water. Do not use halogens or
CO2 extinguishers. Refer to Air Forces AFTO 00-25-172.
10-4.3.4
Spill Containment
a) Provide spill containment in the H-70 storage area with a capacity
equal to the larger of 110 percent of the largest drum present or 10
percent of the total volume present.
b) Spill containment for facilities which store only one or two drums of H70 can be individual containers for each drum.
180
UFC 3-460-01
16 August 2010
c) Provide a diked containment area for facilities which store multiple
drums of H-70.
10-4.3.5
(1)
Provide ramps for vehicle access.
(2)
Provide a coating or liner for concrete containment areas. Do
not allow exposed iron or rebar in the containment area.
Floor Drains
ED
a) Provide a concrete floor in the regulated areas, sloped to floor drains
which lead to a collection tank.
EL
L
b) Provide a floor trench drain 18 inches (450 mm) wide by 6 inches (150
mm) deep by 9 feet (2.7 m) long, covered with an open stainless steel
grate in the H-70 fuel tank servicing area. The trench is required to
contain any possible H-70 spillage and periodic draining of the H-70
servicing stand. Construct the trench parallel to the wall separating the
storage area from the servicing area. Locate the servicing stand so
the drain spigot from the scrubber is in-line with the trench drain. A
polypropylene or polyethylene elbow connection directly from the drain
spigot to the trench drain is required.
c) Ensure deluge shower and eyewash units in the servicing area drain
into the containment tank.
C
d) Ensure industrial sink in the protective equipment room drains into the
containment tank.
AN
e) Equip drains leading to the containment tank with traps to prevent
vapors from contaminating the area.
f) Provide access to the sanitary sewer for both clean change room and
shower facilities.
C
g) Construct floor drains which are subject to carrying H-70 residue of
polypropylene or polyethylene.
10-4.3.6
Collection Tank and Piping
a) Provide a collection tank and piping of materials compatible with
hydrazine, water, and neutralizer.
b) Size the collection tank to contain 100 times the maximum quantity of
H-70 that could spill with a minimum capacity of 1,000 gallons (4000
L).
181
UFC 3-460-01
16 August 2010
c) Provide piping of 304 stainless steel, HDPE, or to a limited extent,
galvanized steel.
d) Provide gaskets of suitable materials such as Viton.
e) Test the system annually with water.
10-4.3.8
ED
10-4.3.7
Grounding
In the storage area, provide a ground strap or grounding point system to ground each
drum of H-70. Locate the grounding strap around the interior walls of the storage room,
54 inches (1370 mm) above the floor. The grounding system must have a resistance of
25 ohms or less. The facility must also have an approved lightning protection system.
Hygiene Support Criteria
EL
L
a) Provide lavatory washing facilities in a non-regulated area close to the
exit from the regulated area and contiguous to the clean change room.
b) Provide shower facilities for each 10 or less workers.
c) Provide a clean change room. Provide a separate area for the removal
of contaminated clothing to prevent the spread of potential
contamination from the regulated area.
C
d) Provide toilet facilities if the H-70 facility is isolated from other buildings
where toilet facilities are available.
AN
e) Post signs which state that consumption of food, beverages,
cosmetics, tobacco products, and chewing materials are prohibited.
10-4.3.9
Lighting
Provide lighting intensities of 50 foot-candles (540 lux) in the servicing area and 30 footcandles (320 lux) in the remainder of the facility. Provide exterior lighting at all
entrances and security lighting as required.
Safety
C
10-4.3.10
a) Provide vapor sniffers for use in the H-70 fuel drum storage area and
servicing area to alert personnel to excessive levels of H-70 fuel
vapors. Provide sniffers capable of detecting 10 ppb of H-70.
b) A facility respirator air system is recommended. Breathing air shall
meet at least the minimum Grade D breathing air requirements of 29
CFR Part 1910.134 and Compressed Gas Association (CGA)
Pamphlet G-7.1.
182
UFC 3-460-01
16 August 2010
c) Provide an explosion-proof observation window (4 feet (1.2 m) by 4
feet (1.2 m)) between the H-70 fuel drum storage area and the tank
servicing area.
d) All lighting fixtures, electrical outlets, and electrical components located
within the storage and servicing area should be explosion-proof.
e) Provide eyewash fountains and deluge shower units within sight of and
on the same level as locations where direct exposure to H-70 might
occur. Pipe eyewash and showers to the H-70 collection tank.
ED
f) Post signs at entrances to all areas. Signs should warn personnel that
“H-70 is a cancer suspect agent,” “Authorized Personnel Only,” and
“No Smoking.”
10-4.3.11
Utilities
EL
L
g) All tools and equipment must be constructed of hydrazine compatible,
rust-free, corrosion-resistant materials.
C
a) For electricity, provide 120-VAC, 60-Hz, single phase, three-wire, 20
amperes, duplex convenience outlets in each area of the facility
(minimum six outlets). Two-way switching is preferred to control
lighting in the H-70 fuel drum storage area from the H-70 fuel tank
servicing area. Provide explosion-proof, Class I, Division 2, Group C
electrical fixtures.
AN
b) Provide 15 gpm (1.0 L/s) hose bibb water outlets with backflow
prevention. Size hose bibb for standard lawn hose connections.
Locate the hose bibb to provide water to service stand on the inside of
the exterior wall, on the center of the servicing trench, about 2.5 feet
(0.8 m) above the finished floor (below the 4-inch (100 mm) pipe
sleeve). Water with a reduced pressure-type backflow preventor will
also be required for the fire suppression system and potable water
systems.
Ventilation
C
10-4.3.12
a) Segregate mechanical ventilation for regulated versus non-regulated
areas. Exhaust regulated areas through a common manifold.
Evaluate the need for an air pollution control system on a case-by-case
basis and consider federal, state, or local emissions criteria applicable
to the construction location.
b) Design ventilation systems for regulated areas to maintain a negative
pressure of 0.05 to 0.1 inches of water (12 to 25 Pa) with respect to
adjacent non-regulated areas.
183
UFC 3-460-01
16 August 2010
c) Design ventilation for servicing and storage areas to provide a
minimum of 20 air changes per hour.
d) Design the ventilation system for automatic shutdown in the event of a
fire within the facility.
ED
e) Use flexible exhaust vent of the “elephant trunk” type to exhaust
vapors that are released when full hydrazine drums are opened.
Design for air flow at the vent nozzle to be approximately 150 cfm (71
L/s). Refer to American Conference of Governmental Industrial
Hygienists (ACGIH), Industrial Ventilation: A Manual of Recommended
Practice for Design.
EL
L
f) Place exhaust ports at approximately 18 inches (450 mm) above the
floor. To avoid exhausting H-70 vapors into areas where personnel
are present, such as walkways or escape paths, consider placing
exhaust ports above the roof line.
g) Place a switch on the outside of the building, near an entrance that will
allow personnel to turn on all exhaust fans prior to entering the facility
This will purge the facility of any H-70 vapors that may have collected
in the facility while not in use.
10-4.3.13
C
h) Maintain temperature in regulated areas below 120 degrees F (49
degrees C). Provide environmental controls consistent with ventilation
for personnel comfort.
Waste Product Disposal
AN
a) Add water to H-70 spills in a 100 to 1 ratio to reduce the H-70
concentration to less than 1 percent. Size collection tank accordingly.
b) Use neutralizers, such as 65 percent granular calcium hypochlorite
(HTH), 14 percent bleach, and 5 percent bleach to stabilize the H70/water mixture.
C
c) Provide storage for HTH away from hydrazine and other potentially
reactive materials. HTH is extremely corrosive.
d) Consult with local base bio-environmental engineer as to procedures
for emptying the collection tank.
10-5
OTTO FUELS
Information on OTTO fuels is contained in NAVSEA S6340-AA-MMA-010. Distribution
of this document is restricted. Requests for information are handled by Naval Sea
Systems Command. Refer to Chapter 2 of this UFC for additional information.
184
UFC 3-460-01
16 August 2010
CHAPTER 11 - SUPPORT FACILITIES
11-1
INTRODUCTION
This chapter provides design criteria for facilities which may be required to support
fueling activities. Specifically, operations buildings, contaminated fuel recovery
systems, roads, utilities, and aircraft refueler parking areas are detailed in this chapter.
ED
11-2
OPERATIONS BUILDING
Review the fueling activity to establish a need for each component of this building.
Factors which will affect these reviews are number of people required for fueling activity,
level of activity, types of fuels handled, on-site quality control, availability of replacement
parts, availability of maintenance support, and level of training required.
EL
L
11-2.1
Design Standards
The support facilities shall be designed in accordance with UFC 1-200-01, General
Requirements. See UFC 3-600-01 for fire protection requirements.
11-2.2
Fuel Office
Provide a fuel office with sufficient space to perform the necessary planning,
administrative, and management functions associated with the accomplishment of the
fuel division’s mission. Refer to AFH 32-1084 for size on Air Force projects.
C
11-2.3
Training/Conference Room
Provide a multipurpose room with equipment for training, conferences, and briefings.
Design this room to accommodate furniture and have built-in features such as
markerboard, tack board, book shelves, screen, clock, coat hooks, and storage
cabinets.
C
AN
11-2.4
Fuel Maintenance Workshop
Provide a fuel maintenance workshop with an adequately sized and convenient work
bench with compressed air and electrical outlets available. Provide slip and fuelresistant floor, emergency shower/eye wash, and adequate storage space adjacent to
the workbench for frequently used tools, spare hardware items and accessories. If
facility is large enough and mission warrants, consider overhead crane, laundry facility,
and shower facility. Refer to Chapter 2 of this UFC for electrical hazard classification
and requirements and NFPA for ventilation requirements.
11-2.5
Storeroom
Provide an adequate storeroom for spare hoses, nozzles, filtration elements, special
tools, special clothing, test equipment, and fuel spill clean-up equipment. Determine
size and location of each facility to provide sufficient space for orderly storage and
location for ready access to needed material by fuels division personnel.
11-2.6
Laboratory
Laboratories shall comply with the general facility requirements of UFC 3-600-01 and
NFPA 45 Laboratories using Chemicals. The fuel laboratory size and associated
equipment depend on the scope of the quality surveillance and testing program
185
UFC 3-460-01
16 August 2010
performed. Design the laboratory in accordance with applicable NFPA and CFR codes.
Review NFPA 45 for applicability. Minimum laboratory requirements are as follows:
a) Lighting and fixtures in accordance with NFPA 70.
b) Sink with running hot and cold water. Include hot water heater capable
of providing water at 130 degrees F (54 degrees C) for cleaning
laboratory glassware.
ED
c) Work bench(s) or counter(s) of sufficient size to accommodate and
maintain all required test equipment in a ready-to-use position.
Compose countertops of a non-permeable material suitable for working
with petroleum fuels. Ensure that laboratory flooring material is
impermeable and suitable for a fuels laboratory.
EL
L
d) Storage cabinets for test equipment support items; for example,
bottles, drying rack, and spare millipore pads. Construct cabinets of a
non-permeable material suitable for exposure to petroleum fuels.
e) Fume hood, comply with 29 CFR Part 1910.1450, Appendix A.
Electrical equipment located inside the fume hood shall be rated for
classified areas.
f) Emergency eyewash/shower. Construct adjacent walls of
waterproof/water-resistant materials.
C
g) Outward opening doors with panic bars. Multiple doors may need to
be provided in accordance with NFPA 45.
AN
h) Portable firefighting equipment.
i) Telephone.
j) Fire alarm box.
C
k) A waste tank or means to dispose of fuel samples.
l) Lighted exit signs.
m) Capabilities to maintain laboratory at 73 degrees F (23 degrees C) plus
or minus 5 degrees F (3 degrees C). (Required to protect laboratory
equipment.)
n) Bonding and grounding of all metal working surfaces and electrical
equipment. Also, provide a common static grounding strap or
approved grounding points readily accessible to all fixed working
surfaces and alongside entrance doors.
o) Recessed floor to prevent spilled fuel from flowing into adjacent areas.
186
UFC 3-460-01
16 August 2010
p) Windows constructed of fireproof materials. Draperies and curtains
are prohibited. If interior windows are provided, use translucent
reinforced safety glass.
q) An HVAC system designed so that air from the laboratory does not
recirculate to other portions of the building.
r) Interior separations from other portions of the building with a partition
rated for fire separation as required by NFPA 45.
ED
s) Type “N” unprotected non-combustible construction.
t) Provide a location and connections for an automatic laboratory
glassware washer.
u) Electrical installations in the laboratory work areas are non-classified.
EL
L
11-2.7
Miscellaneous Safety Equipment
Provide firefighting, fire alarm, and emergency eyewash/shower equipment. Provide
emergency eyewash/shower with tempered water in cold weather climates. Also see
applicable service-specific guidelines.
C
11-2.8
Control Room
Where computerized control equipment is anticipated, provide a control room of
adequate size and with a maximum view of outside activities. Allow extra space along
the ceiling/wall interface for future installation of security monitors. Consider electrical
receptacles and data outlets for future use.
AN
11-2.9
Miscellaneous Spaces
Provide toilets, shower facilities, lockers, dressing rooms, mechanical room, electrical
room, janitor closet, break room, etc. based on the size of the facility and the planned
activities. Provide exhaust for locker rooms through the back or top of the lockers.
C
11-2.10
Communications
Make provisions for telephone, data transmission, and other planned communications
equipment.
11-3
ROADS
Design roads within a fueling facility to accommodate maintenance activities, operations
personnel, and fuel delivery and/or issues. In addition, evaluate the roads leading to the
facility for their adequacy of width, access, geometrics, and weight restrictions. For
vehicle access roads in diked areas around tanks, see Chapter 8 of this UFC. Refer to
UFC 3-250-18FA and UFC 3-250-01FA for design guidance.
11-4
UTILITIES
In most cases, a fueling facility requires water (domestic and fire protection), sanitary
sewer, storm sewer, and electricity.
187
UFC 3-460-01
16 August 2010
11-5
AIRCRAFT REFUELER AND FUEL DELIVERY VEHICLE PARKING
11-5.1
General
Ensure aircraft refueler and ground fuel delivery vehicle parking areas meet the
following criteria at a minimum. For additional design guidance, refer to NAVAIR 0080T-109 and Air Force AFTO 00-25-172.
11-5.2
Clearances
ED
a) Provide a minimum of 25 feet (7.6 m) between the centerlines of
adjacent aircraft refueler trucks and ground fuel delivery vehicles when
in the parked position or 10 feet (3 m) minimum of clear space
between parked trucks, whichever is greater.
b) Provide a minimum of 50 feet (15 m) between aircraft refueler/ground
fuel delivery vehicle parking area and the following:
Uninhabited building for new projects.
(2)
Pump house or filter/separator building.
(3)
Taxiing aircraft.
(4)
Fence, if space is a limitation (100 feet (30 m), if space is
available).
(5)
Roads outside of a security fence.
Overhead power and communication lines.
Pad-mounted transformers.
AN
(7)
C
(6)
EL
L
(1)
(8)
Parked aircraft.
(9)
Any building other than a maintenance building.
C
c) Provide a minimum of 100 feet (30 m) between aircraft refueler/ground
fuel delivery vehicle parking area and the following:
(1)
Inhabited buildings.
(2)
Aboveground Storage Tanks
(3)
Truck or tank car off-loading station.
(4)
Truck fillstation.
(5)
Property lines.
188
UFC 3-460-01
16 August 2010
(6)
Highways.
(7)
New POL Operations Building.
(8)
Airport surface detection radar equipment.
d) Provide a minimum of 300 feet (90 m) between an aircraft
refueler/ground fuel delivery vehicle parking areas and the following:
Aircraft warning radar antennas.
(2)
Areas where airborne surveillance radar may be operated.
ED
(1)
e) Provide a minimum of 500 feet (150 m) between an aircraft
refueler/ground fuel delivery vehicle parking areas and airport ground
approach and control equipment.
EL
L
f) Provide a distance as great as practically possible between an aircraft
refueler/ground fuel delivery vehicle parking areas and radio
transmitting antennas.
g) Contact the installation safety office to obtain distance criteria from an
aircraft refueler/ground fuel delivery vehicle parking areas to aircraft
carrying explosive materials.
AN
C
11-5.3
Arrangement
The preferred arrangement is parallel positions, but “front-to-back” and variations of the
two are acceptable. Provide “front-to-back” clearance between vehicles such that the
aircraft refueler/ground fuel delivery vehicle in the “back” position would not have to
back-up to pull out of the parking position. This distance will vary according to the
turning radius of each aircraft refueler/ground fuel delivery vehicle. Arrangement should
satisfy functional requirements of users and provide for safe operation and efficient use
of available space. Provide for parking of all refueling vehicles expected to use this
facility and include identification of positions.
C
11-5.4
Ingress/Egress
Provide for “drive-ahead” motion of vehicles at all stages to avoid backing up vehicles
under normal circumstances. Provide for smooth and efficient movement from the truck
fillstand area to the parking positions and from the parking positions to the aircraft
apron. Where necessary, provide adequate markings to ensure safe and efficient
vehicle movements. At a minimum, provide two means of ingress/egress.
11-5.5
Paving
Use concrete pavement, capable of withstanding design vehicle wheel loads. Seal
joints with fuel-resistant materials. For circulation pavements, provide bituminous
flexible pavements unless an economic analysis shows rigid concrete is more costeffective. Use concrete pavement in aircraft refueler/ground fuel delivery vehicle
parking areas.
189
UFC 3-460-01
16 August 2010
ED
11-5.6
Containment Area
Provide a containment area consisting of an impermeable retention and controlled
drainage system leading to a concrete remote spill containment system. Pave the area
with concrete pitched a minimum of 1 percent toward catch basins or trench drains.
Design the containment area in accordance with UFC 1-200-01, federal, state, and local
regulations. Do not use asphalt within a spill containment area. The maximum slope of
any paving within a truck movement or parking area shall not exceed 2 percent
excepting rollover curbs. If a rollover curb is provided, the sum of the vertical entrance
and exit grades shall not exceed 8 percent, the horizontal length of the curb in the
direction of truck movement shall not be less than 15 feet, and the rollover curb shall be
aligned perpendicular with direction of truck movement.
AN
C
EL
L
11-5.7
Remote Spill Containment System
Provide a concrete remote spill containment system. Design the spill containment
system in accordance with UFC 1-200-01, federal, state, and local regulations. Provide
the remote spill containment system with capacity greater than either the volume of the
largest aircraft refueler/ground fuel delivery vehicle to be parked or runoff from a rainfall
of intensity equal to a 5-year expectancy, 1-hour duration storm. Provide a lockable
knife gate valve with indicator post located outside the enclosure in an area that will be
safely accessible during a fire. The valve on the drain system shall be lockable and
normally closed to allow for containment during fueling operations and which can be
opened to drain the area when necessary. Tank trucks can be as large as 10,000
gallons (38 000 L) in capacity. Consider combining the remote spill containment system
with other remote spill containment systems on site, except with tank containment
systems. However, take the level of contamination in each containment area into
consideration. Construct the drain lines between the containment area and the remote
spill containment system, and between the remote spill containment system and the
lockable knife gate valve of petroleum-resistant, fire-resistant, impervious material; do
not use clay, concrete, fiberglass or plastic piping materials.
11-5.8
Fire Protection
Refer to Chapter 2 of this UFC for fire protection requirements.
C
11-5.9
Security
Provide fencing and lighting for security as required in Chapter 2 of this UFC.
11-5.10
Lighting
Provide 1-footcandle (10 lux) lighting to ensure that a fuel leak from the refueler is seen.
11-5.11
Block Heater Connections
At facilities where aircraft refuelers/ground fuel delivery vehicles have block heaters,
provide connections for those heaters.
190
UFC 3-460-01
16 August 2010
CHAPTER 12 - MAJOR REHABILITATION
EL
L
ED
12-1
INTRODUCTION
Decisions concerning major rehabilitation will be based on economics, mission, safety,
or environmental factors. It is not the intent of this chapter to mandate rehabilitation, but
only to provide guidance if the decision is made. The most common reasons for
rehabilitation are to meet environmental needs or to extend the usable life of the facility.
If a tank or major component is taken out of service for rehabilitation, review other
chapters of this UFC. However, consider each change based on its merits and its
compliance with this UFC. It is not the intent of this UFC to initiate changing and
upgrading of existing facilities. Before initiating a facility improvement or major
rehabilitation fuel project, it is recommended that a Physical Condition Survey be
conducted to survey the condition of the facility with the goal of identifying major
deficiencies and prioritizing the work required. Contact the appropriate Command Fuels
Engineer, Naval Facilities Engineering Component Commands and the Naval Facilities
Engineering Service Center, or Army Corps of Engineers regional design office. For
Naval Air Stations and Marine Corps Air Stations, include a representative from
NAVAIR on the survey team. In most cases, coordinate major rehabilitation proposals
with the base master plan.
C
12-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not begin the design or modification of any fueling system without first
becoming completely familiar with Chapter 2 of this UFC.
C
AN
12-3
ABOVEGROUND FUEL STORAGE TANK REHABILITATION
Existing aboveground storage tanks can be modified to meet fuel quality standards,
safety requirements, and environmental regulations. To maintain the structural integrity
of aboveground storage tanks and to ensure a complete and usable facility, ensure all
designs are accomplished by an engineering firm regularly engaged in tank modification
or have all plans and specifications reviewed by an API Std 653 certified inspector.
Complete all tank modifications, repairs, alterations, or inspections in accordance with
API Std 653 and API Std 650. Require a new strapping table after any major tank
rehabilitation.
12-3.1
Aboveground Vertical Tank Inspections
Prior to modifying the tank, conduct a thorough inspection consistent with the
requirements of API Std 653. This inspection will reveal any repairs that need to be
made in order to comply with current regulations.
12-3.2
Increase Manhole Sizes
Many older aboveground vertical tanks have inadequately sized shell manholes. The
ventilation and equipment requirements for maintenance have created a need for 36inch (900 mm) diameter manholes. If they do not exist, consider rehabilitation. Provide
in accordance with Chapter 8 of this UFC.
191
UFC 3-460-01
16 August 2010
EL
L
ED
12-3.3
Replace Tank Floors
Replace existing tank floors only when an API Std 653 inspection (including a magnetic
flux leakage test) indicates that the useful life of the bottom has expired, or that the
bottom requires more than minor repairs or upgrades, or if significant fuel quality
problems due to ponding water exist. Contact Service Headquarters for guidance.
Whenever a tank bottom is replaced it shall comply with current design standards
including either a double bottom or single bottom with liner. In no case shall a tank with
a single bottom remain in service when the bottom warrants replacement, unless other
provisions such as a programmed MILCON or SRM project has been approved to
replace the tank and/or bottom. Conduct an analysis of the existing tank and local
conditions to determine the most desirable approach. The type of new bottom to be
installed depends upon a number of factors, including: condition of the existing bottom,
tank foundation, shell condition, and amount of tank capacity which can be “lost.” Install
double bottoms or replacement bottoms in accordance with API Std 653. Install sloped
bottoms (3 to 5 percent) either above the existing bottom if the user can accept the
resulting loss in tank capacity or remove the existing bottom and install a new sloped
bottom in its place. A slope of 5 percent is preferred, but not required. If conditions and
cost make the recommended slope impractical, provide a minimum slope of 2 percent.
In either case, install an impermeable liner in accordance with DoD Standard Design
AW 78-24-27, as well as leak detection between the two floors. The technology exists
and it may be cost effective to raise the tank off its foundation to accomplish under tank
modifications or repairs (e.g., adding containment liner/tell-tale system, cathodic
protection, ringwall, etc.).
AN
C
12-3.3.1
Double Bottom With Washed Sand Layer and Liner
Clean and repair the existing tank bottom, install a liner on top of the existing tank
bottom, add a 4- to 6-inch (100 to 150 mm) silica sand layer on top of the liner, and
install the new steel tank bottom on top of the sand layer. Refer to Chapter 8 of this
UFC for suitable sand criteria. Leak detection consists of tell-tale slotted PVC pipes
within the sand layer at regularly spaced intervals and extending out through the outer
shell of the tank. Provide cathodic protection by sacrificial anodes or impressed current
close to the liner to allow maximum clearance from the new tank bottom. Install
adequate numbers of a cathodic protection reference cells between the two bottoms.
C
12-3.3.2
Double Bottom With Concrete Layer and New Steel Bottom
Clean and repair the existing tank bottom, install a liner on top of the existing tank
bottom, pour 4 to 6 inches (100 to 150 mm) of fiber reinforced (low slump mix - typically
3,000 psig (21 000 kPa)) concrete over the liner and existing bottom, shape the
concrete to provide adequate slope, and install the new steel tank bottom on top of the
concrete. Slope the concrete towards a sump and form with a series of grooves along
the top surface to collect any product which may leak through the new bottom. Slope
the channels to a collection point with a pipe extending to an observation well. Provide
concrete with an alkalinity of 13 or higher.
12-3.3.3
Double Steel Bottom
Clean and repair the existing tank bottom, place a structural support system on top of
the existing tank bottom, and install the new tank bottom. Design the structural support
192
UFC 3-460-01
16 August 2010
system to prevent excessive deflections resulting from loads on the primary (new) tank
bottom. Allow for an interstitial space between the two tank bottoms to detect and
collect any product from a leak. Purge the interstitial space between the two bottoms
with nitrogen to remove the oxygen, thus creating a non-corrosive, non-combustible
environment. The elimination of condensation and oxygen within the space minimizes
corrosion formation for the upper (new) bottom. Provide leak detection with sensors
which can detect pressure changes within the space. A pressure increase results from
a leak in the upper tank bottom as product enters the space. A decrease in pressure
indicates a leak or steel failure has occurred in the lower tank bottom.
EL
L
ED
12-3.3.4
Single Bottom With Liner
Remove the existing tank bottom and prepare the sub-base for bearing capacity. Place
sand layer on the sub-base to support the primary tank bottom, install a liner with a
slope to a center liner sump, place a minimum 12-inch layer of sand on top of the liner,
and install a new tank bottom on top of the sand layer. The liner sump is the collection
point for any leaks from the bottom and consists of a drain pipe leading to an
observation well. An alternative method is to use tell-tale slotted PVC or stainless steel
pipes in accordance with DoD Standard Design AW 78-24-27. Provide cathodic
protection by sacrificial anodes or impressed current close to the liner to allow maximum
clearance from the new tank bottom. Install adequate numbers of a cathodic protection
reference cells between the two bottoms. Place cathodic protection in the sand layer
approximately 6 inches (150 mm) below the new tank bottom and above the liner.
AN
C
12-3.4
Replace Floating Roof Tanks With Fixed Roofs
If a floating roof requires significant repair work, is corroded beyond economic repair, or
for any reason is considered unserviceable (by an API Std 653 inspection), consider
replacing it with a fixed cone roof and internally sealed honeycomb cell floating pan, as
required in paragraph 2-15.2. When a fixed cone roof is added to an existing tank the
roof manufacturer and the designer must determine that the tank has sufficient strength
to support the new roof. If the shell is structurally insufficient, a geodesic dome may be
considered. Install structural supported roofs in accordance with API Std 650, API Std
653, and DoD Standard Design AW 78-24-27. In general, all open top, floating roof
tanks containing aviation fuel should be programmed to receive a cover, as should all
tanks in northern climates where snow and ice is a problem.
C
12-3.5
Product Recovery Systems
Provide storage tanks with pumps, piping, valves, and tanks to collect, recover, and
return usable aviation turbine fuel which would otherwise become waste. Include a
tank(s) to collect fuel/water mixtures from tank and equipment sumps, equipment
drains, high point vents, low point drains, and any other equipment from which
fuel/water mixtures can be collected. Separate the fuel and water portions. Filter the
fuel portion and return to bulk storage tanks. Do not discharge the water portion to
surface water without additional treatment and permits or treat the water portion as
wastewater. Refer to Chapter 2 of this UFC for information on handling of wastewater.
Design in accordance with DoD Standard Design AW 78-24-27.
193
UFC 3-460-01
16 August 2010
ED
12-3.6
Coatings
In tank coating projects, minimize the generation of hazardous waste associated with
coating removal. Some alternatives to traditional sand blasting include shot “blasting”,
chemical stripping, high pressure water, carbon dioxide, or chemical stabilizer additive
process. Designs for maintenance painting, both interior and exterior, should be based
on a coating condition survey, as discussed in the notes to UFGS 09 97 13.15, 09 97
13.17, and 09 97 13.27. An evaluation of shell coating should be based not only on
condition but on the need for coating the shell and an evaluation of apparent corrosion
pressures on the shell. Corrosion pressure on shell coatings is generally fairly low;
therefore, there is not the same need for coating thickness and integrity that is required
for floors and ceilings. Refer to Chapter 8 of this UFC for additional information on
interior and exterior coatings for storage tanks. Re-coat the portion of the tank that is
already coated. When tanks are taken out of service for inspection or repairs, inspect
the underside of the roof for rust. If conditions merit, coat the underside of the roof in
conformance with Chapter 8 of this UFC.
EL
L
12-3.7
Isolation Valves
Require tank isolation valves to prevent the accidental release of fuel into the
environment. On aboveground tanks larger than 12,000 gallons, provide double block
and bleed tank shell valves located between the tank shell and the high level shut-off
valve.
C
12-3.8
Alarms and High Level Shut-off Valves
Equip storage tanks with a means to prevent accidental overfill. Design in accordance
with DoD Standard Design AW 78-24-27. Refer to Chapter 8 of this UFC for applicable
requirements for alarm and valve installation.
AN
12-4
UNDERGROUND OPERATING TANKS
If major rehabilitation is required, upgrade existing underground operating tanks to
conform with 40 CFR Part 280 and 40 CFR Part 281 and applicable state and local
underground storage tank regulations. As a minimum, provide leak detection, cathodic
protection, and overfill protection. Careful study of cut and cover tanks is necessary
since construction features may make it impossible to comply.
C
12-4.1
Manholes
Provide a 36-inch (900 mm) diameter manhole for tanks. Extension necks and internal
ladders are required for cleaning and inspection. Provide a minimum of one manhole
for tanks between 1,000 gallons (4000 L) and 5,000 gallons (19 000 L). Provide a
minimum of two manholes for tanks larger than 5,000 gallons (19 000 L). Provide
manhole containment sumps for all manholes.
12-4.2
Interior Coatings
Coat underground operating tanks in accordance with Chapter 8 of this UFC.
12-5
HYDRANT SYSTEMS
Decisions concerning major rehabilitation of existing direct aircraft refueling systems will
be made by Service Headquarters. This paragraph addresses existing direct aircraft
194
UFC 3-460-01
16 August 2010
refueling systems (Type I and Type II) which can be rehabilitated or modified to meet
fuel quality standards, safety requirements, mission requirements, and environmental
regulations. All designs should be accomplished by an engineering firm regularly
engaged in the design of direct aircraft fueling systems. The provisions of Chapter 4 of
this UFC are applicable.
ED
12-5.1
Pumps
Repair or replace existing pumps to meet increased fuel demands. Rebuild pumps
including complete bearing replacement, additional bowls or increased impeller size,
replacement of mechanical seals, shaft lengthening or shortening to match replacement
tanks, etc. In some cases, additional capacity can only be achieved by total pump
replacement or rearrangement of piping. Consider pump replacement where, due to
equipment age or condition, it is more economical to replace than to rebuild. Pump and
motor replacement may also result in higher efficiency units with lower power demands
and increased spare part availability.
C
EL
L
12-5.2
Filter/Separators
Existing filter/separators must be capable of meeting requirements of EI Specification
1581 (Edition 5). Existing filter/separator vessels built to earlier editions of API 1581
may be able to be reutilized with EI Specification 1581 (Edition 5) coalescer and
separator elements. Where possible, the replacement elements should meet the
standard sizes described in DESC-X-P-2. Contact the Service Headquarters for
guidance. Replace existing vessels if they cannot be converted to use EI Specification
1581 (Edition 5) elements or if the vessel with EI Specification 1581 (Edition 5)
elements fails to meet quality standards. Issue filter/separators should be given priority
for upgrade on a stand-alone project. Upgrade of all filter/separators is mandatory on
any major rehabilitation project.
AN
12-5.3
Fuel Quality Monitors
Existing fuel quality monitors will be removed. Fuel quality monitor elements degrade
when they come in contact with fuel additives (FSII) in aviation turbine fuel causing fuel
quality issues.
C
12-5.4
Control Systems
Pump houses and hydrant systems typical of the Panero (circa 1952) and Pritchard
(circa 1958) designs utilize hard-wired, high-voltage mechanical relays. Control
systems installed from the pump house to the lateral control pits, emergency stops, and
pit activation switches are typically high voltage. Age, elements, and exposure to fuels
may deteriorate control system wiring and render it no longer reliable or safe to operate.
Consider control system replacement whenever a significant portion of the pump house
is repaired or when fire, safety, or electrical codes indicate a hazard exists. Generally,
hard-wired relay logic systems are expensive to build and maintain and do not offer the
flexibility of PLC based systems. Control systems should be of low voltage design
incorporating industry standard PLCs. If control facilities are isolated from the pump
house (not subject to atomized fuel) and the facility has positive ventilation, then nonexplosion-proof fixtures may be incorporated into the design. Existing control wiring has
probably deteriorated and numerous conduits are no longer intrinsically safe. Replace
195
UFC 3-460-01
16 August 2010
control wiring and wherever possible run control wiring in overhead conduit. If
necessary, replace kill switch and emergency stop circuits as part of the pump house
rehabilitation. Cable wiring systems are easier to install and troubleshoot and should be
considered whenever the wiring to hydrant system is replaced.
ED
12-5.5
Electrical Systems
Replace secondary electrical systems, including lighting and motor conductors and
motor control centers, as part of pump house repairs. Ensure circuits within the pump
house, exposed to the possibility of atomized fuel, comply with the provisions of NFPA
30 and are classified Class I, Division 1. If the motor control center is isolated from the
pump house (not subject to atomized fuel) and the facility has positive ventilation, then
the area may be derated and non-explosion-proof lighting fixtures may be incorporated
into the design. Existing secondary wiring has probably deteriorated and numerous
conduits are no longer intrinsically safe. Replace motor wiring and wherever possible
run control wiring in overhead conduit.
EL
L
12-5.6
Lateral Control Pits
Lateral control pits are typically concrete structures with heavy metal-hinged lids
containing valves, pumps, filters, and piping associated with the supply of fuel from a
pump house to a hydrant outlet. Repair or replace pits to prevent the accidental release
of aviation turbine fuel to the environment and water infiltration. Slope pit floors to a
sump and provide manually operated sump pumps to aid in water removal. Use either
rolling or light-weight hinged aluminum pit lids with a water-tight design. Comply with
DoD Standard Design AW 78-24-28.
AN
C
12-5.7
Distribution Piping
Minimize the use of unlined carbon steel pipe, especially with jet aircraft. A number of
alternatives exist which reduce the exposure of aviation turbine fuel to unlined carbon
steel pipe. One option is to internally coat existing systems without pipe removal. Insitu coatings can prevent fuel degradation; however, final filtration must still be provided
at the aircraft by either a mobile or fixed filter/separator. Another option is to sleeve the
piping with a non-ferrous material (stainless steel). Consider this option if reduced flow
rates are acceptable.
C
12-5.8
Diaphragm Control Valves
Consider reusing existing diaphragm control valves wherever possible. Diaphragm
control valves can typically be refurbished by either the original manufacturer or by a
factory authorized repair facility for less than the replacement cost. Ensure refurbishers
modify or replace pilot assemblies, tubing, and solenoids to meet specifications as
outlined in DoD Standard Design AW 78-24-28. As a minimum, replace non-ferrous
pilot tube assemblies with a stainless steel unit. Provide stainless steel control tubing
and replace all internal valve components. If the valve body is carbon steel, request
Service Headquarters to determine if the valve body should be sand-blasted and
cleaned or replaced. Coat or plate carbon steel bodies to meet DoD Standard Design
AW 78-24-28.
196
UFC 3-460-01
16 August 2010
12-5.9
Hydrant Outlets
Remove and replace existing hydrant outlets and connections (e.g., Buckeye) with API
adapters. Conversion to API adapters ensures compatibility with all refueling
equipment. If adequate pressure control (regulating and surge) in accordance with DoD
Standard Design AW 78-24-28 does not exist at the hydrant pit or at the lateral control
pit, then install a control valve at either location.
ED
12-6
DIKES, LINERS, AND BASINS
If dikes, liners, and basins do not comply with the requirements of this UFC, 40 CFR
Part 112, state, or local spill containment regulations and the potential for accidental fuel
discharges exists, repair or replace the existing structures. The provisions of Chapter 8
of this UFC are applicable. In general, if the dike does not retain rainwater,
improvements are necessary.
EL
L
12-7
LEAK DETECTION
When rehabilitating fuel facilities, install leak detection, if necessary, as detailed in
Chapter 2 of this UFC.
C
12-8
CATHODIC PROTECTION
When rehabilitating any fuel facility, install or upgrade cathodic protection. Ensure
cathodic protection systems are designed by a NACE certified Corrosion Specialist or
Cathodic Protection Specialist or a registered professional Corrosion Engineer. Install
cathodic protection on all steel structures including, but not limited to, aboveground
storage tanks, underground storage tanks, and underground piping systems. The
provisions of Chapters 2 and 8 of this UFC are applicable.
C
AN
12-9
ISOLATION VALVES
Provide valves in product piping systems to control flow and to permit isolation of
equipment for maintenance or repair. Provide additional valves at required locations
necessary to conduct a valid hydrostatic test. Provide manually operated valves, except
where motor operators are specifically authorized by applicable standard drawings or
technical specifications. Use double block and bleed type isolation valves for
separation of product services, on tank shell connections (ASTs over 12,000 gallons
only), when piping goes above or below ground, between pier and tank storage, and
other locations critical to periodic pressure-testing of piping. Quick opening/frequent
opening type isolation valves may be used for less critical applications where double
block and bleed shutoff is not required. Before adding isolation valves, evaluate piping
system and make modifications to prevent pressure buildup caused by thermal
expansion. Review paragraph on relief valves in Chapter 9 of this UFC. Except for
those serving tactical refueler fillstands, this paragraph does not apply to systems
covered by Chapter 7 of this UFC unless otherwise directed by Service Headquarters.
12-10
SOIL AND GROUNDWATER REMEDIATION
Monitor, store, and dispose of petroleum-contaminated soil disturbed during
rehabilitation in accordance with state and local environmental regulations. Collect, test
(if appropriate), and treat petroleum-contaminated groundwater removed during
dewatering by one of the following methods:
197
UFC 3-460-01
16 August 2010
a) Off-site disposal at an industrial waste facility.
b) On-site treatment with a portable groundwater treatment system.
c) Treatment through an oil/water separator.
d) Treatment through the sanitary sewer.
ED
Prior to selecting a treatment method, review state and local environmental regulations
and consult the facility for acceptable alternatives and permits required for on-site
treatment and disposal.
12-11
LIQUEFIED PETROLEUM GAS (LPG) FACILITIES
When rehabilitating an LPG facility, back weld (seal weld) all existing threaded piping.
12-12
PIPELINE INSPECTION
EL
L
12-12.1
Inspection
Conduct pipeline inspections in accordance with API 570 and NACE SP0169.
12-12.2
Smart Pigging
To determine if or how a pipeline requires rehabilitation, information on the pipeline’s
structural integrity is essential. One method to survey the condition of the pipeline is to
use smart pigs.
AN
C
12-12.2.1
General
A “smart” or “intelligent” pig is one of a variety of instrumented tools using one or more
physical or electro-mechanical principles for recording and measuring information for
positioning and relative severity of anomalies in a pipeline. Smart pigs can detect
cracks, metal loss, and curvature/bends. Other types available can map and profile
pipe, detect leaks, perform photographic inspection, and sample product. Use of smart
pigs may require modifying the pipeline to increase the radius of sharp elbows and
eliminate obstructions caused by valves that are not full port type.
C
12-12.2.2
Types
The three basic types of smart pigs are ultrasonic, magnetic flux leakage (MFL), and
eddy current. Ultrasonic, MFL, and eddy current pigs can be used in liquid pipelines.
An alternative form of ultrasonic inspection is an electromagnetic acoustic transducer
(EMAT). An EMAT can be used in either a liquid or gas pipeline. MFL can also be
used in gas pipelines. Prior to choosing a smart pig, consider expected results, cost of
various options, and expected pipeline condition.
12-13
CHECKLIST
The following is a checklist of items to be considered in a major rehabilitation.
a) Aboveground storage tank rehabilitation
(1)
API Std 653 inspection.
198
UFC 3-460-01
16 August 2010
36 inch (900 mm) diameter manholes for maintenance.
(3)
Add double bottom.
(4)
Repair and slope tank floor.
(5)
Repair or replace floating roof.
(6)
Product recovery system.
(7)
Internal and external coating systems.
(8)
Tank isolation valves.
(9)
Fill and overfill protection.
ED
(2)
(10) Corrosion protection to tank bottom.
EL
L
(11) Leak detection.
(12) Automatic tank gauging system.
(13) Thermal expansion relief.
b) Underground storage tank rehabilitation
36 inch (900 mm) diameter manhole(s).
(3)
C
(1)
(4)
Overfill protection.
(5)
Interior coating.
Leak detection.
Corrosion protection.
AN
(2)
C
c) Aviation/Hydrant system rehabilitation
(1)
Repair or replace pumps to API Std 610.
(2)
Upgrade filter/separators to comply with EI Specification 1581
(Edition 5).
(3)
Remove automatic water drains from filter separators.
(4)
Repair or replace control systems.
(5)
Repair or replace electrical systems.
199
UFC 3-460-01
16 August 2010
(6)
Repair or replace lateral control valve pits and lids, including an
impervious liner.
(7)
Internal coating to carbon steel distribution pipe.
(8)
Refurbish diaphragm control valves.
(9)
Hydrant outlets to API adapters.
(10) Replace lubricated valves and swivels with non-lubricated.
ED
d) Truck fill/off-load stands
Grounding, deadman, and high level shut-off systems.
(2)
Pantographs - convert from 3-inch to 4-inch (75 mm to 100 mm).
(3)
Low profile filters.
(4)
Fusible link butterfly valves (These valves are not required nor
permitted on Air Force projects).
(5)
Piping of pressure reliefs to contained tank.
(6)
Updated meters and meter diaphragm control valves.
(7)
Adequacy of piping and system grounding.
Adequacy of spill collection and containment.
Upgrade military specification filter separators to comply with EI
Specification 1581 (Edition 5). (Issue filters have priority over
receipt filters.)
AN
(9)
C
(8)
EL
L
(1)
(10) Remove automatic water drains on filter/separators and ensure
that any liquid drained from separators is properly handled.
C
e) Add isolation valves and blind flanges throughout system.
f) Use smart pigging to determine the condition of the distribution piping.
g) Monitor, remove, and dispose of petroleum-contaminated soil and
groundwater.
h) Spill Containment and collection.
(1)
Concrete containment areas for dikes, equipment pads,
fillstands, etc.
200
UFC 3-460-01
16 August 2010
Impervious lining system for dikes, containment areas, and catch
basins.
(3)
When required to meet federal, state, and local regulations, refer
to Chapter 2 of this UFC for information on design and sizing of
oil/water separators for treatment of stormwater discharges from
containment areas (e.g., dike areas, fillstands, equipment pads,
etc.).
C
AN
C
EL
L
ED
(2)
201
UFC 3-460-01
16 August 2010
CHAPTER 13 - FUELING FACILITY TEMPORARY DEACTIVATION
ED
13-1
INTRODUCTION
Follow the more stringent of local, state, or applicable guidelines of this chapter during
the initial deactivation of a fueling facility. Follow the applicable subsection when
temporarily deactivating a fueling facility for three months or more. For continuing
maintenance issues and reactivation of a deactivated facility, refer to inactive document
UFC 4-911-01N, which is required for these circumstances. Additional guidelines for
the deactivation of storage tanks and pipes are provided in API Std 2610 and NFPA 30,
Appendix C. Federal regulations addressing out-of-service underground storage tank
systems are in 40 CFR Part 280.
13-3
EL
L
13-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not begin the design of any deactivation plan without first becoming
completely familiar with Chapter 2 of this UFC.
FUEL STORAGE AND DISTRIBUTION FACILITIES
13-3.1
Tanks
The following items apply to deactivation of all tanks in general.
a) Empty and clean tanks in accordance with API Std 2015 and UFGS 33
65 00, Cleaning Petroleum Storage Tanks.
AN
C
b) Provide water ballast with a copper sulphite solution (1 part copper
sulphite to 3 million parts water) to discourage organic growth. Verify
compatibility with environmental regulations prior to employing this
solution.
c) Follow the procedures of MO-230 and 29 CFR Part 1910 when
entering tanks or performing maintenance on tanks.
C
d) For tanks equipped with cathodic protection systems, inspect for
proper operation and repair if necessary. For tanks not equipped with
cathodic protection systems, investigate the economic trade-offs of
installing those systems at deactivation versus the associated
caretaker maintenance costs and various environmental protection
concerns.
e) Mark each tank clearly with its status. Place a warning sign on the
tank to indicate its current and former contents.
f) If required by state or local regulatory agencies, submit required
documentation for “out-of-service” storage tanks.
202
UFC 3-460-01
16 August 2010
13-3.1.1
Aboveground Tanks
a) Empty and evaluate for hazardous atmosphere as defined by 29 CFR
Part 1910.146.
b) Wash and dry tank interior until visibly clean in accordance with API
Std 2015.
c) Physically disconnect all fuel connections.
ED
d) Treat the interiors of tanks that have been used to store fuel oil with a
corrosion-preventive compound. For all other steel tanks, coat the
unpainted interior surfaces with a preservative lubricating oil.
e) Close vents on lubricating oil tanks. Vents on other tanks should
remain open.
EL
L
f) Partially fill tanks subjected to high winds to prevent overturning. Use
water except where there is the possibility of it freezing and rupturing
the tanks. In those environments, use kerosene. Add caustic soda to
the water to obtain a pH of 10 or a corrosion inhibitor. Determine the
amount of liquid ballast required based on the expected winds, size of
the tank, and specific gravity of the liquid used.
g) Comply with API Std 2015.
Underground Tanks
AN
13-3.1.2
C
h) Comply with state and local environmental requirements.
a) Empty, evaluate for hazardous atmosphere as defined by 29 CFR Part
1910.146, and clean underground metal and concrete tanks.
C
b) Partially fill tanks insufficiently anchored against flotation with water to
prevent buoyancy. Provide adequate safeguards where there is
danger of the water freezing.
c) Provide a minimum of 12 inches (300 mm) of water in rubber-lined
concrete tanks.
d) Leave vent lines on underground tanks open and make sure the vents
are adequately screened.
e) Tightly cap or plug all other tank openings after removal of equipment.
f) Provide release detection where fuel is left in the tank.
g) Comply with 40 CFR Part 280 and any applicable state and local
environmental regulations.
203
UFC 3-460-01
16 August 2010
13-3.1.3
Tank Level Controls
a) Remove controls such as float control valves, float-operated gauges,
low level cutoffs, water detector locks, and probes from tanks.
b) Clean, treat with corrosion-preventive compound, and store controls in
a dry place.
13-3.2
Pipelines
ED
a) Drain and vacuum extract all fuel from the pipeline.
b) If possible, pig the pipeline to remove any residual fuels.
c) Blind all flange connections and vents.
EL
L
d) Charge the line with nitrogen gas.
e) Continue to provide cathodic protection and maintain the nitrogen
charge.
f) Externally coat unpainted and unwrapped lines exposed to the weather
with a corrosion-preventive compound.
13-3.2.1
Pipeline Equipment
C
a) Remove, clean, coat inside and outside with a light oil, and reinstall
strainers.
AN
b) Remove, clean, treat with corrosion-preventive compound, and store
meters in a dry place.
c) Keep gaskets tight to prevent dirt and water from entering.
C
d) Remove, clean, grease, and store hydraulically operated diaphragm
control valves in a dry place.
e) Paint exterior or treat with a corrosion-preventive compound and leave
all other valves, such as plug valves and check valves in place.
f) Lubricate plug valves and leave in an open position.
g) Remove, tag, date, and store hoses in dry storage.
13-3.2.2
Fueling Pits
a) Inspect, tag, and secure fueling pits.
b) Make provisions for pumping pits dry.
204
UFC 3-460-01
16 August 2010
13-4
FACILITIES
13-4.1
General Considerations
a) Make arrangements to retain the minimum amount of maintenance
equipment.
b) Check and label all keys to all doors, gates, hatches, and other moving
items.
13-4.2
Clean and repair as necessary all storm sewers, drainage ditches, and
other drainage structures to prevent flooding and storm damage to
roads, runways, tracks, and structures.
ED
c)
Fencing
EL
L
a) Tighten connections at gates, posts, braces, guys, and anchorages to
ensure stability and correct alignment.
b) Clean and lubricate all hinges, latches, locking devices, and all other
alignment hardware.
c) Confine painting to those parts of fences and gates that show signs of
corrosion.
Paved Surfaces
C
13-4.3
a) Unpaved shoulders
Provide unpaved shoulders with only the repairs necessary to
ensure positive drainage of surface water from the adjoining
pavement.
AN
(1)
Fill holes and ruts and blade ridges to eliminate standing water.
(3)
Backfill depressions when the undermining of pavement is
threatened.
C
(2)
(4)
When possible, retain existing ground cover.
b) Concrete pavements
(1)
Repair concrete pavements only as required to perform service
activities and to prevent severe disintegration.
(2)
Patch bituminous surfaces of depressed or broken slabs to
prevent ponding of water and the resultant saturation of the
subgrade.
205
UFC 3-460-01
16 August 2010
(3)
Seal joints and cracks in concrete pavement with bituminous
material.
c) Bituminous pavements
Limit surface repairs of bituminous pavements to the repair of
holes, raveled areas, edge failures, and open cracks.
(2)
Repair unused surfaces only as necessary to maintain drainage
and to prevent the ponding of surface water.
C
AN
C
EL
L
ED
(1)
206
UFC 3-460-01
16 August 2010
CHAPTER 14 - FUELING FACILITY CLOSURE
14-1
CLOSURE REQUIREMENTS
Follow the more stringent of local, state, or applicable guidelines in this chapter when
permanently closing a fuel facility or a portion of a fuel facility. Additional guidance on
closure and disposal of storage tanks is available in Appendix C of NFPA 30 and API
Std 2610.
14-1.1
Aboveground Tanks
ED
a) Physically disconnect all fuel connections.
b) Remove fuel.
c) Clean tank in accordance with API Std 2015.
EL
L
d) Dismantle the tank and dispose of as scrap steel.
e) Comply with API Publ 2202.
f) Comply with state and local environmental requirements.
14-1.2
Underground Tanks
C
a) Perform a soil and groundwater analysis to determine if a fuel release
occurred.
AN
b) Review and comply with 40 CFR Part 280 and any applicable state
and local environmental regulations.
c)
If allowed by federal, state and local regulations, perform closure in
place, as outlined in API RP 1604. However, this alternative may be
more expensive than removal for small volume tanks. Abandoning in
place also impedes soil clean-up and future land use.
C
d) If removal is required, excavate and dispose of the tank in accordance
with API RP 1604.
e) Comply with applicable guide specifications and EM 1110-1-4006.
14-1.3
Pipelines
a) Physically disconnect the pipeline from any active fuel systems.
b) Remove all fuel and pig to remove any residual fuel.
207
UFC 3-460-01
16 August 2010
c) Purge the pipeline to remove all vapors. Do not use water as flushing
media because it will typically generate large quantities of hazardous
waste with high disposal costs.
d) Excavate the line only if required by federal, state, or local regulations
or if deemed necessary by Service Headquarters for land reuse.
e) Report any contaminated soil or groundwater discovered during
excavation to the appropriate state and local environmental authorities.
ED
f) If excavation is not performed, fill the pipeline with cellular concrete or
other acceptable inert solid material allowed by regulations requiring
the filling. Consider the lowest cost from the acceptable materials list.
As an option, the pipeline can be capped, where it meets
environmental regulations and with approval from Service
Headquarters.
EL
L
14-2
GENERAL REQUIREMENTS
Chapter 2, General Design Information, contains important information on fueling
facilities. Do not begin the design or modification of any closure plan without first
becoming completely familiar with Chapter 2 of this UFC.
C
AN
C
14-3
INVENTORY
Prepare an inventory of valuable fueling hardware which could be easily salvaged and
reused at another base. Equipment such as pantographs, control valves, pumps, and
filtration equipment are always in demand. Submit list to your command fuels engineer.
208
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 001 – UFC Chapter Identification Plan
209
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 002 – Tank Truck and Tank Car Receiving and Dispensing Facilities
210
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 003 – Tank Truck and Tank Car Off-Loading Drop Tank System
211
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 004 – Tank Truck and Tank Car Packaged Off-Loading System
212
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 005 – Tank Truck and Tank Car Loading System and Direct Off-Loading System
213
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 006 – Refueler Truck Facilities Layout Plan
214
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 007 – Refueler Truck Loading Systems
215
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 008 – Aircraft Direct Fueling Systems Large Frame Aircraft On-Apron Fueling
Positions
216
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 009 – Aircraft Direct Fueling Systems Small Frame Aircraft Fueling Lane and
Apron Edge
217
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 010 – Aircraft Direct Fueling Systems Small Frame Aircraft In-Shelter Fueling
Positions
218
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 011 – GOV Vehicle Motive Fuel Filling Station Plan
219
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 012 – Tactical Refueler Ground Product Truck Loading Facility Plan
220
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 013 – Tactical Refueler Ground Product Truck Loading Systems
221
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 014 – Level Alarm Setpoints Vertical Aboveground Tank with Floating Pan
222
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 015 – Level Alarm Setpoints Vertical Aboveground Tank without Floating Pan
223
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 016 – Aboveground Vertical Storage Tanks Inlet Fill Connection
224
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 017 – Horizontal Underground Storage Tanks Inlet Fill Connection
225
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 018 – Horizontal Aboveground Storage Tanks Inlet Fill Connection
226
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 019 – Earthen Dikes
227
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 020 – Piping Systems Sliding Pipe Support
228
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 021 – Piping Systems Anchor Pipe Support
229
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 022 – Aviation System Piping Materials System Standards
230
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 023 – Thermal Relief Piping Systems Integral Valve and Conventional
231
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 024 – Thermal Relief Piping Systems Equipment Pump House or Pads
232
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 025 – Thermal Relief Piping Systems Tank Truck and Refueler Racks
233
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 026 – Thermal Relief Piping Systems Storage Tanks
234
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 027 – Liquefied Petroleum Gas Facilities Small Volume Facility for Trucks and
Cylinders
235
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 028 – Liquefied Petroleum Gas Facilities Large Volume Facility for Tank Cars
and Water Vessels
236
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 029 – Liquefied Petroleum Gas Facilities Tank Spacing Requirements
237
C
AN
C
EL
L
ED
UFC 3-460-01
16 August 2010
Plate 030 – Liquefied Petroleum Gas FacilitiesTank Spacing Requirements
238
UFC 3-460-01
16 August 2010
GLOSSARY
ABBREVIATIONS AND ACRONYMS
ACGIH. American Conference of Governmental Industrial Hygienists.
AEI. Architectural and Engineering Instruction.
AFFF. Aqueous film-forming foam.
AFSS. Automated fuel service station.
AIS. Automated Information System.
ANSI. American National Standards Institute.
EL
L
APC. Army Petroleum Center.
ED
AFPET. Air Force Petroleum Office.
API. American Petroleum Institute.
ASCII. American Standard Code for Information Interchange.
ASME. American Society of Mechanical Engineers.
C
AST. Aboveground Storage Tank.
AN
ASTM. American Society for Testing and Materials.
ATG. Automatic tank gauging.
BOCA. Building Officials and Code Administrators International, Inc.
BSM-E. Business System Modernization – Energy.
C
BS&W. Common abbreviation for bottom sediment and water as found in the bottom of
fuel tanks, also; a type of sampling procedure.
Btu. British thermal unit.
CFR. Code of Federal Regulations.
CI. Corrosion inhibitor.
CNG. Compressed Natural Gas.
C02. Chemical notation for carbon dioxide; fire extinguishing agent.
239
UFC 3-460-01
16 August 2010
CONUS. Continental United States.
COTS. Commercial-off-the-shelf.
DBB. Double block and bleed.
DESC. Defense Energy Support Center.
DIEGME. Diethylene glycol monomethyl ether.
DLA. Defense Logistics Agency.
DoD. Department of Defense.
EL
L
DOT. Department of Transportation.
ED
DFM. Diesel fuel marine.
EFSO. Emergency fuel shut-off.
EMAT. Electromagnetic acoustic transducer.
EPDM. Ethylene-propylene terpolymer.
C
EPU. Emergency power unit.
AN
F-A. Fire Resistent Aboveground Storage Tank.
FDV. Fuel Delivery Vehicle.
FRP. Fiberglass reinforced plastic.
FSII. Fuel system icing inhibitor.
C
H-A. Horizontal Aboveground Storage Tank.
HDPE. High-density polyethylene.
HTH. Calcium hypochlorite.
H-U. Horizontal Underground Storage Tank.
ICBO. International Conference of Building Officials.
ICC. International Code Council.
240
UFC 3-460-01
16 August 2010
JPTS. Jet Propellant Thermally Stable.
LPG. Abbreviation for liquefied petroleum gas; propane, butane.
MAJCOM. Major Command. A major subdivision of the Air Force, directly subordinate
to Headquarters US Air Force.
MFL. Magnetic flux leakage.
ED
MIL. A unit of length equal to one thousandth of an inch, especially used to measure
the thickness of paints and coatings.
Mogas. Common contraction of motor gasoline, referring to fuel for land vehicles.
NACE. National Association of Corrosion Engineers.
EL
L
NATO. North Atlantic Treaty Organization.
NAVAIR. Naval Air Systems Command.
NBBI. National Board of Boiler and Pressure Vessel Inspectors.
NBIC. National Board Inspection Code.
C
NFESC-OCD. Naval Facilities Engineering Service Center, Ocean Construction
Division.
AN
NFPA. Abbreviation for the National Fire Protection Association.
NOLSC-P. Naval Operational Logistics Support Center Petroleum.
NPDES. National Pollutant Discharge Elimination System.
OCONUS. Outside of the Continental United States.
C
OMSI. Operation and maintenance support information.
OSHA. Occupational Safety and Health Act of 1970.
P-A. Protected Aboveground Storage Tank.
PACAF. Pacific Air Force.
PDP. Pressure dew point.
pH. A number assigned to indicate whether a substance is acidic or alkaline (pH 7 is
considered neutral, less than 7 is acidic and more than 7 is alkaline).
241
UFC 3-460-01
16 August 2010
PLC. Programmable logic controller.
POL. A commonly used abbreviation which broadly refers to all petroleum, oils, and
lubricants.
PSI or PSIG. Abbreviation for pounds per square inch, the unit of pressure
measurement; gage pressure above atmospheric.
ED
PSIA. Pounds per square inch absolute; pressure above an absolute vacuum.
PVC. Polyvinyl chloride.
RDBMS. Relational Database Management System.
EL
L
SAE. Abbreviation for Society of Automotive Engineers, used in conjunction with
specification for viscosity of lubricating oils.
SPCC. Spill prevention control and countermeasure.
SPR. Single Point Receptacle.
SSPC. Steel Structures Painting Council.
C
STANAG. Standardization Agreement (NATO term)
TAU. Twin agent unit.
AN
TYCOM. Type Command (Navy/Marine Corps equivalent of MAJCOM).
UFGS. Unified Facilities Guide Specifications.
ULSD. Ultra Low Sulfur Diesel.
C
UPV. Unfired pressure vessel.
UST. Underground Storage Tank.
USAFE. United States Air Forces in Europe.
V-A. Vertical Aboveground Storage Tank.
VOC. Volatile organic compound.
V-U. Vertical Underground Storage Tank.
242
UFC 3-460-01
16 August 2010
TERMS
Additive. Chemical added in minor proportions to fuels or lubricants to create, enhance
or inhibit selected properties; example, fuel system icing inhibitor (FSII).
Aircraft Direct Fueling System. Method used to refuel aircraft by issuing fuel directly to
the aircraft from the tank farm without first transferring the fuel to a refueler truck. Also
known as a hydrant system.
ED
Aircraft Refueling Adapter. A device, mounted on an aircraft, that combines with a
pressure refueling nozzle mounted on a refueling vehicle or station to form a quick
disconnect connection for the purpose of refueling or defueling aircraft. It can also be
used for refueling and defueling refuelers.
Ambient. Encompassing on all sides, as temperature.
EL
L
Anode. The positively charged electrode of an electrolytic cell.
API Gravity. Petroleum industry scale for measuring the density of oils.
Aromatic Hydrocarbons. Characterized by the presence of the hexagonal benzene ring;
also having an aroma.
C
Atmospheric Pressure. The pressure exerted by the earth's atmosphere, when
measured at sea level under standard conditions is equal to 14.7 pounds per square
inch (101 kPa).
AN
Atmospheric Tank. Storage tank which operates at or near atmospheric pressure (14.7
psi (101 kPa) at sea level).
Auto-ignition Temperature. The temperature at which a substance will ignite without the
further addition of energy from an outside source.
C
Ballast Water. Water carried in ship's fuel tanks or cargo tanks to improve the vessel's
stability when empty of petroleum.
Barrel. Measure of volume as used in the petroleum industry, equivalent of 42 U.S.
gallons (0.16 m3).
Blind Flange. Piping flange with no passage through the center.
Boiler Fuel Oil. Fuel oil that is burned in furnaces to create steam or hot water, also
called fuel oil.
Boiling Point. The temperature at which the vapor pressure of a liquid is equal to the
pressure of the vapor above the liquid, usually atmospheric pressure. The temperature
243
UFC 3-460-01
16 August 2010
increases as the atmospheric pressure increases.
Bollard. A heavy solid post used to protect equipment from an impact. Also used on
docks and ships for mooring.
Bond. Electrical connection between two objects which equalizes their potential.
Boom. Flexible floating barrier consisting of linked segments designed to contain free
oil on the surface of a body of water.
ED
Booster Pump. Pump installed along the run of a long pipeline for the purpose of
increasing pressure.
Bottom Loading. Method of filling tank trucks or tank cars through a tight connection at
the bottom.
EL
L
Breakaway Coupling. Coupling designed to part easily with a moderate pull with a drybreak from both directions.
Breathing. The movement of vapors into or out of a container because of natural
cyclical heating and cooling.
C
Bulk Storage Tank. Storage tank for fuel normally received by pipeline, tank truck, or
tank car. For aviation turbine fuel, configure tank to supply fuel to operating storage
tanks, either directly tank-to-tank, or indirectly by issuing fuel to tank trucks, tank cars,
barges, ships, or pipelines.
AN
Bunkers. Common expression referring to heavy residual boiler fuel.
Calibration. Adjustment of the scale of a graduated device to meet an established
standard, especially applicable to the adjustment of meter registers to indicate true
volume as determined by a standard measure.
C
Catalyst. A substance that provokes or accelerates chemical reactions without itself
being altered.
Cathodic Protection. A method for preventing the corrosion of metals by electrolysis.
Centistokes. A centistoke (cSt) is equal to 1 millimeter squared per second.
Centrifugal Pump. A rotating device which moves liquids and develops liquid pressure
by imparting centrifugal force.
Centrifugal Separator. A rotating device which separates liquids of different density by
centrifugal force, a form of centrifuge.
Clarifier. Commonly used name for a micronic filter.
244
UFC 3-460-01
16 August 2010
Clean Product. Refined light petroleum products such as gasoline or distillates, as
differentiated from residuals or black oils.
Clear and Bright. Description of uncontaminated fuel indicating a complete absence of
haze, free water or particulate matter.
ED
Cloud Point. The temperature at which a fuel develops a cloudy or hazy appearance
due to the precipitation of or moisture. The condition developed is called temperature
haze.
Coalescer. A porous substance through which a liquid is passed to remove unwanted
water from fuel by causing very small drops of water to form larger drops (coalesce)
which will separate from fuel by gravity.
EL
L
Coalescer Vessel. A pre-filtration vessel designed to remove gross amounts of water
and, to a lesser degree, particulate water. Types include haypack coalescers.
Combustible Liquid. Any liquid having a flash point at or above 100 °F (38 °C).
Combustible Vapor Indicator. Device which measures the quantity of combustible vapor
in the atmosphere; explosion meter.
C
Contaminated Fuel. Petroleum fuel containing suspended or emulsified water, cleaning
chemicals; or other foreign matter such as iron scale, dust, or other solid particles; or
containing an unacceptable percentage of noncompatible fuel or other liquids; or
containing more than one, or all of these classes of contaminants.
AN
Contamination. The accidental addition to a petroleum fuel of some foreign material
(contaminant) such as dirt, rust, water, or accidental mixing with another grade of
petroleum.
Copper-copper Sulphate Electrode. Reference electrode used to measure structure-tosoil potentials for corrosion control; a half cell.
C
Corrosion. The process of dissolving, especially of metals due to exposure to
electrolytes.
Crude Oil. Petroleum in its natural state prior to refining.
Cut and Cover. Refers to underground vertical storage tanks.
Cyclonic Filter. A filter used to remove gross amount of particulate matter using the
principle of centrifugal force to separate solid particles from a liquid.
Deadman Control. A control device, such as a switch or valve, designed to interrupt
flow if the operator leaves his station.
245
UFC 3-460-01
16 August 2010
Defueler. Tank vehicle used to remove fuel from aircraft.
Density. The mass per unit volume of a substance.
Dike. An embankment or wall, usually of earth or concrete, surrounding a storage tank
to impound the contents in case of a spill.
Dissolved Water. Water which is in solution with fuel as opposed to in suspension.
ED
Distillate. Common term for any of a number of fuels obtained directly from distillation
of crude petroleum, usually includes kerosene, JP-5, light diesel, and light burner fuels.
Double Block and Bleed Valve. A valve with two seats with a cavity in between them
which can be drained while the valve is closed to prove the valve is not leaking.
EL
L
Downgrade. To use a fuel for a lesser purpose than originally specified, often because
of contamination.
Effluent. Stream flowing; discharge.
Electrode. Electrical conductor through which an electric current enters or leaves an
electrolyte.
C
Electrolysis. Chemical change, especially decomposition, produced in an electrolyte by
an electric current.
AN
Electrolyte. A substance capable of forming solutions with other substances which
produce ions and thereby permit the flow of electric currents.
Electrical Conductor. A substance which permits the flow of electric currents without
permanent physical or chemical change; copper, aluminum.
C
Element. Term used to describe the ‘disposable’ part of a filter vessel such as a
filter/separator, micronic filter, or haypack coalescer. Also referred to as a cartridge.
Emulsion. A suspension of small globules of one liquid in a second liquid with which the
first will not mix.
Epoxy Coating. A coating of thermosetting resins having strong adhesion to the parent
structure, toughness, and high corrosion and chemical resistance, also used as an
adhesive.
Explosive Limits - (Upper and Lower). Limits of percentage composition of mixtures of
combustible vapors and air which are capable of producing an explosion or combustion
when ignited; also flammable limit.
246
UFC 3-460-01
16 August 2010
Explosion-proof. Classification of electrical enclosures for use in hazardous areas
designed to prevent the passage of internal arcs, sparks or flames.
Fender. Part of a pier structure designed to absorb the impact of a moving vessel.
Fiberglass. Composite material consisting of glass fibers in a matrix of resin such as
epoxy.
Filling Station. A facility designed to fill vehicles with gasoline or diesel as motive fuel.
ED
Filter. A porous substance through which a liquid is passed to remove unwanted
particles of solid matter. Types include cyclonic filters and micronic filters.
Filter/Coalescer Elements. A type of coalescer that removes water and particulate
matter from fuel. Used as the first element in filter/separators. Also referred to as
coalescer elements or coalescers.
EL
L
Filter/separator. A filtration vessel consisting of two separate element types (also called
stages). The first stage consists of filter/coalescer elements to remove fine particulate
matter and to remove entrained water by coalescing it; the second stage consists of
separator elements to prevent fine droplets of water (caused by the coalescing process)
from reaching the vessel outlet. It removes dirt and free water down to the very low
levels required for aircraft operations. Filter/separators are the only approved vessels
for use in fine filtration; they are occasionally used for pre-filtration as well.
C
Fine Filtration. A term used to refer to filtration vessels used to remove dirt and free
water down to the very low levels required for aircraft operations. Fine filtration vessels
are always filter/separators.
AN
Fire Resistant Tank. Aboveground storage tank that is listed in accordance with UL
2080, that consists of a primary tank that is protected or insulated from a 2-hour fire
exposure.
C
Flammable Liquid. Any liquid having a flash point below 100 degrees F (38 degrees C)
and a vapor pressure not exceeding 40 psia (275 kPa) at 100 degrees F (38 degrees
C).
Flash Point. The lowest temperature at which a combustible or flammable liquid
produces enough vapor to support combustion.
Floating Roof Tank. Petroleum storage tank with a roof that floats on the liquid surface
and rises and falls with the liquid level.
Flocculation. A treatment process in which waste waters are clarified by the addition of
chemical coagulants to produce finely divided precipitates which will agglomerate into
larger particles.
247
UFC 3-460-01
16 August 2010
Free Water. Undissolved water content in fuel.
Freeze Point. The temperature at which wax crystals form in distillate fuels and aviation
turbine fuels.
Fuel Oil. See Boiler Fuel Oil.
Fuel Quality Monitor. A special type of filter designed to interrupt the flow of fuel when
dirt or water content becomes too great.
Ground. An electrical connection to earth.
ED
Galvanizing. Rust resistant zinc coating applied to iron and steel.
Haypack Coalescer. A type of coalescer that uses hay, straw, or excelsior as a medium
to remove large slugs of water.
EL
L
Hazardous Area. Electrical classification for areas where flammable or combustible
liquids or vapors may be present.
Hot Refueling. Refueling of aircraft when one or more engines are running.
C
Housekeeping Pad. Concrete pad usually installed on concrete slabs or floors to
elevate and anchor equipment. Housekeeping pads aid in maintenance and keep
equipment clear of debris.
AN
Hydrant System. Distribution and dispensing system for aviation turbine fuels
consisting of a series of fixed flush type outlets or hydrants connected by piping. It
issues fuel directly to the aircraft from the tank farm without first transferring the fuel to a
refueler truck. Also known as an aircraft direct fueling system.
Hydrocarbon. A compound made up exclusively of hydrogen and carbon in various
ratios and molecular arrangements.
C
Hydrostatic Head. Pressure caused by a column of liquid.
Hydrostatic Test. A test for leaks in a piping system using liquid under pressure as the
test medium.
Hydrostatic Test Pressure. The pressure in the system while it is undergoing a
hydrostatic leak test as defined by ANSI/ASME B31.3. For the purpose of this
document, set at 1.5 times the maximum allowable design pressure.
Ignition Temperature. The minimum temperature required to initiate or cause selfsustained combustion independent of any heating or heated element.
Intrastate Interterminal Pipelines. Interterminal pipelines that do not cross state lines.
248
UFC 3-460-01
16 August 2010
Interstate Interterminal Pipelines. Interterminal pipelines that cross state lines.
Impervious. Not easily penetrated. The property of a material that does not allow, or
allows only with great difficulty, the movement or passage of a fluid. Also referred to as
impermeable.
Impressed Current System. A cathodic protection system using an outside source of
electric power.
ED
Inert Material. Any solid, liquid, or gaseous substance not combustible or fire-producing
when exposed to the atmosphere under ordinary climatic conditions; it includes
common metals, packing materials, ceramic materials, construction materials such as
concrete, mineral aggregates, and masonry.
EL
L
Installation Pipelines. Pipelines which connect POL facilities within an installation such
as a barge pier to a bulk facility and a bulk facility to an operating (ready-issue) tank.
These pipelines do not cross property lines and, therefore, do not leave the government
facility and control.
Interterminal Pipelines. Pipelines which connect two government installations such as a
Defense Energy Supply Center depot to a military installation. These pipelines cross
property lines and cross public and/or private properties, streets, highways, railroads,
and utility rights-of-way.
C
JP Fuel. Military designation applied to aviation turbine fuels (e.g., JP-4, JP-5, and JP8).
AN
Kerosene. A general term covering the class of refined petroleum which boils between
370 degrees F and 515 degrees F (188 degrees C and 268 degrees C). Mostly used in
oil lamps and cooking stoves.
C
Kerosene Type Aviation Turbine Fuel. JP fuel derived from kerosene without the
addition of naphtha; characterized by a flash point of 100 degrees F (38 degrees C) or
more.
Kinematic Viscosity. The ratio of viscosity of a liquid to its specific gravity at the
temperature at which the viscosity is measured.
Lead Hazard. Poisonous contamination of the atmosphere, sludge, or other
surroundings, particularly in petroleum storage tanks,-caused by tetraethyl lead or its
residues.
Line Blind. A solid flat plate used to obtain absolute shut-off of flow. Also, referred to as
spectacle plates or flanges, blinding plate, figure eights and paddle blinds.
Liter (L). Equivalent to 0.001 m3.
249
UFC 3-460-01
16 August 2010
Lube Oil. Common contraction for lubrication oil; used to reduce friction and cool
machinery.
Maximum Allowable Design Pressure. The maximum allowable pressure of a fuel
system or component will see. For the purposes of this document, set at the pressure
rating of a flanged joint per ANSI/ASME B16.5.
ED
Maximum Allowable Operating Pressure. The maximum pressure at which a system is
to operate. For the purposes of this document set at 2/3 of the hydrostatic test pressure,
not to exceed the maximum allowable design pressure..
Maximum Allowable Surge Pressure. The maximum pressure allowed during a surge
event. For the purposes of this document, set the pressure at 133% of the qualified
Maximum Allowable Operating Pressure.
EL
L
Micron. A unit of length equal to one millionth of a meter, especially used as a measure
of the size of very fine particles found as contaminants in fuel.
Micronic Filter. A type of pre-filter vessel equipped with paper filter elements, designed
to remove particulate matter from a fuel stream. Will not remove water.
Military Specifications. Guides for determining the quality requirements for materials
and equipment used by the military services (MIL).
C
Motive Fuel. Any fuel that is used to power vehicles, aircraft, or vessels.
AN
Naphthas. Refined petroleum which boils at 800 degrees F (427 degrees C) to 4400
degrees F (2427 degrees C), used as a component of gasoline and solvents.
Nipple. Short length of pipe, usually used to make side branch connections.
C
Nondestructive Testing. A method of inspecting materials without cutting, drilling or
otherwise destroying the material; usually used to examine steel plates, pipes, and
welds.
Nozzle. A spout or connection, usually with a control valve through which fuel is
discharged into a receiving container.
Octane Number. A numerical measure of the antiknock properties of automotive
gasoline as measured against standard reference fuels, under controlled laboratory
conditions. Iso-octane is a reference fuel whose octane number is given a value of 100.
Off-Specification. Usually referring to fuel which is contaminated or otherwise deficient
in quality. Commonly used contraction for off-specification is “off-spec”.
Oil/water Separator. A device used to separate mixtures of oil and water, usually by the
250
UFC 3-460-01
16 August 2010
difference in specific gravity and usually to protect the environment from contamination
by the oil.
Oily-water Mixture. Mixture in which water comprises more than half the total volume.
Most such untreated mixtures contain less than 15 percent oil, some of which may be in
emulsified form.
ED
Operating Storage Tanks. Storage tank for aviation turbine fuel configured to issue fuel
directly to an aircraft, hydrant system, or refueler. A tank configured to issue aviation
turbine fuel to a refueler only in an emergency is considered a bulk storage tank.
Orifice Plate. A plate with a hole in the center held between two flanges in a pipeline,
used to create a drop in pressure which is proportional to flow and can be used to
measure the flow or to modulate control devices.
EL
L
Pantograph. A series of pipes, joined by flexible joints, used to connect fueling
equipment to aircraft.
Parallel Pumps. Two or more pumps having common suction and discharge connections.
Particulate Matter. Solid particles such as dirt, grit, and rust, which contaminate fuel.
C
Pigging. The use of internal pipe tools, called pigs, to clean the inside of the pipe,
determine the geometry of the pipe, and determine the location and magnitude of any
internal or external corrosion occurring on the pipe.
AN
Pig Launcher. An arrangement of valves and closure devices to launch pigs at the
beginning of their run through a pipeline.
Pig Receiver. An arrangement of valves and closure devices to trap pigs at the end of
their run through a pipeline.
C
Pile Cluster. A group of pilings driven close together and usually wrapped with wire
rope to act as fender or mooring for small vessels.
Pour Point. The lowest temperature at which an oil will pour or flow without disturbance.
Pontoon Roof. A type of floating roof for a storage tank having liquid-tight
compartments for positive buoyancy.
Pre-filter. A term used to refer to any filtration vessel used immediately upstream of a
fine filtration filter/separator in a fuel storage/delivery system. They are used to remove
gross amounts of particulates and/or free water from a fuel stream in order to prolong
the life of the elements used in the fine filtration filter/separator. Typically cyclonic or
micronic filters are used as pre-filters although haypack coalescers or even
filter/separators may also be used in this role.
251
UFC 3-460-01
16 August 2010
Pre-Filtration. Pre-filters or coalescers vessels placed ahead of additional, more
sophisticated, fine filtration vessels for the gross removal of solids and/or free water.
Pressure Drop. The loss in pressure of a liquid flowing through a piping system caused
by friction of pipe and fittings, velocity, and change in elevation.
ED
Pressure Refueling Nozzle. A device, mounted on a refueling vehicle or station, that
combines with an aircraft refueling adapter mounted on an aircraft to form a quick
disconnect connection for the purpose of refueling or defueling aircraft. It can also be
used for refueling and defueling refuelers.
Product Recovery Tank. Tank used to collect and store aviation turbine fuel that would
otherwise become waste fuel. It is part of a closed system that, either manually or
automatically, pumps the fuel back into the system through a hard piped connection.
Tanks that do not have this hard piped connection are not product recovery tanks.
EL
L
Protected Tank. Aboveground storage tank that is listed in accordance with UL 2085,
that consists of a primary tank that is protected or insulated from a 2-hour fire exposure
and protected from physical damage.
Radiograph. An image produced on radiosensitive film by invisible radiation such as Xray, specifically the image produced by radiographic inspection of welds and plates.
Ready-Issue Tank. See operating storage tank.
C
Recoverable Fuel. That portion of the fuel which may be separated and collected from
a given lot of contaminated fuel, by proper processing in the treating facility in question.
AN
Recovered Oil. Used to denote untreated petroleum fuel removed from oil-water
separators or picked up after being spilled on land or water. Also used to mean oil
which has been separated from and collected from a given lot of contaminated fuel by
processing in a treating facility.
C
Refueler. Except for tactical refuelers, tank truck vehicles used to resupply aircraft with
fuel. Tactical refuelers may transport ground products (gasoline, diesel) or aviation
turbine fuel.
Reid Vapor Pressure. Vapor pressure measured under controlled conditions with the
liquid temperatures at 100 °F (38 °C).
Residual Fuel Oil. Topped crude petroleum from refinery operations. Commercial
grades of Burner Fuel No. 5, No. 6, and bunker fuels are residual fuel oils.
Relaxation Tank. Small tank in a fuel dispensing piping system downstream of
filter/separators designed to remove static electricity from the liquid stream before
discharge into a receiving tank.
252
UFC 3-460-01
16 August 2010
Rotary Pump. A positive displacement pump which operates in rotary fashion such as a
vane, gear, bucket, lobe, or screw pump; not centrifugal, turbine, or propeller pumps.
Rust. Ferric oxide, a reddish-brown scaly or powdery deposit found on the surface of
steel and iron as a result of oxidation of the iron.
Scraper. A type of cleaning pig used in pipelines.
ED
Safety Relief Valves. Valves that are installed on pressurized vessels to relieve
pressure in access of the maximum allowable working pressure of the vessel. Safety
valves are provided to protect people, equipment, and property.
Secondary Containment-Type Tank. A tank that has an inner and outer wall with an
interstitial space (annulus) between the walls and that has a means for monitoring the
interstitial space for a leak.
EL
L
Service Headquarters. Defined as follows: Army – Headquarters, U.S. Army Corps of
Engineers Technical POC, POL Facility Criteria (CECW-CE); Air Force - The Air Force
Fuels Engineer (HQ AFCESA/CEOA) through the applicable Major Command
(MAJCOM) Fuels Engineer; Navy/Marine Corps: NAVFAC POL Facility Subject Matter
Expert (NFESC-OP232); Defense Energy Support Center (DESC) - DESC Facilities
Engineer. Defense Energy Support Center (DESC-WI)
C
Single Point Receptacle. Point at which fueling hose is attached to skin of aircraft
during aircraft refueling operations.
Skimmer. A device used to collect thin layers of oil floating on a body of water.
AN
Slop Oil. Oil or fuel which has become contaminated with other oils or substances,
often requiring separation or treatment before it is fit for use.
Sludge. Heavy viscous oily mass found in the bottom of storage tanks and treatment
vessels, often contains rust, scale, dirt, lead additives, wax, gum, or asphalt.
C
Specific Gravity. The ratio of the weight in air of a given volume of a substance to the
weight in air of an equal volume of distilled water (62.4 lb/ft3 ) (1000 kg/m3), both taken
at the same temperature, usually 60 °F (16 °C).
Static Electricity. Accumulation of electric charge on an insulated body; also the
electrical discharge resulting from such accumulation.
Strapping. The process of determining the volume of a storage tank or cargo hold by
measuring its linear dimensions.
Stripper Pump. A pump used to strip or remove the last bit of liquid from a tank or pipe.
Sump. A low area or depression which receives drainage.
253
UFC 3-460-01
16 August 2010
Surge. Sudden increase in fluid pressure caused by sudden stopping of a moving
stream as by a quick closing valve; hydraulic shock; also the sudden, brief increase in
voltage or current in an electrical circuit.
ED
Surge Arrestor. A protective device for limiting surge voltages by discharging or
bypassing surge current, and it also prevents continued flow of follow current while
remaining capable of repeating these functions. Designed primarily for connection
between a conductor of an electrical system and ground to limit the magnitude of
transient (surge) overvoltages on equipment. Also known as arrestor or arrester, surge
arrester, lightning arrestor or arrester.
Surge Suppressor. Device designed to control or reduce surges; hydraulic shock
absorber.
EL
L
Thermal Relief Valves. Valves that are installed around isolation valves to relieve
excessive pressure caused by thermal expansion of the fuel in the pipe.
Tolerance. An allowable variation from a specified standard of measurement,
commonly applied to the accuracy of meters.
Top Loading. Method of filling tank cars and trucks through an opening in the top.
True Vapor Pressure. Vapor pressure measured at actual liquid temperature.
C
Vapor Lock. Malfunction of an engine fuel system or of a pumping system caused by
vaporization of the fuel, usually associated with gasoline.
AN
Vapor Pressure. Internal pressure of vapor in a liquid usually in pounds per square
inch; an indication of volatility.
Viscosity. Measure of the internal resistance of a fluid to flow or movement, most
commonly measured in centistokes.
C
Volatility. Measure of the tendency of a liquid to vaporize; vapor pressure.
Waste Oil. Oil from which the water and other contaminants cannot be removed by the
available treating facilities, and hence is unfit for further use. This term is also loosely
used for contaminated oil which may contain recoverable fuel collected at facilities
having no treatment facility for fuel reclamation.
Water Bottom. Free water which has settled to the bottom of a storage tank.
Water Drawoff. A valve or similar device used to remove water from the bottom
of a tank.
Water Slug Shutoff. A valve in the discharge piping from a filter/separator which closes
254
UFC 3-460-01
16 August 2010
automatically when the water in the unit rises above a set level.
Wax. Viscous or solid high molecular weight hydrocarbon substance; paraffin.
Weatherproof. Type of enclosure for electrical apparatus for outdoor service in
nonhazardous areas.
C
AN
C
EL
L
ED
Wharf. A landing place where vessels tie up to load or unload; pier.
255
UFC 3-460-01
16 August 2010
APPENDIX A - REFERENCES
NOTE: THE FOLLOWING REFERENCED DOCUMENTS FORM A PART OF THIS
UFC TO THE EXTENT SPECIFIED HEREIN. USERS OF THIS DOCUMENT SHOULD
REFER TO THE LATEST REVISIONS OF CITED DOCUMENTS UNLESS
OTHERWISE DIRECTED.
ED
FEDERAL/MILITARY SPECIFICATIONS, STANDARDS, BULLETINS, HANDBOOKS,
USAFE/NATO STANDARD DESIGNS, AND NAVFAC GUIDE SPECIFICATIONS:
EL
L
Unless otherwise indicated, copies are available from the Standardization Document
Order Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094. For
account and order information, the phone number is (215) 697-6257 or DSN 4422179/2667. Many of the documents below are also available on the following websites:
• The Whole Building Design Guide website provided by the National Institute of
Building Sciences at http://www.wbdg.org/ccb.
• The Department of Defense Single Stock Point for Military Specifications,
Standards and Related Publications at http://dodssp.daps.dla.mil/
MILITARY SPECIFICATIONS
MIL-DTL-5624
Fuel, Naval Distillate
C
MIL-DTL-16884
Turbine Fuel, Aviation, Grades JP-4 and JP-5
Turbine Fuel, Aviation, Thermally Stable (JPTS)
MIL-DTL-38219
Turbine Fuel, Low Volatility, JP-7
MIL-DTL-83133
Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO
F-34), NATO F-35, and JP-8+100 (NATO F-37).
MIL-DTL-85470
Inhibitor, Icing, Fuel System, High Flash
MIL-DTL-87107
Propellant, High Density Synthetic Hydrocarbon Type,
Grade JP-10
MIL-PRF-17331
Lubricating Oil, Steam Turbine and Gear, Moderate
Service
MIL-PRF-25017
Inhibitor, Corrosion/Lubricity Improver, Fuel Soluble
MIL-PRF-26536
Propellant, Hydrazine
MIL-PRF-9000
Lubricating Oil, Shipboard Internal Combustion
C
AN
MIL-DTL-25524
A-1
UFC 3-460-01
16 August 2010
Engine, High Output Diesel
DoD STANDARD DESIGNS
Standard Fueling Systems; Aboveground Vertical
Steel Tanks with Floating Pans and Fixed Roofs
AW 78-24-28
Pressurized Hydrant Fueling System, Type III
AW 78-24-29
Aircraft Direct Fueling System, Type IV
ED
AW 78-24-27
HANDBOOKS
Lightning Protection
MIL-HDBK-1005/17
Nondomestic Wastewater Control and Pretreatment
Design Criteria
MIL-HDBK-1013/1
MIL-HDBK-1013/10
EL
L
MIL-HDBK-1004/6
Design Guidelines for Physical Security of Facilities
Design Guidelines for Security Fencing, Gates,
Barriers, and Guard Facilities
UNIFIED FACILITIES GUIDE SPECIFICATIONS
Epoxy/Fluoropolyurethane Interior Coating of Welded
Steel Petroleum Fuel Tanks
C
UFGS 09 97 13.15
Three Coat Epoxy Interior Coating of Welded Steel
Petroleum Fuel Tanks
UFGS 09 97 13.27
Exterior Coating of Steel Structures
UFGS 28 31 76
Interior Fire Alarm and Mass Notification System
UFGS 33 65 00
Cleaning Petroleum Storage Tanks
UFGS 44 42 53
Parallel Plate [or Vertical Tube], Gravity Oil-Water
Separator
C
AN
UFGS 09 97 13.17
UNIFIED FACILITIES CRITERIA
UFC 1-200-01
General Building Requirements
UFC 2-000-05N/P-80
Facility Planning Criteria for Navy/Marine Corps
Shore Installations
A-2
UFC 3-460-01
16 August 2010
General Provisions - Arctic and Subarctic
Construction
UFC 3-130-02
Site Selection and Development - Arctic and Subarctic
Construction
UFC 3-130-03
Runway and Road Design - Arctic and Subarctic
Construction
UFC 3-130-04
Foundations for Structures - Arctic and Subarctic
Construction
UFC 3-130-05
Utilities - Arctic and Subarctic Construction
UFC 3-130-06
Calculation Methods for Determination of Depths of
Freeze and Thaw in Soil - Arctic and Subarctic
Construction
UFC 3-220-01N
UFC 3-220-10N
Buildings - Arctic and Subarctic Construction
Geotechnical Engineering Procedures for Foundation
Design of Buildings and Structures
Soil Mechanics
Wastewater Treatment Systems Augmenting
Handbook
C
UFC 3-240-02N
EL
L
UFC 3-130-07
ED
UFC 3-130-01
Domestic Wastewater Treatment
UFC 3-250-01FA
Pavement Design for Roads, Streets, Walks, and
Open Storage Areas
UFC 3-250-18FA
General Provisions and Geometric Design for Roads,
Streets, Walks, and Open Storage Areas
C
AN
UFC 3-240-09FA
UFC 3-260-01
Airfield and Heliport Planning and Design
UFC 3-260-02
Pavement Design for Airfields
UFC 3-301-01
Structural Engineering
UFC 3-310-04
Seismic Design for Buildings
UFC 3-420-01
Plumbing Systems
UFC 3-460-03
O&M: Maintenance of Petroleum Systems
A-3
UFC 3-460-01
16 August 2010
Electrical Engineering
UFC 3-550-01
Exterior Electrical Power Distribution
UFC 3-570-02N
Electrical Engineering Cathodic Protection
UFC 3-580-01
Telecommunications Building Cabling Systems
Planning and Design
UFC 3-600-01
Fire Protection Engineering for Facilities
UFC 4-010-01
DoD Minimum Antiterrorism Standards for Buildings
UFC 4-020-01
DoD Security Engineering Facilities Planning Manual
UFC 4-020-03FA
Security Engineering: Final Design
UFC 4-150-06
UFC 4-152-01
Dockside Utilities for Ship Service
Military Harbors and Coastal Facilities
Design: Piers and Wharves
Design: Navy Firefighting School Facilities
C
UFC 4-179-01
EL
L
UFC 4-150-02
ED
UFC 3-501-01
Design: Industrial and Oily Wastewater Control
UFC 4-911-01N
O&M: Inactive Care and Closure of Shore Facilities
AN
UFC 4-832-01N
STANDARDS
Identification Methods for Bulk Petroleum Products
Systems Including Hydrocarbon Missile Fuels
MIL-STD-461
Requirements for the Control of Electromagnetic
Interference Characteristics of Subsystems and
Equipment
MIL-STD MS 24484
Adapter, Pressure Fuel Servicing, Nominal 2.5-inch
Diameter
C
MIL-STD-161
AIR FORCE
AIR FORCE HANDBOOKS
AFH 32-1084
Facility Requirements
A-4
UFC 3-460-01
16 August 2010
AIR FORCE INSTRUCTIONS (AFI)
AFI 32-1054
Corrosion Control
AIR FORCE MANUALS (AFM)
Electrical Design – Lightning and Static Electricity
Protection
AFMAN 91-201
Explosives Safety Standards
ED
AFM 88-9
OCCUPATIONAL SAFETY AND HEALTH
AFOSH 91-38
Hydrocarbon Fuels -- General
AFTO 00-25-172
AFTO 37-1-1
EL
L
TECHNICAL MANUALS
Ground Servicing of Aircraft and Static
Grounding/Bonding
General Operation and Inspection of Installed Fuel
Storage and Dispensing Systems
Quality Control of Fuels and Lubricants
C
AFTO 42B1-1
DEPARTMENT OF DEFENSE
DoD Fuel Filter Element Standardization Policy
AN
DESC-X-P-2
NATO STANDARDS
Technical Guidance For The Design And Construction
Of Aviation And Ground Fuel Installations On NATO
Airfields
C
STANAG 3784
U.S. ARMY CORPS OF ENGINEERS
Unless otherwise indicated, copies are available from the U.S. Army Corps of
Engineers, Washington, D.C. 20314-1000. Many of the documents below are also
available on the following website: the Whole Building Design Guide website provided
by the National Institute of Building Sciences at http://www.wbdg.org/ccb.
ENGINEER MANUAL
EM 1110-1-4006
Removal of Underground Storage Tanks
A-5
UFC 3-460-01
16 August 2010
ENGINEER TECHNICAL LETTERS
ETL 1110-3-466
Selection and Design of Oil/Water Separators at Army
Facilities
ETL 1110-3-502
Telephone and Network Distribution System Design
Implementation Guide
ETL 03-04
Alternative Fuels E85 and B20
AR 420-90
ED
REGULATION
Fire and Emergency Services
TECHNICAL MANUALS
Electrical Design - Lightning and Static Electricity
Protection
EL
L
TM 5-811-3
TM 5-811-9
Voice/Data Telephone Systems
NAVY DESIGN MANUALS, P-PUBLICATIONS, AND MAINTENANCE AND
OPERATION MANUALS:
AN
C
Available from National Technical Information Service (NTIS), 5285 Port Royal Road,
Springfield, VA 22161, Attention: Defense Publications. Many of the documents below
are also available on the following website: the Whole Building Design Guide website
provided by the National Institute of Building Sciences at http://www.wbdg.org/ccb.
NAVAIR
NATOPS U.S. Navy Aircraft Fire Fighting and Rescue
Manual
NAVAIR 00-80T-109
Aircraft Refueling NATOPS Manual
C
NAVAIR 00-80R-14
NAVFAC
DEFINITIVE DRAWINGS
No. 1404000
Aircraft Direct Fueling System
Nos. 1403995
thru 1403999
Non-Polluting Fuel Piers
No. 1404005
Truck Unloading System Design
A-6
UFC 3-460-01
16 August 2010
INSTRUCTIONS
OPNAVINST 5090.1
Environmental Readiness Program Manual
OPNAVINST 5100.23
Navy Safety and Occupational Health (SOH) Manual
INTERIM TECHNICAL GUIDANCE
Cathodic Protection Systems
P-PUBLICATIONS
P-80/UFC 2-000-05N
Facility Planning Criteria for Navy/Marine Corps
Shore Installations
EL
L
MAINTENANCE AND OPERATION MANUALS
MO-230
ED
FY94-01
Petroleum Fuel Facilities
NAVSEA
NAVSEA S6340AA-MMA-010
Technical Manual for OTTO Fuel II
Safety, Storage, and Handling Instructions
C
GENERAL SERVICES ADMINISTRATION
AN
COMMERCIAL ITEM DESCRIPTION
CID A-A-52557
Fuel Oil, Diesel; for Posts, Camps and Stations
CID A-A-59693
Diesel Fuel, Biodiesel Blend (B20)
CID A-A-59666
Cylinder, Compressed Gas
C
(Unless otherwise indicated, copies are available from:
• GSA, 1800 F Street NW, Washington, D.C. 20405, Phone Number: (816) 8231219) (www.gsa.gov)
• The Department of Defense Single Stock Point for Military Specifications,
Standards and Related Publications at http://dodssp.daps.dla.mil/
OTHER GOVERNMENT DOCUMENTS AND PUBLICATIONS:
CODE OF FEDERAL REGULATIONS (CFR)
29 CFR Part 1910
Occupational Safety and Health Standards
A-7
UFC 3-460-01
16 August 2010
Facilities Transferring Oil or Hazardous Material in
Bulk
40 CFR Part 60
Standards of Performance for New Stationary
Sources
40 CFR Part 112
Oil Pollution Prevention
40 CFR Part 122
EPA Administered Permit Programs: The National
Pollutant Discharge Elimination System (NPDES)
40 CFR Part 280
Technical Standards and Corrective Action
Requirements for Owners and Operators of
Underground Storage Tanks (UST)
40 CFR Part 281
Approval of State Underground Storage Tank
Programs
EL
L
49 CFR Part 195
ED
33 CFR Part 154
Transportation of Hazardous Liquids by Pipeline
(Unless otherwise indicated, copies are available from the Superintendent of
Documents, U.S. Government Printing Office (GPO), Washington, D.C. 20402.)
UNITED STATES CODE
National Environmental Policy Act (NEPA)
C
AN
C
42 USC 4321
A-8
UFC 3-460-01
16 August 2010
NON-GOVERNMENT PUBLICATIONS:
AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS
(ACGIH)
--
Industrial Ventilation: A Manual of Recommended
Practice for Design
ED
(Unless otherwise indicated, copies are available from American Conference of
Governmental Industrial Hygienists (ACGIH), 1330 Kemper Meadow Drive, Cincinnati,
OH 45240. Phone Number: (513) 742-2020.) (www.acgih.org)
AMERICAN CONCRETE INSTITUTE
ACI 350.4R-04
Design Considerations for Environmental Engineering
Concrete Structures.
EL
L
(Unless otherwise indicated, copies are available from American Concrete Institute,
P.O. Box 9094, Farmington Hills, MI 48333-9094. Phone Number: (248) 848-3800.)
(http://www.aci-int.org/general/home.asp)
AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)/AMERICAN SOCIETY OF
MECHANICAL ENGINEERS (ASME)/INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS (IEEE)
Boiler and Pressure Vessel Code
C
ASME BPVC
Pipe Flanges and Flanged Fittings
ANSI/ASME B16.47
Large Diameter Steel Flanges: NPS 26 through NPS
60
ANSI/ASME B31.3
Process Piping
ANSI/ASME B31.4
Pipeline Transportation Systems for Liquid
Hydrocarbons and other liquids
C
AN
ANSI/ASME B16.5
ANSI/IEEE 142
Recommended Practice for Grounding of Industrial
and Commercial Power Systems
ANSI/IEEE 1100
Recommended Practice for Powering and Grounding
Electronic Equipment
ANSI/IEEE C2
National Electrical Safety Code
A-9
UFC 3-460-01
16 August 2010
(Unless otherwise indicated, copies are available from the American National Standards
Institute (ANSI), 25 West 3rd Street, New York, NY 10036, Phone Number: (202) 2938020 (www.ansi.org); American Society of Mechanical Engineers (ASME), 22 Law
Drive, Fairfield, NJ 07007-2900, Phone Number: (973) 882-1170 (www.asme.org); and
Electrical and Electronics Engineers (IEEE), Inc., IEEE Standards, 445 Hoes Street,
Piscataway, NJ 08855-1331, Phone Number: (800) 701-4333 (www.ieee.org).)
AMERICAN PETROLEUM INSTITUTE (API)
Piping Inspection Code: In-Service Inspection,
Rating, Repair and Alteration of Piping Systems
Bulletin D16
Suggested Procedure for Development of Spill
Prevention Control and Countermeasure Plans
MPMS 2
Tank Calibration
Publ 2202
Metering
Dismantling and Disposing of Steel from Tanks which
have Contained Leaded Gasoline
Recommended Practice for Classification of Locations
for Electrical Installations at Petroleum Facilities –
Classified as Class I, Division I and Division 2
AN
RP 500
EL
L
MPMS 5
Tank Gauging
C
MPMS 3
ED
API 570
Electrical Installations in Petroleum Processing Plants
RP 651
Cathodic Protection of Aboveground Petroleum
Storage Tanks
RP 1004
Bottom Loading and Vapor Recovery for MC-306
Tank Motor Vehicles
C
RP 540
RP 1102
Steel Pipelines Crossing Railroads and Highways
RP 1110
Pressure Testing of Steel Pipelines for the
Transportation of Gas, Petroleum Gas, Hazardous
Liquids, Highly Volatile Liquids or Carbon-Dioxide
RP 1604
Closure of Underground Petroleum Storage Tanks
RP 1615
Installation of Underground Petroleum Storage
Systems
A-10
UFC 3-460-01
16 August 2010
Using the API Color-Symbol System to Mark
Equipment and Vehicles for Product Identification at
Gasoline Dispensing Facilities and Distribution
Terminals
RP 2003
Protection Against Ignitions Arising Out of Static,
Lightning, and Stray Currents
RP 2350
Overfill Protection for Storage Tanks in Petroleum
Facilities
Spec 6D
Specification for Pipeline
Std 607
Testing of Valves – Fire Type-Testing Requirements
Std 608
Metal Ball Valves – Flanged, Threaded and ButtWelding Ends
Std 653
Welded Tanks for Oil Storage
Tank Inspection, Repair, Alteration, and
Reconstruction
Venting Atmospheric and Low-Pressure Storage
Tanks
AN
Std 2000
EL
L
Std 650
Centrifugal Pumps for Petroleum, Petrochemical and
Natural Gas Industries
C
Std 610
ED
RP 1637
Requirements for Safe Entry and Cleaning of
Petroleum Storage Tanks
Std 2510
Design and Construction of Liquefied Petroleum Gas
(LPG) Installations
C
Std 2015
Std 2610
Design, Construction, Operation, Maintenance, and
Inspection of Terminal and Tank Facilities
(Unless otherwise indicated, copies are available from American Petroleum Institute
(API), 1220 L Street NW, Washington, DC 20005-4070 (www.api.org).)
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)
ASTM D910
Standard Specification for Aviation Gasoline (Avgas)
ASTM D975
Standard Specification for Diesel Fuel Oils
A-11
UFC 3-460-01
16 August 2010
Standard Specification for Aviation Turbine Fuels
(DoD Adopted)
ASTM D3699
Standard Specification for Kerosene
ASTM D4814
Standard Specification for Automotive Spark-Ignition
Engine Fuel
ASTM D5798
Standard Specification for Fuel Ethanol (Ed75-Ed85)
for Automotive Spark-Ignition Engines
ASTM D6751
Standard Specification for Biodiesel Fuel Blend Stock
(B100) for Middle Distillate Fuels
ASTM F758
Standard Specification for Smooth-Wall Poly (Vinyl
Chloride) (PVC) Plastic Underdrain Systems for
Highway, Airport, and Similar Drainage (DoD
Adopted)
EL
L
ED
ASTM D1655
(Unless otherwise indicated, copies are available from the American Society for Testing
and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959,
Phone Number: (610) 832-9585 (www.astm.org).)
C
COMPRESSED GAS ASSOCIATION (CGA)
Pamphlet G-7.1.
Commodity Specification for Air
AN
(Unless otherwise indicated, copies are available from the Compressed Gas
Association, 4221 Walney Road, 5th Floor, Chantilly VA 20151-2923, Phone Number:
(703) 788-2700 (www.cganet.com).)
COORDINATING RESEARCH COUNCIL, INC. (CRC)
C
Report No. 346
Electrostatic Discharges in Aircraft
Fuel Systems – Phase I
Report No. 355
Electrostatic Discharges in Aircraft
Fuel Systems – Phase II
Report No. 635
Handbook of Aviation Fuel Properties
(Unless otherwise indicated, copies are available from the Coordinating Research
Council, Inc., 3650 Mansell Road, Suite 140, Alpharetta, GA 30022, Phone Number:
(678) 795-0506 (www.crcao.com/.)
ENERGY INSTITUTE (EI)
A-12
UFC 3-460-01
16 August 2010
EI Std 1529
Aviation Fueling Hose and Hose Assemblies (formerly
API Std 1529)
EI Specification 1581
Specifications and Qualification Procedures for
Aviation Jet Fuel Filter/Separators (formerly API/IP
Specification 1581)
FACTORY MUTUAL ENGINEERING CORP. (FM)
Section 7-55
ED
(Unless otherwise indicated, copies are available from the Energy Institute (EI), 61 New
Cavendish Street, London W1G 7AR, UK, Phone Number: +44 (0) 20-7467-7100
(http://www.energyinst.org/).)
Loss Prevention Data, Liquid Petroleum Gas
EL
L
(Unless otherwise indicated, copies are available from FM Global, 1301 Atwood
Avenue, Johnston, RI 02919, Phone Number: (877)364-6726
(www.fmglobaldatasheets.com).)
GAS PROCESSORS ASSOCIATION
Standard 2140
Liquefied Petroleum Gas Specifications and Test
Methods
AN
C
(Unless otherwise indicated, copies are available from Gas Processors Association,
6526 East 60th Street, Tulsa, OK 74145 , Phone Number: (918)493-3872,
(www.gpaglobal.org).)
GAS TECHNOLOGY INSTITUTE (GTI)
GTI-02/0136
CASCADE TM Gaseous Fueling System Sizing
Software
C
(Unless otherwise indicated copies are available from the Gas Technology Institute,
1700 South Mount Prospect Road, Des Plaines, IL 60018, Phone Number: (847) 7680500 (www.gastechnology.org).)
HYDRAULIC INSTITUTE
--
Individual Standards for Centrifugal, Vertical, Rotary,
and Reciprocating Pumps, as well as General
Guidelines for Pumps
(Unless otherwise indicated, copies are available from the Hydraulic Institute, 9 Sylvan
Way, Parsippany, NJ 07054-3802, Phone Number: (973) 267-9700 (www.pumps.org).)
A-13
UFC 3-460-01
16 August 2010
INTERNATIONAL SAFETY EQUIPMENT ASSOCIATION (ISEA)
ISEA Z358.1
Emergency Eyewash and Shower Equipment
(formerly ANSI Z358.1)
(Unless otherwise indicated, copies are available from the International Safety
Equipment Association (ISEA), 1901 North Moore Street, Arlington, VA 22209-1762,
Phone Number: (703) 525-1695 (www.safetyequipment.org).)
SP0169
ED
NATIONAL ASSOCIATION OF CORROSION ENGINEERS (NACE) INTERNATIONAL
Control of External Corrosion on Underground or
Submerged Metallic Piping Systems
EL
L
(Unless otherwise indicated, copies are available from the National Association of
Corrosion Engineers (NACE) International, 1440 South Creek Drive, Houston, TX
77218-8340, Phone Number: (281) 228-6200 (www.nace.org/.)
NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
NFPA 20
NFPA 30
Standard for the Installation of Stationary Pumps for
Fire Protection
Flammable and Combustible Liquids Code
Code for Motor Fuel Dispensing Facilities and Repair
Garages
AN
NFPA 30A
Standard for Low–, Medium–, and High – Expansion
Foam
C
NFPA 11
Standard for the Installation of Oil-Burning Equipment
NFPA 37
Standard for the Installation and Use of Stationary
Combustion Engines and Gas Turbines
C
NFPA 31
NFPA 45
Standard on Fire Protection for Laboratories Using
Chemicals
NFPA 52
Vehicular Gaseous Fuel Systems Code
NFPA 54
National Fuel Gas Code
NFPA 55
Compressed Gases and Cryogenic Fluids Code
NFPA 58
Liquefied Petroleum Gas Code
A-14
UFC 3-460-01
16 August 2010
Utility LP-Gas Plant Code
NFPA 70
National Electrical Code
NFPA 77
Recommended Practice on Static Electricity
NFPA 110
Standard for Emergency and Standby Power Systems
NFPA 307
Standard for the Construction and Fire Protection of
Marine Terminals, Piers, and Wharves
NFPA 407
Standard for Aircraft Fuel Servicing
NFPA 415
Standard on Airport Terminal Buildings, Fueling Ramp
Drainage, and Loading Walkways
NFPA 780
Standard for the Installation of Lightning Protection
Systems
EL
L
ED
NFPA 59
(Unless otherwise indicated, copies are available from the National Fire Protection
Association (NFPA), 1 Batterymarch Park, Quincy, MA 02169-7471, (www.nfpa.org.)
UNDERWRITERS LABORATORIES, INC. (UL)
Steel Aboveground Tanks for Flammable and
Combustible Liquids
AN
UL 142
Steel Underground Tanks for Flammable and
Combustible Liquids
C
UL 58
External Corrosion Protection Systems for Steel
Underground StorageTanks
UL 2080
Fire Resistant Tanks for Flammable and Combustible
Liquids
C
UL 1746
UL 2085
Protected Aboveground Tanks for Flammable and
Combustible Liquids
(Unless otherwise indicated, copies are available from the Underwriters Laboratories,
Inc. (UL), 333 Pfingsten Road, Northbrook, IL 60062-2096, Phone Number: (847) 2728800 (www.ul.com).)
SOCIETY OF AUTOMOTIVE ENGINEERS
AS5877
Detailed Specification for Aircraft Pressure Refueling
Nozzle
A-15
UFC 3-460-01
16 August 2010
(Unless otherwise indicated, copies are available from SAE Customer Service, 400
Commonwealth Drive, Warrendale, PA 15096-0001, Phone Number: (877) 606-7323
(www.sae.org/).
STEEL TANK INSTITUTE
STI P3
Specification and Manual for External Corrosion
Protection of Underground Steel Storage Tanks
C
AN
C
EL
L
ED
(Unless otherwise indicated, copies are available from the Steel Tank Institute, 944
Donata Court, Lake Zurich, IL 60047, Phone Number: (847) 438-8265
(www.steeltank.com/).
A-16
UFC 3-460-01
16 August 2010
APPENDIX B - MANUAL SURGE CALCULATIONS FOR SIMPLE PIPING SYSTEMS
(1)
Determine the critical time of the system. This is defined as the time it takes for
the first increment of the pressure wave to travel upstream, reflect, and return to
the valve. Use the following equation:
(1)
ED
EQUATION: Tc = 2L/a
where:
Tc = critical closure time of system(s)
L = length of pipe (ft or m)
a = surge pressure wave velocity (fps or m/s)
Values for “a” for liquid petroleum in schedule 40 steel pipe are as follows.
These values are based on hydrocarbons with a specific gravity of 0.8 at a
temperature of 68 degrees F (20 degrees C):
EL
L
Surge Pressure Wave
Velocity, “a”
ft/s (m/s)
3,771 (1149.4)
3,763 (1147.0)
3,736 (1138.7)
3,692 (1125.3)
3,663 (1116.5)
3,639 (1109.2)
3,599 (1097.0)
If valve closure time (T) is less than Tc, it is equivalent to instantaneous closure
and will result in maximum surge pressure. The equation used to calculate surge
pressure rise for this situation is:
AN
(2)
C
Nominal Pipe Size
inches (mm)
2 (50)
3 (75)
4 (100)
6 (150)
8 (200)
10 (250)
12 (300)
C
EQUATION: P1 - P = [(V1 - V0)(w)(a)] / [(C)(g)]
(2)
where:
P1 = maximum pressure (psig or Pa)
P = pump shutoff pressure (psig or Pa) (equal to system static pressure)
V1 = initial velocity (fps or m/s)
V0 = final velocity (fps or m/s)
w = specific weight of the fluid (lbm/ft3 or kg/m3)
g = gravitational constant (32.2 ft/s2 or 9.81 m/s2)
C = unit constant (144 in2/ft2, 0.101 (kg/m2)/Pa
a = surge pressure wave velocity (fps or m/s)
B-1
UFC 3-460-01
16 August 2010
(3)
For example, a fuel storage facility has a truck loading rack located 2,000 feet
(610 m) away. The load rack is fed by a 600 gpm (38 L/s) pump located at the
storage facility. The load rack is equipped with a deadman apparatus which is
tied to a hydraulically operated diaphragm control valve at the rack. The valve
has a closure time of 1.0 seconds. The pipe is 6-inch (150 mm) diameter carbon
steel, Schedule 40, with Class 150 flanges. The pump shutoff pressure is 60
psig (410 kPa). Find the critical time of the system if the loading rack control
valve closes.
ED
Tc = 2L/a = 2×2,000/3,692 = 1.08 seconds
EL
L
From the table of values for “a”, the surge pressure wave velocity (a) is 3,692 fps
(1125.3 m/s). The maximum pressure in any pipeline occurs when the total
discharge is stopped in a period of time equal to or less than the critical time.
Since the valve will theoretically close prior to this, Equation (2) should be used
to determine the pressure rise. In this case, the final velocity (Vo) will be
assumed to be zero because the critical time is greater than the valve closure
time.
P1 – P = [(V1)(w)(a)] / [(144)(g)]
= [(6.81×51.5×3,692)] / [(144×32.2)] = 279 psig (1925 kPa)
P1 = P+273 = 60+279 = 339 psi (2337 kPa)
When the valve closure time is longer than the critical time, the surge will be less
than predicted by Equation (2). The equation used to calculate surge pressure
rise for this situation is:
AN
(4)
C
Initial velocity (V1) was found by dividing the given flow rate of 600 gpm (38 L/s)
by the cross sectional area of the 6-inch (150 mm) diameter, Schedule 40 pipe.
Considerations will have to be made for this system to deal with the maximum
predicted pressure.
C
(3)
EQUATION: P1 - P = [2(L)(w)(V1 - Vc)] / [1.3 (C)(g)(T)]
where:
P1 = maximum pressure (psig or Pa)
P = pump shutoff pressure (psig or Pa) (equal to system static pressure)
L = length of pipe (ft or m)
V1 = initial velocity (fps or m/s)
Vc = velocity at Tc (fps or m/s)
w = specific weight of the fluid (lbm/ft3 or kg/m3)
g = gravitational constant (32.2 ft/s2 or 9.81 m/s2)
C = unit constant (144 in2/ft2, 0.101 (kg/m2)/Pa
a = surge pressure wave velocity (fps or m/s)
T = valve closure time (sec)
Determination of Vc is too complex for simple calculation. Therefore, for the
conditions where T > Tc, use a computer modeling program.
B-2
UFC 3-460-01
16 August 2010
APPENDIX C - CHARTER OF DoD FUELS FACILITY ENGINEERING PANEL
EL
L
ED
A. INTRODUCTION
1. To benefit from Department of Defense (DoD) wide petroleum, oils, and lubricants
(POL) expertise and apply it to fuel handling issues facing the DoD, an ad hoc group
known as the Fuels Facility Engineering Panel (FFEP) is hereby established. The
DoD FFEP (Panel) is an association of recognized POL experts, primarily from the
engineering community, and is established to advise the DoD community on ways to
provide safe, operationally effective, and economic DoD fuel handling systems. The
Panel will examine, develop, and recommend design features for the standardization
of facilities and equipment, and procedures used in fuel handling systems for
storage, distribution, maintenance and dispensing of aircraft, marine, and ground
fuel. The Panel will evaluate facility component parts on DoD installations and will
serve as a pool of expertise to assist in resolving systemic fuel handling facility
problems. Panel meetings will also serve as a forum to update members on new
equipment, DoD or service-specific programs, and changes affecting the fuels
maintenance/repair community.
B. COMPOSITION
1. Voting members:
a) Air Force Fuels Engineer (HQ AFCESA/CEOA)
b) NAVFAC POL Facility Subject Matter Expert (NFESC)
c) HQ Army Corps of Engineers Technical POC, POL Facility Criteria (CECW-CE)
d) The Defense Energy Support Center – Facilities Engineer (DESC-WI)
C
AN
C
2. Coordinating members:
a) Defense Logistics Agency
b) Defense Fuel Region Facility Managers
c) AF MAJCOM Fuels Engineers
d) AF Petroleum Office Fuels Technical Assistance Team Members
e) NOLSC Fuels Facility Engineers
f) NAVAIR Fuels Engineers
g) NAVFACENGCOM, Fuels Facility Engineers
h) Army APC Fuel Facility Team Members
i) Army Corps of Engineers, Huntsville Division, Technical POC, POL Facility
Criteria
j) Army Corps of Engineers, Omaha District, POL Facility Design Center of
Expertise
3. The Chairperson will be rotated biennially among the voting members.
C. TASKS
1. Tasks of the FFEP include but are not limited to:
a) Develop standardized designs for receipt, storage, and dispensing of fuels.
b) Periodically review and update UFC 3-460-01, including referenced DoD fuel
handling facility criteria, and fuel system maintenance and repair criteria.
C-1
UFC 3-460-01
16 August 2010
EL
L
ED
c) Perform technical review of new or proposed design standards or concepts.
d) Review system operational problems, including components and materials, and
recommend corrections.
e) Cross-feed information such as problems and solutions, new missions and
equipment, needed modifications to equipment, and new DoD or Service-wide
programs and periodically communicate this information in a newsletter.
f) Provide a means of communication among the Air Force, Army, Navy, and
Defense Energy Support Center to reduce duplication and effect DoD-wide
Standardization.
g) Review training and utilization of fuel handling system maintenance personnel
and recommend improvements.
h) Provide information to fueling operations personnel to assure proper operation
of equipment.
i) Assess the impact of environmental regulations on POL design, and develop
designs that will address these impacts.
2. Substantive Deviations, or departures from design standards in UFC 3-460-01, must
be approved by the FFEP.
D. MEETINGS
1. The Panel will meet at the call of the Chairperson but not less than once per year.
Voting members may request a meeting at any time.
2. Decisions of the FFEP will be made by achieving consensus among the voting
members of the FFEP.
C
AN
C
E. CHARTER REVIEW
1. The Panel will review the Charter at least once per year, and update as required.
C-2
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement