Thesis_write_up_refurb.

Thesis_write_up_refurb.
 Evaluation of changes required in the transmission system to facilitate the developments of smart grids MSc Thesis project A.K.Srinivasan Student number 4039068 Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science The work for thesis has been carried out at TenneT TSO B.V Arnhem from November 2010 to August 2011 Page | 1 “The stone age did not end due to lack of stone” ‐Sheikh Zaki Yamani, former Saudi minister for Oil Thesis committee Prof.ir. Lou Van der Sluis Dr.ir. Marjan Popov Dr.ir. Dhiradj Djairam ing. Frank F.Koers ir.Mart van der Meijden Page | 2 Preface In the world we inhabit basic commodities such as water, food and habitable surroundings are no longer the basic requirements. We live in perhaps one of the most important times in human history‐when sustainable practices need to be desperately implemented to ensure a future for all mankind. Almost everything we touch in our lives today requires fossil fuels to manufacture or operate. Fossil fuels are becoming increasingly difficult to extract, acquire and transport to the point of their intended use. Even after their use, fossil fuels leave behind traces in the atmosphere‐ effects of which are becoming increasingly apparent after two centuries of their continued use in the form of global warming and other forms of environmental pollution. Electricity is thus added to the list of basic amenities for human survival. Renewable energy resources can provide clean, green and affordable energy‐but their large scale implementation faces difficult challenges‐ mostly due to the inconsistency of the sources of energy they rely on to produce energy. Smart grids hold a promising answer to the challenges posed toward implementing sustainable energy resources, and in particular renewable resources of energy into large scale energy transmission. This work is a study into the expected effects of incorporating renewable resources of energy and storage sources into the electricity grid and attempts to answer some of the technical aspects which are likely to arise in the process. This work is not the result of a single person’s work. I would like to thank my supervisors Frank Koers and Prof. Marjan Popov for their incredible support in guiding me in the thesis at every step and providing avenues for such a deep and timely research subject. My special thanks go to Ernst Wierenga for his inputs and directions. I would like to thank all my friends and my loving family for supporting me in my hours of most need. Last but not the least I would like to thank Hema for her continued understanding and support throughout the process of this work. Arvind Kumar Srinivasan Page | 3 Summary The energy industry today is in the precipice of great changes. As the changes in the energy supply into the Netherlands are expected to change over the coming years the nature of the HV grid is also expected to change drastically in the coming years. It becomes necessary to develop models for the future scenarios in which the different patterns of energy flow are taken into account. This was the focus of the vision 2030 document by TenneT in 2008. The study gives an overview of the expected load flows under the different development scenarios. With the nature of generation and load varying between the years 2010 and 2030, it becomes necessary to study the dynamic behavior of the grid in addition to the load flows. In this study the dynamic aspects of the network under the different scenarios are studied. It was seen that the contribution of the wind power is expected to increase most under the sustainable transition scenario (with contribution at the Ijmuiden generation bus reached 60% of its production value) and least under the money rules scenario( at a 1% of total production). Effects of faults at different locations in the network were studied. It was seen that the fault levels in the network determine the voltage sags during the fault event. The voltage sags were found to be the highest in the new strongholds scenario and lowest in the money rules scenario. It was further observed that even in the worst case scenario, a fault in the distribution network with generation from photovoltaic, μ‐CHP and electric vehicle sources did not exceed 70% of the prefault voltage levels at the 150KV bus. The worst location in the network was found to be at the 150KV bus which acts as the focal point for all power generation under all the scenarios. It was further seen that the recovery time after a fault event and the settling time for the voltage, frequency and the active and reactive powers were dependent on both the power generation contributions at the generation bus as well as the nature of the grid itself, characterized using the grid inertia time constant. It was observed that the oscillations in voltage and frequency were highest in the Page | 4 sustainable transition scenario. The increased contribution from wind power production and complete focus of all the power plants at Ijmuiden 150KV bus are reasons for this phenomenon. The scenario with the lowest oscillation in the parameters was found to be the new strongholds scenario. However in this case fault levels were quite high and larges fault impedance had to be utilized for the system convergence in calculations. It was found that distributed power generation resources such as rooftop Photovoltaic systems and electric vehicles with vehicle to grid capabilities are indeed capable of supplying power to the grid and participating in applications such as frequency regulation. However the impact of the power electronic converters is clearly visible in their integration with the grid. Methods were proposed to mitigate the effects of the worst case faults in the network. It was found that fast switching mechanisms and use of fault current limiting devices would mitigate the effects of transients in the HV grid to a very large extent. Page | 5 Contents Preface Summary List of figures List of Tables Glossary of abbreviations 1. Introduction 1.0 Introduction 14 1.1 Research Objectives 15 1.2 Expected results 16 1.2.1 Green Revolution 16 1.2.2 New strongholds 16 1.2.3 Sustainable transition 17 1.2.4 Money rules 17 1.3 Research Methodology 17 1.4 Structure 18 1.5 Exclusions from the report 19 2. Development Scenarios 2.0 Introduction to growth scenarios 21 2.1 The Green revolution scenario 22
2.2 The Sustainable transition scenario 22
2.3 The New Strongholds scenario 23
2.4 The Money rules scenario 23
3. Model description and validation 25
3.1 Introduction 26
3.1.1 Network model for green revolution scenario 27
Page | 6 3.1.2 Network model for wind farms 28
3.1.3 Network model for Photovoltaic systems 30
3.1.4 network model for electric vehicles 30 3.2 Network model for Sustainable transition scenario 33
3.3 Network model for New strongholds scenario 34
3.4 Network model for Money rules scenario 35 3.5
Model validation 36
4. Network analysis of growth scenarios
4.0 Introduction 38
4.1 Distribution of power production under growth 41
Scenarios 4.2Calculation of grid acceleration time constant 44
5 Results 5.0 Introduction 48 5.1 Analysis of voltage sag table 49
5.1.1 Faults occurring in 11KV network 49 5.1.2 Faults occurring in 21 KV network 41
5.1.3 Faults occurring in 150 KV network 52 5.1.4 Faults occurring in 380 KV network 53
5.1.5 Summary of voltage sag table analysis 53
5.2 Results for short circuit calculations 55
5.2.1 Short Circuit analysis: Green Revolution scenario 55 5.2.2 Short Circuit analysis : new strongholds scenario 58
5.2.3 Short circuit analysis: Sustainable transition scenario 60
5.2.4 Short circuit analysis: Money rules scenario 62
5.3 Behavior under dynamic load conditions 64
5.3.1 Load variation at 150KV bus 65 5.3.1.1 Green revolution scenario 65 5.3.1.2 New strongholds scenario 68
Page | 7 5.3.1.3 Sustainable transition scenario 68
5.3.1.4 Money rules scenario 69
5.3.2 System behavior for increasing load at the EV bus 71 5.4 Impact of V2G on system frequency regulation 74
5.5 Suggested mitigation methods 75
5.5.1 Methods for short circuit conditions 75 5.5.2 Methods for Dynamic load variation 76 6 Conclusions 77
7 Recommendations for future work 79 Bibliography Appendix A Device and Network Data Appendix B Calculation of Electric vehicle load and V2G production capabilities Appendix C Voltage sag Table results for growth scenarios (years 2010,2020 and 2030) Appendix D Compilation of printable versions of simulations Appendix E Thesis proposal Page | 8 List of Figures Fig 2.0 Four development scenarios Fig.3.1 Network setup for Green Revolution scenario Fig.3.1.1 Wind farm model network Fig.3.1.2 11KV network Fig 3.1.3 Network for simulation of PV systems connected to the grid Fig 3.1.4 network for simulation of electric vehicles connected to grid Fig. 3.2 Network model for Sustainable transition scenario Fig.3.3 Network model for new strongholds scenario Fig.3.4 Network for Money rules scenario Fig.4.0.1 Estimated production and loads in GW, Borselle (Green revolution scenario) Fig.4.0.2 Estimated production and loads in GW, Maasvlakte (New strongholds scenario) Fig.4.0.3 Estimated production and loads in GW, IJmuiden (Sustainable transition scenario) Fig.4.0.4 Estimated production and loads in GW, Eemshaven (Money rules scenario) Fig.4.2.1 Distribution of power production under Green revolution scenario Fig.4.2.2 Distribution of power production under New Strongholds scenario Fig.4.2.3 Distribution of power production under New Strongholds scenario Fig.4.2.4 Distribution of power production under Money rules scenario Page | 9 Fig. 5.1.1 Range of fault voltages at 150KV bus due to faults in 11KV network. Fig. 5.1.2 Range of fault voltages at 150KV bus due to faults in 21KV network. Fig. 5.1.3 Range of fault voltages at 150KV bus due to faults in 150KV network. Fig. 5.1.4 Range of fault voltages at 150KV bus due to faults in 380KV network. Fig. 5.1.5 positive sequence impedance against voltage sag magnitude Fig.5.2.1.1 Three phase symmetrical short circuit at 150KV bus,GR Fig.5.2.1.2 Three phase symmetrical short circuit at 150KV wind farm terminal, GR Fig.52.1.3: Three phase symmetrical short circuit at 150KV wind farm interconnection cable, GR Fig.5.2.2.1: Three phase symmetrical short circuit at 150KV bus, NStr Fig. 5.2.2.2 Three phase symmetrical short circuit at 150KV wind farm terminal, Nstr Fig.5.2.2.3 Three phase symmetrical short circuit at wind farm interconnection cable, Nstr Fig.5.2.3.1 T hree phase symmetrical short circuit at 150KV bus, SX Fig.5.2.3.2 Three phase symmetrical short circuit at wind farm terminal, SX Fig.5.2.3.3 Three phase symmetrical short circuit at wind farm interconnection cable, SX Fig.5.2.4.1 Three phase symmetrical short circuit at 150KV bus, MR Fig.5.2.4.2 Three phase symmetrical short circuit at wind farm terminal, MR Page | 10 Fig.5.2.4.3 Three phase symmetrical short circuit at wind farm interconnection cable, MR Fig.5.3.1.1 Increase in load at 150 KV terminal, green revolution scenario Fig.5.3.1.2 Decrease in load at 150 KV terminal, green revolution scenario Fig.5.3.1.3 Increase in load at 150 KV terminal, new strongholds scenario Fig.5.3.1.4: Decrease in load at 150 KV terminal, new strongholds scenario Fig.5.3.1.5 Increase in load at 150 KV terminal, sustainable transition scenario Fig.5.3.1.6 Decrease in load at 150 KV terminal, sustainable transition scenario Fig.5.3.1.7 Increase in load at 150 KV terminal, Money rules scenario Fig.5.3.1.8 Decrease in load at 150 KV terminal, sustainable transition scenario Fig 5.3.2.1 Increase in load at electric vehicle DC load, green revolution scenario Fig 5.3.2.2 Increase in load at electric vehicle DC load, new strongholds scenario Fig 5.3.2.3 Increase in load at electric vehicle DC load, Sustainable transitions scenario Fig 5.3.2.4 Increase in load at electric vehicle DC load, Money rules scenario Fig5.4 impact of V2G action on frequency regulation Fig 5.5.1 Simulation of fast switching at 380KV bus (in 85 ms) Page | 11 List of Tables Table 2.0 Expected installed capacities power production in 2030 Table 4.0 Estimated power production for growth scenarios year 2030 Table 4.0.1 Estimated power production for growth scenarios year 2030 Table 4.0.3 International power exchange under different scenarios Table 4.0.4 Expected connected load at production centers in future years Table 4.2.0 Calculation of Heq for different scenarios in year 2030 Page | 12 Glossary of abbreviations µ‐CHP: Micro Combined Heat and Power PV system: Photo Voltaic system EV: Electric Vehicle HV: High Voltage MV: Medium voltage KV: Kilo Volts MW: MegaWatt GW: GigaWatt Hz: Hertz p.u: per unit KA: Kilo Amperes MVA: Mega Volt‐Ampere pf: power factor V2G: Vehicle to Grid R/X: Resistance to reactance ratio GR: Green Revolution scenario NS/Nstr: New strongholds scenario SX: Sustainable transition scenario MR: Money rules scenario Page | 13 Chapter 1 Introduction 1.0
Introduction The turn of the century has bought about profound changes in the energy industry. With severe variations in the prices of fossil fuels, environmental challenges, logistical challenges in the exploration, extraction and transportation from source to point of use continuously influencing availability of cheap and clean energy, increased focus has been given towards development and integration of “Renewable energy sources”. While the Electric grids around the world continue to be based on conventional technologies renewable energy resources such as photovoltaic power systems, Wind energy, Electric vehicles and CHP plants increasingly rely on power electronic devices and converters to transfer the produced electric power to the electric grid. One of the chief benefits of using the power electronic converters is the high degree of control which can be used to control the behavior of the electricity grid during disturbances and switching conditions. A minor drawback is ascertaining the nature of interactions between the fast‐acting power electronic components‐based renewable energy resources and the slower reacting conventional electric grid. This project deals with analyzing the nature of the interactions between the high voltage grid and the smart grids of the future. To analyze the above it is useful to get pointers regarding the growth trends for renewable energy resources and their expected assimilation into the networks of the future. Even though the developments of the smart grids entities such as PV systems, Electric vehicles etc. are dependent to a very large extent on the developments in these individual fields in the future, their incorporation into the grids in the years to come depends to a large extent on the growth policies adopted in the future. These policies in turn would be motivated by the ease of logistics in procuring a steady and reliable source of fossil fuels (coal, petroleum and natural gas) in the years to Page | 14 come. This is the backdrop of the future growth scenarios adopted by TenneT to formulate its vision for the electricity grid in the year 2030 in the “Vision 2030” document [1]. In this document the various scenarios are analyzed. Regions of the grid to be reinforced and the resulting load flow characteristics for the Netherlands (also accounting for the international power exchange under different scenarios) are analyzed. For a balancing authority of electric power in the Netherlands, it becomes very necessary to analyze the interaction between the smart grid networks and the conventional electric grid setups in this case. The electric grid in the years to come would be faced with an increased amount of distributed generation, higher use of power electronic converters and systems with lower inertia. The fundamental goal is to investigate the nature of the system parameters such as voltage, frequency and dynamic power flows between the grid (modeled as a combination of 400KV and 150 KV buses) and the downstream distribution systems during fault conditions and dynamic load conditions. Variation in these parameters has a profound effect on the stability of the system. Hence the system stability in terms of the individual parameters is studied. In conclusion, methods to reduce and alleviate the results of system disturbances are recommended. The studies are performed on the DIgSILENT PowerFactory ver.14 software. 1.1 Research Objectives The research objectives of this report are detailed as follows: 1) What is the nature of the behavior of system parameters such as voltage, frequency, active and reactive power flow during system disturbances and dynamic load conditions in the future scenario networks foreseen under the “Vision 2030” document, when smart grid entities such as Photovoltaic power production systems, wind energy and electric vehicles are taken into account? 2) What is the nature of the short circuits at different locations in the network under different scenarios, which locations and conditions represent the worst case fault scenario for the HV grid? Page | 15 3) What steps can be taken to ensure a steady operation of the system under above conditions? 1.2 Expected results Various scenarios foreseen for the network in the years 2020 and 2030 have different network characteristics. However the system behavior for voltage, frequency and the resultant dynamic variations in real and reactive power at the HV buses would follow common patterns (albeit at different magnitudes). 1.2.1 Green Revolution scenario This scenario is highlighted for an increased reliance on nuclear, CHP, wind power and photovoltaic power systems. While there is no variation in nuclear power production based on seasonal variations, CHP, wind and PV power production rely heavily on environmental setup under which the network is being investigated. During this period the grid is expected to function solely based on power production through nuclear and CHP resources in addition to international power exchanges. It is thus expected that system behavior is largely dependent on the conventional power production setup. Voltage and frequency deviations during both disturbances and load variation conditions can be controlled by conventional means. The voltage at the 150 KV bus can vary to a maximum of 10% between loading conditions and the frequency deviations would be limited to 2% of nominal frequency. Furthermore, transient oscillations in power would be reduced considering the relatively increased inertia of the system. 1.2.2 New strongholds scenario In this scenario the system behavior is dominated by large inertia generators which contribute the majority of the power. The system behavior is thus expected to resemble the conventional setup with large generators dominating the nature of voltage, frequency and power flow patterns. The oscillations in the above parameters would be largely Page | 16 determined by the action of the controllers. The effect of the grid inertia would be to supply a very high amount of store rotational energy into the system in case of disturbances and the system is expected to recover quickly from the disturbed state. 1.2.3 Sustainable transition scenario In this scenario the increased reliance on renewable energy resources leads to a major portion of the generation capacity being fulfilled by these forms of power production. The overall grid behavior would thus be defined by the increased oscillations in the network brought about by a large amount of wind power being supplied to the grid. It is expected that the voltage sags would be increased in this scenario in terms of recovery time and settling time. The magnitude of the voltage sag would however be reduced owing to the intermediate generation capacity and the low fault current supplying capability of wind power networks. Use of efficient controllers can however be used to mitigate the effect of load variations in the network under this scenario. 1.2.4 Money rules scenario As a conventional network with very high amount of conventional (i.e. thermal, nuclear, CHP and gas turbine based) power production the scenario is one with the strongest possibilities for recovery time and system restoring time after a fault event. The transients in the power system would be reduced owing to the lower contributions from low inertia power generation methods. The voltage sag magnitudes would however be high due to the higher fault current levels in the grid. 1.3 Research methodology The research methodology in this work is focused on describing the behavior of the network under different scenarios envisaged in the vision 2030 document by TenneT [1].For this, the generation and load capacities at each of the generation Page | 17 centers is first calculated using the data available from the existing grid model from TenneT and the vision 2030 document. Breakup of the power production between different methods of power production is then arrived at using the above information. With this step completed the network grid inertia time constant is calculated. Basic models of the generation methods were developed for PV and EV systems and an available model was used for the simulation of wind farms. The results of the short circuit are first analyzed using a voltage sag table which provides information about the voltage sags in the 150KV bus when faults occur at different locations in the network. From this, the worst case scenario is taken for the simulation of the short circuits in the network. In the dynamic load variations, the network is analyzed for the effects of varying load at the 150KV bus and electric vehicle load (in the distribution network). The results are analyzed based on the generation capacity, load capacity, inertia constant of the grid and the distribution of generation in the network. 1.4 Structure In this work the different scenarios are evaluated for their effects on the voltage, frequency, power flows and system stability at the 150 KV and 400 KV electricity grids. For this purpose, the electricity grid and the downstream distribution networks need to be modeled. However since the study focuses on the major generation centers the analysis is carried out at the four major production centers identified under the Vision 2030 document. Also since the analysis covers a period of years from 2010 to 2030 the grids are modeled for the increased generation and expected load values for three different years. Each of the production centers is associated with a particular growth scenario, hence the patterns for production and load growth over the period of time from 2010 to 2030 is analyzed under the expected growth rates predicted under the vision 2030 document. In accordance with the variation in the high voltage grids, the distribution network production and load patterns also change. For this simulation, Page | 18 distribution system loads are simulated in according to the expected load increase at the four production centers in the Netherlands in the future years. In addition to the above changes, wind power, CHP, Photovoltaic power and a possible future Electric vehicle load on the grid are analyzed. The process of arriving at these parameters is discussed in chapters 2&3.This report is organized into 7 chapters. The chapters are described below in brief as a small pointer: Chapter 1 deals with introduction to the subject and presents the fundamental groundwork for this study. Research questions are posed and the answers are sought for in the report. This section also deals with the expected results and the research methodology used for the study. Exclusions from the report are presented in this chapter. Chapter 2 deals with a brief description of the development scenarios and summarizes the planned extensions in the Dutch grid under different scenarios. Chapter 3 provides a description of the networks formed in PowerFactory software and the parameters of the networks .In addition the network validation method is presented. Chapter 4 describes the power flows in the network in terms of generation and load capacities seen at each of the individual power production centers in different scenarios. The breakup of power generation between different methods of power production is described in this chapter. Finally the chapter calculates the grid inertia time constant for different scenarios to account for the different contributions from power generation methods. Chapter 5 describes the results for short circuits and dynamic load variations in the different scenarios. Chapter 6 describes the conclusions of the report. Chapter 7 describes the recommendations and scope for further work. 1.5 Exclusions from the report Aspects of the analysis of the influences of the smart grids on the transmission network are many. However this study limits itself to certain domains and Page | 19 excludes the other subjects from the scope of the study. These aspects are given as follows: 1) Detailed modeling of the TenneT grid: The study does not cover a detailed model of the TenneT grid at the substations being analyzed. The modeling is done in a way so as to completely reflect the situation at a substation in the simplest possible manner. 2) Detailed modeling of Smart grid entities: The study does not cover detailed models of the smart grid entities. Models are only adequate to reflect the basic parameters of the system. 3) Telecommunication architecture: While this study is absolutely critical to analyze the impacts of smart grids in the HV network this study excludes telecommunication infrastructure from its scope of study. 4) Storage systems, network protection systems, smart grid control systems and market mechanisms: These aspects are excluded from the scope of this report. Page | 20 Chapter 2 Development scenarios 2.0 Introduction The four development scenarios are a tool to forecast the expected generation and load patterns in the Netherlands in the future years according to different scenarios of energy flow. The energy flows are based on the following dimensions: ‐The environmental dimension: Focus provided to development of sustainable energy practices on one end of the scale and focus on continued reliance on fossil fuels on the other; ‐Market dimensions: Increased focus on a “global free market” on one end of the scale and regulations and regional focus on another end of the scale. The four scenarios are expressed in the following pictorial representation: Fig 2.0 Four development scenarios Based on the above scenarios generation capacities and location of generation vary. Also the estimated load capacities vary and the rate of growth of loads at the “focus areas” varies. A summary extract of the scenario philosophy is presented in this section. As a conclusion to this section, a summary table is presented detailing the expected installed capacities for various resources in the year 2030 based on the vision 2030 document. These values are used for Page | 21 calculations in sections 4.1 & 4.2. The scenarios are described in brief in the following sections. 2.1 The Green revolution scenario In this scenario the social and political agenda is dominated by free‐market principles. Globalization remains a dynamic trend, with removal of trade barrier and exchange of knowledge and technology between industrialized and developing countries. Under this scenario the energy industry is united in a global effort to tackle the greenhouse effect and the depletion of oil stocks. This brings about a strong shift towards sustainability. Amount of electricity produced from biomass, photovoltaic and wind energy increases. Since wind‐powered capacity and photovoltaic capacity are both dependent on the unpredictable availability of solar energy and wind energy; storage systems are constructed so that these production modes can be accommodated. The Netherlands develops further connections to Denmark, Norway and Germany. Energy conservation is heavily focused on in this scenario. Major advances are made in energy savings in the process industries. The shortage of oil leads to the development of cars powered by fuel cells and fully electric vehicles. As a result, the gas and electricity infrastructures become closely interrelated. 2.2 Sustainable transition scenario The central characteristic of this scenario is the decreasing consumerism, individualism and competition between governments and private entities especially in regard to the energy and electricity sectors. Quality of immediate surroundings receives an increased priority in this scenario. Bio‐oil becomes the dominant sustainable source of energy used in the Netherlands, both for electricity generation and transport. Higher environmental focus is given in the power production by means of increased investments in high efficiency CHP units and widespread usage of solar panels, Page | 22 especially in residential and commercial buildings. New interconnections are created with Scandinavia, to facilitate the import of sustainable hydro‐
electricity resources from these countries. 2.3 New Strongholds scenario In this scenario, wealth inequalities between the western world and other regions are expected to increase. Traditional ties between the old EU‐member states and North America are strengthened, leading to the formation of a powerful cultural and trading block. A new service‐based economy arises in the western world based on developments in the ICT. These conditions are expected to lead to a further shift towards geopolitical tensions. As a result the supply of oil and gas from the Middle East and Russia is severely threatened. The importance of western countries’ local fossil fuel reserves increases considerably. In this scenario, the Netherlands becomes an electricity exporter because of the availability of coastal production sites where it is easy to deliver coal and cooling water is readily available, and because of its good gas infrastructure. Under this scenario, reducing coal stocks decommissioning of nuclear power plants causes Germany becomes a net importer of electricity. The emphasis on energy conservation also implies that there is no growth in electricity consumption. Energy savings are achieved mainly by the process industries. Renewable energy sources are developed only in situations where they can contribute to self‐sufficiency. 2.4 Money Rules Scenario This scenario is characterized by continued globalization, liberalization, and the dominance of free‐market principles. Social and environmental considerations are afforded a relatively low priority. Under this scenario, economic growth in developing countries such as China, India and Indonesia leads to a considerable rise in the demand for energy. Precarious supply in oil and gas stocks result in much greater reliance on coal. In addition, the use of nuclear power is increased substantially in order to satisfy the growing domestic energy demand. Oil and gas shortages also mean that alternative sources are utilized to a greater extent. In this scenario, the Netherlands becomes a major electricity importer of electricity. Page | 23 Table 2.0: Expected installed capacities power production in 2030 Expected installed Green New Sustainable Money capacity of various revolution strongholds transition rules power generation scenario scenario scenario scenario methods Photovoltaic 4 2 4 systems CHP/μ‐CHP 5
5
2
Wind power 10
2
7
5
Conventional generation(nuclear, 11 5 11 10 thermal and gas) Consumption 2 0 1 3 growth rate Total Generation 30 16 capacity All values in GW From the above table, it is seen that the four development scenarios lead to very different make up in the energy flow into and out of the Netherlands in the future years. As a result of the above scenarios, different cases arise in the supply of energy into Europe. The breakup of generation is further analyzed under each scenario in the section to arrive at the generation capacities to be connected at the power production centers. Page | 24 Chapter 3 Model description and validation 3.0 Introduction This section describes the model adopted for the simulation. A basic model of a power system with a generator with local generation is also described for cross reference on the expected results. The network consists of the high voltage grid rated at 400 KV connected to the rest of the network. The grid upstream of the bus selected for each scenario is represented by means of an infinite grid. This bus in turn connected to the 150 KV bus and the other downstream networks. Since the structure of the substations in question varies throughout, the substations are modeled based on the structure of the individual substation chosen in the vision2030 document as the focus for the scenario in question. These are as follows: Green Revolution scenario: Borselle New Strongholds: Masvlakte Sustainable Transition: Ijmuiden Money Rules: Eemshaven Description of the HV network The network setup is different in each of the development scenarios. In this section each of the networks is described in detail with notes on the selection of the parameters. To simplify simulations and ease a comparison between different years, the structure of the grid is maintained with generation and load capacities varied in the individual elements. The Short circuit power capacities were obtained from the TenneT 2010 grid models. The value of R/X ratio was assumed to be 0.1 in all the years. The calculation of the grid inertia time constants for all the networks is discussed in section 4.2. To implement the primary and secondary grid control bias, it was assumed that the total ENTSO‐e power capacity of 25000MW/Hz is used as a basis for the primary control. The Netherlands has 8 interconnections to the ENTSO‐e grid, thus the Page | 25 primary grid bias was calculated to be 3125 MW/Hz in all the scenarios [2]. The Smart grid entities are modeled in terms of their capacity and production at a DC bus with converters which provide the DC charging. The power electronic components are the heaviest components in the electric vehicle and grid power transfer system. It is thus assumed that the system consists of a source (modeled as a current source and voltage stabilizer in shunt with a load) connected to a converter system. The AC voltage after the converter stage is then stepped up before the power can be transported to the distribution grid. 3.1 Network description for Green Revolution scenario The high voltage network is represented as shown in fig.3.1. The network represents the setup at the Borselle 400 KV and 150 KV buses derived from the actual Zuid‐Holland network. Interconnections to the 400KV network are represented as infinite grids. The total short circuit symmetrical current is about 17.5 KA with an in‐feed of 5514.566 MVA short circuit power capacity. The generation capacity at Borselle is chiefly from nuclear power capacity rated at 900MW. An additional 125 MW is produced by the wind power production facilities at Borselle (this is inclusive of the wind parks which provide in feed at Borselle) It is assumed that the wind farms are connected to the 150 KV network so as to enable a better analysis of the voltage profile and the power flows at this bus. The national grid code [3] stipulates that units above 100MVA capacity be connected directly to the 150 KV and above, hence an additional generator is simulated at the 150 KV bus to account for a future new 900MW of nuclear and CHP power which is expected to be set up in Borselle in future years. The international connection to Belgium from Borselle is represented as a static load rated at 550 MW. It is assumed in the calculations that this line is used to export electricity. For the above model the generators were chosen from the models available from TenneT in an earlier work simulating the Dutch grid. The governor and AVR controllers were chosen from the standard library models available in Powerfactory software. The chosen generators have a nominal rating of 620 MW. The same generators are Page | 26 used across different scenarios, with different active power settings to reflect the required power production capacity in a particular scenario. Details of the generator and the associated governor and AVR controllers are provided in the Appendix A. Fig.3.1 Network setup for Green Revolution scenario 3.1.1 Network model for wind farms The network is fed additionally by a wind farm power production facility connected to the 150 KV network. This wind farm model was adapted from an existing model available with TenneT in an earlier work [2]. The model is shown in fig.3.1.1.The model describes the wind farm in terms of its generation from squirrel cage, DFIG and direct drive wind turbines. Since the study deals with a time span of seconds, the incident wind velocity and hence Page | 27 the produced power is not expected to vary during the window period of simulations. It is also noticed that in the original model the three different types of wind turbines have been chosen so as to account for the increased market penetration of the DFIG and direct drive turbine systems while the contribution of squirrel cage wind turbines decreased. In this study, this aspect is not covered. The wind farm model contributions are set to DFIG generator supplying the largest fraction of the total power production, which is the approx situation today. Fig.3.1.1 Wind farm model network 3.1.2 Network model for 11KV networks The networks downstream to the 150 are represented by an 11KV network which further connects to separate buses for distribution system loads, small capacity conventional generation connected to the 11KV network, Page | 28 photovoltaic systems, μ‐CHP facilities and electric vehicle systems. The network model for the 11KV bus is shown in the fig. 3.1.2. It should be noted here that the loads represented in the study are represented as 100% static loads, with constant impedance. This yields that in case of a voltage drop; the load current will drop equally, thus causing a quadratic power drop. All the connections from the 11KV bus to the individual buses in the 11KV system are via cables. The cables used in this network are form the 11/15KV cable models made available from TenneT in a simulation of the Dutch electric grid. Fig.3.1.2 Network model for MV (11KV) network For the years 2020 and 2030 the makeup of the power production at the grid changes considerably. By 2030 an additional capacity of 3000MW is built at Borselle to supply the increased consumption in these years. It is assumed that this production will be coal/biomass fired. The above value also represents the Page | 29 planned extension of the nuclear production capability at Borselle. The increased production capacity at this bus is accounted for in the network model, where the coal/biomass fired plants and the nuclear power plants are grouped together and represented by three generators, each with higher generation capability. 3.1.3 Network model for photovoltaic systems In the green revolution scenario it is assumed that the photovoltaic systems (PV) would assume a much larger production capacity. It is also to be noted however that a significant portion of this power would be made available from rooftop PV systems incorporated into residential and commercial buildings. Thus it is important to note that the network used to simulate the PV systems should also include an AC load together with it to represent the local distribution system loads which are always connected to the system. The model used to simulate the PV systems and their behavior when connected to grids was derived from similar studies in [4] & [5].The network used to simulate the PV system is shown in fig.3.1.3. The model includes a voltage source in parallel to a current source. The function of this element is to function as a battery system which maintains the voltage of the DC bus at 1pu.It should be noted here that while the models used are simplistic in nature, the network aspects of load flow and voltage profile are adequately simulated via this model. The DC bus for the PV systems was simulated at 0.4 KV while the AC load bus is simulated at 1KV. The rating of the converters is based on the scenario in question, since the power production through the PV systems is based on the scenario in question. The values of PV production in different scenarios for years 2010‐2030 are discussed in section 4.1. 3.1.4 Electric vehicle systems Electric vehicles (EV’s) are being increasingly recognized as being a solution to mitigating the increase in domestic and distribution load levels [6]. This is chiefly due to the fact that the stored energy in the battery systems in electric vehicles is utilized to only up to 17‐20% of its full capacity [6]. Page | 30 Fig 3.1.3 Network for simulation of PV systems connected to the grid The remaining charge is not utilized in an everyday commute (expected to span 80 to 100KM for an average electric vehicle). In their work Kempton et al. [7] propose the possibility of a Vehicle to Grid (V2G) network application for electric vehicles by means of which stored power (accounting for up to 80% of the stored battery capacity) in the electric vehicles becomes available to the grid. The system involves a commercial model based on remuneration to customers based on time of charging and V2G supply and the best market for the electric vehicles is the frequency regulation market [8]. Further the time of charging is also a critical component in the load capacity of the electric vehicles while in charging state [9]. In this study the both the aspects of electric vehicle charging and V2G applications are studied. The EV network is essentially simulated similar to the PV network with the difference of DC loads being simulated. To simulate the Page | 31 DC loads in EV’s a DC load is added to the DC bus in fig.3.1.4. The residential and domestic loads connected to the 11KV network are represented by a static load in the AC bus after the converter. The network is shown in Fig.3.1.4. In this case the EV bus was simulated at 0.4 KV and the AC bus was simulated at 1KV. The converter system rating again varies according to the scenario in question. The EV network load and V2G power production capabilities across scenarios and for the years 2010‐2030 are discussed in section 4.1.
Fig 3.1.4 network for simulation of electric vehicles connected to grid The networks simulated for the 11KV network, wind farms, PV systems and EV systems remain the same in all the scenarios. The associated loads and generation capacities for these networks are described in the section 4.1. In the remaining part of this section only the HV network is described for the different scenarios. Page | 32 3.2 Network model for Sustainable transition scenario In this scenario the focal point for the study is the 150 KV bus at Ijmuiden. The network simulated for this study is as shown in the Fig.3.2. In this scenario the major production is centered at the 150KV bus. This reflects the actual scenario in the Ijmuiden substation. The 150 KV bus has interconnections to the rest of the network at two points (represented as infinite grids in the network). The 400KV network simulated in the scenario is the 400KV substation at Beverwijk. Fig. 3.2: Network model for Sustainable transition scenario As before the 150KV network is fed by conventional generation at Ijmuiden connected via 2 step up transformers. The 150 and 400KV networks are connected via a three winding transformer, the third winding of which is used for reactive power compensation. The 150 KV bus is also the landing point for offshore wind power. The offshore wind farm is represented here as a bus Page | 33 connected to the 150 KV network through cables. The total short circuit current is calculated to be 45.77 KA fed in from all the interconnections in the year 2010.The short circuit capacity is calculated to be 3142.6 MVA. As before, the models used to simulate the 11KV, PV system, EV system and micro‐CHP power production remain the same. The details of the power production and load capacity are discussed in section 4.1. 3.3 Network model for new strongholds scenario In this scenario the Maasvlakte substation is the focal point for the Simulations. The 400KV substation is connected to the rest of the network Fig.3.3: Network model for new strongholds scenario through three interconnections, represented in the above network by 3 infinite grids. Power production at Maasvlakte is connected to the 400KV grid, shown by two generators connected to the 400KV network through step up transformers. The BritNed HVDC connection is shown connected to the 400KV bus. In this study it is assumed that power is being exported via this Page | 34 connection to UK. The BritNed connection is thus represented as a static load. The 150 KV substation is also an in feed point for the wind power production at Maasvlakte. The short circuit level at the Maasvlakte substation is calculated to be 21.23 KA with a short circuit capacity of 4989.67.Finally the 11KV network is shown connected to the 150KV bus by means of a step down transformer. The PV, EV and wind farm networks remain the same as the ones shown in the section 3.1. 3.4 Network model for Money rules scenario The network for the money rules scenario is shown in fig. 3.4. Fig.3.4: Network for Money rules scenario In this scenario the Eemshaven substation is simulated. The Eemshaven substation is connected to the rest of the grid through two interconnections, one at the 400KV network and another at the 220KV substation. However for Page | 35 simplicity the 220KV substation has been simulated as a 150KV substation. Since this study does not involve simulation of protection systems, this change does not affect the parameters being studied. The generation at Eemshaven is distributed between the 400KV and 150KV substations, represented in the above network by generators supplying power to both the buses. In addition to the interconnection to Norway via the NorNed HVDC cable. For the simulations it is assumed that power is being exported to Norway, thus the HVDC connection is represented as a static load at the 400KV bus. The fault level at the Eemshaven 400KV substation is calculated to be 21.5 KA with a short circuit capacity of 5476.25 MVA. In addition to being the connection point for the NorNed cable, Eemshaven is also a major connection point to the offshore wind farms in the North Sea. This wind power production is simulated in the network by means of a 150 wind farm terminal connected to the 150 KV bus. 3.5 Model validation For the purpose of validation the load flow and short circuit studies are carried out at the four production centers. The total generation capacity and connected load at each of the production centers in the year 2010 was recorded from the network models available with TenneT. This range of data for the year 2010 was used as the base values for the calculation of the generation and load curves mention in the section 4.1. In the network validation, the four scenarios were simulated for the year 2010 to emulate the load flows and short circuit at each of the generation buses. Thus the short circuit capacities and the load flows were matched for the year 2010 which serves as a base reference in this study. To investigate the behavior during short circuits and dynamic load variations a model described in [19] was used to ascertain the behavior of the voltage, frequency and power flows during a Page | 36 short circuit condition. The network performance of the models in DIgSILENT Powerfactory under similar conditions was found compliant to this study. Page | 37 Chapter 4 Network analysis of growth scenarios 4.0 Introduction The vision 2030 document estimates the power flows under different scenarios in good detail for a range of situations. In this section the power flows in the different scenarios are analyzed. With the present day production and load values made available in the TenneT Dutch grid model and the estimated values available for power production at the four coastal production centers the values for the year 2020 are interpolated. This procedure is also used to estimate the wind power production connected to these substations in the years 2020 and 2030. For the loads connected to the 400 and 150KV substations, the growth rates for electric loads given in the vision 2030 document is used to project values for the years 2020 and 2030. From the available data we also arrive at the grid time constant. This is an important factor in analyzing the behavior of parameters in the simulations. The table 4.0 shows the estimated power production from the four coastal power production centers for the year 2030. Table 4.0: Estimated power production for growth scenarios year 2030 From the above table we get an estimate about the total expected productions at the individual production centers and the sum total of all power production for the four scenarios. The Total of the power productions is also shown in the table 4.0.1 given below. Page | 38 Table 4.0.1: Estimated power production for growth scenarios year 2030 From the above tables it is seen that most power production is expected under the Money rules scenario and the Green revolution scenarios, at approximately 15 GW of power. In addition to the above, international power exchange is also estimated in the vision 2030 document. This is shown in the table 4.0.3. Table 4.0.3: International power exchange under different scenarios From the above data and the data available from the load flow models for 2010 available from the TenneT grid model we can summarize the power production and connected load at the individual production centers. The total connected loads are shown in the table 4.0.4. From the expected rate of load growth available in the Vision 2030 document we can calculate the values of expected connected loads for years 2020 and 2030. With the above growth rates the following trends become available for the growth of load across the different scenarios. The results are presented in the fig. 4.0.1 till fig 4.0.4. Page | 39 Table 4.0.4: Expected connected load at production centers in future years Annual growth Load in 2010 Load in 2020 Production rate for scenario (MW) (MW) centre (in %) Borselle 2 343.78 419.07 Maasvlakte 0 227.35 227.35 Ijmuiden 1 624.16 689.46 Eemshaven 3 661.40 888.92 Load in 2030 (MW) 510.84 227.35 761.59 1194.63 Fig.4.0.1: Estimated production and loads in GW, Borselle (Green revolution scenario) Fig.4.0.2: Estimated production and loads in GW, Maasvlakte (New strongholds scenario) Page | 40 Fig.4.0.3: Estimated production and loads in GW, IJmuiden (Sustainable transition scenario) Fig.4.0.4: Estimated production and loads in GW, Eemshaven (Money rules scenario) 4.1 Distribution of power production under growth scenarios The values in the above table are taken as the total production and load values in the scenarios for different years in the simulations. To estimate the individual contribution of wind power, conventional power production (thermal and nuclear),CHP and photovoltaic values provided in the vision 2030 document1 were used as references in combination with the data available from [2],[10] on wind power production. To estimate the possible contribution of V2G resources of power to the individual scenarios, the total number of Page | 41 vehicles in the Netherlands in the years 2020 and 2030 was estimated based on [11]. From estimates in [12] and [13], 25% of vehicles in the Netherlands are estimated to be fully electrical (i.e. with V2G) capabilities. Also, the average charging time is estimated to be 4.5 hours [6] [9] with an average consumption of 120KW per vehicle [6]. The V2G power production capability was estimated based on an average availability of 80% battery power being available for transfer to the grid [6][18].The detailed calculations are available in Appendix B. The V2G production capability at each production centre was calculated based on the assumption of all the electric vehicles in a province being available at a single distribution bus feeding to the 11KV network.(Data from [11]) With the above data we can calculate the internal contributions of the various power production methods at each of the power production centers. The contributions from different methods for the green revolution scenario are provided in fig.4.2.1 till fig 4.2.4 for years 2010, 2020 and 2030. Fig.4.2.1.: Distribution of power production under Green revolution scenario Page | 42 Fig.4.2.2: Distribution of power production under New Strongholds scenario Fig.4.2.3: Distribution of power production under New Strongholds scenario Page | 43 Fig.4.2.4: Distribution of power production under Money rules scenario 4.2 Calculation of grid acceleration time constant From the above discussion it is clear that the constitution of the HV grid changes in the span of every 10 years and in every growth scenario. For these changes to become clear in the simulations it is necessary to quantify the properties of the grid for different scenarios and different years. One of the most significant way in which the grid influences the network is by means of the equivalent system acceleration time constant, Heq. The acceleration constant (also the inertia constant of the system) is defined as [14]: … (1.1) Page | 44 The system average inertia constant and equivalent inertia times constant are defined as [2] [14] … (1.2) … (1.3) Where Average inertia of the units in the grid Total moment of inertia of the grid Installed capacity of the grid Average inertia of the units in the grid Total short circuit MVA capacity at interconnection points (400KV bus) The Installed capacity of the grid is calculated from the data available in the vision 2030 document. The value of is assumed to be the average inertia time constant of all the generators in the network. However, to account for the increasing wind power production in the new strongholds and sustainable transition scenarios it becomes necessary to recalculate this value. It is assumed that the average inertia time constant of DFIG and direct‐drive turbines is 2 seconds and that for conventional thermal and gas turbine is 3.5 seconds. The new is thus calculated based on the expected percentages of power production from wind turbines and conventional generators. Following these methods and using equations (1.2) and (1.3) above we Page | 45 arrive at values of which has a correlation to the composition of the electric grid. The data collected is shown in the table 4.2.0. Table 4.2.0: Calculation of Heq for different scenarios in year 2030 Scenario Green revolution New Strongholds
Sustainable transition Money Rules 35 14 25 40 Wind power contribution to total installed capacity (in %) 28.57 16 28 12.5 H av (sec) 3.4286 3.68 3.44 3.75 Jtot (Kg‐m/s2) 2.43E+06 1.04E+06 1.74E+06 3.04E+06 Sktot" (GVA) 5.51E+09 4.99E+09 3.14E+09 5.48E+09 21.76 10.33 27.37 27.39 Parameter (GVA) Heq (sec) The values of Heq calculated in the table are used as grid inertia time constants for the year 2030. For the years 2010 and 2020 the grid time constants were halved to show the reduced installed capacity (assuming a linear increase in the installed capacity).It is also noted here that the short circuit powers indicated are from the 2010 values (from the TenneT grid model for 2010).With the increased Page | 46 use of fault current limiters it is assumed that the short circuit power capacities will remain the same in the future years. Page | 47 Chapter 5 Results 5.0 Introduction This section investigates the effect of short circuits at different point on the network and their effects on the voltage, frequency and power flows at the 150KV bus. The research methodology for this section is to first investigate the voltage dips imposed at the 150KV bus due to faults at different points in the network and then proceed to identify the worst case fault location in each of the scenarios across the years 2010 till 2030. Following this methodology the effects of the system generation and loading pattern become apparent. The results are then analyzed in terms of their voltage dip, recovery times, settling times and the maximum deviations from the nominal values of these parameters. The selection to study the 150 KV network is due to the study being a method to quantify the reliability of the 150KV network, for which an analysis of the system parameters’ variation is a good input. It is also noted that since the 150KV network is not directly connected to the generation in most cases the variation in frequency effects are more apparent in the 150KV network when compared with the 400KV network. To begin the exercise we first investigate the voltage sag plot for each of the networks and analyze the effects of voltage sags at the 150 KV network when different faults occur at different buses and cables in the network. The voltage sag table is a steady state calculation, i.e. the parameters of the network influencing the duration and recovery of the fault such as generator inertia and R/X ratios are not accounted for. The data available indicates the lowest voltage caused at the 150KV bus during the fault event before the fault is cleared. The calculation provides the data about the per phase voltage sag at the 150KV bus for a definite fault period and fault impedance for 3 phase symmetrical faults and unsymmetrical faults (single line to ground fault, line to line fault and double line to ground fault).In addition to the above data the positive, negative and zero sequence impedance data is made available in the report. For all the calculations, Page | 48 it was assumed that the fault impedance is set at 0.1 ohm and faults were calculated for 100ms.The 100ms fault clearing time was carried out in line with the TBD specifications [15][16] which stipulate the maximum time for clearing of faults for the 110,150,220 and 400KV networks. Since the fault clearing time is selected to be 100ms the voltage sags inherently represent a worst case scenario. Under the first scenario, the fault is expected to occur for 100 ms and clear at the end of this time period. In the second scenario the short is cleared by operation of the relevant upstream circuit breaker. Following the study a choice of the worst case fault condition is made by finding the lowest fault voltage (i.e. voltage sags which cause a lowest dip).The methodology followed in [17] to assess the worst case voltage sag is followed in this study. 5.1.1 Analysis of the Voltage sag table The system is investigated for various short circuits at all the busbars and cables (in case of cables at 50% of cable span). The effects of the faults at different points are shown in the figures below in terms of the range of voltage sags imposed by shorts occurring at the 11KV, 21KV, 150 and 380KV.The plots are made in terms of a comparison across scenarios so as to enable a direct comparison across scenarios for faults at a particular voltage level in the electricity network. It is noted that the simulated network contains other buses rated at 0.4, 0.69,1,20 and 66KV.However the worst case voltage sags due to faults at these buses are in range of +/‐5% of nominal voltage of 150KV.The faults at these buses are thus not compared in this section. The complete voltage sag tables are available in Appendix C. 5.1.1.1 Faults occurring in 11KV network The fig.5.1.1 shows the range of voltage sags at the 150 KV bus due to the faults occurring at different buses and cables in the range of 11KV.From the plot it is seen that the faults occurring at different point in the buses and cables rated at 11KV in the green revolution scenario cause voltage sag in the range of 83 to 96% of nominal voltage during the fault condition. This range moves to approx 84% to 98% of nominal voltage during a fault event in the year 2020.Faults simulated for Page | 49 in 11kV voltage level in the year 2030 indicate that in the condition of the worst fault occurring at the worst case location, the voltage to drop at the 150 KV bus is 85% of the pre fault voltage. From the plot it is seen that the lowest drops in voltage are caused in the sustainable transition scenario. This explanation for this is that in the money rules scenario most of the generation is centered at the 380KV and 150KV networks and the 11KV bus chiefly functions as a distribution bus. Since the fault impedance between the sources and the fault point is quite high the voltage sags are limited to a low range of values. Faults occurring in the 11KV network under the money rules scenario create voltage drops in the range of 10% to 0% (drop recorded from prefault voltage).The explanation for this is similar to the one for sustainable transition scenario. Fig. 5.1.1: Range of fault voltages at 150KV bus due to faults in 11KV network. Page | 50 5.1.1.2 Faults occurring in 21 KV network: The 21KV network buses are the generator buses (buses before the generator step up transformer).This simulation is necessary to visualize the effect of different faults at the generator buses across scenarios. It is seen that the worst case voltage sag occurs in the green revolution scenario (in all years).It is seen that the voltage sags have a general tendency to be very close to 1pu prefault voltage level, with the extreme case in the new strongholds scenario when the voltage reaches approx 1.2 pu of prefault voltages. While the over voltages represent the unsymmetrical faults, these are the lowest of all the phase voltages. The explanation for this can be sought in the aspect of total power production in the new strongholds scenario being the highest of all scenarios. Since the system has a higher fault current supplying capacity the fault currents cause a voltage rise at the faulted bus. As a result even the lowest phase voltage drop is higher than 1 p.u at the generation buses. Fig. 5.1.2: Range of fault voltages at 150KV bus due to faults in 21KV network. Page | 51 5.1.1.3 Faults occurring in 150KV network The faults occurring at the 150KV network represent the worst case scenario for the voltage sag across all the growth scenarios. This is shown in the fig 5.1.3. It is noted here that the voltage at the 150 bus does not fall to 0 volts despite the 3 phase short circuit fault event at the 150KV bus. This is due to the fault impedance of 0.1 ohm being present at the fault which leads to a calculated voltage drop at the 150KV bus. From this scenario it becomes clear that the worst case fault conditions occur during the faults in the 150KV network. Thus the networks shall be simulated for faults occurring at major buses in the 150KV network. From a detailed analysis of the voltage sag tables it is seen that the worst case locations are the 150KV bus, the 150 KV wind‐farm terminals and the interconnecting networks between the 150KV bus and the rest of the system. These faults shall be analyzed for all the scenarios. Fig. 5.1.3: Range of fault voltages at 150KV bus due to faults in 150KV network. Page | 52 5.1.1.4 Faults occurring in 380KV network For faults occurring at the 380 KV networks the worst case scenario occurs in the general pattern of the worst case voltage sag being present in the new strongholds scenario is repeated. This is followed by the second worst case scenario in the green revolution scenario followed by the sustainable transitions scenario followed in the end by the money rules scenario. This is seen in Fig 5.1.4. The fig.5.1.5 shows the voltage sag against the positive sequence impedance for the four scenarios for 3 phase symmetrical faults occurring in the 150KV network. The positive sequence impedance is between the fault point (identified individually in the voltage sag report) and the equivalent source for the reminder of the network. It is noted that the magnitude of voltage sag is highest in the new strongholds scenario, followed by the green revolution scenario, sustainable transition scenario and the money rules scenario. Since all the generation feeds into the 150 KV network the magnitude of short circuits is highest at this bus. It is noted here that as the produced power increases the voltage sag is expected to increase (on account of more generation sources being available to feed the fault in the network).In the New strongholds scenario, 8.6 GW of power is in fed at the primary production centre at the Maasvlakte substation. This is the largest power production of all the four scenarios in 2030; hence the magnitude of voltage sag is the highest in this scenario. This is followed by green revolution scenario (at 6.7GW), sustainable transition (at 6.5GW) and finally money rules scenario (at 5 GW). 5.1.5 Summary of voltage sag table The results from the voltage sag table can be summarized as follows: 1) The larger the generated power in the network, the higher the fault levels at the 150KV bus, consequently the larger voltage sag, if the fault impedance and network parameters remain the same. 2) The worst faults in the system are caused by the faults occurring in the 150KV network. Page | 53 3) Faults occurring at generation (21KV) and distribution buses (11KV) have variable effect on the voltage at the 150KV bus. While faults in the 21KV network increase the voltage at the 150KV bus those at the 1KV bus cause voltage sags based on the corresponding impedance between the equivalent source and the location of the fault in the network. Fig. 5.1.4: Range of fault voltages at 150KV bus due to faults in 380KV network. Fig. 5.1.5 positive sequence impedance against voltage sag magnitude Page | 54 5.2 Results for short circuit calculations As the grid short circuit capacity decreases the ability of the system to sustain faults at different points in the network decreases and the system begins to become increasingly unstable. For the short circuit conditions in the 150 KV networks the faults are simulated at the 150KV bus, 150KV wind farm terminals and the interconnecting cables between the 150KV bus and the wind farm terminal. To notice the effect of increasing system inertia time constant the results for the years 2010, 2020 and 2030 are presented in the same plot. The simulation plots in addition to the short circuit simulations at buses not discussed in this section are made available in the Appendix D. It should be noted here that the nature (i.e. the contribution to power generation and the average inertia) of the gird as well as the power produced at the focal production center for each scenario undergo transformations between years and scenarios. Thus the effects would need to be analyzed not only on the basis of the nature of power production at the production center, but also the behavior of the rest of the network and also the distribution of the generation between the 380 and 150KV buses. Case 1: 3 phase symmetrical short circuit at 150KV bus; Case 2: 3 phase symmetrical short circuit at 150 KV wind farm terminal; Case 3: 3 phase symmetrical short circuit at 150KV wind farm interconnecting cable 5.2.1 Short Circuit analysis under the Green Revolution scenario In this section the worst case fault cases for the Green revolution scenario are analyzed. The fig.5.2.1.1 shows the condition for a three phase symmetrical fault at the 150KV terminal. The results for the system voltage, frequency, active and reactive powers are presented in the plot. It is seen that the fault voltage is the same across all the years. This may be due to the basic assumption that in the years 2020 and 2030, the fault levels at the 380 and 150KV networks will be limited by means of fault current limiting devices. It is further seen that the recovery of the post fault voltage becomes progressively better in the years 2020 and 2030. This can be explained using the fact that the system inertia constant is assumed to linearly increase from the year 2010 till 2030. The grid inertia time constant of the system indicates the capability of the system to store rotational Page | 55 kinetic energy, measured with the available generation capacity as a base value. As this value increases the grid attains a better capability to recover faster from short circuits. Fig.5.2.1.1: Three phase symmetrical short circuit at 150KV bus,GR In the fig 5.2.1.2 the simulation results for a short circuit at the 150KV wind farm terminal are presented. It is seen that the Pattern of voltage recovery after the fault event is followed in this short circuit event as well. In addition the reactive power flow through the 150KV terminal reverses in orientation, which means that the 150KV bus feeds reactive power into the fault. In the fig 5.2.1.3 the simulation results for a short circuit at the 150KV wind farm interconnection cable are presented. While this scenario is a best case scenario (three phase faults on cables leads to its disconnection due to no auto reclosure possibilities), this case is studied for the impact of faults on cable systems. It is seen that the pattern of voltage recovery after the fault event is followed in this short circuit event as well. The recovery of the reactive power flow at the 150KV bus is fastest in the year 2010 and the time of recovery continues to increase for the years 2020 and 2030. The larger fluctuation in reactive power in case of the cables is due to their impedance being largely capacitive. Page | 56 fig.5.2.1.2: Three phase symmetrical short circuit at 150KV wind farm terminal, GR Fig.5.2.1.3: Three phase symmetrical short circuit at 150KV wind farm interconnection cable, GR Page | 57 5.2.2 Short circuit calculations for the new strongholds scenario In this scenario the fault levels are the highest owing to the highest power production of all the scenarios. To simulate the fault events the fault impedance values need to be increased continuously to converge the network simulations. In effect this means that the system is inherently instable under a fault condition. Fig.5.2.2.1: Three phase symmetrical short circuit at 150KV bus, NStr It is noticed that the fluctuations in all the parameters increases from the years 2010 to 2030 (for fault at 150KV bus, fig.5.2.2.1).The deviations in voltage and frequency fade in about 300ms with maximum overshoots of 4%. This could be explained on basis of larger generation capacity of the system and the heavy damping provided by the network (due to fault impedances). The fluctuations in frequency are the highest in the year 2030 followed by the years 2020 and Page | 58 2010.This leads to a conclusion between scenarios that a larger grid time constant, while enabling a higher stored energy to flow into the fault, also leads to higher oscillations in the system. It should also be noted at this point that in this scenario, an average 11% of power production is through the wind generation, thus reducing the effect of fluctuations due to low inertia machines being connected to the 150KV bus. The plot in fig.5.2.2.3 shows the 3 phase symmetrical fault scenario in the wind farm interconnection cable. As in the green revolution scenario, the reactive power is provided by the 150KV bus into the fault. The oscillations in the network are reduced due to the larger fault impedance in the network; however the overshoots are of the order of 20% of prefault values in the system for voltage and reactive power. It is also observed that while the parameters for years 2010 and 2030 show overshoots, the parameters for the year 2020 show undershoots and critical damping. This is because of a better balance between the generated power and load. Fig. 5.2.2.2.: Three phase symmetrical short circuit at 150KV wind farm terminal, Nstr Page | 59 Fig.5.2.2.3: Three phase symmetrical short circuit at wind farm interconnection cable, Nstr 5.2.3 Short circuit analysis: Sustainable transition scenario In this scenario the generation is focused at the 150KV bus. As a result the oscillations in the active and reactive power are very high for this scenario. The pattern of higher settling time for voltage and frequencies in the networks for years 2020 and 2030 is observed again in fig.5.2.3.1. However it is also noted in this scenario that the voltage overshoots are limited and the overshoots in the frequency are very high. This can be explained in terms of the aspects that firstly, most of the generation capacity at IJmuiden is connected to the 150KV bus. Secondly, the percentage of power production from wind power increases from 38% to 61 % between years 2010 and 2030.Thus disturbance in the network in the 150KV network cause severe oscillations in the voltage, frequency and power flows at the 150KV bus. The use of fault current limiters and voltage management Page | 60 methods can mitigate this problem by smoothening the variations in voltage and frequency. Fig.5.2.3.1: Three phase symmetrical short circuit at 150KV bus, SX Fig.5.2.3.2: Three phase symmetrical short circuit at wind farm terminal, SX Page | 61 Fig.5.2.3.3: Three phase symmetrical short circuit at wind farm interconnection cable, SX 5.2.4 Short circuit analysis: Money rules scenario The behavior of the parameters in the money rules scenario is similar to those of the sustainable transition scenario (fig.5.2.4.1). The explanation for this could be in the similar levels of power production and system inertia time constant. However, since power production in the money rules scenario is divided between the 380 and 150 KV buses the overshoots in active and reactive power are lower. The settling times for the parameters are lower. This can be explained in terms of generation capacity being distributed between the 380KV and 150KV bus, which damps the oscillations from the generators connected on the 380 KV bus. Also since the contribution of wind power to the production capacity at the production centre is limited (between 20 to 25% of total production), the variations in frequency are lower than those of the sustainable transition scenario, but higher when compared to the scenarios with lower contribution from wind power. Page | 62 Fig.5.2.4.1: Three phase symmetrical short circuit at 150KV bus, MR Fig.5.2.4.2: Three phase symmetrical short circuit at wind farm terminal, MR Page | 63 Fig.5.2.4.3: Three phase symmetrical short circuit at wind farm interconnection cable , MR 5.3 Behavior under dynamic load conditions The effects of the network behavior under dynamic load conditions are studied in this section. Dynamic changes in load are the essential components of the electrical system at every voltage level. In this study focus is given to the changes in the load at the 150 KV voltage level. The changes in loads are expected to occur under periods of load changes in the network, for example during the different time spans in a day when load change. The loads studied in this section are those connected directly to the 150 KV bus. As a special case variation in load is also simulated for electric vehicle loads .The load variations are simulated under the following conditions: 1) Load changes under increasing load conditions 2) Load changes under decreasing load conditions Load changes for electric vehicles are simulated under the following conditions: Page | 64 1) Charging periods for electric vehicles 2) V2G operating conditions for electric vehicles 5.3.1 System behavior for varying load conditions at 150KV bus In this section the effects of increasing load at the 150 KV is studied. For the simulation at the 150 KV it is assumed that the loads are balanced three phase loads. The network load variation is simulated as a step change for the load “GL‐
01”, wherein a step change of 10% variation is studied. The resulting voltage profile at the 150 KV bus and 380 KV bus and the resulting frequency variations are studied. Since the load is rated at a large value, a variation in load is a large value the settling time and the final settling value for the voltage is of particular interest in this case. As before, the conventional generation units with capacity above 100 MVA are equipped with governor and AVR controls. Additionally, a frequency control and voltage control mechanism is implemented at the 150 KV bus. 5.3.1.1 Load variation in the Green revolution scenario In the fig.5.3.1.1 it is seen that as the load increases the voltage settles down to a lower new value. The frequency also decreases according to the increased load condition. During a reducing load condition the grid frequency and bus voltage parameters increase. The frequency behavior at the 150 KV bus is heavily dependent on the primary and secondary controller bias in the attached girds. The controller bias increases the grid’s ability to recover faster to a new stable state of system. In case of the decreasing load condition (fig.5.3.1.2) the load is increased by 10% at t=1sec.The frequency and the voltage of the 150KV bus increase marginally. It is seen that the variations in load do not affect the frequency in the 150KV bus to a very large extent. This can be attributed to the governor action of the generators. During a decreasing load scenario presented in figure the frequency and voltage increase and the system settles at a new state. Page | 65 Fig.5.3.1.1: Increase in load at 150 KV terminal, green revolution scenario Fig.5.3.1.2: Decrease in load at 150 KV terminal, green revolution scenario Page | 66 Fig.5.3.1.3: Increase in load at 150 KV terminal, New strongholds scenario Fig.5.3.1.4: Decrease in load at 150 KV terminal, New strongholds scenario Page | 67 5.3.1.2 Load variation in the new strongholds scenario In the New strongholds scenario the simulations show (fig 5.3.1.3 and fig 5.3.1.4) that as the generation capacity increases the system settles at a higher value of frequency and voltage. The overshoot in the voltage at 150KV bus decreases as the system exports more power to the 380 KV network. Fig.5.3.1.5: Increase in load at 150 KV terminal, sustainable transition scenario 5.3.1.3 Load variation in the Sustainable transition scenario In the sustainable transition scenario the 150KV bus is the also the generation terminal. A similar pattern of voltage and frequency behavior is seen in this scenario (fig.5.3.1.5, fig.5.3.1.6). However the decrease or increase in frequency in this scenario is very small (of the order of 10‐3 Hz). This is due to the governor action. Also it is seen that the final settling value of the system frequency decreases under decreasing load conditions from the years 2010 to 2030. This is Page | 68 an indication about the nature of the loading of the system. As the connected load increases the variations in one of the loads has smaller influence on the frequency and voltage behavior at the 150KV grid. However the oscillations in the parameters and settling times also increase, this can be attributed to the increased contribution by wind power production toward the total production at the production center. Fig.5.3.1.6: Decrease in load at 150 KV terminal, sustainable transition scenario 5.3.1.4 Load variation in the Money rules scenario In the money rules scenario it is seen that the system voltage and frequency have the highest damping and that the overshoots reduce over the years 2010 to 2030. This is due to the increasing load in the system over the years 2010 till 2030.It is also observed that the final settling time of the voltage and frequency decreases over the same time span. This is also due to the increased load in the system. Page | 69 Fig.5.3.1.7: Increase in load at 150 KV terminal, Money rules scenario Fig.5.3.1.8: Decrease in load at 150 KV terminal, money rules scenario Page | 70 5.3.2 System behavior for increasing load at the EV bus In this section the effect of a variation in the DC load posed by electric vehicles is studied. From the figures we see that the variation of the DC load in the network at the distribution bus does not affect the parameters in the 150KV bus to a very large extent. The effect of a 10% variation in load is thus too small and is supplied by the power production in the distribution network. An interesting observation here however is the fluctuations during the increasing load conditions seen in fig. 5.3.2.2 and fig 5.3.2.3. These fluctuations only last for about 100ms but are visible in the new strongholds and sustainable transition scenarios. This is due to the harmonics in the power electronic converters which supply the DC loads. As the capacity of the electric vehicles increases in the future the amount of transient spikes in the system brought about by increasing use of power electronic devices increases. However the variations in frequency, voltage and power flows at the 150KV bus are very minimal. Fig 5.3.2.1: Increase in load at electric vehicle DC load, green revolution scenario Page | 71 Fig 5.3.2.2: Increase in load at electric vehicle DC load, new strongholds scenario Fig 5.3.2.3: Increase in load at electric vehicle DC load, Sustainable transitions scenario Page | 72 Fig 5.3.2.4: Increase in load at electric vehicle DC load, Money rules scenario 5.4 Impact of V2G on system frequency regulation It has been proposed that in the future, V2G action by electric vehicles can be most profitably used for the frequency regulation operations in the network. In the fig.5.4 this action is studied. Page | 73 Fig5.4: impact of V2G action on frequency regulation In this case the secondary controls in the network are disabled to better observe the effects of frequency regulation by V2G applications. The local AC system load at the 1KV bus was varied by 10MW and the in feed from the EV bus was increased by 10MW to meet this demand. The events occur at t=1 sec. It is seen that the V2G application does indeed have a regulation impact on the frequency of the 11KV and 150KV buses. Also the increased power demand is met locally the system voltage at the 150KV bus increases to 1.19 p.u. This action is however due to the voltage and frequency controllers at the 150KV bus being disabled. 5.5 Suggested mitigation methods 5.5.1 Methods for short circuit conditions The increased generation capacity increases the fault level in all the parts of the network. However this effect can be countered by means of the following mechanisms: Page | 74 1) Fast switching action‐As the time required to clear the fault decreases the system is restored faster to its pre fault state. This is shown in the fig.5.5.1 below wherein a fault at the 380 KV bus is cleared in 85ms, thus enabling a faster recovery of the voltage, frequency and power flows at this bus. 2) Fault current limiting devices‐ As the impedance offered to the fault increases the system fault current levels decrease. This aspect can be utilized to incorporate fault current limiting devices in the future grids to faster restore the system to its pre fault state. Fig 5.5.1: simulation of fast switching at 380KV bus (in 85 ms) 5.5.2 Methods for Dynamic load variation For the dynamic load it is seen that the action of the distributed power production is indeed capable of handling the variations in local loads. It can thus be proposed that as the generation capacity in the distribution network increases, the power flow, voltage and frequency parameters in the high voltage network are lesser influenced by the events in the distribution network. In this work it is seen that in the best case, the changes in the load at the 150KV network causes a frequency deviation of the order of 10‐3 Hz, which is very a very small deviation Page | 75 and is restored quickly by the generation in the distribution system. The variations in load at the 150KV bus can be handled effectively by the governor and AVR action, while power‐frequency control and voltage stabilization controls at the 150KV bus can be used for management of the voltage profile and frequency at the 150 KV bus. Faster controller action in this case would bring the system to a new steady state at a faster rate. These methods can be investigated in further works. Page | 76 Chapter 6 Conclusions The conclusions of this study are as follows: 1) As the generation capacity in the network increases the fault levels increase at all the buses. The scenario with higher generation capacity has the higher fault level at the same bus. Thus the highest fault levels are observed in the new strongholds scenario and the lowest are observed in the money rules scenario. 2) Increased fault currents in the future can however be mitigated using fault current limiting devices. By using these devices the voltage sags during faults at different buses can be contained within acceptable limits. The transient overshoots in voltage, frequency and power flows are greatly reduced and the system recovers faster to its pre fault state. 3) The worst case faults and fault locations in the network were identified and simulated to see the effects of these faults on the behavior of voltage, frequency and power flows in the network. It was seen that the worst faults occurred in the buses with the highest power flows. In this study the effects of the faults were observed to be the worst at the 150KV bus when faults occurred at the 150KV network (including buses, wind farm terminals and cables). 4) As the level of wind power production in the system increases the oscillations in transient phase increase. Higher offshoots in voltage and frequency accompanied by higher settling times are observed. The grid inertia constant was found to increase with a reduction in the contribution of wind power toward total power production at a production centre. This is due to the fact that the lower inertia of wind turbines causes the system parameters to be more vulnerable to disturbances. Scenarios with larger contributions from conventional generator‐turbine systems ( thermal, gas and nuclear) showed more conventional behavior. Page | 77 5) Distributed generation is capable of handling increase in loads in the network. This aspect can be used to schedule generation in the future years wherein the high voltage network acts a balancing point for the power flows in the network. The generation and distribution systems are meshed into a single network which is capable of using generator scheduling not only for conventional generation but also for PV and EV based power production. 6) During the process of electricity supply from the smart grid entities it is observed that the transient spikes in the system increase and high frequency oscillations in voltage and frequency occur in the network. This may be due to the effect of the electronic converters operating in the network. While the effects of the electronic converters (primarily harmonic distortion) are not visible at the 150KV level, an increasing amount of power generation from these sources from different locations in the network can become apparent at very large levels of production based on these resources. Page | 78 Chapter 7 Recommendations for future work 1) Fault current limiting devices Fault current limiters are power electronic devices which provide high impedance to the network on the occurrence of a fault event. Different types of fault current limiters are available today, however in this study the fault impedance was assumed to be a part of the fault itself. Since the worst case simulations covered only 3 phase symmetrical faults, this was a safe assumption. Further studies can thus investigate the advantages and disadvantages of different fault current limiting methods. 2) Fast fault clearing methods As the time required to clear the fault reduces the network is restored faster to its pre fault state. This however requires a investigation in both ICT technologies and circuit breaker design for faster detection and faster switching. Phasor measurement techniques can be utilized for this application as the complete grid is monitored at a single point and the real time data is available for the analysis of the type of disturbance. 3) Investigation on impact of harmonics in the high voltage network transients As the amount of distributed generation is expected to increase in the future years it becomes necessary to study the impact of harmonics and switching on the high voltage network. From this study it is seen that the high frequency transients appear in the network in the case of V2G action; however a detailed model of the PV and EV systems is required to study this phenomenon in detail. Page | 79 4) Influence of distance on distributed generation capacity in the distribution network and its impacts on the HV grid As the distance between the generation source and the 150 KV bus increases it was seen that the voltage sag at the 150KV bus reduces. However this effect was only studied for wind farms in this study. The influence of distance between the remote source in a distribution network and the high voltage grid needs detailed modeling of the interconnection systems between the HV bus and the distribution network. This investigation is very necessary to understand the behavior of smart grid entities in the future since it is expected that there are multiple points of generation (in particular from photovoltaic and electric vehicles) all connected to the 11KV bus. Page | 80 Bibliography [1] Vision 2030, TenneT TSO B.V, Arnhem 2008 [2]”Connection of large scale wind power generation to the Dutch electrical power system and its impact on dynamic behavior”, MSc. Thesis, J.A.Bos Technical University of Delft, Delft, Netherlands [3] “Network Code”, Office of Energy Regulation (DTe), NMa report (Informal Translation), Network Code as of 4 September 2007 [4] “Dynamic Simulation of a Photovoltaic Installation”, Ramos Hernanz, J.A., et al. International Conference on Renewable Energies and Power Quality (ICREPQ’09) [5] “Development, verification and application of a battery inverter model for the network analysis tool Powerfactory”, Martin Braun, Thomas Degner, International Journal of Distributed Energy resources July 2005 [6] ”The impact of electric vehicles on the energy industry, a part of the Austrian Climate Research Programme”, Bernhard Haider, PricewaterhouseCoopers Report. [7] ”Vehicle‐to‐Grid power fundamentals: Calculating Capacity and net revenues”, W. Kempton, J. Tomic, Journal of Power Sources 144, 268‐279, 1 June 2005; [8] “The V2G Concept: A New Model for Power? Connecting utility infrastructure and automobiles”, Steven E. Letendre, Willett Kempton, Public Utilities Fortnightly, February 15, 2002 [9] “Impact of widespread electric vehicle adoption on the electric utility business‐threats and opportunities “Nicholas DeForest, et.al, Centre for entrepreneurship and technology technical brief, Aug 2009 [10] CertiQ Netherlands, www.certiq.nl [11] Statistics Netherlands, http://www.cbs.nl/ Page | 81 [12] “Group’s goal: 26% of cars in Netherlands EVs by 2025”, www.autoobserver.com [13] “The green vehicle trend: Electric, Plug in hybrid or hydrogen fuel cell?” Fangzhu Zhang and Philip Cooke, centre for advanced studies, Cardiff University, UK [14] Power system stability and control, P.Kundur, McGraw Hill Inc., page 132 [15] “TAMS STANDAARD Beveiligingsconcept”, TAMS 09.07.17.01, NOVEMBER‐ 2006, Versie 1.0, TENNET, Arnhem [16] “Protection of a flexible grid connection” A.K.Srinivasan, Internship technical report, TenneT TSO B.V, Arnhem, Netherlands [17] “Stochastic Assessment of voltage dips caused by faults in large transmission system” Gabriel Olguin, MSc thesis, Chalmers institute of technology, Goteborg, Sweden [18] “Consequences of a large amount of electric vehicles on distribution networks”, A.k.Srinivasan, TU Delft,Delft,Netherlands [19] “Power systems dynamics report”, Betelem Tashoma, Line Bergfjord,TU Delft, Delft, Netherlands Page | 82 Page | 83 Appendix A Details of equipments and device data The AVR and governor models used for generators above 100MVA are as follows: AVR model:1968 IEEET1 AVR Tr 0.02 Measurement delay(s) Ka 175 Controller gain Ta 0.03 Controller time constant Ke 1 Exciter constant Te 0.2 Exciter time constant Kf 0.05 stabilization path gain Tf 1.5 stablization path time constant E1 3.9 saturation factor 1 Se1 0.1 saturation factor 2 E2 5.2 saturation factor 3 Se2 0.5 saturation factor 4 Vrmin ‐10 Vrmin controller output minimum Vrmax 10 Vrmax controller output maximum Governor model:govBBGOV1 (European governor model) T3 6 Turbine delay time constant T2 2 Turbine derivative time constant At 1 Turbine power coefficient Dt 0 Frictional losses factor Pturb 0 Turbine rated power R 0.1 Controller droop T1 0.5 Governor time constant Vmin 0.125 Minimum gate limit Vmax 2 Maximum gate limit s pu s pu s pu s pu pu pu pu pu pu pu pu pu pu MW pu s Pu Pu The AVR model and the governor model used are given in fig.A.01 and A.02 respectively: Fig A.01: Exciter system model for IEEE T1 Fig.A 02: governor controller model The parameters of the generator model used were as follows: Nominal apparent power: 775MVA Nominal voltage 21KV power factor 0.8 Connection‐Y For the three winding transformer the following parameters were used: Capacity: 550MVA Yn0Y0D0 Primary voltage: 380KV Secondary voltage: 150KV Tertiary voltage: 66KV Impedance: HV‐MV: 20% MV‐LV: 12.5% LV‐HV: 12.5% Appendix B Calculation of Electric Vehicle (EV’s) load and V2G production capability in Netherlands for growth scenarios For this data the number of fully electric vehicles in the Netherlands (inclusive of two wheelers, cars and light transport vehicles) was determined using the statistics Netherlands [11] as a source. The values from this source are shown in the Fig.B01 in Blue data points. Table B.01 shows the values for 2010, 2020, 2025 and 2030. The number was then used to formulate a data curve. This curve was then extrapolated to calculate the values in the future years (from 2010 till 2030). Vehicles chosen for the calculation are assumed to have a consumption of 70KWh with an average charging time period of 5 hours during charging and it is assumed that 17% of the energy is consumed by the vehicles [6][7].Based on this the V2G capability of the EV’s was calculated. The load capacity of charging EV’s and V2G capacities of EV’s connected to the grid are shown in Table B.01.To calculate the number of vehicles connected to a single substation the data available on the number of vehicles in the province was used(Shown in Fig. B.02). It was assumed that 25% of the vehicles in every province would be electric by the year 2030 and that the growth of vehicles in the Netherlands would be proportional to the present day distribution of vehicles in the provinces. This was followed by the assumption of 100% compliance to market stimulus for V2G applications (i.e. for a given tariff period for electric vehicle charging and V2G, all consumers adhere to the schedule). The values for the expected load from EV’s and the possible V2G power generation were thus calculated. These values are shown in the table B.01. Year
Scenario
% of total
cars feeding
to
production
location
Total number
of driven
electric
vehicles
2010
2020
2025
2030
EV load (in MW)
NS
SX
GR
241194
684074
1128114
1720554
MR
GR
V2G capability (MW)
NS
SX
MR
16.3
19
14.6
3.3
16.3
19
14.6
3.3
13.76
16.04
12.33
2.79
11.01
12.83
9.86
2.23
39.03
64.36
98.16
45.49
75.02
114.42
34.96
57.65
87.92
7.90
13.03
19.87
31.22
51.49
78.53
36.39
60.02
91.53
27.96
46.12
70.34
6.32
10.42
15.90
GR:Green revolution scenario
NS:New strongholds scenario
SX: Sustainable transition scenario
MR: Money rules scenario
Table B.01: Expected EV loads and V2G Production capabilities 2000000
Number of EV's
Plot for number of Electric vehicles in Netherlands against years from 2002 till 2030
1800000
y = 2968x2 ‐ 44752x + 39191
R² = 1
1600000
1400000
Red boxes show the extrapolated values of vehicles according to trendlines;Blue represent actual values till 2010
1200000
1000000
800000
Plot normalized for year 2009
600000
400000
Extrapolated curve for number of EV's in NL
200000
0
0
5
10
15
20
25
30
35
Year (20__)
Fig B.01: EV’s in Netherlands between years 2002 and 2009(blue); extrapolated values till 2030 (red) Averrage vehicular diistribution in NLL based iin provvinces
3% 4%
3%
Province of Groningen
7%
7%
16%
4%
Province of Friesland
Province of Drenthe
2%
12%
Province of Overijssel
Province of Flevoland
19%
8%
15%
Province of Gelderland
Province of Utrecht
Province of Noord‐Holland
Province of Zuid‐Hollan
nd
Fig B.02: D
Distribution o
of vehicles in the Netherlands (2009)(Data from cbs..nl) APPENDIX C
Voltage sag Table results for growth scenarios (years 2010,2020 and 2030)
Voltage sag table for 150KV bus,Green revolution scenario 2010
Voltage Sags
Object index
3
‐2
‐7
‐10
‐11
2
‐9
‐9
‐1
‐8
‐9
‐12
‐13
‐8
‐6
‐5
‐4
‐3
‐17
‐18
‐19
2
2
2
3
3
3
‐1
‐1
‐1
‐2
‐2
‐2
‐3
Volta Voltag
ge sag e sag table table assess assess
ment ment
Voltag
e sag table assess
ment
Voltag
e sag table assess
ment
Fault positi
on in %
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
Failur
e frequ
ency in 1/a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Fault Clearin Nominal g Time Voltage in kV
in s
0.1
150
0.1
150
0.1
150
0.1
150
0.1
150
0.1
380
0.1
21
0.1
21
0.1
380
0.1
11
0.1
21
0.1
20
0.1
20
0.1
11
0.1
21
0.1
21
0.1
66
0.1
66
0.123
150
0.123
150
0.123
20
0.1
380
0.1
380
0.1
380
0.1
150
0.1
150
0.1
150
0.1
380
0.1
380
0.1
380
0.1
150
0.1
150
0.1
150
0.1
66
Fault Type
0
0
0
0
0
0
1
2
0
1
0
0
0
0
0
0
0
0
0
0
0
3
1
2
3
1
2
3
1
2
3
1
2
3
Voltage sag table assessme
nt
Voltage Voltage Voltage Voltage Voltage Voltage sag sag table sag table sag table sag table sag table table assessme assessme
assessme assessme assessme assessm
ent
BB150_2 BB150_2
BB150_2 BB150_2
BB150_2 BB150_2
nt
nt
nt
nt
nt
Zero‐
Sequenc
Negative‐
Positive‐
e Negative‐ Sequence Zero‐
Positive‐ Sequence Sequence Impedanc Sequence Impeda
Sequence Impedanc
Impedanc nce, Impedanc e, Positive Voltage, Impedanc e, Voltage, Phase A Imaginary e, Real Minimum of e, Real Phase C Voltage, Voltage, Imaginary sequence e, Real Imagina Voltage, Imaginary voltage Voltage, Imaginary Phase B Part in Part in impedance Part in Part in voltage at Real Part Imaginary voltage at phase Part in at 150KV Real Part Part in ry Part Real Part Part in Ohm
Ohm
Ohm
Part in p.u. 150KV bus voltages
(in ohms)
Ohm
150KV bus in p.u.
p.u.
in p.u.
Ohm
bus
p.u.
in Ohm in p.u.
0.265856 2.61672 2.630190672 #INF
#INF
#INF
#INF
0.005065 ‐0.03623 0.036578 0.005065 ‐0.03623 0.03657837 0.005065
‐0.036226 0.03657837 0.036578372
0.265856 2.61672 2.630190672 #INF
#INF
#INF
#INF
0.005065 ‐0.03623 0.036578 0.005065 ‐0.03623 0.03657837 0.005065
‐0.036226 0.03657837 0.036578372
0.515788 4.019181 4.052141801 #INF
#INF
#INF
#INF
0.39461 ‐0.05175 0.397989 0.39461 ‐0.05175 0.39798884 0.39461
‐0.05175 0.39798884 0.397988837
0.515788 4.019181 4.052141801 #INF
#INF
#INF
#INF
0.39461 ‐0.05175 0.397989 0.39461 ‐0.05175 0.39798897 0.39461
‐0.051751 0.39798897 0.397988967
0.521314 4.088437 4.121539202 #INF
#INF
#INF
#INF
0.407492 ‐0.05108 0.410681 0.407492 ‐0.05108 0.41068139 0.407492
‐0.051083 0.41068139 0.410681389
0.373026 3.565968 3.585425522 #INF
#INF
#INF
#INF
0.43189 0.043826 0.434108 0.43189 0.043826 0.43410792 0.43189
0.043826 0.43410792 0.434107925
0.002166 0.066997 0.067032004 0.001802
0.0636 0.000512 7.63509 0.826825 ‐0.28566 0.874779 ‐0.35198 ‐0.54657 0.65009478 ‐0.47485
0.83222 0.9581586 0.650094777
0.002166 0.066997 0.067032004 0.001802
0.0636 0.000512 7.63509 0.938497 ‐0.21653 0.963151 ‐0.46269 ‐0.61745 0.77157347 ‐0.47581
0.833976 0.96016104 0.771573466
0.373026 3.565968 3.585425522 #INF
#INF
#INF
#INF
0.43189 0.043826 0.434108 0.43189 0.043826 0.43410792 0.43189
0.043826 0.43410792 0.434107925
0.008321 0.031203 0.03229344 0.008237 0.031083 0.000001 0.61262 0.923731 ‐0.13406 0.933408 ‐0.44163 ‐0.70238 0.8296814 ‐0.4821
0.836431 0.96541975 0.829681403
0.002175 0.067066 0.067101259 #INF
#INF
#INF
#INF
0.810547 ‐0.20612 0.836345 0.810547 ‐0.20612 0.83634535 0.810547
‐0.206124 0.83634535 0.836345349
0.005601 0.109683 0.109825915 #INF
#INF
#INF
#INF
0.855501 ‐0.11076 0.862641 0.855501 ‐0.11076 0.86264063 0.855501
‐0.110756 0.86264063 0.862640628
0.005011 0.108612 0.108727534 #INF
#INF
#INF
#INF
0.863375 ‐0.10876 0.870199 0.863375 ‐0.10876 0.8701987 0.863375
‐0.108763 0.8701987 0.870198702
0.008336 0.031232 0.032325326 #INF
#INF
#INF
#INF
0.910573 ‐0.07848 0.913948 0.910573 ‐0.07848 0.91394848 0.910573
‐0.078477 0.91394848 0.913948482
0.000472 0.059757 0.059758864 #INF
#INF
#INF
#INF
0.948496 ‐0.02283 0.948771 0.948496 ‐0.02283 0.94877067 0.948496
‐0.022828 0.94877067 0.948770668
0.000472 0.059757 0.059758864 #INF
#INF
#INF
#INF
0.949967 ‐0.02221 0.950227 0.949967 ‐0.02221 0.9502265 0.949967
‐0.022206 0.9502265 0.950226503
0.007193 6.139693 6.139697214 #INF
#INF
#INF
#INF
0.951204 0.001585 0.951205 0.951204 0.001585 0.95120532 0.951204
0.001585 0.95120532 0.951205321
0.004397 4.789624 4.789626018 #INF
#INF
#INF
#INF
0.954504 0.00119 0.954505 0.954504 0.00119 0.95450474 0.954504
0.00119 0.95450474 0.954504742
0.408429 3.363437 3.388144433 #INF
#INF
#INF
#INF
0.249614 ‐0.04859 0.254299 0.249614 ‐0.04859 0.25429892 0.249614
‐0.048588 0.25429892 0.254298924
0.518594 4.053976 4.087011273 #INF
#INF
#INF
#INF
0.401124 ‐0.05141 0.404405 0.401124 ‐0.05141 0.40440519 0.401124
‐0.051411 0.40440519 0.404405186
0.005353 0.109208 0.109339114 #INF
#INF
#INF
#INF
0.859473 ‐0.10972 0.866449 0.859473 ‐0.10972 0.86644861 0.859473
‐0.109724 0.86644861 0.86644861
0.372797 3.565243 3.584680635 0.366877 3.544823 0.657688 3.83104 0.62318 0.020008 0.623501 ‐0.31097 ‐0.84403 0.89949596 ‐0.31221
0.824024 0.88118706 0.623501109
0.372797 3.565243 3.584680635 0.366877 3.544823 0.657688 3.83104 0.546915 ‐0.18899 0.578646 ‐0.06518 ‐0.64281 0.6461098 ‐0.48174
0.8318 0.96122981 0.578646133
0.684588 0.79474466 0.524508819
0.372797 3.565243 3.584680635 0.366877 3.544823 0.657688 3.83104 0.510322 ‐0.12117 0.524509 ‐0.10664 ‐0.56342 0.57342635 ‐0.40368
0.264756 2.607716 2.621121607 0.254704 2.568471 7.223299 13.6273 0.005575 ‐0.01304 0.014177 ‐1.09255 ‐0.73794 1.31841748 ‐1.09204
0.932754 1.43617052 0.014177159
0.264756 2.607716 2.621121607 0.254704 2.568471 7.223299 13.6273 0.249806 ‐0.42788 0.495459 0.23056 ‐0.40217 0.46357246 ‐0.48037
0.830046 0.95902443 0.463572461
0.264756 2.607716 2.621121607 0.254704 2.568471 7.223299 13.6273 0.017306 ‐0.02886 0.033651 ‐0.02203 0.021658 0.03089249 ‐0.63566
1.17111 1.33249987 0.030892488
0.372797 3.565243 3.584680635 0.366877 3.544823 0.657688 3.83104 0.62318 0.020008 0.623501 ‐0.31097 ‐0.84403 0.89949596 ‐0.31221
0.824024 0.88118706 0.623501109
0.372797 3.565243 3.584680635 0.366877 3.544823 0.657688 3.83104 0.546915 ‐0.18899 0.578646 ‐0.06518 ‐0.64281 0.6461098 ‐0.48174
0.8318 0.96122981 0.578646133
0.684588 0.79474466 0.524508819
0.372797 3.565243 3.584680635 0.366877 3.544823 0.657688 3.83104 0.510322 ‐0.12117 0.524509 ‐0.10664 ‐0.56342 0.57342635 ‐0.40368
0.264756 2.607716 2.621121607 0.254704 2.568471 7.223299 13.6273 0.005575 ‐0.01304 0.014177 ‐1.09255 ‐0.73794 1.31841748 ‐1.09204
0.932754 1.43617052 0.014177159
0.264756 2.607716 2.621121607 0.254704 2.568471 7.223299 13.6273 0.249806 ‐0.42788 0.495459 0.23056 ‐0.40217 0.46357246 ‐0.48037
0.830046 0.95902443 0.463572461
0.264756 2.607716 2.621121607 0.254704 2.568471 7.223299 13.6273 0.017306 ‐0.02886 0.033652 ‐0.02203 0.021658 0.03089249 ‐0.63566
1.17111 1.33249987 0.030892488
0.004395 4.789505 4.789507016 0.004245 4.788983 7.19E+08 ‐5.0105 0.96647
0 0.96647 ‐0.48324 ‐0.83699 0.9664695 ‐0.48324
0.836987 0.9664695 0.966469505
‐3
‐3
‐4
‐4
‐4
‐6
‐5
‐6
‐5
‐15
‐16
‐7
‐7
‐7
‐20
‐8
‐20
‐5
‐9
‐6
‐10
‐10
‐10
‐14
‐22
‐23
‐22
‐8
‐23
‐20
‐24
‐24
‐22
‐21
‐21
‐25
‐25
‐23
‐24
‐21
‐25
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
1
2
3
1
2
1
1
2
2
0
0
3
1
2
1
2
2
3
3
3
3
1
2
0
1
1
2
3
2
3
1
2
3
1
2
1
2
3
3
3
3
3
1
2
3
1
2
3
1
2
3
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
66
66
66
66
66
21
21
21
21
0.69
0.69
150
150
150
11
11
11
21
21
21
150
150
150
0.69
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
20
20
20
20
20
20
0.69
0.69
0.004395
0.004395
0.00713
0.00713
0.00713
0.000472
0.000472
0.000472
0.000472
0
0.000058
0.510446
0.510446
0.510446
0.02888
0.008321
0.02888
0.000472
0.002166
0.000472
0.510446
0.510446
0.510446
0.000009
0.039967
0.048505
0.039967
0.008321
0.048505
0.02888
0.308914
0.308914
0.039967
0.671327
0.671327
0.163668
0.163668
0.048505
0.308914
0.671327
0.163668
0.515726
0.515726
0.515726
0.005539
0.005539
0.005539
0.004849
0.004849
0.004849
0.000009
0.000009
4.789505
4.789505
6.139517
6.139517
6.139517
0.059756
0.059756
0.059756
0.059756
0
0.002378
3.993824
3.993824
3.993824
0.043434
0.031203
0.043434
0.059756
0.066997
0.059756
3.993824
3.993824
3.993824
0.000196
0.066724
0.059187
0.066724
0.031203
0.059187
0.043434
0.565333
0.565333
0.066724
0.558996
0.558996
0.522857
0.522857
0.059187
0.565333
0.558996
0.522857
4.061893
4.061893
4.061893
0.106478
0.106478
0.106478
0.105104
0.105104
0.105104
0.00018
0.00018
4.789507016 0.004245 4.788983
4.789507016 0.004245 4.788983
6.13952114 0.006922 6.138631
6.13952114 0.006922 6.138631
6.13952114 0.006922 6.138631
0.059757864 0.000309 0.057025
0.059757864 0.000309 0.057025
0.059757864 0.000309 0.057025
0.059757864 0.000309 0.057025
0 #INF
#INF
0.002378707 #INF
#INF
4.02631162 0.503255 3.961143
4.02631162 0.503255 3.961143
4.02631162 0.503255 3.961143
0.052159052 0.028798 0.043321
0.03229344 0.008237 0.031083
0.052159052 0.028798 0.043321
0.059757864 0.000309 0.057025
0.067032004 0.001802
0.0636
0.059757864 0.000309 0.057025
4.02631162 0.503255 3.961143
4.02631162 0.503255 3.961143
4.02631162 0.503255 3.961143
0.000196207 #INF
#INF
0.077778231 0.039947 0.066674
0.076523434 0.048499 0.059154
0.077778231 0.039947 0.066674
0.03229344 0.008237 0.031083
0.076523434 0.048499 0.059154
0.052159052 0.028798 0.043321
0.644227646 0.30883 0.565213
0.644227646 0.30883 0.565213
0.077778231 0.039947 0.066674
0.873588272 0.671249 0.558891
0.873588272 0.671249 0.558891
0.547874672 0.163681 0.522842
0.547874672 0.163681 0.522842
0.076523434 0.048499 0.059154
0.644227646 0.30883 0.565213
0.873588272 0.671249 0.558891
0.547874672 0.163681 0.522842
4.094502174 0.508671 4.029595
4.094502174 0.508671 4.029595
4.094502174 0.508671 4.029595
0.106621972 0.005492 0.106294
0.106621972 0.005492 0.106294
0.106621972 0.005492 0.106294
0.105215795 0.004813 0.104939
0.105215795 0.004813 0.104939
0.105215795 0.004813 0.104939
0.000180225 0.000009 0.000179
0.000180225 0.000009 0.000179
7.19E+08
7.19E+08
7.19E+08
7.19E+08
7.19E+08
0.000044
0.001973
0.000044
0.001973
#INF
#INF
2.196681
2.196681
2.196681
0.082729
0.000001
0.082729
0.001973
0.000512
0.000044
2.196681
2.196681
2.196681
#INF
0.301664
0.496089
0.301664
0.000001
0.496089
0.082729
1.203815
1.203815
0.301664
2.786075
2.786075
4.909641
4.909641
0.496089
1.203815
2.786075
4.909641
2.109227
2.109227
2.109227
0.036737
0.036737
0.036737
0.000329
0.000329
0.000329
0
0
‐5.0105
‐5.0105
‐5.481
‐5.481
‐5.481
2.22701
0.03337
2.22701
0.03337
#INF
#INF
11.4995
11.4995
11.4995
0.6692
0.61262
0.6692
0.03337
7.63509
2.22701
11.4995
11.4995
11.4995
#INF
0.93939
0.95194
0.93939
0.61262
0.95194
0.6692
2.75048
2.75048
0.93939
2.89991
2.89991
3.92696
3.92696
0.95194
2.75048
2.89991
3.92696
10.9872
10.9872
10.9872
0.15186
0.15186
0.15186
0.13956
0.13956
0.13956
0.00024
0.00024
0.957034
0.957079
0.96647
0.954416
0.95446
0.949433
0.951118
0.962653
0.958836
0.96647
0.96648
0.155763
0.556523
0.322435
0.933529
0.956633
0.954217
0.956646
0.958578
0.963694
0.155763
0.556523
0.322435
0.966487
0.95039
0.961417
0.960837
0.937796
0.966541
0.943268
0.956285
0.956773
0.95658
0.962067
0.962064
0.964019
0.964482
0.960105
0.961675
0.963607
0.965954
0.166133
0.566089
0.332219
0.655304
0.879426
0.662923
0.702298
0.886767
0.646162
0.966573
0.966652
‐0.00411
‐0.00421
0
‐0.00522
‐0.00532
‐0.03259
‐0.03148
‐0.02383
‐0.02341
0
‐0.00022
‐0.02863
‐0.27934
0.105766
‐0.09345
‐0.07836
‐0.0617
‐0.01565
0.000202
0.000001
‐0.02863
‐0.27934
0.105766
‐0.00021
‐0.04958
‐0.03993
‐0.03628
‐0.00292
‐0.02833
‐0.00404
‐0.00944
‐0.00901
‐0.00385
‐0.00797
‐0.00747
‐0.00726
‐0.00721
‐0.00427
‐0.00079
‐0.00145
‐0.00124
‐0.02917
‐0.27347
0.110113
‐0.24509
‐0.14119
‐0.0083
‐0.28431
‐0.13738
‐0.04381
‐0.00065
‐0.00027
0.957043
0.957088
0.96647
0.95443
0.954475
0.949992
0.951639
0.962948
0.959122
0.96647
0.96648
0.158372
0.622696
0.339339
0.938194
0.959837
0.956209
0.956774
0.958578
0.963694
0.158372
0.622696
0.339339
0.966487
0.951682
0.962246
0.961522
0.937801
0.966956
0.943277
0.956332
0.956815
0.956588
0.9621
0.962093
0.964046
0.964509
0.960115
0.961675
0.963608
0.965955
0.168675
0.628682
0.349992
0.699637
0.890687
0.662975
0.757662
0.897345
0.647645
0.966573
0.966652
‐0.47382
‐0.47387
‐0.48324
‐0.47121
‐0.47126
‐0.46737
‐0.46902
‐0.48062
‐0.48588
0.96647
0.96648
‐0.94698
‐0.07524
‐0.31728
‐0.45108
‐0.47756
‐0.47498
‐0.47874
‐0.47927
‐0.48184
‐0.94698
‐0.07524
‐0.31728
0.966487
‐0.46758
‐0.47853
‐0.48012
‐0.46889
‐0.48548
‐0.47164
‐0.47312
‐0.47457
‐0.47831
‐0.4789
‐0.47975
‐0.48085
‐0.48168
‐0.48008
‐0.48084
‐0.48181
‐0.48299
‐0.93193
‐0.08476
‐0.32624
‐0.69742
‐0.39733
‐0.72136
‐0.64757
‐0.40465
‐0.74838
‐0.48315
‐0.48342
‐0.83279
‐0.83269
‐0.83699
‐0.83165
‐0.83155
‐0.80369
‐0.80487
‐0.81232
‐0.81365
0
‐0.00022
‐0.82277
‐0.55363
‐0.15932
‐0.74312
‐0.75089
‐0.769
‐0.82885
‐0.83691
‐0.83691
‐0.82277
‐0.55363
‐0.15932
‐0.00021
‐0.7872
‐0.79697
‐0.7984
‐0.83533
‐0.80745
‐0.83481
‐0.82744
‐0.82662
‐0.83499
‐0.82897
‐0.82887
‐0.82969
‐0.82982
‐0.8348
‐0.83656
‐0.83624
‐0.83636
‐0.82215
‐0.5596
‐0.16714
‐0.98529
‐0.69484
‐0.5871
‐1.02359
‐0.69872
‐0.63253
‐0.83745
‐0.83672
0.95814493
0.95808337
0.9664695
0.95586739
0.95580481
0.92970601
0.93155613
0.94385793
0.94767941
0.96647
0.96648002
1.25448041
0.55871789
0.35503668
0.86931534
0.88988796
0.90385939
0.95717627
0.96442679
0.96570739
1.25448041
0.55871789
0.35503668
0.96648702
0.91559162
0.92959407
0.93164354
0.95793293
0.94215857
0.95882574
0.95315326
0.95315864
0.96228235
0.95735761
0.95770005
0.95895951
0.95948904
0.96300038
0.96490301
0.96511133
0.96580324
1.24274682
0.56598033
0.36656022
1.207141
0.80042421
0.93007758
1.21123102
0.80743809
0.9798859
0.96682962
0.96633169
‐0.48321
‐0.48321
‐0.48324
‐0.4832
‐0.4832
‐0.48206
‐0.4821
‐0.48203
‐0.47296
0.96647
0.96648
‐0.94708
‐0.48129
‐0.64312
‐0.48245
‐0.47908
‐0.47924
‐0.47791
‐0.47931
‐0.48185
‐0.94708
‐0.48129
‐0.64312
0.966487
‐0.48282
‐0.48289
‐0.48071
‐0.46891
‐0.48106
‐0.47163
‐0.48316
‐0.4822
‐0.47827
‐0.48317
‐0.48231
‐0.48317
‐0.4828
‐0.48003
‐0.48084
‐0.4818
‐0.48297
‐0.93203
‐0.48133
‐0.64016
‐0.69669
‐0.48209
‐0.69314
‐0.64684
‐0.48212
‐0.71156
‐0.48315
‐0.48323
0.836895
0.836895
0.836987
0.83687
0.83687
0.836282
0.836347
0.83615
0.837051
0
‐0.000217
0.848063
0.832972
1.123404
0.836572
0.829252
0.830691
0.844507
0.836708
0.83691
0.848063
0.832972
1.123404
‐0.000205
0.836779
0.83689
0.834681
0.838254
0.83578
0.838849
0.836884
0.835628
0.838843
0.836938
0.836337
0.836956
0.837029
0.839077
0.837349
0.837693
0.837604
0.848647
0.833065
1.118974
0.687688
0.836027
0.939828
0.649365
0.836098
0.895116
0.836521
0.836989
0.96637733
0.96637683
0.9664695
0.96635268
0.96635218
0.96527268
0.96534748
0.96514284
0.9614289
0.96647
0.96648002
1.27128655
0.96201797
1.2944636
0.96571572
0.95769234
0.95901756
0.97035513
0.9642694
0.96571252
1.27128655
0.96201797
1.2944636
0.96648702
0.96607941
0.96621103
0.9632125
0.96049179
0.96433906
0.96234269
0.9663448
0.9647771
0.96561048
0.96639457
0.96544421
0.96641166
0.96628946
0.96668455
0.96558664
0.96636274
0.96687099
1.26050775
0.9621185
1.28915096
0.97892519
0.96506675
1.16778292
0.9165592
0.96514075
1.14347854
0.96602145
0.96646974
0.957042821
0.957088246
0.966469505
0.954430275
0.95447481
0.929706011
0.931556129
0.943857928
0.947679414
0.96647
0.966480024
0.158371769
0.558717886
0.339338733
0.869315335
0.889887958
0.903859391
0.956774068
0.958578021
0.963694
0.158371769
0.558717886
0.339338733
0.966487022
0.915591616
0.929594067
0.931643545
0.937800552
0.942158573
0.943276656
0.953153263
0.953158644
0.956587748
0.957357612
0.957700046
0.958959514
0.959489036
0.960114509
0.961675324
0.963608094
0.965803244
0.168674601
0.565980334
0.34999191
0.699637364
0.800424211
0.66297492
0.757662071
0.807438086
0.647645193
0.966021449
0.966331686
‐14
‐15
‐15
‐15
‐16
‐16
‐16
‐26
‐27
‐17
‐18
‐18
‐18
‐19
2
3
1
2
3
1
2
3
3
3
3
1
2
3
0
0
0
0
0
0
0
50
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.69
0.69
0.69
0.69
0.69
0.69
0.69
15
15
150
150
150
150
20
Fault Impedance=0.1 ohm
0.000009
0
0
0
0.000058
0.000058
0.000058
0.023846
0.023846
0.405548
0.51313
0.51313
0.51313
0.005242
0.00018
0
0
0
0.002375
0.002375
0.002375
0.040968
0.040968
3.347249
4.028029
4.028029
4.028029
0.105853
0.000180225
0
0
0
0.002375708
0.002375708
0.002375708
0.047402624
0.047402624
3.371727309
4.060581242
4.060581242
4.060581242
0.105982716
0.000009
0
0
0
0.000058
0.000058
0.000058
0.023763
0.023763
0.396937
0.506007
0.506007
0.506007
0.0052
0.000179
0
0
0
0.002375
0.002375
0.002375
0.040852
0.040852
3.311281
3.99554
3.99554
3.99554
0.105679
0
0
0
0
0.000028
0.000028
0.000028
0.062046
0.062046
4.776796
2.152986
2.152986
2.152986
0.01853
0.00024
0
0
0
0.00122
0.00122
0.00122
0.65506
0.65506
12.5784
11.2435
11.2435
11.2435
0.14572
0.966125
0.96647
0.96647
0.96647
0.966529
0.966656
0.966198
0.941836
0.941836
0.082755
0.160902
0.56136
0.32737
0.678252
‐0.0005
0
0
0
‐0.00056
‐0.00031
‐0.00043
‐0.00401
‐0.00401
‐0.0138
‐0.0289
‐0.27637
0.107991
‐0.26355
0.966125
0.96647
0.96647
0.96647
0.966529
0.966656
0.966198
0.941845
0.941845
0.083898
0.163478
0.625704
0.344722
0.727657
‐0.48377
‐0.48324
‐0.48324
‐0.48324
‐0.48319
‐0.48342
‐0.4837
‐0.47092
‐0.47092
‐1.01542
‐0.93953
‐0.08005
‐0.32182
‐0.67314
‐0.83722
‐0.83699
‐0.83699
‐0.83699
‐0.83734
‐0.83668
‐0.83711
‐0.83481
‐0.83481
‐0.77213
‐0.82247
‐0.55665
‐0.16325
‐1.00331
0.96693289
0.9664695
0.9664695
0.9664695
0.96675297
0.96629905
0.96681355
0.95847712
0.95847712
1.27564541
1.24866663
0.562375
0.36086183
1.20819355
‐0.48359
‐0.48324
‐0.48324
‐0.48324
‐0.48319
‐0.48323
‐0.48352
‐0.47092
‐0.47092
‐1.01521
‐0.93963
‐0.48131
‐0.64167
‐0.67241
0.836679
0.836987
0.836987
0.836987
0.836633
0.836989
0.836767
0.838825
0.838825
0.898612
0.848345
0.833019
1.121231
0.669662
0.96638188
0.9664695
0.9664695
0.9664695
0.96613794
0.96646974
0.96641954
0.96197155
0.96197155
1.3557872
1.26593519
0.96206867
1.29186086
0.94898949
0.966125127
0.966469505
0.966469505
0.966469505
0.966137941
0.966299053
0.966198096
0.941844545
0.941844545
0.083898065
0.163477506
0.562374998
0.344721878
0.727657134
Voltage sag table for 150KV bus,Green revolution scenario 2020
Voltage Sags
Object index
2
3
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
2
2
2
3
3
3
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐4
Voltage sag table assessment
Fault Type
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
Fault positi
on in %
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Failur
e frequ
ency Fault Clearing in 1/a Time in s
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.123
0
0.123
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
BB150_2 BB150_2
BB150_2 BB150_2
BB150_2 BB150_2
Negative‐
Positive‐
Zero‐
Negative‐ Sequence Zero‐
Positive‐ Sequence Sequence Sequence Impedanc Sequence Impedanc
Sequence Impedanc
Impedanc e, Voltage, Phase C Positive Voltage, Phase B Impedanc e, Voltage, Phase A Impedanc e, Imaginary e, Real Imaginary sequence e, Real Nominal e, Real Imaginary Voltage, Imaginary voltage at Voltage, Imaginary voltage at Voltage, Imaginary voltage Part in impedance Part in Real Part Part in Part in 150KV Real Part Part in 150KV Voltage in Part in Real Part Part in Part in Part in at 150KV Minimum of Ohm
(in ohms)
in p.u.
Ohm
bus
p.u.
in p.u.
Ohm
bus
p.u.
kV
in p.u.
Ohm
Ohm
bus
phase voltages
p.u.
Ohm
380 0.329071 3.59987 3.61487922 #INF
#INF
#INF
#INF
0.441061 0.071258 0.44678 0.441061 0.071258 0.44678 0.441061 0.071258 0.44678 0.446780157
150 0.138887 2.769958 2.77343774 #INF
#INF
#INF
#INF
0.00309 ‐0.03584 0.035968 0.00309 ‐0.03584 0.035968 0.00309 ‐0.03584 0.03597 0.035967976
380 0.329071 3.59987 3.61487922 #INF
#INF
#INF
#INF
0.441061 0.071258 0.44678 0.441061 0.071258 0.44678 0.441061 0.071258 0.44678 0.446780157
150 0.138887 2.769958 2.77343774 #INF
#INF
#INF
#INF
0.00309 ‐0.03584 0.035968 0.00309 ‐0.03584 0.035968 0.00309 ‐0.03584 0.03597 0.035967976
66 0.002744 4.791619 4.79161979 #INF
#INF
#INF
#INF
0.987179 0.001203 0.98718 0.987179 0.001203 0.98718 0.987179 0.001203 0.98718 0.987179733
66 0.004489 6.142957 6.14295864 #INF
#INF
#INF
#INF
0.983644 0.001607 0.983645 0.983644 0.001607 0.983645 0.983644 0.001607 0.98365 0.983645313
21 0.000432 0.059788 0.05978956 #INF
#INF
#INF
#INF
0.980318 ‐0.02341 0.980597 0.980318 ‐0.02341 0.980597 0.980318 ‐0.02341 0.9806 0.980597452
21 0.000432 0.059788 0.05978956 #INF
#INF
#INF
#INF
0.980587 ‐0.02314 0.98086 0.980587 ‐0.02314 0.98086 0.980587 ‐0.02314 0.98086 0.980859992
150 0.406113 4.142924 4.16278117 #INF
#INF
#INF
#INF
0.393284 ‐0.06659 0.398881 0.393284 ‐0.06659 0.398881 0.393284 ‐0.06659 0.39888 0.398881435
11 0.003975 0.037467 0.03767727 0.003919 0.037277 0.000001 0.612617 0.963309 ‐0.17165 0.978483 ‐0.4649 ‐0.69387 0.835216 ‐0.49841 0.865525 0.99877 0.835215694
21 0.001211 0.068237 0.06824774 #INF
#INF
#INF
#INF
0.842357 ‐0.23972 0.875803 0.842357 ‐0.23972 0.875803 0.842357 ‐0.23972 0.8758 0.875802783
150 0.406113 4.142924 4.16278117 #INF
#INF
#INF
#INF
0.393284 ‐0.06659 0.398881 0.393284 ‐0.06659 0.398881 0.393284 ‐0.06659 0.39888 0.398881435
150 0.412743 4.210571 4.23075229 #INF
#INF
#INF
#INF
0.40656 ‐0.06611
0.4119 0.40656 ‐0.06611
0.4119 0.40656 ‐0.06611 0.4119 0.411899625
20 0.004976 0.11044 0.11055204 #INF
#INF
#INF
#INF
0.88341 ‐0.12522 0.892241 0.88341 ‐0.12522 0.892241 0.88341 ‐0.12522 0.89224 0.892240734
20 0.004427 0.109268 0.10935764 #INF
#INF
#INF
#INF
0.891916 ‐0.12276 0.900325 0.891916 ‐0.12276 0.900325 0.891916 ‐0.12276 0.90032 0.900324752
150 0.290046 3.501922 3.51391297 #INF
#INF
#INF
#INF
0.245532 ‐0.05966 0.252677 0.245532 ‐0.05966 0.252677 0.245532 ‐0.05966 0.25268 0.252676705
150 0.409472 4.176915 4.19693772 #INF
#INF
#INF
#INF
0.399995 ‐0.06635 0.40546 0.399995 ‐0.06635 0.40546 0.399995 ‐0.06635 0.40546 0.405460139
380 0.328914 3.599033 3.6140314 0.323634 3.577694 0.552822 3.833256 0.639632 0.039271 0.640836 ‐0.31911 ‐0.88242 0.938342 ‐0.32053 0.843144 0.90201 0.640836412
380 0.328914 3.599033 3.6140314 0.323634 3.577694 0.552822 3.833256 0.550889 ‐0.17811 0.578967 ‐0.05251 ‐0.68223 0.684248 ‐0.49838 0.860343 0.99427 0.578967124
380 0.328914 3.599033 3.6140314 0.323634 3.577694 0.552822 3.833256 0.516048 ‐0.10431 0.526485 ‐0.09161 ‐0.59595 0.602946 ‐0.42444 0.700256 0.81885 0.526484874
150 0.138691 2.759876 2.7633586 0.132004 2.71538 7.223299 13.6273 0.005493 ‐0.01346 0.01454 ‐1.11894 ‐0.74549 1.344539 ‐1.11805 0.982887 1.48866 0.014540475
150 0.138691 2.759876 2.7633586 0.132004 2.71538 7.223299 13.6273 0.257042 ‐0.44241 0.511661 0.239451 ‐0.41621 0.48017 ‐0.49649 0.858614 0.99183 0.480170161
150 0.138691 2.759876 2.7633586 0.132004 2.71538 7.223299 13.6273 0.015565 ‐0.02953 0.033385 ‐0.02048 0.022131 0.030153 ‐0.64899 1.212045 1.37486 0.030153135
380 0.328914 3.599033 3.6140314 0.323634 3.577694 0.552822 3.833256 0.639632 0.039271 0.640836 ‐0.31911 ‐0.88242 0.938342 ‐0.32053 0.843144 0.90201 0.640836412
380 0.328914 3.599033 3.6140314 0.323634 3.577694 0.552822 3.833256 0.550889 ‐0.17811 0.578967 ‐0.05251 ‐0.68223 0.684248 ‐0.49838 0.860343 0.99427 0.578967124
380 0.328914 3.599033 3.6140314 0.323634 3.577694 0.552822 3.833256 0.516048 ‐0.10431 0.526485 ‐0.09161 ‐0.59595 0.602946 ‐0.42444 0.700256 0.81885 0.526484874
150 0.138691 2.759876 2.7633586 0.132004 2.71538 7.223299 13.6273 0.005493 ‐0.01346 0.01454 ‐1.11894 ‐0.74549 1.344539 ‐1.11805 0.982887 1.48866 0.014540475
150 0.138691 2.759876 2.7633586 0.132004 2.71538 7.223299 13.6273 0.257042 ‐0.44241 0.511661 0.239451 ‐0.41621 0.48017 ‐0.49649 0.858614 0.99183 0.480170161
150 0.138691 2.759876 2.7633586 0.132004 2.71538 7.223299 13.6273 0.015565 ‐0.02953 0.033385 ‐0.02048 0.022131 0.030153 ‐0.64899 1.212045 1.37486 0.030153135
66 0.002696 4.791514 4.79151476 0.00261 4.790861 7.19E+08 ‐2.76369
1
0
1
‐0.5 ‐0.86603
1
‐0.5 0.866025
1
0.99999965
66 0.002696 4.791514 4.79151476 0.00261 4.790861 7.19E+08 ‐2.76369 0.989921 ‐0.00445 0.989931 ‐0.48996 ‐0.86148 0.991058 ‐0.49997 0.865923 0.99989 0.989930989
66 0.002696 4.791514 4.79151476 0.00261 4.790861 7.19E+08 ‐2.76369 0.98997 ‐0.00455 0.98998
‐0.49 ‐0.86137 0.990993 ‐0.49997 0.865924 0.99989 0.989980461
66 0.004481 6.142752 6.14275363 0.004307 6.141758 7.19E+08 3.501729
1
0
1
‐0.5 ‐0.86603
1
‐0.5 0.866025
1
0.99999965
66 0.004481 6.142752 6.14275363 0.004307 6.141758 7.19E+08 3.501729 0.987125 ‐0.00565 0.987141 ‐0.48717 ‐0.86025 0.988614 ‐0.49996 0.865895 0.99987 0.987141152
‐4
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
‐7
‐16
‐8
‐16
‐9
‐9
‐9
‐10
‐10
‐10
‐18
‐19
‐8
‐19
‐18
‐8
‐16
‐20
‐20
‐19
‐17
‐17
‐18
‐21
‐21
‐20
‐17
‐21
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐22
‐22
‐22
‐23
‐23
2
3
1
2
3
1
2
3
1
2
1
2
2
3
1
2
3
1
2
1
1
0
2
2
3
3
1
2
3
1
2
3
1
2
3
3
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
66
21
21
21
21
21
21
150
150
150
11
11
11
21
21
21
150
150
150
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
20
20
20
20
20
20
0.69
0.69
0.69
0.69
0.69
0.004481
0.000432
0.000432
0.000432
0.000432
0.000432
0.000432
0.402082
0.402082
0.402082
0.024643
0.003975
0.024643
0.001209
0.001209
0.001209
0.402082
0.402082
0.402082
0.037859
0.128492
0.003982
0.128492
0.037859
0.003975
0.024643
0.304568
0.304568
0.128492
0.692669
0.692669
0.037859
0.162693
0.162693
0.304568
0.692669
0.162693
0.408489
0.408489
0.408489
0.004952
0.004952
0.004952
0.004303
0.004303
0.004303
0.000009
0.000009
0.000009
0
0
6.142752
0.059788
0.059788
0.059788
0.059788
0.059788
0.059788
4.11588
4.11588
4.11588
0.051592
0.037467
0.051592
0.06816
0.06816
0.06816
4.11588
4.11588
4.11588
0.068601
0.122241
0.037511
0.122241
0.068601
0.037467
0.051592
0.5716
0.5716
0.122241
0.600813
0.600813
0.068601
0.522486
0.522486
0.5716
0.600813
0.522486
4.182313
4.182313
4.182313
0.107193
0.107193
0.107193
0.105719
0.105719
0.105719
0.00018
0.00018
0.00018
0
0
6.14275363 0.004307
0.05978956 0.000273
0.05978956 0.000273
0.05978956 0.000273
0.05978956 0.000273
0.05978956 0.000273
0.05978956 0.000273
4.13547314 0.397817
4.13547314 0.397817
4.13547314 0.397817
0.05717527 0.024587
0.03767727 0.003919
0.05717527 0.024587
0.06817072 0.000934
0.06817072 0.000934
0.06817072 0.000934
4.13547314 0.397817
4.13547314 0.397817
4.13547314 0.397817
0.07835433 0.037855
0.17735009 0.128435
0.03772176 #INF
0.17735009 0.128435
0.07835433 0.037855
0.03767727 0.003919
0.05717527 0.024587
0.64767911 0.304512
0.64767911 0.304512
0.17735009 0.128435
0.91693326 0.692613
0.91693326 0.692613
0.07835433 0.037855
0.54722996 0.162716
0.54722996 0.162716
0.64767911 0.304512
0.91693326 0.692613
0.54722996 0.162716
4.20221433 0.404331
4.20221433 0.404331
4.20221433 0.404331
0.10730732 0.00492
0.10730732 0.00492
0.10730732 0.00492
0.10580653 0.004281
0.10580653 0.004281
0.10580653 0.004281
0.00018022 0.000009
0.00018022 0.000009
0.00018022 0.000009
0
0
0
0
6.141758
0.057053
0.057053
0.057053
0.057053
0.057053
0.057053
4.078959
4.078959
4.078959
0.051402
0.037277
0.051402
0.064639
0.064639
0.064639
4.078959
4.078959
4.078959
0.068528
0.122051
#INF
0.122051
0.068528
0.037277
0.051402
0.57141
0.57141
0.122051
0.600627
0.600627
0.068528
0.522473
0.522473
0.57141
0.600627
0.522473
4.14583
4.14583
4.14583
0.106985
0.106985
0.106985
0.105533
0.105533
0.105533
0.00018
0.00018
0.00018
0
0
7.19E+08
0.001658
0.001658
0.001658
0.000044
0.000044
0.000044
2.196681
2.196681
2.196681
0.082729
0.000001
0.082729
0.000512
0.000512
0.000512
2.196681
2.196681
2.196681
0.301664
0.496089
#INF
0.496089
0.301664
0.000001
0.082729
1.203815
1.203815
0.496089
2.786075
2.786075
0.301664
4.909641
4.909641
1.203815
2.786075
4.909641
2.109227
2.109227
2.109227
0.036737
0.036737
0.036737
0.000329
0.000329
0.000329
0
0
0
0
0
3.501729
0.033372
0.033372
0.033372
2.227006
2.227006
2.227006
11.49949
11.49949
11.49949
0.669203
0.612617
0.669203
7.635088
7.635088
7.635088
11.49949
11.49949
11.49949
0.939389
0.951936
#INF
0.951936
0.939389
0.612617
0.669203
2.750475
2.750475
0.951936
2.899907
2.899907
0.939389
3.926959
3.926959
2.750475
2.899907
3.926959
10.98724
10.98724
10.98724
0.151863
0.151863
0.151863
0.139561
0.139561
0.139561
0.000237
0.000237
0.000237
0
0
0.987173
0.988107
0.980949
0.990005
0.997118
0.98122
0.995247
0.158046
0.570093
0.328216
0.97365
1.002123
0.997192
0.991267
0.865243
0.984797
0.158046
0.570093
0.328216
0.990826
0.988913
0.944774
0.993252
1.000941
0.966214
0.972142
0.990039
0.990508
0.986121
0.99661
0.996424
0.989191
0.998932
0.999469
0.994404
0.996708
0.999705
0.16857
0.580033
0.338381
0.674857
0.91074
0.688806
0.722892
0.918564
0.671102
1.000105
1.00021
0.999648
1
1
‐0.00575
‐0.01662
‐0.03367
‐0.02531
0.000091
‐0.03328
‐0.02462
‐0.03141
‐0.30507
0.093788
‐0.12427
‐0.10006
‐0.08211
‐0.00045
‐0.3242
‐0.24182
‐0.03141
‐0.30507
0.093788
‐0.06232
‐0.05225
‐0.10858
‐0.04296
‐0.04449
‐0.01036
‐0.01133
‐0.01394
‐0.01332
‐0.00937
‐0.01133
‐0.01072
‐0.00677
‐0.00926
‐0.00908
‐0.00219
‐0.00277
‐0.00161
‐0.03217
‐0.29917
0.098142
‐0.25701
‐0.15691
‐0.01501
‐0.29818
‐0.15255
‐0.05095
‐0.00068
‐0.00029
‐0.00051
0
0
0.98719
0.988247
0.981527
0.990328
0.997118
0.981784
0.995551
0.161137
0.646587
0.341353
0.981549
1.007106
1.000567
0.991267
0.923985
1.014051
0.161137
0.646587
0.341353
0.992784
0.990293
0.950993
0.99418
1.001929
0.96627
0.972208
0.990137
0.990597
0.986166
0.996674
0.996482
0.989214
0.998975
0.99951
0.994406
0.996712
0.999706
0.171611
0.652642
0.352326
0.722139
0.924158
0.688969
0.781973
0.931145
0.673033
1.000105
1.00021
0.999648
1
1
‐0.48722
‐0.4945
‐0.48218
‐0.50137
‐0.49855
‐0.48244
‐0.49649
‐0.96942
‐0.07259
‐0.32258
‐0.4748
‐0.50919
‐0.50407
‐0.49563
‐0.37504
‐0.49339
‐0.96942
‐0.07259
‐0.32258
‐0.49141
‐0.4894
0.944774
‐0.49822
‐0.50447
‐0.48316
‐0.48613
‐0.49016
‐0.49212
‐0.49312
‐0.49671
‐0.49785
‐0.49464
‐0.49902
‐0.49998
‐0.49721
‐0.49837
‐0.49986
‐0.95391
‐0.08248
‐0.33191
‐0.72358
‐0.41214
‐0.75016
‐0.67245
‐0.41993
‐0.77868
‐0.49992
‐0.50021
‐0.50056
‐0.5
‐0.5
‐0.86014
‐0.85735
‐0.83157
‐0.84011
‐0.86599
‐0.83198
‐0.84051
‐0.83752
‐0.55662
‐0.14809
‐0.74139
‐0.75767
‐0.77717
‐0.8656
‐0.53721
‐0.62153
‐0.83752
‐0.55662
‐0.14809
‐0.80357
‐0.81362
‐0.10858
‐0.82011
‐0.81941
‐0.8606
‐0.86016
‐0.85198
‐0.85134
‐0.86123
‐0.85466
‐0.85474
‐0.86256
‐0.85675
‐0.85711
‐0.86489
‐0.86462
‐0.86522
‐0.83691
‐0.56262
‐0.15598
‐1.01341
‐0.70813
‐0.59697
‐1.0535
‐0.71257
‐0.6441
‐0.86651
‐0.86574
‐0.86626
‐0.86603
‐0.86603
0.988548
0.989739
0.961257
0.978343
0.999246
0.961739
0.97619
1.281104
0.561335
0.35495
0.880397
0.912877
0.926325
0.997451
0.655166
0.793558
1.281104
0.561335
0.35495
0.941913
0.949465
0.950993
0.959583
0.962246
0.98695
0.988023
0.982917
0.983338
0.992415
0.988514
0.989157
0.994322
0.991482
0.99228
0.997624
0.997966
0.999234
1.268999
0.568635
0.366731
1.245214
0.819338
0.958704
1.249822
0.827103
1.010546
1.000376
0.999861
1.000481
1
1
‐0.49996
‐0.49361
‐0.49876
‐0.48863
‐0.49857
‐0.49878
‐0.49876
‐0.96923
‐0.49751
‐0.65597
‐0.49885
‐0.49293
‐0.49312
‐0.49564
‐0.49021
‐0.4914
‐0.96923
‐0.49751
‐0.65597
‐0.49942
‐0.49952
0.944774
‐0.49503
‐0.49647
‐0.48306
‐0.48601
‐0.49988
‐0.49839
‐0.493
‐0.4999
‐0.49858
‐0.49456
‐0.49991
‐0.49949
‐0.49719
‐0.49834
‐0.49984
‐0.95371
‐0.49755
‐0.65269
‐0.72265
‐0.4986
‐0.71332
‐0.67151
‐0.49863
‐0.73249
‐0.49992
‐0.5
‐0.50037
‐0.5
‐0.5
0.865895
0.873966
0.865247
0.865411
0.865899
0.865258
0.865125
0.890958
0.861693
1.161311
0.865665
0.857739
0.859277
0.86605
0.8614
0.863344
0.890958
0.861693
1.161311
0.865883
0.865874
‐0.10858
0.863063
0.863893
0.870959
0.871486
0.865919
0.86465
0.870608
0.865983
0.865462
0.869327
0.866007
0.866189
0.86708
0.867384
0.866825
0.891527
0.861792
1.156734
0.71758
0.865042
0.976242
0.677456
0.865119
0.930208
0.865545
0.866027
0.865716
0.866025
0.866025
0.99987
1.00373
0.99871
0.99383
0.99917
0.99873
0.9986
1.31651
0.995
1.33377
0.99911
0.98929
0.99072
0.99785
0.99112
0.9934
1.31651
0.995
1.33377
0.99959
0.99963
0.95099
0.99495
0.99639
0.99595
0.99784
0.99985
0.998
1.00051
0.99991
0.9988
1.00016
0.99994
0.99989
0.99951
1.00035
1.00061
1.30552
0.99511
1.32817
1.0184
0.99845
1.20908
0.95387
0.99853
1.18399
0.99954
1
0.99992
1
1
0.987189752
0.988246681
0.961257023
0.978342811
0.997118004
0.961739397
0.976189536
0.161137175
0.561334818
0.341353089
0.880397157
0.912876961
0.926324821
0.991267104
0.655166172
0.793558249
0.161137175
0.561334818
0.341353089
0.941912831
0.949465282
0.950992574
0.959582912
0.962246036
0.966269529
0.972208033
0.982917098
0.983337875
0.986165553
0.988514382
0.989157269
0.989214139
0.99148177
0.992280049
0.994406416
0.996711841
0.999233675
0.171611282
0.568635472
0.352325919
0.722138884
0.819337516
0.688969416
0.781972617
0.827102554
0.673033432
0.999542972
0.999861118
0.999648132
0.99999965
0.99999965
‐23
‐24
‐24
‐24
‐25
‐26
‐14
‐15
‐15
‐15
‐27
2
3
1
2
3
3
3
3
1
2
3
Fault Impedance=0.1 ohm
0
0
0
0
50
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.69
0.69
0.69
0.69
15
15
150
150
150
150
20
0
0.000057
0.000057
0.000057
0.019476
0.019476
0.288282
0.405329
0.405329
0.405329
0.004675
0
0.002376
0.002376
0.002376
0.048065
0.048065
3.484328
4.149267
4.149267
4.149267
0.106517
0
0.00237668
0.00237668
0.00237668
0.05186096
0.05186096
3.49623342
4.16901766
4.16901766
4.16901766
0.10661954
0
0.000057
0.000057
0.000057
0.019421
0.019421
0.282819
0.401118
0.401118
0.401118
0.004649
0
0.002375
0.002375
0.002375
0.047874
0.047874
3.443615
4.112565
4.112565
4.112565
0.10632
0
0.000028
0.000028
0.000028
0.062046
0.062046
4.776796
2.152986
2.152986
2.152986
0.01853
0
0.001215
0.001215
0.001215
0.655057
0.655057
12.57835
11.24349
11.24349
11.24349
0.14572
1
1.000063
1.000217
0.999726
0.970818
0.970818
0.0841
0.163261
0.575119
0.333343
0.698327
0
‐0.00059
‐0.00033
‐0.00045
‐0.01121
‐0.01121
‐0.01545
‐0.03179
‐0.30209
0.096013
‐0.27639
1
1.000063
1.000217
0.999726
0.970883
0.970883
0.085506
0.166327
0.64963
0.346895
0.751035
‐0.5
‐0.49996
‐0.50022
‐0.5005
‐0.48547
‐0.48547
‐1.03954
‐0.96174
‐0.07759
‐0.32731
‐0.69866
‐0.86603
‐0.86639
‐0.8657
‐0.86615
‐0.86021
‐0.86021
‐0.78319
‐0.83722
‐0.55965
‐0.15205
‐1.03227
1
1.000296
0.999827
1.000358
0.987743
0.987743
1.301546
1.275106
0.565007
0.360904
1.246478
‐0.5
‐0.49996
‐0.5
‐0.50029
‐0.48535
‐0.48535
‐1.03899
‐0.96154
‐0.49753
‐0.65437
‐0.69773
0.866025
0.86566
0.866027
0.865806
0.871415
0.871415
0.945221
0.891234
0.861743
1.159066
0.698702
1
0.99966
1
0.99996
0.99746
0.99746
1.40461
1.31105
0.99506
1.33103
0.98742
0.99999965
0.999662062
0.999827389
0.9997261
0.970882695
0.970882695
0.085506479
0.166327454
0.565006635
0.346894871
0.751034711
Voltage sag table for 150KV bus,Green revolution scenario Voltage sag table for 150 KV bus,green revolution
2010
scenario 2030
Voltag
e Sags
BB150_2 BB150_2
BB150_2 BB150_2
BB150_2 BB150_2
Voltage sag table assessment
Object Fault index Type
2
0
‐1
0
‐2
0
‐3
1
‐4
0
‐5
0
‐6
0
‐7
0
‐8
0
‐9
0
‐10
0
‐11
0
‐12
0
‐13
0
‐14
0
‐15
0
‐16
0
2
3
2
1
2
2
‐1
3
‐1
1
‐1
2
‐2
3
‐2
1
‐2
2
‐17
1
‐3
2
‐17
2
‐4
3
‐4
1
‐4
2
‐5
3
‐5
1
‐5
2
‐6
3
‐6
1
Fault positio
n in %
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Failur
e frequ
ency in 1/a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Fault Cleari
ng Time in s
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.12
0.12
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
Nomi
nal Volta
ge in kV
150
150
150
11
21
380
66
66
150
380
21
21
150
20
20
150
150
150
150
150
150
150
150
150
150
150
11
11
11
21
21
21
380
380
380
66
66
Negativ
Negative‐ e‐
Positive‐
Zero‐
Positive‐ Sequence Sequence Sequenc Sequenc Zero‐
Sequence Impedanc Positive e Sequence Impedanc
e sequence Impedan Impeda Impedanc e, Voltage, Phase B Voltage, Phase A Impedanc e, Voltage, Phase C Imaginary impedanc ce, Real nce, e, Real Imaginary Voltage, Imaginary voltage at Voltage, Imaginary voltage at Voltage, Imaginary voltage at Minimum of e, Real e (in Real Part Part in Part in 150KV Real Part Part in Part in Part in phase 150KV Part in Imagina Part in Real Part Part in 150KV ohms)
p.u.
in p.u.
Ohm
bus
p.u.
in p.u.
Ohm
Ohm
ry Part Ohm
voltages
bus
p.u.
Ohm
in p.u.
bus
0.173018 2.815328 2.820639 #INF
#INF #INF
#INF
0.003447 ‐0.03554 0.035708 0.003447 ‐0.03554 0.035708 0.003447 ‐0.03554 0.035708 0.035707765
0.173018 2.815328 2.820639 #INF
#INF #INF
#INF
0.003447 ‐0.03554 0.035708 0.003447 ‐0.03554 0.035708 0.003447 ‐0.03554 0.035708 0.035707765
0.433202 4.181544 4.203924 #INF
#INF #INF
#INF
0.392516 ‐0.06374 0.397657 0.392516 ‐0.06374 0.397657 0.392516 ‐0.06374 0.397657 0.397656838
0.005633 0.03768 0.038099 0.00556 0.03749 0.000001 0.612617 0.967655 ‐0.16897 0.982297 ‐0.464232 ‐0.70514 0.844232 ‐0.50342 0.874107 1.00871 0.844232272
0.001472 0.068581 0.068597 #INF
#INF #INF
#INF
0.845523 ‐0.23729 0.878188 0.845523 ‐0.23729 0.878188 0.845523 ‐0.23729 0.878188 0.878187787
0.335304 3.583312 3.598966 #INF
#INF #INF
#INF
0.431322 0.070027 0.43697 0.431322 0.070027 0.43697 0.431322 0.070027 0.43697 0.43696962
0.015484 10.64909 10.6491 #INF
#INF #INF
#INF
0.981447 0.003073 0.981452 0.981447 0.003073 0.981452 0.981447 0.003073 0.981452 0.981451811
0.015484 10.64909 10.6491 #INF
#INF #INF
#INF
0.981447 0.003073 0.981452 0.981447 0.003073 0.981452 0.981447 0.003073 0.981452 0.981451811
0.433202 4.181544 4.203924 #INF
#INF #INF
#INF
0.392516 ‐0.06374 0.397657 0.392516 ‐0.06374 0.397657 0.392516 ‐0.06374 0.397657 0.397656838
0.335304 3.583312 3.598966 #INF
#INF #INF
#INF
0.431322 0.070027 0.43697 0.431322 0.070027 0.43697 0.431322 0.070027 0.43697 0.43696962
0.000438 0.059773 0.059775 #INF
#INF #INF
#INF
0.989934 ‐0.02338 0.99021 0.989934 ‐0.02338 0.99021 0.989934 ‐0.02338 0.99021 0.990210029
0.000438 0.059773 0.059775 #INF
#INF #INF
#INF
0.989934 ‐0.02338 0.99021 0.989934 ‐0.02338 0.99021 0.989934 ‐0.02338 0.99021 0.990210029
0.439459 4.248778 4.271445 #INF
#INF #INF
#INF
0.405848 ‐0.06324 0.410746 0.405848 ‐0.06324 0.410746 0.405848 ‐0.06324 0.410746 0.410745846
0.005145 0.110664 0.110784 #INF
#INF #INF
#INF
0.888674 ‐0.12677 0.89767 0.888674 ‐0.12677 0.89767 0.888674 ‐0.12677 0.89767 0.897670098
0.004571 0.109474 0.109569 #INF
#INF #INF
#INF
0.897393 ‐0.12436 0.905969 0.897393 ‐0.12436 0.905969 0.897393 ‐0.12436 0.905969 0.905969289
0.32065 3.543933 3.558409 #INF
#INF #INF
#INF
0.244582 ‐0.05723 0.251188 0.244582 ‐0.05723 0.251188 0.244582 ‐0.05723 0.251188 0.251187975
0.436374 4.215328 4.237855 #INF
#INF #INF
#INF
0.399255 ‐0.06349 0.404271 0.399255 ‐0.06349 0.404271 0.399255 ‐0.06349 0.404271 0.404270982
0.17258 2.804907 2.810211 0.16464 2.75905 7.223299 13.6273 0.005538 ‐0.01352 0.01461 ‐1.124418 ‐0.75503 1.354393 ‐1.12357 0.990511 1.49784 0.014610265
0.17258 2.804907 2.810211 0.16464 2.75905 7.223299 13.6273 0.259618 ‐0.44643 0.516433 0.241867 ‐0.4206 0.485183 ‐0.50149 0.867031 1.001614 0.485182773
0.17258 2.804907 2.810211 0.16464 2.75905 7.223299 13.6273 0.015687 ‐0.02919 0.033142 ‐0.020639 0.021727 0.029967 ‐0.65483 1.221746 1.386168 0.029967163
0.17258 2.804907 2.810211 0.16464 2.75905 7.223299 13.6273 0.005538 ‐0.01352 0.01461 ‐1.124418 ‐0.75503 1.354393 ‐1.12357 0.990511 1.49784 0.014610265
0.17258 2.804907 2.810211 0.16464 2.75905 7.223299 13.6273 0.259618 ‐0.44643 0.516433 0.241867 ‐0.4206 0.485183 ‐0.50149 0.867031 1.001614 0.485182773
0.17258 2.804907 2.810211 0.16464 2.75905 7.223299 13.6273 0.015687 ‐0.02919 0.033142 ‐0.020639 0.021727 0.029967 ‐0.65483 1.221746 1.386168 0.029967163
0.428788 4.154011 4.176083 0.42352 4.11593 2.196681 11.49949 0.158541 ‐0.0307 0.161487 ‐0.974856 ‐0.84775 1.291907 ‐0.97473 0.897904 1.325265 0.161486793
0.428788 4.154011 4.176083 0.42352 4.11593 2.196681 11.49949 0.570807 ‐0.30746 0.648347 ‐0.068307 ‐0.5627 0.566827 ‐0.5025 0.870158 1.004829 0.566826812
0.428788 4.154011 4.176083 0.42352 4.11593 2.196681 11.49949 0.326661 0.095581 0.340357 ‐0.320601 ‐0.1499 0.353914 ‐0.66219 1.170398 1.34474 0.340357366
0.026301 0.051787 0.058083 0.02623 0.05159 0.082729 0.669203 0.978995 ‐0.12296 0.986686 ‐0.475143 ‐0.7513 0.888942 ‐0.50385 0.874262 1.009059 0.888942389
0.005633 0.03768 0.038099 0.00556 0.03749 0.000001 0.612617 1.007768
‐0.1 1.012718 ‐0.509552 ‐0.76595 0.91996 ‐0.49822 0.865956 0.999049 0.919959622
0.026301 0.051787 0.058083 0.02623 0.05159 0.082729 0.669203 1.003606 ‐0.08207 1.006956 ‐0.505267 ‐0.78545 0.933934 ‐0.49834 0.867526 1.000471 0.933934006
0.001469 0.068502 0.068518 0.00117 0.06495 0.000512 7.635088 1.001177 ‐0.00026 1.001177 ‐0.500581 ‐0.87435 1.007509 ‐0.5006 0.874608 1.007738 1.001177032
0.001469 0.068502 0.068518 0.00117 0.06495 0.000512 7.635088 0.867098 ‐0.32243 0.925105 ‐0.371859 ‐0.54732 0.661694 ‐0.49524 0.869751 1.000863 0.661694335
0.001469 0.068502 0.068518 0.00117 0.06495 0.000512 7.635088 0.988783 ‐0.24288 1.018175 ‐0.492407 ‐0.62887 0.79871 ‐0.49638 0.871741 1.003156 0.798709647
0.335117 3.582427 3.598067 0.32964 3.56108 0.552822 3.833256 0.637607 0.038412 0.638763 ‐0.318052 ‐0.8905 0.945596 ‐0.31955 0.85209 0.91004 0.638762998
0.335117 3.582427 3.598067 0.32964 3.56108 0.552822 3.833256 0.546658 ‐0.18718 0.577817 ‐0.043335 ‐0.68155 0.682928 ‐0.50332 0.868735 1.004009 0.577816964
0.335117 3.582427 3.598067 0.32964 3.56108 0.552822 3.833256 0.510372 ‐0.11129 0.522364 ‐0.084133 ‐0.59275 0.598693 ‐0.42624 0.704037 0.823011 0.52236379
0.015407 10.64847 10.64848 0.01485 10.6455 7.19E+08 2.474703
1.01
0
1.01
‐0.505 ‐0.87469
1.01
‐0.505 0.874686
1.01
1.01
0.015407 10.64847 10.64848 0.01485 10.6455 7.19E+08 2.474703 0.987451 ‐0.00974 0.987499 ‐0.482523 ‐0.86472 0.990233 ‐0.50493 0.874453 1.009763 0.987499006
‐6
‐7
‐7
‐7
‐8
‐8
‐8
‐19
‐3
‐19
‐20
‐3
‐17
‐20
‐21
‐19
‐21
‐18
‐18
‐22
‐22
‐20
‐21
‐18
‐22
‐9
‐9
‐9
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐23
‐23
‐23
‐24
‐24
‐24
‐25
‐25
‐25
‐26
‐27
2
3
1
2
3
1
2
1
0
2
1
3
3
2
1
3
2
1
2
1
2
3
3
3
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.1
0 0.12
0 0.12
66
66
66
66
150
150
150
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
380
380
380
21
21
21
21
21
21
150
150
150
20
20
20
20
20
20
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
15
15
0.015407
0.015487
0.015487
0.015487
0.428788
0.428788
0.428788
0.080911
0.005644
0.080911
0.047359
0.005633
0.026301
0.047359
0.306227
0.080911
0.306227
0.691237
0.691237
0.162719
0.162719
0.047359
0.306227
0.691237
0.162719
0.335117
0.335117
0.335117
0.000438
0.000438
0.000438
0.000438
0.000438
0.000438
0.434816
0.434816
0.434816
0.005112
0.005112
0.005112
0.004437
0.004437
0.004437
0.000009
0.000009
0.000009
0
0
0
0.000058
0.000058
0.000058
0.021135
0.021135
10.64847
10.64847
10.64847
10.64847
4.154011
4.154011
4.154011
0.113423
0.037725
0.113423
0.06022
0.03768
0.051787
0.06022
0.571813
0.113423
0.571813
0.596522
0.596522
0.522714
0.522714
0.06022
0.571813
0.596522
0.522714
3.582427
3.582427
3.582427
0.059772
0.059772
0.059772
0.059772
0.059772
0.059772
4.220023
4.220023
4.220023
0.107403
0.107403
0.107403
0.105911
0.105911
0.105911
0.00018
0.00018
0.00018
0
0
0
0.002376
0.002376
0.002376
0.048269
0.048269
10.64848
10.64848
10.64848
10.64848
4.176083
4.176083
4.176083
0.139325
0.038145
0.139325
0.076612
0.038099
0.058083
0.076612
0.648649
0.139325
0.648649
0.913043
0.913043
0.547455
0.547455
0.076612
0.648649
0.913043
0.547455
3.598067
3.598067
3.598067
0.059774
0.059774
0.059774
0.059774
0.059774
0.059774
4.242365
4.242365
4.242365
0.107525
0.107525
0.107525
0.106004
0.106004
0.106004
0.00018
0.00018
0.00018
0
0
0
0.002377
0.002377
0.002377
0.052693
0.052693
0.01485 10.6455 7.19E+08
0.01485 10.6454 7.19E+08
0.01485 10.6454 7.19E+08
0.01485 10.6454 7.19E+08
0.42352 4.11593 2.196681
0.42352 4.11593 2.196681
0.42352 4.11593 2.196681
0.08084 0.11324 0.301664
#INF
#INF #INF
0.08084 0.11324 0.301664
0.04736 0.06017 0.496089
0.00556 0.03749 0.000001
0.02623 0.05159 0.082729
0.04736 0.06017 0.496089
0.30615 0.57162 1.203815
0.08084 0.11324 0.301664
0.30615 0.57162 1.203815
0.69116 0.59633 2.786075
0.69116 0.59633 2.786075
0.16274 0.5227 4.909641
0.16274 0.5227 4.909641
0.04736 0.06017 0.496089
0.30615 0.57162 1.203815
0.69116 0.59633 2.786075
0.16274 0.5227 4.909641
0.32964 3.56108 0.552822
0.32964 3.56108 0.552822
0.32964 3.56108 0.552822
0.00028 0.05704 0.001658
0.00028 0.05704 0.001658
0.00028 0.05704 0.001658
0.00028 0.05704 0.000044
0.00028 0.05704 0.000044
0.00028 0.05704 0.000044
0.42967 4.18239 2.109227
0.42967 4.18239 2.109227
0.42967 4.18239 2.109227
0.00507 0.10719 0.036737
0.00507 0.10719 0.036737
0.00507 0.10719 0.036737
0.00441 0.10572 0.000329
0.00441 0.10572 0.000329
0.00441 0.10572 0.000329
9E‐06 0.00018
0
9E‐06 0.00018
0
9E‐06 0.00018
0
0
0
0
0
0
0
0
0
0
5.8E‐05 0.00238 0.000028
5.8E‐05 0.00238 0.000028
5.8E‐05 0.00238 0.000028
0.02106 0.04808 0.062046
0.02106 0.04808 0.062046
2.474703
‐0.6879
‐0.6879
‐0.6879
11.49949
11.49949
11.49949
0.939389
#INF
0.939389
0.951936
0.612617
0.669203
0.951936
2.750475
0.939389
2.750475
2.899907
2.899907
3.926959
3.926959
0.951936
2.750475
2.899907
3.926959
3.833256
3.833256
3.833256
0.033372
0.033372
0.033372
2.227006
2.227006
2.227006
10.98724
10.98724
10.98724
0.151863
0.151863
0.151863
0.139561
0.139561
0.139561
0.000237
0.000237
0.000237
0
0
0
0.001215
0.001215
0.001215
0.655057
0.655057
0.987498
1.01
0.987451
0.987498
0.158541
0.570807
0.326661
0.985396
0.950121
0.995533
1.013776
0.975377
0.98133
1.017239
0.99929
0.993023
0.999791
1.006057
1.005902
1.008567
1.009074
1.003477
1.004228
1.006561
1.00965
0.637607
0.546658
0.510372
0.997853
0.990471
0.999675
1.007062
0.990471
1.004872
0.169087
0.580785
0.336876
0.679261
0.916409
0.693277
0.727558
0.924434
0.675457
1.010102
1.010211
1.009642
1.01
1.01
1.01
1.01006
1.010218
1.00972
0.997972
0.997972
‐0.00984
0
‐0.00974
‐0.00984
‐0.0307
‐0.30746
0.095581
‐0.05868
‐0.10611
‐0.04808
‐0.04943
‐0.00903
‐0.01024
‐0.03417
‐0.01366
‐0.00673
‐0.01305
‐0.01124
‐0.01062
‐0.00854
‐0.00839
‐0.00678
‐0.00196
‐0.00262
‐0.00148
0.038412
‐0.18718
‐0.11129
‐0.01661
‐0.03372
‐0.02538
0.000126
‐0.03372
‐0.02505
‐0.03141
‐0.30153
0.09997
‐0.25905
‐0.15962
‐0.01593
‐0.30066
‐0.15526
‐0.05211
‐0.00069
‐0.0003
‐0.00052
0
0
0
‐0.0006
‐0.00034
‐0.00046
0.010324
0.010324
0.987547
1.01
0.987499
0.987547
0.161487
0.648347
0.340357
0.987142
0.956028
0.996693
1.01498
0.975419
0.981383
1.017813
0.999383
0.993046
0.999876
1.00612
1.005958
1.008603
1.009109
1.0035
1.00423
1.006564
1.009651
0.638763
0.577817
0.522364
0.997991
0.991045
0.999997
1.007062
0.991045
1.005184
0.17198
0.654393
0.351396
0.72698
0.930206
0.69346
0.787233
0.937381
0.677464
1.010102
1.010211
1.009642
1.01
1.01
1.01
1.01006
1.010218
1.00972
0.998025
0.998025
‐0.482571
‐0.505
‐0.482523
‐0.482571
‐0.974856
‐0.068307
‐0.320601
‐0.480934
0.950121
‐0.495028
‐0.509254
‐0.487725
‐0.490716
‐0.515182
‐0.49441
‐0.496546
‐0.496361
‐0.501161
‐0.502304
‐0.503648
‐0.504555
‐0.501782
‐0.502123
‐0.503297
‐0.504835
‐0.318052
‐0.043335
‐0.084133
‐0.499373
‐0.48671
‐0.506121
‐0.503522
‐0.48671
‐0.501128
‐0.959205
‐0.078238
‐0.329951
‐0.730006
‐0.412844
‐0.755166
‐0.678507
‐0.420836
‐0.784171
‐0.50492
‐0.505214
‐0.505572
‐0.505
‐0.505
‐0.505
‐0.504959
‐0.505221
‐0.505508
‐0.516688
‐0.516688
‐0.86461
‐0.87469
‐0.86472
‐0.86461
‐0.84775
‐0.5627
‐0.1499
‐0.81571
‐0.10611
‐0.82236
‐0.82525
‐0.86992
‐0.86935
‐0.83965
‐0.86091
‐0.87119
‐0.86017
‐0.8634
‐0.86343
‐0.86613
‐0.86642
‐0.87125
‐0.87366
‐0.87335
‐0.87394
‐0.8905
‐0.68155
‐0.59275
‐0.866
‐0.84016
‐0.84856
‐0.87467
‐0.84016
‐0.8487
‐0.84711
‐0.56873
‐0.15782
‐1.02264
‐0.71401
‐0.60019
‐1.0632
‐0.71845
‐0.64765
‐0.87517
‐0.87439
‐0.87491
‐0.87469
‐0.87469
‐0.87469
‐0.87505
‐0.87435
‐0.87481
‐0.86406
‐0.86406
0.990164
1.01
0.990233
0.990164
1.291907
0.566827
0.353914
0.946929
0.956028
0.959861
0.969727
0.997312
0.998288
0.985104
0.992775
1.002763
0.993108
0.998305
0.998908
1.001915
1.002625
1.005413
1.007676
1.007992
1.009275
0.945596
0.682928
0.598693
0.999667
0.970956
0.988038
1.009245
0.970956
0.985605
1.279715
0.574089
0.365753
1.25646
0.824769
0.964624
1.261258
0.832627
1.017041
1.01038
1.009853
1.010482
1.01
1.01
1.01
1.010298
1.009817
1.010358
1.006756
1.006756
‐0.50493
‐0.505
‐0.50493
‐0.50493
‐0.97473
‐0.5025
‐0.66219
‐0.50446
0.950121
‐0.50051
‐0.50452
‐0.48765
‐0.49062
‐0.50206
‐0.50488
‐0.49648
‐0.50343
‐0.5049
‐0.5036
‐0.50492
‐0.50452
‐0.5017
‐0.50211
‐0.50327
‐0.50482
‐0.31955
‐0.50332
‐0.42624
‐0.49848
‐0.50376
‐0.49355
‐0.50354
‐0.50376
‐0.50374
‐0.95907
‐0.50255
‐0.65886
‐0.72906
‐0.50357
‐0.7195
‐0.67756
‐0.5036
‐0.73893
‐0.50492
‐0.505
‐0.50538
‐0.505
‐0.505
‐0.505
‐0.50496
‐0.505
‐0.5053
‐0.48128
‐0.48128
0.874453
0.874686
0.874453
0.874453
0.897904
0.870158
1.170398
0.87439
‐0.10611
0.870445
0.874671
0.878942
0.879589
0.873819
0.874569
0.877925
0.873213
0.874636
0.874049
0.874663
0.874812
0.878021
0.875624
0.875968
0.87542
0.85209
0.868735
0.704037
0.882616
0.873883
0.873948
0.87454
0.873883
0.87375
0.898493
0.87026
1.165723
0.7256
0.873625
0.985747
0.685
0.873706
0.939254
0.874201
0.874687
0.874374
0.874686
0.874686
0.874686
0.874318
0.874687
0.874465
0.853731
0.853731
1.009762
1.01
1.009763
1.009762
1.325265
1.004829
1.34474
1.009475
0.956028
1.004082
1.009748
1.005158
1.007164
1.007781
1.009839
1.008584
1.007939
1.009905
1.008749
1.00994
1.00987
1.011246
1.00937
1.010245
1.010544
0.91004
1.004009
0.823011
1.013653
1.008686
1.003684
1.009145
1.008686
1.008562
1.314194
1.004941
1.339033
1.028604
1.008364
1.220399
0.963486
1.008451
1.195079
1.009539
1.01
1.009919
1.01
1.01
1.01
1.00966
1.01
1.009956
0.980046
0.980046
0.987547044
1.01
0.987499006
0.987547044
0.161486793
0.566826812
0.340357366
0.946929471
0.956028292
0.959861253
0.969727073
0.975418753
0.981383373
0.98510388
0.992774955
0.993045826
0.993107865
0.998305201
0.998908014
1.001915078
1.002624505
1.003499871
1.004229917
1.006564405
1.009275231
0.638762998
0.577816964
0.52236379
0.997991283
0.970955946
0.988038121
1.007062008
0.970955946
0.985605178
0.171979655
0.5740892
0.351396415
0.726980286
0.824768639
0.69346004
0.787233051
0.832626924
0.677463872
1.009539289
1.009852739
1.009642135
1.01
1.01
1.01
1.00966011
1.009817278
1.009720103
0.980046381
0.980046381
‐15
‐16
‐16
‐16
‐28
3
3
1
2
3
50
50
50
50
50
0
0
0
0
0
0.12
0.12
0.12
0.12
0.12
150
150
150
150
20
0.318569
0.431846
0.431846
0.431846
0.004822
3.525922
4.187188
4.187188
4.187188
0.106718
3.540284
4.209398
4.209398
4.209398
0.106827
0.31198
0.42664
0.42664
0.42664
0.00479
3.48394
4.14933
4.14933
4.14933
0.10652
4.776796
2.152986
2.152986
2.152986
0.01853
12.57835
11.24349
11.24349
11.24349
0.14572
1.209269
1.217458
0.526615
0.295933
1.25461
‐0.50849
‐0.41382
0.21937
‐0.20481
‐0.08961
1.311829
1.285866
0.570479
0.359896
1.257806
‐0.302688
‐0.294367
‐0.502362
‐0.681327
‐0.259868
‐1.38085
‐1.28652
‐0.8703
‐1.15612
‐0.96289
1.413632
1.319769
1.004886
1.341944
0.997345
‐0.02908
‐0.05498
‐0.02425
‐0.25063
‐0.11012
0.080565
0.157357
0.650933
0.238446
0.748017
0.085652
0.166687
0.651385
0.345933
0.75608
0.085651908
0.166686729
0.570479233
0.345932632
0.756079696
Voltage sag table for 150KV bus,Sustainable transition scenario 2010
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐4
‐4
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Fault Failure Fault position frequency Clearing Fault Type in %
in 1/a
Time in s
0
0
0
0.1
0
0
0
0.1
1
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
50
0
0.123
0
50
0
0.123
0
50
0
0.123
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
2
0
0
0.1
0
0
0
0.1
3
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in kV
Ohm
150 0.145807
21 0.001007
11 0.00324
21 0.001007
150 0.145807
150 0.52225
380 0.935758
150 0.368609
150 0.52225
380 0.484655
66 0.041149
150 0.528152
20 0.005574
150 0.525244
150 0.31345
150 0.368188
150 0.145548
150 0.145548
150 0.145548
21 0.001005
21 0.001005
21 0.001005
11 0.00324
11 0.003242
11 0.00324
21 0.001005
21 0.001005
21 0.001005
150 0.145548
150 0.145548
150 0.145548
150 0.517155
150 0.517155
150 0.517155
380 0.934097
380 0.934097
380 0.934097
150 0.368553
150 0.368553
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Positive‐
Sequence Impedanc Positive sequence e, Imaginary impedanc
Part in e (in Ohm
ohms)
1.250158 1.258632
0.063856 0.063864
0.030689 0.03086
0.063856 0.063864
1.250158 1.258632
3.70862 3.745211
26.07323 26.09002
3.162394 3.183804
3.70862 3.745211
4.95698 4.980617
13.26939 13.26945
3.781522 3.818226
0.107839 0.107983
3.745236 3.781888
2.381526 2.402065
2.583569 2.609673
1.248324 1.25678
1.248324 1.25678
1.248324 1.25678
0.063845 0.063853
0.063845 0.063853
0.063845 0.063853
0.030689 0.03086
0.030697 0.030868
0.030689 0.03086
0.063845 0.063853
0.063845 0.063853
0.063845 0.063853
1.248324 1.25678
1.248324 1.25678
1.248324 1.25678
3.687067 3.723159
3.687067 3.723159
3.687067 3.723159
26.0611 26.07783
26.0611 26.07783
26.0611 26.07783
3.16134 3.182751
3.16134 3.182751
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
0.003214
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.141678
0.141678
0.141678
0.000766
0.000766
0.000766
0.003214
#INF
0.003214
0.000766
0.000766
0.000766
0.141678
0.141678
0.141678
0.514769
0.514769
0.514769
0.909619
0.909619
0.909619
0.367027
0.367027
Negative‐
Sequence Zero‐
Impedanc Sequence e, Impedanc
Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
0.030633 0.044116
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
1.234749 0.071742
1.234749 0.071742
1.234749 0.071742
0.060714 0.000044
0.060714 0.000044
0.060714 0.000044
0.030633 0.044116
#INF
#INF
0.030633 0.044116
0.060714 0.000044
0.060714 0.000044
0.060714 0.000044
1.234749 0.071742
1.234749 0.071742
1.234749 0.071742
3.676984 0.980731
3.676984 0.980731
3.676984 0.980731
25.97435 2.62E+10
25.97435 2.62E+10
25.97435 2.62E+10
3.153444 1.924957
3.153444 1.924957
Voltage sag table assessme
nt
BB150
BB150
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Real Part Part in in p.u.
Ohm
#INF
0.019255
#INF
0.950021
0.574418 0.996014
#INF
0.947092
#INF
0.019255
#INF
0.72023
#INF
0.696119
#INF
0.710168
#INF
0.72023
#INF
0.905472
#INF
0.997122
#INF
0.727365
#INF
0.958897
#INF
0.723843
#INF
0.550312
#INF
0.561903
1.135542 0.018888
1.135542 0.296512
1.135542 0.016756
2.227006 0.997414
2.227006 0.960159
2.227006 1.007066
0.574418 1.011311
#INF
0.98458
0.574418 0.99291
2.227006 0.997622
2.227006 0.955357
2.227006 1.002804
1.135542 0.018888
1.135542 0.296512
1.135542 0.016756
5.808361 0.806472
5.808361 0.810354
5.808361 0.766021
‐36.0996 1.008676
‐36.0996 0.771517
‐36.0996 0.77178
12.30684 0.84774
12.30684 0.79738
Voltage, Phase A Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.0769 0.079272 0.019255
‐0.04905 0.951287 0.950021
‐0.0335 0.996577 ‐0.44744
‐0.04386 0.948107 0.947092
‐0.0769 0.079272 0.019255
0.005633 0.720252 0.72023
0.059571 0.698663 0.696119
0.018202 0.710401 0.710168
0.005633 0.720252 0.72023
0.056511 0.907234 0.905472
0.052276 0.998491 0.997122
0.006668 0.727396 0.727365
‐0.00373 0.958904 0.958897
0.006158 0.723869 0.723843
‐0.00296 0.55032 0.550312
‐0.0122 0.562035 0.561903
‐0.08018 0.082379 ‐0.42656
‐0.44724 0.536605 0.250117
‐0.07815 0.079922 ‐0.07919
0.049805 0.998657 ‐0.45397
‐0.08561 0.963968 ‐0.41536
‐0.04588 1.00811 ‐0.46284
0.004619 1.011322 ‐0.46569
‐0.00012 0.98458 0.98458
0.045783 0.993965
‐0.4517
0.050351 0.998892 ‐0.45406
‐0.07992 0.958694 ‐0.41037
‐0.04328 1.003738 ‐0.45833
‐0.08018 0.082379 ‐0.42656
‐0.44724 0.536605 0.250117
‐0.07815 0.079922 ‐0.07919
0.016589 0.806643 ‐0.42159
‐0.10429 0.817037 ‐0.26205
‐0.05225 0.767801 ‐0.31094
0.051693
1.01 ‐0.45957
‐0.07595 0.775246 ‐0.22299
‐0.0764 0.775552 ‐0.22325
0.031246 0.848316 ‐0.46992
‐0.09836 0.803423 ‐0.24902
BB150
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.0769 0.079272 0.019255
‐0.04905 0.951287 0.950021
‐0.81403 0.928895 ‐0.54857
‐0.04386 0.948107 0.947092
‐0.0769 0.079272 0.019255
0.005633 0.720252 0.72023
0.059571 0.698663 0.696119
0.018202 0.710401 0.710168
0.005633 0.720252 0.72023
0.056511 0.907234 0.905472
0.052276 0.998491 0.997122
0.006668 0.727396 0.727365
‐0.00373 0.958904 0.958897
0.006158 0.723869 0.723843
‐0.00296 0.55032 0.550312
‐0.0122 0.562035 0.561903
‐0.90857 1.003719 ‐0.51641
‐0.39535 0.467822 ‐0.54663
0.02104 0.081935 ‐0.54124
‐0.89817 1.006376 ‐0.54345
‐0.7603 0.866359
‐0.5448
‐0.7992 0.923549 ‐0.54423
‐0.84852 0.967913 ‐0.54562
‐0.00012 0.98458 0.98458
‐0.89635 1.003732 ‐0.54121
‐0.89845 1.006666 ‐0.54357
‐0.76585 0.868861 ‐0.54499
‐0.80165 0.923423 ‐0.54447
‐0.90857 1.003719 ‐0.51641
‐0.39535 0.467822 ‐0.54663
0.02104 0.081935 ‐0.54124
‐0.89312 0.987624 ‐0.51112
‐0.74196 0.78688 ‐0.54831
‐0.68514 0.752394 ‐0.52775
‐0.89939
1.01 ‐0.54911
‐0.77008 0.801718 ‐0.54853
‐0.76964 0.801365 ‐0.54853
‐0.90069 1.015907 ‐0.55949
‐0.74782 0.788192 ‐0.54836
BB150
Voltage, Phase C Imaginary voltage at Minimum Part in 150KV of phase p.u.
bus
voltages
‐0.0769 0.079272 0.079272
‐0.04905 0.951287 0.951287
0.847523 1.009566 0.928895
‐0.04386 0.948107 0.948107
‐0.0769 0.079272 0.079272
0.005633 0.720252 0.720252
0.059571 0.698663 0.698663
0.018202 0.710401 0.710401
0.005633 0.720252 0.720252
0.056511 0.907234 0.907234
0.052276 0.998491 0.998491
0.006668 0.727396 0.727396
‐0.00373 0.958904 0.958904
0.006158 0.723869 0.723869
‐0.00296 0.55032 0.55032
‐0.0122 0.562035 0.562035
0.831803 0.979067 0.082379
0.842589 1.00437 0.467822
0.806996 0.971688 0.079922
0.848364
1.0075 0.998657
0.845904 1.006161 0.866359
0.845081 1.005161 0.923549
0.843904 1.004928 0.967913
‐0.00012 0.98458 0.98458
0.850567 1.008151 0.993965
0.848097 1.007339 0.998892
0.84576 1.006143 0.868861
0.844933 1.005167 0.923423
0.831803 0.979067 0.082379
0.842589 1.00437 0.467822
0.806996 0.971688 0.079922
0.852372 0.993872 0.806643
0.846254 1.008358 0.78688
0.820486 0.975562 0.752394
0.847693
1.01
1.01
0.846033 1.008294 0.775246
0.846034 1.008293 0.775552
0.8454 1.013773 0.848316
0.846176 1.008321 0.788192
‐7
‐8
‐8
‐8
‐9
‐9
‐9
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐15
‐15
‐15
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.123
150
150
150
150
380
380
380
66
66
66
150
150
150
20
20
20
150
150
150
150
150
150
150
150
150
0.368553
0.517155
0.517155
0.517155
0.484644
0.484644
0.484644
0.041075
0.041075
0.041075
0.522811
0.522811
0.522811
0.005511
0.005511
0.005511
0.520027
0.520027
0.520027
0.313304
0.313304
0.313304
0.366257
0.366257
0.366257
3.16134
3.687067
3.687067
3.687067
4.956933
4.956933
4.956933
13.26928
13.26928
13.26928
3.75885
3.75885
3.75885
0.104739
0.104739
0.104739
3.723127
3.723127
3.723127
2.380108
2.380108
2.380108
2.574573
2.574573
2.574573
3.182751
3.723159
3.723159
3.723159
4.980569
4.980569
4.980569
13.26934
13.26934
13.26934
3.795034
3.795034
3.795034
0.104884
0.104884
0.104884
3.759269
3.759269
3.759269
2.40064
2.40064
2.40064
2.600494
2.600494
2.600494
0.367027
0.514769
0.514769
0.514769
0.484509
0.484509
0.484509
0.040975
0.040975
0.040975
0.52047
0.52047
0.52047
0.005495
0.005495
0.005495
0.517663
0.517663
0.517663
0.310717
0.310717
0.310717
0.363166
0.363166
0.363166
3.153444
3.676984
3.676984
3.676984
4.956589
4.956589
4.956589
13.26862
13.26862
13.26862
3.748886
3.748886
3.748886
0.104682
0.104682
0.104682
3.713104
3.713104
3.713104
2.369556
2.369556
2.369556
2.562806
2.562806
2.562806
1.924957
0.980731
0.980731
0.980731
0
0
0
7.19E+08
7.19E+08
7.19E+08
0.98087
0.98087
0.98087
0.018601
0.018601
0.018601
0.981176
0.981176
0.981176
0.997859
0.997859
0.997859
0.745628
0.745628
0.745628
12.30684
5.808361
5.808361
5.808361
433.2
433.2
433.2
3.027266
3.027266
3.027266
5.770256
5.770256
5.770256
0.094955
0.094955
0.094955
5.791814
5.791814
5.791814
6.720019
6.720019
6.720019
4.80822
4.80822
4.80822
0.764796
0.806472
0.810354
0.766021
1.006395
0.929198
0.929581
1.008676
0.997203
0.997202
0.810807
0.815362
0.771987
0.967249
0.970734
0.967427
0.808689
0.812889
0.76905
0.721459
0.683616
0.62448
0.694552
0.696366
0.627611
‐0.05555
0.016589
‐0.10429
‐0.05225
0.052062
0.011849
0.01138
0.051693
0.052304
0.052261
0.017146
‐0.10054
‐0.04979
0.000835
‐0.01796
‐0.00674
0.016875
‐0.10239
‐0.05101
0.015575
‐0.18006
‐0.10196
0.003892
‐0.18297
‐0.09778
0.76681
0.806643
0.817037
0.767801
1.007741
0.929274
0.929651
1.01
0.998574
0.99857
0.810988
0.821538
0.773591
0.967249
0.9709
0.96745
0.808865
0.819312
0.77074
0.721627
0.706932
0.632748
0.694563
0.720002
0.635183
‐0.28702
‐0.42159
‐0.26205
‐0.31094
‐0.45843
‐0.38027
‐0.38086
‐0.45957
‐0.45382
‐0.45382
‐0.42063
‐0.26704
‐0.31475
‐0.45542
‐0.42204
‐0.47638
‐0.42112
‐0.26458
‐0.31286
‐0.46278
‐0.13567
‐0.20625
‐0.42841
‐0.14845
‐0.22773
‐0.69905
‐0.89312
‐0.74196
‐0.68514
‐0.89956
‐0.85899
‐0.85797
‐0.89939
‐0.89964
‐0.89962
‐0.89278
‐0.74575
‐0.69039
‐0.89367
‐0.82942
‐0.83343
‐0.89295
‐0.74388
‐0.68781
‐0.90213
‐0.6653
‐0.57542
‐0.8972
‐0.66247
‐0.56692
0.75568
0.987624
0.78688
0.752394
1.009634
0.939396
0.938708
1.01
1.007622
1.007601
0.986903
0.792116
0.758756
1.003018
0.930618
0.959972
0.987267
0.78953
0.75562
1.013907
0.678989
0.611264
0.994235
0.678902
0.610944
‐0.55287
‐0.51112
‐0.54831
‐0.52775
‐0.54797
‐0.54893
‐0.54872
‐0.54911
‐0.54338
‐0.54338
‐0.51015
‐0.54833
‐0.52689
‐0.54464
‐0.5487
‐0.54179
‐0.51064
‐0.54832
‐0.52733
‐0.5524
‐0.54795
‐0.55139
‐0.51799
‐0.54792
‐0.53449
0.851583
0.852372
0.846254
0.820486
0.847498
0.84714
0.846592
0.847693
0.847332
0.847354
0.852736
0.84629
0.819764
0.853057
0.847376
0.846837
0.852554
0.846273
0.820134
0.843084
0.84536
0.846107
0.847602
0.845439
0.823911
1.015312
0.993872
1.008358
0.975562
1.009218
1.009441
1.008865
1.01
1.006595
1.006613
0.993687
1.008398
0.97449
1.012094
1.009511
1.005318
0.993782
1.008379
0.975037
1.007937
1.007413
1.009913
0.993348
1.007462
0.982092
0.75568
0.806643
0.78688
0.752394
1.007741
0.929274
0.929651
1.01
0.998574
0.99857
0.810988
0.792116
0.758756
0.967249
0.930618
0.959972
0.808865
0.78953
0.75562
0.721627
0.678989
0.611264
0.694563
0.678902
0.610944
Voltage sag table for 150KV bus,Sustainable transition scenario 2020
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐4
‐4
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
‐7
‐8
Voltage sag table assessment
Fault Failure Fault position frequency Clearing Fault Type in %
in 1/a
Time in s
0
0
0
0.1
0
0
0
0.1
1
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
50
0
0.123
0
50
0
0.123
0
50
0
0.123
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
2
0
0
0.1
0
0
0
0.1
3
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in kV
Ohm
150 0.113449
21 0.000816
11 0.002929
21 0.000816
150 0.113449
150 0.497562
380 0.728091
150 0.349117
150 0.497562
380 0.48387
66 0.039465
150 0.50373
20 0.005431
150 0.500689
150 0.287909
150 0.339785
150 0.113286
150 0.113286
150 0.113286
21 0.000815
21 0.000815
21 0.000815
11 0.002929
11 0.002931
11 0.002929
21 0.000815
21 0.000815
21 0.000815
150 0.113286
150 0.113286
150 0.113286
150 0.492741
150 0.492741
150 0.492741
380 0.727041
380 0.727041
380 0.727041
150 0.349119
150 0.349119
150 0.349119
150 0.492741
Positive‐
Sequence Impedanc Positive e, sequence Imaginary impedanc
Part in e (in Ohm
ohms)
1.272913 1.277959
0.063991 0.063996
0.030968 0.031106
0.063991 0.063996
1.272913 1.277959
3.72439 3.757479
26.21927 26.22938
3.173709 3.192853
3.72439 3.757479
4.957654 4.981211
13.2704 13.27046
3.797072 3.830339
0.107938 0.108075
3.760897 3.794079
2.398097 2.415318
2.602685 2.624771
1.27101 1.276049
1.27101 1.276049
1.27101 1.276049
0.063979 0.063984
0.063979 0.063984
0.063979 0.063984
0.030968 0.031106
0.030977 0.031115
0.030968 0.031106
0.063979 0.063984
0.063979 0.063984
0.063979 0.063984
1.27101 1.276049
1.27101 1.276049
1.27101 1.276049
3.702626 3.735269
3.702626 3.735269
3.702626 3.735269
26.20669 26.21678
26.20669 26.21678
26.20669 26.21678
3.172621 3.191772
3.172621 3.191772
3.172621 3.191772
3.702626 3.735269
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
0.002907
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.110058
0.110058
0.110058
0.000595
0.000595
0.000595
0.002907
#INF
0.002907
0.000595
0.000595
0.000595
0.110058
0.110058
0.110058
0.490848
0.490848
0.490848
0.706692
0.706692
0.706692
0.347989
0.347989
0.347989
0.490848
Negative‐
Sequence Zero‐
Impedanc Sequence e, Impedanc
Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
0.030908 0.044116
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
1.256824 0.071742
1.256824 0.071742
1.256824 0.071742
0.060833 0.000044
0.060833 0.000044
0.060833 0.000044
0.030908 0.044116
#INF
#INF
0.030908 0.044116
0.060833 0.000044
0.060833 0.000044
0.060833 0.000044
1.256824 0.071742
1.256824 0.071742
1.256824 0.071742
3.692116 0.980731
3.692116 0.980731
3.692116 0.980731
26.11602 2.62E+10
26.11602 2.62E+10
26.11602 2.62E+10
3.164409 1.924957
3.164409 1.924957
3.164409 1.924957
3.692116 0.980731
Voltage sag table assessme
nt
BB150
BB150
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Part in Real Part Ohm
in p.u.
#INF
0.014562
#INF
0.943608
0.574418 0.997179
#INF
0.943608
#INF
0.014562
#INF
0.717343
#INF
0.694204
#INF
0.707034
#INF
0.717343
#INF
0.904906
#INF
0.998028
#INF
0.724559
#INF
0.958994
#INF
0.720996
#INF
0.54583
#INF
0.55763
1.135542 0.014782
1.135542 0.281757
1.135542 0.012258
2.227006 0.998681
2.227006 0.949996
2.227006 0.999276
0.574418 1.012823
#INF
0.985513
0.574418 0.993736
2.227006 0.998681
2.227006 0.949996
2.227006 0.999276
1.135542 0.014782
1.135542 0.281757
1.135542 0.012258
5.808361 0.80503
5.808361 0.807442
5.808361 0.763811
‐36.0996 1.009777
‐36.0996 0.768813
‐36.0996 0.769069
12.30684 0.847094
12.30684 0.795293
12.30684 0.763218
5.808361 0.80503
Voltage, Phase A Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.07689 0.078253 0.014562
‐0.07122 0.946292 0.943608
‐0.06601 0.999361 ‐0.47446
‐0.07122 0.946292 0.943608
‐0.07689 0.078253 0.014562
‐0.02243 0.717694 0.717343
0.032698 0.694974 0.694204
‐0.01226 0.70714 0.707034
‐0.02243 0.717694 0.717343
0.0233 0.905206 0.904906
0.021648 0.998263 0.998028
‐0.02152 0.724879 0.724559
‐0.03484 0.959627 0.958994
‐0.02197 0.721331 0.720996
‐0.02914 0.546607 0.54583
‐0.03659 0.558829 0.55763
‐0.08029 0.08164 ‐0.45002
‐0.4562 0.536195 0.23903
‐0.07877 0.079718 ‐0.07662
0.020425 0.99889 ‐0.48095
‐0.10749 0.956058 ‐0.43075
‐0.07334 1.001964
‐0.4805
‐0.02693 1.013181 ‐0.49314
‐0.03198 0.986032 0.985513
0.015055 0.99385 ‐0.47849
0.020425 0.99889 ‐0.48095
‐0.10749 0.956058 ‐0.43075
‐0.07334 1.001964
‐0.4805
‐0.08029 0.08164 ‐0.45002
‐0.4562 0.536195 0.23903
‐0.07877 0.079718 ‐0.07662
‐0.01163 0.805114 ‐0.44753
‐0.13458 0.81858
‐0.285
‐0.08137 0.768133 ‐0.33315
0.021243
1.01 ‐0.48649
‐0.10498 0.775947 ‐0.24615
‐0.10543 0.776262 ‐0.24641
0.001808 0.847096 ‐0.49629
‐0.13054 0.805935 ‐0.27282
‐0.08701 0.768162 ‐0.31031
‐0.01163 0.805114 ‐0.44753
BB150
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, 150KV Real Part Part in bus
in p.u.
p.u.
‐0.07689 0.078253 0.014562
‐0.07122 0.946292 0.943608
‐0.7977 0.928136 ‐0.52272
‐0.07122 0.946292 0.943608
‐0.07689 0.078253 0.014562
‐0.02243 0.717694 0.717343
0.032698 0.694974 0.694204
‐0.01226 0.70714 0.707034
‐0.02243 0.717694 0.717343
0.0233 0.905206 0.904906
0.021648 0.998263 0.998028
‐0.02152 0.724879 0.724559
‐0.03484 0.959627 0.958994
‐0.02197 0.721331 0.720996
‐0.02914 0.546607 0.54583
‐0.03659 0.558829 0.55763
‐0.88605 0.993782
‐0.4871
‐0.40247 0.468103 ‐0.52079
0.024481 0.080432 ‐0.50594
‐0.88444 1.006746 ‐0.51774
‐0.75426 0.868595 ‐0.51925
‐0.78756 0.92257 ‐0.51878
‐0.83312 0.968129 ‐0.51968
‐0.03198 0.986032 0.985513
‐0.88194 1.003377 ‐0.51525
‐0.88444 1.006746 ‐0.51774
‐0.75426 0.868595 ‐0.51925
‐0.78756 0.92257 ‐0.51878
‐0.88605 0.993782
‐0.4871
‐0.40247 0.468103 ‐0.52079
0.024481 0.080432 ‐0.50594
‐0.87776 0.985268 ‐0.48428
‐0.72783 0.781639 ‐0.52244
‐0.66969 0.747984 ‐0.50059
‐0.88511
1.01 ‐0.52329
‐0.7572 0.796202 ‐0.52267
‐0.75675 0.795854 ‐0.52266
‐0.88469 1.01439 ‐0.53309
‐0.73179 0.78099 ‐0.52248
‐0.68219 0.749449 ‐0.52582
‐0.87776 0.985268 ‐0.48428
BB150
Voltage, Imaginary Phase C Part in voltage at p.u.
150KV bus
‐0.07689 0.078252852
‐0.07122 0.946291667
0.863712 1.009573573
‐0.07122 0.946291667
‐0.07689 0.078252852
‐0.02243 0.717693556
0.032698 0.694973635
‐0.01226 0.707140304
‐0.02243 0.717693556
0.0233 0.905205921
0.021648 0.998262753
‐0.02152
0.72487854
‐0.03484 0.959626546
‐0.02197 0.721330624
‐0.02914 0.546607449
‐0.03659 0.558828911
0.856084 0.984961496
0.858674 1.004260991
0.824049 0.966972116
0.864012 1.007256803
0.861751 1.006098043
0.860907 1.005131534
0.860046 1.004863464
‐0.03198 0.986031741
0.866882 1.008445245
0.864012 1.007256803
0.861751 1.006098043
0.860907 1.005131534
0.856084 0.984961496
0.858674 1.004260991
0.824049 0.966972116
0.869587 0.995345439
0.862406 1.008308791
0.836382 0.974744171
0.863871 1.010000146
0.862178 1.008231966
0.86218 1.008232121
0.863271 1.014606344
0.86233 1.008262961
0.867985 1.014831281
0.869587 0.995345439
Minimum of phase voltages
0.078253
0.946292
0.928136
0.946292
0.078253
0.717694
0.694974
0.70714
0.717694
0.905206
0.998263
0.724879
0.959627
0.721331
0.546607
0.558829
0.08164
0.468103
0.079718
0.99889
0.868595
0.92257
0.968129
0.986032
0.99385
0.99889
0.868595
0.92257
0.08164
0.468103
0.079718
0.805114
0.781639
0.747984
1.01
0.775947
0.776262
0.847096
0.78099
0.749449
0.805114
‐8
‐8
‐9
‐9
‐9
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐15
‐15
‐15
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.123
150
150
380
380
380
66
66
66
150
150
150
20
20
20
150
150
150
150
150
150
150
150
150
0.492741
0.492741
0.483861
0.483861
0.483861
0.039395
0.039395
0.039395
0.49867
0.49867
0.49867
0.005376
0.005376
0.005376
0.495749
0.495749
0.495749
0.287838
0.287838
0.287838
0.338045
0.338045
0.338045
3.702626
3.702626
4.957605
4.957605
4.957605
13.27029
13.27029
13.27029
3.774185
3.774185
3.774185
0.104832
0.104832
0.104832
3.738574
3.738574
3.738574
2.396629
2.396629
2.396629
2.593542
2.593542
2.593542
3.735269
3.735269
4.981161
4.981161
4.981161
13.27035
13.27035
13.27035
3.806986
3.806986
3.806986
0.10497
0.10497
0.10497
3.7713
3.7713
3.7713
2.413852
2.413852
2.413852
2.61548
2.61548
2.61548
0.490848
0.490848
0.483741
0.483741
0.483741
0.03933
0.03933
0.03933
0.496815
0.496815
0.496815
0.005363
0.005363
0.005363
0.493875
0.493875
0.493875
0.285763
0.285763
0.285763
0.335519
0.335519
0.335519
3.692116
3.692116
4.957243
4.957243
4.957243
13.2696
13.2696
13.2696
3.7638
3.7638
3.7638
0.104773
0.104773
0.104773
3.728127
3.728127
3.728127
2.385626
2.385626
2.385626
2.581259
2.581259
2.581259
0.980731
0.980731
0
0
0
7.19E+08
7.19E+08
7.19E+08
0.98087
0.98087
0.98087
0.018601
0.018601
0.018601
0.981176
0.981176
0.981176
0.997859
0.997859
0.997859
0.745628
0.745628
0.745628
5.808361
5.808361
433.2
433.2
433.2
1.902961
1.902961
1.902961
5.770256
5.770256
5.770256
0.094955
0.094955
0.094955
5.791814
5.791814
5.791814
6.720019
6.720019
6.720019
4.80822
4.80822
4.80822
0.807442 ‐0.13458 0.81858
0.763811 ‐0.08137 0.768133
1.007451 0.021555 1.007682
0.930205 ‐0.02135 0.93045
0.930606 ‐0.02182 0.930862
1.009777 0.021243
1.01
0.998112 0.02168 0.998347
0.998111 0.021636 0.998345
0.809402 ‐0.01117 0.809479
0.812563
‐0.1309 0.823038
0.769852
‐0.079 0.773895
0.967328 ‐0.02973 0.967785
0.970939 ‐0.04929 0.972189
0.967965 ‐0.03752 0.968692
0.807266 ‐0.01139 0.807346
0.810035 ‐0.13271 0.820835
0.766877 ‐0.08018 0.771057
0.719594 ‐0.01138 0.719684
0.678773 ‐0.20952 0.710375
0.620853 ‐0.12994 0.634304
0.692212 ‐0.02173 0.692553
0.690918
‐0.211 0.722418
0.623664 ‐0.12392 0.635856
‐0.285
‐0.33315
‐0.48533
‐0.40713
‐0.40776
‐0.48649
‐0.48065
‐0.48065
‐0.44657
‐0.2901
‐0.33712
‐0.48244
‐0.44808
‐0.50296
‐0.44706
‐0.28759
‐0.33515
‐0.48863
‐0.15671
‐0.22589
‐0.45403
‐0.16888
‐0.24642
‐0.72783
‐0.66969
‐0.88526
‐0.84196
‐0.84094
‐0.88511
‐0.88528
‐0.88525
‐0.87748
‐0.73155
‐0.67492
‐0.87882
‐0.81427
‐0.81767
‐0.87763
‐0.72971
‐0.67235
‐0.88501
‐0.65197
‐0.56027
‐0.88069
‐0.65058
‐0.55278
0.781639
0.747984
1.009565
0.935225
0.934587
1.01
1.007341
1.007321
0.984583
0.786971
0.754433
1.002537
0.929413
0.959978
0.98493
0.784337
0.751255
1.01094
0.670542
0.604095
0.990833
0.67214
0.605216
‐0.52244
‐0.50059
‐0.52213
‐0.52308
‐0.52284
‐0.52329
‐0.51746
‐0.51746
‐0.48332
‐0.52246
‐0.49977
‐0.51891
‐0.52286
‐0.51552
‐0.48381
‐0.52245
‐0.50019
‐0.52548
‐0.52206
‐0.52334
‐0.49083
‐0.52204
‐0.50641
0.862406
0.836382
0.863703
0.863311
0.862762
0.863871
0.863595
0.863617
0.869889
0.862443
0.835636
0.869804
0.863554
0.863405
0.869737
0.862425
0.836018
0.862059
0.861496
0.86258
0.865962
0.861575
0.84004
1.008308791
0.974744171
1.009256376
1.009412373
1.008823135
1.010000146
1.006759296
1.006778168
0.995141713
1.0083508
0.973682483
1.012828415
1.009506765
1.005599884
0.995245982
1.008330223
0.974224888
1.009589395
1.007333588
1.008922606
0.995392997
1.007390787
0.980876803
0.781639
0.747984
1.007682
0.93045
0.930862
1.01
0.998347
0.998345
0.809479
0.786971
0.754433
0.967785
0.929413
0.959978
0.807346
0.784337
0.751255
0.719684
0.670542
0.604095
0.692553
0.67214
0.605216
Voltage sag table for 150KV bus,Sustainable transition scenario 2030
Voltage Sags
Object index
Fault position in %
Fault Type
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐4
‐4
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
‐7
‐8
‐8
‐8
‐9
‐9
‐9
BB150
Voltage sag table assessment
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
3
1
2
3
1
2
2
0
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Failure Fault frequenc Clearing y in 1/a Time in s
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.123
0
0.123
0
0.123
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
0
0.1
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in Ohm
kV
150 0.110428
21 0.000799
11 0.00292
21 0.000799
150 0.110428
150 0.495281
380 0.708701
150 0.347333
150 0.495281
380 0.483795
66 0.03931
150 0.501474
20 0.005417
150 0.49842
150 0.285544
150 0.337145
150 0.110273
150 0.110273
150 0.110273
21 0.000798
21 0.000798
21 0.000798
11 0.00292
11 0.002922
11 0.00292
21 0.000798
21 0.000798
21 0.000798
150 0.110273
150 0.110273
150 0.110273
150 0.490485
150 0.490485
150 0.490485
380 0.707705
380 0.707705
380 0.707705
150 0.347339
150 0.347339
150 0.347339
150 0.490485
150 0.490485
150 0.490485
380 0.483786
380 0.483786
380 0.483786
Positive‐
Sequence Impedanc Positive e, sequence Imaginary impedanc
e (in Part in ohms)
Ohm
1.274324
1.2791
0.063999 0.064004
0.030974 0.031111
0.063999 0.064004
1.274324
1.2791
3.725335 3.758114
26.22833 26.2379
3.17436 3.193306
3.725335 3.758114
4.957698 4.981248
13.27046 13.27052
3.798002 3.830965
0.107944 0.10808
3.761834 3.794709
2.399096 2.416029
2.603852 2.625588
1.272417 1.277186
1.272417 1.277186
1.272417 1.277186
0.063988 0.063993
0.063988 0.063993
0.063988 0.063993
0.030974 0.031111
0.030982 0.031119
0.030974 0.031111
0.063988 0.063993
0.063988 0.063993
0.063988 0.063993
1.272417 1.277186
1.272417 1.277186
1.272417 1.277186
3.703557 3.735895
3.703557 3.735895
3.703557 3.735895
26.21572 26.22527
26.21572 26.22527
26.21572 26.22527
3.17327 3.192223
3.17327 3.192223
3.17327 3.192223
3.703557 3.735895
3.703557 3.735895
3.703557 3.735895
4.957649 4.981198
4.957649 4.981198
4.957649 4.981198
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
0.002898
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.107109
0.107109
0.107109
0.000579
0.000579
0.000579
0.002898
#INF
0.002898
0.000579
0.000579
0.000579
0.107109
0.107109
0.107109
0.48864
0.48864
0.48864
0.687765
0.687765
0.687765
0.346247
0.346247
0.346247
0.48864
0.48864
0.48864
0.483668
0.483668
0.483668
Negative‐
Sequence Zero‐
Impedanc Sequence Impedanc
e, Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
0.030914 0.044116
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
1.25819 0.071742
1.25819 0.071742
1.25819 0.071742
0.060841 0.000044
0.060841 0.000044
0.060841 0.000044
0.030914 0.044116
#INF
#INF
0.030914 0.044116
0.060841 0.000044
0.060841 0.000044
0.060841 0.000044
1.25819 0.071742
1.25819 0.071742
1.25819 0.071742
3.69302 0.980731
3.69302 0.980731
3.69302 0.980731
26.12479 2.62E+10
26.12479 2.62E+10
26.12479 2.62E+10
3.165039 1.924957
3.165039 1.924957
3.165039 1.924957
3.69302 0.980731
3.69302 0.980731
3.69302 0.980731
4.957286
0
4.957286
0
4.957286
0
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Part in Real Part Ohm
in p.u.
#INF
0.014856
#INF
0.943191
0.574418 0.997702
#INF
0.944763
#INF
0.014856
0.717339
#INF
#INF
0.693783
#INF
0.706951
#INF
0.717339
#INF
0.90465
#INF
0.99786
#INF
0.724552
#INF
0.959285
#INF
0.720991
#INF
0.545803
#INF
0.557658
1.135542 0.015156
1.135542 0.284604
1.135542 0.012591
2.227006 0.998451
2.227006 0.949682
2.227006 0.999234
0.574418 1.013057
#INF
0.985756
0.574418 0.99361
2.227006 0.99862
2.227006 0.951393
2.227006 0.999997
1.135542 0.015156
1.135542 0.284604
1.135542 0.012591
5.808361 0.805016
5.808361 0.808429
5.808361 0.764385
‐36.0996 1.009619
‐36.0996 0.769553
‐36.0996 0.769812
12.30684 0.847018
12.30684 0.796035
12.30684 0.76373
5.808361 0.805016
5.808361 0.808429
5.808361 0.764385
433.2 1.00729
433.2 0.930079
433.2 0.930482
BB150
BB150
Voltage, Phase A Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.07678 0.078199 0.014856
‐0.06546 0.945459 0.943191
‐0.0597 0.999487 ‐0.46942
‐0.06451 0.946963 0.944763
‐0.07678 0.078199 0.014856
‐0.01837 0.717574 0.717339
0.036643 0.69475 0.693783
‐0.00777 0.706994 0.706951
‐0.01837 0.717574 0.717339
0.029559 0.905133 0.90465
0.028104 0.998256 0.99786
‐0.0174 0.724761 0.724552
‐0.02882 0.959718 0.959285
‐0.01788 0.721213 0.720991
‐0.02591 0.546418 0.545803
‐0.03366 0.558673 0.557658
‐0.08018 0.081601 ‐0.44411
‐0.45441 0.536176 0.241696
‐0.07873 0.079729 ‐0.07663
0.026908 0.998814 ‐0.47519
‐0.10195 0.955138 ‐0.42491
‐0.06749 1.00151 ‐0.47493
‐0.02045 1.013263 ‐0.48785
‐0.02573 0.986092 0.985756
0.021431 0.993841 ‐0.47279
0.026849 0.998981 ‐0.47528
‐0.10043 0.956679 ‐0.42657
‐0.06615 1.002183 ‐0.47565
‐0.08018 0.081601 ‐0.44411
‐0.45441 0.536176 0.241696
‐0.07873 0.079729 ‐0.07663
‐0.00678 0.805045 ‐0.44183
‐0.12985 0.81879 ‐0.28045
‐0.07695 0.768248 ‐0.32905
0.027756
1.01 ‐0.48077
‐0.1005 0.776087 ‐0.24134
‐0.10095 0.776403 ‐0.24161
0.007327 0.84705 ‐0.49054
‐0.12552 0.80587 ‐0.26801
‐0.08217 0.768137 ‐0.30578
‐0.00678 0.805045 ‐0.44183
‐0.12985 0.81879 ‐0.28045
‐0.07695 0.768248 ‐0.32905
0.028062 1.007681 ‐0.47961
‐0.01507 0.930201 ‐0.40145
‐0.01554 0.930612 ‐0.40208
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.07678 0.078199 0.014856
‐0.06546 0.945459 0.943191
‐0.80063 0.928093 ‐0.52828
‐0.06451 0.946963 0.944763
‐0.07678 0.078199 0.014856
‐0.01837 0.717574 0.717339
0.036643 0.69475 0.693783
‐0.00777 0.706994 0.706951
‐0.01837 0.717574 0.717339
0.029559 0.905133 0.90465
0.028104 0.998256 0.99786
‐0.0174 0.724761 0.724552
‐0.02882 0.959718 0.959285
‐0.01788 0.721213 0.720991
‐0.02591 0.546418 0.545803
‐0.03366 0.558673 0.557658
‐0.88812 0.992974 ‐0.49241
‐0.40089 0.468115
‐0.5263
0.024098 0.08033 ‐0.51038
‐0.88754 1.006745 ‐0.52326
‐0.75641 0.867581 ‐0.52478
‐0.79002 0.921788
‐0.5243
‐0.83623 0.968132 ‐0.52521
‐0.02573 0.986092 0.985756
‐0.88499 1.003361 ‐0.52082
‐0.88751 1.006762 ‐0.52334
‐0.75798 0.869771 ‐0.52482
‐0.79142 0.923359 ‐0.52435
‐0.88812 0.992974 ‐0.49241
‐0.40089 0.468115
‐0.5263
0.024098 0.08033 ‐0.51038
‐0.88044 0.985076 ‐0.48984
‐0.72917 0.781246 ‐0.52798
‐0.67138 0.747677
‐0.5058
‐0.88823
1.01 ‐0.52885
‐0.75829 0.795772 ‐0.52821
‐0.75784 0.795424 ‐0.52821
‐0.88773 1.014245 ‐0.53862
‐0.73343 0.780861 ‐0.52802
‐0.68403 0.749262
‐0.5313
‐0.88044 0.985076 ‐0.48984
‐0.72917 0.781246 ‐0.52798
‐0.67138 0.747677
‐0.5058
‐0.88838 1.00957 ‐0.52769
‐0.84485 0.935374 ‐0.52863
‐0.84383 0.934731
‐0.5284
BB150
Voltage, Phase C Imaginary voltage at Minimum 150KV of phase Part in p.u.
bus
voltages
‐0.07678 0.078199 0.078199
‐0.06546 0.945459 0.945459
0.860324 1.009574 0.928093
‐0.06451 0.946963 0.946963
‐0.07678 0.078199 0.078199
‐0.01837 0.717574 0.717574
0.036643 0.69475 0.69475
‐0.00777 0.706994 0.706994
‐0.01837 0.717574 0.717574
0.029559 0.905133 0.905133
0.028104 0.998256 0.998256
‐0.0174 0.724761 0.724761
‐0.02882 0.959718 0.959718
‐0.01788 0.721213 0.721213
‐0.02591 0.546418 0.546418
‐0.03366 0.558673 0.558673
0.853726 0.985552 0.081601
0.855298 1.004254 0.468115
0.821012 0.96672 0.079729
0.860631 1.007217 0.998814
0.858353 1.006061 0.867581
0.857505 1.00509 0.921788
0.856678 1.004859 0.968132
‐0.02573 0.986092 0.986092
0.863557 1.008457 0.993841
0.860665 1.00729 0.998981
0.85841 1.006134 0.869771
0.857578 1.005177 0.923359
0.853726 0.985552 0.081601
0.855298 1.004254 0.468115
0.821012 0.96672 0.079729
0.866639 0.995494 0.805045
0.85902 1.008306 0.781246
0.833197 0.974706 0.747677
0.860477 1.009999 1.009999
0.858789 1.008228 0.776087
0.858791 1.008228 0.776403
0.859962 1.014714 0.84705
0.858942 1.00826 0.780861
0.864607 1.014805 0.749262
0.866639 0.995494 0.805045
0.85902 1.008306 0.781246
0.833197 0.974706 0.747677
0.860313 1.009252 1.007681
0.859918 1.009412 0.930201
0.859369 1.008822 0.930612
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐15
‐15
‐15
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.123
0.123
66
66
66
150
150
150
20
20
20
150
150
150
150
150
150
150
150
150
0.039241
0.039241
0.039241
0.49644
0.49644
0.49644
0.005363
0.005363
0.005363
0.493506
0.493506
0.493506
0.28548
0.28548
0.28548
0.335423
0.335423
0.335423
13.27035
13.27035
13.27035
3.775102
3.775102
3.775102
0.104838
0.104838
0.104838
3.739498
3.739498
3.739498
2.397625
2.397625
2.397625
2.5947
2.5947
2.5947
13.2704
13.2704
13.2704
3.807604
3.807604
3.807604
0.104975
0.104975
0.104975
3.771922
3.771922
3.771922
2.414561
2.414561
2.414561
2.616291
2.616291
2.616291
0.039179
0.039179
0.039179
0.494632
0.494632
0.494632
0.005351
0.005351
0.005351
0.49168
0.49168
0.49168
0.283456
0.283456
0.283456
0.332953
0.332953
0.332953
13.26966
13.26966
13.26966
3.764689
3.764689
3.764689
0.104779
0.104779
0.104779
3.729023
3.729023
3.729023
2.386592
2.386592
2.386592
2.582383
2.582383
2.582383
7.19E+08
7.19E+08
7.19E+08
0.98087
0.98087
0.98087
0.018601
0.018601
0.018601
0.981176
0.981176
0.981176
0.997859
0.997859
0.997859
0.745628
0.745628
0.745628
1.902907
1.902907
1.902907
5.770256
5.770256
5.770256
0.094955
0.094955
0.094955
5.791814
5.791814
5.791814
6.720019
6.720019
6.720019
4.80822
4.80822
4.80822
1.009619 0.027756
1.01
0.997944 0.028137 0.998341
0.997943 0.028093 0.998338
0.809386 ‐0.00629 0.80941
0.813525 ‐0.12612 0.823244
0.770409 ‐0.07453 0.774006
0.967562
‐0.0236 0.96785
0.971366 ‐0.04318 0.972325
0.96831 ‐0.03139 0.968819
0.807251 ‐0.00653 0.807277
0.811009 ‐0.12796 0.821042
0.767443 ‐0.07573 0.771171
0.719562 ‐0.00685 0.719595
0.68008 ‐0.20544 0.710433
0.621658 ‐0.12621 0.63434
0.692229 ‐0.01769 0.692455
0.692397 ‐0.20712 0.722711
0.624494
‐0.1205 0.636014
‐0.48077
‐0.47493
‐0.47493
‐0.44087
‐0.28552
‐0.33298
‐0.4768
‐0.44295
‐0.49783
‐0.44135
‐0.28302
‐0.33103
‐0.48286
‐0.15249
‐0.22223
‐0.44829
‐0.16482
‐0.24309
‐0.88823
‐0.88837
‐0.88835
‐0.88015
‐0.73293
‐0.67664
‐0.88186
‐0.81699
‐0.82084
‐0.8803
‐0.73108
‐0.67405
‐0.88789
‐0.65267
‐0.56139
‐0.88331
‐0.65107
‐0.5538
1.01
1.007348
1.007328
0.984394
0.786584
0.754134
1.002505
0.929344
0.960006
0.98474
0.783947
0.750951
1.010697
0.670246
0.603779
0.990556
0.671612
0.604805
‐0.52885
‐0.52302
‐0.52302
‐0.48888
‐0.528
‐0.50498
‐0.52454
‐0.52841
‐0.52105
‐0.48937
‐0.52799
‐0.5054
‐0.53096
‐0.5276
‐0.52871
‐0.49634
‐0.52757
‐0.51158
0.860477
0.86023
0.860251
0.866945
0.859056
0.832457
0.866494
0.860165
0.86012
0.866791
0.859039
0.832836
0.858897
0.858112
0.85924
0.863057
0.858191
0.836833
1.009999
1.006749
1.006767
0.995289
1.008347
0.973645
1.012891
1.009507
1.005634
0.995393
1.008328
0.974187
1.009766
1.00733
1.008872
0.995602
1.007386
0.980817
1.009999
0.998341
0.998338
0.80941
0.786584
0.754134
0.96785
0.929344
0.960006
0.807277
0.783947
0.750951
0.719595
0.670246
0.603779
0.692455
0.671612
0.604805
Voltage sag table for 150KV bus,New strong holds scenario 2010
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐17
‐3
‐4
‐4
‐4
‐5
‐5
‐5
‐6
‐6
‐6
‐17
‐18
‐15
‐18
‐15
‐3
‐17
BB150
Voltage sag table assessment
Fault Failure Fault position frequency Clearing Time in s
in 1/a
Fault Type in %
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
1
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
50
0
0.123
0
50
0
0.123
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
2
0
0
0.1
1
0
0
0.1
0
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
2
0
0
0.1
1
0
0
0.1
1
0
0
0.1
2
0
0
0.1
2
0
0
0.1
3
0
0
0.1
3
0
0
0.1
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in Ohm
kV
150 0.772202
150 0.777403
150 0.772202
11 0.006655
150 0.777403
380 0.395374
66 0.063208
150 0.773471
380 0.395374
21 0.000558
21 0.000558
20 0.008074
20 0.006364
150 0.797798
150 0.775445
150 0.764744
150 0.764744
150 0.764744
150 0.762169
150 0.762169
150 0.762169
150 0.764744
150 0.764744
150 0.764744
11 0.006655
11 0.081045
11 0.006711
150 0.762169
150 0.762169
150 0.762169
380 0.39494
380 0.39494
380 0.39494
66 0.062692
66 0.062692
66 0.062692
11 0.081045
11 0.128272
11 0.129422
11 0.128272
11 0.129422
11 0.006655
11 0.081045
Positive‐
Sequence Impedanc Positive sequence e, Imaginary impedanc
e (in Part in ohms)
Ohm
7.584528 7.623737
8.415639 8.451469
7.584528 7.623737
0.066307 0.06664
8.415639 8.451469
3.332782 3.356152
12.43853 12.43869
8.433794 8.469188
3.332782 3.356152
0.051637 0.05164
0.051637 0.05164
0.135718 0.135958
0.131973 0.132126
8.07587 8.115181
8.424771 8.460383
7.517484 7.556282
7.517484 7.556282
7.517484 7.556282
8.304734 8.339635
8.304734 8.339635
8.304734 8.339635
7.517484 7.556282
7.517484 7.556282
7.517484 7.556282
0.066307 0.06664
0.146262 0.167215
0.066651 0.066988
8.304734 8.339635
8.304734 8.339635
8.304734 8.339635
3.331505 3.354833
3.331505 3.354833
3.331505 3.354833
12.43388 12.43404
12.43388 12.43404
12.43388 12.43404
0.146262 0.167215
0.149326 0.196855
0.147026 0.195874
0.149326 0.196855
0.147026 0.195874
0.066307 0.06664
0.146262 0.167215
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
#INF
0.006586
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.759607
0.759607
0.759607
0.758454
0.758454
0.758454
0.759607
0.759607
0.759607
0.006586
0.080977
#INF
0.758454
0.758454
0.758454
0.389249
0.389249
0.389249
0.062137
0.062137
0.062137
0.080977
0.128205
0.129355
0.128205
0.129355
0.006586
0.080977
Negative‐
Sequence Zero‐
Impedanc Sequence e, Impedanc
Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
#INF
#INF
0.066298 0.000001
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
7.515917 3.856543
7.515917 3.856543
7.515917 3.856543
8.303414 1.992841
8.303414 1.992841
8.303414 1.992841
7.515917 3.856543
7.515917 3.856543
7.515917 3.856543
0.066298 0.000001
0.146254 0.301664
#INF
#INF
8.303414 1.992841
8.303414 1.992841
8.303414 1.992841
3.312176 0.34624
3.312176 0.34624
3.312176 0.34624
12.43326 7.19E+08
12.43326 7.19E+08
12.43326 7.19E+08
0.146254 0.301664
0.149317 0.496089
0.147018 0.496089
0.149317 0.496089
0.147018 0.496089
0.066298 0.000001
0.146254 0.301664
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Real Part Part in in p.u.
Ohm
#INF
0.001783
#INF
0.268868
#INF
0.001783
0.612386 0.992604
#INF
0.268868
#INF
0.401617
#INF
1.121843
#INF
0.276288
#INF
0.401617
#INF
1.185764
#INF
1.184602
#INF
0.837862
#INF
0.857332
#INF
0.152041
#INF
0.272571
22.18157 0.001438
22.18157 0.305952
22.18157 0.00557
10.98217 0.159423
10.98217 0.520665
10.98217 0.223353
22.18157 0.001438
22.18157 0.305952
22.18157 0.00557
0.612386 1.144342
0.939158 1.119695
#INF
0.965217
10.98217 0.159423
10.98217 0.520665
10.98217 0.223353
3.614577 0.690832
3.614577 0.581377
3.614577 0.532663
‐2.45861 1.210824
‐2.45861 1.14092
‐2.45861 1.14105
0.939158 1.152381
0.951705 1.157923
0.951705 1.158133
0.951705 1.174891
0.951705 1.174819
0.612386 1.09678
0.939158 1.151303
BB150
BB150
Voltage, Phase A Imaginary voltage at Voltage, Real Part 150KV Part in in p.u.
bus
p.u.
‐0.01576 0.01586 0.001783
‐0.04632 0.272829 0.268868
‐0.01576 0.01586 0.001783
‐0.42239 1.078737 ‐0.38908
‐0.04632 0.272829 0.268868
0.048418 0.404525 0.401617
0.006256 1.12186 1.121843
‐0.04684 0.28023 0.276288
0.048418 0.404525 0.401617
‐0.0404 1.186452 1.185764
‐0.03961 1.185264 1.184602
‐0.2917 0.887188 0.837862
‐0.29331 0.906117 0.857332
‐0.03364 0.155719 0.152041
‐0.04657 0.276521 0.272571
‐0.00954 0.009649 ‐1.08845
‐0.53029 0.612224 0.297787
‐0.01335 0.014461
‐0.0109
‐0.03817 0.163928 ‐0.81347
‐0.43937 0.681274 0.083007
0.042118 0.227289 ‐0.22032
‐0.00954 0.009649 ‐1.08845
‐0.53029 0.612224 0.297787
‐0.01335 0.014461
‐0.0109
‐0.31154 1.185992 ‐0.56172
‐0.18937 1.135595
‐0.5162
‐0.29534 1.009392 0.965217
‐0.03817 0.163928 ‐0.81347
‐0.43937 0.681274 0.083007
0.042118 0.227289 ‐0.22032
0.034575 0.691697
‐0.3469
‐0.3024 0.655319 0.021627
‐0.19681 0.567858 ‐0.03864
‐0.00223 1.210826 ‐0.60734
‐0.03384 1.141422 ‐0.53742
‐0.03412 1.14156 ‐0.53755
‐0.16339 1.163907 ‐0.56452
‐0.16939 1.170247 ‐0.55444
‐0.16627 1.170008 ‐0.55465
‐0.14393 1.183674 ‐0.58726
‐0.14101 1.183251 ‐0.58674
‐0.03251 1.097262 ‐0.55028
‐0.02872 1.151661 ‐0.57756
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Real Part 150KV Part in in p.u.
bus
p.u.
‐0.01576 0.01586 0.001783
‐0.04632 0.272829 0.268868
‐0.01576 0.01586 0.001783
‐0.62704 0.737939 ‐0.60353
‐0.04632 0.272829 0.268868
0.048418 0.404525 0.401617
0.006256 1.12186 1.121843
‐0.04684 0.28023 0.276288
0.048418 0.404525 0.401617
‐0.0404 1.186452 1.185764
‐0.03961 1.185264 1.184602
‐0.2917 0.887188 0.837862
‐0.29331 0.906117 0.857332
‐0.03364 0.155719 0.152041
‐0.04657 0.276521 0.272571
‐1.01933 1.491225 ‐1.08485
‐0.51908 0.598434 ‐0.60374
0.008953 0.014102
‐0.7635
‐1.0146 1.300443 ‐0.80991
‐0.61008
0.6157 ‐0.60367
‐0.12094 0.251336 ‐0.67643
‐1.01933 1.491225 ‐1.08485
‐0.51908 0.598434 ‐0.60374
0.008953 0.014102
‐0.7635
‐0.7087 0.904312 ‐0.58263
‐0.86022 1.003217
‐0.6035
‐0.29534 1.009392 0.965217
‐1.0146 1.300443 ‐0.80991
‐0.61008
0.6157 ‐0.60367
‐0.12094 0.251336 ‐0.67643
‐1.06457 1.119669 ‐0.34393
‐0.74489 0.745202
‐0.603
‐0.62222 0.623416 ‐0.49403
‐1.04749 1.210826 ‐0.60348
‐1.01584 1.149239
‐0.6035
‐1.01556 1.149052
‐0.6035
‐0.87222 1.038962 ‐0.58787
‐0.88022 1.040284 ‐0.60348
‐0.88334 1.043037 ‐0.60348
‐0.89545 1.070839 ‐0.58763
‐0.89835 1.072982 ‐0.58808
‐1.03232 1.169824 ‐0.54651
‐1.03423 1.184567 ‐0.57374
BB150
Voltage, Phase C Imaginary voltage at Minimum Part in of phase 150KV p.u.
voltages
bus
‐0.01576 0.01586 0.01586
‐0.04632 0.272829 0.272829
‐0.01576 0.01586 0.01586
1.049423 1.210593 0.737939
‐0.04632 0.272829 0.272829
0.048418 0.404525 0.404525
0.006256 1.12186 1.12186
‐0.04684 0.28023 0.28023
0.048418 0.404525 0.404525
‐0.0404 1.186452 1.186452
‐0.03961 1.185264 1.185264
‐0.2917 0.887188 0.887188
‐0.29331 0.906117 0.906117
‐0.03364 0.155719 0.155719
‐0.04657 0.276521 0.276521
1.077751 1.529201 0.009649
1.049376 1.210657 0.598434
1.354988 1.555288 0.014102
1.082444 1.351904 0.163928
1.049445 1.210684
0.6157
1.224488 1.398904 0.227289
1.077751 1.529201 0.009649
1.049376 1.210657 0.598434
1.354988 1.555288 0.014102
1.020243 1.174883 0.904312
1.049589 1.210722 1.003217
‐0.29534 1.009392 1.009392
1.082444 1.351904 0.163928
1.049445 1.210684
0.6157
1.224488 1.398904 0.227289
1.029999 1.085902 0.691697
1.047284 1.208477 0.655319
0.819024 0.956484 0.567858
1.04972 1.210826 1.210826
1.049683 1.210804 1.141422
1.049683 1.210804 1.14156
1.035612 1.190831 1.038962
1.049608 1.210729 1.040284
1.04961 1.210731 1.043037
1.039376 1.193992 1.070839
1.039356 1.194196 1.072982
1.064827 1.196881 1.097262
1.062942 1.207902 1.151661
‐18
‐15
‐16
‐19
‐16
‐19
‐20
‐16
‐19
‐20
‐20
‐7
‐7
‐7
‐8
‐8
‐8
‐9
‐9
‐9
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐21
‐21
‐21
‐22
‐22
‐22
‐23
‐23
‐23
‐13
‐13
‐13
‐14
‐14
‐14
3
3
1
1
2
2
1
3
3
2
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
11
11
11
11
11
11
11
11
11
11
11
150
150
150
380
380
380
21
21
21
21
21
21
20
20
20
20
20
20
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
150
150
150
150
150
150
0.128272
0.129422
0.700983
0.771992
0.700983
0.771992
0.0165
0.700983
0.771992
0.0165
0.0165
0.757974
0.757974
0.757974
0.394939
0.394939
0.394939
0.000558
0.000558
0.000558
0.000558
0.000558
0.000558
0.0079
0.0079
0.0079
0.006105
0.006105
0.006105
0.000011
0.000011
0.000011
0
0
0
0.00006
0.00006
0.00006
0.786761
0.786761
0.786761
0.76008
0.76008
0.76008
0.149326
0.147026
0.638014
0.505981
0.638014
0.505981
0.171679
0.638014
0.505981
0.171679
0.171679
8.321107
8.321107
8.321107
3.331505
3.331505
3.331505
0.051635
0.051635
0.051635
0.051635
0.051635
0.051635
0.130842
0.130842
0.130842
0.12683
0.12683
0.12683
0.000193
0.000193
0.000193
0
0
0
0.002392
0.002392
0.002392
7.988247
7.988247
7.988247
8.312979
8.312979
8.312979
0.196855
0.195874
0.94786
0.923032
0.94786
0.923032
0.17247
0.94786
0.923032
0.17247
0.17247
8.355558
8.355558
8.355558
3.354833
3.354833
3.354833
0.051638
0.051638
0.051638
0.051638
0.051638
0.051638
0.13108
0.13108
0.13108
0.126977
0.126977
0.126977
0.000193
0.000193
0.000193
0
0
0
0.002393
0.002393
0.002393
8.026897
8.026897
8.026897
8.347655
8.347655
8.347655
0.128205
0.129355
0.700914
0.771923
0.700914
0.771923
0.021998
0.700914
0.771923
0.021998
0.021998
0.754307
0.754307
0.754307
0.389249
0.389249
0.389249
0.000422
0.000422
0.000422
0.000422
0.000422
0.000422
0.007878
0.007878
0.007878
0.006086
0.006086
0.006086
0.000011
0.000011
0.000011
0
0
0
0.00006
0.00006
0.00006
0.782362
0.782362
0.782362
0.756389
0.756389
0.756389
0.149317
0.147018
0.638006
0.505972
0.638006
0.505972
0.202434
0.638006
0.505972
0.202434
0.202434
8.319796
8.319796
8.319796
3.312176
3.312176
3.312176
0.049581
0.049581
0.049581
0.049581
0.049581
0.049581
0.130836
0.130836
0.130836
0.126824
0.126824
0.126824
0.000193
0.000193
0.000193
0
0
0
0.002392
0.002392
0.002392
7.986804
7.986804
7.986804
8.311664
8.311664
8.311664
0.496089
0.496089
2.786074
3.066289
2.786074
3.066289
4.909641
2.786074
3.066289
4.909641
4.909641
1.921077
1.921077
1.921077
0.346239
0.346239
0.346239
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.034136
0.034136
0.034136
0.000305
0.000305
0.000305
0
0
0
0
0
0
0.000028
0.000028
0.000028
2.926808
2.926808
2.926808
1.957064
1.957064
1.957064
0.951705
0.951705
2.899675
2.369886
2.899675
2.369886
3.926728
2.899675
2.369886
3.926728
3.926728
10.51324
10.51324
10.51324
3.614577
3.614577
3.614577
1.670263
1.670263
1.670263
1.670263
1.670263
1.670263
0.146783
0.146783
0.146783
0.135006
0.135006
0.135006
0.000232
0.000232
0.000232
0
0
0
0.001212
0.001212
0.001212
16.58773
16.58773
16.58773
10.74805
10.74805
10.74805
1.162221
1.162756
1.197625
1.203692
1.19694
1.202449
1.219883
1.198737
1.200008
1.222552
1.211378
0.166815
0.526483
0.229837
0.690832
0.581377
0.532663
1.205262
1.188321
1.208125
1.205254
1.186601
1.206964
0.697085
0.924022
0.710016
0.743737
0.940292
0.698294
1.210918
1.2114
1.210516
1.210824
1.210824
1.210824
1.210868
1.211418
1.21061
0.073538
0.427079
0.126081
0.163087
0.523567
0.226581
‐0.03318
‐0.03203
‐0.04202
‐0.04442
‐0.03992
‐0.04214
‐0.0227
‐0.01204
‐0.01402
‐0.01865
‐0.00364
‐0.03889
‐0.43658
0.042812
0.034575
‐0.3024
‐0.19681
‐0.00258
‐0.0585
‐0.04002
‐0.00241
‐0.05779
‐0.03992
‐0.37269
‐0.38444
‐0.20966
‐0.42175
‐0.38124
‐0.24783
‐0.00329
‐0.00318
‐0.00315
‐0.00223
‐0.00223
‐0.00223
‐0.00322
‐0.00333
‐0.00313
‐0.02486
‐0.47973
0.022815
‐0.03853
‐0.43797
0.042479
1.162695
1.163197
1.198362
1.204511
1.197605
1.203187
1.220094
1.198797
1.20009
1.222694
1.211383
0.171288
0.683949
0.23379
0.691697
0.655319
0.567858
1.205265
1.18976
1.208788
1.205256
1.188007
1.207624
0.790459
1.000806
0.740325
0.854995
1.014639
0.740968
1.210922
1.211404
1.21052
1.210826
1.210826
1.210826
1.210872
1.211423
1.210614
0.077626
0.642288
0.128129
0.167575
0.682599
0.230529
‐0.58303
‐0.58329
‐0.59415
‐0.60022
‐0.59826
‐0.60417
‐0.61436
‐0.6013
‐0.60193
‐0.61765
‐0.60752
‐0.79759
0.077187
‐0.22542
‐0.3469
0.021627
‐0.03864
‐0.60456
‐0.58622
‐0.60631
‐0.60455
‐0.58448
‐0.6051
‐0.78287
‐0.32049
‐0.81596
‐0.72784
‐0.33677
‐0.85953
‐0.60727
‐0.60792
‐0.60823
‐0.60734
‐0.60734
‐0.60734
‐0.6073
‐0.60794
‐0.60818
‐0.97031
0.176622
‐0.13134
‐0.8056
0.080105
‐0.22287
‐1.03199
‐1.03257
‐1.00767
‐1.00528
‐1.0078
‐1.00626
‐1.0264
‐1.04258
‐1.04159
‐1.03048
‐1.04675
‐1.01385
‐0.61287
‐0.1259
‐1.06457
‐0.74489
‐0.62222
‐1.04721
‐0.99056
‐1.00829
‐1.04729
‐0.99124
‐1.00834
‐1.13572
‐0.66509
‐0.50324
‐1.182
‐0.66829
‐0.5565
‐1.04791
‐1.04654
‐1.04746
‐1.04749
‐1.04749
‐1.04749
‐1.04776
‐1.04639
‐1.0473
‐1.01903
‐0.56969
‐0.05812
‐1.01423
‐0.61147
‐0.12341
1.185295
1.185931
1.169788
1.170829
1.171995
1.173703
1.196221
1.203546
1.203007
1.201402
1.210276
1.289979
0.617709
0.258194
1.119669
0.745202
0.623416
1.209189
1.151028
1.176546
1.209259
1.150725
1.175969
1.3794
0.738279
0.958669
1.388117
0.748351
1.02395
1.211148
1.210294
1.211245
1.210826
1.210826
1.210826
1.211039
1.210176
1.211084
1.407095
0.596439
0.143623
1.295243
0.616699
0.254757
‐0.5792
‐0.57946
‐0.60348
‐0.60348
‐0.59868
‐0.59828
‐0.60552
‐0.59744
‐0.59808
‐0.60491
‐0.60386
‐0.79404
‐0.60367
‐0.66942
‐0.34393
‐0.603
‐0.49403
‐0.6007
‐0.6021
‐0.60182
‐0.6007
‐0.60212
‐0.60186
‐0.77909
‐0.60353
‐0.76096
‐0.72406
‐0.60352
‐0.77855
‐0.6034
‐0.60348
‐0.6038
‐0.60348
‐0.60348
‐0.60348
‐0.60344
‐0.60348
‐0.60369
‐0.96673
‐0.6037
‐0.73287
‐0.80204
‐0.60367
‐0.67298
1.065175
1.064597
1.049693
1.049693
1.047718
1.048396
1.049099
1.05462
1.055608
1.049125
1.050391
1.083193
1.049447
1.214955
1.029999
1.047284
0.819024
1.049791
1.049066
1.048315
1.049706
1.049024
1.048265
0.961329
1.04953
1.149226
0.915048
1.049533
1.089807
1.049301
1.04972
1.049442
1.04972
1.04972
1.04972
1.049448
1.049719
1.049546
1.078036
1.049415
1.30586
1.082815
1.049446
1.219794
1.212463
1.212083
1.210803
1.210801
1.206704
1.207094
1.211307
1.212089
1.213261
1.211023
1.211598
1.343057
1.210684
1.387167
1.085902
1.208477
0.956484
1.209505
1.209573
1.208781
1.20943
1.209547
1.208759
1.23739
1.210685
1.378325
1.166866
1.210685
1.339334
1.210424
1.210826
1.210746
1.210826
1.210826
1.210826
1.210569
1.210825
1.210781
1.448006
1.210672
1.497453
1.347501
1.210684
1.393127
1.162695
1.163197
1.169788
1.170829
1.171995
1.173703
1.196221
1.198797
1.20009
1.201402
1.210276
0.171288
0.617709
0.23379
0.691697
0.655319
0.567858
1.205265
1.151028
1.176546
1.205256
1.150725
1.175969
0.790459
0.738279
0.740325
0.854995
0.748351
0.740968
1.210424
1.210294
1.21052
1.210826
1.210826
1.210826
1.210569
1.210176
1.210614
0.077626
0.596439
0.128129
0.167575
0.616699
0.230529
Voltage sag table for 150KV bus,New strong holds scenario 2020
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐16
‐3
‐4
‐4
‐4
‐5
‐5
‐5
‐6
‐6
‐6
‐16
‐17
‐14
‐17
Voltage sag table assessme
nt
Fault Type
0
0
0
1
0
0
0
0
0
0
0
0
0
0
3
1
2
3
1
2
3
1
2
2
1
0
3
1
2
3
1
2
3
1
2
2
1
1
2
Voltag
e sag table assess
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Fault positi Failure Fault on in frequency Clearing Time in s
%
in 1/a
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
50
0
0.123
50
0
0.123
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
0
0
0.1
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in Ohm
kV
150 0.548004
150 0.607344
150 0.548004
11 0.005017
150 0.607344
380 0.346448
66 0.046577
150 0.605276
380 0.346447
21 0.000501
21 0.000501
20 0.007083
150 0.601534
150 0.606315
150 0.544537
150 0.544537
150 0.544537
150 0.596523
150 0.596523
150 0.596523
150 0.544537
150 0.544537
150 0.544537
11 0.005017
11 0.079432
11 0.00505
150 0.596523
150 0.596523
150 0.596523
380 0.346115
380 0.346115
380 0.346115
66 0.046386
66 0.046386
66 0.046386
11 0.079432
11 0.126661
11 0.128491
11 0.126661
Voltage sag table assessme
nt
Positive‐
Sequence Impedanc Positive e, sequence Imaginary impedanc
Part in e (in Ohm
ohms)
7.712151 7.731596
8.502682 8.524346
7.712151 7.731596
0.067333 0.06752
8.502682 8.524346
3.346294 3.36418
12.44789 12.44797
8.51957 8.541044
3.346294 3.36418
0.051653 0.051655
0.051653 0.051655
0.13627 0.136454
8.182324 8.204405
8.511184 8.532753
7.642867 7.662241
7.642867 7.662241
7.642867 7.662241
8.389326 8.410507
8.389326 8.410507
8.389326 8.410507
7.642867 7.662241
7.642867 7.662241
7.642867 7.662241
0.067333 0.06752
0.147267 0.167323
0.067692 0.06788
8.389326 8.410507
8.389326 8.410507
8.389326 8.410507
3.344943 3.362802
3.344943 3.362802
3.344943 3.362802
12.44307 12.44315
12.44307 12.44315
12.44307 12.44315
0.147267 0.167323
0.150317 0.196566
0.150269 0.197714
0.150317 0.196566
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
#INF
0.004947
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.539389
0.539389
0.539389
0.592814
0.592814
0.592814
0.539389
0.539389
0.539389
0.004947
0.079364
#INF
0.592814
0.592814
0.592814
0.340973
0.340973
0.340973
0.045804
0.045804
0.045804
0.079364
0.126593
0.128422
0.126593
Negative‐
Sequence Zero‐
Impedanc Sequence Impedanc
e, Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
#INF
#INF
0.06732 0.000001
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
7.640867 3.856543
7.640867 3.856543
7.640867 3.856543
8.387688 1.992841
8.387688 1.992841
8.387688 1.992841
7.640867 3.856543
7.640867 3.856543
7.640867 3.856543
0.06732 0.000001
0.147255 0.301664
#INF
#INF
8.387688 1.992841
8.387688 1.992841
8.387688 1.992841
3.325356 0.34624
3.325356 0.34624
3.325356 0.34624
12.44244 7.19E+08
12.44244 7.19E+08
12.44244 7.19E+08
0.147255 0.301664
0.150304 0.496089
0.150257 0.496089
0.150304 0.496089
Voltage sag table assessme
nt
BB150
BB150
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Part in Real Part Ohm
in p.u.
#INF
0.00315
#INF
0.27078
#INF
0.00315
0.612386 1.027324
#INF
0.27078
#INF
0.363545
#INF
1.095114
#INF
0.278262
#INF
0.363545
#INF
1.161223
#INF
1.161223
#INF
0.892522
#INF
0.153286
#INF
0.274514
22.18157 0.002441
22.18157 0.363587
22.18157 0.006637
10.98217 0.165045
10.98217 0.578492
10.98217 0.217865
22.18157 0.002441
22.18157 0.363587
22.18157 0.006637
0.612386 1.165256
0.939158 1.123297
#INF
0.983707
10.98217 0.165045
10.98217 0.578492
10.98217 0.217865
3.614577 0.656591
3.614577 0.555977
3.614577 0.502218
‐1.33537 1.184841
‐1.33537 1.118077
‐1.33537 1.118235
0.939158 1.152026
0.951705 1.158496
0.951705 1.157886
0.951705 1.171587
Voltage, Phase A Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.0151 0.015424 0.00315
‐0.04527 0.274538 0.27078
‐0.0151 0.015424 0.00315
‐0.30537 1.07175 ‐0.30927
‐0.04527 0.274538 0.27078
0.172866 0.402551 0.363545
0.144883 1.104656 1.095114
‐0.0457 0.28199 0.278262
0.172866 0.402551 0.363545
0.105148 1.165974 1.161223
0.105148 1.165974 1.161223
‐0.2212 0.919524 0.892522
‐0.03337 0.156877 0.153286
‐0.04548 0.278256 0.274514
‐0.00915 0.009466
‐0.9369
‐0.48165 0.603475 0.354666
‐0.01251 0.014161 ‐0.01133
‐0.04809 0.171908 ‐0.66949
‐0.39014 0.697757 0.139697
0.034974 0.220654 ‐0.22781
‐0.00915 0.009466
‐0.9369
‐0.48165 0.603475 0.354666
‐0.01251 0.014161 ‐0.01133
‐0.17464 1.17827 ‐0.47268
‐0.0552 1.124653 ‐0.40525
‐0.18547 1.001038 0.983707
‐0.04809 0.171908 ‐0.66949
‐0.39014 0.697757 0.139697
0.034974 0.220654 ‐0.22781
0.164624 0.676914 ‐0.20227
‐0.17706 0.583491 0.161488
‐0.07203 0.507358 0.095821
0.14507 1.193689 ‐0.46679
0.1067 1.123157 ‐0.40001
0.106433 1.123289 ‐0.40017
‐0.0246 1.152289 ‐0.45177
‐0.02961 1.158874 ‐0.44046
‐0.02805 1.158226 ‐0.43985
‐0.00173 1.171588 ‐0.47094
BB150
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.0151 0.015424 0.00315
‐0.04527 0.274538 0.27078
‐0.0151 0.015424 0.00315
‐0.64789 0.717919 ‐0.71805
‐0.04527 0.274538 0.27078
0.172866 0.402551 0.363545
0.144883 1.104656 1.095114
‐0.0457 0.28199 0.278262
0.172866 0.402551 0.363545
0.105148 1.165974 1.161223
0.105148 1.165974 1.161223
‐0.2212 0.919524 0.892522
‐0.03337 0.156877 0.153286
‐0.04548 0.278256 0.274514
‐1.1158 1.456983 ‐1.18842
‐0.47154 0.590028 ‐0.71825
0.007594 0.013637 ‐0.90464
‐1.08505 1.274966 ‐0.92103
‐0.56312 0.580184 ‐0.71819
‐0.13137 0.262976 ‐0.80558
‐1.1158 1.456983 ‐1.18842
‐0.47154 0.590028 ‐0.71825
0.007594 0.013637 ‐0.90464
‐0.75312 0.889168 ‐0.69257
‐0.89823 0.985418 ‐0.71805
‐0.18547 1.001038 0.983707
‐1.08505 1.274966 ‐0.92103
‐0.56312 0.580184 ‐0.71819
‐0.13137 0.262976 ‐0.80558
‐1.10705 1.125378 ‐0.45432
‐0.77405 0.790712 ‐0.71747
‐0.6519 0.658907 ‐0.59804
‐1.09864 1.19369 ‐0.71806
‐1.06023 1.133177 ‐0.71807
‐1.05996 1.132983 ‐0.71807
‐0.91754 1.022723 ‐0.70026
‐0.92385 1.023479 ‐0.71803
‐0.92541 1.024624 ‐0.71803
‐0.94418 1.055108 ‐0.70065
BB150
Voltage, Phase C Imaginary voltage at Minimum Part in 150KV of phase p.u.
bus
voltages
‐0.0151 0.015424 0.015424
‐0.04527 0.274538 0.274538
‐0.0151 0.015424 0.015424
0.953262 1.193443 0.717919
‐0.04527 0.274538 0.274538
0.172866 0.402551 0.402551
0.144883 1.104656 1.104656
‐0.0457 0.28199 0.28199
0.172866 0.402551 0.402551
0.105148 1.165974 1.165974
0.105148 1.165974 1.165974
‐0.2212 0.919524 0.919524
‐0.03337 0.156877 0.156877
‐0.04548 0.278256 0.278256
0.936228 1.512897 0.009466
0.953186 1.193504 0.590028
1.234796 1.530714 0.013637
0.966937 1.335389 0.171908
0.953258 1.193522 0.580184
1.116287 1.37661 0.220654
0.936228 1.512897 0.009466
0.953186 1.193504 0.590028
1.234796 1.530714 0.013637
0.927757 1.157752 0.889168
0.953434 1.193579 0.985418
‐0.18547 1.001038 1.001038
0.966937 1.335389 0.171908
0.953258 1.193522 0.580184
1.116287 1.37661 0.220654
0.942427 1.046218 0.676914
0.95111 1.191372 0.583491
0.723936 0.939007 0.507358
0.953568 1.19369 1.193689
0.953528 1.193667 1.123157
0.953528 1.193667 1.123289
0.942137 1.173878 1.022723
0.953457 1.193588 1.023479
0.953457 1.193588 1.024624
0.945908 1.177135 1.055108
‐14
‐3
‐16
‐14
‐17
‐15
‐18
‐15
‐18
‐19
‐15
‐18
‐19
‐19
‐7
‐7
‐7
‐8
‐8
‐8
‐9
‐9
‐9
‐10
‐10
‐10
‐11
‐11
‐11
‐20
‐20
‐20
‐21
‐21
‐21
‐22
‐22
‐22
‐23
‐23
‐23
‐12
‐12
‐12
‐13
‐13
‐13
2
3
3
3
3
1
1
2
2
1
3
3
2
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
380
380
380
21
21
21
21
21
21
20
20
20
20
20
20
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
150
150
150
150
150
150
0.128491
0.005017
0.079432
0.128491
0.126661
0.699345
0.770354
0.699345
0.770354
0.016491
0.699345
0.770354
0.016491
0.016491
0.594203
0.594203
0.594203
0.346115
0.346115
0.346115
0.000501
0.000501
0.000501
0.000501
0.000501
0.000501
0.00698
0.00698
0.00698
0.00527
0.00527
0.00527
0.00001
0.00001
0.00001
0
0
0
0.000059
0.000059
0.000059
0.594734
0.594734
0.594734
0.595369
0.595369
0.595369
0.150269
0.067333
0.147267
0.150269
0.150317
0.639044
0.507009
0.639044
0.507009
0.171655
0.639044
0.507009
0.171655
0.171655
8.40443
8.40443
8.40443
3.344943
3.344943
3.344943
0.051651
0.051651
0.051651
0.051651
0.051651
0.051651
0.131357
0.131357
0.131357
0.127256
0.127256
0.127256
0.000193
0.000193
0.000193
0
0
0
0.002392
0.002392
0.002392
8.092324
8.092324
8.092324
8.396939
8.396939
8.396939
0.197714
0.06752
0.167323
0.197714
0.196566
0.947344
0.922227
0.947344
0.922227
0.172445
0.947344
0.922227
0.172445
0.172445
8.425409
8.425409
8.425409
3.362802
3.362802
3.362802
0.051653
0.051653
0.051653
0.051653
0.051653
0.051653
0.131542
0.131542
0.131542
0.127365
0.127365
0.127365
0.000193
0.000193
0.000193
0
0
0
0.002393
0.002393
0.002393
8.114149
8.114149
8.114149
8.418019
8.418019
8.418019
0
0.128422
0.004947
0.079364
0.128422
0.126593
0.699276
0.770284
0.699276
0.770284
0.021984
0.699276
0.770284
0.021984
0.021984
0.590542
0.590542
0.590542
0.340973
0.340973
0.340973
0.00037
0.00037
0.00037
0.00037
0.00037
0.00037
0.006958
0.006958
0.006958
0.005251
0.005251
0.005251
0.00001
0.00001
0.00001
0
0
0
0.000059
0.000059
0.000059
0.590334
0.590334
0.590334
0.591684
0.591684
0.591684
0.150257
0.06732
0.147255
0.150257
0.150304
0.639031
0.506996
0.639031
0.506996
0.2024
0.639031
0.506996
0.2024
0.2024
8.402806
8.402806
8.402806
3.325356
3.325356
3.325356
0.049595
0.049595
0.049595
0.049595
0.049595
0.049595
0.131349
0.131349
0.131349
0.127248
0.127248
0.127248
0.000193
0.000193
0.000193
0
0
0
0.002392
0.002392
0.002392
8.090507
8.090507
8.090507
8.395308
8.395308
8.395308
0.496089
0.000001
0.301664
0.496089
0.496089
2.786074
3.066289
2.786074
3.066289
4.909641
2.786074
3.066289
4.909641
4.909641
1.921077
1.921077
1.921077
0.346239
0.346239
0.346239
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.034136
0.034136
0.034136
0.000305
0.000305
0.000305
0
0
0
0
0
0
0.000028
0.000028
0.000028
2.926808
2.926808
2.926808
1.957064
1.957064
1.957064
0.951705
0.612386
0.939158
0.951705
0.951705
2.899675
2.369886
2.899675
2.369886
3.926728
2.899675
2.369886
3.926728
3.926728
10.51324
10.51324
10.51324
3.614577
3.614577
3.614577
1.670263
1.670263
1.670263
1.670263
1.670263
1.670263
0.146783
0.146783
0.146783
0.135006
0.135006
0.135006
0.000232
0.000232
0.000232
0
0
0
0.001212
0.001212
0.001212
16.58773
16.58773
16.58773
10.74805
10.74805
10.74805
1.170761
1.076634
1.130102
1.141495
1.141649
1.178228
1.184641
1.177209
1.183042
1.197174
1.174467
1.176051
1.199213
1.18562
0.172518
0.584318
0.224231
0.656591
0.555977
0.502218
1.179217
1.164642
1.183886
1.179217
1.164642
1.183886
0.772963
0.997133
0.756621
0.829482
1.013995
0.754154
1.185227
1.185674
1.184813
1.184841
1.184841
1.184841
1.18511
1.185681
1.184849
0.077321
0.484757
0.123372
0.16875
0.581398
0.221034
‐0.00045
0.096825
0.109156
0.10697
0.106469
0.103438
0.102041
0.10541
0.104098
0.125962
0.133357
0.131603
0.130446
0.143746
‐0.04884
‐0.38727
0.035551
0.164624
‐0.17706
‐0.07203
0.144448
0.086918
0.106595
0.144448
0.086918
0.106595
‐0.32244
‐0.28954
‐0.16525
‐0.36272
‐0.28447
‐0.20645
0.144091
0.14434
0.144122
0.14507
0.14507
0.14507
0.144129
0.144162
0.14417
‐0.03129
‐0.4314
0.018594
‐0.04847
‐0.3887
0.035275
1.170761
‐0.47
1.080979 ‐0.41264
1.135361
‐0.4394
1.146496
‐0.4451
1.146603 ‐0.44518
1.18276 ‐0.46018
1.189028
‐0.4666
1.181919 ‐0.46424
1.187613 ‐0.47036
1.203782 ‐0.47717
1.182014
‐0.4616
1.183391 ‐0.46239
1.206287 ‐0.47982
1.194302 ‐0.46708
0.179298 ‐0.65417
0.701001 0.133868
0.227032 ‐0.23305
0.676914 ‐0.20227
0.583491 0.161488
0.507358 0.095821
1.188031 ‐0.46398
1.167881 ‐0.44802
1.188675 ‐0.46758
1.188031 ‐0.46398
1.167881 ‐0.44802
1.188675 ‐0.46758
0.83752 ‐0.61912
1.038319 ‐0.27908
0.774457 ‐0.78848
0.905321 ‐0.55647
1.053143 ‐0.29595
0.7819 ‐0.82212
1.193954 ‐0.46661
1.194427 ‐0.46762
1.193546 ‐0.46765
1.193689 ‐0.46679
1.193689 ‐0.46679
1.193689 ‐0.46679
1.193842
‐0.4667
1.194413 ‐0.46763
1.193588 ‐0.46764
0.083412 ‐0.82145
0.648917 0.23346
0.124765 ‐0.13571
0.175572 ‐0.66189
0.699367 0.13679
0.223831 ‐0.23043
0
‐0.94532
‐1.07448
‐1.08066
‐1.07956
‐1.07931
‐1.05698
‐1.05558
‐1.05778
‐1.05721
‐1.07858
‐1.09277
‐1.0919
‐1.08319
‐1.09793
‐1.08227
‐0.566
‐0.13662
‐1.10705
‐0.77405
‐0.6519
‐1.09822
‐1.03989
‐1.05882
‐1.09822
‐1.03989
‐1.05882
‐1.21451
‐0.66383
‐0.61566
‐1.24822
‐0.6689
‐0.67697
‐1.09901
‐1.09791
‐1.09886
‐1.09864
‐1.09864
‐1.09864
‐1.09889
‐1.09773
‐1.09865
‐1.10663
‐0.52183
‐0.06386
‐1.08367
‐0.56456
‐0.13398
1.055707
1.150987
1.166571
1.167721
1.167518
1.152809
1.154108
1.155171
1.157119
1.17942
1.186266
1.185767
1.184706
1.193149
1.264608
0.581611
0.270141
1.125378
0.790712
0.658907
1.192209
1.132292
1.157468
1.192209
1.132292
1.157468
1.36321
0.720114
1.000363
1.366642
0.73145
1.064971
1.193964
1.193343
1.194227
1.19369
1.19369
1.19369
1.193882
1.193183
1.194033
1.378189
0.571672
0.149988
1.269822
0.580892
0.26655
0
‐0.70077
‐0.66399
‐0.6907
‐0.6964
‐0.69647
‐0.71805
‐0.71805
‐0.71297
‐0.71269
‐0.72001
‐0.71287
‐0.71366
‐0.71939
‐0.71854
‐0.90571
‐0.71819
‐0.79734
‐0.45432
‐0.71747
‐0.59804
‐0.71524
‐0.71663
‐0.7163
‐0.71524
‐0.71663
‐0.7163
‐0.87042
‐0.71805
‐0.88672
‐0.80778
‐0.71804
‐0.89133
‐0.71788
‐0.71806
‐0.71829
‐0.71806
‐0.71806
‐0.71806
‐0.71796
‐0.71806
‐0.71822
‐1.07297
‐0.71822
‐0.87078
‐0.91343
‐0.71819
‐0.80153
0.945767
0.977651
0.971499
0.972593
0.972844
0.953541
0.953542
0.952372
0.95311
0.952622
0.959417
0.960294
0.952745
0.954181
0.969713
0.95326
1.108014
0.942427
0.95111
0.723936
0.953772
0.952971
0.952223
0.953772
0.952971
0.952223
0.837517
0.953371
1.02034
0.803805
0.953375
0.959254
0.953193
0.953567
0.953225
0.953568
0.953568
0.953568
0.953319
0.953567
0.953363
0.945383
0.953227
1.188721
0.968309
0.95326
1.11221
1.177093
1.181815
1.192008
1.196204
1.196453
1.193665
1.193663
1.189681
1.1901
1.194109
1.195268
1.196444
1.193839
1.194473
1.326894
1.193523
1.365082
1.046218
1.191372
0.939007
1.192161
1.192353
1.191561
1.192161
1.192353
1.191561
1.207919
1.193529
1.351798
1.139563
1.193528
1.30944
1.193282
1.193689
1.193556
1.19369
1.19369
1.19369
1.193436
1.193689
1.193628
1.430043
1.193515
1.47354
1.331158
1.193524
1.370936
1.055707
1.080979
1.135361
1.146496
1.146603
1.152809
1.154108
1.155171
1.157119
1.17942
1.182014
1.183391
1.184706
1.193149
0.179298
0.581611
0.227032
0.676914
0.583491
0.507358
1.188031
1.132292
1.157468
1.188031
1.132292
1.157468
0.83752
0.720114
0.774457
0.905321
0.73145
0.7819
1.193282
1.193343
1.193546
1.193689
1.193689
1.193689
1.193436
1.193183
1.193588
0.083412
0.571672
0.124765
0.175572
0.580892
0.223831
Voltage sag table for 150KV bus,New strong holds scenario 2030
Voltag
e Sags
Object Fault index Type
2
0
‐1
0
‐2
0
‐3
1
‐4
0
‐5
0
‐6
0
‐7
0
‐8
0
‐9
0
‐10
0
‐11
0
‐12
0
‐13
0
2
3
2
1
2
2
‐1
3
‐1
1
‐1
2
‐2
3
‐2
1
‐2
2
‐3
2
‐16
1
‐3
0
‐4
3
‐4
1
‐4
2
‐5
3
‐5
1
‐5
2
‐6
3
‐6
1
‐6
2
‐16
2
Voltage sag table assessment
Fault positi
on in %
0
0
0
0
0
0
0
0
0
0
0
0
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Failu
re frequ
ency in 1/a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Fault Clearin
g Time in s
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
BB150
BB150
BB150
BB150
BB150 BB150
Zero‐
Positive‐
Positive Negative‐
Sequence Phase B Positive‐
Sequence sequen Negative‐ Sequence Zero‐
Voltage, voltage Voltage
Sequence Impedance ce Sequence Impedance Sequence Impedance, Phase C Imaginar Phase A Voltage, Voltage, Nominal Impedance , Imaginary impeda Impedance , Imaginary Impedance Imaginary Voltage, at , Real Voltage, Minimum of , Real Part Part in Real Part in y Part in voltage at Real Part in Imaginary 150KV Part in Imaginary voltage at Voltage in , Real Part Part in nce (in , Real Part Part in phase voltages
Ohm
in Ohm
Ohm
p.u.
p.u.
150KV bus p.u.
Part in p.u. bus
kV
in Ohm
p.u.
Part in p.u. 150KV bus
Ohm
ohms) in Ohm
#INF
#INF
#INF
0.001758 ‐0.0157 0.0157892
0.001758 ‐0.015691 0.01579 0.0018 ‐0.015691 0.015789175
0.015789175
150 0.308015 7.910944 7.9169 #INF
150
0.42326 8.641857 8.6522 #INF
#INF
#INF
#INF
0.267792 ‐0.0494 0.272314
0.267792
‐0.04942 0.27231 0.2678
‐0.04942 0.272313958
0.272313958
150 0.308015 7.910944 7.9169 #INF
#INF
#INF
#INF
0.001758 ‐0.0157 0.0157892
0.001758 ‐0.015691 0.01579 0.0018 ‐0.015691 0.015789175
0.015789175
11 0.002183 0.069858 0.0699 0.002179 0.069846 0.000001 0.612386 1.050138 ‐0.4055 1.1257195 ‐0.360959 ‐0.638077 0.7331 ‐0.689
1.043607 1.250632594
0.733098668
150
0.42326 8.641857 8.6522 #INF
#INF
#INF
#INF
0.267792 ‐0.0494 0.272314
0.267792
‐0.04942 0.27231 0.2678
‐0.04942 0.272313958
0.272313958
380 0.325882 3.354456 3.3702 #INF
#INF
#INF
#INF
0.407975 0.07791 0.4153481
0.407975
0.077913 0.41535 0.408
0.077913 0.41534809
0.41534809
66 0.029582 12.461991 12.462 #INF
#INF
#INF
#INF
1.15416 0.07507 1.1565987
1.15416
0.075069 1.1566 1.1542
0.075069 1.156598746
1.156598746
150 0.423146 8.656848 8.6672 #INF
#INF
#INF
#INF
0.275305 ‐0.0499 0.2797875
0.275305 ‐0.049882 0.27979 0.2753 ‐0.049882 0.279787521
0.279787521
380 0.325882 3.354456 3.3702 #INF
#INF
#INF
#INF
0.407975 0.07791 0.4153481
0.407975
0.077913 0.41535 0.408
0.077913 0.41534809
0.41534809
21 0.000477 0.051662 0.0517 #INF
#INF
#INF
#INF
1.224234 0.03096 1.2246253
1.224234
0.030957 1.22463 1.2242
0.030957 1.22462534
1.22462534
21 0.000477 0.051662 0.0517 #INF
#INF
#INF
#INF
1.224234 0.03096 1.2246253
1.224234
0.030957 1.22463 1.2242
0.030957 1.22462534
1.22462534
20
0.00602 0.137135 0.1373 #INF
#INF
#INF
#INF
0.882579 ‐0.2759 0.9247073
0.882579 ‐0.275931 0.92471 0.8826 ‐0.275931 0.924707309
0.924707309
150 0.390342 8.350082 8.3592 #INF
#INF
#INF
#INF
0.150341 ‐0.0365 0.1547138
0.150341 ‐0.036523 0.15471 0.1503 ‐0.036523 0.154713754
0.154713754
150 0.423206 8.649414 8.6598 #INF
#INF
#INF
#INF
0.271541 ‐0.0496 0.2760423
0.271541 ‐0.049647 0.27604 0.2715 ‐0.049647 0.276042278
0.276042278
150 0.309014
7.83823 7.8443 0.308347 7.836121 3.856543 22.181567 0.001814 ‐0.0097 0.0098338 ‐1.042785 ‐1.091096 1.50927 ‐1.173
1.071172 1.588378639
0.009833759
150 0.309014
7.83823 7.8443 0.308347 7.836121 3.856543 22.181567 0.348658 ‐0.5273 0.632167
0.340531 ‐0.516166 0.61838 ‐0.689
1.043492 1.250542695
0.618375858
150 0.309014
7.83823 7.8443 0.308347 7.836121 3.856543 22.181567 0.005579 ‐0.0135 0.0146101 ‐0.010812
0.008708 0.01388 ‐0.857
1.350395 1.599153691
0.013882673
150 0.417313 8.524719 8.5349 0.416894 8.523151 1.992841 10.982171 0.161393 ‐0.0372 0.1656236
‐0.76241 ‐1.072868 1.31617 ‐0.892
1.089379 1.408269973
0.165623575
150 0.417313 8.524719 8.5349 0.416894 8.523151 1.992841 10.982171 0.563719 ‐0.4391 0.7145832
0.125475 ‐0.604383 0.61727 ‐0.689
1.043529 1.250576325
0.617270432
150 0.417313 8.524719 8.5349 0.416894 8.523151 1.992841 10.982171 0.225253 0.03868 0.2285499 ‐0.219467 ‐0.118909 0.24961 ‐0.753
1.222802 1.436263652
0.228549899
150 0.309014
7.83823 7.8443 0.308347 7.836121 3.856543 22.181567 0.001814 ‐0.0097 0.0098338 ‐1.042785 ‐1.091096 1.50927 ‐1.173
1.071172 1.588378639
0.009833759
150 0.309014
7.83823 7.8443 0.308347 7.836121 3.856543 22.181567 0.348658 ‐0.5273 0.632167
0.340531 ‐0.516166 0.61838 ‐0.689
1.043492 1.250542695
0.618375858
150 0.309014
7.83823 7.8443 0.308347 7.836121 3.856543 22.181567 0.005579 ‐0.0135 0.0146101 ‐0.010812
0.008708 0.01388 ‐0.857
1.350395 1.599153691
0.013882673
11 0.002183 0.069858 0.0699 0.002179 0.069846 0.000001 0.612386
1.21217 ‐0.2763 1.2432603 ‐0.550311
‐0.739 0.92139 ‐0.662
1.015297 1.211975798
0.921391989
11 0.076641 0.149743 0.1682 0.076637 0.149732 0.301664 0.939158
1.17531 ‐0.1416 1.1838046 ‐0.486095 ‐0.902076 1.02471 ‐0.689
1.043638 1.250678852
1.024709451
11 0.002181 0.070245 0.0703 #INF
#INF
#INF
#INF
1.012275 ‐0.2796 1.0501786
1.012275 ‐0.279597 1.05018 1.0123 ‐0.279597 1.050178631
1.050178631
150 0.417313 8.524719 8.5349 0.416894 8.523151 1.992841 10.982171 0.161393 ‐0.0372 0.1656236
‐0.76241 ‐1.072868 1.31617 ‐0.892
1.089379 1.408269973
0.165623575
150 0.417313 8.524719 8.5349 0.416894 8.523151 1.992841 10.982171 0.563719 ‐0.4391 0.7145832
0.125475 ‐0.604383 0.61727 ‐0.689
1.043529 1.250576325
0.617270432
150 0.417313 8.524719 8.5349 0.416894 8.523151 1.992841 10.982171 0.225253 0.03868 0.2285499 ‐0.219467 ‐0.118909 0.24961 ‐0.753
1.222802 1.436263652
0.228549899
380 0.325638 3.353016 3.3688 0.320811 3.333282
0.34624
3.614577
0.7076 0.07771 0.7118547 ‐0.288574 ‐1.118652 1.15527 ‐0.419
1.040939 1.122112646
0.711854669
380 0.325638 3.353016 3.3688 0.320811 3.333282
0.34624
3.614577 0.615467 ‐0.2735 0.6734884
0.072886 ‐0.767826 0.77128 ‐0.688
1.041298 1.248251328
0.673488354
380 0.325638 3.353016 3.3688 0.320811 3.333282
0.34624
3.614577 0.556718 ‐0.168 0.581512
0.001503 ‐0.645063 0.64506 ‐0.558
0.813056 0.986240713
0.581512032
66 0.029606 12.45693 12.457 0.029417 12.456302 718693285 ‐4.705589 1.248458 0.07508 1.2507132 ‐0.559213 ‐1.118734 1.25071 ‐0.689
1.043659 1.250712908
1.250712908
66 0.029606 12.45693 12.457 0.029417 12.456302 718693285 ‐4.705589 1.178191 0.03493 1.1787087 ‐0.488953 ‐1.078562 1.18422 ‐0.689
1.043633 1.250687355
1.178708674
66 0.029606 12.45693 12.457 0.029417 12.456302 718693285 ‐4.705589 1.178355 0.03465 1.1788643 ‐0.489117 ‐1.078282 1.18403 ‐0.689
1.043633 1.250687355
1.178864309
11 0.076641 0.149743 0.1682 0.076637 0.149732 0.301664 0.939158 1.207972 ‐0.1098 1.2129537 ‐0.538016 ‐0.921277 1.06687 ‐0.67
1.031097 1.229634932
1.066870436
‐17
‐14
‐14
‐17
‐3
‐16
‐14
‐17
‐15
‐18
‐15
‐18
‐19
‐19
‐15
‐18
‐19
‐7
‐7
‐7
‐8
‐8
‐8
‐9
‐9
‐9
‐10
‐10
‐10
‐11
‐11
‐11
‐20
‐20
‐20
‐21
‐21
‐21
‐22
‐22
‐22
‐23
‐23
‐23
‐12
‐12
‐12
‐13
‐13
‐13
1
1
2
2
3
3
3
3
1
1
2
2
1
2
3
3
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
380
380
380
21
21
21
21
21
21
20
20
20
20
20
20
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
0.69
150
150
150
150
150
150
0.123869
0.12595
0.12595
0.123869
0.002183
0.076641
0.12595
0.123869
0.696512
0.767521
0.696512
0.767521
1.226959
1.226959
0.696512
0.767521
1.226959
0.416955
0.416955
0.416955
0.325638
0.325638
0.325638
0.000477
0.000477
0.000477
0.000477
0.000477
0.000477
0.005994
0.005994
0.005994
0.004366
0.004366
0.004366
0.00001
0.00001
0.00001
0
0
0
0.000058
0.000058
0.000058
0.388247
0.388247
0.388247
0.417138
0.417138
0.417138
0.152764
0.153727
0.153727
0.152764
0.069858
0.149743
0.153727
0.152764
0.641573
0.509536
0.641573
0.509536
0.898992
0.898992
0.641573
0.509536
0.898992
8.53792
8.53792
8.53792
3.353016
3.353016
3.353016
0.051661
0.051661
0.051661
0.051661
0.051661
0.051661
0.132163
0.132163
0.132163
0.127938
0.127938
0.127938
0.000194
0.000194
0.000194
0
0
0
0.002393
0.002393
0.002393
8.256429
8.256429
8.256429
8.531384
8.531384
8.531384
0.1967
0.1987
0.1987
0.1967
0.0699
0.1682
0.1987
0.1967
0.947
0.9213
0.947
0.9213
1.5211
1.5211
0.947
0.9213
1.5211
8.5481
8.5481
8.5481
3.3688
3.3688
3.3688
0.0517
0.0517
0.0517
0.0517
0.0517
0.0517
0.1323
0.1323
0.1323
0.128
0.128
0.128
0.0002
0.0002
0.0002
0
0
0
0.0024
0.0024
0.0024
8.2656
8.2656
8.2656
8.5416
8.5416
8.5416
0.123866
0.125947
0.125947
0.123866
0.002179
0.076637
0.125947
0.123866
0.696508
0.767517
0.696508
0.767517
1.226955
1.226955
0.696508
0.767517
1.226955
0.416544
0.416544
0.416544
0.320811
0.320811
0.320811
0.000348
0.000348
0.000348
0.000348
0.000348
0.000348
0.005991
0.005991
0.005991
0.004364
0.004364
0.004364
0.00001
0.00001
0.00001
0
0
0
0.000058
0.000058
0.000058
0.38771
0.38771
0.38771
0.416722
0.416722
0.416722
0.152753
0.153716
0.153716
0.152753
0.069846
0.149732
0.153716
0.152753
0.641561
0.509525
0.641561
0.509525
0.898981
0.898981
0.641561
0.509525
0.898981
8.53637
8.53637
8.53637
3.333282
3.333282
3.333282
0.049604
0.049604
0.049604
0.049604
0.049604
0.049604
0.132154
0.132154
0.132154
0.12793
0.12793
0.12793
0.000194
0.000194
0.000194
0
0
0
0.002393
0.002393
0.002393
8.2546
8.2546
8.2546
8.529825
8.529825
8.529825
0.496089
0.496089
0.496089
0.496089
0.000001
0.301664
0.496089
0.496089
2.786074
3.066289
2.786074
3.066289
4.909641
4.909641
2.786074
3.066289
4.909641
1.921077
1.921077
1.921077
0.346239
0.346239
0.346239
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.034136
0.034136
0.034136
0.000305
0.000305
0.000305
0
0
0
0
0
0
0.000028
0.000028
0.000028
2.926808
2.926808
2.926808
1.957064
1.957064
1.957064
0.951705
0.951705
0.951705
0.951705
0.612386
0.939158
0.951705
0.951705
2.899675
2.369886
2.899675
2.369886
3.926728
3.926728
2.899675
2.369886
3.926728
10.513241
10.513241
10.513241
3.614577
3.614577
3.614577
1.670263
1.670263
1.670263
1.670263
1.670263
1.670263
0.146783
0.146783
0.146783
0.135006
0.135006
0.135006
0.000232
0.000232
0.000232
0
0
0
0.001212
0.001212
0.001212
16.587726
16.587726
16.587726
10.748052
10.748052
10.748052
1.215214
1.21353
1.22886
1.230636
1.129552
1.188238
1.200196
1.200797
1.240521
1.247508
1.239448
1.245808
1.24624
1.24499
1.236957
1.238661
1.242023
0.168836
0.569579
0.231837
0.7076
0.615467
0.556718
1.242382
1.22853
1.248737
1.242382
1.22853
1.248737
0.741216
0.985109
0.755485
0.791832
1.00228
0.745633
1.248643
1.249189
1.248234
1.248458
1.248458
1.248458
1.248592
1.249227
1.248336
0.074689
0.469649
0.126728
0.165082
0.566642
0.228531
‐0.1154
‐0.1143
‐0.0849
‐0.0856
0.02496
0.03673
0.0339
0.03348
0.02967
0.02801
0.03183
0.03027
0.04612
0.04704
0.06243
0.06048
0.06621
‐0.0379
‐0.4363
0.03944
0.07771
‐0.2735
‐0.168
0.07421
0.01132
0.03332
0.07421
0.01132
0.03332
‐0.3547
‐0.3629
‐0.1917
‐0.4035
‐0.3582
‐0.2308
0.07397
0.07413
0.07411
0.07508
0.07508
0.07508
0.07404
0.07398
0.07413
‐0.0244
‐0.4796
0.01952
‐0.0375
‐0.4377
0.03907
1.2206842
1.2189048
1.2317918
1.2336125
1.1298278
1.1888056
1.2006746
1.2012637
1.2408758
1.2478224
1.2398566
1.2461757
1.2470929
1.2458784
1.2385312
1.2401368
1.2437867
0.1730374
0.7174675
0.235167
0.7118547
0.6734884
0.581512
1.2445962
1.2285822
1.2491813
1.2445962
1.2285822
1.2491813
0.8217322
1.0498105
0.7794391
0.888734
1.0643682
0.7805394
1.2508323
1.2513868
1.2504318
1.2507132
1.2507132
1.2507132
1.2507851
1.2514157
1.2505351
0.0785618
0.6712866
0.1282218
0.1692974
0.7160138
0.2318467
‐0.525997
‐0.524313
‐0.558532
‐0.560321
‐0.499762
‐0.529105
‐0.535085
‐0.535386
‐0.551282
‐0.55827
‐0.555742
‐0.562421
‐0.556999
‐0.559377
‐0.553463
‐0.554315
‐0.555996
‐0.74617
0.119615
‐0.224554
‐0.288574
0.072886
0.001503
‐0.556184
‐0.540861
‐0.561437
‐0.556184
‐0.540861
‐0.561437
‐0.738741
‐0.295921
‐0.824443
‐0.679557
‐0.313092
‐0.867324
‐0.559122
‐0.559944
‐0.56017
‐0.559213
‐0.559213
‐0.559213
‐0.559169
‐0.559982
‐0.560131
‐0.922487
0.219543
‐0.130621
‐0.754357
0.122553
‐0.22201
‐0.928213
‐0.929304
‐0.950018
‐0.949575
‐1.093661
‐1.099553
‐1.098139
‐1.097931
‐1.073328
‐1.071665
‐1.07414
‐1.073385
‐1.089772
‐1.090262
‐1.112407
‐1.111436
‐1.114302
‐1.071316
‐0.607252
‐0.123968
‐1.118652
‐0.767826
‐0.645063
‐1.118185
‐1.054404
‐1.075592
‐1.118185
‐1.054404
‐1.075592
‐1.207742
‐0.680746
‐0.550105
‐1.252598
‐0.685392
‐0.608341
‐1.119154
‐1.117793
‐1.118764
‐1.118734
‐1.118734
‐1.118734
‐1.119003
‐1.117639
‐1.118601
‐1.085034
‐0.563872
‐0.055709
‐1.072099
‐0.605817
‐0.121426
1.06689
1.06701
1.10204
1.10257
1.20244
1.22023
1.22157
1.22151
1.20663
1.20836
1.20939
1.21181
1.22387
1.22539
1.24249
1.242
1.24531
1.30556
0.61892
0.2565
1.15527
0.77128
0.64506
1.24887
1.18503
1.21331
1.24887
1.18503
1.21331
1.41576
0.74228
0.99112
1.42506
0.75352
1.0594
1.25105
1.2502
1.25117
1.25071
1.25071
1.25071
1.25093
1.25008
1.25101
1.42418
0.6051
0.142
1.3109
0.61809
0.25305
‐0.689
‐0.689
‐0.67
‐0.67
‐0.63
‐0.659
‐0.665
‐0.665
‐0.689
‐0.689
‐0.684
‐0.683
‐0.689
‐0.686
‐0.683
‐0.684
‐0.686
‐0.876
‐0.689
‐0.745
‐0.419
‐0.688
‐0.558
‐0.686
‐0.688
‐0.687
‐0.686
‐0.688
‐0.687
‐0.869
‐0.689
‐0.85
‐0.81
‐0.689
‐0.864
‐0.689
‐0.689
‐0.69
‐0.689
‐0.689
‐0.689
‐0.689
‐0.689
‐0.689
‐1.053
‐0.689
‐0.82
‐0.884
‐0.689
‐0.749
1.043646
1.043645
1.034953
1.035218
1.0687
1.062823
1.06424
1.064448
1.043656
1.043657
1.04231
1.043113
1.043657
1.04322
1.049982
1.050953
1.048088
1.09093
1.04353
1.213483
1.040939
1.041298
0.813056
1.043977
1.043083
1.042277
1.043977
1.043083
1.042277
0.954585
1.043599
1.145395
0.909727
1.043602
1.083292
1.043239
1.043659
1.043371
1.043659
1.043659
1.043659
1.04339
1.043659
1.043486
1.077227
1.043513
1.302354
1.090147
1.04353
1.218212
1.25068663
1.250685796
1.233072861
1.233287139
1.240465692
1.250619463
1.25498184
1.255317758
1.250707098
1.250707382
1.246540826
1.247037498
1.250709035
1.248347621
1.252847257
1.254125308
1.2526458
1.399243633
1.250577159
1.424030386
1.122112646
1.248251328
0.986240713
1.249302074
1.249364158
1.248487589
1.249302074
1.249364158
1.248487589
1.290710278
1.250631429
1.426090065
1.21777437
1.250633933
1.385422537
1.250312851
1.250712908
1.250648453
1.250712908
1.250712908
1.250712908
1.250464749
1.250712908
1.250684856
1.506068964
1.250561871
1.538936606
1.403777374
1.250577159
1.430241196
1.066889037
1.067009862
1.102040015
1.102566236
1.129827762
1.188805551
1.200674636
1.201263729
1.206625393
1.208358914
1.209390719
1.21180557
1.22386719
1.225387227
1.238531187
1.240136793
1.243786729
0.173037363
0.618920625
0.235166991
0.711854669
0.673488354
0.581512032
1.244596205
1.185030977
1.213305261
1.244596205
1.185030977
1.213305261
0.821732167
0.742283204
0.77943907
0.888733986
0.753517614
0.780539446
1.250312851
1.250199374
1.250431793
1.250712908
1.250712908
1.250712908
1.250464749
1.250078707
1.250535096
0.078561783
0.605103926
0.128221766
0.169297427
0.618088566
0.23184668
Voltage sagVoltage sag table for 150KV bus,Money rules analysis table for 150 KV bus,Money rules
scenario 2010
scenario 2020
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
‐16
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐4
‐19
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
‐7
‐8
BB150
Voltage sag table assessment
Fault Failure Fault position frequency Clearing Fault Type in %
in 1/a
Time in s
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
50
0
0.123
0
50
0
0.123
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
1
0
0
0.1
2
0
0
0.1
1
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in kV
Ohm
150 0.180893
150 0.746777
150 0.180893
21 0.001483
11 0.002837
21 0.001483
13.5 0.001156
150 0.746777
380 0.273593
66 0.017858
150 0.746935
380 0.273592
20 0.007355
21 0.000525
21 0.000525
150 0.746898
150 0.577049
150 0.180665
150 0.180665
150 0.180665
150 0.735578
150 0.735578
150 0.735578
150 0.180665
150 0.180665
150 0.180665
21 0.001481
21 0.001481
21 0.001481
11 0.002835
11 0.002835
11 0.078542
21 0.001481
21 0.001481
21 0.001481
13.5 0.001155
13.5 0.001155
13.5 0.001155
150 0.735578
150 0.735578
150 0.735578
380 0.273548
Positive‐
Sequence Impedanc Positive e, sequence Imaginary impedanc
Part in e (in Ohm
ohms)
1.672362 1.682117
5.850527 5.897995
1.672362 1.682117
0.060283 0.060301
0.034643 0.034759
0.060283 0.060301
0.071394 0.071403
5.850527 5.897995
7.834739 7.839515
12.08856 12.08857
5.898674 5.945777
7.834739 7.839515
0.120502 0.120726
0.067844 0.067846
0.067844 0.067846
5.874768 5.922057
4.12592 4.166077
1.66983 1.679575
1.66983 1.679575
1.66983 1.679575
5.796945 5.843428
5.796945 5.843428
5.796945 5.843428
1.66983 1.679575
1.66983 1.679575
1.66983 1.679575
0.060264 0.060282
0.060264 0.060282
0.060264 0.060282
0.034631 0.034747
0.034631 0.034747
0.116074 0.14015
0.060264 0.060282
0.060264 0.060282
0.060264 0.060282
0.071385 0.071394
0.071385 0.071394
0.071385 0.071394
5.796945 5.843428
5.796945 5.843428
5.796945 5.843428
7.834453 7.839227
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.171189
0.171189
0.171189
0.731677
0.731677
0.731677
0.171189
0.171189
0.171189
0.001191
0.001191
0.001191
0.002775
0.002775
0.078482
0.001191
0.001191
0.001191
0.000576
0.000576
0.000576
0.731677
0.731677
0.731677
0.252661
Negative‐
Sequence Zero‐
Impedanc Sequence Impedanc
e, Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
1.638181 0.422782
1.638181 0.422782
1.638181 0.422782
5.778791 1.350757
5.778791 1.350757
5.778791 1.350757
1.638181 0.422782
1.638181 0.422782
1.638181 0.422782
0.057391 0.000025
0.057391 0.000025
0.057391 0.000025
0.034483 0.000001
0.034483 0.000001
0.115927 0.301664
0.057391 0.000025
0.057391 0.000025
0.057391 0.000025
0.071281 0.000022
0.071281 0.000022
0.071281 0.000022
5.778791 1.350757
5.778791 1.350757
5.778791 1.350757
7.639572 0.831096
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Part in Real Part Ohm
in p.u.
#INF
0.040201
#INF
0.672863
#INF
0.040201
#INF
0.834651
#INF
0.838875
#INF
0.834386
#INF
0.828897
#INF
0.672863
#INF
0.651877
#INF
0.815892
#INF
0.675207
#INF
0.651877
#INF
0.819543
#INF
0.821562
#INF
0.822222
#INF
0.674043
#INF
0.561144
3.905086 0.027482
3.905086 0.467775
3.905086 0.044345
7.782148 0.689169
7.782148 0.774064
7.782148 0.690753
3.905086 0.027482
3.905086 0.467775
3.905086 0.044345
1.670263 0.818243
1.670263 0.875614
1.670263 0.902726
0.612386 0.871487
0.612386 0.868629
0.939158 0.838237
1.670263 0.817809
1.670263 0.876323
1.670263 0.904265
2.208848 0.828721
2.208848 0.843573
2.208848 0.859412
7.782148 0.689169
7.782148 0.774064
7.782148 0.690753
9.651443 0.723113
BB150
BB150
Voltage, Phase A Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.04314 0.05897 0.040201
0.406768 0.78626 0.672863
‐0.04314 0.05897 0.040201
0.382606 0.918166 0.834651
0.471369 0.962237 0.838875
0.378325 0.916149 0.834386
0.480909 0.958303 0.828897
0.406768 0.78626 0.672863
0.567889 0.864547 0.651877
0.547551 0.982594 0.815892
0.408611 0.78922 0.675207
0.567889 0.864547 0.651877
0.47128 0.945386 0.819543
0.53436 0.980053 0.821562
0.533926 0.98037 0.822222
0.407697 0.78775 0.674043
0.325282 0.648607 0.561144
‐0.03061 0.041137 ‐0.19391
‐0.22902 0.520829 0.418659
‐0.02987 0.053468 ‐0.05423
0.42115 0.807664 0.055206
0.375043 0.860135 0.118566
0.402535 0.799484 0.032517
‐0.03061 0.041137 ‐0.19391
‐0.22902 0.520829 0.418659
‐0.02987 0.053468 ‐0.05423
0.537273 0.978869 0.067857
0.341231 0.939754 0.011856
0.428612 0.999311
‐0.0176
0.439622 0.976093 0.021674
0.495122 0.999831 0.01913
0.509781 0.98108 0.055785
0.536948 0.978328 0.068067
0.335834 0.93847 0.010967
0.42539 0.999326 ‐0.01937
0.546608 0.992753 0.06291
0.46665 0.964042 0.049903
0.497096 0.992821 0.032571
0.42115 0.807664 0.055206
0.375043 0.860135 0.118566
0.402535 0.799484 0.032517
0.55902
0.914 0.116127
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.04314 0.05897 0.040201
0.406768 0.78626 0.672863
‐0.04314 0.05897 0.040201
0.382606 0.918166 0.834651
0.471369 0.962237 0.838875
0.378325 0.916149 0.834386
0.480909 0.958303 0.828897
0.406768 0.78626 0.672863
0.567889 0.864547 0.651877
0.547551 0.982594 0.815892
0.408611 0.78922 0.675207
0.567889 0.864547 0.651877
0.47128 0.945386 0.819543
0.53436 0.980053 0.821562
0.533926 0.98037 0.822222
0.407697 0.78775 0.674043
0.325282 0.648607 0.561144
‐1.17567 1.191555 ‐1.14512
‐0.21232 0.46942 ‐0.88644
0.000397 0.054229 ‐1.09935
‐0.9965 0.998023 ‐0.89818
‐0.82108 0.829593 ‐0.89263
‐0.79227 0.792938 ‐0.89401
‐1.17567 1.191555 ‐1.14512
‐0.21232 0.46942 ‐0.88644
0.000397 0.054229 ‐1.09935
‐0.99084 0.993162
‐0.8861
‐0.78913 0.789215 ‐0.88747
‐0.87537 0.87555 ‐0.88513
‐0.88689 0.887154 ‐0.89316
‐0.93975 0.939943 ‐0.88776
‐0.95682 0.95844 ‐0.89402
‐0.99067 0.993002 ‐0.88588
‐0.78374 0.783815 ‐0.88729
‐0.87213 0.872343 ‐0.88489
‐0.99587 0.997854 ‐0.89163
‐0.91331 0.914672 ‐0.89348
‐0.94332 0.943883 ‐0.89198
‐0.9965 0.998023 ‐0.89818
‐0.82108 0.829593 ‐0.89263
‐0.79227 0.792938 ‐0.89401
‐1.00005 1.006774 ‐0.83924
BB150
Voltage, Phase C Imaginary voltage at 150KV Part in bus
p.u.
‐0.04314 0.05897
0.406768 0.78626
‐0.04314 0.05897
0.382606 0.918166
0.471369 0.962237
0.378325 0.916149
0.480909 0.958303
0.406768 0.78626
0.567889 0.864547
0.547551 0.982594
0.408611 0.78922
0.567889 0.864547
0.47128 0.945386
0.53436 0.980053
0.533926 0.98037
0.407697 0.78775
0.325282 0.648607
0.262501 1.174825
0.441338 0.990225
0.540025 1.224828
0.44691 1.003225
0.446034 0.997866
0.449723 1.000748
0.262501 1.174825
0.441338 0.990225
0.540025 1.224828
0.453567 0.995438
0.447895 0.994089
0.446761 0.99149
0.447266 0.998891
0.444626 0.992879
0.447035 0.999557
0.453719 0.995308
0.447904 0.993932
0.446738 0.991268
0.449262 0.99842
0.44666 0.998902
0.446225 0.997373
0.44691 1.003225
0.446034 0.997866
0.449723 1.000748
0.441034 0.94807
0.05897
0.78626
0.05897
0.918166
0.962237
0.916149
0.958303
0.78626
0.864547
0.982594
0.78922
0.864547
0.945386
0.980053
0.98037
0.78775
0.648607
0.041137
0.46942
0.053468
0.807664
0.829593
0.792938
0.041137
0.46942
0.053468
0.978869
0.789215
0.87555
0.887154
0.939943
0.95844
0.978328
0.783815
0.872343
0.992753
0.914672
0.943883
0.807664
0.829593
0.792938
0.914
‐8
‐8
‐9
‐9
‐9
‐19
‐17
‐20
‐17
‐20
‐4
‐19
‐17
‐18
‐21
‐18
‐20
‐21
‐22
‐22
‐18
‐21
‐22
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐15
‐15
‐15
‐16
‐16
‐16
1
2
3
1
2
2
1
1
2
2
3
3
3
1
1
2
3
2
1
2
3
3
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
380
380
66
66
66
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
380
380
380
20
20
20
21
21
21
21
21
21
150
150
150
150
150
150
0.273548
0.273548
0.017838
0.017838
0.017838
0.078542
0.12229
0.081944
0.12229
0.081944
0.002835
0.078542
0.12229
0.697129
0.768149
0.697129
0.081944
0.768149
0.163032
0.163032
0.697129
0.768149
0.163032
0.735447
0.735447
0.735447
0.273548
0.273548
0.273548
0.007205
0.007205
0.007205
0.000525
0.000525
0.000525
0.000525
0.000525
0.000525
0.735555
0.735555
0.735555
0.573316
0.573316
0.573316
7.834453
7.834453
12.08834
12.08834
12.08834
0.116074
0.113595
0.090949
0.113595
0.090949
0.034631
0.116074
0.113595
0.606317
0.474295
0.606317
0.090949
0.474295
0.522241
0.522241
0.606317
0.474295
0.522241
5.843569
5.843569
5.843569
7.834453
7.834453
7.834453
0.116643
0.116643
0.116643
0.067844
0.067844
0.067844
0.067844
0.067844
0.067844
5.820427
5.820427
5.820427
4.106042
4.106042
4.106042
7.839227
7.839227
12.08836
12.08836
12.08836
0.14015
0.166909
0.12242
0.166909
0.12242
0.034747
0.14015
0.166909
0.92391
0.902778
0.92391
0.12242
0.902778
0.547097
0.547097
0.92391
0.902778
0.547097
5.889667
5.889667
5.889667
7.839227
7.839227
7.839227
0.116865
0.116865
0.116865
0.067846
0.067846
0.067846
0.067846
0.067846
0.067846
5.866721
5.866721
5.866721
4.145874
4.145874
4.145874
0.252661
0.252661
0.016715
0.016715
0.016715
0.078482
0.122234
0.081929
0.122234
0.081929
0.002775
0.078482
0.122234
0.69707
0.76809
0.69707
0.081929
0.76809
0.16305
0.16305
0.69707
0.76809
0.16305
0.731621
0.731621
0.731621
0.252661
0.252661
0.252661
0.007179
0.007179
0.007179
0.000214
0.000214
0.000214
0.000214
0.000214
0.000214
0.731691
0.731691
0.731691
0.566883
0.566883
0.566883
7.639572
7.639572
12.08333
12.08333
12.08333
0.115927
0.113458
0.090863
0.113458
0.090863
0.034483
0.115927
0.113458
0.606169
0.474148
0.606169
0.090863
0.474148
0.522229
0.522229
0.606169
0.474148
0.522229
5.825629
5.825629
5.825629
7.639572
7.639572
7.639572
0.116541
0.116541
0.116541
0.06068
0.06068
0.06068
0.06068
0.06068
0.06068
5.80238
5.80238
5.80238
4.081577
4.081577
4.081577
0.831096
0.831096
7.19E+08
7.19E+08
7.19E+08
0.301664
0.496089
0.496089
0.496089
0.496089
0.000001
0.301664
0.496089
2.786074
3.066289
2.786074
0.496089
3.066289
4.909641
4.909641
2.786074
3.066289
4.909641
1.324798
1.324798
1.324798
0.831095
0.831095
0.831095
0.024363
0.024363
0.024363
57272.64
57272.64
57272.64
57272.64
57272.64
57272.64
1.33806
1.33806
1.33806
1.449578
1.449578
1.449578
9.651443
9.651443
0.811405
0.811405
0.811405
0.939158
0.951705
0.951705
0.951705
0.951705
0.612386
0.939158
0.951705
2.899675
2.369886
2.899675
0.951705
2.369886
3.926728
3.926728
2.899675
2.369886
3.926728
7.579722
7.579722
7.579722
9.651443
9.651443
9.651443
0.114743
0.114743
0.114743
57174.47
57174.47
57174.47
57174.47
57174.47
57174.47
7.68261
7.68261
7.68261
9.16131
9.16131
9.16131
0.690816
0.679294
0.834427
0.822145
0.822188
0.840967
0.844732
0.842969
0.844165
0.843232
0.818503
0.826869
0.829862
0.836093
0.837296
0.835791
0.830569
0.836883
0.836486
0.836711
0.83343
0.833814
0.834728
0.691199
0.775061
0.692855
0.723113
0.690816
0.679294
0.819311
0.839697
0.812868
0.834427
0.822732
0.831941
0.834427
0.823602
0.832588
0.83423
0.653076
0.671087
0.894795
0.532575
0.556302
0.487902
0.509673
0.551118
0.540667
0.540616
0.518901
0.519419
0.520593
0.526079
0.528328
0.534591
0.541918
0.542097
0.543587
0.543817
0.543867
0.544219
0.54407
0.54605
0.546296
0.548479
0.548287
0.550208
0.422617
0.377414
0.404378
0.55902
0.487902
0.509673
0.464462
0.467579
0.469883
0.551118
0.528679
0.533962
0.551118
0.528303
0.533915
0.546415
0.513397
0.425123
0.524
0.50167
0.352738
0.845739
0.849239
1
0.983993
0.984001
0.988172
0.991649
0.990764
0.994673
0.995073
0.977617
0.988629
0.991232
0.997265
0.998399
0.997165
0.992985
0.998191
0.998939
0.999262
0.997715
0.99793
0.99975
0.810161
0.862068
0.802228
0.914
0.845739
0.849239
0.941804
0.961104
0.938906
1
0.977952
0.988555
1
0.978481
0.989074
0.997251
0.830713
0.79441
1.036935
0.731648
0.658708
0.202467
0.190823
0.060069
0.072243
0.072199
0.049553
0.049384
0.051165
0.046803
0.048571
0.067916
0.063782
0.062282
0.058314
0.057112
0.057694
0.061946
0.056602
0.057949
0.057558
0.060546
0.060352
0.05991
0.056988
0.117595
0.032723
0.116127
0.202467
0.190823
0.055283
0.053844
‐0.00947
0.060069
0.069945
0.061155
0.060069
0.069044
0.060503
0.060896
0.060038
0.057259
0.121899
0.060167
0.066487
‐0.93117
‐0.90737
‐0.99819
‐0.98756
‐0.98751
‐0.96497
‐0.96655
‐0.9677
‐0.97305
‐0.97526
‐0.98977
‐0.99352
‐0.99363
‐0.99067
‐0.99091
‐0.99107
‐0.9947
‐0.99143
‐0.99314
‐0.9936
‐0.99686
‐0.99677
‐0.99774
‐0.99484
‐0.82346
‐0.79519
‐1.00005
‐0.93117
‐0.90737
‐1.00783
‐0.91454
‐0.95022
‐0.99819
‐0.97476
‐0.98081
‐0.99819
‐0.97446
‐0.98082
‐1.00095
‐0.99607
‐0.99806
‐1.02286
‐0.99469
‐1.04549
0.952926
0.927217
1
0.9902
0.990147
0.966237
0.967808
0.969055
0.974174
0.976472
0.992097
0.995561
0.995581
0.992382
0.992555
0.992751
0.996628
0.993044
0.994828
0.995264
0.998699
0.998594
0.999537
0.996471
0.831818
0.795859
1.006774
0.952926
0.927217
1.009346
0.916128
0.950266
1
0.97727
0.982713
1
0.976902
0.982679
1.002797
0.997881
0.999696
1.030096
0.99651
1.047603
‐0.89328
‐0.87012
‐0.8945
‐0.89439
‐0.89439
‐0.89052
‐0.89412
‐0.89413
‐0.89097
‐0.8918
‐0.88642
‐0.89065
‐0.89214
‐0.89441
‐0.89441
‐0.89348
‐0.89252
‐0.89349
‐0.89443
‐0.89427
‐0.89398
‐0.89417
‐0.89464
‐0.8964
‐0.89266
‐0.89192
‐0.83924
‐0.89328
‐0.87012
‐0.89844
‐0.89354
‐0.9041
‐0.8945
‐0.89268
‐0.8931
‐0.8945
‐0.89265
‐0.89309
‐0.71047
‐0.71311
‐0.69532
‐0.59951
‐0.59274
‐0.57056
0.443267
0.397696
0.447076
0.446895
0.446895
0.446065
0.447128
0.44711
0.44697
0.446935
0.455179
0.451597
0.451534
0.44708
0.447094
0.447205
0.450482
0.44736
0.447089
0.447302
0.448383
0.448482
0.447532
0.448567
0.44605
0.449155
0.441034
0.443267
0.397696
0.437156
0.446965
0.445841
0.447076
0.446085
0.446847
0.447076
0.446156
0.4469
0.38678
0.482675
0.397397
0.335243
0.493021
0.351043
0.997216
0.956695
1
0.999823
0.999822
0.995993
0.999684
0.999691
0.996798
0.997528
0.996457
0.998599
0.999902
0.999922
0.999929
0.999153
0.999758
0.999223
0.99995
0.999898
1.000121
1.000334
1.000331
1.002368
0.997895
0.998626
0.94807
0.997216
0.956695
0.999147
0.999097
1.008054
1
0.99793
0.998645
1
0.997933
0.998665
0.808927
0.861108
0.800867
0.686876
0.770982
0.669904
0.845739
0.849239
1
0.983993
0.984001
0.966237
0.967808
0.969055
0.974174
0.976472
0.977617
0.988629
0.991232
0.992382
0.992555
0.992751
0.992985
0.993044
0.994828
0.995264
0.997715
0.99793
0.999537
0.810161
0.831818
0.795859
0.914
0.845739
0.849239
0.941804
0.916128
0.938906
1
0.97727
0.982713
1
0.976902
0.982679
0.808927
0.830713
0.79441
0.686876
0.731648
0.658708
Voltage sag table for 150KV bus,Money rules scenario 2020
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
‐16
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐4
‐19
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
‐7
‐8
BB150
Voltage sag table assessment
Fault Failure Fault position frequency Clearing Fault Type in %
in 1/a
Time in s
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
50
0
0.123
0
50
0
0.123
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
1
0
0
0.1
2
0
0
0.1
1
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in kV
Ohm
150 0.102665
150 0.701401
150 0.102665
21 0.000897
11 0.00228
21 0.000897
13.5 0.000894
150 0.701401
380 0.486965
66 0.01453
150 0.702078
380 0.486965
20 0.007087
21 0.000744
21 0.000744
150 0.701781
150 0.516285
150 0.102676
150 0.102676
150 0.102676
150 0.691027
150 0.691027
150 0.691027
150 0.102676
150 0.102676
150 0.102676
21 0.000897
21 0.000897
21 0.000897
11 0.002279
11 0.002279
11 0.077983
21 0.000897
21 0.000897
21 0.000897
13.5 0.000894
13.5 0.000894
13.5 0.000894
150 0.691027
150 0.691027
150 0.691027
380 0.486932
Positive‐
Sequence Impedanc Positive e, sequence Imaginary impedanc
Part in e (in Ohm
ohms)
1.691668 1.69478
5.858047 5.899888
1.691668 1.69478
0.060429 0.060436
0.034916 0.03499
0.060429 0.060436
0.071463 0.071469
5.858047 5.899888
7.816132 7.831287
12.08983 12.08983
5.90604 5.947623
7.816132 7.831287
0.120556 0.120764
0.067824 0.067828
0.067824 0.067828
5.882212 5.923927
4.138787 4.170864
1.689088 1.692206
1.689088 1.692206
1.689088 1.692206
5.804264 5.845254
5.804264 5.845254
5.804264 5.845254
1.689088 1.692206
1.689088 1.692206
1.689088 1.692206
0.06041 0.060417
0.06041 0.060417
0.06041 0.060417
0.034904 0.034978
0.034904 0.034978
0.116608 0.140281
0.06041 0.060417
0.06041 0.060417
0.06041 0.060417
0.071454 0.07146
0.071454 0.07146
0.071454 0.07146
5.804264 5.845254
5.804264 5.845254
5.804264 5.845254
7.815841 7.830994
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.09604
0.09604
0.09604
0.688771
0.688771
0.688771
0.09604
0.09604
0.09604
0.000668
0.000668
0.000668
0.002234
0.002234
0.077938
0.000668
0.000668
0.000668
0.000323
0.000323
0.000323
0.688771
0.688771
0.688771
0.455912
Negative‐
Sequence Zero‐
Impedanc Sequence Impedanc
e, Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
1.656229 0.422782
1.656229 0.422782
1.656229 0.422782
5.78556 1.350757
5.78556 1.350757
5.78556 1.350757
1.656229 0.422782
1.656229 0.422782
1.656229 0.422782
0.057516 0.000025
0.057516 0.000025
0.057516 0.000025
0.034748 0.000001
0.034748 0.000001
0.116452 0.301664
0.057516 0.000025
0.057516 0.000025
0.057516 0.000025
0.071342 0.000022
0.071342 0.000022
0.071342 0.000022
5.78556 1.350757
5.78556 1.350757
5.78556 1.350757
7.622601 0.831096
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Part in Real Part Ohm
in p.u.
#INF
0.022782
#INF
0.770207
#INF
0.022782
#INF
0.921836
#INF
0.957674
#INF
0.919964
#INF
0.948619
#INF
0.770207
#INF
0.787578
#INF
0.952291
#INF
0.772998
#INF
0.787578
#INF
0.928455
#INF
0.959033
#INF
0.958615
#INF
0.771612
#INF
0.638599
3.905086 0.016207
3.905086 0.378851
3.905086 0.03179
7.782148 0.790082
7.782148 0.858005
7.782148 0.787959
3.905086 0.016207
3.905086 0.378851
3.905086 0.03179
1.670263 0.951929
1.670263 0.949254
1.670263 1.002919
0.612386 0.982077
0.612386 0.992824
0.939158 0.967541
1.670263 0.951248
1.670263 0.948237
1.670263 1.003789
2.208848 0.965517
2.208848 0.958444
2.208848
0.9812
7.782148 0.790082
7.782148 0.858005
7.782148 0.787959
9.651443 0.859755
BB150
BB150
Voltage, Phase A Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.05473 0.05928 0.022782
0.185844 0.792311 0.770207
‐0.05473 0.05928 0.022782
0.107634 0.928098 0.921836
0.194113 0.977149 0.957674
0.102109 0.925613 0.919964
0.210552 0.971705 0.948619
0.185844 0.792311 0.770207
0.282776 0.836804 0.787578
0.272899 0.990622 0.952291
0.187021
0.7953 0.772998
0.282776 0.836804 0.787578
0.20377 0.950553 0.928455
0.258213 0.993186 0.959033
0.258349 0.992818 0.958615
0.186437 0.793816 0.771612
0.136943 0.653117 0.638599
‐0.03816 0.041457 ‐0.55051
‐0.36481 0.525938 0.338446
‐0.04408 0.054345 ‐0.05054
0.197236 0.814329 ‐0.25316
0.123274 0.866815 ‐0.13586
0.177696 0.807747 ‐0.20815
‐0.03816 0.041457 ‐0.55051
‐0.36481 0.525938 0.338446
‐0.04408 0.054345 ‐0.05054
0.265601 0.988288 ‐0.23844
0.054559 0.950821 ‐0.23279
0.132795 1.011672 ‐0.28839
0.154708 0.994188 ‐0.25976
0.210715 1.014939 ‐0.27524
0.231577 0.994869 ‐0.24432
0.265328 0.987558
‐0.2381
0.047226 0.949412 ‐0.23201
0.128018 1.011919 ‐0.28956
0.271762 1.003034 ‐0.24505
0.193508 0.977783
‐0.2356
0.21769 1.005058 ‐0.25962
0.197236 0.814329 ‐0.25316
0.123274 0.866815 ‐0.13586
0.177696 0.807747 ‐0.20815
0.278419 0.903712 ‐0.19185
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.05473 0.05928 0.022782
0.185844 0.792311 0.770207
‐0.05473 0.05928 0.022782
0.107634 0.928098 0.921836
0.194113 0.977149 0.957674
0.102109 0.925613 0.919964
0.210552 0.971705 0.948619
0.185844 0.792311 0.770207
0.282776 0.836804 0.787578
0.272899 0.990622 0.952291
0.187021
0.7953 0.772998
0.282776 0.836804 0.787578
0.20377 0.950553 0.928455
0.258213 0.993186 0.959033
0.258349 0.992818 0.958615
0.186437 0.793816 0.771612
0.136943 0.653117 0.638599
‐1.05454 1.189591 ‐1.02432
‐0.33194 0.474054
‐0.7173
0.018929 0.053967 ‐0.88402
‐0.97272 1.005121 ‐0.72792
‐0.82626 0.837354 ‐0.72215
‐0.76965
0.7973 ‐0.72021
‐1.05454 1.189591 ‐1.02432
‐0.33194 0.474054
‐0.7173
0.018929 0.053967 ‐0.88402
‐0.97405 1.002811 ‐0.71349
‐0.75788 0.792823 ‐0.71647
‐0.83431 0.882747 ‐0.71453
‐0.85916 0.897573 ‐0.72232
‐0.91129 0.951947 ‐0.71759
‐0.93599 0.967348 ‐0.72322
‐0.9739 1.002582 ‐0.71315
‐0.7505 0.78554 ‐0.71623
‐0.82942 0.878514 ‐0.71423
‐0.97758 1.007824 ‐0.72047
‐0.89742 0.927828 ‐0.72284
‐0.9208 0.956704 ‐0.72158
‐0.97272 1.005121 ‐0.72792
‐0.82626 0.837354 ‐0.72215
‐0.76965
0.7973 ‐0.72021
‐0.97885 0.997472 ‐0.66791
BB150
Voltage, Phase C Imaginary voltage at Minimum 150KV of phase Part in bus
voltages
p.u.
‐0.05473 0.05928 0.05928
0.185844 0.792311 0.792311
‐0.05473 0.05928 0.05928
0.107634 0.928098 0.928098
0.194113 0.977149 0.977149
0.102109 0.925613 0.925613
0.210552 0.971705 0.971705
0.185844 0.792311 0.792311
0.282776 0.836804 0.836804
0.272899 0.990622 0.990622
0.187021
0.7953
0.7953
0.282776 0.836804 0.836804
0.20377 0.950553 0.950553
0.258213 0.993186 0.993186
0.258349 0.992818 0.992818
0.186437 0.793816 0.793816
0.136943 0.653117 0.653117
0.621129 1.197928 0.041457
0.696741 0.999982 0.474054
0.863594 1.235836 0.053967
0.708653
1.0159 0.814329
0.702985 1.007812 0.837354
0.708938 1.010591
0.7973
0.621129 1.197928 0.041457
0.696741 0.999982 0.474054
0.863594 1.235836 0.053967
0.708451 1.005473 0.988288
0.703317 1.003981 0.792823
0.701515 1.001337 0.882747
0.704455 1.008958 0.897573
0.700575 1.002865 0.951947
0.704407 1.009571 0.967348
0.70857 1.00531 0.987558
0.703269 1.003776 0.78554
0.701403 1.001041 0.878514
0.705817 1.008592 1.003034
0.703909 1.008954 0.927828
0.703113 1.007495 0.956704
0.708653
1.0159 0.814329
0.702985 1.007812 0.837354
0.708938 1.010591
0.7973
0.700429 0.967832 0.903712
‐8
‐8
‐9
‐9
‐9
‐19
‐17
‐20
‐17
‐20
‐4
‐19
‐17
‐18
‐21
‐18
‐20
‐21
‐22
‐22
‐18
‐21
‐22
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐15
‐15
‐15
‐16
‐16
‐16
1
2
3
1
2
2
1
1
2
2
3
3
3
1
1
2
3
2
1
2
3
3
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
380
380
66
66
66
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
380
380
380
20
20
20
21
21
21
21
21
21
150
150
150
150
150
150
0.486932
0.486932
0.014528
0.014528
0.014528
0.077983
0.125205
0.081676
0.125205
0.081676
0.002279
0.077983
0.125205
0.696573
0.767594
0.696573
0.081676
0.767594
0.162977
0.162977
0.696573
0.767594
0.162977
0.691423
0.691423
0.691423
0.486932
0.486932
0.486932
0.006955
0.006955
0.006955
0.000744
0.000744
0.000744
0.000744
0.000744
0.000744
0.691267
0.691267
0.691267
0.513136
0.513136
0.513136
7.815841
7.815841
12.08961
12.08961
12.08961
0.116608
0.118309
0.091222
0.118309
0.091222
0.034904
0.116608
0.118309
0.60659
0.474569
0.60659
0.091222
0.474569
0.522176
0.522176
0.60659
0.474569
0.522176
5.850734
5.850734
5.850734
7.815841
7.815841
7.815841
0.116694
0.116694
0.116694
0.067823
0.067823
0.067823
0.067823
0.067823
0.067823
5.827669
5.827669
5.827669
4.118762
4.118762
4.118762
7.830994
7.830994
12.08962
12.08962
12.08962
0.140281
0.172259
0.122444
0.172259
0.122444
0.034978
0.140281
0.172259
0.92367
0.90245
0.92367
0.122444
0.90245
0.547019
0.547019
0.92367
0.90245
0.547019
5.891448
5.891448
5.891448
7.830994
7.830994
7.830994
0.116901
0.116901
0.116901
0.067827
0.067827
0.067827
0.067827
0.067827
0.067827
5.868524
5.868524
5.868524
4.150603
4.150603
4.150603
0.455912
0.455912
0.013509
0.013509
0.013509
0.077938
0.12516
0.08167
0.12516
0.08167
0.002234
0.077938
0.12516
0.696528
0.767548
0.696528
0.08167
0.767548
0.162997
0.162997
0.696528
0.767548
0.162997
0.689223
0.689223
0.689223
0.455912
0.455912
0.455912
0.006938
0.006938
0.006938
0.000386
0.000386
0.000386
0.000386
0.000386
0.000386
0.689039
0.689039
0.689039
0.508907
0.508907
0.508907
7.622601
7.622601
12.08452
12.08452
12.08452
0.116452
0.118156
0.091133
0.118156
0.091133
0.034748
0.116452
0.118156
0.606434
0.474413
0.606434
0.091133
0.474413
0.522165
0.522165
0.606434
0.474413
0.522165
5.832252
5.832252
5.832252
7.622601
7.622601
7.622601
0.116588
0.116588
0.116588
0.060665
0.060665
0.060665
0.060665
0.060665
0.060665
5.809076
5.809076
5.809076
4.093444
4.093444
4.093444
0.831096
0.831096
7.19E+08
7.19E+08
7.19E+08
0.301664
0.496089
0.496089
0.496089
0.496089
0.000001
0.301664
0.496089
2.786074
3.066289
2.786074
0.496089
3.066289
4.909641
4.909641
2.786074
3.066289
4.909641
1.324798
1.324798
1.324798
0.831095
0.831095
0.831095
0.024363
0.024363
0.024363
57272.64
57272.64
57272.64
57272.64
57272.64
57272.64
1.33806
1.33806
1.33806
1.449578
1.449578
1.449578
9.651443
9.651443
0.809675
0.809675
0.809675
0.939158
0.951705
0.951705
0.951705
0.951705
0.612386
0.939158
0.951705
2.899675
2.369886
2.899675
0.951705
2.369886
3.926728
3.926728
2.899675
2.369886
3.926728
7.579722
7.579722
7.579722
9.651443
9.651443
9.651443
0.114743
0.114743
0.114743
57174.47
57174.47
57174.47
57174.47
57174.47
57174.47
7.68261
7.68261
7.68261
9.16131
9.16131
9.16131
0.830452
0.818312
0.971987
0.958
0.95804
0.972193
0.974699
0.975708
0.975745
0.977335
0.952373
0.962463
0.965051
0.971898
0.973144
0.971664
0.966756
0.972794
0.972858
0.973138
0.970391
0.970727
0.972076
0.792471
0.859618
0.790469
0.859755
0.830452
0.818312
0.924501
0.946252
0.921948
0.971987
0.9601
0.969235
0.971987
0.959578
0.968881
0.968009
0.784796
0.772051
1.01757
0.663906
0.638674
0.204217
0.225802
0.274482
0.265024
0.264967
0.240299
0.239502
0.2409
0.246296
0.248987
0.261801
0.266601
0.266172
0.266629
0.266578
0.266976
0.267885
0.266924
0.268989
0.269181
0.272096
0.271817
0.273512
0.19805
0.125328
0.178904
0.278419
0.204217
0.225802
0.19859
0.192881
0.206521
0.274482
0.252592
0.25764
0.274482
0.252665
0.257569
0.267867
0.295301
0.205038
0.225578
0.316986
0.166498
0.855193
0.848894
1.01
0.993983
0.994006
1.00145
1.003693
1.005007
1.00635
1.008553
0.987701
0.998705
1.001085
1.007808
1.008996
1.007674
1.003185
1.00875
1.00936
1.009681
1.007817
1.008065
1.009822
0.816844
0.868706
0.810462
0.903712
0.855193
0.848894
0.94559
0.96571
0.944796
1.01
0.992771
1.002893
1.01
0.992285
1.002533
1.004387
0.838515
0.798814
1.042274
0.735698
0.66002
‐0.10817
‐0.12058
‐0.24829
‐0.2344
‐0.23444
‐0.25235
‐0.2514
‐0.2524
‐0.25571
‐0.25644
‐0.23856
‐0.24358
‐0.24488
‐0.24829
‐0.24953
‐0.249
‐0.24572
‐0.25016
‐0.24922
‐0.24971
‐0.24751
‐0.24768
‐0.24834
‐0.25088
‐0.13745
‐0.20877
‐0.19185
‐0.10817
‐0.12058
‐0.25766
‐0.22345
‐0.2966
‐0.24829
‐0.23818
‐0.24691
‐0.24829
‐0.23765
‐0.24656
‐0.25072
‐0.24773
‐0.25376
‐0.20063
‐0.24728
‐0.26104
‐0.90496
‐0.88134
‐0.97901
‐0.96935
‐0.96929
‐0.94303
‐0.944
‐0.94542
‐0.94987
‐0.95292
‐0.97248
‐0.97498
‐0.97478
‐0.97114
‐0.9711
‐0.9714
‐0.97566
‐0.9715
‐0.97352
‐0.97388
‐0.9778
‐0.97766
‐0.97852
‐0.97179
‐0.82834
‐0.7726
‐0.97885
‐0.90496
‐0.88134
‐0.98525
‐0.89698
‐0.90607
‐0.97901
‐0.95611
‐0.96192
‐0.97901
‐0.95614
‐0.96182
‐0.98397
‐0.9769
‐0.97711
‐1.02584
‐0.97556
‐1.02525
0.911401
0.889553
1.01
0.997286
0.99724
0.976205
0.976906
0.978526
0.983688
0.986822
1.001317
1.004941
1.00507
1.002378
1.002652
1.002803
1.006122
1.003192
1.004909
1.005385
1.008636
1.008545
1.009542
1.003649
0.839661
0.800305
0.997472
0.911401
0.889553
1.018379
0.924396
0.953381
1.01
0.985332
0.993099
1.01
0.985233
0.992916
1.015412
1.007826
1.009522
1.045273
1.006413
1.057958
‐0.72228
‐0.69773
‐0.7237
‐0.7236
‐0.7236
‐0.71984
‐0.7233
‐0.72331
‐0.72003
‐0.72089
‐0.71381
‐0.71888
‐0.72017
‐0.72361
‐0.72361
‐0.72267
‐0.72104
‐0.72263
‐0.72364
‐0.72343
‐0.72289
‐0.72305
‐0.72374
‐0.72564
‐0.72217
‐0.71842
‐0.66791
‐0.72228
‐0.69773
‐0.73234
‐0.72281
‐0.73294
‐0.7237
‐0.72193
‐0.72233
‐0.7237
‐0.72193
‐0.72232
‐0.56681
‐0.53706
‐0.54903
‐0.47431
‐0.41662
‐0.44114
0.700741
0.655541
0.704525
0.704325
0.704325
0.702726
0.704501
0.704515
0.703574
0.703931
0.710682
0.708374
0.70861
0.704511
0.704526
0.704423
0.70777
0.704577
0.704526
0.704699
0.705701
0.705843
0.705009
0.709585
0.703007
0.707685
0.700429
0.700741
0.655541
0.697735
0.704103
0.708567
0.704525
0.70352
0.704276
0.704525
0.703477
0.704247
0.586453
0.681603
0.594338
0.504415
0.658574
0.515332
1.006343
0.957373
1.01
1.00979
1.00979
1.005982
1.009693
1.009714
1.00671
1.007574
1.00727
1.009251
1.010334
1.009926
1.009935
1.009189
1.010362
1.009271
1.009955
1.009923
1.010236
1.010454
1.010363
1.014923
1.007842
1.008434
0.967832
1.006343
0.957373
1.011514
1.009064
1.019443
1.01
1.008026
1.008841
1.01
1.008001
1.008817
0.815601
0.867767
0.809116
0.692388
0.77929
0.678361
0.855193
0.848894
1.01
0.993983
0.994006
0.976205
0.976906
0.978526
0.983688
0.986822
0.987701
0.998705
1.001085
1.002378
1.002652
1.002803
1.003185
1.003192
1.004909
1.005385
1.007817
1.008065
1.009542
0.816844
0.839661
0.800305
0.903712
0.855193
0.848894
0.94559
0.924396
0.944796
1.01
0.985332
0.993099
1.01
0.985233
0.992916
0.815601
0.838515
0.798814
0.692388
0.735698
0.66002
Voltage sag table for 150KV bus,Money rules scenario 2030
Voltage Sags
Object index
2
‐1
‐2
‐3
‐4
‐5
‐6
‐7
‐8
‐9
‐10
‐11
‐12
‐13
‐14
‐15
‐16
2
2
2
‐1
‐1
‐1
‐2
‐2
‐2
‐3
‐3
‐3
‐4
‐19
‐17
‐5
‐5
‐5
‐6
‐6
‐6
‐7
‐7
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Fault Failure Fault position frequency Clearing Fault Type in %
in 1/a
Time in s
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
0
0
0.1
0
50
0
0.123
0
50
0
0.123
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
2
0
0
0.1
2
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
2
0
0
0.1
3
0
0
0.1
1
0
0
0.1
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Positive‐
Sequence Impedanc
Nominal e, Real Voltage in Part in kV
Ohm
150 0.112686
150 0.707186
150 0.112686
21 0.000972
11 0.002353
21 0.000972
13.5 0.000928
150 0.707186
380 0.488071
66 0.015331
150 0.707797
380 0.48807
20 0.007122
21 0.000746
21 0.000746
150 0.707533
150 0.524053
150 0.112667
150 0.112667
150 0.112667
150 0.696706
150 0.696706
150 0.696706
150 0.112667
150 0.112667
150 0.112667
21 0.000972
21 0.000972
21 0.000972
11 0.002352
11 0.078159
11 0.125229
21 0.000972
21 0.000972
21 0.000972
13.5 0.000927
13.5 0.000927
13.5 0.000927
150 0.696706
150 0.696706
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Voltage sag table assessme
nt
Positive‐
Sequence Impedanc Positive e, sequence Imaginary impedanc
Part in e (in Ohm
ohms)
1.689821 1.693574
5.857441 5.899977
1.689821 1.693574
0.060415 0.060423
0.034901 0.03498
0.060415 0.060423
0.071456 0.071462
5.857441 5.899977
7.815789 7.831013
12.08967 12.08968
5.905449 5.947714
7.815789 7.831013
0.120552 0.120762
0.067823 0.067827
0.067823 0.067827
5.881612 5.924016
4.137621 4.170676
1.687245 1.691003
1.687245 1.691003
1.687245 1.691003
5.803676 5.845345
5.803676 5.845345
5.803676 5.845345
1.687245 1.691003
1.687245 1.691003
1.687245 1.691003
0.060396 0.060404
0.060396 0.060404
0.060396 0.060404
0.034888 0.034967
0.116374 0.140185
0.118232 0.172224
0.060396 0.060404
0.060396 0.060404
0.060396 0.060404
0.071447 0.071453
0.071447 0.071453
0.071447 0.071453
5.803676 5.845345
5.803676 5.845345
Negative‐
Sequence Impedanc
e, Real Part in Ohm
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
0.105653
0.105653
0.105653
0.694233
0.694233
0.694233
0.105653
0.105653
0.105653
0.000735
0.000735
0.000735
0.002304
0.078111
0.125182
0.000735
0.000735
0.000735
0.000355
0.000355
0.000355
0.694233
0.694233
Negative‐
Sequence Zero‐
Impedanc Sequence e, Impedanc
Imaginary e, Real Part in Part in Ohm
Ohm
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
#INF
1.654513 0.422782
1.654513 0.422782
1.654513 0.422782
5.785026 1.350757
5.785026 1.350757
5.785026 1.350757
1.654513 0.422782
1.654513 0.422782
1.654513 0.422782
0.057504 0.000025
0.057504 0.000025
0.057504 0.000025
0.034733 0.000001
0.116219 0.301664
0.11808 0.496089
0.057504 0.000025
0.057504 0.000025
0.057504 0.000025
0.071336 0.000022
0.071336 0.000022
0.071336 0.000022
5.785026 1.350757
5.785026 1.350757
Voltage sag table assessme
nt
BB150
BB150
Zero‐
Sequence Impedanc
e, Imaginary Voltage, Real Part Part in in p.u.
Ohm
#INF
0.035054
#INF
0.702919
#INF
0.035054
#INF
0.859977
#INF
0.876828
#INF
0.860212
#INF
0.862365
#INF
0.702919
#INF
0.686266
#INF
0.851673
#INF
0.705359
#INF
0.686266
#INF
0.853156
#INF
0.856884
#INF
0.85671
#INF
0.704147
#INF
0.586509
3.905086 0.024639
3.905086 0.450135
3.905086 0.041077
7.782148 0.718843
7.782148 0.803554
7.782148 0.721877
3.905086 0.024639
3.905086 0.450135
3.905086 0.041077
1.670263 0.852857
1.670263 0.899301
1.670263 0.933736
0.612386 0.905975
0.939158 0.880428
0.951705 0.88102
1.670263 0.853117
1.670263 0.898992
1.670263 0.93289
2.208848 0.864389
2.208848 0.87711
2.208848 0.894813
7.782148 0.718843
7.782148 0.803554
Voltage, Phase A Imaginary voltage at Voltage, 150KV Real Part Part in p.u.
bus
in p.u.
‐0.0471 0.058714 0.035054
0.352609 0.786402 0.702919
‐0.0471 0.058714 0.035054
0.316757 0.916458 0.859977
0.41261 0.969058 0.876828
0.319274 0.917551 0.860212
0.418888 0.958718 0.862365
0.352609 0.786402 0.702919
0.501533 0.849998 0.686266
0.488487 0.981818 0.851673
0.354358 0.789367 0.705359
0.501533 0.849998 0.686266
0.412203 0.947516 0.853156
0.475206 0.979832 0.856884
0.475755 0.979946 0.85671
0.35349 0.787895 0.704147
0.276411 0.648379 0.586509
‐0.03284 0.041053 ‐0.28098
‐0.26182 0.520739 0.403401
‐0.03467 0.053752 ‐0.05318
0.368589 0.807832 ‐0.01517
0.317167 0.863883 0.056034
0.349471 0.80202 ‐0.02837
‐0.03284 0.041053 ‐0.28098
‐0.26182 0.520739 0.403401
‐0.03467 0.053752 ‐0.05318
0.478799 0.978066 ‐0.00049
0.271031 0.939255
‐0.0452
0.36027 1.000828 ‐0.08196
0.437008 1.005866 ‐0.05126
0.459866 0.993293 ‐0.02311
0.466443 0.996878 ‐0.02324
0.478983 0.978383 ‐0.00062
0.274225 0.939886 ‐0.04479
0.362197 1.000735 ‐0.08098
0.487643 0.992454 ‐0.00597
0.403484 0.965464 ‐0.01669
0.434789 0.994853 ‐0.03593
0.368589 0.807832 ‐0.01517
0.317167 0.863883 0.056034
BB150
BB150
BB150
Voltage, Phase B Imaginary voltage at Voltage, Part in 150KV Real Part p.u.
bus
in p.u.
‐0.0471 0.058714 0.035054
0.352609 0.786402 0.702919
‐0.0471 0.058714 0.035054
0.316757 0.916458 0.859977
0.41261 0.969058 0.876828
0.319274 0.917551 0.860212
0.418888 0.958718 0.862365
0.352609 0.786402 0.702919
0.501533 0.849998 0.686266
0.488487 0.981818 0.851673
0.354358 0.789367 0.705359
0.501533 0.849998 0.686266
0.412203 0.947516 0.853156
0.475206 0.979832 0.856884
0.475755 0.979946 0.85671
0.35349 0.787895 0.704147
0.276411 0.648379 0.586509
‐1.14552 1.179482 ‐1.13012
‐0.23995 0.469369 ‐0.85354
0.006066 0.053522 ‐1.05378
‐0.99566 0.995773 ‐0.86644
‐0.82391 0.82581 ‐0.85959
‐0.79014 0.790653 ‐0.85955
‐1.14552 1.179482 ‐1.13012
‐0.23995 0.469369 ‐0.85354
0.006066 0.053522 ‐1.05378
‐0.99281 0.992809 ‐0.85237
‐0.7793 0.780611
‐0.8541
‐0.86722 0.871083 ‐0.85178
‐0.94257 0.943958 ‐0.85472
‐0.96704 0.967319 ‐0.85732
‐0.97424 0.974513 ‐0.85778
‐0.8525
‐0.99291 0.992908
‐0.78249 0.783772 ‐0.85421
‐0.86916 0.872927 ‐0.85191
‐0.99762 0.997641 ‐0.85842
‐0.91084 0.910994 ‐0.86042
‐0.94163 0.942318 ‐0.85889
‐0.99566 0.995773 ‐0.86644
‐0.82391 0.82581 ‐0.85959
BB150
Voltage, Phase C Imaginary voltage at Minimum Part in 150KV of phase bus
voltages
p.u.
‐0.0471 0.058714 0.058714
0.352609 0.786402 0.786402
‐0.0471 0.058714 0.058714
0.316757 0.916458 0.916458
0.41261 0.969058 0.969058
0.319274 0.917551 0.917551
0.418888 0.958718 0.958718
0.352609 0.786402 0.786402
0.501533 0.849998 0.849998
0.488487 0.981818 0.981818
0.354358 0.789367 0.789367
0.501533 0.849998 0.849998
0.412203 0.947516 0.947516
0.475206 0.979832 0.979832
0.475755 0.979946 0.979946
0.35349 0.787895 0.787895
0.276411 0.648379 0.648379
0.35502 1.184574 0.041053
0.501763 0.990096 0.469369
0.622045 1.223681 0.053522
0.510209 1.005496 0.807832
0.50674 0.997836 0.82581
0.512622 1.000806 0.790653
0.35502 1.184574 0.041053
0.501763 0.990096 0.469369
0.622045 1.223681 0.053522
0.514011 0.995357 0.978066
0.50827 0.993894 0.780611
0.506949 0.99122 0.871083
0.505556 0.99304 0.943958
0.507177 0.996103 0.967319
0.507793 0.996812 0.974513
0.513925 0.995427 0.978383
0.508267 0.993984 0.783772
0.506966 0.991349 0.872927
0.50998 0.998477 0.992454
0.507356 0.998865 0.910994
0.506845 0.997285 0.942318
0.510209 1.005496 0.807832
0.50674 0.997836 0.82581
‐7
‐8
‐8
‐8
‐9
‐9
‐9
‐4
‐20
‐4
‐18
‐21
‐19
‐19
‐17
‐20
‐18
‐22
‐21
‐22
‐18
‐22
‐17
‐21
‐20
‐10
‐10
‐10
‐11
‐11
‐11
‐12
‐12
‐12
‐13
‐13
‐13
‐14
‐14
‐14
‐15
‐15
‐15
‐16
‐16
‐16
2
3
1
2
3
1
2
3
2
1
2
2
3
1
1
1
1
2
1
1
3
3
3
3
3
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.123
0.123
0.123
0.123
0.123
0.123
150
380
380
380
66
66
66
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
150
150
150
380
380
380
20
20
20
21
21
21
21
21
21
150
150
150
150
150
150
0.696706
0.488034
0.488034
0.488034
0.015327
0.015327
0.015327
0.002352
0.081737
0.002352
0.696646
0.767666
0.078159
0.078159
0.125229
0.081737
0.696646
0.162982
0.767666
0.162982
0.696646
0.162982
0.125229
0.767666
0.081737
0.697035
0.697035
0.697035
0.488034
0.488034
0.488034
0.006987
0.006987
0.006987
0.000746
0.000746
0.000746
0.000746
0.000746
0.000746
0.696913
0.696913
0.696913
0.520828
0.520828
0.520828
5.803676
7.815499
7.815499
7.815499
12.08945
12.08945
12.08945
0.034888
0.091055
0.034888
0.606575
0.474554
0.116374
0.116374
0.118232
0.091055
0.606575
0.522186
0.474554
0.522186
0.606575
0.522186
0.118232
0.474554
0.091055
5.850161
5.850161
5.850161
7.815499
7.815499
7.815499
0.116689
0.116689
0.116689
0.067823
0.067823
0.067823
0.067823
0.067823
0.067823
5.827089
5.827089
5.827089
4.11761
4.11761
4.11761
5.845345
7.830722
7.830722
7.830722
12.08946
12.08946
12.08946
0.034967
0.12236
0.034967
0.923715
0.902504
0.140185
0.140185
0.172224
0.12236
0.923715
0.54703
0.902504
0.54703
0.923715
0.54703
0.172224
0.902504
0.12236
5.89154
5.89154
5.89154
7.830722
7.830722
7.830722
0.116898
0.116898
0.116898
0.067827
0.067827
0.067827
0.067827
0.067827
0.067827
5.868616
5.868616
5.868616
4.150419
4.150419
4.150419
0.694233
0.456924
0.456924
0.456924
0.014274
0.014274
0.014274
0.002304
0.08173
0.002304
0.696599
0.767619
0.078111
0.078111
0.125182
0.08173
0.696599
0.163001
0.767619
0.163001
0.696599
0.163001
0.125182
0.767619
0.08173
0.694619
0.694619
0.694619
0.456924
0.456924
0.456924
0.006969
0.006969
0.006969
0.000387
0.000387
0.000387
0.000387
0.000387
0.000387
0.694468
0.694468
0.694468
0.516308
0.516308
0.516308
5.785026
7.622298
7.622298
7.622298
12.08437
12.08437
12.08437
0.034733
0.090967
0.034733
0.60642
0.474398
0.116219
0.116219
0.11808
0.090967
0.60642
0.522174
0.474398
0.522174
0.60642
0.522174
0.11808
0.474398
0.090967
5.831732
5.831732
5.831732
7.622298
7.622298
7.622298
0.116584
0.116584
0.116584
0.060665
0.060665
0.060665
0.060665
0.060665
0.060665
5.808549
5.808549
5.808549
4.09238
4.09238
4.09238
1.350757
0.831096
0.831096
0.831096
7.19E+08
7.19E+08
7.19E+08
0.000001
0.496089
0.000001
2.786074
3.066289
0.301664
0.301664
0.496089
0.496089
2.786074
4.909641
3.066289
4.909641
2.786074
4.909641
0.496089
3.066289
0.496089
1.324798
1.324798
1.324798
0.831095
0.831095
0.831095
0.024363
0.024363
0.024363
57272.64
57272.64
57272.64
57272.64
57272.64
57272.64
1.33806
1.33806
1.33806
1.449578
1.449578
1.449578
7.782148
9.651443
9.651443
9.651443
3.056605
3.056605
3.056605
0.612386
0.951705
0.612386
2.899675
2.369886
0.939158
0.939158
0.951705
0.951705
2.899675
3.926728
2.369886
3.926728
2.899675
3.926728
0.951705
2.369886
0.951705
7.579722
7.579722
7.579722
9.651443
9.651443
9.651443
0.114743
0.114743
0.114743
57174.47
57174.47
57174.47
57174.47
57174.47
57174.47
7.68261
7.68261
7.68261
9.16131
9.16131
9.16131
0.721877
0.758367
0.72866
0.716654
0.870498
0.858044
0.858088
0.85507
0.884005
0.909705
0.872047
0.87313
0.863713
0.878521
0.881712
0.885117
0.872355
0.872908
0.873547
0.87269
0.869577
0.870824
0.86599
0.869964
0.867652
0.720983
0.804662
0.724047
0.758367
0.72866
0.716654
0.851371
0.873272
0.846235
0.870498
0.857979
0.867553
0.870498
0.85766
0.867209
0.868725
0.686807
0.699754
0.926878
0.565182
0.579572
0.349471
0.496758
0.422771
0.444414
0.492171
0.481515
0.481464
0.475319
0.469515
0.381418
0.484987
0.485217
0.482001
0.450273
0.459757
0.461231
0.484716
0.487418
0.484977
0.487166
0.489518
0.491271
0.482598
0.489337
0.484134
0.369905
0.319506
0.351193
0.496758
0.422771
0.444414
0.406005
0.4079
0.412428
0.492171
0.469322
0.474566
0.492171
0.469933
0.474889
0.485128
0.460602
0.371278
0.457634
0.454937
0.304633
0.80202
0.906581
0.842425
0.843266
1
0.983919
0.983932
0.978301
1.000954
0.986429
0.997837
0.998895
0.989103
0.98719
0.99438
0.998081
0.997974
0.999772
0.999143
0.999459
0.997894
0.999841
0.991383
0.998142
0.993582
0.810337
0.865774
0.804724
0.906581
0.842425
0.843266
0.943225
0.963839
0.941388
1
0.977953
0.988869
1
0.977966
0.988722
0.995004
0.826957
0.792151
1.033698
0.725533
0.654756
‐0.02837
0.047386
0.131433
0.119173
‐0.00902
0.003322
0.003277
‐0.00143
‐0.02541
‐0.04955
‐0.01157
‐0.01265
‐0.0057
‐0.01753
‐0.02062
‐0.02401
‐0.01096
‐0.01165
‐0.01215
‐0.01127
‐0.00858
‐0.00919
‐0.00684
‐0.00877
‐0.00766
‐0.01328
0.054951
‐0.02832
0.047386
0.131433
0.119173
‐0.01549
‐0.01276
‐0.07776
‐0.00902
0.001649
‐0.00751
‐0.00902
0.002019
‐0.00714
‐0.00977
‐0.00906
‐0.01438
0.048832
‐0.00891
‐0.00889
‐0.79014
‐1.00013
‐0.92677
‐0.9031
‐0.99996
‐0.98912
‐0.98907
‐0.99138
‐0.97766
‐0.88948
‐0.99293
‐0.99332
‐0.9948
‐0.95809
‐0.96762
‐0.96914
‐0.99251
‐0.99544
‐0.99279
‐0.99497
‐0.99862
‐0.99951
‐0.99512
‐0.99853
‐0.99591
‐0.99414
‐0.82626
‐0.79312
‐1.00013
‐0.92677
‐0.9031
‐1.00891
‐0.91558
‐0.94817
‐0.99996
‐0.97605
‐0.98209
‐0.99996
‐0.97664
‐0.98238
‐1.00502
‐0.99781
‐0.99966
‐1.032
‐0.99641
‐1.04742
0.790653
1.001252
0.936041
0.910927
1
0.989127
0.989076
0.991381
0.977986
0.890855
0.993001
0.993398
0.994819
0.958245
0.967841
0.969434
0.992575
0.995508
0.992862
0.995035
0.998658
0.999553
0.995145
0.998573
0.995935
0.994229
0.828088
0.793626
1.001252
0.936041
0.910927
1.009026
0.915673
0.951348
1
0.976052
0.982116
1
0.976639
0.982409
1.005066
0.997851
0.999759
1.033157
0.996454
1.047461
‐0.85955
‐0.80575
‐0.86009
‐0.83583
‐0.86148
‐0.86137
‐0.86137
‐0.85364
‐0.8586
‐0.86015
‐0.86048
‐0.86048
‐0.85801
‐0.86099
‐0.86109
‐0.86111
‐0.86139
‐0.86126
‐0.8614
‐0.86142
‐0.861
‐0.86164
‐0.85915
‐0.86119
‐0.85999
‐0.86454
‐0.85961
‐0.8575
‐0.80575
‐0.86009
‐0.83583
‐0.8671
‐0.86051
‐0.87136
‐0.86148
‐0.85963
‐0.86004
‐0.86148
‐0.85968
‐0.86007
‐0.67975
‐0.67775
‐0.66489
‐0.5721
‐0.55627
‐0.54305
0.512622
0.503372
0.503997
0.458685
0.507788
0.507606
0.507607
0.516061
0.50814
0.508058
0.507947
0.508101
0.512802
0.507812
0.507864
0.507905
0.507797
0.508022
0.507811
0.507805
0.509103
0.50824
0.512524
0.509197
0.511772
0.511729
0.506756
0.511932
0.503372
0.503997
0.458685
0.498562
0.507684
0.508313
0.507788
0.506729
0.507521
0.507788
0.506704
0.507494
0.438845
0.537209
0.450944
0.37997
0.541477
0.398274
1.000806
0.950064
0.996882
0.953414
1
0.999808
0.999807
0.99751
0.997693
0.998992
0.999217
0.999299
0.999574
0.999588
0.999703
0.999735
0.999929
0.999929
0.999937
0.999956
1.000253
1.000363
1.000411
1.000466
1.00075
1.004636
0.997866
0.998693
0.950064
0.996882
0.953414
1.000211
0.999113
1.008786
1
0.997865
0.998626
1
0.997896
0.998635
0.809099
0.864834
0.803384
0.686789
0.776296
0.673442
0.790653
0.906581
0.842425
0.843266
1
0.983919
0.983932
0.978301
0.977986
0.890855
0.993001
0.993398
0.989103
0.958245
0.967841
0.969434
0.992575
0.995508
0.992862
0.995035
0.997894
0.999553
0.991383
0.998142
0.993582
0.810337
0.828088
0.793626
0.906581
0.842425
0.843266
0.943225
0.915673
0.941388
1
0.976052
0.982116
1
0.976639
0.982409
0.809099
0.826957
0.792151
0.686789
0.725533
0.654756
APPENDIX D: Compilation of all simulations (printable version)
1.20
DIgSILENT
3 phase symmetrical fault at 150KV bus,
GR scenario
50.025
1.00
50.000
0.80
49.975
0.60
49.950
0.40
49.925
0.20
0.00
0.00
1.00
2.00
[s]
3.00
49.900
0.00
BB150\BB150_1: 150KV bus voltage in pu,2010
BB150\BB150_1: 150KV bus voltage in pu,2020
BB150\BB150_1: 150KV bus voltage in pu,2030
1.00
2.00
[s]
3.00
2.00
[s]
3.00
BB150\BB150_1: 150KV bus frequency,2010
BB150\BB150_1: 150KV bus frequency,2020
BB150\BB150_1: 150KV bus frequency ,2030
600.00
125.00
300.00
0.00
0.00
-125.00
-300.00
-250.00
-600.00
-375.00
-900.00
-500.00
0.00
1.00
BB150\CB0: 150KV bus total active power,2010
BB150\CB0: 150KV bus total active power,2020
BB150\CB0: 150KV bus total active power,2030
2.00
[s]
3.00
0.00
1.00
BB150\CB0: 150KV bus total reactive power,2010
BB150\CB0: 150KV bus total reactive power,2020
BB150\CB0: 150KV bus total reactive power,2030
GR worst case SC
Date: 8/14/2011
Annex: /19
1.20
50.02
1.00
50.00
0.80
49.98
0.60
49.96
0.40
49.94
0.20
0.00
1.00
2.00
[s]
3.00
49.92
DIgSILENT
3 phase symmetrical fault at wind
farm terminal bus,GR scenario
0.00
BB150\BB150_1: 150KV bus Voltage,2010
BB150\BB150_1: 150KV bus Voltage,2020
BB150\BB150_1: 150KV bus Voltage,2030
1.00
2.00
[s]
3.00
2.00
[s]
3.00
BB150\BB150_1: 150KV bus frequency,2010
BB150\BB150_1: 150KV bus frequency,2020
BB150\BB150_1: 150KV bus frequency,2030
250.00
750.00
0.00
500.00
-250.00
250.00
-500.00
0.00
-750.00
-250.00
-1000.00
-500.00
-1250.00
-750.00
0.00
1.00
BB150\CB0: 150KV bus total reactive power,2010
BB150\CB0: 150KV bus total reactive power,2020
BB150\CB0: 150KV bus total reactive power,2030
2.00
[s]
3.00
0.00
1.00
BB150\CB0: 150KV bus total active power,2010
BB150\CB0: 150KV bus total active power,2020
BB150\CB0: 150KV bus total active power,2030
GR [email protected]
Date: 8/14/2011
Annex: /20
1.20
DIgSILENT
3 phase symmetrical fault at 50% of windfarm
interconnecting cable,GR scenario
50.04
50.02
1.00
50.00
0.80
49.98
0.60
49.96
0.40
0.20
49.94
0.00
1.00
2.00
[s]
3.00
49.92
0.00
BB150\BB150_1: 150KV bus Voltage,2010
BB150\BB150_1: 150KV bus Voltage,2020
BB150\BB150_1: 150KV bus Voltage,2030
1.00
2.00
[s]
3.00
2.00
[s]
3.00
BB150\BB150_1: 150KV bus frequency,2010
BB150\BB150_1: 150KV bus frequency,2020
BB150\BB150_1: 150KV bus frequency,2030
750.00
200.00
500.00
0.00
250.00
-200.00
0.00
-400.00
-250.00
-600.00
-500.00
-800.00
-750.00
-1000.00
0.00
1.00
BB150\CB0: 150KV bus total active power,2010
BB150\CB0: 150KV bus total active power,2020
BB150\CB0: 150KV bus total active power,2030
2.00
[s]
3.00
0.00
1.00
BB150\CB0: 150KV bus total reactive power,2010
BB150\CB0: 150KV bus total reactive power,2020
BB150\CB0: 150KV bus total reactive power,2030
GR SC @wf cable
Date: 8/14/2011
Annex: /22
1.40
DIgSILENT
3 phase symmetrical fault at 150KV
bus,NS scenario
50.20
50.10
1.20
50.00
1.00
49.90
0.80
49.80
0.60
0.00
1.00
2.00
[s]
3.00
49.70
0.00
BB150\BB150(1): Voltage 150KV bus;2010,(FZ 8ohms)
BB150\BB150(1): Voltage 150KV bus;2020,(FZ 8 ohms)
BB150\BB150(1): Voltage 150KV bus;2030, (FZ 8ohms)
1.00
2.00
[s]
3.00
[s]
3.00
BB150\BB150(1): Frequency 150KV bus;2010,(FZ 8ohms)
BB150\BB150(1): Frequency 150KV bus;2020,(FZ 8ohms)
BB150\BB150(1): Frequency 150KV bus;2030,(FZ 8ohms)
500.00
1200.00
900.00
250.00
600.00
0.00
300.00
-250.00
0.00
-500.00
-300.00
-600.00
-750.00
0.00
1.00
BB150\CB0: Active power,150 KV bus,8ohm FZ,2010
BB150\CB0: Active power,150 KV bus,8ohm FZ,2020
BB150\CB0: Active power,150 KV bus,8ohm FZ,2030
2.00
[s]
3.00
0.00
1.00
2.00
BB150\CB0: Reactive power,150KV bus,8ohms FZ,2010
BB150\CB0: Reactive power,150KV bus,8ohms FZ,2020
BB150\CB0: Reactive power,150KV bus,8ohms FZ,2030
Nstr_worst case SC
Date: 8/14/2011
Annex: /14
1.40
DIgSILENT
3 phase symmetrical fault at
wind farm terminal,NS
scenario
50.15
50.10
1.30
50.05
1.20
50.00
1.10
49.95
1.00
0.90
49.90
0.00
1.00
2.00
[s]
3.00
49.85
0.00
BB150\BB150(1): Voltage, Magnitude in p.u.
BB150\BB150(1): Voltage, Magnitude in p.u.
BB150\BB150(1): Voltage, Magnitude in p.u.
1.00
2.00
[s]
3.00
2.00
[s]
3.00
[email protected]_ter
Date: 8/14/2011
BB150\BB150(1): Electrical Frequency in Hz
BB150\BB150(1): Electrical Frequency in Hz
BB150\BB150(1): Electrical Frequency in Hz
600.00
1000.00
400.00
750.00
200.00
500.00
0.00
250.00
-200.00
0.00
-400.00
-600.00
-250.00
0.00
1.00
BB150\CB0: Total Active Power/Terminal i in MW
BB150\CB0: Total Active Power/Terminal i in MW
BB150\CB0: Total Active Power/Terminal i in MW
2.00
[s]
3.00
0.00
1.00
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
Annex: /12
1.375
DIgSILENT
3 phase symmetrical fault at
50% of interconnection cable,
NS scenario
50.20
1.250
50.10
1.125
1.000
50.00
0.875
49.90
0.750
0.625
0.00
1.00
2.00
[s]
3.00
49.80
0.00
BB150\BB150(1): Voltage 150KV bus;2010,(FZ 9ohms)
BB150\BB150(1): Voltage 150KV bus;2020,(FZ 9 ohms)
BB150\BB150(1): Voltage 150KV bus;2030, (FZ 9ohms)
1.00
2.00
[s]
3.00
[s]
3.00
BB150\BB150(1): Frequency 150KV bus;2010,(FZ 9ohms)
BB150\BB150(1): Frequency 150KV bus;2020,(FZ 9ohms)
BB150\BB150(1): Frequency 150KV bus;2030,(FZ 9ohms)
600.00
1200.00
400.00
900.00
200.00
600.00
0.00
300.00
-200.00
0.00
-400.00
-300.00
-600.00
-600.00
0.00
1.00
BB150\CB0: Active power,150 KV bus,8ohm FZ,2010
BB150\CB0: Active power,150 KV bus,8ohm FZ,2020
BB150\CB0: Active power,150 KV bus,8ohm FZ,2030
2.00
[s]
3.00
0.00
1.00
2.00
BB150\CB0: Reactive power,150 KV bus,8ohm FZ,2010
BB150\CB0: Reactive power,150 KV bus,8ohm FZ,2020
BB150\CB0: Reactive power,150 KV bus,8ohm FZ,2030
[email protected] cable
Date: 8/14/2011
Annex: /13
1.125
DIgSILENT
3 phase symmetrical fault at
150KV bus,SX scenario
50.10
1.000
50.00
0.875
49.90
0.750
49.80
0.625
0.500
0.00
1.00
2.00
[s]
3.00
49.70
0.00
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2010
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2020
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2030
1.00
2.00
[s]
3.00
[s]
3.00
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2010
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2020
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2030
400.00
100.00
0.00
200.00
-100.00
0.00
-200.00
-200.00
-300.00
-400.00
-400.00
-500.00
-600.00
0.00
1.00
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2010
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2020
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2030
2.00
[s]
3.00
0.00
1.00
2.00
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2010
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2020
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2030
SX_150 bus
Date: 8/14/2011
Annex: /13
1.10
DIgSILENT
3 phase symmetrical fault at
wind farm terminals,SX
scenario
50.025
50.000
1.00
49.975
0.90
49.950
0.80
49.925
0.70
0.00
1.00
2.00
[s]
3.00
49.900
0.00
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2010
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2020
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2030
1.00
2.00
[s]
3.00
[s]
3.00
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2010
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2020
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2030
200.00
100.00
0.00
100.00
-100.00
0.00
-200.00
-100.00
-300.00
-200.00
-400.00
0.00
1.00
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2010
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2020
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2030
2.00
[s]
3.00
0.00
1.00
2.00
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2010
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2020
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2030
SX_wf ter
Date: 8/14/2011
Annex: /15
1.10
50.04
1.00
50.00
0.90
49.96
0.80
49.92
0.70
49.88
0.60
0.00
1.00
2.00
[s]
3.00
49.84
DIgSILENT
3 phase symmetrical fault at wind
farm interconnection cable,SX
scenario
0.00
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2010
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2020
BB150\BB150(1): voltage at 150KV bus,FZ 1ohm,2030
1.00
2.00
[s]
3.00
[s]
3.00
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2010
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2020
BB150\BB150(1): Frequency at 150KV bus,FZ 1ohm,2030
200.00
100.00
100.00
0.00
0.00
-100.00
-100.00
-200.00
-200.00
-300.00
-300.00
-400.00
0.00
1.00
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2010
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2020
BB150\CB0: Active power at 150KV bus,FZ 1ohm,2030
2.00
[s]
3.00
0.00
1.00
2.00
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2010
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2020
BB150\CB0: Reactive power at 150KV bus,FZ 1ohm,2030
SX_wf cable
Date: 8/14/2011
Annex: /14
1.20
50.10
1.00
50.00
0.80
49.90
0.60
49.80
0.40
49.70
0.20
0.00
1.00
2.00
[s]
3.00
49.60
DIgSILENT
3 phase symmetrical fault at
150KV bus,MR scenario
0.00
BB150\BB150(1): Voltage at 150KV bus;2010
BB150\BB150(1): Voltage at 150KV bus;2020
BB150\BB150(1): Voltage at 150KV bus;2030
1.00
2.00
[s]
3.00
2.00
[s]
3.00
BB150\BB150(1): 150 KV bus frequency;2010
BB150\BB150(1): 150 KV bus frequency;2020
BB150\BB150(1): 150 KV bus frequency;2030
2000.00
750.00
1500.00
500.00
1000.00
250.00
500.00
0.00
0.00
-250.00
-500.00
-500.00
-1000.00
-750.00
0.00
1.00
BB150\CB0: Total active power at 150KV bus;2010
BB150\CB0: Total active power at 150KV bus;2020
BB150\CB0: Total active power at 150KV bus;2030
2.00
[s]
3.00
0.00
1.00
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
[email protected] bus
Date: 8/14/2011
Annex: /11
1.10
DIgSILENT
3 phase symmetrical fault at
wind farm terminal,MR
scenario
50.04
1.00
50.02
0.90
50.00
0.80
49.98
0.70
49.96
0.60
0.50
0.00
1.00
2.00
[s]
3.00
49.94
0.00
BB150\BB150(1): Voltage at 150KV bus;2010
BB150\BB150(1): Voltage at 150KV bus;2020
BB150\BB150(1): Voltage at 150KV bus;2030
1.00
2.00
[s]
3.00
2.00
[s]
3.00
[email protected]_ter
Date: 8/14/2011
BB150\BB150(1): 150 KV bus frequency;2010
BB150\BB150(1): 150 KV bus frequency;2020
BB150\BB150(1): 150 KV bus frequency;2030
1500.00
600.00
1250.00
400.00
1000.00
200.00
750.00
0.00
500.00
-200.00
250.00
-400.00
0.00
1.00
BB150\CB0: Total active power at 150KV bus;2010
BB150\CB0: Total active power at 150KV bus;2020
BB150\CB0: Total active power at 150KV bus;2030
2.00
[s]
3.00
0.00
1.00
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
Annex: /12
1.10
DIgSILENT
3 phase symmetrical fault at
wind farm interconnection
cable,MR scenario
50.04
1.00
50.02
0.90
50.00
0.80
49.98
0.70
49.96
0.60
0.50
0.00
1.00
2.00
[s]
3.00
49.94
0.00
BB150\BB150(1): Voltage at 150KV bus;2010
BB150\BB150(1): Voltage at 150KV bus;2020
BB150\BB150(1): Voltage at 150KV bus;2030
1.00
2.00
[s]
3.00
2.00
[s]
3.00
BB150\BB150(1): 150 KV bus frequency;2010
BB150\BB150(1): 150 KV bus frequency;2020
BB150\BB150(1): 150 KV bus frequency;2030
1500.00
600.00
400.00
1200.00
200.00
900.00
0.00
600.00
-200.00
300.00
-400.00
-600.00
0.00
0.00
1.00
BB150\CB0: Total active power at 150KV bus;2010
BB150\CB0: Total active power at 150KV bus;2020
BB150\CB0: Total active power at 150KV bus;2030
2.00
[s]
3.00
0.00
1.00
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
BB150\CB0: Reactive Power/Terminal i in Mvar
[email protected]_cable
Date: 8/14/2011
Annex: /13
1.0000
50.005
0.9875
50.000
0.9750
49.995
0.9625
49.990
0.9500
49.985
0.9375
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.980
DIgSILENT
Increase in load at 150KV bus,GR
scenario
0.00
BB150\BB150_1: 150KV bus Voltage,2010
BB150\BB150_1: 150KV bus Voltage,2020
BB150\BB150_1: 150KV bus Voltage,2030
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150_1: 150KV bus Frequency,2010
BB150\BB150_1: 150KV bus Frequency,2020
BB150\BB150_1: 150KV bus Frequency,2030
0.975
500.00
0.950
375.00
0.925
250.00
0.900
125.00
0.875
0.00
0.850
0.825
-125.00
0.00
2.00
4.00
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2030
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: Active power ,150KV bus,2010
BB150\CB0: Active power ,150KV bus,2020
BB150\CB0: Active power ,150KV bus,2030
GR 150DLi
Date: 8/14/2011
Annex: /3
1.00
DIgSILENT
Decrease in load at 150KV bus,
GR scenario
50.004
50.000
0.99
49.996
0.98
49.992
0.97
49.988
0.96
0.95
49.984
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.980
0.00
BB150\BB150_1: 150KV bus Voltage,2010
BB150\BB150_1: 150KV bus Voltage,2020
BB150\BB150_1: 150KV bus Voltage,2030
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150_1: 150KV bus Frequency,2010
BB150\BB150_1: 150KV bus Frequency,2020
BB150\BB150_1: 150KV bus Frequency,2030
0.975
500.00
0.950
375.00
0.925
250.00
0.900
125.00
0.875
0.00
0.850
0.825
-125.00
0.00
2.00
4.00
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2030
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus Active power,2010
BB150\CB0: 150KV bus Active power,2020
BB150\CB0: 150KV bus Active power,2030
GR 150DLdec
Date: 8/14/2011
Annex: /5
1.00
DIgSILENT
Increase in load at EV bus(DC
load),GR scenario
50.004
50.000
0.99
49.996
0.98
49.992
0.97
49.988
0.96
0.95
0.0000
49.984
1998.4
3996.7
5995.1
7993.4
[ms]
9991.8
49.980
0.0000
BB150\BB150_1: 150KV bus voltage,2010
BB150\BB150_1: 150KV bus voltage,2020
BB150\BB150_1: 150KV bus voltage,2030
1998.4
3996.7
5995.1
7993.4
[ms]
9991.8
5995.1
7993.4
[ms]
9991.8
BB150\BB150_2: 150KV bus Frequency,2010
BB150\BB150_2: 150KV bus Frequency,2020
BB150\BB150_2: 150KV bus Frequency,2030
0.975
500.00
0.950
375.00
0.925
250.00
0.900
125.00
0.875
0.00
0.850
0.825
0.0000
1998.4
3996.7
BB11\BB11: 11KV bus voltage,2010
BB11\BB11: 11KV bus voltage,2020
BB11\BB11: 11KV bus voltage,2030
5995.1
7993.4
[ms]
9991.8
-125.00
0.0000
1998.4
3996.7
BB150\CB0: 150KV bus Active power,2010
BB150\CB0: 150KV bus Active power,2020
BB150\CB0: 150KV bus Active power,2030
GR EVi
Date: 8/14/2011
Annex: /6
1.012
50.001
1.008
49.998
1.004
49.995
1.000
49.992
0.996
49.989
0.992
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.986
-0.0000
BB150\BB150(1): 150KV bus Voltage,2010
BB150\BB150(1): 150KV bus Voltage,2020
BB150\BB150(1): 150KV bus Voltage,2030
DIgSILENT
Increase in load at 150KV bus,MR
scenario
1.9987
3.9974
5.9961
7.9948
[s]
9.9935
5.9961
7.9948
[s]
9.9935
BB150\BB150(1): 150KV bus frequency,2010
BB150\BB150(1): 150KV bus frequency,2020
BB150\BB150(1): 150KV bus frequency,2030
1.03
1600.00
1.02
1400.00
1.01
1200.00
1.00
1000.00
0.99
800.00
0.98
0.97
-0.0000
1.9987
3.9974
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2030
5.9961
7.9948
[s]
9.9935
600.00
-0.0000
1.9987
3.9974
BB150\CB0: 150KV bus active power,2010
BB150\CB0: 150KV bus active power,2020
BB150\CB0: 150KV bus active power,2030
MR150DLi
Date: 8/14/2011
Annex: /3
1.011
50.008
1.008
50.004
1.005
50.000
1.002
49.996
0.999
49.992
0.996
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.988
-0.0000
BB150\BB150(1): 150KV bus Voltage,2010
BB150\BB150(1): 150KV bus Voltage,2020
BB150\BB150(1): 150KV bus Voltage,2030
1500.00
1.0125
1250.00
1.0000
1000.00
0.9875
750.00
0.9750
500.00
1.9987
3.9974
BB11\BB11: Voltage, Magnitude in p.u.
BB11\BB11: Voltage, Magnitude in p.u.
BB11\BB11: Voltage, Magnitude in p.u.
1.9987
3.9974
5.9961
7.9948
[s]
9.9935
5.9961
7.9948
[s]
9.9935
BB150\BB150(1): 150KV bus frequency,2010
BB150\BB150(1): 150KV bus frequency,2020
BB150\BB150(1): 150KV bus frequency,2030
1.0250
0.9625
-0.0000
DIgSILENT
Decrease in load at 150KV bus,
MR scenario
5.9961
7.9948
[s]
9.9935
250.00
-0.0000
1.9987
3.9974
BB150\CB0: Total Active Power/Terminal i in MW
BB150\CB0: Total Active Power/Terminal i in MW
BB150\CB0: Total Active Power/Terminal i in MW
MR150DLdec
Date: 8/14/2011
Annex: /4
1.012
50.001
1.008
49.998
1.004
49.995
1.000
49.992
0.996
49.989
0.992
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.986
-0.0000
BB150\BB150(1): 150KV bus Voltage,2010
BB150\BB150(1): 150KV bus Voltage,2020
BB150\BB150(1): 150KV bus Voltage,2030
DIgSILENT
Increase in load at EV bus(DC
load) MR scenario
1.9984
3.9967
5.9951
7.9934
[s]
9.9918
5.9951
7.9934
[s]
9.9918
BB150\BB150(1): 150KV bus frequency,2010
BB150\BB150(1): 150KV bus frequency,2020
BB150\BB150(1): 150KV bus frequency,2030
1.03
1600.00
1.02
1400.00
1.01
1200.00
1.00
1000.00
0.99
800.00
0.98
0.97
-0.0000
1.9984
3.9967
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2030
5.9951
7.9934
[s]
9.9918
600.00
-0.0000
1.9984
3.9967
BB150\CB0: 150KV bus active power,2010
BB150\CB0: 150KV bus active power,2020
BB150\CB0: 150KV bus active power,2030
MR_EVi
Date: 8/14/2011
Annex: /2
1.26
DIgSILENT
Increase in load at 150KV bus,NS
scenario
50.004
50.002
1.24
50.000
1.22
49.998
1.20
49.996
1.18
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.994
0.00
BB150\BB150(1): 150KV bus voltage in pu,2010
BB150\BB150(1): 150KV bus voltage in pu,2020
BB150\BB150(1): 150KV bus voltage in pu,2030
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150(1): 150KV bus frequency,2010
BB150\BB150(1): 150KV bus frequency,2020
BB150\BB150(1): 150KV bus frequency,2030
1.21
400.00
1.20
300.00
1.19
200.00
1.18
100.00
1.17
0.00
1.16
1.15
-100.00
0.00
2.00
4.00
BB11\BB11: 11KV bus frequency,2010
BB11\BB11: 11KV bus frequency,2020
BB11\BB11: 11KV bus frequency,2030
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus active power,2010
BB150\CB0: 150KV bus active power,2020
BB150\CB0: 150KV bus active power,2030
Nstr_150DL
Date: 8/14/2011
Annex: /1
1.26
DIgSILENT
Decrease in load at 150KV bus,
NS scenario
50.002
50.001
1.24
50.000
1.22
49.999
1.20
49.998
1.18
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.997
0.00
BB150\BB150(1): 150KV bus voltage in pu,2010
BB150\BB150(1): 150KV bus voltage in pu,2020
BB150\BB150(1): 150KV bus voltage in pu,2030
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150(1): 150KV bus frequency,2010
BB150\BB150(1): 150KV bus frequency,2020
BB150\BB150(1): 150KV bus frequency,2030
1.26
400.00
1.24
300.00
1.22
200.00
1.20
100.00
1.18
0.00
1.16
-100.00
0.00
2.00
4.00
BB11\BB11: 11KV bus frequency,2010
BB11\BB11: 11KV bus frequency,2020
BB11\BB11: 11KV bus frequency,2030
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus active power,2010
BB150\CB0: 150KV bus active power,2020
BB150\CB0: 150KV bus active power,2030
Nstr_150DLdec
Date: 8/14/2011
Annex: /2
1.26
50.0001
1.24
50.0000
1.22
49.9999
1.20
49.9998
1.18
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.9997
DIgSILENT
Increase in load at EV bus(DC
load),NS scenario
0.00
BB150\BB150(1): 150KV bus Voltage in pu,2010
BB150\BB150(1): 150KV bus Voltage in pu,2020
BB150\BB150(1): 150KV bus Voltage in pu,2030
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150(1): 150KV bus frequency,2010
BB150\BB150(1): 150KV bus frequency,2020
BB150\BB150(1): 150KV bus frequency,2030
1.26
400.00
1.24
300.00
1.22
200.00
1.20
100.00
1.18
0.00
1.16
-100.00
0.00
2.00
4.00
BB11\BB11: 11KV bus frequency,2010
BB11\BB11: 11KV bus frequency,2020
BB11\BB11: 11KV bus frequency,2030
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus active power,2010
BB150\CB0: 150KV bus active power,2020
BB150\CB0: 150KV bus active power,2030
Nstr_EVloadinc
Date: 8/15/2011
Annex: /6
1.0103
DIgSILENT
Increase in load at 150KV bus,SX
scenario
50.001
1.0102
50.000
1.0101
1.0100
49.999
1.0099
49.998
1.0098
1.0097
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.997
0.00
BB150\BB150(1): 150KV bus Voltage,2010
BB150\BB150(1): 150KV bus Voltage,2020
BB150\BB150(1): 150KV bus Voltage,2020
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150(1): 150KV bus Frequency,2010
BB150\BB150(1): 150KV bus Frequency,2020
BB150\BB150(1): 150KV bus Frequency,2030
1.012
100.00
1.011
80.00
1.010
60.00
1.009
40.00
1.008
20.00
0.00
2.00
4.00
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2020
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus Active power,2010
BB150\CB0: 150KV bus Active power,2020
BB150\CB0: 150KV bus Active power,2030
SX_150DLi
Date: 8/14/2011
Annex: /7
1.0102
DIgSILENT
Decrease in load at 150KV bus,
SX scenario
50.003
1.0101
50.002
1.0100
50.001
1.0099
50.000
1.0098
1.0097
0.00
2.00
4.00
6.00
8.00
[s]
10.00
49.999
0.00
BB150\BB150(1): 150KV bus Voltage,2010
BB150\BB150(1): 150KV bus Voltage,2020
BB150\BB150(1): 150KV bus Voltage,2020
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150(1): 150KV bus Frequency,2010
BB150\BB150(1): 150KV bus Frequency,2020
BB150\BB150(1): 150KV bus Frequency,2030
1.012
120.00
100.00
1.011
80.00
1.010
60.00
1.009
40.00
1.008
20.00
0.00
2.00
4.00
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2020
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus Active power,2010
BB150\CB0: 150KV bus Active power,2020
BB150\CB0: 150KV bus Active power,2030
SX_150DLdec
Date: 8/14/2011
Annex: /6
1.010000
DIgSILENT
Increase in load at EV bus (DC
load),SX scenario
5.000E+1
5.000E+1
1.009998
5.000E+1
5.000E+1
1.009996
5.000E+1
1.009994
5.000E+1
1.009992
0.00
2.00
4.00
6.00
8.00
[s]
10.00
5.000E+1
0.00
BB150\BB150(1): 150KV bus Voltage,2010
BB150\BB150(1): 150KV bus Voltage,2020
BB150\BB150(1): 150KV bus Voltage,2020
2.00
4.00
6.00
8.00
[s]
10.00
6.00
8.00
[s]
10.00
BB150\BB150(1): 150KV bus Frequency,2010
BB150\BB150(1): 150KV bus Frequency,2020
BB150\BB150(1): 150KV bus Frequency,2030
1.012
100.00
87.50
1.011
75.00
1.010
62.50
50.00
1.009
37.50
1.008
25.00
0.00
2.00
4.00
BB11\BB11: 11KV bus Voltage,2010
BB11\BB11: 11KV bus Voltage,2020
BB11\BB11: 11KV bus Voltage,2020
6.00
8.00
[s]
10.00
0.00
2.00
4.00
BB150\CB0: 150KV bus Active power,2010
BB150\CB0: 150KV bus Active power,2020
BB150\CB0: 150KV bus Active power,2030
SX_EVi
Date: 8/14/2011
Annex: /9
APPENDIX E
Thesis proposal
Thesis proposal and objective statement addendum “A study to evaluate the required changes in the Transmission grid in order to facilitate the developments of smart grids” Foreword The purpose of this report is to explain the modeling strategies, studies to be carried out and expected outcomes of the project in conjunction with the thesis statement already submitted. Additionally, in this document the remarks made during the meeting with KEMA executives (R. de Groot, R.de Graff and P.Vaessen) have been taken into consideration. 1.0 Introduction The transmission system is expected to expand in the years to come in order to cater to the increasing demand in the Netherlands in the years between 2010 and 2030 according to the Vision 2030 document and the quality and capacity plans drawn by TenneT. However the effect of several smart grid entities such as PV, EV and CHP plants at the distributed generation is not investigated in detail this report as this report simulates scenarios mostly considering the following: 1) Effect of power flows due to interconnections with the neighboring countries; 2) Effect of increased wind power production in conjunction with conventional power production along the coastal regions in the Netherlands in the years to come 3) Effect of storage facilities in the Netherlands as a means to accommodate the uncertainties of wind power production With the above premise it becomes necessary to understand the behavior of the HV grid when faced with the possibility of distributed power production and bilateral power flows at the distribution level bus. It is noted here that the market conditions for the power production at the distributed generation level is expected to follow a single tariff responsive structure, i.e the changes in frequency due to market conditions are assumed to be fixed. “The required changes in the transmission systems...” Transmission systems of the future are foreseen to have the following technical requirements to be incorporated into the grid according to the vision2030 document: 1) HVDC links and FACTS links with Denmark, Norway, Germany and UK 2) Ability for power flow balancing between the different parts of the country in future years In addition to the above the grid shall also have to face the following technical requirements: 3) Ability to maintain the system stability in face of fluctuations imposed by a) Low inertia of wind power systems b) Frequency regulation between large loads which occur on an around the clock basis as opposed to the almost daytime patterns of present day systems The above effects of the future connections need to be viewed in the purview of the changes foreseen in the Ijmuiden, Emshaven, Borselle and Masvlakte substations as mentioned in the vision 2030 document for power flows in the NL for considerations of loads, generation and power import/export scenarios. “..in order to facilitate the developments of smart grids…” While smart grids are definitely the way forward, they are not the destination. Smart grid concepts entail actions at all levels from generation to the end consumer via distribution and transmission levels, however the focus in this project is on the smart grid entities in particular the ones pertaining to the distributed generation (DG). Sources of distributed generation are defined as those which [3]: a) Distributed generation is connected to the distribution network (usually at voltage levels of 110 kV and lower) and is often operated by independent power producers, often consuming a significant share of power themselves. The large‐
scale units are connected to high voltage grid levels and operated by incumbent utilities (sometimes a joint venture with a large industrial consumer). DG has, as it is connected to lower voltage networks, to cope with a number of specific network issues that are of less relevance to centralized generation capacity. b) A second distinction is the location of the electricity supply. DG is usually generated close to the source and not so close to the demand site. Especially wind power is usually generated remote from the more populated regions. The consequence is that wind power plants are connected to weak (low voltage) electricity grids, i.e. grids with low consumption, having all kinds of impacts on the functionality of the distribution grid. Combined heat and power (CHP) is usually connected closer to the customer but often primarily sized to local heat demand and not to local electricity demand. c) A third aspect is the intermittent nature of electricity supply from Renewable energy sources (RES) and CHP. In contrast with electricity supply from conventional large power plants the electricity supply from wind and photovoltaic (PV) installations is far less controllable due to influence on weather conditions. But also the controllability of power supply from CHP and small hydro‐power might be poor, because of the dependency on heat demand or water flow respectively. The major technical problems envisaged with the incorporation of distributed generation sources are summarized as follows [3]: 1) Voltage management; 2) System fault level issues in urban areas 3) Voltage rise from station to station LV grid during low load periods 4) In case of wind farms and roof top PV systems impact of decreasing inertia on the grid stability (this is assuming scenarios that consumer response to tariff regulations in the EV power sector is at a compliance of 10% and 50% ) As a consequence of above the following effects are seen on the conventional coal and gas based generation a) Effects on the generator stability b) Effects on dynamic behavior of generators The possible effects of the above changes on the transmission system are summarized as follows: a) Ability of the system to comply to fault clearance time regulations b) Time span of voltage stabilizations and their adherence to the current norms‐It is the rise of distributed generation resources a threat to the system in terms of non compliance per existing regulations? 2.0 Research questions Q.1 what are the effects to be studied on the transmission network? Q.2 What is the philosophy for network simplification, i.e, what is the best way to convert the pan‐Netherlands model (with expected power flows in the Vision 2030 document) to a smaller, compact model which can reflect your changes? Q.3 How to link the impacts of the system turbulence in voltage power and frequency to the network showing the required changes in the transmission grid per the vision 2030? Q.4 How to consider systems consider the effects of systems connected to the 11 KV bus (i.e wind PV and EV’s ) to see their impacts on the 150 KV grid(considering the majority of them to be LV systems)? Q.5 what are the consequences of the smart grid entities switching on and off with regard to the grid code requirements, under normal and worst case conditions? What is the impact on the grid under these conditions? Q.6 How to consider the effects of distributed generation into account in the model? As a further the following aspects also need to be analyzed: a) System bus voltage profile and power flow study during short circuit events (assuming a particular power flow condition at a particular point of the day) considering fault ride through behavior of power electronic based DG systems b) In an event when a fault occurs in the bus under consideration, is the system able to maintain stability (with and without the use of new technologies)? Does the system stability conform to the standards of current regulations? 3.0 Modelling strategy In this stage the modelling proceeds as follows at this point: 1) Modeling of the high voltage grid The foremost feature in the modeling of the high voltage grid is that while the network has to be detailed enough to show the transmission lines which indicate the distributed nature of the generation resources and the loads (i.e the 11 KV bus/substation) the HV grid needs to be reduced to a single bus which shows the properties of the rest of the grid under a) The scenario under consideration b) The power flows to be considered under each of the scenarios (in conjunction with the expected power flows from the vision 2030 document). For example if the following network in fig.1 is being used for the purpose of simulating the green revolution scenario in the bus at Borselle the LV loads could be connected to the network at Borselle so as to study the influence of the changing of the consumer behavior pattern at this bus and the rest of the system could be represented as a single grid to represent the short circuit levels for this particular scenario. Load flow calculations performed prior to running the simulation could indicate the amount of power flow to and from the bus so that the capacity of the grid connected to the substation can be determined. With the load flow calculations having been performed and the SC capacity of the grid representation known the network reduces to one of the rest of the network connected to the 150KV grid and the LV grid connected to the 150 KV grid at one of the outgoing bays. The system is analyzed further for the voltage settling time and power flow dynamics and investigated for the system stability. To further the investigation it is now possible to study the effects of the system’s frequency variations at the 150 KV bus during the switching actions which would occur at customer switching (which can be assumed to be an extension of a proposed market scenario). Effects of the system’s reduced inertia (owing to increased wind power and PV power production) can be observed through the calculation of equivalent inertia of the connected grid system [4] taken into consideration during the stability studies performed at the 150 KV bus. With the changes having been made the system now reduces to one shown in the fig.2. The behavior of the HV grid when connected to smart grid entities can now be studied at this bus. Emshaven Ijmuiden Mastvlaakte Borselle Fig.1 Approx. representation of the Dutch grid (example) International import/export
380 KV grid 150KV substation Conv. generation wind
Conventional loads
LV distribution bus
Note:Transformers not depicted in figure
Fig.2 Grid reduced for Borselle in green revolution scenario for the year 2010 (example) 1.1 An alternate approach An alternate approach could be to use the existing load flow models for the Netherlands and modify them to reflect a single HV grid entity which can further be connected to HV bus under consideration. Conversion of the static load flow model used for Load flow to a dynamic model was carried out in [4] by J. Bos, it is thus possible to change the existing model to reflect the changes in the grid in the future years 2020 and 2030.It is to be noted here that the model presented by J.Bos is in itself a simplified model, however the effects of the smart grids on the HV grid can be sufficiently studied by making modifications on the existing model. 2) Modeling of the smart grid entities With the above model prepared Powerfactory software can be used to determine the variable time effects of generation of smart grid entities connected to the LV bus. As an example the following figure shows two scenarios of an EV charging load behavior. Fig 3 shows the scenario when the compliance to pricing (between 12Am to 4 AM) is followed closely by the EV consumers. The various color curves indicate the expected number of vehicles to be fully EV in the scenario [2].We see in this case the afternoon peak demand is not exceeded by the EV capacity. However since the LV grid is connected to the HV grid the scenario of wind power availability in the night feeding to this demand can be analyzed. Further the aspects of system stability, voltage profile at the 150 KV bus and fault behavior can be studied using this behavior. Fig.3 Fig.4 In fig.4 a similar plot is available as in fig.3, however in this case the compliance to charging hours is not made mandatory by the DSO. We see that the charging profiles change considerably and further that the demand at 7 PM to 10 PM (approx) exceeds the afternoon peak demand. This scenario could be used as a worst case scenario for the simulation of EV power consumption and the effects of this load profile could be studied in a case when the conventional power production is reduced and the system power flows consist mainly of interconnections with the neighboring countries (via the 380 KV grid), power production from wind farms, etc. It is possible to have time specific events in the Powerfactory software for generation and load. Using this feature the above situation can be analyzed for its impacts on the 150 KV bus. 4.0 Expected outcomes With the models completed it would be possible to see the effects of the smart grids on the transmission network in detail. In particular aspects related to system stability, dynamic behavior and compliance to grid connection (with regard to voltage stabilization time and power swing settling times) can be studied in detail at the 150 KV bus. In addition it would be possible to study the effects of frequency deviation on the 150 KV bus. With the above analysis it is possible to determine which technologies are the most required in a particular scenario to realize a stable system which is compliant to the present day grid connection and operation standards when connected to smart grid entities. For example it is possible that owing to the increased EV loads in the green revolution scenario it is useful to implement dynamic rating of overhead conductors in the grid, whereas the benefits due to adoption of the PMU and using the subsequent data for control of the system is not a useful feature. In the market strongholds or the money rules scenario it may be the exact opposite of the above. The outcome can also be utilized to investigate the possibility of V2G connections in the local bus and the effects of such an implementation on the 150 KV grids. References [1] “Vision 2030”, TenneT TSO BV, Arnhem Feb. 2008 [2] “Impact of Widespread Electric Vehicle Adoption on the Electrical Utility Business – Threats and Opportunities” Center for Entrepreneurship & Technology (CET), UCB, Technical Brief aug.2009, Nicholas DeForest, Jamie Funk, Adam Lorimer, Boaz Ur,Ikhlaq Sidhu (PI), Phil Kaminsky, Burghardt Tenderich [3] “Regulatory Improvements for Effective Integration of Distributed Generation into Electricity Distribution Networks” Martin Scheepers (ECN),et.al, Nov.2007 [4] “Connection of large‐scale wind power generation to the Dutch electrical power system and its impact on dynamic behavior”, Jorrit A. Bos, Master’s thesis, TU Delft ,Aug 2008 
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement