STM32F429xx

Add to my manuals
102 Pages

advertisement

STM32F429xx | Manualzz
STM32F429xx
ARM Cortex-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/256+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
Data brief
Features
&"'!
• Core: ARM 32-bit Cortex™-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 180 MHz,
MPU, 225 DMIPS/1.25 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions
• Memories
– Up to 2 MB of Flash memory organized into
two banks allowing read-while-write
– Up to 256+4 KB of SRAM including 64-KB
of CCM (core coupled memory) data RAM
– Flexible external memory controller with up
to 32-bit data bus: SRAM,PSRAM,SDRAM,
Compact Flash/NOR/NAND memories
• LCD parallel interface, 8080/6800 modes
• LCD-TFT controller up to VGA resolution with
dedicated Chrom-ART Accelerator™ for
enhanced graphic content creation (DMA2D)
• Clock, reset and supply management
– 1.8 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
•
Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
• 3×12-bit, 2.4 MSPS ADC: up to 24 channels
and 7.2 MSPS in triple interleaved mode
• 2×12-bit D/A converters
• General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
• Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 180 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
• Debug mode
– SWD & JTAG interfaces
May 2013
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm) UFBGA176 (10 × 10 mm)
LQFP176 (24 × 24 mm) TFBGA216 (13 x 13 mm)
LQFP208 (28 x 28 mm)
– Cortex-M4 Embedded Trace Macrocell™
• Up to 168 I/O ports with interrupt capability
– Up to 164 fast I/Os up to 84 MHz
– Up to 166 5 V-tolerant I/Os
• Up to 21 communication interfaces
– Up to 3 × I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs/4 UARTs (11.25 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
– Up to 6 SPIs (42 Mbits/s), 2 with muxed
full-duplex I2S for audio class accuracy via
internal audio PLL or external clock
– 1 x SAI (serial audio interface)
– 2 × CAN (2.0B Active) and SDIO interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
• 8- to 14-bit parallel camera interface up to
54 MBs/s
• True random number generator
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar
Table 1. Device summary
Reference
STM32F429xx
Doc ID 023140 Rev 2
For further information contact your local STMicroelectronics sales office.
WLCSP143
Part number
STM32F429VG, STM32F429ZG, STM32F429IG,
STM32F429VI, STM32F429ZI, STM32F429II,
STM32F429BG, STM32F429BI, STM32F429NI,
STM32F429NG
1/102
www.st.com
1
Contents
STM32F429xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
ARM® Cortex™-M4 with FPU and embedded Flash and SRAM . . . . . . . 14
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 14
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 15
3.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10
LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11
Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.12
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 18
3.13
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.14
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.15
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.16
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.17
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.18
2/102
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.17.1
Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.17.2
Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.18.1
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.18.2
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.18.3
Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 25
3.19
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 25
3.20
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.21
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 023140 Rev 2
STM32F429xx
3.22
Contents
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.22.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.22.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.22.4
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.22.5
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.22.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.23
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.24
Universal synchronous/asynchronous receiver transmitters (USART) . . 30
3.25
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.26
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27
Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.28
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.29
Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.30
Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 32
3.31
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 33
3.32
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.33
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 34
3.34
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 34
3.35
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.36
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.37
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.38
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.39
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.40
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.41
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.42
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Doc ID 023140 Rev 2
3/102
Contents
7
STM32F429xx
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8
4/102
A.1
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . . 96
A.2
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . . 98
A.3
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Doc ID 023140 Rev 2
STM32F429xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F429xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 22
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 25
Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32F429xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STM32F429xx alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STM32F429xx register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . . . 82
WLCSP143, 0.4 mm pitch wafe level chip scale package mechanical data. . . . . . . . . . . . 85
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
TFBGA216 - ultra thin fine pitch ball grid array 13 × 13 × 0.8mm
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Doc ID 023140 Rev 2
5/102
STM32F429xx
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
6/102
Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
STM32F429xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM32F429xx Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 20
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 24
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 24
STM32F42x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32F42x WLCSP143 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STM32F42x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
STM32F42x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32F42x LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STM32F42x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32F42x TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 81
LQPF100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
WLCSP143, 0.4 mm pitch wafe level chip scale package outline . . . . . . . . . . . . . . . . . . . 84
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 86
LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 88
LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 90
LQFP208 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
TFBGA216 - ultra thin fine pitch ball grid array 13 × 13 × 0.8mm,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . . 96
USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . . 97
USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Doc ID 023140 Rev 2
STM32F429xx
1
Introduction
Introduction
This databrief provides the description of the STM32F429xx line of microcontrollers. For
more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1:
Full compatibility throughout the family.
The STM32F429xx databrief should be read in conjunction with the STM32F4xx reference
manual.
For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming
manual (PM0214), available from the www.arm.com.
Doc ID 023140 Rev 2
7/102
Description
2
STM32F429xx
Description
The STM32F429XX devices is based on the high-performance ARM® Cortex™-M4 32-bit
RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a
Floating point unit (FPU) single precision which supports all ARM single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F429xx devices incorporates high-speed embedded memories (Flash memory
up to 2 Mbyte, up to 256 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB
buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true random number generator (RNG). They also feature standard and advanced
communication interfaces.
•
Up to three I2Cs
•
Six SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can
be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
•
Four USARTs plus four UARTs
•
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
•
Two CANs
•
One SAI serial audio interface
•
An SDIO/MMC interface
•
Ethernet and the camera interface
•
LCD-TFT display controller
•
DMA2D controller.
Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a
camera interface for CMOS sensors. Refer to Table 2: STM32F429xx features and
peripheral counts for the list of peripherals available on each part number.
The STM32F429xx devices operates in the –40 to +105 °C temperature range from a 1.8 to
3.6 V power supply.
The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C
temperature range with the use of an external power supply supervisor (refer to
Section 3.17.2: Internal reset OFF). A comprehensive set of power-saving mode allows the
design of low-power applications.
The STM32F429xx devices offers devices in 7 packages ranging from 100 pins to 216 pins.
The set of included peripherals changes with the device chosen.
8/102
Doc ID 023140 Rev 2
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
Description
9/102
These features make the STM32F429xx microcontrollers suitable for a wide range of applications:
Figure 4 and Figure 4 show the general block diagram of the device family.
Table 2. STM32F429xx features and peripheral counts
Peripherals
Flash memory in Kbytes
STM32F429Vx
STM32F429Zx
STM32F429Ix
STM32F429Bx
STM32F429Nx
1024
1024
1024
1024
1024
2048
2048
2048
Doc ID 023140 Rev 2
System
256(112+16+64+64)
Backup
4
2048
2048
SRAM in Kbytes
FMC memory controller
Ethernet
Timers
Yes
General-purpose
10
Advanced-control
2
Basic
2
Random number generator
SPI / I2S
I2C
Yes
6/2 (full duplex)(2)
3
USART/UART
4/4
USB OTG FS
Yes
USB OTG HS
Yes
CAN
2
SAI
1
SDIO
Yes
STM32F429xx
Communication
interfaces
Yes(1)
Peripherals
STM32F429Vx
STM32F429Zx
STM32F429Ix
Camera interface
Yes
LCD-TFT
Yes
Chrom-ART Accelerator™ (DMA2D)
Yes
GPIOs
12-bit ADC
Number of channels
82
114
STM32F429Bx
140
STM32F429Nx
STM32F429xx
Table 2. STM32F429xx features and peripheral counts (continued)
168
3
16
24
24
Yes
2
12-bit DAC
Number of channels
Maximum CPU frequency
180 MHz
Doc ID 023140 Rev 2
1.8 to 3.6 V(3)
Operating voltage
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
Junction temperature: –40 to + 125 °C
Packages
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply
supervisor (refer to Section 3.17.2: Internal reset OFF).
Description
10/102
STM32F429xx
2.1
Description
Full compatibility throughout the family
The STM32F429xx devices are part of the STM32F4 family. They are fully pin-to-pin,
software and feature compatible with the STM32F2xx devices, allowing the user to try
different memory densities, peripherals, and performances (FPU, higher frequency) for a
greater degree of freedom during the development cycle.
The STM32F429xx devices maintain a close compatibility with the whole STM32F10xx
family. All functional pins are pin-to-pin compatible. The STM32F429xx, however, are not
drop-in replacements for the STM32F10xx devices: the two families do not have the same
power scheme, and so their power pins are different. Nonetheless, transition from the
STM32F10xx to the STM32F42x family remains simple as only a few pins are impacted.
Figure 1, Figure 2, and Figure 3, give compatible board designs between the STM32F4xx,
STM32F2xx, and STM32F10xx families.
Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package
633
633
633
633
6$$ 6
33
4WO Ω RESISTORSCONNECTEDTO
6$$ 633
6 33FORTHE34-&XX
6 33FORTHE34-&XX
6 336 $$OR.#FORTHE34-&XX
Ω
ª RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XXX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
633
Doc ID 023140 Rev 2
6 33FOR34-&XX
6 $$FOR34-&XX
AIC
11/102
Description
STM32F429xx
Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package
VSS
108
109
73
72
106
71
VSS
VSS
Signal from
external power
supply
supervisor
0 Ω resistor or soldering bridge
present for the STM32F10xx
configuration, not present in the
STM32F4xx configuration
143 (PDR_ON)
30
144
31
1
37
36
VSS
VDD VSS
Two 0 Ω resistors connected to:
- VSS for the STM32F10xx
VDD
VSS
VSS for STM32F10xx
VDD for STM32F4xx
- VSS, VDD or NC for the STM32F2xx
- VDD or signal from external power supply supervisor for the STM32F4xx
ai18487d
Figure 3. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 package
132
89
88
133
- GND for STM32F2xx
- BYPASS_REG for STM32F4xx
48
Signal from external
power supply
supervisor
171 (PDR_ON)
45
176
1
44
VDD VSS
Two 0 Ω resistors connected to:
- VSS, VDD or NC for the STM32F2xx
- VDD or signal from external power supply supervisor for the STM32F4xx
MS31835V1
12/102
Doc ID 023140 Rev 2
STM32F429xx
Description
Figure 4. STM32F429xx block diagram
##-DATA2!-+"
*4!'37
-05
.6)#
%4-
,#$?2;=,#$?';=,#$?";=
,#$?(39.#,#$?639.#,#$?$%
,#$?#,+
$-!
3TREAMS
&)&/
$-!
3TREAMS
&)&/
,#$4&4
2.'
-"&LASH
32!-+"
32!-+"
32!-+"
!("-(Z
!("-(Z
6OLTAGE
REGULATOR
TO6
0!;=
'0)/0/24!
'0)/0/24"
0#;=
'0)/0/24#
2#(3
0/2
RESET
2#,3
)NT
0,,
$0
$)$6"533/&
6$$TO6
633
6#!06#0!
6$$
6$$!
&)&/
0";=
53"
/4'&3
0OWERMANAGMT
6$$
&)&/
#(2/-!24
$-!$
(39.#639.#
05)8#,+$;=
#AMERA
INTERFACE
0(9
$-!
&)&/
-"&LASH
&)&/ &)&/
53"
/4'(3
!24!##%,
#!#(%
3"53
%THERNET-!# $-!
&)&/
0(9
$0$5,0)#+$;=$)2340.84
)$6"533/&
32!-3$2!-032!-
./2&LASH0##ARD!4!
.!.$&LASH
$"53
!2-#ORTEX-
-(Z
)"53
&05
-))OR2-))AS!&
-$)/AS!&
#,+.%;=!;=
$;=./%..7%.
.",;=3$#,+%;=3$.%;=
3$.7%.,
.2!3.#!3.!$6
.7!)4.)/2$.2%'#$
).4.
%XTERNALMEMORYCONTROLLER&-#
!("
!("BUSMATRIX3
.*4234*4$)
*4#+37#,+
*4$/37$*4$/
42!#%#,+
42!#%$;=
3UPPLY
SUPERVISION
0/20$2
"/2
06$
6$$!633!
.234
6$$
6$$!
84!,/3#
-(Z
/3#?).
/3#?/54
0$;=
'0)/0/24$
0%;=
'0)/0/24%
0&;=
'0)/0/24&
0';=
'0)/0/24'
0(;=
'0)/0/24(
0);=
'0)/0/24)
0*;=
'0)/0/24*
+""+032!-
'0)/0/24+
4)-
B
CHANNELS%42AS!&
4)-
B
CHANNELS%42AS!&
4)-
B
CHANNELS%42AS!&
CHANNELS
,3
4)-07-B
4)-
B
4)-
B
2848#+
#43243AS!&
SMCARD
53!24
IR$!
2848#+
#43243AS!&
SMCARD
53!24
IR$!
-/3)-)3/
3#+.33AS!&
-/3)-)3/
3#+.33AS!&
-/3)-)3/
3#+.33AS!&
-/3)-)3/
3#+.33AS!&
30)
30)
30)
3!)
77$'
B
4)-
B
ANALOGINPUTSCOMMON
TOTHE!$#S
ANALOGINPUTSCOMMON
TOTHE!$#
ANALOGINPUTSFOR!$#
!$#
!$#
!$#
6$$!
B
B
CHANNELSAS!&
4)-
B
CHANNELAS!&
B
CHANNELAS!&
SMCARD
2848AS!&
#43243AS!&
SMCARD
2848AS!&
#43243AS!&
5!24
2848AS!&
5!24
2848AS!&
5!24
2848AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
)#3-"53
)4&
$!#
)&
2848AS!&
5!24
)#3-"53
$!#
24#?!&
24#?!&
24#?(:
4)-
53!24 IR$!
4)-
/3#?).
/3#?/54
4)-
4)-
6$$!
53!24-"PS
4EMPERATURESENSOR
24#
!75
"ACKUPREGISTER
53!24 IR$!
30)
3$3#+&3-#,+AS!&
84!,K(Z
)#3-"53
BX#!.
BX#!.
$IGITALFILTER
CHANNELAS!&
B
!0"-(Z
!0"-(ZMAX
CHANNELAS!&
6$$2%&?!$#
,3
0#,+X
&#,+
(#,+X
4)-07- B
4)-
6"!4TO6
6"!4
3#,3$!3-"!AS!&
&)&/
3$)/--#
3TANDBY
INTERFACE
!("!0" !("!0"
!0"-(Z
COMPLCHAN4)-?#(;=.
CHAN4)-?#(;=%42
"+).AS!&
COMPLCHAN4)-?#(;=.
CHAN4)-?#(;=%42
"+).AS!&
CHANNELSAS!&
%84)47+50
!0"-(Z
$;=
#-$#+AS!&
)7$'
$-!
$-!
&)&/
!&
&)&/
0+;=
2ESET
CLOCK
-!.!'4
CONTROL
4828
3#,3$!3-"!AS!&
3#,3$!3-"!AS!&
4828
$!#?/54 $!#?/54
AS!&
AS!&
-36
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
Doc ID 023140 Rev 2
13/102
Functional overview
STM32F429xx
3
Functional overview
3.1
ARM® Cortex™-M4 with FPU and embedded Flash and
SRAM
The ARM Cortex-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 with FPU core is a 32-bit RISC processor that features exceptional
code-efficiency, delivering the high-performance expected from an ARM core in the memory
size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F42x family is compatible with all ARM tools and software.
Figure 4 shows the general block diagram of the STM32F42x family.
Note:
Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 225 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 180 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
14/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
The MPU is optional and can be bypassed for applications that do not need it.
3.4
Embedded Flash memory
The devices embed a Flash memory of 1 Mbytes or 2 Mbytes available for storing programs
and data.
3.5
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6
Embedded SRAM
All devices embed:
•
Up to 256 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
•
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
3.7
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS, the LCD-TFT, and the DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and
APB peripherals) and ensures a seamless and efficient operation even when several highspeed peripherals work simultaneously.
Doc ID 023140 Rev 2
15/102
Functional overview
STM32F429xx
Figure 5. STM32F429xx Multi-AHB matrix
S1
S2
S3
S4
S5
S6
S7
S8
DMA2D
LCD-TFT_M
USB_HS_M
MAC
USB OTG LCD-TFT
DMA2D
Ethernet
HS
ETHERNET_M
DMA_P2
GP
DMA2
DMA_MEM2
DMA_MEM1
DMA_PI
S-bus
GP
DMA1
S9
ICODE
DCODE
ACCEL
S0
D-bus
ARM
Cortex-M4
I-bus
64-Kbyte
CCM data RAM
Flash
memory
SRAM1
112 Kbyte
SRAM2
16 Kbyte
SRAM3
64 Kbyte
AHB1
peripherals
AHB2
peripherals
FMC external
MemCtl
Bus matrix-S
APB1
APB2
-36
3.8
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
16/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
The DMA can be used with the main peripherals:
3.9
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
DAC
•
SDIO
•
Camera interface (DCMI)
•
ADC
•
SAI1.
Flexible memory controller (FMC)
All devices embed an FMC. It has four Chip Select outputs supporting the following modes:
PCCard/Compact Flash, SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash.
Functionality overview:
•
8-,16-, 32-bit data bus width
•
Read FIFO for SDRAM controller
•
Write FIFO
•
Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10
LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
SVGA (800x600) resolution with the following features:
•
2 displays layers with dedicated FIFO (64x32-bit)
•
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
•
Up to 8 Input color formats selectable per layer
•
Flexible blending between two layers using alpha value (per pixel or constant)
•
Flexible programmable parameters for each layer
•
Color keying (transparency color)
•
Up to 4 programmable interrupt events.
Doc ID 023140 Rev 2
17/102
Functional overview
3.11
STM32F429xx
Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
•
Rectangle filling with a fixed color
•
Rectangle copy
•
Rectangle copy with pixel format conversion
•
Rectangle composition with blending and pixel format conversion.
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
3.12
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex™M4 with FPU core.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected
to the 16 external interrupt lines.
3.14
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
18/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 180 MHz while the maximum frequency of the high-speed APB domains is
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio
class performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.15
Boot modes
At startup, boot pins are used to select one out of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
3.16
Power supply schemes
•
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note:
VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced
temperature range, and with the use of an external power supply supervisor (refer to
Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode
versus device operating mode to identify the packages supporting this option.
3.17
Power supply supervisor
3.17.1
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other package, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
Doc ID 023140 Rev 2
19/102
Functional overview
STM32F429xx
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.17.2
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 6: Power supply supervisor
interconnection with internal reset OFF.
Figure 6. Power supply supervisor interconnection with internal reset OFF
VDD
External VDD power supply supervisor
Ext. reset controller active when
VDD < 1.7 V or 1.8 V (1)
PDR_ON
NRST
Application reset
signal (optional)
VDD
MS31383V3
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
The VDD specified threshold, below which the device must be maintained under reset, is
1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the
0 to 70 °C temperature range.
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
20/102
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
•
The brownout reset (BOR) circuitry must be disabled
•
The embedded programmable voltage detector (PVD) is disabled
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
All packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal.
Figure 7. PDR_ON control with internal reset OFF
V DD
PDR = 1.7 V or 1.8 V (1)
time
Reset by other source than
power supply supervisor
NRST
PDR_ON
PDR_ON
time
MS19009V6
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
3.18
Voltage regulator
The regulator has four operating modes:
•
•
3.18.1
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
•
MR mode used in Run/sleep modes or in Stop modes
–
In Run/Sleep mode
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
Doc ID 023140 Rev 2
21/102
Functional overview
STM32F429xx
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
–
In Stop modes
The MR can be configured in three ways during stop mode:
MR operates in normal leakage mode (default mode of MR in stop mode)
MR operates in low voltage mode
MR operates in under-drive mode (reduced leakage mode).
•
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in three ways during stop mode:
•
–
LPR operates in normal leakage mode (default mode when LPR is ON)
–
LPR operates in low voltage mode
–
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin.
All packages have the regulator ON feature.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
Voltage regulator
configuration
Run mode
Sleep mode
Stop mode
Standby mode
Normal mode
MR
MR
MR or LPR
-
Low-voltage mode
-
-
MR or LPR
-
Over-drive
mode(2)
MR
MR
-
-
Under-drive mode
-
-
MR or LPR
-
Power-down
mode
-
-
-
Yes
1. ‘-’ means that the corresponding configuration is not available.
2. The over-drive mode is not available when VDD = 1.8 to 2.1 V.
3.18.2
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors.
22/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
•
The over-drive and under-drive modes are not available.
Figure 8. Regulator OFF
V12
External VCAP_1/2 power
Application reset
supply supervisor
Ext. reset controller active signal (optional)
when VCAP_1/2 < Min V12
VDD
PA0
VDD
NRST
BYPASS_REG
V12
VCAP_1
VCAP_2
ai18498V3
The following conditions must be respected:
Note:
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 9).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see
Figure 10).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then a
reset must be asserted on PA0 pin.
The minimum value of V12 depends on the maximum frequency targeted in the application
Doc ID 023140 Rev 2
23/102
Functional overview
STM32F429xx
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
VDD
PDR = 1.7 V or 1.8 V (2)
V12
Min V12
VCAP_1/VCAP_2
time
NRST
time
ai18491e
1. This figure is valid whatever the internal reset mode (ON or OFF).
2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
VDD
PDR = 1.7 V or 1.8 V (2)
VCAP_1/VCAP_2
V12
Min V12
time
NRST
PA0 asserted externally
time
1. This figure is valid whatever the internal reset mode (ON or OFF).
2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.
24/102
Doc ID 023140 Rev 2
ai18492d
STM32F429xx
3.18.3
Functional overview
Regulator ON/OFF and internal reset ON/OFF availability
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package
Regulator ON
Regulator OFF
LQFP100
Yes
Internal reset ON Internal reset OFF
Yes
No
Yes
PDR_ON set to
VDD
Yes
PDR_ON
connected to an
external power
supply supervisor
No
LQFP144
WLCSP143,
LQFP176,
UFBGA176,
LQFP208,
TFBGA216
3.19
Yes
Yes
BYPASS_REG set BYPASS_REG set
to VDD
to VSS
Real-time clock (RTC), backup SRAM and backup registers
The backup domain includes:
•
The real-time clock (RTC)
•
4 Kbytes of backup SRAM
•
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 3.20: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.20: Low-power
modes).
Doc ID 023140 Rev 2
25/102
Functional overview
STM32F429xx
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
3.20
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
–
Normal mode (default mode when MR or LPR is enabled)
–
Low voltage mode
–
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
Table 5. Voltage regulator modes in stop mode
•
Voltage regulator
configuration
Main regulator (MR)
Low-power regulator (LPR)
Normal mode
MR ON
LPR ON
Low-voltage mode
MR in low-voltage mode
LPR in low-voltage mode
Under-drive mode
MR in under-drive mode
LPR in under-drive mode
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
26/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
Note:
When in Standby mode, only an RTC alarm/event or an external reset can wake up the
device provided VDD is supplied by an external battery.
3.21
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (Internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
3.22
Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
Doc ID 023140 Rev 2
27/102
Functional overview
STM32F429xx
Table 6. Timer feature comparison
Timer
type
Counter
Counter Prescaler
Timer resolutio
type
factor
n
16-bit
Up,
Any integer
Down,
between 1
Up/dow
and 65536
n
Yes
4
Yes
90
180
32-bit
Up,
Any integer
Down,
between 1
Up/dow
and 65536
n
Yes
4
No
45
90/18
0
TIM3,
TIM4
16-bit
Up,
Any integer
Down,
between 1
Up/dow
and 65536
n
Yes
4
No
45
90/18
0
TIM9
16-bit
Up
Any integer
between 1
and 65536
No
2
No
90
180
TIM10
,
TIM11
16-bit
Up
Any integer
between 1
and 65536
No
1
No
90
180
TIM12
16-bit
Up
Any integer
between 1
and 65536
No
2
No
45
90/18
0
TIM13
,
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
45
90/18
0
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
45
90/18
0
Advanced TIM1,
-control
TIM8
TIM2,
TIM5
General
purpose
Basic
Max
DMA
Max
Capture/
timer
request
Complementar interface
compare
clock
generatio
y output
clock
channels
(MHz)
n
(MHz)
(1)
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
3.22.1
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
28/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.22.2
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F42x devices
(see Table 6 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F42x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
3.22.3
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
3.22.4
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.22.5
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
Doc ID 023140 Rev 2
29/102
Functional overview
3.22.6
STM32F429xx
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
3.23
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
Inter-integrated circuit interface (I2C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the standard (up to 100 KHz) and fast (up to 400 KHz) modes. They support the
7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC
generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 7).
Table 7. Comparison of I2C analog and digital filters
Analog filter
Pulse width of
suppressed spikes
3.24
≥ 50 ns
Digital filter
Programmable length from 1 to 15
I2C peripheral clocks
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed four universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3 and USART6) and two universal asynchronous receiver
transmitters (UART4, UART5, UART7, and UART8).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate
at up to 5.62 bit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
30/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
Table 8. USART feature comparison(1)
USART
name
Standar Modem
d
(RTS/CT
features
S)
SPI
LIN maste
r
irDA
Smartcard
(ISO 7816)
Max. baud rate Max. baud rate
in Mbit/s
in Mbit/s
(oversampling (oversampling
by 16)
by 8)
APB
mapping
USART
1
X
X
X
X
X
X
5.62
11.25
APB2
(max.
90 MHz)
USART
2
X
X
X
X
X
X
2.81
5.62
APB1
(max.
45 MHz)
USART
3
X
X
X
X
X
X
2.81
5.62
APB1
(max.
45 MHz)
UART4
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
UART5
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
USART
6
X
X
X
X
X
X
5.62
11.25
APB2
(max.
90 MHz)
UART7
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
UART8
X
-
X
-
X
-
2.81
5.62
APB1
(max.
45 MHz)
1. X = feature supported.
3.25
Serial peripheral interface (SPI)
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 42 Mbits/s,
SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master
mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.26
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Doc ID 023140 Rev 2
31/102
Functional overview
STM32F429xx
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
Note:
For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port
B and GPIO Port D.
3.27
Serial Audio interface (SAI1)
The serial audio interface (SAI1) is based on two independent audio subblocks which can
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks
can be configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two subblocks can be configured in synchronous mode when full-duplex mode is
required.
SAI1 can be served by the DMA controller.
3.28
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
3.29
Audio and LCD PLL(PLLSAI)
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the LCD-TFT clock.
3.30
Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
32/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.31
Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
3.32
•
Supports 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F4xx reference manual for details)
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
•
MAC control sublayer (control frames) support
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
•
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
•
Triggers interrupt when system time becomes greater than target time
Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
Doc ID 023140 Rev 2
33/102
Functional overview
3.33
STM32F429xx
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
3.34
•
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
4 bidirectional endpoints
•
8 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
34/102
•
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
6 bidirectional endpoints
•
12 host channels with periodic OUT support
•
Internal FS OTG PHY support
•
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
•
Internal USB DMA
•
HNP/SNP/IP inside (no need for any external resistor)
•
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Doc ID 023140 Rev 2
STM32F429xx
3.35
Functional overview
Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
3.36
•
Programmable polarity for the input pixel clock and synchronization signals
•
Parallel data communication can be 8-, 10-, 12- or 14-bit
•
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
•
Supports continuous mode or snapshot (a single frame) mode
•
Capability to automatically crop the image
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.37
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
3.38
Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
Doc ID 023140 Rev 2
35/102
Functional overview
3.39
STM32F429xx
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.40
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
•
two DAC converters: one for each output channel
•
8-bit or 10-bit monotonic output
•
left or right data alignment in 12-bit mode
•
synchronized update capability
•
noise-wave generation
•
triangular-wave generation
•
dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
external triggers for conversion
•
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.41
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.42
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F42x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
36/102
Doc ID 023140 Rev 2
STM32F429xx
Functional overview
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Doc ID 023140 Rev 2
37/102
Pinouts and pin description
4
STM32F429xx
Pinouts and pin description
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 11. STM32F42x LQFP100 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
633
6$$
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
AIC
1. The above figure shows the package top view.
38/102
Doc ID 023140 Rev 2
STM32F429xx
Pinouts and pin description
Figure 12. STM32F42x WLCSP143 pinout
11
10
9
8
7
6
5
4
A
PDR
_ON
PE1
PB8
PB6
PG15
PG12
PD7
PD5
B
PE4
PE0
PB9
PB7
PB3
PG11
PD4
C
VBAT
PE3
BOOT
0
PB5
PB4
PG10
D
PC14
PC13
PE5
PE2
VDD
E
PC15
VDD
PF1
PE6
F
PF0
PF2
PF4
G
PF3
PF6
H
PF8
J
2
1
PD2
PC10
VDD
PD3
PD0
PC11
PA14
VDD
PD1
PC12
PA15
VDD
PG13
PA10
PA11
PA13
VSS
VCAP
_2
VSS
VDD
PG9
PC8
PC9
PA9
PA12
PF5
PF7
PG14
VSS
PD6
PC7
PC6
PA8
PF10
PF9
VDD
PG5
PG4
PG6
PG3
PG8
VDD
PH1
NRST
PC0
VSS
PD12
PD13
PD10
VSS
VSS
PH0
PC2
PC3
VDD
VDD
VDD
VDD
PE10
PB15
PD14
PG2
K
PC1
VSSA
PA0
PA1
PB1
PF13
PG1
PE11
PB14
PD11
PD15
L
VREF
+
VDDA
PA2
PA7
PB2
PF14
PF7
PE12
PE15
PD8
VDD
M
PA3
PA4
PA5
PC4
PF11
PF15
PE8
PB10
PB12
PD9
N
BYPASS_
REG
PA6
PC5
PB0
PF12
PG0
PE9
PB11
VCAP
_1
PB13
PE14
PE13
3
PG7
MS31855V1
1. The above figure shows the package bottom view.
Doc ID 023140 Rev 2
39/102
Pinouts and pin description
STM32F429xx
6$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0! 0! Figure 13. STM32F42x LQFP144 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
1. The above figure shows the package top view.
40/102
Doc ID 023140 Rev 2
6#!0?
6$$
0! 633
6$$
0! 0! 0! 0! 0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0! 0! 0! AIB
STM32F429xx
Pinouts and pin description
$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
6$$
633
0)
0)
6
0)
0)
0)
0)
Figure 14. STM32F42x LQFP176 pinout
,1&0
0)
0)
0(
0(
0(
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
6$$
633
0(
6#!0?
6$$
0(
0(
0(
0(
0(
0(
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
0(
0(
0!
"90!33?2%'
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
0%
0%
0%
0%
0%
6"!4
0)
0#
0#
0#
0)
0)
0)
633
6$$
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
0(
0(
-36
1. The above figure shows the package top view.
Doc ID 023140 Rev 2
41/102
0)
6$$
0!
0!
0#
0#
0#
0$
0$
0$
0$
0$
0$
633
6$$
0$
0$
0*
0*
0*
0*
0'
0'
0'
0'
0'
0'
633
6$$
0+
0+
0+
0+
0+
0'
0"
0"
0"
0"
0"
"//4
0"
0"
0%
0%
633
0$2?/.
6$$
0)
0)
0)
0)
0)
0)
0)
0(
0(
0(
6$$
633
6#!0
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
6$$
633
0& 0& 0& 0'
0'
0'
1. The above figure shows the package top view.
0"
6$$
0(
0(
0(
0(
0(
0(
0(
0*
6$$
633
6#!0
0"
0"
0%
0%
0%
0%
0%
0%
6$$
633
0%
0%
0%
0'
0'
0&
0&
0&
6$$
633
0&
0&
0*
0*
0*
0*
0*
0)
0"
0"
0"
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
633
6$$
0#
0!
0!
0!
0(
0(
0(
0(
0!
633
6$$
0#
0'
0'
0'
0'
0+
0+
0+
633
6$$
0*
0*
0*
0*
0*
0*
0$
0$
6$$
0!
0!
,1&0
0!
-36
STM32F429xx
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
Doc ID 023140 Rev 2
0%
0%
0%
0%
0%
6"!4
0)
0#
0#
0#
0)
0)
0)
633
6$$
0&
0&
0&
0)
0)
0)
Pinouts and pin description
42/102
Figure 15. STM32F42x LQFP208 pinout
STM32F429xx
Pinouts and pin description
Figure 16. STM32F42x UFBGA176 ballout
!
0%
0%
0%
0%
0"
0"
0'
0'
0"
0"
0$
0#
0!
0!
0!
"
0%
0%
0%
0"
0"
0"
0'
0'
0'
0'
0$
0$
0#
0#
0!
#
6"!4
0)
0)
0)
6$$
0$2?/.
6$$
6$$
6$$
0'
0$
0$
0)
0)
0!
$
0#
0)
0)
0)
633
"//4
633
633
633
0$
0$
0$
0(
0)
0!
%
0#
0&
0)
0)
0(
0(
0)
0! &
0#
633
6$$
0(
633
633
633
633
633
633
6#!0?
0#
0! '
0(
633
6$$
0(
633
633
633
633
633
633
6$$
0#
0#
(
0(
0&
0&
0(
633
633
633
633
633
633
6$$
0'
0#
*
.234
0&
0&
0(
633
633
633
633
633
6$$
6$$
0'
0'
+
0&
0&
0&
6$$
633
633
633
633
633
0(
0'
0'
0'
,
0&
0&
0&
"90!33?
2%'
0(
0(
0$
0'
-
633!
0#
0#
0#
0#
0"
0'
633
633
0(
0(
0(
0$
0$
.
62%&
0! 0!
0!
0#
0&
0'
6$$
6$$
6$$
0%
0(
0$
0$
0$
0
62%&
0!
0! 0!
0#
0&
0&
0%
0%
0%
0%
0"
0"
0$
0$
2
6$$!
0! 0!
0"
0"
0&
0&
0%
0%
0%
0%
0"
0"
0"
0"
6#!0?
AIB
1. The above figure shows the package top view.
Doc ID 023140 Rev 2
43/102
Doc ID 023140 Rev 2
!
0%
0%
0'
0%
0%
0"
0"
0"
0"
0$
0#
0!
0!
0!
"
0%
0%
0'
0"
0"
0"
0'
0'
0*
0*
0$
0$
0#
0#
0!
#
6"!4
0)
0)
0+
0+
0+
0'
0'
0*
0$
0$
0$
0)
0)
0!
$
0#
0&
0)
0)
0)
0)
0+
0+
0'
0*
0$
0$
0(
0)
0!
%
0#
0&
0)
0)
0$2?/.
"//4
6$$
6$$
6$$
6$$
6#!0
0(
0(
0)
0!
&
0#
633
0)
6$$
6$$
633
633
633
633
633
6$$
0+
0+
0#
0!
'
0(
0&
0)
0)
6$$
633
633
6$$
0*
0+
0#
0#
(
0(
0&
0)
0(
6$$
633
633
6$$
0*
0*
0'
0#
*
.234
0&
0(
0(
6$$
633
633
6$$
0*
0*
0'
0'
0&
0&
0&
0(
6$$
633
633
633
633
633
6$$
0*
0$
0"
0$
0&
0&
0&
0#
"90!33
2%'
633
6$$
6$$
6$$
6$$
6#!0
0$
0"
0$
0$
-
633!
0#
0#
0#
0"
0&
0'
0&
0*
0$
0$
0'
0'
0*
0(
.
62%&
0!
0!
0!
0#
0&
0'
0*
0%
0$
0'
0'
0(
0(
0(
62%&
0!
0!
0!
0#
0&
0*
0&
0%
0%
0%
0"
0(
0(
0(
6$$!
0!
0!
0"
0"
0*
0*
0%
0%
0%
0%
0%
0"
0"
0"
+
,
0
2
-36
1. The above figure shows the package top view.
STM32F429xx
0%
Pinouts and pin description
44/102
Figure 17. STM32F42x TFBGA216 ballout
STM32F429xx
Pinouts and pin description
Table 9. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TTa
3.3 V tolerant I/O directly connected to ADC
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
I/O structure
Notes
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Doc ID 023140 Rev 2
45/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions
Notes
(function
after reset)(1)
I / O structure
Pin name
Pin type
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
1
D8
1
A2
1
1
A3
PE2
I/O
FT
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
ETH_MII_TXD3,
FMC_A23, EVENTOUT
2
C10
2
A1
2
2
A2
PE3
I/O
FT
TRACED0, SAI1_SD_B,
FMC_A19, EVENTOUT
FT
TRACED1, SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4, LCD_B0,
EVENTOUT
FT
TRACED2, TIM9_CH1,
SPI4_MISO,
SAI1_SCK_A, FMC_A21,
DCMI_D6, LCD_G0,
EVENTOUT
FT
TRACED3, TIM9_CH2,
SPI4_MOSI, SAI1_SD_A,
FMC_A22, DCMI_D7,
LCD_G1, EVENTOUT
3
4
B11
D9
3
4
B1
B2
3
4
3
4
A1
B1
PE4
PE5
I/O
I/O
5
E8
5
B3
5
5
B2
PE6
I/O
-
-
-
-
-
-
G6
VSS
S
-
-
-
-
-
-
F5
VDD
S
6
C11
6
C1
6
6
C1
VBAT
S
-
-
-
D2
7
7
C2
PI8
I/O
FT
7
D10
7
D1
8
8
D1
PC13
I/O
FT
8
D11
8
E1
9
9
E1
PC14OSC32_IN
(PC14)
I/O
FT
9
E11
9
F1
10
10
F1
PC15OSC32_OUT
(PC15)
I/O
FT
-
-
-
-
-
-
F2
VSS
S
-
-
-
-
-
-
G5
VDD
S
Additional
functions
(2)
(3)
EVENTOUT
TAMP_2
EVENTOUT
TAMP_1
EVENTOUT
OSC32_IN(4)
(2)
46/102
(3)
(2)
(3)
(2)
(3)
Doc ID 023140 Rev 2
EVENTOUT
OSC32_OUT
(4)
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
(function
after reset)(1)
Pin type
I / O structure
-
-
-
D3
11
11
E4
PI9
I/O
FT
CAN1_RX, FMC_D30,
LCD_VSYNC,
EVENTOUT
-
-
-
E3
12
12
D5
PI10
I/O
FT
ETH_MII_RX_ER,
FMC_D31, LCD_HSYNC,
EVENTOUT
-
-
-
E4
13
13
F3
PI11
I/O
FT
OTG_HS_ULPI_DIR,
EVENTOUT
-
E7
-
F2
14
14
F2
VSS
S
-
E10
-
F3
15
15
F4
VDD
S
-
F11
10
E2
16
16
D2
PF0
I/O
FT
I2C2_SDA, FMC_A0,
EVENTOUT
-
E9
11
H3
17
17
E2
PF1
I/O
FT
I2C2_SCL, FMC_A1,
EVENTOUT
-
F10
12
H2
18
18
G2
PF2
I/O
FT
I2C2_SMBA, FMC_A2,
EVENTOUT
-
-
-
-
-
19
E3
PI12
I/O
FT
LCD_HSYNC,
EVENTOUT
-
-
-
-
-
20
G3
PI13
I/O
FT
LCD_VSYNC,
EVENTOUT
-
-
-
-
-
21
H3
PI14
I/O
FT
Pin name
Notes
LQFP100
Pin number
Alternate functions
Additional
functions
LCD_CLK, EVENTOUT
-
G11
13
J2
19
22
H2
PF3
I/O
FT
(4)
-
F9
14
J3
20
23
J2
PF4
I/O
FT
(4)
FMC_A4, EVENTOUT
ADC3_IN14
FT
(4)
FMC_A5, EVENTOUT
ADC3_IN15
FT
(4)
TIM10_CH1, SPI5_NSS,
SAI1_SD_B, UART7_Rx,
FMC_NIORD,
EVENTOUT
ADC3_IN4
FT
(4)
TIM11_CH1, SPI5_SCK,
SAI1_MCLK_B,
UART7_Tx, FMC_NREG,
EVENTOUT
ADC3_IN5
-
F8
15
K3
21
24
K3
PF5
I/O
10
H7
16
G2
22
25
H6
VSS
S
11
-
17
G3
23
26
H5
VDD
S
-
-
G10
F7
18
19
K2
K1
24
25
27
28
K2
K1
PF6
PF7
I/O
I/O
Doc ID 023140 Rev 2
FMC_A3, EVENTOUT
ADC3_IN9
47/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
20
L3
26
29
L3
PF8
I/O
FT
(4)
-
G8
21
L2
27
30
L2
PF9
I/O
FT
(4)
SPI5_MOSI, SAI1_FS_B,
TIM14_CH1, FMC_CD,
EVENTOUT
ADC3_IN7
-
G9
22
L1
28
31
L1
PF10
I/O
FT
(4)
FMC_INTR, DCMI_D11,
LCD_DE, EVENTOUT
ADC3_IN8
12 J11
23
G1
29
32
G1
PH0-OSC_IN
(PH0)
I/O
FT
EVENTOUT
OSC_IN(4)
13 H10
24
H1
30
33
H1
PH1OSC_OUT
(PH1)
I/O
FT
EVENTOUT
OSC_OUT(4)
14
H9
25
J1
31
34
J1
NRST
15
H8
26
M2
32
35
M2
PC0
I/O
FT
(4)
OTG_HS_ULPI_STP,
FMC_SDNWE,
EVENTOUT
ADC123_IN10
16 K11
27
M3
33
36
M3
PC1
I/O
FT
(4)
ETH_MDC, EVENTOUT
ADC123_IN11
(4)
SPI2_MISO, I2S2ext_SD,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0,
EVENTOUT
ADC123_IN12
(4)
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0,
EVENTOUT
ADC123_IN13
17 J10
28
M4
34
LQFP208
H11
LQFP176
-
SPI5_MISO,
SAI1_SCK_B,
TIM13_CH1,
FMC_NIOWR,
EVENTOUT
LQFP144
Alternate functions
LQFP100
Notes
I / O structure
Pin name
Pin type
TFBGA216
UFBGA176
WLCSP143
Pin number
37
M4
(function
after reset)(1)
PC2
I/O
J9
29
M5
35
38
L4
PC3
I/O
19
G7
30
G3
36
39
J5
VDD
S
-
-
-
-
-
-
J6
VSS
S
31
M1
37
40
M1
VSSA
S
-
N1
-
-
N1
VREF–
S
32
P1
38
41
P1
VREF+
S
-
-
21 L11
48/102
ADC3_IN6
I/O RST
18
20 K10
Additional
functions
FT
FT
Doc ID 023140 Rev 2
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
K9
TFBGA216
R1
39
42
R1
VDDA
34
N3
40
43
N3
PA0-WKUP
(PA0)
S
I/O
I / O structure
LQFP208
33
Pin type
LQFP176
(function
after reset)(1)
FT
Notes
23
UFBGA176
22 L10
Pin name
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
Additional
functions
(5)
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS,
UART4_TX,
ETH_MII_CRS,
EVENTOUT
ADC123_IN0/
WKUP(4)
ADC123_IN1
ADC123_IN2
24
K8
35
N2
41
44
N2
PA1
I/O
FT
(4)
TIM2_CH2, TIM5_CH2,
USART2_RTS,
UART4_RX,
ETH_MII_RX_CLK/ETH_
RMII_REF_CLK,
EVENTOUT
25
L9
36
P2
42
45
P2
PA2
I/O
FT
(4)
TIM2_CH3, TIM5_CH3,
TIM9_CH1, USART2_TX,
ETH_MDIO, EVENTOUT
-
-
-
F4
43
46
K4
PH2
I/O
FT
ETH_MII_CRS,
FMC_SDCKE0, LCD_R0,
EVENTOUT
-
-
-
G4
44
47
J4
PH3
I/O
FT
ETH_MII_COL,
FMC_SDNE0, LCD_R1,
EVENTOUT
-
-
-
H4
45
48
H4
PH4
I/O
FT
I2C2_SCL,
OTG_HS_ULPI_NXT,
EVENTOUT
-
-
-
J4
46
49
J3
PH5
I/O
FT
I2C2_SDA, SPI5_NSS,
FMC_SDNWE,
EVENTOUT
26 M11
37
R2
27
-
38
-
-
N11
-
L4
28
J8
39
K4
47
50
R2
PA3
I/O
51
K6
VSS
S
48
-
L5
BYPASS_
REG
I
49
52
K5
VDD
S
FT
TIM2_CH4, TIM5_CH4,
TIM9_CH2, USART2_RX,
(4)
OTG_HS_ULPI_D0,
ETH_MII_COL, LCD_B5,
EVENTOUT
ADC123_IN3
FT
Doc ID 023140 Rev 2
49/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
30
M9
31 N10
40
41
42
P4
P3
50
51
52
53
54
55
N4
P4
P3
PA4
PA5
PA6
I/O
I/O
I/O
I / O structure
(function
after reset)(1)
Pin type
TFBGA216
LQFP208
LQFP176
UFBGA176
N4
Pin name
Notes
29 M10
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
TC
(4)
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK,
OTG_HS_SOF,
DCMI_HSYNC,
LCD_VSYNC,
EVENTOUT
TC
(4)
TIM2_CH1/TIM2_ETR,
TIM8_CH1N, SPI1_SCK,
OTG_HS_ULPI_CK,
EVENTOUT
ADC12_IN5/
DAC_OUT2
FT
(4)
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
TIM13_CH1,
DCMI_PIXCLK, LCD_G2,
EVENTOUT
ADC12_IN6
ADC12_IN7
Additional
functions
ADC12_IN4
/DAC_OUT1
32
L8
43
R3
53
56
R3
PA7
I/O
FT
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N, SPI1_MOSI,
TIM14_CH1,
(4)
ETH_MII_RX_DV/ETH_R
MII_CRS_DV,
EVENTOUT
33
M8
44
N5
54
57
N5
PC4
I/O
FT
(4)
ETH_MII_RXD0/ETH_RM
II_RXD0, EVENTOUT
ADC12_IN14
34
N9
45
P5
55
58
P5
PC5
I/O
FT
(4)
ETH_MII_RXD1/ETH_RM
II_RXD1, EVENTOUT
ADC12_IN15
-
J7
-
-
-
59
L7
VDD
S
-
-
-
-
-
60
L6
VSS
S
(4)
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
EVENTOUT
ADC12_IN8
(4)
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N, LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
EVENTOUT
ADC12_IN9
35
36
N8
K7
50/102
46
47
R5
R4
56
57
61
62
R5
R4
PB0
PB1
I/O
I/O
FT
FT
Doc ID 023140 Rev 2
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
(function
after reset)(1)
Pin type
I / O structure
37
L7
48
M6
58
63
M5
PB2-BOOT1
(PB2)
I/O
FT
EVENTOUT
-
-
-
-
-
64
G4
PI15
I/O
FT
LCD_R0, EVENTOUT
-
-
-
-
-
65
R6
PJ0
I/O
FT
LCD_R1, EVENTOUT
-
-
-
-
-
66
R7
PJ1
I/O
FT
LCD_R2, EVENTOUT
-
-
-
-
-
67
P7
PJ2
I/O
FT
LCD_R3, EVENTOUT
-
-
-
-
-
68
N8
PJ3
I/O
FT
LCD_R4, EVENTOUT
-
-
-
-
-
69
M9
PJ4
I/O
FT
LCD_R5, EVENTOUT
-
M7
49
R6
59
70
P8
PF11
I/O
FT
SPI5_MOSI,
FMC_SDNRAS,
DCMI_D12, EVENTOUT
-
N7
50
P6
60
71
M6
PF12
I/O
FT
FMC_A6, EVENTOUT
-
-
51
M8
61
72
K7
VSS
S
-
-
52
N8
62
73
L8
VDD
S
-
K6
53
N6
63
74
N6
PF13
I/O
FT
FMC_A7, EVENTOUT
-
L6
54
R7
64
75
P6
PF14
I/O
FT
FMC_A8, EVENTOUT
-
M6
55
P7
65
76
M8
PF15
I/O
FT
FMC_A9, EVENTOUT
-
N6
56
N7
66
77
N7
PG0
I/O
FT
FMC_A10, EVENTOUT
-
K5
57
M7
67
78
M7
PG1
I/O
FT
FMC_A11, EVENTOUT
38
L5
58
R8
68
79
R8
PE7
I/O
FT
TIM1_ETR, UART7_Rx,
FMC_D4, EVENTOUT
39
M5
59
P8
69
80
N9
PE8
I/O
FT
TIM1_CH1N, UART7_Tx,
FMC_D5, EVENTOUT
40
N5
60
P9
70
81
P9
PE9
I/O
FT
TIM1_CH1, FMC_D6,
EVENTOUT
-
H3
61
M9
71
82
K8
VSS
S
-
J5
62
N9
72
83
L9
VDD
S
41
J4
63
R9
73
84
R9
PE10
I/O
FT
TIM1_CH2N, FMC_D7,
EVENTOUT
Pin name
Doc ID 023140 Rev 2
Notes
LQFP100
Pin number
Alternate functions
Additional
functions
51/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
(function
after reset)(1)
Pin type
I / O structure
42
K4
64
P10
74
85
P10
PE11
I/O
FT
TIM1_CH2, SPI4_NSS,
FMC_D8, LCD_G3,
EVENTOUT
43
L4
65
R10
75
86
R10
PE12
I/O
FT
TIM1_CH3N, SPI4_SCK,
FMC_D9, LCD_B4,
EVENTOUT
44
N4
66
N11
76
87
R12
PE13
I/O
FT
TIM1_CH3, SPI4_MISO,
FMC_D10, LCD_DE,
EVENTOUT
45
M4
67
P11
77
88
P11
PE14
I/O
FT
TIM1_CH4, SPI4_MOSI,
FMC_D11, LCD_CLK,
EVENTOUT
46
L3
68
R11
78
89
R11
PE15
I/O
FT
TIM1_BKIN, FMC_D12,
LCD_R7, EVENTOUT
FT
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
LCD_G4, EVENTOUT
FT
TIM2_CH4, I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_R
MII_TX_EN, LCD_G5,
EVENTOUT
47
M3
69
R12
79
90
P12
Pin name
PB10
I/O
Notes
LQFP100
Pin number
Alternate functions
48
N3
70
R13
80
91
R13
PB11
I/O
49
N2
71
M10
81
92
L11
VCAP_1
S
-
H2
-
-
-
93
K9
VSS
S
50
J6
72
N10
82
94
L10
VDD
S
-
-
-
-
-
95
M14
PJ5
I/O
LCD_R6, EVENTOUT
I/O
I2C2_SMBA, SPI5_SCK,
TIM12_CH1,
ETH_MII_RXD2,
FMC_SDNE1, DCMI_D8,
EVENTOUT
-
-
52/102
-
M11
83
96
P13
PH6
FT
Doc ID 023140 Rev 2
Additional
functions
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
Notes
(function
after reset)(1)
I / O structure
Pin name
Pin type
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
-
-
-
N12
84
97
N13
PH7
I/O
FT
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9, EVENTOUT
-
-
-
M12
85
98
P14
PH8
I/O
FT
I2C3_SDA, FMC_D16,
DCMI_HSYNC, LCD_R2,
EVENTOUT
-
-
-
M13
86
99
N14
PH9
I/O
FT
I2C3_SMBA, TIM12_CH2,
FMC_D17, DCMI_D0,
LCD_R3, EVENTOUT
-
-
-
L13
87
100 P15
PH10
I/O
FT
TIM5_CH1, FMC_D18,
DCMI_D1, LCD_R4,
EVENTOUT
-
-
-
L12
88
101 N15
PH11
I/O
FT
TIM5_CH2, FMC_D19,
DCMI_D2, LCD_R5,
EVENTOUT
-
-
-
K12
89
102 M15
PH12
I/O
FT
TIM5_CH3, FMC_D20,
DCMI_D3, LCD_R6,
EVENTOUT
-
-
-
H12
90
K10
VSS
S
-
-
-
J12
91
103 K11
VDD
S
FT
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
USART3_CK, CAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_RMI
I_TXD0, OTG_HS_ID,
EVENTOUT
FT
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
USART3_CTS, CAN2_TX,
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_RMI
I_TXD1, EVENTOUT
51
52
M2
N1
73
74
P12
P13
92
93
-
104 L13
105 K14
PB12
PB13
I/O
I/O
Doc ID 023140 Rev 2
Additional
functions
OTG_HS_
VBUS
53/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
53
K3
75
R14
94
106 R14
PB14
I/O
Notes
(function
after reset)(1)
I / O structure
Pin name
Pin type
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
Additional
functions
FT
TIM1_CH2N,
TIM8_CH2N, SPI2_MISO,
I2S2ext_SD,
USART3_RTS,
TIM12_CH1, EVENTOUT
OTG_HS_DM
OTG_HS_DP
54
J3
76
R15
95
107 R15
PB15
I/O
FT
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N,
SPI2_MOSI/I2S2_SD,
TIM12_CH2, EVENTOUT
55
L2
77
P15
96
108 L15
PD8
I/O
FT
USART3_TX, FMC_D13,
EVENTOUT
56
M1
78
P14
97
109 L14
PD9
I/O
FT
USART3_RX, FMC_D14,
EVENTOUT
57
H4
79
N15
98
110 K15
PD10
I/O
FT
USART3_CK, FMC_D15,
LCD_B3, EVENTOUT
58
K2
80
N14
99
111 N10
PD11
I/O
FT
USART3_CTS, FMC_A16,
EVENTOUT
59
H6
81
N13 100 112 M10
PD12
I/O
FT
TIM4_CH1,
USART3_RTS, FMC_A17,
EVENTOUT
60
H5
82
M15 101 113 M11
PD13
I/O
FT
TIM4_CH2, FMC_A18,
EVENTOUT
-
-
83
-
102 114
J10
VSS
S
-
L1
84
J13
103 115
J11
VDD
S
61
J2
85
M14 104 116
L12
PD14
I/O
FT
TIM4_CH3, FMC_D0,
EVENTOUT
62
K1
86
L14
105 117 K13
PD15
I/O
FT
TIM4_CH4, FMC_D1,
EVENTOUT
-
-
-
-
-
118 K12
PJ6
I/O
FT
LCD_R7, EVENTOUT
-
-
-
-
-
119
J12
PJ7
I/O
FT
LCD_G0, EVENTOUT
-
-
-
-
-
120 H12
PJ8
I/O
FT
LCD_G1, EVENTOUT
-
-
-
-
-
121
J13
PJ9
I/O
FT
LCD_G2, EVENTOUT
-
-
-
-
-
122 H13
PJ10
I/O
FT
LCD_G3, EVENTOUT
54/102
Doc ID 023140 Rev 2
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
UFBGA176
LQFP176
Pin type
I / O structure
-
-
-
123 G12
PJ11
I/O
FT
-
-
-
-
-
124 H11
VDD
I/O
FT
-
-
-
-
-
125 H10
VSS
I/O
FT
-
-
-
-
-
126 G13
PK0
I/O
FT
LCD_G5, EVENTOUT
-
-
-
-
-
127 F12
PK1
I/O
FT
LCD_G6, EVENTOUT
-
-
-
-
-
128 F13
PK2
I/O
FT
LCD_G7, EVENTOUT
-
J1
87
L15
106 129 M13
PG2
I/O
FT
FMC_A12, EVENTOUT
-
G3
88
K15 107 130 M12
PG3
I/O
FT
FMC_A13, EVENTOUT
-
G5
89
K14 108 131 N12
PG4
I/O
FT
FMC_A14/FMC_BA0,
EVENTOUT
-
G6
90
K13 109 132 N11
PG5
I/O
FT
FMC_A15/FMC_BA1,
EVENTOUT
-
G4
91
J15
110 133
J15
PG6
I/O
FT
FMC_INT2, DCMI_D12,
LCD_R7, EVENTOUT
-
H1
92
J14
111 134
J14
PG7
I/O
FT
USART6_CK, FMC_INT3,
DCMI_D13, LCD_CLK,
EVENTOUT
FT
SPI6_NSS,
USART6_RTS,
ETH_PPS_OUT,
FMC_SDCLK,
EVENTOUT
FT
TIM3_CH1, TIM8_CH1,
I2S2_MCK, USART6_TX,
SDIO_D6, DCMI_D0,
LCD_HSYNC,
EVENTOUT
FT
TIM3_CH2, TIM8_CH2,
I2S3_MCK, USART6_RX,
SDIO_D7, DCMI_D1,
LCD_G6, EVENTOUT
Pin name
(function
after reset)(1)
-
G2
93
H14 112 135 H14
PG8
I/O
-
D2
94
G12 113 136 G10
VSS
S
-
G1
95
H13 114 137 G11
VDD
S
63
64
F2
F3
96
97
H15 115 138 H15
G15 116 139 G15
PC6
PC7
I/O
I/O
Doc ID 023140 Rev 2
Notes
LQFP144
-
TFBGA216
WLCSP143
-
LQFP208
LQFP100
Pin number
Alternate functions
Additional
functions
LCD_G4, EVENTOUT
55/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
99
F14
118 141 F14
PC8
PC9
I/O
FT
TIM3_CH3, TIM8_CH3,
USART6_CK, SDIO_D0,
DCMI_D2, EVENTOUT
FT
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN, SDIO_D1,
DCMI_D3, EVENTOUT
I/O
Notes
(function
after reset)(1)
I / O structure
E3
G14 117 140 G14
Pin name
Pin type
66
TFBGA216
98
LQFP208
LQFP144
E4
LQFP176
WLCSP143
65
UFBGA176
LQFP100
Pin number
Alternate functions
Additional
functions
67
F1
100
F15
119 142 F15
PA8
I/O
FT
MCO1, TIM1_CH1,
I2C3_SCL, USART1_CK,
OTG_FS_SOF, LCD_R6,
EVENTOUT
68
E2
101
E15 120 143 E15
PA9
I/O
FT
TIM1_CH2, I2C3_SMBA,
USART1_TX, DCMI_D0,
EVENTOUT
69
D5
102 D15 121 144 D15
PA10
I/O
FT
TIM1_CH3, USART1_RX,
OTG_FS_ID, DCMI_D1,
EVENTOUT
OTG_FS_DM
OTG_FS_DP
70
D4
103 C15 122 145 C15
PA11
I/O
FT
TIM1_CH4,
USART1_CTS,
CAN1_RX, LCD_R4,
EVENTOUT
71
E1
104
B15 123 146 B15
PA12
I/O
FT
TIM1_ETR,
USART1_RTS, CAN1_TX,
LCD_R5, EVENTOUT
72
D3
105
A15 124 147 A15
PA13
(JTMSSWDIO)
I/O
FT
JTMS-SWDIO,
EVENTOUT
73
D1
106
F13
125 148 E11
VCAP_2
S
74
D2
107
F12
126 149 F10
VSS
S
75
C1
108 G13 127 150 F11
VDD
S
-
-
-
E12 128 151 E12
PH13
I/O
FT
TIM8_CH1N, CAN1_TX,
FMC_D21, LCD_G2,
EVENTOUT
-
-
-
E13 129 152 E13
PH14
I/O
FT
TIM8_CH2N, FMC_D22,
DCMI_D4, LCD_G3,
EVENTOUT
56/102
Doc ID 023140 Rev 2
OTG_FS_
VBUS
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
-
-
-
-
-
-
E14 131 154 E14
D14 132 155 D14
C14 133 156 C14
PH15
PI0
PI1
PI2
I/O
FT
TIM8_CH3N, FMC_D23,
DCMI_D11, LCD_G4,
EVENTOUT
FT
TIM5_CH4,
SPI2_NSS/I2S2_WS(6),
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
FT
SPI2_SCK/I2S2_CK(6),
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
FT
TIM8_CH4, SPI2_MISO,
I2S2ext_SD, FMC_D26,
DCMI_D9, LCD_G7,
EVENTOUT
FT
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
FMC_D27, DCMI_D10,
EVENTOUT
FT
JTCK-SWCLK/
EVENTOUT
FT
JTDI,
TIM2_CH1/TIM2_ETR,
SPI1_NSS,
SPI3_NSS/I2S3_WS,
EVENTOUT
FT
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
SDIO_D2, DCMI_D8,
LCD_R2, EVENTOUT
FT
I2S3ext_SD, SPI3_MISO,
USART3_RX,
UART4_RX, SDIO_D3,
DCMI_D4, EVENTOUT
I/O
I/O
I/O
-
-
-
C13 134 157 C13
PI3
I/O
-
F5
-
D9
135
VSS
S
-
A1
-
C9
136 158 E10
VDD
S
76
B1
109
PA14
(JTCKSWCLK)
I/O
77
78
79
C2
A2
B2
110
111
112
-
F9
A14 137 159 A14
A13 138 160 A13
B14 139 161 A14
B13 140 162 B13
PA15
(JTDI)
PC10
PC11
I/O
I/O
I/O
Doc ID 023140 Rev 2
Notes
(function
after reset)(1)
I / O structure
-
-
D13 130 153 D13
Pin name
Pin type
-
TFBGA216
-
LQFP208
LQFP144
-
LQFP176
WLCSP143
-
UFBGA176
LQFP100
Pin number
Alternate functions
Additional
functions
57/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
Notes
(function
after reset)(1)
I / O structure
Pin name
Pin type
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
80
C3
113
A12 141 163 A12
PC12
I/O
FT
SPI3_MOSI/I2S3_SD,
USART3_CK, UART5_TX,
SDIO_CK, DCMI_D9,
EVENTOUT
81
B3
114
B12 142 164 B12
PD0
I/O
FT
CAN1_RX, FMC_D2,
EVENTOUT
82
C4
115
C12 143 165 C12
PD1
I/O
FT
CAN1_TX, FMC_D3,
EVENTOUT
83
A3
116
D12 144 166 D12
PD2
I/O
FT
TIM3_ETR, UART5_RX,
SDIO_CMD, DCMI_D11,
EVENTOUT
84
B4
117
D11 145 167 C11
PD3
I/O
FT
SPI2_SCK/I2S2_CK,
USART2_CTS,
FMC_CLK, DCMI_D5,
LCD_G7, EVENTOUT
85
B5
118
D10 146 168 D11
PD4
I/O
FT
USART2_RTS,
FMC_NOE, EVENTOUT
86
A4
119
C11 147 169 C10
PD5
I/O
FT
USART2_TX, FMC_NWE,
EVENTOUT
-
-
120
D8
148 170
F8
VSS
S
-
C5
121
C8
149 171
E9
VDD
S
87
F4
122
B11
150 172 B11
PD6
I/O
FT
SPI3_MOSI/I2S3_SD,
SAI1_SD_A,
USART2_RX,
FMC_NWAIT, DCMI_D10,
LCD_B2, EVENTOUT
88
A5
123
A11
151 173 A11
PD7
I/O
FT
USART2_CK,
FMC_NE1/FMC_NCE2,
EVENTOUT
-
-
-
-
-
174 B10
PJ12
I/O
FT
LCD_B0, EVENTOUT
-
-
-
-
-
175
B9
PJ13
I/O
FT
LCD_B1, EVENTOUT
-
-
-
-
-
176
C9
PJ14
I/O
FT
LCD_B2, EVENTOUT
-
-
-
-
-
177 D10
PJ15
I/O
FT
LCD_B3, EVENTOUT
58/102
Doc ID 023140 Rev 2
Additional
functions
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
-
-
B6
A6
D6
125
126
127
128
B9
B8
A8
154 180
155 181
156 182
D9
PG9
C8
B8
C7
B3
PG10
PG11
PG12
PG13
I/O
FT
USART6_RX,
FMC_NE2/FMC_NCE3,
EVENTOUT
FT
LCD_G3,
FMC_NCE4_1/FMC_NE3,
DCMI_D2, LCD_B2,
EVENTOUT
FT
ETH_MII_TX_EN/ETH_R
MII_TX_EN,
FMC_NCE4_2, DCMI_D3,
LCD_B3, EVENTOUT
FT
SPI6_MISO,
USART6_RTS, LCD_B4,
FMC_NE4, LCD_B1,
EVENTOUT
FT
SPI6_SCK,
USART6_CTS,
ETH_MII_TXD0/ETH_RMI
I_TXD0, FMC_A24,
EVENTOUT
FT
SPI6_MOSI,
USART6_TX,
ETH_MII_TXD1/ETH_RMI
I_TXD1, FMC_A25,
EVENTOUT
I/O
I/O
I/O
I/O
Notes
TFBGA216
LQFP208
B10 153 179
(function
after reset)(1)
I / O structure
-
C6
124 C10 152 178
Pin name
Pin type
-
LQFP176
E5
UFBGA176
WLCSP143
-
LQFP144
LQFP100
Pin number
Alternate functions
-
F6
129
A7
157 183
A4
PG14
I/O
-
-
130
D7
158 184
F7
VSS
S
-
E6
131
C7
159 185
E8
VDD
S
-
-
-
-
-
186
D8
PK3
I/O
FT
LCD_B4, EVENTOUT
-
-
-
-
-
187
D7
PK4
I/O
FT
LCD_B5, EVENTOUT
-
-
-
-
-
188
C6
PK5
I/O
FT
LCD_B6, EVENTOUT
-
-
-
-
-
189
C5
PK6
I/O
FT
LCD_B7, EVENTOUT
-
-
-
-
-
190
C4
PK7
I/O
FT
LCD_DE, EVENTOUT
-
A7
132
B7
160 191
B7
PG15
I/O
FT
USART6_CTS,
FMC_SDNCAS,
DCMI_D13, EVENTOUT
Doc ID 023140 Rev 2
Additional
functions
59/102
Pinouts and pin description
STM32F429xx
Table 10. STM32F429xx pin and ball definitions (continued)
89
B7
133
A10 161 192 A10
90
C7
134
A9
91
92
C8
A8
135
136
A6
B6
162 193
163 194
164 195
A9
A8
B6
PB3
I/O
(JTDO/
TRACESWO)
PB4
(NJTRST)
PB5
PB6
I/O
I/O
I/O
FT
FT
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
I2S3ext_SD, EVENTOUT
FT
TIM3_CH2, I2C1_SMBA,
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10, EVENTOUT
FT
TIM4_CH1, I2C1_SCL,
USART1_TX, CAN2_TX,
FMC_SDNE1, DCMI_D5,
EVENTOUT
TIM4_CH2, I2C1_SDA,
USART1_RX, FMC_NL,
DCMI_VSYNC,
EVENTOUT
B8
137
B5
165 196
B5
PB7
I/O
FT
94
C9
138
D6
166 197
E6
BOOT0
I
B
A9
139
A5
167 198
A7
PB8
I/O
Alternate functions
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK/I2S3_CK,
EVENTOUT
93
95
Notes
(function
after reset)(1)
I / O structure
Pin name
Pin type
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
WLCSP143
LQFP100
Pin number
VPP
FT
TIM4_CH3, TIM10_CH1,
I2C1_SCL, CAN1_RX,
ETH_MII_TXD3,
SDIO_D4, DCMI_D6,
LCD_B6, EVENTOUT
140
B4
168 199
B4
PB9
I/O
FT
TIM4_CH4, TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
CAN1_TX, SDIO_D5,
DCMI_D7, LCD_B7,
EVENTOUT
97 B10 141
A4
169 200
A6
PE0
I/O
FT
TIM4_ETR, UART8_Rx,
FMC_NBL0, DCMI_D2,
EVENTOUT
96
B9
60/102
Doc ID 023140 Rev 2
Additional
functions
STM32F429xx
Pinouts and pin description
Table 10. STM32F429xx pin and ball definitions (continued)
D5
-
-
-
FT
UART8_Tx, FMC_NBL1,
DCMI_D3, EVENTOUT
PE1
202
F6
VSS
S
LQFP208
A5
Notes
I/O
(function
after reset)(1)
170 201
-
I / O structure
99
Pin type
A3
Pin name
TFBGA216
98 A10 142
LQFP176
UFBGA176
LQFP144
WLCSP143
LQFP100
Pin number
Alternate functions
A11 143
C6
171 203
E5
PDR_ON
S
10
0
D7
144
C5
172 204
E7
VDD
S
-
-
-
D4
173 205
C3
PI4
I/O
FT
TIM8_BKIN, FMC_NBL2,
DCMI_D5, LCD_B4,
EVENTOUT
-
-
-
C4
174 206
D3
PI5
I/O
FT
TIM8_CH1, FMC_NBL3,
DCMI_VSYNC, LCD_B5,
EVENTOUT
-
-
-
C3
175 207
D6
PI6
I/O
FT
TIM8_CH2, FMC_D28,
DCMI_D6, LCD_B6,
EVENTOUT
-
-
-
C2
176 208
D4
PI7
I/O
FT
TIM8_CH3, FMC_D29,
DCMI_D7, LCD_B7,
EVENTOUT
Additional
functions
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to VDD
(Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
6. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
Doc ID 023140 Rev 2
61/102
Pinouts and pin description
STM32F429xx
Table 11. FMC pin definition
62/102
Pin name
CF
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
PF0
A0
A0
A0
PF1
A1
A1
A1
PF2
A2
A2
A2
PF3
A3
A3
A3
PF4
A4
A4
A4
PF5
A5
A5
A5
PF12
A6
A6
A6
PF13
A7
A7
A7
PF14
A8
A8
A8
PF15
A9
A9
A9
PG0
A10
A10
A10
PG1
A11
A11
PG2
A12
A12
PG3
A13
PG4
A14
BA0
PG5
A15
BA1
PD11
A16
A16
CLE
PD12
A17
A17
ALE
PD13
A18
A18
PE3
A19
A19
PE4
A20
A20
PE5
A21
A21
PE6
A22
A22
PE2
A23
A23
PG13
A24
A24
PG14
A25
A25
NAND16
SDRAM
PD14
D0
D0
DA0
D0
D0
PD15
D1
D1
DA1
D1
D1
PD0
D2
D2
DA2
D2
D2
PD1
D3
D3
DA3
D3
D3
PE7
D4
D4
DA4
D4
D4
PE8
D5
D5
DA5
D5
D5
PE9
D6
D6
DA6
D6
D6
PE10
D7
D7
DA7
D7
D7
Doc ID 023140 Rev 2
STM32F429xx
Pinouts and pin description
Table 11. FMC pin definition (continued)
Pin name
CF
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
NAND16
SDRAM
PE11
D8
D8
DA8
D8
D8
PE12
D9
D9
DA9
D9
D9
PE13
D10
D10
DA10
D10
D10
PE14
D11
D11
DA11
D11
D11
PE15
D12
D12
DA12
D12
D12
PD8
D13
D13
DA13
D13
D13
PD9
D14
D14
DA14
D14
D14
PD10
D15
D15
DA15
D15
D15
PH8
D16
D16
PH9
D17
D17
PH10
D18
D18
PH11
D19
D19
PH12
D20
D20
PH13
D21
D21
PH14
D22
D22
PH15
D23
D23
PI0
D24
D24
PI1
D25
D25
PI2
D26
D26
PI3
D27
D27
PI6
D28
D28
PI7
D29
D29
PI9
D30
D30
PI10
D31
D31
PD7
NE1
NE1
NCE2
PG9
NE2
NE2
NCE3
NE3
NE3
PG12
NE4
NE4
PD3
CLK
CLK
PG10
NCE4_1
PG11
NCE4_2
PD4
NOE
NOE
NOE
NOE
PD5
NWE
NWE
NWE
NWE
PD6
NWAIT
NWAIT
NWAIT
NWAIT
NADV
NADV
PB7
Doc ID 023140 Rev 2
63/102
Pinouts and pin description
STM32F429xx
Table 11. FMC pin definition (continued)
64/102
Pin name
CF
PF6
NIORD
PF7
NREG
PF8
NIOWR
PF9
CD
PF10
INTR
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
NAND16
PG6
INT2
PG7
INT3
SDRAM
PE0
NBL0
NBL0
NBL0
PE1
NBL1
NBL1
NBL1
PI4
NBL2
NBL2
PI5
NBL3
NBL3
PG8
SDCLK
PC0
SDNWE
PF11
SDNRAS
PG15
SDNCAS
PH2
SDCKE0
PH3
SDNE0
PH6
SDNE1
PH7
SDCKE1
PH5
SDNWE
PC2
SDNE0
PC3
SDCKE0
PB5
SDCKE1
PB6
SDNE1
Doc ID 023140 Rev 2
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PA0
-
TIM2_
CH1/TIM2
_ETR
TIM5_
CH1
TIM8_
ETR
-
-
-
USART2_
UART4_TX
CTS
-
-
ETH_MII_
CRS
-
-
-
EVEN
TOUT
PA1
-
TIM2_
CH2
TIM5_
CH2
-
-
-
-
USART2_
UART4_RX
RTS
-
-
ETH_MII_
RX_CLK/E
TH_RMII_
REF_CLK
-
-
-
EVEN
TOUT
PA2
-
TIM2_
CH3
TIM5_
CH3
TIM9_
CH1
-
-
-
USART2_
TX
-
-
-
ETH_
MDIO
-
-
-
EVEN
TOUT
PA3
-
TIM2_
CH4
TIM5_
CH4
TIM9_
CH2
-
-
-
USART2_
RX
-
-
OTG_HS_
ULPI_D0
ETH_MII_
COL
-
-
LCD_B5
EVEN
TOUT
PA4
-
-
-
-
-
SPI1_
NSS
SPI3_
USART2_
NSS/
CK
I2S3_WS
-
-
-
-
OTG_HS_
SOF
DCMI_
HSYNC
LCD_
VSYNC
EVEN
TOUT
PA5
-
TIM2_
CH1/TIM2
_ETR
-
TIM8_
CH1N
-
SPI1_
SCK
-
-
-
-
OTG_HS_
ULPI_CK
-
-
-
-
EVEN
TOUT
PA6
-
TIM1_
BKIN
TIM3_
CH1
TIM8_
BKIN
-
SPI1_
MISO
-
-
-
TIM13_CH1
-
-
-
DCMI_
PIXCLK
LCD_G2
EVEN
TOUT
PA7
-
TIM1_
CH1N
TIM3_
CH2
TIM8_
CH1N
-
SPI1_
MOSI
-
-
-
TIM14_CH1
-
ETH_MII_
RX_DV/
ETH_RMII
_CRS_DV
-
-
-
EVEN
TOUT
PA8
MCO1
TIM1_
CH1
-
-
I2C3_
SCL
-
-
USART1_
CK
-
-
OTG_FS_
SOF
-
-
-
LCD_R6
EVEN
TOUT
PA9
-
TIM1_
CH2
-
-
I2C3_
SMBA
-
-
USART1_
TX
-
-
-
-
-
DCMI_
D0
-
EVEN
TOUT
PA10
-
TIM1_
CH3
-
-
-
-
-
USART1_
RX
-
-
OTG_FS_
ID
-
-
DCMI_
D1
-
EVEN
TOUT
PA11
-
TIM1_
CH4
-
-
-
-
-
USART1_
CTS
-
CAN1_RX
-
-
-
-
LCD_R4
EVEN
TOUT
PA12
-
TIM1_
ETR
-
-
-
-
-
USART1_
RTS
-
CAN1_TX
-
-
-
-
LCD_R5
EVEN
TOUT
Port
AF9
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
STM32F429xx
Table 12. STM32F429xx alternate function mapping
Doc ID 023140 Rev 2
Port A
Pinouts and pin description
65/102
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
PA13
JTMSSWDI
O
-
-
-
-
-
-
-
-
-
Port A
PA14
JTCKSWCL
K
-
-
-
-
-
-
-
-
PA15
JTDI
TIM2_
CH1/TIM2
_ETR
-
-
-
SPI1_
NSS
SPI3_
NSS/
I2S3_WS
-
PB0
-
TIM1_
CH2N
TIM3_
CH3
TIM8_
CH2N
-
-
-
PB1
-
TIM1_
CH3N
TIM3_
CH4
TIM8_
CH3N
-
-
PB2
-
-
-
-
-
PB3
JTDO/
TRAC
ESWO
TIM2_
CH2
-
-
PB4
NJTR
ST
-
TIM3_
CH1
Doc ID 023140 Rev 2
Port B
PB5
-
-
PB6
-
PB7
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
EVEN
TOUT
-
-
LCD_R3
OTG_HS_
ULPI_D1
ETH_MII_
RXD2
-
-
-
EVEN
TOUT
-
-
-
LCD_R6
OTG_HS_
ULPI_D2
ETH_MII_
RXD3
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
-
SPI1_
SCK
SPI3_
SCK/
I2S3_CK
-
-
-
-
-
-
-
-
EVEN
TOUT
-
-
SPI1_
MISO
SPI3_
MISO
I2S3ext_
SD
-
-
-
-
-
-
-
EVEN
TOUT
TIM3_
CH2
-
I2C1_
SMBA
SPI1_
MOSI
SPI3_
MOSI/
I2S3_SD
-
-
CAN2_RX
OTG_HS_
ULPI_D7
ETH_PPS
_OUT
FMC_
SDCKE1
DCMI_
D10
-
EVEN
TOUT
-
TIM4_
CH1
-
I2C1_
SCL
-
-
USART1_
TX
-
CAN2_TX
-
-
FMC_
SDNE1
DCMI_
D5
-
EVEN
TOUT
-
-
TIM4_
CH2
-
I2C1_
SDA
-
-
USART1_
RX
-
-
-
-
FMC_NL
DCMI_
VSYNC
-
EVEN
TOUT
PB8
-
-
TIM4_
CH3
TIM10_
CH1
I2C1_
SCL
-
-
-
-
CAN1_RX
-
ETH_MII_
TXD3
SDIO_D4
DCMI_
D6
LCD_B6
EVEN
TOUT
PB9
-
-
TIM4_
CH4
TIM11_
CH1
I2C1_
SDA
SPI2_
NSS/I2
S2_WS
-
-
-
CAN1_TX
-
-
SDIO_D5
DCMI_
D7
LCD_B7
EVEN
TOUT
PB10
-
TIM2_
CH3
-
-
I2C2_
SCL
SPI2_
SCK/I2
S2_CK
-
USART3_
TX
-
-
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER
-
-
LCD_G4
EVEN
TOUT
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
STM32F429xx
AF11
Port
AF9
Pinouts and pin description
66/102
Table 12. STM32F429xx alternate function mapping (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PB11
-
TIM2_
CH4
-
-
I2C2_
SDA
-
-
USART3_
RX
-
-
OTG_HS_
ULPI_D4
ETH_MII_
TX_EN/
ETH_RMII
_TX_EN
-
-
LCD_G5
EVEN
TOUT
PB12
-
TIM1_
BKIN
-
-
I2C2_
SMBA
SPI2_
NSS/I2
S2_WS
-
USART3_
CK
-
CAN2_RX
OTG_HS_
ULPI_D5
ETH_MII_
TXD0/ETH
_RMII_
TXD0
OTG_HS_
ID
-
-
EVEN
TOUT
PB13
-
TIM1_
CH1N
-
-
-
SPI2_
SCK/I2
S2_CK
-
USART3_
CTS
-
CAN2_TX
OTG_HS_
ULPI_D6
ETH_MII_
TXD1/ETH
_RMII_TX
D1
-
-
-
EVEN
TOUT
PB14
-
TIM1_
CH2N
-
TIM8_
CH2N
-
SPI2_
MISO
I2S2ext_
SD
USART3_
RTS
-
TIM12_CH1
-
-
-
-
-
EVEN
TOUT
PB15
RTC_
REFIN
TIM1_
CH3N
-
TIM8_
CH3N
-
SPI2_
MOSI/I2
S2_SD
-
-
-
TIM12_CH2
-
-
-
-
-
EVEN
TOUT
PC0
-
-
-
-
-
-
-
-
-
-
OTG_HS_
ULPI_STP
-
FMC_SDN
WE
-
-
EVEN
TOUT
PC1
-
-
-
-
-
-
-
-
-
-
-
ETH_MDC
-
-
-
EVEN
TOUT
PC2
-
-
-
-
-
SPI2_
MISO
I2S2ext_
SD
-
-
-
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_
SDNE0
-
-
EVEN
TOUT
PC3
-
-
-
-
-
SPI2_
MOSI/I2
S2_SD
-
-
-
-
OTG_HS_
ULPI_NXT
ETH_MII_
TX_CLK
FMC_
SDCKE0
-
-
EVEN
TOUT
PC4
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
RXD0/ETH
_RMII_
RXD0
-
-
-
EVEN
TOUT
PC5
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
RXD1/ETH
_RMII_
RXD1
-
-
-
EVEN
TOUT
PC6
-
-
TIM3_
CH1
TIM8_
CH1
-
I2S2_
MCK
-
-
USART6_
TX
-
-
-
SDIO_D6
DCMI_
D0
LCD_
HSYNC
EVEN
TOUT
PC7
-
-
TIM3_
CH2
TIM8_
CH2
-
-
I2S3_
MCK
-
USART6_
RX
-
-
-
SDIO_D7
DCMI_
D1
LCD_G6
EVEN
TOUT
Port
Port B
Doc ID 023140 Rev 2
Port
C
AF9
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
67/102
Pinouts and pin description
AF0
STM32F429xx
Table 12. STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
PC8
-
-
TIM3_
CH3
TIM8_
CH3
-
-
-
-
USART6_
CK
-
PC9
MCO2
-
TIM3_
CH4
TIM8_
CH4
I2C3_
SDA
I2S_
CKIN
-
-
-
PC10
-
-
-
-
-
-
SPI3_
SCK/I2S
3_CK
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
SDIO_D0
DCMI_
D2
-
EVEN
TOUT
-
-
-
SDIO_D1
DCMI_
D3
-
EVEN
TOUT
USART3_
UART4_TX
TX
-
-
-
SDIO_D2
DCMI_
D8
LCD_R2
EVEN
TOUT
PC11
-
-
-
-
-
I2S3ext
_SD
SPI3_
MISO
USART3_
UART4_RX
RX
-
-
-
SDIO_D3
DCMI_
D4
-
EVEN
TOUT
PC12
-
-
-
-
-
-
SPI3_
MOSI/I2
S3_SD
USART3_
UART5_TX
CK
-
-
-
SDIO_CK
DCMI_
D9
-
EVEN
TOUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PD0
-
-
-
-
-
-
-
-
-
CAN1_RX
-
-
FMC_D2
-
-
EVEN
TOUT
PD1
-
-
-
-
-
-
-
-
-
CAN1_TX
-
-
FMC_D3
-
-
EVEN
TOUT
PD2
-
-
TIM3_
ETR
-
-
-
-
-
UART5_RX
-
-
-
SDIO_
CMD
DCMI_
D11
-
EVEN
TOUT
PD3
-
-
-
-
-
SPI2_S
CK/I
2S2_CK
-
USART2_
CTS
-
-
-
-
FMC_CLK
DCMI_
D5
LCD_G7
EVEN
TOUT
PD4
-
-
-
-
-
-
-
USART2_
RTS
-
-
-
-
FMC_NOE
-
-
EVEN
TOUT
PD5
-
-
-
-
-
-
-
USART2_
TX
-
-
-
-
FMC_NWE
-
-
EVEN
TOUT
PD6
-
-
-
-
-
SPI3_
MOSI/I2
S3_SD
SAI1_
SD_A
USART2_
RX
-
-
-
-
FMC_
NWAIT
DCMI_
D10
LCD_B2
EVEN
TOUT
Port
C
Doc ID 023140 Rev 2
Port
D
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
STM32F429xx
AF11
Port
AF9
Pinouts and pin description
68/102
Table 12. STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
PD7
-
-
-
-
-
-
-
USART2_
CK
-
-
PD8
-
-
-
-
-
-
-
USART3_
TX
-
PD9
-
-
-
-
-
-
-
USART3_
RX
PD10
-
-
-
-
-
-
-
Port
D
PD11
-
-
-
-
-
-
PD12
-
-
TIM4_
CH1
-
-
PD13
-
-
TIM4_
CH2
-
PD14
-
-
TIM4_
CH3
PD15
-
-
PE0
-
PE1
Doc ID 023140 Rev 2
Port E
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
FMC_NE1/
FMC_
NCE2
-
-
EVEN
TOUT
-
-
-
FMC_D13
-
-
EVEN
TOUT
-
-
-
-
FMC_D14
-
-
EVEN
TOUT
USART3_
CK
-
-
-
-
FMC_D15
-
LCD_B3
EVEN
TOUT
-
USART3_
CTS
-
-
-
-
FMC_A16
-
-
EVEN
TOUT
-
-
USART3_
RTS
-
-
-
-
FMC_A17
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
FMC_A18
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
FMC_D0
-
-
EVEN
TOUT
TIM4_
CH4
-
-
-
-
-
-
-
-
-
FMC_D1
-
-
EVEN
TOUT
-
TIM4_
ETR
-
-
-
-
-
UART8_Rx
-
-
-
FMC_
NBL0
DCMI_
D2
-
EVEN
TOUT
-
-
-
-
-
-
-
-
UART8_Tx
-
-
-
FMC_
NBL1
DCMI_
D3
-
EVEN
TOUT
PE2
TRAC
ECLK
-
-
-
-
SPI4_
SCK
SAI1_
MCLK_A
-
-
-
-
ETH_MII_
TXD3
FMC_A23
-
-
EVEN
TOUT
PE3
TRAC
ED0
-
-
-
-
-
SAI1_
SD_B
-
-
-
-
-
FMC_A19
-
-
EVEN
TOUT
PE4
TRAC
ED1
-
-
-
-
SPI4_
NSS
SAI1_
FS_A
-
-
-
-
-
FMC_A20
DCMI_
D4
LCD_B0
EVEN
TOUT
PE5
TRAC
ED2
-
-
TIM9_
CH1
-
SPI4_M
ISO
SAI1_
SCK_A
-
-
-
-
-
FMC_A21
DCMI_
D6
LCD_G0
EVEN
TOUT
PE6
TRAC
ED3
-
-
TIM9_
CH2
-
SPI4_
MOSI
SAI1_
SD_A
-
-
-
-
-
FMC_A22
DCMI_
D7
LCD_G1
EVEN
TOUT
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
69/102
Pinouts and pin description
AF11
Port
AF9
STM32F429xx
Table 12. STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PE7
-
TIM1_
ETR
-
-
-
-
-
-
UART7_Rx
-
-
-
FMC_D4
-
-
EVEN
TOUT
PE8
-
TIM1_
CH1N
-
-
-
-
-
-
UART7_Tx
-
-
-
FMC_D5
-
-
EVEN
TOUT
PE9
-
TIM1_
CH1
-
-
-
-
-
-
-
-
-
-
FMC_D6
-
-
EVEN
TOUT
PE10
-
TIM1_
CH2N
-
-
-
-
-
-
-
-
-
-
FMC_D7
-
-
EVEN
TOUT
PE11
-
TIM1_
CH2
-
-
-
SPI4_
NSS
-
-
-
-
-
-
FMC_D8
-
LCD_G3
EVEN
TOUT
PE12
-
TIM1_
CH3N
-
-
-
SPI4_
SCK
-
-
-
-
-
-
FMC_D9
-
LCD_B4
EVEN
TOUT
PE13
-
TIM1_
CH3
-
-
-
SPI4_
MISO
-
-
-
-
-
-
FMC_D10
-
LCD_DE
EVEN
TOUT
PE14
-
TIM1_
CH4
-
-
-
SPI4_
MOSI
-
-
-
-
-
-
FMC_D11
-
LCD_
CLK
EVEN
TOUT
PE15
-
TIM1_
BKIN
-
-
-
-
-
-
-
-
-
FMC_D12
-
LCD_R7
EVEN
TOUT
PF0
-
-
-
-
I2C2_
SDA
-
-
-
-
-
-
-
FMC_A0
-
-
EVEN
TOUT
PF1
-
I2C2_
SCL
-
-
-
-
-
-
-
FMC_A1
-
-
EVEN
TOUT
PF2
-
-
-
-
I2C2_
SMBA
-
-
-
-
-
-
-
FMC_A2
-
-
EVEN
TOUT
PF3
-
-
-
-
-
-
-
-
-
-
-
FMC_A3
-
-
EVEN
TOUT
PF4
-
-
-
-
-
-
-
-
-
-
-
FMC_A4
-
-
EVEN
TOUT
PF5
-
-
-
-
-
-
-
-
-
-
-
FMC_A5
-
-
EVEN
TOUT
PF6
-
-
-
TIM10_
CH1
-
SPI5_
NSS
SAI1_
SD_B
-
UART7_Rx
-
-
-
FMC_
NIORD
-
-
EVEN
TOUT
PF7
-
-
-
TIM11_
CH1
-
SPI5_
SCK
SAI1_
MCLK_B
-
UART7_Tx
-
-
-
FMC_
NREG
-
-
EVEN
TOUT
Port
Port E
AF9
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
Pinouts and pin description
70/102
Table 12. STM32F429xx alternate function mapping (continued)
Doc ID 023140 Rev 2
Port F
STM32F429xx
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PF8
-
-
-
-
-
SPI5_
MISO
SAI1_
SCK_B
-
-
TIM13_CH1
-
-
FMC_
NIOWR
-
-
EVEN
TOUT
PF9
-
-
-
-
-
SPI5_
MOSI
SAI1_
FS_B
-
-
TIM14_CH1
-
-
FMC_CD
-
-
EVEN
TOUT
PF10
-
-
-
-
-
-
-
-
-
-
-
-
FMC_INTR
DCMI_
D11
LCD_DE
EVEN
TOUT
PF11
-
-
-
-
-
SPI5_
MOSI
-
-
-
-
-
-
FMC_
SDNRAS
DCMI_
D12
-
EVEN
TOUT
PF12
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A6
-
-
EVEN
TOUT
PF13
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A7
-
-
EVEN
TOUT
PF14
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A8
-
-
EVEN
TOUT
PF15
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A9
-
-
EVEN
TOUT
PG0
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10
-
-
EVEN
TOUT
PG1
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A11
-
-
EVEN
TOUT
PG2
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A12
-
-
EVEN
TOUT
PG3
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A13
-
-
EVEN
TOUT
PG4
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A14/
FMC_BA0
-
-
EVEN
TOUT
PG5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A15/
FMC_BA1
-
-
EVEN
TOUT
PG6
-
-
-
-
-
-
-
-
-
-
-
-
FMC_INT2
DCMI_
D12
LCD_R7
EVEN
TOUT
PG7
-
-
-
-
-
-
-
-
USART6_
CK
-
-
-
FMC_INT3
DCMI_
D13
LCD_
CLK
EVEN
TOUT
PG8
-
-
-
-
-
SPI6_
NSS
-
-
USART6_
RTS
-
-
ETH_PPS
_OUT
FMC_SDC
LK
-
-
EVEN
TOUT
Port
AF9
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
STM32F429xx
Table 12. STM32F429xx alternate function mapping (continued)
Port F
Doc ID 023140 Rev 2
71/102
Pinouts and pin description
Port
G
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
PG9
-
-
-
-
-
-
-
-
USART6_
RX
-
PG10
-
-
-
-
-
-
-
-
-
PG11
-
-
-
-
-
-
-
-
Port
G
PG12
-
-
-
-
-
SPI6_
MISO
-
PG13
-
-
-
-
-
SPI6_
SCK
PG14
-
-
-
-
-
PG15
-
-
-
-
PH0
-
-
-
PH1
-
-
PH2
-
Doc ID 023140 Rev 2
Port
H
PH3
AF10
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
-
FMC_NE2/
FMC_
NCE3
-
-
EVEN
TOUT
LCD_G3
-
-
FMC_
NCE4_1/
FMC_NE3
DCMI_
D2
LCD_B2
EVEN
TOUT
-
-
-
ETH_MII_
TX_EN/
ETH_RMII
_TX_EN
FMC_
NCE4_2
DCMI_
D3
LCD_B3
EVEN
TOUT
-
USART6_
RTS
LCD_B4
-
-
FMC_NE4
-
LCD_B1
EVEN
TOUT
-
-
USART6_
CTS
-
-
ETH_MII_
TXD0/
ETH_RMII
_TXD0
FMC_A24
-
-
EVEN
TOUT
SPI6_
MOSI
-
-
USART6_
TX
-
-
ETH_MII_
TXD1/
ETH_RMII
_TXD1
FMC_A25
-
-
EVEN
TOUT
-
-
-
-
USART6_
CTS
-
-
-
FMC_
SDNCAS
DCMI_
D13
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
ETH_MII_
CRS
FMC_
SDCKE0
-
LCD_R0
EVEN
TOUT
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
COL
FMC_SDN
E0
-
LCD_R1
EVEN
TOUT
PH4
-
-
-
-
I2C2_
SCL
-
-
-
-
-
OTG_HS_
ULPI_NXT
-
-
-
-
EVEN
TOUT
PH5
-
-
-
-
I2C2_
SDA
SPI5_N
SS
-
-
-
-
-
-
FMC_SDN
WE
-
-
EVEN
TOUT
PH6
-
-
-
-
I2C2_
SMBA
SPI5_
SCK
-
-
-
TIM12_CH1
-
-
FMC_
SDNE1
DCMI_
D8
-
-
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
STM32F429xx
AF11
Port
AF9
Pinouts and pin description
72/102
Table 12. STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
PH7
-
-
-
-
I2C3_
SCL
SPI5_
MISO
-
-
-
-
PH8
-
-
-
-
I2C3_
SDA
-
-
-
-
PH9
-
-
-
-
I2C3_
SMBA
-
-
-
PH10
-
-
TIM5_
CH1
-
-
-
-
Port
H
PH11
-
-
TIM5_
CH2
-
-
-
PH12
-
-
TIM5_
CH3
-
-
PH13
-
-
-
TIM8_
CH1N
PH14
-
-
-
PH15
-
-
PI0
-
PI1
AF12
AF13
AF14
AF15
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
-
ETH_MII_
RXD3
FMC_
SDCKE1
DCMI_
D9
-
-
-
-
-
FMC_D16
DCMI_
HSYNC
LCD_R2
EVEN
TOUT
-
TIM12_CH2
-
-
FMC_D17
DCMI_
D0
LCD_R3
EVEN
TOUT
-
-
-
-
-
FMC_D18
DCMI_
D1
LCD_R4
EVEN
TOUT
-
-
-
-
-
-
FMC_D19
DCMI_
D2
LCD_R5
EVEN
TOUT
-
-
-
-
-
-
-
FMC_D20
DCMI_
D3
LCD_R6
EVEN
TOUT
-
-
-
-
-
CAN1_TX
-
-
FMC_D21
-
-
EVEN
TOUT
TIM8_
CH2N
-
-
-
-
-
-
-
-
FMC_D22
DCMI_
D4
LCD_G3
EVEN
TOUT
-
TIM8_
CH3N
-
-
-
-
-
-
-
-
FMC_D23
DCMI_
D11
LCD_G4
EVEN
TOUT
-
TIM5_
CH4
-
-
SPI2_
NSS/I2
S2_WS
-
-
-
-
-
-
FMC_D24
DCMI_
D13
LCD_G5
EVEN
TOUT
-
-
-
-
-
SPI2_
SCK/I2
S2_CK
-
-
-
-
-
-
FMC_D25
DCMI_
D8
LCD_G6
EVEN
TOUT
PI2
-
-
-
TIM8_
CH4
-
SPI2_
MISO
I2S2ext_
SD
-
-
-
-
-
FMC_D26
DCMI_
D9
LCD_G7
EVEN
TOUT
PI3
-
-
-
TIM8_
ETR
-
SPI2_M
OSI/I2S
2_SD
FMC_D27
DCMI_D
10
PI4
-
-
-
TIM8_
BKIN
-
-
-
-
-
-
-
-
FMC_
NBL2
DCMI_D
5
LCD_B4
EVEN
TOUT
PI5
-
-
-
TIM8_
CH1
-
-
-
-
-
-
-
-
FMC_
NBL3
DCMI_
VSYNC
LCD_B5
EVEN
TOUT
PI6
-
-
-
TIM8_
CH2
-
-
-
-
-
-
-
-
FMC_D28
DCMI_
D6
LCD_B6
EVEN
TOUT
Doc ID 023140 Rev 2
Port I
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
EVEN
TOUT
73/102
Pinouts and pin description
AF11
Port
AF9
STM32F429xx
Table 12. STM32F429xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PI7
-
-
-
TIM8_
CH3
-
-
-
-
-
-
-
-
FMC_D29
DCMI_
D7
LCD_B7
EVEN
TOUT
PI8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PI9
-
-
-
-
-
-
-
-
-
CAN1_RX
-
-
FMC_D30
-
LCD_
VSYNC
EVEN
TOUT
PI10
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
RX_ER
FMC_D31
-
LCD_
HSYNC
EVEN
TOUT
PI11
-
-
-
-
-
-
-
-
-
-
OTG_HS_
ULPI_DIR
-
-
-
-
EVEN
TOUT
PI12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_
HSYNC
EVEN
TOUT
PI13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_
VSYNC
EVEN
TOUT
PI14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_
CLK
EVEN
TOUT
PI15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R0
EVEN
TOUT
PJ0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R1
EVEN
TOUT
PJ1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R2
EVEN
TOUT
PJ2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R3
EVEN
TOUT
PJ3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R4
EVEN
TOUT
PJ4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R5
EVEN
TOUT
PJ5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R6
EVEN
TOUT
PJ6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R7
EVEN
TOUT
PJ7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G0
EVEN
TOUT
Port
Port I
AF9
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
Pinouts and pin description
74/102
Table 12. STM32F429xx alternate function mapping (continued)
Doc ID 023140 Rev 2
Port J
STM32F429xx
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF11
AF12
AF13
AF14
AF15
SYS
TIM1/2
TIM3/4/5
TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/S
AI1
SPI3/US
ART1/2/3
USART6/U
ART4/5/7/8
ETH
FMC/SDIO
/OTG2_FS
DCMI
LCD
SYS
PJ8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G1
EVEN
TOUT
PJ9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G2
EVEN
TOUT
PJ10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G3
EVEN
TOUT
PJ11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G4
EVEN
TOUT
PJ12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B0
EVEN
TOUT
PJ13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B1
EVEN
TOUT
PJ14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B2
EVEN
TOUT
PJ15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B3
EVEN
TOUT
PK0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G5
EVEN
TOUT
PK1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G6
EVEN
TOUT
PK2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G7
EVEN
TOUT
PK3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B4
EVEN
TOUT
PK4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B5
EVEN
TOUT
PK5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B6
EVEN
TOUT
PK6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B7
EVEN
TOUT
PK7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_DE
EVEN
TOUT
Port
AF9
AF10
CAN1/2/TIM OTG2_HS
12/13/14/
/OTG1_
LCD
FS
STM32F429xx
Table 12. STM32F429xx alternate function mapping (continued)
Port J
Doc ID 023140 Rev 2
75/102
Pinouts and pin description
Port K
Memory mapping
5
STM32F429xx
Memory mapping
The memory map is shown in Figure 18.
Figure 18. Memory map
Reserved
0xE010 0000 - 0xFFFF FFFF
Cortex-M4 internal
peripherals
0xE000 0000 - 0xE00F FFFF
AHB3
0x6000 0000 - 0xDFFF FFFF
Reserved
0x5006 0C00 - 0x5FFF FFFF
0x5006 0BFF
AHB2
0xFFFF FFFF
512-Mbyte
Block 7
Cortex-M4
Internal
peripherals
Reserved
0x5000 0000
0x4008 0000 - 0x4FFF FFFF
0x4007 FFFF
0xE000 0000
0xDFFF FFFF
512-Mbyte
Block 6
FMC
0xD000 0000
0xCFFF FFFF
AHB1
512-Mbyte
Block 5
FMC
0xA000 0000
0x9FFF FFFF
0x8000 0000
0x7FFF FFFF
512-Mbyte
Block 4
FMC bank 3 to
bank 4
0x4002 0000
Reserved
0x4001 6C00 - 0x4001 FFFF
0x4001 6BFF
512-Mbyte
Block 3
FMC bank 1 to
bank 2
0x6000 0000
0x5FFF FFFF
APB2
512-Mbyte
Block 2
Peripherals
0x4000 0000
0x3FFF FFFF
512-Mbyte
Block 1
SRAM
0x2000 0000
0x1FFF FFFF
512-Mbyte
Block 0
SRAM
0x0000 0000
Reserved
SRAM (64 KB aliased
By bit-banding
SRAM (16 KB aliased
By bit-banding
SRAM (112 KB aliased
By bit-banding
0x2003 0000 - 0x3FFF FFFF
Reserved
0x1FFF C008 - 0x1FFF FFFF
Option Bytes
0x1FFF C000 - 0x1FFF C00F
Reserved
System memory
Reserved
Option bytes
0x1FFF 7A10 - 0x1FFF 7FFF
0x1FFF 0000 - 0x1FFF 7A0F
0x1FFE C008 - 0x1FFE FFFF
0x1FFE C000 - 0x1FFE C00F
0x2002 0000 - 0x2002 FFFF
0x2001 C000 - 0x2001 FFFF
0x4001 0000
0x4000 8000 - 0x4000 FFFF
0x4000 7FFF
0x2000 0000 - 0x2001 BFFF
Reserved
0x1001 0000 - 0x1FFE BFFF
CCM data RAM
(64 KB data SRAM)
Reserved
0x1000 0000 - 0x1000 FFFF
0x0820 0000 - 0x0FFF FFFF
Flash memory
0x0800 0000 - 0x081F FFFF
Reserved
Aliased to Flash, system
memory or SRAM depending
on the BOOT pins
Reserved
APB1
0x0020 0000 - 0x07FF FFFF
0x4000 0000
0x0000 0000 - 0x001F FFFF
MS30424V3
76/102
Doc ID 023140 Rev 2
STM32F429xx
Memory mapping
Table 13. STM32F429xx register boundary addresses
Bus
Cortex-M4
Boundary address
Peripheral
0xE00F FFFF - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0xD000 0000 - 0xDFFF FFFF
FMC bank 6
0xC000 0000 - 0xCFFF FFFF
FMC bank 5
0xA000 1000 - 0xBFFF FFFF
Reserved
0xA000 0000- 0xA000 0FFF
FMC control register
0x9000 0000 - 0x9FFF FFFF
FMC bank 4
0x8000 0000 - 0x8FFF FFFF
FMC bank 3
0x7000 0000 - 0x7FFF FFFF
FMC bank 2
0x6000 0000 - 0x6FFF FFFF
FMC bank 1
0x5006 0C00- 0x5FFF FFFF
Reserved
0x5006 0800 - 0X5006 0BFF
RNG
AHB3
AHB2
0x5005 0400 - X5006 07FF
Reserved
0x5005 0000 - 0X5005 03FF
DCMI
0x5004 0000- 0x5004 FFFF
Reserved
0x5000 0000 - 0X5003 FFFF
USB OTG FS
Doc ID 023140 Rev 2
77/102
Memory mapping
STM32F429xx
Table 13. STM32F429xx register boundary addresses (continued)
Bus
Boundary address
Peripheral
0x4008 0000- 0x4FFF FFFF
Reserved
0x4004 0000 - 0x4007 FFFF
USB OTG HS
0x4002 BC00- 0x4003 FFFF
Reserved
0x4002 B000 - 0x4002 BBFF
DMA2D
0x4002 9400 - 0x4002 AFFF
Reserved
0x4002 9000 - 0x4002 93FF
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
ETHERNET MAC
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0X4002 5000 - 0X4002 5FFF
Reserved
0x4002 4000 - 0x4002 4FFF
BKPSRAM
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0X4002 3400 - 0X4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2C00 - 0x4002 2FFF
Reserved
0x4002 2800 - 0x4002 2BFF
GPIOK
0x4002 2400 - 0x4002 27FF
GPIOJ
0x4002 2000 - 0x4002 23FF
GPIOI
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 1800 - 0x4002 1BFF
GPIOG
0x4002 1400 - 0x4002 17FF
GPIOF
0x4002 1000 - 0x4002 13FF
GPIOE
0X4002 0C00 - 0x4002 0FFF
GPIOD
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
AHB1
78/102
Doc ID 023140 Rev 2
STM32F429xx
Memory mapping
Table 13. STM32F429xx register boundary addresses (continued)
Bus
Boundary address
Peripheral
0x4001 6C00- 0x4001 FFFF
Reserved
0x4001 6800 - 0x4001 6BFF
LCD-TFT
0x4001 5C00 - 0x4001 67FF
Reserved
0x4001 5800 - 0x4001 5BFF
SAI1
0x4001 5400 - 0x4001 57FF
SPI6
0x4001 5000 - 0x4001 53FF
SPI5
0x4001 5400 - 0x4001 57FF
SPI6
0x4001 5000 - 0x4001 53FF
SPI5
0x4001 4C00 - 0x4001 4FFF
Reserved
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
TIM10
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
SPI4
0x4001 3000 - 0x4001 33FF
SPI1
0x4001 2C00 - 0x4001 2FFF
SDIO
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
TIM8
0x4001 0000 - 0x4001 03FF
TIM1
APB2
Doc ID 023140 Rev 2
79/102
Memory mapping
STM32F429xx
Table 13. STM32F429xx register boundary addresses (continued)
Bus
Boundary address
Peripheral
0x4000 8000- 0x4000 FFFF
Reserved
0x4000 7C00 - 0x4000 7FFF
UART8
0x4000 7800 - 0x4000 7BFF
UART7
0x4000 7400 - 0x4000 77FF
DAC
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6C00 - 0x4000 6FFF
Reserved
0x4000 6800 - 0x4000 6BFF
CAN2
0x4000 6400 - 0x4000 67FF
CAN1
0x4000 6000 - 0x4000 63FF
Reserved
0x4000 5C00 - 0x4000 5FFF
I2C3
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 5000 - 0x4000 53FF
UART5
0x4000 4C00 - 0x4000 4FFF
UART4
0x4000 4800 - 0x4000 4BFF
USART3
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
I2S3ext
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
I2S2ext
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 2400 - 0x4000 27FF
Reserved
0x4000 2000 - 0x4000 23FF
TIM14
0x4000 1C00 - 0x4000 1FFF
TIM13
0x4000 1800 - 0x4000 1BFF
TIM12
0x4000 1400 - 0x4000 17FF
TIM7
0x4000 1000 - 0x4000 13FF
TIM6
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0800 - 0x4000 0BFF
TIM4
0x4000 0400 - 0x4000 07FF
TIM3
0x4000 0000 - 0x4000 03FF
TIM2
APB1
80/102
Doc ID 023140 Rev 2
STM32F429xx
Package characteristics
6
Package characteristics
6.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 19. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
,
$
!
+
CCC #
,
$
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
,?-%?6
1. Drawing is not to scale.
Doc ID 023140 Rev 2
81/102
Package characteristics
STM32F429xx
Table 14. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
15.800
D1
13.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
16.000
16.200
0.6220
0.6299
0.6378
14.000
14.200
0.5433
0.5512
0.5591
12.000
0.0059
0.0079
0.4724
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
12.000
0.4724
e
0.500
0.0197
L
0.450
L1
k
ccc
0.600
0.750
1.000
0°
3.5°
0.0236
0.0295
0.0394
7°
0.080
1. Values in inches are converted from mm and rounded to 4 decimal digits.
82/102
0.0177
Doc ID 023140 Rev 2
0°
3.5°
7°
0.0031
STM32F429xx
Package characteristics
Figure 20. LQPF100 recommended footprint
AI
1. Dimensions are expressed in millimeters.
Doc ID 023140 Rev 2
83/102
Package characteristics
STM32F429xx
Figure 21. WLCSP143, 0.4 mm pitch wafe level chip scale package outline
!BALLLOCATION
E
&
'
$ETAIL!
E
E
E
!
!
!
"OTTOMVIEW
"UMPSIDE
!
! !
3IDEVIEW
&RONTVIEW
$
"UMP
!
!
EEE
%
!ORIENTATION
REFERENCE
4OPVIEW
7AFERBACKSIDE
1. Drawing is not to scale.
84/102
Doc ID 023140 Rev 2
B
$ETAIL!
2OTATED #
3EATING
PLANE
!7%-%6
STM32F429xx
Package characteristics
Table 15. WLCSP143, 0.4 mm pitch wafe level chip scale package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.175
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
A3
0.220
0.025
0.280
0.0087
0.0010
0.0110
b
-
0.250°
-
-
0.250°
-
D
4.486
4.521
4.556
0.1766
0.1780
0.1794
E
5.512
5.547
5.582
0.2170
0.2184
0.2198
e
-
0.400
-
-
0.0157
-
e1
-
4.000
-
-
0.1575
-
e2
-
4.800
-
-
0.1890
-
F
-
0.261
-
-
0.0103
-
G
-
0.374
-
-
0.0147
-
eee
-
0.050
-
-
0.0020
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 023140 Rev 2
85/102
Package characteristics
STM32F429xx
Figure 22. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
3EATINGPLANE
#
!
! !
C
B
MM
GAGEPLANE
CCC #
$
K
$
!
$
,
,
% %
%
0IN
IDENTIFICATION
E
!?-%?6
1. Drawing is not to scale.
Table 16. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
21.800
D1
19.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
22.000
22.200
0.8583
0.8661
0.874
20.000
20.200
0.7795
0.7874
0.7953
17.500
0.0059
0.0079
0.689
E
21.800
22.000
22.200
0.8583
0.8661
0.8740
E1
19.800
20.000
20.200
0.7795
0.7874
0.7953
86/102
Doc ID 023140 Rev 2
STM32F429xx
Package characteristics
Table 16. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
E3
17.500
0.6890
e
0.500
0.0197
L
0.450
0.600
L1
k
0.750
0.0177
0.0236
1.000
0°
Max
0.0295
0.0394
3.5°
7°
ccc
0°
3.5°
7°
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 23. LQFP144 recommended footprint
AIC
1. Dimensions are expressed in millimeters.
Doc ID 023140 Rev 2
87/102
Package characteristics
STM32F429xx
Figure 24. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline
# 3EATINGPLANE
MM
GAUGEPLANE
! !
K
C
!
CCC#
!
($
,
$
,
:$
:%
B
%
0IN
IDENTIFICATION
(%
E
4?-%
1. Drawing is not to scale.
Table 17. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
Max
0.0630
A1
0.050
0.150
0.0020
A2
1.350
1.450
0.0531
0.0060
b
0.170
0.270
0.0067
0.0106
C
0.090
0.200
0.0035
0.0079
D
23.900
24.100
0.9409
0.9488
E
23.900
24.100
0.9409
0.9488
e
0.500
0.0197
HD
25.900
26.100
1.0200
1.0276
HE
25.900
26.100
1.0200
1.0276
L
0.450
0.750
0.0177
0.0295
L1
1.000
0.0394
ZD
1.250
0.0492
ZE
1.250
0.0492
88/102
Doc ID 023140 Rev 2
STM32F429xx
Package characteristics
Table 17. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
ccc
Min
Typ
Max
0.080
k
0°
0.0031
7°
0°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 25. LQFP176 recommended footprint
4?&0?6
1. Dimensions are expressed in millimeters.
Doc ID 023140 Rev 2
89/102
Package characteristics
STM32F429xx
Figure 26. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline
3EATINGPLANE
#
!
! !
C
B
MM
GAGEPLANE
CCC #
K
$
$
!
$
,
,
% % %
0IN
IDENTIFICATION
E
5(?-%
1. Drawing is not to scale.
Table 18. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
90/102
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
29.800
D1
27.800
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
30.000
30.200
1.1732
1.1811
1.1890
28.000
28.200
1.0945
1.1024
1.1102
Doc ID 023140 Rev 2
0.0059
0.0079
STM32F429xx
Package characteristics
Table 18. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
D3
Max
Min
Typ
25.500
Max
1.0039
E
29.800
30.000
30.200
1.1732
1.1811
1.1890
E1
27.800
28.000
28.200
1.0945
1.1024
1.1102
E3
25.500
1.0039
e
0.500
0.0197
L
0.450
0.600
L1
0.750
0.0177
0.0236
1.000
k
0°
3.5°
ccc
0.0295
0.0394
7.0°
0°
3.5°
7.0°
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 27. LQFP208 recommended footprint
-36
1. Dimensions are expressed in millimeters.
Doc ID 023140 Rev 2
91/102
Package characteristics
STM32F429xx
Figure 28. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline
C Seating plane
A2
ddd
A1
C
A
A
A1 ball
A1 ball
identifier index area
e
E
F
A
F
D
e
B
R
15
BOTTOM VIEW
1
TOP VIEW
Øb (176 + 25 balls)
Ø eee M C A B
Ø fff M C
A0E7_ME_V4
1. Drawing is not to scale.
Table 19. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.002
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
b
0.230
0.280
0.330
0.0091
0.0110
0.0130
D
9.900
10.000
10.100
0.3898
0.3937
0.3976
E
9.900
10.000
10.100
0.3898
0.3937
0.3976
e
F
0.650
0.425
0.450
0.0256
0.475
0.0167
0.0187
ddd
0.080
0.0031
eee
0.150
0.0059
fff
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
92/102
0.0177
Doc ID 023140 Rev 2
STM32F429xx
Package characteristics
Figure 29. TFBGA216 - ultra thin fine pitch ball grid array 13 × 13 × 0.8mm,
package outline
Z Seating plane
ddd Z
A2
A1 A
E1
e
A1 ball
A1 ball
identifier index area
F
X
E
A
F
D1
e
D
Y
R
15
1
BOTTOM VIEW
Øb (216 balls)
Ø eee M Z Y X
Ø fff M Z
TOP VIEW
A0L2_ME_V2
1. Drawing is not to scale.
Table 20. TFBGA216 - ultra thin fine pitch ball grid array 13 × 13 × 0.8mm
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
A1
Max
Min
Typ
1.100
0.150
Max
0.0433
0.0059
A2
0.760
0.0299
A4
0.210
0.0083
b
0.350
0.400
0.450
0.0138
0.0157
0.0177
D
12.850
13.000
13.150
0.5118
0.5118
0.5177
D1
E
11.200
12.850
13.000
0.4409
13.150
0.5118
0.5118
E1
11.200
0.4409
e
0.800
0.0315
F
0.900
0.0354
ddd
0.080
0.5177
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 023140 Rev 2
93/102
Package characteristics
6.2
STM32F429xx
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 21. Package thermal characteristics(1)
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
43
Thermal resistance junction-ambient
WLCSP143
TBD
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch
40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch
38
Thermal resistance junction-ambient
LQFP208 - 28 × 28 mm / 0.5 mm pitch
19
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch
39
Thermal resistance junction-ambient
TFBGA216 - 13 × 13 mm / 0.8 mm pitch
TBD
Unit
°C/W
1. TBD stands for “to be defined”.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
94/102
Doc ID 023140 Rev 2
STM32F429xx
7
Part numbering
Part numbering
Table 22. Ordering information scheme
Example:
STM32
F
429 V I
T
6
xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
429= STM32F429xx, USB OTG FS/HS, camera interface,
Ethernet, LCD-TFT
Pin count
V = 100 pins
Z = 144 pins
I = 176 pins
B = 208 pins
N = 216 pins
Flash memory size
G = 1024 Kbytes of Flash memory
I = 2048 Kbytes of Flash memory
Package
T = LQFP
H = BGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Doc ID 023140 Rev 2
95/102
Application block diagrams
Appendix A
A.1
STM32F429xx
Application block diagrams
USB OTG full speed (FS) interface solutions
Figure 30. USB controller configured as peripheral-only and used
in Full speed mode
6$$
6TO6$$
6OLATGEREGULATOR 6"53
$-
/3#?).
0!0"
$0
0!0"
633
/3#?/54
53"3TD"CONNECTOR
34-&XX
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 31. USB controller configured as host-only and used in full speed mode
6$$
%.
'0)/
'0)/)21
#URRENTLIMITER
POWERSWITCH 60WR
6"53
/3#?).
0!0"
0!0"
$$0
633
/3#?/54
53"3TD!CONNECTOR
34-&XX
/VERCURRENT
-36
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
96/102
Doc ID 023140 Rev 2
STM32F429xx
Application block diagrams
Figure 32. USB controller configured in dual mode and used in full speed mode
6$$
6TO6$$
VOLTAGEREGULATOR 6$$
'0)/)21
/VERCURRENT
#URRENTLIMITER
POWERSWITCH 60WR
34-&XX
0!0"
0!0"
/3#?).
0!0"
6"53
$$0
/3#?/54
0!0"
)$
633
53"MICRO!"CONNECTOR
'0)/
%.
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Doc ID 023140 Rev 2
97/102
Application block diagrams
A.2
STM32F429xx
USB OTG high speed (HS) interface solutions
Figure 33. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
34-&XX
&30(9
53"(3
/4'#TRL
$0
$-
NOTCONNECTED
$0
5,0)?#,+
$-
5,0)?$;=
5,0)
)$
5,0)?$)2
6"53
5,0)?340
53"
CONNECTOR
633
5,0)?.84
(IGHSPEED
/4'0(9
0,,
84
OR-(Z84
-#/OR-#/
8)
-36
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F42x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
98/102
Doc ID 023140 Rev 2
STM32F429xx
A.3
Application block diagrams
Ethernet interface solutions
Figure 34. MII mode using a 25 MHz crystal
34-
-#5
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
%THERNET
-!#
(#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
%THERNET
0(9
-))
PINS
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
-))-$#
PINS
-$)/
-$#
003?/54
84!,
-(Z
/3#
0,,
(#,+
-#/-#/
0(9?#,+-(Z
84
-36
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 35. RMII with a 50 MHz oscillator
34-
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
2-))?#28?$6
2-))?2%&?#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))
PINS
2-))-$#
PINS
-$)/
-$#
OR
OR-(Z SYNCHRONOUS -(Z
/3#
-(Z
0,,
(#,+
0(9?#,+-(Z
84
-(Z
-36
1. fHCLK must be greater than 25 MHz.
Doc ID 023140 Rev 2
99/102
Application block diagrams
STM32F429xx
Figure 36. RMII with a 25 MHz crystal and PHY with PLL
34-&
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
)%%%040
2-))?#28?$6
2-))?2%&?#,+
2-))
PINS
2%&?#,+
-$)/
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))-$#
PINS
-$#
OR
OR-(Z SYNCHRONOUS -(Z
84!,
-(Z
/3#
0,,
(#,+
0,,
-#/-#/
0(9?#,+-(Z 84
-36
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
100/102
Doc ID 023140 Rev 2
STM32F429xx
8
Revision history
Revision history
Table 23.
Document revision history
Date
Revision
13-Feb-2013
1
15-May-2013
2
Changes
Initial release.
Removed note 1 on cover page related to WLCSP143.
Replaced Cortex-M4F by Cortex-M4 with FPU.
Maximum CPU frequency changed to 180 MHz in Table 2:
STM32F429xx features and peripheral counts.
Removed mention of WLCSP144 on cover page, and add WLCSP143
in the whole document.
Updated Figure 3: Compatible board design between STM32F2xx and
STM32F4xx for LQFP176 package.
Updated Figure 5: STM32F429xx Multi-AHB matrix.
Updated Figure 14: STM32F42x LQFP176 pinout.
Changed maximum FMC frequency for synchronous accesses to
90 MHz in Section 3.9: Flexible memory controller (FMC).
Changed 1.2 V to V12 and updated DAc output in Section 3.18.2:
Regulator OFF.
Updated note 1 in Table 8: USART feature comparison.
Changed LQFP176 pin 36 signal to VDDA in Figure 14: STM32F42x
LQFP176 pinout.
Table 10: STM32F429xx pin and ball definitions: added WLCSP143,
updated alternate and additional functions.
Updated Table 12: STM32F429xx alternate function mapping.
Doc ID 023140 Rev 2
101/102
STM32F429xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
102/102
Doc ID 023140 Rev 2

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement