Yes?
User's Guide
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's
Guide
This user's guide describes the characteristics, operation, and use of the
TLV320AIC33EVM, both by itself and as part of the TLV320AIC33EVM-PDK. This
evaluation module (EVM) is a complete stereo audio codec with several inputs and
outputs, extensive audio routing, mixing and effects capabilities. A complete circuit
description, schematic diagram and bill of materials are also included.
The following related documents are available through the Texas Instruments web site
at www.ti.com.
EVM-Compatible Device Data Sheets
Device
Literature Number
TLV320AIC33
SLAS480
TAS1020B
SLES025
REG1117-3.3
SBVS001
TPS767D318
SLVS209
SN74LVC125A
SCAS290
SN74LVC1G125
SCES223
SN74LVC1G07
SCES296
Contents
1
EVM Overview ............................................................................................................... 2
2
Analog Interface.............................................................................................................. 3
3
Digital Interface .............................................................................................................. 4
4
Power Supplies .............................................................................................................. 5
5
EVM Operation ............................................................................................................... 6
6
Kit Operation ................................................................................................................. 7
7
EVM Bill of Materials ....................................................................................................... 41
Appendix A
TLV320AIC33EVM Schematic .................................................................................. 45
Appendix B
USB-MODEVM Schematic ...................................................................................... 46
List of Figures
1
2
3
4
5
6
7
8
9
TLV320AIC33EVM-PDK Block Diagram ................................................................................. 8
Default Software Screen .................................................................................................. 10
Interface Selection Window .............................................................................................. 11
I2C Address Selection Window .......................................................................................... 11
Audio Generator Screen .................................................................................................. 13
Audio Analyzer Screen ................................................................................................... 14
Audio Input Tab ............................................................................................................ 15
Audio Interface Tab ....................................................................................................... 17
Clocks Tab ................................................................................................................. 18
I2S, I2C are trademarks of Koninklijke Philips Electronics N.V.
Windows is a trademark of Microsoft Corporation.
SPI is a trademark of Motorola, Inc.
LabView is a trademark of National Instruments.
All trademarks are the property of their respective owners.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
1
www.ti.com
EVM Overview
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
GPIO Tab ...................................................................................................................
AGC Tab ....................................................................................................................
Filters Tab ..................................................................................................................
ADC Highpass Filter Settings ............................................................................................
Enabling Filters ............................................................................................................
Shelf Filters .................................................................................................................
EQ Filters ...................................................................................................................
Analog Simulation Filters .................................................................................................
Preset Filters ...............................................................................................................
De-emphasis Filters .......................................................................................................
User Filters .................................................................................................................
3D Effect Settings .........................................................................................................
DAC/Line Outputs Tab ....................................................................................................
Output Stage Configuration Tab .........................................................................................
High Power Outputs Tab .................................................................................................
Command Line Interface Tab ............................................................................................
File Menu ...................................................................................................................
20
21
22
23
23
24
24
25
26
27
28
29
30
32
33
34
35
List of Tables
1
2
3
4
5
6
7
8
9
10
11
Analog Interface Pin Out .................................................................................................... 3
Alternate Analog Connectors ............................................................................................... 4
Digital Interface Pin Out ..................................................................................................... 4
Power Supply Pin Out ....................................................................................................... 5
List of Jumpers ............................................................................................................... 7
USB-MODEVM SW2 Settings ............................................................................................. 9
USB Control Endpoint HIDSETREPORT Request .................................................................... 36
Data Packet Configuration ................................................................................................ 36
GPIO Pin Assignments .................................................................................................... 39
TLV320AIC33EVM Bill of Materials ...................................................................................... 42
USB-MODEVM Bill of Materials .......................................................................................... 43
1
EVM Overview
1.1
Features
•
•
Full-featured evaluation board for the TLV320AIC33 stereo audio codec.
Modular design for use with a variety of digital signal processor (DSP) and microcontroller interface
boards.
The TLV320AIC33EVM-PDK is a complete evaluation kit, which includes a universal serial bus
(USB)-based motherboard and evaluation software for use with a personal computer running the Microsoft
Windows™ operating system (Win2000 or XP).
1.2
Introduction
The TLV320AIC33EVM is in Texas Instruments' modular EVM form factor, which allows direct evaluation
of the device performance and operating characteristics, and eases software development and system
prototyping. This EVM is compatible with the 5-6K Interface Evaluation Module (SLAU104) and the
HPA-MCUINTERFACE (SLAU106) from Texas Instruments and additional third-party boards which
support TI's Modular EVM format.
The TLV320AIC33EVM-PDK is a complete evaluation/demonstration kit, which includes a USB-based
motherboard called the USB-MODEVM Interface board and evaluation software for use with a personal
computer running the Microsoft Windows operating systems.
2
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Analog Interface
2
Analog Interface
For maximum flexibility, the TLV320AIC33EVM is designed for easy interfacing to multiple analog sources.
Samtec part numbers SSW-110-22-F-D-VS-K and TSM-110-01-T-DV-P provide a convenient 10-pin dual
row header/socket combination at J13 and J14. These headers/sockets provide access to the analog input
and output pins of the device. Consult Samtec at www.samtec.com or call 1-800-SAMTEC-9 for a variety
of mating connector options. Table 1 summarizes the analog interface pinout for the TLV320AIC33EVM..
Table 1. Analog Interface Pin Out
PIN NUMBER
SIGNAL
DESCRIPTION
J13.1
HPLCOM
High Power Output Driver (Left Minus or Multifunctional)
J13.2
HPLOUT
High Power Output Driver (Left Plus)
J13.3
HPRCOM
High Power Output Driver (Right Minus or Multifunctional)
J13.4
HPROUT
High Power Output Driver (Right Plus)
J13.5
LINE1LM
MIC1 or LINE1 Analog Input (Left Minus or Multifunctional)
J13.6
LINE1LP
MIC1 or LINE1 Analog Input (Left Plus or Multifunctional)
J13.7
LINE1RM
MIC1 or LINE1 Analog Input (Right Minus or Multifunctional)
J13.8
LINE1RP
MIC1 or LINE1 Analog Input (Right Plus or Multifunctional)
J13.9
AGND
Analog Ground
J13.10
MIC3L
MIC3 Input (Left or Multifunctional)
J13.11
AGND
Analog Ground
J13.12
MIC3R
MIC3 Input (Right or Multifunctional)
J13.13
AGND
Analog Ground
J13.14
MICBIAS
Microphone Bias Voltage Output
J13.15
NC
Not Connected
J13.16
MICDET
Microphone Detect
J13.17
AGND
Analog Ground
J13.18
NC
Not Connected
J13.19
AGND
Analog Ground
J13.20
NC
Not Connected
J14.1
LINE2RM
MIC2 or LINE2 Analog Input (Right Minus or Multifunctional)
J14.2
LINE2RP
MIC2 or LINE2 Analog Input (Right Plus or Multifunctional)
J14.3
LINE2LM
MIC2 or LINE2 Analog Input (Left Minus or Multifunctional)
J14.4
LINE2RP
MIC2 or LINE2 Analog Input (Left Plus or Multifunctional)
J14.5
MONO_LOP
Mono Line Output (Plus)
J14.6
MONO_LOM
Mono Line Output (Minus)
J14.7
LEFT_LOP
Left Line Output (Plus)
J14.8
LEFT_LOM
Left Line Output (Minus)
J14.9
AGND
Analog Ground
J14.10
RIGHT_LOP
Right Line Output (Plus)
J14.11
AGND
Analog Ground
J14.12
RIGHT_LOM
Right Line Output (Minus)
J14.13
AGND
Analog Ground
J14.14
NC
Not Connected
J14.15
NC
Not Connected
J14.16
NC
Not Connected
J14.17
AGND
Analog Ground
J14.18
NC
Not Connected
J14.19
AGND
Analog Ground
J14.20
NC
Not Connected
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
3
www.ti.com
Digital Interface
In addition to the analog headers, the analog inputs and outputs may also be accessed through alternate
connectors, either screw terminals or audio jacks. The stereo microphone input is also tied to J6 and the
stereo headphone output (the HP set of outputs) is available at J7.
Table 2 summarizes the screw terminals available on the TLV320AIC33EVM.
Table 2. Alternate Analog Connectors
3
DESIGNATOR
PIN 1
PIN 2
J1
LINE1LP
LINE1LM
J2
LINE1RP
LINE1RM
J3
LINE2LP
LINE2LM
J4
LINE2RP
LINE2RM
J5
MIC3 IN LEFT
MIC3 IN RIGHT
J11
(+) HPLOUT
(-) HPLCOM
J12
(+) HPROUT
(-) HPRCOM
PIN3
AGND
Digital Interface
The TLV320AIC33EVM is designed to easily interface with multiple control platforms. Samtec part
numbers SSW-110-22-F-D-VS-K and TSM-110-01-T-DV-P provide a convenient 10-pin dual row
header/socket combination at J16 and J17. These headers/sockets provide access to the digital control
and serial data pins of the device. Consult Samtec at www.samtec.com or call 1-800- SAMTEC-9 for a
variety of mating connector options. Table 3 summarizes the digital interface pinout for the
TLV320AIC33EVM.
Table 3. Digital Interface Pin Out
4
PIN NUMBER
SIGNAL
DESCRIPTION
J16.1
NC
Not Connected
J16.2
GPIO1
General Purpose Input/Output #1
J16.3
SCLK
SPI Serial Clock
J16.4
DGND
Digital Ground
J16.5
NC
Not Connected
J16.6
GPIO2
General Purpose Input/Output #2
J16.7
/SS
SPI Chip Select
J16.8
RESET INPUT
Reset signal input to AIC33EVM
J16.9
NC
Not Connected
J16.10
DGND
Digital Ground
J16.11
MOSI
SPI MOSI Slave Serial Data Input
J16.12
SPI SELECT
Select Pin (SPI vs I2C Control Mode)
J16.13
MISO
SPI MISO Slave Serial Data Output
J16.14
AIC33 RESET
Reset
J16.15
NC
Not Connected
J16.16
SCL
I2C Serial Clock
J16.17
NC
Not Connected
J16.18
DGND
Digital Ground
J16.19
NC
Not Connected
J16.20
SDA
I2C Serial Data Input/Output
J17.1
NC
Not Connected
J17.2
NC
Not Connected
J17.3
BCLK
Audio Serial Data Bus Bit Clock (Input/Output)
J17.4
DGND
Digital Ground
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Power Supplies
Table 3. Digital Interface Pin Out (continued)
PIN NUMBER
SIGNAL
DESCRIPTION
J17.5
NC
Not Connected
J17.6
NC
Not Connected
J17.7
WCLK
Audio Serial Data Bus Word Clock (Input/Output)
J17.8
NC
Not Connected
J17.9
NC
Not Connected
J17.10
DGND
Digital Ground
J17.11
DIN
Audio Serial Data Bus Data Input (Input)
J17.12
NC
Not Connected
J17.13
DOUT
Audio Serial Data Bus Data Output (Output)
J17.14
NC
Not Connected
J17.15
NC
Not Connected
J17.16
SCL
I2C Serial Clock
J17.17
MCLK
Master Clock Input
J17.18
DGND
Digital Ground
J17.19
NC
Not Connected
J17.20
SDA
I2C Serial Data Input/Output
Note that J17 comprises the signals needed for an I2S™ serial digital audio interface; the control interface
(I2C™ and RESET) signals are routed to J16. I2C is actually routed to both connectors; however, the
device is connected only to J16.
4
Power Supplies
J15 provides connection to the common power bus for the TLV320AIC33EVM. Power is supplied on the
pins listed in Table 4.
Table 4. Power Supply Pin Out
SIGNAL
PIN NUMBER
SIGNAL
NC J15.1
J15.2
NC
+5VA J15.3
J15.4
NC
DGND J15.5
J15.6
AGND
DVDD (1.8V) J15.7
J15.8
NC
IOVDD (3.3V) J15.9
J15.10
NC
The TLV320AIC33EVM-PDK motherboard (the USB-MODEVM Interface board) supplies power to J15 of
the TLV320AIC33EVM. Power for the motherboard is supplied either through its USB connection or via
terminal blocks on that board.
4.1
Stand-Alone Operation
When used as a stand-alone EVM, power can be applied to J15 directly, making sure to reference the
supplies to the appropriate grounds on that connector.
CAUTION
Verify that all power supplies are within the safe operating limits shown on
the TLV320AIC33 data sheet before applying power to the EVM.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
5
www.ti.com
EVM Operation
4.2
USB-MODEVM Interface Power
The USB-MODEVM Interface board can be powered from several different sources:
• USB
• 6VDC-10VDC AC/DC external wall supply (not included)
• Lab power supply
When powered from the USB connection, JMP6 should have a shunt from pins 1–2 (this is the default
factory configuration). When powered from 6V-10VDC, either through the J8 terminal block or J9 barrel
jack, JMP6 should have a shunt installed on pins 2–3. If power is applied in any of these ways, onboard
regulators generate the required supply voltages and no further power supplies are necessary.
If lab supplies are used to provide the individual voltages required by the USB-MODEVM Interface, JMP6
should have no shunt installed. Voltages are then applied to J2 (+5VA), J3 (+5VD), J4 (+1.8VD), and J5
(+3.3VD). The +1.8VD and +3.3VD can also be generated on the board by the onboard regulators from
the +5VD supply; to enable this configuration, the switches on SW1 need to be set to enable the
regulators by placing them in the ON position (lower position, looking at the board with text reading
right-side up). If +1.8VD and +3.3VD are supplied externally, disable the onboard regulators by placing
SW1 switches in the OFF position.
Each power supply voltage has an LED (D1-D7) that lights when the power supplies are active.
5
EVM Operation
This section provides information on the analog input and output, digital control, and general operating
conditions of the TLV320AIC33EVM.
5.1
Analog Input
The analog input sources can be applied directly to J13 (top or bottom side) or through signal conditioning
modules available for the modular EVM system.
The analog inputs may also be accessed through J6 and and screw terminals J1, J2, and J3.
5.2
Analog Output
The analog outputs from the TLV320AIC33 are available on J13 and J14 (top or bottom). They also may
be accessed through J4, J5, J7, J11,and J12.
5.3
Digital Control
The digital control signals can be applied directly to J16 and J17 (top or bottom side). The modular
TLV320AIC33EVM can also be connected directly to a DSP interface board, such as the
5-6KINTERFACE or HPA-MCUINTERFACE, or to the USB-MODEVM Interface board if purchased as part
of the TLV320AIC33EVM-PDK. See the product folder for this EVM or the TLV320AIC33 for a current list
of compatible interface and/or accessory boards.
6
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
5.4
Default Jumper Locations
Table 5 provides a list of jumpers found on the EVM and their factory default conditions.
Table 5. List of Jumpers
6
JUMPER
DEFAULT
POSITION
JMP1
2-3
When connecting 2-3, mic bias comes from the MICBIAS pin on the device; when
connecting 1-2, mic bias is supplied from the power supply through a resistor, which
the user must install.
JMP2
Installed
Connects on-board Mic to Left Microphone Input.
JMP3
Installed
Connects on-board Mic to Right Microphone Input.
JMP4
Installed
Provides a means of measuring IOVDD current.
JMP5
Installed
Provides a means of measuring AVDD_ADC current.
JMP6
Installed
Provides a means of measuring DVDD current.
JMP7
Installed
Provides a means of measuring DRVDD current.
JMP8
Installed
Provides a means of measuring AVDD_DAC current.
JMP9
Installed
Connects Analog and Digital Grounds.
JMP10
3-5
When connecting 3 to 5, I2C is selected as control mode; when connecting 1 to 3, SPI
is selected as control mode. When connecting 3 to 4, mode selection can be made by
a logic level at J16.12
JMP11
3-5
In I2C control mode, this jumper sets the state of A0. When connecting 3 to 5, A0 = 0;
when connecting 1 to 3, A0 = 1. In SPI control mode, connecting 3 to 4, SPI /SS is
provided from J16.2
JMP12
3-5
In I2C control mode, this jumper sets the state of A1. When connecting 3 to 5, A1 = 0;
when connecting 1 to 3, A1 = 1. In SPI control mode, connecting 3 to 4, SPI SCLK is
provided from J16.3
JMP13
Installed
When installed, shorts across the output capacitor on HPLOUT; remove this jumper if
using AC-coupled output drive
JMP14
Installed
When installed, shorts across the output capacitor on HPLCOM; remove this jumper if
using AC-coupled output drive
JMP15
Installed
When installed, shorts across the output capacitor on HPROUT; remove this jumper if
using AC-coupled output drive
JMP16
Installed
When installed, shorts HPLCOM and HPRCOM. Use only if these signals are set to
constant VCM.
JMP17
Installed
When installed, shorts across the output capacitor on HPRCOM; remove this jumper if
using AC-coupled output drive
JMP18
Open
Selects on-board EEPROM as Firmware Source.
JMP19
Open
When installed, allows the USB-MODEVM to hardware reset the device under user
control
JUMPER DESCRIPTION
Kit Operation
The following section provides information on using the TLV320AIC33EVM-PDK, including set up,
program installation, and program usage.
6.1
TLV320AIC33EVM-PDK Block Diagram
A block diagram of the TLV320AIC33EVM-PDK is shown in Figure 1. The evaluation kit consists of two
circuit boards connected together. The motherboard is designated as the USB-MODEVM Interface board,
while the daughtercard is the TLV320AIC33EVM described previously in this manual.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
7
www.ti.com
Kit Operation
TLV320AIC33EVM
TLV320AIC33
EVM Position 1
Control Interface
2
SPI, I C
TAS1020B
USB 8051
Microcontroller
EVM Position 2
USB
2
I S, AC97
Audio Interface
Figure 1. TLV320AIC33EVM-PDK Block Diagram
The USB-MODEVM Interface board is intended to be used in USB mode, where control of the installed
EVM is accomplished using the onboard USB controller device. Provision is made, however, for driving all
the data buses (I2C, SPI™, I2S/AC97) externally. The source of these signals is controlled by SW2 on the
USB-MODEVM. Refer to Table 6 for details on the switch settings.
8
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Table 6. USB-MODEVM SW2 Settings
SW-2 SWITCH
NUMBER
LABEL
SWITCH DESCRIPTION
1
A0
USB-MODEVM EEPROM I2C Address A0
ON: A0 = 0
OFF: A0 = 1
2
A1
USB-MODEVM EEPROM I2C Address A1
ON: A1 = 0
OFF: A1 = 1
3
A2
USB-MODEVM EEPROM I2C Address A2
ON: A2 = 0
OFF: A2 = 1
4
USB I2S
I2S Bus Source Selection
ON: I2S Bus connects to TAS1020
OFF: I2S Bus connects to USB-MODEVM J14
5
USB MCK
I2S Bus MCLK Source Selection
ON: MCLK connects to TAS1020
OFF: MCLK connects to USB-MODEVM J14
6
USB SPI
SPI Bus Source Selection
ON: SPI Bus connects to TAS1020
OFF: SPI Bus connects to USB-MODEVM J15
7
USB RST
RST Source Selection
ON: EVM Reset Signal comes from TAS1020
OFF: EVM Reset Signal comes from USB-MODEVM J15
8
EXT MCK
External MCLK Selection
ON: MCLK Signal is provided from USB-MODEVM J10
OFF: MCLK Signal comes from either selection of SW2-5
For use with the TLV320AIC33EVM, SW-2 positions 1 through 7 should be set to ON, while SW-2.8
should be set to OFF.
6.2
Installation
Ensure that the TLV320AIC33EVM is installed on the USB-MODEVM Interface board, aligning J13, J14,
J15, J16, J17 with the corresponding connectors on the USB-MODEVM.
Place the CD-ROM into your PC CD-ROM drive. Locate the Setup program on the disk, and run it. The
Setup program will install the TLV320AIC33 Evaluation software on your PC.
After the main program is installed, the NI-VISA Runtime installer will automatically run. This software
allows the program to communicate with USB.
When the installation completes, click Finish on the TLV320AIC33EVM installer window. You may be
prompted to restart your computer.
When installation is complete, attach a USB cable from your PC to the USB-MODEVM Interface board. As
configured at the factory, the board will be powered from the USB interface, so the power indicator LEDs
on the USB-MODEVM should light. Once this connection is established, launch the TLV320AIC33
Evaluation software on your PC.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
9
www.ti.com
Kit Operation
The software should automatically find the TLV320AIC33EVM, and a screen similar to the one in Figure 2
should appear.
Figure 2. Default Software Screen
6.3
USB-MODEVM Interface Board
The simple diagram shown in Figure 1 shows only the basic features of the USB-MODEVM Interface
board. The board is built around a TAS1020B streaming audio USB controller with an 8051-based core.
The board features two positions for modular EVMs, or one double-wide serial modular EVM may be
installed.
Since the TLV320AIC33EVM is a double-wide modular EVM, it is installed with connections to both EVM
positions, which connects the TLV320AIC33 digital control interface to the I2C port realized using the
TAS1020B, as well as the TAS1020B digital audio interface..
In the factory configuration, the board is ready to use with the TLV320AIC33EVM. To view all the functions
and configuration options available on the USB-MODEVM board, see the USB-MODEVM Interface Board
schematic in Appendix B.
10
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
6.4
Program Description
After the TLV320AIC33EVM-PDK software installation (described in Section 6.2) is complete, evaluation
and development with the TLV320AIC33 can begin.
6.5
Interface Selection
When the program first starts up, a small window (Figure 3) appears that gives two choices for the control
interface: I2C or SPI. Click on the interface that will be used by the EVM, as selected by the jumper
settings detailed in Table 5.
Figure 3. Interface Selection Window
If the I2C interface is selected, a second window then appears which allows for selecting the address of
the TLV320AIC33. This window (see Figure 4) has two checkboxes for setting the state of A0 and A1.
Note that this address should correspond to the jumper settings selected as described in Table 5.
Figure 4. I2C Address Selection Window
6.6
Indicators and Main Screen Controls
Figure 2 illustrates the indicators and controls near the top of the screen, and a large tabbed interface
below. This section will discuss the controls above this tabbed section.
At the top left of the screen is an Interface indicator. This indicator shows which interface is selected for
controlling the TLV320AIC33 , either I2C or SPI; it is lit after the program begins.
To the right of the Interface indicator is a group box called Firmware. This box indicates where the
firmware being used is operating from—in this release, the firmware is on the USB-MODEVM, so you
should see USB-MODEVM in the box labeled Located On:. The version of the firmware appears in the
Version box below this.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
11
www.ti.com
Kit Operation
To the right, the next group box contains controls for resetting the TLV320AIC33. A software reset can be
done by writing to a register in the TLV320AIC33, and this is accomplished by pushing the button labeled
Software Reset. The TLV320AIC33 also may be reset by toggling a pin on the TLV320AIC33, which is
done by pushing the Hardware Reset button.
CAUTION
In order to perform a hardware reset, the RESET jumper (JMP19) must be
installed and SW2-7 on the USB-MODEVM must be turned OFF. Failure to
do either of these steps results in not generating a hardware reset or
causing unstable operation of the EVM, which may require cycling power
to the USB-MODEVM.
The ADC Overflow and DAC Overflow indicators light when the overflow flags are set in the
TLV320AIC33. These indicators, as well as the other indicators on this panel, are updated only when the
software's front panel is inactive, once every 20ms. Below these indicators are other indicators that show
when the AGC noise threshold is exceeded. To the far right on this screen, the short-circuit indicators
show when a short-circuit condition is detected, if this feature has been enabled. Below the short-circuit
indicators is a bar graph that shows the amount of gain which has been applied by the AGC, and
indicators that light when the AGC is saturated.
6.6.1
Audio Analyzer
Near the left side of the screen is a button labeled Audio Analyzer, and this button can be set to ON or
OFF. Pressing the button to turn it ON opens another window (see Figure 5). This feature provides the
ability to generate signals to send to the TLV320AIC33 DACs as well as viewing and analyzing signals
read by the TLV320AIC33 ADCs. This ability to view and process the real-time streaming USB audio is a
demanding task. Use of the Audio Analyzer feature requires a computer with at least 512MB of memory
and reasonable processor speed (> 1GHz); computers with inadequate resources could still use the Audio
Analyzer to generate signals for the DACs, but will be unable to process signals from the ADCs because
the FFT, distortion analysis, and signal-to-noise ratio analysis will not be able to keep up with the data
processing requirements.
The Audio Analyzer features two tabs. The front tab, shown in Figure 5 and titled Generator, creates
digital waveforms to send to the DACs. When first started, the function will be set to SNR (Output Zeros)
which feeds only zero codes to the DAC. This is commonly done to test for the noise floor of the DAC.
The second function available is THD (-1dB sinewave). This function sends a sinewave at a coherent
frequency to the 44.1kHz sample rate to the DACs; this is commonly used for testing THD+N.
These first two functions do not require any further settings; therefore, the frequency and amplitude knobs
below the function selector are not used. Selecting a function of Function Generator allows the choice of
waveform shape by using the pull-down menu next to the function selector, and the frequency and
amplitude of that signal can be varied using the knobs below.
The output waveforms for both left and right channels are displayed in the graph at the bottom of this
screen.
12
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Figure 5. Audio Generator Screen
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
13
www.ti.com
Kit Operation
The second tab, titled Analyzer (Figure 6), handles the display and analysis of data from the ADCs.
Figure 6. Audio Analyzer Screen
The analyzer screen features a graph of the input signals, both left and right channels, in a time domain
display at the top of the screen, and in the frequency domain (FFT) at the bottom of the screen.
14
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Next to the time domain plots, calculated values of SINAD, SNR, and THD are shown. These values are
all expressed in dB relative to the full-scale of the TLV320AIC33. Note that the SNR number shown is
A-weighted.
In Figure 6, a sine wave generated by the TLV320AIC33 DACs is fed through the high power drivers and
back into the ADC and the resulting FFTs can be seen. Note that this is a full analog loopback test case,
so the measured numbers show the combined performance of the DAC, drivers, and ADC. There is also
no post-DAC filtering; as noted in the data sheet, this may degrade measurements even though there is
no audible noise.
6.7
Audio Input/ADC Tab
The Audio Input/ADC Tab is laid out like an audio mixing console. Each input channel has a vertical strip
that corresponds to that channel. LINE1L and LINE1R input strips have controls to route that input to
either the left or right ADC input; by default, all inputs are muted when the TLV320AIC33 is powered up.
To route an input to the ADC, first click on the MUTE button in the input channel strip which corresponds
to the ADC input channel you want that input to go to—the caption on the button will change to ACTIVE.
The level of the input channel routed to that particular ADC channel can then be adjusted using the Level
knob below the MUTE/ACTIVE button. See Figure 7.
Figure 7. Audio Input Tab
Similarly, the LINE2L and LINE2R inputs can be routed to the ADC. However, note that these inputs do
not have the choice to route to either ADC channel; they can only be configured to connect to the
corresponding ADC input.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
15
www.ti.com
Kit Operation
The MIC3L and MIC3R inputs are similar to the LINE1L and LINE1R inputs in that they can be routed to
either ADC input channel. Control of the mic bias is accomplished by using the pull-down menu at the top
of these channel strips. The mic bias can either be powered down or set to 2.0V, 2.5V, or the power
supply voltage of the ADC (AVDD_ADC).
To use the on-board microphone, JMP2 and JMP3 must be installed and nothing should be plugged into
J6. In order for the mic bias settings in the software to take effect, JMP1 should be set to connect
positions 2 and 3, so that mic bias is controlled by the TLV320AIC33.
In the upper right of this tab are controls for Weak Common Mode Bias. Enabling these controls will
result in unselected inputs to the ADC channels to be weakly biased to the ADC common mode voltage.
Below these controls are the controls for the ADC PGA—the master volume controls for the ADC inputs.
Each channel of the ADC can be powered up or down as needed using the Powered Up buttons. PGA
soft-stepping for each channel is selected using the control below this. The large knobs set the actual
ADC PGA Gain; at the extreme counterclockwise rotation, the channel is muted. Rotating the knob
clockwise increases the PGA gain.
6.8
Audio Interface Tab
The Audio Interface tab (Figure 8) sets up the audio data interface to the TLV320AIC33. For use with the
PC software and the USB-MODEVM, the default settings should be used. If using an external I2S source,
or other data source, the interface mode may be selected using the Transfer Mode control—selecting
either I2S mode, DSP mode, or Right- or Left-Justified modes. Word length can be selected using the
Word Length control, and the bit clock rate can also be selected using the Bit Clock rate control. The
Data Word Offset, used in TDM mode (see the product datasheet) can also be selected on this tab.
16
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Figure 8. Audio Interface Tab
Along the bottom of this tab are controls for choosing the BLCK and WCLK as being either inputs or
outputs, as well as options for tristating the DOUT line when there is not valid data and transmitting BLCK
and WCLK when the codec is powered down.
Re-sync of the audio bus is enabled using the controls in the lower right corner of this screen. Re-sync is
done if the group delay changes by more than ±FS/4 for the ADC or DAC sample rates (see the
TLV320AIC33 datasheet). The channels can be soft muted when doing the re-sync if the Soft Mute button
is enabled.
In the upper right corner of this tab is the Digital Mic Functionality control. The TLV320AIC33 can accept
a data stream from a digital microphone, which would have its clock pin connected to the TLV320AIC33
GPIO1 pin, and the mic data connected to the GPIO2 pin. Refer to section Section 6.10 for a discussion of
setting the GPIO pin options. The TLV320AIC33 can provide a modulator clock to the digital microphone
with oversampling ratios (OSR) of 128, 64, or 32. For a detailed discussion of how to connect a digital
microphone on this platform, refer to the application note Using the Digital Microphone Function on
TLV320AIC33 with AIC33EVM/USB-MODEVM System (literature number SLAA275), available for
download at www.ti.com.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
17
www.ti.com
Kit Operation
6.9
Clocks Tab
The TLV320AIC33 has a very flexible scheme for generating the clock sources for ADC and DAC sample
rates. The Clocks tab allows access to set the different options for setting up these clocks. Refer to the
Audio Clock Generation Processing figure in the TLV320AIC33 datasheet.
For use with the PC software and the USB-MODEVM, the clock settings must be set a certain way. These
settings are not the default settings of the TLV320AIC33. The EVM-required settings can be loaded
automatically by pushing the Load EVM Clock Settings button at the bottom of this tab. Note that
changing any of the clock settings from the values loaded when this button is pushed may result in the
EVM not working properly with the PC software or USB interface. If an external audio bus is used (audio
not driven over the USB bus), then settings may be changed to any valid combination. See Figure 9.
Figure 9. Clocks Tab
The codec clock source is chosen by by the CODEC_CLK Source control. When this control is set to
CLKDIV_OUT, the PLL is not used; when set to PLLDIV_OUT, the PLL is used to generate the clocks.
6.9.1
Use Without PLL
Setting up the TLV320AIC33 for clocking without using the PLL is straightforward. The CLKDIV_IN source
can be selected as either MCLK or BCLK, the default is MCLK. The CLKDIV_IN frequency is then entered
into the CLKDIV_IN box, in megahertz (MHz). The default value shown, 11.2896MHz, is the frequency
used on the USB-MODEVM board. This value is then divided by the value of Q, which can be set from 2
to 17; the resulting CLKDIV_OUT frequency is shown in the indicator next to the Q control.
18
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
This frequency will then be used to calculate the actual Fsref frequency, and the ADC and DAC sample
rates, after the NADC and NDAC factors are applied to the Fsref. If dual rate mode is desired, this option
can be enabled for either the ADC or DAC by pressing the corresponding Dual Rate Mode button.
6.9.2
Use With The PLL
When PLLDIV_OUT is selected as the codec clock source, the PLL will be used. The PLL clock source is
chosen using the PLLCLK_IN control, and may be set to either MCLK or BCLK. The PLLCLK_IN
frequency is then entered into the PLLCLK_IN Source box.
The PLL_OUT and PLLDIV_OUT indicators show the resulting PLL output frequencies with the values set
for the P, K, and R parameters of the PLL. Refer to the the TLV320AIC33 datasheet for an explanation of
these parameters. The parameters can be set by clicking on the up/down arrows of the P, K, and R
combo boxes, or they can be typed into these boxes. The values can also be calculated by the PC
software.
To use the PC software to find the ideal values of P, K, and R for a given PLL input frequency and desired
Fsref, the desired Fsref must be set using the switch on this tab; it can be set to either 44.1kHz or 48kHz.
Once the desired Fsref and PLLCLK_IN values are correctly set, pushing the Search for Ideal Settings
button starts the software searching for ideal combinations of P, K, and R which achieve the desired Fsref.
The possible settings for these parameters are displayed in the spreadsheet-like table labeled Possible
Settings. Clicking on a row in this table sets the P, K, and R values in the software and updates the
PLL_OUT and PLLDIV_OUT readings, as well as the Actual Fsref and Error displays. This process does
not actually load the values into the TLV320AIC33, however; it only updates the displays in the software.
This allows for different possible solutions to be selected and the error evaluated before loading into the
device.
When a suitable combination of P,K, and R have been chosen, pressing the Load Settings into Device?
button will download these values into the appropriate registers on the TLV320AIC33.
6.10
GPIO Tab
The GPIO tab (see Figure 10) selects options for the general-purpose inputs and outputs (GPIO) of the
TLV320AIC33. Many pins on the TLV320AIC33 are denoted as multifunction pins, meaning they may be
used for many different purposes.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
19
www.ti.com
Kit Operation
Figure 10. GPIO Tab
The GPIO1 groupbox contains controls for setting options for the GPIO1 pin. The Function control selects
the function that GPIO1 will be used for—it can be used as the ADC Word Clock, as an output clock, as
interrupt pins to signal Short Circuit or AGC Noise Threshold detection, or Button Press or Headset
detection. It may also be used for the alternate I2S Word Clock or provide a modulator clock for use with a
digital microphone (see Section 6.8 and the TLV320AIC33 datasheet). In addition, it can also be used as a
general-purpose I/O pin.
If selected as a General Purpose Input, the state of the GPIO1 pin is reflected by the Input Level
indicator. If selected as a General Purpose Output, the state of the GPIO1 pin can be set by using the
Output Level button.
For use as an interrupt output, the behavior of the interrupt can be selected using the Interrupt Duration
control. A Single, 2ms pulse can be delivered when the selected interrupt occurs, or Continuous Pulses
can be generated signaling the interrupt.
In similar fashion, the GPIO2 pin can also be used for an alternate I2S bus, provide interrupt outputs, or be
used with a digital microphone. These options are selected using the Function control in the GPIO2
groupbox. The other controls in this groupbox work the same as the corresponding controls for GPIO1.
When the control interface for the TLV320AIC33 is selected to be I2C, the SDA and SCL groupboxes and
controls within them are disabled. If SPI mode is selected, however, the SDA and SCL pins can be used
as GPIO, and selected as either inputs or outputs using the SDA Function and SCL Function controls.
The Output Level and Input Level controls function for these pins in the same way that they do for
GPIO1 or GPIO2.
20
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
When the control interface for the TLV320AIC33 is selected to be SPI, the Multifunction Pins groupbox
and controls within it are disabled, because these pins are used by the SPI bus. When in I2C mode,
however, these controls are enabled. The MFP3 Function control selects MFP3 to be used either as a
General Purpose Input or as the data input line for the alternate I2S bus. The MFP2 Function control
selects MFP2 as either Disabled or as a General Purpose Output. When used as an output, the MFP2
Output Level control sets the output state of the MFP2 pin either high or low. The states of the MFP0,
MFP1 and MP3 inputs are indicated by the three indicator lights on the right-hand side of this groupbox.
6.11
AGC Tab
The AGC tab (see Figure 11) consists of two identical sets of controls, one for the left channel and the
other for the right channel. The AGC function is described in the TLV320AIC33 datasheet.
Figure 11. AGC Tab
The AGC can be enabled for each channel using the Enable AGC button. Target gain, Attack time in
milliseconds, Decay time in milliseconds, and the Maximum PGA Gain Allowed can all be set,
respectively, using the four corresponding knobs in each channel.
Noise gate functions, such as Hysteresis, Clip stepping, Threshold, and Signal and Noise Detect
debouncing are set using the corresponding controls in the Noise Gate groupbox for each channel.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
21
www.ti.com
Kit Operation
6.12
Filters Tab
The TLV320AIC33 has a very rich feature set for applying digital filtering to audio signals. This tab controls
all of the filter features of the TLV320AIC33. In order to use this tab and have plotting of filter responses
correct, the DAC sample rate must be set correctly. Therefore, the clocks must be set up correctly in the
software following the discussion in Section 6.9. See Figure 12.
Figure 12. Filters Tab
The right-hand side of this tab shows a display that plots the magnitude and phase response of each
biquad section, plus the combined responses of the two biquad sections. The coefficients used for the
plotted responses are shown below the graph for both Biquad 1 and Biquad 2. Note that the plot shows
only the responses of the effect filters, not the combined response of those filter along with the
de-emphasis and ADC high-pass filters.
22
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
6.12.1
ADC Highpass Filters
The ADC of the TLV320AIC33 can have a high-pass filter enabled, which helps to reduce the effects of
DC offsets in the system. This function is enabled as shown in Figure 13. The four options for this setting
are disabled, or three different corner frequencies which are based on the ADC sample rate.
Figure 13. ADC Highpass Filter Settings
6.12.2
Enabling Filters
The de-emphasis and effect filters (the biquad filters) of the TLV320AIC33 are selected using the
checkboxes shown in Figure 14. The De-emphasis filters are described in the TLV320AIC33 datasheet,
and their coefficients may be changed (see Section 6.12.7).
Figure 14. Enabling Filters
When designing filters for use with TLV320AIC33, the software allows for several different filter types to be
used. These options are shown on a tab control in the lower left corner of the screen. When a filter type is
selected, and suitable input parameters defined, the response will be shown in the Effect Filter Response
graph. Regardless of the setting for enabling the Effect Filter, the filter coefficients are not loaded into the
TLV320AIC33 until the Download Coefficients button is pressed. To avoid noise during the update of
coefficients, it is recommended that you uncheck the Effect Filter enable checkboxes before downloading
coefficients. Once the desired coefficients are in the TLV320AIC33, enable the Effect Filters by checking
the boxes again.
6.12.3
Shelf Filters
A shelf filter is a simple filter that applies a gain (positive or negative) to frequencies above or below a
certain corner frequency. As shown in Figure 15, in Bass mode a shelf filter applies a gain to frequencies
below the corner frequency; in Treble mode the gain is applied to frequencies above the corner frequency.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
23
www.ti.com
Kit Operation
Figure 15. Shelf Filters
To use these filters, enter the gain desired and the corner frequency. Choose the mode to use (Bass or
Treble); the response will be plotted on the Effect Filter Response graph.
6.12.4
EQ Filters
EQ, or parametric, filters can be designed on this tab (see Figure 16). Enter a gain, bandwidth, and a
center frequency (Fc). Either bandpass (positive gain) or band-reject (negative gain) filters can be created
Figure 16. EQ Filters
24
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
6.12.5
Analog Simulation Filters
Biquads are quite good at simulating analog filter designs. For each biquad section on this tab, enter the
desired analog filter type to simulate (Butterworth, Chebyshev, Inverse Chebyshev, Elliptic or Bessel).
Parameter entry boxes appropriate to the filter type will be shown (ripple, for example, with Chebyshev
filters, etc.). Enter the desired design parameters and the response will be shown. (See Figure 17.)
Figure 17. Analog Simulation Filters
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
25
www.ti.com
Kit Operation
6.12.6
Preset Filters
Many applications are designed to provide preset filters common for certain types of program material.
This tab (see Figure 18) allows selection of one of four preset filter responses - Rock, Jazz, Classical, or
Pop.
Figure 18. Preset Filters
26
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
6.12.7
De-emphasis Filters
The de-emphasis filters used in the TLV320AIC33 can be programmed as described in the TLV320AIC33
datasheet, using this tab (Figure 19). Enter the coefficients for the de-emphasis filter response desired.
While on this tab, the de-emphasis response will be shown on the Effect Filter Response graph; however,
note that this response is not included in graphs of other effect responses when on the other filter design
tabs.
Figure 19. De-emphasis Filters
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
27
www.ti.com
Kit Operation
6.12.8
User Filters
If filter coefficients are known, they can be entered directly on this tab (see Figure 20) for both biquads for
both left and right channels. The filter response will not be shown on the Effect Filter Response graph for
user filters.
Figure 20. User Filters
28
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
6.12.9
3D Effect
The 3D effect is described in the TLV320AIC33 datasheet. It uses the two biquad sections differently than
most other effect filter settings. To use this effect properly, make sure the appropriate coefficients are
already loaded into the two biquad sections. The User Filters tab may be used to load the coefficients.
See Figure 21.
Figure 21. 3D Effect Settings
To enable the 3D effect, check the 3D Effect On box. The Depth knob controls the value of the 3D
Attenuation Coefficient.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
29
www.ti.com
Kit Operation
6.13
DAC/Line Outputs Tab
The DAC/Line Outputs tab controls the DAC power and volume, as well as routing of digital data to the
DACs and the analog output from the DACs. (See Figure 22.)
Figure 22. DAC/Line Outputs Tab
6.13.1
DAC Controls
On the left side of this tab are controls for the left and right DACs.
In similar fashion as the ADC, the DAC controls are set up to allow powering of each DAC individually,
and setting the output level. Each channel's level can be set independently using the corresponding
Volume knob. Alternately, by checking the Slave to Right box, the left channel Volume can be made to
track the right channel Volume knob setting; checking the Slave to Left box causes the right channel
Volume knob to track the left Volume knob setting.
Data going to the DACs is selected using the drop-down boxes under the Left and Right Datapath. Each
DAC channel can be selected to be off, use left channel data, use right channel data, or use a mono mix
of the left and right data.
30
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Analog audio coming from the DACs is routed to outputs using the Output Path controls in each DAC
control panel. The DAC output can be mixed with the analog inputs (LINE2L, LINE2R, PGA_L, PGA_R)
and routed to the Line or High Power outputs using the mixer controls for these outputs on this tab (for the
line outputs) or on the High Power Outputs tab (for the high power outputs). If the DAC is to be routed
directly to either the Line or HP outputs, these can be selected as choices in the Output Path control. Note
that if the Line or HP outputs are selected as the Output Path, the mixer controls on this tab and the High
Power Output tabs have no effect.
6.13.2
Line Output Mixers
On the right side of this tab are horizontal panels which house the mixing functions for the line outputs.
Each line output master volume is controlled by the knob at the far right of these panels. The output can
be muted, or gain up to 9dB can be applied. Power for the line output can also be controlled using the
button below this master output knob.
If the DAC output path is set to Mix with Analog Inputs, the six knobs in each panel can be used to set the
individual level of signals routed and mixed to the line output. LINE2L, LINE2R, PGA_L, PGA_R, and
DAC_L and DAC_R levels can each be set to create a custom mix of signals presented to that particular
line output. Note: if the DAC output path is set to anything other than Mix with Analog Inputs, these
controls have no effect.
6.14
Output Stage Configuration Tab
The Output Stage Configuration tab (Figure 23) allows for setting several features of the output drivers.
The Configuration may be set as either Fully-Differential or Pseudo-Differential. The output coupling can
be chosen as either capless or AC-coupled. This setting should correspond to the setting of the hardware
switch (SW1) on the TLV320AIC33EVM.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
31
www.ti.com
Kit Operation
Figure 23. Output Stage Configuration Tab
The Common Mode Voltage of the outputs may be set to 1.35V, 1.5V, 1.65V, or 1.8V using the Common
Mode Voltage control. The Power-On Delay of the output drivers can be set using the corresponding
control from 0µs up to 4 seconds. Ramp-Up Step Timing can also be adjusted from 0ms to 4ms.
The high power outputs of the TLV320AIC33 can be configured to go to a weak common-mode voltage
when powered down. The source of this weak common-mode voltage can be set on this tab with the
Weak Output CM Voltage Source drop-down. Choices for the source are either a resistor divider off the
AVDD_DAC supply, or a bandgap reference. See the datasheet for more details on this option.
The outputs can be set to soft-step their volume changes, using the Output Volume Soft Stepping
control, and set to step once per Fs period, once per two Fs periods, or soft-stepping can be disabled
altogether.
Headset detection features are enabled using the Enable button in the Headset Detection groupbox.
When enabled, the indicators in the HS/Button Detect groupbox will light when either a button press or
headset is detected. When a headset is detected, the type of headset is displayed in the Detection Type
indicator. Debounce times for detection are set using the Jack Detect Debounce and Button Press
Debounce controls, which offer debounce times in varying numbers of milliseconds. See the
TLV320AIC33 datasheet for a discussion of headset detection.
32
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Output short-circuit protection can be enabled in the Short Circuit Protection groupbox. Short Circuit
Protection can use a current-limit mode, where the drivers will limit current output if a short-circuit
condition is detected, or in a mode where the drivers will power down when such a condition exists.
The LINE2 Bypass Path groupbox has controls that allow disabling or routing the LINE2 input to the output
stage directly.
6.15
High Power Outputs Tab
This tab contains four horizontal groupings of controls, one for each of the high power outputs. Each
output has a mixer to mix the LINE2L, LINE2R, PGA_L, PGA_R, DAC_L and DAC_R signals, assuming
that the DACs are not routed directly to the high power outputs (see Section 6.13).
Figure 24. High Power Outputs Tab
At the left of each output strip is a power button that controls whether the corresponding output is powered
up or not. When powered down, the outputs can be tri-stated or driven weakly to a the output common
mode voltage; this option is selected using the button below the power button.
The COM outputs (HPLCOM and HPRCOM) can be used as independent output channels or can be used
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
33
www.ti.com
Kit Operation
as complementary signals to the HPL and HPR outputs. In these complementary configurations, the COM
outputs can be selected as differential signals to the corresponding outputs or may be set to be a common
mode voltage. When used in these configurations, the power button for the COM output is disabled, as the
power mode for that output will track the power status of the HPL or HPR output that the COM output is
tracking.
At the right side of the output strip is a master volume knob for that output, which allows muting the output
or applying gain up to 9dB.
6.16
Command Line Interface Tab
A simple scripting language controls the TAS1020 on the USB-MODEVM from the LabView™-based PC
software. The main program controls, described previously, do nothing more than write a script which is
then handed off to an interpreter that sends the appropriate data to the correct USB endpoint. Because
this system is script-based, provision is made in this tab for the user to view the scripting commands
created as the controls are manipulated, as well as load and execute other scripts that have been written
and saved (see Figure 25). This design allows the software to be used as a quick test tool or to help
provide troubleshooting information in the rare event that the user encounters problem with this EVM.
Figure 25. Command Line Interface Tab
34
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
A script is loaded into the command buffer, either by operating the controls on the other tabs or by loading
a script file. When executed, the return packets of data which result from each command will be displayed
in the Read Data array control. When executing several commands, the Read Data control shows only the
results of the last command. If you want to see the results after every executed command, use the logging
function described below.
The File menu (Figure 26) provides some options for working with scripts. The first option, Open
Command File..., loads a command file script into the command buffer. This script can then be executed
by pressing the Execute Command Buffer button.
The second option is Log Script and Results..., which opens a file save dialog box. Choose a location for a
log file to be written using this file save dialog. When the Execute Command Buffer button is pressed, the
script will run and the script, along with resulting data read back during the script, will be saved to the file
specified. The log file is a standard text file that can be opened with any text editor, and looks much like
the source script file, but with the additional information of the result of each script command executed.
The third menu item is a submenu of Recently Opened Files. This is simply a list of script files that have
previously been opened, allowing fast access to commonly-used script files. The final menu item is Exit,
which terminates the TLV320AIC33EVM software.
Figure 26. File Menu
Under the Help menu is an About... menu item which displays information about the TLV320AIC33EVM
software.
The actual USB protocol used as well as instructions on writing scripts are detailed in the following
subsections. While it is not necessary to understand or use either the protocol or the scripts directly,
understanding them may be helpful to some users.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
35
www.ti.com
Kit Operation
6.16.1
USB-MODEVM Protocol
The USB-MODEVM is defined to be a Vendor-Specific class, and is identified on the PC system as an
NI-VISA device. Because the TAS1020 has several routines in its ROM which are designed for use with
HID-class devices, HID-like structures are used, even though the USB-MODEVM is not an HID-class
device. Data is passed from the PC to the TAS1020 using the control endpoint.
Data is sent in an HIDSETREPORT (see Table 7):
Table 7. USB Control Endpoint
HIDSETREPORT Request
Part
Value
Description
bmRequestType
0x21
00100001
bRequest
0x09
SET_REPORT
wValue
0x00
don't care
wIndex
0x03
HID interface is index 3
wLength
calculated by host
Data
Data packet as described
below
The data packet consists of the following bytes, shown in Table 8:
Table 8. Data Packet Configuration
BYTE NUMBER
TYPE
DESCRIPTION
0
Interface
Specifies serial interface and operation. The two values are logically OR'd.
Operation:
READ
WRITE
0x00
0x10
GPIO
SPI_16
I2C_FAST
I2C_STD
SPI_8
0x08
0x04
0x02
0x01
0x00
Interface:
1
I2C Slave Address
Slave address of I2C device or MSB of 16-bit reg addr for SPI
2
Length
Length of data to write/read (number of bytes)
3
Register address
Address of register for I2C or 8-bit SPI; LSB of 16-bit address for SPI
4..64
Data
Up to 60 data bytes could be written at a time. EP0 maximum length is 64. The
return packet is limited to 42 bytes, so advise only sending 32 bytes at any one
time.
Example usage:
Write two bytes (AA, 55) to device starting at register 5 of an I2C device with address A0:
[0]
[1]
[2]
[3]
[4]
[5]
36
0x11
0xA0
0x02
0x05
0xAA
0x55
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
Do the same with a fast mode
[0]
[1]
[2]
[3]
[4]
[5]
I2C
device:
0x12
0xA0
0x02
0x05
0xAA
0x55
Now with an SPI device which uses an 8-bit register address:
[0]
[1]
[2]
[3]
[4]
[5]
0x10
0xA0
0x02
0x05
0xAA
0x55
Now let's do a 16-bit register address, as found on parts like the TSC2101. Assume the register address
(command word) is 0x10E0:
[0]
[1]
[2]
[3]
[4]
[5]
0x14
0x10 --> Note: the I2C address now serves as MSB of reg addr.
0x02
0xE0
0xAA
0x55
In each case, the TAS1020 will return, in an HID interrupt packet, the following:
[0]
interface byte | status
status:
REQ_ERROR 0x80
INTF_ERROR 0x40
REQ_DONE 0x20
[1]
for I2C interfaces, the I2C address as sent
for SPI interfaces, the read back data from SPI line for transmission of the corresponding byte
[2]
length as sent
[3]
for I2C interfaces, the reg address as sent
for SPI interfaces, the read back data from SPI line for transmission of the corresponding byte
[4..60]
echo of data packet sent
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
37
www.ti.com
Kit Operation
If the command is sent with no problem, the returning byte [0] should be the same as the sent one
logically or'd with 0x20 - in our first example above, the returning packet should be:
[0]
[1]
[2]
[3]
[4]
[5]
0x31
0xA0
0x02
0x05
0xAA
0x55
If for some reason the interface fails (for example, the I2C device does not acknowledge), it would come
back as:
[0]
[1]
[2]
[3]
[4]
[5]
0x51 --> interface | INTF_ERROR
0xA0
0x02
0x05
0xAA
0x55
If the request is malformed, that is, the interface byte (byte [0]) takes on a value which is not described
above, the return packet would be:
[0]
[1]
[2]
[3]
[4]
[5]
0x93 --> you sent 0x13, which is not valid, so 0x93 returned
0xA0
0x02
0x05
0xAA
0x55
Examples above used writes. Reading is similar:
Read two bytes from device starting at register 5 of an I2C device with address A0:
[0]
[1]
[2]
[3]
38
0x01
0xA0
0x02
0x05
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Kit Operation
The return packet should be
[0]
[1]
[2]
[3]
[4]
[5]
0x21
0xA0
0x02
0x05
0xAA
0x55
assuming that the values we wrote above starting at Register 5 were actually written to the device.
6.16.1.1
GPIO Capability
The USB-MODEVM has seven GPIO lines. You can access them by specifying the interface to be 0x08,
and then using the standard format for packets—but addresses are unnecessary. The GPIO lines are
mapped into one byte (see Table 9):
Table 9. GPIO Pin Assignments
7
6
5
4
3
2
1
0
x
P3.5
P3.4
P3.3
P1.3
P1.2
P1.1
P1.0
Example: write P3.5 to a 1, set all others to 0:
[0]
[1]
[2]
[3]
[4]
0x18
0x00
0x01
0x00
0x40
-->
-->
-->
-->
-->
write, GPIO
this value is ignored
length - ALWAYS a 1
this value is ignored
01000000
You may also read back from the GPIO to see the state of the pins. Let's say we just wrote the previous
example to the port pins.
Example: read the GPIO
[0]
[1]
[2]
[3]
0x08
0x00
0x01
0x00
-->
-->
-->
-->
read, GPIO
this value is ignored
length - ALWAYS a 1
this value is ignored
The return packet should be:
[0]
[1]
[2]
[3]
[4]
6.16.2
0x28
0x00
0x01
0x00
0x40
Writing Scripts
A script is simply a text file that contains data to send to the serial control buses. The scripting language is
quite simple, as is the parser for the language. Therefore, the program is not very forgiving about mistakes
made in the source script file, but the formatting of the file is simple. Consequently, mistakes should be
rare.
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
39
www.ti.com
Kit Operation
Each line in a script file is one command. There is no provision for extending lines beyond one line. A line
is terminated by a carriage return.
The first character of a line is the command. Commands are:
i Set interface bus to use
r Read from the serial control bus
w Write to the serial control bus
# Comment
b Break
d Delay
The first command, i, sets the interface to use for the commands to follow. This command must be
followed by one of the following parameters:
i2cstd
Standard mode I2C Bus
i2cfast
Fast mode I2C bus
spi8
SPI bus with 8-bit register addressing
spi16
SPI bus with 16-bit register addressing
gpio
Use the USB-MODEVM GPIO capability
For example, if a fast mode I2C bus is to be used, the script would begin with:
i i2cfast
No data follows the break command. Anything following a comment command is ignored by the parser,
provided that it is on the same line. The delay command allows the user to specify a time, in milliseconds,
that the script will pause before proceeding.
Note:
UNLIKE ALL OTHER NUMBERS USED IN THE SCRIPT COMMANDS, THE DELAY
TIME IS ENTERED IN A DECIMAL FORMAT. Also, note that because of latency in the
USB bus as well as the time it takes the processor on the USB-MODEVM to handle
requests, the delay time may not be precise.
A series of byte values follows either a read or write command. Each byte value is expressed in
hexadecimal, and each byte must be separated by a space. Commands are interpreted and sent to the
TAS1020 by the program using the protocol described in Section 6.16.1.
The first byte following a read or write command is the I2C slave address of the device (if I2C is used) or
the first data byte to write (if SPI is used—note that SPI interfaces are not standardized on protocols, so
the meaning of this byte will vary with the device being addressed on the SPI bus). The second byte is the
starting register address that data will be written to (again, with I2C; SPI varies—see Section 6.16.1 for
additional information about what variations may be necessary for a particular SPI mode). Following these
two bytes are data, if writing; if reading, the third byte value is the number of bytes to read, (expressed in
hexadecimal).
For example, to write the values 0xAA 0x55 to an I2C device with a slave address of 0x90, starting at a
register address of 0x03, one would write:
#example script
i i2cfast
w 90 03 AA 55
r 90 03 2
This script begins with a comment, specifies that a fast I2C bus will be used, then writes 0xAA 0x55 to the
I2C slave device at address 0x90, writing the values into registers 0x03 and 0x04. The script then reads
back two bytes from the same device starting at register address 0x03. Note that the slave device value
does not change. It is not necessary to set the R/W bit for I2C devices in the script; the read or write
commands will do that for you.
40
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
EVM Bill of Materials
Here is an example of using an SPI device that requires 16-bit register addresses:
# setup TSC2101 for input and output
# uses SPI16 interface
# this script sets up DAC and ADC at full volume, input from onboard mic
#
# Page 2: Audio control registers
w 10 00 00 00 80 00 00 00 45 31 44 FD 40 00 31 C4
w 13 60 11 20 00 00 00 80 7F 00 C5 FE 31 40 7C 00 02 00 C4 00 00 00 23 10 FE 00 FE 00
Note that blank lines are allowed. However, be sure that your script does not end with a blank line. While
ending with a blank line will not cause the script to fail, the program will execute that line, and therefore
may prevent you from seeing data that was written or read back on the previous command.
In this example, the first two bytes of each command are the command word to send to the TSC2101
(0x1000, 0x1360); these are followed by data to write to the device starting at the address specified in the
command word. The second line may wrap in the viewer you are using to look like more than one line;
careful examination will show, however, that there is only one carriage return on that line, following the last
00.
Any text editor may be used to write these scripts; Jedit is an editor that is highly recommended for
general usage. For more information, go to: http://www.jedit.org.
Once the script is written, it can be used in the command window by running the program, and then
selecting Open Command File... from the File menu. Locate your script and open it. The script will then be
displayed in the command buffer. You may also edit the script once it is in the buffer, but saving of the
command buffer is not possible at this time (this feature may be added at a later date).
Once the script is in the command buffer, it may be executed by pressing the Execute Command Buffer
button. If you have placed breakpoints in your script, the script will execute to that point, and you will be
presented with a dialog box with a button to press to continue executing the script. When you are ready to
proceed, push that button and the script will continue.
Here an example of a (partial) script with breakpoints:
# setup AIC33 for input and output
# uses I2C interface
i i2cfast
# reg 07 - codec datapath
w 30 07 8A
r 30 07 1
d 1000
# regs 15/16 - ADC volume, unmute and set to 0dB
w 30 0F 00 00
r 30 0F 2
b
This script writes the value 8A at register 7, then reads it back to verify that the write was good. A delay of
1000ms (one second) is placed after the read to pause the script operation. When the script continues, the
values 00 00 will be written starting at register 0F. This output is verified by reading two bytes, and
pausing the script again, this time with a break. The script would not continue until the user allows it to by
pressing OK in the dialog box that will be displayed due to the break.
7
EVM Bill of Materials
Table 10 and Table 11 contain a complete bill of materials for the modular TLV320AIC33EVM and the
USB-MODEVM Interface Board (included only in the TLV320AIC33EVM-PDK).
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
41
www.ti.com
EVM Bill of Materials
Table 10. TLV320AIC33EVM Bill of Materials
42
REFERENCE DESIGNATOR
DESCRIPTION
MANUFACTURER
MFGPART NUMBER
R8, R9
0Ω 1/4W 5% Chip Resistor
Panasonic
ERJ-8GEY0R00V
R6, R7
2.2KΩ 1/4W 5% Chip Resistor
Panasonic
ERJ-8GEYJ222V
R11, R12, R13
2.7KΩ 1/10W 5% Chip
Resistor
Panasonic
ERJ-3GEYJ272V
R10
100KΩ 1/10W 5% Chip
Resistor
Panasonic
ERJ-3GEYJ104V
R1, R2, R3, R4, R5
Chip Resistor
Not Installed
C12-C17, C34
0.1µF 25V Ceramic Chip
Capacitor, +/ - 10%, X7R
TDK
C1608X7R1E104K
C4-C11, C21, C22
0.1µF 250V Ceramic Chip
Capacitor, +/ - 10%, X7R
TDK
C3216X7R2E104K
C1-C3, C23-C27
10µF 6.3V Ceramic Chip
Capacitor, +/ - 10%, X5R
TDK
C3216X5R0J106K
C28-C33
47µF 6.3V Ceramic Chip
Capacitor, +/ - 20%, X5R
TDK
C3225X5R0J476M
C19, C20
Ceramic Chip Capacitor
Not Installed
C18
Ceramic Chip Capacitor
Not Installed
U1
Audio Codec
Texas Instruments
TLV320AIC33IRGZ
U2
3.3V LDO Voltage Regulator
Texas Instruments
REG1117-3.3
U3
64K I2C EEPROM
MicroChip
24LC64-I/SN
J1-J4, J8-J10
Screw Terminal Block, 2
Position
On Shore Technology
ED555/2DS
J5, J11, J12
Screw Terminal Block, 3
Position
On Shore Technology
ED555/3DS
J6, J7
3.5mm Audio Jack, T-R-S,
SMD
CUI Inc.
SJ1-3515-SMT
or alternate
KobiConn
161-3335
J13A, J14A, J16A, J17A
20 Pin SMT Plug
Samtec
TSM-110-01-L-DV-P
J13B, J14B, J16B, J17B
20 pin SMT Socket
Samtec
SSW-110-22-F-D-VS-K
J15A
10 Pin SMT Plug
Samtec
TSM-105-01-L-DV-P
J15B
10 pin SMT Socket
Samtec
SSW-105-22-F-D-VS-K
N/A
TLV320AIC33EVM PWB
Texas Instruments
6465235
JMP2, JMP3, JMP9,
JMP13-JMP19
2 Position Jumper , 0 .1"
spacing
Samtec
TSW-102-07-L-S
JMP4-JMP8
Bus Wire
JMP1
3 Position Jumper , 0 .1"
spacing
Samtec
TSW-103-07-L-S
JMP10-JMP12
3 X 2 Position Header , 0 .1"
spacing
Samtec
TSW-103-07-L-D
MK1
Omnidirectional Microphone
Cartridge
Knowles Acoustics
MD9745APZ-F
SW1
4PDT Right Angle Switch
E-Switch
EG4208
TP1-TP39
Miniature Test Point Terminal
Keystone Electronics
5000
TP40, TP41
Multipurpose Test Point
Terminal
Keystone Electronics
5011
N/A
Header Shorting Block
Samtec
SNT-100-BK-T
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
EVM Bill of Materials
Table 11. USB-MODEVM Bill of Materials
Designators
Description
Manufacturer
Mfg. Part Number
R4
10Ω 1/10W 5% Chip Resistor
Panasonic
ERJ-3GEYJ1300V
R10, R11
27.4Ω 1/16W 1% Chip Resistor Panasonic
ERJ-3EKF27R4V
R20
75Ω 1/4W 1% Chip Resistor
Panasonic
ERJ-14NF75R0U
R19
220Ω 1/10W 5% Chip Resistor
Panasonic
ERJ-3GEYJ221V
R14, R21, R22
390Ω 1/10W 5% Chip Resistor
Panasonic
ERJ-3GEYJ391V
R13
649Ω 1/16W 1% Chip Resistor
Panasonic
ERJ-3EKF6490V
R9
1.5KΩ 1/10W 5%
Chip Resistor
Panasonic
ERJ-3GEYJ1352V
R1, R2, R3, R5, R6, R7, R8
2.7KΩ 1/10W 5%
Chip Resistor
Panasonic
ERJ-3GEYJ272V
R12
3.09KΩ 1/16W 1%
Chip Resistor
Panasonic
ERJ-3EKF3091V
R15, R16
10KΩ 1/10W 5%
Chip Resistor
Panasonic
ERJ-3GEYJ1303V
R17, R18
100kΩ 1/10W 5%
Chip Resistor
Panasonic
ERJ-3GEYJ1304V
RA1
10KΩ 1/8W Octal Isolated
Resistor Array
CTS Corporation
742C163103JTR
C18, C19
33pF 50V Ceramic
Chip Capacitor, ±5%, NPO
TDK
C1608C0G1H330J
C13, C14
47pF 50V Ceramic
Chip Capacitor, ±5%, NPO
TDK
C1608C0G1H470J
C20
100pF 50V Ceramic
Chip Capacitor, ±5%, NPO
TDK
C1608C0G1H101J
C21
1000pF 50V Ceramic
Chip Capacitor, ±5%, NPO
TDK
C1608C0G1H102J
C15
0.1µF 16V Ceramic
Chip Capacitor, ±10%,X7R
TDK
C1608X7R1C104K
C16, C17
0.33µF 16V Ceramic
Chip Capacitor, +/-20%,Y5V
TDK
C1608X5R1C334K
C9, C10, C11, C12, C22, C23,
C24, C25, C26, C27, C28
1µF 6.3V Ceramic
Chip Capacitor, ±10%, X5R
TDK
C1608X5R0J1305K
C1, C2, C3, C4, C5, C6, C7,
C8
10µF 6.3V Ceramic
Chip Capacitor, ±10%, X5R
TDK
C3216X5R0J1306K
D1
50V, 1A, Diode MELF SMD
Micro Commercial Components DL4001
D2
Yellow Light Emitting Diode
Lumex
SML-LX0603YW-TR
D3, D4, D6, D7
Green Light Emitting Diode
Lumex
SML-LX0603GW-TR
D5
Red Light Emitting Diode
Lumex
SML-LX0603IW-TR
Q1, Q2
N-Channel MOSFET
Zetex
ZXMN6A07F
X1
6MHz Crystal SMD
Epson
MA-505 6.000M-C0
U8
USB Streaming Controller
Texas Instruments
TAS1020BPFB
U2
5V LDO Regulator
Texas Instruments
REG1117-5
U9
3.3V/1.8V Dual Output LDO
Regulator
Texas Instruments
TPS767D318PWP
U3, U4
Quad, Tri-State Buffers
Texas Instruments
SN74LVC125APW
U5, U6, U7
Single IC Buffer Driver with
Open Drain o/p
Texas Instruments
SN74LVC1G07DBVR
U10
Single Tri-State Buffer
Texas Instruments
SN74LVC1G125DBVR
U1
64K 2-Wire Serial EEPROM
I2C
Microchip
24LC64I/SN
USB-MODEVM PCB
Texas Instruments
6463995
SBAU114 – November 2005
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
43
www.ti.com
EVM Bill of Materials
Table 11. USB-MODEVM Bill of Materials (continued)
44
Designators
Description
Manufacturer
Mfg. Part Number
TP1, TP2, TP3, TP4, TP5,
TP6, TP9, TP10, TP11
Miniature test point terminal
Keystone Electronics
5000
TP7, TP8
Multipurpose test point
terminal
Keystone Electronics
5011
J7
USB Type B Slave Connector
Thru-Hole
Mill-Max
897-30-004-90-000000
J13, J2, J3, J4, J5, J8
2-position terminal block
On Shore Technology
ED555/2DS
J9
2.5mm power connector
CUI Stack
PJ-102B
J130
BNC connector, female,
PC mount
AMP/Tyco
414305-1
J131A, J132A, J21A, J22A
20-pin SMT plug
Samtec
TSM-110-01-L-DV-P
J131B, J132B, J21B, J22B
20-pin SMT socket
Samtec
SSW-110-22-F-D-VS-K
J133A, J23A
10-pin SMT plug
Samtec
TSM-105-01-L-DV-P
J133B, J23B
10-pin SMT socket
Samtec
SSW-105-22-F-D-VS-K
J6
4-pin double row header (2x2)
0.1"
Samtec
TSW-102-07-L-D
J134, J135
12-pin double row header (2x6) Samtec
0.1"
TSW-106-07-L-D
JMP1-JMP4
2-position jumper,
0.1" spacing
Samtec
TSW-102-07-L-S
JMP8-JMP14
2-position jumper,
0.1" spacing
Samtec
TSW-102-07-L-S
JMP5, JMP6
3-position jumper,
0.1" spacing
Samtec
TSW-103-07-L-S
JMP7
3-position dual row jumper,
0.1" spacing
Samtec
TSW-103-07-L-D
SW1
SMT, half-pitch 2-position
switch
C&K Division, ITT
TDA02H0SK1
SW2
SMT, half-pitch 8-position
switch
C&K Division, ITT
TDA08H0SK1
Jumper plug
Samtec
SNT-100-BK-T
TLV320AIC33EVM and TLV320AIC33EVM-PDK User's Guide
SBAU114 – November 2005
www.ti.com
Appendix A
Appendix A TLV320AIC33EVM Schematic
The schematic diagram is provided as a reference.
SBAU114 – November 2005
TLV320AIC33EVM Schematic
45
Revision History
REV
JMP4
IOVDD
1
TP14
DIN
TP27
HPROUT
2
DVDD
J7
SW1
TP15
WCLK
WCLK
LINE1LP
1
PLUS
C4
0.1uF
0.1uF
LINE1LM
0.1uF
LINE 1 LEFT IN
TP16
BCLK
BCLK
C5
2
MINUS
TP2
MCLK
0.1uF
10uF
C3
10uF
TP3
C13
J3
C8
C9
7
8
9
10
TP8
LINE2RM
11
14
13
12
RIGHT
2
C1
TP9
MICBIAS
3
10uF
MIC 3 IN
MICBIAS
TP10
MICDET
NI
TP18
B
R6
2.2K
0
R9
0
SJ-3515-SMT-1
TP12
MIC3L
MIC3R
C21
R8
J6
TP11
0.1uF
C22
0.1uF
MIC3L
EXT MIC IN
2
24
17
25
44
36
DRVDD
DRVDD
AVDD_DAC
DVDD
IOVDD
NI
C18, C19, and C20
are not installed, but
can be used to filter
noise.
MONO_LOP
LEFT+
MONO OUT
J9
RIGHT+
MINUS
2
LEFT_LOM
RIGHT_LOP
PLUS1
B
LEFT OUT
J10
TP37
RIGHT-
SCL
R11
MINUS
2
RIGHT_LOM
2.7K
R12
RIGHT OUT
JMP10
2.7K
1
3
5
TP22
SPI SELECT
2
4
6
SPI SELECT
JMP11
1
2
3
4
5
6
1
3
5
TP24
SCLK
SPI SELECT
GPIO2
GPIO1
SS
IOVDD
2
4
6
R2
NI
R4
NI
R3
NI
R5
NI
MOSI
MISO
TP38
GPIO1
ti
R2, R3, R4 and R5 are not
installed, but can be used as
pull ups or pull downs on the
GPIO lines.
SCLK
SCLK
MD9745APZ-F
TP26
MISO
HPR OUT
J8
TP35
IOVDD
SDA
TP25
MOSI
3
2
TP34
LEFT_LOP
PLUS1
TP32
JMP12
MICROPHONE
HPRCOM
HPRCOM
MONO+
PLUS1
TP33
/SS
A
1
TP31
MONO_LOM
TP23
/SS
MK1
MINUS
2
47uF
JMP17
100K
TP20
SCL
C33
MONO- MINUS
2
1
2
1
JMP3
HPLOUT
HPLCOM
HPROUT
HPRCOM
MONO_LOP
MONO_LOM
LEFT_LOP
LEFT_LOM
RIGHT_LOP
RIGHT_LOM
R10
TP21
SDA
MIC3R
JMP2
NI
C20
C
HPROUT
J12
PLUS1
TP36
RESET
HPL OUT
2
47uF
TP30
HPRCOM
18
19
23
22
27
28
29
30
31
32
LEFT-
RESET
3
2
HPROUT
C32
TP19
C19
HPLCOM
HPLCOM
JMP15
1
MICDET
R7
2.2K
1
10uF
DRVSS
AVSS
2
HPCOM
TLV320AIC33IRGZ
C18
1
2
3
MIC3L
MIC3R
MICBIAS
MICDET
26
LEFT
1
R1
NI
LINE2LP
LINE2LM
LINE2RP
LINE2RM
MINUS
2
47uF
JMP14
JMP16
AVSS_DAC
0.1uF
DRVSS
DRVSS
J5
21
20
LINE 2 RIGHT IN
IO/DVSS
LINE2RM
LINE2RP
LINE1LP
LINE1LM
LINE1RP
LINE1RM
42
0.1uF
C11
2
MINUS
3
4
5
6
TP7
RESET
GPIO1
GPIO2
C10
33
35
34
LINE2RP
1
PLUS
MCLK
BCLK
WCLK
DIN
DOUT
U1
LINE2LM
J4
37
38
39
40
41
16
LINE2LP
AVDD_ADC
LINE 2 LEFT IN
C31
1
TP6
0.1uF
AVDD_DAC
0.1uF
C25
MFP2
MFP3
MFP1
MFP0
SELECT
SDA
SCL
LINE2LM
J11
PLUS1
2
C16
47
48
46
45
43
2
1
2
MINUS
C
HPLOUT
47uF
JMP8
10uF
2
HPLOUT
C30
TP29
HPLCOM
1
C2
TP5
0.1uF
JMP13
10uF
0.1uF
AVSS_ADC
LINE2LP
1
PLUS
DRVDD
2
C24
JMP5
TP4
LINE1RM
SJ-3515-SMT-1
HEADSET OUTPUT
0.1uF
LINE1RP
0.1uF
47uF
1
1
LINE1RM
LINE 1 RIGHT IN
C29
C15
AVDD_ADC
2
C7
2
MINUS
TP17
MCLK
TP28
HPLOUT
ESW_EG4208
JMP7
C6
0.1uF
JMP1
C23
1
15
LINE1RP
1
PLUS
MIC BIAS SEL
C14
LINE1LM
J2
+3.3VA
JMP6
C12
1
TP1
LINE1LP
D
C28 47uF
2
DIN
J1
Approved
TP13
DOUT
DOUT
D
ECN Number
DATA ACQUISITION PRODUCTS
HIGH PERFORMANCE ANALOG DIVISION
SEMICONDUCTOR GROUP
TP39
GPIO2
6730 SOUTH TUCSON BLVD., TUCSON, AZ 85706 USA
TITLE
ENGINEER RICK DOWNS
TLV320AIC33EVM
DRAWN BY BOB BENJAMIN
DOCUMENT CONTROL NO. 6465236
SHEET
1
OF
2
SIZE A
DATE 28-Oct-2004
REV B
FILEC:\Work\AIC33\Edge\TLV320AIC33EVM.ddb - Documents\AIC33
A
REVISION HISTORY
REV
ENGINEERING CHANGE NUMBER
APPROVED
D
D
J13
HPLCOM
1
3
5
7
9
11
13
15
17
19
HPRCOM
LINE1LM
LINE1RM
A0(-)
A1(-)
A2(-)
A3(-)
AGND
AGND
AGND
VCOM
AGND
AGND
A0(+)
A1(+)
A2(+)
A3(+)
A4
A5
A6
A7
REFREF+
J16
HPLOUT
2
4
6
8
10
12
14
16
18
20
1
3
5
7
9
11
13
15
17
19
HPROUT
LINE1LP
LINE1RP
MIC3L
MIC3R
MICBIAS
MICDET
CNTL
CLKX
CLKR
FSX
FSR
DX
DR
INT
TOUT
GPIO5
GPIO0
DGND
GPIO1
GPIO2
DGND
GPIO3
GPIO4
SCL
DGND
SDA
2
4
6
8
10
12
14
16
18
20
JMP19
1
DAUGHTER-SERIAL
DAUGHTER-ANALOG
2
RESET
J16A (TOP) = SAM_TSM-110-01-L-DV-P
J16B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
J13A (TOP) = SAM_TSM-110-01-L-DV-P
J13B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
SCLK
SS
GPIO1
GPIO2
TP40
AGND
C
TP41
DGND
JMP9
1
C
SPI SELECT
RESET
2
AVDD_ADC
+3.3VA
AVDD_DAC
MISO
+5VA
3
C17
0.1uF
MOSI
DRVDD
2
VOUT
SCL
C27
10uF
SDA
1
C26
10uF
VIN
GND
U2
REG1117-3.3
DOUT
DIN
WCLK
BCLK
LINE2LP
MONO_LOM
LEFT_LOM
RIGHT_LOP
RIGHT_LOM
+5VA
DAUGHTER-ANALOG
J14A (TOP) = SAM_TSM-110-01-L-DV-P
J14B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
DVDD
+VA
+5VA
DGND
+1.8VD
+3.3VD
GPIO0
DGND
GPIO1
GPIO2
DGND
GPIO3
GPIO4
SCL
DGND
SDA
B
MCLK
DAUGHTER-SERIAL
J15
1
3
5
7
9
CNTL
CLKX
CLKR
FSX
FSR
DX
DR
INT
TOUT
GPIO5
-VA
-5VA
AGND
VD1
+5VD
2
4
6
8
10
J17A (TOP) = SAM_TSM-110-01-L-DV-P
J17B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
6
A0(+)
A1(+)
A2(+)
A3(+)
A4
A5
A6
A7
REFREF+
2
4
6
8
10
12
14
16
18
20
U3
IOVDD
8
R13
2.7K
DAUGHTER-POWER
IOVDD
C34
0.1uF
4
VCC
SCL
LEFT_LOP
A0(-)
A1(-)
A2(-)
A3(-)
AGND
AGND
AGND
VCOM
AGND
AGND
1
3
5
7
9
11
13
15
17
19
VSS
WP
MONO_LOP
LINE2RP
5
LINE2LM
J17
2
4
6
8
10
12
14
16
18
20
SDA
B
J14
1
3
5
7
9
11
13
15
17
19
A0
A1
A2
LINE2RM
7
1
2
3
24LC64I/SN
J15A (TOP) = SAM_TSM-105-01-L-DV-P
J15B (BOTTOM) = SAM_SSW-105-22-F-D-VS-K
2
ti
JMP18
A
1
DATA ACQUISITION PRODUCTS
A
HIGH-PERFORMANCE ANALOG DIVISION
SEMICONDUCTOR GROUP
6730 SOUTH TUCSON BLVD., TUCSON, AZ 85706 USA
TITLE
ENGINEER
RICK DOWNS
DRAWN BY
BOB BENJAMIN
TLV320AIC33EVM INTERFACE
DOCUMENT CONTROL NO. 6465236
SHEET
2
OF
2
FILE
SIZE B
DATE 28-Oct-2004
REV B
C:\Work\AIC33\Edge\TLV320AIC33EVM.ddb - Documents\Daughtercard Interface
www.ti.com
Appendix B
Appendix B USB-MODEVM Schematic
The schematic diagram is provided as a reference.
46
USB-MODEVM Schematic
SBAU114 – November 2005
1
2
3
4
6
5
REVISION HISTORY
REV
IOVDD
R5
2.7K
2
5
9
12
1
USB MCK
4
10
USB I2S
13
J6
Q2
ZXMN6A07F
EXTERNAL I2C
SDA
SCL
WP
8
A0
A1
A2
U1
VCC
C9
1uF
4
1
1
3
5
7
9
11
3
2
44
43
42
41
40
39
37
38
36
35
34
32
R12
3.09K
.001uF
R10
27.4
R11
C13
47pF
C14
47pF
R7
2.7K
JMP8
1
2
P1.2
P1.1
P1.0
+3.3VD
C11
1uF
C12
1uF
C
MOSI
SS
SCLK
RESET
14
VCC
J15
1
3
5
7
9
11
3
6
8
11
1Y
2Y
3Y
4Y
7
GND
2
4
6
8
10
12
EXTERNAL SPI
USB RST
USB SPI
P3.5
JMP13
1
2
D2
+3.3VD
YELLOW
C25
R8
2.7K
P3.4
JMP14
1
2
IOVDD
P3.3
B
U6
1uF
4
2
INT
3
J8
5
B
1A
2A
3A
4A
1OE
2OE
3OE
4OE
JMP12
1
2
SML-LX0603YW-TR
MISO
SN74LVC1G07DBV
SN74LVC125APW
MRESET
649
2
U4
2
5
9
12
1
4
10
13
USB ACTIVE
R13
4
1uF
JMP11
1
2
C10
1uF
EXTERNAL AUDIO DATA
C27 IOVDD
JMP10
1
2
C24
1uF
SW DIP-8
P1.3
JMP9
1
2
SN74LVC1G07DBV
ED555/2DS
+5VD
EXT PWR IN
+1.8VD
R14
390
U9
5
6
4
1
2
3
6VDC-10VDC IN
D3
SML-LX0603GW-TR
JMP6
PWR SELECT
GREEN
3
9
U2
REG1117-5
3
C15 DL4001
0.1uF
VIN
C16
0.33uF
VOUT
GND
D1
10
11
12
2
R15
10K
C6
10uF
1
J9
R16
10K
+5VD
A
+3.3VD
+1.8VD
IOVDD
JMP7
1
2
3
4
5
6
TP6
1IN
1IN
1EN
1GND
2GND
2EN
2IN
2IN
1RESET
1OUT
1OUT
2RESET
2OUT
2OUT
TPS767D318PWP
CUI-STACK PJ102-B
2.5 MM
SW1
1
2
4
3
24
23
22
18
17
R17
100K
C7
10uF
D5
SML-LX0603IW-TR
R18
100K
R4
10
+3.3VD
RED
R19
220
!"
C8
10uF
D4
SML-LX0603GW-TR
C17
0.33uF
1.8VD ENABLE
3.3VD ENABLE
28
GREEN
DATA ACQUISITION PRODUCTS
REGULATOR ENABLE
6730 SOUTH TUCSON BLVD., TUCSON, AZ 85706 USA
TITLE
ENGINEER RICK DOWNS
USB-MODEVM INTERFACE
DRAWN BY ROBERT BENJAMIN
DOCUMENT CONTROL NO. 6463996
SHEET 1
2
A
HIGH PERFORMANCE ANALOG DIVISION
SEMICONDUCTOR GROUP
IOVDD SELECT
1
SW2
1
2
3
4
5
6
7
8
PWR_DWN
U7
31
30
29
27
26
25
24
23
8
21
33
2
16
15
14
13
12
11
10
9
2
4
6
8
10
12
1uF
TP11
+3.3VD
IOVDD
C26
3
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0
DVDD
DVDD
DVDD
AVDD
9
10
11
12
13
14
15
17
18
19
20
22
27.4
XTALO
XTALI
PLLFILI
PLLFILO
MCLKI
PUR
DP
DM
DVSS
DVSS
DVSS
AVSS
MRESET
TEST
EXTEN
RSTO
P3.0
P3.1
P3.2/XINT
P3.3
P3.4
P3.5
NC
NC
7
1
2
3
1.5K
+3.3VD
U8
TAS1020BPFB
SCL
SDA
VREN
RESET
MCLKO2
MCLKO1
CSCLK
CDATO
CDATI
CSYNC
CRESET
CSCHNE
46
47
48
1
3
5
6
7
4
16
28
45
100pF
C21
R9
J14
1uF
33pF
MA-505 6.000M-C0
6.00 MHZ
J7 USB SLAVE CONN
897-30-004-90-000000
I2SDOUT
C23
U5
C19
C20
4
3
2
1
BCLK
SN74LVC1G07DBV
33pF
24LC64I/SN
GND
D+
DVCC
X1
C18
A0
A1
A2
USB I2S
USB MCK
USB SPI
USB RST
EXT MCK
LRCLK
IOVDD
4
VSS
R20
75
MCLK
7
GND
R6
2.7K
RA1
10K
I2SDIN
6
5
+3.3VD
SCL
C
SN74LVC1G125DBV
3
6
8
11
1Y
2Y
3Y
4Y
D
2
SN74LVC125APW
+3.3VD
TP10
14
VCC
+3.3VD
5
1
3
1A
2A
3A
4A
1OE
2OE
3OE
4OE
5
2
4
4
1uF
U3
APPROVED
J10
EXT MCLK
U10
3
R3
2.7K
TP9
SDA
1uF
5
C22
Q1
ZXMN6A07F
D
C28 IOVDD
IOVDD
+3.3VD
ENGINEERING CHANGE NUMBER
3
4
5
OF
2
FILE
SIZE B
REV B
DATE 28-Oct-2004
D:\USB-MODEVM\USB Motherboard - ModEvm.ddb - Documents\USB Interface
6
1
2
3
4
5
6
REVISION HISTORY
REV
ENGINEERING CHANGE NUMBER
APPROVED
D
1
2
3
D
J11
J12
A0(+)
A1(+)
A2(+)
A3(+)
A4
A5
A6
A7
REFREF+
2
4
6
8
10
12
14
16
18
20
+5VA
J13A (TOP) = SAM_TSM-105-01-L-DV-P
J13B (BOTTOM) = SAM_SSW-105-22-F-D-VS-K
DAUGHTER-ANALOG
J11A (TOP) = SAM_TSM-110-01-L-DV-P
J11B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
+5VA
+5VD
JMP1
1
2
+VA
+5VA
DGND
+1.8VD
+3.3VD
-VA
-5VA
AGND
VD1
+5VD
2
4
6
8
10
GPIO0
DGND
GPIO1
GPIO2
DGND
GPIO3
GPIO4
SCL
DGND
SDA
SCLK
SS
P3.3
J12A (TOP) = SAM_TSM-110-01-L-DV-P
J12B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
+5VA
TP2
10uF
C2
+5VD
TP3
10uF
C3
TP4
10uF
JMP3
PWR_DWN
INT
JMP4
MISO
+3.3VD
MOSI
R1
R21
390
J1
-5VA
R22
390
SCL
2.7K
J2
+5VA
D6
SML-LX0603GW-TR
D7
SML-LX0603GW-TR
GREEN
GREEN
J3
+5VD
TP5
+1.8VD
C
RESET
IOVDD
2
C1
P3.5
P1.0
1
-5VA
P3.4
+5VD
JMP2
1
2
TP1
JMP5
2
4
6
8
10
12
14
16
18
20
-5VA
DAUGHTER-POWER
TP7
TP8
AGND
DGND
JPR-2X1
C
CNTL
CLKX
CLKR
FSX
FSR
DX
DR
INT
TOUT
GPIO5
DAUGHTER-SERIAL
J13
1
3
5
7
9
1
3
5
7
9
11
13
15
17
19
2
A0(-)
A1(-)
A2(-)
A3(-)
AGND
AGND
AGND
VCOM
AGND
AGND
1
1
3
5
7
9
11
13
15
17
19
C4
C5
10uF
10uF
J4
+1.8VD
R2
SDA
2.7K
I2SDOUT
J5
+3.3VD
I2SDIN
LRCLK
BCLK
J21
1
3
5
7
9
11
13
15
17
19
B
A0(-)
A1(-)
A2(-)
A3(-)
AGND
AGND
AGND
VCOM
AGND
AGND
J22
A0(+)
A1(+)
A2(+)
A3(+)
A4
A5
A6
A7
REFREF+
2
4
6
8
10
12
14
16
18
20
1
3
5
7
9
11
13
15
17
19
+5VA
DAUGHTER-ANALOG
J21A (TOP) = SAM_TSM-110-01-L-DV-P
J21B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
+1.8VD
+VA
+5VA
DGND
+1.8VD
+3.3VD
GPIO0
DGND
GPIO1
GPIO2
DGND
GPIO3
GPIO4
SCL
DGND
SDA
2
4
6
8
10
12
14
16
18
20
P1.1
B
P1.2
P1.3
MCLK
DAUGHTER-SERIAL
J23
1
3
5
7
9
CNTL
CLKX
CLKR
FSX
FSR
DX
DR
INT
TOUT
GPIO5
-VA
-5VA
AGND
VD1
+5VD
2
4
6
8
10
-5VA
J22A (TOP) = SAM_TSM-110-01-L-DV-P
J22B (BOTTOM) = SAM_SSW-110-22-F-D-VS-K
DAUGHTER-POWER
+3.3VD
+5VD
J23A (TOP) = SAM_TSM-105-01-L-DV-P
J23B (BOTTOM) = SAM_SSW-105-22-F-D-VS-K
!"
A
DATA ACQUISITION PRODUCTS
A
HIGH-PERFORMANCE ANALOG DIVISION
SEMICONDUCTOR GROUP
6730 SOUTH TUCSON BLVD., TUCSON, AZ 85706 USA
TITLE
ENGINEER
RICK DOWNS
DRAWN BY
ROBERT BENJAMIN
USB-MODEVM INTERFACE
DOCUMENT CONTROL NO. 6463996
SHEET 2
1
2
3
4
5
OF
2
FILE
SIZE B
REV B
DATE 28-Oct-2004
D:\USB-MODEVM\USB Motherboard - ModEvm.ddb - Documents\Daughtercard Interface
6
www.ti.com
Appendix B
FCC Warnings
This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency
energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules,
which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which case the user at his own expense will be required to
take whatever measures may be required to correct this interference.
EVM TERMS AND CONDITIONS
Texas Instruments (TI) provides the enclosed Evaluation Module and related material (EVM) to you, the user, (you or user)
SUBJECT TO the terms and conditions set forth below. By accepting and using the EVM, you are indicating that you have read,
understand and agree to be bound by these terms and conditions. IF YOU DO NOT AGREE TO BE BOUND BY THESE TERMS
AND CONDITIONS, YOU MUST RETURN THE EVM AND NOT USE IT.
This EVM is provided to you by TI and is intended for your INTERNAL ENGINEERING DEVELOPMENT OR EVALUATION
PURPOSES ONLY. It is provided “AS IS” and “WITH ALL FAULTS.” It is not considered by TI to be fit for commercial use. As
such, the EVM may be incomplete in terms of required design-, marketing-, and/or manufacturing-related protective considerations,
including product safety measures typically found in the end product. As a prototype, the EVM does not fall within the scope of the
European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.
Should this EVM not meet the specifications indicated in the EVM User’s Guide, it may be returned within 30 days from the date of
delivery for a full refund of any amount paid by user for the EVM, which user agrees shall be user’s sole and exclusive remedy.
THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER, AND IS IN LIEU OF ALL OTHER
WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS
FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT.
TI shall have no obligation to defend any claim arising from the EVM, including but not limited to claims that the EVM infringes third
party intellectual property. Further, TI shall have no liability to user for any costs, losses or damages resulting from any such
claims. User shall indemnify and hold TI harmless against any damages, liabilities or costs resulting from any claim, suit or
proceeding arising from user’s handling or use of the EVM, including but not limited to, (i) claims that the EVM infringes a third
party’s intellectual property, and (ii) claims arising from the user’s use or handling of the EVM. TI shall have no responsibility to
defend any such claim, suit or proceeding.
User assumes all responsibility and liability for proper and safe handling and use of the EVM and the evaluation of the EVM. TI
shall have no liability for any costs, losses or damages resulting from the use or handling of the EVM. User acknowledges that the
EVM may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the EVM it is the
user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE USER’S INDEMNITY OBLIGATIONS SET FORTH ABOVE, NEITHER PARTY SHALL BE
LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHETHER TI IS
NOTIFIED OF THE POSSIBILITY OR NOT.
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software performance, or infringement of
patents or services described herein.
User agrees to read the EVM User’s Guide and, specifically, the EVM warnings and Restrictions notice in the EVM User’s Guide
prior to handling the EVM and the product. This notice contains important safety information about temperatures and voltages.
It is user’s responsibility to ensure that persons handling the EVM and the product have electronics training and observe good
laboratory practice standards.
By providing user with this EVM, product and services, TI is NOT granting user any license in any patent or other intellectual
property right.
EVM WARNINGS AND RESTRICTIONS
It is important to operate this EVM within the input voltage range of 3.3 V to 5 V and the output voltage range of 0 V to 5 V.
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are
questions concerning the input range, please contact a TI field representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the
EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load
specification, please contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than 30°C. The EVM is designed to
operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components
include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of
devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near
these devices during operation, please be aware that these devices may be very warm to the touch.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2005, Texas Instruments Incorporated
SBAU114 – November 2005
USB-MODEVM Schematic
47
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising