`TrOnchip Commands` in `V850 Debugger and Trace`
V850 Debugger and Trace
TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 Documents ......................................................................................................................

ICD In-Circuit Debugger ................................................................................................................

Processor Architecture Manuals ..............................................................................................

V850 ..........................................................................................................................................

V850 Debugger and Trace ...................................................................................................
1
General Note ......................................................................................................................
4
Brief Overview of Documents for New Users .................................................................
4
Warning ..............................................................................................................................
5
Application Note ................................................................................................................
6
Location of Debug Connector
6
Reset Line
6
FLMD0 Line
7
Mask-Options of V850/Fx3, Cargate
8
Quick Start JTAG ...............................................................................................................
9
Troubleshooting ................................................................................................................
12
SYStem.Up Errors
12
FAQ .....................................................................................................................................
12
Configuration .....................................................................................................................
13
System Overview
13
General System Settings ..................................................................................................
SYStem.CONFIG
Configure debugger according to target topology
Daisy-chain Example
14
16
TapStates
17
SYStem.CONFIG.CORE
Assign core to TRACE32 instance
18
CPU type selection
19
Run-time memory access (intrusive)
19
SYStem.CPU
SYStem.CpuAccess
SYStem.JtagClock
SYStem.LOCK
SYStem.MemAccess
SYStem.Mode
SYStem.Option IMASKASM
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
14
1
JTAG clock selection
20
Lock and tristate the debug port
20
Memory access selection
21
System mode selection
22
Interrupt disable
22
SYStem.Option IMASKHLL
Interrupt disable
22
SYStem.Option PERSTOP
Disable cpu peripherals if stopped
23
Exception Lines Enable ....................................................................................................
24
SYStem.Option RESET
Reset line enable
24
SYStem.Option STOP
Stop line enable
24
SYStem.Option WAIT
Wait line enable
24
Request line enable
25
SYStem.Option NMI0
SYStem.Option REQest
NMI0 line enable
25
SYStem.Option NMI1
NMI1 line enable
25
SYStem.Option NMI2
NMI2 line enable
25
CPINT line enable
26
SYStem.Option CPINT
Trace System Settings ......................................................................................................
27
SYStem.Option BTM
Branch trace message
27
SYStem.Option DTM
Data trace message
28
SYStem.Option KEYCODE
Keycode
28
SYStem.Option OPWIDTH
Trace interface width
29
Trace STALL mode
30
Trace clock mode
30
Breakpoints ........................................................................................................................
31
SYStem.Option STALL
SYStem.Option TCMODE
Software Breakpoints
31
On-chip Breakpoints
31
Breakpoint in ROM
32
Example for Breakpoints
32
TrOnchip Commands ........................................................................................................
TrOnchip.view
Display on-chip trigger window
TrOnchip.CONVert
33
33
Adjust range breakpoint in on-chip resource
33
TrOnchip.SEQ
Sequential breakpoints
34
TrOnchip.RCU
ROM-Correction breakpoints
34
Set on-chip trigger to default state
35
TrOnchip.RESet
TrOnchip.SIZE
Trigger on byte, word, long memory accesses
35
TrOnchip.Set Alignment
Alignment error breakpoints
35
TrOnchip.Set MissAlign
Alignment error breakpoints
36
Adjust complex breakpoint in on-chip resource
36
Memory Classes ................................................................................................................
37
TrOnchip.VarCONVert
DataFlash: Memory Class
37
Trace ...................................................................................................................................
38
NBD Interface .....................................................................................................................
39
Runtime Measurement ......................................................................................................
40
JTAG Connector ................................................................................................................
Connector 20 pin 100mil /NWire
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
41
41
2
Trace Connector ................................................................................................................
42
Connector MICTOR/N-Wire and Trace
42
Connector KEL/N-Wire and Trace
43
NBD Connector ..................................................................................................................
44
Support ...............................................................................................................................
45
Available Tools
45
Compilers
55
Realtime Operation Systems
56
3rd Party Tool Integrations
56
Products .............................................................................................................................
57
Product Information
57
Order Information
57
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
3
V850 Debugger and Trace
Version 11-Nov-2014
30-Jun-14
TrBus.Out and TrBus.Set were moved to general_ref_t.pdf.
20-Dec-13
Updated the parameter descriptions of DRPRE, DRPOST, IRPRE, and IRPOST, see
SYStem.CONFIG.
General Note
This documentation describes the processor specific settings and features for NEC V850E(S). TRACE32ICD supports all V850 devices which are equipped with the N-wire debug interface.
If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific family lines, the name(s) of the family/families is/are added in
brackets.
Brief Overview of Documents for New Users
Architecture-independent information:
•
”Debugger Basics - Training” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
•
”T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.
•
“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.
Architecture-specific information:
•
“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:
-
•
Choose Help menu > Processor Architecture Manual.
“RTOS Debugger” (rtos_<x>.pdf): TRACE32 PowerView can be extended for operating systemaware debugging. The appropriate RTOS manual informs you how to enable the OS-aware
debugging.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
4
General Note
Warning
Signal Level
The debugger output voltage follows the target voltage level. It supports a voltage range of 0.4 … 5.2 V.
ESD Protection
NOTE:
To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.
Recommendation for the software start:
•
Disconnect the debug cable from the target while the target power is off.
•
Connect the host system, the TRACE32 hardware and the debug cable.
•
Power ON the TRACE32 hardware.
•
Start the TRACE32 software to load the debugger firmware.
•
Connect the debug cable to the target.
•
Switch the target power ON.
•
Configure your debugger e.g. via a start-up script.
Power down:
•
Switch off the target power.
•
Disconnect the debug cable from the target.
•
Power OFF the TRACE32 hardware.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
5
Warning
Application Note
Location of Debug Connector
Locate the debug connector as close as possible to the processor to minimize the capacitive influence of the
trace length and cross coupling of noise onto the JTAG signals.
Reset Line
Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.
Debugger
Target
VCC
Reset-Sense
CPU Reset
Force-Reset
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
6
Application Note
FLMD0 Line
The debugger forces this line to VDD to enable flash programming.
Debugger
Target
VDD
VDD
Force-FLMD0
CPU FLMD0
1K
CPU PortOut
GND
GND
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
7
Application Note
Mask-Options of V850/Fx3, Cargate
The mask options require a special handling. In normal operation mode the mask option values are located
in flash memory at address 0x7A, 0x7B. In emulation mode these values have to be copied to a certain
debug register EMUMO at address 0xFFFFF9FA.
•
the value of address 0x7A has to be copied to the low byte of EMUMO
•
the value of address 0x7B has to be copied to the high byte of EMUMO
The new options become active at the next SYStem.UP.
Add following startup sequence to your script:
SYStem.Up
disable RomSecurityUnit
; initial startup
; see demo scripts
; set MaskOptions to EMUMO register
Data.Set 0xFFFFF9FA %Word 0x0800
SYStem.Up
disable RomSecurityUnit
...
...
; now the MaskOption settings are active
; see demo scripts
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
8
Application Note
Quick Start JTAG
Starting up the Debugger is done as follows:
1.
Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACE32 software was started.
b:
2.
Select the CPU type to load the CPU specific settings.
SYStem.CPU 70F3281
3.
If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:
JTAG Debugger for V850
4.
V850SA
Tell the debugger where’s FLASH/ROM on the target.
MAP.BOnchip 0x00000000++0x7FFFF
This command is necessary for the use of on-chip breakpoints.
5.
Enter debug mode
SYStem.Up
This command resets the CPU and enters debug mode. After this command is executed it is possible
to access the registers.Set the chip selects to get access to the target memory.
Data.Set…
Following command sequence is required for CPU types which are equipped with a ROM Security
Unit (RSU). As long as the ROM Security is active the debugger gets no access to CPU memory.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
9
Quick Start JTAG
This example estimates 0xff as memory content at address 0x70 … 0x79.
; BROM switching
Data.Set 0xfffff8d0
Data.Set 0xfffff8d4
Data.Set 0xfffff8d4
Data.Set 0xfffff8d4
%Byte
%Byte
%Byte
%Byte
0xa5
0x08
0xf7
0x08
; KeyCode setting
; data at 0x70 … x79 is estimated as 0xff
Data.Set 0xfffff9c0 %Word 0xffff 0xffff
Print DATA.LONG(D:0x70)
Data.Set 0xfffff9c0 %Word 0xffff 0xffff
Print DATA.LONG(D:0x74)
Data.Set 0xfffff9c0 %Word 0x0000 0xffff
Print DATA.LONG(D:0x78)
Print DATA.LONG(D:0xfffff9c4)
6.
Load the program.
; (ubrof specifies the format,
; sieve.d85 is the file name)
Data.LOAD.ubrof sieve.d85
The option of the Data.LOAD command depends on the file format generated by the compiler. For
information on the compiler options refer to the section Compiler. A detailed description of the
Data.LOAD command is given in the “General Commands Reference”.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
10
Quick Start JTAG
The start up can be automated using the programming language PRACTICE. A typical start sequence is
shown below:
b::
; Select the ICD device prompt
WinCLEAR
; Delete all windows
MAP.BOnchip 0x000000++0x07ffff
; Specify where’s FLASH/ROM
SYStem.CPU 70F3281
; Select the processor type
SYStem.Up
; Reset the target and enter debug
; mode
Data.Load.ubrof sieve.d85
; Load the application
Register.Set PC main
; Set the PC to function main
Data.List
; Open disassembly window *)
Register /SpotLight
; Open register window *)
Frame.view /Locals /Caller
; Open the stack frame with
; local variables *)
Var.Watch %Spotlight flags ast
; Open watch window for variables *)
PER.view
; Open window with peripheral register
; *)
Break.Set sieve
; Set breakpoint to function sieve
Break.Set 0x1000 /Program
;
;
;
;
Break.Set 0x3FFB100 /Program
; Set software breakpoint to address
; 3FFB100 (address 3FFB100 is in RAM)
Set on-chip breakpoint to address
1000 (address 1000 is in FLASH)
(Refer to the restrictions in
On-chip Breakpoints.)
*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
11
Quick Start JTAG
Troubleshooting
SYStem.Up Errors
The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.
All
The target has no power.
All
The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.
All
There are additional loads or capacities on the JTAG lines.
All
The JTAG clock is too fast.
FAQ
No information available
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
12
Troubleshooting
Configuration
System Overview
HUB
PC or
Workstation
100 MBit Ethernet
Target
Debug Cable
PODBUS IN
POWER DEBUG / ETHERNET
LAUTERBACH
POWER
POWER
7-9 V
COLLISION
C
B
DEBUG CABLE
ETHERNET
CON ERR
RECEIVE
LAUTERBACH
TRIGGER
TRANSMIT
DEBUG CABLE
USB
EMULATE
RESERVED FOR POWER TRACE
SELECT
RECORDING
A
PODBUS OUT
JTAG
Connector
TRIG
Ethernet
Cable
POWER DEBUG / ETHERNET
AC/DC Adapter
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
13
Configuration
General System Settings
SYStem.CONFIG
Configure debugger according to target topology
Format:
SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)
<parameter>
(General):
state
CORE
(JTAG):
DRPRE <bits>
DRPOST <bits>
IRPRE
<bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave
[ON | OFF]
<core>
The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. ARM +
DSP). The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisychain Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.
TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs needs to be kept in inactive state.
Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
14
General System Settings
state
Show multicore settings.
CORE
For multicore debugging one TRACE32 GUI has to be started per core.
To bundle several cores in one processor as required by the system this
command has to be used to define core and processor coordinates within
the system topology.
Further information can be found in SYStem.CONFIG.CORE.
DRPRE
(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.
DRPOST
(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.
IRPRE
(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.
IRPOST
(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.
TAPState
(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.
TCKLevel
(default: 0) Level of TCK signal when all debuggers are tristated.
TriState
(default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.
Slave
(default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
15
General System Settings
Daisy-chain Example
TDI
Core A
Core B
Core C
Chip 0
Core D
TDO
Chip 1
Below, configuration for core C.
Instruction register length of
•
Core A: 3 bit
•
Core B: 5 bit
•
Core D: 6 bit
SYStem.CONFIG.IRPRE 6
; IR Core D
SYStem.CONFIG.IRPOST 8
; IR Core A + B
SYStem.CONFIG.DRPRE 1
; DR Core D
SYStem.CONFIG.DRPOST 2
; DR Core A + B
SYStem.CONFIG.CORE 0. 1.
; Target Core C is Core 0 in Chip 1
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
16
General System Settings
TapStates
0
Exit2-DR
1
Exit1-DR
2
Shift-DR
3
Pause-DR
4
Select-IR-Scan
5
Update-DR
6
Capture-DR
7
Select-DR-Scan
8
Exit2-IR
9
Exit1-IR
10
Shift-IR
11
Pause-IR
12
Run-Test/Idle
13
Update-IR
14
Capture-IR
15
Test-Logic-Reset
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
17
General System Settings
SYStem.CONFIG.CORE
Assign core to TRACE32 instance
Format:
SYStem.CONFIG.CORE <coreindex> <chipindex>
SYStem.MultiCore.CORE <coreindex> <chipindex> (deprecated)
<chipindex>:
1…i
<coreindex>
1…k
Default coreindex: depends on the CPU, usually 1. for generic chips
Default chipindex: derived from CORE= parameter of the Configuration File (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.
To provide proper interaction between different parts of the debugger the systems topology must be mapped
to the debuggers topology model. The debugger model abstracts chips and sub cores of these chips. Every
GUI must be connect to one unused core entry in the debugger topology model. Once the SYStem.CPU is
selected a generic chip or none generic chip is created at the default chipindex.
None Generic Chips
None generic chips have a fixed amount of sub cores with a fixed CPU type.
First all cores have successive chipnumbers at their GUIs. Therefore you have to assign the coreindex and
the chipindex for every core. Usually the debugger does not need further information to access cores in
none generic chips, once the set-up is correct.
Generic Chips
Generic chips can accommodate an arbitrary amount of sub cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.
Start-up Process
The debug system must not have an invalid state where a GUI is connected to a wrong core type of a none
generic chip, two GUI are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is value since every new GUI uses a new chipindex according to its CORE= parameter
of the Configuration File (config.t32). If the system contains less chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
18
General System Settings
SYStem.CPU
CPU type selection
Format:
SYStem.CPU <cpu>
<cpu>:
70F3143 | 70F3186 …
Default selection: V850SA. Selects the CPU type.
SYStem.CpuAccess
Format:
Run-time memory access (intrusive)
SYStem.CpuAccess Enable | Denied | Nonstop
Default: Denied.
Enable
Allow intrusive run-time memory access.
In order to perform a memory read or write while the CPU is executing the
program the debugger stops the program execution shortly. Each short stop
takes 1 … 100 ms depending on the speed of the debug interface and on the
number of the read/write accesses required.
A red S in the state line of the TRACE32 screen indicates this intrusive behavior
of the debugger.
Denied
Lock intrusive run-time memory access.
Nonstop
Lock all features of the debugger, that affect the run-time behavior.
Nonstop reduces the functionality of the debugger to:
•
run-time access to memory and variables
•
trace display
The debugger inhibits the following:
•
to stop the program execution
•
all features of the debugger that are intrusive (e.g. action Spot for breakpoints, performance analysis via StopAndGo mode, conditional breakpoints etc.)
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
19
General System Settings
SYStem.JtagClock
Format:
JTAG clock selection
SYStem.JtagClock [<frequency>]
SYStem.BdmClock [<frequency>] (deprecated).
Default frequency: 1 MHz.
Selects the JTAG port frequency (TCK). Any frequency up to 25 MHz can be entered, it will be generated by
the debuggers internal PLL.
For CPUs which come up with very low clock speeds it might be necessary to slow down the JTAG
frequency. After initialization of the CPUs PLL the JTAG clock can be increased.
If there are buffers, additional loads or high capacities on the JTAG/COP lines,
reduce the debug speed.
SYStem.LOCK
Format:
Lock and tristate the debug port
SYStem.LOCK [ON | OFF]
Default: OFF.
If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the lock command is to give debug
access to another tool.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
20
General System Settings
SYStem.MemAccess
Memory access selection
Format:
SYStem.MemAccess <mode>
<mode>:
QUiCK
NBD
Denied
Selects the method for realtime memory access while the core is running.
All debugger windows which are opened with the option /E will use the selected non intrusive memory
access.
QUICK
Does a pseudo realtime access. For each single memory access the application is
interrupted for about 50 CPU clocks (10 MHz --> 5 us interruption). This method
can only be used if NO breakpoints are set. The JTAG clock speed should be as
fast as possible to get good performance.
NBD
Requires extra debugger hardware to handle the CPUs NBD-interface. This
interface allows a non intrusive memory access while the core is running.
Denied
Disables any realtime memory access.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
21
General System Settings
SYStem.Mode
System mode selection
Format:
SYStem.Mode <mode>
<mode>:
Down
NoDebug
Go
Up
Down
Disables the Debugger.
NoDebug
Disables the Debugger. The debug interface is forced to high impedance mode.
Go
Resets the target with debug mode enabled and prepares the CPU for debug
mode entry. After this command the CPU is in the SYStem.Up mode and
running. Now, the processor can be stopped with the break command or until
any break condition occurs.
Up
Resets the target and sets the CPU to debug mode. After execution of this
command the CPU is stopped and prepared for debugging. All register are set
to the default value.
Attach
Not supported.
StandBy
Not supported.
SYStem.Option IMASKASM
Format:
Interrupt disable
SYStem.Option IMASKASM [ON | OFF]
Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler
single stepping.
SYStem.Option IMASKHLL
Format:
Interrupt disable
SYStem.Option IMASKHLL [ON | OFF]
Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
22
General System Settings
SYStem.Option PERSTOP
Format:
Disable cpu peripherals if stopped
SYStem.Option PERSTOP [ON | OFF]
Stop CPU peripherals if program is stopped. Useful to prevent timer exceptions. Only supported for V850/E2
cores.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
23
General System Settings
Exception Lines Enable
The V850 supports disabling of several CPU pins. This can be very useful to prevent watchdog resets or
external NMI sources.
SYStem.Option RESET
Format:
Reset line enable
SYStem.Option RESET [ON | OFF]
Enable/Disable Reset line.
Default: ON
SYStem.Option STOP
Format:
Stop line enable
SYStem.Option STOP [ON | OFF]
Enable/Disable Stop line.
Default: ON
SYStem.Option WAIT
Format:
Wait line enable
SYStem.Option WAIT [ON | OFF]
Enable/Disable Wait line.
Default: ON
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
24
Exception Lines Enable
SYStem.Option REQest
Format:
Request line enable
SYStem.Option REQ [ON | OFF]
Enable/Disable Request line.
Default: ON
SYStem.Option NMI0
Format:
NMI0 line enable
SYStem.Option NMI0 [ON | OFF]
Enable/Disable NMI0 line.
Default: ON
SYStem.Option NMI1
Format:
NMI1 line enable
SYStem.Option NMI1 [ON | OFF]
Enable/Disable NMI1 line.
Default: ON
SYStem.Option NMI2
Format:
NMI2 line enable
SYStem.Option NMI2 [ON | OFF]
Enable/Disable NMI2 line.
Default: ON
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
25
Exception Lines Enable
SYStem.Option CPINT
Format:
CPINT line enable
SYStem.Option CPINT [ON | OFF]
Enable/Disable CPINT line.
Default: ON
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
26
Exception Lines Enable
Trace System Settings
SYStem.Option BTM
Branch trace message
Format:
SYStem.Option BDM <mode>
<mode>:
ON
OFF
MIN
MAX
Select type of recorded branch trace messages:
OFF
Program flow trace is disabled.
MAX
Trace any branch-type, except “non-taken-conditional-branches”.
ON
(Default) like MAX but for ”taken-direct-branches” only the branch-sourceaddress is recorded.
MIN
Like ON but “unconditional-branches” are not recorded.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
27
Trace System Settings
SYStem.Option DTM
Data trace message
Format:
SYStem.Option DTM <mode>
<mode>:
OFF
Read
Write
ReadWrite
Select type of recorded data trace messages:
OFF
Data trace is disabled.
Read
Read-cycles are recorded’.
Write
Write-cycles are recorded’.
readWrite
Read- and Write-cycles are recorded’.
SYStem.Option KEYCODE
Format:
Keycode
SYStem.Option KEYCODE [<12x 8bit values>]
Has to be the same value as present in CPUs ID-code input registers ID_IN[0..2].
The KEYCODE is sent to the CPU during system up to unlock the ID-Code-Protection unit. A matching
KEYCODE is a must to get debug control. More details on ID-Code-Protection can be found in the CPUUsers-Manual.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
28
Trace System Settings
SYStem.Option OPWIDTH
Trace interface width
Format:
SYStem.Option OPWIDTH <mode>
<mode>:
4
8
16
Selects the number of data channels of the trace interface.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
29
Trace System Settings
SYStem.Option STALL
Trace STALL mode
Format:
SYStem.Option TCMODE <mode>
<mode>:
ON
OFF
Selects Trace STALL mode.
ON
Program execution might be stalled to prevent overrun of trace interface.
OFF
Program execution is done in realtime. The trace interface might loose trace
messages.
SYStem.Option TCMODE
Trace clock mode
Format:
SYStem.Option TCMODE <mode>
<mode>:
1/1
1/2
1/2DDR
Selects Trace clockspeed.
1/1: Trace clock is equal to CPU system clock.
1/2: Trace clock is equal to CPU system clock / 2.
1/2DDR: Not supported
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
30
Trace System Settings
Breakpoints
There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HWBP).
Software Breakpoints
Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.
On-chip Breakpoints
The following list gives an overview of the usage of the on-chip breakpoints by TRACE32-ICD:
CPU Family
Address Breakpoints
Data Breakpoints
Sequential
Breakpoints
V850E(S) all
devices
2 ranges
- include or exclude
Qualifier for:
- Instruction-Fetch
- Data-Read
- Data-Write
- Size ANY/8/16/32
2 ranges
- include or exclude
A->B
V850E(S) devices
with ROM
Correction Unit
(RCU)
4 or 8 additional
breakpoints on
- Instruction-Fetch
Only in Flash area
- requires onchip
break mapping
MAP.BOnchip
<range>
- can be disabled
with command
TO.RCU OFF
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
31
Breakpoints
Breakpoint in ROM
With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger uses automatically the available on-chip breakpoints.
Example for Breakpoints
Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACE32 correctly for this configuration is:
Map.BOnchip 0x0--0x0FFFFF
The following breakpoint combinations are possible.
Software breakpoints:
Break.Set 0x100000 /Program
; Software Breakpoint 1
Break.Set 0x101000 /Program
; Software Breakpoint 2
Break.Set 0xx /Program
; Software Breakpoint 3
On-chip breakpoints:
Break.Set 0x100 /Program
; On-chip Breakpoint 1
Break.Set 0x0ff00 /Program
; On-chip Breakpoint 2
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
32
Breakpoints
TrOnchip Commands
TrOnchip.view
Format:
Display on-chip trigger window
TrOnchip.view
Open TrOnchip window.
TrOnchip.CONVert
Format:
Adjust range breakpoint in on-chip resource
TrOnchip.CONVert [ON | OFF]
The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.
TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…
; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001
TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
; sets breakpoint at range
; 1000--17ff
; gives an error message
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
33
TrOnchip Commands
TrOnchip.SEQ
Sequential breakpoints
Format:
TrOnchip.SEQ <mode>
<mode>:
OFF
BA
CBA
DBCA
This trigger-on-chip command selects sequential breakpoints.
OFF
Sequential break off.
BA
Sequential break, first condition, then second condition.
CBA
Sequential break, first condition, then second condition, then third conditon.
DCBA
Sequential break, first condition, then second condition, then third conditon and
the fourth condition.
Break.Set sieve /Charly /Program
Var.Break.Set flags[3] /Delta /Write
TrOnchip.SEQ CD
TrOnchip.RCU
Format:
ROM-Correction breakpoints
TrOnchip.RCU [OFF | ON]
When enabled (default) the CPU’s Rom-Correction-Unit is used to extend the number of Onchip
Breakpoints. RCU breakpoints can only be used for program breaks in the FLASH area.
NOTE:
A DBTRAP instruction code is visible at the break address. It is visible for program
and data accesses, which causes trouble if the application does memory checking
like CRC.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
34
TrOnchip Commands
TrOnchip.RESet
Format:
Set on-chip trigger to default state
TrOnchip.RESet
Sets the TrOnchip settings and trigger module to the default settings.
TrOnchip.SIZE
Format:
Trigger on byte, word, long memory accesses
TrOnchip.SIZE [ON | OFF]
If ON, breakpoints on single-byte, two-byte or four-byte addressranges only hit if the CPU accesses this
ranges with a byte, word or long buscycle. Default: OFF
TrOnchip.Set Alignment
Format:
Alignment error breakpoints
TrOnchip.Set Alignment [OFF | ON]
When enabled (default) the CPU stops program execution on any miss-aligned memory access.
NOTE:
Miss-aligned memory accesses are supported by the V850-ES core. The
TrOnchip.Set Alignment should be set to OFF.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
35
TrOnchip Commands
TrOnchip.Set MissAlign
Format:
Alignment error breakpoints
TrOnchip.Set MissAlign [OFF | ON]
When enabled (default) the CPU stops program execution on miss-align stack operations and on miss-align
accesses in “miss-align access disable mode”.
NOTE:
Miss-aligned memory accesses are supported by the V850-ES core. The
TrOnchip.Set MissAlign should be set to OFF.
TrOnchip.VarCONVert
Format:
Adjust complex breakpoint in on-chip resource
TrOnchip.VarCONVert [ON | OFF]
The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is on the breakpoint will automatically be converted into a
single address breakpoint. This is the default setting. Otherwise an error message is generated.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
36
TrOnchip Commands
Memory Classes
The following memory classes are available:
Memory Class
Description
P
Program
D
Data (also DataFlash without ID-Tag)
DF
DataFlash with ID-Tag: Memory contents are presented as 64bit value
Data: bit [31..0]
ID-Tag: bit [32]
DataFlash: Memory Class
By default the DataFlash is handled like a normal 32bit flash memory, the ID-Tag is ignored. The contents
are presented as 32bit values with addresses counting up 0x0, 0x4, 0x8, 0xC … (use command:
Data.Dump D:<address> /Long).
The presentation of the additional ID-Tag bit require slight changes in the display.
By using the DF: memory class the ID-Tag is handled like an additional databit, so the data dump window
shows 64bit values, whereas the address counting is still 0x0, 0x4, 0x8, 0xC … (use command Data.Dump
DF:<address> /Quad). Because of the 64bit presentation a Data.Save <filename> DF:<addressrange>
command will save double of data than defined by the addressrange. Also the download of dataflash
contents with ID-Tag require double of data than defined by the addressrange (Data.Load <filename>
DF:<address>).
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
37
Memory Classes
Trace
tbd.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
38
Trace
NBD Interface
The usage of NBD (Non Break Debug Interface) requires extra debug hardware to get access to the CPUs
NBD interface. This extra hardware is plugged in between the debug box and the debug dongle. Connection
to the CPUs NBD interface is done by a 16pin flat cable.
The interface allows realtime access to target memory while the application program is running.
Furthermore it allows the access to certain debug configuration registers to:
•
Replace CPU internal FLASH by RAM in blocks of 4 KByte
•
Activate the NBD_TRIGGER signal on access to certain memory locations
•
Readout the CPUs ID-code
The NBD configuration registers are accessible in the CPUs peripheral window.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
39
NBD Interface
Runtime Measurement
Runtime measurement is done with about 5 µs resolution.
The debuggers RUNTIME window gives detailed information about the complete run-time of the application
code and the run-time since the last GO/STEP/STEP-OVER command.
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
40
Runtime Measurement
JTAG Connector
Connector 20 pin 100mil /NWire
Signal
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
Pin
1
3
5
7
9
11
13
15
17
19
Pin
2
4
6
8
10
12
14
16
18
20
Signal
DCK
DMS
DDI
DRSTPORT0IN
RESETFLMD0
PORT1IN/RDYZ
DDO
VDD
JTAG Connector
Signal Description
CPU Signal
DMS
JTAG-TMS, output of debugger
TMS
DDI
JTAG-TDI, output of debugger
TDI
DCK
JTAG-TCK, output of debugger
TCK
TRST
JTAG-TRST, output of debugger
TRST
DDO
JTAG-TDO, input for debugger
TDO
RESET
RESET
input/output of debugger
- Force target Reset
- Sense target Reset
(see application note)
RESET
FLMD0
FLASH Mode0 signal
- enable flash programming (see application note)
FLMD0
PortIn0
Input Port for Debugger, currently unused
not connected
PortIn1/RDYZ
READY- input of debugger, only used for E2 core
CPUs like Px4
RDYZ
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
41
JTAG Connector
Trace Connector
The default connection for trace support is MICTOR. With additional adaptors also KEL and GlenAir is
supported.
Connector MICTOR/N-Wire and Trace
Signal
GND
DCK
DMS
DDI
DDO
N/C
N/C
N/C
TRCCLK
TRCEND
TRCDATA0
TRCDATA1
TRCDATA2
TRCDATA3
TRCDATA4
TRCDATA5
TRCDATA6
TRCDATA7
GND
Pin
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
Pin
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
Signal
GND
VDD
DRSTRESETFLMD0
RESERVED
RESERVED
PORT1IN
PORT2IN
TRCCE
TRCDATA8
TRCDATA9
TRCDATA10
TRCDATA11
TRCDATA12
TRCDATA13
TRCDATA14
TRCDATA15
GND
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
42
Trace Connector
Connector KEL/N-Wire and Trace
A13
B13
A12
B12
A11
A3
B11
B3
A2
B2
A1
Top View
B1
Pin Number
Signal Name
Input/Output
(User Side)
Treatment (User Side)
A1
CLKOUT
Output
22 … 33  series resistor (recommended)
A2
TRCDATA0
Output
22 … 33  series resistor (recommended)
A3
TRCDATA1
Output
22 … 33  series resistor (recommended)
A4
TRCDATA2
Output
22 … 33  series resistor (recommended)
A5
TRCDATA3
Output
22 … 33  series resistor (recommended)
A6
TRCEND
Output
22 … 33  series resistor (recommended)
A7
DDI
Input
10 k pull-up
A8
DCK
Input
10 k pull-up
A9
DMS
Input
10 k pull-up
A10
DDO
Output
22 … 33  series resistor (recommended)
A11
DRST
Input
10 k pull-up
A12
RESET
Input
10 k pull-up
A13
FLMD0
Input
open
B1 … B10
GND
-
Connection to the power GND
B11
Port0_In
-
Open
B12
Port1_IN
-
Open
B13
+ 3.3 V
-
Connection to the power
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
43
Trace Connector
NBD Connector
Signal
TRIGOUTCLK
SYNC
DATA0
DATA1
DATA2
MODE
Pin
1
3
5
7
9
11
13
15
Pin
2
4
6
8
10
12
14
16
Signal
VCC
GND
GND
GND
GND
GND
DATA3
RESETO-
NBD Connector
Signal Description
CPU Signal
TRIG
NBD_Trigger signal,
debugger input
TRIG_DBG
OUT
NBD_DataDirection signal,
debugger output
usually not used
A LOW indicates direction Interface --> CPU
CLK
NBD_Clock,
debugger output
CLK_DBG
SYNC
NBD_SYNC signal,
debugger output
SYNC_DBG#
DATA[3 … 0]
NBD_DATA[3 … 0],
debugger input/output
AD[3 … 0]_DBG
MODE
NBD_Mode enable,
debugger output
MODE_NBD
RESETO
NBD_ResetOut signal,
debugger input
RESETO_DBG
Indicates any kind of Reset forced to the CPU
VCC
Reference Voltage for NBD Interface
(2 … 5 V) debugger input
PowerSupply of user
system
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
44
NBD Connector
Support
703500
703538
70F3111
70F3134
70F3186
70F3187
70F3231
70F3231Y
70F3232
70F3232Y
70F3233
70F3233Y
70F3234
70F3234Y
70F3235
70F3235Y
70F3236
70F3236Y
70F3237
70F3237Y
70F3238
70F3238Y
70F3239
70F3239Y
70F3261
70F3261Y
70F3263
70F3263Y
70F3264
70F3264Y
70F3266
70F3266Y
70F3271
70F3271Y
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
Available Tools
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
45
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3273
70F3273Y
70F3274
70F3274Y
70F3276
70F3276Y
70F3281
70F3281Y
70F3283
70F3283Y
70F3284
70F3284Y
70F3286
70F3286Y
70F3288
70F3288Y
70F3318
70F3319
70F3320
70F3325
70F3333
70F3334
70F3335
70F3336
70F3340
70F3341
70F3342
70F3343
70F3344
70F3345
70F3346
70F3347
70F3348
70F3350
70F3351
70F3352
70F3353
70F3354
70F3355
70F3356
70F3357
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
46
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3358
70F3364
70F3365
70F3366
70F3367
70F3368
70F3370
70F3371
70F3372
70F3373
70F3374
70F3375
70F3376
70F3377
70F3378
70F3379
70F3380
70F3381
70F3382
70F3383
70F3384
70F3385
70F3402
70F3403
70F3416
70F3417
70F3420
70F3421
70F3422
70F3423
70F3424
70F3425
70F3426
70F3427
70F3440
70F3441
70F3461
70F3474
70F3475
70F3476
70F3477
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
47
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3478
70F3479
70F3480
70F3481
70F3482
70F3486
70F3487
70F3488
70F3502
70F3503
70F3504
70F3505
70F3506
70F3507
70F3508
70F3509
70F3522
70F3523
70F3524
70F3525
70F3526
70F3529
70F3530
70F3532
70F3535
70F3536
70F3537
70F3548
70F3549
70F3550
70F3551
70F3552
70F3553
70F3554
70F3555
70F3556
70F3557
70F3558
70F3559
70F3560
70F3561
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
48
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3562
70F3563
70F3564
70F3565
70F3566
70F3567
70F3568
70F3569
70F3570
70F3571
70F3572
70F3573
70F3574
70F3575
70F3576
70F3577
70F3578
70F3579
70F3580
70F3581
70F3582
70F3583
70F3584
70F3585
70F3586
70F3587
70F3588
70F3589
70F3592
70F3700
70F3701
70F3702
70F3703
70F3704
70F3706
70F3707
70F3709
70F3710
70F3711
70F3712
70F3715
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
49
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3716
70F3717
70F3718
70F3719
70F3720
70F3721
70F3722
70F3723
70F3724
70F3735
70F3736
70F3737
70F3738
70F3739
70F3740
70F3741
70F3742
70F3743
70F3744
70F3745
70F3746
70F3747
70F3750
70F3752
70F3755
70F3757
70F3778
70F3779
70F3780
70F3781
70F3782
70F3783
70F3784
70F3785
70F3786
70F3787
70F3797
70F3798
70F3799
70F3800
70F3801
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
50
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3802
70F3803
70F3804
70F3805
70F3806
70F3807
70F3808
70F3809
70F3810
70F3811
70F3812
70F3813
70F3814
70F3815
70F3816
70F3817
70F3818
70F3819
70F3820
70F3821
70F3822
70F3823
70F3824
70F3825
70F3826
70F3827
70F3828
70F3829
70F3830
70F3831
70F3832
70F3833
70F3834
70F3835
70F3836
70F3837
70F3913
70F3914
70F3915
70F3916
70F3917
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
51
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
70F3918
70F3919
70F3920
70F3921
70F3922
70F3923
70F3924
70F3925
70F3926
70F3927
70F3931
70F3932
70F3933
70F3934
70F3935
70F3936
70F3937
70F3938
70F3939
70F4000
70F4001
70F4002
70F4003
70F4004
70F4005
70F4006
70F4007
70F4008
70F4009
70F4010
70F4011
70F4012
NB85E
NB85ET
V850E/IA4
V850E/MA3
V850E/ME2
V850E/ME3
V850E/PH2
V850E/PH3
V850E/PHOENIX-F
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
52
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
V850E/PHOENX-FS
V850E/RS1
V850ES/DG2
V850ES/DG3
V850ES/DJ2
V850ES/DJ3
V850ES/DJ4
V850ES/DK4-H
V850ES/DL3
V850ES/DN4-H
V850ES/DR4-3D
V850ES/DX3
V850ES/DX4
V850ES/FE2
V850ES/FE3
V850ES/FF2
V850ES/FF3
V850ES/FG2
V850ES/FG3
V850ES/FJ2
V850ES/FJ3
V850ES/FK3
V850ES/HE2
V850ES/HE3
V850ES/HF2
V850ES/HF3
V850ES/HG2
V850ES/HG3
V850ES/HJ2
V850ES/HJ3
V850ES/HX2
V850ES/HX3
V850ES/IG4
V850ES/IG4-H
V850ES/IH4
V850ES/IH4-H
V850ES/IX4
V850ES/IX4-H
V850ES/JC3-H
V850ES/JC3-L
V850ES/JD3-H
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
53
Support
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
V850ES/JE3-E
V850ES/JE3-H
V850ES/JE3-L
V850ES/JF3-E
V850ES/JF3-L
V850ES/JG2
V850ES/JG3
V850ES/JG3-E
V850ES/JG3-L
V850ES/JH3-E
V850ES/JJ2
V850ES/JJ3
V850ES/JJ3-E
V850ES/JK1+
V850ES/JX2
V850ES/JX3
V850ES/JX3-E
V850ES/JX3-H
V850ES/JX3-L
V850ES/PG4
V850ES/PJ4
V850ES/PX4
V850ES/SG2
V850ES/SG3
V850ES/SJ2
V850ES/SJ3
V850ES/SJ3-H
V850ES/SK3-H
V850FE4-L
V850FF4-L
V850FG4
V850FG4-L
V850FJ4
V850FJ4-L
V850FK4
V850FK4-H
V850FK4-L
V850FKG4
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
54
Support
YES
YES
YES
YES
YES
INSTRUCTION
SIMULATOR
POWER
INTEGRATOR
ICD
TRACE
ICD
MONITOR
ICD
DEBUG
FIRE
ICE
CPU
V850FL4
V850FL4-H
V850FM4-H
V850FX4-H
V850FX4-L
YES
YES
YES
YES
YES
Compilers
Language
Compiler
Company
Option
C
GCCV850
ELF/STABS
C
C
C
GREENHILLS-C
ICCV850
CA850
Free Software
Foundation, Inc.
Greenhills Software Inc.
IAR Systems AB
Renesas Technology,
Corp.
Comment
ELF/DWARF
UBROF
ELF/NEC
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
55
Support
Realtime Operation Systems
Name
Company
Comment
Elektrobit tresos
Erika
OSEK
ProOSEK
uC/OS-II
Elektrobit Automotive GmbH
Evidence
Elektrobit Automotive GmbH
Micrium Inc.
via ORTI
via ORTI
via ORTI
via ORTI
2.0 to 2.8
3rd Party Tool Integrations
CPU
Tool
Company
ALL
ALL
ALL
ADENEO
X-TOOLS / X32
CODEWRIGHT
ALL
CODE CONFIDENCE
TOOLS
CODE CONFIDENCE
TOOLS
EASYCODE
ECLIPSE
RHAPSODY IN MICROC
RHAPSODY IN C++
LDRA TOOL SUITE
ATTOL TOOLS
VISUAL BASIC
INTERFACE
LABVIEW
Adeneo Embedded
blue river software GmbH
Borland Software
Corporation
Code Confidence Ltd
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
CODE::BLOCKS
C++TEST
RAPITIME
DA-C
SIMULINK
VECTORCAST/RSP
WINDOWS CE PLATF.
BUILDER
Host
Windows
Windows
Windows
Code Confidence Ltd
Linux
EASYCODE GmbH
Eclipse Foundation, Inc
IBM Corp.
IBM Corp.
LDRA Technology, Inc.
MicroMax Inc.
Microsoft Corporation
Windows
Windows
Windows
Windows
Windows
Windows
Windows
NATIONAL
INSTRUMENTS
Corporation
Open Source
Parasoft
Rapita Systems Ltd.
RistanCASE
The MathWorks Inc.
Vector Software
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
56
Support
Products
Product Information
OrderNo Code
Text
LA-7835
N-Wire Debugger for V850 (ICD)
JTAG-V850
supports NEC V850 with N-Wire
includes software for Windows, Linux and MacOSX
requires Power Debug Interface USB 2.0/USB 3.0,
Power Debug Ethernet or Power Debug II
debug cable with 20 pin connector
requires LA-7936 if KEL connector is used on
the target
requires LA-7937 if Mictor connector is used on
the target
LA-7936
Converter KEL to 20 Pin/100 mil
CONV-V850/VR-KEL
Converter KEL connector to debug cable
LA-7937
JTAG Converter to Mictor38 for V850/NEC VR
CONV-V850/VR-MICTOR
Converter from 20 pin male connector of
LA-7835 (N-Wire Debugger for V850)
LA-7842 (N-Wire Debugger for NEC VR-Series)
to Mictor38
LA-7939
NBD Box for Real-Time-Memory-Access V850
NBD-BOX-V850
NBD Interface support for V850
allows real-time-memory access to target
memory
Placed between Power Debug Module and Debug Cable
16 Pin/100 mil connection to target
Requires: PowerDebugUSB 2, PowerDebugEthernet or
PowerTrace
LA-3718
Converter V850-20 Pin to E1-14 Pin
CONV-V850-E1
Converter V850-20 Pin to E1-14 Pin
Order Information
Order No.
Code
Text
LA-7835
LA-7936
LA-7937
LA-7939
LA-3718
JTAG-V850
CONV-V850/VR-KEL
CONV-V850/VR-MICTOR
NBD-BOX-V850
CONV-V850-E1
N-Wire Debugger for V850 (ICD)
Converter KEL to 20 Pin/100 mil
JTAG Converter to Mictor38 for V850/NEC VR
NBD Box for Real-Time-Memory-Access V850
Converter V850-20 Pin to E1-14 Pin
Additional Options
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
57
Products
Order No.
Code
Text
LA-2102
LA-2101
LA-7960X
AD-HS-16
AD-HS-20
MULTICORE-LICENSE
Adapter Half-Size 16 pin
Adapter Half-Size 20 pin
License for Multicore Debugging
©1989-2014 Lauterbach GmbH
V850 Debugger and Trace
58
Products
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising