datasheet for EMC2112-BP

datasheet for EMC2112-BP
EMC2112
RPM-Based Linear Fan
Controller with Hardware
Thermal Shutdown
PRODUCT FEATURES
Datasheet
General Description
Applications
The EMC2112 is an SMBus, closed-loop, RPM-based
fan driver with hardware (HW) thermal shutdown and
reset controller. The EMC2112 offers a single High Side
fan driver capable of sourcing up to 600mA from a 5V
supply.
̈
The EMC2112 utilizes Beta Compensation (an
implementation of the BJT or transistor model for
thermal diodes) and Resistance Error Correction (REC)
to accurately monitor up to three (3) external
temperature zones. These features allow great accuracy
for CPU substrate thermal diodes on multiple process
geometries as well as with discrete diode-connected
transistors. Both Beta Compensation and REC can be
disabled on the EMC2112 to maintain accuracy when
monitoring AMD thermal diodes.
̈
̈
̈
Features
The EMC2112 also provides 5V supply ‘power good’
function with a threshold of 4.5V. This function is
provided on the RESET pin.
1% accuracy with external clock input
3% accuracy with internal clock
Internal clock can be used as a source
Aging fan detection
̈
Integrated Linear Fan Driver
̈
HW Thermal Shutdown (SYS_SHDN)
— 600mA drive capability
— 1°C incremental set points for thermal shutdown
— Cannot be disabled by software
̈
Provides Reset Function (RESET) On 5V Supply
Up to Three (3) Remote Thermal Zones
— ±1°C accuracy (60°C to 100°C)
— 0.125°C resolution
— Designed to support 45nm, 65nm, and 90nm CPU
Diodes using BJT and transistor model
— Eliminates temperature offset due to series resistance
from PCB traces and thermal ‘Diode’
̈
Operates From Single 3.0 - 3.6V Supply
̈
SMBus 2.0 and I2C compatible
— 5V supply for linear fan driver and reset generator
— User selectable SMBus address using pull-up resistor
on ADDR_SEL pin
— Supports Block Read and Write functionality
̈
SMSC EMC2112
Closed-Loop RPM-Based Fan Controller
—
—
—
—
̈
The EMC2112 provides a stand-alone HW thermal
shutdown block. The HW thermal shutdown logic can be
configured for a few common configurations based on
the strapping level of the SHDN_SEL pin on the PCB.
The HW thermal shutdown point can be set in 1°C
increments by using a discrete resistor connected to the
TRIP_SET pin.
Notebook Computers
Desktop Computers
Embedded Applications
Available in 20-pin, 4x4 QFN Lead-free RoHS
Compliant package
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
ORDERING INFORMATION:
ORDERING NUMBER
EMC2112-BP-TR
PACKAGE
FEATURES
20-pin QFN 4mm x 4mm
(Lead-Free RoHS
compliant)
Three External Diodes. High Side Fan driver
w/ RPM based Fan Speed Control algorithm.
Reset generator. Hardware set critical
temperature limit
REEL SIZE IS 4,000 PIECES
This product meets the halogen maximum concentration values per IEC61249-2-21
For RoHS compliance and environmental information, please visit www.smsc.com/rohs
Please contact your SMSC sales representative for additional documentation related to this product
such as application notes, anomaly sheets, and design guidelines.
Copyright © 2009 SMSC or its subsidiaries. All rights reserved.
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 0.88 (11-20-09)
2
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table of Contents
Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2 Pin Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
2.2
Pin Layout for EMC2112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Description for EMC2112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
3.2
3.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1
4.2
System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1
SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2
SMBus Address and RD / WR Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3
SMBus Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.4
SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.5
SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.6
SMBus Time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.7
SMBus and I2C Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2
Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3
Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4
Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.5
Block Write Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.6
Block Read Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.7
Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
16
16
17
17
17
17
17
17
18
18
18
18
19
19
19
Chapter 5 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
Fan Control Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RPM-Based Fan Speed Control Algorithm (FSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1
Programming the RPM-Based Fan Speed Control Algorithm . . . . . . . . . . . . . . . . . . . . .
Tachometer Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
Stalled Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
Aging Fan or Invalid Drive Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3
Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spin Up Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ramp Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1
Temperature Bypass of Ramp Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.1
Power Up Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.2
Continuous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Side Fan Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1
Overcurrent Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Thermal Shutdown (TSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Critical/Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9.1
TRIP_SET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9.2
SHDN_SEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9.3
Internal HW_SHDN Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5V Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC EMC2112
3
DATASHEET
21
21
22
22
22
23
23
23
24
25
25
26
26
26
26
26
26
27
29
29
30
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
5.11
5.12
Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.1 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.2 Resistance Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.3 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.4 Digital Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12.1 Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
31
31
31
32
32
32
Chapter 6 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1
Lock Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Critical/Thermal Shutdown Temperature Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TripSet Voltage Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Beta Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REC Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Critical Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Error Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.12.1 Tcrit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Setting Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Configuration 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Spin Up Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Max Step Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Minimum Drive Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Valid TACH Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Drive Fail Band Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TACH Target Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TACH Reading Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product Features Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manufacturer ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
36
36
37
38
38
39
41
41
42
43
44
45
45
46
46
47
47
48
48
50
51
52
53
54
54
55
55
55
56
57
57
58
58
Chapter 7 Typical Operating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Chapter 8 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.1
8.2
EMC2112 Package Drawings - 20-Pin QFN 4mm x 4mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Package Marking Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Revision 0.88 (11-20-09)
4
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
List of Figures
Figure 1.1
Figure 2.1
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
EMC2112 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
EMC2112 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
EMC2112 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Spin Up Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Ramp Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
EMC2112 Critical/Thermal Shutdown Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
HW_SHDN Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5V Reset Controller Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Diode Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
EMC2112 Package Drawing - 20-Pin QFN 4mm x 4mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
EMC2112 Package Dimensions and Notes - 20-Pin QFN 4mm x 4mm . . . . . . . . . . . . . . . . 63
EMC2112 PCB Footprint - 20-Pin QFN 4mm x 4mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
EMC2112 Package Markings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SMSC EMC2112
5
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
List of Tables
Table 2.1 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4.1 ADDR_SEL Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4.2 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4.3 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4.4 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4.5 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4.6 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4.7 Block Write Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4.8 Block Read Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4.9 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5.1 Fan Controls Active for Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5.2 TRIP_SET Resistor Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 5.3 SHDN_SEL Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 5.4 Dynamic Averaging Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6.1 EMC2112 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 6.3 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.4 Critical/Thermal Shutdown Temperature Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.5 Critical / Thermal Shutdown Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.6 TripSet Voltage Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6.7 Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6.8 Ideality Factor Look-Up Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6.9 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6.10 Beta Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6.11 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 6.12 REC Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.13 Tcrit Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.14 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 6.15 Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 6.16 Fault Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6.17 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6.18 Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6.19 Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 6.20 Fan Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 6.21 Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 6.22 Fan Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 6.23 Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 6.24 Fan Setting Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 6.25 Fan Configuration 1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 6.26 Range Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 6.27 Minimum Edges for Fan Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 6.28 Update Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 6.29 Fan Configuration 1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 6.30 Derivative Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 6.31 Error Range Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 6.32 Gain Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 6.33 Gain Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 6.34 Fan Spin Up Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Revision 0.88 (11-20-09)
6
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.35 DRIVE_FAIL_CNT[1:0] Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.36 Spin Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.37 Spin Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.38 Fan Max Step Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.39 Minimum Fan Drive Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.40 Valid TACH Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.41 Fan Drive Fail Band Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.42 TACH Target Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.43 TACH Reading Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.44 Software Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.45 Product Features Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.46 ADDR_SEL Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.47 SHDN_CH Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.48 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.49 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.50 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC EMC2112
7
DATASHEET
52
53
53
53
54
54
55
55
55
56
57
57
57
57
58
58
65
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
ADDR_SEL
RESET
VDD_3V
SHDN_SEL
SYS_SHDN
Chapter 1 Block Diagram
VDD_5V
TRIP_SET
DP1
DN1
DP2 / DN3
DN2 / DP3
Reset
Generator
Critical / Thermal
Shutdown Logic
SMBus
Slave
Protocol
SMCLK
SMDATA
ALERT
External
Temp
Diodes
Antiparallel
Diode
Ext Temp
Limit
Registers
Analog
Mux
11 bit Σ Δ
ADC
Internal
Temp
Diode
Ext. Temp Registers
Voltage Reading
Bandgap
Reference
Voltage ->
Temperature
Converison
CLK
TACH
TACH
Monitor
FAN (2)
High Side
Fan Driver
VDD_5V (2)
8-bit DAC
Automatic
Fan Control
Algorithm
Register
Set and
Logic
Figure 1.1 EMC2112 Block Diagram
Revision 0.88 (11-20-09)
8
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 2 Pin Layout
16 VDD_5V
17 FAN
18 FAN
19 VDD_5V
Pin Layout for EMC2112
20 TACH
2.1
15 SMCLK
VDD_3V 1
DN1 2
14 SMDATA
EMC2112
20-pin
QFN 4mm x
4mm
DP1 3
DN2 / DP3 4
13 GND
12 ALERT
11 CLK
ADDR_SEL 10
RESET 9
SYS_SHDN 8
TRIP_SET 7
SHDN_SEL 6
DP2 / DN3 5
GND
Figure 2.1 EMC2112 Pin Diagram
2.2
Pin Description for EMC2112
Table 2.1 Pin Description
PIN
NAME
FUNCTION
TYPE
1
VDD_3V
3.3V Supply Voltage
Power
2
DN1
Negative (cathode) Analog Input for External
Diode 1
AIO
3
DP1
Positive (anode) Analog Input for External Diode
1
AIO
4
DN2 / DP3
Negative (cathode) Analog Input for External
Diode 2 and Positive (anode) Analog Input for
External Diode 3
AIO
SMSC EMC2112
9
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 2.1 Pin Description (continued)
PIN
NAME
FUNCTION
TYPE
5
DP2 / DN3
Positive (anode) Analog Input for External Diode
2 and Negative (cathode) Analog Input for
External Diode 3
AIO
6
SHDN_SEL
Determines HW Shutdown temperature channel
DIT
7
TRIP_SET
Voltage input to determine HW Shutdown
threshold temperature
AIO
8
SYS_SHDN
Active low Critical System Shutdown output
OD (5V)
9
RESET
Push-Pull, active low reset output
DO
10
ADDR_SEL
Selects SMBus Address
DIT
11
CLK
Tachometer clock input
DI (5V)
Tachometer clock output
DO
12
ALERT
Open drain, active low interrupt. Requires
external pull-up resistor
OD (5V)
13
GND
Ground Connection
Power
14
SMDATA
SMBus data input/output - requires external pullup resistor
DIOD (5V)
15
SMCLK
SMBus clock input - requires external pull-up
resistor
DI (5V)
16
VDD_5V
5V supply input for the linear fan driver. Both
VDD_5V pins should be connected to same 5V
supply.
Power
17
FAN
Linear fan drive signal. Both FAN pins should be
connected together.
AO
18
FAN
Linear fan drive signal. Both FAN pins should be
connected together.
AO
19
VDD_5V
5V supply input for the linear fan driver. Both
VDD_5V pins should be connected to same 5V
supply.
Power
20
TACH
Tachometer input from Fan
DI (5V)
The pin type are described in Table 2.2. All pins labeled with (5V) are 5V tolerant.
Table 2.2 Pin Types
Revision 0.88 (11-20-09)
PIN TYPE
DESCRIPTION
Power
This pin is used to supply power or ground to the device.
DI
Digital Input - this pin is used as a digital input. This pin is
5V tolerant.
AO
Analog Output - this pin is used as an output for analog
signals.
AIO
Analog Input / Output - this pin is used as an I/O for analog
signals.
10
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 2.2 Pin Types (continued)
PIN TYPE
DO
SMSC EMC2112
DESCRIPTION
Push / Pull Digital Output - this pin is used as a digital
output. It can both source and sink current.
DIOD
Digital Input / Open Drain Output - this pin is used as a
digital I/O. When it is used as an output, it is open drain
and requires a pull-up resistor. This pin is 5V tolerant.
DIO
Digital Input / Output - this pin is used as a digital I/O. It is
push-pull and can sink or source up to 8mA.
OD
Open Drain Digital Output - this pin is used as a digital
output. It is open drain and requires a pull-up resistor. This
pin is 5V tolerant.
DIT
Tri-stated Digital Input - this pin is a digital input that
supports 3 logic levels at the input: logic high, logic low, or
high impedance (open).
11
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 3 Electrical Specifications
3.1
Absolute Maximum Ratings
Table 3.1 Absolute Maximum Ratings
Voltage on VDD_5V Pins and 5V tolerant pins (see Table 2.1)
-0.3 to 6.5
V
Voltage on VDD_3V pin
-0.3 to 4
V
Voltage on FAN pins
-0.3 to VDD_5V + 0.3
V
Voltage on any other pin to GND
-0.3 to VDD_3V + 0.3
V
Package Power Dissipation
0.9 up to TA = 85°C Note 3.2
W
Junction to Ambient - 20 pin QFN (θJA) Note 3.3
40
°C/W
Operating Ambient Temperature Range
0 to 85
°C
Operating Die Temperature Range
0 to 125
°C
Storage Temperature Range
-55 to 150
°C
ESD Rating, All Pins, HBM
2000
V
These ratings are absolute maximum values. Exceeding these values or operating at these values for
an extended period of time may cause permanent damage to the device.
3.2
Note 3.1
All voltages are relative to ground.
Note 3.2
The Package Power Dissipation specification assumes a thermal via design consisting of
four 20mil vias connected to the ground plane with a 2.6mm x 2.6mm thermal landing.
Note 3.3
Junction to Ambient (θJA) is dependent on the design of the thermal vias. Without thermal
vias and a thermal landing, the θJA is approximately 60°C/W including localized PCB
temperature increase.
Electrical Specifications
Table 3.2 Electrical Specifications
VDD_3V = 3V to 3.6V, VDD_5V = 4.6V - 5.5V, TA = 0°C to 85°C
all Typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNIT
CONDITIONS
DC Power
3.3V Supply Voltage
VDD_3V
3
3.3
3.6
V
5V Supply Voltage
VDD_5V
4.6
5
5.5
V
1.6
mA
Fan Driver enabled
4 conversions / sec
uA
Fan Driver enabled
Supply Current from
VDD_3V pin
IDD3
0.750
Supply Current from
VDD_5V pin
IDD5
50
Revision 0.88 (11-20-09)
12
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 3.2 Electrical Specifications (continued)
VDD_3V = 3V to 3.6V, VDD_5V = 4.6V - 5.5V, TA = 0°C to 85°C
all Typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNIT
CONDITIONS
External Temperature Monitors
Temperature
Accuracy
Temperature
Resolution
±0.25
±1
°C
60°C < T DIODE < 100°C
30°C < T DIE < 85°C ( Note 3.4)
±0.5
±2
°C
0°C < T DIODE < 125°C,
0°C < T DIE < 115°C ( Note 3.4)
0.125
°C
Diode Decoupling
Capacitor
CFILTER
2700
pF
Resistance Error
Corrected
RSERIES
100
Ohm
Connected across external
2N3904 diode or AMD diode
(Note 3.5)
Series resistance in DP and DN
lines
Internal Temperature Monitor
Temperature
Accuracy
±1
±2
Temperature
Resolution
0.125
°C
( Note 3.4)
°C
Reset Generator
Reset Voltage
VRESET
4.3
4.4
4.5
V
Hysteresis
ΔVRESET
100
mV
Time Delay
tRESET
220
ms
VDD_5V rising edge
3V < VDD_3V < 3.6V
High Side Fan Driver
Output High Voltage
from 5V Supply
VOH_5V
VDD_5
V - 0.4
V
Fan Drive Current
ISOURCE
600
mA
Overcurrent Limit
IOVER
1500
mA
Momentary Current drive at
startup for < 2 seconds
DC Short Circuit
Current Limit
ISHORT
800
mA
Sourcing current, Thermal
shutdown not triggered,
FAN_OUT = 0V
Short Circuit Delay
tDFS
2
s
Output Capacitive
Load
CLOAD
ESR on CLOAD
RESR
0
100
uF
2
Ohm
ISOURCE = 600mA, VDD_5V =
5V
RPM-Based Fan Controller
TACH Range
SMSC EMC2112
TACH
480
16000
13
DATASHEET
RPM
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 3.2 Electrical Specifications (continued)
VDD_3V = 3V to 3.6V, VDD_5V = 4.6V - 5.5V, TA = 0°C to 85°C
all Typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
RPM Control
Accuracy
MIN
TYP
MAX
UNIT
CONDITIONS
ΔTACH
±0.25
±0.5
%
External oscillator 32.768kHz
ΔTACH
±0.5
±1
%
Internal Oscillator
40°C < T DIE < 100°C
Thermal Shutdown
Thermal Shutdown
Threshold
TSDTH
150
°C
Thermal Shutdown
Hysteresis
TSDHYST
50
°C
SMBus and Digital I/O pins
Output High Voltage
VOH
Output Low Voltage
VOL
3.3
VDD
_3V-0.4
0.5
V
4 mA current drive
V
4 mA current sink
Note 3.4
TDIE refers to the internal die temperature and may not match TA due to self heating of
the device. The internal temperature sensor will return TDIE.
Note 3.5
Contact SMSC for Application Notes and guidelines when measuring GPU processor
diodes and CPU processor diodes.
Note 3.6
The ALERT, SYS_SHDN, SMDATA, and SMCLK pins will not glitch low upon power up
when pulled to VDD or another voltage.
SMBus Electrical Specifications
Table 3.3 SMBus Electrical Specifications
VDD_3V = 3V to 3.6V, VDD_5V = 4.6 to 5.5V, TA = 0°C to 85°C
Typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
SMBus Interface
Input High Voltage
VIH
Input Low Voltage
VIL
Input High/Low Current
Input Capacitance
IIH / IIL
2.0
V
-1
CIN
Output Low Sink Current
0.8
V
1
uA
5
pF
4
mA
SMDATA = 0.5V
SMBus Timing
Clock Frequency
Spike Suppression
Revision 0.88 (11-20-09)
fSMB
10
tSP
400
kHz
50
ns
14
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 3.3 SMBus Electrical Specifications (continued)
VDD_3V = 3V to 3.6V, VDD_5V = 4.6 to 5.5V, TA = 0°C to 85°C
Typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
tBUF
1.3
us
Setup Time: Start
tSU:STA
0.6
us
Setup Time: Stop
tSU:STP
0.6
us
Data Hold Time
tHD:DAT
0.6
6
us
Data Setup Time
tSU:DAT
0.6
72
us
Clock Low Period
tLOW
1.3
us
Clock High Period
tHIGH
0.6
us
Clock/Data Fall time
tFALL
300
ns
Min = 20+0.1CLOAD ns
Clock/Data Rise time
tRISE
300
ns
Min = 20+0.1CLOAD ns
CLOAD
400
pF
per bus line
Bus Free Time Start to
Stop
Capacitive Load
SMSC EMC2112
TYP
MAX
15
DATASHEET
UNITS
CONDITIONS
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 4 System Management Bus Interface Protocol
4.1
System Management Bus Interface Protocol
The EMC2112 communicates with a host controller, such as an SMSC SIO, through the SMBus. The
SMBus is a two-wire serial communication protocol between a computer host and its peripheral
devices. A detailed timing diagram is shown in Figure 4.1. Stretching of the SMCLK signal is supported,
however the EMC2112 will not stretch the clock signal.
T HIGH
T LOW
T HD:STA
T SU:STO
T FALL
SMCLK
T RISE
T HD:STA
T SU:DAT
T HD:DAT
T SU:STA
SMDATA
T BUF
P
S
S
S - Start Condition
P - Stop Condition
P
Figure 4.1 SMBus Timing Diagram
4.1.1
SMBus Start Bit
The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic
‘0’ state while the SMBus Clock line is in a logic ‘1’ state. When the EMC2112 detects an SMBus Start
bit, it will disable the BC-Link protocol circuitry and communicate using the SMBus Protocol
4.1.2
SMBus Address and RD / WR Bit
The SMBus Address Byte consists of the 7-bit client address followed by a -bit RD / WR indicator. If
this RD / WR bit is a logic ‘0’, then the SMBus Host is writing data to the client device. If this RD / WR
bit is a logic ‘1’, then the SMBus Host is reading data from the client device.
The slave address is determined at power up by the pin-state of the ADDR_SEL pin as shown in
Table 4.1.
Table 4.1 ADDR_SEL Pin Configuration
Revision 0.88 (11-20-09)
ADDR_SEL PIN STATE
SMBUS SLAVE ADDRESS
‘0’
0101_111xb
‘High Z’
0111_101xb
‘1’
0101_110xb
16
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
4.1.3
SMBus Data Bytes
All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information.
4.1.4
SMBus ACK and NACK Bits
The SMBus client will acknowledge all data bytes that it receives (as well as the client address if it
matches and the ARA address if the ATF_INT# pin is asserted). This is done by the client device
pulling the SMBus Data line low after the 8th bit of each byte that is transmitted.
The Host will NACK (not acknowledge) the data received from the client by holding the SMBus data
line high after the 8th data bit has been sent.
4.1.5
SMBus Stop Bit
The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic
‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the EMC2112 detects an SMBus Stop
bit, and it has been communicating with the SMBus protocol, it will reset its client interface and prepare
to receive further communications.
4.1.6
SMBus Time-out
The EMC2112 includes an SMBus time-out feature. Following a 30ms period of inactivity on the
SMBus, the device will time-out and reset the SMBus interface. The timeout can be disabled by setting
the DIS_TO bit in the Configuration 2 register.
4.1.7
SMBus and I2C Compliance
The major difference between SMBus and I2C devices is highlighted here. For complete compliance
information refer to the SMBus 2.0 specification.
1. Minimum frequency for SMBus communications is 10kHz.
2. The client protocol will reset if the clock is held for longer than 30ms.
3. The slave protocol will reset if both the clock and data lines are held high for longer than 150us.
4. I2C devices do not support the Alert Response Address functionality (which is optional for SMBus).
5. The Block Read and Block Write protocols are only compliant with I2C data formatting. They do
not support SMBus formatting for Block Read and Block Write protocols.
4.2
SMBus Protocols
The EMC2112 is SMBus 2.0 compatible and supports Send Byte, Read Byte, Receive Byte and Write
Byte as valid protocols as shown below. It will respond to the Alert Response Address protocol but is
not in full compliance.
All of the below protocols use the convention in Table 4.2.
Table 4.2 Protocol Format
DATA SENT
TO DEVICE
# of bits sent
SMSC EMC2112
DATA SENT TO
THE HOST
# of bits sent
17
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
4.2.1
Write Byte
The Write Byte is used to write one byte of data to the registers as shown below Table 4.3:
Table 4.3 Write Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
REGISTER
DATA
ACK
STOP
1 -> 0
0111_101
0
0
XXh
0
XXh
0
0 -> 1
4.2.2
Read Byte
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.4.
Table 4.4 Read Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
Register
Address
ACK
START
Slave
Address
RD
ACK
Register
Data
NACK
STOP
1 -> 0
0111_101
0
0
XXh
0
0 -> 1
0111_101
1
0
XXh
1
0 -> 1
4.2.3
Send Byte
The Send Byte protocol is used to set the internal address register pointer to the correct address
location. No data is transferred during the Send Byte protocol as shown in Table 4.5.
Table 4.5 Send Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
STOP
1 -> 0
0111_101
0
0
XXh
0
0 -> 1
4.2.4
Receive Byte
The Receive Byte protocol is used to read data from a register when the internal register address
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads
of the same register as shown in Table 4.6.
Table 4.6 Receive Byte Protocol
START
SLAVE
ADDRESS
RD
ACK
REGISTER DATA
NACK
STOP
1 -> 0
0111_101
1
0
XXh
1
0 -> 1
Revision 0.88 (11-20-09)
18
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
4.2.5
Block Write Protocol
The Block Write is used to write multiple data bytes to a group of contiguous registers as shown in
Table 4.7. It is an extension of the Write Byte Protocol.
Table 4.7 Block Write Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
REGISTER
DATA
ACK
1 ->0
0111_101
0
0
XXh
0
XXh
0
REGISTER
DATA
ACK
REGISTER
DATA
ACK
...
REGISTER
DATA
ACK
STOP
XXh
0
XXh
0
...
XXh
0
0 -> 1
4.2.6
Block Read Protocol
The Block Read is used to read multiple data bytes from a group of contiguous registers as shown in
Table 4.8. It is an extension of the Read Byte Protocol.
Table 4.8 Block Read Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
START
SLAVE
ADDRESS
RD
ACK
REGISTER
DATA
1->0
0111_101
0
0
XXh
0
1 ->0
0111_101
1
0
XXh
ACK
REGISTER
DATA
ACK
REGISTER
DATA
ACK
REGISTER
DATA
ACK
...
REGISTER
DATA
NACK
STOP
0
XXh
0
XXh
0
XXh
0
...
XXh
1
0 -> 1
4.2.7
Alert Response Address
The ALERT output can be used as a processor interrupt or as an SMBus Alert when configured to
operate as an interrupt.
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)
to the general address of 0001_100xb. All devices with active interrupts will respond with their client
address as shown in Table 4.9.
Table 4.9 Alert Response Address Protocol
START
ALERT
RESPONSE
ADDRESS
RD
ACK
DEVICE
ADDRESS
NACK
STOP
0 -> 1
0001_100
1
0
0111_1010b
1
1 -> 0
The EMC2112 will respond to the ARA in the following way if the ALERT pin is asserted.
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication
from the device was not prematurely stopped due to a bus contention event).
2. Set the MASK bit to clear the ALERT pin.
SMSC EMC2112
19
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 5 General Description
The EMC2112 monitors up to three (3) external temperature channels. Each of the external
temperature channels can employ both Beta Compensation (an implementation of the BJT or transistor
model for thermal diodes) and Resistance Error Correction for use with thermal diodes while the third
channel is hardwired to measure a discrete diode connected NPN or PNP transistor. The temperature
data is available over a standard 2-wire serial interface using SMBus read commands. The
temperature monitoring is described in more detail in Section 5.11, "Temperature Monitoring".
The EMC2112 includes a closed-loop RPM-based Fan Control Algorithm for each fan driver. The host
writes the desired fan speed into a register of the EMC2112 via the SMBus and the integrated fan
controller will maintain the fan at the desired speed using fan speed feedback from the TACH output
from a 3-wire fan. The fan control algorithm controls an integrated 5V, 600mA, linear fan driver.
The EMC2112 provides the system with a hardware based critical/thermal shutdown function. This
critical/thermal shutdown function integrates critical signals from both the CPU and power supply and
the analog circuitry to monitor a specific temperature channel based on the system configuration. The
critical/thermal shutdown temperature threshold is configured on the PCB through a simple discrete
resistor. The Critical/Thermal Shutdown function is described in more detail in Section 5.9,
"Critical/Thermal Shutdown".
An example of a typical system configuration for the EMC2112 is provided in Figure 5.1.
5V
3.3V
3.3V
VDD_3V VDD_5V(2)
SMCLK
RESET
KBC
SMDATA
FAN(2)
ALERT
3.3V
3.3V
ADDR_SEL
EMC2112
CPU
Thermal
diode
Optional Antiparallel Diode
tachometer
TACH
DP1
3.3V
DN1
DP2 / DN3
SYS_SHDN
DN2 / DP3
SHDN_SEL
3.3V
VREF
CLK_IN
TRIP_SET
GND
32.768kHz clock
Figure 5.1 EMC2112 System Diagram
Revision 0.88 (11-20-09)
20
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
5.1
Fan Control Modes of Operation
The EMC2112 has two modes of operation for the fan driver. Each mode of operation uses the Ramp
Rate control and Spin Up Routine.
1. Direct Setting Mode - in this mode of operation, the user directly controls the fan drive setting.
Updating the Fan Driver Setting Register (see Section 6.17) will instantly update the fan drive.
Ramp Rate control is optional and enabled via the EN_RRC bits.
̈
Whenever the Direct Setting Mode is enabled, the current drive will be changed to what was
last written into the Fan Driver Setting Register.
2. Fan Speed Control Mode (FSC) - in this mode of operation, the user determines a target
tachometer count and the drive setting is automatically updated to achieve this target speed. The
algorithm uses the Spin Up Routine and has user definable ramp rate controls.
Table 5.1 Fan Controls Active for Operating Mode
DIRECT SETTING MODE
FSC MODE
Fan Driver Setting (read / write)
Fan Driver Setting (read only)
EDGES[1:0]
EDGES[1:0]
(Fan Configuration)
-
RANGE[1:0]
(Fan Configuration)
UPDATE[2:0]
(Fan Configuration)
UPDATE[2:0]
(Fan Configuration)
LEVEL
(Spin Up Configuration)
LEVEL
(Spin Up Configuration)
SPINUP_TIME[1:0]
(Spin Up Configuration)
SPINUP_TIME[1:0]
(Spin Up Configuration)
Fan Max Step
Fan Max Step
-
Fan Minimum Drive
Valid TACH Count
Valid TACH Count
-
TACH Target (read / write)
TACH Reading
TACH Reading
-
DRIVE_FAIL_CNT[1:0] and Drive Band Fail Registers
5.2
RPM-Based Fan Speed Control Algorithm (FSC)
The EMC2112 includes a RPM-based Fan Speed Control Algorithm for the fan driver.
This fan control algorithm uses Proportional, Integral, and Derivative terms to automatically approach
and maintain the system’s desired fan speed to an accuracy directly proportional to the accuracy of
the clock source.
The desired tachometer count is set by the user inputting the desired number of 32.768KHz cycles
that occur per fan revolution. This is done by setting the TACH Target Register. The user may change
the target count at any time. The user may also set the target count to FFh in order to disable the fan
driver for lower current operation.
SMSC EMC2112
21
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
For example, if a desired RPM rate for a 2-pole fan is 3000 RPMs, then the user would input the
hexidecimal equivalent of 1296 (51h in the TACH Target Register). This number represents the number
of 32.768KHz cycles that would occur during the time it takes the fan to complete a single revolution
when it is spinning at 3000RPMs.
The EMC2112’s RPM-based Fan Speed Control Algorithm has programmable configuration settings
for parameters such as ramp-rate control and spin up conditions. The fan driver automatically detects
and attempts to alleviate a stalled/stuck fan condition while also asserting the ALERT pin. The
EMC2112 works with fans that operate up to 16,000 RPMs and provide a valid tachometer signal. The
fan controller will function either with an externally supplied 32.768KHz clock source or with it’s own
internal 32kHz oscillator depending on the required accuracy.
5.2.1
Programming the RPM-Based Fan Speed Control Algorithm
The RPM-based Fan Speed Control Algorithm is disabled upon device power up. The following
registers control the algorithm. The EMC2112 fan control registers are pre-loaded with defaults that
will work for a wide variety of fans so only the TACH Target Register is required to set a fan speed.
The other fan control registers can be used to fine-tune the algorithm behavior based on application
requirements.
Note that steps 1 - 6 are optional and need only be performed if the default settings do not provide
the desired fan response.
1. Set the Spin Up Configuration Register to the Spin Up Level and Spin Time desired.
2. Set the Fan Step Register to the desired step size.
3. Set the Fan Minimum Drive Register to the minimum drive value that will maintain fan operation.
4. Set the Update Time, and Edges options in the Fan Configuration Register.
5. Set the Valid TACH Count Register to the highest tach count that indicates the fan is spinning.
6. Set the TACH Target Register to the desired tachometer count.
7. Enable the RPM-based Fan Speed Control Algorithm by setting the EN_ALGO bit.
5.3
Tachometer Measurement
The tachometer measurement circuitry is used in conjunction with the RPM-based Fan Speed Control
Algorithm to update the fan driver output. Additionally, it can be used in Direct Setting mode as a
diagnostic for host based fan control.
This method monitors the TACH signal in real time. It constantly updates the tachometer measurement
by reporting the number of clocks between a user programmed number of edges on the TACH signal.
The tachometer measurement provides fast response times for the RPM-based Fan Speed Control
Algorithm and the data is presented as a count value that represents the fan RPM period. When this
method is used, all fan target values must be input as a count value for proper operation.
APPLICATION NOTE: The tachometer measurement method works independently of the drive settings. If the
device is put into Direct Setting and the fan drive is set at a level that is lower than the fan
can operate (including zero drive), then the tachometer measurement may signal a Stalled
Fan condition and assert an interrupt.
5.3.1
Stalled Fan
A Stalled fan is detected if the tach counter exceeds the user-programmable Valid TACH Count setting
then it will flag the fan as stalled and trigger an interrupt.
If the RPM-based Fan Speed Control Algorithm is enabled, the algorithm will automatically attempt to
restart the fan until it detects a valid tachometer level or is disabled.
Revision 0.88 (11-20-09)
22
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
The FAN_STALL Status bit indicates that a stalled fan was detected. This bit is checked conditionally
depending on the mode of operation.
5.3.2
̈
Whenever the Direct Setting Mode is enabled or whenever the Spin Up Routine is enabled, the
FAN_STALL interrupt will be masked for the duration of the programmed Spin Up Time (see
Section 6.21) to allow the fan an opportunity to reach a valid speed without generating unnecessary
interrupts.
̈
In Direct Setting Mode with the tachometer measurement using the Tach Period Measurement
method, whenever the TACH Reading Register value exceeds the Valid TACH Count Register
setting, the FAN_STALL status bit will be set.
̈
When using the RPM-based Fan Speed Control Algorithm, the stalled fan condition is checked
whenever the Update Time is met and the fan drive setting is updated. It is not a continuous check.
Aging Fan or Invalid Drive Detection
This is useful to detect aging fan conditions (where the fan’s natural maximum speed degrades over
time) or incorrect fan speed settings. The EMC2112 contains circuitry that detects that the programmed
fan speed can be reached by the fan. If the target fan speed cannot be reached within a user defined
band of tach counts at maximum drive then the DRIVE_FAIL status bits are set and the ALERT pin is
asserted.
5.3.3
Clock Source
The CLK pin can be configured as an input for the EMC2112 or as an output to drive additional devices
with the internally generated tachometer clock (see Section 6.9).
When the CLK pin is configured as an input to the EMC2112, then a 32.768kHz clock must be
provided. This clock is used to by the Tachometer measurement circuitry and will directly affect the
accuracy of this measurement.
When the CLK pin is configured as an output, then it will be driven at the same frequency as the
internal tachometer clock.
5.4
Spin Up Routine
The EMC2112 also contains programmable circuitry to control the spin up behavior of the fan driver
to ensure proper fan operation.
The Spin Up Routine is initiated in Direct Setting mode when the setting value changes from 00h to
anything else.
When the Fan Speed Control Algorithm is enabled, the Spin Up Routine is initiated under the following
conditions when the Tach Period Measurement method of tach measurement is used:
1. The TACH Target Register value changes from a value of FFh to a value that is less than the Valid
TACH Count (see Section 6.24).
2. The RPM-based Fan Speed Control Algorithm’s measured TACH Reading Register value is greater
than the Valid TACH Count setting.
When the Spin Up Routine is operating, the fan driver is set to full scale (optional) for one quarter of
the total user defined spin up time. For the remaining spin up time, the fan driver output is set a a user
defined level (30% through 65% drive).
After the Spin Up Routine has finished, the EMC2112 measures the TACH signal. If the measured
TACH Reading Register value is higher than the Valid TACH Count Register setting, the FAN_SPIN
status bit is set and the Spin Up Routine will automatically attempt to restart the fan.
Figure 5.2 shows an example of the Spin Up Routine in response to a programmed fan speed change
based on the first condition above.
SMSC EMC2112
23
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
100%
(optional)
30% through 65%
Fan Step
New Target Count
Algorithm controlled drive
Prev Target
Count = FFh
¼ of Spin Up Time
Update Time
Spin Up Time
Check TACH
Target Count
Changed
Target Count
Reached
Figure 5.2 Spin Up Routine
5.5
Ramp Rate Control
The Fan Driver can be configured with automatic ramp rate control. Ramp rate control is accomplished
by adjusting the drive output settings based on the Maximum Fan Step Register settings and the
Update Time settings.
If the RPM-based Fan Speed Control Algorithm is used, then this ramp rate control is automatically
used. The user programs a maximum step size for the fan drive setting and an update time. The
update time varies from 100ms to 1.6s while the fan drive maximum step can vary from 1 count to 31
counts.
When a new fan drive setting is entered, the delta from the next fan drive setting and the previous fan
drive setting is determined. If this delta is greater than the Max Step settings, then the fan drive setting
is incrementally adjusted every 100ms to 1.6s as determined by the Update Time until the target fan
drive setting is reached. See Figure 5.3.
Revision 0.88 (11-20-09)
24
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Next Desired
Setting
Max
Step
Max
Step
Previous
Setting
Update
Time
Update
Time
Setting Changed
Figure 5.3 Ramp Rate Control
5.5.1
Temperature Bypass of Ramp Rate Control
As an optional feature, the Ramp Rate Control functionality can be disabled if any of the measured
temperature channels exceed their respective high limits. In this mode, once the high limit has been
exceeded, the ramp rate controls are removed which allows the fan to move instantly to the
programmed drive setting (using the FSC or in manual mode).
5.6
Watchdog Timer
The EMC2112 contains an internal Watchdog Timer for the fan driver. The Watchdog timer monitors
the SMBus traffic for signs of activity and works in two different modes based upon device operation.
These modes are Power Up Operation and Continuous Operation as described below.
For either mode of operation, if four (4) seconds elapse without activity detected by the host, then the
watchdog will be triggered and the following will occur:
1. The WATCH status bit will be set which will cause the ALERT pin to be asserted.
2. The fan driver will be set to full scale drive. It will remain at full scale drive until it is disabled.
APPLICATION NOTE: When the Watchdog timer is activated the Fan Speed Control Algorithm is automatically
disabled. Disabling the Watchdog will not automatically set the fan drive nor re-activate the
Fan Speed Control Algorithm. This must be done manually.
SMSC EMC2112
25
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
5.6.1
Power Up Operation
The Watchdog Timer only starts immediately after power-up and once it has been triggered or
deactivated will not restart (however can be configured to operate in Continuous operation)
In the Power Up Operation, the Watchdog Timer is disabled by any of the following actions:
1. Writing the Fan Setting Register will disable the Watchdog Timer.
2. Enabling the RPM-based Fan Speed Control Algorithm by setting the EN_ALGO bit will disable the
Watchdog Timer. The fan driver will be set based on the RPM-based Fan Speed Control Algorithm.
3. Changing the Watchdog operating mode by setting the WD_EN bit.
Writing any other configuration registers will not disable the Watchdog Timer upon power up.
5.6.2
Continuous Operation
When configured to operate in Continuous Operation, the Watchdog timer will start immediately. It can
be disabled by any access (read or write) to the SMBus register set. Upon completion of SMBus
activity, the Watchdog timer is reset and restarted.
5.7
High Side Fan Driver
The EMC2112’s integrates a 5V, 600mA, linear high side fan driver to directly drive a 5V fan. By fully
integrating the linear fan driver, the typical requirement for the discrete pass device and other external
linearization circuitry is completely eliminated.
5.7.1
Overcurrent Limit
The High Side Fan Driver contains circuitry to allow for significant over current levels to accommodate
transient conditions on the FAN pins. The over current limit is dependent upon the output voltage with
the limit dropping as the voltage nears 0V.
If the fan driver current detects a short-circuit condition for longer than 2 seconds, then the I_SHORT
status bit is set and an interrupt generated. Additionally, the High Side Fan Driver will be disabled for
8 seconds. After this 8 second time has elapsed, it will be allowed to restart invoking the Spin Up
Routine before returning to its previous drive setting.
APPLICATION NOTE: If the FSC Algorithm is active, then it will generate errant SPIN_FAIL interrupts during the 8
second time that the fan driver is held off.
5.8
Internal Thermal Shutdown (TSD)
The EMC2112 contains an internal thermal shutdown circuit that monitors the internal die temperature.
If the die temperature exceeds the Thermal Shutdown Threshold (see Table 3.2), then the following
will occur:
1. The High Side Fan Driver is disabled. It will remain disabled until the internal temperature drops
below the threshold temperature minus 50°C.
2. The TSD Status bit is set.
3. The SYS_SHDN pin is asserted.
5.9
Critical/Thermal Shutdown
The EMC2112 provides a hardware Critical/Thermal Shutdown function for systems. Figure 5.4 is a
block diagram of this Critical/Thermal Shutdown function. The Critical/Thermal Shutdown function in
Revision 0.88 (11-20-09)
26
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
the EMC2112 consists of both analog and digital functions. It accepts configuration information from
the fixed states of the SHDN_SEL pin as described in Section 5.9.2.
Each of the temperature limits can be configured to act as inputs to the Critical / Thermal Shutdown
independent of the hardware shutdown operation.
The analog portion of the Critical/Thermal Shutdown function monitors a specific remote temperature
channel (configured with the SHDN_SEL pin). This measured temperature is then compared with the
TRIP_SET point. This TRIP_SET point is created by the system designer with a simple resistor and
is discussed in detail in Section 5.9.1.
Critical Shutdown Logic
Register Enabled
Sensor
Configuration
Register
Temperature
Conversion
and Limit
Registers
Register Enabled
Sensor
SMBus Traffic
SW_SHDN
Register Enabled
Sensor
External
Diode 1 / 2
Switch
External Diode 1
or External Diode 2
PIN
Decode
SHDN_SEL
Temperature
Conversion
SYS_SHDN
VREF
Voltage
Conversion
TRIP_SET
Figure 5.4 EMC2112 Critical/Thermal Shutdown Block Diagram
5.9.1
TRIP_SET Pin
The EMC2112’s TRIP_SET pin is an analog input to the Critical/Thermal Shutdown block which sets
the Thermal Shutdown temperature. The system designer creates a voltage level at the input through
a simple resistor connected to GND as shown in Figure 5.1. The value of this resistor is used to create
an input voltage on the TRIP_SET pin which is translated into a temperature ranging from 60°C to
122°C enumerated in Table 5.2.
VTRIP is the TRIP_SET
voltage
T TRIP – T MIN
V TRIP = ---------------------------------80
SMSC EMC2112
TMIN is the minimum
temperature based on the
range
27
DATASHEET
[1]
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 5.2 TRIP_SET Resistor Setting
TTRIP (°C
RSET (1%)
T TRIP (°C)
RSET (1%)
60
0.0
92
1240
61
28.7
93
1330
62
48.7
94
1400
63
69.8
95
1500
64
90.9
96
1580
65
113
97
1690
66
137
98
1820
67
158
99
1960
68
182
100
2050
69
210
101
2210
70
237
102
2370
71
261
103
2550
72
294
104
2740
73
324
105
2940
74
348
106
3160
75
383
107
3480
76
412
108
3740
77
453
109
4120
78
487
110
4530
79
523
111
4990
80
562
112
5490
81
604
113
6040
82
649
114
6810
83
698
115
7870
84
750
116
9090
85
787
117
10700
86
845
118
12700
87
909
119
15800
88
953
120
20500
Revision 0.88 (11-20-09)
28
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 5.2 TRIP_SET Resistor Setting (continued)
5.9.2
TTRIP (°C
RSET (1%)
T TRIP (°C)
RSET (1%)
89
1020
121
29400
90
1100
122
49900
91
1150
60
Open
SHDN_SEL Pin
The EMC2112 has one ‘strappable’ input (SHDN_SEL) allowing for configuration of the hardware
Critical/Thermal Shutdown. This pin has 3 possible states and is monitored and decoded by the
EMC2112 at power-up. The three possible states are 0 (tied to GND), 1 (tied to 3.3V) or High-Z (open).
The states of this pin determine which remote temperature channel and configuration is used by the
Critical/Thermal Shutdown function. The different configurations of SHDN_SEL pin are described in
Table 5.3
A channel that is configured via the SHDN_SEL pin for the Critical/Thermal Shutdown is locked and
none of the configuration registers associated with it can be updated via the SMBus. The other two
temperature channels, however, are still configurable via the SMBus.
Table 5.3 SHDN_SEL Pin Configuration
SHDN_SEL
‘0’
High-Z (open)
‘1’
5.9.3
FUNCTION NAME
CRITICAL/THERMAL SHUTDOWN DETAILS
Intel Transistor Mode
(substrate PNP)
The external diode 1 channel is configured with Beta
Compensation enabled and Resistance Error Correction
enabled (with automatic detection). This mode is ideal for
monitoring a substrate transistor such as an Intel CPU
thermal diode.
AMD CPU / Diode
Mode
The external diode 1 channel is configured with Beta
Compensation disabled and Resistance Error Correction
disabled. This mode is ideal for monitoring an AMD
processor diode or a 2N3904 diode.
External Diode 2
Diode Mode
The External Diode 2 channel is linked to the Hardware set
Thermal / Critical shutdown circuitry and configured with Beta
Compensation enabled (with automatic detection) and REC
enabled.
Internal HW_SHDN Signal
The HW_SHDN output from the Critical/Thermal Shutdown Monitor is a logical indicator of the
temperature state of the chosen external diode channel. HW_SHDN is an internal signal routed as an
input to the Thermal / Critical Shutdown logic.
The HW_SHDN output is set to logic ‘1’ when the indicated temperature exceeds the temperature
threshold (TP) established by the TRIP_SET input pin (as shown in Figure 5.5) for a number of
consecutive measurements defined by the fault queue. If the HW_SHDN output is asserted and the
temperature drops below TP, then it will be set to a logic ‘0’ state.
SMSC EMC2112
29
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Temperature
Exceeds TP
Measurements End
Temperature
drops to TP or
below
TP
Temperature
not
defined
HW_SHDN
After 4th measurement,
HW_SHDN set
Figure 5.5 HW_SHDN Operation
5.10
5V Reset Controller
The EMC2112 also provides a ‘power-good’ reset controller for the system’s 5V supply rail. The reset
controller will set the RESET pin to a logic ‘0’ after power-up and set the RESET pin to a logic ‘1’
220ms after the VDD_5V supply rises above its threshold voltage (see Table 3.2).
If the VDD_5V supply drops below the reset threshold, the RESET pin will be set to ‘0’ immediately.
VDD_5V
Reset Threshold (4.4V)
Reset Threshold hysteresis (4.3V)
220ms
RESET#
Figure 5.6 5V Reset Controller Timing
5.11
Temperature Monitoring
The EMC2112 can monitor the temperature of up to three (3) externally connected diodes as well as
the internal or ambient temperature. Each channel is configured with the following features enabled or
disabled based on user settings and system requirements.
Revision 0.88 (11-20-09)
30
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
5.11.1
Dynamic Averaging
The EMC2112 supports dynamic averaging. When enabled, this feature changes the conversion time
for all external diode channels based on the selected conversion rate. This essentially increases the
averaging factor as shown in Table 5.4. The benefits of Dynamic Averaging are improved noise
rejection due to the longer integration time as well as less random variation on the temperature
measurement.
Table 5.4 Dynamic Averaging Behavior
AVERAGING FACTOR (RELATIVE TO 11-BIT CONVERSION)
FOR EXTERNAL DIODE CHANNELS
5.11.2
CONVERSION RATE
DYNAMIC AVERAGING
ENABLED
DYNAMIC AVERAGING
DISABLED
1 / sec
8x
1x
2 / sec
4x
1x
4 / sec
2x
1x
8 / sec
1x
1x
Resistance Error Correction
The EMC2112 includes active Resistance Error Correction to remove the effect of up to 100 ohms of
series resistance. Without this automatic feature, voltage developed across the parasitic resistance in
the remote diode path causes the temperature to read higher than the true temperature is. The error
induced by parasitic resistance is approximately +0.7°C per ohm. Sources of parasitic resistance
include bulk resistance in the remote temperature transistor junctions, series resistance in the CPU,
and resistance in the printed circuit board traces and package leads. Resistance error correction in the
EMC2112 eliminates the need to characterize and compensate for parasitic resistance in the remote
diode path.
5.11.3
Beta Compensation
The forward current gain, or beta, of a transistor is not constant as emitter currents change. This beta
variation causes the measured VBE (which is related to the collector current which, in turn, is related
to beta) to shift in a way that is not predicted by the ratio of emitter currents being forced into the
device. This shift cause an error in the temperature measurement. Compensating for this error is also
known as implementing the BJT or transistor model for temperature measurement.
For discrete transistors configured with the collector and base shorted together, the beta is generally
sufficiently high such that the percent change in beta variation is very small. For example, a 10%
variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute
approximately 0.25°C error at 100°C. However for s ubstrate transistors where the base-emitter junction
is used for temperature measurement and the collector is tied to the substrate, the proportional beta
variation will cause large error. For example, a 10% variation in beta for two forced emitter currents
with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.
The Beta Compensation circuitry in the EMC2112 corrects for this beta variation to eliminate any error
which would normally be induced. This Beta Compensation circuitry automatically detects the type of
diode connected and adjusts the beta settings accordingly.
SMSC EMC2112
31
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
5.11.4
Digital Averaging
The External Diode 1 channel support a 4x digital averaging filter. Every cycle, this filter updates the
temperature data based an a running average of the last 4 measured temperature values. The digital
averaging reduces temperature flickering and increases temperature measurement stability.
The digital averaging can be disabled by setting the DIS_AVG bit in the Configuration 2 Register (see
Section 6.10).
5.12
Diode Connections
The diode connection for the External Diode 1 and External Diode 2 channels are determined at
power-up based on the SHDN_SEL pin (see Section 5.9.2). This channel can support a diodeconnected transistor (such as a 2N3904) or a substrate transistor (such as those found in an CPU or
GPU) as shown in Figure 5.7.
The External Diode 3 channel is available when the External Diode 2 channel is configured to operate
is an anti-parallel diode pair. In this mode, both the External Diode 2 and External Diode 3 diodes must
be connected in the anti-parallel configuration as shown in Figure 5.7
Diode 3
to DP
Diode 2
to DP
to DP
to
DP /
DN
to DN
to DN
to
DN /
DP
to DN
Local
Ground
Typical remote
substrate transistor
i.e. CPU substrate PNP
Typical remote
discrete PNP transistor
i.e. 2N3906
Typical remote
discrete NPN transistor
i.e. 2N3904
Anti-parallel diodes using
discrete NPN transistors
Figure 5.7 Diode Connections
5.12.1
Diode Faults
The EMC2112 actively detects an open and short condition on each measurement channel. When a
diode fault is detected, the temperature data most significant byte is forced to a value of 80h and the
FAULT bit is set in the Status Register.
Revision 0.88 (11-20-09)
32
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 6 Register Set
6.1
Register Map
The following registers are accessible through the SMBus Interface. All register bits marked as ‘-’ will
always read ‘0’. A write to these bits will have no effect.
Table 6.1 EMC2112 Register Set
ADDR
R/W
REGISTER
NAME
FUNCTION
DEFAULT
VALUE
LOCK
PAGE
Temperature Registers
00h
R
Internal Temp
Reading High
Byte
Stores the integer data of the Internal
Diode
00h
No
Page 36
01h
R
Internal Temp
Reading Low Byte
Stores the fractional data of the Internal
Diode
00h
No
Page 36
02h
R
External Diode 1
Temp Reading
High Byte
Stores the integer data of External
Diode 1 channel
00h
No
Page 36
03h
R
External Diode 1
Temp Reading
Low Byte
Stores the fractional data of External
Diode 1
00h
No
Page 36
04h
R
External Diode 2
Temp Reading
High Byte
Stores the integer data of External
Diode 2 channel
00h
No
Page 36
05h
R
External Diode 2
Temp Reading
Low Byte
Stores the fractional data of External
Diode 2
00h
No
Page 36
06h
R
External Diode 3
Temp Reading
High Byte
Stores the integer data of External
Diode 3 channel
00h
No
Page 36
07h
R
External Diode 3
Temp Reading
Low Byte
Stores the fractional data of External
Diode 3
00h
No
Page 36
0Ah
R
Critical/Thermal
Shutdown
Temperature
Stores the calculated Critical/Thermal
Shutdown temperature high limit
derived from the voltage on TRIP_SET
7Fh
(+127°C)
No
Page 37
10h
R
Trip Set Voltage
Stores the raw measured TRIP_SET
voltage input
FFh
No
Page 38
Diode Configuration
11h
R/W
External Diode 1
Ideality
Configures Ideality Factor settings for
External Diode 1
12h
SWL
Page 38
12h
R/W
External Diode 2
Ideality
Configures Ideality Factor settings for
External Diode 2
12h
SWL
Page 38
13h
R/W
External Diode 3
Ideality
Configures Ideality Factor settings for
External Diode 3
12h
SWL
Page 38
SMSC EMC2112
33
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2112 Register Set (continued)
REGISTER
NAME
DEFAULT
VALUE
LOCK
PAGE
Configures the beta compensation
settings for External Diode 1
10h
SWL
Page 39
External Diode 2
Beta
Configuration
Configures the beta compensation
settings for External Diode 2
10h
SWL
Page 39
R/W
External Diode
REC
Configuration
Configures the Resistance Error
Correction functionality for all external
diodes
07h
SWL
Page 41
19h
R/W
External Diode 1
Tcrit Limit
Stores the Critical temperature limit for
the External Diode 1
64h
(100°C)
Write
Lock
Page 41
1Ah
R/W
External Diode 2
Tcrit Limit
Stores the Critical temperature limit for
the External Diode 2
64h
(100°C)
Write
Lock
Page 41
1Bh
R/W
External Diode 3
Tcrit Limit
Stores the Critical temperature limit for
the External Diode 3
64h
(100°C)
Write
Lock
Page 41
1Dh
R/W
Internal Diode
Tcrit Limit
Stores the Critical temperature limit for
the Internal Diode
64h
(100°C)
Write
Lock
Page 41
ADDR
R/W
14h
R/W
External Diode 1
Beta
Configuration
15h
R/W
17h
FUNCTION
Configuration and Control
1Fh
R-C
Tcrit Limit Status
Stores the status bits for all temperature
channel Tcrit limits
00h
No
Page 45
20h
R/W
Configuration
Configures the Thermal / Critical
Shutdown masking options and
software lock
00h
SWL
Page 42
21h
R/W
Configuration 2
Controls the conversion rate for
monitoring of all channels
0Eh
SWL
Page 43
23h
R-C
Interrupt Status
Stores the status bits for temperature
channels
00h
No
Page 44
24h
R-C
High Limit Status
Stores the status bits for all temperature
channel high limits
00h
No
Page 45
26h
R-C
Diode Fault
Stores the status bits for all temperature
channel diode faults
00h
No
Page 45
27h
R-C
Fan Status
Stores the status bits for the RPMbased Fan Speed Control Algorithm
00h
No
Page 46
28h
R/W
Interrupt Enable
Register
Controls the masking of interrupts on all
temperature channels
00h
No
Page 46
29h
R/W
Fan Interrupt
Enable Register
Controls the masking of interrupts on all
fan related channels
00h
No
Page 47
Temperature Limit Registers
30h
R/W
External Diode 1
Temp High Limit
High limit for External Diode 1
55h
(+85°C)
SWL
Page 47
31h
R/W
External Diode 2
Temp High Limit
High limit for External Diode 2
55h
(+85°C)
SWL
Page 47
Revision 0.88 (11-20-09)
34
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2112 Register Set (continued)
REGISTER
NAME
ADDR
R/W
FUNCTION
32h
R/W
External Diode 3
Temp High Limit
High limit for External Diode 3
34h
R/W
Internal Diode
High Limit
High Limit for Internal Diode
DEFAULT
VALUE
LOCK
PAGE
55h
(+85°C)
SWL
Page 47
55h
(85°C)
SWL
Page 47
00h
No
Page 48
Fan Control Registers
40h
R/W
Fan Setting
Always displays the most recent fan
driver input setting for the Fan. If the
RPM-based Fan Speed Control
Algorithm is disabled, allows direct user
control of the fan driver.
42h
R/W
Fan Configuration
1
Sets configuration values for the RPMbased Fan Speed Control Algorithm for
the Fan driver
2Bh
No
Page 48
43h
R/W
Fan Configuration
2
Sets additional configuration values for
the Fan driver
28h
SWL
Page 50
45h
R/W
Gain
Holds the gain terms used by the RPMbased Fan Speed Control Algorithm for
the Fan driver
2Ah
SWL
Page 51
46h
R/W
Fan Spin Up
Configuration
Sets the configuration values for Spin
Up Routine of the Fan driver
19h
SWL
Page 52
47h
R/W
Fan Step
Sets the maximum change per update
for the Fan driver
10h
SWL
Page 53
48h
R/W
Fan Minimum
Drive
Sets the minimum drive value for the
Fan driver
66h
(40%)
SWL
Page 54
49h
R/W
Fan Valid TACH
Count
Holds the minimum tachometer reading
that indicates the fan is spinning
properly
F5h
SWL
Page 54
4Ah
R/W
Fan Drive Fail
Band Low Byte
00h
SWL
4Bh
R/W
Fan Drive Fail
Band High Byte
Stores the number of Tach counts used
to determine how the actual fan speed
must match the target fan speed at full
scale drive
00h
SWL
4Ch
R/W
TACH Target Low
Byte
Holds the target tachometer reading low
byte the Fan
F8h
No
Page 55
4Dh
R/W
TACH Target High
Byte
Holds the target tachometer reading
high byte for the Fan
FFh
No
Page 55
4Eh
R
TACH Reading
High Byte
Holds the tachometer reading high byte
for the Fan
FFh
No
Page 55
4Fh
R
TACH Reading
Low Byte
Holds the tachometer reading low byte
for the Fan
F8h
No
Page 55
00h
SWL
Page 56
Page 55
Lock Register
EF
R/W
SMSC EMC2112
Software Lock
Locks all SWL registers
35
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2112 Register Set (continued)
ADDR
REGISTER
NAME
R/W
FUNCTION
DEFAULT
VALUE
LOCK
PAGE
Revision Registers
FCh
R
Product Features
Stores information about which pin
controlled product features are set
00h
No
Page 57
FDh
R
Product ID
Stores the unique Product ID
15h
No
Page 57
FEh
R
Manufacturer ID
Stores the Manufacturer ID
5Dh
No
Page 58
FFh
R
Revision
Revision
01h
No
Page 58
During Power-On-Reset (POR), the default values are stored in the registers. A POR is initiated when
power is first applied to the part and the voltage on the VDD_3V supply surpasses the POR level as
specified in the electrical characteristics. Any reads to undefined registers will return 00h. Writes to
undefined registers will not have an effect.
6.1.1
Lock Entries
The Lock Column describes the locking mechanism, if any, used for individual registers. All SWL
registers are Software Locked and therefore made read-only when the LOCK bit is set.
6.2
Temperature Data Registers
Table 6.2 Temperature Data Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
00h
R
Internal Diode
High Byte
Sign
64
32
16
8
4
2
1
00h
01h
R
Internal Diode
Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
02h
R
External
Diode 1 High
Byte
Sign
64
32
16
8
4
2
1
00h
03h
R
External
Diode 1 Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
04h
R
External
Diode 2 High
Byte
Sign
64
32
16
8
4
2
1
00h
05h
R
External
Diode 2 Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
06h
R
External
Diode 3 High
Byte
Sign
64
32
16
8
4
2
1
00h
07h
R
External
Diode 3 Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
Revision 0.88 (11-20-09)
36
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
The temperature measurement range is from -64°C to +128°C. The data format is a signed two’s
complement number as shown in Table 6.3.
APPLICATION NOTE: When the External Diode 3 channel is not enabled, the data bytes will read 00h.
Table 6.3 Temperature Data Format
TEMPERATURE (°C)
BINARY
HEX (AS READ BY
REGISTERS)
Diode Fault
1000_0000_000b
80_00h
-63.875
1100_0000_001b
C0_20h
-63
1100_0001_000b
C1_00h
-1
1111_1111_000b
FF_00h
-0.125
1111_1111_111b
FF_E0h
0
0000_0000_000b
00_00h
0.125
0000_0000_001b
00_20h
1
0000_0001_000b
01_00h
63
0011_1111_000b
3F_00h
64
0100_0000_000b
40_00h
65
0100_0001_000b
41_00h
127
0111_1111_000b
7F_00h
127.875
0111_1111_111b
7F_E0h
6.3
Critical/Thermal Shutdown Temperature Registers
Table 6.4 Critical/Thermal Shutdown Temperature Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
0Ah
R
Critical/Thermal
Shutdown
Temperature
-
64
32
16
8
4
2
1
7Fh
(+127°C)
The Critical/Thermal Shutdown Temperature Register is a read-only register that stores the Voltage
Programmable Threshold temperature used in the Thermal / Critical Shutdown circuitry. The contents
of the register reflect the calculated temperature based on the TRIP_SET voltage. This register is
updated at the end of every monitoring cycle based on the current value of the TRIP_SET voltage.
The data format is shown in Table 6.5.
Table 6.5 Critical / Thermal Shutdown Data Format
TEMPERATURE (°C)
BINARY
HEX
0
0000_0000b
00h
1
0000_0001b
01h
SMSC EMC2112
37
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.5 Critical / Thermal Shutdown Data Format (continued)
TEMPERATURE (°C)
BINARY
HEX
63
0011_1111b
3Fh
64
0100_0000b
40h
65
0100_0001b
41h
127
0111_1111b
7Fh
6.4
TripSet Voltage Register
Table 6.6 TripSet Voltage Register
ADDR
R/W
10h
R
REGISTER
TripSet
Voltage
B7
400
B6
200
B5
B4
100
50
B3
25
B2
B1
12.5
6.25
B0
3.125
DEFAULT
FFh
The TripSet Voltage Register stores the measured voltage on the TRIP_SET pin that is used to
calculate the Critical / Thermal Shutdown temperature. Each bit weight represents mV of resolution so
that the final voltage can be determined by adding the appropriately set bits together.
6.5
Ideality Factor Registers
Table 6.7 Ideality Factor Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
11h
R/W
External
Diode 1
Ideality
0
0
0
1
0
B2
B1
B0
12h
12h
R/W
External
Diode 2
Ideality
0
0
0
1
0
B2
B1
B0
12h
13h
R/W
External
Diode 3
Ideality
0
0
0
1
0
B2
B1
B0
12h
These registers store the ideality factors that are applied to the external diodes.
Beta Compensation and Resistance Error Correction automatically correct for most diode ideality
errors, therefore it is not recommended that these settings be updated without consulting SMSC.
For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly
differently than for discrete diode-connected transistors. Refer to Table 6.9 when using a CPU
substrate transistor.
Only the lower three bits can be written. Writing to any other bit will be ignored.
The Ideality Factor Registers are software locked.
Revision 0.88 (11-20-09)
38
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.8 Ideality Factor Look-Up Table
SETTING
FACTOR
10h
1.0053
11h
1.0066
12h
1.0080
13h
1.0093
14h
1.0106
15h
1.0119
16h
1.0133
17h
1.0146
Table 6.9 Substrate Diode Ideality Factor Look-Up Table (BJT Model)
SETTING
FACTOR
10h
0.9973
11h
0.9986
12h
1.0000
13h
1.0013
14h
1.0026
15h
1.0039
16h
1.0053
17h
1.0066
APPLICATION NOTE: When measuring a 65nm Intel CPUs, the Ideality Setting should be the default 12h. When
measuring 45nm Intel CPUs, the Ideality Setting should be 15h.
6.6
Beta Configuration Registers
Table 6.10 Beta Configuration Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
14h
R/W
External Diode 1
Beta
Configuration
-
-
-
AUTO
1
BETA1[3:0]
10h
15h
R/W
External Diode 2
Beta
Configuration
-
-
-
AUTO
2
BETA2[3:0]
10h
SMSC EMC2112
39
DATASHEET
B3
B2
B1
B0
DEFAULT
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
The Beta Configuration Registers control advanced temperature measurement features for each
External Diode channel. The Beta Configuration Registers are software locked. The External Diode 1
Beta Configuration register Is hardware locked if the External Diode 1 channel is linked to the hardware
Critical / Thermal shutdown circuitry. Likewise, the External Diode 2 Beta Configuration register is
hardware locked if the External Diode 2 is linked to the Critical / Thermal shutdown circuitry - see
Section 5.9.2.
Bit 4 - AUTO - Enables the Automatic Beta detection algorithm.
̈
‘0’ - The Automatic Beta detection algorithm is disabled. The BETAx[3:0] bit settings will be used
to control the beta compensation circuitry.
̈
‘1’ (default) - The Automatic Beta detection algorithm is enabled. The circuitry will automatically
detect the transistor type and beta values and configure the BETAx[3:0] bits for optimal
performance.
Bits 3 - 0 - BETAx[3:0] - hold a value that corresponds to a range of betas that the Beta Compensation
circuitry can compensate for. These four bits will always show the current beta setting used by the
circuitry. If the AUTO bit is set (default), then these bits may updated by the device with every
temperature conversion. If the AUTO bit is not set, then the value of these bits is used to drive the
beta compensation circuitry. In this case, these bits should be set with a value corresponding to the
lowest expected value of beta for the PNP transistor being used as a temperature sensing device.
See Table 6.11 for supported beta ranges. A value of 1111b indicates that the beta compensation
circuitry is disabled. In this condition, the diode channels will function with default current levels and
will not automatically adjust for beta variation. This mode is used when measuring a discrete 2N3904
transistor or AMD thermal diode.
All of the Beta Configuration Registers are Software Locked.
Table 6.11 Beta Compensation
BETAX[3:0]
AUTO
MINIMUM BETA
3
2
1
0
0
0
0
0
0
0.050
0
0
0
0
1
0.066
0
0
0
1
0
0.087
0
0
0
1
1
0.114
0
0
1
0
0
0.150
0
0
1
0
1
0.197
0
0
1
1
0
0.260
0
0
1
1
1
0.342
0
1
0
0
0
0.449
0
1
0
0
1
0.591
0
1
0
1
0
0.778
0
1
0
1
1
1.024
0
1
1
0
0
1.348
0
1
1
0
1
1.773
Revision 0.88 (11-20-09)
40
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.11 Beta Compensation (continued)
BETAX[3:0]
AUTO
MINIMUM BETA
3
2
1
0
0
1
1
1
0
2.333
0
1
1
1
1
Disabled
1
X
X
X
X
Automatically detected
6.7
REC Configuration Register
Table 6.12 REC Configuration Register
ADDRESS
17h
R/W
R/W
REGISTER
REC
Configuration
B7
B6
B5
B4
B3
-
-
-
-
-
B2
B1
B0
REC3
REC2
REC1
DEFAULT
07h
The REC Configuration Register determines whether Resistance Error Correction is used for each
external diode channel. The REC Configuration Register is software locked.
If either the External Diode 1 channel or External Diode 2 channel is selected by the SHDN_SEL pin
to be the hardware shutdown input channel (see Table 5.3), then the corresponding RECx bit will be
locked. Writing to the bit will have no affect and reading from it will always report the current setting.
Bit 2 - REC3 - Controls the Resistive Error Correction functionality of External Diode 3
̈
‘0’ - the REC functionality for External Diode 3 is disabled
̈
‘1’ (default) - the REC functionality for External Diode 3 is enabled.
Bit 1 - REC2 - Controls the Resistive Error Correction functionality of External Diode 2
̈
‘0’ - the REC functionality for External Diode 2 is disabled
̈
‘1’ (default) - the REC functionality for External Diode 2 is enabled.
Bit 0 - REC1 - Controls the Resistive Error Correction functionality of External Diode 1
6.8
̈
‘0’ - the REC functionality for External Diode 1 is disabled
̈
‘1’ (default) - the REC functionality for External Diode 1 is enabled.
Critical Temperature Limit Registers
Table 6.13 Tcrit Limit Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
19h
R/W
once
External Diode
1 Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
1Ah
R/W
once
External Diode
2 Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
SMSC EMC2112
41
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.13 Tcrit Limit Registers (continued)
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Bh
R/W
once
External Diode
2 Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
1Dh
R/W
once
Internal Diode
Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
The Critical Temperature Limit Registers store the Critical Temperature Limit. At power up, none of the
respective channels are linked to Hardware set Thermal/Critical Shutdown circuitry.
Whenever one of the registers is updated, two things occur. First, the register is locked so that it cannot
be updated again without a power on reset. Second, the respective temperature channel is linked to
the SYS_SHDN pin and the Hardware set Thermal/Critical Shutdown Circuitry. At this point, if the
measured temperature channel exceeds the Critical limit, the SYS_SHDN pin will be asserted, the
appropriate bit set in the Tcrit Status Register, and the TCRIT bit in the Interrupt Status Register will
be set.
6.9
Configuration Register
Table 6.14 Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
20h
R/W
Configuration
MASK
WD_
EN
-
-
-
DR_
EXT_
CLK
USE_
EXT_
CLK
B0
DEFAULT
APD
00h
The Configuration Register controls the basic functionality of the EMC2112. The bits are described
below. The Configuration Register is software locked.
Bit 7 - MASK - Blocks the ALERT pin from being asserted.
̈
‘0’ (default) - The ALERT pin is unmasked. If any bit in either status register is set, the ALERT pins
will be asserted (unless individually masked via the Mask Register)
̈
‘1’ - The ALERT pin is masked and will not be asserted.
Bit 6 - WD_EN - Enables the Watchdog timer to operate in Continuous Mode (see Section 5.6.2).
̈
‘0’ (default) - The Watchdog timer does not operate continuously. It will function upon power up and
at no other time.
̈
‘1’ - The Watchdog timer operates continuously as described in Section 5.6.
Bit 2 - DR_EXT_CLK - Enables the internal tachometer clock to be driven out on the CLK pin so that
multiple devices can be synced to the same source.
̈
‘0’ (default) - The CLK pin acts as a clock input.
̈
‘1’ - The CLK pin acts as a clock output and is a push-pull driver.
Bit 1 - USE_EXT_CLK - Enables the EMC2112 to use a clock present on the CLK pin as the
tachometer clock. If the DR_EXT_CLK bit is set, then this bit is ignored and the device will use the
internal oscillator.
̈
‘0’ (default) - The EMC2112 will use its internal oscillator for all Tachometer measurements.
̈
‘1’ - The EMC2112 will use the oscillator presented on the CLK pin for all Tachometer
measurements.
Revision 0.88 (11-20-09)
42
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Bit 0 - APD - Enables the External Diode 3 channel.
6.10
̈
‘0’ (default) - The External Diode 3 channel is not enabled.
̈
‘1’ - The External Diode 3 channel is enabled as an anti-parallel diode connected to DP2 / DN2
pins.
Configuration 2 Register
Table 6.15 Configuration 2 Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
21h
R/W
Config 2
-
DIS_
DYN
DIS_
TO
DIS_
AVG
B3
B2
QUEUE[1:0]
B1
B0
CONV[1:0]
DEFAULT
0Eh
The Configuration 2 Register controls conversion rate of the temperature monitoring as well as the
fault queue. This register is software locked.
Bit 6 - DIS_DYN - Disables the Dynamic Averaging Feature.
̈
‘0’ (default) - The Dynamic Averaging function is enabled. The conversion time for all external diode
temperature channels is scaled based on the chosen conversion rate to maximize accuracy and
immunity to random temperature measurement variation.
̈
‘1’ - The Dynamic Averaging function is disabled. The conversion time for all temperature channels
is fixed regardless of the chosen conversion rate.
Bit 5 - DIS_TO - Disables the SMBus time out function for the SMBus client (if enabled).
̈
‘0’ (default) - The SMBus timeout and idle functionality are enabled. The SMBus interface will time
out if the clock line is held low for longer than 30ms. Likewise, it will reset if both the data and clock
lines are held high for longer than 150us.
̈
‘1’ - The SMBus timeout and idle functionality are disabled. The SMBus interface will not time out
if the clock line is held low. Likewise, it will not reset if both the data and clock lines are held high
for longer than 150us. This is used for I2C compliance.
Bit 4 - DIS_AVG - Disables digital averaging of the External Diode 1 channel.
̈
‘0’ (default) - The External Diode 1 channel has digital averaging enabled. The temperature data
is the average of the previous four measurements.
̈
‘1’ - The External Diode 1 channel has digital averaging disabled. The temperature data is the last
measured data.
Bits 3-2 - QUEUE[1:0] - Determines the number of consecutive out of limit conditions that are
necessary to trigger an interrupt. Each measurement channel has a separate fault queue associated
with the high limit and diode fault condition except the internal diode.
The Critical / Thermal Shutdown temperature has a separate fault queue that applies to the selected
hardware shutdown channel (see Section 5.9) when compared against the threshold set by the
TRIP_SET pin.
APPLICATION NOTE: If the fault queue for any channel is currently active (i.e. an out of limit condition has been
detected and caused the fault queue to increment) then changing the settings will not take
effect until the fault queue is zeroed. This occurs by the ALERT pin asserting or the out of
limit condition being removed.
SMSC EMC2112
43
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.16 Fault Queue
QUEUE[1:0]
1
0
NUMBER OF CONSECUTIVE OUT OF LIMIT CONDITIONS
0
0
1 (disabled)
0
1
2
1
0
3
1
1
4 (default)
Bit 1 - 0 - CONV[1:0] - determines the conversion rate of the temperature monitoring. This conversion
rate does not affect the fan driver. The supply current from VDD_3V is nominally dependent upon the
conversion rate and the average current will increase as the conversion rate increases.
Table 6.17 Conversion Rate
TEMPERATURE OVER SAMPLING
FROM 11 BITS
CONV[1:0]
1
0
CONVERSION RATE
DYN_DIS = ‘0’
DYN_DIS = ‘1’
0
0
1 / sec
x8
x1
0
1
2 / sec
x4
x1
1
0
4 / sec (default)
x2
x1
1
1
8 / sec
x1
x1
6.11
Interrupt Status Register
Table 6.18 Interrupt Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
23h
R-C
Interrupt
Status
Register
RESET
TSD
TCRIT
-
FAN
HIGH
-
FAULT
00h
The Interrupt Status Register reports the operating condition of the EMC2112. If any of the bits are set
to a logic ‘1’ (other than RESET and TSD), the ALERT pin will be asserted low if the corresponding
channel is enabled. If there are no set status bits, the ALERT pin will be released.
The bits that cause the ALERT pin to be asserted can be masked based on the channel they are
associated with unless stated otherwise.
Bit 7 - RESET - This bit is set to ‘1’ if the Reset Generator (see Section 5.10) has tripped, meaning
that the VDD_5V voltage level is less than its normal operating level (and the RESET pin is at a logic
‘0’ state). This bit is cleared when the RESET output changes states to a logic ‘1’. This bit will not
cause the ALERT pin to be asserted.
Revision 0.88 (11-20-09)
44
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Bit 6 - TSD - This bit is set to ‘1’ if the internal Thermal Shutdown (TSD) circuit trips indicating that the
die temperature has exceeded its threshold. When this bit is set, it will not cause the ALERT pin to be
asserted however will coincide with the SYS_SHDN pin being asserted. This bit is cleared when the
register is read and the error condition has been removed.
Bit 5 - TCRIT - This bit is set to ‘1’ whenever the any bit in the Tcrit Status Register is set. This bit is
automatically cleared when the Tcrit Status Register is cleared.
Bit 3 - FAN - This bit is set to ‘1’ if any bit in the Fan Status Register is set. This bit is automatically
cleared when the Fan Status Register is read and the bits are cleared.
Bit 2 - HIGH - This bit is set to ‘1’ if any bit in the High Status Register is set. This bit is automatically
cleared when the High Status Register is read and the bits are cleared.
Bit 0 - FAULT - This bit is set to ‘1’ if any bit in the Diode Fault Register is set. This bit is automatically
cleared when the Diode Fault Register is read and the bits are cleared.
6.12
Error Status Registers
Table 6.19 Error Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Fh
R-C
Tcrit Status
HWS
-
-
-
EXT3_
CRIT
EXT2_
CRIT
EXT1_
CRIT
INT_
CRIT
00h
24h
R-C
High Status
-
-
-
-
EXT3_
HI
EXT2_
HI
EXT1_
HI
INT_
HI
00h
26h
R-C
Diode Fault
-
-
-
-
EXT3_
FLT
EXT2_
FLT
EXT1_
FLT
-
00h
The Error Status Registers report the specific error condition for all measurement channels with limits.
If any bit is set in the High, Low, or Diode Fault Status register, the corresponding High, Low, or Fault
bit is set in the Interrupt Status Register.
Reading the Interrupt Status Register does not clear the Error Status bit. Reading from any Error Status
Register that has bits set will clear the register and the corresponding bit in the Interrupt Status
Register if the error condition has been removed. If the error condition is persistent, reading the Error
Status Registers will have no affect.
6.12.1
Tcrit Status Register
The Tcrit Status Register stores the event that caused the SYS_SHDN pin to be asserted. Each of the
temperature channels must be associated with the SYS_SHDN pin before the corresponding status bit
can be set (see Section 6.8). Once the SYS_SHDN pin is asserted, it will be released when the
temperature drops below the threshold level however the individual status bit will not be cleared until
read.
Bit 7 - HWS - This bit is set if the hardware set temperature channel meets or exceeds the temperature
threshold determined by the TRIP_SET voltage.
SMSC EMC2112
45
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
6.13
Fan Status Register
Table 6.20 Fan Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
27h
R-C
Fan Status
Register
WATCH
-
DRIVE_
FAIL
FAN_
SHORT
-
-
FAN_
SPIN
FAN_
STALL
00h
The Fan Status Register contains the status bits associated with each fan driver. This register is
cleared when read if the error condition has been removed.
Bit 7 - WATCH - This bit is asserted ‘1’ if the Watchdog timer has expired (see Section 5.6).
Bit 5 - DRIVE_FAIL - Indicates that the RPM-based Fan Speed Control Algorithm cannot drive the Fan
to the desired target setting at maximum drive. This bit can be masked from asserting the ALERT pin.
̈
‘0’ - The RPM-based Fan Speed Control Algorithm can drive the Fan to the desired target setting.
̈
‘1’ - The RPM-based Fan Speed Control Algorithm cannot drive the Fan to the desired target setting
at maximum drive.
Bit 4- FAN_SHORT - This bit is asserted ‘1’ if the High Side Fan Driver detects an over current
condition that lasts for longer than 2 seconds.
Bit 1- FAN_SPIN- This bit is asserted ‘1’ if the Spin up Routine for the Fan cannot detect a valid
tachometer reading within its maximum time window. This bit can be masked from asserting the ALERT
pin.
Bit 0 - FAN_STALL - This bit is asserted ‘1’ if the tachometer measurement on the Fan detects a stalled
fan. This bit can be masked from asserting the ALERT pin.
6.14
Interrupt Enable Register
Table 6.21 Interrupt Enable Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
28
R/W
Interrupt
Enable
-
-
-
-
EXT3_
INT_EN
EXT2_
INT_EN
EXT1_
INT_EN
INT_
INT_EN
00h
The Interrupt Enable Register controls the masking for each temperature channel. When a channel is
masked, it will not cause the ALERT pin to be asserted when an error condition is detected.
Bit 3 - EXT3_INT_EN - Allows the External Diode 3 channel to assert the ALERT pin. This bit can only
be set if the APD bit is set.
̈
‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with External
Diode 3 channel.
̈
‘1’ - The ALERT pin will be asserted for an error condition associated with External Diode 3
channel.
Bit 2 - EXT2_INT_EN - Allows the External Diode 2 channel to assert the ALERT pin.
̈
‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with External
Diode 2 channel.
̈
‘1’ - The ALERT pin will be asserted for an error condition associated with External Diode 2
channel.
Revision 0.88 (11-20-09)
46
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Bit 1 - EXT1_INT_EN - Allows the External Diode 1 channel to assert the ALERT pin.
̈
‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with External
Diode 1 channel.
̈
‘1’ - The ALERT pin will be asserted for an error condition associated with External Diode 1
channel.
Bit 0 - INT_INT_EN - Allows the Internal Diode channel to assert the ALERT pin.
6.15
̈
‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with the Internal
Diode.
̈
‘1’ - The ALERT pin will be asserted for an error condition associated with the Internal Diode.
Fan Interrupt Enable Register
Table 6.22 Fan Interrupt Enable Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
29h
R/W
Fan
Interrupt
Enable
-
-
-
-
-
-
SPIN_
INT_EN
STALL_
INT_EN
00h
The Fan Interrupt Enable controls the masking for each Fan channel. When a channel is enabled, it
will cause the ALERT pin to be asserted when an error condition is detected.
Bit 1 - SPIN_INT_EN - Allows the FAN_SPIN bit to assert the ALERT pin.
̈
‘0’ (default) - the FAN_SPIN bit will not assert the ALERT pin though it will still update the Status
Register normally.
̈
‘1’ - the FAN_SPIN bit will assert the ALERT pin.
Bit 0 - STALL_INT_EN - Allows the FAN_STALL bit or DRIVE_FAIL bit to assert the ALERT pin.
6.16
̈
‘0’ (default) - the FAN_STALL bit or DRIVE_FAIL bit will not assert the ALERT pin though will still
update the Status Register normally.
̈
‘1’ - the FAN_STALL or DRIVE_FAIL bit will assert the ALERT pin if set.
Limit Registers
Table 6.23 Limit Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
30h
R/W
External Diode
1 High Limit
Sign
64
32
16
8
4
2
1
55h
(+85°C)
31h
R/W
External Diode
2 High Limit
Sign
64
32
16
8
4
2
1
55h
(+85°C)
32h
R/W
External Diode
3 High Limit
Sign
64
32
16
8
4
2
1
55h
(+85°C)
34h
R/W
Internal Diode
High Limit
Sign
64
32
16
8
4
2
1
55h
(+85°C)
SMSC EMC2112
47
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
The EMC2112 contains high limits for all temperature channels and voltage channels. If any
measurement meets or exceeds the high limit then the appropriate status bit is set and the ALERT pin
is asserted (if enabled).
All Limit Registers are Software Locked.
6.17
Fan Setting Register
Table 6.24 Fan Setting Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
40h
R/W
Fan Setting
128
64
32
16
8
4
2
1
00h
The Fan Setting Register always displays the current setting of the Fan Driver. Reading from the
register will report the current fan speed setting of the fan driver regardless of the operating mode.
Therefore it is possible that reading from this register will not report data that was previously written
into this register.
While the RPM-based Fan Speed Control Algorithm is active, then the register is read only. Writing to
the register will have no affect and the data will not be stored.
If the RPM-based Fan Control Algorithm is disabled, then the register will be set with the previous
value that was used. The register is read / write and writing to this register will affect the fan speed.
The contents of the register represent the weighting of each bit in determining the final output voltage.
The output drive for the High Side Fan Driver output is given by Equation [2].
VALUE
Drive = ⎛⎝ ---------------------⎞⎠ × VDD_5V
255
6.18
[2]
Fan Configuration 1 Register
Table 6.25 Fan Configuration 1 Register
ADDR
R/W
REGISTER
B7
42h
R/W
Fan
Configuration 1
EN_
ALGO
B6
B5
RANGE[1:0]
B4
B3
EDGES[1:0]
B2
B1
UPDATE[2:0]
B0
DEFAULT
2Bh
The Fan Configuration 1 Register controls the general operation of the RPM-based Fan Speed Control
Algorithm used for the Fan 1 driver.
Bit 7 - EN_ALGO - enables the RPM-based Fan Speed Control Algorithm.
̈
‘0’ - (default) the control circuitry is disabled and the fan driver output is determined by the Fan
Driver Setting Register.
̈
‘1’ - the control circuitry is enabled and the Fan Driver output will be automatically updated to
maintain the programmed fan speed as indicated by the TACH Target Register.
Bits 6- 5 - RANGE[1:0] - Adjusts the range of reported and programmed tachometer reading values.
The RANGE bits determine the weighting of all TACH values (including the Valid TACH Count, TACH
Target, and TACH reading) as shown in Table 6.26.
Revision 0.88 (11-20-09)
48
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.26 Range Decode
RANGE[1:0]
REPORTED MINIMUM
RPM
TACH COUNT
MULTIPLIER
1
0
0
0
500
1
0
1
1000 (default)
2
1
0
2000
4
1
1
4000
8
Bits 4-3 - EDGES[1:0] - determines the minimum number of edges that must be detected on the TACH
signal to determine a single rotation. A typical fan measured 5 edges (for a 2-pole fan). For more
accurate tachometer measurement, the minimum number of edges measured may be increased.
Increasing the number of edges measured with respect to the number of poles of the fan will cause
the TACH Reading registers to indicate a fan speed that is higher or lower than the actual speed. In
order for the FSC Algorithm to operate correctly, the TACH Target must be updated by the user to
accommodate this shift. The Effective Tach Multiplier shown in Table 6.27 is used as a direct multiplier
term that is applied to the Actual RPM to achieve the Reported RPM. It should only be applied if the
number of edges measured does not match the number of edges expected based on the number of
poles of the fan (which is fixed for any given fan).
Contact SMSC for recommended settings when using fans with more or less than 2 poles.
Table 6.27 Minimum Edges for Fan Rotation
EDGES[1:0]
1
0
MINIMUM TACH
EDGES
NUMBER OF FAN POLES
EFFECTIVE TACH
MULTIPLIER (BASED ON 2
POLE FANS)
0
0
3
1 pole
0.5
0
1
5
2 poles (default)
1
0
7
3 poles
1.5
1
1
9
4 poles
2
1
Bit 2-0 - UPDATE - determines the base time between fan driver updates. The Update Time, along
with the Fan Step Register, is used to control the ramp rate of the drive response to provide a cleaner
transition of the actual fan operation as the desired fan speed changes. The Update Time is set as
shown in Table 6.28.
Table 6.28 Update Time
UPDATE[2:0]
UPDATE TIME
2
1
0
0
0
0
100ms
0
0
1
200ms
0
1
0
300ms
SMSC EMC2112
49
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.28 Update Time (continued)
UPDATE[2:0]
UPDATE TIME
6.19
2
1
0
0
1
1
400ms (default)
1
0
0
500ms
1
0
1
800ms
1
1
0
1200ms
1
1
1
1600ms
Fan Configuration 2 Register
Table 6.29 Fan Configuration 1 Register
ADDR
R/W
REGISTER
B7
B6
B5
43h
R/W
Fan
Configuration 2
TEMP_
RR
EN_
RRC
GLITCH_
EN
B4
B3
DER_OPT [1:0]
B2
B1
ERR_RNG[1:0]
B0
DEFAULT
-
28h
The Fan Configuration 2 Register controls the tachometer measurement and advanced features of the
RPM-based Fan Speed Control Algorithm.
Bit 7 - TEMP_RR - Overrides max step controls for the FSC algorithm when any temperature exceeds
its respective high limit.
̈
‘0’ (default) - All ramp rate control circuitry works at all times for the FSC algorithm or as determined
by the EN_RRC bit for manual mode.
̈
‘1’ - If any measured temperature or the PWM Input Duty cycle meets or exceeds its respective
high limit, then the Fan Max Step register settings are not used and the FSC algorithm acts as if
the Max Step settings were at 3Fh. The device will continue to operate in this way until all
temperatures (and the PWM input duty cycle) have dropped below the respective high limit.
Bit 6 - EN_RRC - Enables ramp rate control when the fan driver is operated in the Direct Setting Mode.
̈
‘0’ (default) - Ramp rate control is disabled. When the fan driver is operating in Direct Setting mode,
the fan setting will instantly transition to the next programmed setting.
̈
‘1’ - Ramp rate control is enabled. When the fan driver is operating in Direct Setting mode, the fan
drive setting will follow the ramp rate controls as determined by the Fan Step and Update Time
settings. The maximum fan drive setting step is capped at the Fan Step setting and is updated
based on the Update Time as given by Table 6.28.
Bit 5 - GLITCH_EN - Disables the low pass glitch filter that removes high frequency noise injected on
the TACH pin.
̈
‘0’ - The glitch filter is disabled.
̈
‘1’ (default) - The glitch filter is enabled.
Bits 4 - 3 - DER_OPT[1:0] - Control some of the advanced options that affect the derivative portion of
the RPM-based Fan Speed Control Algorithm as shown in Table 6.30.
Revision 0.88 (11-20-09)
50
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.30 Derivative Options
DER_OPT[1:0]
OPERATION
1
0
0
0
No derivative options used
1
Basic derivative. The derivative of the error from the
current drive setting and the target is added to the iterative
Fan Drive Register setting (in addition to proportional and
integral terms) (default)
1
0
Step derivative. The derivative of the error from the
current drive setting and the target is added to the iterative
Fan Drive Register setting and is not capped by the Fan
Step Register. This allows faster response times than the
basic derivative.
1
1
Both the basic derivative and the step derivative are used
effectively causing the derivative term to have double the
effect of the derivative term.
0
Bit 2 - 1 - ERR_RNG[1:0] - Control some of the advanced options that affect the error window. When
the measured fan speed is within the programmed error window around the target speed, then the fan
drive setting is not updated. The algorithm will continue to monitor the fan speed and calculate
necessary drive setting changes based on the error, however these changes are ignored.
Table 6.31 Error Range Options
ERR_RNG[1:0]
OPERATION
6.20
1
0
0
0
0 RPM (default)
0
1
50 RPM
1
0
100 RPM
1
1
200 RPM
Gain Register
Table 6.32 Gain Register
ADDR
R/W
REGISTER
B7
B6
45h
R/W
Gain Register
-
-
B5
B4
GAIND[1:0]
B3
B2
GAINI[1:0]
B1
B0
GAINP[1:0]
DEFAULT
2Ah
The Gain Register stores the gain terms used by the proportional and integral portions of each of the
RPM-based Fan Speed Control Algorithms. These gain terms are used as the KD, KI, and KP gain
terms in a classic PID control solution.
SMSC EMC2112
51
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.33 Gain Decode
GAIND OR GAINP OR GAINI [1:0]
RESPECTIVE GAIN FACTOR
6.21
1
0
0
0
1x
0
1
2x
1
0
4x (default)
1
1
8x
Fan Spin Up Configuration Register
Table 6.34 Fan Spin Up Configuration Register
ADDR
R/W
REGISTER
46h
R/W
Fan Spin Up
Configuration
B7
B6
DRIVE_FAIL_
CNT [1:0]
B5
B4
NOK
ICK
B3
B2
SPIN_LVL[2:0]
B1
B0
SPINUP_
TIME[1:0]
DEFAULT
19h
The Fan Spin Up Configuration Register controls the settings of Spin Up Routine. The Fan Spin Up
Configuration Register is software locked.
Bit 7 - 6 - DRIVE_FAIL_CNT[1:0] - Determines how many update cycles are used for the Drive Fail
detection function as shown in Table 6.35. This circuitry determines whether the fan can be driven to
the desired tach target.
Table 6.35 DRIVE_FAIL_CNT[1:0] Bit Decode
DRIVE_FAIL_CNT[1:0]
NUMBER OF UPDATE PERIODS
1
0
0
0
Disabled - the Drive Fail detection circuitry is disabled
(default)
0
1
16 - the Drive Fail detection circuitry will count for 16
update periods
1
0
32 - the Drive Fail detection circuitry will count for 32
update periods
1
1
64 - the Drive Fail detection circuitry will count for 64
update periods
Bit 5 - NOKICK - Determines if the Spin Up Routine will drive the fan to 100% duty cycle for 1/4 of the
programmed spin up time before driving it at the programmed level.
̈
‘0’ (default) - The Spin Up Routine will drive the fan driver to 100% for 1/4 of the programmed spin
up time before reverting to the programmed spin level.
̈
‘1’ - The Spin Up Routine will not drive the fan driver to 100%. It will set the drive at the
programmed spin level for the entire duration of the programmed spin up time.
Revision 0.88 (11-20-09)
52
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Bits 4 - 2 - SPIN_LVL[2:0] - Determines the final drive level that is used by the Spin Up Routine as
shown in Table 6.36.
Table 6.36 Spin Level
SPIN_LVL[2:0]
SPIN UP DRIVE LEVEL
2
1
0
0
0
0
30%
0
0
1
35%
0
1
0
40%
0
1
1
45%
1
0
0
50%
1
0
1
55%
1
1
0
60% (default)
1
1
1
65%
Bit 1 -0 - SPINUP_TIME[1:0] - determines the maximum Spin Time that the Spin Up Routine will run
for (see Section 5.2). If a valid tachometer measurement is not detected before the Spin Time has
elapsed, then an interrupt will be generated. When the RPM-based Fan Speed Control Algorithm is
active, the fan driver will attempt to re-start the fan immediately after the end of the last spin up attempt.
The Spin Time is set as shown in Table 6.37.
Table 6.37 Spin Time
SPINUP_TIME[1:0]
TOTAL SPIN UP TIME
6.22
1
0
0
0
250 ms
0
1
500 ms (default)
1
0
1 sec
1
1
2 sec
Fan Max Step Register
Table 6.38 Fan Max Step Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
47h
R/W
Fan Max Step
-
-
32
16
8
4
2
1
10h
The Fan Max Step Register, along with the Update Time, controls the ramp rate of the fan driver
response calculated by the RPM-based Fan Speed Control Algorithm. The value of the registers
represents the maximum step size each fan driver will take between update times (see Section 6.18).
SMSC EMC2112
53
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
When the FSC algorithm is enabled, Ramp Rate control is automatically used. When the FSC is not
active, then Ramp Rate control can be enabled by asserting the EN_RRC bit (see Section 6.19)
APPLICATION NOTE: The UPDATE bits and Fan Step Register settings operate independently of the RPM-based
Fan Speed Control Algorithm and will always limit the fan drive setting. That is, if the
programmed fan drive setting (either in determined by the RPM-based Fan Speed Control
Algorithm or by manual settings) exceeds the current fan drive setting by greater than the
Fan Step Register setting, the EMC2112 will limit the fan drive change to the value of the
Fan Step Register. It will use the Update Time to determine how often to update the drive
settings.
APPLICATION NOTE: If the Fan Speed Control Algorithm is used, the default settings in the Fan Configuration 2
Register will cause the maximum fan step settings to be ignored.
The Fan Step Registers are software locked.
6.23
Fan Minimum Drive Register
Table 6.39 Minimum Fan Drive Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
48h
R/W
Fan Minimum Drive
128
64
32
16
8
4
2
1
66h (40%)
The Fan Minimum Drive Register stores the minimum drive setting for each RPM-based Fan Speed
Control Algorithm. The RPM-based Fan Speed Control Algorithm will not drive the fan at a level lower
than the minimum drive unless the target Fan Speed is set at FFh (see Section 6.26)
During normal operation, if the fan stops for any reason (including low drive), the RPM-based Fan
Speed Control Algorithm will attempt to restart the fan. Setting the Fan Minimum Drive Registers to a
setting that will maintain fan operation is a useful way to avoid potential fan oscillations as the control
circuitry attempts to drive it at a level that cannot support fan operation.
The Fan Minimum Drive Register is software locked.
6.24
Valid TACH Count Register
Table 6.40 Valid TACH Count Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
49h
R/W
Valid TACH Count
4096
2048
1024
512
256
128
64
32
F5h
The Valid TACH Count Register stores the maximum TACH Reading Register value to indicate that
the each fan is spinning properly. The value is referenced at the end of the Spin Up Routine to
determine if the fan has started operating and decide if the device needs to retry. See Equation [3] for
translating the count to an RPM. This register is only used when the FSC is active.
If the TACH Reading Register value exceeds the Valid TACH Count Register (indicating that the Fan
RPM is below the threshold set by this count), then a stalled fan is detected. In this condition, the
algorithm will automatically begin its Spin Up Routine.
If a TACH Target setting is set above the Valid TACH Count setting, then that setting will be ignored
and the algorithm will use the current fan drive setting.
The Valid TACH Count Register is software locked.
Revision 0.88 (11-20-09)
54
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
6.25
Fan Drive Fail Band Registers
Table 6.41 Fan Drive Fail Band Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
4Ah
R/W
Fan Drive Fail
Band Low Byte
16
8
4
2
1
-
-
-
00h
4Bh
R/W
Fan Drive Fail
Band High Byte
4096
2048
1024
512
256
128
64
32
00h
The Fan Drive Fail Band Registers store the number of tach counts used by the Fan Drive Fail
detection circuitry. This circuitry is activated when the fan drive setting high byte is at FFh. When it is
enabled, the actual measured fan speed is compared against the target fan speed. These registers
are only used when the FSC is active.
This circuitry is used to indicate that the target fan speed at full drive is higher than the fan is actually
capable of reaching. If the measured fan speed does not exceed the target fan speed minus the Fan
Drive Fail Band Register settings for a period of time longer than set by the DRIVE_FAIL_CNTx[1:0]
bits then the DRIVE_FAIL status bit will be set and an interrupt generated.
6.26
TACH Target Registers
Table 6.42 TACH Target Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
4Ch
R/W
TACH Target Low
Byte
16
8
4
2
1
-
-
-
F8h
4Dh
R/W
TACH Target
High Byte
4096
2048
1024
512
256
128
64
32
FFh
The TACH Target Registers hold the target tachometer value that is maintained each of the RPMbased Fan Speed Control Algorithms.
If one of the algorithms is enabled then setting the TACH Target Register to FFh will disable the fan
driver (set the fan drive setting to 0%). Setting the TACH Target to any other value (from a setting of
FFh) will cause the algorithm to invoke the Spin Up Routine after which it will function normally.
The Tach Target is not applied until the high byte is written. Once the high byte is written, the current
value of both high and low bytes will be used as the next Tach target. 3
6.27
TACH Reading Registers
Table 6.43 TACH Reading Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
4Eh
R
Fan TACH
4096
2048
1024
512
256
128
64
32
FFh
4Fh
R
Fan TACH
Low Byte
16
8
4
2
1
-
-
-
F8h
SMSC EMC2112
55
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
The TACH Reading Registers’ contents describe the current tachometer reading for each of the fan.
By default, the data represents the fan speed as the number of 32kHz clock periods that occur for a
single revolution of the fan.
Equation [3] shows the detailed conversion from TACH measurement (COUNT) to RPM while Equation
[4] shows the simplified translation of TACH Reading Register count to RPM assuming a 2-pole fan,
measuring 5 edges, with a frequency of 32.768kHz. These equations are solved and tabulated for ease
of use in AN17.4 RPM to TACH Counts Conversion.
Whenever the high byte register is read, the corresponding low byte data will be loaded to internal
shadow registers so that when the low byte is read, the data will always coincide with the previously
read high byte.
where:
poles = number of poles of the fan
(typically 2)
(n – 1)
1
RPM = -------------------- × ---------------------------------- × f TACH × 60
1
( poles )
COUNT × ----m
fTACH = the tachometer
measurement frequency (typically
32.768kHz)
[3]
n = number of edges measured
(typically 5 for a 2 pole fan)
m = the multiplier defined by the
RANGe bits
× m------------------------------------RPM = 3,932,160
COUNT
[4]
COUNT = TACH Reading Register
value (in decimal)
Bit 2 - IDCF_5 - Sets the bit state of IDCFx bit 5.
BIt 1 - IDCF_4 - Sets the bit state of IDCFx bit 4.
Bit 0 - IDCF_3 - Sets the bit state of IDCFx bit 3.
Prior to enabling the RUN_ALl bit, the TATRIM and TYPE[1:0] bits must be set to the desired settings.
6.28
Software Lock Register
Table 6.44 Software Lock Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
EFh
R/W
Software
Lock
-
-
-
-
-
-
-
LOCK
00h
The Software Lock Register controls the software locking of critical registers. This register is software
locked.
Bit 0 - LOCK - this bit acts on all registers that are designated SWL. When this bit is set, the locked
registers become read only and cannot be updated.
̈
‘0’ (default) - all SWL registers can be updated normally.
̈
‘1’ - all SWL registers cannot be updated and a hard-reset is required to unlock them.
Revision 0.88 (11-20-09)
56
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
6.29
Product Features Register
Table 6.45 Product Features Register
ADDRESS
R/W
REGISTER
B7
B6
B5
B4
FCh
R
Product
Features
-
-
-
-
B3
B2
ADR[1:0]
B1
B0
DEFAULT
SHDN_CH
[1:0]
00h
The Product Features register shows those functions that are enabled by external pin states.
Bits 3-2 - ADR[2:0] - Indicates the selected SMBus address as determined by the ADDR_SEL pin.
Table 6.46 ADDR_SEL Pin Configuration
ADR[1:0]
SLAVE ADDRESS
1
0
0
0
0101_111xb
0
1
0111_101xb
1
0
0101_110xb
Bits 1-0 - SHDN_CH[1:0] - Indicates the selected temperature channel associated with the Critical /
Thermal Shutdown logic (see Section 5.9).
Table 6.47 SHDN_CH Pin Configuration
SHDN_CH [1:0]
HARDWARE SHUTDOWN CHANNEL
6.30
1
0
0
0
External Diode 1 measuring CPU / GPU diode
0
1
External Diode 1 measuring AMD or discrete diode
1
0
External Diode 2 measuring discrete diode
Product ID Register
Table 6.48 Product ID Register
ADDRESS
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FDh
R
Product ID
0
0
0
1
0
1
0
1
15h
The Product ID Register contains a unique 8 bit word that identifies the product.
SMSC EMC2112
57
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
6.31
Manufacturer ID Register
Table 6.49 Manufacturer ID Register
ADDRESS
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FEh
R
Manufacturer
ID
0
1
0
1
1
1
0
1
5Dh
The Manufacturer ID Register contains a unique 8 bit word that identifies SMSC.
6.32
Revision Register
Table 6.50 Revision Register
ADDRESS
R/W
FFh
R
REGISTER
Revision
B7
0
B6
0
B5
0
B4
0
B3
0
B2
0
B1
0
B0
1
DEFAULT
01h
The Revision Register contains a 8 bit word that identifies the die revision.
Revision 0.88 (11-20-09)
58
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 7 Typical Operating Curves
The following Typical Operating Curves are included.
̈
Supply Current vs. Temperature
̈
Supply Current vs. Supply Voltage
̈
Temperature Error vs. Series Resistance
̈
Temperature Error vs. CFILTER
̈
Temperature Error vs. Ambient Temperature
̈
Temperature Error vs. Supply Voltage
̈
Tachometer Measurement Accuracy vs. Temperature
̈
Tachometer Measurement Accuracy vs. Supply Voltage
̈
High Side Drive Voltage vs. Temperature
̈
Reset Generator Threshold vs. Temperature
̈
Reset Generator Threshold vs. Supply Voltage
Supply Current vs. Ambient Temperature
Supply Current vs. Supply Voltage
1.25
1.25
1.2
Supply Current (mA)
Supply Current (mA)
1.2
1.15
1.1
1.15
1.1
1.05
1.05
1
0
20
40
60
80
100
120
1
2.95
140
3.05
3.15
Temperature Error vs. Series Resistance
2.5
1
60
0.5
40
REC on
20
-0.5
150
200
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
0
250
-1
0
Series Resistance (Ohm)
SMSC EMC2112
3.65
0.6
Temperature
Error
(°C)(C
Temperature
Error
80
Temperature Error (°C – REC off)
Temperature Error (°C – REC on)
1.5
100
3.55
0.8
100
50
3.45
1
REC off
2
0
3.35
Temperature Error vs. CFILTER
120
0
3.25
Supply Voltage (V)
Ambient Temperature (°C)
1000
2000
3000
4000
5000
CFILTER (pF)
59
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Temperature Error vs. Supply Voltage
0.5
0.5
0.4
0.4
0.3
0.3
Temperature
TemperatureError
Error(°C)
(°C
Temperature
Error
(°C)
Temperature
Error
(°C
Temperature Error vs. Ambient Temperature
0.2
0.1
0
-0.1
-0.2
-0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.4
-0.5
0
20
40
60
80
100
120
-0.5
2.95
140
3.05
3.15
Ambient
Ambient Temperature
Temperature (°
(°C)
C)
0.9
0.9
0.8
0.7
0.6
Internal Clock
0.4
0.3
0.2
External Clock
0.1
0
0
20
40
60
80
3.45
3.55
3.65
100
120
0.8
0.7
0.6
0.5
Internal Clock
0.4
0.3
0.2
External Clock
0.1
0
2.95
140
3.05
3.15
Ambient Temperuture (°C)
3.25
3.35
3.45
3.55
3.65
Supply Voltage (V)
Reset Generator Threshold vs. Ambient Temperature
High Side Drive Voltage vs. Ambient Temperature
4.7
5
Reset
Threshold(V)
(V)
Reset Generator Threshold
4.99
Unloaded
(100kOhm)
4.98
Drive Voltage (V)
3.35
Tachometer Measurement Accuracy vs. Supply Voltage
1
Tach
Accuracy(%)
(%
Tach Measurement Accuracy
Tach
Tach Measurement
MeasurementAccuracy
Accuracy(%)
(%
Tachometer Measurement Accuracy vs. Ambient Temperature
1
0.5
3.25
Supply Voltage (V)
4.97
4.96
4.95
4.94
Loaded
(8.11Ohm)
4.93
4.92
4.91
4.65
4.6
4.55
4.5
4.9
0
0
20
40
60
80
100
120
140
20
40
60
80
100
120
140
Ambient Temperature (°C)
Ambient Temperature (°C)
Revision 0.88 (11-20-09)
60
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Reset Generator Threshold vs. Supply Voltage
Reset Generator Threshold
Reset
Threshold(V)
(V
4.7
4.65
4.6
4.55
4.5
2.95
3.05
3.15
3.25
3.35
3.45
3.55
3.65
Supply Voltage (V)
SMSC EMC2112
61
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 8 Package Outline
8.1
EMC2112 Package Drawings - 20-Pin QFN 4mm x 4mm
Figure 8.1 EMC2112 Package Drawing - 20-Pin QFN 4mm x 4mm
Revision 0.88 (11-20-09)
62
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Figure 8.2 EMC2112 Package Dimensions and Notes - 20-Pin QFN 4mm x 4mm
Figure 8.3 EMC2112 PCB Footprint - 20-Pin QFN 4mm x 4mm
SMSC EMC2112
63
DATASHEET
Revision 0.88 (11-20-09)
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
8.2
Package Marking Information
TOP
0.41
LINE: 1 – SMSC Logo without circled (R) symbol
LINE: 2 – Device Number
LINE: 3 – Last 7 digits of Lot Number
LINE: 4 – Revision and Country Code (RCC)
3x 0.56
E MC 2 1 1 2
1 2 3 4 5 6 a
RCC
e3
PB-FREE/GREEN SYMBOL
(Matte Sn)
PIN 1
LINES 1 to 3: CENTER HORIZONTAL ALIGNMENT
LINE 4: LEFT HORIZONTAL ALIGNMENT
BOTTOM
BOTTOM MARKING NOT ALLOWED
Figure 8.4 EMC2112 Package Markings
Revision 0.88 (11-20-09)
64
DATASHEET
SMSC EMC2112
RPM-Based Linear Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 9 Datasheet Revision History
Table 9.1 Customer Revision History
REVISION LEVEL & DATE
Rev. 0.88
(11-20-09)
Rev. 0.87
(05-21-09)
Rev. 0.85
(01-08-09)
SMSC EMC2112
SECTION/FIGURE/ENTRY
CORRECTION
Figure 5.4, "EMC2112
Critical/Thermal Shutdown
Block Diagram"
Updated figure to show SYS_SHDN# is open
drain.
Section 6.32, "Revision
Register"
Updated value of Revision Register (FFh) from 00h
to 01h to reflect the new die revision.
Chapter 7, Typical
Operating Curves
Added.
Table 3.1, "Absolute
Maximum Ratings"
Updated “Junction to Ambient”:
from “16 pin QFN”
to “20 pin QFN”
Note 3.2 (following
Table 3.1, "Absolute
Maximum Ratings")
Note modified:
from “ground plane with 3.1mm x 3.1mm”
to “ground plane with 2.6mm x 2.6mm”
Section 6.27, "TACH
Reading Registers"
Added reference to AN17.4
Table 3.2, "Electrical
Specifications"
Updated electrical specifications for supply current,
tach accuracy, and VOH / VOL conditions on digital
pins
Initial datasheet release
65
DATASHEET
Revision 0.88 (11-20-09)
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising