IRHNA9260 JANSR2N7426U RADIATION HARDENED 200V, P-CHANNEL

IRHNA9260 JANSR2N7426U RADIATION HARDENED 200V, P-CHANNEL
PD - 93969A
IRHNA9260
JANSR2N7426U
200V, P-CHANNEL
REF: MIL-PRF-19500/655
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (SMD-2)
®
™
RAD-Hard HEXFET TECHNOLOGY
Product Summary
Part Number Radiation Level
IRHNA9260
100K Rads (Si)
IRHNA93260 300K Rads (Si)
RDS(on)
0.154Ω
0.154Ω
ID
-29A
-29A
QPL Part Number
JANSR2N7426U
JANSF2N7426U
International Rectifier’s RAD-Hard TM HEXFET ®
MOSFET technology provides high performance
power MOSFETs for space applications.This
technology has over a decade of proven performance
and reliability in satellite applications. These devices
have been characterized for both Total Dose and
Single Event Effects (SEE). The combination of low
RDS(on) and low gate charge reduces the power
losses in switching applications such as DC to DC
converters and motor control. These devices retain
all of the well established advantages of MOSFETs
such as voltage control, fast switching, ease of
paralleling and temperature stability of electrical
parameters.
SMD-2
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Ultra Low RDS(on)
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Surface Mount
Ceramic Package
Light Weight
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = -12V, TC = 25°C
ID @ VGS = -12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Pckg. Mounting Surface Temp.
Weight
Units
-29
-18
-116
300
2.4
±20
500
-29
30
-20
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (for 5s)
3.3 (Typical)
g
For footnotes refer to the last page
www.irf.com
1
02/01/06
IRHNA9260, JANSR2N7426U
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
-200
—
—
V
VGS = 0V, ID = -1.0mA
—
-0.27
—
V/°C
Reference to 25°C, ID = -1.0mA
—
—
-2.0
14
—
—
—
—
—
—
—
—
0.154
0.159
-4.0
—
-25
-250
Ω
∆BVDSS/∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
IGSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.0
-100
100
300
65
58
37
141
148
220
—
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
6143
915
159
—
—
—
V
S( )
Ω
BVDSS
µA
nA
nC
ns
nH
pF
Test Conditions
VGS = -12V, ID = -18A
Ã
VGS = -12V, ID = -29A
VDS = VGS, ID = -1.0mA
VDS > -15V, IDS = -18A Ã
VDS= -160V ,VGS=0V
VDS = -160V,
VGS = 0V, TJ = 125°C
VGS = -20V
VGS = 20V
VGS = -12V, ID = -29A
VDS = -100V
VDD = -100V, ID = -29A
RG = 2.35Ω
Measured from the center of
drain pad to center of source pad
VGS = 0V, V DS = -25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
trr
QRR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
-29
-116
-3.0
738
12
Test Conditions
A
V
ns
µC
Tj = 25°C, IS = -29A, VGS = 0V Ã
Tj = 25°C, IF = -29A, di/dt ≤ -100A/µs
VDD ≤ -50V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJ-PCB
Junction-to-Case
Junction-to-PC board
Min Typ Max
—
—
—
1.6
0.42
—
Units
°C/W
Test Conditions
soldered to a 2” square copper-clad board
Note: Corresponding Spice and Saber models are available on the International Rectifier Website.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
IRHNA9260, JANSR2N7426U
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
100K Rads(Si)1
Min
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage Ã
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source Ã
On-State Resistance (TO-3)
Static Drain-to-Source Ã
On-State Resistance (SMD-2)
Diode Forward Voltage Ã
Units
300K Rads (Si)2
Min
Max
—
-200
-4.0
-2.0
-100
—
100
—
- 25
—
0.155
—
—
-5.0
-100
100
-25
0.161
—
0.154
—
—
-3.0
—
-200
-2.0
—
—
—
—
Max
Test Conditions
µA
Ω
V GS = 0V, ID = -1.0mA
VGS = VDS , ID = -1.0mA
VGS = -20V
VGS = 20 V
VDS= -160V, VGS =0V
VGS = -12V, ID =-18A
0.160
Ω
VGS = -12V, ID = -18A
-3.0
V
V
nA
VGS = 0V, I S = -29A
1. Part number IRHNA9260 (JANSR2N7426U)
2. Part number IRHNA93260 (JANSF2N7426U)
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
Cu
Br
LET
MeV/(mg/cm2))
28.0
36.8
Energy
(MeV)
285
305
VDS (V)
Range
(µm)
43.0
39.0
@VGS=0V @VGS=5V @VGS=10V
-200
-200
-200
-200
-200
-125
@VGS=15V
-200
-75
@VGS=20V
—
—
-250
VDS
-200
-150
Cu
Br
-100
-50
0
0
5
10
15
20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHNA9260, JANSR2N7426U
Pre-Irradiation
1000
1000
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
100
-5.0V
100
-5.0V
20µs PULSE WIDTH
TJ = 25 °C
10
1
10
1
TJ = 25°C
T J = 150°C
VDS = -50V
60µs PULSE WIDTH
10
7
8
9
10
-VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current ( Α)
2.5
6
100
Fig 2. Typical Output Characteristics
1000
5
10
-VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
20µs PULSE WIDTH
TJ = 150 °C
10
100
-VDS , Drain-to-Source Voltage (V)
4
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
TOP
TOP
ID = -29A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
IRHNA9260, JANSR2N7426U
Pre-Irradiation
10000
-VGS , Gate-to-Source Voltage (V)
8000
C, Capacitance (pF)
20
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
6000
4000
Coss
2000
ID = -29A
VDS = 160V
VDS = 100V
VDS = 40V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
0
0
1
10
0
100
100
150
200
250
300
350
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
100
-I D, Drain-to-Source Current (A)
1000
-ISD , Reverse Drain Current (A)
50
QG , Total Gate Charge (nC)
-VDS , Drain-to-Source Voltage (V)
TJ = 150 ° C
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10
TJ = 25 ° C
1
0.1
0.0
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
3.0
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
100µs
10
1ms
Tc = 25°C
Tj = 150°C
Single Pulse
10ms
1
3.5
1
10
100
1000
-VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHNA9260, JANSR2N7426U
Pre-Irradiation
V GS
25
-ID , Drain Current (A)
RD
V DS
30
D.U.T.
RG
+
V DD
20
-12V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
15
Fig 10a. Switching Time Test Circuit
10
td(on)
5
tr
t d(off)
tf
VGS
10%
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
90%
VDS
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHNA9260, JANSR2N7426U
VDD
A
IAS
DRIVER
0.01Ω
tp
15V
Fig 12a. Unclamped Inductive Test Circuit
I AS
EAS , Single Pulse Avalanche Energy (mJ)
D.U.T.
RG
-12V
-20V
1200
L
VDS
ID
-13A
-18.3A
BOTTOM -29A
TOP
900
600
300
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V(BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
-12V
12V
.2µF
.3µF
-12 V
QGS
QGD
D.U.T.
VGS
VG
-3mA
IG
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
+VDS
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHNA9260, JANSR2N7426U
Pre-Irradiation
Footnotes:
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD =-50V, starting TJ = 25°C, L = 1.2mH,
Peak IL= -29A, VGS = -12V
 I SD ≤ - 29A, di/dt ≤ -377A/µs,
VDD ≤ - 200V, TJ ≤ 150°C
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
-12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A
Å Total Dose Irradiation with VDS Bias.
-160 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A
Case Outline and Dimensions — SMD-2
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 02/2006
8
www.irf.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement