Roving Networks | WIFLY GSX | User manual | Roving Networks WIFLY GSX User manual

WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
WIFLY GSX
802.11 b/g wireless LAN Modules
User Manual and Command Reference
RN-131G, RN-131C, RN-134,
RN-121, RN-123 & RN-125
Version 2.21
July 11th, 2010
Copyright © 2010 Roving Networks, Inc.
All Rights Reserved.
The contents of this document can be changed by Roving networks without prior notice and do not
constitute any binding undertakings from Roving networks. Roving Networks is not responsible under any
circumstances for direct, indirect, unexpected or consequent damage that is caused by this document.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~1~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
1.
2.
Overview ...................................................................................................................................................4
Hardware Interface ....................................................................................................................................5
2.1.
Power ................................................................................................................................................5
2.2.
Reset..................................................................................................................................................5
2.3.
UART................................................................................................................................................5
2.4.
Status Indictors .................................................................................................................................6
3. Configuration.............................................................................................................................................6
3.1.
Entering Command Mode .................................................................................................................6
4. WiFly Command Reference ......................................................................................................................8
4.1.
Command Syntax ..............................................................................................................................8
4.2.
Command Organization ....................................................................................................................8
5. SET Commands .........................................................................................................................................9
5.1.
Adhoc Parameters .............................................................................................................................9
5.2.
Broadcast Parameters ........................................................................................................................9
5.3.
COMM Parameters .........................................................................................................................10
5.4.
DNS Parameters ..............................................................................................................................11
5.5.
FTP Parameters ...............................................................................................................................11
5.6.
IP Parameters ..................................................................................................................................12
5.7.
Optional Parameters ........................................................................................................................14
5.8.
System Parameters ..........................................................................................................................14
5.9.
Time Server Parameters ..................................................................................................................15
5.10. UART Parameters ...........................................................................................................................16
5.11. WLAN Parameters ..........................................................................................................................17
6. Get Commands ........................................................................................................................................20
7. Status Commands ....................................................................................................................................21
8. Action Commands ...................................................................................................................................23
9. File IO Commands ..................................................................................................................................24
10.
Advanced features and Settings ...........................................................................................................25
10.1. System Timers and Auto Connect Timers ......................................................................................25
10.2. Wake on Sensor Input .....................................................................................................................26
10.3. Wake on UART ..............................................................................................................................26
10.5. Setting GPIO direction, Alternate Functions and Disabling LEDs ................................................28
10.6. Setting Debug Print levels ..............................................................................................................31
10.7. Using the Real Time Clock Function .............................................................................................31
10.8. Time Stamping Packets ..................................................................................................................32
11. Sending data using UDP ........................................................................................................................33
11.1. Overview .........................................................................................................................................33
11.2. UDP Auto Pairing ...........................................................................................................................34
11.3. UDP Retry.......................................................................................................................................34
11.4. Using the UDP Broadcast function .................................................................................................34
12.
Joining Networks and Making Connections ........................................................................................36
12.1. Associate with a network access point ...........................................................................................36
12.2. Making Connections .......................................................................................................................37
12.3. Setting up Automatic Connections .................................................................................................37
12.4. Controlling Connections using PIO5 and PIO6 ..............................................................................38
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~2~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
12.5. Using DNS settings .........................................................................................................................38
12.6. Utilizing the Backup IP address/connect function ..........................................................................39
13.
Sending and Receiving Data via Web Server .......................................................................................40
13.1. Automatic-Advanced Web Server Modes ......................................................................................40
14.
Firmware Upgrade over FTP ................................................................................................................43
15.
Adhoc Networking Mode .....................................................................................................................44
15.1. Infrastructure and adhoc comparison ..............................................................................................44
15.2. Configuring adhoc mode ................................................................................................................45
16.
Analog Sensor Capability .....................................................................................................................48
17.
Default Configuration Settings .............................................................................................................50
17.1. Restoring Default configuration settings: .......................................................................................51
18.
Boot-up Timing Values .........................................................................................................................52
19.
Supported Access Points ......................................................................................................................53
20.
Release Notes .......................................................................................................................................54
20.1. Known problems .............................................................................................................................54
20.2. Current Firmware features and fixes ..............................................................................................54
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~3~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
1. Overview
The “WiFly” radio module is a complete stand alone embedded wireless LAN access device. The device
has on board TCP/IP stack and applications. Requiring only 4 pins (POWER, TX, RX, GND) to design in.
Once initial configuration is set, the radio can automatically access the WiFi network and send/receive
serial data over UART.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Fully Qualified and Wi-Fi Certified 2.4GHz IEEE 802.11b/g transceiver
High throughput, up to 4Mbps sustained data rate with TCP/IP and WPA2
Ultra-low power (4uA sleep, 40mA Rx, 210mA max Tx)
Small, compact surface mount module
On board ceramic chip antenna and U.FL connector for external antenna
8 Mbit flash memory and 128 KB RAM
UART and SPI (future) data/control interfaces
10 general purpose digital I/O
8 analog inputs
Real-time clock for wakeup and time stamping/data logging
Accepts 3.3V regulated or 2-3V battery with on board boost regulators
Supports Adhoc and Infrastructure mode connections
On board ECOS-OS, TCP/IP stacks
Wi-Fi Alliance certified for WPA2-PSK
FCC / CE/ ICS certified and RoHS compliant
Features
•
•
•
•
•
•
•
•
•
•
Host Data Rate up to 1 Mbps for UART, 4Mbps SPI
Memory 128 KB RAM, 2 MB ROM, 2 KB battery-backed memory, 8 Mbit Flash.
Intelligent, built-in power management with programmable wakeup
Can be powered from regulated 3.3VDC source or 2.0-3.0V batteries
Real time clock for time stamping, auto-sleep and auto-wakeup modes
Configuration over UART or wireless interfaces using simple ASCII commands
Over the air firmware upgrade (FTP), and data file upload.
Secure WiFi authentication WEP-128, WPA-PSK (TKIP), WPA2-PSK (AES).
Built in networking applications DHCP client, UDP, DNS client , ARP, ICMP ping, FTP, TELNET,
HTTP
802.11 power save and roaming functions
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~4~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
2. Hardware Interface
See the specific module data sheets on the Roving Networks website for hardware specifications, and layout
information.
2.1. Power
There are two options for powering the RN-131G module directly.
DC SUPPLY:
Apply 3.3 VDC power to VBATT (pin 20), and V3.3IN (pin 21).
Tie 3.3VREG-IN (pin 18) to GROUND.
Leave 3.3V-REG-OUT (Pin 17) floating/no connect.
BATTERY:
Apply battery = 2.0 to 3.3VDC to VBATT (pin 20).
Leave V3.3IN pin 21 floating/no connect.
Tie pin 17 to pin 18. (This enables the on board battery boost 3.3V switcher).
There is a built-in brownout monitor which will shut down the chip when the voltage drops below 2.0 VDC.
WARNING: Do NOT exceed the voltage ratings damage to the module will result.
#1: The Sensor inputs SENS0-7 are extremely sensitive to over voltage. Under no conditions should
these pins be driven above 1.2VDC. Placing any voltage above this will permanently damage the
radio module and render it useless.
#2: Placing 5VDC or any voltage above 3.3Vdc into the VDD pins of the module will permanently
damage the radio module.
#3: Placing 3.3Vdc into the PIO’s while they are set as outputs will permanently damage the
module. The failure mode is a short across GND and VCC.
2.2. Reset
Reset is active LOW and is optional/does not need to be connected. The reset pin is 3.3V tolerant and has
an internal pull up of 100K to the VBATT.
2.3. UART
Connect a common ground when using the external TX, RX inputs.
For a 3 wire DB-9 interface (connect TX, RX, GND only)
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~5~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
Factory default is hardware flow control disabled; CTS and RTS are not required.
PIO’s are not 5.0 VDC tolerant. If using a 5.0 VDC circuit, input, PIO and UART input pins require a
resistor divider. A suggestion is to use a 10K resistor in series with 20k resistor to ground.
2.4. Status Indictors
PIO 4, 5 and 6 are active high and can be connected to external LEDs to provide network, connection and
data status.
Condition
PIO6=Red LED
ON solid
Fast blink
Not Associated
Slow blink
OFF
Associated
PIO5=Yellow LED
PIO4=Green LED
Connected over TCP
Rx/Tx data transfer
No IP address
IP address OK
3. Configuration
3.1. Entering Command Mode
Upon power up, the device will be in data mode. To enter command mode, exactly the three characters $$$
must be sent. The device will respond with CMD.
While in command mode, the device will accept ASCII bytes as commands.
To exit command mode, send exit<cr>. The device will respond with “EXIT”.
Parameters, such as the SSID, channel, IP address, Serial Port settings, and all other settings can be viewed
and configured in command mode.
ASCII characters can be sent through a terminal emulator connected to the UART or via Telnet. When
using the UART communications settings should match the settings used when RN-131g connects, for
example: the default is 9600 baudrate, 8 bits, No Parity, 1 stop bit, and hardware flow control disabled.
Use TeraTerm as your terminal emulator. Please DO NOT use HyperTerminal as it is known to have issues
with our products. TeraTerm can be downloaded from our website:
http://www.rovingnetworks.com/support/teraterm.zip.
Type $$$ on in the terminal emulator. You should see “CMD” returned to you. This will verify that your
cable and comm. settings are correct. Most valid commands will return an “AOK”, response, and invalid
ones will return an “ERR” description.
To exit command mode, type “exit“<cr>.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~6~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
NOTE: You can enter command mode locally over the UART interface at any time when not connected,
and also when connected if the appropriate settings are enabled.
Remote configuration using ADHOC mode
Using adhoc mode to configure the device eliminates the need for the module to be associated with a
network access point. In adhoc mode the module creates it own “on demand” network that you can
connect to via your computer like you would to any other network.
To enable adhoc mode via hardware set PIO9 high (3.3V) at power up. On the RN-134 PIO9 is on the J1
jumper block. When the module powers up with PIO9 set high, the WiFly module creates an adhoc
network with the following
SSID:
WiFly-GSX-XX where XX is the final two bytes of the devices MAC address
Channel:
1
DHCP:
OFF
IP address:
169.254.1.1
Netmask:
255.255.0.0
With the adhoc jumper in place the above settings override the current saved configuration settings.
From your computer, connect to the WiFly-GSX-XX network. This is an open network which does not
require a pass phrase or pass key. Note: currently the WiFly only supports OPEN mode for creating adhoc
networks.
NOTE: It may take a couple of minutes for Auto IP in Windows to assign an IP address and connect to the
network. You can check IP address of your Windows computer by running the ipconfig command in the
command window. If connected, this command will show you the IP address and net mask for your
computer.
The IP address assigned by Auto IP must be on the subnet 169.254.x.y otherwise the WiFly GSX module
will not be accessible.
NOTE: If your machine has both a wireless and wired interface hardware you will need to disable the wired
LAN interface hardware before connecting to the adhoc network. If the wired LAN is enabled the computer
will assign an IP address that is not on the same subnet as the WiFly module.
Once connected and you have a good IP address, telnet into the WiFly module on port 2000
telnet 169.254.1.1 2000
You should see the response “*HELLO*”
You can now enter command mode and configure the module.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~7~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
4. WiFly Command Reference
4.1. Command Syntax
Commands begin with a keyword, and have optional additional parameters, generally space delimited.
Commands and options are case sensitive. Hex input data can be upper or lower case. String text data, such
as SSID is also case sensitive.
The first command is fully decoded and must be complete. Other command parameters can be shorted by
using only the first character.
For example,
set uart baudrate 115200 is valid,
set uart b 115200
set u b 115200
is also valid,
is also valid, however,
s uart baudrate 115200
is NOT valid.
Numbers can be entered as either decimal, (like 115200 above) or HEX. To enter HEX, use 0x<value>.
For example, the HEX value FF would be entered as 0xFF.
4.2. Command Organization
Commands fall into 5 general categories:
SET COMMANDS
GET COMMANDS
STATUS COMMANDS
ACTION COMMANDS
FILE IO COMMANDS
Take effect immediately, permanently (save command issued).
Retrieve the permanently stored information for display to user.
See what is going on with the interface, IP status, etc.
Perform action such as scan, connect, disconnect, etc.
Upgrade, load and save configuration, delete files, etc.
NOTE: You must save any changes made or the module will load the previous settings upon reboot or
power up.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~8~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
When the system boots, all configuration data is loaded into RAM variables from the file called “config”.
The set commands actually only modify the RAM copy of variables in the system. In general, the IP,
WLAN and UART settings need a save and reboot to take effect, since they operate at boot up time. For
example you only associate, set the channel and get your ip address once at power up.
Most of the other commands take effect immediately like the COMM settings and timers. This allows
temporary change of parameters “on the fly” to test features, minimizes power usage and saves on flash rewrite cycles.
Once all configuration is complete, the user must save the settings using the save command to store the
configuration data, otherwise it will not take effect upon reboot or reset. Multiple configurations can be
stored by using the save <filename> command, and these configurations can be loaded using the load
<filename> command.
5. SET Commands
These commands begin with “set”. There are 6 major categories.
Adhoc
Broadcast
COMM
DNS
FTP
IP
Option
Sys
Time
UART
WLAN
controls the adhoc parameters
controls the broadcast hello/heartbeat UDP message
communication and data transfer, timers, matching characters
DNS host and domain
FTP host address and login information
IP settings
optional and not frequently used parameters
system settings such as sleep and wake timers
timer server settings
serial port settings such as baudrate and parity
wireless interface settings, such as ssid, chan, and security options
5.1. Adhoc Parameters
set adhoc beacon <ms>
sets the adhoc beacon interval in milliseconds. Default is 100.
set adhoc probe <num>
sets the adhoc probe timeout in seconds. Default is 60. This is the number
of seconds waiting for probe responses before declaring “ADHOC is lost”
and disabling the network interface.
5.2. Broadcast Parameters
set broadcast address <addr> sets the address to which the UDP hello/heartbeat message is sent. The
default address is 255.255.255.255
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~9~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
set broadcast interval <value> sets the interval at which the hello/heartbeat UDP message is sent.
Interval is specified in seconds. The value is a mask that is compared to a
free running seconds counter. For example if interval = 0x7, a packet will
be sent every 8 seconds. The minimum interval value is 1 (every 2
seconds) and max value is 0xff (every 256 seconds). Setting the interval
value to zero disables sending UDP broadcast messages. The default
interval is 7.
set broadcast port <port>
sets the port number to which the UDP hello/heartbeat message is sent.
The default port is 55555.
5.3. COMM Parameters
set comm $ <char>
sets character used to enter command mode. Typically used when “$$$” is
a possible data string. Default is ‘$’. Care should be taken when setting
this to note the new character as once this setting is saved every
subsequent reboot will ignore “$$$” and look for “<char><char><char>”.
set comm close <string>
sets the ASCI string that is sent to the local UART when the TCP port is
closed. If no string is desired, use 0 as the <string> parameter. Max string
length is 32 characters. Default is *CLOS*
set comm open <string>
sets the string that is sent to the local UART when the TCP port is opened.
If no string is desired, use 0 as the <string> parameter. Max string length
is 32 characters. Default is *OPEN*
set comm remote <string>
sets the string that is sent to the remote TCP client when the TCP port is
opened. If no string is desired, use 0 as the <string> parameter. Max string
length is 32 characters. Default is *HELLO*
set comm idle <secs>
sets the Idle Timer Value. This is the number of seconds with no transmit
or receive data before the connection is closed automatically. Default is 0,
never disconnect on idle.
set comm match <value>
sets match character. An IP packet will be sent each time the match
character appears in the data. Value is entered as the decimal (13) or hex
(0xd) of the of the ASCII character. Default is 0, disabled. The match
character is one of three ways to control TCP/IP packet forwarding. The
others are size and timer. For more information see section 10.1 on
System Timers and Auto Connect Timers and section 10.4 on UART
Receiver.
set comm size <value>
sets the flush size. An IP packet will be sent each time “value” bytes are
received. Default is 64 bytes. You should set this value to the largest
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 10 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
possible setting to maximize TCP/IP performance. Maximum value =
1420 (at 9600) bytes.
NOTE: This value is set automatically when the baudrate is set, in an
attempt to optimize the link. It is assumed that higher baudrates equates
to more data and hence the flush size is increased.
Flush size is one of three ways to control TCP/IP packet forwarding. The
others are match character and timer. For more information see section
10.4 on UART Receiver.
set comm time <num>
sets the flush timer. An IP packet will be sent if no additional bytes are
received for “num” milliseconds. Num is one milliseconds intervals. 1 is
the minimum value. Default is 10 (10 milliseconds). Setting this value to 0
will disable forwarding based on the flush timer.
Flush timer is one of three ways to control TCP/IP packet forwarding.
The others are match character and size. For more information see section
10.1 on System Timers and Auto Connect Timers
5.4. DNS Parameters
set dns address <addr>
sets the IP address of the DNS sever. This is auto-set when using DHCP,
and needs to be set in STATIC IP or Auto-IP modes.
set dns name <string>
sets the name of the host for TCP/IP connections.
set dns backup <string>
sets the name of the backup host for TCP/IP connections.
5.5. FTP Parameters
set ftp filename <file>
sets the name of the file transferred when issuing the “ftp u” or “ftp g”
commands.
set ftp addr <addr>
sets the ftp server IP address.
set ftp remote <port>
sets the ftp server remote port number (default is 21).
set ftp user <name>
sets the ftp user name for accessing the FTP server.
set ftp pass <pass>
sets the ftp password for accessing the FTP server.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 11 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
5.6. IP Parameters
set ip address <addr>
sets the IP address of the WiFly GSX module. If DHCP is turned on, the
IP address is assigned and overwritten during association with the access
point. IP addresses are “.” delimited. Note this is different from the RN111b module which is space delimited!
Example: “set ip a 10.20.20.1”
set ip backup <addr>
sets a secondary host IP address. If the primary host IP is not reachable
the module will try the secondary IP address if set.
set ip dchp <value>
enable/disable DHCP mode. If enabled, the IP address, gateway, netmask,
and DNS server are requested and set upon association with access point.
Any current IP values are overwritten.
DHCP Cache mode can reduce the time it takes the module to wake from
deep sleep thus saving power. In cache mode, the lease time is checked
and if not expired, the module uses the previous IP settings. If the lease
has expired the module will attempt to associated and use DHCP to get the
IP settings. DHCP cached IP address does not survive a power cycle or
reset.
Mode
0
1
2
3
4
set ip flags <value>
Protocol
DHCP OFF, use stored static IP address
DHCP ON, get IP address and gateway from AP
Auto-IP, generally used with Adhoc networks
DHCP cache mode, Uses previous IP address if
lease is not expired (lease survives reboot)
Reserved for future use
Set TCP/IP functions. Value is a bit mapped register. Default = 0x7.
Bit
0
1
2
3
4
5
6
7
Function
TCP connection status. See note below
Bypass Nagle algorithm and use TCP_NODELAY
TCP retry enabled ( 42 total )
UDP RETRY (attempts retry if no ACK from
UDP)
DNS host address caching enabled
ARP table caching enabled
UDP auto pairing enabled
Add 8 byte timestamp to UDP or TCP packets
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 12 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
NOTE: When the link to an associated to an access point is lost while a
TCP connection is active, the TCP connection can be left in hung/
inconsistent state. In some cases, the TCP connection will not recover. In
version 2.20 and later, if the link to the access point is regained within 60
seconds, the TCP connection will survive.
With version 2.20 we have changed the operation of bit0 in the “ip flags”
register. Previously this bit specified the TCP copy function, but controls
the TCP socket function while associated on a network.
• If bit 0 is set (default) TCP connections are kept open when the
connection to the access point is lost.
• If bit 0 is cleared (by setting “set ip flags 0x6” for example) then
when the connection to the access point is lost and TCP is
connected, the connection will be closed.
set ip gateway <addr>
sets the gateway IP address, If DHCP is turned on, the gateway IP address
is assign and overwritten during association with the access point.
set ip host <addr>
sets the remote host IP address. This command is used for making
connections from the WiFly module to a TCP/IP server at the IP address
<addr>.
set ip localport <num>
sets the local port number.
set ip netmask <value>
sets the network mask. If DHCP is turned on, the net mask is assign and
overwritten during association with the access point.
set ip protocol <value>
sets the IP protocol. Value is a bit mapped setting. To connect to the
WiFly GSX module over TCP/IP such as Telnet the device must have the
use the TCP Server protocol / bit 2 set. To accept both TCP and UDP use
value = 3 (bit 1 and bit 2 set)
Bit Position
0
1
2
3
4
set ip remote <value>
Protocol
UDP
TCP Server & Client (Default)
Secure (only receive packets with IP address
matches the store host IP)
TCP Client only
HTTP client mode
sets the remote host port number.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 13 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
5.7. Optional Parameters
set opt jointmr <msecs>
Join timer is the time in milliseconds (default=1000) the join function will
wait for the an access point to complete the association process. This timer
is also the timeout for the WPA handshaking process.
set opt sensor <mask>
Bitmask value that determines which sensor pins to sample when sending
data using the UDP broadcast packet, or the HTTP auto sample function.
set opt format <value>
settings for HTTP client/web server value is a bitmapped register. See
Section 13 web server modes.
set opt replace <char>
replacement character for spaces. The replacement character is used when
entering SSID and pass phrases that include space. This is used by the
WiFly GSX command parser only. Each occurrence of the replacement
character is changed into a space. The default is “$” (0x24)
set opt deviceid <string>
Configurable Device ID - can be used for storing serial numbers, product
name or other device information. This information is sent as part of the
broadcast hello packet that is sent as a UDP. The current value can be
shown with the “get option” or “show deviceid” commands. Max string
size is 32 bytes. The default is “WiFly-GSX”.
set opt password <string>
TCP connection password. Provides minimal authentication by requiring
any remote device that connects to send and match a challenge <string>.
When set, all newly opened connections must first send the exact
characters that match the stored password otherwise the WiFly module
will close the connection. When the password is set the WiFly module
sends the string “PASS?” to the remote host. All characters in the string
must be sent in one TCP packet. Max string size is 32 bytes. To disable
the password feature use string=0 which is the default.
5.8. System Parameters
set sys autoconn <secs>
TCP mode: sets the auto connect timer. This command causes the module
periodically connect to the host. The timer <secs> determines how often
to connect to the stored remote host. If set to 1, the module will only
make one attempt to auto connect upon power up. If set to 2 or greater
auto connect will re-open the connection after the connection is closed.
Default=0 disables.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 14 ~
WiFly GSX
www.rovingnetworks.com
set sys autosleep <num>
WiFlyGSX-um
7/16/2010
Sets the auto-sleep timer. 0 disables. If the protocol is set to UDP ONLY, this
timer is used as a quick sleep function. Device will sleep
<num> ms after transmission of the first UDP packet.
set sys iofunc <value>
sets the IO port alternate functions. Bit-mapped value. For more details
see section 10.5
set sys mask <mask>
sets the IO port direction mask. Bit-mapped value. For more information
see section 10.5
set sys printlvl <value>
sets numerous print functions. 0 = quiet, 1 = connect information Default
is 1 . Please refer section 10.6 on Setting Debug Print levels
set sys output <value> <mask> sets output PIO pins to HIGH or LOW. Bit-mapped value. Optional
mask only sets a subset of pins.
set sys sleep <secs>
sets the sleep timer. 0 disables.
NOTE: If not using Sensor pins to wake the module, be sure to set the
wake timer before issuing the sleep timer or the module will not wake up.
See section 10.1 for more details on using system timers
set sys trigger <value>
sets the sensor input(s) to wake on (0-3). Bit-mapped value. 0 disables.
set sys wake <secs>
sets the auto wake timer. 0 disables. See section 10.1 for more details on
using system timers
5.9. Time Server Parameters
set time address <addr>
sets the time server address. (sNTP servers)
set time port <num>
sets the time server port number. Defaults to 123 which is almost always
the sNTP server port.
set time enable <value>
Enable or disable fetching time from the specified sNTP time server.
Default=0= disabled. A value or 1 gets time only once on power up. Any
value > 1 gets time continuously every <value> minutes.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 15 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
5.10. UART Parameters
set uart baud <rate>
set the UART baud rate. Valid settings are {2400, 4800, 9600, 19200,
38400, 57600, 115200, 230400, 460800, 921600}.
Example : “set u b 9600” sets the baud rate to 9600 baud.
NOTE: the RS232 interface on the RN-134 does not work above 230400
set uart instant <rate>
set uart raw <rate>
This immediately changes the baudrate. This is useful when testing baudrate
settings, or switching baudrate “on the fly” remotely while connected over
TCP. This setting does not affect configuration. Returns the AOK
response, and then this command will exit command mode.
sets a RAW UART value. Used to set non-standard rates. The lowest
possible baud rate is 2400.
Example : “set u r 7200” sets the baud rate to 7200 baud.
set uart flow <0,1>
sets the flow control mode. Default=0=off, 1= hardware RTS/CTS.
NOTE: once flow control is enabled, it is important to properly
Drive the CTS pin (active LOW enabled) If CTS is HIGH, data will
NOT be sent out the UART, and further configuration in command mode
will be problematic as no response will be received.
set uart mode <value>
sets the UART mode register. This is a bit-mapped value.
Bit Position
0
1
2
3
4
Function
NOECHO - disables echo of RX data while in
command mode
DATA TRIGGER makes connection on RX data
RAW mode (TCP stack disabled )
Enable Sleep on RX BREAK signal
UART RX data buffer. See note below for details*
*NOTE: When a TCP connection is closed, currently if there is RX data in the UART receiver, it is held
until
1) more chars come in, in which case it will get flushed, or
2) no chars come in and a new connection is made, then the chars will get forwarded.
If this setting is enabled (set uart mode 0x10), any unsent RX data is still in the buffer is flushed when a
connection is closed.
set uart tx
<0, 1>
Disables or enables the TX pin= PIO10 of the UART. Disable will set
PIO10 to an INPUT with weak pulldown.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 16 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
NOTE: Due to an issue in the UART hardware, the UART does not support even or odd parity.
5.11. WLAN Parameters
set wlan auth <value>
Sets the authentication mode. Not needed unless using auto join mode 2.
i.e. set wlan join 2
Note: During association the WiFly module interrogates the Access Point
and automatically selects the authentication mode.
The current release of Wifly firmware supports these security modes:
• WEP-128 (open mode only, NOT shared mode)
• WPA2-PSK (AES only)
• WPA1-PSK (TKIP only)
• WPA-PSK mixed mode (some APs, not all are supported)
Value
0
1
2
3
4
5
6
Authentication Mode
Open (Default)
WEP-128
WPA1
Mixed WPA1 & WPA2-PSK
WPA2-PSK
Not Used
Adhoc, Join any Adhoc network
set wlan channel <value>
sets the wlan channel, 1-13 is the valid range for a fixed channel. If 0 is
set, then scan is performed, using the ssid, for all the channels set in the
channel mask.
set wlan ext_antenna <0, 1>
determines which antenna is active, use 0 for chip antenna, 1 for UF.L
connector. Default = 0. Only one antenna is active at a time and the
module must be power cycled after switching the antenna.
set wlan join <value>
sets the policy for automatically joining/associating with network access
points. This policy is used when the module powers up, including wake
up from the sleep timer.
Value
0
1
Policy
Manual, do not try to join automatically
Try to join the access point that matches the stored
SSID, passkey and channel. Channel can be set to
0 for scanning. (Default)
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 17 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
2
3
4
7/16/2010
Join ANY access point with security matching the
stored authentication mode. This ignores the stored
SSID and searches for the access point with the
strongest signal. The channels searched can be
limited by setting the channel mask.
Reserved – Not used
Create an Adhoc network, using stored SSID, IP
address and netmask. Channel MUST be set.
DHCP should be 0 (static IP) or set to Auto-IP with
this policy. (unless another Adhoc device can act as
DHCP server)
This policy is often used instead of the hardware
jumper to creat a custom Adhoc network
set wlan hide <0, 1>
Hides the WEP key and WPA passphrase. When set, displaying the wlan
settings shows ****** for these fields. To unhide the passphrase or
passkey, re-enter the key or passphrase using the set wlan key or set wlan
passphrase command. Default = 0, don’t hide.
set wlan key <value>
sets the 128 bit WEP key. If you are using WPA or WPA2 you should
enter a pass phrase with the set wlan passphase command. Key must be
EXACTLY 13 bytes (26 ASCII chars). Data is expected in HEX format,
“0x” should NOT be used here.
Example : “set w k 112233445566778899AABBCCDD”
Hex digits > 9 can be either upper or lower case.
The Wifly GSX only supports “open” key mode, 128 bit keys for WEP.
WEP-128, shared mode is not supported as it is known to be easily
compromised and has been deprecated from the WiFi standards.
set wlan linkmon <value>
sets the link monitor timeout threshold. If set to 1 or more, WiFly will
scan once per second for the AP it is associated with. The value is the
threshold of failed scans before the WiFly declares “AP is Lost”, deauthenticates. The WiFly will retry the association based on the join
policy variable. A value of 5 is recommended, as some APs will not
always respond to probes. Default is 0 (disabled). Without this feature,
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 18 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
there is no way to detect an AP is no longer present until it becomes
available again (if ever).
set wlan mask <value>
sets the wlan channel mask used for scanning channels with the auto-join
policy 1 or 2, used when the channel is set to 0. Value is a bit-map where
bit 0 = channel 1. Input for this command can be entered in decimal or
hex if prefixed with 0x. Default value is 0x1FFF (all channels)
set wlan num <value>
sets the default WEP key to use. 1-4 is the valid range.
Example : “set w n 2” sets the default key to 2.
set wlan phrase <string>
sets the passphrase for WPA and WPA2 security modes. 1-64 chars. The
passphrase can be alpha and numeric, and is used along with the SSID to
generate a unique 32 byte Pre-shared key (PSK), which is then hashed into
a 256 bit number. Changing either the SSID or this value re-calculates
and stores the PSK.
If exactly 64 chars are entered, it is assumed that this entry is already an
ASCII HEX representation of the 32 byte PSK and the value is simply
stored.
For passphrases that contain spaces use the replacement character $
instead of spaces. For example “my pass word” would be entered
“my$pass$word”. The replacement character can be changed using the
optional command set opt replace <char>.
Example : “set w p password” sets the phrase.
set wlan rate <value>
sets the wireless data rate. Lowering the rate increases the effective range
of the WiFly-GSX module. The value entered is mapped according to the
following table
Value
0
1
2
3
4-7
8
9
10
11
12
Wireless Data Rate
1 Mbit/sec
2 Mbit/sec
5.5 Mbit/sec
11 Mbit/sec
Invalid
6 Mbit/sec
9 Mbit/sec
12 Mbit/sec
18 Mbit/sec
24 Mbit/sec (default)
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 19 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
13
14
15
set wlan ssid <string>
7/16/2010
36 Mbit/sec
48 Mbit/sec
54 Mbit/sec
sets the wlan ssid to associate with. 1-32 chars.
NOTE: If the passphrase or ssid contain the SPACE ( ‘ ‘)
characterS, these can be entered using substitution via the “$” character.
For example, if the ssid of the AP is “yellow brick road”
You would enter “yellow$brick$road”
Using the ‘get w” command will properly display the value:
SSID=yellow brick road.
set wlan window <value>
sets the IP maximum buffer window size. Default is 1460 bytes.
6. Get Commands
These commands begin with “get”. They display the current values.
get adhoc
display all adhoc settings.
get broadcast
will display the broadcast UPD address, port and interval
get everything
displays all configuration settings, useful for debug.
get com
display comm. settings.
get dns
display DNS settings.
get ftp
display FTP settings.
get ip <a>
display IP address and port number settings. Optional parameter just returns the
current IP address value.
get mac
display the device MAC address.
get option
display the option settings like device ID
get sys
display system settings, sleep, wake timers, etc.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 20 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
get time
display the time server UDP address and port number.
get wlan
display the ssid, chan, and other wlan settings.
get uart
display the UART settings.
ver
return the software release version
7/16/2010
7. Status Commands
These commands begin with “show”, and they return the current values of variables in the system. In some
cases, for example IP addresses, the current values are received from the network, and may not match the
stored values.
show battery
Displays current battery voltage, (only valid for Roving battery powered product like the
RN-370 and temperature sensors)
show connection
Bit
location
Function
Value
Displays connection status in this HEX format: 8XYZ
13-16
9-12
7
6
5
4
0-3
fixed
8
channel
1-13
DNS found
1=resolved
DNS server
1=
contacted
Authen
1= OK
Assoc
1=OK
TCP status
0= Idle,
1=Connected
3= NOIP
4= Connecting
show io
Displays IO pin levels status in this HEX format: 8ABC
Example: show i returns 8103 indicates pins 0, 1 and 9 high level.
show net <n>
Displays current network status, association, authentication, etc. Optional parameter
displays only the MAC address of the AP currently associated.
show rssi
Displays current last received signal strength.
show stats
Displays current statistics, packet rx/tx counters, etc.
show time
Displays number of seconds since last powerup or reboot
show q <0-7>
Display the value of the an analog interface pin from 0 to 7. The value returned will be in
the format 8xxxxx where xxxxx is voltage in microvolts sampled on the channel you
request with the 8 in front as a start marker.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 21 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
show q 0x1<mask> Displays multiple analog interface values at once. The channels displayed is controlled
by a bit mask which is proceeded by a 0x1xx where xx mask is the bit mask of the
channels. For example, to read channels 0,1, and 7, send:
show q 0x183
Which returns 8<chan0>, 8<chan1>, 8<chan7>, \r\n
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 22 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
8. Action Commands
$$$
enter command mode Characters are PASSED until this exact sequence
is seen. If any bytes are seen before these chars, or after these chars, in a
250ms window, command mode will not be entered and these bytes will
be passed on to other side.
close
disconnect a TCP connection.
exit
exit command mode. Exit command mode. “EXIT” will be displayed.
factory RESET
Loads factory defaults into the RAM configuration. Note that the
RESET must be capitalized. This command also writes the settings out
to the standard config file. After this command the module then needs to
be rebooted for settings to take effect.
join <ssid>
joins the network <ssid>. If network is security enabled you must set the
pass phrase with the set wlan phrase command prior to issuing the join
command
join # <num>
join a network from the scan list. <num> is the entry number in the scan
list that is returned from the scan command. If network is security
enabled you must set the pass phrase with the set wlan phrase command
prior to issuing the join command
leave
disconnects the module from the currently associated Access Point.
lookup <hostname>
performs a DNS query on the supplied hostname.
open <addr> <port>
opens a TCP connection to the given IP port and address. If no arguments
are provided, the device will attempt to connect to the stored remote host
IP address and remote port number. <addr> can also be a DNS hostname
and will be resolved if entered.
Ping <g | h | i | addr> <num>
ping remote host. Default sends 1 packet. Optional <num> sends <num>
pings at 10 per second.
Ping 10.20.20.12 10 – pings IP address 10 times
ping g
pings the gateway, the gateway IP address is loaded if DHCP
is turned on, otherwise it should be set with the set ip gateway <addr>
command
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 23 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
ping h
pings the stored host IP address, the host IP address can be set
with the set ip host <addr> command
ping i
pings a known Internet server at www.neelum.com by first
resolving the URL (proves that DNS is working and proves the device has
internet connectivity).
ping 0
terminates a ping command
reboot
forces a reboot of the device (similar to power cycle)
scan <time> <P>
Performs an active probe scan of access points on all 13 channels. Returns
MAC address, signal strength, SSID name, security mode.
Default scan time is 200ms / channel = about 3 seconds.
time is an optional parameter, this is the time in ms per channel.
For example, “scan 30” reduces the total scan time down to about 1
second. This command also works in Adhoc mode. If the optional P
parameter is entered, the module will perform a passive scan, and list all
APs that are seen in passive mode.
time
Sets the Real time clock by synchronizing with the time server specified
with the time server parameters (see section 5.9) This command sends a
UDP time server request packet.
9. File IO Commands
del <name> <num>
Deletes a file. Optional <num> will override the name and use the sector
number shown in the “ls” command.
load <name>
Reads in a new config file.
ls
Displays the files in the system
save
Saves the configuration to “config” (the default file).
save <name>
Saves the configuration data to a new file name
boot image <num>
Makes file <num> the new boot image.
ftp get <name>
Retrieves a file from the remote FTP server. If <name> not specified, the
stored ftp filename is used.
ftp update <name>
Deletes the backup image, retrieves new image and updates the boot
image.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 24 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
10. Advanced features and Settings
10.1. System Timers and Auto Connect Timers
There are 2 timers that can be used to put the module to sleep, and perform a wake up.
If the sleep timer is enabled, the module will automatically go into deep sleep, low power mode once the
timer counts down to 0. The sleep timer is disabled if the module has an IP connection, or the module is in
COMMAND mode. The timer is reset when characters are received on the UART.
The sleep timer (which is the time the WiFly is awake) is a 32 bit number of seconds so it can be as high as
1.19 million hours. The wake timer (which is the time the WiFly is asleep) is a 22 bit number of seconds so
the maximum sleeping time is 1165 hours.
The sleep timer is set with : set sys sleep <time> time=decimal in seconds.
The wake timer will bring the module out of deep sleep.
The wake timer is set with: set sys wake <time> time=decimal in seconds.
For example, if you wanted the module to wake up, join a network and be available to accept TCP
connections for 30 seconds every 2 minutes you would set the timers as such
set wlan ssid my_net
set wlan passphrase my_pass
set sys sleep 30
set sys wake 90
save
reboot
UDP sleep, and Connection timers
There is another timer than can be used to put the device to sleep.
In UDP protocol mode, the autoconn timer is used as an auto-sleep timer.
Upon the start of transmission of the first UDP data packet this timer will count down.
set sys autosleep <value> UDP mode: sets the auto-sleep timer. 0 disables
the timer is decremented every xx milliseconds, based on the value of the comm flushtimer. Using a
minimum value of 2 (when the default flushtime=10 ms) is recommended to ensure
that the UDP packet gets transmitted. For larger packets the value should be increased.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 25 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
In TCP-Client mode, the auto-conn timer is used as a connect out timer. If set, the device will automatically
attempt a connection when the timer expires.
set sys autoconn <secs>
In TCP-Client AND TCP-Server mode, there is also a disconnect timer.
set comm idle <secs> sets the idle disconnect timer. This causes a disconnect if no transmit or receive data
is seen.
10.2. Wake on Sensor Input
SENSE 0 to 3 inputs are available to wake the module from sleep.
SENSE 0 to 3 pins have a small current source that is activated in sleep mode. This source is approximately
100nA, and will cause the input to float up to about 1.2VDC. If SENSE1 for example, is enabled, pulling
the SENSE1 pin to GROUND will wake the device.
To enable these inputs to wake the module, use the command set sys trigger <value>. The value is a bitmapped setting. To wake on sensor pin 2, use set sys trig 4, for example. Setting the value to 0 disables all
sensors pins.
Sensor inputs are rated 1.2VDC maximum. You must use a resistor divider when driving a sensor pin from
the other 3V pins such as RX. A resistor divider network with a minimum of 24K in series and 10K to
ground from the UART RX or CTS pin should be used.
WARNING: Under no conditions should the voltage on any sensor input exceed 1.2VDC. Permanent
damage to the module will result.
An open drain FET is a good device to tie to the SENSE pin. The threshold is about 500mV. Additional
pullup to 1.2VDC may be used if the circuit has an impedance (due to leakage current) of less than 5Mohms
(500mv / 100nA). SENSE 0 to 3 pins that are not used should be left unconnected.
10.3. Wake on UART
When the module is in sleep mode, the UART itself is disabled. However, wake on UART can be
accomplished by connecting the SENSE1 pin to the RX data pin. (Using the appropriate divider resistors
mentioned above)
The SuRF board (RN-134) has a built in resistor divider connecting SENSE 0 and SENSE 1 to RXD and
CTS to allow waking up the module.
Note: On SuRF board rev 2 the resistor pack connecting RX and CTS signals is not correctly connected to
the sensors. To wake on UART RX place a jumper from pin 3 on the Evaluation board header to pin 2 on
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 26 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
the sensor header. To wake on UART CTS place a jumper from pin 10 on the Evaluation board header to
pin 3 on the sensor header.
To enable wake on RXD, use set sys trig 1.
It should be noted that the first (or possibly multiple) byte sent into the module will likely be lost, so the
designer should take care to send a preamble byte to wake up the module before sending valid data bytes. A
better way to do this is to use the CTS input to wake the module, and wait until it is ready to accept data.
To enable this, use set sys trig 2.
10.4. UART Receiver, RTS/CTS Hardware Flow Control
The UART receive buffer is approx. 1500 bytes, and at lower baudrates (less than 115K) the system can p
send data over TCP/IP without the need for flow control.
Depending on the frequency and quantity of data begin sent comm parameters will optimize Wi-Fi
performance by specifying when the system sends IP packets. To minimize latency and TCP/IP overhead
use the flush size or match character to send data in a single IP packet. In most cases you will want to set
the flush timer to a large number to avoid fragmentation. For high throughput cases increase the UART
baudrate, set the flush size to 1460 and flush timer to a large value so full IP packets are sent.
You can control the packet forwarding 3 ways:
set comm match <value> sets the value of the packet terminator. Each time the match character is seen
an IP packet will be sent. "set comm match 0xd" for example forwards once a 0xd hex character is seen..
set comm size <value> sets the flush size, the size is the number of bytes received before forwarding.
maximum value = 1460 bytes which is the size of a single Ethernet frame.
comm time <value> sets the flush timer, this is used to make sure that any partial data sitting the RX buffer
if no additional data is seen for “value” milliseconds. For example "set comm time 1000" would wait for 1
second after no data was sent.
When sending more than a few hundred thousand bytes in a single transaction you should enable hardware
flow control. Your hardware will need to actively monitor CTS.
Flow control is not enabled by default. Flow control is set using with the following command.
set uart flow 1
It is possible to operate higher baudrates (greater than 115K) without flow control if packets are uniform
and an application protocol is used to ensure that each packet data is delivered on the remote side before the
next packet is sent.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 27 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
However, given the uncertainty of packet delays in a TCP/IP network and the affects of interference and
retries inherent in wireless networks, flow control is usually required whenever large, contiguous quantities
of data are being written to the UART to guarantee no data is lost.
10.5. Setting GPIO direction, Alternate Functions and Disabling LEDs
The direction of the GPIO can be controlled with the GPIO mask using the set sys mask <value> command
to set the GPIO pin direction. Value is entered as a hex number. If you need to set only one bit in the mask
you need to read, mask and set the value. Otherwise you will over write any previous GPIO settings.
The hex value represents a bit mask that controls each pin where 1 = output and 0 = input. For example, set
sys mask 0x0 sets all pins to input.
To set only GPIO 6 and 7 for example, you would enter set sys mask 0xc0
The default mask for WiFly = 0x20f0, which has GPIO 13, 8, 7,6,5,4 as Outputs.
GPIO 0-3 are used internally on the module.
GPIO 4, 5, 6 are LEDs.
GPIO 9 is reserved as the ARM factory reset/adhoc mode, (read at power up) and otherwise general purpose
input detect pin.
GPIO 10, 11 are the Uart RX, TX pins and TX does not need to be masked as an output.
GPIO12 is CTS (input) if used.
GPIO13 is RTS (output) if used.
The get sys command will show the setting of the GPIO mask.
<2.09> get sys
SleepTmr=……
IoFunc=0x0
IoMask=0x21f0
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 28 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
The table below shows the usage of the GPIO pins with their default state and functionality.
11
10
9
8
7
6
5
4
3
2
1
0
Signal
Name
GPIO-13
UART
RTS
GPIO-12
UART
CTS
GPIO-11
UARTRX
GPIO-10
UARTTX
GPIO9
GPIO8
GPIO7
GPIO6
GPIO5
GPIO4
N/A
N/A
N/A
N/A
Default
State
Output
Input
Input
Output
Input
Output
Output
Output
Output
Output
N/A
N/A
N/A
N/A
Default
Function
Goes HIGH on POWERUP, LOW once system is READY.
If HW Flow control enabled, toggles HIGH to indicate RX
buffer full
ADHOC MODE & FACTORY RESET
NOT USED
BLUE LED
RED LED
YELLOW LED
GREEN LED
10.5.1.
UART TX
12
UART RX
13
Throttles transmitter if HW flow control is enabled.
LOW enables transmitter, HIGH disable.
Bit
Position
Setting the alternate GPIO functions
The defaults for GPIO 4 5, 6 is to control the LED functionality. This default functionality can be
overridden to allow user programmable IO or alternate IO functionality by using the set sys iofunc
<value> command. Value is entered as a hex number.
The hex value represents a bit mask that controls each bit in the <value> represents a particular GPIO pin.
If a bit is 0, then that GPIO is driven/read by the firmware per the default function.
The IO function <value> is encoded as such:
Bit
0
1
2
3
4
5
6
IO
GPIO-4
GPIO-5
GPIO-6
Not Used
GPIO-4
GPIO-5
GPIO-6
DIRECTION
output
output
output
Function
Disable LED function so IO can be used as GPIO
Disable LED function so IO can be used as GPIO
Disable LED function so IO can be used as GPIO
output
input
output
HIGH once associated/authenticated and have IP address.
Set HIGH to trigger TCP connection, LOW to disconnect.
HIGH when connected over TCP, LOW when disconnected.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 29 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
NOTE. Bits 0-3 are mutually exclusive with the bits 4-6. i.e. 0x77 is an illegal value.
If the LEDs are disabled using bits 0, 1, 2 above, you can then use the show i command to read these GPIO.
<2.21> show i
Port=30
will return
For example, to use the alternate functions of the LEDs, the sequence of commands would be:
set sys mask 0x2070
set sys iofunc 0x70
save
reboot
// set mask for GPIO 6, 5 and 4
// enable alternate function for GPIO 6, 5 and 4
// store configuration
// reboot the module
You can also use the set sys output <value> <mask> to drive GPIO output pins to HIGH or LOW.
(mask is optional, default sets all the pins ).
10.5.2.
Controlling connections with GPIO
In embedded applications it is useful to monitor and control the status of the TCP/IP connection. This can
be done by using the alternate function for GPIO-5 and GPIO-6.
With the alternate function for these GPIO set, the module will connect to the stored remote host IP address
and port when GPIO-5 is driven high and disconnect when driven low.
The TCP/IP connection status can be monitored by reading GPIO-6, high = connected, low = not connected.
Here is how to set the WiFly module to connect using GPIO-5 and GPIO-6
<2.20> set ip host <addr> // set the IP address of the remote host
<2.20> set ip remote <port> // set the IP port of the remote host
<2.20> set sys iofunc 0x60 // set alternate function for GPIO-5 and GPIO-6
<2. 20> save
<2. 20> reboot // the module must be rebooted for the alternate settings to take effect
On the remote host run your application or other software that opens and listens on the <port>.
Connect GPIO-5 to your embedded processor or other control signal. When GPIO-5 is driven high a
connection will be attempted. When drive low the connection will be closed. Be sure to not to drive the
GPIO with more that 3.3 VDC or permanent damage to the module will occur.
If the connection to the remote host is successful GPIO-6 will go high. If the COMM OPEN and REMOTE
strings are set you should see the *OPEN* messages on the UART and the *HELLO* at the remote host.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 30 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
10.6. Setting Debug Print levels
There are a number of print functions that can be enabled to assist in debugging the operation and status of
the module. The following command is used to control these printouts.
set sys printlvl <value> sets additional print functions. Value is a bit-mapped register that controls which
printout messages are sent to the UART.
Print level
1
2
4
Description
All status messages
only critical NETWORK AP connection level status is output, "Associated!" Or
"Disconnect from <ssid>"
DHCP and IP address status information Once the configuration has been checked; this
can then be turned off so that these messages do not interfere with the data.
10.7. Using the Real Time Clock Function
The real time clock in the module keeps track of the number of seconds since the module was powered on
and the actual time when synchronized with the sNTP time server. By default the module keeps track of up
time but does not synchronize with the time server since this requires being associated with a network that
can access the sNTP server.
The default sNTP server is at
ADDR=129.6.15.28:123
ZONE=7
(GMT -7)
Use the show time command to see the current time and uptime
<2.20> show t
Time=08:43:10
UpTime=10 s
Time can be set by using the time command
<2. 20> show t
Time NOT SET
UpTime=8 s
<2. 20> time
<2. 20> show t
Time=08:51:31
UpTime=15 s
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 31 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
NOTE: the WiFly module must by successfully associated with a network for the module to contact the
sNTP server.
Alternatively, the module can be configured to get the time whenever it powers up by setting the time
enable to 1. Any value greater than 1 gets time continuously every <value> minutes.
To configure the Wifly module to get time upon power up
<2. 20> set time enable 1
AOK
<2. 20> get time
ENA=1
ADDR=129.6.15.28:123
ZONE=7
To view a complete listing of the time variable use the command
<2. 20> show t t
Time=09:02:10
UpTime=653 s
Powerup=1792 s
RTC=7753271426558 ms
timera=66885
10.8. Time Stamping Packets
This feature can be used to automatically append 8 bytes to a TCP or UDP packet.
set ip flags 0x87
(enables timestamp and keeps other default settings )
TIME STAMP (MSB to LSB )
User’s TCP or UDP packet Data
63-56
55-48
47-40
39-32
31-24
23-16
15-8
7-0
The 8 bytes represents the 64 bit raw value of the Real Time Clock register. The data is appended
before calculating TCP checksum so it will pass thru the TCP stack correctly. This register counts at 32,768
Hz. If the timeserver function is enabled, the RTC should accurately reflect the real time. This register is
also counting while in sleep mode.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 32 ~
WiFly GSX
www.rovingnetworks.com
11.
WiFlyGSX-um
7/16/2010
Sending data using UDP
11.1. Overview
UDP is a connectionless protocol. There is no initial handshaking between the hosts to set up the UDP
connection. There are no acknowledgements sent by the receiver for UDP packets that it receives. This
makes UDP an unreliable protocol, as there is no guarantee that the data will be correctly delivered.
However, due to its connectionless nature, UDP is suited for applications that cannot tolerate too much
latency but can tolerate some errors in data. Transmission of video would be a good example of UDP
application.
To use UDP on the WiFly-GSX module, you will need to enable the UDP protocol using the command “set
ip proto 1”. You will also need to specify the remote host IP address and the local and remote port number
that you will use for UDP communications.
The commands to enable UDP data transfer are:
Associate to a network:
set wlan ssid <string>
set wlan phrase <string>
// set the network name
// set the passphrase for WPA and WPA2 modes
Set up the protocol and port number
set ip proto 1
set ip host <ip address>
set ip remote <port>
set ip local <port>
save
reboot
// enable UDP as the protocol
// set the IP address of remote host
// set the remote port number on which the host is listening
// set the port number on which the WiFly module will listen
// saves the settings in config file
// reboots the module so that the above settings take effect
NOTE: If you attempt to send data by physically typing characters on the keyboard or if your
microcontroller is not sending data fast enough, the WiFly module will send out packets with less data
bytes. To avoid this, set the flush timer to a higher value. By default, it is set to 10 milliseconds. You can
choose to either disable forwarding based on flush timer (use “set comm. time 0”) or set it to a higher value
(e.g. set comm. time 2000)
Since UDP is a connectionless protocol, data will start flowing as soon as the module is rebooted. Unlike
TCP, it is not required to do an “OPEN” for the connection to be established. The WiFly-GSX module acts
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 33 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
like a data-pipe, so the UART data will be sent over the Wi-Fi link via the UDP protocol (in this case) and
the data coming over the Wi-Fi link (via UDP protocol in this case) will be sent to the UART.
11.2. UDP Auto Pairing
UDP auto pairing feature temporarily stores the Host IP address of the first remote device that send a UDP
packet into the module. This host IP address is stored in the RAM which will not survive a sleep or power
cycle.
This feature allows the WiFly module to echo back to any client that sends a UDP packet. To use this
feature, the host IP addresses and set the ip flags.
set ip host 0.0.0.0
set ip flags 0x80
11.3. UDP Retry
This feature adds a level of reliability to the UDP protocol without adding the complete overhead of TCP
protocol. When enabled, the module waits for a response on every UDP packet sent, (any UDP packet
coming back in). If the response packet is not received by approximately 250 ms, the same UDP packet is
sent out.
This continues until either
• A UDP response is seen, or
• A new UDP packet is sent from the module and is acknowledged
To enable this feature, use set ip flags <value>
11.4. Using the UDP Broadcast function
The WiFly module can be setup to automatically generate UDP broadcast packets. This is useful for a
number of reasons:
- Some Access Points will disconnect devices that sit idle and don’t send any packets after a time.
Using the UDP broadcast informs the AP that WiFly is alive and wants to stay associated.
-
This feature can be used by application programs to auto-discover and auto configure the WiFly
module. If an application is listening for the UDP broadcast, a number of useful parameters are
present in the package that can be used for auto-discovery. For example, the IP address and port
number of the WiFly are both part of the packet, and thus the WiFly can be connected to and
configured remotely with this information.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 34 ~
WiFly GSX
www.rovingnetworks.com
-
WiFlyGSX-um
7/16/2010
The MAC address of the associated AP, channel, and RSSI value are available in this packet, thus
enabling a simple location and tracking based function.
By default the WiFly module now sends out a UDP broadcast to 255.255.255.255 on port 55555 at a
programmable interval. The broadcast address, port and interval are set using the “set broadcast”
commands.
The format of the packet is: 110 bytes of data:
AP MAC
address
Chan
Bytes
0-5
6
7
8
10
14
16
18
32
60
92
94
RSSI
Size
6
1
1
2
4
2
2
13
26
32
2
16
Local TCP
port
Real Time
Clock
Battery
Voltage
GPIO pins
time of
day
Version and
datecode
User
DEVICEID
Boot
time
MAC adddress of AP that we are Associated with (for location )
Channel we are on.
RSSI
local TCP port# (for connecting into the Wifly device )
RTC value
(MSB first to LSB last)
Battery Voltage on Pin 20 in millivolts (2755 for example )
value of the GPIO pins
ASCII time
Version string with date code
Programmable Device ID string ( set option deviceid <string>)
Boot time in milliseconds.
Voltage readings of Sensors 0 thru 7 (enabled with “set opt format <mask>” )
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 35 ~
SENSOR
pins
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
12. Joining Networks and Making Connections
Configuring the module to make connections is a two set process. First you need to associate with a access
point (AP) and second you need to open a connection.
To configure the module over the WiFi link is a chicken and egg problem. The module must be associated
to a network to connect to it and program the network settings. This problem can be solved by configuring
the module from the UART or over the air using adhoc mode.
If configuring the module using adhoc mode, see section 15. Once in adhoc mode open up a telnet window
on IP address 169.254.1.1 port 2000
If configuring the module using the UART mode either using the RS232 or development board, open a
terminal emulator on the COM port associated with that deveice. The default baud rate is 9600, 8 bits no
parity.
12.1. Associate with a network access point
From within the terminal window, put the WiFly GSX module into command mode by typing $$$ in the
terminal window. You should get CMD back confirming you are in command mode.
Type show net to display the current network settings.
Now finding all available networks with the scan command
If the network you’re connecting to is open, you can simply use the join command to associate with the
access point. From the scan list above you can see that roving1 is an open network access point.
Type join roving1 to associate with an access point.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 36 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
You could also have specified the roving1 access point by using the command join # 1
If the access point is security enabled you will need to set the pass phrase prior to issuing the join command.
The RN-131G module will attempt to inquire and determine the security protocol of the access point so you
do not have to set the authentication mode. To set the pass phrase for WPA use the command set wlan
phrase <string>. For WEP set the key using the set wlan key <num> command.
Once you have successfully associated to the network the access point SSID is stored. This along with the
pass phrase can be saved to the config file so the module can associate with the network each time it is
booted up.
12.2. Making Connections
To make a connection into the module simply open a IP socket and connect to the IP address of the module.
Telnet is a simple way to test this connection. From in Telnet type open <addr> <port>. In the example
above the telnet command you look like open 10.20.20.62 2000. Once open you can type characters into
the UART window and see them on the Telnet window or visa versa.
To make a connection from the module you will need IP address and port number of your server
application. A simple program to test this functionality is a COM port redirector. This software opens an
IP port and transfers all data it receives to a specified COM port on your machine. A free com port
redirector program is available from Pira at http://www.pira.cz/eng/piracom.htm
After installing and starting this program, note the IP address of the machine it is running on. This can be
found by running ipconfig in the Microsoft command window.
With the WiFly-GSX module in command mode, type open <addr> <port>. The server will report the
connection is open and you can type characters into the UART window and see them on the server window
or visa versa.
12.3. Setting up Automatic Connections
Often, it is desired on power up (or wakeup) to automatically connect out to a remote server, send data, and
then disconnect. This can be configured to happen automatically.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 37 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
In the following example assume the network SSID and security have been set correctly and autojoin is set
to 1. This will also work in adhoc mode(autojoin 4), however there will be delay in connecting to the adhoc
network from the remote computer so set the sleep timer large enough to allow the network to get set up and
the autoconn establish a TCP connection.
When the module wakes up or is powered on the autoconn timer will cause the module to attempt a
connection to the stored remote IP address and port. While this connection is open the sleep timer will not
decrement. While data is flowing the idle timer will not decrement. Once data stops for 5 seconds the
connection will be closed. The sleep timer will the kick in and put the module in deep sleep. Finally the
wake timer will start the whole cycle again one minute later.
set ip host X.X.X.X ( set up the IP address of the remote machine )
set ip remote_port num
(set up the IP port of the remote machine )
set sys autoconn 1
(automatically connect out after READY )
set com idle 5
(disconnect after 5 seconds with no data activity )
set sys sleep 2
(sleep 2 seconds after connection is closed )
set sys wake 60
(wakeup after 1 minute of sleeping )
UART data TRIGGER mode. (version 2.19) This mode will automatically make a TCP/HTTP
connection upon incoming UART data.
set uart mode 2
12.4. Controlling Connections using PIO5 and PIO6
PIO5 can be used to control the TCP connection. Once configured with the set system IO command the
module will attempt to make a connection to the stored IP and PORT address when set high and will
disconnect when set low.
set sys io 0x20
(configures PIO5 to connect/disconnect )
You can monitor the connection status by reading PIO6. High indicates an open connection, low indicates
no connection. Use the command set system IO to enable PIO6.
set sys io 0x40
(configures PIO6 to represent the connection status )
12.5. Using DNS settings
WiFly contains a built in DNS client. If the IP address of the host is not specified (i.e it is set to 0.0.0.0) ,
DNS will be used. WiFLY will automatically attempt to resolve the host address
stored with the command:
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 38 ~
WiFly GSX
www.rovingnetworks.com
set dns name <string>
WiFlyGSX-um
7/16/2010
sets the name of the host for TCP/IP connections.
Once the address is resolved an automatic connection will be made.
To manually lookup the IP address of a host, use this command:
Lookup <string>
string is the hostname.
12.6. Utilizing the Backup IP address/connect function
WiFly contains a feature for auto-retry and redundancy. If the first IP host address connection fails, the
backup IP will be used (if set) . If this fails (or is not set) then the first DNS name will be used. If this
fails (or is not set) then the Backup DNS name will be used.
To set the backup IP address, use:
set ip backup <address>
To set the backup DNS name, use:
set dns backup <string>
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 39 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
13. Sending and Receiving Data via Web Server
WiFly can be setup to easily pull or post data to a web server.
Example: user wants to retrieve data from web server with this format:
http://www.webserver.com/ob.php?obvar=WEATHER
Settings:
set dns name www.webserver.com //name of your webserver
set ip address 0
// so wifly will use DNS
set ip remote 80
// standard webserver port
set com remote 0
// turn off the REMOTE string so it does not interfere with the post
to make the connection the command would be:
open
or inline you can send open www.webserver.com 80
The user’s microprocessor should then send this data:
GET /ob.php?obvar=WEATHER \n\n
Where the \n is the LINEFEED character decimal 10 or hex 0xa
Two linefeeds are required so the web server knows the page is complete…
13.1. Automatic-Advanced Web Server Modes
WiFly can be setup to automatically post and get with special HOST CPU support required!
set option format <value> Bitmapped value.
Bit of Format reg
0
1
2
3
4
Function
Automatically send HTML data header based on broadcast interval.
Send users BINARY data (converted to ASCII hex )
Sample the GPIO and AtoD pins and format to ASCII hex
Appends &id= <the value of the deviceid string set with “set opt
device <string>”>
Appends &rtc= <real time clock value in message as 32 bit HEX value
in format aabbccddeeff>
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 40 ~
WiFly GSX
www.rovingnetworks.com
13.1.1.
WiFlyGSX-um
7/16/2010
Reading a page: WiFly can be setup to automatically post with no HOST CPU:
set com remote GET$/ob.php?obvar=WEATHER
// setup the string.
set sys auto 3
// auto connect every 3 seconds.
set option format 1
// auto send the header once connection is open
set ip proto 18
// turn on HTTP mode=0x10 + TCP mode = 0x2
NOTE1: when HTTP mode is set, the WiFly automatically appends the \n\n to the end of the packet.
NOTE2: if the html header contains spaces, the $ is required when entering the string. Space is the
command delimiter. When WiFly command parser sees $ it will convert this to a SPACE character.
13.1.2.
Posting data to a page: WiFly can auto-post Serial UART data in ASCII or BINARY.
Example: users data is ASCII string….
set com remote GET$/userprog.php?DATA=
set uart mode 2
// sample server application
// automatically connect using data TRIGGER mode
Then when the serial UART data comes in, WiFly auto connect, and will automatically send:
GET /userprog.php?DATA=<users serial data> \n\n
13.1.3.
Posting binary data:
Web servers expect ASCII data, so if the User data is binary, WiFly
can convert it.
Example: using the same settings as above but this this change:
set option format 2
If incoming UART data = 6 bytes of binary data with hex values 0x01 0xAB 0x03 0xFF 0x05 0x06
Wifly will send this string to the webserver:
GET /userprog.php?DATA=01AB03FF0506 \n\n
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 41 ~
WiFly GSX
www.rovingnetworks.com
13.1.4.
WiFlyGSX-um
7/16/2010
Auto posting sensor data:
WiFly can send its own data which is comprised of the value on
the GPIO pins plus the sampled data on the sensor pins:
The data will come as 18 bytes of ASCII HEX: <2 bytes GPIO><channel 0 thru 7 sensor data>
set sys auto 3
set option format 7
// automatically make the connection
// send the header plus the sampled binary data converted to ascii
The Resulting string sent to the server will be
GET /userprog.php?DATA=0F301111222233334444555566667777\n\n
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 42 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
14. Firmware Upgrade over FTP
WiFly module has a file system for storing firmware, web pages and config files. Use the ls command to
view files. File size is displayed in sectors and the active boot image is identified in the final message.
FL#
11
29
SIZ
18
1
FLAGS
3
10
WiFly_GSX-2.05
config
190 Free, Boot=11, Backup=0
Multiple firmware images and config files can be stored on the module file system.
FTP Upload and Upgrade
WiFly contains a built in FTP client for getting files and updating the firmware.
mode FTP, which allows operation thru firewalls and the Internet.
The client uses passive
To upload the latest released firmware from Roving Networks the following setting are required:
FTP username = roving
FTP password = Pass123
FTP filename = wifly-GSX.img
FTP directory = ./public (this parameter cannot be modified)
To use FTP to upgrade the firmware, enter the following command:
ftp upload <string> (string is an optional filename, use to bypass the default firmware filename)
The ftp upload command will retrieve the file and switch the boot image to the new file.
<2.10> ftp update
<2.10> FTP connecting to 208.109.78.34
FTP file=30
.......................................................................
FTP OK.
The previous firmware will become the backup image. Here is an example of what you should see after a
successful update:
FL#
11
29
SIZ
18
1
FLAGS
3
10
WiFly_GSX-2.05
config
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 43 ~
WiFly GSX
www.rovingnetworks.com
30
18
3
WiFlyGSX-um
7/16/2010
WiFly_GSX-2.10
208 Free, Boot=30, Backup=11
Note the module must be rebooted or power cycled to use the new firmware. To boot a different firmware
use the following command:
Boot image <num> sets the current boot image <num>
For example to boot the previous image from above use
<2.10> boot image 11
Set Boot Image 11, =OK
To upload your own firmware or config file to the module, change the stored FTP settings: See section 5.5
for more details on the FTP commands. To upload your file w following command:
ftp get <string> Retrieves remote file with name <string>
15. Adhoc Networking Mode
15.1. Infrastructure and adhoc
comparison
There are two types of networks. The most common
network is infrastructure in which an access point (AP) is
the common point linking all WiFi devices. The access
point keeps track of who’s on the local network and
directs IP packets. In many cases the AP is also a router
and will forward packets from the local network to other
networks and the internet. It is also very common for the
AP to be running a DHCP server which tracks and assigns
IP addresses.
Adhoc is considered a point to point network in that each
WiFi device is linked directly to every other WiFi device
on the Adhoc network. There is no access point. All WiFi
devices on the adhoc network participate in keeping the
network alive and each keeps track of the other active
devices on the network by sending and receiving beacon
and probe packets. In most cases IP addresses are
assigned through Auto IP, although one of the WiFi
devices can be configured as a DHCP server.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 44 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
15.2. Configuring adhoc mode
The WiFly GSX module can be configured to setup an adhoc network. This mode is useful for point to
point communications. The WiFly device is in Adhoc mode the device looks like access point for other
WiFi devices to join.
Note: currently the WiFly only supports OPEN mode for creating adhoc networks.
Adhoc mode can be set via hardware or software commands.
To enable adhoc mode via hardware:
Set PIO9 high (3.3V) at power up. On the RN-134 PIO9 is on J1 of the jumper block. When the module
powers up in adhoc mode the WiFly module creates an adhoc network with the following
SSID:
WiFly-GSX-XX where XX is the final two bytes of the devices MAC address
Channel:
1
DHCP:
OFF
IP address:
169.254.1.1
Netmask:
255.255.0.0
With the adhoc jumper in place the above settings override the current saved configuration settings.
To enable adhoc mode from software:
From command mode, the module is configured for adhoc mode using the join command. You will also
need to set the ssid and channel.
set wlan join 4
set wlan ssid my_adhoc_network
set wlan chan 1
Turn off DHCP and set the IP address and netmask so other devices know where to connect to the adhoc
WiFly GSX. Since auto IP fixes the first two bytes of the IP address you want to use the netmask of
255.255.0.0 so that other device connecting to the module can be reached. Alternatively you can set the
netmask to a smaller subnet if the other device’s IP addresses are begin statically to the same subnet as the
adhoc device
set ip address 169.254.1.1
set ip netmask 255.255.0.0
set ip dhcp 0
Be sure to save your configuration, then upon reboot the module will be in adhoc mode.
To associate with an adhoc network from another WiFly device:
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 45 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
set wlan ssid my_adhoc_network
reboot
or alternatively you can use the join command to associate with the adhoc network. Remember to
disassociated using the leave command if you are previously associated to another network.
join my_adhoc_network
If you leave DHCP service enabled the WiFly device will get an IP address using auto IP when associating
with the adhoc network. By definition auto IP fixes the first two bytes of subnet to 169.254.xxx.xxx. The
WiFly device takes about two to three seconds to resolve the auto IP address.
Alternatively you can statically set the IP address by disabling the DHCP service and explicitly assigning
the IP address.
set ip
set ip
address169.254.1.2
dhcp
0
You can confirm the device has properly connected to the adhoc network using the ping command.
ping 169.254.1.1 10
To use associate with the WiFly adhoc network from another computer
Open the “Control Panel / Networking and Sharing / Networking and Sharing Center” dialog in Vista or
“Control Panel / Network Connections” dialog in Windows XP. From here, view available networks and
select the name of the adhoc network.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 46 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
Note: Once associated with the adhoc network, Vista auto IP may take a couple minutes to allocate an IP
address for your computer. To work around this you can assign a static IP address in the network settings /
TCP/IP / Properties menu.
Once associated with the adhoc network you can open a connection or telnet window as you would with an
enterprise connection.
NOTE: The module does not support adhoc and enterprise network modes simultaneously.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 47 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
16. Analog Sensor Capability
The WiFly-GSX has 8 analog inputs that can be driven with 0 to 1.2VDC. Warning: over driving these
inputs will cause permanent damage. The analog inputs are sampled and the digital value read by using the
show q <channel> command.
The hardware specifications on the analog input is:
Input voltage range: 0 - 1.2V, however the A2D saturates at 400mV.
Resolution:
14 bits = 12uV
Sampling frequency: 35us
Accuracy:
5% un-calibrated
See the WiFly-GSX (RN-131G) data sheet for more details.
The accuracy of each analog sensor reading can be offset by up to 5% due to variation from chip to chip. To
improve accuracy we recommend using a precision reference voltage on one of the analog inputs to
calculate the offset. The offset will be the same for all analog inputs.
For example,
- drive precision 200mV reference on analog input 4.
- read channel 4 and compute the offset.
Let us assume for example, if you read 210mv you would know that the offset is +10mv.
When you read input 5 you would subtract 10mv from the result.
To read a sensor pin, send the following command:
show q <channel>
Channel is the analog input from 0 to 7. The value for the input channel you is measured in microvolts and
is returned as 8xxxxx. The 8 in front is a start marker.
You can also sample multiple channels by using a bit mask:
show q 0x1<mask>
where mask is a bit mask of the channels.
For example, to read channels 0,1, and 7, send:
show q 0x183
The return values are the format: 8<chan0>, 8<chan1>, 8<chan7>\r\n
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 48 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
Automatic sampling of sensor pins:
The sensor pins can be automatically sampled and data forwarded in 2 modes:
1. the UDP broadcast packet will contain the value of the samples.
2. in HTTP mode, the pin sampled data can be forwarded to a remote server
to enable the above modes, use the
set option format <mask> command.
USING the BUILT IN SENSOR POWER
WiFly modules contain an onboard Sensor power pin, which is controlled by the command below:
set q e <value>
Valid values are:
Value
0
1
2
3
4
Sensor pin voltage
Turn off the sensor power
GROUND the sensor pin
1.2V internal regulated reference
VBATT input pin
3.3V output of on board regulator
ON BOARD TEMPERATURE OPTION (RN-121 TEMP )
show q t
The return values are the format: T=207\r\n
this would be 20.7 degrees C.
show q t 1
enables automatic sampling and output once per second.
show q t 0
turns off automatic sampling and output of temperature.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 49 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
17. Default Configuration Settings
ADHOC PARAMETERS
Beacon
Probe
100 (milliseconds)
60 (seconds to look for beacons before declaring adhoc is lost )
BROADCAST PARAMETERS
IP address
255.255.255.255
Port
55555
Interval
7 (seconds)
COMM PARAMETERS
Close string
Open string
Remote string
Flush size
Match byte
Flush timer
Idle timer
Cmd char
*OPEN*
*CLOS*
*HELLO*
64
0
10 (milliseconds )
0
$
DNS PARAMETERS
IP address
Name
Backup
0.0.0.0
server1
backup2
FTP PARAMETERS
Server address
File
User
Password
208.109.78.34 (roving default update server) (port at 21)
Wifly-GSX.img
roving
Pass123
IP PARAMETERS
DHCP
IP address
Net mask
Local port
gateway
host
remote port
protocol
ON
(1=enabled)
0.0.0.0
255.255.255.0
2000
0.0.0.0
0.0.0.0
2000
2 ( TCP server and client )
OPTIONAL PARAMETERS
Device ID
WiFly-GSX
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 50 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
Join timer/WPA timer
Replacement char
Format
Password
Sensor
1000
$ (0x24)
0x00
“”
(no password enforced)
0x00
SYSTEM PARAMETERS
Sleep timer
Wake timer
Trigger
Auto connect
IOfunc
IOmask
Print level
0
0
1
(SENS0 pin wakes up the device)
0
0 (no alternate functions )
0x21F0
1
(prints enabled)
TIME SERVER PARAMETERS
Enable
0 (disabled)
Server address
129.6.15.28 (fixed to port
Zone
7 (pacific USA time)
7/16/2010
123 - SNTP protocol)
UART PARAMETERS
Baudrate
parity
flow
Mode
9600
n
0
0
WLAN PARAMETERS
SSID
Channel
External antenna
Join mode
Authentication mode
Mask
Rate
Passphrase
Key number
Key
roving1
0
(automatic scan )
0
(off - use on-board chip antenna)
1
(automatically scan and join based on ssid )
OPEN
0x1FFF ( all channels )
12 (24Mbit)
rubygirl
1
0000000000000
(none, this is the only option available)
(disabled)
17.1. Restoring Default configuration settings:
From command interface use the factory RESET command to restore the defaults. This command
automatically loads default settings, and executes a “save” command.
From hardware, setting PIO9 high on power up arms the factory reset functional and toggling PIO9 five (5)
times there after causes the configuration setting to restored to the factory reset.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 51 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
PIO9 is sampled at about 1 Hz, so if using a CPU to generate the signal, make sure that PIO9 transitions (H
to L or L to H ) are at least 1 second long.
User file option
As of version 2.10 you can now specify a USER configuration as the factory reset settings. Prior to this
release only the hardcoded factory defaults would be restored. If there is a config file named "user", it is
read in as the factory defaults instead of using the factory hardcoded defaults. If no "user" config file is
present, the hardcoded factory defaults are used.
The "user" config file is created using the "save user" command which saves the current configuration
settings into the “user” file.
Even if there is a “user” config file arming and toggling PIO9 7 times will override the “user” settings and
restore the wifly module to the factory hardcoded defaults. This is a bypass mechanism in case a bad
configuration is saved into the “user” file.
Note: The module should be rebooted, or reset with reset line for the new settings to take effect.
18. Boot-up Timing Values
Function
Power up
Initialization
Ready
Join
Description
Powerup Time from Reset HIGH or power good to boot
code loaded.
Initialize ECOS
Load configuration and Initialize application
Total time to READY
Associate using channel = 0 (full channel scan, mask =
0x1FFF)
Associate using channel = 0 (primary channel scan, mask =
0x421)
Associate using channel = X (fixed channel)
Authentication Authenticate using WPA1 or 2 ( highly dependent on Access
Point response)
Aquire IP
DHCP obtain IP address (highly dependent on DHCP server
response time )
Time (in ms)
70
50
30
150
80
15
5-20
50 - 250
30-???
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 52 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
19. Supported Access Points
Access points that are set to MIXED mode (WPA1 and WPA2) may cause problems during association
because some of these incorrectly report their security mode.
We also currently do not support WPA2-Enterprise (radius server authentication, EAP-TLS)
The WiFly GSX should work with any standard Access Point. We have tested the WiFly-GSX module with
the following access points:
•
•
•
•
•
•
•
•
•
Cisco Aeronet series
Linksys (both standard and openWRT Linux)
Netgear WGR614 v8
Netgear WGN54
DLINK dir-615
Airlink 101
Apple Airport express
Buffalo networks
ADHOC MODE (Apple iPhone, Microsoft windows PC with XP, Vista , Ubuntu Linux)
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 53 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
20. Release Notes
20.1. Known problems
•
•
The UART does not support odd or even parity, only no parity is supported.
Flow control: RTS may fail to de-assert quickly enough for some high speed CPUs to
correctly stop sending data bytes. For high speed transfers at baudrates > 460800, it is best to
limit RX data to the maximum Ethernet frame (1460 bytes) and have a protocol to
acknowledge data is received by the remote host.
20.2. Current Firmware features and fixes
As of version 2.21 07/11/2010
• The firmware checksum the image (and compare to the stored values in the file ) now before
committing it to flash and updating the boot record after download. If the checksum fails firmware
prints “UPDATE FAILED” and deletes the image.
As of Version 2.20 06/14/2010
Fixes
•
•
•
•
•
•
Passphrase is now accepts up to 64 chars. A bug introduced in 2.19 causes the wlan passphrase to be
truncated to 32 characters (making it impossible to enter a 32 byte HEX literal PSK )
Fixed DHCP status when link to Access Point (AP) is lost. It was still reporting DHCP OK. It is
now cleared and new DHCP session will start once AP link is reestablished )
Fixed a bug whereby UDP receive becomes disabled (no packets are received) if AP-LOST and then
re-established.
Improved handling of AP disconnect, and AP link lost due to linkmon timeout or other disconnect
If TCP connection was active, connection could be in hung/incorrect state, and once AP is regained
in some cases this would not recover. This has been fixed in this version. Refer section “set ip flags
<value>” for more information.
Added new setting to the UART mode “set uart mode 0x10".
Features:
•
Disabled the auto-join feature when in command mode. Auto-join causes WiFly to become
unresponsive to $$$ or commands during The period when auto-joining, when auto-joining is failing
do to non-existent AP, making it hard to process or interpret commands. Once command mode is
exited, auto join will re-enable.
•
There are new levels of print out diagnostics that can be enabled/disable with the sys print variable.
Refer section 10.6 for more deails
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 54 ~
WiFly GSX
www.rovingnetworks.com
•
WiFlyGSX-um
7/16/2010
Ability to add prefix to HTML client post, specifically the ability to append &id= and &rtc= in the
HTML message. Please refer section 13 for more details.
As of Version 2.19 3/05/2009
Fixes
•
Improved performance of the UART receiver. UART is now reliable at up to 460Kpbs with RTS
flow control.
Features
•
Created UART data trigger mode, which will automatically make a TCP/HTTP connection based
on received UART data. set uart mode 2 to enable this mode.
•
Added timestamping option to both UDP and TCP packets. 8 byte RTC counter is appended.
•
DHCP client now inserts the DEVICEID string into the HOST name when requesting a DHCP
lease. This string is displayed by most routers and DHCP servers in their lease tables.
•
show n n command returns the MAC Address of the Access Point currently associated.
•
get i a command returns only the IP address of the WiFly.
•
show network added a response “Boot=<time in ms>” which displays the total time in milliseconds
that was required to be ready on the network (associate and get IP address). This time is also added
to the UDP broadcast packet at byte location 92.
•
Added a number of HTTP commands for posting data to a webserver see Section 12.
As of Version 2.15 10/15/2009
•
•
Fixed a problem whereby the first UART RX character received on power up is received but does
not sent until receipt of 2nd character.
Fixed a problem with some APs that violate Wi-Fi specifications by not responding to WPA
authentication within 250ms. The set option jointimer xxxx command, which specifies the
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 55 ~
WiFly GSX
www.rovingnetworks.com
•
WiFlyGSX-um
7/16/2010
timeout in ms for a join now also applies to the WPA timeout. The default is now 1000ms or 1
second. Note: some APs require up to 1500ms to respond.
When connected over TCP and the AP disappears or WiFly loses association the WiFly will now
closes the connection. The *CLOS* response will now appear when the connection is terminated by
the WIFly. NOTE: This may require the use of the set comm idle xx setting to monitor the TCP
connection, and force a TCP disconnect when no data is flowing due to lost association.
Features
•
Link monitor The command set wlan linkmon x is now used to monitor the state of the association
to the AP. The AP is scanned once per second, and if x consecutive scans fail, the WiFly declares
“AP is lost” sets the interface to down state, and enters the association process. Previously the
WiFly would not detect that the AP association was lost until the AP became available again, or the
WiFly was power cycled or rebooted.
•
ADHOC mode The command set adhoc probe x is now used to set a threshold for the number of
consecutive missed probe responses allowed before declaring “ADHOC is Lost” and setting the
network interface to be down. Default is 5 probes. A setting of
set adhoc probe 0 will disable this function. Some Adhoc stations do not reliably respond to
probes and so this value higher avoids intermittent loss of connectivity.
•
DHCP cache The set ip dhcp 3 command is now used to enable DHCP address caching. Once
caching is turned on, the initial DHCP settings are stored in NVRAM. This is most useful in battery
systems, when using the sleep mode. Upon waking from sleep, as long as the DHCP lease time is
still valid and the WiFly is associated to the same AP, DHCP caching does not survive a power
cycle or usage of the hardware reset pin.
•
ARP table cache The set ip flags 0x20 command is now used to enable ARP table caching. Once
caching is turned on, any ARP table settings are backed up to NVRAM before sleep. Upon waking
from sleep, the ARP cache is loaded. ARP table caching does not survive a power cycle or usage of
the hardware reset pin.
•
DNS host address cache. The set ip flags 0x10 command enables DHCP address caching. Once
caching is turned on, the initial DHCP settings are stored in NVRAM. This is most useful in battery
systems, when using the sleep mode. Upon waking from sleep, as long as the DHCP lease time is
valid and the WiFly is associated to the same AP, DNS caching does not survive a power cycle or
usage of the hardware reset pin.
•
UART break detect enables sleep. The command set uart mode 8 enables break detection on the
UART RX pin. Once Break is detected (a consistent low value on RX pin) ,WiFly waits for the
UART RX pin to return to a high value before going to sleep.
•
UART NOECHO mode. The command set uart mode 1 is now used to disable echoing of RX
chars while in command mode. This is useful when embedded controllers are used to send
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 56 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
commands to the module. NOTE: For consistency, the command prompt response <2.xx> now
also contains \r\n appended string when in this mode.
As of Version 2.12 9/17/2009
•
•
•
•
•
Fixed problem with some newer 802.11n - association attempts cause module to crash/reboot. (Such
as Linksys WRT160NL)
Fixed problem with send on match character i.e. set comm match char. Match char is now
operational.
During an open TCP session, a second incoming connection would be accepted. Second connection
is now accepted but then immediately closed.
Hardware flow control is now supported. To enable, use the “set uart flow 1” command.
DHCP renew and rebind is fully supported. Previously, DHCP renew/rebind would update IP
settings, and if a TCP session was active it would enter a hung state. TCP connections now survive
a DHCP renew/rebind.
Features
•
TCP connection password. This optional pass word is enabled with the command “set opt pass
<string>”, incoming connections will be challenged and the stored password must be matched or the
connection will be closed.
•
UART instant baudrate The set uart instant <rate> command immediately changes the baudrate.
This is useful when testing baudrate settings, or switching baudrate “on the fly” remotely while
connected over TCP.
•
Analog interface commands The “show q” command will now enable and show the digital value of
the analog interface pins. See section 16
As of Version 2.11 9/8/2009 – Limited release (please update to 2.12)
As of Version 2.10 8/14/2009
•
•
•
Added a 250ms guard band in parsing of $$$. The module now looks for three $$$, and only three
$$$ within a 250ms period with no additional characters following for 250 ms. Do not send \cr or
\lf after the $$$.
Fixed problem with UART dropping data. In cases with large data transfers (>100KB) the UART
would become over whelmed and drop data.
We no longer pass serial data received into the UART back over telnet when in remote command
mode
Features
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 57 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
User specified default configuration - You can now specified a USER configuration as the factory reset
settings. The function of PIO9 has been changed slightly. See section 17.1
Configurable Device ID – There is now an additional user programmable device ID that can be used
for storing serial numbers, product name, device type or other information. The device ID is part of the
broadcast “hello” UDP message that the module sends out to identify itself. Use the command show
deviceid to display the current setting. For more information on using this command see the “set
optional” section command
UDP broadcast packet – By default the WiFly module now sends out a UDP broadcast to
255.255.255.255 on port 55555 at a programmable interval. The broadcast address, port and interval are
set using the set broadcast commands. See section 0
Known Issues
WiFly Module has trouble associating with some 802.11.n access points. The module will crash and
reboot repeatedly. We have seen this behavior with Linksys and Dlink router/access points. If you
disable the .n capability on the router the module will associated correctly.
Flow control is not functional.
Current Firmware Version 2.09 7/10/2009
•
Sleep mode was drawing 70uA instead of the expected 4uA due to an oscillator that was not
disabled before going to sleep. Refer to the RN-131G datasheet for the proper low-power hardware
configuration.
•
Fixed closing of TCP port on TCP RESET. Previously the module was not handling remote TCP
reset correctly and would disconnect which resulted in a printout of ERR= -5, TCP port was not
closed properly.
•
Fixed clearing and setting of strings in several set commands. In these cases the strings could be
erased, but not reset.
o set comm remote
o set comm open
o set comm close
o set dns name
o set dns backup
•
Removed extra character in UART output. Previously the module would insert an extra "\r"
character when '\n' appears in data stream.
•
Added the get everything command to dump out all configuration settings
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 58 ~
WiFly GSX
www.rovingnetworks.com
WiFlyGSX-um
7/16/2010
Fixed the alternate I/O functions to allow connection based on PIO5. The manual has been updated
to include a much better description of this functionality. See section 10.5
As of firmware version 2.08 6/08/2009
•
•
•
•
•
Connecting out an IP address does not use the DNS and backup DNS if the connection to the
primary IP address fails. Connecting using DNS if the IP address if 0.
UART hardware flow control not yet functional.
TCP_NODELAY added as default. This improves performance as the stack no longer waits for
each TCP packet to be ack’ed, (since many Microsoft systems only ack every OTHER packet).
Set ip proto is now a bitmask. It is possible to have both UDP and TCP bits set. If TCP enabled,
UART RX data will be forwarded via TCP if a connection exists. Otherwise, data will forward
over UDP (if UDP bit is set ).
As of firmware version 2.07 6/04/2009
Command changes
• set wlan antenna < 0 or 1 >command has been changed to set wlan extant <0 or 1 >.
• set wlan auth <value> command has been added
• set wlan hide will hide the WEP key or WPA passkey. To unhide, you set key or passphrase again.
• set ip proto 8 TCP client mode, (no listen server) only outbound connections can be made.
•
•
•
•
Bug fixes
Adhoc mode client associates properly
You can now enter the WPA passkey after setting the SSID, previously the pass key had to be
entered first for the security hash to be correctly created.
Auto join now stops after 3 retries.
Features
• show net now displays the WiFi TX rate, and correctly displays authenticated state and shows
authentication mode that was used.
• ping h will ping the stored host address. If no host address stored, will attempt to use the DNS
hostname.
• ping i command added to ping a known Internet server (www.neelum.com) by first resolving the
address, proving that DNS is working and then pinging the server. This proves the device has
internet connectivity.
• UDP secure mode will only forward packets to the UART that match from the host address. TCP
secure mode will only allow connection from and IP that matches host address.
As of firmware version 2.06
•
•
•
•
Web server interface is not available – Configuration over telnet and the UART
UART flow control is not functional – The module may drop data at high data rates
Sensor pins for reading analog signals are not supported
Wake on UART RXD or CTS is not working on current revision REV2 of the SurfBoard.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 59 ~
WiFly GSX
www.rovingnetworks.com
•
WiFlyGSX-um
7/16/2010
The fast- auto sleep timer for UDP mode is not implemented.
Fixes since firmware version 2.05
•
•
Configuration over Telnet not functional
Error checking the correct number of parameters
Copyright © 2010 Roving Networks. All rights reserved.
The Bluetooth trademark and logo are registered trademarks and are owned by the Bluetooth SIG, Inc. All other
trademarks are property of their respective owners.
Roving Networks reserves the right to make corrections, modifications, and other changes to its products,
documentation and services at any time. Customers should obtain the latest relevant information before placing orders
and should verify that such information is current and complete.
Roving Networks assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Roving Networks components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating safeguards.
Roving Networks products are not authorized for use in safety-critical applications (such as life support) where a
failure of the Roving Networks product would reasonably be expected to cause severe personal injury or death, unless
officers of the parties have executed an agreement specifically governing such use.
809 University Avenue • Los Gatos, CA 95032 • Tel (408) 395-6539 • info@RovingNetworks.com
~ 60 ~
Download PDF