STM32L063C8 STM32L063R8 Ultra-low-power 32-bit MCU ARM®-based Cortex®-M0+, 64KB Flash, 8KB SRAM, 2KB EEPROM, LCD, USB, ADC, DAC, AES Datasheet - production data Features • Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 to 105/125 °C temperature range – 0.27 µA Standby mode (2 wakeup pins) – 0.4 µA Stop mode (16 wakeup lines) – 0.8 µA Stop mode + RTC + 8 KB RAM retention – 139 µA/MHz Run mode at 32 MHz – 3.5 µs wakeup time (from RAM) – 5 µs wakeup time (from Flash) LQFP64 10x10 mm LQFP48 7x7 mm – Support contrast adjustment – Support blinking mode – Step-up converted on board • Rich Analog peripherals (down to 1.8 V) – 12-bit ADC 1.14 Msps up to 16 channels – 12-bit 1 channel DAC with output buffers – 2x ultra-low-power comparators (window mode and wake up capability) • Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors • 7-channel DMA controller, supporting ADC, SPI, I2C, USART, DAC, Timers, AES • 8x peripherals communication interface • 1x USB 2.0 crystal-less, battery charging detection and LPM • 2x USART (ISO 7816, IrDA), 1x UART (low power) • 2x SPI 16 Mbits/s • 2x I2C (SMBus/PMBus) • 9x timers: 1x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x SysTick, 1x RTC, 1x 16-bit basic for DAC, and 2x watchdogs (independent/window) • CRC calculation unit, 96-bit unique ID Pre-programmed bootloader – USART, SPI supported • True RNG and firewall protection • Development support – Serial wire debug supported • • Up to 51 fast I/Os (45 I/Os 5V tolerant) • Memories – 64 KB Flash with ECC – 8 KB RAM – 2 KB of data EEPROM with ECC – 20-byte backup register – Sector protection against R/W operation • • • • Core: ARM® 32-bit Cortex®-M0+ with MPU – From 32 kHz up to 32 MHz max. – 26 DMIPS peak (Dhrystone 2.1) Reset and supply management – Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds – Ultralow power POR/PDR – Programmable voltage detector (PVD) Clock sources – 1 to 25 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – High speed internal 16 MHz factory-trimmed RC (+/- 1%) – Internal low-power 37 kHz RC – Internal multispeed low-power 65 kHz to 4.2 MHz RC – Internal self calibration of 48 MHz RC for USB – PLL for CPU clock • Hardware Encryption Engine AES 128-bit All packages are ECOPACK®2 • LCD driver for up to 8×28 segments April 2014 This is information on a product in full production. DocID025660 Rev 2 1/120 www.st.com Contents STM32L063x8 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 ARM® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 24 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.9 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10 Liquid crystal display (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12.1 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.12.2 VLCD voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.13 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.14 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 28 3.15 System configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18.1 2/120 General-purpose timers (TIM2, TIM21 and TIM22) . . . . . . . . . . . . . . . . 30 DocID025660 Rev 2 STM32L063x8 3.19 Contents 3.18.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.18.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.18.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.18.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.18.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.19.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.19.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 33 3.19.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 33 3.19.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 34 3.19.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.20 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.21 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 35 3.22 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 54 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 DocID025660 Rev 2 3/120 4 Contents 7 STM32L063x8 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.16 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.18 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.19 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.21 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.1 7.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.1.1 LQFP64 10 x 10 mm low profile quad flat package . . . . . . . . . . . . . . . 111 7.1.2 LQFP48 7 x 7 mm low profile quad flat package . . . . . . . . . . . . . . . . . 114 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4/120 DocID025660 Rev 2 STM32L063x8 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Ultra-low-power STM32L063x8 device features and peripheral counts . . . . . . . . . . . . . . . 10 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32L0xX peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Capacitive sensing GPIOs available on STM32L063x8 devices . . . . . . . . . . . . . . . . . . . . 29 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32L063x8 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 STM32L063x8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Alternate function port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Alternate function port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Alternate function port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate function port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate function port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Current consumption in Run mode, code with data processing running from Flash. . . . . . 58 Current consumption in Run mode, code with data processing running from RAM . . . . . . 60 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Current consumption in Low-power Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Current consumption in Low-power Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 69 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 DocID025660 Rev 2 5/120 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. 6/120 STM32L063x8 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 83 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 112 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 115 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 STM32L063x8 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 DocID025660 Rev 2 STM32L063x8 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. STM32L063x8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32L063x8 LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L063x8 LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 IDD vs VDD, at TA= 25/55/ 85/105 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 IDD vs VDD, at TA= 25/55/ 85/105 °C, Stop mode with RTC enabled and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IDD vs VDD, at TA= 25/55/85/105 °C, Stop mode with RTC disabled, all clocks OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 78 VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 111 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 114 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DocID025660 Rev 2 7/120 7 Introduction 1 STM32L063x8 Introduction The ultra-low-power STM32L063x8 family includes devices in 48- and 64-pin packages. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L063x8 microcontrollers suitable for a wide range of applications: • Medical and hand-held equipment • Application control and user interface • PC peripherals, gaming, GPS and sport equipment • Alarm systems, wired and wireless sensors, Video intercom • Utility metering This STM32L063x8 datasheet should be read in conjunction with the STM32L0x3xx reference manual (RM0367). For information on the ARM® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical Reference Manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family. 8/120 DocID025660 Rev 2 STM32L063x8 2 Description Description The ultra-low-power STM32L063x8 family incorporates the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), highspeed embedded memories (64 Kbytes of Flash program memory, 2 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. The STM32L063x8 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. The STM32L063x8 devices offer several analog features, one 12-bit ADC, one DAC, two ultra-low-power comparators, AES, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. Moreover, the STM32L063x8 devices embed standard and advanced communication interfaces: up to two I2Cs, two SPIs, two I2S, three USARTs and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application. They also include a real-time clock and a set of backup registers that remain powered in Standby mode. Finally, their integrated LCD controller has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage. The ultra-low-power STM32L063x8 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +105 °C temperature range, extended to 125 °C in low-power dissipation state. A comprehensive set of power-saving modes allows the design of low-power applications. DocID025660 Rev 2 9/120 35 Description 2.1 STM32L063x8 Device overview Table 1. Ultra-low-power STM32L063x8 device features and peripheral counts Peripheral STM32L063C8 STM32L063R8 Flash (Kbytes) 64 Data EEPROM (Kbytes) 2 RAM (Kbytes) 8 AES 1 Timers General-purpose 3 Basic 1 LPTIMER 1 1/1/1/1 RTC/SYSTICK/IWDG/WWDG 2/(1) SPI/(I2S) Communication interfaces I2C 2 USART 2 LPUART 1 1/(1) USB/(USB_VDD) 37(1) GPIOs 1/1/1/1/1 Clocks: HSE/LSE/HSI/MSI/LSI 1 1 12-bit DAC Number of channels 1 1 4x18(1) 4x32 or 8x28(1) 2 Comparators 17(1) Capacitive sensing channels 24(1) 32 MHz Max. CPU frequency Operating voltage 1 16(1) 1 10(1) 12-bit synchronized ADC Number of channels LCD COM x SEG 51(1) 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option Operating temperatures Ambient temperature: –40 to +105 °C Junction temperature: –40 to +125 °C Packages LQFP48 LQFP64 1. TFBGA64 has one GPIO, one LCD COM x SEG, one ADC input and one capacitive sensing channel less than LQFP64. 10/120 DocID025660 Rev 2 STM32L063x8 Description Figure 1. STM32L063x8 block diagram 7HPS VHQVRU 6:' 6:' )/$6+ ((3520 %227 ),5(:$// &257(;0&38 )PD[0+] 5$0 038 '%* '0$ 19,& (;7, $ 3 % $'& $,1[ 63, 0,62026, 6&.166 86$57 5;7;576 &76&. 7,0 FK 7,0 FK %5,'*( &203 ,13,10287 &203 ,13,10287 %5,'*( /37,0 ,1,1 (75287 5$0. 86%)6 7,0 '$& ::'* ,& 6&/6'$ 60%$ ,& 6&/6'$ 60%$ 76& &5& *3,23257$ 51* 3%>@ *3,23257% $(6 3&>@ *3,23257& 3'>@ *3,23257' 3+>@ 26&B,1 26&B287 $+%)PD[0+] 3$>@ $ 3 % *3,23257+ +6( +6,0 +6,0 &56 /6, ,:'* 3// 06, 57& '3'02( &56B6<1& 9''B86% 287 86$57 5;7;576 &76&. /38$57 5;7;576 &76 63,,6 0,620&. 026,6' 6&.&.166 :6 7,0 FK /&' &20[6(*[ 9UDLO[ %&.35(* 5(6(7&/. :.83[ 26&B,1 26&B287 /6( 39'B,1 95()B287 308 1567 9''$ 9'' 5(*8/$725 06Y9 DocID025660 Rev 2 11/120 35 Description 2.2 STM32L063x8 Ultra-low-power device continuum The ultra-low-power family offers a large choice of core and features, from proprietary 8-bit core to up ARM® Cortex®-M3, including ARM® Cortex®-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultralow-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power Run mode, operational amplifiers, AES 128-bit, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements. 12/120 DocID025660 Rev 2 STM32L063x8 Functional overview 3 Functional overview 3.1 Low-power modes The ultra-low-power STM32L063x8 support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply. There are three power consumption ranges: • Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz • Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz • Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. • Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited. • Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on. • Stop mode with RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event DocID025660 Rev 2 13/120 35 Functional overview STM32L063x8 (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events. • Stop mode without RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events. • Standby mode with RTC The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop mode. Table 2. Functionalities depending on the operating power supply range Functionalities depending on the operating power supply range Operating power supply range 14/120 DAC and ADC operation Dynamic voltage scaling range I/O operation USB VDD = 1.65 to 1.71 V Not functional Range 2 or range 3 Degraded speed performance Not functional VDD = 1.71 to 1.8 V(1) Not functional Range 1, range 2 or range 3 Degraded speed performance Functional(2) DocID025660 Rev 2 STM32L063x8 Functional overview Table 2. Functionalities depending on the operating power supply range (continued) Functionalities depending on the operating power supply range Operating power supply range DAC and ADC operation Dynamic voltage scaling range I/O operation USB VDD = 1.8 to 2.0 V(1) Conversion time Range1, range 2 up to 1.14 Msps or range 3 Degraded speed performance Functional(2) VDD = 2.0 to 2.4 V Conversion time Range 1, range 2 up to or range 3 1.14 Msps Full speed operation Functional(2) VDD = 2.4 to 3.6 V Conversion time Range 1, range 2 up to or range 3 1.14 Msps Full speed operation Functional(2) 1. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz. 2. To be USB compliant from the I/O voltage standpoint, the minimum VDD_USB is 3.0 V. DocID025660 Rev 2 15/120 35 Functional overview STM32L063x8 Table 3. CPU frequency range depending on dynamic voltage scaling CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 32 kHz to 4.2 MHz (0ws) Range 3 Table 4. Functionalities depending on the working mode (from Run/active down to standby) (1) Standby Run/Active Sleep CPU Y -- Y -- -- -- Flash memory O O O O -- -- RAM Y Y Y Y Y -- Backup registers Y Y Y Y Y Y EEPROM O O O O -- -- Brown-out reset (BOR) O O O O O DMA O O O O -- Programmable Voltage Detector (PVD) O O O O O O - Power-on/down reset (POR/PDR) Y Y Y Y Y Y Y High Speed Internal (HSI) O O -- -- (2) -- High Speed External (HSE) O O O O -- -- Low Speed Internal (LSI) O O O O O O Low Speed External (LSE) O O O O O O Multi-Speed Internal (MSI) O O Y Y -- -- Inter-Connect Controller Y Y Y Y Y -- IPs 16/120 DocID025660 Rev 2 Lowpower sleep Stop Lowpower run Wakeup capability O Wakeup capability O O -- Y STM32L063x8 Functional overview Table 4. Functionalities depending on the working mode (from Run/active down to standby) (continued)(1) Standby Run/Active Sleep RTC O O O O O O O RTC Tamper O O O O O O O O Auto WakeUp (AWU) O O O O O O O O LCD O O O O O USB O O -- -- -- O -- (3) O -- O -- IPs Lowpower sleep Stop Lowpower run Wakeup capability USART O O O O O LPUART O O O O O(3) SPI O O O O -- Wakeup capability -- -- I2C O O O O O(4) ADC O O O O -- -- DAC O O O O O -- Temperature sensor O O O O O -- Comparators O O O O O 16-bit timers O O O O -- LPTIMER O O O O O O IWDG O O O O O O WWDG O O O O -- -- Touch sensing controller (TSC) O O -- -- -- -- SysTick Timer O O O O GPIOs O O O O 0 µs 0.36 µs 3 µs 32 µs Wakeup time to Run mode O O -- --- O O -O O 3.5 µs 2 pins 50 µs 0.28 µA (No 0.4 µA (No RTC) VDD=1.8 V RTC) VDD=1.8 V Consumption VDD=1.8 to 3.6 V (Typ) Down to 140 µA/MHz (from Flash) Down to 37 µA/MHz (from Flash) Down to 8 µA 0.65 µA (with 0.8 µA (with Down to RTC) VDD=1.8 V RTC) VDD=1.8 V 4.5 µA 0.4 µA (No 0.29 µA (No RTC) VDD=3.0 V RTC) VDD=3.0 V 0.85 µA (with 1 µA (with RTC) RTC) VDD=3.0 V VDD=3.0 V 1. Legend: “Y” = Yes (enable). “O” = Optional can be enabled/disabled by software) “-” = Not available DocID025660 Rev 2 17/120 35 Functional overview STM32L063x8 2. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore. 3. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start.To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock. 4. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception. 3.2 Interconnect matrix Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes. Table 5. STM32L0xX peripherals interconnect matrix Lowpower sleep Stop Y Y - Y Y Y Y Y Y Y Y - Timer triggered by Auto wake-up - - - - - LPTIM Timer triggered by RTC event Y Y Y Y Y All clock source TIMx Clock source used as input channel for RC measurement and trimming Y Y Y Y - USB CRS/HSI48 the clock recovery system trims the HSI48 based on USB SOF Y Y - - - TIMx Timer input channel and trigger Y Y Y Y - LPTIM Timer input channel and trigger Y Y Y Y Y ADC,DAC Conversion trigger Y Y Y Y - Interconnect source Interconnect action Run TIM2,TIM21, TIM22 Timer input channel, trigger from analog signals comparison Y Y LPTIM Timer input channel, trigger from analog signals comparison Y TIMx Timer triggered by other timer TIM21 COMPx TIMx RTC GPIO 18/120 LowSleep power run Interconnect destination DocID025660 Rev 2 STM32L063x8 3.3 Functional overview ARM® Cortex®-M0+ core with MPU The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including: • a simple architecture that is easy to learn and program • ultra-low power, energy-efficient operation • excellent code density • deterministic, high-performance interrupt handling • upward compatibility with Cortex-M processor family • platform security robustness, with integrated Memory Protection Unit (MPU). The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers. Owing to its embedded ARM core, the STM32L063x8 are compatible with all ARM tools and software. Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L063x8 embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels. The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC: • includes a Non-Maskable Interrupt (NMI) • provides zero jitter interrupt option • provides four interrupt priority levels The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode. This hardware block provides flexible interrupt management features with minimal interrupt latency. DocID025660 Rev 2 19/120 35 Functional overview STM32L063x8 3.4 Reset and supply management 3.4.1 Power supply schemes 3.4.2 • VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 1.8 V when the ADC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. • VDD_USB = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication VDD_USB must be above 3.0V. If USB is not used this pin must be tied to VDD. Power supply supervisor The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. Two versions are available: • The version with BOR activated at power-on operates between 1.8 V and 3.6 V. • The other version without BOR operates between 1.65 V and 3.6 V. After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on). When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits the POR area. Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up. The devices feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 20/120 DocID025660 Rev 2 STM32L063x8 3.4.3 Functional overview Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. 3.4.4 • MR is used in Run mode (nominal regulation) • LPR is used in the Low-power run, Low-power sleep and Stop modes • Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR). Boot modes At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options: • Boot from Flash memory • Boot from System memory • Boot from embedded RAM The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1(PA9, PA10), USART2(PA2, PA3), SPI1(PA4, PA5, PA6, PA7) or SPI2(PB12, PB13, PB14, PB15). See STM32™ microcontroller system memory boot mode AN2606 for details. 3.5 Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching Clock sources can be changed safely on the fly in Run mode through a configuration register. • Clock management To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source Three different clock sources can be used to drive the master clock SYSCLK: – 1-24 MHz high-speed external crystal (HSE), that can supply a PLL – 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). DocID025660 Rev 2 21/120 35 Functional overview STM32L063x8 When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy. • Auxiliary clock source Two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock: • – 32.768 kHz low-speed external crystal (LSE) – 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. RTC and LCD clock sources The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock. • USB clock source A 48 MHz clock trimmed through the USB SOF supplies the USB interface. • Startup clock After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS) This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled. • Clock-out capability (MCO: microcontroller clock output) It outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. 22/120 DocID025660 Rev 2 STM32L063x8 Functional overview Figure 2. Clock tree #9 (QDEOH:DWFKGRJ /6,5& :DWFKGRJ/6 /6,WHPSR /HJHQG +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO +6, +LJKVSHHGLQWHUQDOFORFNVLJQDO /6, /RZVSHHGLQWHUQDOFORFNVLJQDO /6( /RZVSHHGH[WHUQDOFORFNVLJQDO 06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO 57&6(/ 57&HQDEOH /6(26& 57& /6(WHPSR /&'HQDEOH /68 /6' /6' /6' #9 /&'&/. 0+] #9 06,5& /6, /6( 06, /HYHOVKLIWHUV #9 0&26(/ $'&HQDEOH $'&&/. 0&2 QRWGHHSVOHHS #9 +6,5& /HYHOVKLIWHUV #9 QRWGHHSVOHHS FNBUFKV +6, 6\VWHP &ORFN 06, +6, +6( #9 +6(26& /HYHOVKLIWHUV #9 3//65& /68 #9 0+]&ORFN 'HWHFWRU #9 3//&/. QRWVOHHSRU GHHSVOHHS )&/. QRWVOHHSRU GHHSVOHHS +&/. 7,0[&/. $+% 35(6& « FNBSOOLQ 3// ; ,3VHQDEOH $3% 35(6& $3% 35(6& 3&/. /6' /HYHOVKLIWHUV #9''&25( +6(SUHVHQWRUQRW 'HGLFDWHG0+]3//RXWSXW +6,06(/ #9 5&0+] &.B3:5 &ORFN 6RXUFH &RQWURO /6( +6, 6<6&/. 3&/. FNBUF /HYHOVKLIWHUV #9 &ORFN 5HFRYHU\ 6\VWHP ,3VHQDEOH /6, 3&/. ,SHQDEOH /37,0&/. ,SHQDEOH ,SHQDEOH /38$57 8$57&/. ,&&/. XVEBHQ UQJBHQ 0+] 86%&/. 0+] 51* 069 DocID025660 Rev 2 23/120 35 Functional overview 3.6 STM32L063x8 Low-power real-time clock and backup registers The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: • • • • • • • • • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format Automatically correction for 28, 29 (leap year), 30, and 31 day of the month Two programmable alarms with wake up from Stop and Standby mode capability Periodic wakeup from Stop and Standby with programmable resolution and period On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. The RTC clock sources can be: • • • • 3.7 A 32.768 kHz external crystal A resonator or oscillator The internal low-power RC oscillator (typical frequency of 37 kHz) The high-speed external clock General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz. Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 28 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected to the 16 configurable interrupt/event lines. The 12 other lines are connected to PVD, RTC, USB, USARTs, LPUART, LPTIMER or comparator events. 24/120 DocID025660 Rev 2 STM32L063x8 3.8 Functional overview Memories The STM32L063x8 devices have the following features: • 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). • The non-volatile memory is divided into three arrays: – 32 or 64 Kbytes of embedded Flash program memory – 2 Kbytes of data EEPROM – Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options: • Level 0: no protection • Level 1: memory readout protected. The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected • Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse) The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the nonvolatile data segment is 256 bytes (Flash or EEPROM) against 64 bytes for the volatile data segment (RAM). The whole non-volatile memory embeds the error correction code (ECC) feature. 3.9 Direct memory access (DMA) The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: AES, SPI, I2C, USART, LPUART, general-purpose timers, DAC, and ADC. DocID025660 Rev 2 25/120 35 Functional overview 3.10 STM32L063x8 Liquid crystal display (LCD) The LCD drives up to 8 common terminals and 32 segment terminals to drive up to 224 pixels. 3.11 • Internal step-up converter to guarantee functionality and contrast control irrespective of VDD. This converter can be deactivated, in which case the VLCD pin is used to provide the voltage to the LCD • Supports static, 1/2, 1/3, 1/4 and 1/8 duty • Supports static, 1/2, 1/3 and 1/4 bias • Phase inversion to reduce power consumption and EMI • Up to 8 pixels can be programmed to blink • Unneeded segments and common pins can be used as general I/O pins • LCD RAM can be updated at any time owing to a double-buffer • The LCD controller can operate in Stop mode • VLCD rails decoupling capability Analog-to-digital converter (ADC) A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L063x8 device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, 1/4VLCD voltage measurement). It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 µA at 10 kSPS, ~200 µA at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase. The ADC can be served by the DMA controller. The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668). An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. 3.12 Temperature sensor The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies 26/120 DocID025660 Rev 2 STM32L063x8 Functional overview from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 6. Temperature sensor calibration values Calibration value name 3.12.1 Description Memory address TSENSE_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TSENSE_CAL2 TS ADC raw data acquired at temperature of 130 °C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value . The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 7. Internal voltage reference measured values Calibration value name VREFINT_CAL 3.12.2 Description Raw data acquired at temperature of 30 °C VDDA = 3 V Memory address 0x1FF8 0078 - 0x1FF8 0079 VLCD voltage monitoring This embedded hardware feature allows the application to measure the VLCD supply voltage using the internal ADC channel ADC_IN16. As the VLCD voltage may be higher than VDDA, and thus outside the ADC input range, the ADC input is connected to LCD_VLCD1 (which provides 1/3VLCD when the LCD is configured 1/3Bias and 1/4VLCD when the LCD is configured 1/4Bias or 1/2Bias). DocID025660 Rev 2 27/120 35 Functional overview 3.13 STM32L063x8 Digital-to-analog converter (DAC) One 12-bit buffered DAC can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance. This digital Interface supports the following features: • One data holding register • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • DMA capability (including the underrun interrupt) • External triggers for conversion Four DAC trigger inputs are used in the STM32L063x8. The DAC channel is triggered through the timer update outputs that are also connected to different DMA channels. 3.14 Ultra-low-power comparators and reference voltage The STM32L063x8 embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). • One comparator with ultra low consumption • One comparator with rail-to-rail inputs, fast or slow mode. • The threshold can be one of the following: – DAC output – External I/O pins – Internal reference voltage (VREFINT) – submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator. Both comparators can wake up the devices from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). 3.15 System configuration controller The system configuration controller provides the capability to remap some alternate functions on different I/O ports. The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM21, TIM22 and LPTIM timer input captures. It also controls the routing of internal analog signals to the USB internal oscillator, ADC, COMP1 and COMP2 and the internal reference voltage VREFINT. 28/120 DocID025660 Rev 2 STM32L063x8 3.16 Functional overview Touch sensing controller (TSC) The STM32L063x8 provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Table 8. Capacitive sensing GPIOs available on STM32L063x8 devices Group 1 2 3 4 Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 TSC_G1_IO3 PA2 TSC_G1_IO4 Capacitive sensing signal name Pin name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 TSC_G3_IO1 PC5 TSC_G7_IO1 PC0 TSC_G3_IO2 PB0 TSC_G7_IO2 PC1 TSC_G3_IO3 PB1 TSC_G7_IO3 PC2 TSC_G3_IO4 PB2 TSC_G7_IO4 PC3 TSC_G4_IO1 PA9 TSC_G8_IO1 PC6 TSC_G4_IO2 PA10 TSC_G8_IO2 PC7 TSC_G4_IO3 PA11 TSC_G8_IO3 PC8 TSC_G4_IO4 PA12 TSC_G8_IO4 PC9 DocID025660 Rev 2 Group 5 6 7 8 29/120 35 Functional overview 3.17 STM32L063x8 AES The AES Hardware Accelerator can be used to encrypt and decrypt data using the AES algorithm (compatible with FIPS PUB 197, 2001 Nov 26). • Key scheduler • Key derivation for decryption • 128-bit data block processed • 128-bit key length • 213 clock cycles to encrypt/decrypt one 128-bit block • Electronic codebook (ECB), cypher block chaining (CBC), and counter mode (CTR) supported by hardware. The AES can be served by the DMA controller. 3.18 Timers and watchdogs The ultra-low-power STM32L063x8 devices include three general-purpose timers, one lowpower timer (LPTM), one basic timer, two watchdog timers and the SysTick timer. Table 9 compares the features of the general-purpose and basic timers. Table 9. Timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request generation TIM2 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM21, TIM22 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM6 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.18.1 Capture/compare Complementary channels outputs General-purpose timers (TIM2, TIM21 and TIM22) There are three synchronizable general-purpose timers embedded in the STM32L063x8 devices (see Table 9 for differences). TIM2 TIM2 is based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or onepulse mode output. The TIM2 general-purpose timers can work together or with the TIM21 and TIM22 generalpurpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2 have independent DMA request generation. 30/120 DocID025660 Rev 2 STM32L063x8 Functional overview This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM21 and TIM22 TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2, fullfeatured general-purpose timers. They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. 3.18.2 Low-power Timer (LPTIM) The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 3.18.3 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous / one shot mode • Selectable software / hardware input trigger • Selectable clock source – Internal clock source: LSE, LSI, HSI or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) • Programmable digital glitch filter • Encoder mode Basic timer (TIM6) This timer can be used as a generic 16-bit timebase. It is mainly used for DAC trigger generation. 3.18.4 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches ‘0’. 3.18.5 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. DocID025660 Rev 2 31/120 35 Functional overview 3.18.6 STM32L063x8 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.19 Communication interfaces 3.19.1 I2C bus Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. Table 10. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller. Refer to Table 11 for the differences between I2C1 and I2C2. Table 11. STM32L063x8 I2C implementation I2C features(1) 32/120 I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X(2) Independent clock X - DocID025660 Rev 2 STM32L063x8 Functional overview Table 11. STM32L063x8 I2C implementation (continued) I2C features(1) I2C1 I2C2 SMBus X - Wakeup from STOP X - 1. X = supported. 2. See Table 15: STM32L063x8 pin definitions for the list of I/Os that feature Fast Mode Plus capability 3.19.2 Universal synchronous/asynchronous receiver transmitter (USART) The two USART interfaces (USART1 and USART2) are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. The support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode. All USART interfaces can be served by the DMA controller. Refer to Table 12 for the supported modes and features of USART1 and USART2. Table 12. USART implementation USART modes/features(1) USART1 and USART2 Hardware flow control for modem X Continuous communication using DMA X Multiprocessor communication X Synchronous mode X Smartcard mode X Single-wire half-duplex communication X IrDA SIR ENDEC block X LIN mode X Dual clock domain and wakeup from Stop mode X Receiver timeout interrupt X Modbus communication X Auto baud rate detection (4 modes) X Driver Enable X 1. X = supported. 3.19.3 Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. DocID025660 Rev 2 33/120 35 Functional overview STM32L063x8 The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode. The Wakeup events from Stop mode are programmable and can be: • Start bit detection • Or any received data frame • Or a specific programmed data frame Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. 3.19.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. The SPIs can be served by the DMA controller. Refer to Table 13 for the differences between SPI1 and SPI2. Table 13. SPI/I2S implementation SPI features(1) SPI1 SPI2 Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X I2S mode - X TI mode X X 1. X = supported. 3.19.5 Universal serial bus (USB) The STM32L063x8 embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming 34/120 DocID025660 Rev 2 STM32L063x8 Functional overview mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation. 3.20 Clock recovery system (CRS) The STM32L063x8 embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.21 Cyclic redundancy check (CRC) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.22 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. DocID025660 Rev 2 35/120 35 Memory mapping 4 STM32L063x8 Memory mapping Figure 3. Memory map [)))))))) [( [( [))) &RUWH[0 SHULSKHUDOV ,23257 [ UHVHUYHG [& [)) $+% [ UHVHUYHG [$ [ [))))))) 2SWLRQE\WHV $3% [ [ 6\VWHP PHPRU\ $3% [ [ UHVHUYHG [ 3HULSKHUDOV [ UHVHUYHG [ )ODVKV\VWHP PHPRU\ 65$0 [ UHVHUYHG &2'( [ [ )ODVKV\VWHP PHPRU\RU 65$0 GHPHQGLQJRQ %227 FRQILJXUDWLRQ 5HVHUYHG 069 36/120 DocID025660 Rev 2 STM32L063x8 Pin descriptions 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 4. STM32L063x8 LQFP64 pinout - 10 x 10 mm 9/&' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 3$ /4)3 9''B86% 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% 966 9'' 5 Pin descriptions 069 1. The above figure shows the package top view. DocID025660 Rev 2 37/120 47 Pin descriptions STM32L063x8 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ Figure 5. STM32L063x8 LQFP48 pinout - 7 x 7 mm /4)3 9''B86% 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9/&' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 966$ 9''$ 3$ 3$ 3$ 069 1. The above figure shows the package top view. Table 14. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TC Standard 3.3V I/O B RST Notes Pin functions 38/120 Definition Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID025660 Rev 2 STM32L063x8 Pin descriptions Notes Additional functions LQFP64 Alternate functions LQFP48 Pin name (function after reset) Pin type Pin number I/O structure Table 15. STM32L063x8 pin definitions 1 1 VLCD S 2 2 PC13 I/O FT RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2 3 3 PC14-OSC32_IN (PC14) I/O FT OSC32_IN 4 4 PC15-OSC32_OUT (PC15) I/O TC OSC32_OUT 5 5 PH0-OSC_IN (PH0) I/O TC 6 6 PH1-OSC_OUT (PH1) I/O TC 7 7 NRST I/O RST - - - 8 9 10 PC0 PC1 PC2 I/O I/O I/O - 11 PC3 I/O 8 12 VSSA S 9 13 VDDA S 10 14 PA0 I/O 11 12 15 16 PA1 PA2 I/O I/O USB_CRS_SYNC OSC_IN OSC_OUT FT LPTIM1_IN1, LCD_SEG18, EVENTOUT, TSC_G7_IO1 ADC_IN10 FT LPTIM1_OUT, LCD_SEG19, EVENTOUT, TSC_G7_IO2 ADC_IN11 FT LPTIM1_IN2, LCD_SEG20, SPI2_MISO/I2S2_MCK, TSC_G7_IO3 ADC_IN12 FT LPTIM1_ETR, LCD_SEG21, SPI2_MOSI/I2S2_SD, TSC_G7_IO4 ADC_IN13 FT TIM2_CH1, TSC_G1_IO1, USART2_CTS, TIM2_ETR, COMP1_OUT COMP1_INM6, ADC_IN0, RTC_TAMP2/WKUP1 FT EVENTOUT, LCD_SEG0, TIM2_CH2, TSC_G1_IO2, USART2_RTS, TIM21_ETR COMP1_INP, ADC_IN1 FT TIM21_CH1, LCD_SEG1, TIM2_CH3, TSC_G1_IO3, USART2_TX, COMP2_OUT COMP2_INM6, ADC_IN2 DocID025660 Rev 2 39/120 47 Pin descriptions STM32L063x8 Table 15. STM32L063x8 pin definitions (continued) LQFP64 Pin type I/O structure 13 17 PA3 I/O FT - 18 VSS S - 19 VDD S 14 20 PA4 I/O TC 15 21 PA5 I/O TC SPI1_SCK, TIM2_ETR, TSC_G2_IO2, TIM2_CH1 COMP1_INM5, COMP2_INM5, ADC_IN5 FT SPI1_MISO, LCD_SEG3, TSC_G2_IO3, LPUART_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT ADC_IN6 ADC_IN7 16 22 Pin name (function after reset) PA6 I/O Notes LQFP48 Pin number (1) Alternate functions Additional functions TIM21_CH2, LCD_SEG2, TIM2_CH4, TSC_G1_IO4, USART2_RX COMP2_INP, ADC_IN3 SPI1_NSS, TSC_G2_IO1, USART2_CK, TIM22_ETR COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT 17 23 PA7 I/O FT SPI1_MOSI, LCD_SEG4, TSC_G2_IO4, TIM22_CH2, EVENTOUT, COMP2_OUT - 24 PC4 I/O FT EVENTOUT, LCD_SEG22, LPUART_TX ADC_IN14 - 25 PC5 I/O TC LCD_SEG23, LPUART_RX, TSC_G3_IO1 ADC_IN15 18 26 PB0 I/O FT EVENTOUT, LCD_SEG5, TSC_G3_IO2 LCD_VLCD3, ADC_IN8, VREF_OUT 19 27 PB1 I/O FT LCD_SEG6, TSC_G3_IO3, LPUART_RTS ADC_IN9, VREF_OUT 20 28 PB2 I/O FT LPTIM1_OUT, TSC_G3_IO4 LCD_VLCD1 FT LCD_SEG10, TIM2_CH3, TSC_SYNC, LPUART_TX, SPI2_SCK, I2C2_SCL FT EVENTOUT, LCD_SEG11, TIM2_CH4, TSC_G6_IO1, LPUART_RX, I2C2_SDA 21 22 40/120 29 30 PB10 PB11 I/O I/O DocID025660 Rev 2 STM32L063x8 Pin descriptions LQFP64 23 31 VSS S 24 32 VDD S 25 26 33 34 PB12 PB13 I/O I/O Notes LQFP48 Pin name (function after reset) Pin type Pin number I/O structure Table 15. STM32L063x8 pin definitions (continued) Alternate functions Additional functions FT SPI2_NSS/I2S2_WS, LCD_SEG12, LPUART_RTS, TSC_G6_IO2, I2C2_SMBA, EVENTOUT LCD_VLCD2 FTf SPI2_SCK/I2S2_CK, LCD_SEG13, TSC_G6_IO3, LPUART_CTS, I2C2_SCL, TIM21_CH1 27 35 PB14 I/O FTf SPI2_MISO/I2S2_MCK, LCD_SEG14, RTC_OUT, TSC_G6_IO4, LPUART_RTS, I2C2_SDA, TIM21_CH2 28 36 PB15 I/O FT SPI2_MOSI/I2S2_SD, LCD_SEG15, RTC_REFIN - 37 PC6 I/O FT TIM22_CH1, LCD_SEG24, TSC_G8_IO1 - 38 PC7 I/O FT TIM22_CH2, LCD_SEG25, TSC_G8_IO2 - 39 PC8 I/O FT TIM22_ETR, LCD_SEG26, TSC_G8_IO3 - 40 PC9 I/O FT TIM21_ETR, LCD_SEG27, USB_OE, TSC_G8_IO4 29 41 PA8 I/O FT MCO, LCD_COM0, USB_CRS_SYNC, EVENTOUT, USART1_CK 30 42 PA9 I/O FT MCO, LCD_COM1, TSC_G4_IO1, USART1_TX 31 43 PA10 I/O FT LCD_COM2, TSC_G4_IO2, USART1_RX DocID025660 Rev 2 41/120 47 Pin descriptions STM32L063x8 32 44 PA11 (2) I/O Notes Pin name (function after reset) I/O structure LQFP64 LQFP48 Pin number Pin type Table 15. STM32L063x8 pin definitions (continued) Alternate functions Additional functions FT SPI1_MISO, EVENTOUT, TSC_G4_IO3, USART1_CTS, COMP1_OUT USB_DM USB_DP 33 45 PA12(2) I/O FT SPI1_MOSI, EVENTOUT, TSC_G4_IO4, USART1_RTS, COMP2_OUT 34 46 PA13 I/O FT SWDIO, USB_OE 35 47 VSS S 36 48 VDD_USB S 37 49 PA14 I/O FT SWCLK, USART2_TX 38 50 PA15 I/O FT SPI1_NSS, LCD_SEG17, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1 - 51 PC10 I/O FT LPUART_TX, LCD_COM4/LCD_SEG28 - 52 PC11 I/O FT LPUART_RX, LCD_COM5/LCD_SEG29 - 53 PC12 I/O FT LCD_COM6/LCD_SEG30 - 54 PD2 I/O FT LPUART_RTS, LCD_COM7/LCD_SEG31 39 55 PB3 I/O FT SPI1_SCK, LCD_SEG7, TIM2_CH2, TSC_G5I_O1, EVENTOUT COMP2_INN COMP2_INP 40 56 PB4 I/O FT SPI1_MISO, LCD_SEG8, EVENTOUT, TSC_G5_IO2, TIM22_CH1 41 57 PB5 I/O FT SPI1_MOSI, LCD_SEG9, LPTIM1_IN1, I2C1_SMBA, TIM22_CH2 COMP2_INP 42 58 PB6 I/O FTf USART1_TX, I2C1_SCL, LPTIM1_ETR, TSC_G5_IO3 COMP2_INP 43 59 PB7 I/O FTf USART1_RX, I2C1_SDA, LPTIM1_IN2, TSC_G5_IO4 COMP2_INP, PVD_IN 44 60 BOOT0 I B 42/120 DocID025660 Rev 2 STM32L063x8 Pin descriptions Table 15. STM32L063x8 pin definitions (continued) LQFP64 Pin type I/O structure 45 61 PB8 I/O FTf LCD_SEG16, TSC_SYNC, I2C1_SCL 46 62 PB9 I/O FTf LCD_COM3, EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS 47 63 VSS S 48 64 VDD S Pin name (function after reset) Notes LQFP48 Pin number Alternate functions Additional functions 1. PA4 offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O. 2. These pins are powered by VDD_USB. For all characteristics that refer to VDD, VDD_USB must be used instead. DocID025660 Rev 2 43/120 47 Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SPI1/TIM21/SYS_A F/EVENTOUT/ LCD USB/TIM2/ EVENTOUT/ TSC/ EVENTOUT USART1/2/3 TIM2/21/22 EVENTOUT COMP1/2 TIM2_CH1 TSC_G1_IO1 USART2_CTS TIM2_ETR TIM21_ETR PA0 DocID025660 Rev 2 Port A PA1 EVENTOUT LCD_SEG0 TIM2_CH2 TSC_G1_IO2 USART2_RTS PA2 TIM21_CH1 LCD_SEG1 TIM2_CH3 TSC_G1_IO3 USART2_TX PA3 TIM21_CH2 LCD_SEG2 TIM2_CH4 TSC_G1_IO4 USART2_RX PA4 SPI1_NSS TSC_G2_IO1 USART2_CK PA5 SPI1_SCK PA6 SPI1_MISO LCD_SEG3 TSC_G2_IO3 PA7 SPI1_MOSI LCD_SEG4 TSC_G2_IO4 PA8 MCO LCD_COM0 PA9 MCO PA10 TIM2_ETR USB_CRS_SYNC TSC_G2_IO2 COMP1_OUT Pin descriptions 44/120 Table 16. Alternate function port A COMP2_OUT TIM22_ETR TIM2_CH1 LPUART_CTS EVENTOUT USART1_CK LCD_COM1 TSC_G4_IO1 USART1_TX LCD_COM2 TSC_G4_IO2 USART1_RX TIM22_CH1 EVENTOUT _OUT TIM22_CH2 EVENTOUT COMP2_OUT PA11 SPI1_MISO EVENTOUT TSC_G4_IO3 USART1_CTS COMP1_OUT PA12 SPI1_MOSI EVENTOUT TSC_G4_IO4 USART1_RTS COMP2_OUT PA13 SWDIO USB_OE PA14 SWCLK PA15 SPI1_NSS USART2_TX LCD_SEG17 TIM2_ETR EVENTOUT USART2_RX TIM2_CH1 STM32L063x8 Port PB0 AF0 AF1 AF2 AF3 AF4 AF5 AF6 SPI1/SPI2/I2S2/ USART1/ EVENTOUT/ I2C1/LCD LPUART/LPTIM /TIM2/SYS_AF/ EVENTOUT I2C1/TSC I2C1/TIM22/ EVENTOUT/ LPUART SPI2/I2S2/I2C2 I2C2/TIM21/ EVENTOUT EVENTOUT LCD_SEG5 TSC_G3_IO2 LCD_SEG6 TSC_G3_IO3 PB1 PB2 DocID025660 Rev 2 Port B LPTIM1_OUT TSC_G3_IO4 LPUART_RTS PB3 SPI1_SCK LCD_SEG7 TIM2_CH2 TSC_G5I_O1 EVENTOUT PB4 SPI1_MISO LCD_SEG8 EVENTOUT TSC_G5_IO2 TIM22_CH1 PB5 SPI1_MOSI LCD_SEG9 LPTIM1_IN1 I2C1_SMBA TIM22_CH2 PB6 USART1_TX I2C1_SCL LPTIM1_ETR TSC_G5_IO3 PB7 USART1_RX I2C1_SDA LPTIM1_IN2 TSC_G5_IO4 PB8 LCD_SEG16 TSC_SYNC PB9 LCD_COM3 EVENTOUT PB10 LCD_SEG10 TIM2_CH3 I2C1_SCL I2C1_SDA SPI2_NSS/I2S2_ WS TSC_SYNC LPUART_TX SPI2_SCK LPUART_RX PB11 EVENTOUT LCD_SEG11 TIM2_CH4 TSC_G6_IO1 PB12 SPI2_NSS/I2S2_WS LCD_SEG12 LPUART_RTS TSC_G6_IO2 PB13 SPI2_SCK/I2S2_CK LCD_SEG13 PB14 SPI2_MISO/I2S2_MCK LCD_SEG14 RTC_OUT PB15 SPI2_MOSI/I2S2_SD LCD_SEG15 RTC_REFIN STM32L063x8 Table 17. Alternate function port B I2C2_SCL I2C2_SDA I2C2_SMBA EVENTOUT TSC_G6_IO3 LPUART_CTS I2C2_SCL TIM21_CH1 TSC_G6_IO4 LPUART_RTS I2C2_SDA TIM21_CH2 Pin descriptions 45/120 AF0 AF1 AF2 AF3 LPUART/LPTIM/ TIM21/12/ EVENTOUT/ LCD SPI2/I2S2/USB/ LPUART/ EVENTOUT TSC PC0 LPTIM1_IN1 LCD_SEG18 EVENTOUT TSC_G7_IO1 PC1 LPTIM1_OUT LCD_SEG19 EVENTOUT TSC_G7_IO2 PC2 LPTIM1_IN2 LCD_SEG20 SPI2_MISO/I2S2_MCK TSC_G7_IO3 PC3 LPTIM1_ETR LCD_SEG21 SPI2_MOSI/I2S2_SD TSC_G7_IO4 PC4 EVENTOUT LCD_SEG22 LPUART_TX LCD_SEG23 LPUART_RX Port PC5 DocID025660 Rev 2 Port C TSC_G3_IO1 PC6 TIM22_CH1 LCD_SEG24 TSC_G8_IO1 PC7 TIM22_CH2 LCD_SEG25 TSC_G8_IO2 PC8 TIM22_ETR LCD_SEG26 TSC_G8_IO3 PC9 TIM21_ETR LCD_SEG27 PC10 LPUART_TX LCD_COM4/LCD_SEG28 PC11 LPUART_RX LCD_COM5/LCD_SEG29 PC12 Pin descriptions 46/120 Table 18. Alternate function port C USB_OE TSC_G8_IO4 LCD_COM6/LCD_SEG30 PC13 PC14 PC15 Table 19. Alternate function port D AF1 LPUART LCD Port D PD2 LPUART_RTS LCD_COM7/LCD_SEG31 STM32L063x8 AF0 Port AF0 Port USB Port H PH0 USB_CRS_SYNC PH1 - STM32L063x8 Table 20. Alternate function port H DocID025660 Rev 2 Pin descriptions 47/120 Electrical characteristics STM32L063x8 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the 1.65 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 6. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 7. Figure 6. Pin loading conditions Figure 7. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 DLF 48/120 DocID025660 Rev 2 DLF STM32L063x8 Power supply scheme Figure 8. Power supply scheme 6WDQGE\SRZHUFLUFXLWU\ 26&57&:DNHXS ORJLF57&EDFNXS UHJLVWHUV 287 *3,2V ,1 9'' 9'' /HYHOVKLIWHU 6.1.6 Electrical characteristics ,2 /RJLF .HUQHOORJLF &38 'LJLWDO 0HPRULHV 5HJXODWRU 1îQ) î) 966 9''$ 9''$ Q) ) $'& '$& $QDORJ 5&3//&203 « 966$ 9/&' 966 966 9''B86% /&' 86% WUDQVFHLYHU 06Y9 DocID025660 Rev 2 49/120 110 Electrical characteristics 6.1.7 STM32L063x8 Optional LCD power supply scheme Figure 9. Optional LCD power supply scheme 96(/ 9'' 1[Q) [) 2SWLRQ 9'' 6WHSXS &RQYHUWHU 9/&' Q) /&' 9/&' 2SWLRQ &(;7 966 06Y9 1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open. 2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter. 6.1.8 Current consumption measurement Figure 10. Current consumption measurement scheme 9''$ ,'' 1[9'' 1îQ) î) 1[966 06Y9 50/120 DocID025660 Rev 2 STM32L063x8 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics, Table 22: Current characteristics, and Table 23: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 21. Voltage characteristics Symbol VDD–VSS VIN(2) Ratings Min Max –0.3 4.0 Input voltage on FT and FTf pins VSS − 0.3 VDD+4.0 Input voltage on TC pins VSS − 0.3 4.0 Input voltage on BOOT0 VSS VDD + 4.0 VSS − 0.3 4.0 External main supply voltage (including VDDA, VDD_USB, VDD)(1) Input voltage on any other pin |ΔVDD| Variations between different VDD/VDDA power pins(3) - 50 |ΔVSS| Variations between all different ground pins - 50 VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV see Section 6.3.11 1. All main power (VDD, VDD_USB, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 22 for maximum allowed injected current values. 3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and device operation. VDD_USB is independent from VDD and VDDA: its value does not need to respect this rule. DocID025660 Rev 2 51/120 110 Electrical characteristics STM32L063x8 Table 22. Current characteristics Symbol Ratings Max. ΣIVDD(2) Total current into sum of all VDD power lines (source)(1) 105 ΣIVSS(2) (1) 105 Total current out of sum of all VSS ground lines (sink) (1) IVDD(PIN) Maximum current into each VDD power pin (source) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100 Output current sunk by any I/O and control pin except FTf pins 16 Output current sunk by FTf pins 22 Output current sourced by any I/O and control pin -16 Total output current sunk by sum of all IOs and control pins(2) 90 Total output current sourced by sum of all IOs and control pins(2) -90 IIO ΣIIO(PIN) IINJ(PIN) ΣIINJ(PIN) Injected current on FT, FFf, RST and B pins Unit mA -5/+0(3) Injected current on TC pin ± 5(4) Total injected current (sum of all I/O and control pins)(5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 21 for maximum allowed input voltage values. 4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 23. Thermal characteristics Symbol TSTG TJ 52/120 Ratings Storage temperature range Maximum junction temperature DocID025660 Rev 2 Value Unit –65 to +150 °C 150 °C STM32L063x8 Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 24. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 32 fPCLK1 Internal APB1 clock frequency - 0 32 fPCLK2 Internal APB2 clock frequency - 0 32 BOR detector disabled 1.65 3.6 BOR detector enabled, at power on 1.8 3.6 BOR detector disabled, after power on 1.65 3.6 1.65 3.6 VDD VDDA(1) VDD_USB Standard operating voltage Analog operating voltage (ADC and DAC not used) Must be the same voltage as VDD(2) Analog operating voltage (ADC or DAC used) Input voltage on FT, FTf and RST pins(4) VIN PD TA TJ 3.6 1.65 3.6 2.0 V ≤ VDD ≤ 3.6 V -0.3 5.5 1.65 V ≤ VDD ≤ 2.0 V -0.3 5.2 Input voltage on BOOT0 pin - 0 5.5 Input voltage on TC pin - -0.3 VDD+0.3 - 444 - 363 Maximum power dissipation (range 6) –40 85 Maximum power dissipation (range 7) –40 105 Low-power dissipation (range 7) (6) –40 125 Junction temperature range (range 6) -40 °C ≤ TA ≤ 85 ° –40 105 Junction temperature range (range 7) -40 °C ≤ TA ≤ 105 °C –40 125 Power dissipation at TA = 85 °C (range 6) LQFP64 package or TA = 105 °C (range 7) (5) LQFP48 package Temperature range MHz V V 1.8 Standard operating voltage, USB domain(3) Unit V V mW °C 1. When the ADC is used, refer to Table 58: ADC characteristics. 2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and normal operation. 3. For for USB compliance, VDD_USB must remain higher than 3.0 V. 4. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled. 5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 78: Thermal characteristics on page 117). 6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJ max (see Table 78: Thermal characteristics on page 117). DocID025660 Rev 2 53/120 110 Electrical characteristics 6.3.2 STM32L063x8 Embedded reset and power control block characteristics The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in Table 24. Table 25. Embedded reset and power control block characteristics Symbol Parameter VDD rise time rate tVDD(1) VDD fall time rate TRSTTEMPO(1) Reset temporization VPOR/PDR Power on/power down reset threshold VBOR0 Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 54/120 Conditions Min Typ Max BOR detector enabled 0 - ∞ BOR detector disabled 0 - 1000 BOR detector enabled 20 - ∞ BOR detector disabled 0 - 1000 VDD rising, BOR enabled - 2 3.3 0.4 0.7 1.6 Falling edge 1 1.5 1.65 Rising edge 1.3 1.5 1.65 Falling edge 1.67 1.7 1.74 Rising edge 1.69 1.76 1.8 Falling edge 1.87 1.93 1.97 Rising edge 1.96 2.03 2.07 Falling edge 2.22 2.30 2.35 Rising edge 2.31 2.41 2.44 VDD rising, BOR DocID025660 Rev 2 disabled(2) Unit µs/V ms V STM32L063x8 Electrical characteristics Table 25. Embedded reset and power control block characteristics (continued) Symbol Parameter Conditions VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst Hysteresis voltage Min Typ Max Falling edge 2.45 2.55 2.6 Rising edge 2.54 2.66 2.7 Falling edge 2.68 2.8 2.85 Rising edge 2.78 2.9 2.95 Falling edge 1.8 1.85 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.20 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - Unit V mV 1. Guaranteed by characterization results, not tested in production. 2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details. DocID025660 Rev 2 55/120 110 Electrical characteristics 6.3.3 STM32L063x8 Embedded internal reference voltage The parameters given in Table 27 are based on characterization results, unless otherwise specified. Table 26. Embedded internal reference voltage calibration values Calibration value name Description Memory address Raw data acquired at temperature of 30 °C VDDA= 3 V VREFINT_CAL 0x1FF8 0078 - 0x1FF8 0079 Table 27. Embedded internal reference voltage Symbol Conditions Min Typ Max Unit Internal reference voltage – 40 °C < TJ < +125 °C 1.202 1.224 1.242 V Internal reference current consumption - - 1.4 2.3 µA TVREFINT Internal reference startup time - - 2 3 ms VVREF_MEAS VDDA voltage during VREFINT factory measure - 2.99 3 3.01 V AVREF_MEAS Accuracy of factory-measured VREF value(2) Including uncertainties due to ADC and VDDAvalues - - ±5 mV –40 °C < TJ < +125 °C - 20 50 0 °C < TJ < +50 °C - - 20 VREFINT out Parameter (1) IREFINT TCoeff(3) Temperature coefficient ACoeff(3) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm VDDCoeff(3) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V ppm/°C TS_vrefint(3)(4) ADC sampling time when reading the internal reference voltage - 5 10 - µs TADC_BUF(3) Startup time of reference voltage buffer for ADC - - - 10 µs IBUF_ADC(3) Consumption of reference voltage buffer for ADC - - 13.5 25 µA IVREF_OUT(3) VREF_OUT output current(5) - - - 1 µA CVREF_OUT(3) VREF_OUT output load - - - 50 pF Consumption of reference voltage buffer for VREF_OUT and COMP - - 730 1200 nA VREFINT_DIV1(3) 1/4 reference voltage - 24 25 26 VREFINT_DIV2(3) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(3) 3/4 reference voltage - 74 75 76 ILPBUF(3) 1. Guaranteed by test in production. 2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes. 56/120 DocID025660 Rev 2 % VREFINT STM32L063x8 Electrical characteristics 3. Guaranteed by design, not tested in production. 4. Shortest sampling time can be determined in the application by multiple iterations. 5. To guarantee less than 1% VREF_OUT deviation. 6.3.4 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise. The current consumption values are derived from the tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24: General operating conditions unless otherwise specified. The MCU is placed under the following conditions: • All I/O pins are configured in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified. • When the peripherals are enabled fAPB1 = fAPB2 = fAPB • When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used) • The HSE user clock applied to OSCI_IN input follows the characteristic specified in Table 37: High-speed external user clock characteristics • For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins • For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not specified otherwise The parameters given in Table 45, Table 24 and Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. DocID025660 Rev 2 57/120 110 Electrical characteristics STM32L063x8 Table 28. Current consumption in Run mode, code with data processing running from Flash(1) Symbol Parameter fHCLK Typ Max(2) 1 MHz 165 230 2 MHz 290 360 4 MHz 555 630 Range 3, VCORE=1.2 V, VOS[1:0]=11, CoreMark(4) 585 - Range 3, VCORE=1.2 V, VOS[1:0]=11, Fibonacci(4) 440 - 355 - TBD - 4 MHz 0.665 0.74 8 MHz 1.3 1.4 16 MHz 2.6 2.8 8 MHz 1.55 1.7 16 MHz 3.1 3.4 32 MHz 6.3 6.8 Range 1, VOS[1:0]=01, VCORE=1.8 V, CoreMark(4) 6.3 - Range 1, VOS[1:0]=01, VCORE=1.8 V, Fibonacci(4) 6.55 - 5.4 - 5.2 - Conditions Range 3, VCORE=1.2 V VOS[1:0]=11 Range 3, VCORE=1.2 V, VOS[1:0]=11, while(1)(4) IDD (Run from Flash) Supply current in Run mode, code executed from Flash Range 1, VOS[1:0]=01, VCORE=1.8 V Range 1, VOS[1:0]=01, VCORE=1.8 V, while(1)(4) mA 32 MHz Range 1, VOS[1:0]=01, VCORE=1.8 V, while(1)(4), prefetch OFF IDD (Run from Flash) Supply current in Run mode, code executed from Flash HSI16 clock source (16 MHz) MSI clock, 524 kHz MSI clock, 4.2 MHz 58/120 Range 2, VOS[1:0]=10, VCORE=1.5 V 16 MHz 2.6 2.9 Range 1, VOS[1:0]=01, VCORE=1.8 V 32 MHz 6.25 7 65 kHz 36.5 110 524 kHz 99.5 190 4.2 MHz 620 700 MSI clock, 65 kHz Range 3, VOS[1:0]=11, VCORE=1.2 V DocID025660 Rev 2 µA 4 MHz Range 3, VCORE=1.2 V, VOS[1:0]=11, while(1), prefetch OFF(4) fHSE = fHCLK up to Range 2, VOS[1:0]=10, 16 MHz included, fHSE = fHCLK/2 above VCORE=1.5 V 16 MHz (PLL ON)(3) Unit mA µA STM32L063x8 Electrical characteristics 1. CoreMark, Fibonacci and while(1) conditions are given for current consumption estimates compared to Dhrystone. 2. Guaranteed by characterization results, not tested in production, unless otherwise specified. 3. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 4. CoreMark, Fibonacci and while(1) conditions are given for current consumption estimate vs. Dhrystone Figure 11. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS /;ŵͿ ϯ͘ϬϬ Ϯ͘ϱϬ Ϯ͘ϬϬ ϭ͘ϱϬ ϭ͘ϬϬ Ϭ͘ϱϬ Ϭ s;sͿ ϭ͘ϴϬнϬϬ Ϯ͘ϬϬнϬϬ Ϯ͘ϮϬнϬϬ Ϯ͘ϰϬнϬϬ Ϯ͘ϲϬнϬϬ Ϯ͘ϴϬнϬϬ ϯ͘ϬϬнϬϬ ϯ͘ϮϬнϬϬ ϯ͘ϰϬнϬϬ ϯ͘ϲϬнϬϬ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϱϱΣ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϴϱΣ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ʹϮϱΣ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϭϬϱΣ 06Y9 Figure 12. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS ,''P$ ϯ͘ϬϬ Ϯ͘ϱϬ Ϯ͘ϬϬ ϭ͘ϱϬ ϭ͘ϬϬ Ϭ͘ϱϬ Ϭ 9''9 ( ( ( ( ( ( ( ( ( ( 'KU\VWRQH:6& 'KU\VWRQH:6& 'KU\VWRQH:6±& ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϭϬϱΣ 06Y9 DocID025660 Rev 2 59/120 110 Electrical characteristics STM32L063x8 Table 29. Current consumption in Run mode, code with data processing running from RAM Symbol Parameter Conditions Range 3, VOS[1:0]=11, VCORE=1.2 V fHCLK Typ Max(1) 1 MHz 135 170 2 MHz 240 270 4 MHz 450 480 575 - 370 - 340 - 4 MHz 0.52 0.6 8 MHz 1 1.2 16 MHz 2 2.3 8 MHz 1.25 1.4 16 MHz 2.45 2.8 32 MHz 5.1 5.4 6.25 - 4.4 - 4.7 - 2.1 2.3 Range 3,VOS[1:0]=11, VCORE=1.2 V, CoreMark Range 3,VOS[1:0]=11, VCORE=1.2 V, Fibonacci 4 MHz Range 3,VOS[1:0]=11, VCORE=1.2 V, while(1) IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash switched off fHSE = fHCLK up to 16 MHz, included fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) Range 2, VOS[1:0]=10, VCORE=1.5 V Range 1, VOS[1:0]=01, VCORE=1.8 V Range 1,VOS[1:0]=01, VCORE=1.8 V, CoreMark Range 1, VOS[1:0]=01, VCORE=1.8 V, Fibonacci 32 MHz Range 1, VOS[1:0]=01, VCORE=1.8 V, while(1) IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash switched off HSI16 clock source (16 MHz) MSI clock, 65 kHz MSI clock, 524 kHz MSI clock, 4.2 MHz Range 2, VOS[1:0]=10, VCORE=1.5 V 16 MHz Range 1, VOS[1:0]=01, VCORE=1.8 V 32 MHz 5.1 5.6 65 kHz 34.5 75 524 kHz 83 120 4.2 MHz 485 540 Range 3, VOS[1:0]=11, VCORE=1.2 V 60/120 DocID025660 Rev 2 µA mA mA 1. Guaranteed by characterization results, not tested in production, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Unit µA STM32L063x8 Electrical characteristics Table 30. Current consumption in Sleep mode Symbol Parameter Conditions Range 3, VOS[1:0]=11, VCORE=1.2 V IDD (Sleep) =f up to f Supply current HSE HCLK Range 2, 16 MHz included, in Sleep VOS[1:0]=10, fHSE = fHCLK/2 mode, Flash above 16 MHz (PLL VCORE=1.5 V OFF ON)(2) Range 1, VOS[1:0]=01, VCORE=1.8 V IDD (Sleep) Range 2, VOS[1:0]=10, HSI16 clock source VCORE=1.5 V Range 1, Supply current (16 MHz) VOS[1:0]=01, in Sleep VCORE=1.8 V mode, Flash OFF MSI clock, 65 kHz Range 3, MSI clock, 524 kHz VOS[1:0]=11, VCORE=1.2 V MSI clock, 4.2 MHz Range 3, VOS[1:0]=11, VCORE=1.2 V IDD (Sleep) =f up to f Supply current HSE HCLK Range 2, 16 MHz included, in Sleep VOS[1:0]=10, fHSE = fHCLK/2 mode, Flash above 16 MHz (PLL VCORE=1.5 V ON ON)(2) Supply current in Sleep HSI16 clock source mode, Flash (16 MHz) ON IDD (Sleep) fHCLK Typ Max(1) 1 MHz 43.5 90 2 MHz 72 120 4 MHz 130 180 4 MHz 160 210 8 MHz 305 370 16 MHz 590 710 8 MHz 370 430 16 MHz 715 860 32 MHz 1650 1900 16 MHz 665 830 32 MHz 1750 2100 65 kHz 18 65 524 kHz 31.5 75 4.2 MHz 140 210 1 MHz 57.5 130 2 MHz 84 170 4 MHz 150 280 4 MHz 170 310 8 MHz 315 420 16 MHz 605 770 Range 1, VOS[1:0]=01, VCORE=1.8 V 8 MHz 380 460 16 MHz 730 950 32 MHz 1650 2400 Range 2, VOS[1:0]=10, VCORE=1.5 V 16 MHz 680 950 Range 1, VOS[1:0]=01, VCORE=1.8 V 32 MHz 1750 2100 Supply current MSI clock, 65 kHz Range 3, in Sleep MSI clock, 524 kHz mode, code VOS[1:0]=11, executed from VCORE=1.2V MSI clock, 4.2 MHz Flash Unit µA µA µA µA 65 kHz 29.5 110 524 kHz 44.5 130 4.2 MHz 150 270 1. Guaranteed by characterization results, not tested in production, unless otherwise specified. DocID025660 Rev 2 61/120 110 Electrical characteristics STM32L063x8 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register) Table 31. Current consumption in Low-power Run mode(1) Symbol Parameter Typ Max(2) TA = -40 °C to 25 °C 8.5 10 TA = 85 °C 11.5 48 TA = 105 °C 15.5 53 TA = 125 °C TBD 130 10 15 TA = 85 °C 15.5 50 TA = 105 °C 19.5 54 TA = 125 °C - 130 TA = -40 °C to 25 °C 20 25 TA = 55 °C 23 50 TA = 85 °C 25.5 55 TA = 105 °C 29.5 64 TA = 125 °C - 140 TA = -40 °C to 25 °C 22 28 TA = 85 °C 26 68 TA = 105 °C 31 75 TA = 125 °C - 95 TA = -40 °C to 25 °C 27.5 33 TA = 85 °C 31.5 73 TA = 105 °C 36.5 80 TA = 125 °C - 100 TA = -40 °C to 25 °C 39 46 TA = 55 °C 41 80 TA = 85 °C 44 86 TA = 105 °C 49.5 100 TA = 125 °C - 120 - TBD Conditions MSI clock, 65 kHz fHCLK = 32 kHz All peripherals OFF, code executed from RAM, Flash switched OFF, VDD from 1.65 V to 3.6 V TA =-40 °C to 25 °C MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz fHCLK = 131 kHz Supply IDD current in (LP Run) Low-power run mode MSI clock, 65 kHz fHCLK = 32 kHz All peripherals OFF, code executed from Flash, VDD from 1.65 V to 3.6 V MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz fHCLK = 131 kHz Max allowed VDD from IDD max current in 1.65 V to (LP Run) Low-power 3.6 V run mode - - 1. TBD stands for “to be defined”. 2. Guaranteed by characterization results, not tested in production, unless otherwise specified. 62/120 DocID025660 Rev 2 Unit µA STM32L063x8 Electrical characteristics Figure 13. IDD vs VDD, at TA= 25/55/ 85/105 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS /;ŵͿ Ϭ͘ϬϮϱ Ϭ͘ϬϮϬ Ϭ͘Ϭϭϱ Ϭ͘Ϭϭ Ϭ͘ϬϬϱ Ϭ s;sͿ ϭ͘ϴϬнϬϬ Ϯ͘ϬϬнϬϬ Ϯ͘ϮϬнϬϬ Ϯ͘ϰϬнϬϬ Ϯ͘ϲϬнϬϬ Ϯ͘ϴϬнϬϬ ϯ͘ϬϬнϬϬ ϯ͘ϮϬнϬϬ ϯ͘ϰϬнϬϬ ϯ͘ϲϬнϬϬ Ϭt^ͲϱϱΣ Ϭt^ͲϴϱΣ Ϭt^ʹϮϱΣ Ϭt^ͲϭϬϱΣ 06Y9 Table 32. Current consumption in Low-power Sleep mode(1) Symbol Parameter MSI clock, 65 kHz fHCLK = 32 kHz Flash OFF MSI clock, 65 kHz fHCLK = 32 kHz Flash ON IDD (LP Sleep) Supply All peripherals current in OFF, VDD from Low-power 1.65 V to 3.6 V sleep mode Typ Max(2) TA = -40 °C to 25 °C 4.7 TBD TA = -40 °C to 25 °C 17 23 TA = 85 °C 19.5 63 TA = 105 °C 23 69 TA = 125 °C - 90 TA = -40 °C to 25 °C 17 23 TA = 85 °C 20 63 TA = 105 °C 23.5 69 TA = 125 °C - 90 19.5 36 20.5 64 22.5 66 26 72 - 95 TBD TBD Conditions MSI clock, 65 kHz fHCLK = 65 kHz, Flash ON TA = -40 °C to 25 °C T = 55 °C MSI clock, 131 kHz A TA = 85 °C fHCLK = 131 kHz, Flash ON TA = 105 °C TA = 125 °C IDD max (LP Sleep) Max allowed VDD from 1.65 V current in to 3.6 V Low-power sleep mode - - Unit µA 1. TBD stands for “to be defined”. 2. Guaranteed by characterization results, not tested in production, unless otherwise specified. DocID025660 Rev 2 63/120 110 Electrical characteristics STM32L063x8 Table 33. Typical and maximum current consumptions in Stop mode(1) Symbol Parameter Conditions RTC clocked by LSI, regulator in LP mode, HSI, LSE and HSE OFF (no independent watchdog) LCD OFF Typ TA = -40°C to 25°C VDD = 1.8 V 1.1 1.9 TA = -40°C to 25°C 1.35 2.9 TA = 55°C 1.55 3.2 TA= 85°C 2.65 5.6 TA = 105°C 5 11 TA = 125 °C - 26 1.65 5 1.7 5.5 2.75 8 5.05 15 - 30 TA = -40°C to 25°C 4.05 9 TA = 55°C 4.4 8.5 TA= 85°C 5.1 12 8 32 TA = -40°C to 25°C Supply current IDD (Stop in Stop mode with RTC) with RTC enabled RTC clocked by LSI, regulator in LP mode, HSI, LSE and HSE OFF (no independent watchdog) TA = 55°C LCD ON (static TA= 85°C duty)(3) TA = 105°C TA = 125°C LCD ON (1/8 duty)(4) TA = 105°C TA = 125°C 64/120 DocID025660 Rev 2 Max(2) Unit 47 µA STM32L063x8 Electrical characteristics Table 33. Typical and maximum current consumptions in Stop mode(1) (continued) Symbol Parameter Conditions Typ TA = -40°C to 25°C VDD = 1.8V 0.815 - TA = -40°C to 25°C VDD = 3.0V 1 - 1.15 - 1.3 - TA = 85°C 2.4 - TA = 105°C 4.8 - TA = 125°C - - 1.4 - 1.85 - 3.05 - 5.5 - TA = 125°C - - TA = -40°C to 25°C - - T = -40°C to 25°C LCD OFF, LSE A VDD = 3.6V low drive TA = 55°C TA = -40°C to 25°C Supply current IDD (Stop in Stop mode with RTC) with RTC enabled RTC clocked by LSE external quartz (32.768kHz), regulator in LP mode, HSI/HSE OFF (no independent watchdog(5)(6) Max(2) Unit TA = 55°C LCD OFF, LSE TA= 85°C high drive TA = 105°C TA = 55°C LCD ON (static TA= 85°C duty)(3) TA = 105°C - - - - - - TA = 125°C - - TA = -40°C to 25°C 3.7 - TA = 55°C 20.5 - TA= 85°C 22 - TA = 105°C 25 - TA = 125°C - - LCD ON (1/8 duty)(4) DocID025660 Rev 2 µA 65/120 110 Electrical characteristics STM32L063x8 Table 33. Typical and maximum current consumptions in Stop mode(1) (continued) Symbol Parameter Conditions Typ TA = -40°C to 25°C TBD 2.2 TA = 55°C - 3.5 TA= 85°C - 5.7 TA = 105°C - 11 TA = 125°C - 26 LPTIM1 enabled, regulator in LP mode, HSI/HSE/LSE/LSI OFF (no independent watchdog), 0 Hz external clock on LPTIM1_IN1 - - LPTIM1 enabled, regulator in LP mode, HSI/HSE/LSE/LSI OFF (no independent watchdog), 100 Hz external clock on LPTIM1_IN1 0.415 - 0.415 - 6 - LPUART1 enabled, LSE Low drive 0.785 - LPTIM1 and LPUART1 enabled LSE Low drive 0.805 - TA = -40°C to 25°C 0.415 1 TA = 55°C 0.63 2.1 TA= 85°C 1.7 4.5 TA = 105°C 4.05 9.6(7) TA = 125°C - 24 Reg in LP mode, LSE/HSI/HSE OFF, independent watchdog with LSI enabled Supply current LPTIM1 enabled, regulator in LP mode, HSI/HSE/LSE/LSI OFF (no independent IDD (Stop) in Stop mode (RTC disabled) watchdog), 100 KHz external clock on LPTIM1_IN1 TA = -40°C to 25°C LPTIM1 enabled. regulator in LP mode, HSI/HSE/LSE/LSI OFF (no independent watchdog), 1 MHz external clock on LPTIM1_IN1 Regulator in Low power mode, LSI/LSE/HSI/HSE OFF (no independent watchdog) 66/120 Max(2) Unit DocID025660 Rev 2 µA STM32L063x8 Electrical characteristics Table 33. Typical and maximum current consumptions in Stop mode(1) (continued) Symbol Parameter Conditions Typ TA = -40°C to 25°C Regulator in Low power mode, HSI/HSE OFF, LSE Bypass and independent watchdog with LSI enabled Supply current in Stop mode (LPTIM1 enabled) Regulator in Low power mode, LSI/HSI/HSE OFF, LSE Bypass (no independent watchdog) IDD (Stop) TBD - TA = 55°C - - TA= 85°C - - TA = 105°C - - TA = 125°C - - TA = -40°C to 25°C 0.76 - TA = 55°C 1.05 - TA= 85°C 2.1 - TA = 105°C 4.45 - TA = 125°C - - TBD - TA = 55°C - - TA= 85°C - - TA = 105°C - - TA = 125°C - - TA = -40°C to 25°C 0.785 - TA = 55°C 1.05 - TA= 85°C 2.15 - TA = 105°C 4.45 - TA = 125°C - - TBD - TBD - TBD - TA = -40°C to 25°C Regulator in Low power mode, HSI/HSE OFF, LSE Bypass and independent watchdog with LSI enabled Supply current in Stop mode (LPUART1 enabled) Regulator in Low power mode, LSI/HSI/HSE OFF, LSE Bypass (no independent watchdog) Supply current MSI = 4.2 MHz IDD during wakeup (WU from MSI = 1.05 MHz from Stop Stop) mode MSI = 65 kHz(8) Max(2) Unit TA = -40°C to 25°C µA mA 1. TBD stands for “to be defined”. 2. Guaranteed by characterization results, not tested in production, unless otherwise specified. 3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected. 4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 6. LSE Low drive unless otherwise specified. 7. Guaranteed by test in production. 8. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part of the wakeup period, the current corresponds the Run mode current. DocID025660 Rev 2 67/120 110 Electrical characteristics STM32L063x8 Figure 14. IDD vs VDD, at TA= 25/55/ 85/105 °C, Stop mode with RTC enabled and running on LSE Low drive ,''P$ Ϭ͘ϬϬϲ Ϭ͘ϬϬϱ Ϭ͘ϬϬϰ Ϭ͘ϬϬϯ Ϭ͘ϬϬϮ Ϭ͘ϬϬϭ Ϭ 9''9 ϭ͘ϴϬнϬϬ Ϯ͘ϬϬнϬϬ Ϯ͘ϮϬнϬϬ Ϯ͘ϰϬнϬϬ Ϯ͘ϲϬнϬϬ Ϯ͘ϴϬнϬϬ ϯ͘ϬϬнϬϬ ϯ͘ϮϬнϬϬ ϯ͘ϰϬнϬϬ ϯ͘ϲϬнϬϬ ϱϱΣ ϴϱΣ ϮϱΣ ϭϬϱΣ 06Y9 Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Stop mode with RTC disabled, all clocks OFF ,''P$ Ϭ͘ϬϬϱ Ϭ͘ϬϬϰ Ϭ͘ϬϬϯ Ϭ͘ϬϬϮ Ϭ͘ϬϬϭ Ϭ 9''9 ϭ͘ϴϬнϬϬ Ϯ͘ϬϬнϬϬ Ϯ͘ϮϬнϬϬ Ϯ͘ϰϬнϬϬ Ϯ͘ϲϬнϬϬ Ϯ͘ϴϬнϬϬ ϯ͘ϬϬнϬϬ ϯ͘ϮϬнϬϬ ϯ͘ϰϬнϬϬ ϯ͘ϲϬнϬϬ ϱϱΣ ϴϱΣ ϮϱΣ ϭϬϱΣ 06Y9 68/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Table 34. Typical and maximum current consumptions in Standby mode(1) Symbol Parameter Typ Max(2) TA = -40 °C to 25 °C, VDD = 1.8 V 0.93 1.6 TA = -40 °C to 25 °C 1.2 1.9 TA = 55 °C 1.2 2.2 TA= 85 °C 1.4 3.2 TA = 105 °C 1.8 4 TA = 125 °C - 9 TA = -40 °C to 25 °C, VDD = 1.8 V TBD - TA = -40 °C to 25 °C TBD TBD - TBD - TBD TA = 105 °C - TBD TA = 125 °C - TBD 0.285 TBD 0.29 TBD 0.32 TBD 0.5 TBD TA = 105 °C 0.94 TBD TA = 125 °C - TBD TA = -40 °C to 25 °C, VDD = 1.8 V 0.655 - TA = -40 °C to 25 °C 0.845 - TA = 55 °C 0.94 - TA= 85 °C 1.15 - TA = 105 °C 1.6 - TA = 125 °C - - TA = -40 °C to 25 °C, VDD = 1.8 V 1 - TA = -40 °C to 25 °C 1.2 - TA = 55 °C 1.5 - TA= 85 °C 1.8 - TA = 105 °C 2.3 - TA = 125 °C - - Conditions RTC clocked by LSI (no independent watchdog) RTC clocked by LSI (with T = 55 °C A independent watchdog) TA= 85 °C TA = -40 °C to 25 °C, VDD = 1.8 V TA = -40 °C to 25 °C, IDD RTC clocked by LSE (no Supply current in Standby (Standby independent watchdog), TA = 55 °C mode with RTC enabled with RTC) oscillator bypassed (3) TA= 85 °C RTC clocked by LSE 32.768 KHz external quartz (no independent watchdog), LSE low drive(3) RTC clocked by LSE 32.768 KHz external quartz (no independent watchdog), LSE high drive(3) DocID025660 Rev 2 Unit µA 69/120 110 Electrical characteristics STM32L063x8 Table 34. Typical and maximum current consumptions in Standby mode(1) (continued) Symbol Parameter Typ Max(2) TBD 1.7 TA = 55 °C - 2.9 TA= 85 °C - 3.3 TA = 105 °C - 4.1 TA = 125 °C - 8.5 TA = -40 °C to 25 °C 0.29 0.6 TA = 55 °C 0.32 0.9 TA = 85 °C 0.5 2.3 TA = 105 °C 0.94 3 TA = 125 °C - 7 TBD - TBD - Conditions TA = -40 °C to 25 °C Supply current in Standby Independent watchdog IDD (Standby) mode (RTC disabled) and LSI enabled IDD Supply current in Standby Independent watchdog (Standby) mode (RTC disabled) and LSI OFF RMS supply current IDD during wakeup time when (WU from exiting from Standby Standby) mode VDD = 3.6 V VDD = 3.0 V TA = -40 °C to 25 °C Unit µA mA 1. TBD stands for “to be defined”. 2. Guaranteed by characterization results, not tested in production, unless otherwise specified 3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors. On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions: 70/120 • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on DocID025660 Rev 2 STM32L063x8 Electrical characteristics Table 35. Peripheral current consumption(1)(2) Typical consumption, VDD = 3.0 V, TA = 25 °C Range 1, VCORE= 1.8 V VOS[1:0] = 01 Range 2, VCORE= 1.5 V VOS[1:0] = 10 Range 3, VCORE= 1.2 V VOS[1:0] = 11 Low-power sleep and run WWDG TBD TBD TBD TBD LCD1 TBD TBD TBD TBD SPI2 TBD TBD TBD TBD LPUART TBD TBD TBD TBD I2C1 TBD TBD TBD TBD I2C2 TBD TBD TBD TBD USB TBD TBD TBD TBD DAC1 TBD TBD TBD TBD USART2 TBD TBD TBD TBD COMP1 TBD TBD TBD TBD COMP2 TBD TBD TBD TBD (3) ADC1 TBD TBD TBD TBD SPI1 TBD TBD TBD TBD USART1 TBD TBD TBD TBD TIM2 TBD TBD TBD TBD TIM21 TBD TBD TBD TBD TIM22 TBD TBD TBD TBD TIM6 TBD TBD TBD TBD GPIOA TBD TBD TBD TBD GPIOB Cortex-M0+ GPIOC core I/O port GPIOD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD GPIOH TBD TBD TBD TBD CRC TBD TBD TBD TBD FLASH TBD TBD TBD TBD AES TBD TBD TBD TBD DMA1 TBD TBD TBD TBD TBD TBD TBD TBD Peripheral APB1 APB2 AHB All enabled DocID025660 Rev 2 Unit µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) 71/120 110 Electrical characteristics STM32L063x8 Table 35. Peripheral current consumption(1)(2) (continued) Typical consumption, VDD = 3.0 V, TA = 25 °C Range 1, VCORE= 1.8 V VOS[1:0] = 01 Range 2, VCORE= 1.5 V VOS[1:0] = 10 Range 3, VCORE= 1.2 V VOS[1:0] = 11 Low-power sleep and run Unit SYSCFG & RI TBD TBD TBD TBD PWR TBD TBD TBD TBD µA/MHz (fHCLK) Peripheral IDD (RTC) TBD IDD (LCD) TBD IDD (ADC)(4) TBD IDD (DAC)(5) TBD IDD (COMP1) TBD IDD (COMP2) IDD (PVD / BOR) Slow mode TBD Fast mode TBD (6) TBD µA TBD IDD (IWDG) 1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production. 2. TBD stands for “to be defined”. 3. HSI oscillator is OFF for this measure. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included). 5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating. 6. Including supply current of internal reference voltage. 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode: • Sleep mode: the clock source is the clock that was set before entering Sleep mode • Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4. • Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. 72/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Table 36. Low-power mode wakeup timings Symbol tWUSLEEP tWUSLEEP_LP Parameter Wakeup from Sleep mode Max(1) Unit TBD - fHCLK = 262 kHz Flash enabled TBD - fHCLK = 262 kHz Flash switched OFF TBD - fHCLK = fMSI = 4.2 MHz TBD - fHCLK = fHSI = 16 MHz TBD - fHCLK = fHSI/4 = 4 MHz TBD - fHCLK = fMSI = 4.2 MHz Voltage range 1 and 2 TBD TBD fHCLK = fMSI = 4.2 MHz Voltage range 3 TBD TBD fHCLK = fMSI = 2.1 MHz TBD TBD fHCLK = fMSI = 1.05 MHz TBD TBD fHCLK = fMSI = 524 kHz TBD TBD fHCLK = fMSI = 262 kHz TBD TBD fHCLK = fMSI = 131 kHz TBD TBD fHCLK = MSI = 65 kHz TBD TBD fHCLK = fHSI = 16 MHz TBD - fHCLK = fHSI/4 = 4 MHz TBD - fHCLK = fHSI = 16 MHz TBD TBD fHCLK = fHSI/4 = 4 MHz TBD TBD fHCLK = fMSI = 4.2 MHz TBD TBD Wakeup from Standby mode FWU bit = 1 fHCLK = MSI = 2.1 MHz TBD TBD Wakeup from Standby mode FWU bit = 0 fHCLK = MSI = 2.1 MHz TBD TBD Wakeup from Low-power sleep mode, fHCLK = 262 kHz Wakeup from Stop mode, regulator in low-power mode Wakeup from Stop mode, regulator in low-power mode, code running from RAM tWUSTDBY Typ fHCLK = 32 MHz Wakeup from Stop mode, regulator in Run mode tWUSTOP Conditions µs ms 1. Guaranteed by characterization results, not tested in production, unless otherwise specified 6.3.6 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 16. DocID025660 Rev 2 73/120 110 Electrical characteristics STM32L063x8 Table 37. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Unit CSS is on or PLL is used 1 8 32 MHz CSS is off, PLL not used 0 8 32 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time 12 - - tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 OSC_IN input capacitance - 2.6 - pF 45 - 55 % - - ±1 µA Cin(HSE) ns - DuCy(HSE) Duty cycle IL OSC_IN Input leakage current V VSS ≤ VIN ≤ VDD 1. Guaranteed by design, not tested in production. Figure 16. High-speed external clock source AC timing diagram 9+6(+ 9+6(/ WU+6( WI+6( W:+6( W:+6( W 7+6( (;7(5 1$/ &/2&. 6285& ( I+6(BH[W 26& B,1 ,/ 670/[[ DLF 74/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Low-speed external user clock generated from an external source The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 24. Table 38. Low-speed external user clock characteristics(1) Symbol Parameter Conditions fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tw(LSE) OSC32_IN high or low time tr(LSE) tf(LSE) OSC32_IN rise or fall time CIN(LSE) Typ Max Unit 1 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 465 - ns - - 10 - - 0.6 - pF - 45 - 55 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC32_IN input capacitance DuCy(LSE) Duty cycle IL Min OSC32_IN Input leakage current 1. Guaranteed by design, not tested in production Figure 17. Low-speed external clock source AC timing diagram 9/6(+ 9/6(/ WU/6( WI/6( W:/6( W:/6( W 7/6( (;7(5 1$/ &/2&. 6285& ( I/6(BH[W 26&B,1 ,/ 670/[[ DLF High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization DocID025660 Rev 2 75/120 110 Electrical characteristics STM32L063x8 time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 39. HSE oscillator characteristics(1) Symbol Parameter Conditions fOSC_IN Oscillator frequency RF Feedback resistor Gm Maximum critical crystal transconductance tSU(HSE) (2) Startup time Min Typ - 1 - - Startup VDD is stabilized Max Unit 25 MHz 200 - kΩ - - 700 µA /V - 2 - ms 1. Guaranteed by design, not tested in production. 2. Guaranteed by characterization results, not tested in production. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 18. HSE oscillator circuit diagram I+6(WRFRUH 5P /P 5) &2 &/ 26&B,1 &P JP 5HVRQDWRU 5HVRQDWRU &RQVXPSWLRQ FRQWURO 670 26&B287 &/ DLE 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization 76/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. LSE oscillator characteristics(1) Symbol fLSE Gm Conditions(2) Min(2) Typ Max Unit - 32.768 - kHz LSEDRV[1:0]=00 lower driving capability - - 0.5 LSEDRV[1:0]= 01 medium low driving capability - - 0.75 LSEDRV[1:0] = 10 medium high driving capability - - 1.7 LSEDRV[1:0]=11 higher driving capability - - 2.7 VDD is stabilized - 2 - Parameter LSE oscillator frequency Maximum critical crystal transconductance tSU(LSE)(3) Startup time µA/V s 1. Guaranteed by design, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. Guaranteed by characterization results, not tested in production. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 19. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I/6( 26&B,1 'ULYH SURJUDPPDEOH DPSOLILHU N+ ] UHVRQDWRU 26&B28 7 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID025660 Rev 2 77/120 110 Electrical characteristics 6.3.7 STM32L063x8 Internal clock source characteristics The parameters given in Table 41 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. High-speed internal 16 MHz (HSI16) RC oscillator Table 41. 16 MHz HSI16 oscillator characteristics Symbol fHSI16 TRIM (1)(2) ACCHSI16 (2) Parameter Conditions Min Typ Max Unit Frequency VDD = 3.0 V - 16 - MHz HSI16 usertrimmed resolution Trimming code is not a multiple of 16 - ± 0.4 0.7 % Trimming code is a multiple of 16 - Accuracy of the factory-calibrated HSI16 oscillator - ± 1.5 % VDDA = 3.0 V, TA = 25 °C -1(3) - 1(3) % VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 % VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 % VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 % VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 % VDDA = 1.65 V to 3.6 V TA = -40 to 105 °C -4 - 3 % tSU(HSI16)(2) HSI16 oscillator startup time - - 3.7 6 µs IDD(HSI16)(2) HSI16 oscillator power consumption - - 100 140 µA 1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). 2. Guaranteed by characterization results, not tested in production. 3. Guaranteed by test in production. Figure 20. HSI16 minimum and maximum value versus temperature 9PLQ 9W\S 9PD[ 9PD[ 9PLQ 06Y9 78/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics High-speed internal 48 MHz (HSI48) RC oscillator Table 42. HSI48 oscillator characteristics(1)(2) Symbol fHSI48 TRIM Parameter Conditions Frequency Min Typ Max Unit - 48 - MHz (3) HSI48 user-trimming step 0.09 DuCy(HSI48) Duty cycle 0.14 (3) % (3) % 0.2 (3) - 55 -4(4) - 4(4) % 45 ACCHSI48 Accuracy of the HSI48 oscillator (factory calibrated before CRS calibration) tsu(HSI48) HSI48 oscillator startup time - - 6(3) µs HSI48 oscillator power consumption - TBD 380(3) µA IDDA(HSI48) TA = 25 °C 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. TBD stands for “to be defined”. 3. Guaranteed by design, not tested in production. 4. Guaranteed by characterization results, not tested in production. Low-speed internal (LSI) RC oscillator Table 43. LSI oscillator characteristics Symbol Parameter Min Typ Max Unit fLSI(1) LSI frequency 26 38 56 kHz DLSI(2) LSI oscillator frequency drift 0°C ≤ TA ≤ 85°C -10 - 4 % LSI oscillator startup time - - 200 µs LSI oscillator power consumption - 400 510 nA tsu(LSI)(3) IDD(LSI) (3) 1. Guaranteed by test in production. 2. This is a deviation for an individual part, once the initial frequency has been measured. 3. Guaranteed by design, not tested in production. DocID025660 Rev 2 79/120 110 Electrical characteristics STM32L063x8 Multi-speed internal (MSI) RC oscillator Table 44. MSI oscillator characteristics Symbol Condition Typ MSI range 0 65.5 - MSI range 1 131 - MSI range 2 262 - MSI range 3 524 - MSI range 4 1.05 - MSI range 5 2.1 - MSI range 6 4.2 - Frequency error after factory calibration - ±0.5 - % DTEMP(MSI)(1) MSI oscillator frequency drift 0 °C ≤ TA ≤ 85 °C - ±3 - % DVOLT(MSI)(1) MSI oscillator frequency drift 1.65 V ≤ VDD ≤ 3.6 V, TA = 25 °C - - 2.5 %/V MSI range 0 0.75 - MSI range 1 1 - MSI range 2 1.5 - MSI range 3 2.5 - MSI range 4 4.5 - MSI range 5 8 - MSI range 6 15 - MSI range 0 30 - MSI range 1 20 - MSI range 2 15 - MSI range 3 10 - MSI range 4 6 - MSI range 5 5 - MSI range 6, Voltage range 1 and 2 3.5 - MSI range 6, Voltage range 3 5 - fMSI ACCMSI IDD(MSI)(2) tSU(MSI) 80/120 Parameter Frequency after factory calibration, done at VDD= 3.3 V and TA = 25 °C MSI oscillator power consumption MSI oscillator startup time DocID025660 Rev 2 Max Unit kHz MHz µA µs STM32L063x8 Electrical characteristics Table 44. MSI oscillator characteristics (continued) Symbol tSTAB(MSI)(2) fOVER(MSI) Parameter MSI oscillator stabilization time MSI oscillator frequency overshoot Condition Typ Max Unit MSI range 0 - 40 MSI range 1 - 20 MSI range 2 - 10 MSI range 3 - 4 MSI range 4 - 2.5 MSI range 5 - 2 MSI range 6, Voltage range 1 and 2 - 2 MSI range 3, Voltage range 3 - 3 Any range to range 5 - 4 Any range to range 6 - µs MHz 6 1. This is a deviation for an individual part, once the initial frequency has been measured. 2. Guaranteed by characterization results, not tested in production. DocID025660 Rev 2 81/120 110 Electrical characteristics 6.3.8 STM32L063x8 PLL characteristics The parameters given in Table 45 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 45. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 2 - 24 MHz PLL input clock duty cycle 45 - 55 % fPLL_OUT PLL output clock 2 - 32 MHz tLOCK Worst case PLL lock time PLL input = 2 MHz PLL VCO = 96 MHz - TBD TBD µs Jitter Cycle-to-cycle jitter - ± 600 ps IDDA(PLL) Current consumption on VDDA - 220 450 IDD(PLL) Current consumption on VDD - 120 150 fPLL_IN µA 1. Guaranteed by characterization results, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 6.3.9 Memory characteristics The characteristics are given at TA = -40 to 105 °C unless otherwise specified. RAM memory Table 46. RAM and hardware registers Symbol VRM Parameter Conditions Data retention mode(1) STOP mode (or RESET) Min Typ Max Unit 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode). 82/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Flash memory and data EEPROM Table 47. Flash memory and data EEPROM characteristics Symbol Conditions Min Typ Max(1) Unit - 1.65 - 3.6 V Erasing - 3.28 3.94 Programming - 3.28 3.94 Average current during the whole programming / erase operation - TBD TBD µA Maximum current (peak) TA = 25 °C, VDD = 3.6 V during the whole programming / erase operation - TBD TBD mA Parameter VDD Operating voltage Read / Write / Erase tprog Programming time for word or half-page IDD ms 1. Guaranteed by design, not tested in production. Table 48. Flash memory and data EEPROM endurance and retention Value Symbol NCYC(2) Parameter Cycling (erase / write) Program memory Cycling (erase / write) EEPROM data memory Data retention (program memory) after 10 kcycles at TA = 85 °C tRET(2) Data retention (EEPROM data memory) after 100 kcycles at TA = 85 °C Data retention (program memory) after 10 kcycles at TA = 105 °C Data retention (EEPROM data memory) after 100 kcycles at TA = 105 °C Conditions TA = -40°C to 105 °C Min(1) Typ Max 10 - Unit kcycles 100 - - 30 - - 30 - - TRET = +85 °C years 10 - - 10 - - TRET = +105 °C 1. Guaranteed by characterization results, not tested in production. 2. Characterization is done according to JEDEC JESD22-A117. DocID025660 Rev 2 83/120 110 Electrical characteristics 6.3.10 STM32L063x8 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 49. They are based on the EMS levels and classes defined in application note AN1709. Table 49. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 32 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 32 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. 84/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 50. EMI characteristics Max vs. frequency range Symbol Parameter SEMI 6.3.11 Conditions VDD = 3.3 V, TA = 25 °C, Peak level LQFP100 package compliant with IEC 61967-2 Monitored frequency band 4 MHz 16 MHz 32 MHz voltage voltage voltage range 3 range 2 range 1 0.1 to 30 MHz 3 -6 -5 30 to 130 MHz 18 4 -7 130 MHz to 1GHz 15 5 -7 SAE EMI Level 2.5 2 1 Unit dBµV - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 51. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions TA = +25 °C, Electrostatic discharge conforming to voltage (human body model) ANSI/JEDEC JS-001 Electrostatic discharge VESD(CDM) voltage (charge device model) TA = +25 °C, conforming to ANSI/ESD STM5.3.1. Class Maximum value(1) 2 2000 Unit V C4 500 1. Guaranteed by characterization results, not tested in production. DocID025660 Rev 2 85/120 110 Electrical characteristics STM32L063x8 Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 52. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels). The test results are given in the Table 53. Table 53. I/O current injection susceptibility Functional susceptibility Symbol Description Injected current on BOOT0 IINJ Injected current on all FT pins Injected current on any other pin Negative injection Positive injection -0 NA -5 (1) NA (1) +5 -5 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 86/120 DocID025660 Rev 2 Unit mA STM32L063x8 6.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 54 are derived from tests performed under the conditions summarized in Table 24. All I/Os are CMOS and TTL compliant. Table 54. I/O static characteristics(1) Symbol VIL VIH Vhys Ilkg Parameter Input low level voltage Conditions Min Typ Max TC, FT, FTf, RST I/Os - - 0.3VDD BOOT0 pin - - 0.14VDD(2) All I/Os 0.7 VDD - - Standard I/Os - 10% VDD(4) - BOOT0 pin - 0.01 - VSS ≤ VIN ≤ VDD I/Os with analog switches - - ±50 VSS ≤ VIN ≤ VDD I/Os with LCD - - ±50 VSS ≤ VIN ≤ VDD I/Os with analog switches and LCD - - ±50 VSS ≤ VIN ≤ VDD I/Os with USB - - 250 VSS ≤ VIN ≤ VDD Standard I/Os - - ±50 FT I/O VDD≤ VIN ≤ 5 V - - ±10 µA Input high level voltage I/O Schmitt trigger voltage hysteresis (3) Input leakage current (5) Unit V nA RPU Weak pull-up equivalent resistor(6) VIN = VSS 30 45 60 kΩ RPD Weak pull-down equivalent resistor(6) VIN = VDD 30 45 60 kΩ CIO I/O pin capacitance - - 5 - pF 1. TBD stands for “to de defined’. 2. Guaranteed by characterization, not tested in production 3. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production. 4. With a minimum of 200 mV. Guaranteed by characterization results, not tested in production. 5. The max. value may be exceeded if negative current is injected on adjacent pins. 6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). DocID025660 Rev 2 87/120 110 Electrical characteristics STM32L063x8 Figure 21. VIH/VIL versus VDD (CMOS I/Os) 9,/9,+9 LQV DOOS 9 '' 3+ 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' + 3 9 ,+PLQ 3& 7 %22 9 ' ' PLQ 9,+PLQ LUH UHTX DUG WDQG 6V &02 WV9 ,+ PHQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9,/PD[ 9''9 06Y9 Figure 22. VIH/VIL versus VDD (TTL I/Os) 9,/9,+9 SLQV DOO 3+ ' ' 9 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' 3+ LQ 9 ,+P 3& 7 %22 77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9 9,+PLQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG 9,/PD[ 77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9 9''9 06Y9 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 55. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: 88/120 • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD(Σ) (see Table 22). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS(Σ) (see Table 22). DocID025660 Rev 2 STM32L063x8 Electrical characteristics Output voltage levels Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. All I/Os are CMOS and TTL compliant. Table 55. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2), IIO = +8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 VDD-0.4 - (1) Output low level voltage for an I/O pin TTL port(2), IIO =+ 8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 (3)(4) Output high level voltage for an I/O pin TTL port(2), IIO = -6 mA 2.7 V ≤ VDD ≤ 3.6 V 2.4 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +15 mA 2.7 V ≤ VDD ≤ 3.6 V - 1.3 VOH(3)(4) Output high level voltage for an I/O pin IIO = -15 mA 2.7 V ≤ VDD ≤ 3.6 V VDD-1.3 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V ≤ VDD < 3.6 V - 0.45 VOH(3)(4) Output high level voltage for an I/O pin IIO = -4 mA V -0.45 1.65 V ≤ VDD ≤ 3.6 V DD VOL VOH Output low level voltage for an FTf VOLFM+(1)(4) I/O pin in Fm+ mode Unit V - IIO = 20 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 IIO = 10 mA 1.65 V ≤ VDD ≤ 3.6 V - 0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 22. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣIIO(PIN). 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 22. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣIIO(PIN). 4. Guaranteed by characterization results, not tested in production. DocID025660 Rev 2 89/120 110 Electrical characteristics STM32L063x8 Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 23 and Table 56, respectively. Unless otherwise specified, the parameters given in Table 56 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 56. I/O AC characteristics(1) OSPEEDRx [1:0] bit value(1) Symbol Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time 00 01 Fmax(IO)out Maximum frequency(3) 10 Output rise and fall time Fmax(IO)out Maximum frequency(3) 11 Fm+ configuration (4) - Max(2) CL = 50 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 50 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 50 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 50 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 50 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 50 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 30 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD CL = 30 pF, VDD = 2.7 V to 3.6 V - TBD CL = 50 pF, VDD = 1.65 V to 2.7 V - TBD - TBD - TBD - TBD Conditions fmax(IO)out tf(IO)out tr(IO)out Min Parameter tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time CL = 50 pF tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller - 8 - 2. Guaranteed by design. Not tested in production. 3. The maximum frequency is defined in Figure 23. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration. DocID025660 Rev 2 kHz ns MHz ns MHz ns MHz ns MHz ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register. 90/120 Unit STM32L063x8 Electrical characteristics Figure 23. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU,2RXW WI,2RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´ 6.3.14 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU , except when it is internally driven low (see Table 57). Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 57. NRST pin characteristics(1) Symbol VIL(NRST) (2) Parameter Conditions Min Typ NRST input low level voltage - VSS - 0.8 - 1.4 - VDD IOL = 2 mA 2.7 V < VDD < 3.6 V - - IOL = 1.5 mA 1.65 V < VDD < 2.7 V - - - - 10%VDD(3) - mV Weak pull-up equivalent resistor(4) VIN = VSS 30 45 60 kΩ NRST input filtered pulse - - - TBD ns NRST input not filtered pulse - TBD - - ns VIH(NRST)(1) NRST input high level voltage NRST output low level VOL(NRST)(1) voltage Vhys(NRST)(1) RPU VF(NRST)(1) VNF(NRST) (1) NRST Schmitt trigger voltage hysteresis Max Unit V 0.4 1. TBD stands for “to be defined”. 2. Guaranteed by design, not tested in production. 3. 200 mV minimum value 4. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. DocID025660 Rev 2 91/120 110 Electrical characteristics STM32L063x8 Figure 24. Recommended NRST pin protection 9'' ([WHUQDOUHVHWFLUFXLW 1567 538 ,QWHUQDOUHVHW )LOWHU ) 670/[[ DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 57. Otherwise the reset will not be taken into account by the device. 6.3.15 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 58 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 24: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 58. ADC characteristics(1) Symbol VDDA IDDA (ADC) Parameter Conditions Analog supply voltage for ADC ON Min Typ Max Unit 1.8 - 3.6 V Current consumption of the ADC on VDDA 1.14 Msps - 200 - 10 ksps - 40 - Current consumption of the ADC on VDD(2) 1.14 Msps - 70 - 10 ksps - 1 - µA fADC ADC clock frequency 0.6 - 16 MHz fS(3) Sampling rate 0.05 - 1.14 MHz - - 941 kHz - - 17 1/fADC 0 - VDDA V - - 50 kΩ fADC = 16 MHz fTRIG(3) External trigger frequency VAIN Conversion voltage range RAIN(3) External input impedance RADC(3) Sampling switch resistance - - 1 kΩ CADC(3) Internal sample and hold capacitor - - 8 pF tCAL(3) Calibration time 92/120 See Equation 1 and Table 59 for details fADC = 16 MHz DocID025660 Rev 2 5.2 µs 83 1/fADC STM32L063x8 Electrical characteristics Table 58. ADC characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle ADC clock = HSI14 WLATENCY tlatr (3) JitterADC ADC_DR register write latency Trigger conversion latency fADC = fPCLK/2 = 16 MHz 0.172 µs fADC = fPCLK/2 5.5 1/fPCLK fADC = fPCLK/4 = 8 MHz 0.172 µs fADC = fPCLK/4 10.5 1/fPCLK fADC = fHSI16 = 16 MHz TBD - TBD µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 16 MHz 0.093 - 15 µs 1.5 - 239.5 1/fADC 0 0 1 µs 15.75 µs ADC jitter on trigger conversion tS(3) Sampling time tSTAB(3) Power-up time tCONV(3) Total conversion time (including sampling time) fADC = 16 MHz 1 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. TBD stands for “to be defined”. 2. A current consumption proportional to the APB clock frequency has to be added (see Table 35: Peripheral current consumption). 3. Guaranteed by design, not tested in production. Equation 1: RAIN max formula TS - – R ADC R AIN < ------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). DocID025660 Rev 2 93/120 110 Electrical characteristics STM32L063x8 Table 59. RAIN max for fADC = 14 MHz Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 60. ADC accuracy(1)(2)(3) Symbol Parameter Min Typ Max ET Total unadjusted error - 2 4 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 2.5 ED Differential linearity error - 1 1.5 ENOB Effective number of bits 10.2 11 - SINAD Signal-to-noise distortion 63 69 - SNR Signal-to-noise ratio 63 69 - THD Total harmonic distortion -85 -73 Unit LSB bits dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 94/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Figure 25. ADC accuracy characteristics (* ([DPSOHRIDQDFWXDO WUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QG SRLQWFRUUHODWLRQOLQH (7 (7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKH ILUVWLGHDORQH (* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO WUDQVLWLRQDQGWKH ODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW FRUUHODWLRQOLQH (2 (/ (' /6%,'($/ 966$ 9''$ -36 Figure 26. Typical connection diagram using the ADC 9''$ 97 5$,1 9$,1 $,1[ &SDUDVLWLF 97 6DPSOHDQGKROG$'& FRQYHUWHU 5$'& ELW FRQYHUWHU ,/Q$ &$'& 06Y9 1. Refer to Table 58: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. DocID025660 Rev 2 95/120 110 Electrical characteristics 6.3.16 STM32L063x8 DAC electrical specifications Data guaranteed by design, not tested in production, unless otherwise specified. Table 61. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit 1.8 - 3.6 V VDDA Analog supply voltage IDDA(1) Current consumption on No load, middle code (0x800) VDDA supply No load, worst code (0xF1C) VDDA = 3.3 V - 340 340 - 340 340 RL(1) Resistive load 5 - - kΩ - - 50 pF CL (1) Capacitive load DAC output buffer ON µA RO Output impedance DAC output buffer OFF 6 8 10 kΩ VDAC_OUT Voltage on DAC_OUT output DAC output buffer ON 0.2 - VDDA – 0.2 V CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 1.5 3 No RLOAD, CL ≤ 50 pF DAC output buffer OFF - 1.5 3 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 2 4 No RLOAD, CL ≤ 50 pF DAC output buffer OFF - 2 4 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - ±10 ±25 No RLOAD, CL ≤ 50 pF DAC output buffer OFF - ±5 ±8 No RLOAD, CL ≤ 50 pF DAC output buffer OFF - ±1.5 ±5 -20 -10 0 DNL (1) INL(1) Offset Differential non linearity(2) Integral non (1) Offset1(1) linearity(3) Offset error at code 0x800 (4) Offset error at code 0x001(5) VDDA = 3.3V TA = 0 to 50 °C Offset error temperature DAC output buffer OFF dOffset/dT(1) coefficient (code 0x800) V = 3.3V LSB µV/°C DDA TA = 0 to 50 °C DAC output buffer ON Gain(1) 96/120 Gain error(6) 0 20 50 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - +0.1 / -0.2% +0.2 / -0.5% No RLOAD, CL ≤ 50 pF DAC output buffer OFF - DocID025660 Rev 2 % +0 / -0.2% +0 / -0.4% STM32L063x8 Electrical characteristics Table 61. DAC characteristics (continued) Symbol Min Typ Max VDDA = 3.3V TA = 0 to 50 °C DAC output buffer OFF -10 -2 0 VDDA = 3.3V TA = 0 to 50 °C DAC output buffer ON -40 -8 0 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 12 30 No RLOAD, CL ≤ 50 pF DAC output buffer OFF - 8 12 tSETTLING Settling time (full scale: for a 12-bit code transition between the lowest and the highest CL ≤ 50 pF, RL ≥ 5 kΩ input codes till DAC_OUT reaches final value ±1LSB - 7 12 µs Update rate Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code CL ≤ 50 pF, RL ≥ 5 kΩ - - 1 Msps tWAKEUP Wakeup time from off state (setting the ENx bit CL ≤ 50 pF, RL ≥ 5 kΩ in the DAC Control (7) register) - 9 15 µs PSRR+ VDDA supply rejection ratio (static DC measurement) - -60 -35 dB dGain/dT(1) (1) TUE Parameter Gain error temperature coefficient Total unadjusted error Conditions CL ≤ 50 pF, RL ≥ 5 kΩ Unit µV/°C LSB 1. Connected between DAC_OUT and VSSA. 2. Difference between two consecutive codes - 1 LSB. 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095. 4. Difference between the value measured at Code (0x800) and the ideal value = VDDA/2. 5. Difference between the value measured at Code (0x001) and the ideal value. 6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON. 7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value). DocID025660 Rev 2 97/120 110 Electrical characteristics STM32L063x8 Figure 27. 12-bit buffered/non-buffered DAC %XIIHUHG1RQEXIIHUHG'$& %XIIHU 5/ '$&B287[ ELW GLJLWDOWR DQDORJ FRQYHUWHU &/ AI6 6.3.17 Temperature sensor characteristics Table 62. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TS_CAL2 TS ADC raw data acquired at temperature of 130 °C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F Table 63. Temperature sensor characteristics Symbol TL(1) Avg_Slope Parameter Min Typ Max Unit - ±1 ±2 °C 1.48 1.61 1.75 mV/°C 640 670 700 mV µA VSENSE linearity with temperature (1) Average slope ±5°C(2) V130 Voltage at 130°C IDDA(TEMP)(3) Current consumption - 3.4 6 tSTART(3) Startup time - - 10 TS_temp(4)(3) ADC sampling time when reading the temperature 10 - - 1. Guaranteed by characterization results, not tested in production. 2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte. 3. Guaranteed by design, not tested in production. 4. Shortest sampling time can be determined in the application by multiple iterations. 98/120 DocID025660 Rev 2 µs STM32L063x8 6.3.18 Electrical characteristics Comparators Table 64. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 3.6 V VDDA Analog supply voltage - 1.65 R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 VIN tSTART (2) kΩ V µs td Propagation delay - - 3 10 Voffset Comparator offset - - ±3 ±10 mV VDDA = 3.6 V Comparator offset VIN+ = 0 V variation in worst voltage VIN- = VREFINT stress conditions TA = 25 °C 0 1.5 10 mV/1000 h Current consumption(3) - 160 260 nA dVoffset/dt ICOMP1 - 1. Guaranteed by characterization, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. Table 65. Comparator 2 characteristics Symbol VDDA VIN Parameter Min Analog supply voltage - 1.65 - 3.6 V Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V ≤ VDDA ≤ 2.7 V - 1.8 3.5 2.7 V ≤ VDDA ≤ 3.6 V - 2.5 6 1.65 V ≤ VDDA ≤ 2.7 V - 0.8 2 2.7 V ≤ VDDA ≤ 3.6 V - 1.2 4 - ±4 ±20 mV VDDA = 3.3V TA = 0 to 50 °C V- =VREFINT, 3/4 VREFINT, 1/2 VREFINT, 1/4 VREFINT. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 tSTART Comparator startup time td slow Propagation delay(2) in slow mode td fast Propagation delay(2) in fast mode Voffset Comparator offset error dThreshold/ Threshold voltage temperature dt coefficient ICOMP2 Typ Max(1) Unit Conditions Current consumption(3) µs µA 1. Guaranteed by characterization results, not tested in production. DocID025660 Rev 2 99/120 110 Electrical characteristics STM32L063x8 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. 6.3.19 Timer characteristics TIM timer characteristics The parameters given in the Table 66 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 66. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Timer resolution time Conditions fTIMxCLK = 32 MHz Timer external clock frequency on CH1 to CH4 f TIMxCLK = 32 MHz Timer resolution - 16-bit counter clock period when internal clock is selected (timer’s prescaler disabled) - tMAX_COUNT Maximum possible count Min Max Unit 1 - tTIMxCLK 31.25 - ns 0 fTIMxCLK/2 MHz 0 16 MHz 16 bit 65536 tTIMxCLK 2048 µs 1 fTIMxCLK = 32 MHz 0.0312 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 32 MHz - 134.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers. 100/120 DocID025660 Rev 2 STM32L063x8 6.3.20 Electrical characteristics Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm) : with a bit rate up to 100 kbit/s • Fast-mode (Fm) : with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s. The I2C timing requirements are guaranteed by design when the I2C peripheral is properly configured (refer to the reference manual for details). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics). All I2C SDA and SCL I/Os embed an analog filter (see Table 67 for the analog filter characteristics). Table 67. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered DocID025660 Rev 2 101/120 110 Electrical characteristics STM32L063x8 SPI characteristics Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 24. Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 68. SPI characteristics in voltage Range 1 (1) Symbol Parameter Conditions Min Typ - - Slave mode Transmitter 1.71<VDD<3.6V - - 12(2) Slave mode Transmitter 2.7<VDD<3.6V - - 16(2) Master mode Slave mode receiver fSCK 1/tc(SCK) SPI clock frequency Max 16 16 Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 8.5 - - Slave mode 8.5 - - Master mode 6 - - Slave mode 1 - - tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO Data output access time Slave mode 15 - 36 tdis(SO) Data output disable time Slave mode 10 - 30 Slave mode 1.71<VDD<3.6V - 29 41 Slave mode 2.7<VDD<3.6V - 22 28 Master mode - 10 17 Slave mode 9 - - Master mode 3 - - tv(SO) Data output valid time tv(MO) th(SO) th(MO) Data output hold time Unit MHz % ns 1. Guaranteed by characterization results, not tested in production. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. 102/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Table 69. SPI characteristics in voltage Range 2 (1) Symbol Parameter Conditions Min Typ Master mode fSCK 1/tc(SCK) SPI clock frequency Slave mode Transmitter 1.65<VDD<3.6V Max Unit 8 - - Slave mode Transmitter 2.7<VDD<3.6V 8 MHz 8(2) Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 12 - - Slave mode 11 - - Master mode 6.5 - - Slave mode 2 - - tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO Data output access time Slave mode 18 - 52 tdis(SO) Data output disable time Slave mode 12 - 42 tv(SO) Data output valid time 40 55 tv(MO) th(SO) Data output hold time Slave mode - Master mode - 16 26 Slave mode 12 - - Master mode 4 - - % ns 1. Guaranteed by characterization results, not tested in production. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. DocID025660 Rev 2 103/120 110 Electrical characteristics STM32L063x8 Table 70. SPI characteristics in voltage Range 3 (1) Symbol Parameter Min Typ fSCK 1/tc(SCK) SPI clock frequency - - Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 28.5 - - Slave mode 22 - - Master mode 7 - - Slave mode 5 - - tsu(MI) Conditions Data input setup time tsu(SI) th(MI) Data input hold time th(SI) Master mode Slave mode Max 2 Data output access time Slave mode 30 - 70 tdis(SO) Data output disable time Slave mode 40 - 80 tv(SO) Data output valid time Slave mode - 53 86 Master mode - 30 54 Slave mode 18 - - Master mode 8 - - Data output hold time th(SO) MHz 2(2) ta(SO tv(MO) Unit % ns 1. Guaranteed by characterization results, not tested in production. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. Figure 28. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) SCK Input tSU(NSS) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT tsu(SI) MOSI I NPUT M SB IN B I T1 IN LSB IN th(SI) ai14134c 104/120 DocID025660 Rev 2 STM32L063x8 Electrical characteristics Figure 29. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) CPHA=1 CPOL=1 tv(SO) ta(SO) MISO OUT P UT th(SO) MS B O UT tsu(SI) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Figure 30. SPI timing diagram - master mode(1) High NSS input SCK Input CPHA= 0 CPOL=0 SCK Input tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) MS BIN BI T6 IN LSB IN th(MI) MOSI OUTPUT M SB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID025660 Rev 2 105/120 110 Electrical characteristics STM32L063x8 I2S characteristics Table 71. I2S characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S Main clock output - 256 x 8K 256xFs (2) MHz fCK I2S clock frequency Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs DCK I2S clock frequency duty cycle Slave receiver 30 70 tv(WS) WS valid time Master mode - 15 th(WS) WS hold time Master mode 11 - tsu(WS) WS setup time Slave mode 6 - th(WS) WS hold time Slave mode 2 - Master receiver 18 - Slave receiver 16 - Master receiver 11 - Slave receiver 0 - Slave transmitter (after enable edge) - 77 Master transmitter (after enable edge) - 26 Slave transmitter (after enable edge) 8 - Master transmitter (after enable edge) 3 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) Data input setup time Data input hold time Data output valid time Data output hold time MHz % ns 1. Guaranteed by characterization results, not tested in production. 2. 256xFs maximum value is equal to the maximum clock frequency. Note: 106/120 Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition. DocID025660 Rev 2 STM32L063x8 Electrical characteristics Figure 31. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 32. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Guaranteed by characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID025660 Rev 2 107/120 110 Electrical characteristics STM32L063x8 USB characteristics The USB interface is USB-IF certified (full speed). Table 72. USB startup time Symbol tSTARTUP (1) Parameter USB transceiver startup time Max Unit 1 µs 1. Guaranteed by design, not tested in production. Table 73. USB DC electrical characteristics Symbol Parameter Conditions Min.(1) Max.(1) Unit - 3.0 3.6 V 0.2 - Input levels VDD USB operating voltage VDI(2) Differential input sensitivity VCM(2) Differential common mode range Includes VDI range 0.8 2.5 VSE(2) Single ended receiver threshold 1.3 2.0 - 0.3 2.8 3.6 I(USB_DP, USB_DM) - V Output levels VOL(3) VOH (3) Static output level low Static output level high RL of 1.5 kΩ to 3.6 V(4) RL of 15 kΩ to 1. All the voltages are measured from the local ground potential. 2. Guaranteed by characterization results, not tested in production. 3. Guaranteed by test in production. 4. RL is the load connected on the USB drivers. 108/120 DocID025660 Rev 2 VSS(4) V STM32L063x8 Electrical characteristics Figure 33. USB timings: definition of data signal rise and fall time Crossover points Differen tial Data L ines VCRS VS S tr tf ai14137 Table 74. USB: full speed electrical characteristics Driver characteristics(1) Symbol Parameter Conditions Min Max Unit tr Rise time(2) CL = 50 pF 4 20 ns tf Time(2) CL = 50 pF 4 20 ns tr/tf 90 110 % 1.3 2.0 V trfm VCRS Fall Rise/ fall time matching Output signal crossover voltage 1. Guaranteed by design, not tested in production. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 6.3.21 LCD controller The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the VDD voltage. An external capacitor Cext must be connected to the VLCD pin to decouple this converter. Table 75. LCD controller characteristics Symbol Parameter Min Typ Max VLCD LCD external voltage - - 3.6 VLCD0 LCD internal reference voltage 0 - 2.6 - VLCD1 LCD internal reference voltage 1 - 2.73 - VLCD2 LCD internal reference voltage 2 - 2.86 - VLCD3 LCD internal reference voltage 3 - 2.98 - VLCD4 LCD internal reference voltage 4 - 3.12 - VLCD5 LCD internal reference voltage 5 - 3.26 - VLCD6 LCD internal reference voltage 6 - 3.4 - VLCD7 LCD internal reference voltage 7 - 3.55 - 0.1 - 2 Supply current at VDD = 2.2 V - 3.3 - Supply current at VDD = 3.0 V - 3.1 - 5.28 6.6 7.92 Cext ILCD(1) RHtot(2) VLCD external capacitance Low drive resistive network overall value DocID025660 Rev 2 Unit V µF µA MΩ 109/120 110 Electrical characteristics STM32L063x8 Table 75. LCD controller characteristics (continued) Symbol RL (2) Parameter High drive resistive network total value Min Typ Max Unit 192 240 288 kΩ V V44 Segment/Common highest level voltage - - VLCD V34 Segment/Common 3/4 level voltage - 3/4 VLCD - V23 Segment/Common 2/3 level voltage - 2/3 VLCD - V12 Segment/Common 1/2 level voltage - 1/2 VLCD - V13 Segment/Common 1/3 level voltage - 1/3 VLCD - V14 Segment/Common 1/4 level voltage - 1/4 VLCD - V0 Segment/Common lowest level voltage 0 - - Segment/Common level voltage error TA = -40 to 85 °C - - ± 50 ΔVxx(3) V mV 1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected. 2. Guaranteed by design, not tested in production. 3. Guaranteed by characterization results, not tested in production. 110/120 DocID025660 Rev 2 STM32L063x8 Package characteristics 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at http://www.st.com. ECOPACK® is an ST trademark. LQFP64 10 x 10 mm low profile quad flat package Figure 34. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( E ( 7.1.1 H :B0(B9 1. Drawing is not to scale. DocID025660 Rev 2 111/120 118 Package characteristics STM32L063x8 Table 76. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3858 0.3937 0.4016 D3 - 7.500 - - 0.2953 - E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3858 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0.0 3.5 7.0 0.0 3.5 7.0 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 35. LQFP64 recommended footprint 1. Dimensions are expressed in millimeters 112/120 DocID025660 Rev 2 STM32L063x8 Package characteristics Device marking Figure 36. LQFP64 marking (package top view) $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH (QJLQHHULQJVDPSOH PDUNLQJ (6 'DWHFRGH <HDUZHHN <HDU :HHN 069 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. DocID025660 Rev 2 113/120 118 Package characteristics 7.1.2 STM32L063x8 LQFP48 7 x 7 mm low profile quad flat package Figure 37. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ 0). )$%.4)&)#!4)/. % E 1. Drawing is not to scale. 114/120 % % B DocID025660 Rev 2 "?-%?6 STM32L063x8 Package characteristics Table 77. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID025660 Rev 2 115/120 118 Package characteristics STM32L063x8 Figure 38. LQFP48 recommended footprint AID 1. Dimensions are expressed in millimeters. Device marking Figure 39. LQFP48 marking (package top view) (QJLQHHULQJVDPSOH PDUNLQJ (6 'DWHFRGH <HDUZHHN <HDU 3LQ :HHN $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH 06Y9 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 116/120 DocID025660 Rev 2 STM32L063x8 7.2 Package characteristics Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max × ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 78. Thermal characteristics Symbol ΘJA Parameter Value Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch 55 Unit °C/W Figure 40. Thermal resistance )RUELGGHQDUHD7-!7-PD[ 3' P : /4)3[PP /4)3[PP 7HPSHUDWXUH& 7.2.1 06Y9 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. DocID025660 Rev 2 117/120 118 Ordering information 8 STM32L063x8 Ordering information Table 79. STM32L063x8 ordering information scheme Example: STM32 L 063 R 8 T 6 D xxx Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low power Device subfamily 063 = USB + LCD + AES Pin count C = 48 pins R = 64 pins Flash memory size 8 = 64 Kbytes Package T = LQFP Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options No character = VDD range: 1.8 to 3.6 V and BOR enabled D = VDD range: 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. 118/120 DocID025660 Rev 2 STM32L063x8 9 Revision history Revision history Table 80. Document revision history Date Revision 07-Feb-2014 1 Initial release. 2 Updated Table 4: Functionalities depending on the working mode (from Run/active down to standby). Added Section 3.2: Interconnect matrix. Added VREF_OUT additional function to PB0 and PB1, updated PA0/4/5 and PC5/14 I/O structure, replaced TTa I/O structure by TC, and added note 2. in Table 15: STM32L063x8 pin definitions. Updated Table 24: General operating conditions, Table 21: Voltage characteristics and Table 22: Current characteristics. Modified conditions in Table 27: Embedded internal reference voltage. Updated Table 28: Current consumption in Run mode, code with data processing running from Flash, Table 29: Current consumption in Run mode, code with data processing running from RAM, Table 30: Current consumption in Sleep mode, Table 31: Current consumption in Lowpower Run mode, Table 32: Current consumption in Low-power Sleep mode, Table 33: Typical and maximum current consumptions in Stop mode and Table 34: Typical and maximum current consumptions in Standby mode. Added Figure 11: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS, Figure 12: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS, Figure 13: IDD vs VDD, at TA= 25/55/ 85/105 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS, Figure 14: IDD vs VDD, at TA= 25/55/ 85/105 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 15: IDD vs VDD, at TA= 25/55/85/105 °C, Stop mode with RTC disabled, all clocks OFF. Updated Table 39: HSE oscillator characteristics and Table 40: LSE oscillator characteristics. Added Figure 20: HSI16 minimum and maximum value versus temperature. Updated Table 51: ESD absolute maximum ratings, Table 53: I/O current injection susceptibility and Table 54: I/O static characteristics, and added Figure 21: VIH/VIL versus VDD (CMOS I/Os) and Figure 22: VIH/VIL versus VDD (TTL I/Os). Updated Table 55: Output voltage characteristics, Table 56: I/O AC characteristics and Figure 23: I/O AC characteristics definition. Updated Table 58: ADC characteristics, Table 60: ADC accuracy, and Figure 26: Typical connection diagram using the ADC. Updated Table 63: Temperature sensor characteristics. Updated Table 68: SPI characteristics in voltage Range 1 and Table 71: I2S characteristics. Added Figure 40: Thermal resistance. 29-Apr-2014 Changes DocID025660 Rev 2 119/120 119 STM32L063x8 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 120/120 DocID025660 Rev 2
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement