datasheet for M392B1K70CM0 1.35V by Samsung Electronics

datasheet for M392B1K70CM0 1.35V by Samsung Electronics
Rev. 1.1, May. 2010
M392B5773CH0
M392B5273CH0
M392B5270CH0
M392B1K70CM0
M392B1K73CM0
240pin VLP Registered DIMM
based on 2Gb C-die
1.35V
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
2010 Samsung Electronics Co., Ltd. All rights reserved.
-1-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
Revision History
Revision No.
History
Draft Date
Remark
Editor
1.0
- First Release
Jan. 2010
-
S.H.Kim
1.01
- Corrected Typo.
Apr. 2010
-
S.H.Kim
1.1
- Added 8GB(4Rx8) Product from product list
May. 2010
-
S.H.Kim
-2-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
Table Of Contents
240pin VLP Registered DIMM based on 2Gb C-die
1. DDR3L VLP Registered DIMM Ordering Information ................................................................................................... 5
2. Key Features................................................................................................................................................................. 5
3. Address Configuration .................................................................................................................................................. 5
4. Registered DIMM Pin Configurations (Front side/Back side)........................................................................................ 6
5. Pin Description ............................................................................................................................................................. 7
6. ON DIMM Thermal Sensor ........................................................................................................................................... 7
7. Input/Output Functional Description.............................................................................................................................. 8
8. Pinout Comparison Based On Module Type................................................................................................................. 9
9. Registering Clock Driver Specification .......................................................................................................................... 10
9.1 Timing & Capacitance values .................................................................................................................................. 10
9.2 Clock driver Characteristics ..................................................................................................................................... 10
10. Function Block Diagram: ............................................................................................................................................. 11
10.1 2GB, 256Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ................................................................... 11
10.2 4GB, 512Mx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ................................................................. 12
10.3 4GB, 512Mx72 Module (Populated as 1 rank of x4 DDR3 SDRAMs) ................................................................... 13
10.4 8GB, 1Gx72 Module (Populated as 2 ranks of x4 DDR3 SDRAMs) ..................................................................... 14
10.5 8GB, 1Gx72 Module (Populated as 4 ranks of x8 DDR3 SDRAMs) ..................................................................... 15
11. Absolute Maximum Ratings ........................................................................................................................................ 16
11.1 Absolute Maximum DC Ratings............................................................................................................................. 16
11.2 DRAM Component Operating Temperature Range .............................................................................................. 16
12. AC & DC Operating Conditions................................................................................................................................... 16
12.1 Recommended DC Operating Conditions (SSTL-15)............................................................................................ 16
13. AC & DC Input Measurement Levels .......................................................................................................................... 17
13.1 AC & DC Logic Input Levels for Single-ended Signals .......................................................................................... 17
13.2 VREF Tolerances.................................................................................................................................................... 19
13.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 20
13.3.1. Differential Signals Definition ......................................................................................................................... 20
13.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 20
13.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 22
13.3.4. Differential Input Cross Point Voltage ............................................................................................................ 23
13.4 Slew Rate Definition for Single Ended Input Signals ............................................................................................. 24
13.5 Slew rate definition for Differential Input Signals ................................................................................................... 24
14. AC & DC Output Measurement Levels ....................................................................................................................... 24
14.1 Single Ended AC and DC Output Levels............................................................................................................... 24
14.2 Differential AC and DC Output Levels ................................................................................................................... 24
14.3 Single-ended Output Slew Rate ............................................................................................................................ 25
14.4 Differential Output Slew Rate ................................................................................................................................ 26
15. IDD specification definition.......................................................................................................................................... 27
16. IDD SPEC Table ......................................................................................................................................................... 29
17. Input/Output Capacitance ........................................................................................................................................... 32
18. Electrical Characteristics and AC timing ..................................................................................................................... 33
18.1 Refresh Parameters by Device Density................................................................................................................. 33
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 33
18.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 33
18.3.1. Speed Bin Table Notes .................................................................................................................................. 36
19. Timing Parameters by Speed Grade .......................................................................................................................... 37
19.1 Jitter Notes ............................................................................................................................................................ 40
19.2 Timing Parameter Notes........................................................................................................................................ 41
20. Physical Dimensions................................................................................................................................................... 42
20.1 256Mbx8 based 256Mx72 Module (1 Rank) - M392B5773CH0 ............................................................................ 42
20.1.1. x72 DIMM, populated as one physical rank of x8 DDR3 SDRAMs................................................................ 42
-3-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.2 256Mbx8 based 512Mx72 Module (2 Ranks) - M392B5273CH0 .......................................................................... 43
20.2.1. x72 DIMM, populated as two physical ranks of x8 DDR3 SDRAMs .............................................................. 43
20.3 512Mbx4 based 512Mx72 Module (1 Rank) - M392B5270CH0 ............................................................................ 44
20.3.1. x72 DIMM, populated as one physical rank of x4 DDR3 SDRAMs................................................................ 44
20.4 1Gbx4(DDP) based 1Gx72 Module (2 Ranks) - M392B1K70CM0........................................................................ 45
20.4.1. x72 DIMM, populated as two physical ranks of x4 DDR3 SDRAMs .............................................................. 45
20.4.2. Heat Spreader Design Guide ......................................................................................................................... 46
20.5 512Mbx8(DDP) based 1Gx72 Module (4 Ranks) - M392B1K73CM0 ................................................................... 48
20.5.1. x72 DIMM, populated as four physical ranks of x8 DDR3 SDRAMs .............................................................. 48
20.5.2. Heat Spreader Design Guide ......................................................................................................................... 49
-4-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
1. DDR3L VLP Registered DIMM Ordering Information
Part Number
Density
Organization
Component Composition
Number of
Rank
Height
M392B5773CH0-YF8/H92
2GB
256Mx72
256Mx8(K4B2G0846C-HY##1)*9
1
18.75mm
M392B5273CH0-YF8/H92
4GB
512Mx72
256Mx8(K4B2G0846C-HY##1)*18
2
18.75mm
M392B5270CH0-YF8/H92
4GB
512Mx72
512Mx4(K4B2G0446C-HY##1)*18
1
18.75mm
M392B1K70CM0-YF8/H92
8GB
1Gx72
DDP 1Gx4(K4B4G0446C-MY##1)*18
2
18.75mm
2
8GB
1Gx72
4
18.75mm
M392B1K73CM0-YF8/H9
1
DDP 512Mx8(K4B4G0846C-MY## )*18
NOTE :
1. "##" - F8/H9
2. F8 - 1066Mbps 7-7-7 & H9 - 1333Mbps 9-9-9
- DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7)
2. Key Features
Speed
•
•
•
•
•
•
•
•
•
•
•
•
DDR3-800
DDR3-1066
DDR3-1333
6-6-6
7-7-7
9-9-9
Unit
tCK(min)
2.5
1.875
1.5
ns
CAS Latency
6
7
9
nCK
tRCD(min)
15
13.125
13.5
ns
tRP(min)
15
13.125
13.5
ns
tRAS(min)
37.5
37.5
36
ns
tRC(min)
52.5
50.625
49.5
ns
JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) Power Supply
VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin
8 independent internal bank
Programmable CAS Latency: 6,7,8,9
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
Programmable CAS Write Latency(CWL) = 5(DDR3-800), 6(DDR3-1066) and 7(DDR3-1333)
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
Bi-directional Differential Data Strobe
On Die Termination using ODT pin
Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C
Asynchronous Reset
3. Address Configuration
Organization
Row Address
Column Address
512Mx4(2Gb) based Module
A0-A14
A0-A9, A11
BA0-BA2
A10/AP
256Mx8(2Gb) based Module
A0-A14
A0-A9
BA0-BA2
A10/AP
1Gx4(4Gb DDP) based Module
A0-A14
A0-A9, A11
BA0-BA2
A10/AP
512Mx8(4Gb DDP) based Module
A0-A14
A0-A9
BA0-BA2
A10/AP
-5-
Bank Address
Auto Precharge
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
4. Registered DIMM Pin Configurations (Front side/Back side)
Pin
Front
Pin
Back
Pin
Front
Pin
Back
Pin
Front
Pin
1
VREFDQ
121
VSS
42
DQS8
162
NC,DQS17
,TDQS17
82
DQ33
202
Back
VSS
DM4,DQS13
,TDQS13
NC,DQS13
,TDQS13
2
VSS
122
DQ4
43
DQS8
163
VSS
83
VSS
203
3
DQ0
123
DQ5
44
VSS
164
CB6,NC
84
DQS4
204
4
DQ1
124
VSS
45
CB2,NC
165
CB7,NC
85
DQS4
205
VSS
46
CB3,NC
166
VSS
86
VSS
206
DQ38
47
VSS
167
NC(TEST)
87
DQ34
207
DQ39
48
VTT, NC
168
RESET
88
DQ35
208
VSS
89
VSS
209
DQ44
DM0,DQS9
,TDQS9
NC,DQS9
,TDQS9
5
VSS
125
6
DQS0
126
7
DQS0
127
VSS
8
VSS
128
DQ6
9
DQ2
129
DQ7
50
KEY
49
VTT, NC
169
CKE1, NC
90
DQ40
210
DQ45
CKE0
170
VDD
91
DQ41
211
VSS
212
10
DQ3
130
VSS
11
VSS
131
DQ12
51
VDD
171
NC
92
VSS
12
DQ8
132
DQ13
52
BA2
172
A14
93
DQS5
213
13
DQ9
133
VSS
53
Err_Out/NC
173
VDD
94
DQS5
214
VSS
54
VDD
174
A12/BC
95
VSS
215
DQ46
55
A11
175
A9
96
DQ42
216
DQ47
DM1,DQS10
,TDQS10
NC,DQS10
,TDQS10
DM5,DQS14
,TDQS14
NC,DQS14
,TDQS14
14
VSS
134
15
DQS1
135
16
DQS1
136
VSS
56
A7
176
VDD
97
DQ43
217
VSS
17
VSS
137
DQ14
57
VDD
177
A8
98
VSS
218
DQ52
18
DQ10
138
DQ15
58
A5
178
A6
99
DQ48
219
DQ53
19
DQ11
139
VSS
59
A4
179
VDD
100
DQ49
220
VSS
DM6,DQS15
,TDQS15
NC,DQS15
,TDQS15
20
VSS
140
DQ20
60
VDD
180
A3
101
VSS
221
21
DQ16
141
DQ21
61
A2
181
A1
102
DQS6
222
22
DQ17
142
VSS
62
VDD
182
VDD
103
DQS6
223
VSS
23
VSS
143
104
VSS
224
DQ54
24
DQS2
144
DM2,DQS11
,TDQS11
NC,DQS11
,TDQS11
63
NC, CK1
183
VDD
64
NC, CK1
184
CK0
105
DQ50
225
DQ55
65
VDD
185
CK0
106
DQ51
226
VSS
25
DQS2
145
VSS
26
VSS
146
DQ22
66
VDD
186
VDD
107
VSS
227
DQ60
27
DQ18
147
DQ23
67
VREFCA
187
EVENT,NC
108
DQ56
228
DQ61
28
DQ19
148
VSS
68
NC/Par_In
188
A0
109
DQ57
229
VSS
DM7/DQS16
TDQS16
DM7,DQS16
,TDQS16
29
VSS
149
DQ28
69
VDD
189
VDD
110
VSS
230
30
DQ24
150
DQ29
70
A10/AP
190
BA1
111
DQS7
231
31
DQ25
151
VSS
71
BA0
191
VDD
112
DQS7
232
VSS
72
VDD
192
RAS
113
VSS
233
DQ62
73
WE
193
S0
114
DQ58
234
DQ63
74
CAS
194
VDD
115
DQ59
235
VSS
DM3,DQS12
,TDQS12
NC,DQS12
,TDQS12
32
VSS
152
33
DQS3
153
34
DQS3
154
35
VSS
155
DQ30
75
VDD
195
ODT0
116
VSS
236
VDDSPD
36
DQ26
156
DQ31
76
S1,NC
196
A13
117
SA0
237
SA1
37
DQ27
157
VSS
77
ODT1,NC
197
VDD
118
SCL
238
SDA
38
VSS
158
CB4,NC
78
VDD
198
S3,NC
119
SA2
239
VSS
39
CB0,NC
159
CB5,NC
79
S2,NC
199
VSS
120
VTT
240
VTT
40
CB1,NC
160
VSS
80
VSS
200
DQ36
161
DM8,DQS17
TDQS17,NC
81
DQ32
201
DQ37
41
VSS
VSS
NOTE : NC = No internal Connection
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
-6-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
5. Pin Description
Pin Name
Description
Number
Pin Name
Description
Number
CK0
Clock Input, positive line
1
ODT[1:0]
On Die Termination Inputs
2
CK0
Clock Input, negative line
1
DQ[63:0]
Data Input/Output
64
CKE[1:0]
Clock Enables
2
CB[7:0]
Data check bits Input/Output
8
RAS
Row Address Strobe
1
DQS[8:0]
Data strobes
9
CAS
Column Address Strobe
1
DQS[8:0]
Data strobes, negative line
9
Data Masks/ Data strobes,
Termination data strobes
9
Data strobes, negative line, Termination data
strobes
9
Reserved for Future Use
2
WE
Write Enable
1
DM[8:0]/
DQS[17:9]
TDQS[17:9]
S[3:0]
Chip Selects
4
DQS[17:9]
TDQS[17:9]
2\14
RFU
A[9:0],A11,
A[15:13]
Address Inputs
A10/AP
Address Input/Autoprecharge
1
EVENT
Reserved for optional hardware temperature
sensing
1
A12/BC
Address Input/Burst chop
1
TEST
Memory bus test toll (Not Connected and Not
Usable on DIMMs)
1
BA[2:0]
SDRAM Bank Addresses
3
RESET
Register and SDRAM control pin
1
SCL
Serial Presence Detect (SPD) Clock Input
1
VDD
Power Supply
22
SDA
SPD Data Input/Output
1
VSS
Ground
59
SA[2:0]
SPD Address Inputs
3
VREFDQ
Reference Voltage for DQ
1
Par_In
Parity bit for the Address and Control bus
1
VREFCA
Reference Voltage for CA
1
Err_Out
Parity error found on the Address and Control
bus
1
VTT
Termination Voltage
4
SPD Power
1
VDDSPD
Total
240
NOTE :
*The VDD and VDDQ pins are tied common to a single power-plane on these designs.
6. ON DIMM Thermal Sensor
SCL
SDA
EVENT
WP/EVENT
R1
0Ω
R2
0Ω
SA0
SA1
SA2
SA0
SA1
SA2
NOTE : 1. All Samsung RDIMM support Thermal sensor on DIMM
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.
When only the SPD is placed on the module, R2 is placed but R1 is not.
[ Table 1 ] Temperature Sensor Characteristics
Grade
B
Range
Temperature Sensor Accuracy
Min.
Typ.
Max.
75 < Ta < 95
-
+/- 0.5
+/- 1.0
40 < Ta < 125
-
+/- 1.0
+/- 2.0
-20 < Ta < 125
-
+/- 2.0
+/- 3.0
Resolution
0.25
-7-
Units
NOTE
-
°C
-
°C /LSB
-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
7. Input/Output Functional Description
Symbol
Type
Polarity
CK0
Input
Positive
Edge
Function
CK0
Input
Negative
Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver.
Edge
CKE[1:0]
Input
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers
Active High and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN
and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank)
S[3:0]
Input
Enables the associated SDRAM command decoder when low and disables decoder when high.
When decoder is disabled, new commands are ignored and previous operations continue.
These input signals also disable all outputs (except CKE and ODT) of the register(s) on the DIMM when both
Active Low
inputs are high. When both S[1:0] are high, all register outputs (except CKE, ODT and Chip select) remain in
the previous state. For modules supporting 4 ranks, S[3:2] operate similarly to S[1:0] for a second set of register outputs.
ODT[1:0]
Input
Active High On-Die Termination control signals
RAS, CAS, WE
Input
Active Low
Positive line of the differential pair of system clock inputs that drives input to the on-DIMM Clock Driver.
When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be executed by the SDRAM.
VREFDQ
Supply
Reference voltage for DQ0-DQ63 and CB0-CB7
VREFCA
Supply
Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1.
BA[2:0]
Input
Selects which SDRAM bank of eight is activated.
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank
address also determines mode register is to be accessed during an MRS cycle.
A[15:13,
12/BC,11,
10/AP,9:0]
Input
Provided the row address for Active commands and the column address and Auto Precharge bit for Read/
Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks
(A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8
identification for "BL on the fly" during CAS command. The address inputs also provide the op-code during
Mode Register Set commands.
DQ[63:0],
CB[7:0]
I/O
Data and Check Bit Input/Output pins
Active High Masks write data when high, issued concurrently with input data.
VDD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic.
VTT Supply Termination Voltage for Address/Command/Control/Clock nets.
DM[8:0]
DQS[17:0]
I/O
DQS[17:0]
I/O
Positive Edge Positive line of the differential data strobe for input and output data.
Negative Edge Negative line of the differential data strobe for input and output data.
TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will
enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used.
X4/X16 DRAMs must disable the TDQS function via mode register A11=0 in MR1
TDQS[17:9],
TDQS[17:9]
OUT
SA[2:0]
IN
These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM
address range.
SDA
I/O
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be
connected from the SDA bus line to VDDSPD on the system planar to act as a pull-up.
SCL
IN
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected
from the SCL bus time to VDDSPD on the system planar to act as a pull-up.
EVENT
OUT
(open
drain)
VDDSPD
Supply
Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from
3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
RESET
IN
The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. When
low, all register outputs will be driven low and the Clock Driver clocks to the DRAMs and register(s) will be set
to low level (the Clock Driver will remain synchronized with the input clock)
Par_In
IN
Parity bit for the Address and Control bus. ("1 " : Odd, "0 ": Even)
Err_Out
OUT
(open
drain)
TEST
Active Low
This signal indicates that a thermal event has been detected in the thermal sensing device.The system
should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part.
Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out
bus line to VDD on the system planar to act as a pull up.
Used by memory bus analysis tools (unused (NC) on memory DIMMs)
-8-
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
8. Pinout Comparison Based On Module Type
Pin
RDIMM
UDIMM
Signal
NOTE
Signal
48, 49
VTT
Additional connection for Termination Voltage for
Address/Command/Control/Clock nets.
NC
Not used on UDIMMs
120, 240
VTT
Termination Voltage for Address/Command/Control/Clock nets.
VTT
Termination Voltage for Address/Command/Control/Clock nets.
53
Err_Out
Connected to the register on all RDIMMs NC Not
used on UDIMMs
NC
NC Not used on UDIMMs
63
NC
CK1
64
NC
CK1
Used for 2 rank UDIMMs, not used on single-rank
UDIMMs, but terminated
68
Par_In
Connected to the register on all RDIMMs
NC
Not used on RDIMMs
76
S1
Connected to the register on all RDIMMs
S1
Used for dual-rank UDIMMs, not connected
on single-rank UDIMMs
77
ODT1, NC
ODT1,NC
Used for dual-rank UDIMMs, not connected
on single-rank UDIMMs
79
S2, NC
Connected to the register on quad-rank
RDIMMs, not connected on single or dual rank
RDIMMs
NC
Not used on UDIMMs
167
NC
TEST input used only on bus analysis probes
NC
TEST input used only on bus analysis
probes
169
CKE1
171
A15
172
A14
196
A13
198
S3, NC
39, 40, 45, 46,
158, 159, 164,
165
CBn
125, 134, 143,
152, 161, 203,
212, 221, 230
DQSn,
TDQSn
Connected to DQS on x4 SDRAMs,
TDQS on x8 SDRAMs on RDIMMs; (n = 9...17)
DMn
126, 135, 144,
153, 162, 204,
213, 222, 231
DQSn,
TDQSn
Connected to DQS on x4 DRAMs, TDQS on x8
SDRAMs on RDIMMs; (n=9...17)
NC
Not used on UDIMMs
187
EVENT
NC
Connected to optional thermal sensing component.
NC on Modules without a thermal sensing
component.
NC
Not used on UDIMMs
Not used on RDIMMs
Connected to the register on dual- and quadrank
RDIMMs; NC on single-rank RDIMMs
Connected to the register on dual- and quadrank
RDIMMs; NC on single-rank RDIMMs
CKE1,
NC
A15, NC
Connected to the register on all RDIMMs
Connected to the register on quad-rank
RDIMMs, not connected on single-or dual-rank
RDIMMs
Used on all RDIMMs; (n = 0...7)
-9-
Used for dual-rank UDIMMs, not connected
on single-rank UDIMMs
A13
Depending on device density, may not be
connected to SDRAMs on UDIMMs. However,
these signals are terminated on
UDIMMs. A15 not routed on some RCs
NC
Not used on UDIMMs
A14
NC, CBn
NOTE : NC = No internal Connection
NOTE
Used on x72 UDIMMs, (n = 0...7); not
used on x64 UDIMMs
Connected to DM on x8 DRAMs, UDM or
LDM on x16 DRAMs on UDIMMs;
(n = 0...8)
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
9. Registering Clock Driver Specification
9.1 Timing & Capacitance values
Symbol
Parameter
fclock
Input Clock Frequency
tCH/tCL
Pulse duration, CK, CK HIGH or LOW
Conditions
application frequency
TC = TBD
VDD = 1.35V(1.28V~1.45V)
& 1.5V(1.425~1.575V)
Min
Max
300
670
MHz
0.4
-
tCK
8
-
tCK
ps
tACT
Inputs active time4 before RESET is taken HIGH
DCKE0/1 = LOW and
DCS0/1 = HIGH
tSU
Setup time
Input valid before CK/CK
100
-
tH
Hold time
Input to remain Valid after CK/
CK
175
-
Propagation delay, single-bit switching
CK/CK to output
0.65
1.0
0.5
-
0.25
-
-
0.5
-
0.25
tPDM
tDIS
tEN
CIN(DATA)
output disable time(1/2-Clock pre-launch)
output disable time(3/4-Clock pre-launch)
output enable time(1/2-Clock pre-launch)
output enable time(3/4-Clock pre-launch)
CK/CK to output float
CK/CK to output driving
Units
Data Input Capacitance
1.5
2.5
CIN(CLOCK)
Data Input Capacitance
2
3
CIN(RST)
Reset Input Capacitance
-
3
Notes
ns
tCK
tCK
pF
9.2 Clock driver Characteristics
Symbol
Parameter
Conditions
TC = TBD
VDD = 1.35V(1.28V~1.45V)
& 1.5V(1.425~1.575V)
Min
Max
Units
tjit (cc)
Cycle-to-cycle period jitter
0
40
ps
tSTAB
Stabilization time
-
6
us
tfdyn
Dynamic phase offset
-50
50
ps
tCKsk
50
ps
tjit(per)
Yn Clock Period jitter
Clock Output skew
-40
40
ps
tjit(hper)
Half period jitter
-50
50
ps
Output Inversion enabled
-100
200
OUtput Inversion disabled
-100
300
Output Inversion enabled
-100
200
OUtput Inversion disabled
-100
300
-80
80
tQsk1
Qn Output to clock tolerance (Standard 1/2 -Clock
Pre-Launch)
tQsk1
Output clock tolerance (3/4 Clock Pre-Launch)
tdynoff
Maximum re-driven dynamic clock off-set
- 10 -
ps
ps
ps
Notes
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
10. Function Block Diagram:
DQS0
DQS0
DM0/DQS9
DQS9
DQ[7:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D2
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS1
DQS1
DM1/DQS10
DQS10
DQ[15:8]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D3
DQS
DQS
TDQS
TDQS
DQ[7:0]
D1
DQS
DQS
TDQS
TDQS
DQ[7:0]
DQS6
DQS6
DM6/DQS15
DQS15
DQ[55:48]
DQS7
DQS7
DM7/DQS16
DQS16
DQ[63:56]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS5
DQS5
DM5/DQS14
DQS14
DQ[47:40]
ZQ
D4
DQS
DQS
TDQS
TDQS
DQ[7:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
Thermal sensor with SPD
ZQ
D5
SCL
EVENT
EVENT
A0
SDA
A1
A2
SA0 SA1 SA2
ZQ
D6
VDDSPD
Serial PD
VDD
D0 - D8
ZQ
D7
VTT
VREFCA
D0 - D8
VREFDQ
D0 - D8
VSS
D0 - D8
Vtt
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS2
DQS2
DM2/DQS11
DQS11
DQ[23:16]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D8
DQS4
DQS4
DM4/DQS13
DQS13
DQ[39:32]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS3
DQS3
DM3/DQS12
DQS12
DQ[31:24]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS8
DQS8
DM8/DQS17
DQS17
CB[7:0]
RS0B
RRASB
RCASB
RWEB
PCK0B
PCK0B
RCLE0B
RODT0B
A[N:0]B
/BA[N:0]B
RS0A
RRASA
RCASA
RWEA
PCK0A
PCK0A
RCLE0A
RODT0A
A[N:0]A
/BA[N:0]A
10.1 2GB, 256Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs)
D0
Vtt
S0*
S1*
BA[N:0]
A[N:0]
1:2
R
E
G
I
S
T
E
R
RAS
CAS
WE
CKE0
ODT0
CK0
CK0
PAR_IN
QERR
RESET**
RS0A-> CS0 : SDRAMs D[3:0], D8
RS0B-> CS0 : SDRAMs D[7:4]
RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D8
RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4]
RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D8
RA[N:0]B -> A[N:0] : SDRAMs D[7:4]
RRASA -> RAS : SDRAMs D[3:0], D8
RRASB -> RAS : SDRAMs D[7:4]
RCASA -> CAS : SDRAMs D[3:0], D8
RCASB -> CAS : SDRAMs D[7:4]
RWEA -> WE : SDRAMs D[3:0], D8
RWEB -> WE : SDRAMs D[7:4]
RCKE0A -> CKE0 : SDRAMs D[3:0], D8
RCKE0B -> CKE0 : SDRAMs D[7:4]
RODT0A -> ODT0 : SDRAMs D[3:0], D8
RODT0B -> ODT0 : SDRAMs D[7:4]
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0A -> CK : SDRAMs D[7:4]
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0A -> CK : SDRAMs D[7:4]
Err_out
RST
PST** : SDRAMs D[8:0]
NOTE :
1. ZQ resistors are 240 1% For all other resistor values refer to the
appropriate wiring diagram.
*S[3:2], CKE1, ODT1, CK1 and CK1 are NC
(Unused register inputs ODT1 and CKE1 have a 330 ohm resistor to ground)
- 11 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D14
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D15
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D16
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D5
D6
D7
Vtt
D9
S0*
RS0A-> CS0 : SDRAMs D[3:0], D8
RS0B-> CS0 : SDRAMs D[7:4]
RS1A-> CS1 : SDRAMs D[12:9], D17
RS1B-> CS1 : SDRAMs D[16:13]
RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D[12:8], D17
RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4], D[16:13]
RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D[12:8], D17
RA[N:0]B -> A[N:0] : SDRAMs D[7:4, D[16:13]]
S1*
BA[N:0]
Vtt
A[N:0]
RAS
VDDSPD
Serial PD
VDD
D0 - D17
Thermal sensor with SPD
CAS
SCL
VTT
EVENT
PCK1B
PCK1B
RCKE1B
RODT1B
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS7
DQS7
DM7/DQS16
DQS16
DQ[63:56]
RS1B
RS0B
RRASB
RCASB
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:0]B
/BA[N:0]B
RS1A
PCK1A
PCK1A
RCKE1A
RODT1A
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D13
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D0
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
DQS6
DQS6
DM6/DQS15
DQS15
DQ[55:48]
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D10
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS0
DQS0
DM0/DQS9
DQS9
DQ[7:0]
D1
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
DQS5
DQS5
DM5/DQS14
DQS14
DQ[47:40]
D4
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D11
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS1
DQS1
DM1/DQS10
DQS10
DQ[15:8]
D2
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D12
DQS4
DQS4
DM4/DQS13
DQS13
DQ[39:32]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS2
DQS2
DM2/DQS11
DQS11
DQ[23:16]
D3
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
D17
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS3
DQS3
DM3/DQS12
DQS12
DQ[31:24]
D8
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS8
DQS8
DM8/DQS17
DQS17
CB[7:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
RS0A
RRASA
RCASA
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[N:0]A
/BA[N:0]A
10.2 4GB, 512Mx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
EVENT
A0
SDA
A1
A2
1:2
R
E
G
I
S
T
E
R
WE
CKE0
SA0 SA1 SA2
VREFCA
D0 - D17
VREFDQ
D0 - D17
ODT0
VSS
D0 - D17
ODT1
CKE1
NOTE :
1. Unless otherwise noted, resistor values are 15Ω ± 5%.
2. RS0 and RS1 alternate between the back and front sides of the DIMM.
3. ZQ resistors are 240Ω ± 1% . For all other resistor values refer to the appropriate
wiring diagram.
4. See the wiring diagrams for all resistors associated with the command, address
and control bus.
RRASA -> RAS : SDRAMs D[3:0], D[12:8], D17
RRASB -> RAS : SDRAMs D[7:4], D[16:13]
RCASA -> CAS : SDRAMs D[3:0], D[12:8], D17
RCASB -> CAS : SDRAMs D[7:4], D[16:13]
RWEA -> WE : SDRAMs D[3:0], D[12:8], D17
RWEB -> WE : SDRAMs D[7:4], D[16:13]
RCKE0A -> CKE0 : SDRAMs D[3:0], D8
RCKE0B -> CKE0 : SDRAMs D[7:4]
RCKE1A -> CKE1 : SDRAMs D[12:9], D17
RCKE1B -> CKE1 : SDRAMs D[16:13]
RODT0A -> ODT0 : SDRAMs D[3:0], D8
RODT0B -> ODT0 : SDRAMs D[7:4]
RODT1A -> ODT1 : SDRAMs D[12:9], D17
RODT1A -> ODT1 : SDRAMs D[16:13]
CK0
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0B -> CK : SDRAMs D[7:4]
PCK1A -> CK : SDRAMs D[12:9], D17
PCK1B -> CK : SDRAMs D[16:13]
CK0
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0B -> CK : SDRAMs D[7:4]
PCK1A -> CK : SDRAMs D[12:9], D17
PCK1B -> CK : SDRAMs D[16:13]
QERR
PAR_IN
RESET**
Err_out
RST
PST** : SDRAMs D[8:0]
*S[3:2], CKE1, ODT1, CK1 and CK1 are NC
- 12 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D0
ZQ
D9
D7
S0*
SDA
A2
SA0 SA1 SA2
Serial PD
WE
VDD
D0 - D17
CKE0
VTT
ODT0
VREFCA
D0 - D17
VREFDQ
D0 - D17
VSS
D0 - D17
NOTE :
1. Unless otherwise noted, resistor values are 15Ω ± 5%.
2. See the wiring diagrams for all resistors associated with the command, address
and control bus.
3. ZQ resistors are 240Ω ± 1% . For all other resistor values refer to the appropriate
wiring diagram.
D16
- 13 -
RRASA -> RAS : SDRAMs D[3:0], D[12:8], D17
RRASB -> RAS : SDRAMs D[7:4], D[16:13]
RCASA -> CAS : SDRAMs D[3:0], D[12:8], D17
RCASB -> CAS : SDRAMs D[7:4], D[16:13]
RWEA -> WE : SDRAMs D[3:0], D[12:8], D17
RWEB -> WE : SDRAMs D[7:4], D[16:13]
RCKE0A -> CKE0 : SDRAMs D[3:0], D[12:8], D17
RCKE0B -> CKE0 : SDRAMs D[7:4], D[16:13]
RODT0A -> ODT0 : SDRAMs D[3:0], D[12:8], D17
RODT0B -> ODT0 : SDRAMs D[7:4], D[16:13]
CK0
PCK0A -> CK : SDRAMs D[3:0], D[12:8], D17
PCK0B -> CK : SDRAMs D[7:4], D[16:13]
CK0
PCK0A -> CK : SDRAMs D[3:0], D[12:8], D17
PCK0B -> CK : SDRAMs D[7:4], D[16:13]
QERR
PAR_IN
RESET**
VSS
ZQ
RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D[12:8], D17
RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4], D[16:13]
RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D[12:8], D17
RA[N:0]B -> A[N:0] : SDRAMs D[7:4], D[16:13]
1:2
R
E
G
I
S
T
E
R
VSS
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D15
S1*
VDDSPD
VSS
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ[3:0]
ZQ
RS0A-> CS0 : SDRAMs D[3:0], D[12:8], D17
RS0B-> CS0 : SDRAMs D[7:4], D[16:13]]
CAS
A1
DQS17
DQS17
VSS
DQ[63:60]
ZQ
D14
Err_out
RST
PST** : SDRAMs D[17:0]
*S[3:2], CKE1, ODT1, CK1 and CK1 are NC
(Unused register inputs ODT1 and CKE1 have a 330 Ω resistor to ground)
VSS
D6
RAS
EVENT
A0
DQS
DQS
DM
DQ[3:0]
ZQ
Vtt
Vtt
EVENT
DQS17
DQS17
VSS
DQ[55:52]
ZQ
A[N:0]
Thermal sensor with SPD
DQS
DQS
DM
DQ[3:0]
D13
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D5
BA[N:0]
SCL
DQS17
DQS17
VSS
DQ[47:44]
ZQ
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D10
VSS
DQS
DQS
DM
DQ[3:0]
VSS
DQS8
DQS8
VSS
DQ[59:56]
ZQ
DQS
DQS
DM
DQ[3:0]
VSS
D11
DQS17
DQS17
VSS
DQ[39:36]
VSS
DQS
DQS
DM
DQ[3:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS8
DQS8
VSS
DQ[51:48]
ZQ
D4
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ[3:0]
D12
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS17
DQS17
VSS
DQ[7:4]
ZQ
VSS
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D1
VSS
DQS
DQS
DM
DQ[3:0]
DQS
DQS
DM
DQ[3:0]
VSS
DQS17
DQS17
VSS
DQ[15:12]
ZQ
DQS8
DQS8
VSS
DQ[43:40]
VSS
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
D2
DQS
DQS
DM
DQ[3:0]
VSS
DQS
DQS
DM
DQ[3:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS17
DQS17
VSS
DQ[23:20]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ[3:0]
D3
DQS8
DQS8
VSS
DQ[35:32]
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS8
DQS8
VSS
DQ[3:0]
DQS
DQS
DM
DQ[3:0]
D17
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ[3:0]
DQS17
DQS17
VSS
DQ[31:28]
ZQ
ZQ
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS8
DQS8
VSS
DQ[11:8]
VSS
DQS
DQS
DM
DQ[3:0]
VSS
DQS8
DQS8
VSS
DQ[19:16]
DQS
DQS
DM
DQ[3:0]
VSS
DQS
DQS
DM
DQ[3:0]
D8
DQS17
DQS17
VSS
CB[7:4]
VSS
DQS3
DQS3
VSS
DQ[27:24]
ZQ
VSS
DQS
DQS
DM
DQ[3:0]
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
DQS8
DQS8
VSS
CB[3:0]
RS0B
RRASB
RCASB
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:0]B
/BA[N:0]B
RS0A
RRASA
RCASA
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[N:0]A
/BA[N:0]A
10.3 4GB, 512Mx72 Module (Populated as 1 rank of x4 DDR3 SDRAMs)
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
10.4 8GB, 1Gx72 Module (Populated as 2 ranks of x4 DDR3 SDRAMs)
VSS
RS0
RS1
DM
DQS0
DQS0
DQ[3:0]
DQS
DQS
CS
DQ[11:8]
DQS
DQS
CS
DQ[16:19]
DQ[24:27]
CS
DQ[32:35]
DQ[40:43]
DQ[48:51]
DQ[56:59]
CB[3:0]
ZQ
ZQ
CS
ZQ
DM
CS
ZQ
CS
ZQ
DQS
DQS
DQ[3:0]
CS
ZQ
DQ[3:0]
CS
ZQ
DM
VSS
DQS
DQS
D6
DQ[3:0]
DQ[44:47]
CS
ZQ
DQ[3:0]
CS
ZQ
VSS
DM
DQS
DQS
D7
DQ[3:0]
DQ[52:55]
CS
ZQ
DQ[3:0]
CS
ZQ
VSS
DM
DQS
DQS
D8
DQ[3:0]
DQ[60:63]
CS
ZQ
DQ[3:0]
Thermal sensor with SPD
EVENT_n
EVENT_n
A0 A1
CB[7:4]
DQ[3:0]
BA[2:0]
SA0 SA1 SA2
VDD
D0 - D17
WE
CKE0
D0 - D17
ODT0
CK0
1:2
R
E
G
I
S
T
E
R
CS
ZQ
VSS
DM
DQS
DQS
VSS
CS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
D31
CS
ZQ
DM
VSS
DQS
DQS
CS
D32
CS
ZQ
DM
VSS
DQS
DQS
CS
D33
CS
ZQ
VSS
DM
DQS
DQS
CS
D34
DQ[3:0]
CS
ZQ
VSS
D17
DM
DQS
DQS
CS
D35
DQ[3:0]
RWEA -> WE: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RWEB -> WE: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RCKE0A -> CKE0A: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RCKE0B -> CKE0B: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RODT[1:0]A -> ODT0: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RODT[1:0]B -> ODT0: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
CK0A_R0 -> CK: SDRAMs D[4:0], D[22:18]
CK0B_R0 -> CK: SDRAMs D[13:10], D[31:28]
CK0C_R1 -> CK: SDRAMs D[9:5], D[27:23]
CK0D_R1 -> CK: SDRAMs D[17:14], D[35:32]
CK0A_R0 -> CK: SDRAMs D[4:0], D[22:18]
CK0B_R0 -> CK: SDRAMs D[13:10], D[31:28]
CK0C_R1 -> CK: SDRAMs D[9:5], D[27:23]
CK0
NOTE :
1. ZQ resistors are 240Ω ± 1% . For all other resistor values refer to the appropriate wiring diagram.
2. The connection of the Serial PD to EVENT_n is realized by resistor options.
ZQ
RCASA -> CAS: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RCASB -> CAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
CAS
VSS
CS
D30
RRASA -> RAS: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RRASB -> RAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
Serial PD
D0 - D17
DM
RAS
VDDSPD
D0 - D17
VSS
RA[15:0]A -> A[15:0]: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RA[15:0]B -> A[15:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
A[15:0]
Serial PD w/integrated Thermal Sensor
VREFCA
ZQ
RS0A-> CS0A : SDRAMs D[9:0]
RS1A-> CS1A : SDRAMs D[27:18]
RS0B-> CS0B : SDRAMs D[17:10]
RS1B-> CS1B : SDRAMs D[35:28]
RBA[2:0]A -> BA[2:0]: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35
RBA[2:0]B -> BA[2:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
SDA
VREFDQ
CS
DQ[3:0]
DM
DQS
DQS
VSS
D29
DQS
DQS
D16
DQS17
DQS17
A2
VTT
VSS
DQ[3:0]
S0[1:0]
S0[3:2]
SCL
ZQ
DQ[3:0]
VSS
D26
CS
D15
DQS
DQS
ZQ
DQ[3:0]
DM
DQS16
DQS16
DM
DQS
DQS
DQ[3:0]
VSS
D25
VSS
D14
DQS
DQS
CS
D28
DQ[3:0]
DM
DQS15
DQS15
ZQ
DQ[3:0]
VSS
D24
CS
D13
DQS
DQS
VSS
DQ[3:0]
DM
DQS14
DQS14
DM
DQS
DQS
DQ[3:0]
VSS
D23
VSS
D12
DQS
DQS
ZQ
DQ[3:0]
DM
DQ[36:39]
ZQ
D11
DQS
DQS
CS
D27
DQ[3:0]
DM
DQS13
DQS13
CS
DQ[3:0]
VSS
D22
DM
VSS
DQS
DQS
DM
DQS
DQS
DQ[3:0]
VSS
DQ[28:31]
VSS
D10
DM
DQS12
DQS12
ZQ
DQ[3:0]
DM
DQS11
DQS11
DQ[3:0]
D5
DQS
DQS
VSS
D21
DQS
DQS
DQS10
DQS10
DQ[20:23]
DM
VSS
DQ[3:0]
DQS
DQS
CS
CS
D9
DQ[3:0]
VSS
D20
DQS
DQS
CS
DM
DQS8
DQS8
ZQ
DQS
DQS
DQ[4:7]
DQ[12:15]
DM
VSS
D4
DQS
DQS
CS
DM
DQS9
DQS9
DQ[3:0]
DM
DQS7
DQS7
ZQ
DQ[3:0]
DQS
DQS
VSS
D19
DQS
DQS
CS
DM
DQS6
DQS6
VSS
D3
DQS
DQS
ZQ
DQ[3:0]
DM
DQS5
DQS5
ZQ
DQ[3:0]
DQS
DQS
DM
DQS
DQS
D2
DQS
DQS
CS
D18
DQ[3:0]
DM
DQS4
DQS4
VSS
DQ[3:0]
DM
DQS3
DQS3
ZQ
D1
DQS
DQS
DM
DQS
DQS
DQ[3:0]
DM
DQS2
DQS2
VSS
DQ[3:0]
DM
DQS1
DQS1
ZQ
D0
CK0D_R1 -> CK: SDRAMs D[17:14], D[35:32]
PAR_IN
RESET
QERR
Err_out
RST
RST : SDRAMs D[35:0]
- 14 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
DQ[23:16]
U11
DQ[7:0]
ZQ
VDD
WCKE1
CKE
PCK2
PCK2
CK
ODT
CS3
CK
WODT1
U27
CKE
DQS
DQS
ODT
CK
CK
CS
CKE
ODT
CK
U19
U20
DQ[7:0]
ZQ
RS0-> CS0 : SDRAMs D[8:0]
RS1-> CS1 : SDRAMs D[17:9]
RS2-> CS2 : SDRAMs D[26:18]
RS3-> CS3 : SDRAMs D[35:27]
WBA[N:0] -> BA[N:0]: SDRAMs D[4:0], D8, D[13:9], D[22:18], D[31:27]
EBA[N:0] -> BA[N:0]: SDRAMs D[8:5], D[17:14], D[26:23], D[35:32]
S2
S3
CKE
DQS
DQS
ODT
BA[N:0]
CK
CK
CKE
ODT
DQS
DQS
S0
S1
U28
DQ[7:0]
ZQ
CK
CK
CS
WCKE0
CKE
PCK2
PCK2
CK
ODT
CS2
CK
DQS
DQS
CS
CKE
ODT
DQS
DQS
DQS
DQS
DQ[7:0]
ZQ
DQ[7:0]
ZQ
CK
CK
CS
CKE
U2
DQ[7:0]
ZQ
U18
CS
U10
CS
CKE
ODT
DQS
DQS
DQ[7:0]
ZQ
DQS
DQS
DQS
DQS
DQ[7:0]
ZQ
CK
CK
CS
CKE
ODT
CK
DQ[7:0]
ZQ
CK
VDD
U9
CS
WCKE1
CKE
PCK0
PCK0
CK
ODT
CS1
CK
WODT0
CS
WCKE0
CKE
PCK0
PCK0
CK
ODT
CS0
CK
U1
ODT
DQS2
DQS2
CK
DQS
DQS
CS
DQ[15:8]
DQS
DQS
DQ[7:0]
ZQ
CK
DQS1
DQS1
U0
DQ[7:0]
ZQ
CS
DQ[7:0]
DQS
DQS
CK
DQS0
DQS0
CS
10.5 8GB, 1Gx72 Module (Populated as 4 ranks of x8 DDR3 SDRAMs)
U29
DQ[7:0]
ZQ
WA[N:0] -> A[N:0]: SDRAMs D[4:0], D8, D[13:9], D[22:18], D[31:27]
EA[N:0] -> A[N:0]: SDRAMs D[8:5], D[17:14], D[26:23], D[35:32]
A[N:0]
RAS
WRAS -> RAS: SDRAMs D[4:0], D8, D[13:9], D[22:18], D[31:27]
ERAS -> RAS: SDRAMs D[8:5], D[17:14], D[26:23], D[35:32]
CAS
WCAS -> CAS: SDRAMs D[4:0], D8, D[13:9], D[22:18], D[31:27]
ECAS -> CAS: SDRAMs D[8:5], D[17:14], D[26:23], D[35:32]
WE
CB[7:0]
U4
DQ[7:0]
ZQ
U13
DQ[7:0]
ZQ
CKE
ODT
CK
CK
DQS
DQS
U22
DQ[7:0]
ZQ
WWE -> WE: SDRAMs D[4:0], D8, D[13:9], D[22:18], D[31:27]
EWE -> WE: SDRAMs D[8:5], D[17:14], D[26:23], D[35:32]
WCKE0 -> CKE0: SDRAMs D[4:0], D[22:18]
ECKE0 -> CKE0: SDRAMs D[8:5], D[26:23]
WCKE1 -> CKE1: SDRAMs D[13:9], D[31:27]
ECKE1 -> CKE1: SDRAMs D[17:14], D[35:32]
WODT0 -> ODT0: SDRAMs D[4:0]
EODT0 -> ODT0: SDRAMs D[8:5]
WODT1 -> ODT1: SDRAMs D[22:18]
EODT1 -> ODT1: SDRAMs D[26:23]
PCK0 -> CK: SDRAMs D[4:0], D[13:9]
PCK1 -> CK: SDRAMs D[8:5], D[26:23]
PCK2 -> CK: SDRAMs D[22:18], D[31:27]
PCK3 -> CK: SDRAMs D[17:14], D[35:32]
PCK0 -> CK: SDRAMs D[4:0], D[13:9]
PCK1 -> CK: SDRAMs D[8:5], D[26:23]
PCK2 -> CK: SDRAMs D[22:18], D[31:27]
PCK3 -> CK: SDRAMs D[17:14], D[35:32]
QERR
Err_out
CK0
ODT
DQS
DQS
CKE
ODT1
CK
CK
CKE
ODT
DQS
DQS
CKE1
ODT0
U30
DQ[7:0]
ZQ
CK
CK
CS
CKE
ODT
DQS
DQS
CS
CKE
ODT
CK
CK
U21
DQ[7:0]
ZQ
CK
CK
CS
CKE
CK
DQS
DQS
DQS
DQS
CS
U12
CS
CKE
ODT
CK
CK
CS
CKE
CK
ODT
DQS
DQS
DQ[7:0]
ZQ
ODT
DQS8
DQS8
U3
DQ[7:0]
ZQ
CS
DQ[31:24]
DQS
DQS
CK
DQS3
DQS3
CK
CS
CKE0
1:2
R
E
G
I
S
T
E
R
CK0
U31
DQ[7:0]
ZQ
PAR_IN
RST
RESET
RST : SDRAMs D[35:0]
DQ[31:24]
DQ[7:0]
ZQ
VDD
ECKE1
CKE
CKE
ODT
CK
U33
CKE
EVENT
A0
SDA
A1
A2
SA0 SA1 SA2
VDDSPD
Serial PD
VDD
D0 - D35
VTT
VREFCA
D0 - D35
VREFDQ
D0 - D35
VSS
D0 - D35
U34
DQ[7:0]
ZQ
Vtt
- 15 -
CKE
U35
ODT
DQS
DQS
CK
CK
ODT
CKE
U26
EVENT
ODT
CK
CK
CS
CKE
ODT
DQS
DQS
SCL
ODT
PCK3
CK
CS3
PCK3
CK
CK
DQS
DQS
DQ[7:0]
ZQ
CK
CK
DQ[7:0]
ZQ
CS
CKE
ODT
CK
CK
CK
U25
DQS
DQS
U32
DQ[7:0]
ZQ
DQS
DQS
CS
ODT
CKE
U17
CS
EODT1
ECKE0
CKE
ODT
PCK3
CK
CS2
PCK3
CK
CK
U24
DQ[7:0]
ZQ
CK
CK
CS
CKE
DQS
DQS
CS
CKE
ODT
CK
CS
CKE
ODT
CK
U16
Thermal sensor with SPD
DQ[7:0]
ZQ
DQ[7:0]
ZQ
DQS
DQS
DQ[7:0]
ZQ
U23
DQS
DQS
CS
U15
CS
CKE
ODT
CK
DQS
DQS
DQS
DQS
DQS
DQS
DQ[7:0]
ZQ
DQ[7:0]
ZQ
U8
CS
VDD
ECKE1
CKE
ODT
PCK1
CK
CS1
PCK1
CK
CK
CS
CKE
ODT
CK
CK
DQ[7:0]
ZQ
DQS
DQS
CS
EODT0
ECKE0
CKE
ODT
PCK1
CK
PCK1
U7
ODT
DQS3
DQS3
U14
DQ[7:0]
ZQ
DQS
DQS
CS
DQ[55:48]
U6
DQ[7:0]
ZQ
CK
DQS6
DQS6
DQS
DQS
DQ[7:0]
ZQ
DQS
DQS
CS
DQ[47:40]
CK
CS
DQS5
DQS5
U5
DQ[7:0]
ZQ
CK
DQ[39:32]
DQS
DQS
CK
DQS4
DQS4
CK
CS
CS0
Vtt
NOTE :
1 Unless otherwise noted, resistor values are 15Ω ± 5%.
2. See the wiring diagrams for all resistors associated with the
command, address and control bus.
3. ZQ resitors are 240Ω ± 1% . For all other resistor values refer to
the appropriate wiring diagram.
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
11. Absolute Maximum Ratings
11.1 Absolute Maximum DC Ratings
Symbol
Parameter
Rating
Units
NOTE
VDD
Voltage on VDD pin relative to VSS
-0.4 V ~ 1.975 V
V
1,3
VDDQ
Voltage on VDDQ pin relative to VSS
-0.4 V ~ 1.975 V
V
1,3
VIN, VOUT
Voltage on any pin relative to VSS
-0.4 V ~ 1.975 V
V
1
TSTG
Storage Temperature
-55 to +100
°C
1, 2
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be
equal to or less than 300mV.
11.2 DRAM Component Operating Temperature Range
Symbol
Parameter
rating
Unit
NOTE
TOPER
Operating Temperature Range
0 to 95
°C
1, 2, 3
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component with 1X refresh (tREFI
to 7.8us) in the Extended Temperature Range.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
12. AC & DC Operating Conditions
12.1 Recommended DC Operating Conditions (SSTL-15)
Symbol
VDD
VDDQ
Parameter
Supply Voltage
Supply Voltage for Output
Operation Voltage
Rating
Min.
Typ.
1.35V
1.283
1.35
1.5V
1.425
1.5
1.35V
1.283
1.35
1.5V
1.425
1.5
NOTE:
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. VDD & VDDQ rating are determinied by operation voltage.
- 16 -
Units
NOTE
1.45
V
1, 2, 3
1.575
V
1, 2, 3
1.45
V
1, 2, 3
1.575
V
1, 2, 3
Max.
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
13. AC & DC Input Measurement Levels
13.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 2 ] Single Ended AC and DC input levels for Command and Address
Symbol
Parameter
DDR3-800/1066/1333/1600
Min.
Max.
Unit
NOTE
1.35V
VIH.CA(DC90)
DC input logic high
VREF + 90
VDD
mV
1,5a)
VIL.CA(DC90)
DC input logic low
VSS
VREF - 90
mV
1,6a)
VIH.CA(AC160) AC input logic high
VREF + 160
Note 2
mV
1,2
VIL.CA(AC160) AC input logic low
Note 2
VREF - 160
mV
1,2
VIH.CA(AC135) AC input logic high
VREF+135
Note 2
mV
1,2
VIL.CA(AC135) AC input logic lowM
Note 2
VREF-135
mV
1,2
0.49*VDD
0.51*VDD
V
3,4
VREFCA(DC)
Reference Voltage for ADD,
CMD inputs
1.5V
VIH.CA(DC100) DC input logic high
VREF + 100
VDD
mV
1,5b)
VIL.CA(DC100) DC input logic low
VSS
VREF - 100
mV
1,6b)
VIH.CA(AC175) AC input logic high
VREF + 175
Note 2
mV
1,2,7
VIL.CA(AC175) AC input logic low
Note 2
VREF - 175
mV
1,2,8
VIH.CA(AC150) AC input logic high
VREF+150
Note 2
mV
1,2,7
VIL.CA(AC150) AC input logic low
Note 2
VREF-150
mV
1,2,8
0.49*VDD
0.51*VDD
V
3,4
VREFCA(DC)
Reference Voltage for ADD,
CMD inputs
NOTE :
1. For input only pins except RESET, VREF = VREFCA(DC)
2. See "Overshoot and Undershoot specifications" section.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is
used when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used
when VREF - 150mV is referenced.
- 17 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
[ Table 3 ] Single Ended AC and DC input levels for DQ and DM
Symbol
Parameter
DDR3-800/1066
Min.
DDR3-1333/1600
Max.
Min.
Max.
Unit
NOTE
1.35V
VIH.DQ(DC90) DC input logic high
VREF + 90
VDD
VREF + 90
VDD
mV
1,5a)
VSS
VREF - 90
VSS
VREF - 90
mV
1,6a)
VIH.DQ(AC160) AC input logic high
VREF + 160
Note 2
-
-
mV
1,2
VIL.DQ(AC160) AC input logic low
Note 2
VREF - 160
-
-
mV
1,2
VIH.DQ(AC135) AC input logic high
VREF + 135
Note 2
VREF + 135
Note 2
mV
1,2
VIL.DQ(AC135) AC input logic low
Note 2
VREF - 135
Note 2
VREF - 135
mV
1,2
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
VIL.DQ(DC90)
VREFDQ(DC)
DC input logic low
Reference Voltage for DQ,
DM inputs
1.5V
VIH.DQ(DC100) DC input logic high
VREF + 100
VDD
VREF + 100
VDD
mV
1,5b)
VIL.DQ(DC100) DC input logic low
VSS
VREF - 100
VSS
VREF - 100
mV
1,6b)
VIH.DQ(AC175) AC input logic high
VREF + 175
NOTE 2
-
-
mV
1,2,7
VIL.DQ(AC175) AC input logic low
NOTE 2
VREF - 175
-
-
mV
1,2,8
VIH.DQ(AC150) AC input logic high
VREF + 150
NOTE 2
VREF + 150
NOTE 2
mV
1,2,7
VIL.DQ(AC150) AC input logic low
NOTE 2
VREF - 150
NOTE 2
VREF - 150
mV
1,2,8
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
VREFDQ(DC)
Reference Voltage for DQ,
DM inputs
NOTE :
1. For input only pins except RESET, VREF = VREFDQ(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used
when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when
VREF - 150mV is referenced.
- 18 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
13.2 VREF Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
voltage
VDD
VSS
time
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.
"VREF" shall be understood as VREF(DC), as defined in Figure 1.
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise.
Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
- 19 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
13.3 AC and DC Logic Input Levels for Differential Signals
13.3.1 Differential Signals Definition
tDVAC
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
VIH.DIFF.AC.MIN
VIH.DIFF.MIN
0.0
half cycle
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
tDVAC
time
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC
13.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)
DDR3-800/1066/1333/1600
Symbol
Parameter
1.35V
1.5V
min
max
differential input high
+0.18
differential input low
NOTE 3
VIHdiff(AC)
differential input high ac
VILdiff(AC)
differential input low ac
VIHdiff
VILdiff
unit
NOTE
min
max
NOTE 3
+0.20
NOTE 3
V
1
-0.18
NOTE 3
-0.20
V
1
2 x (VIH(AC) - VREF)
NOTE 3
2 x (VIH(AC) - VREF)
NOTE 3
V
2
NOTE 3
2 x (VIL(AC) - VREF)
NOTE 3
2 x (VIL(AC) - VREF)
V
2
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,
then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
- 20 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
[ Table 4 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V)
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)| = 320mV
tDVAC [ps] @ |VIH/Ldiff(AC)| = 270mV
min
max
min
max
> 4.0
TBD
-
TBD
-
4.0
TBD
-
TBD
-
3.0
TBD
-
TBD
-
2.0
TBD
-
TBD
-
1.8
TBD
-
TBD
-
1.6
TBD
-
TBD
-
1.4
TBD
-
TBD
-
1.2
TBD
-
TBD
-
1.0
TBD
-
TBD
-
< 1.0
TBD
-
TBD
-
[ Table 5 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V)
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV
min
max
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV
min
max
> 4.0
75
-
175
-
4.0
57
-
170
-
3.0
50
-
167
-
2.0
38
-
163
-
1.8
34
-
162
-
1.6
29
-
161
-
1.4
22
-
159
-
1.2
13
-
155
-
1.0
0
-
150
-
< 1.0
0
-
150
-
- 21 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
13.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD
signals, then these ac-levels apply also for the single-ended signals CK and CK .
VDD or VDDQ
VSEH min
VSEH
VDD/2 or VDDQ/2
CK or DQS
VSEL max
VSEL
VSS or VSSQ
time
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
[ Table 6 ] Single ended levels for CK, DQS, CK, DQS
Symbol
VSEH
VSEL
Parameter
DDR3-800/1066/1333/1600
Unit
NOTE
NOTE 3
V
1, 2
(VDD/2)+0.175
NOTE 3
V
1, 2
NOTE 3
(VDD/2)-0.175
V
1, 2
NOTE 3
(VDD/2)-0.175
V
1, 2
Min
Max
Single-ended high-level for strobes
(VDD/2)+0.175
Single-ended high-level for CK, CK
Single-ended low-level for strobes
Single-ended low-level for CK, CK
NOTE :
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the
reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
- 22 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
13.3.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
VDD
CK, DQS
VIX
VDD/2
VIX
VIX
CK, DQS
VSEH
VSEL
VSS
Figure 4. VIX Definition
[ Table 7 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V
Symbol
DDR3L-800/1066/1333/1600
Parameter
Min
Max
Unit
NOTE
1
VIX
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
-150
150
mV
VIX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
-150
150
mV
NOTE :
1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + Vix(Min) - VSEL ≥ 25mV
VSEH - ((VDD/2) + Vix(Max)) ≥ 25mV
[ Table 8 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V
Symbol
DDR3-800/1066/1333/1600
Parameter
VIX
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
VIX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
Unit
Min
Max
-150
150
mV
-175
175
mV
-150
150
mV
NOTE
1
NOTE :
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.
- 23 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
13.4 Slew Rate Definition for Single Ended Input Signals
See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.
13.5 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
[ Table 9 ] Differential input slew rate definition
Measured
Description
Differential input slew rate for rising edge (CK-CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
Defined by
From
To
VILdiffmax
VIHdiffmin
VIHdiffmin
VIHdiffmin - VILdiffmax
Delta TRdiff
VIHdiffmin - VILdiffmax
VILdiffmax
Delta TFdiff
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
VIHdiffmin
0
VILdiffmax
delta TRdiff
delta TFdiff
Figure 5. Differential input slew rate definition for DQS, DQS and CK, CK
14. AC & DC Output Measurement Levels
14.1 Single Ended AC and DC Output Levels
[ Table 10 ] Single Ended AC and DC output levels
Symbol
Parameter
DDR3-800/1066/1333/1600
Units
VOH(DC)
NOTE
DC output high measurement level (for IV curve linearity)
0.8 x VDDQ
V
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.2 x VDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
VTT + 0.1 x VDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
VTT - 0.1 x VDDQ
V
1
NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2.
14.2 Differential AC and DC Output Levels
[ Table 11 ] Differential AC and DC output levels
Symbol
Parameter
DDR3-800/1066/1333/1600
Units
NOTE
VOHdiff(AC)
AC differential output high measurement level (for output SR)
+0.2 x VDDQ
V
1
VOLdiff(AC)
AC differential output low measurement level (for output SR)
-0.2 x VDDQ
V
1
NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2 at each of the differential outputs.
- 24 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
14.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
[ Table 12 ] Single ended Output slew rate definition
Measured
Description
Single ended output slew rate for rising edge
From
To
VOL(AC)
VOH(AC)
VOH(AC)
Single ended output slew rate for falling edge
Defined by
VOH(AC)-VOL(AC)
Delta TRse
VOH(AC)-VOL(AC)
VOL(AC)
Delta TFse
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 13 ] Single ended output slew rate
Parameter
Symbol
Single ended output slew rate
SRQse
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Operation
Voltage
Min
Max
Min
Max
Min
Max
Min
Max
1.35V
1.75
51)
1.75
51)
1.75
51)
1.75
51)
V/ns
1.5V
2.5
5
2.5
5
2.5
5
2.5
5
V/ns
Units
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ
signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
VOHdiff(AC)
VTT
VOLdiff(AC)
delta TFdiff
delta TRdiff
Figure 6. Single-ended output slew rate definition
- 25 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
14.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC)
for differential signals as shown in below.
[ Table 14 ] Differential Output slew rate definition
Measured
Description
Differential output slew rate for rising edge
To
VOLdiff(AC)
VOHdiff(AC)
VOHdiff(AC)
Differential output slew rate for falling edge
Defined by
From
VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
VOHdiff(AC)-VOLdiff(AC)
VOLdiff(AC)
Delta TFdiff
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 15 ] Differential Output slew rate
Parameter
Symbol
Single ended output slew rate
SRQdiff
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Operation
Voltage
Min
Max
Min
Max
Min
Max
Min
Max
1.35V
3.5
12
3.5
12
3.5
12
3.5
12
V/ns
1.5V
5
10
5
10
5
10
5
10
V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals
For Ron = RZQ/7 setting
VOHdiff(AC)
VTT
VOLdiff(AC)
delta TFdiff
delta TRdiff
Figure 7. Differential output slew rate definition
- 26 -
Units
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
15. IDD specification definition
Symbol
Description
IDD0
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE;
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD1
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD2N
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD2P0
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3)
IDD2P1
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3)
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT
Signal: stable at 0
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern
IDD5B
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command,
Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and
RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD6
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD6ET
Self-Refresh Current: Extended Temperature Range (optional)6)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and
the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD8
RESET Low Current
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
- 27 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 28 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
16. IDD SPEC Table
M392B5773CH0 : 2GB(256Mx72) Module
DDR3-1066
Symbol
DDR3-1333
7-7-7
1.35V
9-9-9
1.5V
1.35V
Unit
NOTE
1.5V
IDD0
1120
1165
1205
1250
mA
1
IDD1
1210
1300
1295
1385
mA
1
IDD2P0(slow exit)
678
678
718
718
mA
IDD2P1(fast exit)
750
750
790
790
mA
IDD2N
865
910
950
995
mA
IDD2Q
845
890
930
930
mA
IDD3P(fast exit)
795
840
880
880
mA
IDD3N
1035
1080
1120
1165
mA
IDD4R
1480
1570
1655
1745
mA
1
IDD4W
1580
1715
1935
1980
mA
1
IDD5B
2115
2160
2155
2200
mA
1
IDD6
668
668
708
708
mA
IDD7
2110
2200
2465
2600
mA
IDD8
668
668
708
708
mA
1
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
M392B5273CH0 : 4GB(512Mx72) Module
Symbol
DDR3-1066
DDR3-1333
7-7-7
9-9-9
Unit
NOTE
1.35V
1.5V
1.35V
1.5V
IDD0
1345
1435
1475
1565
mA
1
IDD1
1435
1570
1565
1655
mA
1
IDD2P0(slow exit)
786
786
826
826
mA
IDD2P1(fast exit)
930
930
970
970
mA
IDD2N
1090
1180
1220
1310
mA
IDD2Q
1070
1160
1200
1200
mA
IDD3P(fast exit)
1020
1110
1150
1150
mA
IDD3N
1440
1530
1570
1660
mA
IDD4R
1705
1840
1925
2060
mA
1
IDD4W
1805
1985
2205
2295
mA
1
IDD5B
2340
2430
2425
2515
mA
1
IDD6
776
776
816
816
mA
IDD7
2335
2470
2735
2915
mA
IDD8
776
776
816
816
mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
- 29 -
1
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
M392B5270CH0 : 4GB(512Mx72) Module
Symbol
DDR3-1066
DDR3-1333
7-7-7
9-9-9
Unit
NOTE
1.35V
1.5V
1.35V
1.5V
IDD0
1570
1660
1700
1790
mA
1
IDD1
1750
1840
1880
1970
mA
1
IDD2P0(slow exit)
786
786
826
826
mA
IDD2P1(fast exit)
930
930
970
970
mA
IDD2N
1090
1180
1220
1310
mA
IDD2Q
1070
1160
1200
1200
mA
IDD3P(fast exit)
1020
1110
1150
1150
mA
IDD3N
1440
1530
1570
1660
mA
IDD4R
2110
2290
2420
2510
mA
1
IDD4W
2300
2570
2700
2880
mA
1
IDD5B
3600
3690
3640
3730
mA
1
IDD6
776
776
816
816
mA
IDD7
3370
3550
4040
4310
mA
IDD8
776
776
816
816
mA
1
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
M392B1K70CM0 : 8GB(1Gx72) Module
Symbol
DDR3-1066
DDR3-1333
7-7-7
9-9-9
Unit
NOTE
1.35V
1.5V
1.35V
1.5V
IDD0
2020
2200
2240
2420
mA
1
IDD1
2200
2380
2420
2510
mA
1
IDD2P0(slow exit)
1002
1002
1042
1042
mA
IDD2P1(fast exit)
1290
1290
1330
1330
mA
IDD2N
1540
1720
1760
1940
mA
IDD2Q
1520
1700
1740
1740
mA
IDD3P(fast exit)
1470
1650
1690
1690
mA
IDD3N
2250
2430
2470
2650
mA
IDD4R
2560
2830
2960
3140
mA
1
IDD4W
2750
3110
3240
3510
mA
1
IDD5B
4050
4230
4180
4360
mA
1
IDD6
992
992
1032
1032
mA
IDD7
3820
4090
4580
4940
mA
IDD8
992
992
1032
1032
mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
- 30 -
1
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
M392B1K73CM0 : 8GB(1Gx72) Module
Symbol
DDR3-1066
DDR3-1333
7-7-7
9-9-9
Unit
NOTE
1.35V
1.5V
1.35V
1.5V
IDD0
1795
1975
2015
2195
mA
1
IDD1
1885
2065
2105
2285
mA
1
IDD2P0(slow exit)
1002
1002
1042
1042
mA
IDD2P1(fast exit)
1290
1290
1330
1330
mA
IDD2N
1540
1720
1760
1940
mA
IDD2Q
1520
1700
1740
1740
mA
IDD3P(fast exit)
1470
1650
1690
1690
mA
IDD3N
2250
2430
2470
2650
mA
IDD4R
2155
2290
2465
2555
mA
1
IDD4W
2255
2330
2745
2625
mA
1
IDD5B
2790
2970
2965
3145
mA
1
IDD6
992
992
1032
1032
mA
IDD7
2785
2920
3275
3455
mA
IDD8
992
992
1032
1032
mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
- 31 -
1
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
17. Input/Output Capacitance
M392B5773CH0
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
-
TBD
-
TBD
pF
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
NOTE
M392B5273CH0
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
-
TBD
-
TBD
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
NOTE
pF
M392B5270CH0
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
-
TBD
-
TBD
pF
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
NOTE
M392B1K70CM0
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
-
TBD
-
TBD
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
NOTE
pF
M392B1K73CM0
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
-
TBD
-
TBD
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
- 32 -
pF
NOTE
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
18. Electrical Characteristics and AC timing
[0 °C<TCASE ≤95 °C, VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V); VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)]
18.1 Refresh Parameters by Device Density
Parameter
Symbol
1Gb
2Gb
4Gb
8Gb
Units
tRFC
All Bank Refresh to active/refresh cmd time
Average periodic refresh interval
tREFI
110
160
300
350
ns
0 °C ≤ TCASE ≤ 85°C
7.8
7.8
7.8
7.8
μs
85 °C < TCASE ≤ 95°C
3.9
3.9
3.9
3.9
μs
NOTE
1
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in
this material.
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
Speed
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Bin (CL - tRCD - tRP)
6-6-6
7-7-7
9-9-9
11-11-11
Parameter
min
min
min
min
CL
6
7
9
11
tCK
tRCD
15
13.13
13.5
13.75
ns
tRP
15
13.13
13.5
13.75
ns
tRAS
37.5
37.5
36
35
ns
tRC
52.5
50.63
49.5
48.75
ns
tRRD
10
7.5
6.0
6.0
ns
tFAW
40
37.5
30
30
ns
Units
NOTE
18.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 16 ] DDR3-800 Speed Bins
Speed
DDR3-800
CL-nRCD-nRP
Parameter
Internal read command to first data
ACT to internal read or write delay time
6-6-6
Units
Symbol
min
max
tAA
15
20
ns
tRCD
15
-
ns
PRE command period
tRP
15
-
ns
ACT to ACT or REF command period
tRC
52.5
-
ns
tRAS
37.5
9*tREFI
ns
tCK(AVG)
2.5
3.3
ns
ACT to PRE command period
CL = 6 / CWL = 5
Supported CL Settings
6
nCK
Supported CWL Settings
5
nCK
- 33 -
NOTE
1,2,3
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
[ Table 17 ] DDR3-1066 Speed Bins
Speed
DDR3-1066
CL-nRCD-nRP
7-7-7
Parameter
Internal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
CL = 7
CL = 8
Symbol
min
max
tAA
13.125
20
ns
tRCD
13.125
-
ns
tRP
13.125
-
ns
NOTE
tRC
50.625
-
ns
tRAS
37.5
9*tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,5
CWL = 6
tCK(AVG)
ns
1,2,3,4
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
ACT to PRE command period
CL = 6
Units
Reserved
Reserved
1.875
<2.5
Reserved
1.875
<2.5
Supported CL Settings
Supported CWL Settings
ns
4
ns
1,2,3,4
ns
4
ns
1,2,3
6,7,8
nCK
5,6
nCK
[ Table 18 ] DDR3-1333 Speed Bins
Speed
DDR3-1333
CL-nRCD-nRP
9 -9 - 9
Parameter
Internal read command to first data
ACT to internal read or write delay time
Symbol
min
tAA
13.5 (13.125)8
tRCD
Units
NOTE
max
20
ns
13.5 (13.125)
8
-
ns
8
PRE command period
tRP
13.5 (13.125)
-
ns
ACT to ACT or REF command period
tRC
49.5 (49.125)8
-
ns
tRAS
36
9*tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,6
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,6
CWL = 7
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
ns
4
ns
1,2,3,4,6
ACT to PRE command period
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
Reserved
1.875
<2.5
CWL = 6
tCK(AVG)
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,6
1,2,3,4
(Optional) NOTE 8
1.875
<2.5
CWL = 7
tCK(AVG)
Reserved
ns
CWL = 5,6
tCK(AVG)
Reserved
ns
4
CWL = 7
tCK(AVG)
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
Reserved
1.5
Supported CL Settings
Supported CWL Settings
- 34 -
<1.875
ns
4
ns
1,2,3
(Optional)
ns
6,7,8,9
nCK
5,6,7
nCK
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
[ Table 19 ] DDR3-1600 Speed Bins
Speed
DDR3-1600
CL-nRCD-nRP
11-11-11
Parameter
Units
NOTE
Symbol
min
max
tAA
13.75
(13.125)8
20
ns
tRCD
13.75
(13.125)8
-
ns
PRE command period
tRP
13.75
(13.125)8
-
ns
ACT to ACT or REF command period
tRC
48.75
(48.125)8
-
ns
tRAS
35
9*tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,7
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 7, 8
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 8
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 8
tCK(AVG)
CWL = 5,6
tCK(AVG)
Intermal read command to first data
ACT to internal read or write delay time
ACT to PRE command period
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
CL = 11
CWL = 7
tCK(AVG)
CWL = 8
tCK(AVG)
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 8
tCK(AVG)
CWL = 5,6,7
tCK(AVG)
CWL = 8
tCK(AVG)
1.875
<2.5
(Optional) NOTE 8
Reserved
ns
4
ns
1,2,3,7
Reserved
ns
1,2,3,4,7
Reserved
ns
1,2,3,4
ns
4
ns
1,2,3,4,7
ns
1,2,3,4
ns
4
ns
1,2,3,7
ns
1,2,3,4
1.875
<2.5
Reserved
1.5
<1.875
(Optional) NOTE 8
TBD
Reserved
1.5
<1.875
(Optional) NOTE 8
Reserved
Reserved
1.25
Supported CL Settings
Supported CWL Settings
- 35 -
<1.5
ns
4
ns
1,2,3
6,7,8,9,10,11
nCK
5,6,7,8
nCK
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
18.3.1 Speed Bin Table Notes
Absolute Specification [TOPER; VDDQ = VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)];
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin
+ tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
- 36 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
19. Timing Parameters by Speed Grade
[ Table 20 ] Timing Parameters by Speed Bin
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
tCK(DLL_OF
F)
8
-
8
-
8
-
8
-
Units
NOTE
ns
6
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
tCK(avg)
See Speed Bins Table
Clock Period
tCK(abs)
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
Average high pulse width
tCH(avg)
Average low pulse width
Clock Period Jitter
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
ps
ps
0.47
0.53
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
tCL(avg)
0.47
0.53
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
tJIT(per)
-100
100
-90
90
-80
80
-70
70
ps
tJIT(per, lck)
-90
90
-80
80
-70
70
-60
60
ps
tJIT(cc)
200
180
160
140
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
180
160
140
120
Cumulative error across 2 cycles
tERR(2per)
- 147
147
- 132
132
- 118
118
-103
103
ps
Cumulative error across 3 cycles
tERR(3per)
- 175
175
- 157
157
- 140
140
-122
122
ps
Cumulative error across 4 cycles
tERR(4per)
- 194
194
- 175
175
- 155
155
-136
136
ps
Cumulative error across 5 cycles
tERR(5per)
- 209
209
- 188
188
- 168
168
-147
147
ps
Cumulative error across 6 cycles
tERR(6per)
- 222
222
- 200
200
- 177
177
-155
155
ps
Cumulative error across 7 cycles
tERR(7per)
- 232
232
- 209
209
- 186
186
-163
163
ps
Cumulative error across 8 cycles
tERR(8per)
- 241
241
- 217
217
- 193
193
-169
169
ps
Cumulative error across 9 cycles
tERR(9per)
- 249
249
- 224
224
- 200
200
-175
175
ps
Cumulative error across 10 cycles
tERR(10per)
- 257
257
- 231
231
- 205
205
-180
180
ps
Cumulative error across 11 cycles
tERR(11per)
- 263
263
- 237
237
- 210
210
-184
184
ps
Cumulative error across 12 cycles
tERR(12per)
- 269
269
- 242
242
- 215
215
-188
188
ps
Cumulative error across n = 13, 14 ... 49, 50 cycles
ps
ps
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
tERR(nper)
ps
24
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
0.43
-
0.43
-
0.43
-
tCK(avg)
25
Absolute clock Low pulse width
tCL(abs)
0.43
-
0.43
-
0.43
-
0.43
-
tCK(avg)
26
tDQSQ
-
200
-
150
-
125
-
100
ps
13
tQH
0.38
-
0.38
-
0.38
-
0.38
-
tCK(avg)
13, g
DQ low-impedance time from CK, CK
tLZ(DQ)
-800
400
-600
300
-500
250
-450
225
ps
13,14, f
DQ high-impedance time from CK, CK
tHZ(DQ)
-
400
-
300
-
250
-
225
ps
13,14, f
-
-
-
-
ps
d, 17
-
-
-
-
ps
d, 17
75
-
55
-
ps
d, 17
-
45
-
ps
d, 17
-
25
-
ps
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
1.35V
Data setup time to DQS, DQS referenced to
VIH(AC)VIL(AC) levels
tDS(base)
AC160
90
-
40
1.5V
tDS(base)
AC175
75
-
25
1.35V
Data hold time from DQS, DQS referenced to
VIH(AC)VIL(AC) levels
tDH(base)
DC90
160
-
110
-
1.5V
tDH(base)
DC100
150
-
100
-
65
1.35V
Data setup time to DQS, DQS referenced to
VIH(AC)VIL(AC) levels
DQ and DM Input pulse width for each input
tDS(base)
AC135
140
-
90
-
45
1.5V
tDS(base)
AC150
125
-
75
-
30
-
10
-
ps
tDIPW
600
-
490
-
400
-
360
-
ps
- 37 -
28
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
[ Table 20 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Units
NOTE
Note 19
tCK
13, 19, g
Note 11
tCK
11, 13, b
0.4
-
tCK(avg)
13, g
-
0.4
-
tCK(avg)
13, g
0.9
-
0.9
-
tCK
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
DQS, DQS differential READ Preamble
tRPRE
0.9
Note 19
0.9
Note 19
0.9
Note 19
0.9
DQS, DQS differential READ Postamble
tRPST
0.3
Note 11
0.3
Note 11
0.3
Note 11
0.3
DQS, DQS differential output high time
tQSH
0.38
-
0.38
-
0.4
-
DQS, DQS differential output low time
tQSL
0.38
-
0.38
-
0.4
DQS, DQS differential WRITE Preamble
tWPRE
0.9
-
0.9
-
DQS, DQS differential WRITE Postamble
Data Strobe Timing
tWPST
0.3
-
0.3
-
0.3
-
0.3
-
tCK
DQS, DQS rising edge output access time from rising
CK, CK
tDQSCK
-400
400
-300
300
-255
255
-225
225
ps
13,f
DQS, DQS low-impedance time (Referenced from RL1)
tLZ(DQS)
-800
400
-600
300
-500
250
-450
225
ps
13,14,f
DQS, DQS high-impedance time (Referenced from
RL+BL/2)
tHZ(DQS)
-
400
-
300
-
250
-
225
ps
12,13,14
DQS, DQS differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
29, 31
DQS, DQS differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
30, 31
DQS, DQS rising edge to CK, CK rising edge
tDQSS
-0.25
0.25
-0.25
0.25
-0.25
0.25
-0.27
0.27
tCK(avg)
c
DQS,DQS falling edge setup time to CK, CK rising edge
tDSS
0.2
-
0.2
-
0.2
-
0.18
-
tCK(avg)
c, 32
DQS,DQS falling edge hold time to CK, CK rising edge
tDSH
0.2
-
0.2
-
0.2
-
0.18
-
tCK(avg)
c, 32
tDLLK
512
-
512
-
512
-
512
-
nCK
tRTP
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
e
tWTR
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
e,18
Command and Address Timing
DLL locking time
internal READ Command to PRECHARGE Command
delay
Delay from start of internal write transaction to internal
read command
WRITE recovery time
tWR
15
-
15
-
15
-
15
-
ns
Mode Register Set command cycle time
tMRD
4
-
4
-
4
-
4
-
nCK
Mode Register Set command update delay
tMOD
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
tCCD
4
-
4
-
4
-
4
-
-
1
-
CAS# to CAS# command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
ACTIVE to PRECHARGE command period
tDAL(min)
tMPRR
WR + roundup (tRP / tCK(AVG))
1
tRAS
-
1
-
1
-
-
max
(4nCK,6ns)
nCK
nCK
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin”
max
(4nCK,7.5ns)
e
-
max
(4nCK,6ns)
-
nCK
22
ns
e
ACTIVE to ACTIVE command period for 1KB page size
tRRD
max
(4nCK,10ns)
ACTIVE to ACTIVE command period for 2KB page size
tRRD
max
(4nCK,10ns)
-
max
(4nCK,10ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
Four activate window for 1KB page size
tFAW
40
-
37.5
-
30
-
30
-
ns
e
Four activate window for 2KB page size
tFAW
50
-
50
-
45
-
40
-
ns
e
-
60
-
ps
b,16
-
45
-
ps
b,16
-
130
-
ps
b,16
120
-
ps
b,16
-
185
-
ps
b,16,27
e
e
1.35V
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
tIS(base)
AC160
215
-
140
-
80
1.5V
tIS(base)
AC175
200
-
125
-
65
1.35V
Command and Address hold time from CK, CK referenced to VIH(AC) / VIL(AC) levels
tIH(base)
DC90
285
-
210
-
150
1.5V
tIH(base)
DC100
275
200
140
1.35V
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
tIS(base)
AC135
365
-
290
-
205
1.5V
tIS(base)
AC150
350
-
275
-
190
-
170
-
ps
b,16,27
tIPW
900
-
780
-
620
-
560
-
ps
28
Power-up and RESET calibration time
tZQinitI
512
-
512
-
512
-
512
-
nCK
Normal operation Full calibration time
tZQoper
256
-
256
-
256
-
256
-
nCK
tZQCS
64
-
64
-
64
-
64
-
nCK
Control & Address Input pulse width for each input
Calibration Timing
Normal operation short calibration time
- 38 -
23
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
[ Table 20 ] Timing Parameters by Speed Bin (Cont.)
Speed
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Units
Parameter
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
tXPR
max(5nCK,
tRFC +
10ns)
-
max(5nCK,
tRFC +
10ns)
-
max(5nCK,
tRFC +
10ns)
-
max(5nCK,
tRFC +
10ns)
-
Exit Self Refresh to commands not requiring a locked
DLL
tXS
max(5nCK,t
RFC +
10ns)
-
max(5nCK,t
RFC +
10ns)
-
max(5nCK,t
RFC +
10ns)
-
max(5nCK,t
RFC + 10ns)
-
Exit Self Refresh to commands requiring a locked DLL
NOTE
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry to exit
timing
tCKESR
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
Valid Clock Requirement after Self Refresh Entry
(SRE) or Power-Down Entry (PDE)
tCKSRE
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Valid Clock Requirement before Self Refresh Exit
(SRX) or Power-Down Exit (PDX) or Reset Exit
tCKSRX
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
tXP
max
(3nCK,
7.5ns)
-
max
(3nCK,
7.5ns)
-
max
(3nCK,6ns)
-
max
(3nCK,6ns)
-
tXPDLL
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
tCKE
max
(3nCK,
7.5ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,5ns)
-
nCK
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL
frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL
CKE minimum pulse width
Command pass disable delay
2
tCPDED
1
-
1
-
1
-
1
-
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCK
15
Timing of ACT command to Power Down entry
tACTPDEN
1
-
1
-
1
-
1
-
nCK
20
Timing of PRE command to Power Down entry
tPRPDEN
1
-
1
-
1
-
1
-
nCK
20
Timing of RD/RDA command to Power Down entry
tRDPDEN
RL + 4 +1
-
RL + 4 +1
-
RL + 4 +1
-
RL + 4 +1
-
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
tWRPDEN
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL + 4
+WR +1
-
WL + 4
+WR +1
-
WL + 4
+WR +1
-
WL + 4 +WR
+1
-
nCK
10
tWRPDEN
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL +2 +WR
+1
-
WL +2 +WR
+1
-
WL +2 +WR
+1
-
WL +2 +WR
+1
-
nCK
10
Power Down Entry to Exit Timing
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
Timing of WR command to Power Down entry
(BL4MRS)
Timing of WRA command to Power Down entry
(BL4MRS)
nCK
Timing of REF command to Power Down entry
tREFPDEN
1
-
1
-
1
-
1
-
Timing of MRS command to Power Down entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
20,21
ODT high time without write command or with write
command and BC4
ODTH4
4
-
4
-
4
-
4
-
nCK
ODT high time with Write command and BL8
ODTH8
6
-
6
-
6
-
6
-
nCK
Asynchronous RTT turn-on delay (Power-Down with
DLL frozen)
tAONPD
2
8.5
2
8.5
2
8.5
2
8.5
ns
Asynchronous RTT turn-off delay (Power-Down with
DLL frozen)
tAOFPD
2
8.5
2
8.5
2
8.5
2
8.5
ns
RTT turn-on
tAON
-400
400
-300
300
-250
250
-225
225
ps
7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff
reference
tAOF
0.3
0.7
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
8,f
RTT dynamic change skew
tADC
0.3
0.7
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
f
First DQS pulse rising edge after tDQSS margining
mode is programmed
tWLMRD
40
-
40
-
40
-
40
-
tCK
3
DQS/DQS delay after tDQS margining mode is programmed
tWLDQSEN
25
-
25
-
25
-
25
-
tCK
3
Write leveling setup time from rising CK, CK crossing
to rising DQS, DQS crossing
tWLH
325
-
245
-
195
-
165
-
ps
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing
tWLH
325
-
245
-
195
-
165
-
ps
Write leveling output delay
tWLO
0
9
0
9
0
9
0
7.5
ns
Write leveling output error
tWLOE
0
2
0
2
0
2
0
2
ns
ODT Timing
Write Leveling Timing
- 39 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
19.1 Jitter Notes
Specific Note a
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,
these parameters should be met whether clock jitter is present or not.
Specific Note c
These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d
These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS) crossing.
Specific Note e
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to
tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the
min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/
max usage!)
- 40 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
19.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VREFDQ(DC). FOr input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram
Datasheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133 ~
~ 128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 41 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20. Physical Dimensions
20.1 256Mbx8 based 256Mx72 Module (1 Rank) - M392B5773CH0
Units : Millimeters
133.35 ± 0.15
128.95
C
20.92
32.40
20.93
Max 4.0
9.74
Register
18.75 ± 0.15
9.76
54.675
A
B
12.60
47.00
1.0 max
71.00
1.27 ± 0.10
SPD/TS
2.50 ± 0.20
18.10
0.80 ± 0.05
9.9
3.80
0.6
5.00
0.
50
0.2 ± 0.15
1.50±0.10
R
1.00
2.50
Detail A
Detail B
Detail C
VTT
Register
VTT
20.1.1 x72 DIMM, populated as one physical rank of x8 DDR3 SDRAMs
Address, Command and Control lines
NOTE : DRAMs indicated with dotted outline are located on the backside of the module.
The used device is 256M x8 DDR3L SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B2G0846C-HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 42 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.2 256Mbx8 based 512Mx72 Module (2 Ranks) - M392B5273CH0
Units : Millimeters
133.35 ± 0.15
128.95
C
20.92
32.40
20.93
9.74
Register
18.75 ± 0.15
9.76
Max 4.0
54.675
A
B
12.60
47.00
1.0 max
71.00
1.27 ± 0.10
SPD/TS
2.50 ± 0.20
18.10
0.80 ± 0.05
9.9
3.80
0.6
5.00
0.
50
0.2 ± 0.15
1.50±0.10
R
1.00
2.50
Detail A
Detail B
Detail C
VTT
Register
VTT
20.2.1 x72 DIMM, populated as two physical ranks of x8 DDR3 SDRAMs
VTT
VTT
SPD/TS
Address, Command and Control lines
The used device is 256M x8 DDR3L SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B2G0846C-HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 43 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.3 512Mbx4 based 512Mx72 Module (1 Rank) - M392B5270CH0
Units : Millimeters
133.35 ± 0.15
128.95
C
20.92
32.40
20.93
Max 4.0
9.74
Register
18.75 ± 0.15
9.76
54.675
A
B
12.60
47.00
1.0 max
71.00
1.27 ± 0.10
SPD/TS
2.50 ± 0.20
18.10
0.80 ± 0.05
9.9
3.80
0.6
5.00
0.
50
0.2 ± 0.15
1.50±0.10
R
1.00
2.50
Detail A
Detail B
Detail C
VTT
Register
VTT
20.3.1 x72 DIMM, populated as one physical rank of x4 DDR3 SDRAMs
VTT
VTT
SPD/TS
Address, Command and Control lines
The used device is 512M x4 DDR3L SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B2G0446C-HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 44 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.4 1Gbx4(DDP) based 1Gx72 Module (2 Ranks) - M392B1K70CM0
Units : Millimeters
133.35 ± 0.15
128.95
C
20.92
20.93
32.40
Max 4.0
9.74
Register
18.75 ± 0.15
9.76
54.675
A
B
12.60
47.00
1.0 max
71.00
1.27 ± 0.10
SPD/TS
2.50 ± 0.20
18.10
0.80 ± 0.05
9.9
3.80
0.6
5.00
0.
50
0.2 ± 0.15
1.50±0.10
R
1.00
2.50
Detail A
Detail B
Detail C
VTT
Register
VTT
20.4.1 x72 DIMM, populated as two physical ranks of x4 DDR3 SDRAMs
VTT
VTT
SPD/TS
Address, Command and Control lines
The used device is 1G x4(DDP) DDR3L SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B4G0446C-MY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 45 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.4.2 Heat Spreader Design Guide
1. FRONT PART
Outside
130.45
67
20.82
17.9
6.4
20.82
8.69
14.3
0.4
8.69
Driver
IC(DP:0.18mm)
DRIVER IC 0.18 -0/+0.1
Inside
Driver
IC(DP:0.18mm)
2. BACK PART
Outside
Driver
IC(DP:0.18mm)
Inside
Driver
IC(DP:0.18mm)
- 46 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
3. CLIP PART
35.82
9.16 ± 0.12
7.2 ± 0.1
9.16
9.16 ± 0.12
7.2 ± 0.1
Clip open size
3.0~4.3
SIDE-L
0.1
FRONT
SIDE-R
4. ASS’Y VIEW
7.55
Reference thickness total (Maximum) : 7.55 (With Clip thickness)
TIM Thickness 0.25
- 47 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.5 512Mbx8(DDP) based 1Gx72 Module (4 Ranks) - M392B1K73CM0
Units : Millimeters
133.35 ± 0.15
128.95
C
20.92
32.40
20.93
Max 4.0
9.74
Register
18.75 ± 0.15
9.76
54.675
A
B
12.60
47.00
1.0 max
71.00
1.27 ± 0.10
SPD/TS
2.50 ± 0.20
18.10
0.80 ± 0.05
9.9
3.80
0.6
5.00
0.
50
0.2 ± 0.15
1.50±0.10
R
1.00
2.50
Detail B
Detail A
Detail C
VTT
Register
VTT
20.5.1 x72 DIMM, populated as four physical ranks of x8 DDR3 SDRAMs
VTT
VTT
SPD/TS
Address, Command and Control lines
The used device is 512M x8(DDP) DDR3L SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B4G0846C-MY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 48 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
20.5.2 Heat Spreader Design Guide
1. FRONT PART
Outside
130.45
67
20.82
17.9
6.4
20.82
8.69
14.3
0.4
8.69
Driver
IC(DP:0.18mm)
DRIVER IC 0.18 -0/+0.1
Inside
Driver
IC(DP:0.18mm)
2. BACK PART
Outside
Driver
IC(DP:0.18mm)
Inside
Driver
IC(DP:0.18mm)
- 49 -
Rev. 1.1
DDR3L SDRAM
VLP Registered DIMM
3. CLIP PART
35.82
9.16 ± 0.12
7.2 ± 0.1
9.16
9.16 ± 0.12
7.2 ± 0.1
Clip open size
3.0~4.3
SIDE-L
0.1
FRONT
SIDE-R
4. ASS’Y VIEW
7.55
Reference thickness total (Maximum) : 7.55 (With Clip thickness)
TIM Thickness 0.25
- 50 -
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement