Texas Instruments WCSP-Packaged bq24160/161/163/168 Evaluation Module (Rev. A) User guide

Add to my manuals
21 Pages

advertisement

Texas Instruments WCSP-Packaged bq24160/161/163/168 Evaluation Module (Rev. A) User guide | Manualzz

User

'

s Guide

SLUU496A

December 2011

Revised January 2012

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

6

7

8

9

10

1

2

3

4

5

3

4

The bq24160/161/163/168 evaluation module is a complete charger module for evaluating compact, flexible, high-efficiency, USB-friendly, switch-mode charge management solution for single-cell, Li-ion and

Li-polymer batteries used in a wide range of portable applications.

1

2

Contents

Introduction

1.1

..................................................................................................................

2

bq2416x IC Features

..............................................................................................

2

1.2

1.3

1.4

bq24160/161/163/168 EVM Features

Schematic

...........................................................................

2

...........................................................................................................

3

I/O Description

......................................................................................................

4

1.5

1.6

1.7

Test Points

..........................................................................................................

4

Control and Key Parameters Setting

............................................................................

4

Recommended Operating Conditions

...........................................................................

5

Test Summary

2.1

...............................................................................................................

5

Definitions

...........................................................................................................

5

2.2

2.3

Recommended Test Equipment

.................................................................................

6

Recommended Test Equipment Setup

..........................................................................

7

2.4

Recommended Test Procedure

Printed-Circuit Board Layout Guideline

Bill of Materials and Board Layout

..................................................................................

9

.................................................................................

11

......................................................................................

12

4.1

4.2

Bill of Materials

Board Layout

....................................................................................................

12

......................................................................................................

14

1

List of Figures

bq24160/161/163/168EVM (HPA721) Schematic

......................................................................

3

BAT_Load (PR1010) Schematic

..........................................................................................

6

Connections of HPA172 Kit

................................................................................................

8

Original Test Setup for bq24160/161/163/168EVM (HPA721)

........................................................

8

Main Window of bq2416xSW Evaluation Software

.....................................................................

9

Top Assembly Layer

......................................................................................................

14

Top Layer

..................................................................................................................

14

First Internal Layer

........................................................................................................

15

Second Internal Layer

....................................................................................................

15

Bottom Layer

...............................................................................................................

16

List of Tables

Bill of Materials - HPA721

...............................................................................................

12

I

2

C is a trademark of Philips Electronics N.V.

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

1

Introduction

1 Introduction

www.ti.com

1.1

bq2416x IC Features

The bq24160/161/163/168 integrates a synchronous PWM controller, power MOSFETs, input-current sensing, high-accuracy current and voltage regulation, charge termination and power path management into a small WCSP package. The charge parameters can be programmed through an I

2

C interface. Key IC features include:

• High-efficiency, fully integrated, NMOS-NMOS, synchronous buck charger with 1.5-MHz frequency

• Integrated power FETs for up to 2.5-A charge rate

Power path management between battery and system voltages

For details, see the bq24160/161/163/168 data sheet ( SLUSAO0 ).

1.2

bq24160/161/163/168 EVM Features

The bq24160/161/163/168 evaluation module (EVM) is a complete charger module for evaluating compact, flexible, high-efficiency, USB-friendly, switch-mode battery charge and power path management solution for single-cell, Li-ion and Li-polymer battery-powered systems used in a wide range of portable applications. Key EVM features include:

• 153-mm × 153-mm × 1.2-mm footprint for entire solution

• Input power connectors for both USB input and ac adapter

• Programmable battery voltage, charge current, input current, and status via I

2

C ™ interface

• IN operating range of 4.2 V – 10 V (bq24160/161/163) or 4.2 V – 6 V (bq24168)

USB operating range of 4.2 V

6 V

• LED indication for status signals

• Test points for key signals available for testing purposes. Easy probe hook-up

2

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

1.3

Schematic

Introduction

Figure 1. bq24160/161/163/168EVM (HPA721) Schematic

NOTE: EVMs with a printed-circuit board label that contain the suffix -X may have been assembled with incorrectly marked ICs. Regardless of the IC ’ s marking, the EVM was assembled with the correct part number as specified in the EVM bill of material.

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

3

Introduction

1.4

I/O Description

J6-GND

J7-GND

J8-USB

J9-USB

J9-GND

J10-SYS

J11-GND

J12

J13-SYS

J13-GND

Header/Terminal Block

J1 – TS

J1 – GND

J2 – BAT

J3-BAT

J3-GND

J4-IN

J5-IN

J5-GND

J14-GND

J15-DRV

J16-DRV

J16-GND

J17

1.5

Test Points

TP7

TP8

TP9

TP10

TP11

TP12

TP13

Test Point

TP1

TP2

TP3

TP4

TP5

TP6

Description

Kelvin to VIN

STAT

Kelvin to BAT

Kelvin to USB

DRV

INT

Kelvin to SYS

GND

GND

SW

SCL

SDA

TS

1.6

Control and Key Parameters Setting

Description

External thermistor positive terminal

Ground terminal for external thermistor

Battery positive header

Battery positive terminal

Battery negative terminal

Adapter positive header

Adapter positive terminal

Adapter negative terminal

Battery negative terminal

Adapter negative terminal

USB positive header

USB positive terminal

USB negative terminal

System output positive header

USB negative header

USB Miniconnector

System output positive terminal

System output negative terminal

System output negative header

DRV reference voltage positive header

DRV reference voltage positive terminal

DRV reference voltage negative terminal

USB-TO-GPIO box connector www.ti.com

4

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

Jumper

JP1

JP2

JP3

JP4

JP5

Test Summary

Description

1-2 (TS = INT): Connects a potentiometer to the TS so that the potentiometer can emulate a thermistor. The potentiometer has been preset to approximately 3.4 k Ω so that the TS voltage is 0.5 x V (DRV).

2-3 (TS = EXT): Connects the TS pin to an external thermistor. The resistor divider formed by R1 and R3 has been sized to accommodate a 10-k

Ω thermistor. If a different thermistor is used, R1 and R3 must be resized.

1-2 (FET GATE = SYS): External PFET ' s gate tied to SYS and therefore disabled.

2-3 (FET GATE = BGATE): External PFET ' s gate tied to BGATE pin and therefore controlled by IC.

Shorting jumper for USB data lines DM (D-) and DP (D+). When shorted, USB input current limit defaults to 1.5 A. Otherwise, USB100 mode is selected.

bq24161 and bq24168 only

1-2 (PSEL = LO): Indicates that an ac adapter is connected to the USB input and sets the USB input current limit to 1.5 A.

2-3 (PSEL = HI): Indicates that a USB source is connected to the USB input and sets the input current limit to 500 mA.

1-2 (CD = LO): Charge disable low for normal operation

2-3 (CD = HI): Charge disable high to disable charge and enter Hi-Z mode

Default Factory Setting

1-2 (TS = INT)

2-3 (FET GATE = BGATE)

SHORTED

2-3 (PSEL = HI)

1-2 (CD = LO)

1.7

Recommended Operating Conditions

Supply voltage, V

IN

Supply voltage, V

IN

USB voltage, V

USB

System voltage, V

SYS

Input voltage from ac adapter (bq24160/161/163)

Input voltage from ac adapter (bq24168)

Input voltage from USB or equivalent supply

Voltage output at SYS terminal (bq24160/161/168; depends on VBAT voltage and status of V

INDPM

)

System voltage, V

SYS

Voltage output at SYS terminal (bq24163; depends on VBAT voltage and status of V

INDPM

)

Battery voltage, V

Supply current, I

Supply current, I

BAT

IN(MAX)

USB(MAX)

Voltage output at VBAT terminal (registers set via I2C communication)

Maximum input current from ac adapter input (registers set via I2C communication)

Maximum input current from USB input (registers set via I2C communication)

Fast charge current,

I

CHRG(MAX)

Battery charge current (registers set via I2C communication)

Operating junction temperature range, T

J

3.1

3

1.5

0.1

0.550

-40

Min

4.2

4.2

4.2

3.3

Typ

4.2

VBATR

EG+4.17

%

VBATR

EG+4.17

%

4.44

Max Unit

10 V

6

6

V

V

V

V

V

0.5

2.5

1.5

2.5

125

A

° C

A

A

2 Test Summary

This procedure describes one test configuration of the HPA721 evaluation board for bench evaluation.

2.1

Definitions

The following naming conventions are followed.

VXXX :

LOADW:

V(TPyyy):

V(Jxx):

V(TP(XXX)):

External voltage supply name (VADP, VBT, VSBT)

External load name (LOADR, LOADI)

Voltage at internal test point TPyyy. For example, V(TP12) means the voltage at

TP12.

Voltage at header Jxx

Voltage at test point XXX. For example, V(ACDET) means the voltage at the test point which is marked as ACDET.

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

5

Test Summary

V(XXX, YYY):

I(JXX(YYY)):

Jxx(BBB):

JPx ON :

JPx OFF:

JPx (-YY-)

Measure: → A,B www.ti.com

Voltage across point XXX and YYY.

Current going out from the YYY terminal of header XX.

Terminal or pin BBB of header xx.

Internal jumper Jxx terminals are shorted.

Internal jumper Jxx terminals are open.

ON: Internal jumper Jxx adjacent terminals marked as YY are shorted.

Check specified parameters A, B. If measured values are not within specified limits, the unit under test has failed.

Observe if A, B occur. If they do not occur, the unit under test has failed.

Observe → A,B

Assembly drawings have location for jumpers, test points, and individual components.

2.2

Recommended Test Equipment

2.2.1

Power Supplies

1. Power Supply #1 (PS #1) capable of supplying 6 V at 3 A is required.

2. If not using a battery as the load, then power supply #2 (PS #2) capable of supplying up to 5 V at 5 A is required to power the circuit shown in

Figure 2 .

2.2.2

Load #1 Between BAT and GND

Testing with an actual battery is the best way to verify operation in the system. If a battery is not available, then a battery or circuit similar to the one shown in

Figure 2

can simulate a battery when connected to a power supply.

Figure 2. BAT_Load (PR1010) Schematic

2.2.3

Load #2 Between SYS and GND

Although not required, a resistive load capable of sinking up to 3 A can be used.

6

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

Test Summary

2.2.4

Meters

Four equivalent voltage meters (VM #) and two equivalent current meters (CM #) are required. The current meters must be able to measure 3-A current.

2.2.5

Computer

A computer with at least one USB port and a USB cable is required. The bq2416x evaluation software must be properly installed.

2.2.6

HPA172 Communication Kit (USB TO GPIO)

A HPA172 USB-to-I

2

C communication kit is required.

2.2.7

Software

Download BQ2416xSW.zip from the charger's product folder, unzip the file, and double-click on the

SETUP.EXE file. Follow the installation steps.

Because the bq24160, bq24161, and bq24163 have the watchdog timers enabled, it is recommended that you set the software's Reset Watchdog Timer to reset every 5 seconds. Otherwise, after 30 seconds of operation, the IC enters Default mode. Note that the 27-minute safety timer is not reset by this function and eventually times out if charging does not complete, unless the Safety Timer Time Limit is expanded or disabled via the GUI. One way to reset the safety timer is to allow the 30-second watchdog timer to expire. See Figure 3 in the data sheet for more information about the timers.

Also, it is generally helpful to activate the Write On Change functions, in the upper left of the GUI window, to ON. The Write On Change function writes any changes to the GUI's check boxes, drop-down boxes, and registers to the IC. Otherwise, the user must click the WRITE button to write changes to the software.

It is recommended that the user periodically click the READ button to find the IC's instantaneous status.

Alternatively, the AutoRead function can be activated to periodically update the GUI with the IC's status.

2.3

Recommended Test Equipment Setup

1. For all power connections, use short, twisted-pair wires of appropriate gauge wire for the amount of the current.

2. Set Power Supply #1 (PS #1) for 6-V, 3-A current limit and then turn off supply.

3. If BAT_Load as shown in

Figure 1

is used, connect Power Supply #2 (PS #2) set to approximately 3.6

V to the input side (PS #2+/-) of BAT_Load, then turn off PS #2.

4. Connect the output side of the battery or BAT_Load in series with current meter (multimeter) #2 (CM

#2) to J2 and J6 or J3 (BAT, GND). Ensure that a voltage meter is connected across J2 or TP3 and J6 or TP9 (BAT, GND).

5. Connect VM #3 across J10 or TP7 and J14 or TP9 (SYS, GND).

6. Connect VM #4 across J15 or TP5 and J14 or TP9 (DRV, GND).

7. Connect J17 to HPA172 kit by the 10-pin ribbon cable. Connect the USB port of the HPA172 kit to the

USB port of the computer. The connections are shown in

Figure 3

.

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

7

Test Summary

www.ti.com

10-pin

Ribbon

Cable

To

Computer

USB port

To EVM

Figure 3. Connections of HPA172 Kit

8. Ensure jumpers are at the default factory settings per

Section 1.6

9. After the preceding steps have been performed, the test setup for HPA721 is configured as is shown in

Figure 4

Windows

PC

USB-TO-

GPIO

VM#1

V

+

-

PS

#1

CM#1

-

A

I

IN

I

CHRG

+

A

CM#2

-

PS#2

BAT_Load

-

+

V

VM#2

-

V

VM#3

-

V

VM#4

+

Figure 4. Original Test Setup for bq24160/161/163/168EVM (HPA721)

8

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

Test Summary

10. Turn on the computer. Open the bq2416x evaluation software. The main window of the software is shown in

Figure 5

Figure 5. Main Window of bq2416xSW Evaluation Software

2.4

Recommended Test Procedure

The following test procedure may be useful for evaluating the charger IC outside of a real system, if no battery is available to connect to the output and a simulated battery if needed.

2.4.1

Charge Voltage and Current Regulation of IN

1. Ensure that the

Section 2.3

steps are followed.

2. Connect the output of Power Supply #1 (PS #1) in series with current meter (multimeter) #1 (CM #1) to

J4 and J7 or J5 (IN, GND).

3. Connect voltage meter 1 (VM #1) across J4 or TP1 and J7 or TP8 (IN, GND).

4. Move JP5 to HI.

5. Turn on PS #1 and PS #2 if used.

6. Return JP5 to LO.

7. Software setup:

Press the READ button to obtain the current settings.

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

9

Test Summary

www.ti.com

• Set Write On Change to ON if not already set.

• Set Reset Watchdog Timer to update every 5 seconds.

• Set Supply Precedence to IN if not already set.

• Uncheck Disable Charging if checked.

• Check Enable STAT/INT Outputs.

• Set Battery Regulation Voltage to 4.20 V.

• Set IN Input Current Limit to 2.5 A.

• Set Charge Current to 1000 mA.

Click the READ button at the top of the window and confirm that the previous settings remain.

8. For the bq24160 EVM, enable PS #2 and adjust PS #2 so that the voltage measured by VM #2, across

BAT and GND, measures 3.2 V ± 50 mV. For the bq24161/163/168 EVMs, enable PS #2 and adjust

PS #2 so that the voltage measured by VM #2, across BAT and GND, measures 2.5 V ± 50 mV.

9. Adjust the power supply so that VM #1 still reads 6 V ± 100 mV, if necessary, then

Measure on CM#2

→ I

CHRG

= 1000 mA ± 100 mA

Measure on CM#1

→ I

IN

= 700 mA ± 70 mA

10. Turn off PS #1 and PS #2.

2.4.2

Charge Voltage and Current Regulation of USB

1. Ensure that the

Section 2.3

steps are followed.

2. Connect the output of Power Supply #1 (PS #1) in series with current meter (multimeter) #1 (CM #1) to

J8 and J11 or J9 (USB, GND).

3. Connect a voltage meter 1 (VM #1) across J8 or TP4 and J11 or TP8 (USB, GND).

4. Move JP5 to HI.

5. Turn on PS #1 and PS #2 if used.

6. Return JP5 to LO.

7. Software setup:

• Press the READ button to obtain the current settings.

• Set Write On Change to ON if not already set.

Set Reset Watchdog Timer to update every 5 seconds.

• Set Supply Precedence to USB if not already set.

• Uncheck Disable Charging if checked.

• Check Enable STAT/INT Outputs.

• Set Battery Regulation Voltage to 4.20 V.

• Set USB Input Current Limit to 1500 mA.

• Set Charge Current to 1000 mA.

• Click the READ button at the top of the window, and confirm that the previous settings remain.

8. For the bq24160 EVM, enable PS #2 and adjust PS #2 so that the voltage measured by VM #2, across

BAT and GND, measures 3.2 V ± 50 mV. For the bq24161/163/168 EVMs, enable PS #2 and adjust

PS #2 so that the voltage measured by VM #2, across BAT and GND, measures 2.5 V ± 50 mV.

9. Adjust the power supply so that VM #1 still reads 6 V ± 100 mV if necessary then

Measure on CM#2

I

CHRG

= 1000 mA

±

100 mA

Measure on CM#1

→ I

IN

= 700 mA ± 70 mA

10. Turn off PS #1 and PS #2.

2.4.3

Helpful hints

1. To observe the taper current as the battery voltage approaches the set regulation voltage, allow the battery to charge or, if using BAT_Load (PR1010), slowly increase the PS #2 voltage powering

BAT_Load (PR1010). Use VM #2 across BAT and GND to measure the battery voltage seen by the IC.

10

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

Printed-Circuit Board Layout Guideline

2. To observe the V

INDPM function, lower the current limit on PS #1.

3. To observe battery supplement mode, apply a resistive load across SYS and GND that is higher than the maximum charge current.

3 Printed-Circuit Board Layout Guideline

1. To obtain optimal performance, the power input capacitors, connected from the PMID input to PGND, must be placed as close as possible to the bq2416x

2. Place 4.7-

µ

F input capacitor as close to PMID pin and PGND pin as possible to make the high-frequency current loop area as small as possible. Place 1µ F input capacitor GNDs as close to the respective PMID capacitor GND and PGND pins as possible to minimize the ground difference between the input and PMID_.

3. The local bypass capacitor from SYS to GND must be connected between the SYS pin and PGND of the IC. The intent is to minimize the current path loop area from the SW pin through the LC filter and back to the PGND pin.

4. Place all decoupling capacitors close to their respective IC pins and as close as to PGND (do not place components such that routing interrupts power stage currents). All small control signals must be routed away from the high-current paths.

5. The PCB must have a ground plane (return) connected directly to the return of all components through vias (two vias per capacitor for power-stage capacitors, one via per capacitor for small-signal components). It is also recommended to put vias inside the PGND pads for the IC, if possible. A star ground design approach is typically used to keep circuit block currents isolated (high-power/low-power small-signal) which reduces noise-coupling and ground-bounce issues. A single ground plane for this design gives good results. With this small layout and a single ground plane, no ground-bounce issue exists, and having the components segregated minimizes coupling between signals.

6. The high-current charge paths into IN, USB, BAT, SYS, and from the SW pins must be sized appropriately for the maximum charge current in order to avoid voltage drops in these traces. The

PGND pins must be connected to the ground plane to return current through the internal low-side FET.

7. For high-current applications, the balls for the power paths must be connected to as much copper in the board as possible. This allows better thermal performance because the board conducts heat away from the IC.

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

11

Bill of Materials and Board Layout

4 Bill of Materials and Board Layout

4.1

Bill of Materials

www.ti.com

1

1

2

2

8

1

1

1

2

3

1

1

0

2

2

8

1

1

1

2

3

0

3

1

0

1

2

6

1

1

1

1

-001

2

2

1

0

2

9

2

6

1

1

1

1

1

0

2

Count

-002

2

2

-003 -004

2 2

2 2

1

0

2

1

1

2

6

1

1

2

6

1

1

1

1

1

0

2

9 9 9

3

1

1

1

3

1

1

1

3

1

0

1

RefDes

C1, C3

C2, C5

C4, C12

C6, C10

C7, C8

C9

C11

D1, D2

J1, J3, J5, J9, J13, J16

J12

J17

Value

1 µ F

1 µ F

47 µ F

Open

4.7

µ F

0.01

µ

F

10 µ F

Green

ED555/2DS

UX60-MB-5ST

N2510-6002-RB

J2, J4, J6, J7, J8, J10, J11, PEC02SAAN

J14, J15

JP1, JP2, JP5

JP3

JP4

L1

PEC03SAAN

PEC02SAAN

PEC03SAAN

1.5

µ

H

Table 1. Bill of Materials - HPA721

Description Size

Capacitor, Ceramic, 25V, X5R, 10%

Capacitor, Ceramic, 6.3V, X5R, 10%

Capacitor, Ceramic, 6.3V, X5R, 10%

Capacitor, Ceramic

Capacitor, Ceramic, 25V, X5R, 10%

603

402

1206

1206

805

Capacitor, Ceramic, 16V, X7R, 10%

Capacitor, Ceramic, 10V, X5R, 10%

Diode, LED, Green, 2.1-V, 20-mA, 6-mcd

Terminal Block, 2-pin, 6-A, 3.5mm

603

603

603

0.27 x 0.25

Connector, Recpt, USB-B, Mini, 5-pins, SMT 0.354 X 0.303 Inches

Connector, Male Straight 2x5 pin, 100mil spacing, 4 0.338 x 0.788 inch

Wall

Header, Male 2-pin, 100mil spacing 0.100 inch x 2

Header, Male 3-pin, 100mil spacing,

Header, Male 2-pin, 100mil spacing,

Header, Male 3-pin, 100mil spacing,

Inductor, SMT, 3.5A, 70 mW

0.100 inch x 3

0.100 inch x 2

0.100 inch x 3

4.1x4.4 mm

1

1

2

2

8

1

1

1

2

3

1

1

0

2

2

8

1

1

1

2

3

0

Q1

R1

R2

R3

R4

R5, R6

R7, R8

TP1, TP2, TP3, TP4, TP5,

TP6, TP7, TP10

TP8, TP9

TP11, TP12, TP13

U1

CSD25401Q3

1870

50.0k

4120

0

1.50K

200

5000

5001

5002

BQ24160YFF

MOSFET, PChan, -20V, 60A, 8.7 m Ω

Resistor, Chip, 1/16W, 1%

Potentiometer, 3/8 Cermet, 12-Turn

Resistor, Chip, 1/16W, 1%

Resistor, Chip, 1/16W, 1%

Resistor, Chip, 1/16W, 1%

Resistor, Chip, 1/16W, 1%

Test Point, Red, Thru Hole Color Keyed

QFN3.3X3.3mm

603

0.25x0.17 inch

603

603

603

603

0.100 x 0.100 inch

Test Point, Black, Thru Hole Color Keyed 0.100 x 0.100 inch

Test Point, White, Thru Hole Color Keyed 0.100 x 0.100 inch

IC, 2.5A, Dual-Input, Single Cell Switch-mode Li-Ion QFN3.3X3.3mm

BATTERY CHARGER with

Part Number

Std

Std

Std

Std

Std

Std

Std

LTST-C190GKT

ED555/2DS

UX60-MB-5ST

N2510-6002-RB

PEC02SAAN

MFR

Std

Std

Std

Std

Std

Std

Std

Liteon

OST

Hiroise Electrical Co

3M

Sullins

Std

Std

Std

Std

5000

PEC03SAAN

PEC02SAAN

PEC03SAAN

SPM4012T-1R5M

Alternate:

FDSD0415-H-1R5M

CSD25401Q3

Std

3266W-1-503LF

Sullins

Sullins

Sullins

TD Alternate: Toko

TI

Std

Bourns

Std

Std

Std

Std

Keystone

5001

5002

BQ24160YFF

Keystone

Keystone

TI

12

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

0

0

4

-001

0

Count

-002 -003 -004

1 0 0

0

0

5

1

0

5

0

1

4

RefDes

U1

U1

U1

Bill of Materials and Board Layout

Table 1. Bill of Materials - HPA721 (continued)

Value

BQ24161YFF

BQ24168YFF

BQ24163YFF

Description Size

IC, 2.5A, Dual-Input, Single Cell Switch-mode Li-Ion QFN3.3X3.3mm

BATTERY CHARGER with

IC, 2.5A, Dual-Input, Single Cell Switch-mode Li-Ion QFN3.3X3.3mm

BATTERY CHARGER with

IC, 2.5A, Dual-Input, Single Cell Switch-mode Li-Ion QFN3.3X3.3mm

BATTERY CHARGER with

Shunt, 100-mil, Black 0.100

Part Number

BQ24161YFF

BQ24168YFF

BQ24163YFF

929950-00

TI

TI

MFR

TI

3M

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

13

Bill of Materials and Board Layout

4.2

Board Layout

T

EXAS

I

NSTRUMENTS

Figure 6. Top Assembly Layer

www.ti.com

Figure 7. Top Layer

14

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

www.ti.com

Bill of Materials and Board Layout

Figure 8. First Internal Layer

Figure 9. Second Internal Layer

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

Copyright © 2011 – 2012, Texas Instruments Incorporated

15

Bill of Materials and Board Layout

www.ti.com

Figure 10. Bottom Layer

16

WCSP-Packaged bq24160/161/163/168 Evaluation Modules

SLUU496A – December 2011 – Revised January 2012

Submit Documentation Feedback

Copyright © 2011 – 2012, Texas Instruments Incorporated

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User ’ s Guide, the board/ kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE

BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY,

INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE

EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY

INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User ' s Guide and, specifically, the Warnings and Restrictions notice in the User ' s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI ' s environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User ’ s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the

Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,

DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user ’ s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this is strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC

FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation

Changes or modifications not expressly approved by the party responsible for compliance could void the user ' s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC

Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

REGULATORY COMPLIANCE INFORMATION (continued)

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC

Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC

INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user ’ s authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil num é rique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas express é ment approuv é s par la partie responsable de la conformit é ont pu vider l ’ autorit é de l ' utilisateur pour actionner l 'é quipement.

Concernant les EVMs avec appareils radio

Le pr é sent appareil est conforme aux CNR d ' Industrie Canada applicables aux appareils radio exempts de licence. L ' exploitation est autoris é e aux deux conditions suivantes : (1) l ' appareil ne doit pas produire de brouillage, et (2) l ' utilisateur de l ' appareil doit accepter tout brouillage radio é lectrique subi, m ê me si le brouillage est susceptible d ' en compromettre le fonctionnement.

Concernant les EVMs avec antennes d

é

tachables

Conform é ment à la r é glementation d ' Industrie Canada, le pr é sent é metteur radio peut fonctionner avec une antenne d ' un type et d ' un gain maximal (ou inf é rieur) approuv é pour l 'é metteur par Industrie Canada. Dans le but de r é duire les risques de brouillage radio é lectrique à l ' intention des autres utilisateurs, il faut choisir le type d ' antenne et son gain de sorte que la puissance isotrope rayonn é e é quivalente (p.i.r.e.) ne d é passe pas l ' intensit é n é cessaire à l 'é tablissement d ' une communication satisfaisante.

Le pr é sent é metteur radio a é t é approuv é par Industrie Canada pour fonctionner avec les types d ' antenne é num é r é s dans le manuel d ’ usage et ayant un gain admissible maximal et l ' imp é dance requise pour chaque type d ' antenne. Les types d ' antenne non inclus dans cette liste, ou dont le gain est sup é rieur au gain maximal indiqu é , sont strictement interdits pour l ' exploitation de l 'é metteur.

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

SPACER

Important Notice for Users of this Product in Japan

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1.

Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal

Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry ’ s Rule for Enforcement of

Radio Law of Japan,

2.

Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or

3.

Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of

Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of

Japan.

Texas Instruments Japan Limited

(address) 24-1, Nishi-Shinjuku 6 chome, Shinjukku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1.

電波法施行規則第 6 条第 1 項第 1 号に基づく平成 18 年 3 月 28 日総務省告示第 173 号で定められた電波暗室等の試験設備でご使用い

ただく。

2.

実験局の免許を取得後ご使用いただく。

3.

技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

   上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM)

WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1.

You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and

Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2.

You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces

(electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3.

You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4.

You will take care of proper disposal and recycling of the EVM ’ s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI ’ s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User ' s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60 ° C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User ' s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively,

" Claims " ) arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI ’ s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI ’ s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or " enhanced plastic.

" Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer ' s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio

Amplifiers

Data Converters

DLP ® Products

DSP

Clocks and Timers

Interface

Logic www.ti.com/audio amplifier.ti.com

dataconverter.ti.com

www.dlp.com

dsp.ti.com

www.ti.com/clocks interface.ti.com

logic.ti.com

Applications

Automotive and Transportation

Communications and Telecom

Computers and Peripherals

Consumer Electronics

Energy and Lighting

Industrial

Medical

Security www.ti.com/automotive www.ti.com/communications www.ti.com/computers www.ti.com/consumer-apps www.ti.com/energy www.ti.com/industrial www.ti.com/medical www.ti.com/security

Power Mgmt

Microcontrollers

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity power.ti.com

microcontroller.ti.com

www.ti.com/wirelessconnectivity

Space, Avionics and Defense

Video and Imaging

TI E2E Community Home Page

www.ti.com/space-avionics-defense www.ti.com/video e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals