Fuse Systems SENTRON Answers for infrastructure and cities. Configu-

Fuse Systems SENTRON Answers for infrastructure and cities. Configu-
© Siemens AG 2014
Fuse Systems
SENTRON
Configuration
Manual
Edition
2014
Answers for infrastructure and cities.
© Siemens AG 2014
© Siemens AG 2014
Fuse Systems
2
Introduction
8
NEOZED fuse systems
NEOZED fuse links, 5SE2
15
24
32
DIAZED fuse systems
Cylindrical fuse systems
Cylindrical fuse links and cylindrical
fuse holders
Compact cylindrical fuse holders in
size 10 x 38 mm and Class CC
36
Class CC fuse systems
40
Busbar systems
45
67
68
3NA, 3ND LV HRC fuse systems
LV HRC fuse links
LV HRC signal detectors
LV HRC fuse bases and accessories
79
129
140
145
SITOR semiconductor fuses
SITOR, LV HRC design
SITOR, cylindrical fuse design
NEOZED, DIAZED, SILIZED design
Configuration
157
158
162
Photovoltaic fuses
Introduction
PV cylindrical fuses
PV cumulative fuses
For further technical
product information:
Service & Support Portal:
www.siemens.com/lowvoltage/productsupport
 Product List:
Technical specifications
 Entry List:
Certificates / Characteristics /
Download / FAQ / Manuals /
Updates
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Introduction
■ Overview
Page
Application
Standards
8
MINIZED switch disconnectors, bases, Fuse system:
fuse links from 2 A to 63 A of operaIEC 60269-3;
tional class gG and accessories.
DIN VDE 0636-3;
Everything you need for a complete
system.
Safety switching
devices
Used in
Non-residential
buildings
Residential
buildings
Industry
Devices
NEOZED fuse systems
✓
✓
✓
IEC/EN 60947-3
DIN VDE 0638;
EN 60947-3
(VDE 0660-107)
DIAZED fuse systems
15
Fuse links from 2 A to 100 A in various
operational classes, base versions with
classic screw base connections.
A widely used fuse system.
IEC 60269-3;
DIN VDE 0635;
DIN VDE 0636-3;
CEE 16
✓
✓
✓
Line protection or protection of
switching devices.
IEC 60269-1, -2, -3;
NF C 60-200;
NF C 63-210, -211;
NBN C 63269-2,
CEI 32-4, -12
✓
✓
✓
Cylindrical fuse systems
Cylindrical fuse links and cylindrical 24
fuse holders
The fuse holders with touch protection
ensure the safe "no-voltage" replacement of fuse links.
Auxiliary switches can be retrofitted.
Compact cylindrical fuse holders in
size 10 x 38 mm and Class CC
32
For installing fused loaded motor starter IEC 60269-1,-2;
combinations.
IEC 60947-4;
UL 512; CSA
✓
--
✓
Class CC fuse systems
36
These comply with American standard
and have UL and CSA approval, for
customers exporting OEM products
and mechanical engineers.
✓
✓
✓
✓
✓
✓
Fuse holders: UL 512;
CSA 22.2
Modern design with touch protection
Fuse links: UL 248-4;
according to BGV A3 for use in "branch CSA 22.2
circuit protection".
Busbar systems
2
Siemens · 2014
40
Busbars for NEOZED fuse bases,
NEOZED fuse disconnectors,
MINIZED switch disconnectors,
DIAZED fuse systems and for the
cylindrical fuse systems.
EN 60439-1
(VDE 0660-500)
© Siemens AG 2014
Fuse Systems
Introduction
Page
Application
Standards
Used in
LV HRC fuse links
45
Fuse links from 2 A to 1250 A for
selective line protection and system
protection in non-residential buildings,
industry and power utilities.
IEC 60269-1, -2;
EN 60269-1;
DIN VDE 0636-2
✓
✓
✓
LV HRC signal detectors
67
Signal detectors for when a fuse is
tripped on all LV HRC fuse links with
combination or front indicators with
non-insulated grip lugs.
--
✓
✓
✓
Non-residential
buildings
Residential
buildings
Industry
Devices
3NA, 3ND LV HRC fuse systems
Plus the comprehensive accessory
range required for LV HRC fuse
systems.
68
Fuse bases for screw or snap-on
IEC 60269-1, -2;
mounting onto standard mounting rails, EN 60269-1;
available as 1-pole or 3-pole version
DIN VDE 0636-2
✓
✓
✓
SITOR LV HRC design
79
Fuse links in LV HRC design and a
huge variety of models support a wide
range of applications from 500 V to
1500 V and 150 A to 1600 A.
Fuses with slotted blade contacts,
bolt-on links or female thread and
special designs.
--
--
--
✓
SITOR,
cylindrical fuse design
129
Fuse links, fuse holders – usable as
fuse switch disconnectors and fuse
bases up to 600/690 V AC and
400/700 V DC from 1 A to 100 A in the
sizes 10 × 38 mm, 14 × 51 mm and
22 × 58 mm.
--
--
--
✓
NEOZED, DIAZED, SILIZED design
140
NEOZED fuse links for 400 V AC and
250 V DC and DIAZED for 500 V AC
and 500 V DC.
--
--
--
✓
PV cylindrical fuses
157
Fuses with a rated voltage of
1000 V DC and operational class gPV
for the protection of photovoltaic
modules, their connecting cables and
other components.
IEC 60269-6
✓
✓
✓
PV cumulative fuses
162
Fuses with a rated voltage of 1000 V
IEC60269-6
and 1500 V DC, a rated current of 63 A
to 630 A and operational class gPV for
the protection of connecting cables and
other components.
✓
✓
✓
LV HRC fuse bases and
accessories
SITOR semiconductor fuses
Photovoltaic fuses
Siemens · 2014
3
© Siemens AG 2014
Fuse Systems
Introduction
■ Overview
Rated voltage Un
The rated voltage is the designated voltage of the fuse and is
used to determine its test conditions and operational voltage
limits.
For LV HRC and SITOR fuse links, the rated voltage is always the
rms value of an AC voltage.
In the case of NEOZED and DIAZED fuse links, a distinction is
made between AC and DC voltage values.
Rated current In
The rated current of a fuse link is the designated current of the
fuse link and is the current up to which it can be continuously
loaded under prescribed conditions without adverse affects.
Rated frequency
The rated frequency is the frequency for which the fuse link is
rated with regard to power dissipation, current, voltage,
characteristic curve and breaking capacity.
Faster arcing and precise arc quenching are the requirements for a reliable breaking capacity.
Selectivity
Operational classes
Several fuses are usually connected in series in a system.
Selectivity ensures that only the faulty electric circuit and not all
operating processes are interrupted in a system in serious
cases.
Fuses are categorized according to function and operational
classes. The first letter defines the function class and the second
the object to be protected:
Siemens fuses of operational class gG, at an operational voltage
of up to 400 V AC and a ratio of 1:1.25, are interselective, i.e.
from rated current level to rated current level. This is achieved by
means of the considerably smaller band of scatter of ± 5% of the
time/current characteristics, which far exceeds the demand for
a ratio of 1:1.6 specified in the standard.
a = Partial range protection
(accompanied fuses):
Fuse links that carry currents at least up to their specified rated
current and can switch currents above a specific multiple of their
rated current up to their rated breaking current.
It is therefore possible to use smaller conductor cross-sections
due to the lower rated currents.
Breaking capacity
The rated breaking capacity is the highest prospective shortcircuit current Ip that the fuse link can blow under prescribed
conditions.
A key feature of these fuses is their high rated breaking capacity
with the smallest footprint. The basic demands and circuit data
for tests – voltage, power factor, actuating angle etc.– are specified in both national (DIN VDE 0636) and international
(IEC 60269) regulations.
However, for a constant fail-safe breaking capacity, from the
smallest non-permissible overload current through to the highest
short-circuit current, a number of quality characteristics need to
be taken into account when designing and manufacturing fuse
links. These include the design of the fuse element with regard
to dimensions and punch dimension and its position in the fuse
body, as well as its compressive strength and the thermal resistance of the body. The chemical purity, particle size and the density of the quartz sand also play a key role.
The rated breaking capacity for AC voltage for NEOZED fuses and the majority of DIAZED fuses - is 50 kA, and in the case of
our LV HRC fuses (NH type), it is even 120 kA. The various type
ranges of SITOR semiconductor fuses have different switching
capacities ranging from 50 to 100 kA.
.
1st letter
g = Full range protection
(general purpose fuses):
Fuse links that can continuously carry currents up to at least their
specified rated current and can switch currents from the smallest melting current through to the breaking current. Overload
and short-circuit protection.
2nd letter
G
= Cable and line protection (
general applications)
M
= Switching device protection in motor circuits
(for protection of motor circuits)
R, S = Semiconductor protection/thyristor protection
(for protection of rectifiers)
L
= Cable and line protection
(in acc. with the old, no longer valid DIN VDE)
B
= Mine equipment protection
Tr
= Transformer protection
The designations "slow" and "quick" still apply to DIAZED fuses.
These are defined in IEC/CEE/DIN VDE.
In the case of "quick" characteristics, the fuse blows in the
breaking range faster than those of operational class gG.
In the case of DIAZED fuse links for DC railway network protection, the "slow" characteristic is particularly suitable for switching
off direct currents with greater inductance. Both characteristics
are also suitable for the protection of cables and lines.
Full range fuses (gG, gR, quick, slow) reliably break the current
in the event of non-permissible overload and short-circuit
currents.
Partial range fuses (aM, aR) exclusively serve short-circuit
protection.
4
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Introduction
The following operational classes are included in the product
range:
gG
aM
(DIN VDE/IEC) = Full range cable and line protection
(DIN VFE/IEC) = Partial ranges switching device
protection
aR
(DIN VDE/IEC) = Partial range semiconductor protection
gR
(DIN VDE/IEC) = Full range semiconductor protection
gS
(DIN VDE/IEC) = Full range semiconductor protection
and cable and line protection
quick (DIN VDE/IEC/CEE) = Full range cable and
line protection
slow (DIN VDE) = Full range cable and line protection
Characteristic curves (time/current characteristic curves)
The time/current characteristic curve specifies the virtual time
(e.g. the melting time) as a function of the prospective current
under specific operating conditions.
Melting times of fuse links are presented in the time/current diagrams with logarithmic subdivision as a function of their currents. The melting time characteristic curve extends from the
lowest melting current, which still just causes the melting conductor to melt asymptotically to the I2t line of equal Joulean heat
values in the range of higher short-circuit currents, which specifies the constant melting heat value I2t. For the sake of simplicity,
the time/current characteristics diagrams omit the I2t lines (c).
9
10
t [s]
Virtual time tv
The virtual time is the time span calculated when a I2t value is
divided by the square of the prospective current:
 i dt
= -----------2
tv
Ip
2
The time/current characteristic curve specifies the prospective
current Ip and the virtual melting time tvs.
Prospective short-circuit current Ip
The prospective short-circuit current is the rms value of the linefrequency AC component, or the value of direct current to be expected in the event of a short-circuit occurring downstream of
the fuse, were the fuse to be replaced by a component of negligible impedance.
Let-through current characteristic curves
The let-through current characteristic curve specifies the value
of the let-through current at 50 Hz as a function of the prospective current.
The let-through current Ic is the maximum instantaneous value of
the current reached during a switching operation of a fuse.
The fuse element of the fuse links melts so quickly at very high
currents that the surge short-circuit current Ip is prevented from
occurring. The highest instantaneous value of the current
reached during the breaking cycle is called the let-through
current Ic. The current limits are specified in the current limiting
diagrams, otherwise known as let-through current diagrams.
5
10
U
a
1
10
b
Us: Arc voltage
I201_06996a
c
101
min
102
10 3
104
[A]
General representation of the time/current characteristic curve of a fuse
link of operational class gL/gG
Smallest melting current
Melting time/current characteristic
Breaking time characteristic curve
I2t line
The curve of the characteristic depends on the outward heat
transfer from the fuse element. DIN VDE 0636 specifies tolerance-dependent time/current ranges within which the characteristic curves of the fuse must lie. Deviations of ±10 % are permissible in the direction of the current axis. With Siemens LV HRC
fuse links of operational class gG, the deviations work out at less
than ± 5 %, a mark of our outstanding production accuracy. For
currents up to approx. 20 In, the melting time/current characteristic curves are the same as the breaking time characteristic
curves. In the case of higher short-circuit currents, the two characteristic curves move apart, influenced by the respective arc
quenching time.
The difference between both lines (= arc quenching time) also
depends on the power factor, the operational voltage and the
breaking current.
c: Maximum let-through current
ts: Pre-arcing time
tL: Arcing time
P: Peak short-circuit current
P
c
I201_06997b
Imin:
a:
b:
c:
t
ts
tL
t
Oscillograph of a short-circuit current breaking operation through a fuse
link
The Siemens characteristic curves show the mean virtual melting time characteristic curves recorded at an ambient temperature of (20 ±5) °C. They do not apply to preloaded fuse links.
Siemens · 2014
5
© Siemens AG 2014
Fuse Systems
Introduction
Current limiting
Rated power dissipation
As well as a fail-safe rated breaking capacity, the current-limiting
effect of a fuse link is of key importance for the cost effectiveness
of a system. In the event of short-circuit breaking by a fuse, the
short-circuit current continues to flow through the network until
the fuse link is switched off. However, the short-circuit current is
only limited by the system impedance.
Rated power dissipation is the power loss during the load of a
fuse link with its rated current under prescribed conditions.
The simultaneous melting of all the bottlenecks of a fuse element
produce a sequence of tiny partial arcs that ensure a fast breaking operation with strong current limiting. The current limitation is
also strongly influenced by the production quality of the fuse which in the case of Siemens fuses is extremely high. For example, an LV HRC fuse link, size 2 (224 A) limits a short-circuit current with a possible rms value of approximately 50 kA to a letthrough current with a peak value of approx. 18 kA. This strong
current limitation provides constant protection for the system
against excessive loads.
c
The cost effectiveness of a fuse depends largely on the rated
power dissipation (power loss). This should be as low as possible and have low self-heating. However, when assessing the
power loss of a fuse, it must also be taken into account that there
is a physical dependence between the rated breaking capacity
and the rated power dissipation. On the one hand, fuse elements
need to be very thick in order to achieve the lowest possible resistance value, on the other, a high rated breaking capacity requires the thinnest possible fuse elements in order to achieve reliable arc quenching.
Siemens fuses have the lowest possible rated power dissipation
while also providing the highest possible load breaking reliability.
These values lie far below the limit values specified in the regulations. This means a low temperature rise, reliable breaking capacity and high cost effectiveness.
100 A
50 A
I 2t value
10 A
The I 2t value (joule integral) is the integral of the current squared
over a specific time interval:
6A
t1
2
I201_06998a
I t =
eff
Current limitation diagram;
let-through current diagram of LV HRC fuse links, size 00,
operational class gL/gG,
rated currents, 6 A, 10 A, 50 A, 100 A
Legend
tvs =
Ic =
Irms=
I2ts =
I2ta =
In =
Pv =
 =
kA =
Uw =
Ûs =
Ip =
$ =
% =
U =
i =
ts =
tL =
6
Virtual melting time
Max. let-through current
rms value of the prospective short-circuit current
Melting I2t value
Breaking I2tvalue
Rated current
Rated power dissipation
Temperature rise
Correction factor for I2t value
Recovery voltage
Peak arc voltage
Peak short-circuit current
Peak short-circuit current with largest DC component
Peak short-circuit current without DC component
Voltage
Current
Melting time
Arc quenching time
Siemens · 2014
t
i
dt
2
0
Specifies the I 2t values for the melting process (I 2ts) and for the
breaking cycle (I 2tA, - sum of melting and quenching I 2t value).
The melting I 2t value, also known as the total I 2t value or breaking I 2t value, is particularly important when dimensioning SITOR
semiconductor fuses. This value depends on the voltage and is
specified with the rated voltage.
Peak arc voltage Ûs
The peak arc voltage is the maximum value of the voltage that
occurs at the connections of the fuse link during the arc quenching time.
Residual value factor RW
The residual value factor is a reduction factor for determining the
permissible load period of the fuse link with currents that exceed
the permissible load current In' (see rated current In). This factor
is applied when dimensioning SITOR semiconductor fuses.
Varying load factor WL
The varying load factor is a reduction factor for the rated current
with varying load states. This factor is applied when dimensioning SITOR semiconductor fuses.
Recovery voltage Uw
The recovery voltage (rms value) is the voltage that occurs at the
connections of a fuse link after the power is cut off.
© Siemens AG 2014
Fuse Systems
Introduction
■ More information
Load capability with increased ambient temperature
Assignment of cable and line protection
The time/current characteristic curve of the NEOZED/DIAZED
and LV HRC fuse links is based on an ambient temperature of
20 °C ±5 °C in accordance with DIN VDE 0636. When used in
higher ambient temperatures (see diagram) a reduced loadcarrying capacity must be planned for. At an ambient temperature of 50 °C, for example, an LV HRC fuse link should be dimensioned for only 90 % of the rated current. While the short-circuit
behavior is not influenced by an increased ambient temperature,
it is influenced by overload and operation at rated value.
When gG fuses are assigned for cable and line protection
against overloading, the following conditions must be met in
order to comply with DIN VDE 0100 Part 430:
Current carrying capacity [%]
120
I201_06648c
(1) IB = In = Iz (rated current rule)
(2) I2 = 1.45 x Iz (tripping rule)
IB: Operational current of electrical circuit
In: Rated current of selected protective device
Iz: Permissible current carrying capacity of the cable or line under specified operating conditions
I2: Tripping current of the protective device under specified
operating conditions ("high test current").
100
90
These days, the factor 1.45 has become an internationally
accepted compromise of the protection and utilization ratio of a
line, taking into account the breaking response of the protective
device (e.g. fuse).
80
60
In compliance with the supplementary requirements for
DIN VDE 0636, Siemens fuse links of operational class gG
comply with the following condition:
40
"Load breaking switching with I2=1.45 × In during conventional
test duration under special test conditions in accordance with
the aforementioned supplementary requirements of
DIN VDE 0636".
20
0
0
20
40
50
60
80
100
120
This therefore permits direct assignment.
Ambient temperature [°C]
Influence of the ambient temperature on the load capability of
NEOZED/DIAZED and LV HRC fuses of operational class gG with natural
convection in the distribution board.
Siemens · 2014
7
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
■ Overview
The NEOZED fuse system is primarily used in distribution technology and industrial switchgear assemblies. The system is easy
to use and is also approved for domestic installation.
The MINIZED switch disconnectors are primarily used in switchgear assemblies and control engineering. They are approved for
switching loads as well as for safe switching in the event of short
circuits. The MINIZED D02 is also suitable for use upstream of
the meter in household applications in compliance with the
recommendations of the VDEW according to TAB 2007.
Fuse bases D01 with terminal version BB
• Incoming feeders, clamp-type terminal B
• Outgoing feeders, clamp-type terminal B
Fuse bases D02, with terminal version SS
• Incoming feeders, saddle terminal S
• Outgoing feeders, saddle terminal S
8
Siemens · 2014
Due to its compact design, the MINIZED D01 fuse switch
disconnector is primarily used in control engineering.
The NEOZED fuse bases are the most cost-effective solution for
using NEOZED fuses. All NEOZED bases must be fed from the
bottom to ensure that the threaded ring is insulated during removal of the fuse link. The terminals of the NEOZED bases are
available in different versions and designs to support the various
installation methods.
Fuse bases D02, with terminal version KS
• Incoming feeders, screw head contact K
• Outgoing feeders, saddle terminal S
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
■ Technical specifications
NEOZED fuse links
5SE2
IEC 60269-3; DIN VDE 0636-3
Standards
gG
Operational class
V AC
400
V DC
250
Rated current In
A
2 ... 100
Rated breaking capacity
kA AC
50
kA DC
8
Rated voltage Un
Using adapter sleeves
Non-interchangeability
Resistance to climate
°C
Up to 45 at 95 % rel. humidity
Ambient temperature
°C
-5 ... +40, humidity 90 % at 20
MINIZED
MINIZED fuse Fuse bases,
switch
switch
made of ceramic
disconnectors disconnectors
Fuse
bases
D02
D01
D01
D02
D03
D01/02
5SG71
5SG76
5SG15
5SG55
5SG16
5SG56
5SG18
5SG1.01
5SG5.01
5SG1.30
5SG1.31
5SG5.30
16/63
16/63
DIN VDE 0638;
EN 60947-3
(VDE 0660-107)
Standards
Comfort
bases
IEC 60269-3; DIN VDE 0636-3
IEC/EN 60947-3
Main switch characteristic,
EN 60204-1
Yes
--
--
Insulation characteristic
EN 60664-1
Yes
--
--
Rated voltage Un
V AC
230/400, 240/415
400
• 1P
V DC
65
48
250
• 2P in series
V DC
130
110
250
Rated current In
A
63
16
16
Rated insulation voltage
V AC
500
400
--
Rated impulse withstand voltage
kV AC
6
2.5
--
IV
IV
--
A
63
16
--
• AC-22 A
A
--
16
--
• AC-22 B
A
63
--
--
• AC-23 B
A
35
--
--
• DC-22 B
A
63
--
--
Overvoltage category
63
100
Utilization category acc. to VDE 0638
• AC-22
Utilization category acc. to EN 60947-3
Sealable
when switched on
Yes
Yes, with sealable screw caps
Mounting position
Any, but preferably vertical
Reduction factor of In with 18 pole
• Side-by-side mounting
0.9
--
• On top of one another, with vertical standard
mounting rail
0.87
--
Degree of protection acc. to IEC 60529
IP20, with connected conductors
Terminals
with touch protection acc. to BGV A3
Yes
Ambient temperature
°C
Terminal versions
No
Yes
-5 ... +40, humidity 90 % at 20
--
--
B
K, S
K/S
--
--
Conductor cross-sections
• Solid and stranded
mm2
1.5 ... 35
1.5 ... 16
1.5 ... 4
1.5 ... 25
10 ... 50
0.75 ... 35
1.5 ... 35
• Flexible, with end sleeve
mm2
1.5 ... 35
1.5
1.5
1.5
10
--
--
• Finely stranded, with end sleeve
mm2
--
--
0.75 ... 25
--
--
--
--
Tightening torque
Nm
2.5 ... 3
2.5
1.2
2
3.5/2.5
3.5
3
Siemens · 2014
9
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
■ Dimensional drawings
5SG71.3 MINIZED D02 switch disconnectors, with draw-out technology
N
3
1
3
5
1
3
5
N
9 0
1
2
2
N
2 7
2
4
5 4
2
4
5 4
6
2
4
6
8 1
4 5
1
5
N
1 0 8
4 4
7 0
1P
1P+N
2P
3P
I2 _ 1 2 1 2 2
1
3P+N
Locking cap for MINIZED D02 switch disconnectors
5
4
5
6
44
27
81
I201_17072
2
45
3
90
1
55
70
79
5SG76 MINIZED D01 fuse switch disconnectors, with draw-out technology
45
I201_07988a
88
70
18
36
54
72
6
44
64
107
1P
1P+N, 2P
3P
3P+N
Fuse bases with touch protection BGV A3 (VBG4), molded plastic
With cover
8 1
6 ,2
4 4
6 4
5SG1301,
5SG1701
10
5SG5301,
5SG5701
Siemens · 2014
79,8
I2 _ 1 2 1 2 3
26,6
2 7
5SG1330,
5SG1331,
5SG1730,
5SG1731
5SG5330,
5SG5730
45
71,5
8 3
4 5
58,7
I201_07536b
Sizes D01/D02, with combined terminal, can be busbar mounted
4
44
47,2
59,2
Protective
caps
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
NEOZED fuse bases made from ceramic
Sizes D01/D02/D03
protective
cover
d
screw cap
g
c
i
a
5SG15
I201_06258b
h
b
k
e
5SG55
Type
Version
Size
Connection
type
Dimensions
a
b
c
d
e
g
not sealed/
sealed
h
i
k
Snap-on with cover
5SG1553
5SG1653
5SG1693
1-pole
D01
D02
D02
BB
SS
KS
26.8
26.8
26.8
36
36
36
40
41
41
56
56
56
70
70
70
23/26.5
23/26.5
23/26.5
54
59
60
----
----
5SG5553
5SG5653
5SG5693
3-pole
D01
D02
D02
BB
SS
KS
80.8
80.8
80.8
36
36
36
40
41
41
56
56
56
70
70
70
23/26.5
23/26.5
23/26.5
54
59
60
----
----
Snap-on without cover
5SG1595
5SG1655
5SG1695
5SG1812
1-pole
D01
D02
D02
D03
BB
SS
KS
KS
26.8
26.8
26.8
44.9
36
36
36
50
40
41
41
44
56
56
56
54.5
70
70
70
76
23/26.5
23/26.5
23/26.5
44
54
59
60
86
-----
-----
5SG5555
5SG5655
5SG5695
3-pole
D01
D02
D02
BB
SS
KS
80.8
80.8
80.8
36
36
36
40
41
41
56
56
56
70
70
70
23/26.5
23/26.5
23/26.5
54
59
60
----
----
Screw-on without cover
5SG1590
5SG1650
5SG1810
1-pole
D01
D02
D03
BB
SS
KS
26.8
26.8
44.9
36
36
50
40
41
46
56
56
54.5
70
70
76
23/26.5
23/26.5
44
54
59
86
20
20
32
22
22
32
5SG5550
5SG5650
5SG5690
3-pole
D01
D02
D02
BB
SS
KS
80.8
80.8
80.8
36
36
36
40
41
41
56
56
56
70
70
70
23/26.5
23/26.5
23/26.5
54
59
60
74
74
74
22
22
22
BB = clamp-type terminal at incoming feeder
clamp-type terminal at outgoing feeder
SS = saddle terminal at incoming feeder
saddle terminal at outgoing feeder
KS = screw head contact at incoming feeder
saddle terminal at outgoing feeder
Legend
Connection type:
K = screw head contact
B = clamp-type terminal
S = saddle terminal
NEOZED covers made of molded plastic
45
71,5
I2_07537a
NEOZED covers for NEOZED fuse bases, made of molded plastic
26,6
79,8
16
5SH5244 (A1) 5SH5245 (A2)
45
27
12
21
5SH5251 (A4) and 5SH5253 (A10)
45
60
I201_06207
45
70
45
70
I201_06206
I201_06209
NEOZED covers for NEOZED fuse bases, made of ceramic
81
12
21
5SH5252 (A5) and 5SH5254 (A11)
13
18
5SH5233 (A6)
Siemens · 2014
11
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
NEOZED screw caps
b
5SH4
a
Type
Size
Sealable
For mounting
depth
Dimensions
a
b
5SH4116
5SH4163
5SH4316
5SH4363
D01
D02
D01
D02
--✔
✔
70
70
70
76
27.5
27.5
33
33
24
24
26.5
26.5
5SH4100
5SH4317
5SH4362
D03
D01
D02
----
70
70
70
37
29.5
30.5
44
25
25
Size/thread
Rated current in A
D01/E14
2 ... 16
Dimension Dimension Dimension Dimension
d2 min
d3
d4 max
h
9.8
11
6
36
D02/E18
20 ... 63
13.8
15.3
10
36
D03/M30
80 ... 100
20.8
22.5
36
43
5,5 max
NEOZED fuse links
d3
d2
d4
I2_10886
h
■ Circuit diagrams
Graphic symbols
5SG71.3 MINIZED D02 switch disconnectors, with draw-out technology
1
2
1
N
2
N
1
3
2
4
1
3
5
2
4
6
1
3
5
N
2
4
6
N
5SG7113
5SG7153
5SG7123
5SG7133
5SG7133-8BA25
5SG7133-8BA35
5SG7133-8BA50
5SG7163
1P
1P+N
2P
3P
3P+N
5SG76 MINIZED D01 fuse switch disconnectors, with draw-out technology
1
1 N
2
1 3
1 3 5
2 N
2 4
5SG7610
5SG7650
5SG7620
5SG7630
5SG7660
1P
1P+N
2P
3P
3P+N
NEOZED fuse bases/fuses in general
5SG1
5SG5
1P
3P
12
Siemens · 2014
2 4 6
1 3 5 N
2 4 6 N
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
■ Characteristic curves
Series 5SE2
D01, D02, D03
gG
400 V AC/250 V DC
2 ... 100 A
Melting I2t values diagram
Time/current characteristics diagram
I201_10887
4
106
6
4
2
2
s [A s]
6A
10 A
13 A
16 A
20 A
25 A
32 A
35 A
40 A
50 A
63 A
80 A
100 A
4A
104
6
4
2A
vs
[s]
2
2
103
6
4
I201_10889
Sizes:
Operational class:
Rated voltage:
Rated current:
2
105
6
4
100 A
80 A
63 A
50 A
40 A
35 A
32 A
2
104
6
4
2
102
6
4
2
25 A
20 A
103
6
4
2
1
10
6
4
2
16 A
13 A
2
102
10 A
6
4
6A
2
100
6
4
101
6
4
4A
100s
10-1s
2
2
100
6
4
100
-1
10
6
4
10-2s
10-3s
10- 4s
2A
2
4 6 8 101 2
4 6 8 10 2 2
4 6 8 10 3 2
4 6 8 10 4
eff [A]
2
10-2
6
4
Table see page 14.
4
6 8 10 1
2
4
6 8 10 2
2
4
6 8 10 3 2
p [A]
c [A]
2
1
10 4
I201_10888
Current limitation diagram
100 A
80 A
63 A
50 A
40 A
35 A
32 A
25 A
20 A
16 A
13 A
10 A
2
6
4
2
103
6A
4A
6
2A
4
2
10 2
6
4
101 2
4 6 8 102 2
4 6 8 103 2
4 6 8104 2
4 6 8105 2
4
eff [A]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
13
© Siemens AG 2014
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links, 5SE2
Series 5SE2
Sizes:
Operational class:
Rated voltage:
Rated current:
Type
D01, D02, D03
gG
400 V AC/250 V DC
2 ... 100 A
Pv
In

I2ts
1 ms
I2ta
4 ms
230 V AC
400 V AC
(t < 4 ms)
A
A2s
A2s
A2s
A2s
W
K
2
4
6
1.6
1.3
1.7
19
14
19
5SE2310
5SE2013-2A
5SE2316
10
13
16
1.3
2.0
2.1
16
23
24
120
220
375
136
244
410
220
290
675
280
370
890
5SE2320
5SE2325
5SE2332
20
25
32
2.4
3.2
3.6
26
33
34
740
1210
2560
810
1300
2800
1250
1900
4300
1650
2600
5500
5SE2335
5SE2340
5SE2350
35
40
50
3.8
4.0
4.2
36
37
38
3060
4320
6750
3500
4800
7400
5100
7900
10500
6500
9500
13000
5SE2363
5SE2280
5SE2300
63
80
100
5.3
5.3
6.4
45
43
47
10000
13000
22100
10900
15400
30000
16000
25000
46000
20500
34500
60000
5SE2302
5SE2304
5SE2306
14
Siemens · 2014
1.2
12.5
46.7
1.4
13.6
48
2.9
22
58
3.9
30
75
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
■ Overview
■ Benefits
The DIAZED fuse system is one of the oldest fuse systems in the
world. It was developed by Siemens as far back as 1906. It is still
the standard fuse system in many countries to this day. It is particularly widely used in the harsh environments of industrial applications.
The series is available with rated voltages from 500 V to 750 V.
3
1
4
2
5
The terminals of the DIAZED bases are available in different versions and designs to support the various installation methods.
The high-performing EZR bus-mounting system for screw fixing
is an outstanding feature. The busbars, which are particularly
suited for bus-mounting bases, have a load capacity of up to
150 A with lateral infeed.
DIAZED stands for Diametral gestuftes zweiteiliges Sicherungssystem mit Edisongewinde (diametral two-step fuse system with
Edison screw).
i201_18300
All DIAZED bases must be fed from the bottom to ensure an insulated threaded ring when the fuse link is being removed. Reliable contact of the fuse links is only ensured when used together
with DIAZED screw adapters.
6
8
9
7
10
11
DIAZED cap for fuse bases
1
DIAZED collar for fuse bases
2
DIAZED fuse bases
3
DIAZED cover for fuse bases
4
5 9 DIAZED screw adapter
6 10 DIAZED fuse link
7 11 DIAZED screw cap
8
DIAZED fuse base (with touch protection BGV A3)
DIII fuse bases with terminal version BS
• Outgoing feeders (top), saddle terminal S
• Incoming feeders (bottom), clamp-type terminal B
NDZ fuse bases with terminal version KK
• Outgoing feeders (top), screw head contact K
• Incoming feeders (bottom), screw head contact K
DIII fuse bases with terminal version BB
• Outgoing feeders (top), clamp-type terminal B
• Incoming feeders (bottom), clamp-type terminal B
DIII fuse bases with terminal version SS
• Outgoing feeders (top), saddle terminal S
• Incoming feeders (bottom), saddle terminal S
Siemens · 2014
15
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
■ Technical specifications
5SA, 5SB, 5SC, 5SD
IEC 60269-3; DIN VDE 0635; DIN VDE 0636-3; CEE 16
Standards
Operational class
Acc. to IEC 60269; DIN VDE 0636
Characteristic
Acc. to DIN VDE 0635
gG
Slow and quick
V AC
V DC
500, 690, 750
500, 600, 750
Rated current In
A
2 ... 100
Rated breaking capacity
kA AC
kA DC
50, 40 at E16
8, 1.6 at E16
Rated voltage Un
Overvoltage category
III
II (DIAZED fuse bases made of molded plastic for use at 690 V AC / 600 V DC)
Mounting position
Any, but preferably vertical
Non-interchangeability
Using screw adapter or adapter sleeves
IP20, with connected conductors
Degree of protection Acc. to IEC 60529
Resistance to climate
°C
Up to 45, at 95 % rel. humidity
Ambient temperature
°C
-5 ... +40, humidity 90 % at 20
Terminal version
B
K
S
R
DII
DIII
NDz
DII
DIII
DIII
DIV
DII
DIII
mm2
mm2
mm2
1.5
10
10
2.5
25
25
1.0
6
6
1.5
10
10
2.5
25
25
2.5
25
25
10
50
50
1.5
35
35
1.5
35
35
Nm
Nm
Nm
Nm
1.2
2.0
2.5
3.5
Size
Conductor cross-sections
• Rigid, min.
• Rigid, max.
• Flexible, with end sleeve
Tightening torque
•
•
•
•
Screw M4
Screw M5
Screw M6
Screw M8
16
Siemens · 2014
--3.0
--
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
■ Dimensional drawings
DIAZED fuse links
5SA1, 5SA2
Size/thread
TNDz/E16, NDz/E16
Rated current in A
2
4
6
10
16
20
25
Dimension d
6
6
6
8
10
12
14
13,2
d
I201_06251a
49
5SB1, 5SB2
I201_06247
d
22,5
Size/thread
DII/E27
Rated current in A
2
4
6
10
16
20
25
Dimension d
6
6
6
8
10
12
14
49
I201_06248
d
28
5SB3, 5SB4
Size/thread
DIII/E33
Rated current in A
32
35
50
63
Dimension d
16
16
18
20
Size/thread
DIV/R1¼”
Rated current in A
80
100
5
7
49
I201_06682
Dimension d
d
34,5
5SC1, 5SC2
57
5SD6, 5SD8
Size/thread
ø‹
øY_
I201_06329a
DIII/E33
Rated current in A
2
4
6
10
16
20
25
35
50
63
Dimension d
6
6
6
8
10
12
14
16
18
20
70
Siemens · 2014
17
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
DIAZED fuse bases made of ceramic
5SF1
Version
Type
d
c
e
I201_06242
g
h
b
Øi
a
Connection
type
Dimensions
c
KK
29
49
44.6 55
75
32
49
--
BB
BB
38.4 41
38.4 41
46.6 53
46.6 53
83
83
34
34
63
63
-4.3
DIII/63 A
5SF1205
5SF1215
5SF1224
BS
SS
BS
45.5 46
45.5 46
45.5 46
47
47
47
54
54
54
83
83
83
43
43
43
78
78
78
--4.3
DIV/100 A
5SF1401
Flat terminal
68
--
79
110
65
116
6.5
68
e
5SF4230
5
105
12
50
65
80
max.113
I2_06443a
M6
DIAZED fuse bases made of molded plastic
I201_11344
45
80
5SF1, 5SF5
a
18
b
Siemens · 2014
6
43,6
55
Type
Dimensions
a
b
5SF1060
5SF1260
40
50
---
5SF5068
5SF5268
---
120
150
h
i
b
DII/25 A
5SF1005
5SF1024
d
g
a
NDz/25 A
5SF1012
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
DIAZED EZR bus-mounting bases
5SF6005
5SF6205
18
5
18
11
14
31
max.83
34
max.49
I2_06445a
27
max.38,5
I2_06444a
51,5
55
22
34
16
41,5
45
30
16
20,5
37
31
5,3
11
14
31
max.83
DIAZED screw caps/cover rings made of molded plastic/ceramic
Screw caps
Cover rings
5SH1
5SH3
Screw caps
Type
Dimen
sions
a
b
NDz/E16
5SH1112
36
24
DII/E27
5SH1221
5SH112
5SH122
42
45.5
43
33
34
39
DIII/E33
5SH1231
5SH113
5SH123
42
45.5
47
40
43
45
5SH1161
5SH1170
48
68
48
43
I201_13741a
b
b
I201_06257
a
Cover rings
Size/thread
a
Type
Dimensions
a
b
5SH3401
5SH332
17.5
17.5
39.5
41.5
5SH3411
5SH334
17.5
19
49.5
51.5
DIAZED caps made of molded plastic
5SH2
d
Type
Dimensions
amax
bmax
cmax
dmax
NDz/E16
5SH201
33
68
51.7
75
DII/E27
5SH202
43
74.7
53.6
83
DIII/E33
5SH222
51
90.5
53.6
83
a
c
e
I201_06242
g
h
b
Øi
Size/thread
Siemens · 2014
19
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
■ Characteristic curves
Series 5SA2
E16
slow
500 V AC/500 V DC
2 ... 25 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
6
1 0
I2 _ 0 6 0 6 9 c
1 0
3
2
s
1 0
I2 _ 0 7 5 4 5 c
Size:
Characteristics:
Rated voltage:
Rated current:
2
5
1 0
6
6
4
4
2
2
2
1 0
4
1 0
6
6
4
4
2
2
1
1 0
2 5 A
3
1 0
4
4
2 0 A
1 6 A
6
6
2
2
0
1 0
1 0 A
2
1 0
6
6
6 A
4
4
2
2
-1
1 0
4 A
1
1 0
6
6
4
4
1 6 A
2
2 A
-2
1 0
4 A
6 A
2 5 A
1 0 A
2 A
1 0
2
2 0 A
1 0
1 0
s
-1
s
-2
1 0
s
1 0
-3
1 0
s
- 4
s
0
1 0
6
0
0
2
4
6
8 1 0
1
2
4
6
2
8 1 0
2
4
6
8 1 0
3
2
e ff
4
4
[A ]
6
8 1 0
2
Type
-3
1 0
0
1 0
4
2
6
1
8 1 0
2
4
8 1 0
6
2
2
4
6
8 1 0
[A ]
e ff
Current limitation diagram
5
I2 _ 0 7 0 3 2 b
1 0
6
1
c
[A ]
4
2
2 5 A
2 0 A
1 6 A
1 0 A
6
4
2
4 A
3
2 A
6
4
2
1 0
2
6
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
20
Siemens · 2014

I2ts
1 ms
4 ms
A
W
K
A2s
A2s
5SA211
5SA221
5SA231
2
4
6
0.85
1.3
1.9
15
17
14
5SA251
5SA261
5SA271
10
16
20
1.4
2.4
2.6
17
30
36
200
290
470
190
550
1990
5SA281
25
3.4
34
1000
2090
Type
I2ta
230 V AC
320 V AC
500 V AC
A2s
A2s
A2s
5SA211
5SA221
5SA231
6 A
1 0
Pv
2
4
1 0
In
3
5
2
[A ]
4
6.6
22
66
7.8
26
76
0.7
34
100
5SA251
5SA261
5SA271
240
890
1200
270
950
1350
340
1090
1620
5SA281
2400
2600
3450
1.2
8.5
40
2.3
13
80
4
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
Series 5SB2, 5SB4, 5SC2
DII, DIII, DIV
gG
500 V AC/500 V DC
2 ... 100 A
Melting I2t values diagram
Time/current characteristics diagram
I2 _ 0 7 5 5 1 a
2
v s
6
1 0
6
4
[A 2 s ]
[s ]
4
6 A
1 0 A
1 6 A
2 0 A
2 5 A
3 2 A
3 5 A
5 0 A
6 3 A
8 0 A
1 0 0 A
2 A
6
4 A
4
1 0
3
2
s
1 0
I2 _ 0 7 5 5 2 a
Size:
Operational class:
Rated voltage:
Rated current:
2
5
1 0
6
6
4
4
1 0 0 A
2
2
2
1 0
8 0 A
6 3 A
4
1 0
5 0 A
3 5 A
3 2 A
6
6
4
4
2
2
1
1 0
2 5 A
3
1 0
6
4
4
2 0 A
6
1 6 A
2
2
0
1 0
1 0 A
2
1 0
6
6
4
4
6 A
2
2
-1
1 0
4 A
1
1 0
6
6
0
1 0
4
4
2
2
-2
1 0
1 0
2 A
-1
1 0
0
1 0
6
s
0
2
4
s
-2
6
1 0
s
1
8 1 0
-3
1 0
2
4
- 4
1 0
s
6
8 1 0
s
2
2
4
6
8 1 0
3
2
e ff
4
4
[A ]
6
8 1 0
2
Type
-3
1 0
0
1 0
2
4
6
8 1 0
1
2
4
6
2
8 1 0
2
4
6
8 1 0
3
e ff
[A ]
Current limitation diagram
I2 _ 0 6 0 5 5 b
5
1 0
6
1
2
1 0 0 A
8 0 A
6 3 A
5 0 A
3 5 A
3 2 A
2 5 A
2 0 A
1 6 A
1 0 A
6 A
4 A
c
[A ]
4
2
4
1 0
6
4
2
1 0
3
4
2
2
6
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
5
2
[A ]
A
W
K
4
I2ts
1 ms
4 ms
A2s
A2s
2.6
2.0
2.2
15
13
14
5SB251
5SB261
5SB271
10
16
20
1.6
2.4
2.6
20
23
26
120
500
750
140
580
1100
5SB281
5SB4010
5SB411
5SB421
25
32
35
50
3.4
3.6
3.7
5.7
38
23
25
41
1600
2300
3450
6500
2000
2500
3000
5200
5SB431
5SC211
5SC221
63
80
100
6.9
7.5
8.8
48
33
46
11000
14600
28600
12000
16400
30000
Type
I2ta
5SB211
5SB221
5SB231
2

2
4
6
2 A
1 0
Pv
5SB211
5SB221
5SB231
6
1 0
In
2
3.7
15
42
3.9
16
45
230 V AC
320 V AC
500 V AC
A2s
A2s
A2s
6.6
22
66
8.8
28
85
10.7
34
100
5SB251
5SB261
5SB271
240
890
1200
300
1060
1450
340
1090
1620
5SB281
5SB4010
5SB411
5SB421
2400
3450
5200
9750
3150
4150
6200
12350
3450
4850
7200
14500
5SB431
5SC211
5SC221
16500
23000
44000
22200
28500
56000
26500
32500
65000
Siemens · 2014
21
4
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
Series 5SD8
DIII
gG
690 V AC/600 V DC
2 ... 63 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
6
1 0
I2 _ 0 6 4 1 2 c
1 0
3
2
s
1 0
I2 _ 0 6 4 2 5 b
Size:
Operational class:
Rated voltage:
Rated current:
2
5
1 0
6
6
4
4
2
2
2
1 0
6 3 A
4
1 0
5 0 A
6
6
4
4
3 5 A
2
2
1
1 0
2 5 A
2 0 A
1 6 A
3
1 0
6
6
4
4 A
1 0 A
2 0 A
3 0 A
4
6 3 A
1 0 A
6 A
2
2
2 A
0
1 0
6 A
1 6 A
2 5 A
5 0 A
2
1 0
6
6
4
4
4 A
2
2
-1
1 0
1
1 0
6
6
4
4
1 0
2
2
-2
1 0
1 0
-1
1 0
s
s
-2
1 0
s
1 0
-3
1 0
s
- 4
2 A
s
0
1 0
6
0
0
2
4
6
8 1 0
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
e ff
4
4
[A ]
6
8 1 0
2
-3
1 0
0
1 0
2
4
6
1
8 1 0
2
4
6
8 1 0
2
2
4
6
8 1 0
3
Current limitation diagram
c
[A ]
6 3 A
5 0 A
3 5 A
2 5 A
2 0 A
1 6 A
1 0 A
6 A
4
1 0
I2 _ 0 7 1 0 1 a
2
2
6
4
4 A
2
3
1 0
2 A
6
4
2
1 0
2
6
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
22
Siemens · 2014
In
Pv
A
W
[A ]
e ff
1
Type
5
2
[A ]
4
I2ts
I2ta
4 ms
242 V AC
A2s
A2s
5SD8002
5SD8004
5SD8006
2
4
6
1
1.2
1.6
4.4
40
88
7
62
140
5SD8010
5SD8016
5SD8020
10
16
20
1.4
1.8
2
240
380
750
380
600
1200
5SD8025
5SD8035
5SD8050
25
35
50
2.3
3.1
4.6
2000
3300
7000
3200
5100
11000
5SD8063
63
5.5
9500
15000
4
© Siemens AG 2014
Fuse Systems
DIAZED fuse systems
Series 5SD6
DIII
quick (railway network protection)
750 V AC/750 V DC
2 ... 63 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
5
1 0
I2 _ 0 6 0 4 8 a
1 0
3
2
s
1 0
I2 _ 0 6 0 7 7 b
Size:
Operational class:
Rated voltage:
Rated current:
2
4
1 0
6
6
4
4
6 3 A
5 0 A
2
2
2
1 0
3
1 0
3 5 A
6
6
4
4
2 5 A
2
2
1
1 0
2 0 A
2
1 0
1 6 A
1 0 A
6
6
4
4
4 A
2
2 A
0
1 0
1 0 A
6 A
2 0 A
1 6 A
3 0 A
2 5 A
6 3 A
2
5 0 A
6 A
1
1 0
6
6
4
4
4 A
1 0
2
2
-1
1 0
6
4
4
2 A
6
1 0
2
-2
1 0
s
0
1 0
2
0
1 0
s
1 0
-2
s
1 0
-3
1 0
s
- 4
s
-1
1 0
6
-1
0
2
4
6
8 1 0
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
e ff
4
4
[A ]
6
8 1 0
2
Type
-3
1 0
0
1 0
2
4
6
1
8 1 0
2
4
6
8 1 0
2
2
4
6
8 1 0
3
A
Current limitation diagram
1
2
c
[A ]
6 3 A
5 0 A
3 5 A
2 0 /2 5 A
1 6 A
1 0 A
6 A
I2 _ 0 6 4 1 1 a
4
6
4
2
Pv
[A ]
e ff
1 0
In
W
I2ts
I2ta
4 ms
500 V AC
A2s
A2s
5SD601
5SD602
5SD603
2
4
6
2.8
4
4.8
0.7
4.5
10
2
13
29
5SD604
5SD605
5SD606
10
16
20
4.8
5.9
6.3
50
78
125
135
220
380
5SD607
5SD608
5SD610
25
35
50
8.3
13
16.5
265
550
1800
800
1600
5500
5SD611
63
18
3100
9600
4 A
2 A
3
1 0
6
4
2
1 0
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
5
2
4
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
23
4
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
■ Benefits
■ Overview
Cylindrical fuses are standard in Europe. There are a range of
different cylindrical fuse links and holders that comply with the
standards IEC 60269-1, -2 and -3, and which are suitable for use
in industrial applications.
In South West Europe they are also approved for use in residential buildings.
The cylindrical fuse holders are also approved according to UL
512. The cylindrical fuse holders are tested and approved as
fuse disconnectors according to the switching device standard
IEC 60947-3. They are not suitable for switching loads.
• Devices with pole number 1P+N are available in a single modular width. This reduces the footprint by 50 %.
• The sliding catch for type ranges 8 x 32 mm and 10 x 38 mm
enables the removal of individual devices from the assembly.
• Space for a spare fuse in the plug-in module enables the fast
replacement of fuses. This saves time and money and increases system availability.
• A flashing LED signals that a fuse link has been tripped. This
enables fast detection during runtime.
Cylindrical fuse holders can be supplied with or without signal
detectors. In the case of devices with signal detector, a small
electronic device with LED is located behind an inspection window in the plug-in module. If the inserted fuse link is tripped, this
is indicated by the LED flashing.
The switching state of the fuse holder can be signaled over a laterally retrofitted auxiliary switch, which enables the integration of
the fuses in the automation process.
■ Technical specifications
Cylindrical fuse links
mm × mm
Size
3NW63..
3NW60..
3NW61..
3NW62..
3NW80..
3NW81..
3NW82..
8 × 32
10 × 38
14 × 51
22 × 58
10 × 38
14 × 51
22 × 58
IEC 60269-1, -2, -3; NF C 60-200; NF C 63-210, -211; NBN C 63269-2, CEI 32-4, -12
Standards
gG
Operational class
aM
Rated voltages Un
V AC
400
400 or 500
Rated current In
A
2 ... 20
0.5 ... 32
4 ... 50
kA AC
kA AC
-20
120
120
100
20
8 ... 100
0.5 ... 32
2 ... 50
120
120
100
20
10 ... 100
Rated breaking capacity
• 500 V version
• 400 V version
Any, but preferably vertical
Mounting position
Cylindrical fuse holders
mm × mm
Size
3NW73..
3NW70..
3NW71..
3NW72..
8 × 32
10 × 38
14 × 51
22 × 58
IEC 60269-1, -2, -3; NF C 60-200; NF C 63-210, -211; NBN C 63269-2-1, CEI 32-4, -12
Standards
---
U
s
V AC
V AC
400
400
690
600
Rated current In
A AC
20
32
Rated breaking capacity
kA
20
100
Acc. to UL
Acc. to CSA
Approvals
Rated voltage Un
Acc. to UL/CSA
Switching capacity
• Utilization category
Yes
Sealable
when installed
Yes
50
100
2.5 ... 10
2.5 ... 25
2.5 ... 16
4 ... 10
4 ... 50
4 ... 35
6 ... 10
--
2.0
2.5
Any, but preferably vertical
Mounting position
Acc. to IEC 60529
IP20, with connected conductors
Yes
Terminals with touch protection
according to BGV A3 at incoming
and outgoing feeder
°C
-5 ... +40, humidity 90 % at +20
mm2
mm2
mm2
0.5 ... 10
0.5 ... 10
0.5 ... 101)
• AWG (American Wire Gauge)
AWG
--
Tightening torque
Nm
1.2
Ambient temperature
---
AC-20B (switching without load), DC-20B
No-voltage changing
of fuse links
Degree of protection
U
s
Conductor cross-sections
• Rigid
• Stranded
• Finely stranded, with end sleeve
1)
Max. cross-section 10 mm2 with K28 crimper from Klauke.
24
Siemens · 2014
10 ... 20
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
■ Dimensional drawings
38
14,3
I2_06704c
22,2
31,5
I2_06701c
10,3
I2_06703c
8,5
I2_06702c
51
58
Size
8 × 32 mm
14 × 51 mm
22 × 58 mm
45
81
10 × 38 mm
44
2
54
54
36
18
18
64
3NW70, 3NW73
1P
1P + N
3P
3P+N
I201_07853b
45
90
2P
I201_12124
7
27
81
54
7
108
43
55
70
3NW71
1P
3P
3P+N
I201_07869c
117
45
1P+N/2P
72
36
108
43
144
7
3NW72
1P
1P+N/2P
3P
70
3P+N
9
3NW7901
3NW7902
45
90
5
45
83
I201_15459
I201_10891
Auxiliary switches
49,8
48,5
9
6
44
64
3NW7903
Siemens · 2014
25
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
■ Circuit diagrams
Graphic symbols
2
2 N
1
1 N
1P
1P+N
Auxiliary switches
22 14
12
13/21
22
21
11
3NW7901
3NW7902
26
3NW7903
Siemens · 2014
2 4
1 3
2P
2 4 6
1 3 5
3P
2 4 6 N
1 3 5 N
3P+N
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
■ Characteristic curves
3NW60 series
10 × 38 mm
gG
500 V AC (2 ... 25 A),
400 V AC (32 A)
2 ... 32 A
Rated current:
Melting I2t values diagram
Time/current characteristics diagram
4
1 0
I2 _ 0 6 6 0 2 b
A
A
A
A
6
v s
2
3
2
1 0
5 0 0 A
4 0 0 A
2 3 0 A
4
[A 2 s ]
8 A
1 0
1 2
1 6
2 0
2 5
3 2
6 A
A
[s ]
4
4 A
2 A
6
A
4
1 0
I2 _ 0 6 5 6 1 d
Size:
Operational class:
Rated voltage:
2
t
a
2
2
3
1 0
t
s
6
6
4
4
2
2
2
1 0
2
1 0
6
6
4
4
2
2
1
1 0
1
1 0
6
6
4
4
2
2
0
1 0
1 0
0
4
2
6
6
8
1 0
1 2
1 6
2 0
n
4
2 5
[A ]
3 2
2
-1
1 0
Type
In
Pv

6
4
A
2
-2
1 0
0
1 0
2
4
6
1
8 1 0
2
4
6
8 1 0
2
2
4
6
8 1 0
3
[A ]
e ff
Current limitation diagram
3 2 A
2 5 A
2 0 A
1 6 A
1 2 A
1 0 A
6
[A ]
1
2
4
c
I2 _ 0 6 5 5 7 b
4
1 0
W
K
I2ts
I2ta
1 ms
230 V AC 400 V AC 500 V AC
A2s
A2s
1.6
5
48
6.5
19
84
A2s
2
4
6
2.2
1.2
1.6
32
16.5
23
3NW6008-1
3NW6003-1
3NW6006-1
8
10
12
2.3
0.7
0.9
35
16
33
110
230
390
180
420
510
140
570
600
350
1050
1200
3NW6005-1
3NW6007-1
3NW6010-1
16
20
25
1.3
2.1
2.1
38
600
51.5 640
54
1300
950
1200
2200
1300
1700
2800
1700
2100
3200
3NW6012-1
32
2.5
51
4000
4200
--
2360
5
16
70
A2s
3NW6002-1
3NW6004-1
3NW6001-1
8
26
120
2
8 A
6 A
4 A
3
1 0
2 A
6
4
2
2
1 0
6
4
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
5
2
4
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
27
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
3NW61series
14 × 51 mm
gG
500 V AC (4 ... 40 A),
400 V AC (50 A)
4 ... 50 A
Rated current:
Melting I2t values diagram
Time/current characteristics diagram
6
v s
2
3
2
1 0
5 0 0 A
4 0 0 A
2 3 0 A
4
[A 2 s ]
[s ]
4
5
1 0
I2 _ 0 6 6 0 3 b
A
A
A
A
A
4 A
6
6 A
8 A
1 0
1 2
1 6
2 0
2 5
3 2
4 0
5 0
A
A
A
4
1 0
2
2
2
t
t
I2 _ 0 6 5 9 9 c
Size:
Operational class:
Rated voltage:
a
s
4
1 0
6
6
4
4
2
2
2
1 0
3
1 0
6
6
4
4
2
2
1
1 0
2
1 0
6
6
4
4
2
2
0
1 0
1
1 0
6
6
4
4
2
2
-1
1 0
1 0
0
4
6
6
1 0
8
1 2
2 0
1 6
2 5
4 0
3 2
n
4
5 0
[A ]
2
-2
1 0
1 0
Type
0
2
4
6
8 1 0
1
2
4
8 1 0
6
2
2
4
e ff
6
8 1 0
A
I201_06560c
2
c
[A]
4
50 A
40 A
32 A
25 A
20 A
16 A
12 A
10 A
2
1
6
4
2
8A
6A
4A
10 3
6
4
2
10 2
6
4
6 8 10 2
2
4
6 8 10 3
2
4
6 8 10 4
2
eff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
28
Siemens · 2014
In
Pv

[A ]
Current limitation diagram
10 4
3
4 6 8 10 5
[A]
W
K
I2ts
I2ta
1 ms
230 V AC 400 V AC 500 V AC
A2s
A2s
A2s
A2s
3NW6104-1
3NW6101-1
3NW6108-1
4
6
8
1.9
2.5
2.4
19
25
18
5
48
110
16
85
200
20
100
250
26
120
350
3NW6103-1
3NW6106-1
3NW6105-1
10
12
16
0.8
1.0
1.6
12
16
27
230
390
600
420
600
1000
750
800
1400
1050
1200
1700
3NW6107-1
3NW6110-1
3NW6112-1
20
25
32
2.3
2.2
3.2
32.5
31.5
39.5
670
1300
2500
1400
2300
4100
1800
2800
5500
2100
3200
6500
3NW6117-1
3NW6120-1
40
50
4.5
4.8
48
55
3600
8000
6100
12200
8000
16000
9200
--
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
3NW62 series
22 × 58 mm
gG
500 V AC (8 ... 80 A),
400 V AC (100 A)
8 ... 100 A
Rated current:
Melting I2t values diagram
Time/current characteristics diagram
4
6
6
v s
2
3
2
1 0
5 0 0 A
4 0 0 A
2 3 0 A
4
[A 2 s ]
[s ]
4
5
1 0
I2 _ 0 6 6 0 4 b
8 A
1 0 A
1 2 A
1 6 A
2 0 A
2 5 A
3 2 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
1 0
2
2
2
t
t
I2 _ 0 6 6 0 0 c
Size:
Operational class:
Rated voltage:
a
s
4
1 0
6
6
4
4
2
2
2
1 0
3
1 0
6
6
4
4
2
2
1
1 0
2
1 0
6
6
4
4
2
2
0
1 0
1
1 0
6
6
4
4
2
2
-1
1 0
1 0
0
8
6
1 0
1 2
1 6
2 0
2 5
3 2
4 0
5 0
6 3
n
4
8 0
[A ]
1 0 0
2
-2
1 0
Type
1
1 0
2
4
6
2
8 1 0
2
4
8 1 0
6
3
2
4
6
8 1 0
4
[A ]
e ff
A
Current limitation diagram
I2 _ 0 6 5 5 8 b
4
2
1
1 0 0 A
8 0 A
6 3 A
5 0 A
4 0 A
3 2 A
2 5 A
2 0 A
1 6 A
1 2 A
1 0 A
c
[A ]
2
4
1 0
6
4
2
In
Pv

W
K
I2ts
I2ta
1 ms
230 V AC 400 V AC 500 V AC
A2s
A2s
A2s
A2s
3NW6208-1
3NW6203-1
3NW6206-1
8
10
12
2.5
0.9
1.1
15
10.5
12
110
230
390
200
420
600
170
760
800
350
1050
1200
3NW6205-1
3NW6207-1
3NW6210-1
16
20
25
1.6
2.4
2.7
14.5
22.5
24
600
670
1300
1000
1200
2100
1400
1800
2800
1700
2200
3300
3NW6212-1
3NW6217-1
3NW6220-1
32
40
50
3.2
4.9
5.9
28
35
46
2450
3600
6800
4400
6200
11400
6100
8000
16200
7200
10000
20600
3NW6222-1
3NW6224-1
3NW6230-1
63
80
100
6.8
7.5
8.4
48
48
55
12500 18800
24700 30500
46000 64700
24000
43000
80000
30000
52500
--
8 A
3
1 0
6
4
2
1 0
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
5
2
4
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
29
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
3NW630.-1 series
8 × 32 mm
gG
400 V AC
2 ... 20 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
6
v s
2
3
2
1 0
4 0 0 A
2 3 0 A
4
[A 2 s ]
[s ]
4
4
1 0
I2 _ 0 6 6 0 5 b
1 0
I2 _ 0 6 6 0 1 c
Size:
Operational class:
Rated voltage:
Rated current:
2
t
a
2
2
3
1 0
t
s
6
6
4
4
2
2
2
1 0
2
1 0
6
6
4
2 A
6 A
2
4 A
1
1 0
4
1 6 A
1 0 A
2
2 0 A
1
1 0
6
6
4
4
2
2
0
1 0
1 0
0
4
2
6
6
1 0
1 6
2 0
n
4
[A ]
2
-1
1 0
Type
6
In
Pv

4
A
2
-2
1 0
0
1 0
2
4
6
1
8 1 0
2
4
6
8 1 0
2
2
4
6
8 1 0
3
[A ]
e ff
Current limitation diagram
2 0 A
[A ]
6
1
4
c
I2 _ 0 6 5 5 9 b
4
1 0
2
1 6 A
2
1 0 A
3
1 0
6 A
4 A
6
2 A
4
2
2
1 0
6
4
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
30
Siemens · 2014
5
2
[A ]
4
W
K
3NW6302-1
3NW6304-1
3NW6301-1
2
4
6
2
1.5
1.5
27
19
20.5
3NW6303-1
3NW6305-1
3NW6307-1
10
16
20
0.7
1.1
1.7
15
29
34.5
I2ts
I2ta
1 ms
400 V AC
A2s
A2s
1.6
5
48
230
600
790
6
21
85
530
1400
1800
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and
cylindrical fuse holders
Series 3NW8
10 × 38 mm
14 × 51 mm
22 × 58 mm
aM
500 V AC,
400 V AC (3NW8120-1, 3NW8230-1)
0.5 ... 100 A
Operational class:
Rated voltage:
Rated current:
Melting I2t values diagram
Time/current characteristics diagram
3
6
[A 2 s ]
A
A
0 A
5 0 0 A
4 0 0 A
4
2
2
2
A
A
A
A
A
A
A
8 A
1 0
1 2
1 6
2 0
2 5
3 2
4 0
5 0
6 3
8 0
1 0
6 A
4 A
2 A
1 A
2
1 0
A
0 ,5 A
v s
2
6
2
[s ]
4
6
1 0
I2 _ 0 6 5 6 7 b
1 0
I2 _ 0 6 9 9 5 b
Size:
t
t
a
s
5
1 0
6
6
4
4
2
2
1
1 0
4
1 0
6
6
4
4
2
2
0
1 0
3
1 0
6
6
4
4
2
2
-1
1 0
2
1 0
6
6
4
4
2
2
-2
1 0
1
1 0
6
6
4
4
2
2
-3
1 0
1 0
2
4
6
8 1 0
1
4
2
2
8 1 0
6
2
4
6
8 1 0
3
2
[A ]
e ff
0
0 ,5
4
1
2
4
6
8
1 0 1 2
1 6 2 0 2 5 3 2 4 0 5 0 6 3 8 0 1 0 0
n [A ]
Current limitation diagram
2
6
4
2
3
1 0
I2 _ 0 6 5 6 6 b
1 0
c
[A ]
1 0 0 A
8 0 A
6 3 A
5 0 A
4 0 A
3 2 A
2 5 A
2 0 A
1 6 A
1 2 A
1 0 A
8 A
6 A
4 A
2 A
2
1
4
1 A
0 ,5 A
6
4
2
2
1 0
6
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
e ff
8 1 0
[A ]
5
2
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
31
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Compact cylindrical fuse holders
in size 10 x 38 mm and Class CC
■ Overview
■ Benefits
A key feature of our three-pole fuse holders is their ultra compact
design. With a width of only 45 mm, they are ideal for use with
fused motor starter combinations. Because the contactor and
the fuse holder have the same 45 mm width, they are easy to
mount on top of one another. The strong current-limiting fuses
ensure a type 2 protection level (coordination according to
IEC 60947-4, no damage protection) for the contactor.
The UL version has an SCCR value of 200 kA. The accessories
are generally UL-certified.
• Compact design, especially for motor starter combinations
• For IEC fuses of size 10 x 38 mm up to 32 A and
Class CC UL fuses up to 30 A
• Meets the requirements of UL 508 with regard to clearances
• UL-approved microswitches, busbars and adapters for
60 mm busbar systems
• Optical signal detector for fast fault locating
Customers can mount an auxiliary switch which signals the
switching state or prevents the fuse holder from switching off under load by interrupting the contactor control, thus increasing
safety for the operator and process. Busbars and a matching
three-phase feeder terminal complete the product range.
Compact cylindrical fuse holder Class CC with signal detector and
mounted auxiliary switch
32
Siemens · 2014
Installation configuration of a cylindrical fuse holder and a SIRIUS contactor on busbar device adapter for the 60 mm busbar system
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Compact cylindrical fuse holders
in size 10 x 38 mm and Class CC
■ Technical specifications
Cylindrical fuse holders
Fuse holders
3NW70. .-1
3NW75. .-1HG
mm × mm 10 × 38
Size
Class CC
Standards
IEC 60269; UL 512; CSA
UL 512; CSA
Approvals
• Acc. to UL
• Acc. to CSA
U, UL File Number E171267
s
u, UL File Number E171267
s
Rated voltage Un
V AC
690
600
Rated current In
A AC
32
30
Rated short-circuit strength
kA
120 (at 500 V)
80 (at 690 V)
200
AC-20B (switching without load)
--
Switching capacity
• Utilization category
kV
Rated impulse withstand voltage
6
III
Overvoltage category
2
Pollution degree
Max. power dissipation of the fuse link
W
3
No-voltage changing of fuse links
°C
-5 ... +40, humidity 90 % at +20
Sealable when installed
Yes
Lockable with padlock
Yes
Mounting position
Any, but preferably vertical
Any
Current direction
Degree of protection
IP20, with connected conductors
Acc. to IEC 60529
Yes
Terminals with touch protection according to BGV A3
at incoming and outgoing feeder
Ambient temperature
°C
-5 ... +40, humidity 90 % at +20
Conductor cross-sections
• Finely stranded, with end sleeve
• AWG cables (American Wire Gauge)
mm2
AWG
1 ... 4
18 ... 10
Nm
lb.in
1.5
13
PZ2
Tightening torque
• Terminal screws
Auxiliary switches
3NW7903-1
Standards
IEC 60947
Approvals
U, s, UL 508, UL File Number E334003
AC-12
DC-13
Rated voltage Un
V AC
V DC
250
--
-24
-120
-240
24
--
120
--
240
--
240
--
Rated current In
A
5
2
0.5
0.25
4
3
1.5
5
Utilization category
AC-15
Acc. to UL
Busbars
5ST260.
3NW70. .-1
For cylindrical fuse holders
Pin spacing
mm
3NW75. .-1HG
15
Standards
EN 609741 (VDE 0660-100), IEC 60947-1:2004, UL 508, CSA 22.2
Approvals
u, UL 4248-1, UL File Number E337131
Busbar material
E-Cu 58 F25
PA66-V0
Partition material
Lamp wire resistance /1.5 mm2
°C
960
Overvoltage category III, degree of pollution 2
Insulation coordination
Rated voltage Un
• Acc. to UL
• Acc. to IEC
V AC
V AC
-690
600
--
Maximum busbar current In
• Acc. to UL
• Acc. to IEC
A
A
-80
65
--
Siemens · 2014
33
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Compact cylindrical fuse holders
in size 10 x 38 mm and Class CC
Terminals
5ST2600
3NW70. .-1
For cylindrical fuse holders
mm
Pin spacing
3NW75. .-1HG
15
Standards
IEC 60999:2000, UL 508
Approvals
u, UL 4248-1, UL File Number E337131
PA66-V0
Enclosure/cover material
Lamp wire resistance /1 mm2
°C
960
Temperature resistance PA66-V0, HDT B ISO 179,
UL 94-V0/1.5
°C
200
Overvoltage category III, degree of pollution 2
Insulation coordination
Max. operational voltage Umax
• Acc. to UL
• Acc. to IEC
V AC
V AC
-690
600
--
Maximum electrical load Imax
• Acc. to UL
• Acc. to IEC
A
A
-80
65
--
Rated current In
A
63
Conductor cross-sections
• solid/stranded
• Finely stranded, with end sleeve
mm2
mm2
2.5 ... 35
2.5 ... 25
Tightening torque of clamping screw
Nm
2.5 ... 3.5
34
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Cylindrical Fuse Systems
Compact cylindrical fuse holders
in size 10 x 38 mm and Class CC
■ Dimensional drawings
I202_01414
3NW703.-1
3NW753.-1HG
I202_01413
I202_01412
5ST260.
5ST2600
■ Circuit diagrams
Circuit diagrams
I202_01447
1 3 5
2 4 6
3NW703.-1
3NW753.-1HG
13
21
22
14
3NW7903-1
Siemens · 2014
35
© Siemens AG 2014
Fuse Systems
Class CC fuse systems
• Characteristic: quick 3NW2 ...-0HG
For a wide range of applications, for the protection of lighting
installations, heating, control systems.
• Characteristic: slow, current-limiting, 3NW3...-0HG
Slow for overloads and quick for short circuits. High current
limitation for the protection of motor circuits.
■ Overview
Class CC fuses are used for "branch circuit protection".
The enclosed fuse holders are designed and tested to comply
with the US National Electrical Code NEC 210.20(A). This means
that when subject to continuous operation, only 80 % of the rated
current is permissible as operational current.
Note:
An operational current of 100 % of the rated current (30 A) is only
permissible short-time.
The devices are prepared for the labels of the ALPHA FIX terminal blocks 8WH8120-7AA15 and
8WH8120-7XA05.
For class CC compact fuse holders for motor starter combinations, see page 32.
■ Benefits
• For switchgear assemblies and machine manufacturers who
export their systems to the USA or Canada.
• Easier export due to UL and CSA approvals for typical applications
• Modern design with touch protection to BGV A3 ensures safe
installation.
There are three different series:
• Characteristic: slow 3NW1...-0HG
For the protection of control transformers, reactors, inductances. Significantly slower than the minimum requirements
specified by UL for Class CC Fuses of 12 s at 2 × In.
■ Technical specifications
Class CC fuse holders
3NW75.3-0HG
UL 512; CSA C22.2
UL512; UL File No. E171267; CSA C22.2
Standards
Approvals
Rated voltage Un
Rated current In
Rated conditional short-circuit current
Switching capacity
• Utilization category
Max. power dissipation of fuse links
• With cable, 6 mm2
• With cable, 10 mm2
Rated impulse withstand voltage
Overvoltage category
V AC
A
kA
600
30
200
AC-20B (switching without load)
W
W
3
4.3
kV
6
II
Pollution degree
No-voltage changing of fuse links
Sealable when installed
Mounting position
Current direction
2
Yes
Yes
Any
Any
Degree of protection acc. to IEC 60529
Terminals with touch protection according to BGV A3
at incoming and outgoing feeder
IP20
Yes
45
Ambient temperature
Conductor cross-sections
• Solid and stranded
• AWG conductor cross-section, solid and stranded
°C
mm
AWG
1.5 ... 16
15 ... 5
Tightening torque
Nm
2.5 (22 lb.in)
2
Class CC fuse links
3NW1...-0HG
3NW3...-0HG
Slow
Quick
Slow, current limiting
V AC
600
600
600
V DC
--
--
150 (3 .... 15 A)
300 (< 3 A, > 15 A)
kA AC
200
Characteristic
Rated voltage
Rated breaking capacity
36
3NW2...-0HG
UL 248-4; CSA C22.2
UL 248-4; UL File Number E258218; CSA C22.2
Standards
Approvals
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Class CC fuse systems
45
81
Ø10,3
I201_13727
■ Dimensional drawings
38,1
18
3NW1. . .-0HG
3NW2. . .-0HG
3NW3. . .-0HG
36
54
7
37
49
58
3NW75.3-0HG
Siemens · 2014
37
© Siemens AG 2014
Fuse Systems
Class CC fuse systems
■ Characteristic curves
Virtual melting time t vs [s]
4
2
1
10
8
6
4
15 A
20 A
30 A
8A
10 A
5A
3A
2A
I201_12162a
2
10
8
6
10 3
8
6
4
1A
I202_02185
2
Virtual melting time t vmt [s]
7,5 A
2A
2,5 A
3A
4A
5A
6A
Time/current characteristics diagram
1,5 A
3NW2...-0HG series
Time/current characteristics diagram
0,6 A
0,8 A
1A
3NW1...-0HG series
2
10 2
8
6
4
2
10 1
8
6
4
2
2
0
10
8
6
4
10 0
8
6
4
2
2
10 -1
8
6
4
-1
10
8
6
4
2
2
10 -2
10 0
10
4 6 8 10 1
2
4 6 8 10 2
Prospective short-circuit current
2
2
2
6 8 10 1
4
4
2
6 8 10 2
4
Prospective short-circuit current
2
102
8
6
4
2
1
10
8
6
4
p
6A
8A
10 A
12 A
15 A
20 A
25 A
30 A
3A
4A
1A
10 3
8
6
4
[A]
2
10 2
8
6
4
2
10 1
8
6
4
2
2
10 0
8
6
4
0
10
8
6
4
2
2
10 -1
8
6
4
-1
10
8
6
4
2
2
-2
10
100
2
4 6 8 101
2
4 6 8 102
2
Prospective short-circuit current
38
Virtual melting time t vmt [s]
15 A
20 A
30 A
8A
10 A
I202_02186
Time/current characteristics diagram
Virtual melting time t vs [s]
3NW3...-0HG series
Time/current characteristics diagram
6 8 10 3
4
p [A]
3NW1...-0HG series
103
8
6
4
2
I201_12163a
6 8 10 0
Siemens · 2014
4 6 8 103
p[A]
10 -2
10 0
2
4
6 8 10 1
2
4
6 8 10 2
2
Prospective short-circuit current
4
p
[A]
6 8 10 3
© Siemens AG 2014
Fuse Systems
Class CC fuse systems
3NW3...-0HG series
Current limitation diagram
I201_12164
c [A]
4
2
30 A
25 A
20 A
15 A
3
10
8
6
2,8 A
4
1,25 A
2
2
10
8
6
4
2
1
10
10 1
2
4
6 8 10 2
2
4
6 8 10 3
2
4
p [A]
Siemens · 2014
39
© Siemens AG 2014
Fuse Systems
Busbar systems
■ Overview
Busbars with pin-type connections can be used for NEOZED
safety switching devices and fuse bases. Busbars in 10 mm2
and 16 mm2 versions are available.
Busbars with fork plugs are used for the most frequently used
NEOZED fuse bases made of ceramic.
■ Benefits
• Clear and visible conductor connection that can be easily
checked when using the NEOZED D02 comfort base and
which facilitates cable entry
• Bus-mounting of NEOZED fuse bases made of molded plastic
on 3-phase busbar with fork plug, which can be cut to length.
• Bus-mounting of NEOZED fuse bases made of ceramic on
3-phase busbar with fork plug, which can be cut to length.
• Bus-mounting of MINIZED D01 fuse switch disconnectors on
3-phase busbar with fork plug, can be cut to length.
• Clear and visible conductor connection that can be easily
checked when using MINIZED D02 switch disconnectors.
This facilitates cable entry and saves time
• Bus-mounting of cylindrical fuse holders 8 × 32 mm and
10 × 38 mm with three-phase pin busbar which can be cut to
length
40
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Busbar systems
• Bus-mounting of SITOR cylindrical fuse holders
10 mm x 38 mm with the same terminal connection as
Class CC fuse holders with 3-phase pin busbar which can be
cut to length.
• Bus mounting with infeed through a connection terminal
directly on the fuse holder up to a conductor cross-section of
25 mm²
■ Technical specifications
5ST, 5SH
Standards
EN 60439-1 (VDE 0660-500): 2005-01
Busbar material
SF-Cu F 24
Partition material
Plastic, Cycoloy 3600,
Heat-resistant over 90 °C,
flame-retardant,
self-extinguishing,
dioxin and halogen-free
V AC
400
• Cross-section 10 mm2
• Cross-section 16 mm2
A
A
63
80
Rated impulse withstand voltage Uimp
kV
4
Test pulse voltage (1.2/50)
kV
6.2
Rated conditional short-circuit current Icc
kA
25
Rated operational voltage Uc
Rated current In
Resistance to climate
• Constant atmosphere
• Humid heat
Acc. to DIN 50015
Acc. to IEC 60068-230
23/83; 40/92; 55/20
28 cycles
Insulation coordination
• Overvoltage category
• Pollution degree
III
2
Maximum busbar current IS/phase
• Infeed at the start of the busbar
- Cross-section 10 mm2
- Cross-section 16 mm2
A
A
63
80
• Infeed at the center of the busbar
- Cross-section 10 mm2
- Cross-section 16 mm2
A
A
100
130
Siemens · 2014
41
© Siemens AG 2014
Fuse Systems
Busbar systems
5ST37. . - .HG busbars acc. to UL 508
5ST37. .-0HG
5ST37. .-2HG
Standards
UL 508, CSA C22.2 No. 14-M 95
Approvals
UL 508 File No. E328403
CSA
5ST3770-0HG
5ST3770-1HG
Operational voltage
• Acc. to IEC
• Acc. to UL 489
V AC
V AC
690
600
Rated conditional short-circuit current
kA
10 (RMS symmetrical 600 V for three cycles)
• Dielectric strength
• Surge strength
kV/mm
kV
25
> 9.5
Rated current
A
--
--
115
A
A
80
160
100
200
---
---
25
--
--
Maximum busbar current IS/phase
• Infeed at the start of the busbar
• Infeed at the center of the busbar
Insulation coordination
• Overvoltage category
• Pollution degree
III
2
Busbar cross-section
mm2 Cu 18
Any
Infeed
Conductor cross-sections
AWG
mm2
---
---
10 ... 1/0
6 ... 35
14 ... 1
1.5 ... 50
Nm
lbs/in
---
---
5
50
3.5
35
Terminals
• Terminal tightening torque
Infeed at the start of the busbar
Infeed along the busbar or midpoint infeed
3
2
1
1
2
I201_13754a
I201_13755
S
3
S1
S2
S
The sum of the output current per branch must not be greater than the busbar current IS1.2 / phase.
42
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Busbar systems
■ Dimensional drawings
5ST37
Pin spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
1
L2
15
L1
13
I201_13748
3,5
I201_13674
1,5
1
18
5ST3700
5ST3701
Single-phase
Single-phase
1,5
1
L2
L3
L1
1,5
L2
L3
15
L1
5ST3704
5ST3705
Two-phase
I201_13749
1
5ST3703
18
5ST3708
5ST3710
Three-phase
5ST3714
Three-phase
5ST2
I201_13750
3,5
Fork spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
13
15,1
5ST2186
5ST2190
Single-phase
5ST2187
5ST2191
Two-phase
5ST2188
5ST2192
Three-phase
Busbars for DIAZED EZR fuse bases
960
52
872
97
2
5SH3500
13
6
6
_13427a
1030
6
13
I201_13426a
6
6
5SH3501
5SH5
Fork spacing in MW (modular width; 1 MW = 18 mm), dimensions of side views in mm (approx.)
12
5
17
I201_13827
I201_13825
15
I201_13826
5SH5517
12
1,5
1,5
1,5
5SH5320
2
3
15
5SH5321
5SH5322
Siemens · 2014
43
© Siemens AG 2014
Fuse Systems
Busbar systems
5ST37. . - . HG busbars acc. to UL 508
5ST37
Pin spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
1,5
1
2
I202_02123
L1
23
1,5
5
1
L2
15
21
L2
L3
L1
L2
L3
2,5
I202_02104
1,5
1,5
1,5
23
L1
1,5
1
I202_02122
1
5ST3705-0HG
5
5ST3701-0HG 5ST3703-0HG
15
21
1,5
2
L1
23
L2
1,5
I202_02105
L1
5ST3701-2HG
1,5
L2
L3
2
23
5ST3714-0HG
I202_02106
5ST3710-0HG
21
21
5ST3705-2HG
5ST3710-2HG
I202_02108
24
14
I202_02107
1
5
22
9,5
5ST3748-0HG
16
9,5
5ST3750-0HG
I202_02111
30
I202_02110
18,5
60
28,5
3
40
5ST3770-0HG
5ST3770-1HG
8
5ST36 touch protection covers
Pin spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
5
85,2
R
0,
3,8
5,7
24
14
23,8
71,2
I202_02109
17,8
5ST3655-0HG
44
Siemens · 2014
18
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
■ Overview
LV HRC fuse systems (NH type) are used for installation systems
in non-residential, commercial and industrial buildings as well as
in switchgear assemblies of power utilities. They therefore protect essential building parts and systems.
LV HRC fuse systems (NH type) are fuse systems designed for
operation by experts. There are no constructional requirements
for non-interchangeability of rated current and touch protection.
The components and auxiliary equipment are designed in such
a way as to ensure the safe replacement of LV HRC fuse systems
or isolation of systems.
LV HRC fuse links are available in the sizes 000, 00, 0, 1, 2, 3, 4
and 4a.
LV HRC fuse links are available in the following operational
classes:
• gG for cable and line protection
• aM for short-circuit protection of switching devices in motor
circuits
• gR or aR for protection of power semiconductors
• gS: The new gS operational class combines cable and line
protection with semiconductor protection.
LV HRC fuse links of size 000 can also be used in
LV HRC fuse bases, LV HRC fuse switch disconnectors,
LV HRC fuse strips as well as LV HRC in-line fuse switch
disconnectors of size 00.
The fuse links 300 A, 355 A and 425 A comply with the standard
but do not have the VDE mark.
LV HRC components:
5
4
3
2
6
7
8
1
9
1
LV HRC fuse base from the SR60 busbar system
2
LV HRC fuse base for busbar mounting
3
LV HRC fuse base, 3-pole
4
LV HRC fuse base, 1-pole
5
LV HRC contact covers
6
LV HRC fuse link
7
LV HRC signal detector
8
LV HRC partition
9
LV HRC protective cover
LV HRC fuse bases with swivel mechanisms,
10 - for screw fixing on mounting plate
11 - for screw fixing on busbar system
14
10
11
12
12 - for claw fixing on busbar
13
13 LV HRC protective cover for LV HRC fuse bases with
15
16
17
18
19
I201_13743a
swivel mechanism
14 LV HRC swivel mechanism
15 LV HRC fuse base cover
16 LV HRC isolating blade with insulated grip lugs
17 LV HRC isolating blade with non-insulated grip lugs
18 LV HRC fuse puller with sleeve
19 LV HRC fuse puller
Siemens · 2014
45
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
■ Technical specifications
LV HRC fuse links
Operational class
Operational
class
gG
aM
3NA6...-4
3NA6...-4KK
3NA383.-8
3NA6...
3NA6...-7
3NA7...
3NA7...-7
3NA3...
3NA3...-7
3NA6...-6
3NA7...-6
3NA3...-6
3ND1
3ND2
IEC 60269-1, -2; EN 60269-1; DIN VDE 0636
DIN VDE 0636-2; CSA 22.2 No.106, File Number 016325_0_00 (CSA approval of fuses 500 V for 600 V)
Standards
Approvals
Rated voltage Un
• Sizes 000 and 00
V AC
V DC
400
--
500
250
500
250
690
250
690
250
500
--
• Sizesn 1 and 2
V AC
V DC
400
--
500
440
500
440
690
440
690
440
690
--
• Size 3
V AC
V DC
---
---
500
440
---
690
440
690
--
• Sizes 4 and 4a (IEC design)
V AC
V DC
---
---
500
440
---
---
---
Rated current In
A
10 ... 400
2 ... 400
2 ... 1250
2 ... 315
2 ... 500
6 ... 630
Rated breaking capacity
kA AC
120
kA DC
--
Resistance to climate
46
25
Non-corroding, silver-plated
Contact pins
Siemens · 2014
°C
-20 ... +50 at 95 % relative humidity
--
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
■ Characteristic curves
3NA30 series
0
gG
500 V AC/440 V DC
6 ... 160 A
Melting I2t values diagram
Time/current characteristics diagram
4
I2 _ 0 6 0 8 8 a
2
v s
7
1 0
6
4
1 0
[A 2 s ]
[s ]
4
1 6 A
2 0 A
2 5 A
3 2 A
3 5 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
6 A
6
1 0 A
1 0
3
2
s
1 0
I2 _ 0 6 0 8 1 b
Size:
Operational class:
Rated voltage:
Rated current:
2
0
s
6
6
4
4
-1
1 0
6
1 0
s
1 0
-2
s
-3
1 0
1 0
6
1 6 0 A
1 2 5 A
1 0 0 A
4
4
2
2
1
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
4
1 0
6
6
4
4
2
2
0
1 0
2 5 A
3
1 0
6
6
2 0 A
4
4
1 6 A
2
2
-1
1 0
1 0 A
2
1 0
6
6
4
4
6 A
2
2
-2
1 0
1 0
1
1 0
6
1
2
4
6
2
8 1 0
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
e ff
4
2
Type
In
Pv

A
W
K
-3
1 0
1
1 0
4
2
6
2
8 1 0
2
4
6
8 1 0
3
2
4
6
8 1 0
4
[A ]
e ff
Current limitation diagram
1
1 6 0 A
1 2 5 A
1 0 0 A
2
4
1 0
I2 _ 0 6 0 6 2 a
2
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
2 5 A
2 0 A
c
[A ]
s
5
1 0
6
1 0
- 4
1 0
2
2
2
s
6
4
2
1 6 A
3
1 0
1 0 A
6 A
6
4
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
5
2
[A ]
4
I2ts
1 ms
A2s
4
[A ]
6
8 1 0
4 ms
A2s
3NA3001
3NA3003
3NA3005
6
10
16
1.5
1
1.9
6
9
11
46
120
370
50
130
420
3NA3007
3NA3010
3NA3012
20
25
32
2.3
2.7
3
13
15
13
670
1200
2200
750
1380
2400
3NA3014
3NA3017
3NA3020
35
40
50
3
3.4
4.5
17
17
24
3000
4000
6000
3300
4500
6800
3NA3022
3NA3024
3NA3030
63
80
100
5.8
7
8.2
27
34
37
7700
12000
24000
9800
16000
30600
3NA3032
3NA3036
125
160
10.2
13.5
38
44
36000
58000
50000
85000
Type
I2ta
230 V AC
A2s
400 V AC
A2s
500 V AC
A2s
3NA3001
3NA3003
3NA3005
80
180
580
110
265
750
150
370
1000
3NA3007
3NA3010
3NA3012
1000
1800
3400
1370
2340
4550
1900
3300
6400
3NA3014
3NA3017
3NA3020
4900
6100
9100
6750
8700
11600
9300
12100
16000
3NA3022
3NA3024
3NA3030
14200
23100
40800
19000
30700
56200
26500
43000
80000
3NA3032
3NA3036
70000
120000
91300
158000
130000
223000
Siemens · 2014
47
5
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA31, 3NA61, 3NA71 series
1
gG
500 V AC/440 V DC
16 ... 250 A
Melting I2t values diagram
Time/current characteristics diagram
4
A
A
3
4
2
6
1 0
2
s
1 0
6
[A 2 s ]
2
v s
A
A
A
1 6 A
2 0 A
2 5 A
3 5 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0
1 2 5
1 6 0
2 0 0
2 2 4
2 5 0
[s ]
4
A
6
7
1 0
I2 _ 0 6 0 6 3 c
1 0
I2 _ 0 6 0 8 2 b
Size:
Operational class:
Rated voltage:
Rated current:
6
6
4
4
2
2 5 0 A
2 2 4 A
2 0 0 A
2
2
1 0
5
1 0
6
6
1 6 0 A
1 2 5 A
1 0 0 A
4
4
2
2
1
1 0
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
4
1 0
6
6
4
4
2
2
0
1 0
1 0
3
1 0
6
6
4
4
0
s
2 5 A
-1
1 0
2
2
-1
1 0
1 6 A
-2
1 0
s
2
1 0
1
6
6
4
4
2
2 0 A
s
1 0
-3
s
1 0
2
-2
1 0
1 0
s
1
1 0
6
-4
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
2
Type
-3
1 0
1
1 0
2
4
6
2
8 1 0
2
4
8 1 0
6
3
2
4
6
8 1 0
Current limitation diagram
1
2 5 0
2 2 4
2 0 0
1 6 0
1 2 5
1 0 0
8 0 A
6 3 A
5 0 A
2
c
2
4
1 0
6
I2 _ 0 6 0 5 3 b
4
A
A
A
A
A
A
4 0 A
3 5 A
2 5 A
2 0 A
1 6 A
4
2
6
4
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
48
Siemens · 2014
5
2
[A ]
4
Pv

A
W
K
6
8 1 0
5
I2ts
1 ms
4 ms
A2s
A2s
3NA3105, 3NA6105, 3NA7105
3NA3107, 3NA6107, 3NA7107
3NA3110, 3NA6110, 3NA7110
16
20
25
2.1
2.4
2.8
8
10
11
370
670
1200
420
750
1380
3NA3114, 3NA6114, 3NA7114
3NA3117, 3NA6117, 3NA7117
3NA3120, 3NA6120, 3NA7120
35
40
50
3.2
3.6
4.6
16
16
20
3000
4000
6000
3300
4500
6800
3NA3122, 3NA6122, 3NA7122
3NA3124, 3NA6124, 3NA7124
3NA3130, 3NA6130, 3NA7130
63
80
100
6
7.5
8.9
21
29
30
7700
12000
24000
9800
16000
30600
3NA3132, 3NA6132, 3NA7132
3NA3136, 3NA6136, 3NA7136
3NA3140, 3NA6140, 3NA7140
125
160
200
10.7
13.9
15
31
34
36
36000 50000
58000 85000
115000 135000
3NA3142, 3NA6142, 3NA7142
3NA3144, 3NA6144, 3NA7144
224
250
16.1
17.3
37
39
145000 170000
205000 230000
Type
3
1 0
In
4
[A ]
e ff
[A ]
4
[A ]
e ff
I2ta
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
3NA3105, 3NA6105, 3NA7105
3NA3107, 3NA6107, 3NA7107
3NA3110, 3NA6110, 3NA7110
580
1000
1800
750
1370
2340
1000
1900
3300
3NA3114, 3NA6114, 3NA7114
3NA3117, 3NA6117, 3NA7117
3NA3120, 3NA6120, 3NA7120
4900
6100
9100
6750
8700
11600
9300
12100
16000
3NA3122, 3NA6122, 3NA7122
3NA3124, 3NA6124, 3NA7124
3NA3130, 3NA6130, 3NA7130
14200
23100
40800
19000
30700
56200
26500
43000
80000
3NA3132, 3NA6132, 3NA7132
3NA3136, 3NA6136, 3NA7136
3NA3140, 3NA6140, 3NA7140
70000
120000
218000
91300
158000
285000
130000
223000
400000
3NA3142, 3NA6142, 3NA7142
3NA3144, 3NA6144, 3NA7144
299000
420000
392000
551000
550000
780000
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA31..-6, 3NA61..-6, 3NA71..-6 series
1
gG
690 V AC/440 V DC
50 ... 200 A
Melting I2ts values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
8
1 0
I2 _ 0 6 0 4 4 a
1 0
3
2
2
2 0 0 A
1 6 0
1 2 5
1 0
8
6
4
2
2
1 0
A
1 0
s
1 0
6
-1
s
-2
1 0
4
A
0 A
0 A
6 3 A
5 0 A
6
0
1 0
7
s
1 0
I2 _ 0 6 0 4 3 b
Size:
Operational class:
Rated voltage:
Rated current:
s
1 0
2
-3
s
1 0
6
1 0
- 4
s
6
4
4
2
2
1
1 0
2 0 0 A
5
1 0
6
6
1 6 0 A
4
4
1 2 5 A
1 0 0 A
8 0 A
2
2
0
1 0
4
1 0
4
4
6 3 A
6
6
5 0 A
2
2
-1
1 0
3
1 0
6
6
4
4
2
2
-2
1 0
1 0
2
1 0
6
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
e ff
4
4
[A ]
6
8 1 0
6
2
Type
-3
1 0
1
1 0
2
4
6
2
8 1 0
2
4
6
8 1 0
3
2
4
6
8 1 0
[A ]
e ff
Current limitation diagram
I2 _ 0 6 0 4 2 a
6
4
2
c
[A ]
1
2 0
1 6
1 2
1 0
8 0
6 3
5 0
2
4
1 0
0 A
0 A
5 A
0 A
A
A
A
6
4
In
Pv

A
W
K
4
I2ts
1 ms
4 ms
A2s
A2s
3NA3120-6, 3NA6120-6, 3NA7120-6
3NA3122-6, 3NA6122-6, 3NA7122-6
3NA3124-6, 3NA6124-6, 3NA7124-6
50
63
80
6.7 21
7.6 22
6.7 22
440
7600
13500
7400
10100
17000
3NA3130-6, 3NA6130-6, 3NA7130-6
3NA3132-6, 3NA6132-6, 3NA7132-6
3NA3136-6, 3NA6136-6, 3NA7136-6
100
125
160
8.7 28
10.5 29
13.8 33
21200
36000
58000
30500
50000
85000
3NA3140-6, 3NA6140-6, 3NA7140-6
200
16.6 35
Type
I2ta
132000 144000
230 V AC
400 V AC
690 V AC
A2s
A2s
A2s
3NA3120-6, 3NA6120-6, 3NA7120-6
3NA3122-6, 3NA6122-6, 3NA7122-6
3NA3124-6, 3NA6124-6, 3NA7124-6
9100
13600
24300
11200
17000
32000
1900
24000
55000
3NA3130-6, 3NA6130-6, 3NA7130-6
3NA3132-6, 3NA6132-6, 3NA7132-6
3NA3136-6, 3NA6136-6, 3NA7136-6
42400
69500
120000
52000
82200
155000
75000
130000
223000
3NA3140-6, 3NA6140-6, 3NA7140-6
211000
240000
360000
2
1 0
3
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
5
2
4
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
49
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA32, 3NA62, 3NA72 series
2
gG
500 V AC/440 V DC
35 ... 400 A
Melting I2t values diagram
Time/current characteristics diagram
4
v s
3
4
2
2
0
1 0
8
s
1 0
6
[A 2 s ]
3 5 A
[s ]
4
2
9
1 0
I2 _ 0 6 0 8 5 a
6
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
2 0 0 A
2 2 4 A
2 5 0 A
3 0 0 /3 1 5 A
3 5 5 A
4 0 0 A
1 0
I2 _ 0 6 0 7 9 b
Size:
Operational class:
Rated voltage:
Rated current:
1 0
s
6
4
4
1 0
6
-1
s
-2
1 0
s
1 0
2
2
2
1 0
-3
s
1 0
6
- 4
1 0
7
s
6
4
4
2
2
1
1 0
6
1 0
6
6
4
4
2
4 0 0
3 5 5
3 0 0
2 5 0
2 2 4
2 0 0
2
0
1 0
5
1 0
6
6
4
4
2
1 6 0 A
1 2 5 A
1 0 0 A
2
-1
1 0
8 0 A
6 3 A
5 0 A
4
1 0
1
6
6
4
4
2
A
A
/3 1 5 A
A
A
A
3 5 A
2
-2
1 0
1 0
3
1 0
6
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
4
[A ]
6
8 1 0
6
2
Type
-3
1 0
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
4
8 1 0
2
[A ]
e ff
Current limitation diagram
1
4 0 0
3 5 5
3 0 0
2 5 0
2 2 4
2 0 0
1 6 0
1 2 5
1 0 0
c
[A ]
2
2
4
1 0
A
A
/3 1 5 A
A
A
A
A
A
A
I2 _ 0 6 0 6 0 a
6
4
8 0 A
6 3 A
Pv

A
W
K
I2ts
1 ms
4 ms
A2s
A2s
3NA3214, 3NA6214, 3NA7214
3NA3220, 3NA6220, 3NA7220
3NA3222, 3NA6222, 3NA7222
35
50
63
3.2
4.7
5.9
12
16
16
3000
6000
7700
3300
6800
9800
3NA3224, 3NA6224, 3NA7224
3NA3230, 3NA6230, 3NA7230
3NA3232, 3NA6232, 3NA7232
80
100
125
6.8
7.4
9.8
21
22
27
12000
24000
36000
16000
30600
50000
3NA3236, 3NA6236, 3NA7236
3NA3240, 3NA6240, 3NA7240
3NA3242, 3NA6242, 3NA7242
160
200
224
12.6
14.9
15.4
34
33
31
58000 85000
115000 135000
145000 170000
3NA3244, 3NA6244, 3NA7244
3NA3250, 3NA6250
3NA3252, 3NA6252, 3NA7252
250
300
315
17.9
19.4
21.4
38
34
35
205000 230000
361000 433000
361000 433000
3NA3254, 3NA6254
3NA3260, 3NA6260, 3NA7260
355
400
26.0
27.5
49
52
441000 538000
529000 676000
Type
I2ta
5 0 A
6
3 5 A
4
2
1 0
In
4
3
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
50
Siemens · 2014
5
2
[A ]
4
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
3NA3214, 3NA6214, 3NA7214
3NA3220, 3NA6220, 3NA7220
3NA3222, 3NA6222, 3NA7222
4900
9100
14200
6750
11600
19000
9300
16000
26500
3NA3224, 3NA6224, 3NA7224
3NA3230, 3NA6230, 3NA7230
3NA3232, 3NA6232, 3NA7232
23100
40800
70000
30700
56200
91300
43000
80000
130000
3NA3236, 3NA6236, 3NA7236
3NA3240, 3NA6240, 3NA7240
3NA3242, 3NA6242, 3NA7242
120000
218000
299000
158000
285000
392000
223000
400000
550000
3NA3244, 3NA6244, 3NA7244
3NA3250, 3NA6250
3NA3252, 3NA6252, 3NA7252
420000
670000
670000
551000
901000
901000
780000
1275000
1275000
3NA3254, 3NA6254
3NA3260, 3NA6260, 3NA7260
800000
1155000
1060000
1515000
1500000
2150000
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA32..-6, 3NA62..-6, 3NA72..-6 series
2
gG
690 V AC/440 V DC
80 ... 315 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
9
1 0
I2 _ 0 7 5 3 9 a
1 0
3
2
2
s
1 0
I2 _ 0 7 5 4 1 a
Size:
Operational class:
Rated voltage:
Rated current:
3 0 0 /3 1 5 A
2 5 0 A
2 2 4 A
2 0 0 A
1 6 0 A
1 2 5 A
1 0 0 A
8 0 A
6
4
2
2
1 0
6
4
8
1 0
1 0
6
0
s
4
1 0
-1
2
s
1 0
-2
s
7
1 0
1 0
-3
s
6
2
- 4
1 0
4
s
2
1
1 0
6
1 0
6
6
4
4
3 0 0
2 5 0
2 4 0
2 0 0
2
2
0
1 0
5
1 0
/3 1 5 A
A
A
A
6
6
1 6 0 A
4
4
1 2 5 A
1 0 0 A
8 0 A
2
2
-1
1 0
4
1 0
6
6
4
4
2
2
-2
1 0
1 0
3
1 0
6
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
2
Type
-3
1 0
2
1 0
4
2
6
8 1 0
3
2
4
6
4
8 1 0
2
4
6
8 1 0
[A ]
e ff
Current limitation diagram
I2 _ 0 7 5 4 0 a
5
1 0
2
1
3 1 5
2 5 0
2 2 4
2 0 0
1 6 0
1 2 5
1 0 0
8 0 A
c
[A ]
6
4
2
4
1 0
A
A
A
A
A
A
4
2
1 0
Pv

A
W
K
6.6 22
8.5 26
9.8 29
6
8 1 0
I2ts
1 ms
4 ms
A2s
A2s
80
100
125
13500
21200
36000
17000
30500
50000
3NA3236-6, 3NA6236-6, 3NA7236-6
3NA3240-6, 3NA6240-6, 3NA7240-6
3NA3242-6, 3NA6242-6, 3NA7242-6
160 13.3 31
200 16.1 33
224 19.9 38
58000 85000
132000 144000
125000 162000
3NA3244-6, 3NA6244-6, 3NA7244-6
3NA3250-6, 3NA6250-6, 3NA7250-6
3NA3252-6, 3NA6252-6, 3NA7252-6
250 23
44
300 25.6 38
315 28.2 42
180000 215000
300000 380000
300000 380000
Type
I2ta
230 V AC
400 V AC
690 V AC
A2s
A2s
A2s
3NA3224-6, 3NA6224-6, 3NA7224-6
3NA3230-6, 3NA6230-6, 3NA7230-6
3NA3232-6, 3NA6232-6, 3NA7232-6
24300
42400
69500
32000
52000
82200
55000
75000
130000
3NA3236-6, 3NA6236-6, 3NA7236-6
3NA3240-6, 3NA6240-6, 3NA7240-6
3NA3242-6, 3NA6242-6, 3NA7242-6
120000
211000
300000
155000
240000
300000
223000
360000
450000
3NA3244-6, 3NA6244-6, 3NA7244-6
3NA3250-6, 3NA6250-6, 3NA7250-6
3NA3252-6, 3NA6252-6, 3NA7252-6
453000
480000
480000
350000
625000
625000
525000
940000
940000
3
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
5
2
6
3NA3224-6, 3NA6224-6, 3NA7224-6
3NA3230-6, 3NA6230-6, 3NA7230-6
3NA3232-6, 3NA6232-6, 3NA7232-6
A
6
In
5
4
[A ]
4
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
51
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA33 series
3
gG
500 V AC/440 V DC
200 ... 630 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
9
1 0
I2 _ 0 6 0 5 1 a
1 0
3
2
2
6 3 0
5 0 0
4 2
4
6
4
2
2
1 0
6
A
A
5 A
0 0
3 5 5
3 0
2
4
0
1 0
s
8
1 0
s
1 0
I2 _ 0 6 0 7 0 b
Size:
Operational class:
Rated voltage:
Rated current:
1 0
-1
s
6
1 0
4
A
-2
s
-3
1 0
s
2
A
0 /3
5 0
2 2 4
2 0
A
1 5 A
4
6 3 0 A
2
1
5 0
4 2
4 0
3 5
3 0
2 5
2 2
2 0
6
1 0
6
6
4
4
2
2
0
1 0
s
6
A
0 A
2
1 0
-4
1 0
7
1 0
5
1 0
6
6
4
4
2
0 A
5 A
0 A
5 A
0 /3 1 5 A
0 A
4 A
0 A
2
-1
1 0
4
1 0
6
6
4
4
2
2
-2
1 0
1 0
3
1 0
6
2
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
4
[A ]
6
8 1 0
2
2
1 0
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
8 1 0
6
Current limitation diagram
1
I2 _ 0 6 0 6 1 a
5
[A ]
Pv

A
W
K
3NA3340
3NA3342
3NA3344
200
224
250
14.9
15.4
17.9
32
31
36
115000
145000
205000
135000
170000
230000
3NA3350
3NA3352
3NA3354
300
315
355
19.4
21.4
26.0
19
22
26
361000
361000
441000
433000
433000
538000
5
[A ]
e ff
1 0
In
Type
-3
1 0
6 3 0 A
2
I2ts
1 ms
4 ms
A2s
A2s
5 0 0 A
4 2 5 A
3NA3360
3NA3362
3NA3365
400
425
500
27.5
26.5
36.5
28
34
41
529000
650000
785000
676000
970000
1270000
4
4 0 0 A
3 5 5 A
3 0 0 /3 1 5 A
3NA3372
630
44.0
50
1900000
2700000
Type
I2ta
c
6
2 5 0 A
2 2 4 A
2 0 0 A
2
1 0
4
6
4
1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
4
2
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
52
Siemens · 2014
6
[A ]
8 1 0
6
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
3NA3340
3NA3342
3NA3344
218000
299000
420000
285000
392000
551000
400000
550000
780000
3NA3350
3NA3352
3NA3354
670000
670000
800000
901000
901000
1060000
1275000
1275000
1500000
3NA3360
3NA3362
3NA3365
1155000
1515000
1915000
1515000
1856000
2260000
2150000
2270000
2700000
3NA3372
3630000
4340000
5400000
6
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA33..-6 series
3
gG
690 V AC/440 V DC
250 ... 500 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
9
1 0
I2 _ 0 7 5 4 2 a
1 0
3
2
1 0
8
s
1 0
I2 _ 0 7 5 4 4 a
Size:
Operational class:
Rated voltage:
Rated current:
4
2
2
1 0
A
2
5 0 0
4 2 5
4 0
3
6
A
0 A
5 5 A
3 1 5 A
2 5 0 A
1 0
0
s
1 0
6
-1
s
-2
1 0
4
s
-3
1 0
2
s
1 0
6
- 4
1 0
7
s
6
4
4
2
2
1
1 0
5 0
4 2
4 0
3 5
3 1
6
1 0
6
6
4
4
2
2
0
1 0
2 5 0 A
5
1 0
6
6
4
4
2
0 A
5 A
0 A
5 A
5 A
2
-1
1 0
4
1 0
6
6
4
4
2
2
-2
1 0
1 0
3
1 0
6
2
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
6
8 1 0
5
4
2
e ff
4
[A ]
6
8 1 0
2
1 0
2
2
4
6
3
8 1 0
2
4
8 1 0
6
4
2
4
6
8 1 0
Current limitation diagram
5
I2 _ 0 7 5 4 3 a
[A ]
c
1

1 ms
4 ms
A
W
K
A2s
A2s
3NA3344-6
3NA3352-6
3NA3354-6
250
315
355
23
28.2
32.5
44
42
40
180000
300000
380000
215000
380000
470000
3NA3360-6
3NA3362-6
3NA3365-6
400
425
500
33.2
35.3
43.5
42
44
52
540000
625000
810000
675000
765000
1000000
Type
I2ta
I2ts
2
6
5 0 0
4 2 5
4 0 0
3 5 5
3 1 5
2 5 0
4
A
A
A
A
A
A
2
1 0
Pv
5
[A ]
e ff
1 0
In
Type
-3
1 0
230 V AC
400 V AC
690 V AC
A2s
A2s
A2s
3NA3344-6
3NA3352-6
3NA3354-6
453000
480000
585000
350000
625000
760000
525000
940000
1150000
3NA3360-6
3NA3362-6
3NA3365-6
847000
925000
1300000
1100000
1200000
1700000
1650000
1800000
2500000
4
4
6
8
1 0
4
2
4
6
8
1 0
5
4
2
e ff
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
53
6
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA34 series
4 (IEC design)
gG
500 V AC/440 V DC
630 ... 1250 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
1 0
1 0
I2 _ 0 7 5 4 9 a
1 0
3
2
9
1 2 5 0
1 0 0 0
8 0 0
6 3
6
4
2
A
2
s
1 0
I2 _ 0 7 5 5 6 b
Size:
Operational class:
Rated voltage:
Rated current:
0
s
6
-1
1 0
4
A
0 A
s
-2
1 0
2
2
1 0
1 0
1 0
A
s
8
1 0
6
1 0
6
4
-3
s
4
2
- 4
1 0
s
2
1
1 0
7
1 0
6
4
4
1 2 5 0 A
1 0 0 0 A
6
8 0 0 A
2
2
0
1 0
6 3 0 A
6
1 0
6
6
4
4
2
2
-1
1 0
5
1 0
6
6
4
4
2
2
-2
1 0
1 0
4
1 0
6
2
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
4
[A ]
6
8 1 0
6
2
Type
-3
1 0
2
1 0
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
8 1 0
6
[A ]
e ff
Current limitation diagram
I2 _ 0 7 5 5 0 a
6
Pv

A
W
K
I2ts
1 ms
4 ms
A2s
A2s
3NA3472
3NA3475
630
800
47
59
37
43
1900000
3480000
2700000
5620000
3NA3480
3NA3482
1000
1250
74
99
56
65
7920000
11880000
10400000
18200000
Type
I2ta
c
[A ]
4
In
5
1
2
2
1 2 5 0 A
5
1 0
1 0 0 0 A
8 0 0 A
6 3 0 A
6
4
2
1 0
4
1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
54
Siemens · 2014
6
[A ]
8 1 0
6
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
3NA3472
3NA3475
3630000
7210000
4340000
8510000
5400000
10400000
3NA3480
3NA3482
13600000
23900000
16200000
29100000
19000000
34800080
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA36 series
4a
gG
500 V AC/440 V DC
500 ... 1250 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
1 0
1 0
I2 _ 0 6 0 4 9 a
1 0
3
2
1 0
2
1 0
1 2 5 0 A
1 0 0 0 A
8 0 0 A
6 3 0 A
5 0 0 A
6
4
2
2
1 0
0 s
9
s
1 0
I2 _ 0 6 0 7 3 b
Size:
Operational class:
Rated voltage:
Rated current:
1 0
6
-1
s
4
1 0
2
-2
s
1 0
8
1 0
6
-3 s
6
4
4
2
-4
1 0
s
2
1
1 0
7
1 2 5 0 A
1 0 0 0 A
1 0
6
6
4
4
8 0 0 A
2
2
0
1 0
6 3 0 A
6
1 0
6
4
4
5 0 0 A
6
2
2
-1
1 0
5
1 0
6
6
4
4
2
2
-2
1 0
1 0
4
1 0
6
2
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
4
[A ]
6
8 1 0
2
Type
-3
1 0
2
1 0
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
4
8 1 0
6
[A ]
e ff
Current limitation diagram
I2 _ 0 6 0 5 7 a
6
c
1
2
5
1 0
6

A
W
K
0 A
0 A
A
A
A
I2ts
1 ms
4 ms
A2s
A2s
500
630
800
43
47
59
30
37
43
785000
1900000
3480000
1270000
2700000
5620000
3NA3680
3NA3682
1000
1250
74
99
56
65
7920000
11880000
10400000
18200000
Type
I2ta
2
1 2 5
1 0 0
8 0 0
6 3 0
5 0 0
Pv
3NA3665
3NA3672
3NA3675
[A ]
4
In
5
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
3NA3665
3NA3672
3NA3675
1915000
3630000
7210000
2260000
4340000
8510000
2700000
5400000
10400000
3NA3680
3NA3682
13600000
23900000
16200000
29100000
19000000
34800000
4
2
1 0
4
1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
6
8 1 0
6
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
55
6
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA38, 3NA68, 3NA78 series
000, 00
gG
500 V AC/250 V DC
2 ... 160 A
Melting I2t values diagram
Time/current characteristics diagram
4
I2 _ 0 6 1 9 7 b
6 A
6
1 0
6
4
[A 2 s ]
[s ]
4
4 A
2 A
6
1 0 A
1 6 A
2 0 A
2 5 A
3 2 A
3 5 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
1 0
I2 _ 0 6 0 8 0 b
Size:
Operational class:
Rated voltage:
Rated current:
v s
2
3
5
2
s
1 0
2
1 0
6
6
1 6 0 A
1 2 5 A
1 0 0 A
4
4
2
2
2
1 0
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
4
1 0
6
6
4
4
2
2
1
1 0
2 5 A
3
1 0
6
4
4
2 0 A
6
1 6 A
1 0
2
2
0
1 0
0
s
1 0 A
2
1 0
1 0
6
6
4
-1
s
4
2
-2
1 0
6 A
s
2
s
4 A
1
1 0
1 0
6
6
4
- 4
s
4
2
2 A
2
-2
1 0
1 0
0
1 0
6
1
2
4
6
8 1 0
4
2
Table see page 57.
-3
4
6
8 1 0
1
4
2
6
2
8 1 0
2
4
6
3
8 1 0
2
[A ]
e ff
4
Current limitation diagram
2
1 6 0 A
1 2 5 A
1 0 0 A
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
2 5 A
2 0 A
1 6 A
2
4
c
1 0
6
4
2
1 0 A
3
1 0
I2 _ 0 6 0 5 6 a
1
6 A
6
4 A
4
2 A
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
e ff
1 0
[A ]
-3
1 0
-1
1 0
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
56
Siemens · 2014
5
2
[A ]
4
4
[A ]
6
8 1 0
5
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA38, 3NA68, 3NA78 series
Size:
Operational class:
Rated voltage:
Rated current:
000, 00
gG
500 V AC/250 V DC
2 ... 160 A
Type
Pv
In
A
W

K
I2ts
I2ta
1 ms
4 ms
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
A2s
A2s
3NA3802, 3NA6802, 3NA7802
3NA3804, 3NA6804, 3NA7804
3NA3801, 3NA6801, 3NA7801
2
4
6
1.3
0.9
1.3
8
6
8
2
11
46
2
13
50
4
18
80
6
22
110
9
27
150
3NA3803, 3NA6803, 3NA7803
3NA3805, 3NA6805, 3NA7805
3NA3807, 3NA6807, 3NA7807
10
16
20
1
1.7
2
8
11
15
120
370
670
130
420
750
180
580
1000
265
750
1370
370
1000
1900
3NA3810, 3NA6810, 3NA7810
3NA3812, 3NA6812, 3NA7812
3NA3814, 3NA3814-7, 3NA6814, 3NA7814
25
32
35
2.3
2.6
2.7
17
18
21
1 200
2200
3000
1380
2400
3300
1800
3400
4900
2340
4550
6750
3300
6400
9300
3NA3817, 3NA6817, 3NA7817
3NA3820, 3NA3820-7, 3NA6820, 3NA7820
3NA3822, 3NA3822-7, 3NA6822, 3NA7822
40
50
63
3.1
3.8
4.6
24
25
28
4000
6000
7700
4500
6800
9800
6100
9100
14200
8700
11600
19000
12100
16000
26500
3NA3824, 3NA3824-7, 3NA6824,
3NA6824-7, 3NA7824, 3NA7824-7
3NA3830, 3NA3830-7, 3NA6830,
3NA6830-7, 3NA7830, 3NA7830-7
80
5.8
33
12000
16000
23100
30700
43000
100
6.6
34
24000
30600
40800
56200
80000
125
125
160
160
8.9
7.2
11.3
9
44
30
52
34
36000
46000
58000
89000
50000
45000
85000
84800
70000
97000
120000
137000
91300
117000
158000
166000
130000
134000
223000
--
3NA3832, 3NA6832, 3NA7832
3NA3832-8
3NA3836, 3NA6836, 3NA7836
3NA3836-8
Siemens · 2014
57
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA38..-6, 3NA68..-6, 3NA78..-6 series
000, 00
gG
690 V AC/250 V DC
2 ... 100 A
Melting I2t values diagram
Time/current characteristics diagram
1 0
I2 _ 0 6 0 5 2 a
6
s
2
-1
1 0
s
1 0
2
-2
s
1 0
5
s
3
1 0
0
4
[A 2 s ]
1 0 A
6 A
2
4 A
2 A
[s ]
4
1 6 A
2 0 A
2 5 A
3 2 A
3 5 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
6
v s
6
1 0
4
1 0
I2 _ 0 6 0 7 6 b
Size:
Operational class:
Rated voltage:
Rated current:
1 0
-3
s
6
s
4
4
1 0 0 A
8 0 A
2
2
4
1 0
2
1 0
6 3 A
6
6
5 0 A
4 0 A
3 5 A
3 2 A
2 5 A
4
4
2
2
3
1 0
1
1 0
6
2 0 A
6
4
1 6 A
4
2
2
2
1 0
0
1 0
1 0 A
6
6
6 A
4
4
2
2
4 A
1
1 0
-1
1 0
6
6
4
4
2 A
2
2
1 0
-2
1 0
0
1 0
6
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
e ff
4
2
Type
-3
1 0
4
6
8 1 0
1
4
2
6
2
8 1 0
2
4
6
3
8 1 0
2
[A ]
e ff
1
I2 _ 0 6 0 5 9 a
2
1 0 0 A
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
2 5 A
2 0 A
1 6 A
2
4
c
1 0
6
4
2
1 0 A
3
1 0
In
Pv

A
W
K
4
Current limitation diagram
[A ]
-4
1 0
6
4
[A ]
6
8 1 0
5
I2ts
1 ms
4 ms
A2s
A2s
3NA3802-6, 3NA6802-6, 3NA7802-6
3NA3804-6, 3NA6804-6, 3NA7804-6
3NA3801-6, 3NA6801-6, 3NA7801-6
2
4
6
1.3
0.9
1.3
8
6
8
2
11
36
2
13
44
3NA3803-6, 3NA6803-6, 3NA7803-6
3NA3805-6, 3NA6805-6, 3NA7805-6
3NA3807-6, 3NA6807-6, 3NA7807-6
10
16
20
1
1.7
2
8
11
15
90
330
570
120
360
690
3NA3810-6, 3NA6810-6, 3NA7810-6
3NA3812-6, 3NA6812-6, 3NA7812-6
3NA3814-6, 3NA6814-6, 3NA7814-6
25
32
35
2.3
3.1
3.6
17
19
23
1200
1600
2100
1380
2600
3100
3NA3817-6, 3NA6817-6, 3NA7817-6
3NA3820-6, 3NA6820-6, 3NA7820-6
3NA3822-6, 3NA6822-6, 3NA7822-6
40
50
63
3.6
4.9
5.7
18
28
33
3200 4700
4400 7400
7600 10100
3NA3824-6, 3NA6824-6, 3NA7824-6
3NA3830-6, 3NA6830-6, 3NA7830-6
80
100
6.7
9.1
38
40
13500 17000
21200 30500
Type
I2ta
6 A
4 A
6
4
2 A
400 V AC
690 V AC
A2s
A2s
A2s
2
3NA3802-6, 3NA6802-6, 3NA7802-6
3NA3804-6, 3NA6804-6, 3NA7804-6
3NA3801-6, 3NA6801-6, 3NA7801-6
4
18
80
6
22
110
9
27
150
1 0
3NA3803-6, 3NA6803-6, 3NA7803-6
3NA3805-6, 3NA6805-6, 3NA7805-6
3NA3807-6, 3NA6807-6, 3NA7807-6
180
580
1000
265
750
1370
370
1000
1900
3NA3810-6, 3NA6810-6, 3NA7810-6
3NA3812-6, 3NA6812-6, 3NA7812-6
3NA3814-6, 3NA6814-6, 3NA7814-6
1800
3100
4000
2340
4100
5000
3300
5800
7800
3NA3817-6, 3NA6817-6, 3NA7817-6
3NA3820-6, 3NA6820-6, 3NA7820-6
3NA3822-6, 3NA6822-6, 3NA7822-6
6000
9100
13600
8600
11200
17000
12000
19000
24000
3NA3824-6, 3NA6824-6, 3NA7824-6
3NA3830-6, 3NA6830-6, 3NA7830-6
24300
42400
32000
52000
55000
75000
2
1 0
230 V AC
6
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
58
Siemens · 2014
5
2
[A ]
4
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA61..-4 series
1
gG
400 V AC
35 ... 250 A
Melting I2t values diagram
Time/current characteristics diagram
6
4
[A 2 s ]
2
v s
8
1 0
I2 _ 1 1 4 1 8
A
A
A
A
A
[s ]
4
8 0 A
1 0 0
1 2 5
1 6 0
2 0 0
2 2 4
2 5 0
3 5 A
4 0 A
5 0 A
6 3 A
6
A
4
1 0
3
1 0
2
0
s
1 0
2
-1
s
1 0
7
s
1 0
I2 _ 1 1 4 2 0
Size:
Operational class:
Rated voltage:
Rated current:
1 0
6
4
4
2
-2
s
1 0
6
-3
s
- 4
1 0
s
2
2
1 0
6
1 0
6
6
4
4
2
2 5 0 A
2 2 4 A
2 0 0 A
2
1
1 0
5
1 0
6
6
4
4
2
1 6 0 A
1 2 5 A
1 0 0 A
2
0
1 0
6
6
4
4
2
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
4
1 0
2
-1
1 0
3
1 0
6
6
4
4
2
2
-2
1 0
1 0
2
1 0
6
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
4
[A ]
6
8 1 0
6
2
Type
-3
1 0
4
6
8 1 0
2
4
2
6
8 1 0
3
2
4
6
4
8 1 0
2
[A ]
e ff
Current limitation diagram
1
2
c
[A ]
6
I2 _ 1 1 4 1 9
5
1 0
4
2 5 0
2 2 4
2 0 0
1 6 0
1 2 5
1 0 0
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
2
4
1 0
6
4
A
A
A
A
A
3
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
5
2
[A ]
Pv

A
W
K
3NA6114-4
3NA6117-4
3NA6120-4
35
40
50
3.2
3.6
4.6
16
16
20
3NA6122-4
3NA6124-4
3NA6130-4
63
80
100
6.0
7.5
8.9
21
29
30
3NA6132-4
3NA6136-4
3NA6140-4
125
160
200
10.7
13.9
15.0
31
34
36
3NA6142-4
3NA6144-4
224
250
16.1
17.3
37
39
Type
I2ts
A
2
1 0
In
4
4
I2ta
1 ms
4 ms
230 V AC
400 V AC
A2s
A2s
A2s
A2s
3NA6114-4
3NA6117-4
3NA6120-4
3000
4000
6000
3300
4500
6800
4900
6100
9100
6750
8700
11600
3NA6122-4
3NA6124-4
3NA6130-4
7700
12000
24000
9800
16000
30600
14200
23100
40800
19000
30700
56200
3NA6132-4
3NA6136-4
3NA6140-4
36000
58000
115000
50000
85000
135000
70000
120000
218000
91300
158000
285000
3NA6142-4
3NA6144-4
145000
205000
170000
230000
299000
420000
392000
551000
Siemens · 2014
59
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA62..-4 series
2
gG
400 V AC
50 ... 400 A
Melting I2t values diagram
Time/current characteristics diagram
4
2
v s
6
4
[A 2 s ]
[s ]
4
8
1 0
I2 _ 1 1 4 2 1
A
A
A
A
A
A
5 0 A
6 3 A
8 0 A
1 0 0
1 2 5
1 6 0
2 0 0
2 2 4
2 5 0
3 1 5
3 5 5
4 0 0
6
A
A
A
1 0
3
1 0
2
0
s
1 0
2
-1
s
1 0
7
s
1 0
I2 _ 1 1 4 2 3
Size:
Operational class:
Rated voltage:
Rated current:
1 0
6
4
4
2
-2
s
1 0
6
-3
s
- 4
1 0
s
2
2
1 0
6
1 0
6
4 0 0
3 5 5
3 1 5
2 5 0
2 2 4
2 0 0
6
4
4
2
2
1
1 0
5
1 0
6
6
4
2
0
1 0
A
A
A
A
8 0 A
6 3 A
5 0 A
4
1 0
6
6
4
4
2
A
1 6 0 A
1 2 5 A
1 0 0 A
4
2
A
2
-1
1 0
3
1 0
6
6
4
4
2
2
-2
1 0
1 0
2
1 0
6
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
4
[A ]
6
8 1 0
6
2
Type
-3
1 0
4
6
8 1 0
2
4
2
6
8 1 0
3
2
4
6
4
8 1 0
2
[A ]
e ff
Current limitation diagram
1
2
4 0 0 A
3 5 5 A
3 0 0 /3 1 5 A
2 5 0 A
2 2 4 A
2 0 0 A
1 6 0 A
1 2 5 A
1 0 0 A
8 0 A
6 3 A
5 0 A
c
[A ]
6
I2 _ 1 1 4 2 2
5
1 0
4
2
4
1 0
6
2
3
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
60
Siemens · 2014
5
2
[A ]
Pv

A
W
K
3NA6220-4
3NA6222-4
50
63
4.7
5.9
16
16
3NA6224-4
3NA6230-4
3NA6232-4
80
100
125
6.8
7.4
9.8
21
22
27
3NA6236-4
3NA6240-4
3NA6242-4
160
200
224
12.6
14.9
15.4
34
33
31
3NA6244-4
3NA6250-4
3NA6252-4
250
300
315
17.9
19.4
21.4
38
34
35
3NA6254-4
3NA6260-4
355
400
26.0
27.5
49
52
Type
I2ts
4
1 0
In
4
4
I2ta
1 ms
4 ms
230 V AC
400 V AC
A2s
A2s
A2s
A2s
3NA6220-4
3NA6222-4
6000
7700
6800
9800
9100
14200
11600
19000
3NA6224-4
3NA6230-4
3NA6232-4
12000
24000
36000
16000
30600
50000
23100
40800
70000
30700
56200
91300
3NA6236-4
3NA6240-4
3NA6242-4
58000
115000
145000
85000
135000
170000
120000
218000
299000
158000
285000
392000
3NA6244-4
3NA6250-4
3NA6252-4
205000
361000
361000
230000
433000
433000
420000
670000
670000
551000
901000
901000
3NA6254-4
3NA6260-4
441000
529000
538000
676000
800000
1155000
1060000
1515000
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA68..-4/-4KK series
000, 00
gG
400 V AC
10 ... 160 A
Melting I2t values diagram
Time/current characteristics diagram
4
1 0 A
1 6 A
2 0 A
2 5 A
3 2 A
3 5 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
6
2
v s
6
4
[A 2 s ]
[s ]
4
7
1 0
I2 _ 1 1 4 1 5
1 0
3
1 0
2
2
0
s
-1
1 0
6
s
1 0
I2 _ 1 1 4 1 7
Size:
Operational class:
Rated voltage:
Rated current:
1 0
s
6
4
4
1 0
6
-2
s
-3
1 0
s
1 0
2
2
2
1 0
6
1 6 0 A
4
1 2 5 A
1 0 0 A
6
4
2
2
1
8 0 A
6 3 A
4
1 0
6
4
4
5 0 A
4 0 A
3 5 A
3 2 A
6
2
2
0
1 0
s
5
1 0
1 0
- 4
2 5 A
3
1 0
6
6
2 0 A
4
4
1 6 A
2
2
-1
1 0
1 0 A
2
1 0
6
6
4
4
2
2
-2
1 0
1 0
1
1 0
6
1
2
4
6
8 1 0
2
2
4
6
3
8 1 0
2
4
6
8 1 0
4
2
e ff
4
4
[A ]
6
8 1 0
2
Type
-3
1 0
1 0
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
[A ]
e ff
2
8 0 A
c
[A ]
1
1 6 0 A
1 2 5 A
1 0 0 A
4
1 0
I2 _ 1 1 4 1 6
Current limitation diagram
2
6 3
5 0
4 0
3 5
3 2
2 5
2 0
6
4
2
A
1 0
A
A
A
A
A
A
4
2
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
5
2
[A ]

A
W
K
4
I2ts
1 ms
4 ms
A2s
A2s
10
16
20
1.0
1.7
2.0
8
11
15
120
370
670
130
420
750
3NA6810-4
3NA6812-4
3NA6814-4
25
32
35
2.3
2.6
2.7
17
18
21
1200
2200
3000
1380
2500
3300
3NA6817-4
3NA6820-4
3NA6822-4
40
50
63
3.1
3.8
3.9
24
25
23
4000
6000
9300
4500
6800
10250
3NA6824-4, 3NA6824-4KK
3NA6830-4, 3NA6830-4KK
3NA6832-4
3NA6836-4
80
100
125
160
4.9
5.4
8.9
11.3
26
29
44
52
14200
25600
36000
58000
18300
33600
50000
85000
Type
I2ta
1 0 A
6
1 0
Pv
3NA6803-4
3NA6805-4
3NA6807-4
1 6 A
3
In
4
8 1 0
230 V AC
400 V AC
A2s
A2s
3NA6803-4
3NA6805-4
3NA6807-4
180
580
1000
265
750
1370
3NA6810-4
3NA6812-4
3NA6814-4
1800
3400
4900
2340
4550
6750
3NA6817-4
3NA6820-4
3NA6822-4
6100
9100
12400
8700
11600
17900
27000
48300
70000
120000
38000
69200
91300
158000
3NA6824-4, 3NA6824-4KK
3NA6830-4, 3NA6830-4KK
3NA6832-4
3NA6836-4
Siemens · 2014
61
5
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3ND18 series
000, 00
aM
500 V AC
6 ... 160 A
Melting I2t values diagram
Time/current characteristics diagram
I2 _ 0 6 0 4 6 a
6
4
6
6 A
2
2
1 0
s
1 0
-1
s
1 0
6
1 0
-2
s
1 0
6
6
-3
s
4
4
2
2
5
1 0
1
1 0
1 6 0 A
1 2 5 A
6
6
4
4
1 0 0 A
2
2
8 0 A
4
1 0
0
1 0
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
2 5 A
2 0 A
1 6 A
6
6
4
4
2
2
3
1 0
-1
1 0
6
6
4
4
2
2
1 0 A
2
1 0
-2
1 0
6
6
4
4
6 A
2
2
1 0
-3
1 0
1
1 0
2
4
6
2
8 1 0
2
4
6
8 1 0
3
2
4
6
8 1 0
Type
1
1 6
1 2
1 0
8 0
6 3
5 0
4 0
3 5
3 2
2 5
2 0
1 6
2
4
c
6
4
2
3
0 A
5 A
0 A
A
A
A
A
A
A
A
A
A
I2 _ 0 6 0 6 5 a
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
62
Siemens · 2014
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
In
Pv

A
W
K
4
[A ]
6
8 1 0
I2ts
1 ms
4 ms
A2s
A2s
6
10
16
0.8
0.5
0.8
7
5
7
32
150
570
55
260
800
3ND1807
3ND1810
3ND1812
20
25
32
1
1.2
1.5
8
9
10
830
1400
2300
1200
2000
3300
1 0 A
3ND1814
3ND1817
3ND1820
35
40
50
1.8
2
2.4
11
12
14
2600
3700
5800
3800
5500
8400
6 A
3ND1822
3ND1824
3ND1830
63
80
100
3.3
4.5
4.9
17
20
18
9300
15000
26000
13000
21000
37000
3ND1832
3ND1836
125
160
6.3
9.3
22
31
41000
64000
60000
92000
Type
I2ta
4
1 0
2
3ND1801
3ND1803
3ND1805
6
2
1
e ff
Current limitation diagram
1 0
1
1 0
4
[A ]
e ff
[A ]
0
2
s
1 0 A
1 6 A
2 0 A
2 5 A
3 2 A
3 5 A
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
v s
2
1 0
4
[A 2 s ]
[s ]
7
1 0
3
1 0
I2 _ 0 6 0 6 7 b
Size:
Operational class:
Rated voltage:
Rated current:
5
2
[A ]
4
230 V AC
400 V AC
500 V AC
A2s
A2s
A2s
3ND1801
3ND1803
3ND1805
60
280
1000
75
320
1300
110
430
1600
3ND1807
3ND1810
3ND1812
1300
2200
3800
1600
2800
4500
2200
3300
5400
3ND1814
3ND1817
3ND1820
4200
5700
5200
5100
7200
10500
6300
9300
12500
3ND1822
3ND1824
3ND1830
15000
21500
44000
16500
27000
56000
21000
34000
76000
3ND1832
3ND1836
76000
105000
98000
130000
135000
170000
5
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3ND13.., 3ND2 series
1, 2, 3
aM
690 V AC
63 ... 630 A
Melting I2t values diagram
Time/current characteristics diagram
3
6
6
4
[A 2 s ]
[s ]
4
9
1 0
I2 _ 0 6 4 1 3 b
1 0
0
1 0
A
s
8
s
2
2
2
A
A
A
A
A
A
A
A
6 3 A
8 0 A
1 0 0
1 2 5
1 6 0
2 0 0
2 5 0
3 1 5
3 5 5
4 0 0
5 0 0
6 3 0
A
v s
2
1 0
I2 _ 0 6 0 6 4 b
Size:
Operational class:
Rated voltage:
Rated current:
1 0
6
1 0
6
-1
s
1 0
4
4
-2
s
2
1
1 0
-3
1 0
2
s
1 0
- 4
6 3
5 0
4 0
3 5
3 1
2 5
2 0
0 A
0 A
0 A
5 A
5 A
0 A
0 A
7
1 0
s
6
6
4
4
2
2
0
1 0
6
1 0
6
6
4
4
2
2
-1
1 0
5
1 0
1 6 0 A
1 2 5 A
1 0 0 A
8 0 A
6
6
4
4
2
2
-2
1 0
6 3 A
4
1 0
6
6
4
4
2
2
-3
1 0
1 0
2
1 0
2
4
6
3
8 1 0
2
4
4
8 1 0
6
2
4
5
8 1 0
6
3
1 0
2
2
4
6
8 1 0
[A ]
e ff
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
e ff
4
[A ]
6
8 1 0
Table see page 64.
Current limitation diagram
2
1
6 3 0
5 0 0
4 0 0
3 5 5
3 1 5
2 5 0
2 0 0
1 6 0
1 2 5
1 0 0
8 0 A
6 3 A
c
[A ]
6
4
2
I2 _ 0 6 0 6 6 a
5
1 0
A
A
A
A
A
A
A
A
A
A
4
1 0
6
4
2
1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
5
2
4
e ff
6
8 1 0
6
[A ]
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
63
6
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3ND13.., 3ND2 series
Size:
Operational class:
Rated voltage:
Rated current:
Type
1, 2, 3
aM
690 V AC
63 ... 630 A
In
A
Pv
W

K
I2ts
I2ta
1 ms
4 ms
230 V AC
400 V AC
690 V AC
A2s
A2s
A2s
A2s
A2s
3ND2122
3ND2124
63
80
4
4.9
12.2
13
14000
24200
17700
30800
19300
36500
25600
48000
42000
80000
3ND2130
3ND2132
3ND2136
100
125
160
5.8
8.1
11.4
15
16.5
18
45600
57000
90000
59000
74300
114000
65000
73000
107000
85000
97000
142000
140000
160000
235000
3ND2140
3ND2144
200
250
14.1
18
19.5
22
150000
250000
198000
313000
172000
260000
228000
340000
375000
565000
3ND2232
3ND2236
125
160
8.1
11.4
16.5
18
57000
90000
74300
114000
73000
107000
97000
142000
160000
235000
3ND2240
3ND2244
3ND2252
200
250
315
14.1
18
22.6
19.5
22
30
150000
250000
370000
198000
313000
450000
172000
260000
460000
228000
340000
610000
375000
565000
1000000
3ND2254
3ND2260
355
400
24.7
30.8
29
35
540000
615000
643000
750000
645000
688000
855000
910000
1400000
1500000
3ND2352
3ND2354
3ND2360
315
355
400
22.6
24.7
30.8
30
29
26
370000
540000
615000
450000
643000
750000
460000
645000
688000
610000
855000
910000
1000000
1400000
1500000
3ND1365
3ND1372
500
630
47
50
40
43
730000
920000
933000
1375000
876000
1300000
1095000
1800000
1825000
2600000
64
Siemens · 2014
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
■ Dimensional drawings
LV HRC fuse links, operational class gG
Size
Sizes 000 to 3 and 4a
b
h1
21
54
80
45
8
00
35 ... 160
40 ... 100
80 ... 160
80 ... 160
40 ... 100
80 ... 160
40 ... 100
500 AC/250 DC
690 AC/250 DC
500 AC/250 DC
AC400
690 AC/250 DC
500 AC/250 DC
690 AC/250 DC
3NA38..
3NA38..-6
3NA68../-7
3NA68..-4 (KK)
3NA68..-6
3NA78../-7
3NA78..-6
30
54
80
45
14
0
6 ... 160
500 AC/440 DC
3NA30..
30
67
126
45
14
1
16 ... 160
50 ... 160
16 ... 160
35 ... 160
50 ... 160
16 ... 160
50 ... 160
500 AC/440 DC
690 AC/440 DC
500 AC/440 DC
AC400
690 AC/440 DC
500 AC/440 DC
690 AC/440 DC
3NA31..
3NA31..-6
3NA61..
3NA61..-4
3NA61..-6
3NA71..
3NA71..-6
30
75
137
50
15
200 ... 250
200
200 ... 250
200 ... 250
200
200 ... 250
200
500 AC/440 DC
690 AC/440 DC
500 AC/440 DC
AC400
690 AC/440 DC
500 AC/440 DC
690 AC/440 DC
3NA31..
3NA31..-6
3NA61..
3NA61..-4
3NA61..-6
3NA71..
3NA71..-6
47
75
137
51
9
35 ... 250
80 ... 200
35 ... 250
50 ... 250
80 ... 200
35 ... 250
80 ... 200
500 AC/440 DC
690 AC/440 DC
500 AC/440 DC
AC400
690 AC/440 DC
500 AC/440 DC
690 AC/440 DC
3NA32..
3NA32..-6
3NA62..
3NA62..-4
3NA62..-6
3NA72..
3NA72..-6
47
75
151
58
10
300 ... 400
224 ... 250
300 ... 400
300 ... 400
224 ... 315
300 ... 400
224 ... 315
500 AC/440 DC
690 AC/440 DC
500 AC/440 DC
AC400
690 AC/440 DC
500 AC/440 DC
690 AC/440 DC
3NA32..
3NA32..-6
3NA62..
3NA62..-4
3NA62..-6
3NA72..
3NA72..-6
58
74
151
59
13
200 ... 400
250, 315
500 AC/440 DC
690 AC/440 DC
3NA33..
3NA33..-6
58
74
151
71
13
425 ... 630
355 ... 500
500 AC/440 DC
690 AC/440 DC
3NA33..
3NA33..-6
71
74
151
70
13
4
630 ... 1250
500 AC/440 DC
3NA34..
See adjacent drawing
4a
500 ... 1250
500 AC/440 DC
3NA36..
102
95
20
90
202
55
Dimensions
3NA38..-6
3NA38../-8
3NA68..
3NA68..-4
3NA68..-6
3NA78..
3NA78..-6
b
65
Type
690 AC/250 DC
AC500
500 AC/250 DC
AC400
690 AC/250 DC
500 AC/250 DC
690 AC/250 DC
I201_10899a
Size 4 (IEC design)
V
2 ... 35
2 ... 160
2 ... 100
10 ... 100
2 ... 35
10 ... 100
2 ... 35
h1 h2
h3
Un
A
000
t2
t1
In
102
2
I201_11335
3
97
h2
201
t1
Siemens · 2014
t2
65
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
LV HRC fuse links, operational class aM
Size
Sizes 000 to 3
t1
t2
In
Un
A
V
000
6 ... 80
00
100 ... 160
1
63 ... 100
AC500
AC690
Type
b
h1
h2
t1
t2
21
54
80
45
8
30
54
80
45
14
30
75
137
50
15
47
75
137
51
9
47
75
151
58
10
58
74
151
59
13
3ND23..
58
74
151
71
13
3ND13..
71
74
151
70
13
3ND18..
3ND21..
125 ... 250
h1 h2
h3
2
125 ... 250
AC690
3ND22..
315 ... 400
3
315 ... 400
500, 630
b
I201_10899a
66
Siemens · 2014
AC690
Dimensions
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC signal detectors
■ Overview
LV HRC signal detectors are used for remotely indicating that the
LV HRC fuse links have been tripped. Three different solutions
are available:
• 3NX1021 signal detectors with signal detector link
The LV HRC signal detectors with signal detector link
support monitoring of LV HRC fuse links with non-insulated
grip lugs of sizes 000 to 4 at 10 A or more. The signal detector
link is connected in parallel to the fuse link. In the event of a
fault, the LV HRC fuse links are released simultaneously with
the LV HRC fuse detector link. A trip pin switches a floating microswitch
• 3NX1024 signal detector top
The signal detector top can be used with LV HRC fuse links,
sizes 000, 00, 1 and 2, which are equipped with non-insulated
grip lugs and have a front indicator or combination alarm. It is
simply plugged into the grip lugs
• 5TT3170 fuse monitors
If a fuse is tripped, the front indicator springs open and
switches a floating microswitch. This solution should not be
used for safety-relevant systems. For this purpose, we recommend our electronic fuse monitors.
■ Dimensional drawings
LV HRC signal detectors
Signal detector links
I201_07856a
I201_07857a
115
66
7
11
15
25
40
3NX1021
3NX1022, 3NX1023
Signal detector tops
32,5
Fuse monitors
25,5
I201_12125
L1 L2 L3
45
90
23
14
22
53,5
15
L1 L2 L3
36
I201_11512
20
5
43
64
14,5
3NX1024
5TT3170
■ Circuit diagrams
Graphic symbols
LV HRC signal detectors
Signal detector tops
Fuse monitors
L1 L2 L3 14
1
N
4 2
NO NC
3NX1021
3NX1024
L1' L2' L3' 13
5TT3170
Siemens · 2014
67
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
■ Overview
Terminals for all applications
Flat terminals with screws are suitable for connecting busbars or
cable lugs. They have a torsion-proof screw connection with
shim, spring washer and nut. When tightening the nut, always
ensure compliance with the specified torque due to the considerable leverage effect.
The double busbar terminal differs from the flat terminal in that it
supports connection of two busbars, one on the top and one at
the bottom of the flat terminal.
The modern box terminal ensures efficient and reliable
connection to the conductors. They support connection of
conductors with or without end sleeves.
With the flat terminal with nut, terminal lug of the nut is torsionproof. When tightening the nut, the torque must be observed because of the considerable leverage effect.
Up to three conductors can be clamped to the terminal strip.
The plug-in terminal is equipped for connecting two conductors.
One conductor can be clamped to the saddle-type terminal.
68
Siemens · 2014
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
■ Technical specifications
LV HRC fuse bases, LV HRC bus-mounting bases
Size
000/00
Standards
IEC 60269-1, -2; EN 60269-1; DIN VDE 0636-2
0
Rated current In
A
160
160
Rated voltage Un
V AC
V DC
6901)
250
6901)
440
Rated short-circuit strength
Max. power dissipation of fuse links
kA AC
120
kA DC
25
W
12
25
--
Nm
M8
M8
14
mm2
2.5 ... 50
mm2
6 ... 70
mm2
2.5 ... 50
mm2
Nm
1.5 ... 16
2
1
250
2
3
4
400
630
1250
690
440
32
45
60
90
Flat terminal
Screw
Nut
Max. tightening torque
M10
M12
38
65
Plug-in terminal
Conductor cross-section
--
Saddle-type terminal
Conductor cross-section
--
Box terminals
Conductor cross-section
Terminal strips
Conductor cross-section, 3-wire
Max. torque for attachment of LV HRC fuse base
1)
-2.5
--
Extended rated voltage up to 1000 V (except LV HRC bus-mounting
bases).
LV HRC fuse bases with swivel mechanism
Size
000/00
1
3
4a
12
32
48
110
M8
M8
14
M10
-38
M12
M16
Rated voltage Un
V AC
V DC
690
440
Max. power dissipation of fuse links
W
Nm
Flat terminal
Screw
Nut
Max. tightening torque
65
Siemens · 2014
69
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
■ Dimensional drawings
LV HRC fuse bases made of molded plastic
h2
Size 000/00, 1P
h4
h5
h6
h3
3NX3023
partition
h1
øl
t1
t2
t3
I201_15447
4,5
b1
b2
t4
3NH3051 to 3NH3053
Size
In
Poles Connections
Type
b1
b2
h1
h2
h3
h4
h5
h6
l
t1
t2
t3
t4
1P
M8 flat terminal, screw
3NH3051
23
39
61
61
25
101
121
139
7.5
26
42
61
86
Saddle-type terminal
3NH3052
--
39
60
60
25
108
120
139
7.5
26
42
61
86
Box terminals
3NH3053
--
39
59
50
25
99
117
139
7.5
23
39
61
86
A
160
000/00
125
LV HRC fuse bases made of ceramic
Size 000/00
1P
h2
3NX3023
partition
t3
t4
3NH303., 3NH3050
In
t1
b1
b3
b2
t2
t3
I2_15448
h1
t2
I201_15449
t1
b1
b2
Size
h4
h5
h6
øl
h3
h4
h5
h6
øl
h1
h3
h2
3P
t4
3NH403.
Poles Connections
Type
b1
b2
b3
h1
h2
h3
h4
h5
h6
l
t1
t2
t3
t4
1P
Flat terminal, screw
3NH3030
23
34
--
61
61
25
102
122
139
7.5
24
40
60
86
M8 plug-in terminal
3NH3031
31
34
--
64
64
25
102
128
139
7.5
24
40
60
86
Saddle-type terminal
3NH3032
29
34
--
61
61
25
109
122
139
7.5
24
40
60
86
Flat terminal, terminal strip
3NH3035
26
34
--
61
70
25
113
130
139
7.5
24
40
60
86
Flat terminal, nut
3NH3038
23
34
--
61
61
25
102
122
139
7.5
24
40
60
86
Flat and saddle-type terminals
3NH3050
29
34
--
61
61
25
102
122
139
7.5
24
40
60
86
Flat terminal
3NH4030
23
102
70
61
61
25
102
122
139
7.5
24
40
60
86
M8 plug-in terminal
3NH4031
31
102
70
64
64
25
102
128
139
7.5
24
40
60
86
Saddle-type terminal
3NH4032
29
102
70
61
61
25
102
122
139
7.5
24
40
60
86
Flat terminal, terminal strip
3NH4035
26
102
70
61
70
25
113
130
139
7.5
24
40
60
86
A
000/00
160
3P
70
Siemens · 2014
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
t1
b1
b2
t2
t3
I201_15450
h1
øl
3NX2030
partition
h4
h5
h6
h3
h2
Size 0, 1P
t4
3NH312.
Size
In
Poles Connections
Type
b1
b2
h1
h2
h3
h4
h5
h6
l
t1
t2
t3
t4
1P
Flat terminal
3NH3120
23
38
87
87
25
150
173
179
7.5
24
40
60
88
Plug-in terminal
3NH3122
31
38
87
87
25
150
173
179
7.5
24
40
60
88
t2
t3
t4
A
160
0
Size 1
1P
h2
h2
3P
b3
3NX2024
partition
h4
h5
h6
h3
h4
h5
h6
h3
øl
øl
t2
t3
t4
3NH32.0
Size
t1
b1
b2
t2
t3
I2_15452
t1
b1
b2
I201_15451
h1
h1
b3
t4
3NH4230
In
Poles Connections
Type
b1
b2
1P
M10 flat terminal
3NH3230
35
49
Double busbar terminal
3NH3220
35
49
M10 flat terminal
3NH4230
35
146
h1
h2
h3
h4
h5
h6
l
30
101
101
25
177
202
203
10.5 35
55
84
107
30
101
101
25
177
202
203
10.5 35
55
84
107
111
101
101
25
177
202
203
10.5 35
55
84
107
b3
t1
A
1
250
3P
Siemens · 2014
71
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
Size 3
1P
h2
h2
Size 2
1P
3NX2025
partition
h4
h5
h6
3NX2026
partition
øl
h3
h4
h5 = h 6
h3
øl
h1
b3
t1
t2
t3
t4
b1
b2
3NH33.0
Size
t1
t2
t3
I201_15454
b1
b2
I201_15453
h1
b3
t4
3NH34.0
In
Poles Connections
Type
b1
b2
b3
h1
h2
h3
h4
h5
h6
l
1P
M10 flat terminal
3NH3330
35
49
30
113
113
25
202
227
228
Double busbar terminal
3NH3320
35
49
30
113
113
25
202
227
228
M12 flat terminal
3NH3430
35
49
30
121
121
25
212
242
Double busbar terminal
3NH3420
35
49
30
121
121
25
212
t1
t2
t3
t4
10.5 35
55
90
115
10.5 35
55
90
115
242
10.5 35
57
101
130
242
242
10.5 35
57
101
130
A
400
2
630
3
1P
h2
Size 4, 1P
h3
h4
h5
øl
b1
b2
t1
t2
t3
I2_15455
h1
b3
3NH3530
Size
In
Poles Connections
Type
b1
b2
b3
h1
h2
h3
h4
h5
l
t1
t2
t3
1P
3NH3530
50
102
30
156
156
25
270
312
13
51
116
144
A
41)
1250
4a
Can only be used in bases with swivel mechanism
1)
M12 flat terminal
Size 4 LV HRC fuse links are also screwed onto the base.
72
Siemens · 2014
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
LV HRC fuse bases with swivel mechanism
Sizes 000/00, 1, 3 and 4a
I2_11357a
d
c
n
l
b
e
m
a
o
3NH703., 3NH723., 3NH733., 3NH7520
Size
In
Type
a
b
c
d
e
l
m
n
o
A
000/00
160
3NH7030
49
149
45
88.5
22.5
120
17
18
200
1
250
3NH7230
68
230
68
123.5
23
177
25
40
300
3
630
3NH7330
90
270
96
153.5
15.5
220.5
30.5
35
350
4a
1250
3NH7520
116
350
154.5
217.5
69
270
40
26
440
3NX3115 LV HRC protective covers, with 3NX3116 LV HRC covers
LV HRC contact covers for LV HRC fuse bases and
LV HRC bus-mounting bases1)
Size 000/00, degree of protection IP2X
Sizes 000/00 to 3
e
69
33
b
13
141
d
a
I201_11365a
c
Size
Type
a
b
c
d
e
000/00
3NX31051)
38
47.5
34
11.5
30
0
3NX3114
51.5
47.5
34
11.5
30
1
3NX3106
61.5
57
42.5
35
46
2
3NX3107
74
65
51
35
46
3
3NX3108
81.5
77.5
57.5
35
46
1)
I2_11366
3NX3105 to 3NX3108, 3NX3114
The 3NX3105 LV HRC contact covers can be used for both LV HRC fuse
bases and LV HRC bus-mounting bases.
LV HRC contact covers for LV HRC bus-mounting bases
11,5
I201_11368
30
50
3NX3113 for the incoming terminal, dimensional drawing 3NX3105 for the
outgoing terminal see dimensional drawing above
Siemens · 2014
73
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
LV HRC partitions for LV HRC fuse bases
Size 000/00
1,65
I201_06492a
31
36,5
138,5
Spacer
Barrier
16,1
86
3,5
6,2
3NX2023
Sizes 0 to 3
1,6
I201_06493a
b
41,3
55,8
35
Spacer
14,3
Partition
c
d
a
3NX2030, 3NX2024 to 3NX2026
Size
Type
0
3NX2030
a
87.6
b
178.5
c
7.7
d
12.3
1
3NX2024
107.3
202.5
7.7
12.3
2
3NX2025
115.3
227.5
14.2
25.1
3
3NX2026
129.8
242
20.2
37.2
LV HRC partitions for LV HRC bus-mounting bases
Size 000/00
230
I201_06499a
114
114
I201_06502b
82
I201_06684a
87
81,5
Phase barrier
3NX2027
74
End barrier
3NX2028
Siemens · 2014
For LV HRC bus-mounting bases in tandem design
3NX2031
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
Fuse pullers
136
Sleeve
I201_06503a
24
47,5
68
125
130
27,5
Sizes 000 to 4
66
350
26
92,5
3NX1013 (without sleeve), 3NX1014 (with sleeve)
Isolating blades with insulated grip lugs
Sizes 000/00 to 3
Type
a
b
c
e
f
000/00
3NG1002
44
15
48
78
54
20.5 8
19
0
3NG1102
60.5 15
48
125
68
20.5 8
19
1
3NG1202
61
20
53
135
72
23
9
24
2
3NG1302
61
26
61
150
72
23
9
29
3
3NG1402
61
32
73
150
72
23
9
36
a
e
d
g
Size
h
g
h
6
f
I2_06490
b
13
d
3,5
c
3NG1.02
Isolating blades with non-insulated grip lugs
Size 4a
88
197
150
200
68
61
53,5
Size 4
16
32
I2_06685a
6
40
8
30
I2_06511a
50
85
105
3NG1503
9
50
85
105
3NG1505
Siemens · 2014
75
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
■ More information
Space requirements when installing LV HRC fuse bases
LV HRC partition
Spacer
h
I2_11362
I201_11363a
3 LV HRC fuse bases, 1P
I2_11361
1 LV HRC fuse base, 3P
Partition
t
Size
Mounting width (mm) of LV HRC fuse bases
1 unit, 3P
Mounting
height (mm)
3 units, 1P
Mounting
depth (mm)
Distance
3NX20.. partitions with
through spacer matching bases1)
Bases with phase
barrier, without end
barrier
Bases with phase
barrier and 2 end
barriers
Bases with phase
barrier, without end
barrier
Bases with phase
barrier and 2 end
barriers
000/00
102
106
100
1042)
2
138
0
--
--
128
142
7
178
90
1
163
177
158
172
7
202
110
2
--
--
184
224
203)
227
118
3
--
--
208
272
323)
242
132
4
Installation without barriers; for mounting see page 74
Not available
Can only be used in bases with swivel mechanism
Not available
4a
1)
This measurement specifies the required overall mounting depth with base
d and the overall mounting height h.
2)
Placing an additional base on the barrier and plug-on part does not
increase the distance, rather the bases lie flat directly on top of one
another.
3)
If the bases are installed directly on a side wall in the distribution board,
one spacer part can be broken off. This would reduce the distance measurement.
76
Siemens · 2014
h
d
86
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
SITOR semiconductor fuses for 3NH bases:
Assignment table
3NH bases are generally suitable for all LV HRC type fuses.
SITOR semiconductor fuses in LV HRC design can also be used,
although it must be noted that, compared to cable and line protection fuses, these get much hotter during operation. The following table contains the permissible load currents of the SITOR
semiconductor fuses for installation in 3NH.
For installation in a base, it may therefore be necessary to
operate the fuse under In (derating)
The values were determined using the conductor cross-sections
specified in the table. If using smaller cross-sections, a considerably higher derating is required due to the lower heat dissipation.
SITOR semiconductor fuse data
Type
Rated
current In
Permissible load currents of fuse when
installed in: 3NH
Rated
voltage Un
Operational Size
class
Required conductor
cross-section Cu
Type
Size
Permissible
load current1)
--
A
V AC
--
--
mm² Cu
--
--
A
3NC2423-0C/3C
3NC2425-0C/3C
3NC2427-0C/3C
150
200
250
500
500
500
gR
gR
gR
3
3
3
70
95
120
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
150
190
240
3NC2428-0C/3C
3NC2431-0C/3C
3NC2432-0C/3C
300
350
400
500
500
500
gR
gR
aR
3
3
3
185
240
240
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
285
330
400
3NC3336-1
3NC3337-1
3NC3338-1
630
710
800
1000
1000
1000
aR
aR
aR
3
3
3
2 x (40 x 5)
2 x (50 x 5)
2 x (40 x 8)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
560
600
660
3NC3340-1
3NC3341-1
3NC3342-1
900
1000
1100
1000
1000
800
aR
aR
aR
3
3
3
2 x (40 x 8)
2 x (50 x 8)
2 x (50 x 8)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
750
850
900
3NC3343-1
3NC3430-1
3NC3432-1
1250
315
400
800
1250
1250
aR
aR
aR
3
3
3
2 x (50 x 8)
2 x 95
2 x 120
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
950
310
390
3NC3434-1
3NC3436-1
3NC3438-1
500
630
800
1250
1250
1100
aR
aR
aR
3
3
3
2 x 150
2 x (40 x 5)
2 x (40 x 8)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
460
560
690
3NC8423-0C/3C
3NC8425-0C/3C
3NC8427-0C/3C
150
200
250
690
690
690
gR
gR
gR
3
3
3
70
95
120
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
135
180
250
3NC8431-0C/3C
3NC8434-0C/3C
3NC8444-3C
350
500
1000
690
690
600
gR
gR
aR
3
3
3
240
2 x 150
2 x (60 x 6)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
315
450
800
3NE1020-2
3NE1021-0
3NE1021-2
80
100
100
690
690
690
gR
gS
gR
00
00
00
25
35
35
3NH3030/4030
3NH3030/4030
3NH3030/4030
00
00
00
80
100
100
3NE1022-0
3NE1022-2
3NE1224-0
125
125
160
690
690
690
gS
gR
gS
00
00
1
50
50
70
3NH3030/4030
3NH3030/4030
3NH3230/4230
00
00
1
125
125
160
3NE1224-2/-3
3NE1225-0
3NE1225-2/-3
160
200
200
690
690
690
gR
gS
gR
1
1
1
70
95
95
3NH3230/4230
3NH3230/4230
3NH3230/4230
1
1
1
160
200
200/190
3NE1227-0
3NE1227-2/-3
3NE1230-0
250
250
315
690
690
690
gS
gR
gS
1
1
1
120
120
2 x 70
3NH3230/4230
3NH3230/4230
3NH3330/20
1
1
2
250
250/235
315
3NE1230-2/-3
3NE1331-0
3NE1331-2/-3
315
350
350
690
690
690
gR
gS
gR
1
2
2
2 x 70
2 x 95
2 x 95
3NH3330/20
3NH3330/20
3NH3330/20
2
2
2
315
350
350
3NE1332-0
3NE1332-2/-3
3NE1333-0
400
400
450
690
690
690
gS
gR
gS
2
2
2
2 x 95
2 x 95
2 x 120
3NH3330/20
3NH3330/20
3NH3430/20
2
2
3
400
400
450
3NE1333-2/-3
3NE1334-0
3NE1334-2/-3
450
500
500
690
690
690
gR
gS
gR
2
2
2
2 x 120
2 x 120
2 x 120
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
450
500
500
3NE1435-0
3NE1435-2/-3
3NE1436-0
560
560
630
690
690
690
gS
gR
gS
3
3
3
2 x 150
2 x 150
2 x 185
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
560
560
630
3NE1436-2/-3
3NE1437-0
3NE1437-1
630
710
710
690
690
600
gR
gS
gR
3
3
3
2 x 185
2 x (40 x 5)
2 x (40 x 5)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
630
710
690
3NE1437-2/-3
3NE1438-0
3NE1438-1
710
800
800
690
690
600
gR
gS
gR
3
3
3
2 x (40 x 5)
2 x (50 x 5)
2 x (50 x 5)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
710
800
750
3NE1438-2/-3
3NE1447-2/-3
3NE1448-2/-3
3NE1802-0
800
670
850
40
690
690
690
690
gR
gR
gR
gS
3
3
3
000
2 x (50 x 5)
2 x (40 x 5)
2 x (40 x 8)
10
3NH3430/20
3NH3430/20
3NH3430/20
3NH3030/4030
3
3
3
00
800
670
850
40
1)
In the case of cyclic loads, the currents may have to be further reduced (precise values on request).
Siemens · 2014
77
© Siemens AG 2014
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
SITOR semiconductor fuse data
Permissible load currents of fuse when
installed in: 3NH
Type
Rated
current In
Rated
voltage Un
Operational Size
class
Required conductor
cross-section Cu
Type
Size
Permissible
load current1)
--
A
V AC
--
--
mm² Cu
--
--
A
3NE1803-0
3NE1813-0
3NE1814-0
35
16
20
690
690
690
gS
gS
gS
000
000
000
6
1.5
2.5
3NH3030/4030
3NH3030/4030
3NH3030/4030
00
00
00
35
16
20
3NE1815-0
3NE1817-0
3NE1818-0
3NE1820-0
25
50
63
80
690
690
690
690
gS
gS
gS
gS
000
000
000
000
4
10
16
25
3NH3030/4030
3NH3030/4030
3NH3030/4030
3NH3030/4030
00
00
00
00
25
50
63
80
3NE3221
3NE3222
3NE3224
100
125
160
1000
1000
1000
aR
aR
aR
1
1
1
35
50
70
3NH3230/4230
3NH3230/4230
3NH3230/4230
1
1
1
100
125
160
3NE3225
3NE3227
3NE3230-0B
200
250
315
1000
1000
1000
aR
aR
aR
1
1
1
95
120
185
3NH3230/4230
3NH3230/4230
3NH3330/20
1
1
2
200
250
305
3NE3231
3NE3232-0B
3NE3233
350
400
450
1000
1000
1000
aR
aR
aR
1
1
1
240
240
2 x 150
3NH3330/20
3NH3330/20
3NH3330/20
2
2
2
335
380
425
3NE3332-0B
3NE3333
3NE3334-0B
400
450
500
1000
1000
1000
aR
aR
aR
2
2
2
240
2 x 150
2 x 150
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
400
450
500
3NE3335
3NE3336
3NE3337-8
560
630
710
1000
1000
900
aR
aR
aR
2
2
2
2 x 185
2 x 185
2 x (40 x 5)
3NH3430/20
3NH3430/20
3NH3430/20
3
3
3
560
630
680
3NE3338-8
3NE3340-8
800
900
800
690
aR
aR
2
2
2 x 240
2 x (40 x 8)
3NH3430/20
3NH3430/20
3
3
700
750
3NE4101
3NE4102
3NE4117
32
40
50
1000
1000
1000
gR
gR
gR
0
0
0
6
10
10
3NH3120/4230
3NH3120/4230
3NH3120/4230
0/1
0/1
0/1
32
40
50
3NE4118
3NE4120
3NE4121
63
80
100
1000
1000
1000
aR
aR
aR
0
0
0
16
25
35
3NH3120/4230
3NH3120/4230
3NH3120/4230
0/1
0/1
0/1
63
80
100
3NE4122
3NE4124
3NE4327-0B
125
160
250
1000
1000
800
aR
aR
aR
0
0
2
50
70
150
3NH3120/4230
3NH3120/4230
3NH3330/20
0/1
0/1
2
125
160
240
3NE4330-0B
3NE4333-0B
3NE4334-0B
3NE4337
315
450
500
710
800
800
800
800
aR
aR
aR
aR
2
2
2
2
240
2 x (30 x 5)
2 x (30 x 5)
2 x (50 x 5)
3NH3330/20
3NH3430/20
3NH3430/20
3NH3430/20
2
3
3
3
300
425
475
630
3NE8015-1
3NE8003-1
3NE8017-1
25
35
50
690
690
690
gR
gR
gR
00
00
00
4
6
10
3NH3030/4030
3NH3030/4030
3NH3030/4030
00
00
00
25
35
50
3NE8018-1
3NE8020-1
3NE8021-1
63
80
100
690
690
690
gR
aR
aR
00
00
00
16
25
35
3NH3030/4030
3NH3030/4030
3NH3030/4030
00
00
00
63
80
100
3NE8022-1
3NE8024-1
125
160
690
690
aR
aR
00
00
50
70
3NH3030/4030
3NH3030/4030
00
00
125
160
1)
In the case of cyclic loads, the currents may have to be further reduced (precise values on request).
78
Siemens · 2014
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
■ Overview
SITOR semiconductor fuses protect power semiconductors from
the effects of short circuits because the super quick-response
disconnect characteristic is far quicker than with conventional
LV HRC fuses. They protect high-quality devices and system
components, such as converters with fuses in the input and the
DC link, UPS systems and soft starters for motors.
Panel mounting requirements have given rise to various connection versions and designs.
The fuses with blade contacts comply with IEC 60269-2 and are
suitable for installation in LV HRC fuse bases, in LV HRC fuse
switch disconnectors and switch disconnectors with fuses. They
also include fuses with slotted blade contacts for screw fixing
with 110 mm mounting dimension, whose sizes are according to
IEC 60269-4.
Fuses with slotted blade contacts for screw fixing with 80 mm or
110 mm mounting dimension are often screwed directly onto
busbars for optimum heat dissipation. Even better heat transmission is provided by the compact fuses with M10 or M12 female
thread, which are also mounted directly onto busbars.
Bolt-on links with 80 mm mounting dimension are another panelmounting version for direct busbar mounting.
■ Benefits
• SITOR semiconductor fuses have a high varying load factor,
which ensures a high level of operational safety and plant
availability - even when subject to constant load change.
• The use of SITOR semiconductor fuses in LV HRC bases or
Siemens switch disconnectors has been tested with regard to
heat dissipation and maximum current loading. This makes
planning and dimensioning easier and prevents consequential damage.
• Our high standard of quality ensures good compliance with
the characteristic curve and accuracy. This ensures long-term
protection of devices.
Operational classes
Fuses are categorized according to function and operational
classes. SITOR semiconductor fuses, in LV HRC design, are
available in the following operational classes:
• aR: for the short-circuit protection of power semiconductors
(partial range protection)
• gR: for the protection of power semiconductors
(full range protection)
• gS: The operational class gS combines cable and line protection with semiconductor protection (full range protection).
The fuses for SITOR thyristor sets, railway rectifiers or electrolysis systems were developed specially for these applications.
The new size 3 type ranges have a round ceramic body instead
of a square one. These series are characterized by small I²t values with low power dissipation and high capability under alternating load. The dimensions and functional values correspond
to the current standards IEC 60269-4/ EN 60269-4.
Note:
The ordering data of the fuses are listed in ascending order of
the rated voltage in the selection tables.
Siemens · 2014
79
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
■ Application
Configuration options
Properties
SITOR fuse links protect converter equipment against short circuits.
I2_10894
The following types of short-circuit faults can occur:
• Internal short circuit:
A faulty semiconductor device causes a short circuit within the
power converter.
• External short circuit:
A fault in the load causes a short circuit on the output side of
the power converter.
• Inverter shoot-through:
In the event of a failure of the chassis converter control system
during inverter operation (commutation failure), the converter
connection forms a short-circuit type connection between the
DC and AC power supply system.
I2_10893
The power semiconductors used in these devices (diodes,
thyristors, GTOs and others) require fast-switching elements for
protection due to their low thermal capacity. SITOR fuse links
(super quick-response fuse links for semiconductor protection)
are ideal for this type of application.
(
Six-pulse bridge circuit B6 with
phase fuses
I2_10895
When using SITOR fuse links of operational class aR, the overload protection of converter equipment, up to approx. 3.5 times
the rated current of the fuse link, is taken from conventional protective devices (for example, thermally-delayed overload relays)
or, in the case of controlled power converters, from the current
limiter (exception: full range fuses).
I2_10896
Fuse links can be arranged in a number of ways within the converter connection. A distinction is made between phase fuses in
three-phase incoming feeders and, if applicable, DC fuses and
branch fuses in the branches of the converter circuit (see adjacent diagrams). In the case of center tap connections, fuse links
can only be arranged as phase fuses in three-phase incoming
feeders.
(
)
Six-pulse bridge circuit B6 with
phase fuses and DC fuse
(reversible connection)
Six-pulse bridge circuit B6 with
phase fuses and DC fuse
(connection for converter)
Six-pulse bridge circuit B6 with
branch fuses
SITOR fuse links of the 3NE1...-0 series with operational class gS
are also suitable for the overload and short-circuit protection of
cables, lines and busbars. All other dual-function fuses of the
SITOR series have a gR characteristic. Overload protection is
ensured as long as the rated current of the SITOR fuse links of
the series 3NE1...-0 is selected as In  Iz (DIN VDE 0100
Part 430).
I2_10897
The rules of DIN VDE 0100 Part 430 must be applied when rating
short-circuit protection for cables, lines and busbars.
(
)
(
)
I2_10898
Six-pulse bridge circuit B6 with branch fuses
(reversible connection)
Three-phase bidirectional circuit W3
with phase fuses
with branch fuses
80
Siemens · 2014
)
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
Use in switch disconnectors
When using SITOR semiconductor fuses in 3KL and 3KM switch
disconnectors with fuses and 3NP fuse switch disconnectors,
the rated current of the fuse must sometimes be reduced due to
the higher power loss compared to LV HRC fuses for line protection. Sometimes when using SITOR semiconductor fuses in
switch disconnectors, the currents designated can be higher
than the rated currents of the switches. These higher currents
only apply when using SITOR switch disconnectors with semiconductor fuses and cannot be used when using switch disconnectors with standard LV HRC fuses. You will find further details
in the following selection tables.
When using SITOR semiconductor fuses of the 3NC24, 3NC84,
3NE33 and 3NE43 series, the standard switching capacity of the
fuse must not be used as the blades of these fuses (in contrast
to LV HRC fuses) are slit. Occasional switching of currents up to
the rated current of the fuses is permissible.
Due to the mechanical strain on the comparatively long fuse
blade, SITOR semiconductor fuses of the 3NE41 series may only
be occasionally switched, and only without load. If only switching without load is permissible, this must be clearly stated on the
switch itself.
The use of SITOR semiconductor fuses > 63 A for overload protection is not permitted - even if gR fuses are used (exception:
3NE1).
The operational voltage is limited by the rated voltage of the
switch disconnector or the fuse. If switching without load, the
limit value is the rated insulation voltage of the switch disconnector.
The 3NE1 "double protection fuses" can be used as full range
fuses (gS) both for semiconductor and line protection.
For further information on the assignment of SITOR semiconductor fuses to the fuse bases and safety switching devices, please
refer to the tables on pages 85 ff.
■ Technical specifications
MLFB
Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
V AC / V DC
kA
Rated
current In
Melting I2t
value I2ts (
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
A2s
A2s
1)
A
Temperature
rise at In
body center
Power
dissipation
at In
2)
2)
K
W
Varying load
factor
WL
3NC2423-0C
3NC2423-3C
3NC2425-0C
gR
gR
gR
500/13)
500/13)
500/13)
5014)
5014)
5014)
1503)
1503)
2003)
7000
7000
13600
33000
33000
64000
26
26
25
35
35
40
0.85
0.85
0.85
3NC2425-3C
3NC2427-0C
3NC2427-3C
gR
gR
gR
500/13)
500/13)
500/13)
5014)
5014)
5014)
2003)
2503)
2503)
13600
21000
21000
64000
99000
99000
25
30
30
40
50
50
0.85
0.85
0.85
3NC2428-0C
3NC2428-3C
3NC2431-0C
gR
gR
gR
500/13)
500/13)
500/13)
5014)
5014)
5014)
3003)
3003)
3503)
28000
28000
53000
132000
132000
249000
40
40
35
65
65
60
0.85
0.85
0.85
3NC2431-3C
3NC2432-0C
3NC2432-3C
gR
aR
aR
500/13)
500/13)
500/13)
5014)
5014)
5014)
3503)
4003)
4003)
53000
83000
83000
249000
390000
390000
35
30
30
60
50
50
0.85
0.85
0.85
3NC3236-1
3NC3236-6
aR
aR
690/13)
690/13)
100
100
630
630
32500
32500
244000
244000
120
125
120
125
0.85
0.9
3NC3237-1
3NC3237-6
aR
aR
690/13)
690/13)
100
100
710
710
46100
46100
346000
346000
125
125
130
130
0.85
0.9
3NC3238-1
3NC3238-6
aR
aR
690/13)
690/13)
100
100
800
800
66400
66400
498000
498000
125
120
135
135
0.9
0.95
3NC3240-1
3NC3240-6
aR
aR
690/13)
13)
690/
100
100
900
900
90300
90300
677000
677000
130
125
145
140
0.9
0.95
3NC3241-1
3NC3241-6
aR
aR
690/13)
690/13)
100
100
1000
1000
130000
130000
975000
975000
125
120
155
145
0.95
1
3NC3242-1
3NC3242-6
aR
aR
690/13)
13)
690/
100
100
1100
1100
184000
184000
1382000
1382000
125
115
165
150
0.95
1
3NC3243-1
3NC3243-6
aR
aR
690/13)
690/13)
100
100
1250
1250
265000
265000
1990000
1990000
130
110
175
155
0.95
1
3NC3244-1
3NC3244-6
aR
aR
500/13)
500/13)
100
100
1400
1400
382000
382000
2100000
2100000
140
115
200
175
0.95
1
3NC3245-1
3NC3245-6
aR
aR
500/13)
500/13)
100
100
1600
1600
520000
520000
2860000
2860000
160
120
240
195
0.9
0.95
3NC3336-1
3NC3336-6
aR
aR
1000/13)
1000/13)
100
100
630
630
66400
66400
418000
418000
160
140
145
130
0.85
0.9
3NC3337-1
3NC3337-6
aR
aR
1000/13)
1000/13)
100
100
710
710
90300
90300
569000
569000
160
140
150
140
0.85
0.9
3NC3338-1
3NC3338-6
aR
aR
1000/13)
1000/13)
100
100
800
800
130000
130000
819000
819000
150
130
155
150
0.85
0.9
3NC3340-1
3NC3340-6
aR
aR
1000/13)
1000/13)
100
100
900
900
184000
184000
1160000
1160000
145
130
165
160
0.9
0.95
3NC3341-1
3NC3341-6
aR
aR
1000/13)
1000/13)
100
100
1000
1000
265000
265000
1670000
1670000
140
125
170
165
0.9
0.95
3NC3342-1
3NC3342-6
aR
aR
800/13)
13)
800/
100
100
1100
1100
382000
382000
1910000
1910000
150
130
185
175
0.9
0.95
3NC3343-1
3NC3343-6
aR
aR
800/13)
800/13)
100
100
1250
1250
520000
520000
2600000
2600000
165
135
210
185
0.9
0.95
Footnotes see page 84.
Siemens · 2014
81
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
MLFB
Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
V AC / V DC
kA
Rated
current In
Melting I2t
value I2ts (
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
A2s
A2s
1)
A
Temperature
rise at In
body center
Power
dissipation
at In
2)
2)
K
W
Varying load
factor
WL
3NC3430-1
3NC3430-6
aR
aR
1250/13)
1250/13)
100
100
315
315
10600
10600
72500
72500
60
60
80
80
0.95
0.95
3NC3432-1
3NC3432-6
aR
aR
1250/13)
1250/13)
100
100
400
400
23900
23900
163000
163000
95
95
95
95
0.95
0.95
3NC3434-1
3NC3434-6
aR
aR
1250/13)
1250/13)
100
100
500
500
42500
42500
290000
290000
115
115
115
115
0.9
0.9
3NC3436-1
3NC3436-6
aR
aR
1250/13)
13)
1250/
100
100
630
630
96600
96600
650000
650000
120
120
120
120
0.95
0.95
3NC3438-1
3NC3438-6
aR
aR
1100/13)
1100/13)
100
100
800
800
184000
184000
985000
985000
115
109
145
145
0.90
0.95
3NC55314)
3NC58384)
aR
aR
800/13)
1000/13)
5014)
5014)
3505)
8005)
66000
360000
260000
1728000
200
130
80
170
0.9
0.9
3NC58404)
3NC58414)
aR
aR
1000/13)
800/13)
5014)
5014)
6005)
6305)
185000
185000
888000
888000
110
110
150
145
0.9
0.9
3NC7327-2
3NC7331-2
aR
aR
680/13)
680/13)
5014)
5014)
250
350
244000
550000
635000
1430000
45
66
25
32
0.9
0.9
3NC8423-0C
3NC8423-3C
gR
gR
690/13)
690/13)
5014)
5014)
1503)
1503)
1100
1100
17600
17600
33
33
40
40
0.85
0.85
3NC8425-0C
3NC8425-3C
gR
gR
690/13)
690/13)
5014)
5014)
2003)
2003)
2400
2400
38400
38400
46
46
55
55
0.85
0.85
3NC8427-0C
3NC8427-3C
gR
gR
690/13)
690/13)
5014)
5014)
2503)
2503)
4400
4400
70400
70400
95
95
72
72
0.85
0.85
3NC8431-0C
3NC8431-3C
gR
gR
690/13)
690/13)
5014)
5014)
3503)
3503)
11000
11000
176000
176000
65
65
95
95
0.85
0.85
3NC8434-0C
3NC8434-3C
gR
gR
690/13)
13)
690/
5014)
14)
5003)
3)
500
28000
28000
448000
448000
75
75
130
130
0.85
0.85
3NC8444-3C
aR
600/13)
5014)
1000
400000
2480000
110
140
0.9
3NE1020-2
3NE1021-0
3NE1021-2
gR
gS
gR
690/13)
690/13)
690/13)
100
100
100
80
100
100
780
3100
1490
5800
33000
11000
45
36
49
10
10
12
1
1
1
3NE1022-0
3NE1022-2
gS
gR
690/13)
690/13)
100
100
125
125
6000
3115
63000
23000
40
55
11
13
1
1
3NE1224-0
3NE1224-2
3NE1224-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
160
160
160
7400
2650
2650
60000
18600
18600
60
70
70
24
32
32
1
1
1
3NE1225-0
3NE1225-2
3NE1225-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
200
200
200
14500
5645
5645
100000
51800
51800
65
62
62
27
35
35
1
1
1
3NE1227-0
3NE1227-2
3NE1227-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
250
250
250
29500
11520
11520
200000
80900
80900
75
70
70
30
37
37
1
1
1
3NE1230-0
3NE1230-2
3NE1230-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
315
315
315
46100
22580
22580
310000
168000
168000
80
75
75
38
40
40
1
1
1
3NE1331-0
3NE1331-2
3NE1331-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
350
350
350
58000
29500
29500
430000
177000
177000
75
82
82
42
43
43
1
1
1
3NE1332-0
3NE1332-2
3NE1332-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
400
400
400
84000
37300
37300
590000
177000
177000
85
100
100
45
50
50
1
1
1
3NE1333-0
3NE1333-2
3NE1333-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
450
450
450
104000
46100
46100
750000
276500
276500
85
100
100
53
58
58
1
1
1
3NE1334-0
3NE1334-2
3NE1334-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
500
500
500
149000
66400
66400
950000
398000
398000
90
100
100
56
64
64
1
1
1
3NE1435-0
3NE1435-2
3NE1436-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
560
560
560
215000
130000
130000
1700000
890000
890000
65
80
80
50
60
60
1
1
1
3NE1436-0
3NE1436-2
3NE1436-3
gS
gR
gR
690/13)
690/13)
690/13)
100
100
100
630
630
630
293000
203000
203000
2350000
1390000
1390000
70
82
82
55
60
60
1
1
1
3NE1437-0
3NE1437-1
3NE1437-2
3NE1437-3
gS
gR
gR
gR
690/13)
600/13)
690/13)
690/13)
100
100
100
100
710
710
710
710
437000
321000
265000
265000
3400000
2460000
1818000
1818000
68
85
90
90
58
65
72
72
1
1
1
1
Footnotes see page 84.
82
Siemens · 2014
50
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
MLFB
Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
V AC / V DC
kA
Rated
current In
Melting I2t
value I2ts (
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
A2s
A2s
1)
A
Temperature
rise at In
body center
Power
dissipation
at In
2)
2)
K
W
Varying load
factor
WL
3NE1438-0
3NE1438-1
3NE1438-2
3NE1438-3
gS
gR
gR
gR
690/13)
600/13)
690/13)
690/13)
100
100
100
100
800
800
800
800
723000
437000
361000
361000
5000000
3350000
2475000
2475000
70
95
95
95
58
72
84
84
1
1
1
1
3NE1447-2
3NE1447-3
gR
gR
690/13)
690/13)
100
100
670
670
240000
240000
1640000
1640000
90
90
64
64
1
1
3NE1448-2
3NE1448-3
gR
gR
690/13)
690/13)
100
100
850
850
520000
520000
3640000
3640000
95
95
76
76
1
1
3NE1802-0
3NE1803-0
3NE1813-0
gS
gS
gS
690/13)
690/13)
690/13)
100
100
100
40
35
16
295
166
18
3000
1700
200
30
35
25
3
3.5
4
1
1
1
3NE1814-0
3NE1815-0
3NE1817-0
gS
gS
gS
690/13)
690/13)
690/13)
100
100
100
20
25
50
41
74
461
430
780
4400
25
30
35
5
5
6
1
1
1
3NE1818-0
3NE1820-0
gS
gS
690/13)
690/13)
100
100
63
80
903
1843
9000
18000
40
40
7
8
1
1
3NE3221
3NE3222
3NE3224
aR
aR
aR
1000/13)
1000/13)
1000/13)
100
100
100
100
125
160
665
1040
1850
4800
7200
13000
65
70
90
28
36
42
0.95
0.95
1
3NE3225
3NE3227
3NE3230-0B
aR
aR
aR
1000/13)
1000/13)
1000/13)
100
100
100
200
250
315
4150
6650
13400
30000
48000
80000
80
90
100
42
50
60
1
1
0.95
3NE3231
3NE3232-0B
3NE3233
aR
aR
aR
1000/13)
1000/13)
1000/13)
100
100
100
350
400
450
16600
22600
29500
100000
135000
175000
120
140
130
75
85
95
0.9
0.9
0.9
3NE3332-0B
3NE3333
3NE3334-0B
aR
aR
aR
1000/13)
1000/13)
1000/13)
100
100
100
400
450
500
22600
29500
46100
135000
175000
260000
120
125
115
80
90
90
1
1
1
3NE3335
3NE3336
3NE3337-8
aR
aR
aR
1000/13)
1000/13)
900/13)
100
100
100
560
630
710
66500
104000
149000
360000
600000
800000
120
110
125
95
100
105
1
1
1
3NE3338-8
3NE3340-8
aR
aR
800/13)
690/13)
100
100
800
900
184000
223000
850000
920000
140
160
130
165
0.95
0.95
3NE3421-0C
3NE3430-0C
3NE3432-0C
aR
aR
aR
1000/13)
1000/13)
1000/13)
5014)
5014)
5014)
100
315
400
1800
29000
48500
13500
218000
364000
45
120
130
25
80
110
1
1
1
3NE3434-0C
3NE3525-56)
3NE3535-56)
aR
aR
aR
1000/13)
1000/13)
1000/13)
5014)
5014)
5014)
500
2007)
4507)
116000
7150
64500
870000
44000
395000
120
75
130
95
50
90
3NE3626-0C
3NE3635-0C
3NE3635-6
aR
aR
aR
1000/13)
1000/13)
1000/13)
5014)
5014)
5014)
224
450
450
7200
65000
65000
54000
488000
488000
140
150
150
85
110
110
1
1
1
3NE3636-0C
3NE3637-0C
3NE3637-1C8)
aR
aR
aR
1000/13)
1000/13)
1000/13)
5014)
5014)
5014)
630
710
710
170000
260000
260000
1280000
1950000
1950000
136
170
170
132
145
145
1
1
1
3NE4101
3NE4102
3NE4117
gR
gR
gR
1000/13)
1000/13)
1000/13)
100
100
100
32
40
50
40
75
120
280
500
800
45
50
65
12
13
16
0.9
0.9
0.9
3NE4117-5
3NE4118
3NE4120
gR
aR
aR
1000/13)
1000/13)
1000/13)
5014)
100
100
50
63
80
135
230
450
1100
1500
3000
95
78
82
20
20
22
0.85
0.9
0.9
3NE4121
3NE4121-5
3NE4122
aR
aR
aR
1000/13)
1000/13)
1000/13)
100
5014)
100
100
100
125
900
900
1800
6000
7400
14000
85
135
100
24
35
30
0.9
0.85
0.9
3NE4124
3NE4146-5
aR
aR
1000/13)
800/13)
100
5014)
160
170
3600
7370
29000
60500
120
142
35
43
0.9
0.85
3NE4327-0B
3NE4327-6B6)
3NE4330-0B
aR
aR
aR
800/13)
800/13)
800/13)
5014)
5014)
5014)
250
250
315
3600
3600
7400
29700
29700
60700
175
175
170
105
105
120
0.85
0.85
0.85
3NE4330-6B6)
3NE4333-0B
3NE4333-6B6)
aR
aR
aR
800/13)
800/13)
800/13)
5014)
5014)
5014)
315
450
450
7400
29400
29400
60700
191000
191000
170
190
190
120
140
140
0.85
0.85
0.85
3NE4334-0B
3NE4334-6B6)
3NE4337
aR
aR
aR
800/13)
800/13)
800/13)
5014)
5014)
5014)
500
500
710
42500
42500
142000
276000
276000
923000
195
195
170
155
155
155
0.85
0.85
0.95
3NE4337-66)
aR
800/13)
5014)
710
142000
923000
170
155
0.95
1
0.85
0.85
Footnotes see page 84.
Siemens · 2014
83
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
MLFB
Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
V AC / V DC
kA
Rated
current In
Melting I2t
value I2ts (
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
A2s
A2s
1)
A
Temperature
rise at In
body center
Power
dissipation
at In
2)
2)
K
W
Varying load
factor
WL
3NE5424-0C
3NE5426-0C
3NE5430-0C
aR
aR
aR
1500/13)
1500/13)
1500/13)
5014)
5014)
5014)
160
224
315
7200
18400
41500
54000
138000
311000
75
100
125
56
80
115
1
1
1
3NE5431-0C
3NE5433-0C
3NE5433-1C
aR
aR84
aR
1500/13)
1500/13)
1500/13)
5014)
5014)
5014)
350
450
450
57000
116000
116000
428000
870000
870000
150
150
150
135
145
145
1
0.95
0.95
3NE5627-0C
3NE5633-0C
3NE5643-0C
aR
aR
aR
1500/13)
1500/13)
1500/13)
5014)
5014)
5014)
250
450
600
11200
78500
260000
84000
590000
1950000
170
170
160
130
160
145
1
1
1
3NE6437
3NE6437-7
3NE6444
aR
aR
aR
900/13)
900/13)
900/13)
5014)
5014)
5014)
7109)
71010)
9009)
100000
100000
400000
620000
620000
1920000
80
110
80
150
150
170
0.9
0.9
0.9
3NE7425-0C
3NE7427-0C
3NE7431-0C
aR
aR
aR
2000/13)
2000/13)
2000/13)
100
100
100
200
250
350
18400
29000
74000
138000
218000
555000
85
110
105
75
110
120
1
1
1
3NE7432-0C
3NE7633-0C
3NE7633-1C11)
aR
aR
aR
2000/13)
2000/13)
2000/13)
100
100
100
400
450
450
116000
128000
128000
870000
960000
960000
130
165
165
150
160
160
1
1
1
3NE7636-0C
3NE7636-1C11)
3NE7637-1C11)
aR
aR
aR
2000/13)
2000/13)
2000/13)
100
100
100
630
630
710
260000
260000
415000
1950000
1950000
3110000
200
200
230
220
220
275
1
1
1
3NE7648-1C11)
aR
2000/13)
100
525
149000
1120000
210
210
1
3NE8003-1
3NE8015-1
3NE8017-1
gR
gR
gR
690/13)
690/13)
690/13)
100
100
100
35
25
50
70
30
120
400
180
700
45
35
65
9
7
14
0.95
0.95
0.9
3NE8018-1
3NE8020-1
3NE8021-1
gR
aR
aR
690/13)
690/13)
690/13)
100
100
100
63
80
100
260
450
850
1400
2400
4200
70
80
90
16
19
22
0.95
0.95
0.95
3NE8022-1
3NE8024-1
aR
aR
690/13)
690/13)
100
100
125
160
1400
2800
6500
13000
110
130
28
38
0.95
0.95
3NE8701-1
3NE8702-1
3NE8714-1
gR
gR
gR
690/70012)
690/70012)
690/70012)
5014)
5014)
5014)
32
40
20
40
69
12
285
490
83
45
55
40
10
12
7
0.9
0.9
0.9
3NE8715-1
3NE8717-1
3NE8718-1
gR
gR
aR
690/70012)
690/70012)
690/70012)
5014)
5014)
5014)
25
50
63
19
115
215
140
815
1550
40
60
70
9
15
16
0.9
0.9
0.95
3NE8720-1
3NE8721-1
3NE8722-1
aR
aR
aR
690/70012)
690/70012)
690/70012)
5014)
5014)
5014)
80
100
125
380
695
1250
2700
4950
9100
80
75
80
18
19
23
0.9
0.95
0.95
3NE8724-1
3NE8725-1
3NE8727-1
aR
aR
aR
690/70012)
690/70012)
690/70012)
5014)
5014)
5014)
160
200
250
2350
4200
7750
17000
30000
55000
100
120
125
31
36
42
0.9
0.9
0.9
3NE8731-1
aR
690/70012)
5014)
315
3NE9440-6
3NE9450
3NE9450-7
gR
aR
aR
600/13)
600/13)
600/13)
5014)
5014)
5014)
3NE9632-1C
3NE9634-1C
3NE9636-1C
aR
aR
aR
2500/13)
2500/13)
2500/13)
5014)
5014)
5014)
850
12509)
125010)
400
500
630
12000
85500
150
54
0.85
400000
400000
400000
2480000
2480000
2480000
74
80
105
85
210
210
1
0.9
0.9
81000
170000
385000
620000
1270000
2800000
160
180
198
205
235
275
1
1
1
1)
Maximum tightening torque: M10 capped thread: 35 Nm, screw penetration depth  9 mm.
2)
Temperature rise and power dissipation for operation in LV HRC fuse base.
3)
Cooling air speed 1 m/s. In the case of natural air cooling, reduction of 5 %.
4)
Maximum tightening torque:
- M10 thread (with indicator): 40 Nm
- M10 capped thread: 50 Nm, screw penetration depth  9 mm
- M24 × 1.5 thread: 60 Nm.
5)
Temperature of water-cooled busbar max. +45 C.
6)
Maximum tightening torque:
M10 capped thread: 35 Nm, screw penetration depth  9 mm.
7)
Cooling air speed  0.5 m/s. In the case of natural air cooling, reduction of 5 %.
8)
Gauge 140 mm, M12 screw connection.
9)
Cooling air speed  2 m/s.
10)
Bottom (cooled) connection max. +60 °C, top connection (M10) max. +110 °C.
11)
M12 screw connection.
12)
Rated voltage according to UL.
13)
DC rated voltage: See page 152, "Use with direct current".
14)
Minimum 50 kA, higher values on request.
84
Siemens · 2014
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
Load rating of SITOR fuse links with 3NH LV HRC fuse bases
SITOR fuse links
Article No.
Ø min Cu
In
Un
BG
V AC
Operational
class
A
3NC2423-0C/3C
3NC2425-0C/3C
3NC2427-0C/3C
WL
150
200
250
500
500
500
gR
gR
gR
3
3
3
0.85
0.85
0.85
70
95
120
3NC2428-0C/3C
3NC2431-0C/3C
3NC2432-0C/3C
300
350
400
500
500
500
gR
gR
aR
3
3
3
0.85
0.85
0.85
185
240
240
3NC3336-1
3NC3337-1
3NC3338-1
630
710
800
1000
1000
1000
aR
aR
aR
3
3
3
0.85
0.85
0.85
2 x (40 x 5)
2 x (50 x 5)
2 x (40 x 8)
3NC3340-1
3NC3341-1
3NC3342-1
3NC3343-1
900
1000
1100
1250
1000
1000
800
800
aR
aR
aR
aR
3
3
3
3
0.90
0.90
0.90
0.90
2 x (40 x 8)
2 x (50 x 8)
2 x (50 x 8)
2 x (50 x 8)
3NC3430-1
3NC3432-1
3NC3434-1
315
400
500
1250
1250
1250
aR
aR
aR
3
3
3
0.95
0.95
0.90
2 x 95
2 x 120
2 x 150
3NC3436-1
3NC3438-1
630
800
1250
1100
aR
aR
3
3
0.95
0.90
2 x (40 x 5)
2 x (40 x 8)
3NC8423-0C/-3C
3NC8425-0C/-3C
3NC8427-0C/-3C
150
200
250
690
690
690
gR
gR
gR
3
3
3
0.85
0.85
0.85
70
95
120
3NC8431-0C/-3C
3NC8434-0C/-3C
3NC8444-3C
350
500
1000
690
690
600
gR
gR
aR
3
3
3
0.85
0.85
0.95
240
2 x 150
2 x (60 x 6)
3NE1020-2
3NE1021-0
3NE1021-2
80
100
100
690
690
690
gR
gS
gR
00
00
00
1.0
1.0
1.0
25
35
35
3NE1022-0
3NE1022-2
125
125
690
690
gS
gR
00
00
1.0
1.0
50
50
3NE1224-0
3NE1224-2/-3
160
160
690
690
gS
gR
1
1
1.0
1.0
70
70
3NE1225-0
3NE1225-2/-3
200
200
690
690
gS
gR
1
1
1.0
1.0
3NE1227-0
3NE1227-2/-3
250
250
690
690
gS
gR
1
1
3NE1230-0
3NE1230-2/-3
315
315
690
690
gS
gR
3NE1331-0
3NE1331-2/-3
350
350
690
690
3NE1332-0
3NE1332-2/-3
400
400
3NE1333-0
3NE1333-2/-3
3NH LV HRC fuse bases
Article No.
BG
mm2
Imax
IWL
A
3
3
3
150
190
240
128
162
204
3
3
3
285
330
400
242
281
340
3
3
3
560
600
660
476
510
561
3
3
3
3
750
850
900
950
675
765
810
855
3
3
3
310
390
460
295
371
414
3
3
560
690
532
656
3
3
3
135
180
250
115
153
213
3
3
3
315
450
800
268
383
800
00
00
00
80
100
100
80
100
100
00
00
125
125
125
125
1
1
160
160
160
160
95
95
1
1
200
200
200
200
1.0
1.0
120
120
1
1
250
250
250
250
1
1
1.0
1.0
2 x 70
2 x 70
3NH3330/20
2
2
315
315
315
315
gS
gR
2
2
1.0
1.0
2 x 95
2 x 95
3NH3330/20
2
2
350
350
350
350
690
690
gS
gR
2
2
1.0
1.0
2 x 95
2 x 95
2
2
400
400
400
400
450
450
690
690
gS
gR
2
2
1.0
1.0
2 x 120
2 x 120
3
3
450
450
450
450
3NE1334-0
3NE1334-2/-3
500
500
690
690
gS
gR
2
2
1.0
1.0
2 x 120
2 x 120
3
3
500
500
500
500
3NE1435-0
3NE1435-2/-3
560
560
690
690
gS
gR
3
3
1.0
1.0
2 x 150
2 x 150
3
3
560
560
560
560
3NE1436-0
3NE1436-2/-3
630
630
690
690
gS
gR
3
3
1.0
1.0
2 x 185
2 x 185
3
3
630
630
630
630
3NE1437-0
3NE1437-1
710
710
690
600
gS
gR
3
3
1.0
1.0
2 x (40 x 5)
2 x (40 x 5)
3
3
710
690
710
690
3NE1437-2/-3
710
690
gR
3
1.0
2 x (40 x 5)
3
710
710
3NE1438-0
3NE1438-1
3NE1438-2/-3
800
800
800
690
600
690
gS
gR
gR
3
3
3
1.0
1.0
1.0
2 x (50 x 5)
2 x (50 x 5)
2 x (50 x 5)
3
3
3
800
750
800
800
750
800
3NE1447-2/-3
3NE1448-2/-3
670
850
690
690
gR
gR
3
3
1.0
1.0
2 x (40 x 5)
2 x (40 x 8)
3NE1802-0
3NE1803-0
3NE1813-0
3NE1814-0
40
35
16
20
690
690
690
690
gS
gS
gS
gS
000
000
000
000
1.0
1.0
1.0
1.0
10
6
1.5
2.5
3
3
00
670
850
40
670
850
40
00
00
00
35
16
20
35
16
20
3NE1815-0
3NE1817-0
3NE1818-0
3NE1820-0
25
50
63
80
690
690
690
690
gS
gS
gS
gS
000
000
000
000
1.0
1.0
1.0
1.0
4
10
16
25
00
00
00
00
25
50
63
80
25
50
63
80
3NE3221
3NE3222
3NE3224
100
125
160
1000
1000
1000
aR
aR
aR
1
1
1
0.95
0.95
1.0
35
50
70
1
1
1
100
125
160
95
119
160
3NE3225
3NE3227
3NE3230-0B
200
250
315
1000
1000
1000
aR
aR
aR
1
1
1
1.0
1.0
0.95
95
120
185
1
1
2
200
250
305
200
250
290
3NH3430/20
3NH3430/20
3NH3430/20
3NH3430/20
3NH3030/4030
3NH3230/4230
3NH3430/20
3NH3430/20
3NH3030/4030
3NH3230/4230
3NH3330/20
Siemens · 2014
85
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
SITOR fuse links
Article No.
Ø min Cu
In
Un
A
3NE3231
3NE3232-0B
3NE3233
BG
V AC
350
400
450
1000
1000
1000
aR
aR
aR
1
1
1
0.95
0.90
0.90
240
240
2x 150
3NH3330/20
2
2
2
335
380
425
318
342
383
3NE3332-0B
3NE3333
3NE3334-0B
400
450
500
1000
1000
1000
aR
aR
aR
2
2
2
1.0
1.0
1.0
240
2 x 150
2 x 150
3NH3430/20
3
3
3
400
450
500
400
450
500
3NE3335
3NE3336
3NE3337-8
560
630
710
1000
1000
900
aR
aR
aR
2
2
2
1.0
1.0
1.0
2 x 185
2 x 185
2 x (40 x 5)
3
3
3
560
630
680
560
630
680
3NE3338-8
3NE3340-8
800
900
800
690
aR
aR
2
2
0.95
0.95
2 x 240
2 x (40 x 8)
3
3
700
750
665
713
3NE4101
3NE4102
3NE4117
3NE4118
32
40
50
63
1000
1000
1000
1000
gR
gR
gR
aR
0
0
0
0
0.9
0.9
0.9
0.9
6
10
10
16
0/1
0/1
0/1
0/1
32
40
50
63
29
36
45
57
3NE4120
3NE4121
3NE4122
3NE4124
80
100
125
160
1000
1000
1000
1000
aR
aR
aR
aR
0
0
0
0
0.9
0.9
0.9
0.9
25
35
50
70
0/1
0/1
0/1
0/1
80
100
125
160
72
90
113
144
3NE4327-0B
3NE4330-0B
250
315
800
800
aR
aR
2
2
0.85
0.85
150
240
3NH3330/20
2
2
240
300
204
255
3NE4333-0B
3NE4334-0B
3NE4337
450
500
710
800
800
800
aR
aR
aR
2
2
2
0.85
0.85
0.95
2 x (30 x 5)
2 x (30 x 5)
2 x (50 x 5)
3NH3430/20
3
3
3
425
475
630
361
404
599
3NE8015-1
3NE8003-1
25
35
690
690
gR
gR
00
00
0.95
0.95
4
6
3NH3030/4030
00
00
25
35
24
33
3NE8017-1
3NE8018-1
3NE8020-1
50
63
80
690
690
690
gR
gR
aR
00
00
00
0.90
0.95
0.95
10
16
25
00
00
00
50
63
80
45
60
76
3NE8021-1
3NE8022-1
3NE8024-1
100
125
160
690
690
690
aR
aR
aR
00
00
00
0.95
0.95
0.95
35
50
70
00
00
00
100
125
160
95
119
152
Un
= Rated voltage
BG
= Size
In
= Rated current
WL
= Varying load factor
Ømin Cu = Required conductor cross-section Cu
Imax
= Maximum permissible current
IWL
= Maximum permissible current with varying load
86
Siemens · 2014
WL
3NH LV HRC fuse bases
Operational
class
Article No.
BG
mm2
Imax
IWL
A
3NH3120/4230
3NH3030/4030
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
Load rating of SITOR fuse links with 3NP LV HRC fuse switch disconnectors
SITOR fuse links
Ø min Cu 3NP LV HRC fuse switch disconnectors
Add-on units
Article No.
In
Un
A
V AC
3NC2423-0C/ 150
3NC2423-3C
3NC2425-0C/ 200
3NC2425-3C
3NC2427-0C/ 250
3NC2427-3C
3NC2428-0C/ 300
3NC2428-3C
3NC2431-0C/ 350
3NC2431-3C
3NC2432-0C/ 400
3NC2432-3C
BG WL
mm2
500
3
0.85 70
Article
No.
BG Imax IWL
3NP54
3
145 125 3NP4470 3
140 120 3NP1163 3
140 119
A
Article
No.
BG Imax IWL
A
Article
No.
BG Imax IWL
A
500
3
0.85 95
3
180 165
3
175 160
3
175 149
500
3
0.85 120
3
225 205
3
220 200
3
220 187
500
3
0.85 185
3
255 240
3
250 235
3
250 213
500
3
0.85 240
3
330 295
3
320 290
3
320 272
500
3
0.85 240
3
400 380
3
370 370
3
370 315
500 425 3NP1163 3
500 425
3NC3336-1
3NC3337-1
3NC3338-1
630
710
800
1000 3
1000 3
1000 3
0.85 2 x (40 x 5) 3NP54
0.85 2 x (50 x 5)
0.85 2 x (40 x 8)
3
3
3
530 451 3NP4470 3
570 485
630 536
3NC3340-1
3NC3341-1
3NC3342-1
3NC3343-1
900
1000
1100
1250
1000
1000
800
800
0.90
0.90
0.90
0.90
3
3
3
3
700
770
800
850
3NC3430-1
3NC3432-1
3NC3434-1
315
400
500
1250 3
1250 3
1250 3
0.95 2 x 95
0.95 2 x 120
0.90 2 x 150
3
3
3
295 280 3NP4470 3
355 337
3
440 396
3
280 266 3NP1163 3
340 323
3
400 360
3
280 266
340 323
400 360
3NC3436-1
3NC3438-1
630
800
1250 3
1100 3
0.95 2 x (40 x 5)
0.90 2 x (40 x 8)
3
3
520 494
625 594
460 437
3
460 437
690
3
0.85 70
3
135 125 3NP4470 3
120 120 3NP1163 3
120 102
3NC8423-0C/ 150
3NC8423-3C
3NC8425-0C/ 200
3NC8425-3C
3NC8427-0C/ 250
3NC8427-3C
3
3
3
3
2 x (40 x 8)
2 x (50 x 8)
2 x (50 x 8)
2 x (50 x 8)
3NP54
3NP54
3
690
3
0.85 95
3
180 165
3
160 160
3
160 136
3
0.85 120
3
225 205
3
200 200
3
200 170
3NC8431-0C 350 690
3NC8431/-3C
3NC8434-0C/ 500 690
3NC8434-3C
3NC8444-3C 1000 600
3
0.85 240
3
300 275
3
270 270
3
270 230
3
385 385
3
385 327
3
0.85 2 x 150
3
425 400
3
0.95 2 x (60 x 6)
3
800 760
00
00
00
00
80
100
100
125
3NE1022-0
80
100
100
125
690
690
690
690
00
00
00
00
1.0
1.0
1.0
1.0
25
35
35
50
3NE1022-2
125
690
00
1.0
50
3NE1224-0
160
3NE1224-2/-3 160
690
690
1
1
1.0
1.0
70
70
3NP52/42 1
1
3NE1225-0
200
3NE1225-2/-3 200
690
690
1
1
1.0
1.0
95
95
3NE1227-0
250
3NE1227-2/-3 250
690
690
1
1
1.0
1.0
120
120
3NE1230-0
315
3NE1230-2/-3 315
690
690
1
1
1.0
1.0
3NE1331-0
350
3NE1331-2/-3 350
690
690
2
2
3NE1332-0
400
3NE1332-2/-3 400
690
690
3NE1333-0
450
3NE1333-2/-3 450
3NP50
BG Imax IWL
A
630
693
720
765
690
3NE1020-2
3NE1021-0
3NE1021-2
Article
No.
80 3NP4070 00 80
100
00 100
100
00 98
125
00 125
00 125 125
80 3NP1133 00 80
100
00 100
98
00 95
125
00 120
00 120 120
80
100
95
120
00 115 115
160 160 3NP53/43 2
160 160
2
160 160 3NP1143 1
160 160
1
160 160 3NP1153 2
150 150
2
160 160
160 160
1
1
200 200
200/ 200/
190 190
2
2
200 200
200 200
1
1
190 190
180 180
2
2
200 200
190 190
1
1
250 250
250/ 250/
235 235
2
2
250 250
250 250
1
1
235 235
220 220
2
2
250 250
235 235
2 x 70
2 x 70
3NP53/43 2
2
315 315
315 315
3NP1153 2
2
290 290
278 278
1.0
1.0
2 x 95
2 x 95
3NP53/43 2
2
350 350 3NP54/44 3
350 350
3
350 350 3NP1153 2
350 350
2
315 315 3NP1163 3
300 300
3
340 340
330 330
2
2
1.0
1.0
2 x 95
2 x 95
2
2
400 400
400 400
3
3
400 400
400 400
2
2
340 340
328 328
380 380
370 370
690
690
2
2
1.0
1.0
2 x 120
2 x 120
3NP54/44 3
3NP54
3
450 450
450 450 3NP4470 3
425 425
3NP1163 3
3
450 450
430 430
3NE1334-0
500
3NE1334-2/-3 500
690
690
2
2
1.0
1.0
2 x 120
2 x 120
3NP54/44 3
3NP54
3
500 500
500 500 3NP4470 3
465 465
3
3
500 500
475 475
3NE1435-0
560
3NE1435-2/-3 560
690
690
3
3
1.0
1.0
2 x 150
2 x 150
3NP54/44 3
3NP54
3
560 560
560 560 3NP4470 3
540 540
3NP1163 3
3
560 560
555 555
3NE1436-0
630
3NE1436-2/-3 630
690
690
3
3
1.0
1.0
2 x 185
2 x 185
3
3
630 630
625 625
3
3
620 620
600 600
3
3
630 630
620 620
3NE1437-0
710
3NE1437-1
710
3NE1437-2/-3 710
690
600
690
3
3
3
1.0
1.0
1.0
2 x (40 x 5)
2 x (40 x 5)
2 x (40 x 5)
3
3
3
710 710
690 690
685 685
3
3
690 650
670 630
-
3NE1438-0
800
3NE1438-1
800
3NE1438-2/-3 800
690
600
690
3
3
3
1.0
1.0
1.0
2 x (50 x 5) 3NP54
2 x (50 x 5)
2 x (50 x 5)
3
3
3
800 800 3NP4470 3
750 750
3
770 770
750 700
710 630
-
3NE1447-2/-3 670
3NE1448-2/-3 850
690
690
3
3
1.0
1.0
2 x (40 x 5)
2 x (40 x 8)
3
3
655 655
820 820
3
3
-
Siemens · 2014
87
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
SITOR fuse links
Ø min Cu 3NP LV HRC fuse switch disconnectors
Add-on units
Article No.
In
Un
A
V AC
3NE1802-0
3NE1803-0
3NE1813-0
3NE1814-0
40
35
16
20
690
690
690
690
000
000
000
000
3NE1815-0
3NE1817-0
3NE1818-0
3NE1820-0
25
50
63
80
690
690
690
690
000
000
000
000
3NE3221
3NE3222
3NE3224
100
125
160
1000 1
1000 1
1000 1
0.95 35
0.95 50
1.0 70
3NE3225
3NE3227
3NE3230-0B
200
250
315
1000 1
1000 1
1000 1
1.0 95
1.0 120
0.95 185
3NE3231
3NE3232-0B
3NE3233
350
400
450
1000 1
1000 1
1000 1
0.95 240
0.90 240
0.90 2 x 150
3NE3332-0B
3NE3333
3NE3334-0B
3NE3335
400
450
500
560
1000
1000
1000
1000
2
2
2
2
1.0
1.0
1.0
1.0
240
2 x 150
2 x 150
2 x 185
3NE3336
3NE3337-8
3NE3338-8
3NE3340-8
630
710
800
900
1000
900
800
690
2
2
2
2
1.0
1.0
0.95
0.95
2 x 185
2 x (40 x 5)
2 x 240
2 x (40 x 8)
3NE4101
3NE4102
3NE4117
3NE4118
32
40
50
63
1000
1000
1000
1000
0
0
0
0
0.9
0.9
0.9
0.9
6
10
10
16
3NE4120
3NE4121
3NE4122
3NE4124
80
100
125
160
1000
1000
1000
1000
0
0
0
0
0.9
0.9
0.9
0.9
25
35
50
70
3NE4327-0B
250
800
2
0.85 150
3NE4330-0B
315
800
2
0.85 240
3NE4333-0B
450
800
2
3NE4334-0B
3NE4337
500
710
800
800
2
2
0.85 2 x (30 x 5) 3NP54
0.95 2 x (50 x 5)
3NE8015-1
3NE8003-1
3NE8017-1
25
35
50
690
690
690
00
00
00
0.95 4
0.95 6
0.90 10
3NP50/
00 25
3NP4070 00 33
00 45
24
31
41
3NP1133 00 25
00 32
00 43
24
30
39
3NE8018-1
3NE8020-1
63
80
690
690
00
00
0.95 16
0.95 25
00 54
00 68
51
65
00 52
00 65
49
62
3NE8021-1
3NE8022-1
3NE8024-1
100
125
160
690
690
690
00
00
00
0.95 35
0.95 50
0.95 70
Un
BG WL
mm2
Article
No.
1.0
1.0
1.0
1.0
10
6
1.5
2.5
3NP35/
000 40
3NP4010 000 35
000 16
000 20
1.0
1.0
1.0
1.0
4
10
16
25
= Size
In
= Rated current
WL
= Varying load factor
3NP52/42 1
1
1
3NP53
3NP54
3NP52
88
40
35
16
20
= Maximum permissible current with varying load
Article
No.
BG Imax IWL
A
3NP50/
00 40
3NP4070 00 35
00 16
00 20
25
50
63
80
95 90 3NP53/
110 110 3NP43
140 140
Article
No.
BG Imax IWL
A
A
40
35
16
20
40
35
16
20
3NP1133 00
00
00
00
40
35
16
20
40
35
16
20
25
50
63
80
000
000
000
000
25
50
63
80
25
50
63
80
00
00
00
00
25
50
63
80
25
50
63
80
00
00
00
00
25
50
63
80
2
2
2
100 95 3NP1143 1
120 114
1
150 150
1
88 84 3NP1153 2
102 97
2
130 130
2
95 90
110 105
140 140
163 163
195 195
2
2
2
175 175
210 210
270 257
2
2
2
290 276
320 288
360 324
190 190
230 230
270 270
2
2
2
310 300
330 320
360 340
290 290
310 310
330 330
3
3
3
3
360
400
450
510
345 3NP4470 3
385
3
450
3
510
3
345
385
430
490
345 3NP1153 2
385
430
490
3
3
3
3
580
630
630
630
580
630
630
630
560
590
605
630
560
590
605
630
1
1
1
1
32
40
50
63
29
36
45
57
32
38
45
59
29
34
41
53
1
1
1
1
80
95
120
150
72
86
108
135
76
90
115
144
68
81
104
130
2
2
2
3
3
3
3
3NP4270 1
1
1
1
1
1
1
1
205/ 3NP4470 3
210
255/
3
265
370/
3
380
450 400
600 570
BG Imax IWL
3NP1123 000
000
000
000
175 175
2
210 210
2
285 280 3NP4370 2
3
3
Article
No.
40
35
16
20
1
1
2
3NP50/
00 89 85
3NP4070 00 106 101
00 130 124
= Maximum permissible current
Siemens · 2014
25
50
63
80
3NP53/54 2/3 210/
220
2/3 270/
285
0.85 2 x (30 x 5)
2/3 400/
420
Ømin Cu = Required conductor cross-section Cu
Imax
IWL
A
000
000
000
000
= Rated voltage
BG
BG Imax IWL
3
3
1
1
330 330 3NP1163 3
3
3
3
360
375
420
475
360
375
420
475
3
3
3
3
540
580
605
630
540
580
575
599
30
35
42
55
27
32
38
50
71
84
107
134
64
76
96
121
3NP1143 1
1
1
1
1
1
1
1
205 200 3NP1153 2
195 166 3NP1163 3
215 183
260 250
240 204
3
270 230
375 360
3
370 315
410 395
540 540
3
3
410 349
540 513
2
3NP1133 00 85 81
00 100 95
00 120 114
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
SITOR fuse links
Ø min Cu 3NP LV HRC fuse switch disconnectors
Busbar devices
Article No.
In
Un
A
V AC
3NC2423-0C/ 150
3NC2423-3C
3NC2425-0C/ 200
3NC2425-3C
3NC2427-0C/ 250
3NC2427-3C
3NC2428-0C/ 300
3NC2428-3C
3NC2431-0C 350
3NC2431-/3C
3NC2432-0C/ 400
3NC2432-3C
BG WL
mm2
Article
No.
BG Imax IWL
A
Article
No.
BG Imax IWL
A
Article
No.
BG Imax IWL
A
500
3
0.85 70
3NP4476 3
140 120
3NP1163 3
150 128
500
3
0.85 95
3
175 160
3
190 162
500
3
0.85 120
3
215 195
3
237 201
500
3
0.85 185
3
245 230
3
285 242
500
3
0.85 240
3
315 285
3
332 282
500
3
0.85 240
3
360 360
3
380 323
3NP1163 3
3
3
500 425
560 476
630 536
3NC3336-1
3NC3337-1
3NC3338-1
630
710
800
1000 3
1000 3
1000 3
3NC3340-1
3NC3341-1
3NC3342-1
3NC3343-1
900
1000
1100
1250
1000
1000
800
800
3NC3430-1
3NC3432-1
3NC3434-1
315
400
500
1250 3
1250 3
1250 3
3NC3436-1
3NC3438-1
630
800
3
3
3
3
0.85 2 x (40 x 5)
0.85 2 x (50 x 5)
0.85 2 x (40 x 8)
0.90 2 x (40 x 8)
3
3
3
3
0.90 2 x (50 x 8)
0.90 2 x (50 x 8)
0.90 2 x (50 x 8)
630
630
630
630
BG Imax IWL
A
567
567
567
567
280 266
340 323
400 360
3NP1163 3
3
3
285 271
340 323
425 383
1250 3
1100 3
0.95 2 x95
3NP4476 3
0.95 2 x120
3
0.90 2 x150
3
0.95 2 x (40 x 5)
3
0.90 2 x (40 x 8)
460 437
3
3
535 508
520 494
690
3
0.85 70
3NP4476 3
120 120
3NP1163 3
140 120
690
3
0.85 95
3
155 155
3
190 155
690
3
0.85 120
3
195 195
3
240 195
3NC8431-0C/ 350 690
3NC8431-3C
3NC8434-0C/ 500 690
3NC8434-3C
3NC8444-3C 1000 600
3
0.85 240
3
260 260
3
300 260
3
0.85 2 x 150
3
375 375
3
385 375
3
630 630
3
600 630
3NC8423-0C/ 150
3NC8423-3C
3NC8425-0C/ 200
3NC8425-3C
3NC8427-0C/ 250
3NC8427-3C
Article
No.
3
0.95 2 x (60 x 6)
3NE1020-2
3NE1021-0
3NE1021-2
80
100
100
690
690
690
00
00
00
1.0
1.0
1.0
25
35
35
3NP4076 00 80 80
00 100 100
00 98 98
3NP1133 00 80 80
00 100 100
00 95 95
3NE1022-0
3NE1022-2
125
125
690
690
00
00
1.0
1.0
50
50
00 125 125
00 120 120
00 120 120
00 115 115
3NE1224-0
160
3NE1224-2/-3 160
690
690
1
1
1.0
1.0
70
70
3NP4276 1
1
3NE1225-0
200
3NE1225-2/-3 200
690
690
1
1
1.0
1.0
95
95
3NE1227-0
250
3NE1227-2/-3 250
690
690
1
1
1.0
1.0
120
120
3NE1230-0
315
3NE1230-2/-3 315
690
690
1
1
1.0
1.0
2 x 70
2 x 70
3NE1331-0
350
3NE1331-2/-3 350
690
690
2
2
1.0
1.0
2 x 95
2 x 95
3NP4376 2
2
3NE1332-0
400
3NE1332-2/-3 400
690
690
2
2
1.0
1.0
2 x 95
2 x 95
2
2
3NE1333-0
450
3NE1333-2/-3 450
690
690
2
2
1.0
1.0
3NE1334-0
500
3NE1334-2/-3 500
690
690
2
2
3NE1435-0
560
3NE1435-2/-3 560
690
690
3NE1436-0
630
3NE1436-2/-3 630
160 160 3NP4376 2
160 160
2
160 160 3NP1143 1
160 160
1
160 160 3NP1153 2
152 152
2
160 160
160 160
1
1
200 200
190 190
2
2
200 200
200 200
1
1
200 200
180 180
2
2
200 200
190 190
1
1
250 250
235 235
2
2
250 250
250 250
1
1
238 238
213 213
2
2
250 250
235 235
2
2
315 315
315 315
2
2
315 315
315 315
350 350 3NP4476 3
350 350
3
350 350 3NP1153 2
350 350
2
350 350 3NP1163 3
330 330
3
350 350
350 350
400 400
400 400
3
3
400 400
400 400
380 380
360 360
3
3
400 400
400 400
2 x 120
2 x 120
3
3
450 450
425 425
3
3
430 430
420 420
1.0
1.0
2 x 120
2 x 120
3
3
480 480
450 450
3
3
450 450
450 450
3
3
1.0
1.0
2 x 150
2 x 150
3NP4476 3
3
510 510
500 500
3NP1163 3
3
520 520
510 510
690
690
3
3
1.0
1.0
2 x 185
2 x 185
3
3
535 535
520 520
3
3
585 585
570 570
3NE1437-0
710
3NE1437-1
710
3NE1437-2/-3 710
690
600
690
3
3
3
1.0
1.0
1.0
2 x (40 x 5)
2 x (40 x 5)
2 x (40 x 5)
3
3
3
600 600
570 570
540 540
3
3
3
605 605
590 590
580 580
3NE1438-0
800
3NE1438-1
800
3NE1438-2/-3 800
690
600
690
3
3
3
1.0
1.0
1.0
2 x (50 x 5) 3NP4476 3
2 x (50 x 5)
3
2 x (50 x 5)
3
640 630
600 600
580 580
3NP1163 3
3
3
630 630
610 610
600 600
3NE1447-2/-3 670
3NE1448-2/-3 850
690
690
3
3
1.0
1.0
2 x (40 x 5)
2 x (40 x 8)
530 530
630 630
3
3
575 575
630 630
3
3
2
2
Siemens · 2014
89
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
SITOR fuse links
Ø min Cu 3NP LV HRC fuse switch disconnectors
Busbar devices
Article No.
In
Un
A
V AC
3NE1802-0
3NE1803-0
3NE1813-0
3NE1814-0
40
35
16
20
690
690
690
690
000
000
000
000
3NE1815-0
3NE1817-0
3NE1818-0
3NE1820-0
25
50
63
80
690
690
690
690
000
000
000
000
3NE3221
3NE3222
3NE3224
100
125
160
1000 1
1000 1
1000 1
0.95 35
0.95 50
1.0 70
3NE3225
3NE3227
3NE3230-0B
200
250
315
1000 1
1000 1
1000 1
1.0 95
1.0 120
0.95 185
3NE3231
3NE3232-0B
3NE3233
350
400
450
1000 1
1000 1
1000 1
0.95 240
0.90 240
0.90 2 x 150
3NE3332-0B
3NE3333
3NE3334-0B
3NE3335
400
450
500
560
1000
1000
1000
1000
2
2
2
2
1.0
1.0
1.0
1.0
240
2 x 150
2 x 150
2 x 185
3NE3336
3NE3337-8
3NE3338-8
3NE3340-8
630
710
800
900
1000
900
800
690
2
2
2
2
1.0
1.0
0.95
0.95
2 x 185
2 x (40 x 5)
2 x 240
2 x (40 x 8)
3NE4101
3NE4102
3NE4117
3NE4118
32
40
50
63
1000
1000
1000
1000
0
0
0
0
0.9
0.9
0.9
0.9
6
10
10
16
3NP4276 1
1
1
1
3NE4120
3NE4121
3NE4122
3NE4124
80
100
125
160
1000
1000
1000
1000
0
0
0
0
0.9
0.9
0.9
0.9
25
35
50
70
1
1
1
1
3NE4327-0B
3NE4330-0B
3NE4333-0B
250
315
450
800
800
800
2
2
2
0.85 150
0.85 240
0.85 2 x (30 x 5)
3NE4334-0B
3NE4337
500
710
800
800
2
2
0.85 2 x (30 x 5)
0.95 2 x (50 x 5)
3NE8015-1
3NE8003-1
3NE8017-1
25
35
50
690
690
690
00
00
00
0.95 4
0.95 6
0.90 10
3NP4075/ 00 25
3NP4076 00 33
00 45
24
31
41
3NP1133 00 25
00 35
00 50
24
33
45
3NE8018-1
3NE8020-1
63
80
690
690
00
00
0.95 16
0.95 25
00 53
00 68
50
65
00 60
00 72
57
68
3NE8021-1
3NE8022-1
3NE80s24-1
100
125
160
690
690
690
00
00
00
0.95 35
0.95 50
0.95 70
Un
BG WL
mm2
Article
No.
1.0
1.0
1.0
1.0
10
6
1.5
2.5
3NP4015/ 000 40
3NP4016 000 35
000 16
000 20
1.0
1.0
1.0
1.0
4
10
16
25
= Size
In
= Rated current
WL
= Varying load factor
3NP4276 1
1
1
1
1
90
= Maximum permissible current
= Maximum permissible current with varying load
Siemens · 2014
25
50
63
80
40
35
16
20
25
50
63
80
Article
No.
BG Imax IWL
A
3NP4075/ 00 40
3NP4076 00 35
00 16
00 20
00
00
00
00
25
50
63
80
Article
No.
BG Imax IWL
A
Article
No.
BG Imax IWL
A
40
35
16
20
3NP1123 000
000
000
000
40
35
16
20
40
35
16
20
3NP1133 00
00
00
00
40
35
16
20
40
35
16
20
25
50
63
80
000
000
000
000
25
50
63
80
25
50
63
80
00
00
00
00
25
50
63
80
25
50
63
80
95 90 3NP4376 2
115 109
2
150 150
2
100 95 3NP1143 1
125 119
1
160 160
1
95 90 3NP1153 2
113 107
2
140 140
2
100 95
125 119
150 150
185 185
225 225
2
2
2
200 200
250 250
285 285
170 170
200 200
2
2
2
180 180
215 215
265 252
2
2
2
310 310
330 330
360 360
2
2
2
280 266
310 279
330 297
3NP4075/ 00 85 81
3NP4076 00 100 95
00 125 120
Ømin Cu = Required conductor cross-section Cu
Imax
IWL
A
000
000
000
000
= Rated voltage
BG
BG Imax IWL
1
1
3NP4476 3
3
3
3
340
370
410
450
340
370
410
450
3NP1163 3
3
3
3
360
390
415
460
360
390
415
460
3
3
3
3
500
510
520
530
500
510
520
530
3
3
3
3
500
500
500
500
500
500
475
475
32
38
45
59
29
34
41
53
32
40
50
60
29
36
45
54
76
90
115
144
68
81
104
130
1
1
1
1
76
93
115
144
68
84
104
130
3NP4476 3
3
3
235 210
280 260
390 370
3NP1163 3
3
3
220 187
255 217
355 302
3
3
415 400
480 480
3
3
390 332
500 475
3NP1143 1
1
1
1
3NP1133 00 85 81
00 100 95
00 115 109
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
Load rating of SITOR fuse links with 3KL/3KM LV HRC fuse switch disconnectors
SITOR fuse links
Ø min Cu 3KL/3KM switch disconnectors with fuses
3KL... add-on devices
Article No.
In
Un
A
V AC
3NC2423-0C/ 150
3NC2423-3C
3NC2425-0C/ 200
3NC2425-3C
3NC2427-0C/ 250
3NC2427-3C
3NC2428-0C/ 300
3NC2428-3C
3NC2431-0C/ 350
3NC2431-3C
3NC2432-0C/ 400
3NC24323C
BG WL
mm2
500
3
0.85 70
3KM... busbar devices
Article
No.
BG Imax IWL
3KL61
3
145 123 3KL62
3
150 128
A
Article
No.
BG Imax IWL
A
500
3
0.85 95
3
180 153
3
190 162
500
3
0.85 120
3
225 191
3
240 204
500
3
0.85 185
3
255 217
3
270 230
500
3
0.85 240
3
330 281
3
345 293
500
3
0.85 240
3
400 340
3
400 340
3
480 408
3NC3336-1
3NC3337-1
3NC3338-1
630
710
800
1000 3
1000 3
1000 3
0.85 2 x (40 x 5) 3KL62
0.85 2 x (50 x 5)
0.85 2 x (40 x 8)
3
3
3
500 425 3KL61
540 459
600 510
3NC3340-1
3NC3341-1
3NC3342-1
3NC3343-1
900
1000
1100
1250
1000
1000
800
800
0.90
0.90
0.90
0.90
3
3
3
3
650
720
800
800
3NC3430-1
3NC3432-1
315
400
1250 3
1250 3
0.95 2 x 95
0.95 2 x 120
3KL61
3
3
285 271 3KL62
365 347
3
3
300 285
380 361
3NC3434-1
3NC3436-1
3NC3438-1
500
630
800
1250 3
1250 3
1100 3
0.90 2 x 150
0.95 2 x (40 x 5)
0.90 2 x (40 x 8) 3KL62
3
3
3
425 383
500 475
650 618
3
3
450 405
540 513
690
3
0.85 70
3
135 115 3KL62
3
140 119
3NC8423-0C/ 150
3NC8423-3C
3NC8425-0C/ 200
3NC8425-3C
3NC8427-0C/ 250
3NC8427-3C
3
3
3
3
2 x (40 x 8)
2 x (50 x 8)
2 x (50 x 8)
2 x (50 x 8)
3KL61
Article
No.
BG Imax IWL
A
Article
No.
BG Imax IWL
A
585
648
720
720
690
3
0.85 95
3
180 153
3
190 162
690
3
0.85 120
3
225 191
3
240 204
3NC8431-0C/ 350 690
3NC8431-3C
3NC8434-0C/ 500 690
3NC8434-3C
3NC8444-3C 1000 600
3
0.85 240
3
300 255
3
315 268
3
0.85 2 x 150
3
425 361
3
450 383
3
0.95 2 x (60 x 6) 3KL62
3
800 760 3KL61
3
630 630
00 80 80 3KL53
00 100 100
00 100 100
00 80 80 3KM52
00 100 100
00 100 100
00 80 80
00 100 100 3KM53
00 100 100
00 80 80
00 100 100
00 125 125
00 125 125
00 125 125
00 125 125
00 125 125
00 125 125
00 100 100
00 125 125
1
1
160 160 3KL57
160 160
2
2
160 160 3KM55
160 160
1
1
160 160 3KM53
160 160 3KM57
00 125 125
2
160 160
3NE1020-2
3NE1021-0
3NE1021-2
80
100
100
690
690
690
00
00
00
1.0
1.0
1.0
25
35
35
3NE1022-0
3NE1022-2
125
125
690
690
00
00
1.0
1.0
50
50
3NE1224-0
160
3NE1224-2/-3 160
690
690
1
1
1.0
1.0
70
70
3NE1225-0
200
3NE1225-2/-3 200
690
690
1
1
1.0
1.0
95
95
1
1
200 200
200 200
2
2
200 200
200 200
1
1
200 200
200 200
2
2
160 160
200 200
3NE1227-0
250
3NE1227-2/-3 250
690
690
1
1
1.0
1.0
120
120
1
1
250 250
245 245
2
2
250 250
250 250
1
1
250 250
245 245
2
2
200 200
250 250
3NE1230-0
315
3NE1230-2/-3 315
690
690
1
1
1.0
1.0
2 x 70
2 x 70
3KL57
2
2
315 315
280 280
3KM57
2
2
315 315
280 280
2
250 250
3NE1331-0
350
3NE1331-2/-3 350
690
690
2
2
1.0
1.0
2 x 95
2 x 95
3KL57
2
2
330 330 3KL61
300 300
3
3
350 350 3KM57
350 350
2
2
330 330
300 300
3NE1332-0
400
3NE1332-2/-3 400
690
690
2
2
1.0
1.0
2 x 95
2 x 95
2
2
375 375
340 340
3
3
400 400
400 400
2
2
375 375
315 315
3NE1333-0
450
3NE1333-2/-3 450
690
690
2
2
1.0
1.0
2 x 120
2 x 120
3
3
450 450 3KL62
450 450
3
3
450 450
450 500
2
2
400 400
325 325
3NE1334-0
500
3NE1334-2/-3 500
690
690
2
2
1.0
1.0
2 x 120
2 x 120
3
3
500 500
500 500
3
3
500 500
500 500
2
2
400 400
350 350
3NE1435-0
560
3NE1435-2/-3 560
690
690
3
3
1.0
1.0
3
3
560 560 3KL62
560 560
3
3
560 560
560 560
3NE1436-0
630
3NE1436-2/-3 630
690
690
3
3
1.0
1.0
2 x 150
2 x 150
2 x 185
2 x 185
3
3
630 630
615 615
3
3
630 630
630 630
3NE1437-0
710
3NE1437-1
710
3NE1437-2/-3 710
690
600
690
3
3
3
1.0
1.0
1.0
2 x (40 x 5)
2 x (40 x 5)
2 x (40 x 5)
3
3
3
630 630
630 630
630 630
3
3
3
710 710
710 710
700 700
3NE1438-0
800
3NE1438-1
800
3NE1438-2/-3 800
690
600
690
3
3
3
1.0
1.0
1.0
3
3
3
630 630 3KL62
630 630
630 630
3
3
3
800 800
800 800
760 760
3NE1447-2/-3 670
3NE1448-2/-3 850
690
690
3
3
1.0
1.0
2 x (50 x 5) 3KL61
2 x (50 x 5)
2 x (50 x 5)
2 x (40 x 5)
3
3
630 630
630 630
3
3
670 670
790 790
2 x (40 x 8)
3KL52
3KL55
3KL61
3KL61
Siemens · 2014
91
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
SITOR fuse links
Ø min Cu 3KL/3KM switch disconnectors with fuses
3KL... add-on devices
Article No.
In
Un
A
V AC
3NE1802-0
3NE1803-0
3NE1813-0
3NE1814-0
40
35
16
20
690
690
690
690
000
000
000
000
1.0
1.0
1.0
1.0
10
6
1.5
2.5
3NE1815-0
3NE1817-0
3NE1818-0
3NE1820-0
25
50
63
80
690
690
690
690
000
000
000
000
1.0
1.0
1.0
1.0
4
10
16
25
3NE3221
3NE3222
3NE3224
100
125
160
1000 1
1000 1
1000 1
0.95 35
0.95 50
1.0 70
3NE3225
3NE3227
3NE3230-0B
200
250
315
1000 1
1000 1
1000 1
1.0 95
1.0 120
0.95 185
3NE3231
3NE3232-0B
3NE3233
350
400
450
1000 1
1000 1
1000 1
0.95 240
0.90 240
0.90 2 x 150
3NE3332-0B
3NE3333
3NE3334-0B
3NE3335
400
450
500
560
1000
1000
1000
1000
2
2
2
2
1.0
1.0
1.0
1.0
240
2 x 150
2 x 150
2 x 185
3NE3336
3NE3337-8
3NE3338-8
3NE3340-8
630
710
800
900
1000
900
800
690
2
2
2
2
1.0
1.0
0.95
0.95
2 x 185
2 x (40 x 5)
2 x 240
2 x (40 x 8)
3NE4101
3NE4102
3NE4117
3NE4118
32
40
50
63
1000
1000
1000
1000
0
0
0
0
0.9
0.9
0.9
0.9
6
10
10
16
3NE4120
3NE4121
3NE4122
3NE4124
80
100
125
160
1000
1000
1000
1000
0
0
0
0
0.9
0.9
0.9
0.9
25
35
50
70
3NE4327-0B
3NE4330-0B
3NE4333-0B
250
315
450
800
800
800
2
2
2
0.85 150
3KL57
0.85 240
0.85 2 x (30 x 5)
2
2
2
3NE4334-0B
3NE4337
500
710
800
800
2
2
0.85 2 x (30x5) 3KL61
0.95 2 x (50 x 5)
3
3
3NE8015-1
3NE8003-1
3NE8017-1
25
35
50
690
690
690
00
00
00
0.95 4
0.95 6
0.90 10
00 25
00 33
00 45
24
31
41
3NE8018-1
3NE8020-1
63
80
690
690
00
00
0.95 16
0.95 25
00 54
00 68
51
65
3NE8021-1
3NE8022-1
3NE8024-1
100
125
160
690
690
690
00
00
00
0.95 35
0.95 50
0.95 70
Un
BG WL
mm2
BG Imax IWL
3KL50
00
00
00
00
40
35
16
20
40
35
16
20
00
00
00
00
25
50
63
80
25
50
63
80
1
1
1
90 86 3KL57
110 105
140 140
2
2
2
1
1
175 175
210 210
3KL52
3KL55
3KL61
= Size
In
= Rated current
WL
= Varying load factor
3KL50
3KL52
3KL52
Ømin Cu = Required conductor cross-section Cu
Imax
= Maximum permissible current
IWL
= Maximum permissible current with varying load
92
Siemens · 2014
A
Article
No.
BG Imax IWL
3KL52
00
00
00
00
Article
No.
BG Imax IWL
3KM50
00
00
00
00
40
35
16
20
40
35
16
20
00
00
00
00
25
50
63
80
25
50
63
80
95 90 3KM55
115 109
150 150
1
1
1
90 86
110 105 3KM57
140 140
2
2
2
180 180
220 220
240 228
1
1
175 175
210 210
2
2
2
265 252
290 261
320 288
A
40
35
16
20
40
35
16
20
00 25
00 50
00 63
25
50
63
3KM52
A
Article
No.
BG Imax IWL
3KM52
00 40
00 35
00 16
40
35
16
00
00
00
00
20
25
50
63
20
25
50
63
2
2
95 90
115 109
2
2
2
150 150
180 180
220 220
2
2
2
240 228
265 252
290 261
2
320 288
3
3
3
3
340
380
440
500
340 3KL62
380
440
500
3
3
3
3
360
400
470
530
360 3KM57
400
470
530
2
2
2
2
290
320
360
400
290 3KM57
320
360
400
3
3
3
3
540
600
630
630
540
600
630
630
3
3
3
3
580
640
720
800
580
640
680
750
2
2
2
2
400
400
400
400
400
400
400
400
1
1
1
1
32
40
50
63
29
36
45
57
1
1
1
1
32
40
50
63
29
36
45
57
1
1
1
1
80
95
120
150
72
86
108
135
1
1
1
1
80
95
120
150
72
86
108
135
175 149 3KL61
230 196
340 289
3
3
3
200 170 3KM57
260 221
370 315
2
2
2
175 149
230 196
340 289
425 361 3KL62
600 570
3
3
450 375
630 600
2
2
380 323
400 400
3KL55
= Rated voltage
BG
3KM... busbar devices
Article
No.
3KL52
3KL53
00 89 85 3KL53
00 106 101
00 130 124
00 25
00 35
00 50
24
33
45
00 60
00 68
57
65
3KM55
3KM50
3KM52
00 89 85 3KM52
00 106 101
00 130 124
00 25
00 33
00 45
24
31
41
00 54
00 68
51
65
3KM52
00 89 85 3KM53
00 106 101
00 130 124
A
00 25
00 35
24
33
00 50
00 60
45
57
00 68 65
00 89 85
00 106 101
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
32
71,5
109
141
61
61
71,5
109
141
32
18
I201_13719a
11,5
18
Ø75
59,4
17,6
59,4
17,6
19
19
10
6
9
10
I201_13721a
18
Ø75
6
11,5
9
11,5
■ Dimensional drawings
c
b
70
73
a
70
110
12,512,5
73
110
151
68
68
2,5
32
73
151
2,5
32
10,5
3NC24. .-3C, 3NC84. .-3C
13
3NC24. .-0C, 3NC84. .-0C
I201_13936
13
10,5
60,4
82,1
e
d
I201_06717
f
g
60,4
82,1
3NE143.-0, 3NE143.-1
6
10
6
70
10
f
10
6
70
32
3NE14. .-3
3NE12. .-3, 3NE13. .-3
Type
Dimensions (mm)
a
b
c
d
e
f
g
3NE12. .-3 135 31 12.5 40.5 13.5 52
63.5
3NE13. .-3 149 38 19.5 47.5 15
72
Siemens · 2014
60
93
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
48
6
30
21
10
10
35,8
53,3
40
3NE87. .-1
53
79
53,8
79,9
49,4
2,2
I201_06713
15
6
8,5
21
I201_11343
40,5
20
54
78
100
50,3
2,3
8,5
15
I201_06714
SITOR, LV HRC design
3NE18. .-0
35,8
60
3NE102.-0, 3NE102.-2, 3NE80. .-1
32
68
73
151
2,5
73
149
66,5
73
135
66,5
3
3
25
52
60
10
6
73
10
6
52
6
73
3NE12. .-0, 3NE12. .-2
94
Siemens · 2014
3NE133.-0, 3NE133.-2
10
25
47,5
60
72
I201_07071
I2_06715
40,5
63,5
60,4
82,1
3NE14. .-2
I201_12427
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
32,2
18
0,7
SITOR, LV HRC design
d
b
c
a
b
a
2
16
13
Ø75
Ø30
I201_13469
M12
I201_13470
13
18
Ø75
9
60
17,5
19
6
10
2,6
3NC32. .-1, 3NC33. .-1
Type
3NC32. .-6, 3NC33. .-6
Dimensions (mm)
Type
Dimensions (mm)
b
c
d
a
b
3NC32. .-1
102
51
78
40
3NC32. .-6
52
50
3NC33. .-1
139
72
108
61
3NC33. .-6
73
71
14,5
15 14
12,5
12,512,5
110
47
73
a
68
65
125
73,5
141,5
107,5
2,5
10,5
11,5
10,5
a
14,5
12,5
f
71
48
60
10
6
10
10,5
58
6
10,5
11,5
6
10
30
c
b
I201_06450
e
60
d
f
g
I201_11338
3NE43. .-0B, 3NE4337
3NE41. .
3NE322., 3NE323., 3NE33. .
Type
Dimensions (mm)
a
b
c
d
e
f
g
3NE322.
135
31
12.5
40.5
13.5
52
63.5
3NE323.
135
31
12.5
40.5
13.5
52
63.5
3NE33. .
149
38
19.5
47.5
15
60
72
Siemens · 2014
95
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
32
18
13
Ø75
Ø30
d
b
c
a
b
a
2
16
a
32,2
18
0,7
SITOR, LV HRC design
81
91,5
129
b
I201_13469
M12
I201_13470
13
18
Ø75
9
10
17,6
17,5
19
6
10
59,4
60
2,6
19
9
I201_13722a
6
a
18
Ø75
3NE3. . .-0C, 3NE36. .-1C
Type
3NC34. .-1
Dimensions (mm)
a
b
3NE3. . .-0C
11.5
161
3NE36. .-1C
13
171
Ø28
96
109
10
M10
70
70
81,5
I201_11340a
10
3NE3635-6
96
Siemens · 2014
Type
3NC34. .-1
3NC34. .-6
Dimensions (mm)
Type
a
b
c
d
139
72
108
61
3NC34. .-6
Dimensions (mm)
a
b
73
71
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
32
18
32
18
13
171,5
209
241
219,5
257
289
208,5
161
c
d
b
a
e
a
32
18
I2_13723
e
18
Ø75
59,4
I201_13724a
a
18
Ø75
6
17,6
13
18
Ø75
59,4
17,6
19
10
9
I201_13725a
6
19
10
17,6
59,4
6
9
19
10
9
3NE56. .-0C
Type
3NE56. .-0C
3NE54. .-0C, 3NE54. .-1C;
3NE7. . .-0C, 3NE7. . .-1C
Dimensions (mm)
Type
a
b
c
d
e
201
169
121
131.5 11.5
3NE96. .-1C
Dimensions (mm)
a
3NE54. .-0C
11.5
3NE54. .-1C
13
3NE7. . .-0C
11.5
3NE7. . .-1C
13
Siemens · 2014
97
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
M10
Ø28
M10
M10
3NE64. .-7, 3NE94. .-7
3NE64. ., 3NE94. .
Dimensions (mm)
Type
Dimensions
(mm)
a
b
c
3NC5838
98
88.5
25
a
b
3NC5841
98
88.5
25
3NE6437
89
76
20.5
3NE9450
89
76
3NE9440-6
89
76
3NE6444
99
86
119
109.5
Ø20
10,4
Ø20
M10
30
57
I201_11376a
79
68
60
76
77
40
26
I201_11375a
I201_11373a
66
62
15
15
M10
10
54
53
119
10,5
10,5
3NE3. . .-5
3NE41. .-5
Siemens · 2014
60
52
57
I201_11374a
60
47
10,5
12,5
82,5
73
3NE43. .-6B, 3NE4337-6
7
30
57
60
I2_11371a
70
81,5
I201_11372a
SW41
70
81,5
Ø11
3NC58. .
3NC5840
55
b
a
11
10
10
M24
Ø40
Type
98
70
125
100
M10
3NC5531
77
75,5
83
70
M10
SW41
Ø28
Ø50
Ø73
b
a
91
0,3
I201_11369a
Ø50
I2_11370a
9
10
c
24,5
Ø28
10
M10
3NC73. .-2
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
■ Characteristic curves
3NC24. . series
3
gR or aR
500 V AC
150 ... 400 A
Let-through characteristics (current limitation at 50 Hz)
I201_10809
6
4
2
10 5
Let-through current
Virtual pre-arcing time
vs
[s]
10 4
10 3
6
4
2
10 2
6
I201_10812
Time/current characteristics diagram
c [A]
Size:
Operational class:
Rated voltage:
Rated current:
Unlimited
peak values:
DC component
component
50
%
DC
0%
4
400 A
350 A
300 A
250 A
200 A
150 A
2
10 4
6
4
6
2
4
10 1
6
4
2
200 A
300 A
400 A
2
10 0
150 A
250 A
10 3
10 3
350 A
6
4
2
4
6
2
2
4
6 8 10 5
8 10 4
Prospective short-circuit current
p [A]
2
10 -1
6
4
2
10 -2
6
4
2
4
6
8 10 3
2
4
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
0.8
0,8
0.6
0,6
0.4
0,4
6
[A]
8 10 4
Peak arc voltage
I201_10810
1
p
1400
I201_10811
2
Peak arc voltage Ûs [V]
10 -3
10 2
1200
1000
800
600
400
200
0.2
0,2
0
100
200
400
300
500
Recovery voltage U w [V]
600
0
0
200
400
600
Recovery voltage Uw [V]
800
Siemens · 2014
99
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NC32 series
3
aR
690 V AC (630 ... 1250 A),
500 V AC (1400 ... 1600 A)
630 ... 1600 A
Rated current:
2
10
3
6
4
Permissible
overload
2
10
10 5
2
Let-through current Ic [A]
10
6
4
Let-through characteristic curves
4
I201_13402
Virtual melting time t vs [s]
Time/current characteristics diagram
6
4
I201_13405a
Size:
Operational class:
Rated voltage:
6
1600 A
1400 A
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
4
2
10 4
6
2
1600 A
1400 A
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
1
10
6
4
2
Melting
10 0
6
4
4
2
10
3
10 3
2
4
6 8 10 4
2
4
6 8 10 5
Prospective short-circuit current Ip [A]
2
10-1
6
4
2
-2
10
6
4
2
4
2
4 6 8 10 4
2
6 8 10 3
Prospective short-circuit current
Correction factor kA for breaking I2t value
Correction factor for breaking
2t
U n = 500 V
0,8
4 6 8 10 5
[A]
Peak arc voltage
I201_13403
value [A2 s]
1
p
U n = 690 V
0,6
0,4
1600
I201_13404
2
Peak arc voltage Ûs [V]
10-3
10 2
1400
1200
1000
800
600
400
200
0,2
100
0
100
200
300
400
500
600
700
Recovery voltage Uw [V]
Siemens · 2014
800
0
0
200
400
600
Recovery voltage U w [V]
800
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NC33 series
3
aR
1000 V AC (630 ... 1000 A),
800 V AC (1100 ... 1250 A)
630 ... 1250 A
Rated current:
10 5
c
2
[A]
10
6
4
Let-through characteristic curves
4
I201_13406
10
3
Let-through current
Virtual pre-arcing time t vs [s]
Time/current characteristics diagram
6
4
Permissible
overload
2
10
2
6
4
I201_13409
Size:
Operational class:
Rated voltage:
6
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
4
2
10 4
6
2
4
1
10
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
6
4
2
Prearcing
10 0
6
4
2
10
3
10 3
2
4
2
4
6 8 10 4
Prospective short-circuit current
p
6 8 10 5
[A]
2
10-1
6
4
2
10-2
6
4
2
4
2
4 6 8 10 4
2
6 8 10 3
Prospective short-circuit current
Correction factor kA for breaking I2t value
I201_13407
-value [A2 s]
2t
Correction factor for breaking
4 6 8 10 5
[A]
Peak arc voltage
1
U n = 800 V
0,8
p
U n = 1000 V
0,6
0,4
2600
I201_13408
2
Peak arc voltage Ûs [V]
10-3
10 2
2400
2000
1600
1200
800
400
0,2
0
200
400
600
800
Recovery voltage U w [V]
1000
0
0
200
400
600
800
1000
Recovery voltage U w [V]
1200
Siemens · 2014
101
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NC34 series
3
aR
1250 V AC (315 ... 630 A),
1100 V AC (800 A)
315 ... 800 A
Rated current:
Time/current characteristics diagram
2
10
3
6
4
2
10
2
Permissible
overload
6
4
10 5
Let-through current Ic [A]
I201_17061
Peak arc voltage t vs [s]
10
6
4
Let-through characteristic curves
4
I201_17058
Size:
Operational class:
Rated voltage:
6
800 A
630 A
4
500 A
2
400 A
315 A
10 4
6
2
4
1
10
800 A
630 A
500 A
400 A
315 A
6
4
2
10 0
Prearcing
Unlimited peak values:
2
DC component 50 %
DC component 0 %
10
3
10 3
6
4
2
4
6
8 10 4
2
4
6 8 10 5
Prospective short-circuit current I p [A]
2
10-1
6
4
2
-2
10
6
4
2
4
6 8 10 3
2
4 6 8 10 4
2
4 6 8 10 5
Prospective short-circuit current I p [A]
Correction factor kA for breaking I2t value
Peak arc voltage
Correction factor for breaking
2t
I201_17059
value [A2 s]
1
800 A
0.8
315 A ... 630 A
0.6
0.4
0.2
102
3000
I201_17060
2
Peak arc voltage Ûs [V]
10-3
10 2
2500
2000
1500
1000
500
200
400
600
800
1000
1200
Recovery voltage Uw [V]
Siemens · 2014
1400
0
0
200
400
600
800 1000 1200 1400
Recovery voltage U w [V]
2
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NC5531, 3NC58. . series
aR
800 V AC (350 A, 630 A),
1000 V AC (600 A, 800 A)
350 ... 800 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
I201_11432
10 4
vs [s]
6
4
2
6
800 A
630 A
600 A
4
Let-through current
10 3
Virtual pre-arcing time
5
10
I201_11433
Rated current:
c [A]
Operational class:
Rated voltage:
6
4
2
10 2
350 A
2
4
10
6
4
6
2
4
10 1
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
350 A
600 A
630 A
2
10 0
800 A
3
10
10
6
4
3
2
4
6
5
4
8 10
4
6 8 10
2
Prospective short-circuit current
2
p [A]
4
2
10 -1
6
4
2
10 -2
6
4
2
4
6 8 10 3
4
2
4 6 8 10
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
5
Peak arc voltage
I201_11434
Correction factor A
1
4 6 8 10
p [A]
2000
I201_11435
2
1800
Peak arc voltage Û s [V]
10 -3
10 2
1600
0.8
600 A
800 A
1400
630 A
600 A
800 A
0.6
1200
1000
0.4
350 A
350 A
630 A
800
600
400
0.2
200
0
200
400
0
800
Recovery voltage U w [V]
600
1000
0
200
400
600
800
1000
Recovery voltage U w [V]
1200
Siemens · 2014
103
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NC73. .-2 series
aR
680 V AC
250 A, 350 A
Let-through characteristics (current limitation at 50 Hz)
I201_11449
6
4
2
105
6
350 A
4
10 3
Let-through current
Virtual pre-arcing time vs [s]
10 4
I201_11450
Time/current characteristics diagram
c [A]
Operational class:
Rated voltage:
Rated current:
6
4
2
10 2
250 A
2
104
6
4
6
2
4
10 1
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
350 A
250 A
2
103
10 3
10 0
6
4
2
4
6
8 10 4
4
6 8 10 5
2
Prospective short-circuit current
2
10 -1
6
4
2
10 -2
6
4
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
Correction factor
Peak arc voltage
I201_11451
A
1
4 6 8 10 5
p [A]
2000
I201_11452
2
1800
Peak arc voltage Û s [V]
10 -3
10 2
1600
0.8
1400
1200
0.6
1000
0.4
800
600
400
0.2
200
0
104
100
200
300 400 500 600 700
Recovery voltage U w [V]
Siemens · 2014
0
800
0
200
400
600
800
1000
Recovery voltage U w [V]
1200
2
p [A]
4
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NC84. . series
3
gR or aR
660 V AC
150 ... 1000 A
Let-through characteristics (current limitation at 50 Hz)
I201_10821
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
6
c
2
10 5
4
Let-through current
Virtual pre-arcing time vs [s]
10 4
10 3
6
4
2
10 2
I201_10824a
Time/current characteristics diagram
[A]
Size:
Operational class:
Rated voltage:
Rated current:
1000 A
2
500 A
350 A
10 4
6
4
6
2
4
250 A
200 A
150 A
10 1
6
4
2
2
1000 A
10 0
10 3
10 2
500 A
350 A
250 A
200 A
150 A
6
4
2
10 -1
2
6 8 10 3
4
2
4
6 8 10 4
2
6 8 10 5
4
Prospective short-circuit current
p
2
4
[A]
6
4
2
10 -2
6
4
2
4
6 8 10 3
4
2
4 6 8 10
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
0.8
1000 A
0.6
5
Peak arc voltage
I201_10822
Correction factor A
1
4 6 8 10
p [A]
150 ... 500 A
0.4
1400
I201_10823
2
Peak arc voltage Û s [V]
10 -3
10 2
1200
1000
1000 A
800
150 ... 500 A
600
400
200
0.2
0
100
200
300
400
600 700
Recovery voltage U w [V]
500
800
0
0
200
400
600
Recovery voltage U w [V]
800
Siemens · 2014
105
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE102.-0, 3NE12. .-0 series
00, 1
gS
690 V AC
100 ... 315 A
Let-through characteristics (current limitation at 50 Hz)
I201_10829
Virtual pre-arcing time vs [s]
10 4
6
4
2
10 3
6
4
2
10 2
315 A
250 A
200 A
160 A
125 A
100 A
6
4
2
10 1
5
10
I201_10831
Time/current characteristics diagram
Let-through current c [A]
Size:
Operational class:
Rated voltage:
Rated current:
6
Unlimited peak values:
DC component 50 %
DC component 0 %
4
2
315 A
250 A
200 A
125/160 A
100 A
4
10
6
4
6
4
2
2
10 0
10
3
10 3
6
4
2
4
6
2
2
8 10 4
4
6 8 10 5
Prospective short-circuit current p [A]
2
10 -1
6
4
2
10 -2
6
4
2
4
6
8 10 3
2
4
Prospective short-circuit current
Correction factor kA for breaking I2t value
0.8
4
8 10
Peak arc voltage
I201_10830
Correction factor A
1
6
p [A]
3NE1 2..-0
3NE1 02.-0
0.6
0.4
1400
I201_10827
2
Peak arc voltage Û s [V]
10 -3
10 2
1200
1000
800
600
400
200
0.2
0
106
100
200
300
400 500 600 700
Recovery voltage U w [V]
Siemens · 2014
0
800
0
100
200
300 400 500 600 700
Recovery voltage U w [V]
800
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE102.-2, 3NE12. .-2, 3NE12. .-3, 3NE13. .-2, 3NE13. .-3 series
00, 1, 2
gR
690 V AC
80 ... 500 A
Let-through characteristics (current limitation at 50 Hz)
I201_10839a
6
4
C
2
10
10 3
Peak let-through current
Virtual pre-arcing time
tVS [s]
10 4
6
4
2
10 2
6
4
80 A
100 A
125 A
160 A
200 A
250 A
315 A
350 A
400 A
450 A
500 A
2
10 1
6
4
2
10 0
6
4
5
I201_10842a
Time/current characteristics diagram
A
Size:
Operational class:
Rated voltage:
Rated current:
6
4
500 A
450 A
400 A
350 A
315 A
250 A
200 A
2
10 4
6
4
160 A
125 A
100 A
80 A
2
10 3
10 2
2
4
6
10 3
4
2
4 6 10
2
Prospective short-circuit current
4
6
10 5
p A
2
10 -1
6
4
2
10 -2
6
4
2
10 2
2
4
6
10 3
2
4
6
10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
Peak arc voltage
160 A - 315 A
80 A - 125 A
0,6
2000
I201_10840
350 A - 500 A
0,8
A
0,4
160...315 A
1600
Peak arc voltage
Correction factor
1
10 5
4
p
I201_10841
10 -3
1200
80...125 A
350...500 A
800
400
0,2
0
0
0
100
200
300
400
500
Recovery voltage
600
700
800
0
200
400
600
Recovery voltage
800
Siemens · 2014
107
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE133.-0, 3NE143.-0 series
2, 3
gS
690 V AC
350 ... 800 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
10 5
I201_10823
c [A]
1200
1000
1000 A
Let-through current
Peak arc voltage Û s [V]
1400
800
150 ... 500 A
600
400
200
Unlimited peak values:
DC component 50 %
DC component 0 %
6
4
800 A
710 A
630 A
560 A
500 A
450 A
400 A
350 A
2
10 4
6
4
0
0
200
400
600
Recovery voltage U w [V]
800
2
10 3
10 3
Correction factor kA for breaking I2t value
4
6
2
2
4
6 8 10 5
8 10 4
Prospective short-circuit current p [A]
Peak arc voltage
0.8
0.6
0.4
I201_10827
1400
Peak arc voltage Û s [V]
I201_10833
Correction factor A
1
2
1200
1000
800
600
400
200
0.2
0
108
100
200
300 400 500 600 700
Recovery voltage U w [V]
Siemens · 2014
0
800
0
100
200
300 400 500 600 700
Recovery voltage U w [V]
800
I201_10834
Size:
Operational class:
Rated voltage:
Rated current:
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE14. .-2, 3NE14. .-3 series
3
gR
690 V AC
560 ... 850 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
10 5
I201 10843
6
4
10 3
6
4
2
10 2
6
4
850 A
800 A
710 A
670 A
630 A
560 A
6
C
2
Peak let-through current
Virtual pre-arcing time
tVS [s]
10 4
I201_10846
Size:
Operational class:
Rated voltage:
Rated current:
4
2
10 4
6
2
4
10 1
6
4
2
560 A
630 A
670 A
710 A
800 A
850 A
2
10 0
6
4
2
10 3
10 2
2
4
6
10 3
2
4
6 10 4
2
Prospective short-circuit current
4
6
10 5
p
10 -1
6
4
2
10 -2
6
4
2
10 2
2
4
6
10 3
2
4
6
10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
10 5
Peak arc voltage
I201_10844
2000
0.8
1600
Peak arc voltage
Correction factor
1
4
p
0.6
0.4
I201_10845
10 -3
1200
800
400
0.2
0
0
0
100
200
300
400
500
Recovery voltage
600
700
800
0
200
400
600
Recovery voltage
800
Siemens · 2014
109
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE1437-1, 3NE1438-1 series
3
gR
600 V AC
710 and 800 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
105
2
3
10
6
4
2
2
10
6
4
2
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current c [A]
10
6
4
I201_10835
Virtual pre-arcing time vs [s]
4
6
800 A
710 A
4
800 A
710 A
1
10
I201_10838
Size:
Operational class:
Rated voltage:
Rated current:
2
6
4
2
104
10 3
0
10
6
4
2
4
2
2
6 8 10 4
4
6 8 10 5
Prospective short-circuit current p [A]
2
-1
10
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 3
2
4 6 8 10 4
2
4 6 8 10 5
Prospective short-circuit current p [A]
Correction factor kA for breaking I2t value
Peak arc voltage
I201_10836
Correction factor A
1
0,8
1400
1200
I201_10837
10 2
Peak arc voltage Û s [V]
10
1000
0,6
0,4
110
600
400
200
0,2
0
800
100
200 300 400 500 600 700 800
Recovery voltage U w [V]
Siemens · 2014
0
0
100 200 300 400 500 600 700 800
Recovery voltage U w [V]
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE18. .-0 series
000
gS
690 V AC
16 ... 80 A
Let-through characteristics (current limitation at 50 Hz)
80 A
6
63 A
50 A
40 A
35 A
25 A
20 A
16 A
c
2
10 4
Let-through current
103
6
4
80 A
63 A
50 A
40 A
35 A
25 A
20 A
16 A
2
102
6
4
2
101
I201_10828a
104
6
4
I201_10825
Virtual pre-arcing time vs[s]
Time/current characteristics diagram
[A]
Size:
Operational class:
Rated voltage:
Rated current:
4
2
10 3
6
4
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
2
100
10 2
10 2
6
4
2
4
6 8 10 3
2
4
6 8 10 4
2
6 8 10 5
4
Prospective short-circuit current
p
2
4
[A]
2
10-1
6
4
2
10-2
6
4
2
4
6 8 10 2
2
4 6 8 10 3
2
4 6 8 10 4
Prospective short-circuit current p [A]
Correction factor kA for breaking I2t value
Peak arc voltage
I201_10826
Correction factor A
1
0,8
0,6
0,4
1400
I201_10827
2
Peak arc voltage Û s [V]
10-3
10 1
1200
1000
800
600
400
200
0,2
0
0
100
200 300 400 500 600 700 800
Recovery voltage w [V]
0
100
200
300 400 500 600 700
Recovery voltage U w [V]
800
Siemens · 2014
111
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE322. series
1
aR
1000 V AC
100 ... 250 A
Virtual pre-arcing time
Let-through characteristics (current limitation at 50 Hz)
2
103
6
4
2
102
6
4
2
I201_10862
I201_10859
104
6
4
vs
[s]
Time/current characteristics diagram
Let-through current c [A]
Size:
Operational class:
Rated voltage:
Rated current:
250 A
200 A
160 A
125 A
100 A
4
10
6
4
2
3
10
6
2
101
4
6
4
2
Unlimited peak values:
DC component 50 %
DC component 0 %
2
2
100
250 A
200 A
160 A
125 A
100 A
6
4
2
10
10 2
2
4 6 8 10 3
4 6 8 10 4 2
4 6 8 10 5 2
2
Prospective short-circuit current p [A]
10-1
6
4
2
10-2
6
4
2
4
6 8 102
2
4 6 8 103
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
4 6 8 104
[A]
Peak arc voltage
I201_10860
Correction factor A
1
p
0,8
2500
I201_10861
2
Peak arc voltage Û s [V]
10-3
101
2000
1500
0,6
1000
0,4
500
0,2
0
112
200
400
600
800
Recovery voltage U w [V]
Siemens · 2014
1000
0
0
200
400
600
800 1000 1200
Recovery voltage U w [V]
4
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE323. series
1
aR
1000 V AC
315 ... 450 A
Let-through characteristics (current limitation at 50 Hz)
[s]
6
4
vs
2
10 3
10 5
Let-through current
Virtual pre-arcing time
I201_10863a
10 4
6
4
2
10 2
6
4
6
I201_10864
Time/current characteristics diagram
c [A]
Size:
Operational class:
Rated voltage:
Rated current:
Unlimited peak values:
DC component 50 %
DC component 0 %
4
450 A
400 A
350 A
315 A
2
10 4
6
2
4
10 1
6
4
2
450 A
400 A
350 A
315 A
2
10 0
10 3
10 3
6
4
2
4
2
2
6 8 10 4
4
6 8 10 5
Prospective short-circuit current p [A]
2
10 -1
6
4
2
10 -2
6
4
2
4
6
8 10 3
2
4
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
[A]
8 10 4
Peak arc voltage
I201_10860
Correction factor A
1
p
0,8
2500
I201_10861
2
Peak arc voltage Û s [V]
10 -3
10 2
2000
1500
0,6
1000
0,4
500
0,2
0
200
400
600
800
Recovery voltage U w [V]
1000
0
0
200
400
600
800 1000 1200
Recovery voltage U w [V]
Siemens · 2014
113
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE33. . series
Size:
Operational class:
Rated voltage:
Rated current:
2
aR
1000 V AC (up to 630 A)
900 V AC (710 A)
800 V AC (800 A)
690 V AC (900 A)
400 ... 900 A
Let-through characteristics (current limitation at 50 Hz)
5
3
6
4
2
102
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
4
Let-through current
10
I201_10867
6
c
2
10
[A]
104
6
4
I201_10865
Virtual pre-arcing time vs [s]
Time/current characteristics diagram
900 A
800 A
710 A
630 A
560 A
500 A
450 A
400 A
2
4
10
6
2
4
101
6
4
2
900 A
800 A
710 A
630 A
560 A
500 A
450 A
400 A
2
100
6
4
2
3
10
10 3
2
4
2
2
6 8 10 4
4
6 8 10 5
Prospective short-circuit current p [A]
10-1
6
4
2
10-2
6
4
2
4
6 8 10 3
2
4 6 8 10 4
2
4 6 8 10 5
Prospective short-circuit current p [A]
Correction factor kA for breaking I2t value
Peak arc voltage
I201_10866
Correction factor A
1
0.8
400 ... 630 A
710 A
800 A
900 A
0.6
0.4
2500
I201_10861
2
Peak arc voltage Û s [V]
10-3
10 2
2000
1500
1000
500
0.2
0
114
200
400
600
800
Recovery voltage U w [V]
Siemens · 2014
1000
0
0
200
400
600
800 1000 1200
Recovery voltage U w [V]
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE34. ., 3NE36. . series
3
aR
1000 V AC
100 ... 710 A
Let-through characteristics (current limitation at 50 Hz)
I201_10868
10
6
4
3
10
Let-through current
Virtual pre-arcing time
4
c
2
vs
[s]
4
6
4
2
2
10
6
4
710 A
630 A
500 A
450 A
400 A
315 A
Unlimited peak values:
DC component 50 %
DC component 0 %
2
224 A
4
10
100 A
6
4
2
1
10
2
6
4
710 A
630 A
500 A
450 A
400 A
315 A
224 A
100 A
2
0
10
6
4
2
3
10
6 8 10 3
2
4
2
2
6 8 10 4
4 6 8 10 5
Prospective short-circuit current p [A]
-1
10
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
4 6 8 10 5
[A]
Peak arc voltage
I201_10869
1
p
0,8
0,6
0,4
2000
I201_10870
10 2
1800
Peak arc voltage Ûs [V]
10
1600
1400
1200
1000
800
600
400
0,2
0
200
200
400
600
800
Recovery voltage U w [V]
1000
0
0
200
400
600
800 1000 1200
Recovery voltage Uw [V]
Siemens · 2014
115
I201_10871
Time/current characteristics diagram
[A]
Size:
Operational class:
Rated voltage:
Rated current:
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE35.5-5, 3NE41. .-5 series
aR, gR
800 V AC (170 A)
1000 V AC (50 A, 100 A, 200 A, 450 A)
50 ... 450 A
Rated current:
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
I201_11441
450 A
c [A]
2
10
4
2
Let-through current
vs
10
6
4
Virtual pre-arcing time
[s]
4
10
170 A
200 A
6
100 A
4
3
6
4
2
2
10
6
4
4
50 A
2
3
10
170 A
2
50 A
1
10
6
100 A 200 A 450 A
4
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
2
2
0
10
10 2
10
6
4
2
4 6 8 10 3
4 6 8 10 4 2
4 6 8 10 5 2
2
Prospective short-circuit current p [A]
2
-1
10
6
4
2
-2
10
6
4
2
-3
4
2
6 8 10 2
2
4 6 8 10 3
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
4 6 8 10 4
[A]
Peak arc voltage
I201_11443
1
p
2000
I201_11444
10 1
1800
Peak arc voltage Ûs [V]
10
I201_11442
Operational class:
Rated voltage:
1600
0,8
170 A
170 A
1400
200 A
1200
0,6
50/100 A
1000
200/450 A
0,4
800
600
400
0,2
0
116
200
200
400
800
600
Recovery voltage Uw [V]
Siemens · 2014
1000
0
0
200
400
600
800 1000 1200
Recovery voltage Uw [V]
4
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE41. . series
0
gR or aR
1000 V AC
32 ... 160 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
2
3
10
6
4
2
102
6
4
10
4
160 A
125 A
6
Let-through current c [A]
10
6
4
I201_10855
Virtual pre-arcing time vs [s]
4
I201_10858
Size:
Operational class:
Rated voltage:
Rated current:
100 A
4
80 A
63 A
50 A
40 A
32 A
2
10
3
6
2
4
101
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
160 A
125 A
100 A
80 A
63 A
50 A
40 A
32 A
2
100
6
4
2
2
10
2
10
2
4 6 8 10
3
4
5
4 6 8 10
4 6 8 10
2
2
2
Prospective short-circuit current p [A]
4
10-1
6
4
2
10-2
6
4
2
-3
2
4
6 8 10 2
2
4 6 8 10 3
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
Peak arc voltage
I201_10856
Correction factor A
1
4 6 8 10 4
p [A]
0,8
2500
I201_10857
10 1
Peak arc voltage Û s [V]
10
2000
1500
0,6
1000
0,4
500
0,2
0
200
400
600
800
Recovery voltage U w [V]
1000
0
0
200
400
600
800 1000 1200
Recovery voltage U w [V]
Siemens · 2014
117
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE43. .-0B, 3NE4337 series
2
aR
800 V AC
250 ... 710 A
Let-through characteristics (current limitation at 50 Hz)
I201_10851
10
6
4
2
3
10
10
6
4
2
2
10
6
4
5
6
Unlimited peak values:
DC component 50 %
DC component 0 %
4
Let-through current
Virtual pre-arcing time
vs[s]
4
I201_10854
Time/current characteristics diagram
c [A]
Size:
Operational class:
Rated voltage:
Rated current:
710 A
500 A
450 A
2
10
315 A
4
250 A
6
2
4
1
10
6
4
2
710 A
500 A
450 A
315 A
250 A
2
0
10
6
4
3
10
10 3
2
4
2
2
6 8 10 4
4
6 8 10 5
Prospective short-circuit current p [A]
2
-1
10
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 3
2
4 6 8 10 4
2
4 6 8 10 5
Prospective short-circuit current p [A]
Correction factor kA for breaking I2t value
Peak arc voltage
I201_10852
Correction factor A
1
2000
I201_10853
10 2
1800
Peak arc voltage Û s [V]
10
1600
0,8
1400
450 A
1200
0,6
315 A
0,4
1000
800
600
400
0,2
0
118
200
100
200 300 400 500 600 700 800
Recovery voltage U w [V]
Siemens · 2014
0
0
200
1000
400
600
800
Recovery voltage U w [V]
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE43. .-6B, 3NE4337-6 series
Operational class: R
Rated voltage:
Rated current:
800 V AC
250 ... 710 A
2
103
6
4
2
102
6
4
I201_11446
c [A]
I201_11445
5
10
Let-through current
Virtual pre-arcing time
Let-through characteristics (current limitation at 50 Hz)
104
6
4
vs
[s]
Time/current characteristics diagram
Unlimited peak values:
DC component 50 %
DC component 0 %
6
4
710 A
500 A
2
450 A
315 A
250 A
4
10
6
2
4
101
710 A
500 A
450 A
315 A
250 A
6
4
2
100
2
3
10
10 3
6
4
2
4
6 8 10 4
4 6 8 10 5
2
2
Prospective short-circuit current p [A]
4
2
10-1
6
4
2
10-2
6
4
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
4 6 8 10 5
[A]
Peak arc voltage
I201_11447
1
p
0,8
450 A
0,6
315 A
0,4
2000
I201_11448
2
1800
Peak arc voltage Ûs [V]
10-3
10 2
1600
1400
1200
1000
800
600
400
0,2
0
200
100
200 300 400 500 600 700 800
Recovery voltage U w [V]
0
0
200
400
600
800 1000 1200
Recovery voltage U w [V]
Siemens · 2014
119
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE54. . series
3
aR
1500 V AC
160 ... 450 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
2
10
6
4
2
2
10
6
4
[A]
Unlimited peak values:
DC component 50 %
DC component 0 %
2
450 A
350 A
315 A
224 A
Let-through current
3
Virtual pre-arcing time
4
c
I201_10872
10
6
4
vs
[s]
4
160 A
4
10
6
4
2
1
10
2
6
4
2
3
0
10
10
10 3
450 A
350 A
315 A
224 A
160 A
6
4
2
-1
10
2
4
2
6 8 10 4
4
6 8 10 5
Prospective short-circuit current
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
4 6 8 10 5
[A]
Peak arc voltage
I201_10873
1
p
0.8
0,8
4000
I201_10874
10 2
3600
Peak arc voltage Û s [V]
10
3200
2800
2400
0.6
0,6
2000
1600
0.4
0,4
1200
800
0.2
0,2
0
120
400
500
1000
Recovery voltage U w [V]
Siemens · 2014
1500
0
0
400
800
1200
1600
2000
Recovery voltage U w [V]
p
2
[A]
I201_10875
Size:
Operational class:
Rated voltage:
Rated current:
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE56. . series
3
aR
1500 V AC
250 ... 600 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
2
10
6
4
2
2
10
6
4
600 A
[A]
Unlimited peak values:
DC component 50 %
DC component 0 %
2
Let-through current
3
Virtual pre-arcing time
4
c
I201_10876
10
6
4
vs
[s]
4
I201_10877
Size:
Operational class:
Rated voltage:
Rated current:
450 A
250 A
4
10
6
4
2
1
10
2
6
4
450 A
2
250 A
0
10
600 A
3
10
10 3
2
6
4
4
2
6 8 10 4
4
6 8 10 5
Prospective short-circuit current
p
2
[A]
2
-1
10
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
Peak arc voltage
I201_10873
1
4 6 8 10 5
p [A]
0.8
0,8
4000
I201_10874
10 2
3600
Peak arc voltage Û s [V]
10
3200
2800
2400
0.6
0,6
2000
1600
0.4
0,4
1200
800
0.2
0,2
0
400
500
1000
Recovery voltage U w [V]
1500
0
0
400
800
1200
1600
2000
Recovery voltage U w [V]
Siemens · 2014
121
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE64. ., 3NE94. . series
Operational class:
Rated voltage:
Rated current:
aR, gR
600 V AC (850 A, 1250 A),
900 V AC (710 A, 900 A)
710 ... 1250 A
Time/current characteristics diagrams
4
2
3
3
10
10
Virtual pre-arcing time
Virtual pre-arcing time
10
6
4
I201_11437
[s]
I201_11436
2
vs
vs
[s]
4
10
6
4
6
4
2
2
10
6
4
2
6
4
2
2
10
6
4
2
1
1
10
10
850 A
6
4
1250 A
6
4
710 A
900 A
2
2
0
0
10
10
6
4
6
4
2
2
-1
-1
10
10
6
4
6
4
2
2
-2
-2
10
10
6
4
6
4
2
2
-3
-3
10
10 2
2
4
6 8 10 3
2
4
6 8 10 4
2
Prospective short-circuit current
122
Siemens · 2014
4 6 8 10 5
p [A]
10
10 2
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
p
4 6 8 10 5
[A]
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE64. ., 3NE94. . series
Operational class:
Rated voltage:
aR, gR
600 V AC (850 A, 1250 A),
900 V AC (710 A, 900 A)
710 ... 1250 A
Rated current:
Let-through characteristics (current limitation at 50 Hz)
5
Let-through current
c [A]
6
I201_11438
10
850/900/
1250 A
4
710 A
2
4
10
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
3
4
6 8 10 4
4 6 8 10 5
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
Correction factor
A
800 A
1250 A
0,8
2
[A]
4
Peak arc voltage
I201_11439
1
p
2000
710 A
900 A
1800
1600
I201_11440
2
Peak arc voltage Û s [V]
10
10 3
1400
1200
0,6
900 A
1000
710 A
0,4
850 A
1250 A
800
600
400
0,2
0
200
200
400
600
800
Recovery voltage U w [V]
1000
0
0
200
400
600
800 1000 1200
Recovery voltage U w [V]
Siemens · 2014
123
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE74. ., 3NE76. . series
Size:
Operational class:
Rated voltage:
Rated current:
3
aR
2000 V AC
200 ... 710 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
5
4
Let-through current
Virtual pre-arcing time
3
10
6
4
2
2
10
6
4
I201_10881
Unlimited peak values:
DC component 50 %
DC component 0 %
6
c
2
10
[A]
I201_10878
10
6
4
vs
[s]
4
710 A
630 A
525 A
400/450 A
350 A
250 A
200 A
2
4
10
6
2
4
1
10
710 A
630 A
525 A
450 A
400 A
350 A
250 A
200 A
6
4
2
0
10
6
4
2
3
10
10 3
2
4
2
2
6 8 10 4
4 6 8 10 5
Prospective short-circuit current
p [A]
2
-1
10
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
4 6 8 10 5
[A]
Peak arc voltage
I201_10879
1
p
0,8
4000
I201_10880
10 2
3600
Peak arc voltage Û s [V]
10
3200
2800
2400
0,6
2000
1600
0,4
1200
800
0,2
0
124
400
500
1000
1500
2000
Recovery voltage U w [V]
Siemens · 2014
0
0
400
1200 1600 2000 2400
800
Recovery voltage U w [V]
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE80. .-1 series
Size:
Operational class:
Rated voltage:
Rated current:
00
gR or aR
690 V AC
25 ... 160 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
4
2
3
10
6
4
2
2
10
6
4
I201_10850
10
Let-through current c [A]
10
6
4
I201_10847
Virtual pre-arcing time vs[s]
4
160 A
125 A
100 A
80 A
63 A
50 A
35 A
25 A
6
4
2
3
10
6
2
4
160 A
125 A
100 A
80 A
63 A
50 A
35 A
25 A
1
10
6
4
2
0
10
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
2
10
10 2
2
4 6 8 10 3
4 6 8 10 4 2
4 6 8 10 5 2
2
Prospective short-circuit current p [A]
4
2
-1
10
6
4
2
-2
10
6
4
2
-3
2
4
6 8 10 2
2
4 6 8 10 3
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
Peak arc voltage
I201_10848
1
4 6 8 10 4
p [A]
2000
I201_10849
10 1
1800
Peak arc voltage Ûs [V]
10
1600
0,8
1400
1200
0,6
1000
0,4
800
600
400
0,2
0
200
100
200 300 400 500 600 700 800
Recovery voltage U w [V]
0
0
200
400
600
Recovery voltage U w [V]
800
Siemens · 2014
125
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE870.-1, 3NE871.-1 series
000
gR or aR
690 V AC/700 V DC
20 ... 63 A
Let-through characteristics (current limitation at 50 Hz)
I201_10813
6
4
2
4
10
6
4
10 3
Let-through current
Virtual pre-arcing time vs[s]
10 4
I201_10816
Time/current characteristics diagram
c [A]
Size:
Operational class:
Rated voltage:
Rated current:
6
4
2
10 2
6
4
63 A
50 A
40 A
32 A
25 A
20 A
2
3
10
6
2
4
10 1
6
4
32 A
20 A
25 A
50 A
40 A
Unlimited peak values:
DC component 50 %
DC component 0 %
2
63 A
2
10 0
10
2
10
6
4
2
4
2
6 8 10
3
2
4
5
4 6 8 10
4 6 8 10
2
2
Prospective short-circuit current
p [A]
2
10 -1
6
4
2
10 -2
6
4
2
4
6
8 10 2
2
4
6
Prospective short-circuit current p [A]
Correction factor kA for breaking I2t value
Peak arc voltage
I201_10814
Correction factor A
1
3
8 10
0.8
0.6
0.4
1400
I201_10815
2
Peak arc voltage Û s [V]
10 -3
10 1
1200
1000
800
600
400
200
0.2
0
0
126
100
200 300 400 500 600 700 800
Recovery voltage U w [V]
Siemens · 2014
0
100
200
300 400 500 600 700
Recovery voltage U w [V]
800
4
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE872.-1, 3NE8731-1 series
000
aR
690 V AC/700 V DC according to UL
80 ... 315 A
Let-through characteristics (current limitation at 50 Hz)
6
4
vs[s]
Virtual pre-arcing time
I201_10817
10 4
2
10 3
6
4
2
10 2
6
4
105
I201_10820
Time/current characteristics diagram
Let-through current c [A]
Size:
Operational class:
Rated voltage:
Rated current:
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
2
315 A
250 A
200 A
160 A
125 A
100 A
80 A
104
6
4
2
10 1
2
6
4
315 A
250 A
200 A
160 A
125 A
100 A
80 A
2
10 0
6
4
103
6
102
2
4 6 8 103
4 6 8 104 2
4 6 8 105 2
2
Prospective short-circuit current p [A]
4
2
10 -1
6
4
2
10 -2
6
4
2
4
6 8 10 2
3
2
4 6 8 10
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
A
Correction factor
4
Peak arc voltage
I201_10818
1
4 6 8 10
p [A]
0,8
1400
I201_10819
2
1200
Peak arc voltage Ûs [V]
10 -3
10 1
1000
0,6
0,4
800
600
400
200
0,2
0
100
200
300
400
0
500
600
700
Recovery voltage U w [V]
800
0
100
200
300 400 500 600 700
Recovery voltage U w [V]
800
Siemens · 2014
127
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, LV HRC design
3NE963. series
Size:
Operational class:
Rated voltage:
Rated current:
3
aR
2500 V AC
400 ... 630 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
4
3
Let-through current
Virtual pre-arcing time
10
6
4
2
2
10
6
4
Unlimited peak values:
DC component 50 %
DC component 0 %
6
c
vs
2
10
[A]
I201_10882
[s]
10
6
4
630 A
500 A
400 A
2
4
10
6
2
4
1
10
6
4
630 A
500 A
400 A
2
2
3
0
10
10
6
4
10 3
2
4
2
2
6 8 10 4
4 6 8 10 5
Prospective short-circuit current p [A]
2
-1
10
6
4
2
-2
10
6
4
2
-3
10
10 2
2
4
6 8 10 3
2
4 6 8 10 4
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
4 6 8 10 5
[A]
Peak arc voltage
1
6000
Peak arc voltage U [V]
s
A
5000
0.8
4000
0.6
3000
2000
I201_10883
0.4
0.2
0
128
400
800
1200 1600 2000 2400 2800
Recovery voltage Uw [V]
Siemens · 2014
I201_10884
Correction factor
p
1000
0
0
500
1000
1500
2000
2500 3000
Recovery voltage Uw [V]
I201_10885
5
4
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
■ Overview
■ Benefits
SITOR cylindrical fuses protect power semiconductors from the
effects of short-circuits because the super quick-response disconnect characteristic is far quicker than that of conventional
fuses. They protect high-quality devices and system components such as semiconductor contactors, electronic relays (solid
state), converters with fuses in the input and in the DC link, UPS
systems and soft starters for motors up to 100 A.
The cylindrical design is approved for industrial applications.
The cylindrical fuse links comply with IEC 60269.
Cylindrical fuse holders also comply with IEC 60269 and
UL 512. The cylindrical fuse holders for 10 x 38 mm and
14 x 51 mm have been tested and approved as fuse switch disconnectors and the cylindrical fuse holders for 22 x 58 mm as
fuse disconnectors according to the switching device standard
IEC 60947-3. The utilization category and the tested current and
voltage values are specified in the Table "Technical Specifications".
• Cylindrical fuses have an extremely compact design and a
correspondingly small footprint
• The cylindrical fuses have IEC and UL approval and are
suitable for universal use worldwide.
• The use of SITOR cylindrical fuses in the cylindrical fuse holders and bases has been tested with regard to heat dissipation
and maximum current loading. This makes planning and
dimensioning easier and prevents consequential damage.
• The use of fuse holders as switch disconnectors expands the
area of application of these devices and increases operating
safety.
The cylindrical fuse holders have been specially developed for
the application of SITOR fuse links with regard to heat tolerance
and heat dissipation and are therefore not recommended for
standard applications.
Cylindrical fuse bases do not offer the same comprehensive
touch protection as the fuse holders, but have better heat dissipation. The single-pole cylindrical fuse bases for 14 × 51 mm
and 22 × 58 mm allow modular expansion to multi-pole bases.
■ Technical specifications
Cylindrical fuse holders
3NC10
Size
mm × mm 10 × 38
3NC14
3NC22
14 × 51
22 × 58
UL 512; CSA C22.2; IEC 60269-2, IEC 60947-3
Standards
V AC
A AC
UL 512; UL File No. E171267; CSA C22.2 No. 39-M
690; 600 acc. to UL/CSA
32
50
30 acc. to UL/CSA
50 acc. to UL
40 acc. to CSA
Rated conditional short-circuit current
Switching capacity
• Utilization category
kA
50
50 (100 at 400 V)
50 (100 at 500 V)
AC-22B (400 V)
AC-22B (400 V)
AC-20B (690 V)
Max. power dissipation of fuse links
(conductor cross-section used)
W
3 (6 mm2)
4.3 (10 mm2)
5 (10 mm2)
6.5 (25 mm2)
9.5 (35 mm2)
11 (50 mm2)
Rated impulse withstand voltage
Overvoltage category
Pollution degree
No-voltage changing of fuse links
Sealable when installed
Mounting position
Current direction
kV
6
II
2
Yes
Yes
Any
Any
Approvals
Rated voltage Un
Rated current In
100
80 acc. to UL/CSA
IP20
Yes
Degree of protection acc. to IEC 60529
Terminals with touch protection according to BGV A3
at incoming and outgoing feeder
Ambient temperature
Conductor cross-sections
• Finely stranded, with end sleeve
• AWG (American Wire Gauge)
°C
45
mm2
AWG
1.5 ... 16
15 ... 5
1.5 ... 35
14 ... 2
4 ... 50
10 ... 1/0
Tightening torque
Nm
Ib.in
2.5
22
2.5 ... 3
22 ... 26
3.5 ... 4
31 ... 35
Siemens · 2014
129
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
Load rating of SITOR cylindrical fuses
Rated
voltage Un
Rated
voltage Un
Rated
current In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power
dissipation
at In
Weight
approx.
V AC
V DC
A
A2s
A2s
K
W
kg
600
600
600
700
700
700
3
6
8
3
4
6
8
20
30
30
30
25
1.2
1.5
2
0.01
0.01
0.01
aR
aR
aR
600
600
600
700
700
700
10
12
16
9
15
25
60
110
150
40
50
60
2.5
3
3.5
0.01
0.01
0.01
3NC1020
3NC1025
3NC1032
aR
aR
aR
600
600
600
700
700
--
20
25
32
34
60
95
200
250
500
80
90
110
4.8
6
7.5
0.01
0.01
0.01
3NC1401
3NC1402
3NC1403
aR
aR
aR
660
660
660
----
1
2
3
1.2
10
15
90
30
40
5
3
2.5
0.02
0.02
0.02
3NC1404
3NC1405
3NC1406
aR
aR
aR
660
690
690
-800
800
4
5
6
1.6
25
9
12
50
20
30
3
1.5
1.5
0.02
0.02
0.02
3NC1410
3NC1410-5
3NC1415
aR
aR
aR
690
690
690
800
600
800
10
10
15
3.6
3.6
10
20
90
75
50
50
60
4
4
5.5
0.02
0.02
0.02
3NC1415-5
3NC1420
3NC1420-5
aR
aR
aR
690
690
690
600
800
600
15
20
20
9
26
26
100
120
500
60
70
70
5.5
6
6
0.02
0.02
0.02
3NC1425
3NC1425-5
3NC1430
aR
aR
aR
690
690
690
800
600
800
25
25
30
44
47
58
250
400
300
80
80
80
7
7
9
0.02
0.02
0.02
3NC1430-5
3NC1432
3NC1432-5
aR
aR
aR
690
690
690
600
800
600
30
32
32
58
95
68
500
700
600
80
80
80
9
7.6
7.6
0.02
0.02
0.02
3NC1440
3NC1440-5
3NC1450
aR
aR
aR
690
690
690
800
600
800
40
40
50
110
84
220
900
900
1800
100
100
110
8
8
9
0.02
0.02
0.02
3NC1450-5
aR
690
600
50
200
2000
110
9
0.02
3NC2200
3NC2200-5
3NC2220
aR
aR
aR
600
600
690
500
500
500
100
100
20
1250
1100
34
8000
8500
220
110
110
40
16
16
4.6
0.06
0.06
0.06
3NC2220-5
3NC2225
3NC2225-5
aR
aR
aR
690
690
690
500
500
500
20
25
25
19
50
34
240
300
350
40
50
50
5
5.6
6
0.06
0.06
0.06
3NC2232
3NC2232-5
3NC2240
aR
aR
aR
690
690
690
500
500
500
32
32
40
80
54
100
450
500
700
65
65
80
7
8
8.5
0.06
0.06
0.06
3NC2240-5
3NC2250
3NC2250-5
aR
aR
aR
690
690
690
500
500
500
40
50
50
68
185
135
800
1350
1500
80
90
90
9
9.5
9.5
0.06
0.06
0.06
3NC2263
3NC2263-5
3NC2280
aR
aR
aR
690
690
690
500
500
500
63
63
80
310
280
620
2600
3000
5500
100
100
110
11
11
13.5
0.06
0.06
0.06
3NC2280-5
aR
690
500
80
600
6000
110
13.5
0.06
Cylinder
Operational
class
(IEC 60269)
3NC1003
3NC1006
3NC1008
aR
aR
aR
3NC1010
3NC1012
3NC1016
Load rating of SITOR cylindrical fuses without strikers
in fuse holders - can be used as fuse switch disconnectors 1)
For SITOR fuse
links
Rated
voltage
V AC/V DC
Rated
current
Required
conductor
cross-section
In
Cu
Fuse holders - can be used as fuse switch disconnectors 1)
1-pole
Type
mm2
A
Imax
2-pole
Type
Imax
3-pole
Type
Imax
2)
2)
2)
A
A
A
Size10 × 38 mm
3NC1003
3NC1006
3NC1008
600/700
3
6
8
1
1
1
3NC1010
3NC1012
3NC1016
10
12
16
1.5
1.5
2.5
3NC1020
3NC1025
3NC1032
20
25
32
2.5
4
6
600/--
Footnotes see next page.
130
Siemens · 2014
3NC1091
3
6
8
10
3NC1092/
2 × 3NC1091
3
6
8
10
3NC1093/
3 × 3NC1091
3
6
8
12
16
12
16
10
12
16
20
25
32
20
24
30
20
22
28
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
For SITOR fuse
links
Rated
voltage
V AC/V DC
Rated
current
Required
conductor
cross-section
In
Cu
Fuse holders - can be used as fuse switch disconnectors 1)
1-pole
Type
Imax
mm2
A
2-pole
Type
3-pole
Type
Imax
Imax
2)
2)
2)
A
A
A
Size 14 × 51 mm
3NC1401
3NC1402
660
3NC1403
3NC1404
1
2
1
1
3
4
1
1
1
2
3NC1491
3NC1492/
2 × 3NC1491
1
2
3NC1493/
3 × 3NC1491
1
2
3
4
3
4
3
4
5
6
10
1
1
1.5
5
6
10
5
6
10
5
6
10
3NC1415
3NC1420
3NC1425
15
20
25
1.5
2.5
4
15
20
25
15
20
24
15
20
22
3NC1430
3NC1432
3NC1440
30
32
40
6
6
10
28
32
40
27
32
39
25
32
38
3NC1450
50
10
48
46
44
3NC1405
3NC1406
3NC1410
690/800
Size 22 × 58 mm
3NC2220
3NC2225
3NC2232
690/500
3NC2240
3NC2250
3NC2263
3NC2280
3NC2200
600/500
20
25
32
2.5
4
6
40
50
63
80
10
10
16
25
100
35
2)
Fuse tongs: 3NC1000.
1)
20
25
32
3NC2291
Fuse holders acc. to IEC 60269-3, UL 512
Fuse switch disconnectors (10 × 38, 14 × 51 mm) acc. to IEC 60947-3
Fuse disconnectors (22 × 58 mm) acc. to IEC 60947-3.
3NC2292/
2 × 3NC2291
20
25
32
3NC2293/
3 × 3NC2291
20
25
32
40
50
60
74
39
48
58
71
38
44
56
69
95
90
85
The values Imax apply for "stand-alone operation". If several devices are
butt-mounted and/or subject to unfavorable cooling conditions, these
values may be reduced still further With a larger conductor cross-section,
values higher than Imax are possible.
Load rating of SITOR cylindrical fuses with strikers in
fuse holders - can be used as fuse switch disconnectors 1)
For SITOR fuse
links
Rated voltage
Rated current
Required
conductor
cross-section
In
Cu
A
mm2
Fuse holders - can be used as fuse switch disconnectors 1)
1-pole
V AC
Type
2-pole
Imax2)
Type
A
3-pole
Imax2)
Type
A
Imax2)
A
Size 14 × 51 mm
10
15
20
1.5
1.5
2.5
3NC1425-5
3NC1430-5
3NC1432-5
25
30
32
4
6
6
25
30
32
25
30
32
25
30
31
3NC1440-5
3NC1450-5
40
50
10
10
38
48
35
46
34
44
3NC1410-5
3NC1415-5
3NC1420-5
690/600
3NC1491
10
15
20
3NC1492/
2 × 3NC1491-5
10
15
20
3NC1493/
3 × 3NC1491-5
10
15
20
Size 22 × 58 mm
3NC2220-5
3NC2225-5
3NC2232-5
690/500
3NC2240-5
3NC2250-5
3NC2263-5
3NC2280-5
3NC2200-5
600/500
20
25
32
2.5
4
6
3NC2291
20
25
32
3NC2292/
2 × 3NC2291-5
20
25
31
3NC2293/
3 × 3NC2291-5
20
25
30
40
50
63
80
10
10
16
25
40
45
59
71
39
43
55
69
37
42
52
68
100
35
94
90
85
1)
Fuse holders acc. to IEC 60269-3, UL 512
Fuse switch disconnectors (10 × 38, 14 × 51 mm) acc. to IEC 60947-3
Fuse disconnectors (22 × 58 mm) acc. to IEC 60947-3.
2)
The values Imax apply for "stand-alone operation". If several devices are
butt-mounted and/or subject to unfavorable cooling conditions, these
values may be reduced still further With a larger conductor cross-section,
values higher than Imax are possible.
Siemens · 2014
131
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
■ Dimensional drawings
Ø22,2
Ø 10,2
9,5
38
14,3
Cylindrical fuse links
10
51
16
58
3NC10. .
3NC14. .
3NC22. .
Cylindrical fuse holders
17,7
35,4
37
58
64,5
I201_11382
81
45
85
53,1
3NC109.
27
81
54
69
75,5
42,5
I201_11383
45
95,5
3NC149.
43
70
76
I201_11384
45
72
36
108
117,5
3NC129.
Cylindrical fuse holders with signaling switch
70
43
69
36
143
24
24
3NC1491-5
132
3NC1291-5
Siemens · 2014
28
I201_12845
28
I201_12844
122
112
118
45
92
96
45
49
43
27
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
I201_11385a
76
Cylindrical fuse bases
20 20
60,5
20
41
21,5
26
88
90
24
103,5
I201_11386a
3NC1038-1 to 3NC1038-3
50
50,5
110,8
126,5
I201_11387
3NC1451-1
33
66,2
66,5
3NC2258-1
Siemens · 2014
133
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
■ Characteristic curves
3NC10 series
10 × 38 mm
aR
600 V AC/700 V DC, 3 ... 25 A
600 V AC, 32 A
3 ... 32 A
Rated current:
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
I201_11453
10
4
6
4
C
6
4
2
2
10 3
Peak let-through current
Virtual pre-arcing time
tVS [s]
10 4
I201_11454
Size:
Operational class:
Rated voltage:
6
4
2
10 2
6
4
3A
6A
8A
10 A
12 A
16 A
20 A
25 A
32 A
2
10 1
6
4
2
10
32 A
25 A
20 A
16 A
3
6
4
12 A
10 A
8A
6A
3A
2
10
2
6
4
2
10 0
10
6
4
1
10 1 2
4 6 10 2 2
4 6 10 3 2
4 6 10 4 2
Prospective short-circuit current
2
10 -1
6
4
2
10 -2
6
4
2
10 0
2
4
6
10 1
2
4
6
10 2
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
10 3
Peak arc voltage
I201_11455
1600
0,8
1200
Peak arc voltage
Correction factor
1
4
p
I201_11456
10 -3
0,6
0,4
800
400
0,2
0
0
0
134
100
200 300 400 500 600 700 800
Recovery voltage
Siemens · 2014
0
200
400
600
Recovery voltage
800
4 6 10 5
p
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
3NC14 series
14 × 51 mm
aR
660 V AC (1 ... 4 A);
690 V AC/800 V DC (5 ... 50 A)
1 ... 10 A
Rated current:
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
10 4
I201_11459
6
4
6
4
2
2
10 3
Peak let-through current
Virtual pre-arcing time
tVS [s]
10 4
I201_11460
Size:
Operational class:
Rated voltage:
6
4
2
10 2
6
4
2
6
4
2
10 0
6
4
2
10 A
5A
10 2
1A
2A
3A
4A
5A
6A
10 A
10 1
10 3
6
4
2
10 1
6
4
10 1
2
4
6 10 2
2
4
6 10 3 2
4 6 10 4 2
Prospective short-circuit current
4 6 10 5
2
10 -1
6
4
2
10 -2
6
4
2
10 0
2
4
6
10 1
2
4
6
10 2
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
10 3
Peak arc voltage
I201_11461
1600
660 V
0,8
1200
Peak arc voltage
Correction factor
1
4
p
I201_11462
10 -3
690 V
0,6
0,4
800
400
0,2
0
0
0
100
200
300
400
500
Recovery voltage
600
700
800
0
200
400
600
Recovery voltage
800
Siemens · 2014
135
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
3NC14 series
14 × 51 mm
aR
660 V AC (1 ... 4 A);
690 V AC/800 V DC (5 ... 50 A)
15 ... 50 A
Rated current:
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
6
4
tVS [s]
6
50 A
40 A
32 A
30 A
4
C
2
10 3
Peak let-through current
Virtual pre-arcing time
10 4
I201_11463
10 4
6
4
2
10 2
6
4
10 1
6
4
2
2
10 3
6
25 A
20 A
15 A
4
2
10 2
15 A
20 A
25 A
30 A
32 A
40 A
50 A
2
I201_11464
Size:
Operational class:
Rated voltage:
6
4
2
10 0
10 1
6
4
10 1
2
4
6 10 2
2
4
6 10 3 2
4 6 10 4 2
Prospective short-circuit current
2
10 -1
6
4
2
10 -2
6
4
2
10 0
2
4
10 1
6
2
4
6
10 2
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
10 3
Peak arc voltage
1600
I201_11465
0,8
1200
Peak arc voltage
Correction factor k A
1
4
p
I201_11462
10 -3
30 A
0,6
32 A
0,4
800
400
0,2
0
0
100
200
300
400
500
600
Recovery voltage U w
136
Siemens · 2014
700
800
0
200
400
600
Recovery voltage
800
4 6 10 5
p
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
3NC14. .-5 series with striking pin
14 × 51 mm
aR
690 V AC/600 V DC
10 ... 50 A
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
10 4
I201_13410
6
4
50 A
40 A
32 A
30 A
4
C
2
6
Let-through current
Virtual pre-arcing time tVS [s]
10 4
10 3
6
4
2
10 2
10 A
15 A
20 A
25 A
30 A
32 A
40 A
50 A
6
4
2
10 1
6
4
I201_13411
Size:
Operational class:
Rated voltage:
Rated current:
2
10 3
6
4
25 A
20 A
15 A
10 A
2
10 2
6
4
2
2
10 0
10 1
6
4
10 1
2
4
6
10 2
2
4
6 10 3
2
4
6 10 4
2
Prospective short-circuit current
4
6 10 5
p
2
10 -1
6
4
2
10 -2
6
4
2
10 0
2
4
10 1
6
2
4
6
10 2
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
10 3
Peak arc voltage
I201_13412
1400
1200
0,8
Peak arc voltage
Correction factor
1
4
p
I201_13413
10 -3
0,6
0,4
1000
800
600
400
0,2
200
0
0
0
100
200
300
400
500
600
Recovery voltage
700
800
0
200
400
600
Recovery voltage
800
Siemens · 2014
137
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
3NC22 series
22 × 58 mm
aR
690 V AC/500 V DC (20 ... 80 A);
600 V AC/500 V DC (100 A)
20 ... 100 A
Rated current:
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
10 4
I201_11470
6
4
4
C
2
100 A
80 A
63 A
50 A
6
10 3
Peak let-through current
Virtual pre-arcing time
tVS [s]
10 4
6
4
2
10 2
6
4
I201_11471
Size:
Operational class:
Rated voltage:
2
10 3
40 A
32 A
25 A
20 A
6
4
2
10 2
2
10 1
6
6
4
4
2
2
10 0
10 1
20 A
25 A
32 A
40 A
50 A
63 A
80 A
100 A
6
4
2
10 -1
6
4
10 1
2
4 6
10 2
2
4
6 10 3 2
4 6 10 4 2
Prospective short-circuit current
2
10 -2
6
4
2
10 1
2
4
6
10 2
2
4
6
10 3
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
10 4
Peak arc voltage
1400
I201_11472
600 V
0,8
6
690 V
0,6
1200
Peak arc voltage
Correction factor
1
4
p
0,4
I201_11466
10 -3
1000
800
600
400
0,2
200
0
0
0
100
200
300
400
500
Recovery voltage
138
Siemens · 2014
600
700
800
0
200
400
600
Recovery voltage
800
4
p
6 10 5
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
SITOR, cylindrical fuse design
3NC22. .-5 series with striking pin
22 × 58 mm
aR
690 V AC/500 V DC (20 ... 80 A);
600 V AC/500 V DC (100 A)
20 ... 100 A
Rated current:
Time/current characteristics diagram
Let-through characteristics (current limitation at 50 Hz)
10 4
I201_13414
6
4
4
C
2
100 A
80 A
63 A
50 A
6
Let-through current
Virtual pre-arcing time tVS [s]
10 4
10 3
6
4
2
10 2
20 A
25 A
32 A
40 A
50 A
63 A
80 A
100 A
6
4
2
10 1
6
4
I201_13415
Size:
Operational class:
Rated voltage:
2
10 3
6
40 A
32 A
25 A
20 A
4
2
10 2
6
4
2
2
10 0
10 1
6
4
10 1
2
4
6
10 2
2
4
6 10 3 2
4 6 10 4 2
Prospective short-circuit current
4
6 10 5
p
2
10 -1
6
4
2
10 -2
6
4
2
10 1
2
4
10 2
6
2
4
6
10 3
2
Prospective short-circuit current
Correction factor kA for breaking I2t value
6
10 4
Peak arc voltage
I201_13416
1400
1200
0,8
600 V
0,6
Peak arc voltage
Correction factor
1
4
p
I201_13417
10 -3
690 V
0,4
1000
800
600
400
0,2
200
0
0
0
100
200
300
400
500
Recovery voltage
600
700
800
0
200
400
600
Recovery voltage
800
Siemens · 2014
139
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
NEOZED, DIAZED, SILIZED design
■ Overview
■ Benefits
SILIZED is the brand name for NEOZED fuses (D0 fuses)
and DIAZED fuses (D fuses) with super quick-response
characteristic for semiconductor protection.
The fuses are used in combination with fuse bases, fuse screw
caps and accessory parts of the standard fuse system.
SILIZED fuses protect power semiconductors from the effects of
short circuits because the super quick disconnect characteristic
is far quicker than that of conventional fuses. They protect highquality devices and system components, such as semiconductor contactors, static relays, converters with fuses in the input
and in the DC link,
UPS systems and soft starters for motors up to 100 A.
• SILIZED fuses have an extremely compact design. This
means they have a very small footprint – particularly the
NEOZED version.
• The rugged and well-known DIAZED design complies with
IEC 60269-3. It is globally renowned and can be used in many
countries.
• A wide range of fuse bases and accessories are available for
the NEOZED and DIAZED versions of the SILIZED fuses. This
increases the application options in many devices.
When using fuse bases and fuse screw caps made of molded
plastic, always heed the maximum permissible power loss
values due to the high power loss (power dissipation) of the
SILIZED fuses.
When using these components, the following maximum permissible power loss applies:
• NEOZED D02: 5.5 W
• DIAZED DII: 4.5 W
• DIAZED DIII: 7.0 W
This enables a partial thermal permanent load of only 50 %.
The DIAZED screw adapter DII for 25 A is used for the 30 A fuse
link.
■ Technical specifications
5SE13 NEOZED,
SILIZED
fuse links
Standards
DIN VDE 0636-3; IEC 60269-3;
EN 60269-4 (VDE 0636-4); IEC 60269-4
Operational class
gR
5SD4 DIAZED
SILIZED
fuse links
Quick-acting
Characteristic
Rated voltage Un
V AC
V DC
400
250
500
500
Rated current In
A
10 ... 63
16 ... 100
Rated breaking capacity
kA AC
kA DC
50
8
Any, but preferably vertical
Mounting position
Using adapter sleeves
Non-interchangeability
Resistance to climate
°C
Up to 45 at 95 % rel. humidity
Ambient temperature
°C
-5 ... +40, humidity 90 % at 20
Using screw adapter or adapter sleeves
■ Dimensional drawings
5SE1
Ød
I2_06252d
Size
D01
D02
Rated current in A
10 ... 16
20 ... 63
Dimension d
11
15.3
Dimension h
36
36
Size/thread
DII/E27
h
I201 06247
d
22,5
5SD420, 5SD430, 5SD440, 5SD480
49
140
Siemens · 2014
Rated current in A
16
20
25
30
Dimension d
10
12
14
14
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
NEOZED, DIAZED, SILIZED design
I201 06248
d
28
5SD450, 5SD460, 5SD470
Size/thread
DIII/E33
Rated current in A
35
50
63
Dimension d
16
18
20
Size/thread
DIV/R1¼”
Rated current in A
80
100
5
7
49
I201_06682
Dimension d
d
34,5
5SD510, 5SD520
57
Siemens · 2014
141
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
NEOZED, DIAZED, SILIZED design
■ Technical specifications
Type
Size
NEOZED design
In
A
Pv
W

K
I2ts
I2ta
1 ms
4 ms
230 V AC
400 V AC
A2s
A2s
A2s
A2s
5SE1310
5SE1316
D01
10
16
6.9
6.2
64
61
30
31
30
34
56
92
73
120
5SE1320
5SE1325
5SE1335
D02
20
25
35
8.1
8.2
16.7
64
63
100
50
120
145
56
120
182
146
166
361
190
215
470
50
63
12.0
15.5
80
96
460
845
540
932
1510
3250
1960
4230
I2ts
I2ta
1 ms
500 V AC
A2s
A2s
5SE1350
5SE1363
Type
Size
DIAZED design
In
A
5SD420
5SD430
DII
5SD440
5SD480
Pv

W
K
16
20
12.1
12.3
63
69
16.2
35.8
60
139
25
30
12.5
13.4
61
65
48.9
85
205
310
5SD450
5SD460
5SD470
DIII
35
50
63
14.8
18.5
28
62
66
84
135
340
530
539
1250
1890
5SD510
5SD520
DIV
80
100
34.3
41.5
77
83
980
1950
4200
8450
142
Siemens · 2014
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
NEOZED, DIAZED, SILIZED design
■ Characteristic curves
5SE13. . series
D01, D02
gR
400 V AC/250 V DC
10 ... 63 A
Melting I2t values diagram
vs
I201_11473a
[s]
10 4
6
4
2
6
4
2
s
10 3
6
1 0
I2 _ 1 1 4 7 5
Time/current characteristics diagram
[A 2 s ]
Size:
Operational class:
Rated voltage:
Rated current:
1 0
2
0
s
1 0
5
1 0
-1
s
1 0
6
6
4
-2
s
4
-3
1 0
10 2
s
- 4
1 0
2
2
s
4
1 0
6
6
4
4
2
2
10 1
3
1 0
6 3 A
6
6
4
5 0 A
4
2
2
10 0
3 5 A
2 5 A
2
1 0
6
6
4
2 0 A
1 6 A
1 0 A
4
20 A
2
10 A
10 -1
32/35 A
63 A
25 A
16 A
2
50 A
1
1 0
6
6
4
4
2
2
10 -2
1 0
0
1 0
6
4
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
e ff
4
[A ]
6
8 1 0
2
10 -3
10 1
2
4
8 10 2
6
2
4
p
8 10 3
6
[A]
Current limitation diagram
4
I2 _ 1 1 4 7 4
1 0
[A ]
6
c
6 3 A
5 0 A
4
2
1
3 5 A
3 2 A
2 0 A
1 6 A
1 0 A
2
3
1 0
6
4
2
1 0
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
e ff
4
[A ]
6
8 1 0
5
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
Siemens · 2014
143
5
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
NEOZED, DIAZED, SILIZED design
5SD4, 5SD5 series
DII, DIII, DIV
gR
super quick
500 V AC/500 V DC
16 ... 100 A
Melting I2t values diagram
Time/current characteristics diagram
4
6
2
v s
6
4
[A 2 s ]
[s ]
4
6
1 0
I2 _ 0 6 4 2 6 c
1 0
3
2
s
1 0
I2 _ 0 7 0 7 0 b
Size:
Operational class:
Characteristic:
Rated voltage:
Rated current:
2
5
1 0
6
6
4
4
2
2
2
1 0
4
1 0
6
6
4
4
1 0 0 A
2
2
1
1 0
3
1 0
6
6
4
4
8 0 A
6 3 A
5 0 A
2
2
0
1 0
3 5 A
3 0 A
2
1 0
6
6
4
3 0 A
2 0 A
2
1 6 A
-1
1 0
5 0 A
2 5 A
3 5 A
2 5 A
2 0 A
4
8 0 A
2
6 3 A
1 0 0 A
1 6 A
1
1 0
6
6
4
4
2
0
1 0
s
-1
1 0
s
-2
1 0
s
-3
1 0
1 0
s
- 4
s
2
-2
1 0
1 0
0
1 0
6
0
2
4
6
8 1 0
1
2
4
6
8 1 0
2
2
4
6
8 1 0
3
2
e ff
4
2
-3
1 0
1 0
1
4
2
6
8
1 0
2
2
4
3
8 1 0
6
[A ]
p
Current limitation diagram
1
2
c
[A ]
6
I2 _ 0 6 0 5 4 b
4
1 0
4
1 0 0 A
8 0 A
6 3 A
5 0 A
2
3 5 A
3 0 A
2 5 A
2 0 A
3
1 0
6
1 6 A
4
2
1 0
2
1 0
2
2
4
6
8 1 0
3
2
4
6
8 1 0
4
2
4
6
8 1 0
e ff
$ Peak short-circuit current with largest DC component
% Peak short-circuit current without DC component
144
Siemens · 2014
5
2
[A ]
4
4
[A ]
6
8 1 0
4
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
■ Overview
Parameter
The fuse links are selected according to rated voltage, rated current, breaking I2t value I2ta and varying load factor, taking into
consideration other specified conditions. All of the following
data refer, unless otherwise specified, to the use of alternating
current from 45 Hz to 62 Hz.
Rated voltage Un
The rated voltage of a SITOR fuse link is the voltage specified as
the rms value of the AC voltage on the fuse link and in the ordering and configuration data and the characteristics.
Always ensure that the rated voltage of the fuse link you select is
such that the fuse link will reliably quench the voltage driving the
short-circuit current. The driving voltage must not exceed the
value Un + 10 %. Please note that the supply voltage Uv0 of a
power converter can also be increased by 10 %. If, in the
shorted circuit, two branches of a converter circuit are connected in series, and if the short-circuit current is sufficiently
high, it can be assumed that voltage sharing is uniform. It is
essential to observe the instructions in "Series connection of fuse
links" on page 152.
Rectifier operation
For operating conditions that deviate from the above, the
permissible load current In’ of the SITOR fuse link can be determined using the following formula:
In’ = ku × kq × k × kl × WL × In
with
In Rated current of the fuse link1)
ku Correction factor for ambient temperature (page 146)
ku Correction factor for conductor cross-section (page 146)
k Correction factor for conduction angle (page 146)
kI Correction factor for forced-air cooling (page 146)
WL Varying load factor (page 147).
Test cross-sections
Rated current
Test cross-sections
In
(3NC10, 3NC11, 3NC14,
3NC15, 3NC22, 3NE1...,
3NE80.., 3NE4 series) 1)
(all other series)
Cu mm2
Cu mm2
A
With converter equipment that can only be used for rectifier
operation, the supply voltage Uv0 is the driving voltage.
--45
25
35
40
4
6
10
45
45
45
50
63
80
10
16
25
45
45
45
100
125
160
35
50
70
60
80
100
200
224
250
95
-120
125
150
185
315
350
400
2 × 70
2 × 95
2 × 95
240
260
320
450
500
560
2 × 120
2 × 120
2 × 150
320
400
400
630
710
800
2 × 185
2 × (40 × 5)
2 × (50 × 5)
480
560
560
900
1000
1100
2 × (80 × 4)
---
720
720
880
1250
1400
1600
----
Inverter operation
With converter equipment that can also be used for inverter
operation, inverter shoot-through may occur as faults. In this
case, the driving voltage UWK in the shorted circuit is the sum of
the infeed direct voltage (e.g. the e.m.f. of the DC generator) and
the AC-line supply voltage. When rating a fuse link, this sum can
be replaced by an AC voltage whose rms value is 1.8 times
that of the AC-line supply voltage (UWK = 1.8 Uv0). The fuse links
must be rated so that they reliably quench the voltage UWK.
Rated current In, load rating
The rated current of a SITOR fuse link is the current specified in
the "Selection and ordering data", in the "Characteristic curves"
and on the fuse link as the rms value of an alternating current for
the frequency range 45 Hz to 62 Hz.
When operating fuse links with rated current, the following are
considered normal operating conditions:
• Natural air cooling with an ambient temperature of +45 °C
• Conductor cross-sections equal test cross-sections (see table
"Test cross-sections"), for operation in LV HRC fuse bases and
switch disconnectors see "Selection and ordering data" in
Catalog LV 10.
• Conduction angle of a half-period 120°el
• Continuous load maximum with rated current.
1.0
1.5
2.5
10
16
20
1)
960
1080
1200
When using SITOR fuse links in LV HRC fuse bases according to
IEC/EN 60269-2-1 and in fuse switch disconnectors and switch disconnectors with fuses, please also refer to the information in the "Selection and
ordering data" in Catalog LV 10.
Siemens · 2014
145
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Correction factor for ambient temperature ku
1,0
0,9
0,8
-40
-20
0
+20 +40 +60
Ambient temperature
+80
°C
Correction factor for conductor cross-section kq
The rated current of the SITOR fuse links applies to operation
with conductor cross-sections that correspond to the respective
test cross-section (see the table on page 145).
In the case of reduced conductor cross-sections, the correction
factor kq must be used, as shown in the following diagram.
1,1
1,0
0,9
0,8
0,7
I201_12637
1,1
I201_12636
Correction factor k u
1,2
Correction factor for conduction angle k
The rated current of the SITOR fuse links is based on a sinusoidal alternating current (45 Hz to 62 Hz). However, in converter
operation, the branch fuses are loaded with an intermittent current, whereby the conduction angle is generally 180°el or 120°el.
With this load current wave form, the fuse link can still carry the
full rated current. In the case of smaller conduction angles, the
current must be reduced in accordance with the following diagram.
Correction factor k
The influence of the ambient temperature on the permissible
load of the SITOR fuse link is taken into account using the correction factor ku as shown in the following diagram.
0,6
0,5
30
45 60
90 120 180 240 360
Valve conducting period
°el
Correction factor for forced-air cooling kl
0,95
b
0,80
1,4
0,70
I201_12639
0,75
0,65
20 15
100 80 60 50 40 30
10
Connection cross-section
%
(as a % of the test cross-section)
a = Reduction of cross-section of one connection
b = Reduction of cross-section of both connections
146
Siemens · 2014
1,3
1,2
I201_12638
0,85
In the case of increased air cooling, the current carrying capacity of the fuse links increase with the air speed, air speeds
> 5 m/s do not effect any significant further increase in current
carrying capacity.
a
0,90
Correction factor k l
Correction factor k q
1,00
1,1
1,0
0
2
4
Air velocity
6
m/s
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
time, it may be possible to use a fuse link with a smaller varying
load factor WL as shown in the following diagram.
Varying load factor WL
The varying load factor WL is a reduction factor by which the
non-aging current carrying capacity of the fuse links can be determined for any load cycles. Due to their design, the SITOR fuse
links have different varying load factors. In the characteristic
curves of the fuse links, the respective varying load factor WL for
>10000 load changes (1 hour "ON", 1 hour "OFF") is specified for
the expected operating time of the fuse links. In the event of a
lower number of load changes during the expected operating
In the case of uniform loads (no load cycles and no shutdowns),
the varying load factor can be taken as WL = 1. For load cycles
and shutdowns that last longer than 5 min. and are more frequent than once a week, you need to select the varying load factor WL specified in the characteristic curves of the individual
fuse links.
I201_12640
LA / n
1,1
1,0
1,0
0,95
0,9
0,9
0,85
0,8
0,8
0,7
0,6 1
10
2
5
2
10
2
5
3
10
4
2
5
2
5
10
Permissible number of load cycles
5
10
Waveform of the varying load factor WL for load cycles
Fuse currents for operation in power converter
The rms value of the fuse current can be calculated for the most
common converter circuits from the (smoothed) direct currentId
or the conductor current IL according to the following table.
Converter circuit
Rms value of the conductor current
(phase fuse)
Rms value of the branch current
(branch fuse)
Single-pulse center tap connection
(M1)
1.57 Id
--
Double-pulse center tap connection
(M2)
0.71 Id
--
Three-pulse center tap connection
(M3)
0.58 Id
--
Six-pulse center tap connection
(M6)
0.41 Id
--
Double three-pulse center tap connection (parallel)
(M3.2)
0.29 Id
--
Two-pulse bridge circuit
(B2)
1.0 Id
0.71 Id
Six-pulse bridge circuit
(B6)
0.82 Id
0.58 Id
Single-phase bidirectional circuit
(W1)
1.0 IL
0.71 IL
Siemens · 2014
147
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
I 2t values
Melting I 2t value I 2ts
In the event of a short circuit, the current of the fuse link increases during melting time ts up to let-through current Ic
(melting current peak).
The melting value I 2t can be calculated from the value pairs of
the time/current characteristic curve of the fuse link for any periods.
During the arc quenching time tL, the electric arc develops and
the short-circuit current is quenched (see the following
diagram).
As the melting time decreases, the melting I 2t value tends towards a lower limit value at which almost no heat is dissipated
from the bottleneck of the fuse element to the environment during the melting process. The melting I 2t values specified in the
selection and ordering data and in the characteristic curves correspond to the melting time tvs= 1 ms.
c
s
t
t
A
L
t
Current path when switching fuse links

2
The integral of the current squared  I dt  over the total
operating time (ts+tL), known as the breaking I 2t value, determines the heat to be fed to the semiconductor device that is to
be protected during the breaking operation.
In order to ensure adequate protection, the breaking I 2t value of
the fuse link must be smaller than the I 2t value of the semiconductor device. As the temperature increases, i.e. preloading increases, the breaking I 2t value of the fuse link decreases almost
in the same way as the I 2t value of a semiconductor device, so
that it is sufficient to compare the I 2t values in a non-loaded
(cold) state.
The breaking I 2t value (I 2ta) is the sum of the melting I 2t value
(I 2ts) and the quenching I 2t value (I 2tL).
Whereas the melting I 2t value is a characteristic of the fuse link,
the quenching I 2t value depends on circuit data, such as
• The recovery voltage Uw
• The power factor p.f. of the shorted circuit
• The prospective current Ip (current at the installation position
of the fuse link if this is jumpered)
The maximum quenching I 2t value is reached at a current of
10 x In to 30 x In depending on the fuse type.
Breaking I 2t value I 2ta, correction factor kA
The breaking I 2t values of the fuse links are specified in the characteristic curves for the rated voltage Un. In order to determine
the breaking I 2t value for recovery voltage Uw the correction factor kA must be taken into account.
I 2ta (at Uw) = I 2ta (at Un) × kA
The characteristic "correction factor kA" (see the following
diagram) is specified in the characteristic curves for the individual fuse range. The thus determined breaking I 2t values apply to
prospective currents Ip 10 × In and p.f. = 0.35.
1
2

2
tp = 10 ms) >  I t A  (fuse link)
Correction factor kA
  I dt  (semiconductor, tvj = 25 °C,
0,8
0,6
0,4
I201_12642
t
I2 _ 1 2 6 4 1
Quenching I 2t value I 2tL
0,2
100
200 300 400 500 600 700
Recovery voltage U w
V
Correction factor kA for breaking I 2t value
Example: Series 3NE8 0..
148
Siemens · 2014
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Taking into account the recovery voltage Uw
The recovery voltage Uw is derived from the voltage driving the
short-circuit current. For most faults, the driving voltage is equal
to the supply voltage Uv0, however, for shoot-throughs it is
1.8 times the value for the supply voltage Uv0 (see rated voltage,
page 145). If the shorted circuit contains two branches of a converter circuit and thus two fuse links in series, and if the shortcircuit current is sufficiently high (see series connection,
page 152) it can be assumed that there is a uniform voltage
sharing, i.e. Uw = 0.5 × Uv0 or in the case of shoot-throughs
Uw = 0.9 × Uv0.
Influence of the power factor p.f.
The specifications in the characteristic curves for the breaking
I 2t values (I 2ta) refer to p.f. = 0.35 (exception: for 3NC58..,
3NE64.., 3NE94.. SITOR fuse links the following applies:
p.f. = 0.2).
120
b
100
a
80
I201_12643
Cleaning- 2 value 2 A
at p. f. (as a % of 2 A
at p. f. = 0.35 or 0.2)
%
The dependence of the breaking I 2t values on the power factor
p.f. at 1.0 × Un and at 0.5 × Un is shown in the following diagram.
60
0
0,2
0,4
0,6
0,8
Power factor p. f.
Breaking I 2t value I 2ta of SITOR fuse links dependent on the power
factor p.f.
at 1.0 Un
at 0.5 Un
a = for 3NC58.., 3NE64.., 3NE94.. SITOR fuse links
(reference to p.f. = 0.2)
b = for all other SITOR fuse links (reference to p.f. = 0.35)
Siemens · 2014
149
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Time/current characteristics
Taking into account preloading, residual value factor RW
The solid time/current characteristic curves in the following diagram specify the time to melting for the non-loaded fuse link in a
cold state (max. +45 °C).
Preloading the fuse link shortens the permissible overload duration and the melting time.
s
1x10
Virtual pre-arcing time t vs
4
1x10
3
The residual value factor RW is dependent on the preloading V
(Irms rms value of the fuse current during the load cycle at permissible load current In')
2
1x10
I rms
V = ------In 
1
1x10
35 A
1x10
The residual value factor RW can be used to determine the time
that a fuse link can be operated during a periodic or non-periodic load cycle, above and beyond the previously determined
permissible load current In, with any overload current ILa without
aging.
160 A
0
and the frequency of the overloads (see the following diagram,
curves a and b).
-1
1x10
1
I201_12657
1x10
-3
1x10
1 1 2
x10
4 6 81 3 2
4 6 81 2 2
x10
x10
Prospective short-circuit current
4 6 81 4
x10
A
p
35 A: Operational class gR
160 A: Operational class aR
If the time/current characteristic curve in the long-time range
(tvs > 30 s) is dashed (fuse links of operational class aR), this
specifies the limit of the permissible overload in a cold state. If
the dotted part of the characteristic curve is exceeded, there is
a risk of damage to the ceramic body of the fuse link. The fuse
link can only be used for short-circuit protection. In this case, an
additional protective device (overload relay, circuit breaker) is
required to protect against overload. In the case of controlled
converter equipment, the current limiter is sufficient.
If the time/current characteristic curve is shown as a solid line
over the entire time range (fuse links of operational class gR or
gS), the fuse link can operate in the entire time range. This
means it can be used both for overload and short-circuit protection.
Real melting time
The virtual melting time tvs is specified in the time/current characteristic curve, depending on the prospective current. It is a
value that applies to the current squared (di/dt) =).
In the case of melting times tvs < 20 ms the virtual melting time
tvs deviates from the real melting time ts. The real melting time
may be several milliseconds longer (depending on the rate of
current rise).
Within a range of several milliseconds, during which the rise of
the short-circuit current can be assumed to be linear, the real
melting time for a sinusoidal current rise and 50 Hz is as follows:
2
3xI t
s
t = --------------s
2
I
c
150
Siemens · 2014
Rest value factor RW
-2
I201_12644
c
0,8
0,6
b
0,4
a
0,2
0
0
0,2
0,4
0,6
0,8
Pre-load factor V
1
Permissible overload and melting time for previous load
a = frequent surge/load cycle currents (>1/week)
b = infrequent surge/load cycle currents (<1/week)
c = melting time for preloading
Permissible overload duration =
residual value factor RW × melting time tvs
(time/current characteristic curve)
A reduction of the melting time of a fuse link in the case of preloading can
be derived from curve c.
Melting time =
residual value factor RW × melting time tvs
(time/current characteristic curve)
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
During the quenching process, a peak arc voltage Ûs occurs at
the connections of the fuse link, which can significantly exceed
the supply voltage. The level of the peak arc voltage depends on
the design of the fuse link and the level of the recovery voltage.
It is presented in characteristic curves as a function of the recovery voltage Uw (see the following diagram).
A
The following diagram shows the let-through current Ic of a fuse
link, depending on the prospective short-circuit current Ip using
the 3NE4333-0B SITOR fuse link as an example.
5
Unlimited peak values:
DC component 50%
DC component 0%
4
1x10
450 A
1600
1400
1200
1000
800
600
400
200
100
0
200
3
1x10
1 2 2 4 6 1 3 2 4 6 1 42 4 6 1 5
x10
x10
x10
x10
Prospective short-circuit current p
A
Example:
3NE4333-0B SITOR fuse link
Rated breaking capacity
The rated breaking capacity of all SITOR fuse links is at least
50 kA, unless higher values are specified in the characteristic
curves.
The data apply to a test voltage of 1.1 × Un, 45 Hz to 62 Hz and
0.1 p.f. 0.2. In the case of inception voltages that are below
the rated voltage as well as rated currents of the fuse links that
are below the maximum rated current of a fuse series, the breaking capacity is considerably higher than the rated breaking capacity.
The peak arc voltage occurs as a cutoff voltage at the semiconductor devices not in the shorted circuit. In order to prevent voltage-related hazards, the peak arc voltage must not exceed the
peak cutoff voltage of the semiconductor devices.
Power dissipation, temperature rise
On reaching the rated current, the fuse elements of the SITOR
fuse links have a considerably higher temperature than the fuse
elements of line protection fuse links.
The power dissipation specified in the characteristic curves is
the upper variance coefficient if the fuse link is loaded with the
rated current.
In the case of partial loads, this power dissipation decreases as
shown in the following diagram.
100
80
60
40
20
0
0
I201_12646
1x10
400 600 800 1000 1200
V
Recovery voltage Uw
Example:
3NE4333-0B SITOR fuse link
Power dissipation at partial load
(as a % of the power
dissipated at rated current)
%
2
I201_12658
Let-through current
c
1x10
2000
1800
I201_12645
The let-through current Ic can be determined from the current
limiting characteristics (current limitation at 50 Hz) specified for
the respective fuse link. This depends on the prospective current
and the DC component when the short circuit occurs (instant of
closing).
V
Peak arc voltage Ûs
Peak arc voltage Ûs
Let-through current Ic
60
80
40
Load current
(as a % of rated current n )
20
100
%
The temperature rise specified in the characteristic curves applies to the respective reference point and is determined when
testing the fuse link (test setup according to DIN VDE 0636,
Part 23 and IEC 269-4).
Siemens · 2014
151
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Parallel and series connection of fuse links
Use with direct current
Parallel connection
For fuse links that are to be used in DC circuits, some data may
vary from the data specified in the characteristic curves for alternating current.
If a branch of a converter circuit has several semiconductor devices so that the fuse links are connected in parallel, only the
fuse link connected in series to the faulty semiconductor device
is tripped in the event of an internal short circuit. It must quench
the full supply voltage.
To boost the voltage, two or more parallel fuse links can be assigned to a single semiconductor device without reducing the
current. The resulting breaking I 2t value increases with the
square of the number of parallel connections. In this case, in order to prevent incorrect distribution of the current, you should
only use fuse links of the same type.
Permissible direct voltage
The permissible direct voltage Uperm of the fuse links depends
on the rated voltage Un, on the time constants =L/R in the DC
circuit and on the prospective current Ip. The permissible direct
voltage refers to the rated voltage Un and is specified depending on the time constants , the prospective current is a parameter (see the following diagrams).
1,00
Series connection
SITOR fuse links
Maximum melting time for uniform
voltage sharing
Type
ms
3NC10..
3NC14..
3NC15..
3NC22..
10
3NC24..
40
3NC58..
3NC73..
3NC84..
10
3NE10..
3NE12..
3NE13..
10
3NE14..
20
3NE18..
10
3NE32..
3NE33..
10
3NE34..
3NE35..
3NE36..
20
3NE41..
3NE43..
10
3NE54..
3NE56..
20
3NE64..
10
3NE74..
3NE76..
20
3NE80..
3NE87..
10
3NE94..
10
3NE96..
20
n
p=
10
n
0,80
p=
5
n
0,70
0,60
0,50
0,40
0
10
20
40
50
Time constant
30
60
70
=L/R
80
ms
50
60
70
40
Time constant t = L / R
80
ms
Applies to all series except 3NE10.., 3NE18..
0,90
p
It is best to avoid the series connection of fuse links in a converter connection branch and instead use a single fuse link with
a suitably high rated voltage.
Siemens · 2014
20
n
p=
10
n
0,70
p=
5
n
0,60
0,50
I201_12648
perm. DC vol tage Uperm
rated voltage Un (600 V)
0,80
0,40
0,30
Cooling conditions for series-connected fuse links should be approximately the same. If faults are expected, during which the
specified melting times are exceeded (as a result of a slower
current rise), it can no longer be assumed that voltage sharing is
uniform. The voltage of the fuse links must then be rated so that
a single fuse link can quench the full supply voltage.
152
20
0,90
I201_12647
In both cases, uniform voltage sharing can only be assumed if
the melting time of the SITOR fuse link does not exceed the value
specified in the following table.
perm. DC voltage U perm
rated voltage Un
p
There are two kinds of series connection available:
• Series connection in the converter branch
• Two fused converter branches through which a short-circuit
current flows in series
0
10
20
30
For series 3NE10.., 3NE18..
Breaking I 2t value I 2ta
The breaking I 2t value I 2ta depends on the voltage, on the time
constants =L/R and on the prospective current Ip. It is calculated from the I 2ta value specified in the characteristic curve for
the respective fuse link at rated voltage Un and correction factor
kA whereby, instead of the recovery voltage Uw, the direct voltage is used against which the fuse link is to switch.
The breaking I 2t value determined in this way applies under the
following conditions:
• Time constant L/R 25 ms for Ip 20 × In
• Time constant L/R 10 ms for Ip = 10 × In
• The breaking I 2t values increase by 20 %
• For Ip 20 × In and time constants L/R = 60 ms
• For Ip = 10 × In and time constants L/R = 35 ms
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Peak arc voltage Ûs
Fuse switch disconnectors, switch disconnectors with fuses
The peak arc voltage Ûsis determined from the curve specified
in the characteristics for the respective fuse link, whereby instead of the recovery voltage Uw, the direct voltage is used
against which the fuse link is to switch.
Some series of SITOR fuse links are suitable for operation in
3NP4 and 3NP5 fuse switch disconnectors or in 3KL and 3KM
switch disconnectors with fuses (see Catalogs LV 10 and LV 30).
The peak arc voltage determined in this way applies under the
following conditions:
• Time constants L/R  20 ms for Ip  20 In
• Time constants L/R  35 ms for Ip = 10 In.
The switching voltages increase by 20 %
• For Ip  20 In and time constants L/R = 45 ms
• For Ip = 10 In and time constants L/R = 60 ms.
Indicator
An indicator displays the switching of the fuse link. The SITOR
fuse links have an indicator whose operational voltage lies between 20 V (Un 1000 V) and 40 V (Un > 1000 V).
Accessories
Fuse bases, fuse pullers
Some of the SITOR fuse links can be inserted in matching fuse
bases. The matching fuse bases (single-pole and three-pole)
and the respective fuse pullers are listed in the Technical specifications, from page 87.
Note
Even if the values of the rated voltage and/or current of the fuse
bases
are lower than those of the allocated fuse link, the values of the
fuse link apply.
When using switch disconnectors, the following points must be
observed:
• Because, compared to LV HRC fuses for line protection, the
power dissipation of the SITOR fuse links is higher, the permissible load current of the fuse links sometimes needs to be reduced, see below (Configuration Manual)
• Fuse links with rated currents In > 63 A must not be used for
overload protection even when they have operational class
gR.
Note:
By contrast, all fuse links of the 3NE1... series with rated currents
In from 16 A to 850 A and operational classes gR and gS can be
used for overload protection.
• The rated voltage and rated isolation voltage of the switch disconnectors must at least correspond to the existing voltage.
• When using fuse links of the 3NE32.., 3NE33.., 3NE43..,
3NC24.. and 3NC84.. series the breaking capacity of fuse
switch disconnectors must not be fully utilized due to the slotted blade. Occasional switching of currents up to the rated
current of the fuse links is permissible
• When used in fuse switch disconnectors, fuse links of the
3NE41.. series may only be occasionally switched, and only
without load, as this places the fuse blade under great mechanical stress.
In the Technical specifications, starting on page 87, the switch
disconnectors are allocated to their respective individual fuse
links.
Siemens · 2014
153
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Unknown varying load, but with known maximum current Imax
Power converters are often operated not with a continuous load,
but with varying loads, that can also temporarily exceed the rated
current of the power converter.
La
Load current
The selection process for non-aging operation of SITOR fuse
links for four typical types of load is as follows:1)
• Continuous load
• Unknown varying load, but with known maximum current
• Varying load with known load cycle
• Occasional surge load from preloading with unknown surge
outcome
max
I201_12650
Specifying the rated current In for non-aging operation with
varying load
0
t
Rated current In of the fuse link
1
I n  I max  
k u  k q  k   k l  WL
The diagrams for the correction factors ku, kq, k , kl, page 146,
and the residual value factor RW, page 150 must be observed.
The varying load factor WL for the fuse links is specified on
page 147.
Imax = maximum load current of the fuse link (rms value)
Specifying the required rated current In of the fuse link is carried
out in two steps:
Varying load with known load cycle
1. Specifying the rated current In on the basis of the rms value
Irms of the load current:
La
La1
Permissible load current In' of the selected fuse link:
In’ = ku  kq  kl  kl  WL  In
n'
La3
Load current
1
I n > I rms  -------------------------------------------------k u  k q  k   k l  WL
RMS
La2
I201_12651
2. Checking the permissible overload duration of current blocks
exceeding the permissible fuse load current In’.
Melting time tvs (time/current characteristic curve) × residual
value factor RW  overload duration tk
t1
t2
t3
t4
t
SD
To do this, you require the previous load ratio
k=n
I rms
V = ------In

as well as the characteristic curve "permissible overload and
melting time for previous load" (page 150, curve a) and the
"time/current characteristic curve" for the selected fuse link.
If a determined overload duration is less than the respective required overload duration, then you need to select a fuse link with
a greater rated current In (taking into account the rated voltage
Un and the permissible breaking I 2t value) and repeat the
check.
Continuous load
I201_12649
Load current
Load
Load
0
t
Rated current In of the fuse link
1
I n  I La  ----------------------------------------------------k u  k q  k   k l  WL
ILa = load current of the fuse link (rms value)
Less than 1 shutdown per week: WL = 1
More than 1 shutdown per week: WL = see Technical specifications, from
page 87.
1)
In the case of varying loads that cannot be assigned to one of the four
types of load shown here, please contact us.
154
Siemens · 2014
I rms =
2
Lak
I
t
k
k=1
-------------------------------------------SD
2
I rms =
2
2
I La1 t 1 + I La2 t 2 + I La3 t 3
---------------------------------------------------------------SD
ILK = maximum load current of the fuse link (rms value)
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Occasional surge load from preloading with unknown surge
outcome
Continuous, no-break load
Specifying the required rated current In of the fuse link is carried
out in two steps:
4 9 3 A
L a
I2 _ 1 2 6 5 3
1. Specifying the rated current In on the basis of the previous
load current Iprev:
1
I n > I prev  ----------------------------------------------------k u  k q  k   k l  WL
t
Permissible load current In' of the selected fuse link:
In’ = ku × kq × k × kl × WL × In
2. Checking the permissible overload duration of the
surge current Isurge
Melting time tvs (time/current characteristic curves) × residual
value factor RW  surge wave duration tsurge
To do this, you require the previous load ratio
I rms
V = ------In 
as well as the characteristic curve "Permissible overload and
melting time for previous load" (page 150, curve a) or b) and
the "time/current characteristic curve" for the selected fuse
link.
If a determined overload duration is less than the required overload duration tsurge, then you need to select a fuse link with a
greater rated current In (taking into account the rated voltage Un
and the permissible breaking I 2t value) and repeat the check.
Direct current Id = Idn = 850 A
ILa = Id × 0.58 = 493 A
Selected:
3NE3335 SITOR fuse link
(560 A/1000 V), WL = 1
breaking I 2t value
I 2tA = 360 × 103 × 0.53 = 191 × 103 A2s
test cross-section to 145: 400 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.91 (conductor cross-section, double-ended, 40 % of test
cross-section)
k = 1.0 (conduction angle  = 120°)
kl = 1.0 (no forced-air cooling)
Required rated current In of the SITOR fuse link:
1
I n  I La  -------------------------------------------------- = 493 A
k u  k q  k   k l  WL
1
493 A  ---------------------------------------------------------------------- = 531 A
1, 02  0, 91  1, 0  1, 0  1, 0
Load
surge
Unknown varying load, but with known maximum current
m a x
'
n
I201_12652
prev
0
= 4 3 5 A
L a
t
I2 _ 1 2 6 5 4
Load current
t surge
t interval
Condition:
tinterval  3 x tsurge
tinterval  5 min
Selection examples
For a converter assembly in circuit (B6) A (B6) C, whose rated
direct current is Idn= 850 A, fuse links that can be installed as
branch fuses should be selected. The choice of fuse is shown for
different operating modes of the converter assembly.
Data for converter assembly
• Supply voltage
UN = 3 AC 50 Hz 400 V
• Recovery voltage
UW = 360 V = UN x 0.9 (for shoot-throughs)
• Thyristor T 508N (eupec),
I2t value
 i2 dt = 320 × 10 3A2s (10 ms, cold)
• Fuse links, natural air cooling,
ambient temperature u = +35 °C
• Conductor cross-section for copper fuse links: 160 mm2
• Conversion factor
direct current Id/fuse load current ILa: ILa = Id × 0.58.
For the following examples, it is assumed, in the case of loads
that exceed the rated direct current of the converter assembly,
that the converter assembly is rated for these loads.
t
Max. direct current Idmax = 750 A
Max. fuse current Imax = Idmax × 0.58 = 435 A
Selected:
3NE3334-0B SITOR fuse link
(560 A/1000 V), WL = 1
breaking I 2t value
I 2tA = 260 × 103 × 0.53 = 138 × 103 A2s
test cross-section to 145: 400 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.91 (conductor cross-section, double-ended, 40 % of test
cross-section)
k = 1.0 (conduction angle  = 120°)
kl = 1.0 (no forced-air cooling)
Required rated current In of the SITOR fuse link:
1
I n  I max  -------------------------------------------------- = 493 A
k u  k q  k   k l  WL
1
435 A  ---------------------------------------------------------------------- = 469 A
1, 02  0, 91  1, 0  1, 0  1, 0
Siemens · 2014
155
© Siemens AG 2014
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Varying load with known load cycle
= 696 A
La3
= 580 A
surge =
La
rms =
317 A
tsurge = 8 s
= 290 A
I201_12655
La2
t1
t2
SD = 330 s
t3
t4
Direct current:
Idprev = 700 A
Idsurge = 500 A
Conditions:
tinterval  3 tsurge and tinterval  5 min must be fulfilled.
2
696  20 + 290  240 + 580  10
--------------------------------------------------------------------------------- = 317A
330
Selected:
3NE3333 SITOR fuse link
(450 A/1000 V), WL = 1
breaking I2t value I2ta = 175 × 103 × 0.53 = 93 × 103 A2s
test cross-section to 145: 320 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.94 (conductor cross-section, double-ended, 50 % of test
cross-section)
k = 1.0 (conduction angle  = 120°)
kl = 1.0 (no forced-air cooling)
1. Required rated current In of the SITOR fuse link:
1
I n  I rms  -------------------------------------------------- = 493 A
k u  k q  k   k l  WL
1
317 A  ---------------------------------------------------------------------- = 331 A
1, 02  0, 94  1, 0  1, 0  1, 0
Permissible load current In' of the selected fuse link:
In’ = ku × kq × k × kl × WL × In = 1.02 × 0.94 × 1.0 × 1.0 × 1.0
× 450 = 431 A
2. Checking the permissible overload duration of current blocks
exceeding the permissible fuse load current In’
Previous load ratio:
I rms
V = ------- = 317
-------- = 0,74
431
In 
Residual value factor RW: For V = 0.74 of curve a
(characteristic curve page 150, frequent surge/load cycle
currents) RW = 0.2
Current block ILa1: melting time tvs: 230 s (from time/current
characteristic curve for 3NE3 333) tvs × RW = 230 s × 0.2 =
46 s > t1
Current block ILa3: melting time tvs: 1200 s (from time/current
characteristic curve for 3NE3 333) tvs × RW = 1200 s × 0.2 =
240 s > t3
156
Siemens · 2014
tsurge = 8 s
Fuse current:
Iprev =Idprev × 0.58 = 406 A
Isurge =Idsurge × 0.58 = 1015 A
Rms value of load current
2
406 A
t
Fuse current:
ILa1 =1200 × 0.58 = 696 A
ILa2 = 500 × 0.58 = 290 A
ILa3 =1000 × 0.58 = 580 A
I rms =
prev=
t
Direct current:
Id1 =1200 A t1 = 20 s
Id2 = 500 A t2 = 240 s
Id3 =1000 A t3 = 10 s
Id4 =
0 A t4 = 60 s
2
1015 A
La
'n
I201_12656
La1
Occasional surge load from preloading with unknown surge
outcome
Selected:
3NE3333 SITOR fuse link
(560 A/1000 V), WL = 1
breaking I2t value I2ta = 360 × 103 × 0.53 = 191 × 103 A2s
test cross-section to 145: 400 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.91 (conductor cross-section, double-ended, 40 % of test
cross-section)
k = 1.0 (conduction angle  = 120°)
kl = 1.0 (no forced-air cooling)
1. Required rated current In of the SITOR fuse link:
1
I n  I prev  -------------------------------------------------- = 493 A
k u  k q  k   k l  WL
1
406 A  ---------------------------------------------------------------------- = 437 A
1, 02  0, 91  1, 0  1, 0  1, 0
Permissible load current In' of the selected fuse link:
In’ =ku × kq × k × kl × WL × In =
1.02 × 0.91 × 1.0 × 1.0 × 1.0 × 560 = 520 A
2. Checking the permissible overload duration of the
surge current Isurge
Previous load ratio:
I prev
V = -------- = 406
-------- = 0,78
520
In
Residual value factor RW: For V = 0.78 of curve a
(characteristic curve page 150, frequent surge/load cycle
currents) RW = 0.18 surge current Isurge: melting time tvs:
110 S (from time/current characteristic curve for 3NE3333)
tvs × RW = 110 s × 0.18 = 19.8 s > tsurge correction factors
can be found on page 145 and page 146.
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
Introduction
■ Overview
Special demands are made on fuses for application in photovoltaic systems. These fuses have a high DC rated voltage and a
tripping characteristic specially designed to protect PV modules
and their connecting cables (the newly defined operational class
gPV). It is also crucial that the PV fuses do not age in spite of
strongly alternating load currents, in order to ensure high plant
availability throughout the service life of the PV system. The
fuses must also be able to withstand high temperature fluctuations without damage. These requirements were only incorporated into an international standard in recent years and have
now been published as IEC 60269-6.
All Siemens photovoltaic fuse systems comply with this new
standard. Furthermore, they also already comply with the recently agreed corrections to the characteristic curves, which will
be incorporated in the next standard update.
The IEC cylindrical fuses used as phase fuses also correspond
to the characteristic curves specified in UL standard UL 2579.
The non-fusing current Inf and fusing current If test currents are
crucial to the shape of the characteristic curves.
Standard
Inf
If
Current IEC standard
1.13 x In
1.45 x In
UL standard
1.0 x In
1.35 x In
Future IEC standard
1.05 x In
1.35 x In
Siemens fuses
1.13 x In
1.35 x In
These test currents of gPV phase fuses to 32 A apply for a conventional test duration of one hour; at Inf, the fuse must not trip
within an hour, at If, it must trip within an hour.
The PV cylindrical fuses of size 10 mm x 38 mm offer an especially space-saving solution for the protection of the strings.
The PV fuses in LV HRC design are usually used as cumulative
fuses upstream of the inverter. In addition, they can also be used
for protecting groups (PV subarrays). For the PV cumulative
fuses of size 1, standard LV HRC fuse bases are available. For
PV cumulative fuses of size 1L, 1XL, 2L, 2XL and 3L, we have developed a special 3NH7...-4 fuse base with a swiveling mechanism which combines maximum touch protection with maximum
user-friendliness. This makes it possible to change fuses safely
and without the need for any tools, such as a fuse handle. This
provides safe and fast access even in an emergency.
The cylindrical fuse holders can be supplied in single-pole and
two-pole versions with and without signal detectors. In the case
of devices with signal detector, a small electronic device with
LED is located behind an inspection window in the plug-in module. If the inserted fuse link is tripped, this is indicated by the LED
flashing.
The fuse holders size 10 x 38 mm have a sliding catch that enables the removal of individual devices from the assembly. The
infeed can be from the top or the bottom. Because the cylindrical
fuse holders are fitted with the same anti-slip terminals at the top
and the bottom, the devices can also be bus-mounted at the top
or the bottom.
Our cylindrical fuse holders and 3NH7...-4 fuse bases with swiveling mechanism comply with the IEC 60269-6 standard and are
considered fuse disconnectors as defined in the switchgear and
controlgear standard IEC 60947. Under no circumstances are
they suitable for switching loads.
To ensure that PV fuses are correctly selected and dimensioned,
the specific operating conditions and the
PV module data must be taken into account when calculating
voltage and current ratings.
■ Benefits
• Protection of the modules and their connecting cables in the
event of reverse currents
• Safe tripping in case of fault currents reduces the risk of fire
due to DC electric arcs
• Safe isolation when the fuse holder/fuse base is open
PV cylindrical fuse system, 3NW70..-4, 3NW60..-4
PV LV HRC fuse systems, 3NH73..-4, 3NE13..-4D
Siemens · 2014
157
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
PV cylindrical fuses
■ Technical specifications
Cylindrical fuse links
Cylindrical fuse holders
3NW60..-4
3NW70..-4
mm x mm 10 x 38
IEC 60269-6
Size
Standards
IEC 60269, IEC 60269-6, IEC 60947,
UL 4248-1, -18
Approvals
UL 248-13 (available soon)
UL 4248-1, -18, File No. E 355487, CSA
Operational class
Rated voltage Un
Rated current In
Rated short-circuit strength
Rated breaking capacity
Switching capacity
• Utilization category
gPV
1000
2 to 16
-30
30
30
--
V DC
A DC
kA
kA DC
--
AC-20B, DC-20B (switching without load)
Max. power dissipation of the fuse link
W
--
3.4 (3.8 at 6 mm2)
Rated impulse withstand voltage
Overvoltage category
kV
---
6
II
Pollution degree
No-voltage changing of fuse links
Sealable when installed
Mounting position
Current direction
---Any, but preferably vertical
--
2
Yes
Yes
Degree of protection acc. to IEC 60529
Terminals with touch protection according to BGV A3
at incoming and outgoing feeder
--
IP20, with connected conductors
--
Yes
Any (signal detector with antiparallel LED)
Ambient temperature
Conductor cross-sections
• Finely stranded, with end sleeve
• AWG (American Wire Gauge)
°C
-25 ... +55, humidity 90 % at +20
mm2
AWG
---
0.75 ... 25
18 ... 4
Tightening torque
Nm
--
2.5
158
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
PV cylindrical fuses
■ Characteristic curves
Correction factor; ambient temperature k
1,1
I202_02187
4A
2A
6A
8A
10 A
12 A
16 A
I201_18898
104
6
4
1,05
1
2
10
6
4
K
Virtual pre-arcing time
2
103
6
4
2
0,95
2
101
6
4
0,9
2
0,85
100
6
4
0,8
2
0
10
20
30
10-1
6
4
2
40
50
60
70
80
90
°C
10-2
6
4
2
10-3
100
2
4 6 101 2
4 6 102 2
Prospective short-circuit current
Time/current characteristics diagram
4
6 103
Characteristic curves diagram Correction factor Ambient temperature
■ Dimensional drawings
3NW600.-4
3NW70. .-4
38
10 x 38 mm
18
1-pole
36
45
81
I202_01298
10,3
I2_06703c
7
37
49
58
2-pole
■ Circuit diagrams
2
2 4
1
1 3
1-pole
2-pole
Siemens · 2014
159
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
PV cylindrical fuses
■ More information
Selecting and dimensioning photovoltaic fuses from
Siemens
Standards:
The contents of the new standard IEC 60269-6 are currently
being drawn up.
We follow this new standard when rating and labeling our
PV fuses. Until now, some of our rivals have been relying on
products based on the standard IEC 60269-4 "Fuses for semiconductor protection". Differences between the two standards
are particularly evident for the rated voltage and the test voltage
and in the definition of the operational class.
Terms:
UOC STC (also known as VOC STC)1)
Voltage under standard test conditions on an unloaded string
taking into account minimum ambient temperature (no-load voltage). The voltage UOC STC of a string is obtained by multiplying
the single voltages UOC STC of a PV module (UOC STC x M2)).
ISC STC
Short-circuit current of a PV module, a PV string, a PV subgenerator or a PV generator under standard test conditions
I MPP
is the largest possible working current of a string
(MPP = Maximum Power Point).
Rated making and breaking capacity
Under draft standard IEC 60269-6 a rated breaking capacity of
at least 10 kA is required. While this is comparatively low compared to other fuses, it is more than adequate for handling the
fault currents occurring in PV systems.
We have tested our PV fuses at 30 kA.
Dimensioning rules
PV fuses are to be dimensioned according to special rules with
regard to rated voltage, rated current and operational class
(characteristic).
Dimensioning rule
The rated voltage4) of the fuse should be calibrated 20 % higher
than the open-circuit voltage UOC STC of a string. Extreme
operating conditions, e.g. temperatures down to -25 °C, are thus
taken into account.
Rated voltage
Our PV fuses have been tested according to draft standard
IEC 60269-6 with the rated voltage, i.e. the test voltage is the
same as the rated voltage.
Based on IEC 60269-4, some manufacturers have issued two
voltage values for their fuses, e.g. 900 V (tested 1000 V).
Ip max
Is the maximum occurring load current; this is usually equivalent
to IMPP.
Rated current
1. In order to prevent unwanted tripping of the PV fuse during
normal operation and in case of a fault in a different string that is
connected in parallel, the rated current of the PV fuse must be
greater than the short-circuit current ISC of the respective
module or string: In 1.4 ISC.
I SC MOD
Short-circuit current of a PV module under regional conditions.
The value 1.4 was determined in draft standard IEC 60269-6 and
should apply to the simple dimensioning of the fuse.
Standard test conditions (STC)
Test conditions which are laid down in DIN EN 60904-3 for
PV cells and PV modules:
• Solar radiation 1000 W/m²
• Ambient temperature 25 °C
• Air distribution (AM) 1.5
This value contains the following correction factors for the standard test conditions:
A higher ambient temperature of 45 °C, a higher solar radiation
of 1200 W/m² and the reduction due to the variable loading.
Standard test conditions are normally specified by the manufacturer of the PV module in data sheets.
According to EN 60469-1, Table 1, the following reduction
factors must be applied:
Operational class
We use draft standard IEC 60269-6 as a guide when naming the
operational class gPV. Accordingly, the symbols are also on the
fuse:
I202_01302
I202_01303
It is important that the fuse has a full-range characteristic which
can cut off with certainty all possible fault currents, and especially also small fault currents3).
An additional reduction must be used when several fuse holders
are bundled.
Number of main circuits
Rated diversity factor
2 and 3
0.9
5 and 6
0.8
6 ... 9
0.7
10 and more
0.6
Since the fuses are only operated with around 70 to 80 % of the
load current, a further reduction is only necessary from around
six main circuits (e.g. three two-pole devices), including also
where the fuses only have maximum power dissipation of 3.4 W.
The test currents for PV fuses are defined in
draft standard IEC 60269-6.
Inf = 1.13 x In (test current at which the fuse must not trip for one
hour).
If = 1.45 x In (test current at which the fuse must trip for one
hour).
1)
Voltage of the unloaded circuit under standard test conditions.
2)
M is the number of PV modules connected in series in a string.
3)
Note: A difference in the overload current and the short-circuit current is
not meaningful when protecting PV systems, because even for a short circuit, only small currents occur, which are not designated as short-circuit
currents in terms of the standards of overcurrent protective devices. Therefore in the following we shall refer to fault currents.
4)
Note: Unlike with mechanical switching devices, when two fuses (positive
pole and negative pole) are used, you cannot count on a division of the
voltage in the event of fault current tripping. Accordingly every fuse must
be dimensioned with the full rated voltage.
Time/current characteristic curve diagram see page 159.
160
Siemens · 2014
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
PV cylindrical fuses
Fuses with a lower rated current have a lower power dissipation,
so that the reduction is considerably less The 10 A fuse for example has a rated power dissipation of 1.5 W, with the result that
no reduction is necessary here.
In the event of extreme solar radiation a further reduction of the
rated current of the fuse may be necessary.
The short circuit current ISC MOD is dependent on regional climatic conditions. Under particular climatic conditions and cloud
constellations, in particular high in the mountains, higher values
for the solar radiation than the 1200 W/m² used above may by all
means occur (above: simplified calculation).
In order to incorporate the peak values into the calculation, we
recommend using the following correction factors.
Climate zone
Max. solar radiation Correction
factor
Standard test conditions
1000 W/m²
1
Moderate climate zone
1200 W/m²
1.2
The PV fuses have a "disconnect current" (generally referred to
as high test current If), which causes the fuse to disconnect at
1.45 x the rated current in less than one hour (at the latest).
In order to connect the tested reverse current resistance of the
PV modules IMOD REVERSE with the cut-off performance of the
fuse, we recommend the use of a conversion factor of 0.9.
For the rated current of the PV fuse, In produces the following dimensioning rules:
In 0.9 x IMOD REVERSE
This does not consider possible fault currents, if any, which are
fed by the back-up batteries and/or the solar converters.
Protection of the factory-fitted connecting cables of the PV modules should be mainly ensured by the manufacturer.
Moderate climate zone/high mountains 1400 ... 1600 W/m²
1.4 ... 1.6
Connecting cables/wires of a string must be able to withstand n
times the short-circuit current ISC MOD. As with other cables and
wires, the following simple relationship applies:
Africa
1.4 ... 1.5
In Iz2)
1400 ... 1600 W/m²
The rated current of the fuse refers to an ambient temperature of
25 °C.
Cut-off performance will change at higher temperatures. A further reduction may be required for an ambient temperature higher than the ambient temperature used above (+45 °C).
If several strings connected in parallel are grouped together, the
aforementioned dimensioning rules also apply. The rated current
of the PV fuse group should be at least 1.21) times greater than
the total of the short-circuit currents of the group.
2.To protect the modules and their connecting cables, the PV
fuse should cut off fault currents reliably and in time.
Fault currents can result from faulty modules, double ground
faults or incorrect wiring. The PV modules are rated in such a
way that they can continuously withstand the fault current in the
forward direction without any problems.
However, fault currents which flow through the string or the PV
module in a reverse direction are particularly critical.
This fault current ISC REVERSE is calculated from the number of
parallel connected strings n-1 multiplied by the short circuit
current ISC MOD of a string or module.
ISC REVERSE = n-1 x ISC MOD
This ISC MOD is likewise dependent on the regional circumstances described above:
ISC MOD = 1.21) x ISC STC
Only above n = 3 parallel strings are PV phase fuses meaningful
at all.
In order to protect the PV modules against reverse currents
ISC REVERSE which have a value higher than the reverse current
resistance of the PV modules IMOD REVERSE, the "cut-off current"
of the PV fuse must be of a smaller size than the permitted and
tested reverse current resistance of the module.
You can dispense with PV fuses if the reverse current resistance
of the PV modules is greater than the fault current:
IMOD REVERSE > ISC REVERSE
The manufacturers of the modules normally test their modules
with a 1.35x reverse current for two hours.
For protection, you therefore need a fuse that trips earlier under
these conditions.
1)
Climate zone-dependent correction factor 1.2 … 1.6
(see the table on page 161).
2)
Iz is the permitted capacity of the line/cable.
Siemens · 2014
161
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
PV cumulative fuses
■ Technical specifications
Fuse links
Fuse bases
3NE1...-4 / -4D / -4E / -5E
Size
1
1L
Standards
IEC 60269-6
2L
3NH7...-4
3L
1XL
2XL
1L
2L
3L
1XL
2XL
IEC 60269 IEC 60269-6
IEC 60947
1000
1500
gPV
Operational class
Rated voltage Un
V DC 1000 at time constant (L/R) 3 ms
1500 at time constant (L/R) 3 ms
Rated current In
A DC 63 ... 160 200/250 315/400 500/630 63 ... 200 250/315 250
Rated short-circuit strength
kA
--
30
Rated breaking capacity
kA
DC
30
--
--
AC-20B, DC-20B (switching without load)
--
90
Switching capacity
• Utilization category
Max. power dissipation of the
fuse link
W
No-voltage changing of fuse links
--
Yes
Sealable when installed
--
Yes
Mounting position
Any, but preferably vertical
--
Current direction
400
110
630
130
250
90
400
110
Any
Ambient temperature
°C
-25 ... +55, humidity 90 % at +20
Tightening torque
Nm
--
20
■ Characteristic curves
Virtual Pre-arcing Time
63 A
80 A
100 A
125 A
160 A
200 A
250 A
315 A
400 A
500 A
630 A
2
102
6
4
2
101
6
4
2
100
6
4
2
10 3
6
4
63 A
80 A
100 A
125 A
160 A
200 A
2
10 2
6
4
2
250 A
315 A
10 1
6
4
2
10 0
6
4
2
10-1
6
4
2
10 -1
6
4
2
10-2
6
4
2
2
4 6 8 102 2
4 6 8 103 2
Prospective short-circuit current
4 6 8104
2
10 -2
6
4
2
10 -3
101 2
Time/current characteristics diagram 1000 V
162
I201_18418
6
4
vs
2
103
6
4
2
10-3 1
10
104
I202_02188b
Virtual melting time vs
104
6
4
Siemens · 2014
4 6 102
2
4 6 103 2
4 6 104 2
Prospective Short-circuit Current
Time/current characteristics diagram 1500 V
4 6 105
© Siemens AG 2014
Fuse Systems
Photovoltaic fuses
PV cumulative fuses
■ Dimensional drawings
3NE1
t2
t1
h1 h2
h3
b
I201_10899a
Size
In
b
A
mm
h1
h2
t1
t2
1
63 ... 160 52
66.5
135
50
13.5
1L
200, 250
52
106.5
175
50
13.5
2L
315, 400
60
106.5
189
57
15
3L
500, 630
75
125.5
201
68.5
17.5
1XL
63 ... 200 52
126.5
189
50
13.5
2XL
250, 315
126.5
205
57
15
60
3NH73..-4
I202_02190a
g
c
102,5
b
a
11
I202_02191
Drilling plan
e
6
20,5
Size
d
a1
d
f
Dimensions
a1
20,5
Dimension a
mm
a2
Size
30
a2
b
c
d
e
f
g
1L
65
2L
65
3L
80
1XL
84
2XL
80
mm
1L
71
75
306
270
73
130
362
313
2L
79
83
326
296
87
144
390
335
3L
93
97
341
311
101
158
418
359
1XL
71
76
325
289
73
124
380
332
2XL
79
83
341
311
87
144
410
354
Fuse bases with swiveling mechanism, 3NH7 3..-4
■ Circuit diagrams
2
1
1-pole
Siemens · 2014
163
© Siemens AG 2014
Fuse Systems
Notes
164
Siemens · 2014
© Siemens AG 2014
© Siemens AG 2014
Siemens AG
Infrastructure & Cities Sector
Low and Medium Voltage Division
Low Voltage & Products
Postfach 10 09 53
93009 REGENSBURG
GERMANY
www.siemens.com/lowvoltage
Subject to change without prior notice
PDF (3ZW1012-3NW10-0AC1)
MP.R3.LP.0000.00.3.79
PH 0314 164 En
Produced in Germany
© Siemens AG 2014
The information provided in this brochure contains merely general
descriptions or characteristics of performance which in case of actual
use do not always apply as described or which may change as a result
of further development of the products. An obligation to provide the
respective characteristics shall only exist if expressly agreed in the
terms of contract. Availability and technical specifications are subject
to change without notice.
All product designations may be trademarks or product names of
Siemens AG or supplier companies whose use by third parties for their
own purposes could violate the rights of the owners.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement

Languages